1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
static uint64_t zfs_crc64_table[256];
#define ECKSUM 666
#define ASSERT(...) do { } while (0)
#define ASSERT3U(...) do { } while (0)
#define ASSERT3S(...) do { } while (0)
#define panic(...) do { \
printf(__VA_ARGS__); \
for (;;) ; \
} while (0)
#define kmem_alloc(size, flag) zfs_alloc((size))
#define kmem_free(ptr, size) zfs_free((ptr), (size))
static void
zfs_init_crc(void)
{
int i, j;
uint64_t *ct;
/*
* Calculate the crc64 table (used for the zap hash
* function).
*/
if (zfs_crc64_table[128] != ZFS_CRC64_POLY) {
memset(zfs_crc64_table, 0, sizeof(zfs_crc64_table));
for (i = 0; i < 256; i++)
for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
}
}
static void
zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}
/*
* Signature for checksum functions.
*/
typedef void zio_checksum_t(const void *data, uint64_t size, zio_cksum_t *zcp);
/*
* Information about each checksum function.
*/
typedef struct zio_checksum_info {
zio_checksum_t *ci_func[2]; /* checksum function for each byteorder */
int ci_correctable; /* number of correctable bits */
int ci_eck; /* uses zio embedded checksum? */
int ci_dedup; /* strong enough for dedup? */
const char *ci_name; /* descriptive name */
} zio_checksum_info_t;
#include "fletcher.c"
#include "sha256.c"
static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
{{NULL, NULL}, 0, 0, 0, "inherit"},
{{NULL, NULL}, 0, 0, 0, "on"},
{{zio_checksum_off, zio_checksum_off}, 0, 0, 0, "off"},
{{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, 0, "label"},
{{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 1, 0, "gang_header"},
{{fletcher_2_native, fletcher_2_byteswap}, 0, 1, 0, "zilog"},
{{fletcher_2_native, fletcher_2_byteswap}, 0, 0, 0, "fletcher2"},
{{fletcher_4_native, fletcher_4_byteswap}, 1, 0, 0, "fletcher4"},
{{zio_checksum_SHA256, zio_checksum_SHA256}, 1, 0, 1, "SHA256"},
{{fletcher_4_native, fletcher_4_byteswap}, 0, 1, 0, "zillog2"},
};
/*
* Common signature for all zio compress/decompress functions.
*/
typedef size_t zio_compress_func_t(void *src, void *dst,
size_t s_len, size_t d_len, int);
typedef int zio_decompress_func_t(void *src, void *dst,
size_t s_len, size_t d_len, int);
/*
* Information about each compression function.
*/
typedef struct zio_compress_info {
zio_compress_func_t *ci_compress; /* compression function */
zio_decompress_func_t *ci_decompress; /* decompression function */
int ci_level; /* level parameter */
const char *ci_name; /* algorithm name */
} zio_compress_info_t;
#include "lzjb.c"
#include "zle.c"
/*
* Compression vectors.
*/
static zio_compress_info_t zio_compress_table[ZIO_COMPRESS_FUNCTIONS] = {
{NULL, NULL, 0, "inherit"},
{NULL, NULL, 0, "on"},
{NULL, NULL, 0, "uncompressed"},
{NULL, lzjb_decompress, 0, "lzjb"},
{NULL, NULL, 0, "empty"},
{NULL, NULL, 1, "gzip-1"},
{NULL, NULL, 2, "gzip-2"},
{NULL, NULL, 3, "gzip-3"},
{NULL, NULL, 4, "gzip-4"},
{NULL, NULL, 5, "gzip-5"},
{NULL, NULL, 6, "gzip-6"},
{NULL, NULL, 7, "gzip-7"},
{NULL, NULL, 8, "gzip-8"},
{NULL, NULL, 9, "gzip-9"},
{NULL, zle_decompress, 64, "zle"},
};
static void
byteswap_uint64_array(void *vbuf, size_t size)
{
uint64_t *buf = vbuf;
size_t count = size >> 3;
int i;
ASSERT((size & 7) == 0);
for (i = 0; i < count; i++)
buf[i] = BSWAP_64(buf[i]);
}
/*
* Set the external verifier for a gang block based on <vdev, offset, txg>,
* a tuple which is guaranteed to be unique for the life of the pool.
*/
static void
zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
{
const dva_t *dva = BP_IDENTITY(bp);
uint64_t txg = BP_PHYSICAL_BIRTH(bp);
ASSERT(BP_IS_GANG(bp));
ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
}
/*
* Set the external verifier for a label block based on its offset.
* The vdev is implicit, and the txg is unknowable at pool open time --
* hence the logic in vdev_uberblock_load() to find the most recent copy.
*/
static void
zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
{
ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
}
static int
zio_checksum_error(const blkptr_t *bp, void *data, uint64_t offset)
{
unsigned int checksum = BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp);
uint64_t size = BP_GET_PSIZE(bp);
zio_checksum_info_t *ci;
zio_cksum_t actual_cksum, expected_cksum, verifier;
int byteswap;
if (checksum >= ZIO_CHECKSUM_FUNCTIONS)
return (EINVAL);
ci = &zio_checksum_table[checksum];
if (ci->ci_func[0] == NULL || ci->ci_func[1] == NULL)
return (EINVAL);
if (ci->ci_eck) {
zio_eck_t *eck;
ASSERT(checksum == ZIO_CHECKSUM_GANG_HEADER ||
checksum == ZIO_CHECKSUM_LABEL);
eck = (zio_eck_t *)((char *)data + size) - 1;
if (checksum == ZIO_CHECKSUM_GANG_HEADER)
zio_checksum_gang_verifier(&verifier, bp);
else if (checksum == ZIO_CHECKSUM_LABEL)
zio_checksum_label_verifier(&verifier, offset);
else
verifier = bp->blk_cksum;
byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
if (byteswap)
byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
expected_cksum = eck->zec_cksum;
eck->zec_cksum = verifier;
ci->ci_func[byteswap](data, size, &actual_cksum);
eck->zec_cksum = expected_cksum;
if (byteswap)
byteswap_uint64_array(&expected_cksum,
sizeof (zio_cksum_t));
} else {
ASSERT(!BP_IS_GANG(bp));
expected_cksum = bp->blk_cksum;
ci->ci_func[0](data, size, &actual_cksum);
}
if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) {
/*printf("ZFS: read checksum failed\n");*/
return (EIO);
}
return (0);
}
static int
zio_decompress_data(int cpfunc, void *src, uint64_t srcsize,
void *dest, uint64_t destsize)
{
zio_compress_info_t *ci;
if (cpfunc >= ZIO_COMPRESS_FUNCTIONS) {
printf("ZFS: unsupported compression algorithm %u\n", cpfunc);
return (EIO);
}
ci = &zio_compress_table[cpfunc];
if (!ci->ci_decompress) {
printf("ZFS: unsupported compression algorithm %s\n",
ci->ci_name);
return (EIO);
}
return (ci->ci_decompress(src, dest, srcsize, destsize, ci->ci_level));
}
static uint64_t
zap_hash(uint64_t salt, const char *name)
{
const uint8_t *cp;
uint8_t c;
uint64_t crc = salt;
ASSERT(crc != 0);
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
/*
* Only use 28 bits, since we need 4 bits in the cookie for the
* collision differentiator. We MUST use the high bits, since
* those are the onces that we first pay attention to when
* chosing the bucket.
*/
crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
return (crc);
}
static void *zfs_alloc(size_t size);
static void zfs_free(void *ptr, size_t size);
typedef struct raidz_col {
uint64_t rc_devidx; /* child device index for I/O */
uint64_t rc_offset; /* device offset */
uint64_t rc_size; /* I/O size */
void *rc_data; /* I/O data */
int rc_error; /* I/O error for this device */
uint8_t rc_tried; /* Did we attempt this I/O column? */
uint8_t rc_skipped; /* Did we skip this I/O column? */
} raidz_col_t;
typedef struct raidz_map {
uint64_t rm_cols; /* Regular column count */
uint64_t rm_scols; /* Count including skipped columns */
uint64_t rm_bigcols; /* Number of oversized columns */
uint64_t rm_asize; /* Actual total I/O size */
uint64_t rm_missingdata; /* Count of missing data devices */
uint64_t rm_missingparity; /* Count of missing parity devices */
uint64_t rm_firstdatacol; /* First data column/parity count */
uint64_t rm_nskip; /* Skipped sectors for padding */
uint64_t rm_skipstart; /* Column index of padding start */
uintptr_t rm_reports; /* # of referencing checksum reports */
uint8_t rm_freed; /* map no longer has referencing ZIO */
uint8_t rm_ecksuminjected; /* checksum error was injected */
raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
} raidz_map_t;
#define VDEV_RAIDZ_P 0
#define VDEV_RAIDZ_Q 1
#define VDEV_RAIDZ_R 2
#define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
#define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
/*
* We provide a mechanism to perform the field multiplication operation on a
* 64-bit value all at once rather than a byte at a time. This works by
* creating a mask from the top bit in each byte and using that to
* conditionally apply the XOR of 0x1d.
*/
#define VDEV_RAIDZ_64MUL_2(x, mask) \
{ \
(mask) = (x) & 0x8080808080808080ULL; \
(mask) = ((mask) << 1) - ((mask) >> 7); \
(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
((mask) & 0x1d1d1d1d1d1d1d1d); \
}
#define VDEV_RAIDZ_64MUL_4(x, mask) \
{ \
VDEV_RAIDZ_64MUL_2((x), mask); \
VDEV_RAIDZ_64MUL_2((x), mask); \
}
/*
* These two tables represent powers and logs of 2 in the Galois field defined
* above. These values were computed by repeatedly multiplying by 2 as above.
*/
static const uint8_t vdev_raidz_pow2[256] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
};
static const uint8_t vdev_raidz_log2[256] = {
0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
};
/*
* Multiply a given number by 2 raised to the given power.
*/
static uint8_t
vdev_raidz_exp2(uint8_t a, int exp)
{
if (a == 0)
return (0);
ASSERT(exp >= 0);
ASSERT(vdev_raidz_log2[a] > 0 || a == 1);
exp += vdev_raidz_log2[a];
if (exp > 255)
exp -= 255;
return (vdev_raidz_pow2[exp]);
}
static void
vdev_raidz_generate_parity_p(raidz_map_t *rm)
{
uint64_t *p, *src, pcount, ccount, i;
int c;
pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccount == pcount);
for (i = 0; i < ccount; i++, src++, p++) {
*p = *src;
}
} else {
ASSERT(ccount <= pcount);
for (i = 0; i < ccount; i++, src++, p++) {
*p ^= *src;
}
}
}
}
static void
vdev_raidz_generate_parity_pq(raidz_map_t *rm)
{
uint64_t *p, *q, *src, pcnt, ccnt, mask, i;
int c;
pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_Q].rc_size);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
for (i = 0; i < ccnt; i++, src++, p++, q++) {
*p = *src;
*q = *src;
}
for (; i < pcnt; i++, src++, p++, q++) {
*p = 0;
*q = 0;
}
} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the algorithm described above by multiplying
* the previous result and adding in the new value.
*/
for (i = 0; i < ccnt; i++, src++, p++, q++) {
*p ^= *src;
VDEV_RAIDZ_64MUL_2(*q, mask);
*q ^= *src;
}
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
for (; i < pcnt; i++, q++) {
VDEV_RAIDZ_64MUL_2(*q, mask);
}
}
}
}
static void
vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
{
uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i;
int c;
pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_Q].rc_size);
ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
rm->rm_col[VDEV_RAIDZ_R].rc_size);
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
src = rm->rm_col[c].rc_data;
p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
r = rm->rm_col[VDEV_RAIDZ_R].rc_data;
ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
if (c == rm->rm_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
*p = *src;
*q = *src;
*r = *src;
}
for (; i < pcnt; i++, src++, p++, q++, r++) {
*p = 0;
*q = 0;
*r = 0;
}
} else {
ASSERT(ccnt <= pcnt);
/*
* Apply the algorithm described above by multiplying
* the previous result and adding in the new value.
*/
for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
*p ^= *src;
VDEV_RAIDZ_64MUL_2(*q, mask);
*q ^= *src;
VDEV_RAIDZ_64MUL_4(*r, mask);
*r ^= *src;
}
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
for (; i < pcnt; i++, q++, r++) {
VDEV_RAIDZ_64MUL_2(*q, mask);
VDEV_RAIDZ_64MUL_4(*r, mask);
}
}
}
}
/*
* Generate RAID parity in the first virtual columns according to the number of
* parity columns available.
*/
static void
vdev_raidz_generate_parity(raidz_map_t *rm)
{
switch (rm->rm_firstdatacol) {
case 1:
vdev_raidz_generate_parity_p(rm);
break;
case 2:
vdev_raidz_generate_parity_pq(rm);
break;
case 3:
vdev_raidz_generate_parity_pqr(rm);
break;
default:
panic("invalid RAID-Z configuration");
}
}
/* BEGIN CSTYLED */
/*
* In the general case of reconstruction, we must solve the system of linear
* equations defined by the coeffecients used to generate parity as well as
* the contents of the data and parity disks. This can be expressed with
* vectors for the original data (D) and the actual data (d) and parity (p)
* and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
*
* __ __ __ __
* | | __ __ | p_0 |
* | V | | D_0 | | p_m-1 |
* | | x | : | = | d_0 |
* | I | | D_n-1 | | : |
* | | ~~ ~~ | d_n-1 |
* ~~ ~~ ~~ ~~
*
* I is simply a square identity matrix of size n, and V is a vandermonde
* matrix defined by the coeffecients we chose for the various parity columns
* (1, 2, 4). Note that these values were chosen both for simplicity, speedy
* computation as well as linear separability.
*
* __ __ __ __
* | 1 .. 1 1 1 | | p_0 |
* | 2^n-1 .. 4 2 1 | __ __ | : |
* | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
* | 1 .. 0 0 0 | | D_1 | | d_0 |
* | 0 .. 0 0 0 | x | D_2 | = | d_1 |
* | : : : : | | : | | d_2 |
* | 0 .. 1 0 0 | | D_n-1 | | : |
* | 0 .. 0 1 0 | ~~ ~~ | : |
* | 0 .. 0 0 1 | | d_n-1 |
* ~~ ~~ ~~ ~~
*
* Note that I, V, d, and p are known. To compute D, we must invert the
* matrix and use the known data and parity values to reconstruct the unknown
* data values. We begin by removing the rows in V|I and d|p that correspond
* to failed or missing columns; we then make V|I square (n x n) and d|p
* sized n by removing rows corresponding to unused parity from the bottom up
* to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
* using Gauss-Jordan elimination. In the example below we use m=3 parity
* columns, n=8 data columns, with errors in d_1, d_2, and p_1:
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
* | 19 205 116 29 64 16 4 1 | / /
* | 1 0 0 0 0 0 0 0 | / /
* | 0 1 0 0 0 0 0 0 | <--' /
* (V|I) = | 0 0 1 0 0 0 0 0 | <---'
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 1 1 1 1 1 1 1 |
* | 128 64 32 16 8 4 2 1 |
* | 19 205 116 29 64 16 4 1 |
* | 1 0 0 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 |
* (V|I)' = | 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
* have carefully chosen the seed values 1, 2, and 4 to ensure that this
* matrix is not singular.
* __ __
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
* | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
* ~~ ~~
* __ __
* | 0 0 1 0 0 0 0 0 |
* | 167 100 5 41 159 169 217 208 |
* | 166 100 4 40 158 168 216 209 |
* (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
* | 0 0 0 0 1 0 0 0 |
* | 0 0 0 0 0 1 0 0 |
* | 0 0 0 0 0 0 1 0 |
* | 0 0 0 0 0 0 0 1 |
* ~~ ~~
*
* We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
* of the missing data.
*
* As is apparent from the example above, the only non-trivial rows in the
* inverse matrix correspond to the data disks that we're trying to
* reconstruct. Indeed, those are the only rows we need as the others would
* only be useful for reconstructing data known or assumed to be valid. For
* that reason, we only build the coefficients in the rows that correspond to
* targeted columns.
*/
/* END CSTYLED */
static void
vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
uint8_t **rows)
{
int i, j;
int pow;
ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
/*
* Fill in the missing rows of interest.
*/
for (i = 0; i < nmap; i++) {
ASSERT3S(0, <=, map[i]);
ASSERT3S(map[i], <=, 2);
pow = map[i] * n;
if (pow > 255)
pow -= 255;
ASSERT(pow <= 255);
for (j = 0; j < n; j++) {
pow -= map[i];
if (pow < 0)
pow += 255;
rows[i][j] = vdev_raidz_pow2[pow];
}
}
}
static void
vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
uint8_t **rows, uint8_t **invrows, const uint8_t *used)
{
int i, j, ii, jj;
uint8_t log;
/*
* Assert that the first nmissing entries from the array of used
* columns correspond to parity columns and that subsequent entries
* correspond to data columns.
*/
for (i = 0; i < nmissing; i++) {
ASSERT3S(used[i], <, rm->rm_firstdatacol);
}
for (; i < n; i++) {
ASSERT3S(used[i], >=, rm->rm_firstdatacol);
}
/*
* First initialize the storage where we'll compute the inverse rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
invrows[i][j] = (i == j) ? 1 : 0;
}
}
/*
* Subtract all trivial rows from the rows of consequence.
*/
for (i = 0; i < nmissing; i++) {
for (j = nmissing; j < n; j++) {
ASSERT3U(used[j], >=, rm->rm_firstdatacol);
jj = used[j] - rm->rm_firstdatacol;
ASSERT3S(jj, <, n);
invrows[i][j] = rows[i][jj];
rows[i][jj] = 0;
}
}
/*
* For each of the rows of interest, we must normalize it and subtract
* a multiple of it from the other rows.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < missing[i]; j++) {
ASSERT3U(rows[i][j], ==, 0);
}
ASSERT3U(rows[i][missing[i]], !=, 0);
/*
* Compute the inverse of the first element and multiply each
* element in the row by that value.
*/
log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
for (j = 0; j < n; j++) {
rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
}
for (ii = 0; ii < nmissing; ii++) {
if (i == ii)
continue;
ASSERT3U(rows[ii][missing[i]], !=, 0);
log = vdev_raidz_log2[rows[ii][missing[i]]];
for (j = 0; j < n; j++) {
rows[ii][j] ^=
vdev_raidz_exp2(rows[i][j], log);
invrows[ii][j] ^=
vdev_raidz_exp2(invrows[i][j], log);
}
}
}
/*
* Verify that the data that is left in the rows are properly part of
* an identity matrix.
*/
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
if (j == missing[i]) {
ASSERT3U(rows[i][j], ==, 1);
} else {
ASSERT3U(rows[i][j], ==, 0);
}
}
}
}
static void
vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
int *missing, uint8_t **invrows, const uint8_t *used)
{
int i, j, x, cc, c;
uint8_t *src;
uint64_t ccount;
uint8_t *dst[VDEV_RAIDZ_MAXPARITY];
uint64_t dcount[VDEV_RAIDZ_MAXPARITY];
uint8_t log, val;
int ll;
uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
log = 0; /* gcc */
psize = sizeof (invlog[0][0]) * n * nmissing;
p = zfs_alloc(psize);
for (pp = p, i = 0; i < nmissing; i++) {
invlog[i] = pp;
pp += n;
}
for (i = 0; i < nmissing; i++) {
for (j = 0; j < n; j++) {
ASSERT3U(invrows[i][j], !=, 0);
invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
}
}
for (i = 0; i < n; i++) {
c = used[i];
ASSERT3U(c, <, rm->rm_cols);
src = rm->rm_col[c].rc_data;
ccount = rm->rm_col[c].rc_size;
for (j = 0; j < nmissing; j++) {
cc = missing[j] + rm->rm_firstdatacol;
ASSERT3U(cc, >=, rm->rm_firstdatacol);
ASSERT3U(cc, <, rm->rm_cols);
ASSERT3U(cc, !=, c);
dst[j] = rm->rm_col[cc].rc_data;
dcount[j] = rm->rm_col[cc].rc_size;
}
ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
for (x = 0; x < ccount; x++, src++) {
if (*src != 0)
log = vdev_raidz_log2[*src];
for (cc = 0; cc < nmissing; cc++) {
if (x >= dcount[cc])
continue;
if (*src == 0) {
val = 0;
} else {
if ((ll = log + invlog[cc][i]) >= 255)
ll -= 255;
val = vdev_raidz_pow2[ll];
}
if (i == 0)
dst[cc][x] = val;
else
dst[cc][x] ^= val;
}
}
}
zfs_free(p, psize);
}
static int
vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
{
int n, i, c, t, tt;
int nmissing_rows;
int missing_rows[VDEV_RAIDZ_MAXPARITY];
int parity_map[VDEV_RAIDZ_MAXPARITY];
uint8_t *p, *pp;
size_t psize;
uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
uint8_t *used;
int code = 0;
n = rm->rm_cols - rm->rm_firstdatacol;
/*
* Figure out which data columns are missing.
*/
nmissing_rows = 0;
for (t = 0; t < ntgts; t++) {
if (tgts[t] >= rm->rm_firstdatacol) {
missing_rows[nmissing_rows++] =
tgts[t] - rm->rm_firstdatacol;
}
}
/*
* Figure out which parity columns to use to help generate the missing
* data columns.
*/
for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
ASSERT(tt < ntgts);
ASSERT(c < rm->rm_firstdatacol);
/*
* Skip any targeted parity columns.
*/
if (c == tgts[tt]) {
tt++;
continue;
}
code |= 1 << c;
parity_map[i] = c;
i++;
}
ASSERT(code != 0);
ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
nmissing_rows * n + sizeof (used[0]) * n;
p = kmem_alloc(psize, KM_SLEEP);
for (pp = p, i = 0; i < nmissing_rows; i++) {
rows[i] = pp;
pp += n;
invrows[i] = pp;
pp += n;
}
used = pp;
for (i = 0; i < nmissing_rows; i++) {
used[i] = parity_map[i];
}
for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
if (tt < nmissing_rows &&
c == missing_rows[tt] + rm->rm_firstdatacol) {
tt++;
continue;
}
ASSERT3S(i, <, n);
used[i] = c;
i++;
}
/*
* Initialize the interesting rows of the matrix.
*/
vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
/*
* Invert the matrix.
*/
vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
invrows, used);
/*
* Reconstruct the missing data using the generated matrix.
*/
vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
invrows, used);
kmem_free(p, psize);
return (code);
}
static int
vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY];
int ntgts;
int i, c;
int code;
int nbadparity, nbaddata;
/*
* The tgts list must already be sorted.
*/
for (i = 1; i < nt; i++) {
ASSERT(t[i] > t[i - 1]);
}
nbadparity = rm->rm_firstdatacol;
nbaddata = rm->rm_cols - nbadparity;
ntgts = 0;
for (i = 0, c = 0; c < rm->rm_cols; c++) {
if (i < nt && c == t[i]) {
tgts[ntgts++] = c;
i++;
} else if (rm->rm_col[c].rc_error != 0) {
tgts[ntgts++] = c;
} else if (c >= rm->rm_firstdatacol) {
nbaddata--;
} else {
nbadparity--;
}
}
ASSERT(ntgts >= nt);
ASSERT(nbaddata >= 0);
ASSERT(nbaddata + nbadparity == ntgts);
code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
ASSERT(code > 0);
return (code);
}
static raidz_map_t *
vdev_raidz_map_alloc(void *data, off_t offset, size_t size, uint64_t unit_shift,
uint64_t dcols, uint64_t nparity)
{
raidz_map_t *rm;
uint64_t b = offset >> unit_shift;
uint64_t s = size >> unit_shift;
uint64_t f = b % dcols;
uint64_t o = (b / dcols) << unit_shift;
uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
q = s / (dcols - nparity);
r = s - q * (dcols - nparity);
bc = (r == 0 ? 0 : r + nparity);
tot = s + nparity * (q + (r == 0 ? 0 : 1));
if (q == 0) {
acols = bc;
scols = MIN(dcols, roundup(bc, nparity + 1));
} else {
acols = dcols;
scols = dcols;
}
ASSERT3U(acols, <=, scols);
rm = zfs_alloc(offsetof(raidz_map_t, rm_col[scols]));
rm->rm_cols = acols;
rm->rm_scols = scols;
rm->rm_bigcols = bc;
rm->rm_skipstart = bc;
rm->rm_missingdata = 0;
rm->rm_missingparity = 0;
rm->rm_firstdatacol = nparity;
rm->rm_reports = 0;
rm->rm_freed = 0;
rm->rm_ecksuminjected = 0;
asize = 0;
for (c = 0; c < scols; c++) {
col = f + c;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << unit_shift;
}
rm->rm_col[c].rc_devidx = col;
rm->rm_col[c].rc_offset = coff;
rm->rm_col[c].rc_data = NULL;
rm->rm_col[c].rc_error = 0;
rm->rm_col[c].rc_tried = 0;
rm->rm_col[c].rc_skipped = 0;
if (c >= acols)
rm->rm_col[c].rc_size = 0;
else if (c < bc)
rm->rm_col[c].rc_size = (q + 1) << unit_shift;
else
rm->rm_col[c].rc_size = q << unit_shift;
asize += rm->rm_col[c].rc_size;
}
ASSERT3U(asize, ==, tot << unit_shift);
rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
ASSERT3U(rm->rm_nskip, <=, nparity);
for (c = 0; c < rm->rm_firstdatacol; c++)
rm->rm_col[c].rc_data = zfs_alloc(rm->rm_col[c].rc_size);
rm->rm_col[c].rc_data = data;
for (c = c + 1; c < acols; c++)
rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
rm->rm_col[c - 1].rc_size;
/*
* If all data stored spans all columns, there's a danger that parity
* will always be on the same device and, since parity isn't read
* during normal operation, that that device's I/O bandwidth won't be
* used effectively. We therefore switch the parity every 1MB.
*
* ... at least that was, ostensibly, the theory. As a practical
* matter unless we juggle the parity between all devices evenly, we
* won't see any benefit. Further, occasional writes that aren't a
* multiple of the LCM of the number of children and the minimum
* stripe width are sufficient to avoid pessimal behavior.
* Unfortunately, this decision created an implicit on-disk format
* requirement that we need to support for all eternity, but only
* for single-parity RAID-Z.
*
* If we intend to skip a sector in the zeroth column for padding
* we must make sure to note this swap. We will never intend to
* skip the first column since at least one data and one parity
* column must appear in each row.
*/
ASSERT(rm->rm_cols >= 2);
ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
if (rm->rm_firstdatacol == 1 && (offset & (1ULL << 20))) {
devidx = rm->rm_col[0].rc_devidx;
o = rm->rm_col[0].rc_offset;
rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
rm->rm_col[1].rc_devidx = devidx;
rm->rm_col[1].rc_offset = o;
if (rm->rm_skipstart == 0)
rm->rm_skipstart = 1;
}
return (rm);
}
static void
vdev_raidz_map_free(raidz_map_t *rm)
{
int c;
size_t size;
for (c = rm->rm_firstdatacol - 1; c >= 0; c--)
zfs_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size);
size = 0;
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
size += rm->rm_col[c].rc_size;
zfs_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
}
static vdev_t *
vdev_child(vdev_t *pvd, uint64_t devidx)
{
vdev_t *cvd;
STAILQ_FOREACH(cvd, &pvd->v_children, v_childlink) {
if (cvd->v_id == devidx)
break;
}
return (cvd);
}
/*
* We keep track of whether or not there were any injected errors, so that
* any ereports we generate can note it.
*/
static int
raidz_checksum_verify(const blkptr_t *bp, void *data)
{
return (zio_checksum_error(bp, data, 0));
}
/*
* Generate the parity from the data columns. If we tried and were able to
* read the parity without error, verify that the generated parity matches the
* data we read. If it doesn't, we fire off a checksum error. Return the
* number such failures.
*/
static int
raidz_parity_verify(raidz_map_t *rm)
{
void *orig[VDEV_RAIDZ_MAXPARITY];
int c, ret = 0;
raidz_col_t *rc;
for (c = 0; c < rm->rm_firstdatacol; c++) {
rc = &rm->rm_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
orig[c] = zfs_alloc(rc->rc_size);
bcopy(rc->rc_data, orig[c], rc->rc_size);
}
vdev_raidz_generate_parity(rm);
for (c = rm->rm_firstdatacol - 1; c >= 0; c--) {
rc = &rm->rm_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
rc->rc_error = ECKSUM;
ret++;
}
zfs_free(orig[c], rc->rc_size);
}
return (ret);
}
/*
* Iterate over all combinations of bad data and attempt a reconstruction.
* Note that the algorithm below is non-optimal because it doesn't take into
* account how reconstruction is actually performed. For example, with
* triple-parity RAID-Z the reconstruction procedure is the same if column 4
* is targeted as invalid as if columns 1 and 4 are targeted since in both
* cases we'd only use parity information in column 0.
*/
static int
vdev_raidz_combrec(raidz_map_t *rm, const blkptr_t *bp, void *data,
off_t offset, int total_errors, int data_errors)
{
raidz_col_t *rc;
void *orig[VDEV_RAIDZ_MAXPARITY];
int tstore[VDEV_RAIDZ_MAXPARITY + 2];
int *tgts = &tstore[1];
int current, next, i, c, n;
int code, ret = 0;
ASSERT(total_errors < rm->rm_firstdatacol);
/*
* This simplifies one edge condition.
*/
tgts[-1] = -1;
for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
/*
* Initialize the targets array by finding the first n columns
* that contain no error.
*
* If there were no data errors, we need to ensure that we're
* always explicitly attempting to reconstruct at least one
* data column. To do this, we simply push the highest target
* up into the data columns.
*/
for (c = 0, i = 0; i < n; i++) {
if (i == n - 1 && data_errors == 0 &&
c < rm->rm_firstdatacol) {
c = rm->rm_firstdatacol;
}
while (rm->rm_col[c].rc_error != 0) {
c++;
ASSERT3S(c, <, rm->rm_cols);
}
tgts[i] = c++;
}
/*
* Setting tgts[n] simplifies the other edge condition.
*/
tgts[n] = rm->rm_cols;
/*
* These buffers were allocated in previous iterations.
*/
for (i = 0; i < n - 1; i++) {
ASSERT(orig[i] != NULL);
}
orig[n - 1] = zfs_alloc(rm->rm_col[0].rc_size);
current = 0;
next = tgts[current];
while (current != n) {
tgts[current] = next;
current = 0;
/*
* Save off the original data that we're going to
* attempt to reconstruct.
*/
for (i = 0; i < n; i++) {
ASSERT(orig[i] != NULL);
c = tgts[i];
ASSERT3S(c, >=, 0);
ASSERT3S(c, <, rm->rm_cols);
rc = &rm->rm_col[c];
bcopy(rc->rc_data, orig[i], rc->rc_size);
}
/*
* Attempt a reconstruction and exit the outer loop on
* success.
*/
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(bp, data) == 0) {
for (i = 0; i < n; i++) {
c = tgts[i];
rc = &rm->rm_col[c];
ASSERT(rc->rc_error == 0);
rc->rc_error = ECKSUM;
}
ret = code;
goto done;
}
/*
* Restore the original data.
*/
for (i = 0; i < n; i++) {
c = tgts[i];
rc = &rm->rm_col[c];
bcopy(orig[i], rc->rc_data, rc->rc_size);
}
do {
/*
* Find the next valid column after the current
* position..
*/
for (next = tgts[current] + 1;
next < rm->rm_cols &&
rm->rm_col[next].rc_error != 0; next++)
continue;
ASSERT(next <= tgts[current + 1]);
/*
* If that spot is available, we're done here.
*/
if (next != tgts[current + 1])
break;
/*
* Otherwise, find the next valid column after
* the previous position.
*/
for (c = tgts[current - 1] + 1;
rm->rm_col[c].rc_error != 0; c++)
continue;
tgts[current] = c;
current++;
} while (current != n);
}
}
n--;
done:
for (i = n - 1; i >= 0; i--) {
zfs_free(orig[i], rm->rm_col[0].rc_size);
}
return (ret);
}
static int
vdev_raidz_read(vdev_t *vd, const blkptr_t *bp, void *data,
off_t offset, size_t bytes)
{
vdev_t *tvd = vd->v_top;
vdev_t *cvd;
raidz_map_t *rm;
raidz_col_t *rc;
int c, error;
int unexpected_errors;
int parity_errors;
int parity_untried;
int data_errors;
int total_errors;
int n;
int tgts[VDEV_RAIDZ_MAXPARITY];
int code;
rc = NULL; /* gcc */
error = 0;
rm = vdev_raidz_map_alloc(data, offset, bytes, tvd->v_ashift,
vd->v_nchildren, vd->v_nparity);
/*
* Iterate over the columns in reverse order so that we hit the parity
* last -- any errors along the way will force us to read the parity.
*/
for (c = rm->rm_cols - 1; c >= 0; c--) {
rc = &rm->rm_col[c];
cvd = vdev_child(vd, rc->rc_devidx);
if (cvd == NULL || cvd->v_state != VDEV_STATE_HEALTHY) {
if (c >= rm->rm_firstdatacol)
rm->rm_missingdata++;
else
rm->rm_missingparity++;
rc->rc_error = ENXIO;
rc->rc_tried = 1; /* don't even try */
rc->rc_skipped = 1;
continue;
}
#if 0 /* XXX: Too hard for the boot code. */
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
if (c >= rm->rm_firstdatacol)
rm->rm_missingdata++;
else
rm->rm_missingparity++;
rc->rc_error = ESTALE;
rc->rc_skipped = 1;
continue;
}
#endif
if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0) {
rc->rc_error = cvd->v_read(cvd, NULL, rc->rc_data,
rc->rc_offset, rc->rc_size);
rc->rc_tried = 1;
rc->rc_skipped = 0;
}
}
reconstruct:
unexpected_errors = 0;
parity_errors = 0;
parity_untried = 0;
data_errors = 0;
total_errors = 0;
ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
for (c = 0; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
if (c < rm->rm_firstdatacol)
parity_errors++;
else
data_errors++;
if (!rc->rc_skipped)
unexpected_errors++;
total_errors++;
} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
}
/*
* There are three potential phases for a read:
* 1. produce valid data from the columns read
* 2. read all disks and try again
* 3. perform combinatorial reconstruction
*
* Each phase is progressively both more expensive and less likely to
* occur. If we encounter more errors than we can repair or all phases
* fail, we have no choice but to return an error.
*/
/*
* If the number of errors we saw was correctable -- less than or equal
* to the number of parity disks read -- attempt to produce data that
* has a valid checksum. Naturally, this case applies in the absence of
* any errors.
*/
if (total_errors <= rm->rm_firstdatacol - parity_untried) {
if (data_errors == 0) {
if (raidz_checksum_verify(bp, data) == 0) {
/*
* If we read parity information (unnecessarily
* as it happens since no reconstruction was
* needed) regenerate and verify the parity.
* We also regenerate parity when resilvering
* so we can write it out to the failed device
* later.
*/
if (parity_errors + parity_untried <
rm->rm_firstdatacol) {
n = raidz_parity_verify(rm);
unexpected_errors += n;
ASSERT(parity_errors + n <=
rm->rm_firstdatacol);
}
goto done;
}
} else {
/*
* We either attempt to read all the parity columns or
* none of them. If we didn't try to read parity, we
* wouldn't be here in the correctable case. There must
* also have been fewer parity errors than parity
* columns or, again, we wouldn't be in this code path.
*/
ASSERT(parity_untried == 0);
ASSERT(parity_errors < rm->rm_firstdatacol);
/*
* Identify the data columns that reported an error.
*/
n = 0;
for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
rc = &rm->rm_col[c];
if (rc->rc_error != 0) {
ASSERT(n < VDEV_RAIDZ_MAXPARITY);
tgts[n++] = c;
}
}
ASSERT(rm->rm_firstdatacol >= n);
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(bp, data) == 0) {
/*
* If we read more parity disks than were used
* for reconstruction, confirm that the other
* parity disks produced correct data. This
* routine is suboptimal in that it regenerates
* the parity that we already used in addition
* to the parity that we're attempting to
* verify, but this should be a relatively
* uncommon case, and can be optimized if it
* becomes a problem. Note that we regenerate
* parity when resilvering so we can write it
* out to failed devices later.
*/
if (parity_errors < rm->rm_firstdatacol - n) {
n = raidz_parity_verify(rm);
unexpected_errors += n;
ASSERT(parity_errors + n <=
rm->rm_firstdatacol);
}
goto done;
}
}
}
/*
* This isn't a typical situation -- either we got a read
* error or a child silently returned bad data. Read every
* block so we can try again with as much data and parity as
* we can track down. If we've already been through once
* before, all children will be marked as tried so we'll
* proceed to combinatorial reconstruction.
*/
unexpected_errors = 1;
rm->rm_missingdata = 0;
rm->rm_missingparity = 0;
n = 0;
for (c = 0; c < rm->rm_cols; c++) {
if (rm->rm_col[c].rc_tried)
continue;
cvd = vdev_child(vd, rc->rc_devidx);
ASSERT(cvd != NULL);
rc->rc_error = cvd->v_read(cvd, NULL,
rc->rc_data, rc->rc_offset, rc->rc_size);
if (rc->rc_error == 0)
n++;
rc->rc_tried = 1;
rc->rc_skipped = 0;
}
/*
* If we managed to read anything more, retry the
* reconstruction.
*/
if (n > 0)
goto reconstruct;
/*
* At this point we've attempted to reconstruct the data given the
* errors we detected, and we've attempted to read all columns. There
* must, therefore, be one or more additional problems -- silent errors
* resulting in invalid data rather than explicit I/O errors resulting
* in absent data. We check if there is enough additional data to
* possibly reconstruct the data and then perform combinatorial
* reconstruction over all possible combinations. If that fails,
* we're cooked.
*/
if (total_errors > rm->rm_firstdatacol) {
error = EIO;
} else if (total_errors < rm->rm_firstdatacol &&
(code = vdev_raidz_combrec(rm, bp, data, offset, total_errors,
data_errors)) != 0) {
/*
* If we didn't use all the available parity for the
* combinatorial reconstruction, verify that the remaining
* parity is correct.
*/
if (code != (1 << rm->rm_firstdatacol) - 1)
(void) raidz_parity_verify(rm);
} else {
/*
* We're here because either:
*
* total_errors == rm_first_datacol, or
* vdev_raidz_combrec() failed
*
* In either case, there is enough bad data to prevent
* reconstruction.
*
* Start checksum ereports for all children which haven't
* failed, and the IO wasn't speculative.
*/
error = ECKSUM;
}
done:
vdev_raidz_map_free(rm);
return (error);
}
|