summaryrefslogtreecommitdiffstats
path: root/sys/cam/cam_iosched.c
blob: d9149d64d0823b916b84e0f127c9b4b4da86f1ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
/*-
 * CAM IO Scheduler Interface
 *
 * Copyright (c) 2015 Netflix, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification, immediately at the beginning of the file.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include "opt_cam.h"
#include "opt_ddb.h"

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>

#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>

#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_iosched.h>

#include <ddb/ddb.h>

static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler",
    "CAM I/O Scheduler buffers");

/*
 * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer
 * over the bioq_* interface, with notions of separate calls for normal I/O and
 * for trims.
 */

#ifdef CAM_NETFLIX_IOSCHED

static int do_netflix_iosched = 1;
TUNABLE_INT("kern.cam.do_netflix_iosched", &do_netflix_iosched);
SYSCTL_INT(_kern_cam, OID_AUTO, do_netflix_iosched, CTLFLAG_RD,
    &do_netflix_iosched, 1,
    "Enable Netflix I/O scheduler optimizations.");

static int alpha_bits = 9;
TUNABLE_INT("kern.cam.iosched_alpha_bits", &alpha_bits);
SYSCTL_INT(_kern_cam, OID_AUTO, iosched_alpha_bits, CTLFLAG_RW,
    &alpha_bits, 1,
    "Bits in EMA's alpha.");



struct iop_stats;
struct cam_iosched_softc;

int iosched_debug = 0;

typedef enum {
	none = 0,				/* No limits */
	queue_depth,			/* Limit how many ops we queue to SIM */
	iops,				/* Limit # of IOPS to the drive */
	bandwidth,			/* Limit bandwidth to the drive */
	limiter_max
} io_limiter;
	
static const char *cam_iosched_limiter_names[] =
    { "none", "queue_depth", "iops", "bandwidth" };

/*
 * Called to initialize the bits of the iop_stats structure relevant to the
 * limiter. Called just after the limiter is set.
 */
typedef int l_init_t(struct iop_stats *);

/*
 * Called every tick.
 */
typedef int l_tick_t(struct iop_stats *);

/*
 * Called to see if the limiter thinks this IOP can be allowed to
 * proceed. If so, the limiter assumes that the while IOP proceeded
 * and makes any accounting of it that's needed.
 */ 
typedef int l_iop_t(struct iop_stats *, struct bio *);

/*
 * Called when an I/O completes so the limiter can updates its
 * accounting. Pending I/Os may complete in any order (even when
 * sent to the hardware at the same time), so the limiter may not
 * make any assumptions other than this I/O has completed. If it
 * returns 1, then xpt_schedule() needs to be called again.
 */
typedef int l_iodone_t(struct iop_stats *, struct bio *);

static l_iop_t cam_iosched_qd_iop;
static l_iop_t cam_iosched_qd_caniop;
static l_iodone_t cam_iosched_qd_iodone;

static l_init_t cam_iosched_iops_init;
static l_tick_t cam_iosched_iops_tick;
static l_iop_t cam_iosched_iops_caniop;
static l_iop_t cam_iosched_iops_iop;

static l_init_t cam_iosched_bw_init;
static l_tick_t cam_iosched_bw_tick;
static l_iop_t cam_iosched_bw_caniop;
static l_iop_t cam_iosched_bw_iop;

struct limswitch 
{
	l_init_t	*l_init;
	l_tick_t	*l_tick;
	l_iop_t		*l_iop;
	l_iop_t		*l_caniop;
	l_iodone_t	*l_iodone;
} limsw[] =
{
	{	/* none */
		.l_init = NULL,
		.l_tick = NULL,
		.l_iop = NULL,
		.l_iodone= NULL,
	},
	{	/* queue_depth */
		.l_init = NULL,
		.l_tick = NULL,
		.l_caniop = cam_iosched_qd_caniop,
		.l_iop = cam_iosched_qd_iop,
		.l_iodone= cam_iosched_qd_iodone,
	},
	{	/* iops */
		.l_init = cam_iosched_iops_init,
		.l_tick = cam_iosched_iops_tick,
		.l_caniop = cam_iosched_iops_caniop,
		.l_iop = cam_iosched_iops_iop,
		.l_iodone= NULL,
	},
	{	/* bandwidth */
		.l_init = cam_iosched_bw_init,
		.l_tick = cam_iosched_bw_tick,
		.l_caniop = cam_iosched_bw_caniop,
		.l_iop = cam_iosched_bw_iop,
		.l_iodone= NULL,
	},
};

struct iop_stats 
{
	/*
	 * sysctl state for this subnode.
	 */
	struct sysctl_ctx_list	sysctl_ctx;
	struct sysctl_oid	*sysctl_tree;

	/*
	 * Information about the current rate limiters, if any
	 */
	io_limiter	limiter;	/* How are I/Os being limited */
	int		min;		/* Low range of limit */
	int		max;		/* High range of limit */
	int		current;	/* Current rate limiter */
	int		l_value1;	/* per-limiter scratch value 1. */
	int		l_value2;	/* per-limiter scratch value 2. */
	

	/*
	 * Debug information about counts of I/Os that have gone through the
	 * scheduler.
	 */
	int		pending;	/* I/Os pending in the hardware */
	int		queued;		/* number currently in the queue */
	int		total;		/* Total for all time -- wraps */
	int		in;		/* number queued all time -- wraps */
	int		out;		/* number completed all time -- wraps */
	
	/*
	 * Statistics on different bits of the process.
	 */
		/* Exp Moving Average, alpha = 1 / (1 << alpha_bits) */
	sbintime_t      ema;
	sbintime_t      emss;		/* Exp Moving sum of the squares */
	sbintime_t      sd;		/* Last computed sd */

	struct cam_iosched_softc *softc;
};


typedef enum {
	set_max = 0,			/* current = max */
	read_latency,			/* Steer read latency by throttling writes */
	cl_max				/* Keep last */
} control_type;

static const char *cam_iosched_control_type_names[] =
    { "set_max", "read_latency" };

struct control_loop
{
	/*
	 * sysctl state for this subnode.
	 */
	struct sysctl_ctx_list	sysctl_ctx;
	struct sysctl_oid	*sysctl_tree;

	sbintime_t	next_steer;		/* Time of next steer */
	sbintime_t	steer_interval;		/* How often do we steer? */
	sbintime_t	lolat;
	sbintime_t	hilat;
	int		alpha;
	control_type	type;			/* What type of control? */
	int		last_count;		/* Last I/O count */

	struct cam_iosched_softc *softc;
};

#endif

struct cam_iosched_softc
{
	struct bio_queue_head bio_queue;
	struct bio_queue_head trim_queue;
				/* scheduler flags < 16, user flags >= 16 */
	uint32_t	flags;
	int		sort_io_queue;
#ifdef CAM_NETFLIX_IOSCHED
	int		read_bias;		/* Read bias setting */
	int		current_read_bias;	/* Current read bias state */
	int		total_ticks;

	struct bio_queue_head write_queue;
	struct iop_stats read_stats, write_stats, trim_stats;
	struct sysctl_ctx_list	sysctl_ctx;
	struct sysctl_oid	*sysctl_tree;

	int		quanta;			/* Number of quanta per second */
	struct callout	ticker;			/* Callout for our quota system */
	struct cam_periph *periph;		/* cam periph associated with this device */
	uint32_t	this_frac;		/* Fraction of a second (1024ths) for this tick */
	sbintime_t	last_time;		/* Last time we ticked */
	struct control_loop cl;
#endif
};

#ifdef CAM_NETFLIX_IOSCHED
/*
 * helper functions to call the limsw functions.
 */
static int
cam_iosched_limiter_init(struct iop_stats *ios)
{
	int lim = ios->limiter;

	/* maybe this should be a kassert */
	if (lim < none || lim >= limiter_max)
		return EINVAL;

	if (limsw[lim].l_init)
		return limsw[lim].l_init(ios);

	return 0;
}

static int
cam_iosched_limiter_tick(struct iop_stats *ios)
{
	int lim = ios->limiter;

	/* maybe this should be a kassert */
	if (lim < none || lim >= limiter_max)
		return EINVAL;

	if (limsw[lim].l_tick)
		return limsw[lim].l_tick(ios);

	return 0;
}

static int
cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp)
{
	int lim = ios->limiter;

	/* maybe this should be a kassert */
	if (lim < none || lim >= limiter_max)
		return EINVAL;

	if (limsw[lim].l_iop)
		return limsw[lim].l_iop(ios, bp);

	return 0;
}

static int
cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp)
{
	int lim = ios->limiter;

	/* maybe this should be a kassert */
	if (lim < none || lim >= limiter_max)
		return EINVAL;

	if (limsw[lim].l_caniop)
		return limsw[lim].l_caniop(ios, bp);

	return 0;
}

static int
cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp)
{
	int lim = ios->limiter;

	/* maybe this should be a kassert */
	if (lim < none || lim >= limiter_max)
		return 0;

	if (limsw[lim].l_iodone)
		return limsw[lim].l_iodone(ios, bp);

	return 0;
}

/*
 * Functions to implement the different kinds of limiters
 */

static int
cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp)
{
		
	if (ios->current <= 0 || ios->pending < ios->current)
		return 0;

	return EAGAIN;
}

static int
cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp)
{
		
	if (ios->current <= 0 || ios->pending < ios->current)
		return 0;

	return EAGAIN;
}

static int
cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp)
{
		
	if (ios->current <= 0 || ios->pending != ios->current)
		return 0;

	return 1;
}

static int
cam_iosched_iops_init(struct iop_stats *ios)
{

	ios->l_value1 = ios->current / ios->softc->quanta;
	if (ios->l_value1 <= 0)
		ios->l_value1 = 1;

	return 0;
}

static int
cam_iosched_iops_tick(struct iop_stats *ios)
{

	ios->l_value1 = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16);
	if (ios->l_value1 <= 0)
		ios->l_value1 = 1;

	return 0;
}

static int
cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp)
{

	/*
	 * So if we have any more IOPs left, allow it,
	 * otherwise wait.
	 */
	if (ios->l_value1 <= 0)
		return EAGAIN;
	return 0;
}

static int
cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp)
{
	int rv;

	rv = cam_iosched_limiter_caniop(ios, bp);
	if (rv == 0)
		ios->l_value1--;

	return rv;
}

static int
cam_iosched_bw_init(struct iop_stats *ios)
{

	/* ios->current is in kB/s, so scale to bytes */
	ios->l_value1 = ios->current * 1000 / ios->softc->quanta;

	return 0;
}

static int
cam_iosched_bw_tick(struct iop_stats *ios)
{
	int bw;

	/*
	 * If we're in the hole for available quota from
	 * the last time, then add the quantum for this.
	 * If we have any left over from last quantum,
	 * then too bad, that's lost. Also, ios->current
	 * is in kB/s, so scale.
	 *
	 * We also allow up to 4 quanta of credits to
	 * accumulate to deal with burstiness. 4 is extremely
	 * arbitrary.
	 */
	bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16);
	if (ios->l_value1 < bw * 4)
		ios->l_value1 += bw;

	return 0;
}

static int
cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp)
{
	/*
	 * So if we have any more bw quota left, allow it,
	 * otherwise wait. Not, we'll go negative and that's
	 * OK. We'll just get a lettle less next quota.
	 *
	 * Note on going negative: that allows us to process
	 * requests in order better, since we won't allow
	 * shorter reads to get around the long one that we
	 * don't have the quota to do just yet. It also prevents
	 * starvation by being a little more permissive about
	 * what we let through this quantum (to prevent the
	 * starvation), at the cost of getting a little less
	 * next quantum.
	 */
	if (ios->l_value1 <= 0)
		return EAGAIN;


	return 0;
}

static int
cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp)
{
	int rv;

	rv = cam_iosched_limiter_caniop(ios, bp);
	if (rv == 0)
		ios->l_value1 -= bp->bio_length;

	return rv;
}

static void cam_iosched_cl_maybe_steer(struct control_loop *clp);

static void
cam_iosched_ticker(void *arg)
{
	struct cam_iosched_softc *isc = arg;
	sbintime_t now, delta;

	callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);

	now = sbinuptime();
	delta = now - isc->last_time;
	isc->this_frac = (uint32_t)delta >> 16;		/* Note: discards seconds -- should be 0 harmless if not */
	isc->last_time = now;

	cam_iosched_cl_maybe_steer(&isc->cl);

	cam_iosched_limiter_tick(&isc->read_stats);
	cam_iosched_limiter_tick(&isc->write_stats);
	cam_iosched_limiter_tick(&isc->trim_stats);

	cam_iosched_schedule(isc, isc->periph);

	isc->total_ticks++;
}


static void
cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc)
{

	clp->next_steer = sbinuptime();
	clp->softc = isc;
	clp->steer_interval = SBT_1S * 5;	/* Let's start out steering every 5s */
	clp->lolat = 5 * SBT_1MS;
	clp->hilat = 15 * SBT_1MS;
	clp->alpha = 20;			/* Alpha == gain. 20 = .2 */
	clp->type = set_max;
}

static void
cam_iosched_cl_maybe_steer(struct control_loop *clp)
{
	struct cam_iosched_softc *isc;
	sbintime_t now, lat;
	int old;

	isc = clp->softc;
	now = isc->last_time;
	if (now < clp->next_steer)
		return;

	clp->next_steer = now + clp->steer_interval;
	switch (clp->type) {
	case set_max:
		if (isc->write_stats.current != isc->write_stats.max)
			printf("Steering write from %d kBps to %d kBps\n",
			    isc->write_stats.current, isc->write_stats.max);
		isc->read_stats.current = isc->read_stats.max;
		isc->write_stats.current = isc->write_stats.max;
		isc->trim_stats.current = isc->trim_stats.max;
		break;
	case read_latency:
		old = isc->write_stats.current;
		lat = isc->read_stats.ema;
		/*
		 * Simple PLL-like engine. Since we're steering to a range for
		 * the SP (set point) that makes things a little more
		 * complicated. In addition, we're not directly controlling our
		 * PV (process variable), the read latency, but instead are
		 * manipulating the write bandwidth limit for our MV
		 * (manipulation variable), analysis of this code gets a bit
		 * messy. Also, the MV is a very noisy control surface for read
		 * latency since it is affected by many hidden processes inside
		 * the device which change how responsive read latency will be
		 * in reaction to changes in write bandwidth. Unlike the classic
		 * boiler control PLL. this may result in over-steering while
		 * the SSD takes its time to react to the new, lower load. This
		 * is why we use a relatively low alpha of between .1 and .25 to
		 * compensate for this effect. At .1, it takes ~22 steering
		 * intervals to back off by a factor of 10. At .2 it only takes
		 * ~10. At .25 it only takes ~8. However some preliminary data
		 * from the SSD drives suggests a reasponse time in 10's of
		 * seconds before latency drops regardless of the new write
		 * rate. Careful observation will be reqiured to tune this
		 * effectively.
		 *
		 * Also, when there's no read traffic, we jack up the write
		 * limit too regardless of the last read latency.  10 is
		 * somewhat arbitrary.
		 */
		if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10)
			isc->write_stats.current = isc->write_stats.current *
			    (100 + clp->alpha) / 100;	/* Scale up */
		else if (lat > clp->hilat)
			isc->write_stats.current = isc->write_stats.current *
			    (100 - clp->alpha) / 100;	/* Scale down */
		clp->last_count = isc->read_stats.total;

		/*
		 * Even if we don't steer, per se, enforce the min/max limits as
		 * those may have changed.
		 */
		if (isc->write_stats.current < isc->write_stats.min)
			isc->write_stats.current = isc->write_stats.min;
		if (isc->write_stats.current > isc->write_stats.max)
			isc->write_stats.current = isc->write_stats.max;
		if (old != isc->write_stats.current && 	iosched_debug)
			printf("Steering write from %d kBps to %d kBps due to latency of %jdms\n",
			    old, isc->write_stats.current,
			    (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32);
		break;
	case cl_max:
		break;
	}
}
#endif

			/* Trim or similar currently pending completion */
#define CAM_IOSCHED_FLAG_TRIM_ACTIVE	(1ul << 0)
			/* Callout active, and needs to be torn down */
#define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1)

			/* Periph drivers set these flags to indicate work */
#define CAM_IOSCHED_FLAG_WORK_FLAGS	((0xffffu) << 16)

#ifdef CAM_NETFLIX_IOSCHED
static void
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
    sbintime_t sim_latency, int cmd, size_t size);
#endif

static inline int
cam_iosched_has_flagged_work(struct cam_iosched_softc *isc)
{
	return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS);
}

static inline int
cam_iosched_has_io(struct cam_iosched_softc *isc)
{
#ifdef CAM_NETFLIX_IOSCHED
	if (do_netflix_iosched) {
		struct bio *rbp = bioq_first(&isc->bio_queue);
		struct bio *wbp = bioq_first(&isc->write_queue);
		int can_write = wbp != NULL &&
		    cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0;
		int can_read = rbp != NULL &&
		    cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0;
		if (iosched_debug > 2) {
			printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max);
			printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max);
			printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued);
		}
		return can_read || can_write;
	}
#endif
	return bioq_first(&isc->bio_queue) != NULL;
}

static inline int
cam_iosched_has_more_trim(struct cam_iosched_softc *isc)
{
	return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) &&
	    bioq_first(&isc->trim_queue);
}

#define cam_iosched_sort_queue(isc)	((isc)->sort_io_queue >= 0 ?	\
    (isc)->sort_io_queue : cam_sort_io_queues)


static inline int
cam_iosched_has_work(struct cam_iosched_softc *isc)
{
#ifdef CAM_NETFLIX_IOSCHED
	if (iosched_debug > 2)
		printf("has work: %d %d %d\n", cam_iosched_has_io(isc),
		    cam_iosched_has_more_trim(isc),
		    cam_iosched_has_flagged_work(isc));
#endif

	return cam_iosched_has_io(isc) ||
		cam_iosched_has_more_trim(isc) ||
		cam_iosched_has_flagged_work(isc);
}

#ifdef CAM_NETFLIX_IOSCHED
static void
cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios)
{

	ios->limiter = none;
	cam_iosched_limiter_init(ios);
	ios->in = 0;
	ios->max = 300000;
	ios->min = 1;
	ios->out = 0;
	ios->pending = 0;
	ios->queued = 0;
	ios->total = 0;
	ios->ema = 0;
	ios->emss = 0;
	ios->sd = 0;
	ios->softc = isc;
}

static int
cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS)
{
	char buf[16];
	struct iop_stats *ios;
	struct cam_iosched_softc *isc;
	int value, i, error, cantick;
	const char *p;
	
	ios = arg1;
	isc = ios->softc;
	value = ios->limiter;
	if (value < none || value >= limiter_max)
		p = "UNKNOWN";
	else
		p = cam_iosched_limiter_names[value];
	
	strlcpy(buf, p, sizeof(buf));
	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
	if (error != 0 || req->newptr == NULL)
		return error;

	cam_periph_lock(isc->periph);

	for (i = none; i < limiter_max; i++) {
		if (strcmp(buf, cam_iosched_limiter_names[i]) != 0)
			continue;
		ios->limiter = i;
		error = cam_iosched_limiter_init(ios);
		if (error != 0) {
			ios->limiter = value;
			cam_periph_unlock(isc->periph);
			return error;
		}
		cantick = !!limsw[isc->read_stats.limiter].l_tick +
		    !!limsw[isc->write_stats.limiter].l_tick +
		    !!limsw[isc->trim_stats.limiter].l_tick +
		    1;	/* Control loop requires it */
		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
			if (cantick == 0) {
				callout_stop(&isc->ticker);
				isc->flags &= ~CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
			}
		} else {
			if (cantick != 0) {
				callout_reset(&isc->ticker, hz / isc->quanta - 1, cam_iosched_ticker, isc);
				isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
			}
		}

		cam_periph_unlock(isc->periph);
		return 0;
	}

	cam_periph_unlock(isc->periph);
	return EINVAL;
}

static int
cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS)
{
	char buf[16];
	struct control_loop *clp;
	struct cam_iosched_softc *isc;
	int value, i, error;
	const char *p;
	
	clp = arg1;
	isc = clp->softc;
	value = clp->type;
	if (value < none || value >= cl_max)
		p = "UNKNOWN";
	else
		p = cam_iosched_control_type_names[value];
	
	strlcpy(buf, p, sizeof(buf));
	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
	if (error != 0 || req->newptr == NULL)
		return error;

	for (i = set_max; i < cl_max; i++) {
		if (strcmp(buf, cam_iosched_control_type_names[i]) != 0)
			continue;
		cam_periph_lock(isc->periph);
		clp->type = i;
		cam_periph_unlock(isc->periph);
		return 0;
	}

	return EINVAL;
}

static int
cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS)
{
	char buf[16];
	sbintime_t value;
	int error;
	uint64_t us;
	
	value = *(sbintime_t *)arg1;
	us = (uint64_t)value / SBT_1US;
	snprintf(buf, sizeof(buf), "%ju", (intmax_t)us);
	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
	if (error != 0 || req->newptr == NULL)
		return error;
	us = strtoul(buf, NULL, 10);
	if (us == 0)
		return EINVAL;
	*(sbintime_t *)arg1 = us * SBT_1US;
	return 0;
}

static void
cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name)
{
	struct sysctl_oid_list *n;
	struct sysctl_ctx_list *ctx;

	ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name,
	    CTLFLAG_RD, 0, name);
	n = SYSCTL_CHILDREN(ios->sysctl_tree);
	ctx = &ios->sysctl_ctx;

	SYSCTL_ADD_UQUAD(ctx, n,
	    OID_AUTO, "ema", CTLFLAG_RD,
	    &ios->ema,
	    "Fast Exponentially Weighted Moving Average");
	SYSCTL_ADD_UQUAD(ctx, n,
	    OID_AUTO, "emss", CTLFLAG_RD,
	    &ios->emss,
	    "Fast Exponentially Weighted Moving Sum of Squares (maybe wrong)");
	SYSCTL_ADD_UQUAD(ctx, n,
	    OID_AUTO, "sd", CTLFLAG_RD,
	    &ios->sd,
	    "Estimated SD for fast ema (may be wrong)");

	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "pending", CTLFLAG_RD,
	    &ios->pending, 0,
	    "Instantaneous # of pending transactions");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "count", CTLFLAG_RD,
	    &ios->total, 0,
	    "# of transactions submitted to hardware");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "queued", CTLFLAG_RD,
	    &ios->queued, 0,
	    "# of transactions in the queue");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "in", CTLFLAG_RD,
	    &ios->in, 0,
	    "# of transactions queued to driver");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "out", CTLFLAG_RD,
	    &ios->out, 0,
	    "# of transactions completed");

	SYSCTL_ADD_PROC(ctx, n,
	    OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW,
	    ios, 0, cam_iosched_limiter_sysctl, "A",
	    "Current limiting type.");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "min", CTLFLAG_RW,
	    &ios->min, 0,
	    "min resource");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "max", CTLFLAG_RW,
	    &ios->max, 0,
	    "max resource");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "current", CTLFLAG_RW,
	    &ios->current, 0,
	    "current resource");

}

static void
cam_iosched_iop_stats_fini(struct iop_stats *ios)
{
	if (ios->sysctl_tree)
		if (sysctl_ctx_free(&ios->sysctl_ctx) != 0)
			printf("can't remove iosched sysctl stats context\n");
}

static void
cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc)
{
	struct sysctl_oid_list *n;
	struct sysctl_ctx_list *ctx;
	struct control_loop *clp;
	
	clp = &isc->cl;
	clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
	    SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control",
	    CTLFLAG_RD, 0, "Control loop info");
	n = SYSCTL_CHILDREN(clp->sysctl_tree);
	ctx = &clp->sysctl_ctx;

	SYSCTL_ADD_PROC(ctx, n,
	    OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW,
	    clp, 0, cam_iosched_control_type_sysctl, "A",
	    "Control loop algorithm");
	SYSCTL_ADD_PROC(ctx, n,
	    OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW,
	    &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A",
	    "How often to steer (in us)");
	SYSCTL_ADD_PROC(ctx, n,
	    OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW,
	    &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A",
	    "Low water mark for Latency (in us)");
	SYSCTL_ADD_PROC(ctx, n,
	    OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW,
	    &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A",
	    "Hi water mark for Latency (in us)");
	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "alpha", CTLFLAG_RW,
	    &clp->alpha, 0,
	    "Alpha for PLL (x100) aka gain");
}

static void
cam_iosched_cl_sysctl_fini(struct control_loop *clp)
{
	if (clp->sysctl_tree)
		if (sysctl_ctx_free(&clp->sysctl_ctx) != 0)
			printf("can't remove iosched sysctl control loop context\n");
}
#endif
	    
/*
 * Allocate the iosched structure. This also insulates callers from knowing
 * sizeof struct cam_iosched_softc.
 */
int
cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph)
{

	*iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO);
	if (*iscp == NULL)
		return ENOMEM;
#ifdef CAM_NETFLIX_IOSCHED
	if (iosched_debug)
		printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp);
#endif
	(*iscp)->sort_io_queue = -1;
	bioq_init(&(*iscp)->bio_queue);
	bioq_init(&(*iscp)->trim_queue);
#ifdef CAM_NETFLIX_IOSCHED
	if (do_netflix_iosched) {
		bioq_init(&(*iscp)->write_queue);
		(*iscp)->read_bias = 100;
		(*iscp)->current_read_bias = 100;
		(*iscp)->quanta = 200;
		cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats);
		cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats);
		cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats);
		(*iscp)->trim_stats.max = 1;	/* Trims are special: one at a time for now */
		(*iscp)->last_time = sbinuptime();
		callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0);
		(*iscp)->periph = periph;
		cam_iosched_cl_init(&(*iscp)->cl, *iscp);
		callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta - 1, cam_iosched_ticker, *iscp);
		(*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
	}
#endif

	return 0;
}

/*
 * Reclaim all used resources. This assumes that other folks have
 * drained the requests in the hardware. Maybe an unwise assumption.
 */
void
cam_iosched_fini(struct cam_iosched_softc *isc)
{
	if (isc) {
		cam_iosched_flush(isc, NULL, ENXIO);
#ifdef CAM_NETFLIX_IOSCHED
		cam_iosched_iop_stats_fini(&isc->read_stats);
		cam_iosched_iop_stats_fini(&isc->write_stats);
		cam_iosched_iop_stats_fini(&isc->trim_stats);
		cam_iosched_cl_sysctl_fini(&isc->cl);
		if (isc->sysctl_tree)
			if (sysctl_ctx_free(&isc->sysctl_ctx) != 0)
				printf("can't remove iosched sysctl stats context\n");
		if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) {
			callout_drain(&isc->ticker);
			isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE;
		}
			
#endif
		free(isc, M_CAMSCHED);
	}
}

/*
 * After we're sure we're attaching a device, go ahead and add
 * hooks for any sysctl we may wish to honor.
 */
void cam_iosched_sysctl_init(struct cam_iosched_softc *isc,
    struct sysctl_ctx_list *ctx, struct sysctl_oid *node)
{
#ifdef CAM_NETFLIX_IOSCHED
	struct sysctl_oid_list *n;
#endif

	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(node),
		OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE,
		&isc->sort_io_queue, 0,
		"Sort IO queue to try and optimise disk access patterns");

#ifdef CAM_NETFLIX_IOSCHED
	if (!do_netflix_iosched)
		return;

	isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx,
	    SYSCTL_CHILDREN(node), OID_AUTO, "iosched",
	    CTLFLAG_RD, 0, "I/O scheduler statistics");
	n = SYSCTL_CHILDREN(isc->sysctl_tree);
	ctx = &isc->sysctl_ctx;

	cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read");
	cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write");
	cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim");
	cam_iosched_cl_sysctl_init(isc);

	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "read_bias", CTLFLAG_RW,
	    &isc->read_bias, 100,
	    "How biased towards read should we be independent of limits");

	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "quanta", CTLFLAG_RW,
	    &isc->quanta, 200,
	    "How many quanta per second do we slice the I/O up into");

	SYSCTL_ADD_INT(ctx, n,
	    OID_AUTO, "total_ticks", CTLFLAG_RD,
	    &isc->total_ticks, 0,
	    "Total number of ticks we've done");
#endif
}

/*
 * Flush outstanding I/O. Consumers of this library don't know all the
 * queues we may keep, so this allows all I/O to be flushed in one
 * convenient call.
 */
void
cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err)
{
	bioq_flush(&isc->bio_queue, stp, err);
	bioq_flush(&isc->trim_queue, stp, err);
#ifdef CAM_NETFLIX_IOSCHED
	if (do_netflix_iosched)
		bioq_flush(&isc->write_queue, stp, err);
#endif
}

#ifdef CAM_NETFLIX_IOSCHED
static struct bio *
cam_iosched_get_write(struct cam_iosched_softc *isc)
{
	struct bio *bp;

	/*
	 * We control the write rate by controlling how many requests we send
	 * down to the drive at any one time. Fewer requests limits the
	 * effects of both starvation when the requests take a while and write
	 * amplification when each request is causing more than one write to
	 * the NAND media. Limiting the queue depth like this will also limit
	 * the write throughput and give and reads that want to compete to
	 * compete unfairly.
	 */
	bp = bioq_first(&isc->write_queue);
	if (bp == NULL) {
		if (iosched_debug > 3)
			printf("No writes present in write_queue\n");
		return NULL;
	}

	/*
	 * If pending read, prefer that based on current read bias
	 * setting.
	 */
	if (bioq_first(&isc->bio_queue) && isc->current_read_bias) {
		if (iosched_debug)
			printf("Reads present and current_read_bias is %d queued writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued);
		isc->current_read_bias--;
		return NULL;
	}

	/*
	 * See if our current limiter allows this I/O.
	 */
	if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) {
		if (iosched_debug)
			printf("Can't write because limiter says no.\n");
		return NULL;
	}

	/*
	 * Let's do this: We've passed all the gates and we're a go
	 * to schedule the I/O in the SIM.
	 */
	isc->current_read_bias = isc->read_bias;
	bioq_remove(&isc->write_queue, bp);
	if (bp->bio_cmd == BIO_WRITE) {
		isc->write_stats.queued--;
		isc->write_stats.total++;
		isc->write_stats.pending++;
	}
	if (iosched_debug > 9)
		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
	return bp;
}
#endif

/*
 * Put back a trim that you weren't able to actually schedule this time.
 */
void
cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp)
{
	bioq_insert_head(&isc->trim_queue, bp);
#ifdef CAM_NETFLIX_IOSCHED
	isc->trim_stats.queued++;
	isc->trim_stats.total--;		/* since we put it back, don't double count */
	isc->trim_stats.pending--;
#endif
}

/*
 * gets the next trim from the trim queue.
 *
 * Assumes we're called with the periph lock held.  It removes this
 * trim from the queue and the device must explicitly reinstert it
 * should the need arise.
 */
struct bio *
cam_iosched_next_trim(struct cam_iosched_softc *isc)
{
	struct bio *bp;

	bp  = bioq_first(&isc->trim_queue);
	if (bp == NULL)
		return NULL;
	bioq_remove(&isc->trim_queue, bp);
#ifdef CAM_NETFLIX_IOSCHED
	isc->trim_stats.queued--;
	isc->trim_stats.total++;
	isc->trim_stats.pending++;
#endif
	return bp;
}

/*
 * gets the an available trim from the trim queue, if there's no trim
 * already pending. It removes this trim from the queue and the device
 * must explicitly reinstert it should the need arise.
 *
 * Assumes we're called with the periph lock held.
 */
struct bio *
cam_iosched_get_trim(struct cam_iosched_softc *isc)
{

	if (!cam_iosched_has_more_trim(isc))
		return NULL;

	return cam_iosched_next_trim(isc);
}

/*
 * Determine what the next bit of work to do is for the periph. The
 * default implementation looks to see if we have trims to do, but no
 * trims outstanding. If so, we do that. Otherwise we see if we have
 * other work. If we do, then we do that. Otherwise why were we called?
 */
struct bio *
cam_iosched_next_bio(struct cam_iosched_softc *isc)
{
	struct bio *bp;

	/*
	 * See if we have a trim that can be scheduled. We can only send one
	 * at a time down, so this takes that into account.
	 *
	 * XXX newer TRIM commands are queueable. Revisit this when we
	 * implement them.
	 */
	if ((bp = cam_iosched_get_trim(isc)) != NULL)
		return bp;

#ifdef CAM_NETFLIX_IOSCHED
	/*
	 * See if we have any pending writes, and room in the queue for them,
	 * and if so, those are next.
	 */
	if (do_netflix_iosched) {
		if ((bp = cam_iosched_get_write(isc)) != NULL)
			return bp;
	}
#endif

	/*
	 * next, see if there's other, normal I/O waiting. If so return that.
	 */
	if ((bp = bioq_first(&isc->bio_queue)) == NULL)
		return NULL;

#ifdef CAM_NETFLIX_IOSCHED
	/*
	 * For the netflix scheduler, bio_queue is only for reads, so enforce
	 * the limits here. Enforce only for reads.
	 */
	if (do_netflix_iosched) {
		if (bp->bio_cmd == BIO_READ &&
		    cam_iosched_limiter_iop(&isc->read_stats, bp) != 0)
			return NULL;
	}
#endif
	bioq_remove(&isc->bio_queue, bp);
#ifdef CAM_NETFLIX_IOSCHED
	if (do_netflix_iosched) {
		if (bp->bio_cmd == BIO_READ) {
			isc->read_stats.queued--;
			isc->read_stats.total++;
			isc->read_stats.pending++;
		} else
			printf("Found bio_cmd = %#x\n", bp->bio_cmd);
	}
	if (iosched_debug > 9)
		printf("HWQ : %p %#x\n", bp, bp->bio_cmd);
#endif
	return bp;
}
	
/*
 * Driver has been given some work to do by the block layer. Tell the
 * scheduler about it and have it queue the work up. The scheduler module
 * will then return the currently most useful bit of work later, possibly
 * deferring work for various reasons.
 */
void
cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp)
{

	/*
	 * Put all trims on the trim queue sorted, since we know
	 * that the collapsing code requires this. Otherwise put
	 * the work on the bio queue.
	 */
	if (bp->bio_cmd == BIO_DELETE) {
		bioq_disksort(&isc->trim_queue, bp);
#ifdef CAM_NETFLIX_IOSCHED
		isc->trim_stats.in++;
		isc->trim_stats.queued++;
#endif
	}
#ifdef CAM_NETFLIX_IOSCHED
	else if (do_netflix_iosched &&
	    (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_FLUSH)) {
		if (cam_iosched_sort_queue(isc))
			bioq_disksort(&isc->write_queue, bp);
		else
			bioq_insert_tail(&isc->write_queue, bp);
		if (iosched_debug > 9)
			printf("Qw  : %p %#x\n", bp, bp->bio_cmd);
		if (bp->bio_cmd == BIO_WRITE) {
			isc->write_stats.in++;
			isc->write_stats.queued++;
		}
	}
#endif
	else {
		if (cam_iosched_sort_queue(isc))
			bioq_disksort(&isc->bio_queue, bp);
		else
			bioq_insert_tail(&isc->bio_queue, bp);
#ifdef CAM_NETFLIX_IOSCHED
		if (iosched_debug > 9)
			printf("Qr  : %p %#x\n", bp, bp->bio_cmd);
		if (bp->bio_cmd == BIO_READ) {
			isc->read_stats.in++;
			isc->read_stats.queued++;
		} else if (bp->bio_cmd == BIO_WRITE) {
			isc->write_stats.in++;
			isc->write_stats.queued++;
		}
#endif
	}
}

/* 
 * If we have work, get it scheduled. Called with the periph lock held.
 */
void
cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph)
{

	if (cam_iosched_has_work(isc))
		xpt_schedule(periph, CAM_PRIORITY_NORMAL);
}

/*
 * Complete a trim request
 */
void
cam_iosched_trim_done(struct cam_iosched_softc *isc)
{

	isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE;
}

/*
 * Complete a bio. Called before we release the ccb with xpt_release_ccb so we
 * might use notes in the ccb for statistics.
 */
int
cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp,
    union ccb *done_ccb)
{
	int retval = 0;
#ifdef CAM_NETFLIX_IOSCHED
	if (!do_netflix_iosched)
		return retval;

	if (iosched_debug > 10)
		printf("done: %p %#x\n", bp, bp->bio_cmd);
	if (bp->bio_cmd == BIO_WRITE) {
		retval = cam_iosched_limiter_iodone(&isc->write_stats, bp);
		isc->write_stats.out++;
		isc->write_stats.pending--;
	} else if (bp->bio_cmd == BIO_READ) {
		retval = cam_iosched_limiter_iodone(&isc->read_stats, bp);
		isc->read_stats.out++;
		isc->read_stats.pending--;
	} else if (bp->bio_cmd == BIO_DELETE) {
		isc->trim_stats.out++;
		isc->trim_stats.pending--;
	} else if (bp->bio_cmd != BIO_FLUSH) {
		if (iosched_debug)
			printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd);
	}

	if (!(bp->bio_flags & BIO_ERROR))
		cam_iosched_io_metric_update(isc, done_ccb->ccb_h.qos.sim_data,
		    bp->bio_cmd, bp->bio_bcount);
#endif
	return retval;
}

/*
 * Tell the io scheduler that you've pushed a trim down into the sim.
 * xxx better place for this?
 */
void
cam_iosched_submit_trim(struct cam_iosched_softc *isc)
{

	isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE;
}

/*
 * Change the sorting policy hint for I/O transactions for this device.
 */
void
cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val)
{

	isc->sort_io_queue = val;
}

int
cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
	return isc->flags & flags;
}

void
cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
	isc->flags |= flags;
}

void
cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags)
{
	isc->flags &= ~flags;
}

#ifdef CAM_NETFLIX_IOSCHED
/*
 * After the method presented in Jack Crenshaw's 1998 article "Integer
 * Suqare Roots," reprinted at
 * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots
 * and well worth the read. Briefly, we find the power of 4 that's the
 * largest smaller than val. We then check each smaller power of 4 to
 * see if val is still bigger. The right shifts at each step divide
 * the result by 2 which after successive application winds up
 * accumulating the right answer. It could also have been accumulated
 * using a separate root counter, but this code is smaller and faster
 * than that method. This method is also integer size invariant.
 * It returns floor(sqrt((float)val)), or the larget integer less than
 * or equal to the square root.
 */
static uint64_t
isqrt64(uint64_t val)
{
	uint64_t res = 0;
	uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2);

	/*
	 * Find the largest power of 4 smaller than val.
	 */
	while (bit > val)
		bit >>= 2;

	/*
	 * Accumulate the answer, one bit at a time (we keep moving
	 * them over since 2 is the square root of 4 and we test
	 * powers of 4). We accumulate where we find the bit, but
	 * the successive shifts land the bit in the right place
	 * by the end.
	 */
	while (bit != 0) {
		if (val >= res + bit) {
			val -= res + bit;
			res = (res >> 1) + bit;
		} else
			res >>= 1;
		bit >>= 2;
	}
	
	return res;
}

/*
 * a and b are 32.32 fixed point stored in a 64-bit word.
 * Let al and bl be the .32 part of a and b.
 * Let ah and bh be the 32 part of a and b.
 * R is the radix and is 1 << 32
 *
 * a * b
 * (ah + al / R) * (bh + bl / R)
 * ah * bh + (al * bh + ah * bl) / R + al * bl / R^2
 *
 * After multiplicaiton, we have to renormalize by multiply by
 * R, so we wind up with
 *	ah * bh * R + al * bh + ah * bl + al * bl / R
 * which turns out to be a very nice way to compute this value
 * so long as ah and bh are < 65536 there's no loss of high bits
 * and the low order bits are below the threshold of caring for
 * this application.
 */
static uint64_t
mul(uint64_t a, uint64_t b)
{
	uint64_t al, ah, bl, bh;
	al = a & 0xffffffff;
	ah = a >> 32;
	bl = b & 0xffffffff;
	bh = b >> 32;
	return ((ah * bh) << 32) + al * bh + ah * bl + ((al * bl) >> 32);
}

static void
cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency)
{
	sbintime_t y, yy;
	uint64_t var;

	/* 
	 * Classic expoentially decaying average with a tiny alpha
	 * (2 ^ -alpha_bits). For more info see the NIST statistical
	 * handbook.
	 *
	 * ema_t = y_t * alpha + ema_t-1 * (1 - alpha)
	 * alpha = 1 / (1 << alpha_bits)
	 *
	 * Since alpha is a power of two, we can compute this w/o any mult or
	 * division.
	 */
	y = sim_latency;
	iop->ema = (y + (iop->ema << alpha_bits) - iop->ema) >> alpha_bits;

	yy = mul(y, y);
	iop->emss = (yy + (iop->emss << alpha_bits) - iop->emss) >> alpha_bits;

	/*
         * s_1 = sum of data
	 * s_2 = sum of data * data
	 * ema ~ mean (or s_1 / N)
	 * emss ~ s_2 / N
	 *
	 * sd = sqrt((N * s_2 - s_1 ^ 2) / (N * (N - 1)))
	 * sd = sqrt((N * s_2 / N * (N - 1)) - (s_1 ^ 2 / (N * (N - 1))))
	 *
	 * N ~ 2 / alpha - 1
	 * alpha < 1 / 16 (typically much less)
	 * N > 31 --> N large so N * (N - 1) is approx N * N
	 *
	 * substituting and rearranging:
	 * sd ~ sqrt(s_2 / N - (s_1 / N) ^ 2)
	 *    ~ sqrt(emss - ema ^ 2);
	 * which is the formula used here to get a decent estimate of sd which
	 * we use to detect outliers. Note that when first starting up, it
	 * takes a while for emss sum of squares estimator to converge on a
	 * good value.  during this time, it can be less than ema^2. We
	 * compute a sd of 0 in that case, and ignore outliers.
	 */
	var = iop->emss - mul(iop->ema, iop->ema);
	iop->sd = (int64_t)var < 0 ? 0 : isqrt64(var);
}

#ifdef CAM_NETFLIX_IOSCHED
static void
cam_iosched_io_metric_update(struct cam_iosched_softc *isc,
    sbintime_t sim_latency, int cmd, size_t size)
{
	/* xxx Do we need to scale based on the size of the I/O ? */
	switch (cmd) {
	case BIO_READ:
		cam_iosched_update(&isc->read_stats, sim_latency);
		break;
	case BIO_WRITE:
		cam_iosched_update(&isc->write_stats, sim_latency);
		break;
	case BIO_DELETE:
		cam_iosched_update(&isc->trim_stats, sim_latency);
		break;
	default:
		break;
	}
}
#endif

#ifdef DDB
static int biolen(struct bio_queue_head *bq)
{
	int i = 0;
	struct bio *bp;

	TAILQ_FOREACH(bp, &bq->queue, bio_queue) {
		i++;
	}
	return i;
}

/*
 * Show the internal state of the I/O scheduler.
 */
DB_SHOW_COMMAND(iosched, cam_iosched_db_show)
{
	struct cam_iosched_softc *isc;

	if (!have_addr) {
		db_printf("Need addr\n");
		return;
	}
	isc = (struct cam_iosched_softc *)addr;
	db_printf("pending_reads:     %d\n", isc->read_stats.pending);
	db_printf("min_reads:         %d\n", isc->read_stats.min);
	db_printf("max_reads:         %d\n", isc->read_stats.max);
	db_printf("reads:             %d\n", isc->read_stats.total);
	db_printf("in_reads:          %d\n", isc->read_stats.in);
	db_printf("out_reads:         %d\n", isc->read_stats.out);
	db_printf("queued_reads:      %d\n", isc->read_stats.queued);
	db_printf("Current Q len      %d\n", biolen(&isc->bio_queue));
	db_printf("pending_writes:    %d\n", isc->write_stats.pending);
	db_printf("min_writes:        %d\n", isc->write_stats.min);
	db_printf("max_writes:        %d\n", isc->write_stats.max);
	db_printf("writes:            %d\n", isc->write_stats.total);
	db_printf("in_writes:         %d\n", isc->write_stats.in);
	db_printf("out_writes:        %d\n", isc->write_stats.out);
	db_printf("queued_writes:     %d\n", isc->write_stats.queued);
	db_printf("Current Q len      %d\n", biolen(&isc->write_queue));
	db_printf("pending_trims:     %d\n", isc->trim_stats.pending);
	db_printf("min_trims:         %d\n", isc->trim_stats.min);
	db_printf("max_trims:         %d\n", isc->trim_stats.max);
	db_printf("trims:             %d\n", isc->trim_stats.total);
	db_printf("in_trims:          %d\n", isc->trim_stats.in);
	db_printf("out_trims:         %d\n", isc->trim_stats.out);
	db_printf("queued_trims:      %d\n", isc->trim_stats.queued);
	db_printf("Current Q len      %d\n", biolen(&isc->trim_queue));
	db_printf("read_bias:         %d\n", isc->read_bias);
	db_printf("current_read_bias: %d\n", isc->current_read_bias);
	db_printf("Trim active?       %s\n", 
	    (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no");
}
#endif
#endif
OpenPOWER on IntegriCloud