summaryrefslogtreecommitdiffstats
path: root/lib/msun/src/s_sin.c
blob: 4d3b9d50cb9a5a5f63f054b15fe5f018e3c45783 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/* @(#)s_sin.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#ifndef lint
static char rcsid[] = "$FreeBSD$";
#endif

/* sin(x)
 * Return sine function of x.
 *
 * kernel function:
 *	__kernel_sin		... sine function on [-pi/4,pi/4]
 *	__kernel_cos		... cose function on [-pi/4,pi/4]
 *	__ieee754_rem_pio2	... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *	in [-pi/4 , +pi/4], and let n = k mod 4.
 *	We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 T
 *	    1	       C	  -S		-1/T
 *	    2	      -S	  -C		 T
 *	    3	      -C	   S		-1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded
 */

#include "math.h"
#include "math_private.h"

double
sin(double x)
{
	double y[2],z=0.0;
	int32_t n, ix;

    /* High word of x. */
	GET_HIGH_WORD(ix,x);

    /* |x| ~< pi/4 */
	ix &= 0x7fffffff;
	if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);

    /* sin(Inf or NaN) is NaN */
	else if (ix>=0x7ff00000) return x-x;

    /* argument reduction needed */
	else {
	    n = __ieee754_rem_pio2(x,y);
	    switch(n&3) {
		case 0: return  __kernel_sin(y[0],y[1],1);
		case 1: return  __kernel_cos(y[0],y[1]);
		case 2: return -__kernel_sin(y[0],y[1],1);
		default:
			return -__kernel_cos(y[0],y[1]);
	    }
	}
}
OpenPOWER on IntegriCloud