1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
#include "config.h"
#include "lfptest.h"
#include "timevalops.h"
#include "unity.h"
#include <math.h> /* Required on Solaris for ldexp. */
void test_Seconds(void);
void test_MicrosecondsRounded(void);
void test_MicrosecondsExact(void);
void
test_Seconds(void)
{
struct timeval input = {500, 0}; /* 500.0 s */
l_fp expected = {{500}, 0};
l_fp actual;
TVTOTS(&input, &actual);
TEST_ASSERT_TRUE(IsEqual(expected, actual));
}
void
test_MicrosecondsRounded(void)
{
/* 0.0005 can not be represented exact in a l_fp structure.
* It would equal to 2147483,648. This means that
* HALF_PROMILLE_UP (which is 2147484) should be
* the correct rounding. */
struct timeval input = {0, 500}; /* 0.0005 exact */
l_fp expected = {{0}, HALF_PROMILLE_UP};
l_fp actual;
TVTOTS(&input, &actual);
TEST_ASSERT_TRUE(IsEqual(expected, actual));
}
void
test_MicrosecondsExact(void)
{
/* 0.5 can be represented exact in both l_fp and timeval. */
const struct timeval input = {10, 500000}; /* 0.5 exact */
const l_fp expected = {{10}, HALF}; /* 0.5 exact */
l_fp actual;
TVTOTS(&input, &actual);
/* Compare the fractional part with an absolute error given. */
TEST_ASSERT_EQUAL_UINT(expected.l_ui, actual.l_ui);
double expectedDouble, actualDouble;
M_LFPTOD(0, expected.l_uf, expectedDouble);
M_LFPTOD(0, actual.l_uf, actualDouble);
/* The error should be less than 0.5 us */
TEST_ASSERT_DOUBLE_WITHIN(0.0000005, expectedDouble, actualDouble);
}
|