1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
#include "g_libntptest.h"
#include "g_timestructs.h"
extern "C" {
#include "ntp_fp.h"
}
#include <float.h>
#include <math.h>
#include <string>
#include <sstream>
class lfpTest : public libntptest
{
// nothing new right now
};
struct lfp_hl {
uint32_t h, l;
};
//----------------------------------------------------------------------
// OO-wrapper for 'l_fp'
//----------------------------------------------------------------------
class LFP
{
public:
~LFP();
LFP();
LFP(const LFP& rhs);
LFP(int32 i, u_int32 f);
LFP operator+ (const LFP &rhs) const;
LFP& operator+=(const LFP &rhs);
LFP operator- (const LFP &rhs) const;
LFP& operator-=(const LFP &rhs);
LFP& operator=(const LFP &rhs);
LFP operator-() const;
bool operator==(const LFP &rhs) const;
LFP neg() const;
LFP abs() const;
int signum() const;
bool l_isgt (const LFP &rhs) const
{ return L_ISGT(&_v, &rhs._v); }
bool l_isgtu(const LFP &rhs) const
{ return L_ISGTU(&_v, &rhs._v); }
bool l_ishis(const LFP &rhs) const
{ return L_ISHIS(&_v, &rhs._v); }
bool l_isgeq(const LFP &rhs) const
{ return L_ISGEQ(&_v, &rhs._v); }
bool l_isequ(const LFP &rhs) const
{ return L_ISEQU(&_v, &rhs._v); }
int ucmp(const LFP & rhs) const;
int scmp(const LFP & rhs) const;
std::string toString() const;
std::ostream& toStream(std::ostream &oo) const;
operator double() const;
explicit LFP(double);
protected:
LFP(const l_fp &rhs);
static int cmp_work(u_int32 a[3], u_int32 b[3]);
l_fp _v;
};
static std::ostream& operator<<(std::ostream &oo, const LFP& rhs)
{
return rhs.toStream(oo);
}
//----------------------------------------------------------------------
// reference comparision
// This is implementad as a full signed MP-subtract in 3 limbs, where
// the operands are zero or sign extended before the subtraction is
// executed.
//----------------------------------------------------------------------
int LFP::scmp(const LFP & rhs) const
{
u_int32 a[3], b[3];
const l_fp &op1(_v), &op2(rhs._v);
a[0] = op1.l_uf; a[1] = op1.l_ui; a[2] = 0;
b[0] = op2.l_uf; b[1] = op2.l_ui; b[2] = 0;
a[2] -= (op1.l_i < 0);
b[2] -= (op2.l_i < 0);
return cmp_work(a,b);
}
int LFP::ucmp(const LFP & rhs) const
{
u_int32 a[3], b[3];
const l_fp &op1(_v), &op2(rhs._v);
a[0] = op1.l_uf; a[1] = op1.l_ui; a[2] = 0;
b[0] = op2.l_uf; b[1] = op2.l_ui; b[2] = 0;
return cmp_work(a,b);
}
int LFP::cmp_work(u_int32 a[3], u_int32 b[3])
{
u_int32 cy, idx, tmp;
for (cy = idx = 0; idx < 3; ++idx) {
tmp = a[idx]; cy = (a[idx] -= cy ) > tmp;
tmp = a[idx]; cy |= (a[idx] -= b[idx]) > tmp;
}
if (a[2])
return -1;
return a[0] || a[1];
}
//----------------------------------------------------------------------
// imlementation of the LFP stuff
// This should be easy enough...
//----------------------------------------------------------------------
LFP::~LFP()
{
// NOP
}
LFP::LFP()
{
_v.l_ui = 0;
_v.l_uf = 0;
}
LFP::LFP(int32 i, u_int32 f)
{
_v.l_i = i;
_v.l_uf = f;
}
LFP::LFP(const LFP &rhs)
{
_v = rhs._v;
}
LFP::LFP(const l_fp & rhs)
{
_v = rhs;
}
LFP& LFP::operator=(const LFP & rhs)
{
_v = rhs._v;
return *this;
}
LFP& LFP::operator+=(const LFP & rhs)
{
L_ADD(&_v, &rhs._v);
return *this;
}
LFP& LFP::operator-=(const LFP & rhs)
{
L_SUB(&_v, &rhs._v);
return *this;
}
LFP LFP::operator+(const LFP &rhs) const
{
LFP tmp(*this);
return tmp += rhs;
}
LFP LFP::operator-(const LFP &rhs) const
{
LFP tmp(*this);
return tmp -= rhs;
}
LFP LFP::operator-() const
{
LFP tmp(*this);
L_NEG(&tmp._v);
return tmp;
}
LFP
LFP::neg() const
{
LFP tmp(*this);
L_NEG(&tmp._v);
return tmp;
}
LFP
LFP::abs() const
{
LFP tmp(*this);
if (L_ISNEG(&tmp._v))
L_NEG(&tmp._v);
return tmp;
}
int
LFP::signum() const
{
if (_v.l_ui & 0x80000000u)
return -1;
return (_v.l_ui || _v.l_uf);
}
std::string
LFP::toString() const
{
std::ostringstream oss;
toStream(oss);
return oss.str();
}
std::ostream&
LFP::toStream(std::ostream &os) const
{
return os
<< mfptoa(_v.l_ui, _v.l_uf, 9)
<< " [$" << std::setw(8) << std::setfill('0') << std::hex << _v.l_ui
<< ':' << std::setw(8) << std::setfill('0') << std::hex << _v.l_uf
<< ']';
}
bool LFP::operator==(const LFP &rhs) const
{
return L_ISEQU(&_v, &rhs._v);
}
LFP::operator double() const
{
double res;
LFPTOD(&_v, res);
return res;
}
LFP::LFP(double rhs)
{
DTOLFP(rhs, &_v);
}
//----------------------------------------------------------------------
// testing the relational macros works better with proper predicate
// formatting functions; it slows down the tests a bit, but makes for
// readable failure messages.
//----------------------------------------------------------------------
testing::AssertionResult isgt_p(
const LFP &op1, const LFP &op2)
{
if (op1.l_isgt(op2))
return testing::AssertionSuccess()
<< "L_ISGT(" << op1 << "," << op2 << ") is true";
else
return testing::AssertionFailure()
<< "L_ISGT(" << op1 << "," << op2 << ") is false";
}
testing::AssertionResult isgeq_p(
const LFP &op1, const LFP &op2)
{
if (op1.l_isgeq(op2))
return testing::AssertionSuccess()
<< "L_ISGEQ(" << op1 << "," << op2 << ") is true";
else
return testing::AssertionFailure()
<< "L_ISGEQ(" << op1 << "," << op2 << ") is false";
}
testing::AssertionResult isgtu_p(
const LFP &op1, const LFP &op2)
{
if (op1.l_isgtu(op2))
return testing::AssertionSuccess()
<< "L_ISGTU(" << op1 << "," << op2 << ") is true";
else
return testing::AssertionFailure()
<< "L_ISGTU(" << op1 << "," << op2 << ") is false";
}
testing::AssertionResult ishis_p(
const LFP &op1, const LFP &op2)
{
if (op1.l_ishis(op2))
return testing::AssertionSuccess()
<< "L_ISHIS(" << op1 << "," << op2 << ") is true";
else
return testing::AssertionFailure()
<< "L_ISHIS(" << op1 << "," << op2 << ") is false";
}
testing::AssertionResult isequ_p(
const LFP &op1, const LFP &op2)
{
if (op1.l_isequ(op2))
return testing::AssertionSuccess()
<< "L_ISEQU(" << op1 << "," << op2 << ") is true";
else
return testing::AssertionFailure()
<< "L_ISEQU(" << op1 << "," << op2 << ") is false";
}
//----------------------------------------------------------------------
// test data table for add/sub and compare
//----------------------------------------------------------------------
static const lfp_hl addsub_tab[][3] = {
// trivial idendity:
{{0 ,0 }, { 0,0 }, { 0,0}},
// with carry from fraction and sign change:
{{-1,0x80000000}, { 0,0x80000000}, { 0,0}},
// without carry from fraction
{{ 1,0x40000000}, { 1,0x40000000}, { 2,0x80000000}},
// with carry from fraction:
{{ 1,0xC0000000}, { 1,0xC0000000}, { 3,0x80000000}},
// with carry from fraction and sign change:
{{0x7FFFFFFF, 0x7FFFFFFF}, {0x7FFFFFFF,0x7FFFFFFF}, {0xFFFFFFFE,0xFFFFFFFE}},
// two tests w/o carry (used for l_fp<-->double):
{{0x55555555,0xAAAAAAAA}, {0x11111111,0x11111111}, {0x66666666,0xBBBBBBBB}},
{{0x55555555,0x55555555}, {0x11111111,0x11111111}, {0x66666666,0x66666666}},
// wide-range test, triggers compare trouble
{{0x80000000,0x00000001}, {0xFFFFFFFF,0xFFFFFFFE}, {0x7FFFFFFF,0xFFFFFFFF}}
};
static const size_t addsub_cnt(sizeof(addsub_tab)/sizeof(addsub_tab[0]));
static const size_t addsub_tot(sizeof(addsub_tab)/sizeof(addsub_tab[0][0]));
//----------------------------------------------------------------------
// epsilon estimation for the precision of a conversion double --> l_fp
//
// The error estimation limit is as follows:
// * The 'l_fp' fixed point fraction has 32 bits precision, so we allow
// for the LSB to toggle by clamping the epsilon to be at least 2^(-31)
//
// * The double mantissa has a precsion 54 bits, so the other minimum is
// dval * (2^(-53))
//
// The maximum of those two boundaries is used for the check.
//
// Note: once there are more than 54 bits between the highest and lowest
// '1'-bit of the l_fp value, the roundtrip *will* create truncation
// errors. This is an inherent property caused by the 54-bit mantissa of
// the 'double' type.
double eps(double d)
{
return std::max<double>(ldexp(1.0, -31), ldexp(fabs(d), -53));
}
//----------------------------------------------------------------------
// test addition
//----------------------------------------------------------------------
TEST_F(lfpTest, AdditionLR) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op1(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP op2(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
LFP exp(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
LFP res(op1 + op2);
ASSERT_EQ(exp, res);
}
}
TEST_F(lfpTest, AdditionRL) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op2(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP op1(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
LFP exp(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
LFP res(op1 + op2);
ASSERT_EQ(exp, res);
}
}
//----------------------------------------------------------------------
// test subtraction
//----------------------------------------------------------------------
TEST_F(lfpTest, SubtractionLR) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op2(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP exp(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
LFP op1(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
LFP res(op1 - op2);
ASSERT_EQ(exp, res);
}
}
TEST_F(lfpTest, SubtractionRL) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP exp(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP op2(addsub_tab[idx][1].h, addsub_tab[idx][1].l);
LFP op1(addsub_tab[idx][2].h, addsub_tab[idx][2].l);
LFP res(op1 - op2);
ASSERT_EQ(exp, res);
}
}
//----------------------------------------------------------------------
// test negation
//----------------------------------------------------------------------
TEST_F(lfpTest, Negation) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op1(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP op2(-op1);
LFP sum(op1 + op2);
ASSERT_EQ(LFP(0,0), sum);
}
}
//----------------------------------------------------------------------
// test absolute value
//----------------------------------------------------------------------
TEST_F(lfpTest, Absolute) {
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op1(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
LFP op2(op1.abs());
ASSERT_TRUE(op2.signum() >= 0);
if (op1.signum() >= 0)
op1 -= op2;
else
op1 += op2;
ASSERT_EQ(LFP(0,0), op1);
}
// There is one special case we have to check: the minimum
// value cannot be negated, or, to be more precise, the
// negation reproduces the original pattern.
LFP minVal(0x80000000, 0x00000000);
LFP minAbs(minVal.abs());
ASSERT_EQ(-1, minVal.signum());
ASSERT_EQ(minVal, minAbs);
}
//----------------------------------------------------------------------
// fp -> double -> fp rountrip test
//----------------------------------------------------------------------
TEST_F(lfpTest, FDF_RoundTrip) {
// since a l_fp has 64 bits in it's mantissa and a double has
// only 54 bits available (including the hidden '1') we have to
// make a few concessions on the roundtrip precision. The 'eps()'
// function makes an educated guess about the avilable precision
// and checks the difference in the two 'l_fp' values against
// that limit.
for (size_t idx=0; idx < addsub_cnt; ++idx) {
LFP op1(addsub_tab[idx][0].h, addsub_tab[idx][0].l);
double op2(op1);
LFP op3(op2);
// for manual checks only:
// std::cout << std::setprecision(16) << op2 << std::endl;
ASSERT_LE(fabs(op1-op3), eps(op2));
}
}
//----------------------------------------------------------------------
// test the compare stuff
//
// This uses the local compare and checks if the operations using the
// macros in 'ntp_fp.h' produce mathing results.
// ----------------------------------------------------------------------
TEST_F(lfpTest, SignedRelOps) {
const lfp_hl * tv(&addsub_tab[0][0]);
for (size_t lc=addsub_tot-1; lc; --lc,++tv) {
LFP op1(tv[0].h,tv[0].l);
LFP op2(tv[1].h,tv[1].l);
int cmp(op1.scmp(op2));
switch (cmp) {
case -1:
std::swap(op1, op2);
case 1:
EXPECT_TRUE (isgt_p(op1,op2));
EXPECT_FALSE(isgt_p(op2,op1));
EXPECT_TRUE (isgeq_p(op1,op2));
EXPECT_FALSE(isgeq_p(op2,op1));
EXPECT_FALSE(isequ_p(op1,op2));
EXPECT_FALSE(isequ_p(op2,op1));
break;
case 0:
EXPECT_FALSE(isgt_p(op1,op2));
EXPECT_FALSE(isgt_p(op2,op1));
EXPECT_TRUE (isgeq_p(op1,op2));
EXPECT_TRUE (isgeq_p(op2,op1));
EXPECT_TRUE (isequ_p(op1,op2));
EXPECT_TRUE (isequ_p(op2,op1));
break;
default:
FAIL() << "unexpected SCMP result: " << cmp;
}
}
}
TEST_F(lfpTest, UnsignedRelOps) {
const lfp_hl * tv(&addsub_tab[0][0]);
for (size_t lc=addsub_tot-1; lc; --lc,++tv) {
LFP op1(tv[0].h,tv[0].l);
LFP op2(tv[1].h,tv[1].l);
int cmp(op1.ucmp(op2));
switch (cmp) {
case -1:
std::swap(op1, op2);
case 1:
EXPECT_TRUE (isgtu_p(op1,op2));
EXPECT_FALSE(isgtu_p(op2,op1));
EXPECT_TRUE (ishis_p(op1,op2));
EXPECT_FALSE(ishis_p(op2,op1));
break;
case 0:
EXPECT_FALSE(isgtu_p(op1,op2));
EXPECT_FALSE(isgtu_p(op2,op1));
EXPECT_TRUE (ishis_p(op1,op2));
EXPECT_TRUE (ishis_p(op2,op1));
break;
default:
FAIL() << "unexpected UCMP result: " << cmp;
}
}
}
//----------------------------------------------------------------------
// that's all folks... but feel free to add things!
//----------------------------------------------------------------------
|