summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
blob: 8897756a92d9e7620ab9380a46f70b60aaa7f7af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines BasicConstraintManager, a class that tracks simple
//  equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//

#include "SimpleConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;
using namespace ento;


namespace { class ConstNotEq {}; }
namespace { class ConstEq {}; }

typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;

static int ConstEqIndex = 0;
static int ConstNotEqIndex = 0;

namespace clang {
namespace ento {
template<>
struct ProgramStateTrait<ConstNotEq> :
  public ProgramStatePartialTrait<ConstNotEqTy> {
  static inline void *GDMIndex() { return &ConstNotEqIndex; }
};

template<>
struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
  static inline void *GDMIndex() { return &ConstEqIndex; }
};
}
}

namespace {
// BasicConstraintManager only tracks equality and inequality constraints of
// constants and integer variables.
class BasicConstraintManager
  : public SimpleConstraintManager {
  ProgramState::IntSetTy::Factory ISetFactory;
public:
  BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
    : SimpleConstraintManager(subengine, statemgr.getBasicVals()),
      ISetFactory(statemgr.getAllocator()) {}

  ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
                                    const llvm::APSInt &V,
                                    const llvm::APSInt &Adjustment,
                                    bool Assumption);

  ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) {
    return assumeSymEquality(State, Sym, V, Adjustment, false);
  }

  ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) {
    return assumeSymEquality(State, Sym, V, Adjustment, true);
  }

  ProgramStateRef assumeSymLT(ProgramStateRef state,
                                  SymbolRef sym,
                                  const llvm::APSInt& V,
                                  const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGT(ProgramStateRef state,
                                  SymbolRef sym,
                                  const llvm::APSInt& V,
                                  const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGE(ProgramStateRef state,
                                  SymbolRef sym,
                                  const llvm::APSInt& V,
                                  const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymLE(ProgramStateRef state,
                                  SymbolRef sym,
                                  const llvm::APSInt& V,
                                  const llvm::APSInt& Adjustment);

  ProgramStateRef AddEQ(ProgramStateRef state,
                            SymbolRef sym,
                            const llvm::APSInt& V);

  ProgramStateRef AddNE(ProgramStateRef state,
                            SymbolRef sym,
                            const llvm::APSInt& V);

  const llvm::APSInt* getSymVal(ProgramStateRef state,
                                SymbolRef sym) const;

  bool isNotEqual(ProgramStateRef state,
                  SymbolRef sym,
                  const llvm::APSInt& V) const;

  bool isEqual(ProgramStateRef state,
               SymbolRef sym,
               const llvm::APSInt& V) const;

  ProgramStateRef removeDeadBindings(ProgramStateRef state,
                                         SymbolReaper& SymReaper);

  bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment,
                   BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal);

  void print(ProgramStateRef state,
             raw_ostream &Out,
             const char* nl,
             const char *sep);
};

} // end anonymous namespace

ConstraintManager*
ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
                                   SubEngine &subengine) {
  return new BasicConstraintManager(statemgr, subengine);
}

// FIXME: This is a more general utility and should live somewhere else.
bool BasicConstraintManager::performTest(llvm::APSInt SymVal,
                                         llvm::APSInt Adjustment,
                                         BinaryOperator::Opcode Op,
                                         llvm::APSInt ComparisonVal) {
  APSIntType Type(Adjustment);
  Type.apply(SymVal);
  Type.apply(ComparisonVal);
  SymVal += Adjustment;

  assert(BinaryOperator::isComparisonOp(Op));
  BasicValueFactory &BVF = getBasicVals();
  const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal);
  assert(Result && "Comparisons should always have valid results.");

  return Result->getBoolValue();
}

ProgramStateRef
BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
                                          const llvm::APSInt &V,
                                          const llvm::APSInt &Adjustment,
                                          bool Assumption) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within)
    return Assumption ? NULL : State;

  // Get the symbol type.
  BasicValueFactory &BVF = getBasicVals();
  ASTContext &Ctx = BVF.getContext();
  APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx));

  // First, see if the adjusted value is within range for the symbol.
  llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment;
  if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within)
    return Assumption ? NULL : State;

  // Now we can do things properly in the symbol space.
  SymbolType.apply(Adjusted);

  // Second, determine if sym == X, where X+Adjustment != V.
  if (const llvm::APSInt *X = getSymVal(State, Sym)) {
    bool IsFeasible = (*X == Adjusted);
    return (IsFeasible == Assumption) ? State : NULL;
  }

  // Third, determine if we already know sym+Adjustment != V.
  if (isNotEqual(State, Sym, Adjusted))
    return Assumption ? NULL : State;

  // If we reach here, sym is not a constant and we don't know if it is != V.
  // Make the correct assumption.
  if (Assumption)
    return AddEQ(State, Sym, Adjusted);
  else
    return AddNE(State, Sym, Adjusted);
}

// The logic for these will be handled in another ConstraintManager.
// Approximate it here anyway by handling some edge cases.
ProgramStateRef 
BasicConstraintManager::assumeSymLT(ProgramStateRef state,
                                    SymbolRef sym,
                                    const llvm::APSInt &V,
                                    const llvm::APSInt &Adjustment) {
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);

  // Is 'V' out of range above the type?
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (V > ComparisonType.convert(Max)) {
    // This path is trivially feasible.
    return state;
  }

  // Is 'V' the smallest possible value, or out of range below the type?
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (V <= ComparisonType.convert(Min)) {
    // sym cannot be any value less than 'V'.  This path is infeasible.
    return NULL;
  }

  // Reject a path if the value of sym is a constant X and !(X+Adj < V).
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
    bool isFeasible = performTest(*X, Adjustment, BO_LT, V);
    return isFeasible ? state : NULL;
  }

  // FIXME: For now have assuming x < y be the same as assuming sym != V;
  return assumeSymNE(state, sym, V, Adjustment);
}

ProgramStateRef 
BasicConstraintManager::assumeSymGT(ProgramStateRef state,
                                    SymbolRef sym,
                                    const llvm::APSInt &V,
                                    const llvm::APSInt &Adjustment) {
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);

  // Is 'V' the largest possible value, or out of range above the type?
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (V >= ComparisonType.convert(Max)) {
    // sym cannot be any value greater than 'V'.  This path is infeasible.
    return NULL;
  }

  // Is 'V' out of range below the type?
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (V < ComparisonType.convert(Min)) {
    // This path is trivially feasible.
    return state;
  }

  // Reject a path if the value of sym is a constant X and !(X+Adj > V).
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
    bool isFeasible = performTest(*X, Adjustment, BO_GT, V);
    return isFeasible ? state : NULL;
  }

  // FIXME: For now have assuming x > y be the same as assuming sym != V;
  return assumeSymNE(state, sym, V, Adjustment);
}

ProgramStateRef 
BasicConstraintManager::assumeSymGE(ProgramStateRef state,
                                    SymbolRef sym,
                                    const llvm::APSInt &V,
                                    const llvm::APSInt &Adjustment) {
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);

  // Is 'V' the largest possible value, or out of range above the type?
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  ComparisonType.apply(Max);

  if (V > Max) {
    // sym cannot be any value greater than 'V'.  This path is infeasible.
    return NULL;
  } else if (V == Max) {
    // If the path is feasible then as a consequence we know that
    // 'sym+Adjustment == V' because there are no larger values.
    // Add this constraint.
    return assumeSymEQ(state, sym, V, Adjustment);
  }

  // Is 'V' out of range below the type?
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (V < ComparisonType.convert(Min)) {
    // This path is trivially feasible.
    return state;
  }

  // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
    bool isFeasible = performTest(*X, Adjustment, BO_GE, V);
    return isFeasible ? state : NULL;
  }

  return state;
}

ProgramStateRef 
BasicConstraintManager::assumeSymLE(ProgramStateRef state,
                                    SymbolRef sym,
                                    const llvm::APSInt &V,
                                    const llvm::APSInt &Adjustment) {
  APSIntType ComparisonType(V), AdjustmentType(Adjustment);

  // Is 'V' out of range above the type?
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (V > ComparisonType.convert(Max)) {
    // This path is trivially feasible.
    return state;
  }

  // Is 'V' the smallest possible value, or out of range below the type?
  llvm::APSInt Min = AdjustmentType.getMinValue();
  ComparisonType.apply(Min);

  if (V < Min) {
    // sym cannot be any value less than 'V'.  This path is infeasible.
    return NULL;
  } else if (V == Min) {
    // If the path is feasible then as a consequence we know that
    // 'sym+Adjustment == V' because there are no smaller values.
    // Add this constraint.
    return assumeSymEQ(state, sym, V, Adjustment);
  }

  // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
  if (const llvm::APSInt *X = getSymVal(state, sym)) {
    bool isFeasible = performTest(*X, Adjustment, BO_LE, V);
    return isFeasible ? state : NULL;
  }

  return state;
}

ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
                                                  SymbolRef sym,
                                             const llvm::APSInt& V) {
  // Now that we have an actual value, we can throw out the NE-set.
  // Create a new state with the old bindings replaced.
  state = state->remove<ConstNotEq>(sym);
  return state->set<ConstEq>(sym, &getBasicVals().getValue(V));
}

ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
                                                  SymbolRef sym,
                                                  const llvm::APSInt& V) {

  // First, retrieve the NE-set associated with the given symbol.
  ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
  ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();

  // Now add V to the NE set.
  S = ISetFactory.add(S, &getBasicVals().getValue(V));

  // Create a new state with the old binding replaced.
  return state->set<ConstNotEq>(sym, S);
}

const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
                                                      SymbolRef sym) const {
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
  return T ? *T : NULL;
}

bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
                                        SymbolRef sym,
                                        const llvm::APSInt& V) const {

  // Retrieve the NE-set associated with the given symbol.
  const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);

  // See if V is present in the NE-set.
  return T ? T->contains(&getBasicVals().getValue(V)) : false;
}

bool BasicConstraintManager::isEqual(ProgramStateRef state,
                                     SymbolRef sym,
                                     const llvm::APSInt& V) const {
  // Retrieve the EQ-set associated with the given symbol.
  const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
  // See if V is present in the EQ-set.
  return T ? **T == V : false;
}

/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef 
BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
                                           SymbolReaper& SymReaper) {

  ConstEqTy CE = state->get<ConstEq>();
  ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();

  for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
    SymbolRef sym = I.getKey();
    if (SymReaper.maybeDead(sym))
      CE = CEFactory.remove(CE, sym);
  }
  state = state->set<ConstEq>(CE);

  ConstNotEqTy CNE = state->get<ConstNotEq>();
  ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();

  for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
    SymbolRef sym = I.getKey();
    if (SymReaper.maybeDead(sym))
      CNE = CNEFactory.remove(CNE, sym);
  }

  return state->set<ConstNotEq>(CNE);
}

void BasicConstraintManager::print(ProgramStateRef state,
                                   raw_ostream &Out,
                                   const char* nl, const char *sep) {
  // Print equality constraints.

  ConstEqTy CE = state->get<ConstEq>();

  if (!CE.isEmpty()) {
    Out << nl << sep << "'==' constraints:";
    for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
      Out << nl << " $" << I.getKey() << " : " << *I.getData();
  }

  // Print != constraints.

  ConstNotEqTy CNE = state->get<ConstNotEq>();

  if (!CNE.isEmpty()) {
    Out << nl << sep << "'!=' constraints:";

    for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
      Out << nl << " $" << I.getKey() << " : ";
      bool isFirst = true;

      ProgramState::IntSetTy::iterator J = I.getData().begin(),
                                  EJ = I.getData().end();

      for ( ; J != EJ; ++J) {
        if (isFirst) isFirst = false;
        else Out << ", ";

        Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
      }
    }
  }
}
OpenPOWER on IntegriCloud