1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
//===-- IteratorChecker.cpp ---------------------------------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines a checker for using iterators outside their range (past end). Usage
// means here dereferencing, incrementing etc.
//
//===----------------------------------------------------------------------===//
//
// In the code, iterator can be represented as a:
// * type-I: typedef-ed pointer. Operations over such iterator, such as
// comparisons or increments, are modeled straightforwardly by the
// analyzer.
// * type-II: structure with its method bodies available. Operations over such
// iterator are inlined by the analyzer, and results of modeling
// these operations are exposing implementation details of the
// iterators, which is not necessarily helping.
// * type-III: completely opaque structure. Operations over such iterator are
// modeled conservatively, producing conjured symbols everywhere.
//
// To handle all these types in a common way we introduce a structure called
// IteratorPosition which is an abstraction of the position the iterator
// represents using symbolic expressions. The checker handles all the
// operations on this structure.
//
// Additionally, depending on the circumstances, operators of types II and III
// can be represented as:
// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
// from conservatively evaluated methods such as
// `.begin()`.
// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
// variables or temporaries, when the iterator object is
// currently treated as an lvalue.
// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
// iterator object is treated as an rvalue taken of a
// particular lvalue, eg. a copy of "type-a" iterator
// object, or an iterator that existed before the
// analysis has started.
//
// To handle any of these three different representations stored in an SVal we
// use setter and getters functions which separate the three cases. To store
// them we use a pointer union of symbol and memory region.
//
// The checker works the following way: We record the past-end iterator for
// all containers whenever their `.end()` is called. Since the Constraint
// Manager cannot handle SVals we need to take over its role. We post-check
// equality and non-equality comparisons and propagate the position of the
// iterator to the other side of the comparison if it is past-end and we are in
// the 'equal' branch (true-branch for `==` and false-branch for `!=`).
//
// In case of type-I or type-II iterators we get a concrete integer as a result
// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
// this latter case we record the symbol and reload it in evalAssume() and do
// the propagation there. We also handle (maybe double) negated comparisons
// which are represented in the form of (x == 0 or x !=0 ) where x is the
// comparison itself.
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
using namespace clang;
using namespace ento;
namespace {
// Abstract position of an iterator. This helps to handle all three kinds
// of operators in a common way by using a symbolic position.
struct IteratorPosition {
private:
// Container the iterator belongs to
const MemRegion *Cont;
// Abstract offset
SymbolRef Offset;
IteratorPosition(const MemRegion *C, SymbolRef Of)
: Cont(C), Offset(Of) {}
public:
const MemRegion *getContainer() const { return Cont; }
SymbolRef getOffset() const { return Offset; }
static IteratorPosition getPosition(const MemRegion *C, SymbolRef Of) {
return IteratorPosition(C, Of);
}
IteratorPosition setTo(SymbolRef NewOf) const {
return IteratorPosition(Cont, NewOf);
}
bool operator==(const IteratorPosition &X) const {
return Cont == X.Cont && Offset == X.Offset;
}
bool operator!=(const IteratorPosition &X) const {
return Cont != X.Cont || Offset != X.Offset;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(Cont);
ID.Add(Offset);
}
};
typedef llvm::PointerUnion<const MemRegion *, SymbolRef> RegionOrSymbol;
// Structure to record the symbolic end position of a container
struct ContainerData {
private:
SymbolRef End;
ContainerData(SymbolRef E) : End(E) {}
public:
static ContainerData fromEnd(SymbolRef E) {
return ContainerData(E);
}
SymbolRef getEnd() const { return End; }
ContainerData newEnd(SymbolRef E) const { return ContainerData(E); }
bool operator==(const ContainerData &X) const {
return End == X.End;
}
bool operator!=(const ContainerData &X) const {
return End != X.End;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(End);
}
};
// Structure fo recording iterator comparisons. We needed to retrieve the
// original comparison expression in assumptions.
struct IteratorComparison {
private:
RegionOrSymbol Left, Right;
bool Equality;
public:
IteratorComparison(RegionOrSymbol L, RegionOrSymbol R, bool Eq)
: Left(L), Right(R), Equality(Eq) {}
RegionOrSymbol getLeft() const { return Left; }
RegionOrSymbol getRight() const { return Right; }
bool isEquality() const { return Equality; }
bool operator==(const IteratorComparison &X) const {
return Left == X.Left && Right == X.Right && Equality == X.Equality;
}
bool operator!=(const IteratorComparison &X) const {
return Left != X.Left || Right != X.Right || Equality != X.Equality;
}
void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Equality); }
};
class IteratorChecker
: public Checker<check::PreCall, check::PostCall,
check::PostStmt<MaterializeTemporaryExpr>,
check::DeadSymbols,
eval::Assume> {
std::unique_ptr<BugType> OutOfRangeBugType;
void handleComparison(CheckerContext &C, const SVal &RetVal, const SVal &LVal,
const SVal &RVal, OverloadedOperatorKind Op) const;
void verifyDereference(CheckerContext &C, const SVal &Val) const;
void handleEnd(CheckerContext &C, const Expr *CE, const SVal &RetVal,
const SVal &Cont) const;
void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
const MemRegion *Cont) const;
void reportOutOfRangeBug(const StringRef &Message, const SVal &Val,
CheckerContext &C, ExplodedNode *ErrNode) const;
public:
IteratorChecker();
enum CheckKind {
CK_IteratorRangeChecker,
CK_NumCheckKinds
};
DefaultBool ChecksEnabled[CK_NumCheckKinds];
CheckName CheckNames[CK_NumCheckKinds];
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostStmt(const MaterializeTemporaryExpr *MTE,
CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
bool Assumption) const;
};
} // namespace
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorSymbolMap, SymbolRef, IteratorPosition)
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorRegionMap, const MemRegion *,
IteratorPosition)
REGISTER_MAP_WITH_PROGRAMSTATE(ContainerMap, const MemRegion *, ContainerData)
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorComparisonMap, const SymExpr *,
IteratorComparison)
namespace {
bool isIteratorType(const QualType &Type);
bool isIterator(const CXXRecordDecl *CRD);
bool isEndCall(const FunctionDecl *Func);
bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
bool isDereferenceOperator(OverloadedOperatorKind OK);
BinaryOperator::Opcode getOpcode(const SymExpr *SE);
const RegionOrSymbol getRegionOrSymbol(const SVal &Val);
const ProgramStateRef processComparison(ProgramStateRef State,
RegionOrSymbol LVal,
RegionOrSymbol RVal, bool Equal);
const ProgramStateRef saveComparison(ProgramStateRef State,
const SymExpr *Condition, const SVal &LVal,
const SVal &RVal, bool Eq);
const IteratorComparison *loadComparison(ProgramStateRef State,
const SymExpr *Condition);
SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont);
ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
const SymbolRef Sym);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
const SVal &Val);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym);
ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
const IteratorPosition &Pos);
ProgramStateRef setIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos);
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos, bool Equal);
ProgramStateRef relateIteratorPositions(ProgramStateRef State,
const IteratorPosition &Pos1,
const IteratorPosition &Pos2,
bool Equal);
const ContainerData *getContainerData(ProgramStateRef State,
const MemRegion *Cont);
ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
const ContainerData &CData);
bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos);
} // namespace
IteratorChecker::IteratorChecker() {
OutOfRangeBugType.reset(
new BugType(this, "Iterator out of range", "Misuse of STL APIs"));
OutOfRangeBugType->setSuppressOnSink(true);
}
void IteratorChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
// Check for out of range access
const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!Func)
return;
if (Func->isOverloadedOperator()) {
if (ChecksEnabled[CK_IteratorRangeChecker] &&
isDereferenceOperator(Func->getOverloadedOperator())) {
// Check for dereference of out-of-range iterators
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
verifyDereference(C, InstCall->getCXXThisVal());
} else {
verifyDereference(C, Call.getArgSVal(0));
}
}
}
}
void IteratorChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Record new iterator positions and iterator position changes
const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!Func)
return;
if (Func->isOverloadedOperator()) {
const auto Op = Func->getOverloadedOperator();
if (isSimpleComparisonOperator(Op)) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
handleComparison(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
Call.getArgSVal(0), Op);
} else {
handleComparison(C, Call.getReturnValue(), Call.getArgSVal(0),
Call.getArgSVal(1), Op);
}
}
} else {
const auto *OrigExpr = Call.getOriginExpr();
if (!OrigExpr)
return;
if (!isIteratorType(Call.getResultType()))
return;
auto State = C.getState();
// Already bound to container?
if (getIteratorPosition(State, Call.getReturnValue()))
return;
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
if (isEndCall(Func)) {
handleEnd(C, OrigExpr, Call.getReturnValue(),
InstCall->getCXXThisVal());
return;
}
}
// Copy-like and move constructors
if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
State = removeIteratorPosition(State, Call.getArgSVal(0));
}
C.addTransition(State);
return;
}
}
// Assumption: if return value is an iterator which is not yet bound to a
// container, then look for the first iterator argument, and
// bind the return value to the same container. This approach
// works for STL algorithms.
// FIXME: Add a more conservative mode
for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
if (isIteratorType(Call.getArgExpr(i)->getType())) {
if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
assignToContainer(C, OrigExpr, Call.getReturnValue(),
Pos->getContainer());
return;
}
}
}
}
}
void IteratorChecker::checkPostStmt(const MaterializeTemporaryExpr *MTE,
CheckerContext &C) const {
/* Transfer iterator state to temporary objects */
auto State = C.getState();
const auto *LCtx = C.getLocationContext();
const auto *Pos =
getIteratorPosition(State, State->getSVal(MTE->GetTemporaryExpr(), LCtx));
if (!Pos)
return;
State = setIteratorPosition(State, State->getSVal(MTE, LCtx), *Pos);
C.addTransition(State);
}
void IteratorChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
// Cleanup
auto State = C.getState();
auto RegionMap = State->get<IteratorRegionMap>();
for (const auto Reg : RegionMap) {
if (!SR.isLiveRegion(Reg.first)) {
State = State->remove<IteratorRegionMap>(Reg.first);
}
}
auto SymbolMap = State->get<IteratorSymbolMap>();
for (const auto Sym : SymbolMap) {
if (!SR.isLive(Sym.first)) {
State = State->remove<IteratorSymbolMap>(Sym.first);
}
}
auto ContMap = State->get<ContainerMap>();
for (const auto Cont : ContMap) {
if (!SR.isLiveRegion(Cont.first)) {
State = State->remove<ContainerMap>(Cont.first);
}
}
auto ComparisonMap = State->get<IteratorComparisonMap>();
for (const auto Comp : ComparisonMap) {
if (!SR.isLive(Comp.first)) {
State = State->remove<IteratorComparisonMap>(Comp.first);
}
}
}
ProgramStateRef IteratorChecker::evalAssume(ProgramStateRef State, SVal Cond,
bool Assumption) const {
// Load recorded comparison and transfer iterator state between sides
// according to comparison operator and assumption
const auto *SE = Cond.getAsSymExpr();
if (!SE)
return State;
auto Opc = getOpcode(SE);
if (Opc != BO_EQ && Opc != BO_NE)
return State;
bool Negated = false;
const auto *Comp = loadComparison(State, SE);
if (!Comp) {
// Try negated comparison, which is a SymExpr to 0 integer comparison
const auto *SIE = dyn_cast<SymIntExpr>(SE);
if (!SIE)
return State;
if (SIE->getRHS() != 0)
return State;
SE = SIE->getLHS();
Negated = SIE->getOpcode() == BO_EQ; // Equal to zero means negation
Opc = getOpcode(SE);
if (Opc != BO_EQ && Opc != BO_NE)
return State;
Comp = loadComparison(State, SE);
if (!Comp)
return State;
}
return processComparison(State, Comp->getLeft(), Comp->getRight(),
(Comp->isEquality() == Assumption) != Negated);
}
void IteratorChecker::handleComparison(CheckerContext &C, const SVal &RetVal,
const SVal &LVal, const SVal &RVal,
OverloadedOperatorKind Op) const {
// Record the operands and the operator of the comparison for the next
// evalAssume, if the result is a symbolic expression. If it is a concrete
// value (only one branch is possible), then transfer the state between
// the operands according to the operator and the result
auto State = C.getState();
if (const auto *Condition = RetVal.getAsSymbolicExpression()) {
const auto *LPos = getIteratorPosition(State, LVal);
const auto *RPos = getIteratorPosition(State, RVal);
if (!LPos && !RPos)
return;
State = saveComparison(State, Condition, LVal, RVal, Op == OO_EqualEqual);
C.addTransition(State);
} else if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
if ((State = processComparison(
State, getRegionOrSymbol(LVal), getRegionOrSymbol(RVal),
(Op == OO_EqualEqual) == (TruthVal->getValue() != 0)))) {
C.addTransition(State);
} else {
C.generateSink(State, C.getPredecessor());
}
}
}
void IteratorChecker::verifyDereference(CheckerContext &C,
const SVal &Val) const {
auto State = C.getState();
const auto *Pos = getIteratorPosition(State, Val);
if (Pos && isOutOfRange(State, *Pos)) {
// If I do not put a tag here, some range tests will fail
static CheckerProgramPointTag Tag("IteratorRangeChecker",
"IteratorOutOfRange");
auto *N = C.generateNonFatalErrorNode(State, &Tag);
if (!N) {
return;
}
reportOutOfRangeBug("Iterator accessed outside of its range.", Val, C, N);
}
}
void IteratorChecker::handleEnd(CheckerContext &C, const Expr *CE,
const SVal &RetVal, const SVal &Cont) const {
const auto *ContReg = Cont.getAsRegion();
if (!ContReg)
return;
while (const auto *CBOR = ContReg->getAs<CXXBaseObjectRegion>()) {
ContReg = CBOR->getSuperRegion();
}
// If the container already has an end symbol then use it. Otherwise first
// create a new one.
auto State = C.getState();
auto EndSym = getContainerEnd(State, ContReg);
if (!EndSym) {
auto &SymMgr = C.getSymbolManager();
EndSym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
C.getASTContext().LongTy, C.blockCount());
State = createContainerEnd(State, ContReg, EndSym);
}
State = setIteratorPosition(State, RetVal,
IteratorPosition::getPosition(ContReg, EndSym));
C.addTransition(State);
}
void IteratorChecker::assignToContainer(CheckerContext &C, const Expr *CE,
const SVal &RetVal,
const MemRegion *Cont) const {
while (const auto *CBOR = Cont->getAs<CXXBaseObjectRegion>()) {
Cont = CBOR->getSuperRegion();
}
auto State = C.getState();
auto &SymMgr = C.getSymbolManager();
auto Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
C.getASTContext().LongTy, C.blockCount());
State = setIteratorPosition(State, RetVal,
IteratorPosition::getPosition(Cont, Sym));
C.addTransition(State);
}
void IteratorChecker::reportOutOfRangeBug(const StringRef &Message,
const SVal &Val, CheckerContext &C,
ExplodedNode *ErrNode) const {
auto R = llvm::make_unique<BugReport>(*OutOfRangeBugType, Message, ErrNode);
R->markInteresting(Val);
C.emitReport(std::move(R));
}
namespace {
bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
BinaryOperator::Opcode Opc);
bool isIteratorType(const QualType &Type) {
if (Type->isPointerType())
return true;
const auto *CRD = Type->getUnqualifiedDesugaredType()->getAsCXXRecordDecl();
return isIterator(CRD);
}
bool isIterator(const CXXRecordDecl *CRD) {
if (!CRD)
return false;
const auto Name = CRD->getName();
if (!(Name.endswith_lower("iterator") || Name.endswith_lower("iter") ||
Name.endswith_lower("it")))
return false;
bool HasCopyCtor = false, HasCopyAssign = true, HasDtor = false,
HasPreIncrOp = false, HasPostIncrOp = false, HasDerefOp = false;
for (const auto *Method : CRD->methods()) {
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Method)) {
if (Ctor->isCopyConstructor()) {
HasCopyCtor = !Ctor->isDeleted() && Ctor->getAccess() == AS_public;
}
continue;
}
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
HasDtor = !Dtor->isDeleted() && Dtor->getAccess() == AS_public;
continue;
}
if (Method->isCopyAssignmentOperator()) {
HasCopyAssign = !Method->isDeleted() && Method->getAccess() == AS_public;
continue;
}
if (!Method->isOverloadedOperator())
continue;
const auto OPK = Method->getOverloadedOperator();
if (OPK == OO_PlusPlus) {
HasPreIncrOp = HasPreIncrOp || (Method->getNumParams() == 0);
HasPostIncrOp = HasPostIncrOp || (Method->getNumParams() == 1);
continue;
}
if (OPK == OO_Star) {
HasDerefOp = (Method->getNumParams() == 0);
continue;
}
}
return HasCopyCtor && HasCopyAssign && HasDtor && HasPreIncrOp &&
HasPostIncrOp && HasDerefOp;
}
bool isEndCall(const FunctionDecl *Func) {
const auto *IdInfo = Func->getIdentifier();
if (!IdInfo)
return false;
return IdInfo->getName().endswith_lower("end");
}
bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
}
bool isDereferenceOperator(OverloadedOperatorKind OK) {
return OK == OO_Star || OK == OO_Arrow || OK == OO_ArrowStar ||
OK == OO_Subscript;
}
BinaryOperator::Opcode getOpcode(const SymExpr *SE) {
if (const auto *BSE = dyn_cast<BinarySymExpr>(SE)) {
return BSE->getOpcode();
} else if (const auto *SC = dyn_cast<SymbolConjured>(SE)) {
const auto *COE = dyn_cast<CXXOperatorCallExpr>(SC->getStmt());
if (!COE)
return BO_Comma; // Extremal value, neither EQ nor NE
if (COE->getOperator() == OO_EqualEqual) {
return BO_EQ;
} else if (COE->getOperator() == OO_ExclaimEqual) {
return BO_NE;
}
return BO_Comma; // Extremal value, neither EQ nor NE
}
return BO_Comma; // Extremal value, neither EQ nor NE
}
const RegionOrSymbol getRegionOrSymbol(const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return Reg;
} else if (const auto Sym = Val.getAsSymbol()) {
return Sym;
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return LCVal->getRegion();
}
return RegionOrSymbol();
}
const ProgramStateRef processComparison(ProgramStateRef State,
RegionOrSymbol LVal,
RegionOrSymbol RVal, bool Equal) {
const auto *LPos = getIteratorPosition(State, LVal);
const auto *RPos = getIteratorPosition(State, RVal);
if (LPos && !RPos) {
State = adjustIteratorPosition(State, RVal, *LPos, Equal);
} else if (!LPos && RPos) {
State = adjustIteratorPosition(State, LVal, *RPos, Equal);
} else if (LPos && RPos) {
State = relateIteratorPositions(State, *LPos, *RPos, Equal);
}
return State;
}
const ProgramStateRef saveComparison(ProgramStateRef State,
const SymExpr *Condition, const SVal &LVal,
const SVal &RVal, bool Eq) {
const auto Left = getRegionOrSymbol(LVal);
const auto Right = getRegionOrSymbol(RVal);
if (!Left || !Right)
return State;
return State->set<IteratorComparisonMap>(Condition,
IteratorComparison(Left, Right, Eq));
}
const IteratorComparison *loadComparison(ProgramStateRef State,
const SymExpr *Condition) {
return State->get<IteratorComparisonMap>(Condition);
}
SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont) {
const auto *CDataPtr = getContainerData(State, Cont);
if (!CDataPtr)
return nullptr;
return CDataPtr->getEnd();
}
ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
const SymbolRef Sym) {
// Only create if it does not exist
const auto *CDataPtr = getContainerData(State, Cont);
if (CDataPtr) {
if (CDataPtr->getEnd()) {
return State;
} else {
const auto CData = CDataPtr->newEnd(Sym);
return setContainerData(State, Cont, CData);
}
} else {
const auto CData = ContainerData::fromEnd(Sym);
return setContainerData(State, Cont, CData);
}
}
const ContainerData *getContainerData(ProgramStateRef State,
const MemRegion *Cont) {
return State->get<ContainerMap>(Cont);
}
ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
const ContainerData &CData) {
return State->set<ContainerMap>(Cont, CData);
}
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return State->get<IteratorRegionMap>(Reg);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->get<IteratorSymbolMap>(Sym);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->get<IteratorRegionMap>(LCVal->getRegion());
}
return nullptr;
}
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym) {
if (RegOrSym.is<const MemRegion *>()) {
return State->get<IteratorRegionMap>(RegOrSym.get<const MemRegion *>());
} else if (RegOrSym.is<SymbolRef>()) {
return State->get<IteratorSymbolMap>(RegOrSym.get<SymbolRef>());
}
return nullptr;
}
ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
const IteratorPosition &Pos) {
if (const auto Reg = Val.getAsRegion()) {
return State->set<IteratorRegionMap>(Reg, Pos);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->set<IteratorSymbolMap>(Sym, Pos);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->set<IteratorRegionMap>(LCVal->getRegion(), Pos);
}
return nullptr;
}
ProgramStateRef setIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos) {
if (RegOrSym.is<const MemRegion *>()) {
return State->set<IteratorRegionMap>(RegOrSym.get<const MemRegion *>(),
Pos);
} else if (RegOrSym.is<SymbolRef>()) {
return State->set<IteratorSymbolMap>(RegOrSym.get<SymbolRef>(), Pos);
}
return nullptr;
}
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return State->remove<IteratorRegionMap>(Reg);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->remove<IteratorSymbolMap>(Sym);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->remove<IteratorRegionMap>(LCVal->getRegion());
}
return nullptr;
}
ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos,
bool Equal) {
if (Equal) {
return setIteratorPosition(State, RegOrSym, Pos);
} else {
return State;
}
}
ProgramStateRef relateIteratorPositions(ProgramStateRef State,
const IteratorPosition &Pos1,
const IteratorPosition &Pos2,
bool Equal) {
// Try to compare them and get a defined value
auto &SVB = State->getStateManager().getSValBuilder();
const auto comparison =
SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Pos1.getOffset()),
nonloc::SymbolVal(Pos2.getOffset()), SVB.getConditionType())
.getAs<DefinedSVal>();
if (comparison) {
return State->assume(*comparison, Equal);
}
return State;
}
bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos) {
const auto *Cont = Pos.getContainer();
const auto *CData = getContainerData(State, Cont);
if (!CData)
return false;
// Out of range means less than the begin symbol or greater or equal to the
// end symbol.
const auto End = CData->getEnd();
if (End) {
if (isGreaterOrEqual(State, Pos.getOffset(), End)) {
return true;
}
}
return false;
}
bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
return compare(State, Sym1, Sym2, BO_GE);
}
bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
BinaryOperator::Opcode Opc) {
auto &SMgr = State->getStateManager();
auto &SVB = SMgr.getSValBuilder();
const auto comparison =
SVB.evalBinOp(State, Opc, nonloc::SymbolVal(Sym1),
nonloc::SymbolVal(Sym2), SVB.getConditionType())
.getAs<DefinedSVal>();
if(comparison) {
return !!State->assume(*comparison, true);
}
return false;
}
} // namespace
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &Mgr) { \
auto *checker = Mgr.registerChecker<IteratorChecker>(); \
checker->ChecksEnabled[IteratorChecker::CK_##name] = true; \
checker->CheckNames[IteratorChecker::CK_##name] = \
Mgr.getCurrentCheckName(); \
}
REGISTER_CHECKER(IteratorRangeChecker)
|