summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/NaryReassociate.cpp
blob: 5b370e04088fcbb3f94b608fa07f8d895bdf5c75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
//   void foo(int a, int b) {
//     bar(a + b);
//     bar((a + 2) + b);
//   }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
//   int t = a + b;
//   bar(t);
//   bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
//   (a + c) + d
//   ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
//   ac = a + c
//   ab = a + b
//   abc = ab + c
//   ab2 = ab + b
//   ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds for now. This should be extended and
// generalized.
//
// 2) Besides arithmetic operations, similar reassociation can be applied to
// GEPs. For example, if
//   X = &arr[a]
// dominates
//   Y = &arr[a + b]
// we may rewrite Y into X + b.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "nary-reassociate"

namespace {
class NaryReassociate : public FunctionPass {
public:
  static char ID;

  NaryReassociate(): FunctionPass(ID) {
    initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    DL = &M.getDataLayout();
    return false;
  }
  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<ScalarEvolution>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolution>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }

private:
  // Runs only one iteration of the dominator-based algorithm. See the header
  // comments for why we need multiple iterations.
  bool doOneIteration(Function &F);

  // Reassociates I for better CSE.
  Instruction *tryReassociate(Instruction *I);

  // Reassociate GEP for better CSE.
  Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
  // Try splitting GEP at the I-th index and see whether either part can be
  // CSE'ed. This is a helper function for tryReassociateGEP.
  //
  // \p IndexedType The element type indexed by GEP's I-th index. This is
  //                equivalent to
  //                  GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
  //                                      ..., i-th index).
  GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Type *IndexedType);
  // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
  // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
  GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
                                              unsigned I, Value *LHS,
                                              Value *RHS, Type *IndexedType);

  // Reassociate Add for better CSE.
  Instruction *tryReassociateAdd(BinaryOperator *I);
  // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
  Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
  // Rewrites I to LHS + RHS if LHS is computed already.
  Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);

  // Returns the closest dominator of \c Dominatee that computes
  // \c CandidateExpr. Returns null if not found.
  Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
                                            Instruction *Dominatee);
  // GetElementPtrInst implicitly sign-extends an index if the index is shorter
  // than the pointer size. This function returns whether Index is shorter than
  // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
  // to be an index of GEP.
  bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);

  DominatorTree *DT;
  ScalarEvolution *SE;
  TargetLibraryInfo *TLI;
  TargetTransformInfo *TTI;
  const DataLayout *DL;
  // A lookup table quickly telling which instructions compute the given SCEV.
  // Note that there can be multiple instructions at different locations
  // computing to the same SCEV, so we map a SCEV to an instruction list.  For
  // example,
  //
  //   if (p1)
  //     foo(a + b);
  //   if (p2)
  //     bar(a + b);
  DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
};
} // anonymous namespace

char NaryReassociate::ID = 0;
INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
                    false, false)

FunctionPass *llvm::createNaryReassociatePass() {
  return new NaryReassociate();
}

bool NaryReassociate::runOnFunction(Function &F) {
  if (skipOptnoneFunction(F))
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  SE = &getAnalysis<ScalarEvolution>();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  bool Changed = false, ChangedInThisIteration;
  do {
    ChangedInThisIteration = doOneIteration(F);
    Changed |= ChangedInThisIteration;
  } while (ChangedInThisIteration);
  return Changed;
}

// Whitelist the instruction types NaryReassociate handles for now.
static bool isPotentiallyNaryReassociable(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::GetElementPtr:
    return true;
  default:
    return false;
  }
}

bool NaryReassociate::doOneIteration(Function &F) {
  bool Changed = false;
  SeenExprs.clear();
  // Process the basic blocks in pre-order of the dominator tree. This order
  // ensures that all bases of a candidate are in Candidates when we process it.
  for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
       Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
    BasicBlock *BB = Node->getBlock();
    for (auto I = BB->begin(); I != BB->end(); ++I) {
      if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) {
        if (Instruction *NewI = tryReassociate(I)) {
          Changed = true;
          SE->forgetValue(I);
          I->replaceAllUsesWith(NewI);
          RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
          I = NewI;
        }
        // Add the rewritten instruction to SeenExprs; the original instruction
        // is deleted.
        SeenExprs[SE->getSCEV(I)].push_back(I);
      }
    }
  }
  return Changed;
}

Instruction *NaryReassociate::tryReassociate(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
    return tryReassociateAdd(cast<BinaryOperator>(I));
  case Instruction::GetElementPtr:
    return tryReassociateGEP(cast<GetElementPtrInst>(I));
  default:
    llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
  }
}

// FIXME: extract this method into TTI->getGEPCost.
static bool isGEPFoldable(GetElementPtrInst *GEP,
                          const TargetTransformInfo *TTI,
                          const DataLayout *DL) {
  GlobalVariable *BaseGV = nullptr;
  int64_t BaseOffset = 0;
  bool HasBaseReg = false;
  int64_t Scale = 0;

  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
    BaseGV = GV;
  else
    HasBaseReg = true;

  gep_type_iterator GTI = gep_type_begin(GEP);
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
    if (isa<SequentialType>(*GTI)) {
      int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
      if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
        BaseOffset += ConstIdx->getSExtValue() * ElementSize;
      } else {
        // Needs scale register.
        if (Scale != 0) {
          // No addressing mode takes two scale registers.
          return false;
        }
        Scale = ElementSize;
      }
    } else {
      StructType *STy = cast<StructType>(*GTI);
      uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
      BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
    }
  }
  return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
                                    BaseOffset, HasBaseReg, Scale);
}

Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
  // Not worth reassociating GEP if it is foldable.
  if (isGEPFoldable(GEP, TTI, DL))
    return nullptr;

  gep_type_iterator GTI = gep_type_begin(*GEP);
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
    if (isa<SequentialType>(*GTI++)) {
      if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) {
        return NewGEP;
      }
    }
  }
  return nullptr;
}

bool NaryReassociate::requiresSignExtension(Value *Index,
                                            GetElementPtrInst *GEP) {
  unsigned PointerSizeInBits =
      DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
  return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
}

GetElementPtrInst *
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
                                          Type *IndexedType) {
  Value *IndexToSplit = GEP->getOperand(I + 1);
  if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit))
    IndexToSplit = SExt->getOperand(0);

  if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
    // If the I-th index needs sext and the underlying add is not equipped with
    // nsw, we cannot split the add because
    //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
    if (requiresSignExtension(IndexToSplit, GEP) && !AO->hasNoSignedWrap())
      return nullptr;
    Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
    // IndexToSplit = LHS + RHS.
    if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
      return NewGEP;
    // Symmetrically, try IndexToSplit = RHS + LHS.
    if (LHS != RHS) {
      if (auto *NewGEP =
              tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
        return NewGEP;
    }
  }
  return nullptr;
}

GetElementPtrInst *
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
                                          Value *LHS, Value *RHS,
                                          Type *IndexedType) {
  // Look for GEP's closest dominator that has the same SCEV as GEP except that
  // the I-th index is replaced with LHS.
  SmallVector<const SCEV *, 4> IndexExprs;
  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
    IndexExprs.push_back(SE->getSCEV(*Index));
  // Replace the I-th index with LHS.
  IndexExprs[I] = SE->getSCEV(LHS);
  const SCEV *CandidateExpr = SE->getGEPExpr(
      GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()),
      IndexExprs, GEP->isInBounds());

  auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
  if (Candidate == nullptr)
    return nullptr;

  PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType());
  // Pretty rare but theoretically possible when a numeric value happens to
  // share CandidateExpr.
  if (TypeOfCandidate == nullptr)
    return nullptr;

  // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
  uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
  Type *ElementType = TypeOfCandidate->getElementType();
  uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
  // Another less rare case: because I is not necessarily the last index of the
  // GEP, the size of the type at the I-th index (IndexedSize) is not
  // necessarily divisible by ElementSize. For example,
  //
  // #pragma pack(1)
  // struct S {
  //   int a[3];
  //   int64 b[8];
  // };
  // #pragma pack()
  //
  // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
  //
  // TODO: bail out on this case for now. We could emit uglygep.
  if (IndexedSize % ElementSize != 0)
    return nullptr;

  // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
  IRBuilder<> Builder(GEP);
  Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate);
  if (RHS->getType() != IntPtrTy)
    RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
  if (IndexedSize != ElementSize) {
    RHS = Builder.CreateMul(
        RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
  }
  GetElementPtrInst *NewGEP =
      cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
  NewGEP->setIsInBounds(GEP->isInBounds());
  NewGEP->takeName(GEP);
  return NewGEP;
}

Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
    return NewI;
  if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
    return NewI;
  return nullptr;
}

Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
                                                Instruction *I) {
  Value *A = nullptr, *B = nullptr;
  // To be conservative, we reassociate I only when it is the only user of A+B.
  if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
    // I = (A + B) + RHS
    //   = (A + RHS) + B or (B + RHS) + A
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
    const SCEV *RHSExpr = SE->getSCEV(RHS);
    if (BExpr != RHSExpr) {
      if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
        return NewI;
    }
    if (AExpr != RHSExpr) {
      if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
        return NewI;
    }
  }
  return nullptr;
}

Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
                                                 Value *RHS, Instruction *I) {
  auto Pos = SeenExprs.find(LHSExpr);
  // Bail out if LHSExpr is not previously seen.
  if (Pos == SeenExprs.end())
    return nullptr;

  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
  // I with LHS + RHS.
  auto *LHS = findClosestMatchingDominator(LHSExpr, I);
  if (LHS == nullptr)
    return nullptr;

  Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
  NewI->takeName(I);
  return NewI;
}

Instruction *
NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
                                              Instruction *Dominatee) {
  auto Pos = SeenExprs.find(CandidateExpr);
  if (Pos == SeenExprs.end())
    return nullptr;

  auto &Candidates = Pos->second;
  // Because we process the basic blocks in pre-order of the dominator tree, a
  // candidate that doesn't dominate the current instruction won't dominate any
  // future instruction either. Therefore, we pop it out of the stack. This
  // optimization makes the algorithm O(n).
  while (!Candidates.empty()) {
    Instruction *Candidate = Candidates.back();
    if (DT->dominates(Candidate, Dominatee))
      return Candidate;
    Candidates.pop_back();
  }
  return nullptr;
}
OpenPOWER on IntegriCloud