1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
|
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements whole program optimization of virtual calls in cases
// where we know (via !type metadata) that the list of callees is fixed. This
// includes the following:
// - Single implementation devirtualization: if a virtual call has a single
// possible callee, replace all calls with a direct call to that callee.
// - Virtual constant propagation: if the virtual function's return type is an
// integer <=64 bits and all possible callees are readnone, for each class and
// each list of constant arguments: evaluate the function, store the return
// value alongside the virtual table, and rewrite each virtual call as a load
// from the virtual table.
// - Uniform return value optimization: if the conditions for virtual constant
// propagation hold and each function returns the same constant value, replace
// each virtual call with that constant.
// - Unique return value optimization for i1 return values: if the conditions
// for virtual constant propagation hold and a single vtable's function
// returns 0, or a single vtable's function returns 1, replace each virtual
// call with a comparison of the vptr against that vtable's address.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Evaluator.h"
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>
using namespace llvm;
using namespace wholeprogramdevirt;
#define DEBUG_TYPE "wholeprogramdevirt"
// Find the minimum offset that we may store a value of size Size bits at. If
// IsAfter is set, look for an offset before the object, otherwise look for an
// offset after the object.
uint64_t
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
bool IsAfter, uint64_t Size) {
// Find a minimum offset taking into account only vtable sizes.
uint64_t MinByte = 0;
for (const VirtualCallTarget &Target : Targets) {
if (IsAfter)
MinByte = std::max(MinByte, Target.minAfterBytes());
else
MinByte = std::max(MinByte, Target.minBeforeBytes());
}
// Build a vector of arrays of bytes covering, for each target, a slice of the
// used region (see AccumBitVector::BytesUsed in
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
// this aligns the used regions to start at MinByte.
//
// In this example, A, B and C are vtables, # is a byte already allocated for
// a virtual function pointer, AAAA... (etc.) are the used regions for the
// vtables and Offset(X) is the value computed for the Offset variable below
// for X.
//
// Offset(A)
// | |
// |MinByte
// A: ################AAAAAAAA|AAAAAAAA
// B: ########BBBBBBBBBBBBBBBB|BBBB
// C: ########################|CCCCCCCCCCCCCCCC
// | Offset(B) |
//
// This code produces the slices of A, B and C that appear after the divider
// at MinByte.
std::vector<ArrayRef<uint8_t>> Used;
for (const VirtualCallTarget &Target : Targets) {
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
: Target.TM->Bits->Before.BytesUsed;
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
: MinByte - Target.minBeforeBytes();
// Disregard used regions that are smaller than Offset. These are
// effectively all-free regions that do not need to be checked.
if (VTUsed.size() > Offset)
Used.push_back(VTUsed.slice(Offset));
}
if (Size == 1) {
// Find a free bit in each member of Used.
for (unsigned I = 0;; ++I) {
uint8_t BitsUsed = 0;
for (auto &&B : Used)
if (I < B.size())
BitsUsed |= B[I];
if (BitsUsed != 0xff)
return (MinByte + I) * 8 +
countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
}
} else {
// Find a free (Size/8) byte region in each member of Used.
// FIXME: see if alignment helps.
for (unsigned I = 0;; ++I) {
for (auto &&B : Used) {
unsigned Byte = 0;
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
if (B[I + Byte])
goto NextI;
++Byte;
}
}
return (MinByte + I) * 8;
NextI:;
}
}
}
void wholeprogramdevirt::setBeforeReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = -(AllocBefore / 8 + 1);
else
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
OffsetBit = AllocBefore % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setBeforeBit(AllocBefore);
else
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
}
}
void wholeprogramdevirt::setAfterReturnValues(
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
if (BitWidth == 1)
OffsetByte = AllocAfter / 8;
else
OffsetByte = (AllocAfter + 7) / 8;
OffsetBit = AllocAfter % 8;
for (VirtualCallTarget &Target : Targets) {
if (BitWidth == 1)
Target.setAfterBit(AllocAfter);
else
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
}
}
VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
: Fn(Fn), TM(TM),
IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
namespace {
// A slot in a set of virtual tables. The TypeID identifies the set of virtual
// tables, and the ByteOffset is the offset in bytes from the address point to
// the virtual function pointer.
struct VTableSlot {
Metadata *TypeID;
uint64_t ByteOffset;
};
} // end anonymous namespace
namespace llvm {
template <> struct DenseMapInfo<VTableSlot> {
static VTableSlot getEmptyKey() {
return {DenseMapInfo<Metadata *>::getEmptyKey(),
DenseMapInfo<uint64_t>::getEmptyKey()};
}
static VTableSlot getTombstoneKey() {
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
DenseMapInfo<uint64_t>::getTombstoneKey()};
}
static unsigned getHashValue(const VTableSlot &I) {
return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
}
static bool isEqual(const VTableSlot &LHS,
const VTableSlot &RHS) {
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
}
};
} // end namespace llvm
namespace {
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
// the indirect virtual call.
struct VirtualCallSite {
Value *VTable;
CallSite CS;
// If non-null, this field points to the associated unsafe use count stored in
// the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
// of that field for details.
unsigned *NumUnsafeUses;
void emitRemark(const Twine &OptName, const Twine &TargetName) {
Function *F = CS.getCaller();
emitOptimizationRemark(
F->getContext(), DEBUG_TYPE, *F,
CS.getInstruction()->getDebugLoc(),
OptName + ": devirtualized a call to " + TargetName);
}
void replaceAndErase(const Twine &OptName, const Twine &TargetName,
bool RemarksEnabled, Value *New) {
if (RemarksEnabled)
emitRemark(OptName, TargetName);
CS->replaceAllUsesWith(New);
if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
BranchInst::Create(II->getNormalDest(), CS.getInstruction());
II->getUnwindDest()->removePredecessor(II->getParent());
}
CS->eraseFromParent();
// This use is no longer unsafe.
if (NumUnsafeUses)
--*NumUnsafeUses;
}
};
struct DevirtModule {
Module &M;
IntegerType *Int8Ty;
PointerType *Int8PtrTy;
IntegerType *Int32Ty;
bool RemarksEnabled;
MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
// This map keeps track of the number of "unsafe" uses of a loaded function
// pointer. The key is the associated llvm.type.test intrinsic call generated
// by this pass. An unsafe use is one that calls the loaded function pointer
// directly. Every time we eliminate an unsafe use (for example, by
// devirtualizing it or by applying virtual constant propagation), we
// decrement the value stored in this map. If a value reaches zero, we can
// eliminate the type check by RAUWing the associated llvm.type.test call with
// true.
std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
DevirtModule(Module &M)
: M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
Int32Ty(Type::getInt32Ty(M.getContext())),
RemarksEnabled(areRemarksEnabled()) {}
bool areRemarksEnabled();
void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
void buildTypeIdentifierMap(
std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
bool
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<TypeMemberInfo> &TypeMemberInfos,
uint64_t ByteOffset);
bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<ConstantInt *> Args);
bool tryUniformRetValOpt(IntegerType *RetType,
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryUniqueRetValOpt(unsigned BitWidth,
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites);
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<VirtualCallSite> CallSites);
void rebuildGlobal(VTableBits &B);
bool run();
};
struct WholeProgramDevirt : public ModulePass {
static char ID;
WholeProgramDevirt() : ModulePass(ID) {
initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return DevirtModule(M).run();
}
};
} // end anonymous namespace
INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
"Whole program devirtualization", false, false)
char WholeProgramDevirt::ID = 0;
ModulePass *llvm::createWholeProgramDevirtPass() {
return new WholeProgramDevirt;
}
PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
ModuleAnalysisManager &) {
if (!DevirtModule(M).run())
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
void DevirtModule::buildTypeIdentifierMap(
std::vector<VTableBits> &Bits,
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
Bits.reserve(M.getGlobalList().size());
SmallVector<MDNode *, 2> Types;
for (GlobalVariable &GV : M.globals()) {
Types.clear();
GV.getMetadata(LLVMContext::MD_type, Types);
if (Types.empty())
continue;
VTableBits *&BitsPtr = GVToBits[&GV];
if (!BitsPtr) {
Bits.emplace_back();
Bits.back().GV = &GV;
Bits.back().ObjectSize =
M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
BitsPtr = &Bits.back();
}
for (MDNode *Type : Types) {
auto TypeID = Type->getOperand(1).get();
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
TypeIdMap[TypeID].insert({BitsPtr, Offset});
}
}
}
Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
if (I->getType()->isPointerTy()) {
if (Offset == 0)
return I;
return nullptr;
}
const DataLayout &DL = M.getDataLayout();
if (auto *C = dyn_cast<ConstantStruct>(I)) {
const StructLayout *SL = DL.getStructLayout(C->getType());
if (Offset >= SL->getSizeInBytes())
return nullptr;
unsigned Op = SL->getElementContainingOffset(Offset);
return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
Offset - SL->getElementOffset(Op));
}
if (auto *C = dyn_cast<ConstantArray>(I)) {
ArrayType *VTableTy = C->getType();
uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
unsigned Op = Offset / ElemSize;
if (Op >= C->getNumOperands())
return nullptr;
return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
Offset % ElemSize);
}
return nullptr;
}
bool DevirtModule::tryFindVirtualCallTargets(
std::vector<VirtualCallTarget> &TargetsForSlot,
const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
for (const TypeMemberInfo &TM : TypeMemberInfos) {
if (!TM.Bits->GV->isConstant())
return false;
Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
TM.Offset + ByteOffset);
if (!Ptr)
return false;
auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
if (!Fn)
return false;
// We can disregard __cxa_pure_virtual as a possible call target, as
// calls to pure virtuals are UB.
if (Fn->getName() == "__cxa_pure_virtual")
continue;
TargetsForSlot.push_back({Fn, &TM});
}
// Give up if we couldn't find any targets.
return !TargetsForSlot.empty();
}
bool DevirtModule::trySingleImplDevirt(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// See if the program contains a single implementation of this virtual
// function.
Function *TheFn = TargetsForSlot[0].Fn;
for (auto &&Target : TargetsForSlot)
if (TheFn != Target.Fn)
return false;
if (RemarksEnabled)
TargetsForSlot[0].WasDevirt = true;
// If so, update each call site to call that implementation directly.
for (auto &&VCallSite : CallSites) {
if (RemarksEnabled)
VCallSite.emitRemark("single-impl", TheFn->getName());
VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
TheFn, VCallSite.CS.getCalledValue()->getType()));
// This use is no longer unsafe.
if (VCallSite.NumUnsafeUses)
--*VCallSite.NumUnsafeUses;
}
return true;
}
bool DevirtModule::tryEvaluateFunctionsWithArgs(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<ConstantInt *> Args) {
// Evaluate each function and store the result in each target's RetVal
// field.
for (VirtualCallTarget &Target : TargetsForSlot) {
if (Target.Fn->arg_size() != Args.size() + 1)
return false;
for (unsigned I = 0; I != Args.size(); ++I)
if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
Args[I]->getType())
return false;
Evaluator Eval(M.getDataLayout(), nullptr);
SmallVector<Constant *, 2> EvalArgs;
EvalArgs.push_back(
Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
Constant *RetVal;
if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
!isa<ConstantInt>(RetVal))
return false;
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
}
return true;
}
bool DevirtModule::tryUniformRetValOpt(
IntegerType *RetType, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// Uniform return value optimization. If all functions return the same
// constant, replace all calls with that constant.
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
for (const VirtualCallTarget &Target : TargetsForSlot)
if (Target.RetVal != TheRetVal)
return false;
auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
for (auto Call : CallSites)
Call.replaceAndErase("uniform-ret-val", TargetsForSlot[0].Fn->getName(),
RemarksEnabled, TheRetValConst);
if (RemarksEnabled)
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
return true;
}
bool DevirtModule::tryUniqueRetValOpt(
unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
MutableArrayRef<VirtualCallSite> CallSites) {
// IsOne controls whether we look for a 0 or a 1.
auto tryUniqueRetValOptFor = [&](bool IsOne) {
const TypeMemberInfo *UniqueMember = nullptr;
for (const VirtualCallTarget &Target : TargetsForSlot) {
if (Target.RetVal == (IsOne ? 1 : 0)) {
if (UniqueMember)
return false;
UniqueMember = Target.TM;
}
}
// We should have found a unique member or bailed out by now. We already
// checked for a uniform return value in tryUniformRetValOpt.
assert(UniqueMember);
// Replace each call with the comparison.
for (auto &&Call : CallSites) {
IRBuilder<> B(Call.CS.getInstruction());
Value *OneAddr = B.CreateBitCast(UniqueMember->Bits->GV, Int8PtrTy);
OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueMember->Offset);
Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
Call.VTable, OneAddr);
Call.replaceAndErase("unique-ret-val", TargetsForSlot[0].Fn->getName(),
RemarksEnabled, Cmp);
}
// Update devirtualization statistics for targets.
if (RemarksEnabled)
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
return true;
};
if (BitWidth == 1) {
if (tryUniqueRetValOptFor(true))
return true;
if (tryUniqueRetValOptFor(false))
return true;
}
return false;
}
bool DevirtModule::tryVirtualConstProp(
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
ArrayRef<VirtualCallSite> CallSites) {
// This only works if the function returns an integer.
auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
if (!RetType)
return false;
unsigned BitWidth = RetType->getBitWidth();
if (BitWidth > 64)
return false;
// Make sure that each function does not access memory, takes at least one
// argument, does not use its first argument (which we assume is 'this'),
// and has the same return type.
for (VirtualCallTarget &Target : TargetsForSlot) {
if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
!Target.Fn->arg_begin()->use_empty() ||
Target.Fn->getReturnType() != RetType)
return false;
}
// Group call sites by the list of constant arguments they pass.
// The comparator ensures deterministic ordering.
struct ByAPIntValue {
bool operator()(const std::vector<ConstantInt *> &A,
const std::vector<ConstantInt *> &B) const {
return std::lexicographical_compare(
A.begin(), A.end(), B.begin(), B.end(),
[](ConstantInt *AI, ConstantInt *BI) {
return AI->getValue().ult(BI->getValue());
});
}
};
std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
ByAPIntValue>
VCallSitesByConstantArg;
for (auto &&VCallSite : CallSites) {
std::vector<ConstantInt *> Args;
if (VCallSite.CS.getType() != RetType)
continue;
for (auto &&Arg :
make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
if (!isa<ConstantInt>(Arg))
break;
Args.push_back(cast<ConstantInt>(&Arg));
}
if (Args.size() + 1 != VCallSite.CS.arg_size())
continue;
VCallSitesByConstantArg[Args].push_back(VCallSite);
}
for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
continue;
if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
continue;
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
continue;
// Find an allocation offset in bits in all vtables associated with the
// type.
uint64_t AllocBefore =
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
uint64_t AllocAfter =
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
// Calculate the total amount of padding needed to store a value at both
// ends of the object.
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
for (auto &&Target : TargetsForSlot) {
TotalPaddingBefore += std::max<int64_t>(
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
TotalPaddingAfter += std::max<int64_t>(
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
}
// If the amount of padding is too large, give up.
// FIXME: do something smarter here.
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
continue;
// Calculate the offset to the value as a (possibly negative) byte offset
// and (if applicable) a bit offset, and store the values in the targets.
int64_t OffsetByte;
uint64_t OffsetBit;
if (TotalPaddingBefore <= TotalPaddingAfter)
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
OffsetBit);
else
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
OffsetBit);
if (RemarksEnabled)
for (auto &&Target : TargetsForSlot)
Target.WasDevirt = true;
// Rewrite each call to a load from OffsetByte/OffsetBit.
for (auto Call : CSByConstantArg.second) {
IRBuilder<> B(Call.CS.getInstruction());
Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
if (BitWidth == 1) {
Value *Bits = B.CreateLoad(Addr);
Value *Bit = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
Call.replaceAndErase("virtual-const-prop-1-bit",
TargetsForSlot[0].Fn->getName(),
RemarksEnabled, IsBitSet);
} else {
Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
Value *Val = B.CreateLoad(RetType, ValAddr);
Call.replaceAndErase("virtual-const-prop",
TargetsForSlot[0].Fn->getName(),
RemarksEnabled, Val);
}
}
}
return true;
}
void DevirtModule::rebuildGlobal(VTableBits &B) {
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
return;
// Align each byte array to pointer width.
unsigned PointerSize = M.getDataLayout().getPointerSize();
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
// Before was stored in reverse order; flip it now.
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
// Build an anonymous global containing the before bytes, followed by the
// original initializer, followed by the after bytes.
auto NewInit = ConstantStruct::getAnon(
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
B.GV->getInitializer(),
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
auto NewGV =
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
NewGV->setSection(B.GV->getSection());
NewGV->setComdat(B.GV->getComdat());
// Copy the original vtable's metadata to the anonymous global, adjusting
// offsets as required.
NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
// Build an alias named after the original global, pointing at the second
// element (the original initializer).
auto Alias = GlobalAlias::create(
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
ConstantExpr::getGetElementPtr(
NewInit->getType(), NewGV,
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, 1)}),
&M);
Alias->setVisibility(B.GV->getVisibility());
Alias->takeName(B.GV);
B.GV->replaceAllUsesWith(Alias);
B.GV->eraseFromParent();
}
bool DevirtModule::areRemarksEnabled() {
const auto &FL = M.getFunctionList();
if (FL.empty())
return false;
const Function &Fn = FL.front();
auto DI = OptimizationRemark(DEBUG_TYPE, Fn, DebugLoc(), "");
return DI.isEnabled();
}
void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
Function *AssumeFunc) {
// Find all virtual calls via a virtual table pointer %p under an assumption
// of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
// points to a member of the type identifier %md. Group calls by (type ID,
// offset) pair (effectively the identity of the virtual function) and store
// to CallSlots.
DenseSet<Value *> SeenPtrs;
for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
I != E;) {
auto CI = dyn_cast<CallInst>(I->getUser());
++I;
if (!CI)
continue;
// Search for virtual calls based on %p and add them to DevirtCalls.
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<CallInst *, 1> Assumes;
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
// If we found any, add them to CallSlots. Only do this if we haven't seen
// the vtable pointer before, as it may have been CSE'd with pointers from
// other call sites, and we don't want to process call sites multiple times.
if (!Assumes.empty()) {
Metadata *TypeId =
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
if (SeenPtrs.insert(Ptr).second) {
for (DevirtCallSite Call : DevirtCalls) {
CallSlots[{TypeId, Call.Offset}].push_back(
{CI->getArgOperand(0), Call.CS, nullptr});
}
}
}
// We no longer need the assumes or the type test.
for (auto Assume : Assumes)
Assume->eraseFromParent();
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
// may use the vtable argument later.
if (CI->use_empty())
CI->eraseFromParent();
}
}
void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
for (auto I = TypeCheckedLoadFunc->use_begin(),
E = TypeCheckedLoadFunc->use_end();
I != E;) {
auto CI = dyn_cast<CallInst>(I->getUser());
++I;
if (!CI)
continue;
Value *Ptr = CI->getArgOperand(0);
Value *Offset = CI->getArgOperand(1);
Value *TypeIdValue = CI->getArgOperand(2);
Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<Instruction *, 1> LoadedPtrs;
SmallVector<Instruction *, 1> Preds;
bool HasNonCallUses = false;
findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
HasNonCallUses, CI);
// Start by generating "pessimistic" code that explicitly loads the function
// pointer from the vtable and performs the type check. If possible, we will
// eliminate the load and the type check later.
// If possible, only generate the load at the point where it is used.
// This helps avoid unnecessary spills.
IRBuilder<> LoadB(
(LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
for (Instruction *LoadedPtr : LoadedPtrs) {
LoadedPtr->replaceAllUsesWith(LoadedValue);
LoadedPtr->eraseFromParent();
}
// Likewise for the type test.
IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
for (Instruction *Pred : Preds) {
Pred->replaceAllUsesWith(TypeTestCall);
Pred->eraseFromParent();
}
// We have already erased any extractvalue instructions that refer to the
// intrinsic call, but the intrinsic may have other non-extractvalue uses
// (although this is unlikely). In that case, explicitly build a pair and
// RAUW it.
if (!CI->use_empty()) {
Value *Pair = UndefValue::get(CI->getType());
IRBuilder<> B(CI);
Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
CI->replaceAllUsesWith(Pair);
}
// The number of unsafe uses is initially the number of uses.
auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
NumUnsafeUses = DevirtCalls.size();
// If the function pointer has a non-call user, we cannot eliminate the type
// check, as one of those users may eventually call the pointer. Increment
// the unsafe use count to make sure it cannot reach zero.
if (HasNonCallUses)
++NumUnsafeUses;
for (DevirtCallSite Call : DevirtCalls) {
CallSlots[{TypeId, Call.Offset}].push_back(
{Ptr, Call.CS, &NumUnsafeUses});
}
CI->eraseFromParent();
}
}
bool DevirtModule::run() {
Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
if ((!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
AssumeFunc->use_empty()) &&
(!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
return false;
if (TypeTestFunc && AssumeFunc)
scanTypeTestUsers(TypeTestFunc, AssumeFunc);
if (TypeCheckedLoadFunc)
scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
// Rebuild type metadata into a map for easy lookup.
std::vector<VTableBits> Bits;
DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
buildTypeIdentifierMap(Bits, TypeIdMap);
if (TypeIdMap.empty())
return true;
// For each (type, offset) pair:
bool DidVirtualConstProp = false;
std::map<std::string, Function*> DevirtTargets;
for (auto &S : CallSlots) {
// Search each of the members of the type identifier for the virtual
// function implementation at offset S.first.ByteOffset, and add to
// TargetsForSlot.
std::vector<VirtualCallTarget> TargetsForSlot;
if (!tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
S.first.ByteOffset))
continue;
if (!trySingleImplDevirt(TargetsForSlot, S.second) &&
tryVirtualConstProp(TargetsForSlot, S.second))
DidVirtualConstProp = true;
// Collect functions devirtualized at least for one call site for stats.
if (RemarksEnabled)
for (const auto &T : TargetsForSlot)
if (T.WasDevirt)
DevirtTargets[T.Fn->getName()] = T.Fn;
}
if (RemarksEnabled) {
// Generate remarks for each devirtualized function.
for (const auto &DT : DevirtTargets) {
Function *F = DT.second;
DISubprogram *SP = F->getSubprogram();
DebugLoc DL = SP ? DebugLoc::get(SP->getScopeLine(), 0, SP) : DebugLoc();
emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, DL,
Twine("devirtualized ") + F->getName());
}
}
// If we were able to eliminate all unsafe uses for a type checked load,
// eliminate the type test by replacing it with true.
if (TypeCheckedLoadFunc) {
auto True = ConstantInt::getTrue(M.getContext());
for (auto &&U : NumUnsafeUsesForTypeTest) {
if (U.second == 0) {
U.first->replaceAllUsesWith(True);
U.first->eraseFromParent();
}
}
}
// Rebuild each global we touched as part of virtual constant propagation to
// include the before and after bytes.
if (DidVirtualConstProp)
for (VTableBits &B : Bits)
rebuildGlobal(B);
return true;
}
|