summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Mips/Mips16ISelLowering.cpp
blob: f63318f1e6de30b9735ba139650d5bb30b20a6b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips16.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
#include "Mips16ISelLowering.h"
#include "MipsRegisterInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <set>

using namespace llvm;

static cl::opt<bool>
Mips16HardFloat("mips16-hard-float", cl::NotHidden,
                cl::desc("MIPS: mips16 hard float enable."),
                cl::init(false));

static cl::opt<bool> DontExpandCondPseudos16(
  "mips16-dont-expand-cond-pseudo",
  cl::init(false),
  cl::desc("Dont expand conditional move related "
           "pseudos for Mips 16"),
  cl::Hidden);

namespace {
  std::set<const char*, MipsTargetLowering::LTStr> NoHelperNeeded;
}

Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
  : MipsTargetLowering(TM) {
  //
  // set up as if mips32 and then revert so we can test the mechanism
  // for switching
  addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
  addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
  computeRegisterProperties();
  clearRegisterClasses();

  // Set up the register classes
  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);

  if (Mips16HardFloat)
    setMips16HardFloatLibCalls();

  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
  setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
  setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);

  computeRegisterProperties();
}

const MipsTargetLowering *
llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
  return new Mips16TargetLowering(TM);
}

bool
Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
  return false;
}

MachineBasicBlock *
Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                                  MachineBasicBlock *BB) const {
  switch (MI->getOpcode()) {
  default:
    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
  case Mips::SelBeqZ:
    return emitSel16(Mips::BeqzRxImm16, MI, BB);
  case Mips::SelBneZ:
    return emitSel16(Mips::BnezRxImm16, MI, BB);
  case Mips::SelTBteqZCmpi:
    return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
  case Mips::SelTBteqZSlti:
    return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
  case Mips::SelTBteqZSltiu:
    return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
  case Mips::SelTBtneZCmpi:
    return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
  case Mips::SelTBtneZSlti:
    return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
  case Mips::SelTBtneZSltiu:
    return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
  case Mips::SelTBteqZCmp:
    return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
  case Mips::SelTBteqZSlt:
    return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
  case Mips::SelTBteqZSltu:
    return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
  case Mips::SelTBtneZCmp:
    return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
  case Mips::SelTBtneZSlt:
    return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
  case Mips::SelTBtneZSltu:
    return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
  case Mips::BteqzT8CmpX16:
    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
  case Mips::BteqzT8SltX16:
    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
  case Mips::BteqzT8SltuX16:
    // TBD: figure out a way to get this or remove the instruction
    // altogether.
    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
  case Mips::BtnezT8CmpX16:
    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
  case Mips::BtnezT8SltX16:
    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
  case Mips::BtnezT8SltuX16:
    // TBD: figure out a way to get this or remove the instruction
    // altogether.
    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
    Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
    Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
    Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
    Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, MI, BB);
  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
    Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
    Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
    break;
  case Mips::SltCCRxRy16:
    return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
    break;
  case Mips::SltiCCRxImmX16:
    return emitFEXT_CCRXI16_ins
      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
  case Mips::SltiuCCRxImmX16:
    return emitFEXT_CCRXI16_ins
      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
  case Mips::SltuCCRxRy16:
    return emitFEXT_CCRX16_ins
      (Mips::SltuRxRy16, MI, BB);
  }
}

bool Mips16TargetLowering::
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
                                  unsigned NextStackOffset,
                                  const MipsFunctionInfo& FI) const {
  // No tail call optimization for mips16.
  return false;
}

void Mips16TargetLowering::setMips16LibcallName
  (RTLIB::Libcall L, const char *Name) {
  setLibcallName(L, Name);
  NoHelperNeeded.insert(Name);
}

void Mips16TargetLowering::setMips16HardFloatLibCalls() {
  setMips16LibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
  setMips16LibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
  setMips16LibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
  setMips16LibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
  setMips16LibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
  setMips16LibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
  setMips16LibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
  setMips16LibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
  setMips16LibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
  setMips16LibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
  setMips16LibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
  setMips16LibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
  setMips16LibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
  setMips16LibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
  setMips16LibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
  setMips16LibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
  setMips16LibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
  setMips16LibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
  setMips16LibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
  setMips16LibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
  setMips16LibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
  setMips16LibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
  setMips16LibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
  setMips16LibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
  setMips16LibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
  setMips16LibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
  setMips16LibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
  setMips16LibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
  setMips16LibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
  setMips16LibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
  setMips16LibcallName(RTLIB::O_F32, "__mips16_unordsf2");
  setMips16LibcallName(RTLIB::O_F64, "__mips16_unorddf2");
}


//
// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
// cleaner way to do all of this but it will have to wait until the traditional
// gcc mechanism is completed.
//
// For Pic, in order for Mips16 code to call Mips32 code which according the abi
// have either arguments or returned values placed in floating point registers,
// we use a set of helper functions. (This includes functions which return type
//  complex which on Mips are returned in a pair of floating point registers).
//
// This is an encoding that we inherited from gcc.
// In Mips traditional O32, N32 ABI, floating point numbers are passed in
// floating point argument registers 1,2 only when the first and optionally
// the second arguments are float (sf) or double (df).
// For Mips16 we are only concerned with the situations where floating point
// arguments are being passed in floating point registers by the ABI, because
// Mips16 mode code cannot execute floating point instructions to load those
// values and hence helper functions are needed.
// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
// the helper function suffixs for these are:
//                        0,  1,    5,        9,         2,   6,        10
// this suffix can then be calculated as follows:
// for a given argument Arg:
//     Arg1x, Arg2x = 1 :  Arg is sf
//                    2 :  Arg is df
//                    0:   Arg is neither sf or df
// So this stub is the string for number Arg1x + Arg2x*4.
// However not all numbers between 0 and 10 are possible, we check anyway and
// assert if the impossible exists.
//

unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
  (ArgListTy &Args) const {
  unsigned int resultNum = 0;
  if (Args.size() >= 1) {
    Type *t = Args[0].Ty;
    if (t->isFloatTy()) {
      resultNum = 1;
    }
    else if (t->isDoubleTy()) {
      resultNum = 2;
    }
  }
  if (resultNum) {
    if (Args.size() >=2) {
      Type *t = Args[1].Ty;
      if (t->isFloatTy()) {
        resultNum += 4;
      }
      else if (t->isDoubleTy()) {
        resultNum += 8;
      }
    }
  }
  return resultNum;
}

//
// prefixs are attached to stub numbers depending on the return type .
// return type: float  sf_
//              double df_
//              single complex sc_
//              double complext dc_
//              others  NO PREFIX
//
//
// The full name of a helper function is__mips16_call_stub +
//    return type dependent prefix + stub number
//
//
// This is something that probably should be in a different source file and
// perhaps done differently but my main purpose is to not waste runtime
// on something that we can enumerate in the source. Another possibility is
// to have a python script to generate these mapping tables. This will do
// for now. There are a whole series of helper function mapping arrays, one
// for each return type class as outlined above. There there are 11 possible
//  entries. Ones with 0 are ones which should never be selected
//
// All the arrays are similar except for ones which return neither
// sf, df, sc, dc, in which only care about ones which have sf or df as a
// first parameter.
//
#define P_ "__mips16_call_stub_"
#define MAX_STUB_NUMBER 10
#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
#define T P "0" , T1
#define P P_
static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
  {0, T1 };
#undef P
#define P P_ "sf_"
static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
  { T };
#undef P
#define P P_ "df_"
static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
  { T };
#undef P
#define P P_ "sc_"
static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
  { T };
#undef P
#define P P_ "dc_"
static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
  { T };
#undef P
#undef P_


const char* Mips16TargetLowering::
  getMips16HelperFunction
    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
#ifndef NDEBUG
  const unsigned int maxStubNum = 10;
  assert(stubNum <= maxStubNum);
  const bool validStubNum[maxStubNum+1] =
    {true, true, true, false, false, true, true, false, false, true, true};
  assert(validStubNum[stubNum]);
#endif
  const char *result;
  if (RetTy->isFloatTy()) {
    result = sfMips16Helper[stubNum];
  }
  else if (RetTy ->isDoubleTy()) {
    result = dfMips16Helper[stubNum];
  }
  else if (RetTy->isStructTy()) {
    // check if it's complex
    if (RetTy->getNumContainedTypes() == 2) {
      if ((RetTy->getContainedType(0)->isFloatTy()) &&
          (RetTy->getContainedType(1)->isFloatTy())) {
        result = scMips16Helper[stubNum];
      }
      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
               (RetTy->getContainedType(1)->isDoubleTy())) {
        result = dcMips16Helper[stubNum];
      }
      else {
        llvm_unreachable("Uncovered condition");
      }
    }
    else {
      llvm_unreachable("Uncovered condition");
    }
  }
  else {
    if (stubNum == 0) {
      needHelper = false;
      return "";
    }
    result = vMips16Helper[stubNum];
  }
  needHelper = true;
  return result;
}

void Mips16TargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
  SelectionDAG &DAG = CLI.DAG;
  const char* Mips16HelperFunction = 0;
  bool NeedMips16Helper = false;

  if (getTargetMachine().Options.UseSoftFloat && Mips16HardFloat) {
    //
    // currently we don't have symbols tagged with the mips16 or mips32
    // qualifier so we will assume that we don't know what kind it is.
    // and generate the helper
    //
    bool LookupHelper = true;
    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
      if (NoHelperNeeded.find(S->getSymbol()) != NoHelperNeeded.end()) {
        LookupHelper = false;
      }
    }
    if (LookupHelper) Mips16HelperFunction =
      getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);

  }

  SDValue JumpTarget = Callee;

  // T9 should contain the address of the callee function if
  // -reloction-model=pic or it is an indirect call.
  if (IsPICCall || !GlobalOrExternal) {
    unsigned V0Reg = Mips::V0;
    if (NeedMips16Helper) {
      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
      JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
    } else
      RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
  }

  Ops.push_back(JumpTarget);

  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
                                  InternalLinkage, CLI, Callee, Chain);
}

MachineBasicBlock *Mips16TargetLowering::
emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc DL = MI->getDebugLoc();
  // To "insert" a SELECT_CC instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = BB;
  ++It;

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
    .addMBB(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  BuildMI(*BB, BB->begin(), DL,
          TII->get(Mips::PHI), MI->getOperand(0).getReg())
    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);

  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;
}

MachineBasicBlock *Mips16TargetLowering::emitSelT16
  (unsigned Opc1, unsigned Opc2,
   MachineInstr *MI, MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc DL = MI->getDebugLoc();
  // To "insert" a SELECT_CC instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = BB;
  ++It;

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
    .addReg(MI->getOperand(4).getReg());
  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  BuildMI(*BB, BB->begin(), DL,
          TII->get(Mips::PHI), MI->getOperand(0).getReg())
    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);

  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;

}

MachineBasicBlock *Mips16TargetLowering::emitSeliT16
  (unsigned Opc1, unsigned Opc2,
   MachineInstr *MI, MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  DebugLoc DL = MI->getDebugLoc();
  // To "insert" a SELECT_CC instruction, we actually have to insert the
  // diamond control-flow pattern.  The incoming instruction knows the
  // destination vreg to set, the condition code register to branch on, the
  // true/false values to select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator It = BB;
  ++It;

  //  thisMBB:
  //  ...
  //   TrueVal = ...
  //   setcc r1, r2, r3
  //   bNE   r1, r0, copy1MBB
  //   fallthrough --> copy0MBB
  MachineBasicBlock *thisMBB  = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(It, copy0MBB);
  F->insert(It, sinkMBB);

  // Transfer the remainder of BB and its successor edges to sinkMBB.
  sinkMBB->splice(sinkMBB->begin(), BB,
                  llvm::next(MachineBasicBlock::iterator(MI)),
                  BB->end());
  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);

  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(copy0MBB);
  BB->addSuccessor(sinkMBB);

  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
    .addImm(MI->getOperand(4).getImm());
  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);

  //  copy0MBB:
  //   %FalseValue = ...
  //   # fallthrough to sinkMBB
  BB = copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(sinkMBB);

  //  sinkMBB:
  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
  //  ...
  BB = sinkMBB;

  BuildMI(*BB, BB->begin(), DL,
          TII->get(Mips::PHI), MI->getOperand(0).getReg())
    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);

  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;

}

MachineBasicBlock
  *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
                                             MachineInstr *MI,
                                             MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  unsigned regX = MI->getOperand(0).getReg();
  unsigned regY = MI->getOperand(1).getReg();
  MachineBasicBlock *target = MI->getOperand(2).getMBB();
  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
    .addReg(regY);
  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;
}

MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc,
  MachineInstr *MI,  MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  unsigned regX = MI->getOperand(0).getReg();
  int64_t imm = MI->getOperand(1).getImm();
  MachineBasicBlock *target = MI->getOperand(2).getMBB();
  unsigned CmpOpc;
  if (isUInt<8>(imm))
    CmpOpc = CmpiOpc;
  else if (isUInt<16>(imm))
    CmpOpc = CmpiXOpc;
  else
    llvm_unreachable("immediate field not usable");
  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
    .addImm(imm);
  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;
}

static unsigned Mips16WhichOp8uOr16simm
  (unsigned shortOp, unsigned longOp, int64_t Imm) {
  if (isUInt<8>(Imm))
    return shortOp;
  else if (isInt<16>(Imm))
    return longOp;
  else
    llvm_unreachable("immediate field not usable");
}

MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
  unsigned SltOpc,
  MachineInstr *MI,  MachineBasicBlock *BB) const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  unsigned CC = MI->getOperand(0).getReg();
  unsigned regX = MI->getOperand(1).getReg();
  unsigned regY = MI->getOperand(2).getReg();
  BuildMI(*BB, MI, MI->getDebugLoc(),
		  TII->get(SltOpc)).addReg(regX).addReg(regY);
  BuildMI(*BB, MI, MI->getDebugLoc(),
          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;
}

MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
  unsigned SltiOpc, unsigned SltiXOpc,
  MachineInstr *MI,  MachineBasicBlock *BB )const {
  if (DontExpandCondPseudos16)
    return BB;
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  unsigned CC = MI->getOperand(0).getReg();
  unsigned regX = MI->getOperand(1).getReg();
  int64_t Imm = MI->getOperand(2).getImm();
  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
  BuildMI(*BB, MI, MI->getDebugLoc(),
          TII->get(SltOpc)).addReg(regX).addImm(Imm);
  BuildMI(*BB, MI, MI->getDebugLoc(),
          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
  MI->eraseFromParent();   // The pseudo instruction is gone now.
  return BB;

}
OpenPOWER on IntegriCloud