summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
blob: 23d4e2610d9a58045ff521f6acc642256c85704d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from LOOPn. ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// The loop start address in the LOOPn instruction is encoded as a distance
// from the LOOPn instruction itself. If the start address is too far from
// the LOOPn instruction, the instruction needs to use a constant extender.
// This pass will identify and convert such LOOPn instructions to a proper
// form.
//===----------------------------------------------------------------------===//

#include "Hexagon.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/PassSupport.h"
#include "llvm/Target/TargetInstrInfo.h"

using namespace llvm;

static cl::opt<unsigned> MaxLoopRange(
    "hexagon-loop-range", cl::Hidden, cl::init(200),
    cl::desc("Restrict range of loopN instructions (testing only)"));

namespace llvm {
  FunctionPass *createHexagonFixupHwLoops();
  void initializeHexagonFixupHwLoopsPass(PassRegistry&);
}

namespace {
  struct HexagonFixupHwLoops : public MachineFunctionPass {
  public:
    static char ID;

    HexagonFixupHwLoops() : MachineFunctionPass(ID) {
      initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    StringRef getPassName() const override {
      return "Hexagon Hardware Loop Fixup";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// \brief Check the offset between each loop instruction and
    /// the loop basic block to determine if we can use the LOOP instruction
    /// or if we need to set the LC/SA registers explicitly.
    bool fixupLoopInstrs(MachineFunction &MF);

    /// \brief Replace loop instruction with the constant extended
    /// version if the loop label is too far from the loop instruction.
    void useExtLoopInstr(MachineFunction &MF,
                         MachineBasicBlock::iterator &MII);
  };

  char HexagonFixupHwLoops::ID = 0;
}

INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
                "Hexagon Hardware Loops Fixup", false, false)

FunctionPass *llvm::createHexagonFixupHwLoops() {
  return new HexagonFixupHwLoops();
}

/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr &MI) {
  return MI.getOpcode() == Hexagon::J2_loop0r ||
         MI.getOpcode() == Hexagon::J2_loop0i ||
         MI.getOpcode() == Hexagon::J2_loop1r ||
         MI.getOpcode() == Hexagon::J2_loop1i;
}

bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(*MF.getFunction()))
    return false;
  return fixupLoopInstrs(MF);
}

/// \brief For Hexagon, if the loop label is to far from the
/// loop instruction then we need to set the LC0 and SA0 registers
/// explicitly instead of using LOOP(start,count).  This function
/// checks the distance, and generates register assignments if needed.
///
/// This function makes two passes over the basic blocks.  The first
/// pass computes the offset of the basic block from the start.
/// The second pass checks all the loop instructions.
bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {

  // Offset of the current instruction from the start.
  unsigned InstOffset = 0;
  // Map for each basic block to it's first instruction.
  DenseMap<const MachineBasicBlock *, unsigned> BlockToInstOffset;

  const HexagonInstrInfo *HII =
      static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());

  // First pass - compute the offset of each basic block.
  for (const MachineBasicBlock &MBB : MF) {
    if (MBB.getAlignment()) {
      // Although we don't know the exact layout of the final code, we need
      // to account for alignment padding somehow. This heuristic pads each
      // aligned basic block according to the alignment value.
      int ByteAlign = (1u << MBB.getAlignment()) - 1;
      InstOffset = (InstOffset + ByteAlign) & ~(ByteAlign);
    }

    BlockToInstOffset[&MBB] = InstOffset;
    for (const MachineInstr &MI : MBB)
      InstOffset += HII->getSize(MI);
  }

  // Second pass - check each loop instruction to see if it needs to be
  // converted.
  bool Changed = false;
  for (MachineBasicBlock &MBB : MF) {
    InstOffset = BlockToInstOffset[&MBB];

    // Loop over all the instructions.
    MachineBasicBlock::iterator MII = MBB.begin();
    MachineBasicBlock::iterator MIE = MBB.end();
    while (MII != MIE) {
      InstOffset += HII->getSize(*MII);
      if (MII->isDebugValue()) {
        ++MII;
        continue;
      }
      if (isHardwareLoop(*MII)) {
        assert(MII->getOperand(0).isMBB() &&
               "Expect a basic block as loop operand");
        int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
        if ((unsigned)abs(diff) > MaxLoopRange) {
          useExtLoopInstr(MF, MII);
          MII = MBB.erase(MII);
          Changed = true;
        } else {
          ++MII;
        }
      } else {
        ++MII;
      }
    }
  }

  return Changed;
}

/// \brief Replace loop instructions with the constant extended version.
void HexagonFixupHwLoops::useExtLoopInstr(MachineFunction &MF,
                                          MachineBasicBlock::iterator &MII) {
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
  MachineBasicBlock *MBB = MII->getParent();
  DebugLoc DL = MII->getDebugLoc();
  MachineInstrBuilder MIB;
  unsigned newOp;
  switch (MII->getOpcode()) {
  case Hexagon::J2_loop0r:
    newOp = Hexagon::J2_loop0rext;
    break;
  case Hexagon::J2_loop0i:
    newOp = Hexagon::J2_loop0iext;
    break;
  case Hexagon::J2_loop1r:
    newOp = Hexagon::J2_loop1rext;
    break;
  case Hexagon::J2_loop1i:
    newOp = Hexagon::J2_loop1iext;
    break;
  default:
    llvm_unreachable("Invalid Hardware Loop Instruction.");
  }
  MIB = BuildMI(*MBB, MII, DL, TII->get(newOp));

  for (unsigned i = 0; i < MII->getNumOperands(); ++i)
    MIB.add(MII->getOperand(i));
}
OpenPOWER on IntegriCloud