1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
|
//===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the AArch64 scalar instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "AArch64InstrFormats.td"
//===----------------------------------------------------------------------===//
// Target-specific ISD nodes and profiles
//===----------------------------------------------------------------------===//
def SDT_A64ret : SDTypeProfile<0, 0, []>;
def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain,
SDNPOptInGlue,
SDNPVariadic]>;
// (ins NZCV, Condition, Dest)
def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>;
def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>;
// (outs Result), (ins NZCV, IfTrue, IfFalse, Condition)
def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<2, 3>]>;
def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>;
// (outs NZCV), (ins LHS, RHS, Condition)
def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
SDTCisSameAs<1, 2>]>;
def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>;
// (outs GPR64), (ins)
def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
// A64 compares don't care about the cond really (they set all flags) so a
// simple binary operator is useful.
def A64cmp : PatFrag<(ops node:$lhs, node:$rhs),
(A64setcc node:$lhs, node:$rhs, cond)>;
// When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN
// instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C
// and V flags can be set differently by this operation. It comes down to
// whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are
// then everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
// So, finally, the only LLVM-native comparisons that don't mention C and V are
// SETEQ and SETNE. They're the only ones we can safely use CMN for in the
// absence of information about op2.
def equality_cond : PatLeaf<(cond), [{
return N->get() == ISD::SETEQ || N->get() == ISD::SETNE;
}]>;
def A64cmn : PatFrag<(ops node:$lhs, node:$rhs),
(A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>;
// There are two layers of indirection here, driven by the following
// considerations.
// + TableGen does not know CodeModel or Reloc so that decision should be
// made for a variable/address at ISelLowering.
// + The output of ISelLowering should be selectable (hence the Wrapper,
// rather than a bare target opcode)
def SDTAArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameAs<0, 4>,
SDTCisPtrTy<0>]>;
def A64WrapperLarge :SDNode<"AArch64ISD::WrapperLarge", SDTAArch64WrapperLarge>;
def SDTAArch64WrapperSmall : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisVT<3, i32>,
SDTCisPtrTy<0>]>;
def A64WrapperSmall :SDNode<"AArch64ISD::WrapperSmall", SDTAArch64WrapperSmall>;
def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad,
[SDNPHasChain]>;
// (A64BFI LHS, RHS, LSB, Width)
def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisVT<3, i64>,
SDTCisVT<4, i64>]>;
def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>;
// (A64EXTR HiReg, LoReg, LSB)
def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i64>]>;
def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
// (A64[SU]BFX Field, ImmR, ImmS).
//
// Note that ImmR and ImmS are already encoded for the actual instructions. The
// more natural LSB and Width mix together to form ImmR and ImmS, something
// which TableGen can't handle.
def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>;
def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
//===----------------------------------------------------------------------===//
// Call sequence pseudo-instructions
//===----------------------------------------------------------------------===//
def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// The TLSDESCCALL node is a variant call which goes to an indirectly calculated
// destination but needs a relocation against a fixed symbol. As such it has two
// certain operands: the callee and the relocated variable.
//
// The TLS ABI only allows it to be selected to a BLR instructin (with
// appropriate relocation).
def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall,
[SDNPInGlue, SDNPOutGlue, SDNPHasChain,
SDNPVariadic]>;
def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>;
def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def SDT_AArch64CallSeqEnd : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>;
def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AArch64CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// These pseudo-instructions have special semantics by virtue of being passed to
// the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by
// LowerCall to (in our case) tell the back-end about stack adjustments for
// arguments passed on the stack. Here we select those markers to
// pseudo-instructions which explicitly set the stack, and finally in the
// RegisterInfo we convert them to a true stack adjustment.
let Defs = [XSP], Uses = [XSP] in {
def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt),
[(AArch64callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
}
//===----------------------------------------------------------------------===//
// Atomic operation pseudo-instructions
//===----------------------------------------------------------------------===//
// These get selected from C++ code as a pretty much direct translation from the
// generic DAG nodes. The one exception is the AtomicOrdering is added as an
// operand so that the eventual lowering can make use of it and choose
// acquire/release operations when required.
let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in {
multiclass AtomicSizes {
def _I8 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I16 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I32 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I64 : PseudoInst<(outs GPR64:$dst),
(ins GPR64xsp:$ptr, GPR64:$incr, i32imm:$ordering), []>;
}
}
defm ATOMIC_LOAD_ADD : AtomicSizes;
defm ATOMIC_LOAD_SUB : AtomicSizes;
defm ATOMIC_LOAD_AND : AtomicSizes;
defm ATOMIC_LOAD_OR : AtomicSizes;
defm ATOMIC_LOAD_XOR : AtomicSizes;
defm ATOMIC_LOAD_NAND : AtomicSizes;
defm ATOMIC_SWAP : AtomicSizes;
let Defs = [NZCV] in {
// These operations need a CMP to calculate the correct value
defm ATOMIC_LOAD_MIN : AtomicSizes;
defm ATOMIC_LOAD_MAX : AtomicSizes;
defm ATOMIC_LOAD_UMIN : AtomicSizes;
defm ATOMIC_LOAD_UMAX : AtomicSizes;
}
class AtomicCmpSwap<RegisterClass GPRData>
: PseudoInst<(outs GPRData:$dst),
(ins GPR64xsp:$ptr, GPRData:$old, GPRData:$new,
i32imm:$ordering), []> {
let usesCustomInserter = 1;
let hasCtrlDep = 1;
let mayLoad = 1;
let mayStore = 1;
let Defs = [NZCV];
}
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<GPR64>;
//===----------------------------------------------------------------------===//
// Add-subtract (extended register) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP
// The RHS of these operations is conceptually a sign/zero-extended
// register, optionally shifted left by 1-4. The extension can be a
// NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but
// must be specified with one exception:
// If one of the registers is sp/wsp then LSL is an alias for UXTW in
// 32-bit instructions and UXTX in 64-bit versions, the shift amount
// is not optional in that case (but can explicitly be 0), and the
// entire suffix can be skipped (e.g. "add sp, x3, x2").
multiclass extend_operands<string PREFIX, string Diag> {
def _asmoperand : AsmOperandClass {
let Name = PREFIX;
let RenderMethod = "addRegExtendOperands";
let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">";
let DiagnosticType = "AddSubRegExtend" # Diag;
}
def _operand : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> {
let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">";
let DecoderMethod = "DecodeRegExtendOperand";
let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand");
}
}
defm UXTB : extend_operands<"UXTB", "Small">;
defm UXTH : extend_operands<"UXTH", "Small">;
defm UXTW : extend_operands<"UXTW", "Small">;
defm UXTX : extend_operands<"UXTX", "Large">;
defm SXTB : extend_operands<"SXTB", "Small">;
defm SXTH : extend_operands<"SXTH", "Small">;
defm SXTW : extend_operands<"SXTW", "Small">;
defm SXTX : extend_operands<"SXTX", "Large">;
def LSL_extasmoperand : AsmOperandClass {
let Name = "RegExtendLSL";
let RenderMethod = "addRegExtendOperands";
let DiagnosticType = "AddSubRegExtendLarge";
}
def LSL_extoperand : Operand<i64> {
let ParserMatchClass = LSL_extasmoperand;
}
// The patterns for various sign-extensions are a little ugly and
// non-uniform because everything has already been promoted to the
// legal i64 and i32 types. We'll wrap the various variants up in a
// class for use later.
class extend_types {
dag uxtb; dag uxth; dag uxtw; dag uxtx;
dag sxtb; dag sxth; dag sxtw; dag sxtx;
ValueType ty;
RegisterClass GPR;
}
def extends_to_i64 : extend_types {
let uxtb = (and (anyext i32:$Rm), 255);
let uxth = (and (anyext i32:$Rm), 65535);
let uxtw = (zext i32:$Rm);
let uxtx = (i64 $Rm);
let sxtb = (sext_inreg (anyext i32:$Rm), i8);
let sxth = (sext_inreg (anyext i32:$Rm), i16);
let sxtw = (sext i32:$Rm);
let sxtx = (i64 $Rm);
let ty = i64;
let GPR = GPR64xsp;
}
def extends_to_i32 : extend_types {
let uxtb = (and i32:$Rm, 255);
let uxth = (and i32:$Rm, 65535);
let uxtw = (i32 i32:$Rm);
let uxtx = (i32 i32:$Rm);
let sxtb = (sext_inreg i32:$Rm, i8);
let sxth = (sext_inreg i32:$Rm, i16);
let sxtw = (i32 i32:$Rm);
let sxtx = (i32 i32:$Rm);
let ty = i32;
let GPR = GPR32wsp;
}
// Now, six of the extensions supported are easy and uniform: if the source size
// is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate
// those instructions in one block.
// The uxtx/sxtx could potentially be merged in, but three facts dissuaded me:
// + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would
// be impossible.
// + Patterns are very different as well.
// + Passing different registers would be ugly (more fields in extend_types
// would probably be the best option).
multiclass addsub_exts<bit sf, bit op, bit S, string asmop,
SDPatternOperator opfrag,
dag outs, extend_types exts> {
def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTB_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))],
NoItinerary>;
def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTH_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))],
NoItinerary>;
def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTW_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))],
NoItinerary>;
def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTB_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))],
NoItinerary>;
def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTH_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))],
NoItinerary>;
def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTW_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))],
NoItinerary>;
}
// These two could be merge in with the above, but their patterns aren't really
// necessary and the naming-scheme would necessarily break:
multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag,
dag outs> {
def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011,
outs,
(ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag i64:$Rn, (shl i64:$Rm, UXTX_operand:$Imm3))],
NoItinerary>;
def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111,
outs,
(ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No Pattern: same as uxtx */],
NoItinerary>;
}
multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> {
def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011,
outs,
(ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No pattern: probably same as uxtw */],
NoItinerary>;
def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111,
outs,
(ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No Pattern: probably same as uxtw */],
NoItinerary>;
}
class SetRD<RegisterClass RC, SDPatternOperator op>
: PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>;
class SetNZCV<SDPatternOperator op>
: PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>;
defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
(outs GPR64xsp:$Rd), extends_to_i64>,
addsub_xxtx< 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
(outs GPR64xsp:$Rd)>;
defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>,
(outs GPR32wsp:$Rd), extends_to_i32>,
addsub_wxtx< 0b0, 0b0, "add\t$Rd, ",
(outs GPR32wsp:$Rd)>;
defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
(outs GPR64xsp:$Rd), extends_to_i64>,
addsub_xxtx< 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
(outs GPR64xsp:$Rd)>;
defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>,
(outs GPR32wsp:$Rd), extends_to_i32>,
addsub_wxtx< 0b1, 0b0, "sub\t$Rd, ",
(outs GPR32wsp:$Rd)>;
let Defs = [NZCV] in {
defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
(outs GPR64:$Rd), extends_to_i64>,
addsub_xxtx< 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
(outs GPR64:$Rd)>;
defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>,
(outs GPR32:$Rd), extends_to_i32>,
addsub_wxtx< 0b0, 0b1, "adds\t$Rd, ",
(outs GPR32:$Rd)>;
defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
(outs GPR64:$Rd), extends_to_i64>,
addsub_xxtx< 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
(outs GPR64:$Rd)>;
defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>,
(outs GPR32:$Rd), extends_to_i32>,
addsub_wxtx< 0b1, 0b1, "subs\t$Rd, ",
(outs GPR32:$Rd)>;
let Rd = 0b11111, isCompare = 1 in {
defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
(outs), extends_to_i64>,
addsub_xxtx< 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>;
defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
(outs), extends_to_i32>,
addsub_wxtx< 0b0, 0b1, "cmn\t", (outs)>;
defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
(outs), extends_to_i64>,
addsub_xxtx< 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>;
defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
(outs), extends_to_i32>,
addsub_wxtx< 0b1, 0b1, "cmp\t", (outs)>;
}
}
// Now patterns for the operation without a shift being needed. No patterns are
// created for uxtx/sxtx since they're non-uniform and it's expected that
// add/sub (shifted register) will handle those cases anyway.
multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop,
extend_types exts> {
def : Pat<(nodeop exts.ty:$Rn, exts.uxtb),
(!cast<Instruction>(prefix # "w_uxtb") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.uxth),
(!cast<Instruction>(prefix # "w_uxth") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.uxtw),
(!cast<Instruction>(prefix # "w_uxtw") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxtb),
(!cast<Instruction>(prefix # "w_sxtb") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxth),
(!cast<Instruction>(prefix # "w_sxth") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxtw),
(!cast<Instruction>(prefix # "w_sxtw") $Rn, $Rm, 0)>;
}
defm : addsubext_noshift_patterns<"ADDxx", add, extends_to_i64>;
defm : addsubext_noshift_patterns<"ADDww", add, extends_to_i32>;
defm : addsubext_noshift_patterns<"SUBxx", sub, extends_to_i64>;
defm : addsubext_noshift_patterns<"SUBww", sub, extends_to_i32>;
defm : addsubext_noshift_patterns<"CMNx", A64cmn, extends_to_i64>;
defm : addsubext_noshift_patterns<"CMNw", A64cmn, extends_to_i32>;
defm : addsubext_noshift_patterns<"CMPx", A64cmp, extends_to_i64>;
defm : addsubext_noshift_patterns<"CMPw", A64cmp, extends_to_i32>;
// An extend of "lsl #imm" is valid if and only if one of Rn and Rd is
// sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the
// operation. Also permitted in this case is complete omission of the argument,
// which implies "lsl #0".
multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd,
RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"),
(inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
}
defm : lsl_aliases<"add", ADDxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
defm : lsl_aliases<"add", ADDxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
defm : lsl_aliases<"add", ADDwww_uxtw, Rwsp, GPR32wsp, GPR32>;
defm : lsl_aliases<"add", ADDwww_uxtw, GPR32wsp, Rwsp, GPR32>;
defm : lsl_aliases<"sub", SUBxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
defm : lsl_aliases<"sub", SUBxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
defm : lsl_aliases<"sub", SUBwww_uxtw, Rwsp, GPR32wsp, GPR32>;
defm : lsl_aliases<"sub", SUBwww_uxtw, GPR32wsp, Rwsp, GPR32>;
// Rd cannot be sp for flag-setting variants so only half of the aliases are
// needed.
defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>;
defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>;
defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>;
defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>;
// CMP unfortunately has to be different because the instruction doesn't have a
// dest register.
multiclass cmp_lsl_aliases<string asmop, Instruction inst,
RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
def : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
(inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"),
(inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
}
defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>;
defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>;
defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>;
defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>;
//===----------------------------------------------------------------------===//
// Add-subtract (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV
// These instructions accept a 12-bit unsigned immediate, optionally shifted
// left by 12 bits. Official assembly format specifies a 12 bit immediate with
// one of "", "LSL #0", "LSL #12" supplementary operands.
// There are surprisingly few ways to make this work with TableGen, so this
// implementation has separate instructions for the "LSL #0" and "LSL #12"
// variants.
// If the MCInst retained a single combined immediate (which could be 0x123000,
// for example) then both components (imm & shift) would have to be delegated to
// a single assembly operand. This would entail a separate operand parser
// (because the LSL would have to live in the same AArch64Operand as the
// immediate to be accessible); assembly parsing is rather complex and
// error-prone C++ code.
//
// By splitting the immediate, we can delegate handling this optional operand to
// an InstAlias. Supporting functions to generate the correct MCInst are still
// required, but these are essentially trivial and parsing can remain generic.
//
// Rejected plans with rationale:
// ------------------------------
//
// In an ideal world you'de have two first class immediate operands (in
// InOperandList, specifying imm12 and shift). Unfortunately this is not
// selectable by any means I could discover.
//
// An Instruction with two MCOperands hidden behind a single entry in
// InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional,
// but required more C++ code to handle encoding/decoding. Parsing (the intended
// main beneficiary) ended up equally complex because of the optional nature of
// "LSL #0".
//
// Attempting to circumvent the need for a custom OperandParser above by giving
// InstAliases without the "lsl #0" failed. add/sub could be accommodated but
// the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands
// should be parsed: there was no way to accommodate an "lsl #12".
let ParserMethod = "ParseImmWithLSLOperand",
RenderMethod = "addImmWithLSLOperands" in {
// Derived PredicateMethod fields are different for each
def addsubimm_lsl0_asmoperand : AsmOperandClass {
let Name = "AddSubImmLSL0";
// If an error is reported against this operand, instruction could also be a
// register variant.
let DiagnosticType = "AddSubSecondSource";
}
def addsubimm_lsl12_asmoperand : AsmOperandClass {
let Name = "AddSubImmLSL12";
let DiagnosticType = "AddSubSecondSource";
}
}
def shr_12_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32);
}]>;
def shr_12_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32);
}]>;
def neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32);
}]>;
multiclass addsub_imm_operands<ValueType ty> {
let PrintMethod = "printAddSubImmLSL0Operand",
EncoderMethod = "getAddSubImmOpValue",
ParserMatchClass = addsubimm_lsl0_asmoperand in {
def _posimm_lsl0 : Operand<ty>,
ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>;
def _negimm_lsl0 : Operand<ty>,
ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }],
neg_XFORM>;
}
let PrintMethod = "printAddSubImmLSL12Operand",
EncoderMethod = "getAddSubImmOpValue",
ParserMatchClass = addsubimm_lsl12_asmoperand in {
def _posimm_lsl12 : Operand<ty>,
ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }],
shr_12_XFORM>;
def _negimm_lsl12 : Operand<ty>,
ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }],
shr_12_neg_XFORM>;
}
}
// The add operands don't need any transformation
defm addsubimm_operand_i32 : addsub_imm_operands<i32>;
defm addsubimm_operand_i64 : addsub_imm_operands<i64>;
multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift,
string asmop, string cmpasmop,
Operand imm_operand, Operand cmp_imm_operand,
RegisterClass GPR, RegisterClass GPRsp,
AArch64Reg ZR, ValueType Ty> {
// All registers for non-S variants allow SP
def _s : A64I_addsubimm<sf, op, 0b0, shift,
(outs GPRsp:$Rd),
(ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(asmop, "\t$Rd, $Rn, $Imm12"),
[(set Ty:$Rd, (add Ty:$Rn, imm_operand:$Imm12))],
NoItinerary>;
// S variants can read SP but would write to ZR
def _S : A64I_addsubimm<sf, op, 0b1, shift,
(outs GPR:$Rd),
(ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(asmop, "s\t$Rd, $Rn, $Imm12"),
[(set Ty:$Rd, (addc Ty:$Rn, imm_operand:$Imm12))],
NoItinerary> {
let Defs = [NZCV];
}
// Note that the pattern here for ADDS is subtle. Canonically CMP
// a, b becomes SUBS a, b. If b < 0 then this is equivalent to
// ADDS a, (-b). This is not true in general.
def _cmp : A64I_addsubimm<sf, op, 0b1, shift,
(outs), (ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(cmpasmop, " $Rn, $Imm12"),
[(set NZCV,
(A64cmp Ty:$Rn, cmp_imm_operand:$Imm12))],
NoItinerary> {
let Rd = 0b11111;
let Defs = [NZCV];
let isCompare = 1;
}
}
multiclass addsubimm_shifts<string prefix, bit sf, bit op,
string asmop, string cmpasmop, string operand, string cmpoperand,
RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR,
ValueType Ty> {
defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00,
asmop, cmpasmop,
!cast<Operand>(operand # "_lsl0"),
!cast<Operand>(cmpoperand # "_lsl0"),
GPR, GPRsp, ZR, Ty>;
defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01,
asmop, cmpasmop,
!cast<Operand>(operand # "_lsl12"),
!cast<Operand>(cmpoperand # "_lsl12"),
GPR, GPRsp, ZR, Ty>;
}
defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn",
"addsubimm_operand_i32_posimm",
"addsubimm_operand_i32_negimm",
GPR32, GPR32wsp, WZR, i32>;
defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn",
"addsubimm_operand_i64_posimm",
"addsubimm_operand_i64_negimm",
GPR64, GPR64xsp, XZR, i64>;
defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp",
"addsubimm_operand_i32_negimm",
"addsubimm_operand_i32_posimm",
GPR32, GPR32wsp, WZR, i32>;
defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp",
"addsubimm_operand_i64_negimm",
"addsubimm_operand_i64_posimm",
GPR64, GPR64xsp, XZR, i64>;
multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> {
def _fromsp : InstAlias<"mov $Rd, $Rn",
(addop GPRsp:$Rd, SP:$Rn, 0),
0b1>;
def _tosp : InstAlias<"mov $Rd, $Rn",
(addop SP:$Rd, GPRsp:$Rn, 0),
0b1>;
}
// Recall Rxsp is a RegisterClass containing *just* xsp.
defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>;
defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>;
//===----------------------------------------------------------------------===//
// Add-subtract (shifted register) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS
//===-------------------------------
// 1. The "shifed register" operands. Shared with logical insts.
//===-------------------------------
multiclass shift_operands<string prefix, string form> {
def _asmoperand_i32 : AsmOperandClass {
let Name = "Shift" # form # "i32";
let RenderMethod = "addShiftOperands";
let PredicateMethod = "isShift<A64SE::" # form # ", false>";
let DiagnosticType = "AddSubRegShift32";
}
// Note that the operand type is intentionally i64 because the DAGCombiner
// puts these into a canonical form.
def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # "_asmoperand_i32");
let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
let DecoderMethod = "Decode32BitShiftOperand";
}
def _asmoperand_i64 : AsmOperandClass {
let Name = "Shift" # form # "i64";
let RenderMethod = "addShiftOperands";
let PredicateMethod = "isShift<A64SE::" # form # ", true>";
let DiagnosticType = "AddSubRegShift64";
}
def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # "_asmoperand_i64");
let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
}
}
defm lsl_operand : shift_operands<"lsl_operand", "LSL">;
defm lsr_operand : shift_operands<"lsr_operand", "LSR">;
defm asr_operand : shift_operands<"asr_operand", "ASR">;
// Not used for add/sub, but defined here for completeness. The "logical
// (shifted register)" instructions *do* have an ROR variant.
defm ror_operand : shift_operands<"ror_operand", "ROR">;
//===-------------------------------
// 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions.
//===-------------------------------
// N.b. the commutable parameter is just !N. It will be first against the wall
// when the revolution comes.
multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR, list<Register> defs> {
let isCommutable = commutable, Defs = defs in {
def _lsl : A64I_addsubshift<sf, op, s, 0b00,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set GPR:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_addsubshift<sf, op, s, 0b01,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_addsubshift<sf, op, s, 0b10,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable,
string asmop, SDPatternOperator opfrag,
list<Register> defs> {
defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s,
commutable, asmop, opfrag, i64, GPR64, defs>;
defm www : addsub_shifts<prefix # "www", 0b0, op, s,
commutable, asmop, opfrag, i32, GPR32, defs>;
}
defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>;
defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>;
defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>;
defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>;
//===-------------------------------
// 1. The NEG/NEGS aliases
//===-------------------------------
multiclass neg_alias<Instruction INST, RegisterClass GPR, Register ZR,
ValueType ty, Operand shift_operand, SDNode shiftop> {
def : InstAlias<"neg $Rd, $Rm, $Imm6",
(INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
def : Pat<(sub 0, (shiftop ty:$Rm, shift_operand:$Imm6)),
(INST ZR, $Rm, shift_operand:$Imm6)>;
}
defm : neg_alias<SUBwww_lsl, GPR32, WZR, i32, lsl_operand_i32, shl>;
defm : neg_alias<SUBwww_lsr, GPR32, WZR, i32, lsr_operand_i32, srl>;
defm : neg_alias<SUBwww_asr, GPR32, WZR, i32, asr_operand_i32, sra>;
def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
def : Pat<(sub 0, i32:$Rm), (SUBwww_lsl WZR, $Rm, 0)>;
defm : neg_alias<SUBxxx_lsl, GPR64, XZR, i64, lsl_operand_i64, shl>;
defm : neg_alias<SUBxxx_lsr, GPR64, XZR, i64, lsr_operand_i64, srl>;
defm : neg_alias<SUBxxx_asr, GPR64, XZR, i64, asr_operand_i64, sra>;
def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
def : Pat<(sub 0, i64:$Rm), (SUBxxx_lsl XZR, $Rm, 0)>;
// NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to
// be involved.
class negs_alias<Instruction INST, RegisterClass GPR,
Register ZR, Operand shift_operand, SDNode shiftop>
: InstAlias<"negs $Rd, $Rm, $Imm6",
(INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>;
def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
//===-------------------------------
// 1. The CMP/CMN aliases
//===-------------------------------
multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR> {
let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in {
def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_addsubshift<sf, op, 0b1, 0b10,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, i32, GPR32>;
defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, i64, GPR64>;
defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, i32, GPR32>;
defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, i64, GPR64>;
//===----------------------------------------------------------------------===//
// Add-subtract (with carry) instructions
//===----------------------------------------------------------------------===//
// Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS
multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> {
let Uses = [NZCV] in {
def www : A64I_addsubcarry<0b0, op, s, 0b000000,
(outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[], NoItinerary>;
def xxx : A64I_addsubcarry<0b1, op, s, 0b000000,
(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[], NoItinerary>;
}
}
let isCommutable = 1 in {
defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">;
}
defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">;
let Defs = [NZCV] in {
let isCommutable = 1 in {
defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">;
}
defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">;
}
def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>;
def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>;
def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
// Note that adde and sube can form a chain longer than two (e.g. for 256-bit
// addition). So the flag-setting instructions are appropriate.
def : Pat<(adde i32:$Rn, i32:$Rm), (ADCSwww $Rn, $Rm)>;
def : Pat<(adde i64:$Rn, i64:$Rm), (ADCSxxx $Rn, $Rm)>;
def : Pat<(sube i32:$Rn, i32:$Rm), (SBCSwww $Rn, $Rm)>;
def : Pat<(sube i64:$Rn, i64:$Rm), (SBCSxxx $Rn, $Rm)>;
//===----------------------------------------------------------------------===//
// Bitfield
//===----------------------------------------------------------------------===//
// Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL,
// UBFIZ, UBFX
// Because of the rather complicated nearly-overlapping aliases, the decoding of
// this range of instructions is handled manually. The architectural
// instructions are BFM, SBFM and UBFM but a disassembler should never produce
// these.
//
// In the end, the best option was to use BFM instructions for decoding under
// almost all circumstances, but to create aliasing *Instructions* for each of
// the canonical forms and specify a completely custom decoder which would
// substitute the correct MCInst as needed.
//
// This also simplifies instruction selection, parsing etc because the MCInsts
// have a shape that's closer to their use in code.
//===-------------------------------
// 1. The architectural BFM instructions
//===-------------------------------
def uimm5_asmoperand : AsmOperandClass {
let Name = "UImm5";
let PredicateMethod = "isUImm<5>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm5";
}
def uimm6_asmoperand : AsmOperandClass {
let Name = "UImm6";
let PredicateMethod = "isUImm<6>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm6";
}
def bitfield32_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> {
let ParserMatchClass = uimm5_asmoperand;
let DecoderMethod = "DecodeBitfield32ImmOperand";
}
def bitfield64_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
let ParserMatchClass = uimm6_asmoperand;
// Default decoder works in 64-bit case: the 6-bit field can take any value.
}
multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
}
}
defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">;
defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">;
// BFM instructions modify the destination register rather than defining it
// completely.
def BFMwwii :
A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
"bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
let Constraints = "$src = $Rd";
}
def BFMxxii :
A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
"bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
let Constraints = "$src = $Rd";
}
//===-------------------------------
// 2. Extend aliases to 64-bit dest
//===-------------------------------
// Unfortunately the extensions that end up as 64-bits cannot be handled by an
// instruction alias: their syntax is (for example) "SXTB x0, w0", which needs
// to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is
// not capable of such a map as far as I'm aware
// Note that these instructions are strictly more specific than the
// BFM ones (in ImmR) so they can handle their own decoding.
class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, ValueType dty,
string asmop, bits<6> imms, dag pattern>
: A64I_bitfield<sf, opc, sf,
(outs GPRDest:$Rd), (ins GPR32:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"),
[(set dty:$Rd, pattern)], NoItinerary> {
let ImmR = 0b000000;
let ImmS = imms;
}
// Signed extensions
def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtb", 7,
(sext_inreg (anyext i32:$Rn), i8)>;
def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxtb", 7,
(sext_inreg i32:$Rn, i8)>;
def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxth", 15,
(sext_inreg (anyext i32:$Rn), i16)>;
def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxth", 15,
(sext_inreg i32:$Rn, i16)>;
def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtw", 31, (sext i32:$Rn)>;
// Unsigned extensions
def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxtb", 7,
(and i32:$Rn, 255)>;
def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxth", 15,
(and i32:$Rn, 65535)>;
// The 64-bit unsigned variants are not strictly architectural but recommended
// for consistency.
let isAsmParserOnly = 1 in {
def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxtb", 7,
(and (anyext i32:$Rn), 255)>;
def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxth", 15,
(and (anyext i32:$Rn), 65535)>;
}
// Extra patterns for when the source register is actually 64-bits
// too. There's no architectural difference here, it's just LLVM
// shinanigans. There's no need for equivalent zero-extension patterns
// because they'll already be caught by logical (immediate) matching.
def : Pat<(sext_inreg i64:$Rn, i8),
(SXTBxw (EXTRACT_SUBREG $Rn, sub_32))>;
def : Pat<(sext_inreg i64:$Rn, i16),
(SXTHxw (EXTRACT_SUBREG $Rn, sub_32))>;
def : Pat<(sext_inreg i64:$Rn, i32),
(SXTWxw (EXTRACT_SUBREG $Rn, sub_32))>;
//===-------------------------------
// 3. Aliases for ASR and LSR (the simple shifts)
//===-------------------------------
// These also handle their own decoding because ImmS being set makes
// them take precedence over BFM.
multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> {
def wwi : A64I_bitfield<0b0, opc, 0b0,
(outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
[(set i32:$Rd, (opnode i32:$Rn, bitfield32_imm:$ImmR))],
NoItinerary> {
let ImmS = 31;
}
def xxi : A64I_bitfield<0b1, opc, 0b1,
(outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
[(set i64:$Rd, (opnode i64:$Rn, bitfield64_imm:$ImmR))],
NoItinerary> {
let ImmS = 63;
}
}
defm ASR : A64I_shift<0b00, "asr", sra>;
defm LSR : A64I_shift<0b10, "lsr", srl>;
//===-------------------------------
// 4. Aliases for LSL
//===-------------------------------
// Unfortunately LSL and subsequent aliases are much more complicated. We need
// to be able to say certain output instruction fields depend in a complex
// manner on combinations of input assembly fields).
//
// MIOperandInfo *might* have been able to do it, but at the cost of
// significantly more C++ code.
// N.b. contrary to usual practice these operands store the shift rather than
// the machine bits in an MCInst. The complexity overhead of consistency
// outweighed the benefits in this case (custom asmparser, printer and selection
// vs custom encoder).
def bitfield32_lsl_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let ParserMatchClass = uimm5_asmoperand;
let EncoderMethod = "getBitfield32LSLOpValue";
}
def bitfield64_lsl_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let ParserMatchClass = uimm6_asmoperand;
let EncoderMethod = "getBitfield64LSLOpValue";
}
class A64I_bitfield_lsl<bit sf, RegisterClass GPR, ValueType ty,
Operand operand>
: A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm),
"lsl\t$Rd, $Rn, $FullImm",
[(set ty:$Rd, (shl ty:$Rn, operand:$FullImm))],
NoItinerary> {
bits<12> FullImm;
let ImmR = FullImm{5-0};
let ImmS = FullImm{11-6};
// No disassembler allowed because it would overlap with BFM which does the
// actual work.
let isAsmParserOnly = 1;
}
def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, i32, bitfield32_lsl_imm>;
def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, i64, bitfield64_lsl_imm>;
//===-------------------------------
// 5. Aliases for bitfield extract instructions
//===-------------------------------
def bfx32_width_asmoperand : AsmOperandClass {
let Name = "BFX32Width";
let PredicateMethod = "isBitfieldWidth<32>";
let RenderMethod = "addBFXWidthOperands";
let DiagnosticType = "Width32";
}
def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> {
let PrintMethod = "printBFXWidthOperand";
let ParserMatchClass = bfx32_width_asmoperand;
}
def bfx64_width_asmoperand : AsmOperandClass {
let Name = "BFX64Width";
let PredicateMethod = "isBitfieldWidth<64>";
let RenderMethod = "addBFXWidthOperands";
let DiagnosticType = "Width64";
}
def bfx64_width : Operand<i64> {
let PrintMethod = "printBFXWidthOperand";
let ParserMatchClass = bfx64_width_asmoperand;
}
multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[(set i32:$Rd, (op i32:$Rn, imm:$ImmR, imm:$ImmS))],
NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[(set i64:$Rd, (op i64:$Rn, imm:$ImmR, imm:$ImmS))],
NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
}
defm SBFX : A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>;
defm UBFX : A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>;
// Again, variants based on BFM modify Rd so need it as an input too.
def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
"bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
"bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
// SBFX instructions can do a 1-instruction sign-extension of boolean values.
def : Pat<(sext_inreg i64:$Rn, i1), (SBFXxxii $Rn, 0, 0)>;
def : Pat<(sext_inreg i32:$Rn, i1), (SBFXwwii $Rn, 0, 0)>;
def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)),
(SBFXxxii (SUBREG_TO_REG (i64 0), $Rn, sub_32), 0, 0)>;
// UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
// use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
def : Pat<(zext i32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
sub_32)>;
//===-------------------------------
// 6. Aliases for bitfield insert instructions
//===-------------------------------
def bfi32_lsb_asmoperand : AsmOperandClass {
let Name = "BFI32LSB";
let PredicateMethod = "isUImm<5>";
let RenderMethod = "addBFILSBOperands<32>";
let DiagnosticType = "UImm5";
}
def bfi32_lsb : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let PrintMethod = "printBFILSBOperand<32>";
let ParserMatchClass = bfi32_lsb_asmoperand;
}
def bfi64_lsb_asmoperand : AsmOperandClass {
let Name = "BFI64LSB";
let PredicateMethod = "isUImm<6>";
let RenderMethod = "addBFILSBOperands<64>";
let DiagnosticType = "UImm6";
}
def bfi64_lsb : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let PrintMethod = "printBFILSBOperand<64>";
let ParserMatchClass = bfi64_lsb_asmoperand;
}
// Width verification is performed during conversion so width operand can be
// shared between 32/64-bit cases. Still needed for the print method though
// because ImmR encodes "width - 1".
def bfi32_width_asmoperand : AsmOperandClass {
let Name = "BFI32Width";
let PredicateMethod = "isBitfieldWidth<32>";
let RenderMethod = "addBFIWidthOperands";
let DiagnosticType = "Width32";
}
def bfi32_width : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> {
let PrintMethod = "printBFIWidthOperand";
let ParserMatchClass = bfi32_width_asmoperand;
}
def bfi64_width_asmoperand : AsmOperandClass {
let Name = "BFI64Width";
let PredicateMethod = "isBitfieldWidth<64>";
let RenderMethod = "addBFIWidthOperands";
let DiagnosticType = "Width64";
}
def bfi64_width : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> {
let PrintMethod = "printBFIWidthOperand";
let ParserMatchClass = bfi64_width_asmoperand;
}
multiclass A64I_bitfield_insert<bits<2> opc, string asmop> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
}
defm SBFIZ : A64I_bitfield_insert<0b00, "sbfiz">;
defm UBFIZ : A64I_bitfield_insert<0b10, "ubfiz">;
def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
"bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
"bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
//===----------------------------------------------------------------------===//
// Compare and branch (immediate)
//===----------------------------------------------------------------------===//
// Contains: CBZ, CBNZ
class label_asmoperand<int width, int scale> : AsmOperandClass {
let Name = "Label" # width # "_" # scale;
let PredicateMethod = "isLabel<" # width # "," # scale # ">";
let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">";
let DiagnosticType = "Label";
}
def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>;
// All conditional immediate branches are the same really: 19 signed bits scaled
// by the instruction-size (4).
def bcc_target : Operand<OtherVT> {
// This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
let ParserMatchClass = label_wid19_scal4_asmoperand;
let PrintMethod = "printLabelOperand<19, 4>";
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>";
let OperandType = "OPERAND_PCREL";
}
multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> {
let isBranch = 1, isTerminator = 1 in {
def x : A64I_cmpbr<0b1, op,
(outs),
(ins GPR64:$Rt, bcc_target:$Label),
!strconcat(asmop,"\t$Rt, $Label"),
[(A64br_cc (A64cmp i64:$Rt, 0), SETOP, bb:$Label)],
NoItinerary>;
def w : A64I_cmpbr<0b0, op,
(outs),
(ins GPR32:$Rt, bcc_target:$Label),
!strconcat(asmop,"\t$Rt, $Label"),
[(A64br_cc (A64cmp i32:$Rt, 0), SETOP, bb:$Label)],
NoItinerary>;
}
}
defm CBZ : cmpbr_sizes<0b0, "cbz", ImmLeaf<i32, [{
return Imm == A64CC::EQ;
}]> >;
defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{
return Imm == A64CC::NE;
}]> >;
//===----------------------------------------------------------------------===//
// Conditional branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: B.cc
def cond_code_asmoperand : AsmOperandClass {
let Name = "CondCode";
let DiagnosticType = "CondCode";
}
def cond_code : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm <= 15;
}]> {
let PrintMethod = "printCondCodeOperand";
let ParserMatchClass = cond_code_asmoperand;
}
def Bcc : A64I_condbr<0b0, 0b0, (outs),
(ins cond_code:$Cond, bcc_target:$Label),
"b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)],
NoItinerary> {
let Uses = [NZCV];
let isBranch = 1;
let isTerminator = 1;
}
//===----------------------------------------------------------------------===//
// Conditional compare (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: CCMN, CCMP
def uimm4_asmoperand : AsmOperandClass {
let Name = "UImm4";
let PredicateMethod = "isUImm<4>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm4";
}
def uimm4 : Operand<i32> {
let ParserMatchClass = uimm4_asmoperand;
}
def uimm5 : Operand<i32> {
let ParserMatchClass = uimm5_asmoperand;
}
// The only difference between this operand and the one for instructions like
// B.cc is that it's parsed manually. The other get parsed implicitly as part of
// the mnemonic handling.
def cond_code_op_asmoperand : AsmOperandClass {
let Name = "CondCodeOp";
let RenderMethod = "addCondCodeOperands";
let PredicateMethod = "isCondCode";
let ParserMethod = "ParseCondCodeOperand";
let DiagnosticType = "CondCode";
}
def cond_code_op : Operand<i32> {
let PrintMethod = "printCondCodeOperand";
let ParserMatchClass = cond_code_op_asmoperand;
}
class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop>
: A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs),
(ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">;
def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">;
def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">;
def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional compare (register) instructions
//===----------------------------------------------------------------------===//
// Contains: CCMN, CCMP
class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop>
: A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1,
(outs),
(ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">;
def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">;
def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">;
def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional select instructions
//===----------------------------------------------------------------------===//
// Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG
// Condition code which is encoded as the inversion (semantically rather than
// bitwise) in the instruction.
def inv_cond_code_op_asmoperand : AsmOperandClass {
let Name = "InvCondCodeOp";
let RenderMethod = "addInvCondCodeOperands";
let PredicateMethod = "isCondCode";
let ParserMethod = "ParseCondCodeOperand";
let DiagnosticType = "CondCode";
}
def inv_cond_code_op : Operand<i32> {
let ParserMatchClass = inv_cond_code_op_asmoperand;
}
// Having a separate operand for the selectable use-case is debatable, but gives
// consistency with cond_code.
def inv_cond_XFORM : SDNodeXForm<imm, [{
A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue());
return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32);
}]>;
def inv_cond_code
: ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>;
multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop,
SDPatternOperator select> {
let Uses = [NZCV] in {
def wwwc : A64I_condsel<0b0, op, 0b0, op2,
(outs GPR32:$Rd),
(ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
[(set i32:$Rd, (select i32:$Rn, i32:$Rm))],
NoItinerary>;
def xxxc : A64I_condsel<0b1, op, 0b0, op2,
(outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
[(set i64:$Rd, (select i64:$Rn, i64:$Rm))],
NoItinerary>;
}
}
def simple_select
: PatFrag<(ops node:$lhs, node:$rhs),
(A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>;
class complex_select<SDPatternOperator opnode>
: PatFrag<(ops node:$lhs, node:$rhs),
(A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>;
defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>;
defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc",
complex_select<PatFrag<(ops node:$val),
(add node:$val, 1)>>>;
defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>;
defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>;
// Now the instruction aliases, which fit nicely into LLVM's model:
def : InstAlias<"cset $Rd, $Cond",
(CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"cset $Rd, $Cond",
(CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"csetm $Rd, $Cond",
(CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"csetm $Rd, $Cond",
(CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinc $Rd, $Rn, $Cond",
(CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinc $Rd, $Rn, $Cond",
(CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinv $Rd, $Rn, $Cond",
(CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinv $Rd, $Rn, $Cond",
(CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cneg $Rd, $Rn, $Cond",
(CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cneg $Rd, $Rn, $Cond",
(CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
// Finally some helper patterns.
// For CSET (a.k.a. zero-extension of icmp)
def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
(CSINCwwwc WZR, WZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
(CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
(CSINCxxxc XZR, XZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
(CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>;
// For CSETM (a.k.a. sign-extension of icmp)
def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
(CSINVwwwc WZR, WZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
(CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
(CSINVxxxc XZR, XZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
(CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>;
// CINC, CINV and CNEG get dealt with automatically, which leaves the issue of
// commutativity. The instructions are to complex for isCommutable to be used,
// so we have to create the patterns manually:
// No commutable pattern for CSEL since the commuted version is isomorphic.
// CSINC
def :Pat<(A64select_cc NZCV, (add i32:$Rm, 1), i32:$Rn, inv_cond_code:$Cond),
(CSINCwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (add i64:$Rm, 1), i64:$Rn, inv_cond_code:$Cond),
(CSINCxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
// CSINV
def :Pat<(A64select_cc NZCV, (not i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
(CSINVwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (not i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
(CSINVxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
// CSNEG
def :Pat<(A64select_cc NZCV, (ineg i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
(CSNEGwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (ineg i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
(CSNEGxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
//===----------------------------------------------------------------------===//
// Data Processing (1 source) instructions
//===----------------------------------------------------------------------===//
// Contains: RBIT, REV16, REV, REV32, CLZ, CLS.
// We define an unary operator which always fails. We will use this to
// define unary operators that cannot be matched.
class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop,
list<dag> patterns, RegisterClass GPRrc,
InstrItinClass itin>:
A64I_dp_1src<sf,
0,
0b00000,
opcode,
!strconcat(asmop, "\t$Rd, $Rn"),
(outs GPRrc:$Rd),
(ins GPRrc:$Rn),
patterns,
itin>;
multiclass A64I_dp_1src <bits<6> opcode, string asmop> {
let hasSideEffects = 0 in {
def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>;
def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>;
}
}
defm RBIT : A64I_dp_1src<0b000000, "rbit">;
defm CLS : A64I_dp_1src<0b000101, "cls">;
defm CLZ : A64I_dp_1src<0b000100, "clz">;
def : Pat<(ctlz i32:$Rn), (CLZww $Rn)>;
def : Pat<(ctlz i64:$Rn), (CLZxx $Rn)>;
def : Pat<(ctlz_zero_undef i32:$Rn), (CLZww $Rn)>;
def : Pat<(ctlz_zero_undef i64:$Rn), (CLZxx $Rn)>;
def : Pat<(cttz i32:$Rn), (CLZww (RBITww $Rn))>;
def : Pat<(cttz i64:$Rn), (CLZxx (RBITxx $Rn))>;
def : Pat<(cttz_zero_undef i32:$Rn), (CLZww (RBITww $Rn))>;
def : Pat<(cttz_zero_undef i64:$Rn), (CLZxx (RBITxx $Rn))>;
def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev",
[(set i32:$Rd, (bswap i32:$Rn))],
GPR32, NoItinerary>;
def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev",
[(set i64:$Rd, (bswap i64:$Rn))],
GPR64, NoItinerary>;
def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32",
[(set i64:$Rd, (bswap (rotr i64:$Rn, (i64 32))))],
GPR64, NoItinerary>;
def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16",
[(set i32:$Rd, (bswap (rotr i32:$Rn, (i64 16))))],
GPR32,
NoItinerary>;
def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>;
//===----------------------------------------------------------------------===//
// Data Processing (2 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL,
// LSR, ASR, ROR
class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns,
RegisterClass GPRsp,
InstrItinClass itin>:
A64I_dp_2src<sf,
opcode,
0,
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
(outs GPRsp:$Rd),
(ins GPRsp:$Rn, GPRsp:$Rm),
patterns,
itin>;
multiclass dp_2src_crc<bit c, string asmop> {
def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0},
!strconcat(asmop, "b"), [], GPR32, NoItinerary>;
def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1},
!strconcat(asmop, "h"), [], GPR32, NoItinerary>;
def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0},
!strconcat(asmop, "w"), [], GPR32, NoItinerary>;
def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0,
!strconcat(asmop, "x\t$Rd, $Rn, $Rm"),
(outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [],
NoItinerary>;
}
multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> {
def www : dp_2src_impl<0b0,
opcode,
asmop,
[(set i32:$Rd,
(op i32:$Rn, (i64 (zext i32:$Rm))))],
GPR32,
NoItinerary>;
def xxx : dp_2src_impl<0b1,
opcode,
asmop,
[(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
GPR64,
NoItinerary>;
}
multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> {
def www : dp_2src_impl<0b0,
opcode,
asmop,
[(set i32:$Rd, (op i32:$Rn, i32:$Rm))],
GPR32,
NoItinerary>;
def xxx : dp_2src_impl<0b1,
opcode,
asmop,
[(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
GPR64,
NoItinerary>;
}
// Here we define the data processing 2 source instructions.
defm CRC32 : dp_2src_crc<0b0, "crc32">;
defm CRC32C : dp_2src_crc<0b1, "crc32c">;
defm UDIV : dp_2src<0b000010, "udiv", udiv>;
defm SDIV : dp_2src<0b000011, "sdiv", sdiv>;
defm LSLV : dp_2src_zext<0b001000, "lsl", shl>;
defm LSRV : dp_2src_zext<0b001001, "lsr", srl>;
defm ASRV : dp_2src_zext<0b001010, "asr", sra>;
defm RORV : dp_2src_zext<0b001011, "ror", rotr>;
// Extra patterns for an incoming 64-bit value for a 32-bit
// operation. Since the LLVM operations are undefined (as in C) if the
// RHS is out of range, it's perfectly permissible to discard the high
// bits of the GPR64.
def : Pat<(shl i32:$Rn, i64:$Rm),
(LSLVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(srl i32:$Rn, i64:$Rm),
(LSRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(sra i32:$Rn, i64:$Rm),
(ASRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(rotr i32:$Rn, i64:$Rm),
(RORVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
// Here we define the aliases for the data processing 2 source instructions.
def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">;
def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">;
def ASR_menmonic : MnemonicAlias<"asrv", "asr">;
def ROR_menmonic : MnemonicAlias<"rorv", "ror">;
//===----------------------------------------------------------------------===//
// Data Processing (3 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH
// + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL
class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg,
ValueType AccTy, RegisterClass SrcReg,
string asmop, dag pattern>
: A64I_dp3<sf, opcode,
(outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"),
[(set AccTy:$Rd, pattern)], NoItinerary> {
RegisterClass AccGPR = AccReg;
RegisterClass SrcGPR = SrcReg;
}
def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, i32, GPR32, "madd",
(add i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, i64, GPR64, "madd",
(add i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, i32, GPR32, "msub",
(sub i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, i64, GPR64, "msub",
(sub i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, i64, GPR32, "smaddl",
(add i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, i64, GPR32, "smsubl",
(sub i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, i64, GPR32, "umaddl",
(add i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, i64, GPR32, "umsubl",
(sub i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in {
def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm),
"umulh\t$Rd, $Rn, $Rm",
[(set i64:$Rd, (mulhu i64:$Rn, i64:$Rm))],
NoItinerary>;
def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm),
"smulh\t$Rd, $Rn, $Rm",
[(set i64:$Rd, (mulhs i64:$Rn, i64:$Rm))],
NoItinerary>;
}
multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST,
Register ZR, dag pattern> {
def : InstAlias<asmop # " $Rd, $Rn, $Rm",
(INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
def : Pat<pattern, (INST $Rn, $Rm, ZR)>;
}
defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul i32:$Rn, i32:$Rm)>;
defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul i64:$Rn, i64:$Rm)>;
defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR,
(sub 0, (mul i32:$Rn, i32:$Rm))>;
defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR,
(sub 0, (mul i64:$Rn, i64:$Rm))>;
defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR,
(mul (i64 (sext i32:$Rn)), (sext i32:$Rm))>;
defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR,
(sub 0, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR,
(mul (i64 (zext i32:$Rn)), (zext i32:$Rm))>;
defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR,
(sub 0, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
//===----------------------------------------------------------------------===//
// Exception generation
//===----------------------------------------------------------------------===//
// Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3
def uimm16_asmoperand : AsmOperandClass {
let Name = "UImm16";
let PredicateMethod = "isUImm<16>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm16";
}
def uimm16 : Operand<i32> {
let ParserMatchClass = uimm16_asmoperand;
}
class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop>
: A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16),
!strconcat(asmop, "\t$UImm16"), [], NoItinerary> {
let isBranch = 1;
let isTerminator = 1;
}
def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">;
def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">;
def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">;
def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">;
def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">;
def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">;
def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">;
def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">;
// The immediate is optional for the DCPS instructions, defaulting to 0.
def : InstAlias<"dcps1", (DCPS1i 0)>;
def : InstAlias<"dcps2", (DCPS2i 0)>;
def : InstAlias<"dcps3", (DCPS3i 0)>;
//===----------------------------------------------------------------------===//
// Extract (immediate)
//===----------------------------------------------------------------------===//
// Contains: EXTR + alias ROR
def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0,
(outs GPR32:$Rd),
(ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB),
"extr\t$Rd, $Rn, $Rm, $LSB",
[(set i32:$Rd,
(A64Extr i32:$Rn, i32:$Rm, imm:$LSB))],
NoItinerary>;
def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1,
(outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB),
"extr\t$Rd, $Rn, $Rm, $LSB",
[(set i64:$Rd,
(A64Extr i64:$Rn, i64:$Rm, imm:$LSB))],
NoItinerary>;
def : InstAlias<"ror $Rd, $Rs, $LSB",
(EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>;
def : InstAlias<"ror $Rd, $Rs, $LSB",
(EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>;
def : Pat<(rotr i32:$Rn, bitfield32_imm:$LSB),
(EXTRwwwi $Rn, $Rn, bitfield32_imm:$LSB)>;
def : Pat<(rotr i64:$Rn, bitfield64_imm:$LSB),
(EXTRxxxi $Rn, $Rn, bitfield64_imm:$LSB)>;
//===----------------------------------------------------------------------===//
// Floating-point compare instructions
//===----------------------------------------------------------------------===//
// Contains: FCMP, FCMPE
def fpzero_asmoperand : AsmOperandClass {
let Name = "FPZero";
let ParserMethod = "ParseFPImmOperand";
let DiagnosticType = "FPZero";
}
def fpz32 : Operand<f32>,
ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> {
let ParserMatchClass = fpzero_asmoperand;
let PrintMethod = "printFPZeroOperand";
let DecoderMethod = "DecodeFPZeroOperand";
}
def fpz64 : Operand<f64>,
ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
let ParserMatchClass = fpzero_asmoperand;
let PrintMethod = "printFPZeroOperand";
let DecoderMethod = "DecodeFPZeroOperand";
}
multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
(outs), ins, "fcmp\t$Rn, $Rm", [pattern],
NoItinerary> {
let Defs = [NZCV];
}
def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0},
(outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary> {
let Defs = [NZCV];
}
}
defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm),
(set NZCV, (A64cmp f32:$Rn, f32:$Rm))>;
defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm),
(set NZCV, (A64cmp f64:$Rn, f64:$Rm))>;
// What would be Rm should be written as 0; note that even though it's called
// "$Rm" here to fit in with the InstrFormats, it's actually an immediate.
defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm),
(set NZCV, (A64cmp f32:$Rn, fpz32:$Rm))>;
defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm),
(set NZCV, (A64cmp f64:$Rn, fpz64:$Rm))>;
//===----------------------------------------------------------------------===//
// Floating-point conditional compare instructions
//===----------------------------------------------------------------------===//
// Contains: FCCMP, FCCMPE
class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop>
: A64I_fpccmp<0b0, 0b0, type, op,
(outs),
(ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">;
def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">;
def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">;
def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">;
//===----------------------------------------------------------------------===//
// Floating-point conditional select instructions
//===----------------------------------------------------------------------===//
// Contains: FCSEL
let Uses = [NZCV] in {
def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd),
(ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond),
"fcsel\t$Rd, $Rn, $Rm, $Cond",
[(set f32:$Rd,
(simple_select f32:$Rn, f32:$Rm))],
NoItinerary>;
def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd),
(ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond),
"fcsel\t$Rd, $Rn, $Rm, $Cond",
[(set f64:$Rd,
(simple_select f64:$Rn, f64:$Rm))],
NoItinerary>;
}
//===----------------------------------------------------------------------===//
// Floating-point data-processing (1 source)
//===----------------------------------------------------------------------===//
// Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI].
def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val),
[{ (void)N; return false; }]>;
// First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d"
// syntax. Default to no pattern because most are odd enough not to have one.
multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr,
SDPatternOperator opnode = FPNoUnop> {
def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn),
!strconcat(asmstr, "\t$Rd, $Rn"),
[(set f32:$Rd, (opnode f32:$Rn))],
NoItinerary>;
def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn),
!strconcat(asmstr, "\t$Rd, $Rn"),
[(set f64:$Rd, (opnode f64:$Rn))],
NoItinerary>;
}
defm FMOV : A64I_fpdp1sizes<0b000000, "fmov">;
defm FABS : A64I_fpdp1sizes<0b000001, "fabs", fabs>;
defm FNEG : A64I_fpdp1sizes<0b000010, "fneg", fneg>;
defm FSQRT : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>;
defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">;
defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>;
defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>;
defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>;
defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">;
defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>;
defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>;
// The FCVT instrucitons have different source and destination register-types,
// but the fields are uniform everywhere a D-register (say) crops up. Package
// this information in a Record.
class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> {
RegisterClass Class = rc;
ValueType VT = vt;
bit t1 = fld{1};
bit t0 = fld{0};
}
def FCVT16 : FCVTRegType<FPR16, 0b11, f16>;
def FCVT32 : FCVTRegType<FPR32, 0b00, f32>;
def FCVT64 : FCVTRegType<FPR64, 0b01, f64>;
class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode>
: A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0},
{0,0,0,1, DestReg.t1, DestReg.t0},
(outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn),
"fcvt\t$Rd, $Rn",
[(set DestReg.VT:$Rd, (opnode SrcReg.VT:$Rn))], NoItinerary>;
def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>;
def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>;
def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>;
def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>;
def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>;
def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>;
//===----------------------------------------------------------------------===//
// Floating-point data-processing (2 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL
def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs),
[{ (void)N; return false; }]>;
multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr,
SDPatternOperator opnode> {
def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode,
(outs FPR32:$Rd),
(ins FPR32:$Rn, FPR32:$Rm),
!strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
[(set f32:$Rd, (opnode f32:$Rn, f32:$Rm))],
NoItinerary>;
def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode,
(outs FPR64:$Rd),
(ins FPR64:$Rn, FPR64:$Rm),
!strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
[(set f64:$Rd, (opnode f64:$Rn, f64:$Rm))],
NoItinerary>;
}
let isCommutable = 1 in {
defm FMUL : A64I_fpdp2sizes<0b0000, "fmul", fmul>;
defm FADD : A64I_fpdp2sizes<0b0010, "fadd", fadd>;
// No patterns for these.
defm FMAX : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>;
defm FMIN : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>;
defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>;
defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>;
defm FNMUL : A64I_fpdp2sizes<0b1000, "fnmul",
PatFrag<(ops node:$lhs, node:$rhs),
(fneg (fmul node:$lhs, node:$rhs))> >;
}
defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>;
defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>;
//===----------------------------------------------------------------------===//
// Floating-point data-processing (3 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: FMADD, FMSUB, FNMADD, FNMSUB
def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma (fneg node:$Rn), node:$Rm, node:$Ra)>;
def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma node:$Rn, node:$Rm, (fneg node:$Ra))>;
def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra))>;
class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT,
bits<2> type, bit o1, bit o0, SDPatternOperator fmakind>
: A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd),
(ins FPR:$Rn, FPR:$Rm, FPR:$Ra),
!strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"),
[(set VT:$Rd, (fmakind VT:$Rn, VT:$Rm, VT:$Ra))],
NoItinerary>;
def FMADDssss : A64I_fpdp3Impl<"fmadd", FPR32, f32, 0b00, 0b0, 0b0, fma>;
def FMSUBssss : A64I_fpdp3Impl<"fmsub", FPR32, f32, 0b00, 0b0, 0b1, fmsub>;
def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>;
def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>;
def FMADDdddd : A64I_fpdp3Impl<"fmadd", FPR64, f64, 0b01, 0b0, 0b0, fma>;
def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
//===----------------------------------------------------------------------===//
// Floating-point <-> fixed-point conversion instructions
//===----------------------------------------------------------------------===//
// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
// #1-#32 allowed, encoded as "64 - <specified imm>
def fixedpos_asmoperand_i32 : AsmOperandClass {
let Name = "CVTFixedPos32";
let RenderMethod = "addCVTFixedPosOperands";
let PredicateMethod = "isCVTFixedPos<32>";
let DiagnosticType = "CVTFixedPos32";
}
// Also encoded as "64 - <specified imm>" but #1-#64 allowed.
def fixedpos_asmoperand_i64 : AsmOperandClass {
let Name = "CVTFixedPos64";
let RenderMethod = "addCVTFixedPosOperands";
let PredicateMethod = "isCVTFixedPos<64>";
let DiagnosticType = "CVTFixedPos64";
}
// We need the cartesian product of f32/f64 i32/i64 operands for
// conversions:
// + Selection needs to use operands of correct floating type
// + Assembly parsing and decoding depend on integer width
class cvtfix_i32_op<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> {
let ParserMatchClass = fixedpos_asmoperand_i32;
let DecoderMethod = "DecodeCVT32FixedPosOperand";
let PrintMethod = "printCVTFixedPosOperand";
}
class cvtfix_i64_op<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> {
let ParserMatchClass = fixedpos_asmoperand_i64;
let PrintMethod = "printCVTFixedPosOperand";
}
// Because of the proliferation of weird operands, it's not really
// worth going for a multiclass here. Oh well.
class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode,
RegisterClass GPR, RegisterClass FPR,
ValueType DstTy, ValueType SrcTy,
Operand scale_op, string asmop, SDNode cvtop>
: A64I_fpfixed<sf, 0b0, type, 0b11, opcode,
(outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale),
!strconcat(asmop, "\t$Rd, $Rn, $Scale"),
[(set DstTy:$Rd, (cvtop (fmul SrcTy:$Rn, scale_op:$Scale)))],
NoItinerary>;
def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, i32, f32,
cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>;
def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, i64, f32,
cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>;
def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, i32, f32,
cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>;
def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, i64, f32,
cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>;
def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, i32, f64,
cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>;
def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, i64, f64,
cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>;
def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, i32, f64,
cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>;
def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, i64, f64,
cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>;
class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode,
RegisterClass FPR, RegisterClass GPR,
ValueType DstTy, ValueType SrcTy,
Operand scale_op, string asmop, SDNode cvtop>
: A64I_fpfixed<sf, 0b0, type, 0b00, opcode,
(outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale),
!strconcat(asmop, "\t$Rd, $Rn, $Scale"),
[(set DstTy:$Rd, (fdiv (cvtop SrcTy:$Rn), scale_op:$Scale))],
NoItinerary>;
def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, f32, i32,
cvtfix_i32_op<f32>, "scvtf", sint_to_fp>;
def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, f32, i64,
cvtfix_i64_op<f32>, "scvtf", sint_to_fp>;
def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, f32, i32,
cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>;
def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, f32, i64,
cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>;
def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, f64, i32,
cvtfix_i32_op<f64>, "scvtf", sint_to_fp>;
def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, f64, i64,
cvtfix_i64_op<f64>, "scvtf", sint_to_fp>;
def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, f64, i32,
cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>;
def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, f64, i64,
cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>;
//===----------------------------------------------------------------------===//
// Floating-point <-> integer conversion instructions
//===----------------------------------------------------------------------===//
// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode,
RegisterClass DestPR, RegisterClass SrcPR, string asmop>
: A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>;
multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> {
def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0},
GPR32, FPR32, asmop # "s">;
def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0},
GPR64, FPR32, asmop # "s">;
def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1},
GPR32, FPR32, asmop # "u">;
def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1},
GPR64, FPR32, asmop # "u">;
def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0},
GPR32, FPR64, asmop # "s">;
def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0},
GPR64, FPR64, asmop # "s">;
def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1},
GPR32, FPR64, asmop # "u">;
def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1},
GPR64, FPR64, asmop # "u">;
}
defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">;
defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">;
defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>;
def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>;
def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>;
def : Pat<(i64 (fp_to_uint f32:$Rn)), (FCVTZUxs $Rn)>;
def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>;
def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>;
def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>;
def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>;
multiclass A64I_inttofp<bit o0, string asmop> {
def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>;
def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>;
def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>;
}
defm S : A64I_inttofp<0b0, "scvtf">;
defm U : A64I_inttofp<0b1, "ucvtf">;
def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>;
def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>;
def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>;
def : Pat<(f64 (sint_to_fp i64:$Rn)), (SCVTFdx $Rn)>;
def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>;
def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>;
def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>;
def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>;
def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>;
def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>;
def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>;
def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>;
def lane1_asmoperand : AsmOperandClass {
let Name = "Lane1";
let RenderMethod = "addImmOperands";
let DiagnosticType = "Lane1";
}
def lane1 : Operand<i32> {
let ParserMatchClass = lane1_asmoperand;
let PrintMethod = "printBareImmOperand";
}
let DecoderMethod = "DecodeFMOVLaneInstruction" in {
def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110,
(outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane),
"fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>;
def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111,
(outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane),
"fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>;
}
def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
(FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
(FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
//===----------------------------------------------------------------------===//
// Floating-point immediate instructions
//===----------------------------------------------------------------------===//
// Contains: FMOV
def fpimm_asmoperand : AsmOperandClass {
let Name = "FMOVImm";
let ParserMethod = "ParseFPImmOperand";
let DiagnosticType = "FPImm";
}
// The MCOperand for these instructions are the encoded 8-bit values.
def SDXF_fpimm : SDNodeXForm<fpimm, [{
uint32_t Imm8;
A64Imms::isFPImm(N->getValueAPF(), Imm8);
return CurDAG->getTargetConstant(Imm8, MVT::i32);
}]>;
class fmov_operand<ValueType FT>
: Operand<i32>,
PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }],
SDXF_fpimm> {
let PrintMethod = "printFPImmOperand";
let ParserMatchClass = fpimm_asmoperand;
}
def fmov32_operand : fmov_operand<f32>;
def fmov64_operand : fmov_operand<f64>;
class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT,
Operand fmov_operand>
: A64I_fpimm<0b0, 0b0, type, 0b00000,
(outs Reg:$Rd),
(ins fmov_operand:$Imm8),
"fmov\t$Rd, $Imm8",
[(set VT:$Rd, fmov_operand:$Imm8)],
NoItinerary>;
def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>;
def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>;
//===----------------------------------------------------------------------===//
// Load-register (literal) instructions
//===----------------------------------------------------------------------===//
// Contains: LDR, LDRSW, PRFM
def ldrlit_label_asmoperand : AsmOperandClass {
let Name = "LoadLitLabel";
let RenderMethod = "addLabelOperands<19, 4>";
let DiagnosticType = "Label";
}
def ldrlit_label : Operand<i64> {
let EncoderMethod = "getLoadLitLabelOpValue";
// This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<19, 4>";
let ParserMatchClass = ldrlit_label_asmoperand;
let OperandType = "OPERAND_PCREL";
}
// Various instructions take an immediate value (which can always be used),
// where some numbers have a symbolic name to make things easier. These operands
// and the associated functions abstract away the differences.
multiclass namedimm<string prefix, string mapper> {
def _asmoperand : AsmOperandClass {
let Name = "NamedImm" # prefix;
let PredicateMethod = "isUImm";
let RenderMethod = "addImmOperands";
let ParserMethod = "ParseNamedImmOperand<" # mapper # ">";
let DiagnosticType = "NamedImm_" # prefix;
}
def _op : Operand<i32> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let PrintMethod = "printNamedImmOperand<" # mapper # ">";
let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">";
}
}
defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">;
class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg,
list<dag> patterns = []>
: A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19),
"ldr\t$Rt, $Imm19", patterns, NoItinerary>;
let mayLoad = 1 in {
def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>;
def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
}
def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
let mayLoad = 1 in {
def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
(outs GPR64:$Rt),
(ins ldrlit_label:$Imm19),
"ldrsw\t$Rt, $Imm19",
[], NoItinerary>;
def PRFM_lit : A64I_LDRlit<0b11, 0b0,
(outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19),
"prfm\t$Rt, $Imm19",
[], NoItinerary>;
}
//===----------------------------------------------------------------------===//
// Load-store exclusive instructions
//===----------------------------------------------------------------------===//
// Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB,
// STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB,
// STLRH, STLR, LDARB, LDARH, LDAR
// Since these instructions have the undefined register bits set to 1 in
// their canonical form, we need a post encoder method to set those bits
// to 1 when encoding these instructions. We do this using the
// fixLoadStoreExclusive function. This function has template parameters:
//
// fixLoadStoreExclusive<int hasRs, int hasRt2>
//
// hasRs indicates that the instruction uses the Rs field, so we won't set
// it to 1 (and the same for Rt2). We don't need template parameters for
// the other register fiels since Rt and Rn are always used.
// This operand parses a GPR64xsp register, followed by an optional immediate
// #0.
def GPR64xsp0_asmoperand : AsmOperandClass {
let Name = "GPR64xsp0";
let PredicateMethod = "isWrappedReg";
let RenderMethod = "addRegOperands";
let ParserMethod = "ParseLSXAddressOperand";
// Diagnostics are provided by ParserMethod
}
def GPR64xsp0 : RegisterOperand<GPR64xsp> {
let ParserMatchClass = GPR64xsp0_asmoperand;
}
//===----------------------------------
// Store-exclusive (releasing & normal)
//===----------------------------------
class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_stn <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rs, $Rt, [$Rn]"),
pat, itin> {
let mayStore = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
}
multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> {
def _byte: A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
def _hword: A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[],NoItinerary>;
def _word: A64I_SRexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_SRexs_impl<0b11, opcode, asmstr,
(outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm STXR : A64I_SRex<"stxr", 0b000, "STXR">;
defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">;
//===----------------------------------
// Loads
//===----------------------------------
class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tn <size,
opcode{2}, 1, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, [$Rn]"),
pat, itin> {
let mayLoad = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
}
multiclass A64I_LRex<string asmstr, bits<3> opcode> {
def _byte: A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _hword: A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _word: A64I_LRexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_LRexs_impl<0b11, opcode, asmstr,
(outs GPR64:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm LDXR : A64I_LRex<"ldxr", 0b000>;
defm LDAXR : A64I_LRex<"ldaxr", 0b001>;
defm LDAR : A64I_LRex<"ldar", 0b101>;
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Acquire || Ordering == SequentiallyConsistent;
}]>;
def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
def atomic_load_acquire_64 : acquiring_load<atomic_load_64>;
def : Pat<(atomic_load_acquire_8 i64:$Rn), (LDAR_byte $Rn)>;
def : Pat<(atomic_load_acquire_16 i64:$Rn), (LDAR_hword $Rn)>;
def : Pat<(atomic_load_acquire_32 i64:$Rn), (LDAR_word $Rn)>;
def : Pat<(atomic_load_acquire_64 i64:$Rn), (LDAR_dword $Rn)>;
//===----------------------------------
// Store-release (no exclusivity)
//===----------------------------------
class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tn <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, [$Rn]"),
pat, itin> {
let mayStore = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
}
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Release || Ordering == SequentiallyConsistent;
}]>;
def atomic_store_release_8 : releasing_store<atomic_store_8>;
def atomic_store_release_16 : releasing_store<atomic_store_16>;
def atomic_store_release_32 : releasing_store<atomic_store_32>;
def atomic_store_release_64 : releasing_store<atomic_store_64>;
multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> {
def _byte: A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_8 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _hword: A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_16 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _word: A64I_SLexs_impl<0b10, opcode, asmstr,
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_32 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _dword: A64I_SLexs_impl<0b11, opcode, asmstr,
(outs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_64 i64:$Rn, i64:$Rt)],
NoItinerary>;
}
defm STLR : A64I_SLex<"stlr", 0b101, "STLR">;
//===----------------------------------
// Store-exclusive pair (releasing & normal)
//===----------------------------------
class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_stt2n <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"),
pat, itin> {
let mayStore = 1;
}
multiclass A64I_SPex<string asmstr, bits<3> opcode> {
def _word: A64I_SPexs_impl<0b10, opcode, asmstr, (outs),
(ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2,
GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs),
(ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2,
GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm STXP : A64I_SPex<"stxp", 0b010>;
defm STLXP : A64I_SPex<"stlxp", 0b011>;
//===----------------------------------
// Load-exclusive pair (acquiring & normal)
//===----------------------------------
class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tt2n <size,
opcode{2}, 1, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, $Rt2, [$Rn]"),
pat, itin>{
let mayLoad = 1;
let DecoderMethod = "DecodeLoadPairExclusiveInstruction";
let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
}
multiclass A64I_LPex<string asmstr, bits<3> opcode> {
def _word: A64I_LPexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rt, GPR32:$Rt2),
(ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_LPexs_impl<0b11, opcode, asmstr,
(outs GPR64:$Rt, GPR64:$Rt2),
(ins GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm LDXP : A64I_LPex<"ldxp", 0b010>;
defm LDAXP : A64I_LPex<"ldaxp", 0b011>;
//===----------------------------------------------------------------------===//
// Load-store register (unscaled immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (register offset) instructions
//===----------------------------------------------------------------------===//
// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (unsigned immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (immediate post-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (immediate pre-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
// Note that patterns are much later on in a completely separate section (they
// need ADRPxi to be defined).
//===-------------------------------
// 1. Various operands needed
//===-------------------------------
//===-------------------------------
// 1.1 Unsigned 12-bit immediate operands
//===-------------------------------
// The addressing mode for these instructions consists of an unsigned 12-bit
// immediate which is scaled by the size of the memory access.
//
// We represent this in the MC layer by two operands:
// 1. A base register.
// 2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]"
// would have '1' in this field.
// This means that separate functions are needed for converting representations
// which *are* aware of the intended access size.
// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
// know the access size via some means. An isolated operand does not have this
// information unless told from here, which means we need separate tablegen
// Operands for each access size. This multiclass takes care of instantiating
// the correct template functions in the rest of the backend.
//===-------------------------------
// 1.1 Unsigned 12-bit immediate operands
//===-------------------------------
multiclass offsets_uimm12<int MemSize, string prefix> {
def uimm12_asmoperand : AsmOperandClass {
let Name = "OffsetUImm12_" # MemSize;
let PredicateMethod = "isOffsetUImm12<" # MemSize # ">";
let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">";
let DiagnosticType = "LoadStoreUImm12_" # MemSize;
}
// Pattern is really no more than an ImmLeaf, but predicated on MemSize which
// complicates things beyond TableGen's ken.
def uimm12 : Operand<i64>,
ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # uimm12_asmoperand);
let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">";
let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">";
}
}
defm byte_ : offsets_uimm12<1, "byte_">;
defm hword_ : offsets_uimm12<2, "hword_">;
defm word_ : offsets_uimm12<4, "word_">;
defm dword_ : offsets_uimm12<8, "dword_">;
defm qword_ : offsets_uimm12<16, "qword_">;
//===-------------------------------
// 1.1 Signed 9-bit immediate operands
//===-------------------------------
// The MCInst is expected to store the bit-wise encoding of the value,
// which amounts to lopping off the extended sign bits.
def SDXF_simm9 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32);
}]>;
def simm9_asmoperand : AsmOperandClass {
let Name = "SImm9";
let PredicateMethod = "isSImm<9>";
let RenderMethod = "addSImmOperands<9>";
let DiagnosticType = "LoadStoreSImm9";
}
def simm9 : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }],
SDXF_simm9> {
let PrintMethod = "printOffsetSImm9Operand";
let ParserMatchClass = simm9_asmoperand;
}
//===-------------------------------
// 1.3 Register offset extensions
//===-------------------------------
// The assembly-syntax for these addressing-modes is:
// [<Xn|SP>, <R><m> {, <extend> {<amount>}}]
//
// The essential semantics are:
// + <amount> is a shift: #<log(transfer size)> or #0
// + <R> can be W or X.
// + If <R> is W, <extend> can be UXTW or SXTW
// + If <R> is X, <extend> can be LSL or SXTX
//
// The trickiest of those constraints is that Rm can be either GPR32 or GPR64,
// which will need separate instructions for LLVM type-consistency. We'll also
// need separate operands, of course.
multiclass regexts<int MemSize, int RmSize, RegisterClass GPR,
string Rm, string prefix> {
def regext_asmoperand : AsmOperandClass {
let Name = "AddrRegExtend_" # MemSize # "_" # Rm;
let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">";
let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">";
let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize;
}
def regext : Operand<i64> {
let PrintMethod
= "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">";
let DecoderMethod = "DecodeAddrRegExtendOperand";
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # regext_asmoperand);
}
}
multiclass regexts_wx<int MemSize, string prefix> {
// Rm is an X-register if LSL or SXTX are specified as the shift.
defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">;
// Rm is a W-register if UXTW or SXTW are specified as the shift.
defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">;
}
defm byte_ : regexts_wx<1, "byte_">;
defm hword_ : regexts_wx<2, "hword_">;
defm word_ : regexts_wx<4, "word_">;
defm dword_ : regexts_wx<8, "dword_">;
defm qword_ : regexts_wx<16, "qword_">;
//===------------------------------
// 2. The instructions themselves.
//===------------------------------
// We have the following instructions to implement:
// | | B | H | W | X |
// |-----------------+-------+-------+-------+--------|
// | unsigned str | STRB | STRH | STR | STR |
// | unsigned ldr | LDRB | LDRH | LDR | LDR |
// | signed ldr to W | LDRSB | LDRSH | - | - |
// | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) |
// This will instantiate the LDR/STR instructions you'd expect to use for an
// unsigned datatype (first two rows above) or floating-point register, which is
// reasonably uniform across all access sizes.
//===------------------------------
// 2.1 Regular instructions
//===------------------------------
// This class covers the basic unsigned or irrelevantly-signed loads and stores,
// to general-purpose and floating-point registers.
class AddrParams<string prefix> {
Operand uimm12 = !cast<Operand>(prefix # "_uimm12");
Operand regextWm = !cast<Operand>(prefix # "_Wm_regext");
Operand regextXm = !cast<Operand>(prefix # "_Xm_regext");
}
def byte_addrparams : AddrParams<"byte">;
def hword_addrparams : AddrParams<"hword">;
def word_addrparams : AddrParams<"word">;
def dword_addrparams : AddrParams<"dword">;
def qword_addrparams : AddrParams<"qword">;
multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v,
bit high_opc, string asmsuffix,
RegisterClass GPR, AddrParams params> {
// Unsigned immediate
def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0},
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12),
"str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1},
(outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
// Register offset (four of these: load/store and Wm/Xm).
let mayLoad = 1 in {
def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0,
(outs GPR:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1,
(outs GPR:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
let mayStore = 1 in {
def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm,
params.regextWm:$Ext),
"str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm,
params.regextXm:$Ext),
"str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
// Unaligned immediate
def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0},
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1},
(outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
"ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
// Post-indexed
def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0},
(outs GPR64xsp:$Rn_wb),
(ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"str" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let mayStore = 1;
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1},
(outs GPR:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
// Pre-indexed
def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0},
(outs GPR64xsp:$Rn_wb),
(ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let mayStore = 1;
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1},
(outs GPR:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
}
// STRB/LDRB: First define the instructions
defm LS8
: A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>;
// STRH/LDRH
defm LS16
: A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>;
// STR/LDR to/from a W register
defm LS32
: A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>;
// STR/LDR to/from an X register
defm LS64
: A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
// STR/LDR to/from a B register
defm LSFP8
: A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
// STR/LDR to/from an H register
defm LSFP16
: A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>;
// STR/LDR to/from an S register
defm LSFP32
: A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>;
// STR/LDR to/from a D register
defm LSFP64
: A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>;
// STR/LDR to/from a Q register
defm LSFP128
: A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
qword_addrparams>;
//===------------------------------
// 2.3 Signed loads
//===------------------------------
// Byte and half-word signed loads can both go into either an X or a W register,
// so it's worth factoring out. Signed word loads don't fit because there is no
// W version.
multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params,
string prefix> {
// Unsigned offset
def w : A64I_LSunsigimm<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>;
def x : A64I_LSunsigimm<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>;
// Register offset
let mayLoad = 1 in {
def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
let mayLoad = 1 in {
// Unaligned offset
def w_U : A64I_LSunalimm<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
def x_U : A64I_LSunalimm<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
// Post-indexed
def w_PostInd : A64I_LSpostind<size, 0b0, 0b11,
(outs GPR32:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def x_PostInd : A64I_LSpostind<size, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
// Pre-indexed
def w_PreInd : A64I_LSpreind<size, 0b0, 0b11,
(outs GPR32:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def x_PreInd : A64I_LSpreind<size, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
} // let mayLoad = 1
}
// LDRSB
defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">;
// LDRSH
defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">;
// LDRSW: load a 32-bit register, sign-extending to 64-bits.
def LDRSWx
: A64I_LSunsigimm<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, word_uimm12:$UImm12),
"ldrsw\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
let mayLoad = 1 in {
def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext),
"ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext),
"ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]",
(LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>;
def LDURSWx
: A64I_LSunalimm<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldursw\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
def LDRSWx_PostInd
: A64I_LSpostind<0b10, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrsw\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrsw\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
//===------------------------------
// 2.4 Prefetch operations
//===------------------------------
def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12),
"prfm\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"prfm $Rt, [$Rn]",
(PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
let mayLoad = 1 in {
def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn,
GPR32:$Rm, dword_Wm_regext:$Ext),
"prfm\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, dword_Xm_regext:$Ext),
"prfm\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
(PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"prfum\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"prfum $Rt, [$Rn]",
(PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
//===----------------------------------------------------------------------===//
// Load-store register (unprivileged) instructions
//===----------------------------------------------------------------------===//
// Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH
// These instructions very much mirror the "unscaled immediate" loads, but since
// there are no floating-point variants we need to split them out into their own
// section to avoid instantiation of "ldtr d0, [sp]" etc.
multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR,
string prefix> {
def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01,
(outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
}
// STTRB/LDTRB: First define the instructions
defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">;
// STTRH/LDTRH
defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">;
// STTR/LDTR to/from a W register
defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">;
// STTR/LDTR to/from an X register
defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">;
// Now a class for the signed instructions that can go to either 32 or 64
// bits...
multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> {
let mayLoad = 1 in {
def w : A64I_LSunpriv<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
def x : A64I_LSunpriv<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
}
def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>;
def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>;
}
// LDTRSB
defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">;
// LDTRSH
defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">;
// And finally LDTRSW which only goes to 64 bits.
def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrsw\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
//===----------------------------------------------------------------------===//
// Load-store register pair (offset) instructions
//===----------------------------------------------------------------------===//
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register pair (post-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STP, LDP, LDPSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register pair (pre-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STP, LDP, LDPSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store non-temporal register pair (offset) instructions
//===----------------------------------------------------------------------===//
// Contains: STNP, LDNP
// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
// know the access size via some means. An isolated operand does not have this
// information unless told from here, which means we need separate tablegen
// Operands for each access size. This multiclass takes care of instantiating
// the correct template functions in the rest of the backend.
multiclass offsets_simm7<string MemSize, string prefix> {
// The bare signed 7-bit immediate is used in post-indexed instructions, but
// because of the scaling performed a generic "simm7" operand isn't
// appropriate here either.
def simm7_asmoperand : AsmOperandClass {
let Name = "SImm7_Scaled" # MemSize;
let PredicateMethod = "isSImm7Scaled<" # MemSize # ">";
let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">";
let DiagnosticType = "LoadStoreSImm7_" # MemSize;
}
def simm7 : Operand<i64> {
let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">";
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand");
}
}
defm word_ : offsets_simm7<"4", "word_">;
defm dword_ : offsets_simm7<"8", "dword_">;
defm qword_ : offsets_simm7<"16", "qword_">;
multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
Operand simm7, string prefix> {
def _STR : A64I_LSPoffset<opc, v, 0b0, (outs),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayStore = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"stp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_STR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _LDR : A64I_LSPoffset<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0,
(outs GPR64xsp:$Rn_wb),
(ins SomeReg:$Rt, SomeReg:$Rt2,
GPR64xsp:$Rn,
simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayStore = 1;
let Constraints = "$Rn = $Rn_wb";
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayStore = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayStore = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"stnp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
}
defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">;
defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
"LSFPPair128">;
def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]",
(LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>;
def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
//===----------------------------------------------------------------------===//
// Logical (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV
multiclass logical_imm_operands<string prefix, string note,
int size, ValueType VT> {
def _asmoperand : AsmOperandClass {
let Name = "LogicalImm" # note # size;
let PredicateMethod = "isLogicalImm" # note # "<" # size # ">";
let RenderMethod = "addLogicalImmOperands<" # size # ">";
let DiagnosticType = "LogicalSecondSource";
}
def _operand
: Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let PrintMethod = "printLogicalImmOperand<" # size # ">";
let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">";
}
}
defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>;
defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>;
// The mov versions only differ in assembly parsing, where they
// exclude values representable with either MOVZ or MOVN.
defm logical_imm32_mov
: logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>;
defm logical_imm64_mov
: logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>;
multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> {
def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd),
(ins GPR32:$Rn, logical_imm32_operand:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[(set i32:$Rd,
(opnode i32:$Rn, logical_imm32_operand:$Imm))],
NoItinerary>;
def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd),
(ins GPR64:$Rn, logical_imm64_operand:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[(set i64:$Rd,
(opnode i64:$Rn, logical_imm64_operand:$Imm))],
NoItinerary>;
}
defm AND : A64I_logimmSizes<0b00, "and", and>;
defm ORR : A64I_logimmSizes<0b01, "orr", or>;
defm EOR : A64I_logimmSizes<0b10, "eor", xor>;
let Defs = [NZCV] in {
def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd),
(ins GPR32:$Rn, logical_imm32_operand:$Imm),
"ands\t$Rd, $Rn, $Imm",
[], NoItinerary>;
def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd),
(ins GPR64:$Rn, logical_imm64_operand:$Imm),
"ands\t$Rd, $Rn, $Imm",
[], NoItinerary>;
}
def : InstAlias<"tst $Rn, $Imm",
(ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>;
def : InstAlias<"tst $Rn, $Imm",
(ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>;
def : InstAlias<"mov $Rd, $Imm",
(ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>;
def : InstAlias<"mov $Rd, $Imm",
(ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>;
//===----------------------------------------------------------------------===//
// Logical (shifted register) instructions
//===----------------------------------------------------------------------===//
// Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV
// Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS"
// behaves differently for unsigned comparisons, so we defensively only allow
// signed or n/a as the operand. In practice "unsigned greater than 0" is "not
// equal to 0" and LLVM gives us this.
def signed_cond : PatLeaf<(cond), [{
return !isUnsignedIntSetCC(N->get());
}]>;
// These instructions share their "shift" operands with add/sub (shifted
// register instructions). They are defined there.
// N.b. the commutable parameter is just !N. It will be first against the wall
// when the revolution comes.
multiclass logical_shifts<string prefix, bit sf, bits<2> opc,
bit N, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR, list<Register> defs> {
let isCommutable = commutable, Defs = defs in {
def _lsl : A64I_logicalshift<sf, opc, 0b00, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, opc, 0b01, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_logicalshift<sf, opc, 0b10, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _ror : A64I_logicalshift<sf, opc, 0b11, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (rotr ty:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable,
string asmop, SDPatternOperator opfrag,
list<Register> defs> {
defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N,
commutable, asmop, opfrag, i64, GPR64, defs>;
defm www : logical_shifts<prefix # "www", 0b0, opc, N,
commutable, asmop, opfrag, i32, GPR32, defs>;
}
defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>;
defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>;
defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>;
defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands",
PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs),
[{ (void)N; return false; }]>,
[NZCV]>;
defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic",
PatFrag<(ops node:$lhs, node:$rhs),
(and node:$lhs, (not node:$rhs))>, []>;
defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn",
PatFrag<(ops node:$lhs, node:$rhs),
(or node:$lhs, (not node:$rhs))>, []>;
defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon",
PatFrag<(ops node:$lhs, node:$rhs),
(xor node:$lhs, (not node:$rhs))>, []>;
defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics",
PatFrag<(ops node:$lhs, node:$rhs),
(and node:$lhs, (not node:$rhs)),
[{ (void)N; return false; }]>,
[NZCV]>;
multiclass tst_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in {
def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (rotr ty:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
}
def _noshift : InstAlias<"tst $Rn, $Rm",
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(A64setcc (and ty:$Rn, ty:$Rm), 0, signed_cond),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
defm TSTxx : tst_shifts<"TSTxx", 0b1, i64, GPR64>;
defm TSTww : tst_shifts<"TSTww", 0b0, i32, GPR32>;
multiclass mvn_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
let isCommutable = 0, Rn = 0b11111 in {
def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)))],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6)))],
NoItinerary>;
def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6)))],
NoItinerary>;
def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (rotr ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)))],
NoItinerary>;
}
def _noshift : InstAlias<"mvn $Rn, $Rm",
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(not ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rm, 0)>;
}
defm MVNxx : mvn_shifts<"MVNxx", 0b1, i64, GPR64>;
defm MVNww : mvn_shifts<"MVNww", 0b0, i32, GPR32>;
def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
//===----------------------------------------------------------------------===//
// Move wide (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: MOVN, MOVZ, MOVK + MOV aliases
// A wide variety of different relocations are needed for variants of these
// instructions, so it turns out that we need a different operand for all of
// them.
multiclass movw_operands<string prefix, string instname, int width> {
def _imm_asmoperand : AsmOperandClass {
let Name = instname # width # "Shifted" # shift;
let PredicateMethod = "is" # instname # width # "Imm";
let RenderMethod = "addMoveWideImmOperands";
let ParserMethod = "ParseImmWithLSLOperand";
let DiagnosticType = "MOVWUImm16";
}
def _imm : Operand<i64> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand");
let PrintMethod = "printMoveWideImmOperand";
let EncoderMethod = "getMoveWideImmOpValue";
let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">";
let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
}
}
defm movn32 : movw_operands<"movn32", "MOVN", 32>;
defm movn64 : movw_operands<"movn64", "MOVN", 64>;
defm movz32 : movw_operands<"movz32", "MOVZ", 32>;
defm movz64 : movw_operands<"movz64", "MOVZ", 64>;
defm movk32 : movw_operands<"movk32", "MOVK", 32>;
defm movk64 : movw_operands<"movk64", "MOVK", 64>;
multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit,
dag ins64bit> {
def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit,
!strconcat(asmop, "\t$Rd, $FullImm"),
[], NoItinerary> {
bits<18> FullImm;
let UImm16 = FullImm{15-0};
let Shift = FullImm{17-16};
}
def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit,
!strconcat(asmop, "\t$Rd, $FullImm"),
[], NoItinerary> {
bits<18> FullImm;
let UImm16 = FullImm{15-0};
let Shift = FullImm{17-16};
}
}
let isMoveImm = 1, isReMaterializable = 1,
isAsCheapAsAMove = 1, hasSideEffects = 0 in {
defm MOVN : A64I_movwSizes<0b00, "movn",
(ins movn32_imm:$FullImm),
(ins movn64_imm:$FullImm)>;
// Some relocations are able to convert between a MOVZ and a MOVN. If these
// are applied the instruction must be emitted with the corresponding bits as
// 0, which means a MOVZ needs to override that bit from the default.
let PostEncoderMethod = "fixMOVZ" in
defm MOVZ : A64I_movwSizes<0b10, "movz",
(ins movz32_imm:$FullImm),
(ins movz64_imm:$FullImm)>;
}
let Constraints = "$src = $Rd" in
defm MOVK : A64I_movwSizes<0b11, "movk",
(ins GPR32:$src, movk32_imm:$FullImm),
(ins GPR64:$src, movk64_imm:$FullImm)>;
// And now the "MOV" aliases. These also need their own operands because what
// they accept is completely different to what the base instructions accept.
multiclass movalias_operand<string prefix, string basename,
string immpredicate, int width> {
def _asmoperand : AsmOperandClass {
let Name = basename # width # "MovAlias";
let PredicateMethod
= "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">";
let RenderMethod
= "addMoveWideMovAliasOperands<" # width # ", "
# "A64Imms::" # immpredicate # ">";
}
def _movimm : Operand<i64> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
}
}
defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>;
defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>;
defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>;
defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>;
// FIXME: these are officially canonical aliases, but TableGen is too limited to
// print them at the moment. I believe in this case an "AliasPredicate" method
// will need to be implemented. to allow it, as well as the more generally
// useful handling of non-register, non-constant operands.
class movalias<Instruction INST, RegisterClass GPR, Operand operand>
: InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>;
def : movalias<MOVZwii, GPR32, movz32_movimm>;
def : movalias<MOVZxii, GPR64, movz64_movimm>;
def : movalias<MOVNwii, GPR32, movn32_movimm>;
def : movalias<MOVNxii, GPR64, movn64_movimm>;
def movw_addressref : ComplexPattern<i64, 2, "SelectMOVWAddressRef">;
def : Pat<(A64WrapperLarge movw_addressref:$G3, movw_addressref:$G2,
movw_addressref:$G1, movw_addressref:$G0),
(MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref:$G3),
movw_addressref:$G2),
movw_addressref:$G1),
movw_addressref:$G0)>;
//===----------------------------------------------------------------------===//
// PC-relative addressing instructions
//===----------------------------------------------------------------------===//
// Contains: ADR, ADRP
def adr_label : Operand<i64> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>";
// This label is a 21-bit offset from PC, unscaled
let PrintMethod = "printLabelOperand<21, 1>";
let ParserMatchClass = label_asmoperand<21, 1>;
let OperandType = "OPERAND_PCREL";
}
def adrp_label_asmoperand : AsmOperandClass {
let Name = "AdrpLabel";
let RenderMethod = "addLabelOperands<21, 4096>";
let DiagnosticType = "Label";
}
def adrp_label : Operand<i64> {
let EncoderMethod = "getAdrpLabelOpValue";
// This label is a 21-bit offset from PC, scaled by the page-size: 4096.
let PrintMethod = "printLabelOperand<21, 4096>";
let ParserMatchClass = adrp_label_asmoperand;
let OperandType = "OPERAND_PCREL";
}
let hasSideEffects = 0 in {
def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label),
"adr\t$Rd, $Label", [], NoItinerary>;
def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label),
"adrp\t$Rd, $Label", [], NoItinerary>;
}
//===----------------------------------------------------------------------===//
// System instructions
//===----------------------------------------------------------------------===//
// Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS
// + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL
// Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values.
def uimm3_asmoperand : AsmOperandClass {
let Name = "UImm3";
let PredicateMethod = "isUImm<3>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm3";
}
def uimm3 : Operand<i32> {
let ParserMatchClass = uimm3_asmoperand;
}
// The HINT alias can accept a simple unsigned 7-bit immediate.
def uimm7_asmoperand : AsmOperandClass {
let Name = "UImm7";
let PredicateMethod = "isUImm<7>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm7";
}
def uimm7 : Operand<i32> {
let ParserMatchClass = uimm7_asmoperand;
}
// Multiclass namedimm is defined with the prefetch operands. Most of these fit
// into the NamedImmMapper scheme well: they either accept a named operand or
// any immediate under a particular value (which may be 0, implying no immediate
// is allowed).
defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">;
defm isb : namedimm<"isb", "A64ISB::ISBMapper">;
defm ic : namedimm<"ic", "A64IC::ICMapper">;
defm dc : namedimm<"dc", "A64DC::DCMapper">;
defm at : namedimm<"at", "A64AT::ATMapper">;
defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">;
// However, MRS and MSR are more complicated for a few reasons:
// * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an
// implementation-defined effect
// * Most registers are shared, but some are read-only or write-only.
// * There is a variant of MSR which accepts the same register name (SPSel),
// but which would have a different encoding.
// In principle these could be resolved in with more complicated subclasses of
// NamedImmMapper, however that imposes an overhead on other "named
// immediates". Both in concrete terms with virtual tables and in unnecessary
// abstraction.
// The solution adopted here is to take the MRS/MSR Mappers out of the usual
// hierarchy (they're not derived from NamedImmMapper) and to add logic for
// their special situation.
def mrs_asmoperand : AsmOperandClass {
let Name = "MRS";
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MRS";
}
def mrs_op : Operand<i32> {
let ParserMatchClass = mrs_asmoperand;
let PrintMethod = "printMRSOperand";
let DecoderMethod = "DecodeMRSOperand";
}
def msr_asmoperand : AsmOperandClass {
let Name = "MSRWithReg";
// Note that SPSel is valid for both this and the pstate operands, but with
// different immediate encodings. This is why these operands provide a string
// AArch64Operand rather than an immediate. The overlap is small enough that
// it could be resolved with hackery now, but who can say in future?
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MSR";
}
def msr_op : Operand<i32> {
let ParserMatchClass = msr_asmoperand;
let PrintMethod = "printMSROperand";
let DecoderMethod = "DecodeMSROperand";
}
def pstate_asmoperand : AsmOperandClass {
let Name = "MSRPState";
// See comment above about parser.
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MSR";
}
def pstate_op : Operand<i32> {
let ParserMatchClass = pstate_asmoperand;
let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>";
let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>";
}
// When <CRn> is specified, an assembler should accept something like "C4", not
// the usual "#4" immediate.
def CRx_asmoperand : AsmOperandClass {
let Name = "CRx";
let PredicateMethod = "isUImm<4>";
let RenderMethod = "addImmOperands";
let ParserMethod = "ParseCRxOperand";
// Diagnostics are handled in all cases by ParseCRxOperand.
}
def CRx : Operand<i32> {
let ParserMatchClass = CRx_asmoperand;
let PrintMethod = "printCRxOperand";
}
// Finally, we can start defining the instructions.
// HINT is straightforward, with a few aliases.
def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7",
[], NoItinerary> {
bits<7> UImm7;
let CRm = UImm7{6-3};
let Op2 = UImm7{2-0};
let Op0 = 0b00;
let Op1 = 0b011;
let CRn = 0b0010;
let Rt = 0b11111;
}
def : InstAlias<"nop", (HINTi 0)>;
def : InstAlias<"yield", (HINTi 1)>;
def : InstAlias<"wfe", (HINTi 2)>;
def : InstAlias<"wfi", (HINTi 3)>;
def : InstAlias<"sev", (HINTi 4)>;
def : InstAlias<"sevl", (HINTi 5)>;
// Quite a few instructions then follow a similar pattern of fixing common
// fields in the bitpattern, we'll define a helper-class for them.
class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2,
Operand operand, string asmop>
: A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"),
[], NoItinerary> {
let Op0 = op0;
let Op1 = op1;
let CRn = crn;
let Op2 = op2;
let Rt = 0b11111;
}
def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">;
def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">;
def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">;
def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">;
def : InstAlias<"clrex", (CLREXi 0b1111)>;
def : InstAlias<"isb", (ISBi 0b1111)>;
// (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP
// configurations at least.
def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>;
// Any SYS bitpattern can be represented with a complex and opaque "SYS"
// instruction.
def SYSiccix : A64I_system<0b0, (outs),
(ins uimm3:$Op1, CRx:$CRn, CRx:$CRm,
uimm3:$Op2, GPR64:$Rt),
"sys\t$Op1, $CRn, $CRm, $Op2, $Rt",
[], NoItinerary> {
let Op0 = 0b01;
}
// You can skip the Xt argument whether it makes sense or not for the generic
// SYS instruction.
def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2",
(SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>;
// But many have aliases, which obviously don't fit into
class SYSalias<dag ins, string asmstring>
: A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> {
let isAsmParserOnly = 1;
bits<14> SysOp;
let Op0 = 0b01;
let Op1 = SysOp{13-11};
let CRn = SysOp{10-7};
let CRm = SysOp{6-3};
let Op2 = SysOp{2-0};
}
def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">;
def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> {
let Rt = 0b11111;
}
def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">;
def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">;
def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">;
def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> {
let Rt = 0b11111;
}
def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt),
(ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2),
"sysl\t$Rt, $Op1, $CRn, $CRm, $Op2",
[], NoItinerary> {
let Op0 = 0b01;
}
// The instructions themselves are rather simple for MSR and MRS.
def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt),
"msr\t$SysReg, $Rt", [], NoItinerary> {
bits<16> SysReg;
let Op0 = SysReg{15-14};
let Op1 = SysReg{13-11};
let CRn = SysReg{10-7};
let CRm = SysReg{6-3};
let Op2 = SysReg{2-0};
}
def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg),
"mrs\t$Rt, $SysReg", [], NoItinerary> {
bits<16> SysReg;
let Op0 = SysReg{15-14};
let Op1 = SysReg{13-11};
let CRn = SysReg{10-7};
let CRm = SysReg{6-3};
let Op2 = SysReg{2-0};
}
def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm),
"msr\t$PState, $CRm", [], NoItinerary> {
bits<6> PState;
let Op0 = 0b00;
let Op1 = PState{5-3};
let CRn = 0b0100;
let Op2 = PState{2-0};
let Rt = 0b11111;
}
//===----------------------------------------------------------------------===//
// Test & branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: TBZ, TBNZ
// The bit to test is a simple unsigned 6-bit immediate in the X-register
// versions.
def uimm6 : Operand<i64> {
let ParserMatchClass = uimm6_asmoperand;
}
def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>;
def tbimm_target : Operand<OtherVT> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>";
// This label is a 14-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<14, 4>";
let ParserMatchClass = label_wid14_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>;
def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>;
// These instructions correspond to patterns involving "and" with a power of
// two, which we need to be able to select.
def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">;
def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">;
let isBranch = 1, isTerminator = 1 in {
def TBZxii : A64I_TBimm<0b0, (outs),
(ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
"tbz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
A64eq, bb:$Label)],
NoItinerary>;
def TBNZxii : A64I_TBimm<0b1, (outs),
(ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
"tbnz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
A64ne, bb:$Label)],
NoItinerary>;
// Note, these instructions overlap with the above 64-bit patterns. This is
// intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both
// do the same thing and are both permitted assembly. They also both have
// sensible DAG patterns.
def TBZwii : A64I_TBimm<0b0, (outs),
(ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
"tbz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
A64eq, bb:$Label)],
NoItinerary> {
let Imm{5} = 0b0;
}
def TBNZwii : A64I_TBimm<0b1, (outs),
(ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
"tbnz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
A64ne, bb:$Label)],
NoItinerary> {
let Imm{5} = 0b0;
}
}
//===----------------------------------------------------------------------===//
// Unconditional branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: B, BL
def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>;
def bimm_target : Operand<OtherVT> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>";
// This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<26, 4>";
let ParserMatchClass = label_wid26_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
def blimm_target : Operand<i64> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>";
// This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<26, 4>";
let ParserMatchClass = label_wid26_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type>
: A64I_Bimm<op, (outs), (ins lbl_type:$Label),
!strconcat(asmop, "\t$Label"), patterns,
NoItinerary>;
let isBranch = 1 in {
def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> {
let isTerminator = 1;
let isBarrier = 1;
}
def BLimm : A64I_BimmImpl<0b1, "bl",
[(AArch64Call tglobaladdr:$Label)], blimm_target> {
let isCall = 1;
let Defs = [X30];
}
}
def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>;
//===----------------------------------------------------------------------===//
// Unconditional branch (register) instructions
//===----------------------------------------------------------------------===//
// Contains: BR, BLR, RET, ERET, DRP.
// Most of the notional opcode fields in the A64I_Breg format are fixed in A64
// at the moment.
class A64I_BregImpl<bits<4> opc,
dag outs, dag ins, string asmstr, list<dag> patterns,
InstrItinClass itin = NoItinerary>
: A64I_Breg<opc, 0b11111, 0b000000, 0b00000,
outs, ins, asmstr, patterns, itin> {
let isBranch = 1;
let isIndirectBranch = 1;
}
// Note that these are not marked isCall or isReturn because as far as LLVM is
// concerned they're not. "ret" is just another jump unless it has been selected
// by LLVM as the function's return.
let isBranch = 1 in {
def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn),
"br\t$Rn", [(brind i64:$Rn)]> {
let isBarrier = 1;
let isTerminator = 1;
}
def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn),
"blr\t$Rn", [(AArch64Call i64:$Rn)]> {
let isBarrier = 0;
let isCall = 1;
let Defs = [X30];
}
def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn),
"ret\t$Rn", []> {
let isBarrier = 1;
let isTerminator = 1;
let isReturn = 1;
}
// Create a separate pseudo-instruction for codegen to use so that we don't
// flag x30 as used in every function. It'll be restored before the RET by the
// epilogue if it's legitimately used.
def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
}
def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> {
let Rn = 0b11111;
let isBarrier = 1;
let isTerminator = 1;
let isReturn = 1;
}
def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> {
let Rn = 0b11111;
let isBarrier = 1;
}
}
def RETAlias : InstAlias<"ret", (RETx X30)>;
//===----------------------------------------------------------------------===//
// Address generation patterns
//===----------------------------------------------------------------------===//
// Primary method of address generation for the small/absolute memory model is
// an ADRP/ADR pair:
// ADRP x0, some_variable
// ADD x0, x0, #:lo12:some_variable
//
// The load/store elision of the ADD is accomplished when selecting
// addressing-modes. This just mops up the cases where that doesn't work and we
// really need an address in some register.
// This wrapper applies a LO12 modifier to the address. Otherwise we could just
// use the same address.
class ADRP_ADD<SDNode Wrapper, SDNode addrop>
: Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)),
(ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>;
def : ADRP_ADD<A64WrapperSmall, tblockaddress>;
def : ADRP_ADD<A64WrapperSmall, texternalsym>;
def : ADRP_ADD<A64WrapperSmall, tglobaladdr>;
def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>;
def : ADRP_ADD<A64WrapperSmall, tjumptable>;
//===----------------------------------------------------------------------===//
// GOT access patterns
//===----------------------------------------------------------------------===//
class GOTLoadSmall<SDNode addrfrag>
: Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)),
(LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>;
def : GOTLoadSmall<texternalsym>;
def : GOTLoadSmall<tglobaladdr>;
def : GOTLoadSmall<tglobaltlsaddr>;
//===----------------------------------------------------------------------===//
// Tail call handling
//===----------------------------------------------------------------------===//
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in {
def TC_RETURNdi
: PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff),
[(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>;
def TC_RETURNxi
: PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff),
[(AArch64tcret i64:$dst, (i32 timm:$FPDiff))]>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
Uses = [XSP] in {
def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [],
(Bimm bimm_target:$Label)>;
def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [],
(BRx GPR64:$Rd)>;
}
def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
(TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>;
//===----------------------------------------------------------------------===//
// Thread local storage
//===----------------------------------------------------------------------===//
// This is a pseudo-instruction representing the ".tlsdesccall" directive in
// assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the
// current location. It should always be immediately followed by a BLR
// instruction, and is intended solely for relaxation by the linker.
def : Pat<(A64threadpointer), (MRSxi 0xde82)>;
def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> {
let hasSideEffects = 1;
}
def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var),
[(A64tlsdesc_blr i64:$Rn, tglobaltlsaddr:$Var)]> {
let isCall = 1;
let Defs = [X30];
}
def : Pat<(A64tlsdesc_blr i64:$Rn, texternalsym:$Var),
(TLSDESC_BLRx $Rn, texternalsym:$Var)>;
//===----------------------------------------------------------------------===//
// Bitfield patterns
//===----------------------------------------------------------------------===//
def bfi32_lsb_to_immr : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64);
}]>;
def bfi64_lsb_to_immr : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64);
}]>;
def bfi_width_to_imms : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64);
}]>;
// The simpler patterns deal with cases where no AND mask is actually needed
// (either all bits are used or the low 32 bits are used).
let AddedComplexity = 10 in {
def : Pat<(A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
(BFIxxii $src, $Rn,
(bfi64_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS)))>;
def : Pat<(A64Bfi i32:$src, i32:$Rn, imm:$ImmR, imm:$ImmS),
(BFIwwii $src, $Rn,
(bfi32_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS)))>;
def : Pat<(and (A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
(i64 4294967295)),
(SUBREG_TO_REG (i64 0),
(BFIwwii (EXTRACT_SUBREG $src, sub_32),
(EXTRACT_SUBREG $Rn, sub_32),
(bfi32_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS))),
sub_32)>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous patterns
//===----------------------------------------------------------------------===//
// Truncation from 64 to 32-bits just involves renaming your register.
def : Pat<(i32 (trunc i64:$val)), (EXTRACT_SUBREG $val, sub_32)>;
// Similarly, extension where we don't care about the high bits is
// just a rename.
def : Pat<(i64 (anyext i32:$val)),
(INSERT_SUBREG (IMPLICIT_DEF), $val, sub_32)>;
// SELECT instructions providing f128 types need to be handled by a
// pseudo-instruction since the eventual code will need to introduce basic
// blocks and control flow.
def F128CSEL : PseudoInst<(outs FPR128:$Rd),
(ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond),
[(set f128:$Rd, (simple_select f128:$Rn, f128:$Rm))]> {
let Uses = [NZCV];
let usesCustomInserter = 1;
}
//===----------------------------------------------------------------------===//
// Load/store patterns
//===----------------------------------------------------------------------===//
// There are lots of patterns here, because we need to allow at least three
// parameters to vary independently.
// 1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ...
// 2. LLVM source: zextloadi8, anyextloadi8, ...
// 3. Address-generation: A64Wrapper, (add BASE, OFFSET), ...
//
// The biggest problem turns out to be the address-generation variable. At the
// point of instantiation we need to produce two DAGs, one for the pattern and
// one for the instruction. Doing this at the lowest level of classes doesn't
// work.
//
// Consider the simple uimm12 addressing mode, and the desire to match both (add
// GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the
// instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or
// "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this
// operation, and PatFrags are for selection not output.
//
// As a result, the address-generation patterns are the final
// instantiations. However, we do still need to vary the operand for the address
// further down (At the point we're deciding A64WrapperSmall, we don't know
// the memory width of the operation).
//===------------------------------
// 1. Basic infrastructural defs
//===------------------------------
// First, some simple classes for !foreach and !subst to use:
class Decls {
dag pattern;
}
def decls : Decls;
def ALIGN;
def INST;
def OFFSET;
def SHIFT;
// You can't use !subst on an actual immediate, but you *can* use it on an
// operand record that happens to match a single immediate. So we do.
def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>;
def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>;
def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>;
def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>;
def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>;
// If the low bits of a pointer are known to be 0 then an "or" is just as good
// as addition for computing an offset. This fragment forwards that check for
// TableGen's use.
def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),
[{
return CurDAG->isBaseWithConstantOffset(SDValue(N, 0));
}]>;
// Load/store (unsigned immediate) operations with relocations against global
// symbols (for lo12) are only valid if those symbols have correct alignment
// (since the immediate offset is divided by the access scale, it can't have a
// remainder).
//
// The guaranteed alignment is provided as part of the WrapperSmall
// operation, and checked against one of these.
def any_align : ImmLeaf<i32, [{ (void)Imm; return true; }]>;
def min_align2 : ImmLeaf<i32, [{ return Imm >= 2; }]>;
def min_align4 : ImmLeaf<i32, [{ return Imm >= 4; }]>;
def min_align8 : ImmLeaf<i32, [{ return Imm >= 8; }]>;
def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>;
// "Normal" load/store instructions can be used on atomic operations, provided
// the ordering parameter is at most "monotonic". Anything above that needs
// special handling with acquire/release instructions.
class simple_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
}]>;
def atomic_load_simple_i8 : simple_load<atomic_load_8>;
def atomic_load_simple_i16 : simple_load<atomic_load_16>;
def atomic_load_simple_i32 : simple_load<atomic_load_32>;
def atomic_load_simple_i64 : simple_load<atomic_load_64>;
class simple_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
}]>;
def atomic_store_simple_i8 : simple_store<atomic_store_8>;
def atomic_store_simple_i16 : simple_store<atomic_store_16>;
def atomic_store_simple_i32 : simple_store<atomic_store_32>;
def atomic_store_simple_i64 : simple_store<atomic_store_64>;
//===------------------------------
// 2. UImm12 and SImm9
//===------------------------------
// These instructions have two operands providing the address so they can be
// treated similarly for most purposes.
//===------------------------------
// 2.1 Base patterns covering extend/truncate semantics
//===------------------------------
// Atomic patterns can be shared between integer operations of all sizes, a
// quick multiclass here allows reuse.
multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType transty,
ValueType sty> {
def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
(LOAD Base, Offset)>;
def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
(STORE $Rt, Base, Offset)>;
}
// Instructions accessing a memory chunk smaller than a register (or, in a
// pinch, the same size) have a characteristic set of patterns they want to
// match: extending loads and truncating stores. This class deals with the
// sign-neutral version of those patterns.
//
// It will be instantiated across multiple addressing-modes.
multiclass ls_small_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset,
dag address, ValueType sty>
: ls_atomic_pats<LOAD, STORE, Base, Offset, address, i32, sty> {
def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>;
def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>;
// For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
// register was actually set.
def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
(STORE $Rt, Base, Offset)>;
// For truncating store from 64-bits, we have to manually tell LLVM to
// ignore the high bits of the x register.
def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
(STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
}
// Next come patterns for sign-extending loads.
multiclass load_signed_pats<string T, string U, dag Base, dag Offset,
dag address, ValueType sty> {
def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>;
def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>;
}
// and finally "natural-width" loads and stores come next.
multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType sty> {
def : Pat<(sty (load address)), (LOAD Base, Offset)>;
def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset)>;
}
// Integer operations also get atomic instructions to select for.
multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType sty>
: ls_neutral_pats<LOAD, STORE, Base, Offset, address, sty>,
ls_atomic_pats<LOAD, STORE, Base, Offset, address, sty, sty>;
//===------------------------------
// 2.2. Addressing-mode instantiations
//===------------------------------
multiclass uimm12_pats<dag address, dag Base, dag Offset> {
defm : ls_small_pats<LS8_LDR, LS8_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, byte_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, byte_uimm12,
!subst(ALIGN, any_align, decls.pattern))),
i8>;
defm : ls_small_pats<LS16_LDR, LS16_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
i16>;
defm : ls_small_pats<LS32_LDR, LS32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
i32>;
defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
i32>;
defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, dword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, dword_uimm12,
!subst(ALIGN, min_align8, decls.pattern))),
i64>;
defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
f16>;
defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
f32>;
defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, dword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, dword_uimm12,
!subst(ALIGN, min_align8, decls.pattern))),
f64>;
defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, qword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, qword_uimm12,
!subst(ALIGN, min_align16, decls.pattern))),
f128>;
defm : load_signed_pats<"B", "", Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, byte_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, byte_uimm12,
!subst(ALIGN, any_align, decls.pattern))),
i8>;
defm : load_signed_pats<"H", "", Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
i16>;
def : Pat<(sextloadi32 !foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern)))),
(LDRSWx Base, !foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)))>;
}
// Straightforward patterns of last resort: a pointer with or without an
// appropriate offset.
defm : uimm12_pats<(i64 i64:$Rn), (i64 i64:$Rn), (i64 0)>;
defm : uimm12_pats<(add i64:$Rn, OFFSET:$UImm12),
(i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
// The offset could be hidden behind an "or", of course:
defm : uimm12_pats<(add_like_or i64:$Rn, OFFSET:$UImm12),
(i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
// Global addresses under the small-absolute model should use these
// instructions. There are ELF relocations specifically for it.
defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN),
(ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>;
defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12,
ALIGN),
(ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>;
// External symbols that make it this far should also get standard relocations.
defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12,
ALIGN),
(ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>;
defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN),
(ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>;
// We also want to use uimm12 instructions for local variables at the moment.
def tframeindex_XFORM : SDNodeXForm<frameindex, [{
int FI = cast<FrameIndexSDNode>(N)->getIndex();
return CurDAG->getTargetFrameIndex(FI, MVT::i64);
}]>;
defm : uimm12_pats<(i64 frameindex:$Rn),
(tframeindex_XFORM tframeindex:$Rn), (i64 0)>;
// These can be much simpler than uimm12 because we don't to change the operand
// type (e.g. LDURB and LDURH take the same operands).
multiclass simm9_pats<dag address, dag Base, dag Offset> {
defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>;
defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>;
defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address, i32>;
defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address, i64>;
defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address, f16>;
defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address, f32>;
defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address, f64>;
defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address,
f128>;
def : Pat<(i64 (zextloadi32 address)),
(SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>;
def : Pat<(truncstorei32 i64:$Rt, address),
(LS32_STUR (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>;
defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>;
def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>;
}
defm : simm9_pats<(add i64:$Rn, simm9:$SImm9),
(i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
defm : simm9_pats<(add_like_or i64:$Rn, simm9:$SImm9),
(i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
//===------------------------------
// 3. Register offset patterns
//===------------------------------
// Atomic patterns can be shared between integer operations of all sizes, a
// quick multiclass here allows reuse.
multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag Extend, dag address,
ValueType transty, ValueType sty> {
def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
(LOAD Base, Offset, Extend)>;
def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
(STORE $Rt, Base, Offset, Extend)>;
}
// The register offset instructions take three operands giving the instruction,
// and have an annoying split between instructions where Rm is 32-bit and
// 64-bit. So we need a special hierarchy to describe them. Other than that the
// same operations should be supported as for simm9 and uimm12 addressing.
multiclass ro_small_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend,
dag address, ValueType sty>
: ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, i32, sty> {
def : Pat<(!cast<SDNode>(zextload # sty) address),
(LOAD Base, Offset, Extend)>;
def : Pat<(!cast<SDNode>(extload # sty) address),
(LOAD Base, Offset, Extend)>;
// For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
// register was actually set.
def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
(STORE $Rt, Base, Offset, Extend)>;
// For truncating store from 64-bits, we have to manually tell LLVM to
// ignore the high bits of the x register.
def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
(STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset, Extend)>;
}
// Next come patterns for sign-extending loads.
multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
dag address, ValueType sty> {
def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
}
// and finally "natural-width" loads and stores come next.
multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend, dag address,
ValueType sty> {
def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>;
def : Pat<(store sty:$Rt, address),
(STORE $Rt, Base, Offset, Extend)>;
}
multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend, dag address,
ValueType sty>
: ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, sty>,
ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, sty, sty>;
multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset,
dag Extend> {
defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq0, decls.pattern)),
i8>;
defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
i16>;
defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
i32>;
defm : ro_int_neutral_pats<
!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
i32>;
defm : ro_int_neutral_pats<
!cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq3, decls.pattern)),
i64>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
f16>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
f32>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq3, decls.pattern)),
f64>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq4, decls.pattern)),
f128>;
defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq0, decls.pattern)),
i8>;
defm : ro_signed_pats<"H", Rm, Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
i16>;
def : Pat<(sextloadi32 !foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern))),
(!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
}
// Finally we're in a position to tell LLVM exactly what addresses are reachable
// using register-offset instructions. Essentially a base plus a possibly
// extended, possibly shifted (by access size) offset.
defm : regoff_pats<"Wm", (add i64:$Rn, (sext i32:$Rm)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 6)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (shl (sext i32:$Rm), SHIFT)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 7)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (zext i32:$Rm)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 2)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (shl (zext i32:$Rm), SHIFT)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 3)>;
defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm),
(i64 i64:$Rn), (i64 i64:$Rm), (i64 2)>;
defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)),
(i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;
|