summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/WinEHPrepare.cpp
blob: 7246e1cf3ea59234968fcd3b13dd6bbe17b330ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants for functions using a personality function from a runtime
// provided by MSVC. Functions with other personality functions are left alone
// and may be prepared by other passes. In particular, all supported MSVC
// personality functions require cleanup code to be outlined, and the C++
// personality requires catch handler code to be outlined.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <memory>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "winehprepare"

namespace {

// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;

// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
// quite null.
AllocaInst *getCatchObjectSentinel() {
  return static_cast<AllocaInst *>(nullptr) + 1;
}

typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;

class LandingPadActions;
class LandingPadMap;

typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;

class WinEHPrepare : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid.
  WinEHPrepare(const TargetMachine *TM = nullptr)
      : FunctionPass(ID) {
    if (TM)
      TheTriple = Triple(TM->getTargetTriple());
  }

  bool runOnFunction(Function &Fn) override;

  bool doFinalization(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  const char *getPassName() const override {
    return "Windows exception handling preparation";
  }

private:
  bool prepareExceptionHandlers(Function &F,
                                SmallVectorImpl<LandingPadInst *> &LPads);
  void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
  void promoteLandingPadValues(LandingPadInst *LPad);
  void demoteValuesLiveAcrossHandlers(Function &F,
                                      SmallVectorImpl<LandingPadInst *> &LPads);
  void findSEHEHReturnPoints(Function &F,
                             SetVector<BasicBlock *> &EHReturnBlocks);
  void findCXXEHReturnPoints(Function &F,
                             SetVector<BasicBlock *> &EHReturnBlocks);
  void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
                                SetVector<BasicBlock*> &Targets);
  void completeNestedLandingPad(Function *ParentFn,
                                LandingPadInst *OutlinedLPad,
                                const LandingPadInst *OriginalLPad,
                                FrameVarInfoMap &VarInfo);
  Function *createHandlerFunc(Type *RetTy, const Twine &Name, Module *M,
                              Value *&ParentFP);
  bool outlineHandler(ActionHandler *Action, Function *SrcFn,
                      LandingPadInst *LPad, BasicBlock *StartBB,
                      FrameVarInfoMap &VarInfo);
  void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn);

  void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
  CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
                                 VisitedBlockSet &VisitedBlocks);
  void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
                           BasicBlock *EndBB);

  void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);

  Triple TheTriple;

  // All fields are reset by runOnFunction.
  DominatorTree *DT = nullptr;
  EHPersonality Personality = EHPersonality::Unknown;
  CatchHandlerMapTy CatchHandlerMap;
  CleanupHandlerMapTy CleanupHandlerMap;
  DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
  SmallPtrSet<BasicBlock *, 4> NormalBlocks;
  SmallPtrSet<BasicBlock *, 4> EHBlocks;
  SetVector<BasicBlock *> EHReturnBlocks;

  // This maps landing pad instructions found in outlined handlers to
  // the landing pad instruction in the parent function from which they
  // were cloned.  The cloned/nested landing pad is used as the key
  // because the landing pad may be cloned into multiple handlers.
  // This map will be used to add the llvm.eh.actions call to the nested
  // landing pads after all handlers have been outlined.
  DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;

  // This maps blocks in the parent function which are destinations of
  // catch handlers to cloned blocks in (other) outlined handlers. This
  // handles the case where a nested landing pads has a catch handler that
  // returns to a handler function rather than the parent function.
  // The original block is used as the key here because there should only
  // ever be one handler function from which the cloned block is not pruned.
  // The original block will be pruned from the parent function after all
  // handlers have been outlined.  This map will be used to adjust the
  // return instructions of handlers which return to the block that was
  // outlined into a handler.  This is done after all handlers have been
  // outlined but before the outlined code is pruned from the parent function.
  DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;

  // Map from outlined handler to call to llvm.frameaddress(1). Only used for
  // 32-bit EH.
  DenseMap<Function *, Value *> HandlerToParentFP;

  AllocaInst *SEHExceptionCodeSlot = nullptr;
};

class WinEHFrameVariableMaterializer : public ValueMaterializer {
public:
  WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
                                 FrameVarInfoMap &FrameVarInfo);
  ~WinEHFrameVariableMaterializer() override {}

  Value *materializeValueFor(Value *V) override;

  void escapeCatchObject(Value *V);

private:
  FrameVarInfoMap &FrameVarInfo;
  IRBuilder<> Builder;
};

class LandingPadMap {
public:
  LandingPadMap() : OriginLPad(nullptr) {}
  void mapLandingPad(const LandingPadInst *LPad);

  bool isInitialized() { return OriginLPad != nullptr; }

  bool isOriginLandingPadBlock(const BasicBlock *BB) const;
  bool isLandingPadSpecificInst(const Instruction *Inst) const;

  void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
                     Value *SelectorValue) const;

private:
  const LandingPadInst *OriginLPad;
  // We will normally only see one of each of these instructions, but
  // if more than one occurs for some reason we can handle that.
  TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
  TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
};

class WinEHCloningDirectorBase : public CloningDirector {
public:
  WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
                           FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
      : Materializer(HandlerFn, ParentFP, VarInfo),
        SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
        Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
        LPadMap(LPadMap), ParentFP(ParentFP) {}

  CloningAction handleInstruction(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
                                  BasicBlock *NewBB) override;

  virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                         const Instruction *Inst,
                                         BasicBlock *NewBB) = 0;
  virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
                                       const Instruction *Inst,
                                       BasicBlock *NewBB) = 0;
  virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                        const Instruction *Inst,
                                        BasicBlock *NewBB) = 0;
  virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
                                         const IndirectBrInst *IBr,
                                         BasicBlock *NewBB) = 0;
  virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
                                     const InvokeInst *Invoke,
                                     BasicBlock *NewBB) = 0;
  virtual CloningAction handleResume(ValueToValueMapTy &VMap,
                                     const ResumeInst *Resume,
                                     BasicBlock *NewBB) = 0;
  virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
                                      const CmpInst *Compare,
                                      BasicBlock *NewBB) = 0;
  virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
                                         const LandingPadInst *LPad,
                                         BasicBlock *NewBB) = 0;

  ValueMaterializer *getValueMaterializer() override { return &Materializer; }

protected:
  WinEHFrameVariableMaterializer Materializer;
  Type *SelectorIDType;
  Type *Int8PtrType;
  LandingPadMap &LPadMap;

  /// The value representing the parent frame pointer.
  Value *ParentFP;
};

class WinEHCatchDirector : public WinEHCloningDirectorBase {
public:
  WinEHCatchDirector(
      Function *CatchFn, Value *ParentFP, Value *Selector,
      FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
      DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
      DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
      : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
        CurrentSelector(Selector->stripPointerCasts()),
        ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
        DT(DT), EHBlocks(EHBlocks) {}

  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
                               BasicBlock *NewBB) override;
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                const Instruction *Inst,
                                BasicBlock *NewBB) override;
  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
                                 const IndirectBrInst *IBr,
                                 BasicBlock *NewBB) override;
  CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                             BasicBlock *NewBB) override;
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                             BasicBlock *NewBB) override;
  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
                              BasicBlock *NewBB) override;
  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
                                 const LandingPadInst *LPad,
                                 BasicBlock *NewBB) override;

  Value *getExceptionVar() { return ExceptionObjectVar; }
  TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }

private:
  Value *CurrentSelector;

  Value *ExceptionObjectVar;
  TinyPtrVector<BasicBlock *> ReturnTargets;

  // This will be a reference to the field of the same name in the WinEHPrepare
  // object which instantiates this WinEHCatchDirector object.
  DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
  DominatorTree *DT;
  SmallPtrSetImpl<BasicBlock *> &EHBlocks;
};

class WinEHCleanupDirector : public WinEHCloningDirectorBase {
public:
  WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
                       FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
      : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
                                 LPadMap) {}

  CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
  CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
                               BasicBlock *NewBB) override;
  CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                const Instruction *Inst,
                                BasicBlock *NewBB) override;
  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
                                 const IndirectBrInst *IBr,
                                 BasicBlock *NewBB) override;
  CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                             BasicBlock *NewBB) override;
  CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                             BasicBlock *NewBB) override;
  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
                              BasicBlock *NewBB) override;
  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
                                 const LandingPadInst *LPad,
                                 BasicBlock *NewBB) override;
};

class LandingPadActions {
public:
  LandingPadActions() : HasCleanupHandlers(false) {}

  void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
  void insertCleanupHandler(CleanupHandler *Action) {
    Actions.push_back(Action);
    HasCleanupHandlers = true;
  }

  bool includesCleanup() const { return HasCleanupHandlers; }

  SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
  SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
  SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }

private:
  // Note that this class does not own the ActionHandler objects in this vector.
  // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
  // in the WinEHPrepare class.
  SmallVector<ActionHandler *, 4> Actions;
  bool HasCleanupHandlers;
};

} // end anonymous namespace

char WinEHPrepare::ID = 0;
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
                   false, false)

FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
  return new WinEHPrepare(TM);
}

bool WinEHPrepare::runOnFunction(Function &Fn) {
  // No need to prepare outlined handlers.
  if (Fn.hasFnAttribute("wineh-parent"))
    return false;

  SmallVector<LandingPadInst *, 4> LPads;
  SmallVector<ResumeInst *, 4> Resumes;
  for (BasicBlock &BB : Fn) {
    if (auto *LP = BB.getLandingPadInst())
      LPads.push_back(LP);
    if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
      Resumes.push_back(Resume);
  }

  // No need to prepare functions that lack landing pads.
  if (LPads.empty())
    return false;

  // Classify the personality to see what kind of preparation we need.
  Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());

  // Do nothing if this is not an MSVC personality.
  if (!isMSVCEHPersonality(Personality))
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  // If there were any landing pads, prepareExceptionHandlers will make changes.
  prepareExceptionHandlers(Fn, LPads);
  return true;
}

bool WinEHPrepare::doFinalization(Module &M) { return false; }

void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<DominatorTreeWrapperPass>();
}

static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
                               Constant *&Selector, BasicBlock *&NextBB);

// Finds blocks reachable from the starting set Worklist. Does not follow unwind
// edges or blocks listed in StopPoints.
static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
                                SetVector<BasicBlock *> &Worklist,
                                const SetVector<BasicBlock *> *StopPoints) {
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();

    // Don't cross blocks that we should stop at.
    if (StopPoints && StopPoints->count(BB))
      continue;

    if (!ReachableBBs.insert(BB).second)
      continue; // Already visited.

    // Don't follow unwind edges of invokes.
    if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
      Worklist.insert(II->getNormalDest());
      continue;
    }

    // Otherwise, follow all successors.
    Worklist.insert(succ_begin(BB), succ_end(BB));
  }
}

// Attempt to find an instruction where a block can be split before
// a call to llvm.eh.begincatch and its operands.  If the block
// begins with the begincatch call or one of its adjacent operands
// the block will not be split.
static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
                                             IntrinsicInst *II) {
  // If the begincatch call is already the first instruction in the block,
  // don't split.
  Instruction *FirstNonPHI = BB->getFirstNonPHI();
  if (II == FirstNonPHI)
    return nullptr;

  // If either operand is in the same basic block as the instruction and
  // isn't used by another instruction before the begincatch call, include it
  // in the split block.
  auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
  auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));

  Instruction *I = II->getPrevNode();
  Instruction *LastI = II;

  while (I == Op0 || I == Op1) {
    // If the block begins with one of the operands and there are no other
    // instructions between the operand and the begincatch call, don't split.
    if (I == FirstNonPHI)
      return nullptr;

    LastI = I;
    I = I->getPrevNode();
  }

  // If there is at least one instruction in the block before the begincatch
  // call and its operands, split the block at either the begincatch or
  // its operand.
  return LastI;
}

/// Find all points where exceptional control rejoins normal control flow via
/// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
void WinEHPrepare::findCXXEHReturnPoints(
    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
    BasicBlock *BB = BBI;
    for (Instruction &I : *BB) {
      if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
        Instruction *SplitPt =
            findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
        if (SplitPt) {
          // Split the block before the llvm.eh.begincatch call to allow
          // cleanup and catch code to be distinguished later.
          // Do not update BBI because we still need to process the
          // portion of the block that we are splitting off.
          SplitBlock(BB, SplitPt, DT);
          break;
        }
      }
      if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
        // Split the block after the call to llvm.eh.endcatch if there is
        // anything other than an unconditional branch, or if the successor
        // starts with a phi.
        auto *Br = dyn_cast<BranchInst>(I.getNextNode());
        if (!Br || !Br->isUnconditional() ||
            isa<PHINode>(Br->getSuccessor(0)->begin())) {
          DEBUG(dbgs() << "splitting block " << BB->getName()
                       << " with llvm.eh.endcatch\n");
          BBI = SplitBlock(BB, I.getNextNode(), DT);
        }
        // The next BB is normal control flow.
        EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
        break;
      }
    }
  }
}

static bool isCatchAllLandingPad(const BasicBlock *BB) {
  const LandingPadInst *LP = BB->getLandingPadInst();
  if (!LP)
    return false;
  unsigned N = LP->getNumClauses();
  return (N > 0 && LP->isCatch(N - 1) &&
          isa<ConstantPointerNull>(LP->getClause(N - 1)));
}

/// Find all points where exceptions control rejoins normal control flow via
/// selector dispatch.
void WinEHPrepare::findSEHEHReturnPoints(
    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
    BasicBlock *BB = BBI;
    // If the landingpad is a catch-all, treat the whole lpad as if it is
    // reachable from normal control flow.
    // FIXME: This is imprecise. We need a better way of identifying where a
    // catch-all starts and cleanups stop. As far as LLVM is concerned, there
    // is no difference.
    if (isCatchAllLandingPad(BB)) {
      EHReturnBlocks.insert(BB);
      continue;
    }

    BasicBlock *CatchHandler;
    BasicBlock *NextBB;
    Constant *Selector;
    if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
      // Split the edge if there is a phi node. Returning from EH to a phi node
      // is just as impossible as having a phi after an indirectbr.
      if (isa<PHINode>(CatchHandler->begin())) {
        DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()
                     << " to " << CatchHandler->getName() << '\n');
        BBI = CatchHandler = SplitCriticalEdge(
            BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
      }
      EHReturnBlocks.insert(CatchHandler);
    }
  }
}

void WinEHPrepare::identifyEHBlocks(Function &F, 
                                    SmallVectorImpl<LandingPadInst *> &LPads) {
  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
               << F.getName() << '\n');

  // Build a set of all non-exceptional blocks and exceptional blocks.
  // - Non-exceptional blocks are blocks reachable from the entry block while
  //   not following invoke unwind edges.
  // - Exceptional blocks are blocks reachable from landingpads. Analysis does
  //   not follow llvm.eh.endcatch blocks, which mark a transition from
  //   exceptional to normal control.

  if (Personality == EHPersonality::MSVC_CXX)
    findCXXEHReturnPoints(F, EHReturnBlocks);
  else
    findSEHEHReturnPoints(F, EHReturnBlocks);

  DEBUG({
    dbgs() << "identified the following blocks as EH return points:\n";
    for (BasicBlock *BB : EHReturnBlocks)
      dbgs() << "  " << BB->getName() << '\n';
  });

// Join points should not have phis at this point, unless they are a
// landingpad, in which case we will demote their phis later.
#ifndef NDEBUG
  for (BasicBlock *BB : EHReturnBlocks)
    assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&
           "non-lpad EH return block has phi");
#endif

  // Normal blocks are the blocks reachable from the entry block and all EH
  // return points.
  SetVector<BasicBlock *> Worklist;
  Worklist = EHReturnBlocks;
  Worklist.insert(&F.getEntryBlock());
  findReachableBlocks(NormalBlocks, Worklist, nullptr);
  DEBUG({
    dbgs() << "marked the following blocks as normal:\n";
    for (BasicBlock *BB : NormalBlocks)
      dbgs() << "  " << BB->getName() << '\n';
  });

  // Exceptional blocks are the blocks reachable from landingpads that don't
  // cross EH return points.
  Worklist.clear();
  for (auto *LPI : LPads)
    Worklist.insert(LPI->getParent());
  findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
  DEBUG({
    dbgs() << "marked the following blocks as exceptional:\n";
    for (BasicBlock *BB : EHBlocks)
      dbgs() << "  " << BB->getName() << '\n';
  });

}

/// Ensure that all values live into and out of exception handlers are stored
/// in memory.
/// FIXME: This falls down when values are defined in one handler and live into
/// another handler. For example, a cleanup defines a value used only by a
/// catch handler.
void WinEHPrepare::demoteValuesLiveAcrossHandlers(
    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
               << F.getName() << '\n');

  // identifyEHBlocks() should have been called before this function.
  assert(!NormalBlocks.empty());

  SetVector<Argument *> ArgsToDemote;
  SetVector<Instruction *> InstrsToDemote;
  for (BasicBlock &BB : F) {
    bool IsNormalBB = NormalBlocks.count(&BB);
    bool IsEHBB = EHBlocks.count(&BB);
    if (!IsNormalBB && !IsEHBB)
      continue; // Blocks that are neither normal nor EH are unreachable.
    for (Instruction &I : BB) {
      for (Value *Op : I.operands()) {
        // Don't demote static allocas, constants, and labels.
        if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
          continue;
        auto *AI = dyn_cast<AllocaInst>(Op);
        if (AI && AI->isStaticAlloca())
          continue;

        if (auto *Arg = dyn_cast<Argument>(Op)) {
          if (IsEHBB) {
            DEBUG(dbgs() << "Demoting argument " << *Arg
                         << " used by EH instr: " << I << "\n");
            ArgsToDemote.insert(Arg);
          }
          continue;
        }

        auto *OpI = cast<Instruction>(Op);
        BasicBlock *OpBB = OpI->getParent();
        // If a value is produced and consumed in the same BB, we don't need to
        // demote it.
        if (OpBB == &BB)
          continue;
        bool IsOpNormalBB = NormalBlocks.count(OpBB);
        bool IsOpEHBB = EHBlocks.count(OpBB);
        if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
          DEBUG({
            dbgs() << "Demoting instruction live in-out from EH:\n";
            dbgs() << "Instr: " << *OpI << '\n';
            dbgs() << "User: " << I << '\n';
          });
          InstrsToDemote.insert(OpI);
        }
      }
    }
  }

  // Demote values live into and out of handlers.
  // FIXME: This demotion is inefficient. We should insert spills at the point
  // of definition, insert one reload in each handler that uses the value, and
  // insert reloads in the BB used to rejoin normal control flow.
  Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
  for (Instruction *I : InstrsToDemote)
    DemoteRegToStack(*I, false, AllocaInsertPt);

  // Demote arguments separately, and only for uses in EH blocks.
  for (Argument *Arg : ArgsToDemote) {
    auto *Slot = new AllocaInst(Arg->getType(), nullptr,
                                Arg->getName() + ".reg2mem", AllocaInsertPt);
    SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
    for (User *U : Users) {
      auto *I = dyn_cast<Instruction>(U);
      if (I && EHBlocks.count(I->getParent())) {
        auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
        U->replaceUsesOfWith(Arg, Reload);
      }
    }
    new StoreInst(Arg, Slot, AllocaInsertPt);
  }

  // Demote landingpad phis, as the landingpad will be removed from the machine
  // CFG.
  for (LandingPadInst *LPI : LPads) {
    BasicBlock *BB = LPI->getParent();
    while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
      DemotePHIToStack(Phi, AllocaInsertPt);
  }

  DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "
               << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n");
}

bool WinEHPrepare::prepareExceptionHandlers(
    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
  // Don't run on functions that are already prepared.
  for (LandingPadInst *LPad : LPads) {
    BasicBlock *LPadBB = LPad->getParent();
    for (Instruction &Inst : *LPadBB)
      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
        return false;
  }

  identifyEHBlocks(F, LPads);
  demoteValuesLiveAcrossHandlers(F, LPads);

  // These containers are used to re-map frame variables that are used in
  // outlined catch and cleanup handlers.  They will be populated as the
  // handlers are outlined.
  FrameVarInfoMap FrameVarInfo;

  bool HandlersOutlined = false;

  Module *M = F.getParent();
  LLVMContext &Context = M->getContext();

  // Create a new function to receive the handler contents.
  PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
  Type *Int32Type = Type::getInt32Ty(Context);
  Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);

  if (isAsynchronousEHPersonality(Personality)) {
    // FIXME: Switch the ehptr type to i32 and then switch this.
    SEHExceptionCodeSlot =
        new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
                       F.getEntryBlock().getFirstInsertionPt());
  }

  // In order to handle the case where one outlined catch handler returns
  // to a block within another outlined catch handler that would otherwise
  // be unreachable, we need to outline the nested landing pad before we
  // outline the landing pad which encloses it.
  if (!isAsynchronousEHPersonality(Personality))
    std::sort(LPads.begin(), LPads.end(),
              [this](LandingPadInst *const &L, LandingPadInst *const &R) {
                return DT->properlyDominates(R->getParent(), L->getParent());
              });

  // This container stores the llvm.eh.recover and IndirectBr instructions
  // that make up the body of each landing pad after it has been outlined.
  // We need to defer the population of the target list for the indirectbr
  // until all landing pads have been outlined so that we can handle the
  // case of blocks in the target that are reached only from nested
  // landing pads.
  SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;

  for (LandingPadInst *LPad : LPads) {
    // Look for evidence that this landingpad has already been processed.
    bool LPadHasActionList = false;
    BasicBlock *LPadBB = LPad->getParent();
    for (Instruction &Inst : *LPadBB) {
      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
        LPadHasActionList = true;
        break;
      }
    }

    // If we've already outlined the handlers for this landingpad,
    // there's nothing more to do here.
    if (LPadHasActionList)
      continue;

    // If either of the values in the aggregate returned by the landing pad is
    // extracted and stored to memory, promote the stored value to a register.
    promoteLandingPadValues(LPad);

    LandingPadActions Actions;
    mapLandingPadBlocks(LPad, Actions);

    HandlersOutlined |= !Actions.actions().empty();
    for (ActionHandler *Action : Actions) {
      if (Action->hasBeenProcessed())
        continue;
      BasicBlock *StartBB = Action->getStartBlock();

      // SEH doesn't do any outlining for catches. Instead, pass the handler
      // basic block addr to llvm.eh.actions and list the block as a return
      // target.
      if (isAsynchronousEHPersonality(Personality)) {
        if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
          processSEHCatchHandler(CatchAction, StartBB);
          continue;
        }
      }

      outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
    }

    // Split the block after the landingpad instruction so that it is just a
    // call to llvm.eh.actions followed by indirectbr.
    assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed");
    SplitBlock(LPadBB, LPad->getNextNode(), DT);
    // Erase the branch inserted by the split so we can insert indirectbr.
    LPadBB->getTerminator()->eraseFromParent();

    // Replace all extracted values with undef and ultimately replace the
    // landingpad with undef.
    SmallVector<Instruction *, 4> SEHCodeUses;
    SmallVector<Instruction *, 4> EHUndefs;
    for (User *U : LPad->users()) {
      auto *E = dyn_cast<ExtractValueInst>(U);
      if (!E)
        continue;
      assert(E->getNumIndices() == 1 &&
             "Unexpected operation: extracting both landing pad values");
      unsigned Idx = *E->idx_begin();
      assert((Idx == 0 || Idx == 1) && "unexpected index");
      if (Idx == 0 && isAsynchronousEHPersonality(Personality))
        SEHCodeUses.push_back(E);
      else
        EHUndefs.push_back(E);
    }
    for (Instruction *E : EHUndefs) {
      E->replaceAllUsesWith(UndefValue::get(E->getType()));
      E->eraseFromParent();
    }
    LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));

    // Rewrite uses of the exception pointer to loads of an alloca.
    for (Instruction *E : SEHCodeUses) {
      SmallVector<Use *, 4> Uses;
      for (Use &U : E->uses())
        Uses.push_back(&U);
      for (Use *U : Uses) {
        auto *I = cast<Instruction>(U->getUser());
        if (isa<ResumeInst>(I))
          continue;
        LoadInst *LI;
        if (auto *Phi = dyn_cast<PHINode>(I))
          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false,
                            Phi->getIncomingBlock(*U));
        else
          LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I);
        U->set(LI);
      }
      E->replaceAllUsesWith(UndefValue::get(E->getType()));
      E->eraseFromParent();
    }

    // Add a call to describe the actions for this landing pad.
    std::vector<Value *> ActionArgs;
    for (ActionHandler *Action : Actions) {
      // Action codes from docs are: 0 cleanup, 1 catch.
      if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
        ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
        ActionArgs.push_back(CatchAction->getSelector());
        // Find the frame escape index of the exception object alloca in the
        // parent.
        int FrameEscapeIdx = -1;
        Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
        if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
          auto I = FrameVarInfo.find(EHObj);
          assert(I != FrameVarInfo.end() &&
                 "failed to map llvm.eh.begincatch var");
          FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
        }
        ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
      } else {
        ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
      }
      ActionArgs.push_back(Action->getHandlerBlockOrFunc());
    }
    CallInst *Recover =
        CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);

    SetVector<BasicBlock *> ReturnTargets;
    for (ActionHandler *Action : Actions) {
      if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
        const auto &CatchTargets = CatchAction->getReturnTargets();
        ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
      }
    }
    IndirectBrInst *Branch =
        IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
    for (BasicBlock *Target : ReturnTargets)
      Branch->addDestination(Target);

    if (!isAsynchronousEHPersonality(Personality)) {
      // C++ EH must repopulate the targets later to handle the case of
      // targets that are reached indirectly through nested landing pads.
      LPadImpls.push_back(std::make_pair(Recover, Branch));
    }

  } // End for each landingpad

  // If nothing got outlined, there is no more processing to be done.
  if (!HandlersOutlined)
    return false;

  // Replace any nested landing pad stubs with the correct action handler.
  // This must be done before we remove unreachable blocks because it
  // cleans up references to outlined blocks that will be deleted.
  for (auto &LPadPair : NestedLPtoOriginalLP)
    completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
  NestedLPtoOriginalLP.clear();

  // Update the indirectbr instructions' target lists if necessary.
  SetVector<BasicBlock*> CheckedTargets;
  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
  for (auto &LPadImplPair : LPadImpls) {
    IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
    IndirectBrInst *Branch = LPadImplPair.second;

    // Get a list of handlers called by 
    parseEHActions(Recover, ActionList);

    // Add an indirect branch listing possible successors of the catch handlers.
    SetVector<BasicBlock *> ReturnTargets;
    for (const auto &Action : ActionList) {
      if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
        Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
        getPossibleReturnTargets(&F, Handler, ReturnTargets);
      }
    }
    ActionList.clear();
    // Clear any targets we already knew about.
    for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
      BasicBlock *KnownTarget = Branch->getDestination(I);
      if (ReturnTargets.count(KnownTarget))
        ReturnTargets.remove(KnownTarget);
    }
    for (BasicBlock *Target : ReturnTargets) {
      Branch->addDestination(Target);
      // The target may be a block that we excepted to get pruned.
      // If it is, it may contain a call to llvm.eh.endcatch.
      if (CheckedTargets.insert(Target)) {
        // Earlier preparations guarantee that all calls to llvm.eh.endcatch
        // will be followed by an unconditional branch.
        auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
        if (Br && Br->isUnconditional() &&
            Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
          Instruction *Prev = Br->getPrevNode();
          if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
            Prev->eraseFromParent();
        }
      }
    }
  }
  LPadImpls.clear();

  F.addFnAttr("wineh-parent", F.getName());

  // Delete any blocks that were only used by handlers that were outlined above.
  removeUnreachableBlocks(F);

  BasicBlock *Entry = &F.getEntryBlock();
  IRBuilder<> Builder(F.getParent()->getContext());
  Builder.SetInsertPoint(Entry->getFirstInsertionPt());

  Function *FrameEscapeFn =
      Intrinsic::getDeclaration(M, Intrinsic::frameescape);
  Function *RecoverFrameFn =
      Intrinsic::getDeclaration(M, Intrinsic::framerecover);
  SmallVector<Value *, 8> AllocasToEscape;

  // Scan the entry block for an existing call to llvm.frameescape. We need to
  // keep escaping those objects.
  for (Instruction &I : F.front()) {
    auto *II = dyn_cast<IntrinsicInst>(&I);
    if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
      auto Args = II->arg_operands();
      AllocasToEscape.append(Args.begin(), Args.end());
      II->eraseFromParent();
      break;
    }
  }

  // Finally, replace all of the temporary allocas for frame variables used in
  // the outlined handlers with calls to llvm.framerecover.
  for (auto &VarInfoEntry : FrameVarInfo) {
    Value *ParentVal = VarInfoEntry.first;
    TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
    AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);

    // FIXME: We should try to sink unescaped allocas from the parent frame into
    // the child frame. If the alloca is escaped, we have to use the lifetime
    // markers to ensure that the alloca is only live within the child frame.

    // Add this alloca to the list of things to escape.
    AllocasToEscape.push_back(ParentAlloca);

    // Next replace all outlined allocas that are mapped to it.
    for (AllocaInst *TempAlloca : Allocas) {
      if (TempAlloca == getCatchObjectSentinel())
        continue; // Skip catch parameter sentinels.
      Function *HandlerFn = TempAlloca->getParent()->getParent();
      llvm::Value *FP = HandlerToParentFP[HandlerFn];
      assert(FP);

      // FIXME: Sink this framerecover into the blocks where it is used.
      Builder.SetInsertPoint(TempAlloca);
      Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
      Value *RecoverArgs[] = {
          Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
          llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
      Instruction *RecoveredAlloca =
          Builder.CreateCall(RecoverFrameFn, RecoverArgs);

      // Add a pointer bitcast if the alloca wasn't an i8.
      if (RecoveredAlloca->getType() != TempAlloca->getType()) {
        RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
        RecoveredAlloca = cast<Instruction>(
            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
      }
      TempAlloca->replaceAllUsesWith(RecoveredAlloca);
      TempAlloca->removeFromParent();
      RecoveredAlloca->takeName(TempAlloca);
      delete TempAlloca;
    }
  } // End for each FrameVarInfo entry.

  // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
  // block.
  Builder.SetInsertPoint(&F.getEntryBlock().back());
  Builder.CreateCall(FrameEscapeFn, AllocasToEscape);

  if (SEHExceptionCodeSlot) {
    if (SEHExceptionCodeSlot->hasNUses(0))
      SEHExceptionCodeSlot->eraseFromParent();
    else if (isAllocaPromotable(SEHExceptionCodeSlot))
      PromoteMemToReg(SEHExceptionCodeSlot, *DT);
  }

  // Clean up the handler action maps we created for this function
  DeleteContainerSeconds(CatchHandlerMap);
  CatchHandlerMap.clear();
  DeleteContainerSeconds(CleanupHandlerMap);
  CleanupHandlerMap.clear();
  HandlerToParentFP.clear();
  DT = nullptr;
  SEHExceptionCodeSlot = nullptr;
  EHBlocks.clear();
  NormalBlocks.clear();
  EHReturnBlocks.clear();

  return HandlersOutlined;
}

void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
  // If the return values of the landing pad instruction are extracted and
  // stored to memory, we want to promote the store locations to reg values.
  SmallVector<AllocaInst *, 2> EHAllocas;

  // The landingpad instruction returns an aggregate value.  Typically, its
  // value will be passed to a pair of extract value instructions and the
  // results of those extracts are often passed to store instructions.
  // In unoptimized code the stored value will often be loaded and then stored
  // again.
  for (auto *U : LPad->users()) {
    ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
    if (!Extract)
      continue;

    for (auto *EU : Extract->users()) {
      if (auto *Store = dyn_cast<StoreInst>(EU)) {
        auto *AV = cast<AllocaInst>(Store->getPointerOperand());
        EHAllocas.push_back(AV);
      }
    }
  }

  // We can't do this without a dominator tree.
  assert(DT);

  if (!EHAllocas.empty()) {
    PromoteMemToReg(EHAllocas, *DT);
    EHAllocas.clear();
  }

  // After promotion, some extracts may be trivially dead. Remove them.
  SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
  for (auto *U : Users)
    RecursivelyDeleteTriviallyDeadInstructions(U);
}

void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
                                            Function *HandlerF,
                                            SetVector<BasicBlock*> &Targets) {
  for (BasicBlock &BB : *HandlerF) {
    // If the handler contains landing pads, check for any
    // handlers that may return directly to a block in the
    // parent function.
    if (auto *LPI = BB.getLandingPadInst()) {
      IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
      SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
      parseEHActions(Recover, ActionList);
      for (const auto &Action : ActionList) {
        if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
          Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
          getPossibleReturnTargets(ParentF, NestedF, Targets);
        }
      }
    }

    auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
    if (!Ret)
      continue;

    // Handler functions must always return a block address.
    BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());

    // If this is the handler for a nested landing pad, the
    // return address may have been remapped to a block in the
    // parent handler.  We're not interested in those.
    if (BA->getFunction() != ParentF)
      continue;

    Targets.insert(BA->getBasicBlock());
  }
}

void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
                                            LandingPadInst *OutlinedLPad,
                                            const LandingPadInst *OriginalLPad,
                                            FrameVarInfoMap &FrameVarInfo) {
  // Get the nested block and erase the unreachable instruction that was
  // temporarily inserted as its terminator.
  LLVMContext &Context = ParentFn->getContext();
  BasicBlock *OutlinedBB = OutlinedLPad->getParent();
  // If the nested landing pad was outlined before the landing pad that enclosed
  // it, it will already be in outlined form.  In that case, we just need to see
  // if the returns and the enclosing branch instruction need to be updated.
  IndirectBrInst *Branch =
      dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
  if (!Branch) {
    // If the landing pad wasn't in outlined form, it should be a stub with
    // an unreachable terminator.
    assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
    OutlinedBB->getTerminator()->eraseFromParent();
    // That should leave OutlinedLPad as the last instruction in its block.
    assert(&OutlinedBB->back() == OutlinedLPad);
  }

  // The original landing pad will have already had its action intrinsic
  // built by the outlining loop.  We need to clone that into the outlined
  // location.  It may also be necessary to add references to the exception
  // variables to the outlined handler in which this landing pad is nested
  // and remap return instructions in the nested handlers that should return
  // to an address in the outlined handler.
  Function *OutlinedHandlerFn = OutlinedBB->getParent();
  BasicBlock::const_iterator II = OriginalLPad;
  ++II;
  // The instruction after the landing pad should now be a call to eh.actions.
  const Instruction *Recover = II;
  assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>()));
  const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);

  // Remap the return target in the nested handler.
  SmallVector<BlockAddress *, 4> ActionTargets;
  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
  parseEHActions(EHActions, ActionList);
  for (const auto &Action : ActionList) {
    auto *Catch = dyn_cast<CatchHandler>(Action.get());
    if (!Catch)
      continue;
    // The dyn_cast to function here selects C++ catch handlers and skips
    // SEH catch handlers.
    auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
    if (!Handler)
      continue;
    // Visit all the return instructions, looking for places that return
    // to a location within OutlinedHandlerFn.
    for (BasicBlock &NestedHandlerBB : *Handler) {
      auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
      if (!Ret)
        continue;

      // Handler functions must always return a block address.
      BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
      // The original target will have been in the main parent function,
      // but if it is the address of a block that has been outlined, it
      // should be a block that was outlined into OutlinedHandlerFn.
      assert(BA->getFunction() == ParentFn);

      // Ignore targets that aren't part of an outlined handler function.
      if (!LPadTargetBlocks.count(BA->getBasicBlock()))
        continue;

      // If the return value is the address ofF a block that we
      // previously outlined into the parent handler function, replace
      // the return instruction and add the mapped target to the list
      // of possible return addresses.
      BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
      assert(MappedBB->getParent() == OutlinedHandlerFn);
      BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
      Ret->eraseFromParent();
      ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
      ActionTargets.push_back(NewBA);
    }
  }
  ActionList.clear();

  if (Branch) {
    // If the landing pad was already in outlined form, just update its targets.
    for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
      Branch->removeDestination(I);
    // Add the previously collected action targets.
    for (auto *Target : ActionTargets)
      Branch->addDestination(Target->getBasicBlock());
  } else {
    // If the landing pad was previously stubbed out, fill in its outlined form.
    IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
    OutlinedBB->getInstList().push_back(NewEHActions);

    // Insert an indirect branch into the outlined landing pad BB.
    IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
    // Add the previously collected action targets.
    for (auto *Target : ActionTargets)
      IBr->addDestination(Target->getBasicBlock());
  }
}

// This function examines a block to determine whether the block ends with a
// conditional branch to a catch handler based on a selector comparison.
// This function is used both by the WinEHPrepare::findSelectorComparison() and
// WinEHCleanupDirector::handleTypeIdFor().
static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
                               Constant *&Selector, BasicBlock *&NextBB) {
  ICmpInst::Predicate Pred;
  BasicBlock *TBB, *FBB;
  Value *LHS, *RHS;

  if (!match(BB->getTerminator(),
             m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
    return false;

  if (!match(LHS,
             m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
      !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
    return false;

  if (Pred == CmpInst::ICMP_EQ) {
    CatchHandler = TBB;
    NextBB = FBB;
    return true;
  }

  if (Pred == CmpInst::ICMP_NE) {
    CatchHandler = FBB;
    NextBB = TBB;
    return true;
  }

  return false;
}

static bool isCatchBlock(BasicBlock *BB) {
  for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
       II != IE; ++II) {
    if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
      return true;
  }
  return false;
}

static BasicBlock *createStubLandingPad(Function *Handler,
                                        Value *PersonalityFn) {
  // FIXME: Finish this!
  LLVMContext &Context = Handler->getContext();
  BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
  Handler->getBasicBlockList().push_back(StubBB);
  IRBuilder<> Builder(StubBB);
  LandingPadInst *LPad = Builder.CreateLandingPad(
      llvm::StructType::get(Type::getInt8PtrTy(Context),
                            Type::getInt32Ty(Context), nullptr),
      PersonalityFn, 0);
  // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
  Function *ActionIntrin =
      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
  Builder.CreateCall(ActionIntrin, {}, "recover");
  LPad->setCleanup(true);
  Builder.CreateUnreachable();
  return StubBB;
}

// Cycles through the blocks in an outlined handler function looking for an
// invoke instruction and inserts an invoke of llvm.donothing with an empty
// landing pad if none is found.  The code that generates the .xdata tables for
// the handler needs at least one landing pad to identify the parent function's
// personality.
void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
                                                  Value *PersonalityFn) {
  ReturnInst *Ret = nullptr;
  UnreachableInst *Unreached = nullptr;
  for (BasicBlock &BB : *Handler) {
    TerminatorInst *Terminator = BB.getTerminator();
    // If we find an invoke, there is nothing to be done.
    auto *II = dyn_cast<InvokeInst>(Terminator);
    if (II)
      return;
    // If we've already recorded a return instruction, keep looking for invokes.
    if (!Ret)
      Ret = dyn_cast<ReturnInst>(Terminator);
    // If we haven't recorded an unreachable instruction, try this terminator.
    if (!Unreached)
      Unreached = dyn_cast<UnreachableInst>(Terminator);
  }

  // If we got this far, the handler contains no invokes.  We should have seen
  // at least one return or unreachable instruction.  We'll insert an invoke of
  // llvm.donothing ahead of that instruction.
  assert(Ret || Unreached);
  TerminatorInst *Term;
  if (Ret)
    Term = Ret;
  else
    Term = Unreached;
  BasicBlock *OldRetBB = Term->getParent();
  BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
  // SplitBlock adds an unconditional branch instruction at the end of the
  // parent block.  We want to replace that with an invoke call, so we can
  // erase it now.
  OldRetBB->getTerminator()->eraseFromParent();
  BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn);
  Function *F =
      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
  InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
}

// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
// usually doesn't build LLVM IR, so that's probably the wrong place.
Function *WinEHPrepare::createHandlerFunc(Type *RetTy, const Twine &Name,
                                          Module *M, Value *&ParentFP) {
  // x64 uses a two-argument prototype where the parent FP is the second
  // argument. x86 uses no arguments, just the incoming EBP value.
  LLVMContext &Context = M->getContext();
  FunctionType *FnType;
  if (TheTriple.getArch() == Triple::x86_64) {
    Type *Int8PtrType = Type::getInt8PtrTy(Context);
    Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
    FnType = FunctionType::get(RetTy, ArgTys, false);
  } else {
    FnType = FunctionType::get(RetTy, None, false);
  }

  Function *Handler =
      Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
  Handler->getBasicBlockList().push_front(Entry);
  if (TheTriple.getArch() == Triple::x86_64) {
    ParentFP = &(Handler->getArgumentList().back());
  } else {
    assert(M);
    Function *FrameAddressFn =
        Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
    Value *Args[1] = {ConstantInt::get(Type::getInt32Ty(Context), 1)};
    ParentFP = CallInst::Create(FrameAddressFn, Args, "parent_fp",
                                &Handler->getEntryBlock());
  }
  return Handler;
}

bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
                                  LandingPadInst *LPad, BasicBlock *StartBB,
                                  FrameVarInfoMap &VarInfo) {
  Module *M = SrcFn->getParent();
  LLVMContext &Context = M->getContext();
  Type *Int8PtrType = Type::getInt8PtrTy(Context);

  // Create a new function to receive the handler contents.
  Value *ParentFP;
  Function *Handler;
  if (Action->getType() == Catch) {
    Handler = createHandlerFunc(Int8PtrType, SrcFn->getName() + ".catch", M,
                                ParentFP);
  } else {
    Handler = createHandlerFunc(Type::getVoidTy(Context),
                                SrcFn->getName() + ".cleanup", M, ParentFP);
  }
  HandlerToParentFP[Handler] = ParentFP;
  Handler->addFnAttr("wineh-parent", SrcFn->getName());
  BasicBlock *Entry = &Handler->getEntryBlock();

  // Generate a standard prolog to setup the frame recovery structure.
  IRBuilder<> Builder(Context);
  Builder.SetInsertPoint(Entry);
  Builder.SetCurrentDebugLocation(LPad->getDebugLoc());

  std::unique_ptr<WinEHCloningDirectorBase> Director;

  ValueToValueMapTy VMap;

  LandingPadMap &LPadMap = LPadMaps[LPad];
  if (!LPadMap.isInitialized())
    LPadMap.mapLandingPad(LPad);
  if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
    Constant *Sel = CatchAction->getSelector();
    Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
                                          LPadMap, NestedLPtoOriginalLP, DT,
                                          EHBlocks));
    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
                          ConstantInt::get(Type::getInt32Ty(Context), 1));
  } else {
    Director.reset(
        new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
                          UndefValue::get(Type::getInt32Ty(Context)));
  }

  SmallVector<ReturnInst *, 8> Returns;
  ClonedCodeInfo OutlinedFunctionInfo;

  // If the start block contains PHI nodes, we need to map them.
  BasicBlock::iterator II = StartBB->begin();
  while (auto *PN = dyn_cast<PHINode>(II)) {
    bool Mapped = false;
    // Look for PHI values that we have already mapped (such as the selector).
    for (Value *Val : PN->incoming_values()) {
      if (VMap.count(Val)) {
        VMap[PN] = VMap[Val];
        Mapped = true;
      }
    }
    // If we didn't find a match for this value, map it as an undef.
    if (!Mapped) {
      VMap[PN] = UndefValue::get(PN->getType());
    }
    ++II;
  }

  // The landing pad value may be used by PHI nodes.  It will ultimately be
  // eliminated, but we need it in the map for intermediate handling.
  VMap[LPad] = UndefValue::get(LPad->getType());

  // Skip over PHIs and, if applicable, landingpad instructions.
  II = StartBB->getFirstInsertionPt();

  CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
                            /*ModuleLevelChanges=*/false, Returns, "",
                            &OutlinedFunctionInfo, Director.get());

  // Move all the instructions in the cloned "entry" block into our entry block.
  // Depending on how the parent function was laid out, the block that will
  // correspond to the outlined entry block may not be the first block in the
  // list.  We can recognize it, however, as the cloned block which has no
  // predecessors.  Any other block wouldn't have been cloned if it didn't
  // have a predecessor which was also cloned.
  Function::iterator ClonedIt = std::next(Function::iterator(Entry));
  while (!pred_empty(ClonedIt))
    ++ClonedIt;
  BasicBlock *ClonedEntryBB = ClonedIt;
  assert(ClonedEntryBB);
  Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
  ClonedEntryBB->eraseFromParent();

  // Make sure we can identify the handler's personality later.
  addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn());

  if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
    WinEHCatchDirector *CatchDirector =
        reinterpret_cast<WinEHCatchDirector *>(Director.get());
    CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
    CatchAction->setReturnTargets(CatchDirector->getReturnTargets());

    // Look for blocks that are not part of the landing pad that we just
    // outlined but terminate with a call to llvm.eh.endcatch and a
    // branch to a block that is in the handler we just outlined.
    // These blocks will be part of a nested landing pad that intends to
    // return to an address in this handler.  This case is best handled
    // after both landing pads have been outlined, so for now we'll just
    // save the association of the blocks in LPadTargetBlocks.  The
    // return instructions which are created from these branches will be
    // replaced after all landing pads have been outlined.
    for (const auto MapEntry : VMap) {
      // VMap maps all values and blocks that were just cloned, but dead
      // blocks which were pruned will map to nullptr.
      if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
        continue;
      const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
      for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
        auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
        if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
          continue;
        BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
        --II;
        if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
          // This would indicate that a nested landing pad wants to return
          // to a block that is outlined into two different handlers.
          assert(!LPadTargetBlocks.count(MappedBB));
          LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
        }
      }
    }
  } // End if (CatchAction)

  Action->setHandlerBlockOrFunc(Handler);

  return true;
}

/// This BB must end in a selector dispatch. All we need to do is pass the
/// handler block to llvm.eh.actions and list it as a possible indirectbr
/// target.
void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
                                          BasicBlock *StartBB) {
  BasicBlock *HandlerBB;
  BasicBlock *NextBB;
  Constant *Selector;
  bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
  if (Res) {
    // If this was EH dispatch, this must be a conditional branch to the handler
    // block.
    // FIXME: Handle instructions in the dispatch block. Currently we drop them,
    // leading to crashes if some optimization hoists stuff here.
    assert(CatchAction->getSelector() && HandlerBB &&
           "expected catch EH dispatch");
  } else {
    // This must be a catch-all. Split the block after the landingpad.
    assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
    HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
  }
  IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
  Function *EHCodeFn = Intrinsic::getDeclaration(
      StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
  Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
  Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
  Builder.CreateStore(Code, SEHExceptionCodeSlot);
  CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
  TinyPtrVector<BasicBlock *> Targets(HandlerBB);
  CatchAction->setReturnTargets(Targets);
}

void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
  // Each instance of this class should only ever be used to map a single
  // landing pad.
  assert(OriginLPad == nullptr || OriginLPad == LPad);

  // If the landing pad has already been mapped, there's nothing more to do.
  if (OriginLPad == LPad)
    return;

  OriginLPad = LPad;

  // The landingpad instruction returns an aggregate value.  Typically, its
  // value will be passed to a pair of extract value instructions and the
  // results of those extracts will have been promoted to reg values before
  // this routine is called.
  for (auto *U : LPad->users()) {
    const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
    if (!Extract)
      continue;
    assert(Extract->getNumIndices() == 1 &&
           "Unexpected operation: extracting both landing pad values");
    unsigned int Idx = *(Extract->idx_begin());
    assert((Idx == 0 || Idx == 1) &&
           "Unexpected operation: extracting an unknown landing pad element");
    if (Idx == 0) {
      ExtractedEHPtrs.push_back(Extract);
    } else if (Idx == 1) {
      ExtractedSelectors.push_back(Extract);
    }
  }
}

bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
  return BB->getLandingPadInst() == OriginLPad;
}

bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
  if (Inst == OriginLPad)
    return true;
  for (auto *Extract : ExtractedEHPtrs) {
    if (Inst == Extract)
      return true;
  }
  for (auto *Extract : ExtractedSelectors) {
    if (Inst == Extract)
      return true;
  }
  return false;
}

void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
                                  Value *SelectorValue) const {
  // Remap all landing pad extract instructions to the specified values.
  for (auto *Extract : ExtractedEHPtrs)
    VMap[Extract] = EHPtrValue;
  for (auto *Extract : ExtractedSelectors)
    VMap[Extract] = SelectorValue;
}

static bool isFrameAddressCall(const Value *V) {
  return match(const_cast<Value *>(V),
               m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
}

CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // If this is one of the boilerplate landing pad instructions, skip it.
  // The instruction will have already been remapped in VMap.
  if (LPadMap.isLandingPadSpecificInst(Inst))
    return CloningDirector::SkipInstruction;

  // Nested landing pads that have not already been outlined will be cloned as
  // stubs, with just the landingpad instruction and an unreachable instruction.
  // When all landingpads have been outlined, we'll replace this with the
  // llvm.eh.actions call and indirect branch created when the landing pad was
  // outlined.
  if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
    return handleLandingPad(VMap, LPad, NewBB);
  }

  // Nested landing pads that have already been outlined will be cloned in their
  // outlined form, but we need to intercept the ibr instruction to filter out
  // targets that do not return to the handler we are outlining.
  if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
    return handleIndirectBr(VMap, IBr, NewBB);
  }

  if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
    return handleInvoke(VMap, Invoke, NewBB);

  if (auto *Resume = dyn_cast<ResumeInst>(Inst))
    return handleResume(VMap, Resume, NewBB);

  if (auto *Cmp = dyn_cast<CmpInst>(Inst))
    return handleCompare(VMap, Cmp, NewBB);

  if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
    return handleBeginCatch(VMap, Inst, NewBB);
  if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
    return handleEndCatch(VMap, Inst, NewBB);
  if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
    return handleTypeIdFor(VMap, Inst, NewBB);

  // When outlining llvm.frameaddress(i32 0), remap that to the second argument,
  // which is the FP of the parent.
  if (isFrameAddressCall(Inst)) {
    VMap[Inst] = ParentFP;
    return CloningDirector::SkipInstruction;
  }

  // Continue with the default cloning behavior.
  return CloningDirector::CloneInstruction;
}

CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
  // If the instruction after the landing pad is a call to llvm.eh.actions
  // the landing pad has already been outlined.  In this case, we should
  // clone it because it may return to a block in the handler we are
  // outlining now that would otherwise be unreachable.  The landing pads
  // are sorted before outlining begins to enable this case to work
  // properly.
  const Instruction *NextI = LPad->getNextNode();
  if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
    return CloningDirector::CloneInstruction;

  // If the landing pad hasn't been outlined yet, the landing pad we are
  // outlining now does not dominate it and so it cannot return to a block
  // in this handler.  In that case, we can just insert a stub landing
  // pad now and patch it up later.
  Instruction *NewInst = LPad->clone();
  if (LPad->hasName())
    NewInst->setName(LPad->getName());
  // Save this correlation for later processing.
  NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
  VMap[LPad] = NewInst;
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(NewInst);
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // The argument to the call is some form of the first element of the
  // landingpad aggregate value, but that doesn't matter.  It isn't used
  // here.
  // The second argument is an outparameter where the exception object will be
  // stored. Typically the exception object is a scalar, but it can be an
  // aggregate when catching by value.
  // FIXME: Leave something behind to indicate where the exception object lives
  // for this handler. Should it be part of llvm.eh.actions?
  assert(ExceptionObjectVar == nullptr && "Multiple calls to "
                                          "llvm.eh.begincatch found while "
                                          "outlining catch handler.");
  ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
  if (isa<ConstantPointerNull>(ExceptionObjectVar))
    return CloningDirector::SkipInstruction;
  assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&
         "catch parameter is not static alloca");
  Materializer.escapeCatchObject(ExceptionObjectVar);
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
                                   const Instruction *Inst, BasicBlock *NewBB) {
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
  // It might be interesting to track whether or not we are inside a catch
  // function, but that might make the algorithm more brittle than it needs
  // to be.

  // The end catch call can occur in one of two places: either in a
  // landingpad block that is part of the catch handlers exception mechanism,
  // or at the end of the catch block.  However, a catch-all handler may call
  // end catch from the original landing pad.  If the call occurs in a nested
  // landing pad block, we must skip it and continue so that the landing pad
  // gets cloned.
  auto *ParentBB = IntrinCall->getParent();
  if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
    return CloningDirector::SkipInstruction;

  // If an end catch occurs anywhere else we want to terminate the handler
  // with a return to the code that follows the endcatch call.  If the
  // next instruction is not an unconditional branch, we need to split the
  // block to provide a clear target for the return instruction.
  BasicBlock *ContinueBB;
  auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
  const BranchInst *Branch = dyn_cast<BranchInst>(Next);
  if (!Branch || !Branch->isUnconditional()) {
    // We're interrupting the cloning process at this location, so the
    // const_cast we're doing here will not cause a problem.
    ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
                            const_cast<Instruction *>(cast<Instruction>(Next)));
  } else {
    ContinueBB = Branch->getSuccessor(0);
  }

  ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
  ReturnTargets.push_back(ContinueBB);

  // We just added a terminator to the cloned block.
  // Tell the caller to stop processing the current basic block so that
  // the branch instruction will be skipped.
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
  Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
  // This causes a replacement that will collapse the landing pad CFG based
  // on the filter function we intend to match.
  if (Selector == CurrentSelector)
    VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
  else
    VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
  // Tell the caller not to clone this instruction.
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
    ValueToValueMapTy &VMap,
    const IndirectBrInst *IBr,
    BasicBlock *NewBB) {
  // If this indirect branch is not part of a landing pad block, just clone it.
  const BasicBlock *ParentBB = IBr->getParent();
  if (!ParentBB->isLandingPad())
    return CloningDirector::CloneInstruction;

  // If it is part of a landing pad, we want to filter out target blocks
  // that are not part of the handler we are outlining.
  const LandingPadInst *LPad = ParentBB->getLandingPadInst();

  // Save this correlation for later processing.
  NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;

  // We should only get here for landing pads that have already been outlined.
  assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()));

  // Copy the indirectbr, but only include targets that were previously
  // identified as EH blocks and are dominated by the nested landing pad.
  SetVector<const BasicBlock *> ReturnTargets;
  for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
    auto *TargetBB = IBr->getDestination(I);
    if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
        DT->dominates(ParentBB, TargetBB)) {
      DEBUG(dbgs() << "  Adding destination " << TargetBB->getName() << "\n");
      ReturnTargets.insert(TargetBB);
    }
  }
  IndirectBrInst *NewBranch = 
        IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
                               ReturnTargets.size(), NewBB);
  for (auto *Target : ReturnTargets)
    NewBranch->addDestination(const_cast<BasicBlock*>(Target));

  // The operands and targets of the branch instruction are remapped later
  // because it is a terminator.  Tell the cloning code to clone the
  // blocks we just added to the target list.
  return CloningDirector::CloneSuccessors;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
                                 const InvokeInst *Invoke, BasicBlock *NewBB) {
  return CloningDirector::CloneInstruction;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
                                 const ResumeInst *Resume, BasicBlock *NewBB) {
  // Resume instructions shouldn't be reachable from catch handlers.
  // We still need to handle it, but it will be pruned.
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(new UnreachableInst(NewBB->getContext()));
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction
WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
                                  const CmpInst *Compare, BasicBlock *NewBB) {
  const IntrinsicInst *IntrinCall = nullptr;
  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
  } else if (match(Compare->getOperand(1),
                   m_Intrinsic<Intrinsic::eh_typeid_for>())) {
    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
  }
  if (IntrinCall) {
    Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
    // This causes a replacement that will collapse the landing pad CFG based
    // on the filter function we intend to match.
    if (Selector == CurrentSelector->stripPointerCasts()) {
      VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
    } else {
      VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
    }
    return CloningDirector::SkipInstruction;
  }
  return CloningDirector::CloneInstruction;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
  // The MS runtime will terminate the process if an exception occurs in a
  // cleanup handler, so we shouldn't encounter landing pads in the actual
  // cleanup code, but they may appear in catch blocks.  Depending on where
  // we started cloning we may see one, but it will get dropped during dead
  // block pruning.
  Instruction *NewInst = new UnreachableInst(NewBB->getContext());
  VMap[LPad] = NewInst;
  BasicBlock::InstListType &InstList = NewBB->getInstList();
  InstList.push_back(NewInst);
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // Cleanup code may flow into catch blocks or the catch block may be part
  // of a branch that will be optimized away.  We'll insert a return
  // instruction now, but it may be pruned before the cloning process is
  // complete.
  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // Cleanup handlers nested within catch handlers may begin with a call to
  // eh.endcatch.  We can just ignore that instruction.
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
    ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
  // If we encounter a selector comparison while cloning a cleanup handler,
  // we want to stop cloning immediately.  Anything after the dispatch
  // will be outlined into a different handler.
  BasicBlock *CatchHandler;
  Constant *Selector;
  BasicBlock *NextBB;
  if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
                         CatchHandler, Selector, NextBB)) {
    ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
    return CloningDirector::StopCloningBB;
  }
  // If eg.typeid.for is called for any other reason, it can be ignored.
  VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
  return CloningDirector::SkipInstruction;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
    ValueToValueMapTy &VMap,
    const IndirectBrInst *IBr,
    BasicBlock *NewBB) {
  // No special handling is required for cleanup cloning.
  return CloningDirector::CloneInstruction;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
    ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
  // All invokes in cleanup handlers can be replaced with calls.
  SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
  // Insert a normal call instruction...
  CallInst *NewCall =
      CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
                       Invoke->getName(), NewBB);
  NewCall->setCallingConv(Invoke->getCallingConv());
  NewCall->setAttributes(Invoke->getAttributes());
  NewCall->setDebugLoc(Invoke->getDebugLoc());
  VMap[Invoke] = NewCall;

  // Remap the operands.
  llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);

  // Insert an unconditional branch to the normal destination.
  BranchInst::Create(Invoke->getNormalDest(), NewBB);

  // The unwind destination won't be cloned into the new function, so
  // we don't need to clean up its phi nodes.

  // We just added a terminator to the cloned block.
  // Tell the caller to stop processing the current basic block.
  return CloningDirector::CloneSuccessors;
}

CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
    ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);

  // We just added a terminator to the cloned block.
  // Tell the caller to stop processing the current basic block so that
  // the branch instruction will be skipped.
  return CloningDirector::StopCloningBB;
}

CloningDirector::CloningAction
WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
                                    const CmpInst *Compare, BasicBlock *NewBB) {
  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
      match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
    VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
    return CloningDirector::SkipInstruction;
  }
  return CloningDirector::CloneInstruction;
}

WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
    Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
    : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
  BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();

  // New allocas should be inserted in the entry block, but after the parent FP
  // is established if it is an instruction.
  Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
  if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
    InsertPoint = FPInst->getNextNode();
  Builder.SetInsertPoint(EntryBB, InsertPoint);
}

Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
  // If we're asked to materialize a static alloca, we temporarily create an
  // alloca in the outlined function and add this to the FrameVarInfo map.  When
  // all the outlining is complete, we'll replace these temporary allocas with
  // calls to llvm.framerecover.
  if (auto *AV = dyn_cast<AllocaInst>(V)) {
    assert(AV->isStaticAlloca() &&
           "cannot materialize un-demoted dynamic alloca");
    AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
    Builder.Insert(NewAlloca, AV->getName());
    FrameVarInfo[AV].push_back(NewAlloca);
    return NewAlloca;
  }

  if (isa<Instruction>(V) || isa<Argument>(V)) {
    Function *Parent = isa<Instruction>(V)
                           ? cast<Instruction>(V)->getParent()->getParent()
                           : cast<Argument>(V)->getParent();
    errs()
        << "Failed to demote instruction used in exception handler of function "
        << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
    errs() << "  " << *V << '\n';
    report_fatal_error("WinEHPrepare failed to demote instruction");
  }

  // Don't materialize other values.
  return nullptr;
}

void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
  // Catch parameter objects have to live in the parent frame. When we see a use
  // of a catch parameter, add a sentinel to the multimap to indicate that it's
  // used from another handler. This will prevent us from trying to sink the
  // alloca into the handler and ensure that the catch parameter is present in
  // the call to llvm.frameescape.
  FrameVarInfo[V].push_back(getCatchObjectSentinel());
}

// This function maps the catch and cleanup handlers that are reachable from the
// specified landing pad. The landing pad sequence will have this basic shape:
//
//  <cleanup handler>
//  <selector comparison>
//  <catch handler>
//  <cleanup handler>
//  <selector comparison>
//  <catch handler>
//  <cleanup handler>
//  ...
//
// Any of the cleanup slots may be absent.  The cleanup slots may be occupied by
// any arbitrary control flow, but all paths through the cleanup code must
// eventually reach the next selector comparison and no path can skip to a
// different selector comparisons, though some paths may terminate abnormally.
// Therefore, we will use a depth first search from the start of any given
// cleanup block and stop searching when we find the next selector comparison.
//
// If the landingpad instruction does not have a catch clause, we will assume
// that any instructions other than selector comparisons and catch handlers can
// be ignored.  In practice, these will only be the boilerplate instructions.
//
// The catch handlers may also have any control structure, but we are only
// interested in the start of the catch handlers, so we don't need to actually
// follow the flow of the catch handlers.  The start of the catch handlers can
// be located from the compare instructions, but they can be skipped in the
// flow by following the contrary branch.
void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
                                       LandingPadActions &Actions) {
  unsigned int NumClauses = LPad->getNumClauses();
  unsigned int HandlersFound = 0;
  BasicBlock *BB = LPad->getParent();

  DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");

  if (NumClauses == 0) {
    findCleanupHandlers(Actions, BB, nullptr);
    return;
  }

  VisitedBlockSet VisitedBlocks;

  while (HandlersFound != NumClauses) {
    BasicBlock *NextBB = nullptr;

    // Skip over filter clauses.
    if (LPad->isFilter(HandlersFound)) {
      ++HandlersFound;
      continue;
    }

    // See if the clause we're looking for is a catch-all.
    // If so, the catch begins immediately.
    Constant *ExpectedSelector =
        LPad->getClause(HandlersFound)->stripPointerCasts();
    if (isa<ConstantPointerNull>(ExpectedSelector)) {
      // The catch all must occur last.
      assert(HandlersFound == NumClauses - 1);

      // There can be additional selector dispatches in the call chain that we
      // need to ignore.
      BasicBlock *CatchBlock = nullptr;
      Constant *Selector;
      while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
        DEBUG(dbgs() << "  Found extra catch dispatch in block "
                     << CatchBlock->getName() << "\n");
        BB = NextBB;
      }

      // Add the catch handler to the action list.
      CatchHandler *Action = nullptr;
      if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
        // If the CatchHandlerMap already has an entry for this BB, re-use it.
        Action = CatchHandlerMap[BB];
        assert(Action->getSelector() == ExpectedSelector);
      } else {
        // We don't expect a selector dispatch, but there may be a call to
        // llvm.eh.begincatch, which separates catch handling code from
        // cleanup code in the same control flow.  This call looks for the
        // begincatch intrinsic.
        Action = findCatchHandler(BB, NextBB, VisitedBlocks);
        if (Action) {
          // For C++ EH, check if there is any interesting cleanup code before
          // we begin the catch. This is important because cleanups cannot
          // rethrow exceptions but code called from catches can. For SEH, it
          // isn't important if some finally code before a catch-all is executed
          // out of line or after recovering from the exception.
          if (Personality == EHPersonality::MSVC_CXX)
            findCleanupHandlers(Actions, BB, BB);
        } else {
          // If an action was not found, it means that the control flows
          // directly into the catch-all handler and there is no cleanup code.
          // That's an expected situation and we must create a catch action.
          // Since this is a catch-all handler, the selector won't actually
          // appear in the code anywhere.  ExpectedSelector here is the constant
          // null ptr that we got from the landing pad instruction.
          Action = new CatchHandler(BB, ExpectedSelector, nullptr);
          CatchHandlerMap[BB] = Action;
        }
      }
      Actions.insertCatchHandler(Action);
      DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
      ++HandlersFound;

      // Once we reach a catch-all, don't expect to hit a resume instruction.
      BB = nullptr;
      break;
    }

    CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
    assert(CatchAction);

    // See if there is any interesting code executed before the dispatch.
    findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());

    // When the source program contains multiple nested try blocks the catch
    // handlers can get strung together in such a way that we can encounter
    // a dispatch for a selector that we've already had a handler for.
    if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
      ++HandlersFound;

      // Add the catch handler to the action list.
      DEBUG(dbgs() << "  Found catch dispatch in block "
                   << CatchAction->getStartBlock()->getName() << "\n");
      Actions.insertCatchHandler(CatchAction);
    } else {
      // Under some circumstances optimized IR will flow unconditionally into a
      // handler block without checking the selector.  This can only happen if
      // the landing pad has a catch-all handler and the handler for the
      // preceeding catch clause is identical to the catch-call handler
      // (typically an empty catch).  In this case, the handler must be shared
      // by all remaining clauses.
      if (isa<ConstantPointerNull>(
              CatchAction->getSelector()->stripPointerCasts())) {
        DEBUG(dbgs() << "  Applying early catch-all handler in block "
                     << CatchAction->getStartBlock()->getName()
                     << "  to all remaining clauses.\n");
        Actions.insertCatchHandler(CatchAction);
        return;
      }

      DEBUG(dbgs() << "  Found extra catch dispatch in block "
                   << CatchAction->getStartBlock()->getName() << "\n");
    }

    // Move on to the block after the catch handler.
    BB = NextBB;
  }

  // If we didn't wind up in a catch-all, see if there is any interesting code
  // executed before the resume.
  findCleanupHandlers(Actions, BB, BB);

  // It's possible that some optimization moved code into a landingpad that
  // wasn't
  // previously being used for cleanup.  If that happens, we need to execute
  // that
  // extra code from a cleanup handler.
  if (Actions.includesCleanup() && !LPad->isCleanup())
    LPad->setCleanup(true);
}

// This function searches starting with the input block for the next
// block that terminates with a branch whose condition is based on a selector
// comparison.  This may be the input block.  See the mapLandingPadBlocks
// comments for a discussion of control flow assumptions.
//
CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
                                             BasicBlock *&NextBB,
                                             VisitedBlockSet &VisitedBlocks) {
  // See if we've already found a catch handler use it.
  // Call count() first to avoid creating a null entry for blocks
  // we haven't seen before.
  if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
    CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
    NextBB = Action->getNextBB();
    return Action;
  }

  // VisitedBlocks applies only to the current search.  We still
  // need to consider blocks that we've visited while mapping other
  // landing pads.
  VisitedBlocks.insert(BB);

  BasicBlock *CatchBlock = nullptr;
  Constant *Selector = nullptr;

  // If this is the first time we've visited this block from any landing pad
  // look to see if it is a selector dispatch block.
  if (!CatchHandlerMap.count(BB)) {
    if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
      CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
      CatchHandlerMap[BB] = Action;
      return Action;
    }
    // If we encounter a block containing an llvm.eh.begincatch before we
    // find a selector dispatch block, the handler is assumed to be
    // reached unconditionally.  This happens for catch-all blocks, but
    // it can also happen for other catch handlers that have been combined
    // with the catch-all handler during optimization.
    if (isCatchBlock(BB)) {
      PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
      Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
      CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
      CatchHandlerMap[BB] = Action;
      return Action;
    }
  }

  // Visit each successor, looking for the dispatch.
  // FIXME: We expect to find the dispatch quickly, so this will probably
  //        work better as a breadth first search.
  for (BasicBlock *Succ : successors(BB)) {
    if (VisitedBlocks.count(Succ))
      continue;

    CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
    if (Action)
      return Action;
  }
  return nullptr;
}

// These are helper functions to combine repeated code from findCleanupHandlers.
static void createCleanupHandler(LandingPadActions &Actions,
                                 CleanupHandlerMapTy &CleanupHandlerMap,
                                 BasicBlock *BB) {
  CleanupHandler *Action = new CleanupHandler(BB);
  CleanupHandlerMap[BB] = Action;
  Actions.insertCleanupHandler(Action);
  DEBUG(dbgs() << "  Found cleanup code in block "
               << Action->getStartBlock()->getName() << "\n");
}

static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
                                         Instruction *MaybeCall) {
  // Look for finally blocks that Clang has already outlined for us.
  //   %fp = call i8* @llvm.frameaddress(i32 0)
  //   call void @"fin$parent"(iN 1, i8* %fp)
  if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
    MaybeCall = MaybeCall->getNextNode();
  CallSite FinallyCall(MaybeCall);
  if (!FinallyCall || FinallyCall.arg_size() != 2)
    return CallSite();
  if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
    return CallSite();
  if (!isFrameAddressCall(FinallyCall.getArgument(1)))
    return CallSite();
  return FinallyCall;
}

static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
  // Skip single ubr blocks.
  while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
    if (Br && Br->isUnconditional())
      BB = Br->getSuccessor(0);
    else
      return BB;
  }
  return BB;
}

// This function searches starting with the input block for the next block that
// contains code that is not part of a catch handler and would not be eliminated
// during handler outlining.
//
void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
                                       BasicBlock *StartBB, BasicBlock *EndBB) {
  // Here we will skip over the following:
  //
  // landing pad prolog:
  //
  // Unconditional branches
  //
  // Selector dispatch
  //
  // Resume pattern
  //
  // Anything else marks the start of an interesting block

  BasicBlock *BB = StartBB;
  // Anything other than an unconditional branch will kick us out of this loop
  // one way or another.
  while (BB) {
    BB = followSingleUnconditionalBranches(BB);
    // If we've already scanned this block, don't scan it again.  If it is
    // a cleanup block, there will be an action in the CleanupHandlerMap.
    // If we've scanned it and it is not a cleanup block, there will be a
    // nullptr in the CleanupHandlerMap.  If we have not scanned it, there will
    // be no entry in the CleanupHandlerMap.  We must call count() first to
    // avoid creating a null entry for blocks we haven't scanned.
    if (CleanupHandlerMap.count(BB)) {
      if (auto *Action = CleanupHandlerMap[BB]) {
        Actions.insertCleanupHandler(Action);
        DEBUG(dbgs() << "  Found cleanup code in block "
                     << Action->getStartBlock()->getName() << "\n");
        // FIXME: This cleanup might chain into another, and we need to discover
        // that.
        return;
      } else {
        // Here we handle the case where the cleanup handler map contains a
        // value for this block but the value is a nullptr.  This means that
        // we have previously analyzed the block and determined that it did
        // not contain any cleanup code.  Based on the earlier analysis, we
        // know the the block must end in either an unconditional branch, a
        // resume or a conditional branch that is predicated on a comparison
        // with a selector.  Either the resume or the selector dispatch
        // would terminate the search for cleanup code, so the unconditional
        // branch is the only case for which we might need to continue
        // searching.
        BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
        if (SuccBB == BB || SuccBB == EndBB)
          return;
        BB = SuccBB;
        continue;
      }
    }

    // Create an entry in the cleanup handler map for this block.  Initially
    // we create an entry that says this isn't a cleanup block.  If we find
    // cleanup code, the caller will replace this entry.
    CleanupHandlerMap[BB] = nullptr;

    TerminatorInst *Terminator = BB->getTerminator();

    // Landing pad blocks have extra instructions we need to accept.
    LandingPadMap *LPadMap = nullptr;
    if (BB->isLandingPad()) {
      LandingPadInst *LPad = BB->getLandingPadInst();
      LPadMap = &LPadMaps[LPad];
      if (!LPadMap->isInitialized())
        LPadMap->mapLandingPad(LPad);
    }

    // Look for the bare resume pattern:
    //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
    //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
    //   resume { i8*, i32 } %lpad.val2
    if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
      InsertValueInst *Insert1 = nullptr;
      InsertValueInst *Insert2 = nullptr;
      Value *ResumeVal = Resume->getOperand(0);
      // If the resume value isn't a phi or landingpad value, it should be a
      // series of insertions. Identify them so we can avoid them when scanning
      // for cleanups.
      if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
        Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
        if (!Insert2)
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
        Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
        if (!Insert1)
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
      }
      for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
           II != IE; ++II) {
        Instruction *Inst = II;
        if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
          continue;
        if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
          continue;
        if (!Inst->hasOneUse() ||
            (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
        }
      }
      return;
    }

    BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
    if (Branch && Branch->isConditional()) {
      // Look for the selector dispatch.
      //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
      //   %matches = icmp eq i32 %sel, %2
      //   br i1 %matches, label %catch14, label %eh.resume
      CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
      if (!Compare || !Compare->isEquality())
        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
      for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
           II != IE; ++II) {
        Instruction *Inst = II;
        if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
          continue;
        if (Inst == Compare || Inst == Branch)
          continue;
        if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
          continue;
        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
      }
      // The selector dispatch block should always terminate our search.
      assert(BB == EndBB);
      return;
    }

    if (isAsynchronousEHPersonality(Personality)) {
      // If this is a landingpad block, split the block at the first non-landing
      // pad instruction.
      Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
      if (LPadMap) {
        while (MaybeCall != BB->getTerminator() &&
               LPadMap->isLandingPadSpecificInst(MaybeCall))
          MaybeCall = MaybeCall->getNextNode();
      }

      // Look for outlined finally calls.
      if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
        Function *Fin = FinallyCall.getCalledFunction();
        assert(Fin && "outlined finally call should be direct");
        auto *Action = new CleanupHandler(BB);
        Action->setHandlerBlockOrFunc(Fin);
        Actions.insertCleanupHandler(Action);
        CleanupHandlerMap[BB] = Action;
        DEBUG(dbgs() << "  Found frontend-outlined finally call to "
                     << Fin->getName() << " in block "
                     << Action->getStartBlock()->getName() << "\n");

        // Split the block if there were more interesting instructions and look
        // for finally calls in the normal successor block.
        BasicBlock *SuccBB = BB;
        if (FinallyCall.getInstruction() != BB->getTerminator() &&
            FinallyCall.getInstruction()->getNextNode() !=
                BB->getTerminator()) {
          SuccBB =
              SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
        } else {
          if (FinallyCall.isInvoke()) {
            SuccBB =
                cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
          } else {
            SuccBB = BB->getUniqueSuccessor();
            assert(SuccBB &&
                   "splitOutlinedFinallyCalls didn't insert a branch");
          }
        }
        BB = SuccBB;
        if (BB == EndBB)
          return;
        continue;
      }
    }

    // Anything else is either a catch block or interesting cleanup code.
    for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
         II != IE; ++II) {
      Instruction *Inst = II;
      if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
        continue;
      // Unconditional branches fall through to this loop.
      if (Inst == Branch)
        continue;
      // If this is a catch block, there is no cleanup code to be found.
      if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
        return;
      // If this a nested landing pad, it may contain an endcatch call.
      if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
        return;
      // Anything else makes this interesting cleanup code.
      return createCleanupHandler(Actions, CleanupHandlerMap, BB);
    }

    // Only unconditional branches in empty blocks should get this far.
    assert(Branch && Branch->isUnconditional());
    if (BB == EndBB)
      return;
    BB = Branch->getSuccessor(0);
  }
}

// This is a public function, declared in WinEHFuncInfo.h and is also
// referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
void llvm::parseEHActions(
    const IntrinsicInst *II,
    SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
  for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
    uint64_t ActionKind =
        cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
    if (ActionKind == /*catch=*/1) {
      auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
      ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
      int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
      Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
      I += 4;
      auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
                                          /*NextBB=*/nullptr);
      CH->setHandlerBlockOrFunc(Handler);
      CH->setExceptionVarIndex(EHObjIndexVal);
      Actions.push_back(std::move(CH));
    } else if (ActionKind == 0) {
      Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
      I += 2;
      auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
      CH->setHandlerBlockOrFunc(Handler);
      Actions.push_back(std::move(CH));
    } else {
      llvm_unreachable("Expected either a catch or cleanup handler!");
    }
  }
  std::reverse(Actions.begin(), Actions.end());
}
OpenPOWER on IntegriCloud