summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
blob: a5ec797b27db6d89d4dd0a2855697ea641aaf907 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
//===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "virtregrewriter"
#include "VirtRegRewriter.h"
#include "VirtRegMap.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumDSE     , "Number of dead stores elided");
STATISTIC(NumDSS     , "Number of dead spill slots removed");
STATISTIC(NumCommutes, "Number of instructions commuted");
STATISTIC(NumDRM     , "Number of re-materializable defs elided");
STATISTIC(NumStores  , "Number of stores added");
STATISTIC(NumPSpills , "Number of physical register spills");
STATISTIC(NumOmitted , "Number of reloads omitted");
STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
STATISTIC(NumCopified, "Number of available reloads turned into copies");
STATISTIC(NumReMats  , "Number of re-materialization");
STATISTIC(NumLoads   , "Number of loads added");
STATISTIC(NumReused  , "Number of values reused");
STATISTIC(NumDCE     , "Number of copies elided");
STATISTIC(NumSUnfold , "Number of stores unfolded");
STATISTIC(NumModRefUnfold, "Number of modref unfolded");

namespace {
  enum RewriterName { local, trivial };
}

static cl::opt<RewriterName>
RewriterOpt("rewriter",
            cl::desc("Rewriter to use (default=local)"),
            cl::Prefix,
            cl::values(clEnumVal(local,   "local rewriter"),
                       clEnumVal(trivial, "trivial rewriter"),
                       clEnumValEnd),
            cl::init(local));

static cl::opt<bool>
ScheduleSpills("schedule-spills",
               cl::desc("Schedule spill code"),
               cl::init(false));

VirtRegRewriter::~VirtRegRewriter() {}

/// substitutePhysReg - Replace virtual register in MachineOperand with a
/// physical register. Do the right thing with the sub-register index.
/// Note that operands may be added, so the MO reference is no longer valid.
static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
                              const TargetRegisterInfo &TRI) {
  if (MO.getSubReg()) {
    MO.substPhysReg(Reg, TRI);

    // Any kill flags apply to the full virtual register, so they also apply to
    // the full physical register.
    // We assume that partial defs have already been decorated with a super-reg
    // <imp-def> operand by LiveIntervals.
    MachineInstr &MI = *MO.getParent();
    if (MO.isUse() && !MO.isUndef() &&
        (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
      MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
  } else {
    MO.setReg(Reg);
  }
}

namespace {

/// This class is intended for use with the new spilling framework only. It
/// rewrites vreg def/uses to use the assigned preg, but does not insert any
/// spill code.
struct TrivialRewriter : public VirtRegRewriter {

  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
                            LiveIntervals* LIs) {
    DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
    DEBUG(dbgs() << "********** Function: "
          << MF.getFunction()->getName() << '\n');
    DEBUG(dbgs() << "**** Machine Instrs"
          << "(NOTE! Does not include spills and reloads!) ****\n");
    DEBUG(MF.dump());

    MachineRegisterInfo *mri = &MF.getRegInfo();
    const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();

    bool changed = false;

    for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
         liItr != liEnd; ++liItr) {

      const LiveInterval *li = liItr->second;
      unsigned reg = li->reg;

      if (TargetRegisterInfo::isPhysicalRegister(reg)) {
        if (!li->empty())
          mri->setPhysRegUsed(reg);
      }
      else {
        if (!VRM.hasPhys(reg))
          continue;
        unsigned pReg = VRM.getPhys(reg);
        mri->setPhysRegUsed(pReg);
        // Copy the register use-list before traversing it.
        SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
        for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
               E = mri->reg_end(); I != E; ++I)
          reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
        for (unsigned N=0; N != reglist.size(); ++N)
          substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
                            pReg, *tri);
        changed |= !reglist.empty();
      }
    }

    DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
    DEBUG(MF.dump());

    return changed;
  }

};

}

// ************************************************************************ //

namespace {

/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
/// from top down, keep track of which spill slots or remat are available in
/// each register.
///
/// Note that not all physregs are created equal here.  In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using
/// that we cannot CHANGE, but we can read if we like.  We keep track of this
/// on a per-stack-slot / remat id basis as the low bit in the value of the
/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
/// this bit and addAvailable sets it if.
class AvailableSpills {
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;

  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
  // or remat'ed virtual register values that are still available, due to
  // being loaded or stored to, but not invalidated yet.
  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;

  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
  // indicating which stack slot values are currently held by a physreg.  This
  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
  // physreg is modified.
  std::multimap<unsigned, int> PhysRegsAvailable;

  void disallowClobberPhysRegOnly(unsigned PhysReg);

  void ClobberPhysRegOnly(unsigned PhysReg);
public:
  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
    : TRI(tri), TII(tii) {
  }

  /// clear - Reset the state.
  void clear() {
    SpillSlotsOrReMatsAvailable.clear();
    PhysRegsAvailable.clear();
  }

  const TargetRegisterInfo *getRegInfo() const { return TRI; }

  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
  /// available in a physical register, return that PhysReg, otherwise
  /// return 0.
  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
    std::map<int, unsigned>::const_iterator I =
      SpillSlotsOrReMatsAvailable.find(Slot);
    if (I != SpillSlotsOrReMatsAvailable.end()) {
      return I->second >> 1;  // Remove the CanClobber bit.
    }
    return 0;
  }

  /// addAvailable - Mark that the specified stack slot / remat is available
  /// in the specified physreg.  If CanClobber is true, the physreg can be
  /// modified at any time without changing the semantics of the program.
  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
    // If this stack slot is thought to be available in some other physreg,
    // remove its record.
    ModifyStackSlotOrReMat(SlotOrReMat);

    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
                                              (unsigned)CanClobber;

    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
      DEBUG(dbgs() << "Remembering RM#"
                   << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
    else
      DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
    DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
          << (CanClobber ? " canclobber" : "") << "\n");
  }

  /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
  /// the value of the specified stackslot register if it desires. The
  /// specified stack slot must be available in a physreg for this query to
  /// make sense.
  bool canClobberPhysRegForSS(int SlotOrReMat) const {
    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
           "Value not available!");
    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
  }

  /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
  /// physical register where values for some stack slot(s) might be
  /// available.
  bool canClobberPhysReg(unsigned PhysReg) const {
    std::multimap<unsigned, int>::const_iterator I =
      PhysRegsAvailable.lower_bound(PhysReg);
    while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
      int SlotOrReMat = I->second;
      I++;
      if (!canClobberPhysRegForSS(SlotOrReMat))
        return false;
    }
    return true;
  }

  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
  /// stackslot register. The register is still available but is no longer
  /// allowed to be modifed.
  void disallowClobberPhysReg(unsigned PhysReg);

  /// ClobberPhysReg - This is called when the specified physreg changes
  /// value.  We use this to invalidate any info about stuff that lives in
  /// it and any of its aliases.
  void ClobberPhysReg(unsigned PhysReg);

  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
  /// slot changes.  This removes information about which register the
  /// previous value for this slot lives in (as the previous value is dead
  /// now).
  void ModifyStackSlotOrReMat(int SlotOrReMat);

  /// ClobberSharingStackSlots - When a register mapped to a stack slot changes,
  /// other stack slots sharing the same register are no longer valid.
  void ClobberSharingStackSlots(int StackSlot);

  /// AddAvailableRegsToLiveIn - Availability information is being kept coming
  /// into the specified MBB. Add available physical registers as potential
  /// live-in's. If they are reused in the MBB, they will be added to the
  /// live-in set to make register scavenger and post-allocation scheduler.
  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
                                std::vector<MachineOperand*> &KillOps);
};

}

// ************************************************************************ //

// Given a location where a reload of a spilled register or a remat of
// a constant is to be inserted, attempt to find a safe location to
// insert the load at an earlier point in the basic-block, to hide
// latency of the load and to avoid address-generation interlock
// issues.
static MachineBasicBlock::iterator
ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
                 MachineBasicBlock::iterator const Begin,
                 unsigned PhysReg,
                 const TargetRegisterInfo *TRI,
                 bool DoReMat,
                 int SSorRMId,
                 const TargetInstrInfo *TII,
                 const MachineFunction &MF)
{
  if (!ScheduleSpills)
    return InsertLoc;

  // Spill backscheduling is of primary interest to addresses, so
  // don't do anything if the register isn't in the register class
  // used for pointers.

  const TargetLowering *TL = MF.getTarget().getTargetLowering();

  if (!TL->isTypeLegal(TL->getPointerTy()))
    // Believe it or not, this is true on 16-bit targets like PIC16.
    return InsertLoc;

  const TargetRegisterClass *ptrRegClass =
    TL->getRegClassFor(TL->getPointerTy());
  if (!ptrRegClass->contains(PhysReg))
    return InsertLoc;

  // Scan upwards through the preceding instructions. If an instruction doesn't
  // reference the stack slot or the register we're loading, we can
  // backschedule the reload up past it.
  MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
  while (NewInsertLoc != Begin) {
    MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
    for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
      MachineOperand &Op = Prev->getOperand(i);
      if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
        goto stop;
    }
    if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
        Prev->findRegisterDefOperand(PhysReg))
      goto stop;
    for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
      if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
          Prev->findRegisterDefOperand(*Alias))
        goto stop;
    NewInsertLoc = Prev;
  }
stop:;

  // If we made it to the beginning of the block, turn around and move back
  // down just past any existing reloads. They're likely to be reloads/remats
  // for instructions earlier than what our current reload/remat is for, so
  // they should be scheduled earlier.
  if (NewInsertLoc == Begin) {
    int FrameIdx;
    while (InsertLoc != NewInsertLoc &&
           (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
            TII->isTriviallyReMaterializable(NewInsertLoc)))
      ++NewInsertLoc;
  }

  return NewInsertLoc;
}

namespace {

// ReusedOp - For each reused operand, we keep track of a bit of information,
// in case we need to rollback upon processing a new operand.  See comments
// below.
struct ReusedOp {
  // The MachineInstr operand that reused an available value.
  unsigned Operand;

  // StackSlotOrReMat - The spill slot or remat id of the value being reused.
  unsigned StackSlotOrReMat;

  // PhysRegReused - The physical register the value was available in.
  unsigned PhysRegReused;

  // AssignedPhysReg - The physreg that was assigned for use by the reload.
  unsigned AssignedPhysReg;

  // VirtReg - The virtual register itself.
  unsigned VirtReg;

  ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
           unsigned vreg)
    : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
      AssignedPhysReg(apr), VirtReg(vreg) {}
};

/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
/// is reused instead of reloaded.
class ReuseInfo {
  MachineInstr &MI;
  std::vector<ReusedOp> Reuses;
  BitVector PhysRegsClobbered;
public:
  ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
    PhysRegsClobbered.resize(tri->getNumRegs());
  }

  bool hasReuses() const {
    return !Reuses.empty();
  }

  /// addReuse - If we choose to reuse a virtual register that is already
  /// available instead of reloading it, remember that we did so.
  void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
                unsigned PhysRegReused, unsigned AssignedPhysReg,
                unsigned VirtReg) {
    // If the reload is to the assigned register anyway, no undo will be
    // required.
    if (PhysRegReused == AssignedPhysReg) return;

    // Otherwise, remember this.
    Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
                              AssignedPhysReg, VirtReg));
  }

  void markClobbered(unsigned PhysReg) {
    PhysRegsClobbered.set(PhysReg);
  }

  bool isClobbered(unsigned PhysReg) const {
    return PhysRegsClobbered.test(PhysReg);
  }

  /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
  /// is some other operand that is using the specified register, either pick
  /// a new register to use, or evict the previous reload and use this reg.
  unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
                           MachineFunction &MF, MachineInstr *MI,
                           AvailableSpills &Spills,
                           std::vector<MachineInstr*> &MaybeDeadStores,
                           SmallSet<unsigned, 8> &Rejected,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           VirtRegMap &VRM);

  /// GetRegForReload - Helper for the above GetRegForReload(). Add a
  /// 'Rejected' set to remember which registers have been considered and
  /// rejected for the reload. This avoids infinite looping in case like
  /// this:
  /// t1 := op t2, t3
  /// t2 <- assigned r0 for use by the reload but ended up reuse r1
  /// t3 <- assigned r1 for use by the reload but ended up reuse r0
  /// t1 <- desires r1
  ///       sees r1 is taken by t2, tries t2's reload register r0
  ///       sees r0 is taken by t3, tries t3's reload register r1
  ///       sees r1 is taken by t2, tries t2's reload register r0 ...
  unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
                           AvailableSpills &Spills,
                           std::vector<MachineInstr*> &MaybeDeadStores,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           VirtRegMap &VRM) {
    SmallSet<unsigned, 8> Rejected;
    MachineFunction &MF = *MI->getParent()->getParent();
    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
    return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
                           Rejected, RegKills, KillOps, VRM);
  }
};

}

// ****************** //
// Utility Functions  //
// ****************** //

/// findSinglePredSuccessor - Return via reference a vector of machine basic
/// blocks each of which is a successor of the specified BB and has no other
/// predecessor.
static void findSinglePredSuccessor(MachineBasicBlock *MBB,
                                   SmallVectorImpl<MachineBasicBlock *> &Succs){
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock *SuccMBB = *SI;
    if (SuccMBB->pred_size() == 1)
      Succs.push_back(SuccMBB);
  }
}

/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
/// but not re-defined and it's being reused. Remove the kill flag for the
/// register and unset the kill's marker and last kill operand.
static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
                                   BitVector &RegKills,
                                   std::vector<MachineOperand*> &KillOps) {
  DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");

  MachineOperand *KillOp = KillOps[Reg];
  KillOp->setIsKill(false);
  // KillOps[Reg] might be a def of a super-register.
  unsigned KReg = KillOp->getReg();
  if (!RegKills[KReg])
    return;

  assert(KillOps[KReg]->getParent() == KillOp->getParent() &&
         "invalid superreg kill flags");
  KillOps[KReg] = NULL;
  RegKills.reset(KReg);

  // If it's a def of a super-register. Its other sub-regsters are no
  // longer killed as well.
  for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
    DEBUG(dbgs() << "  Resurrect subreg " << TRI->getName(*SR) << "\n");

    assert(KillOps[*SR]->getParent() == KillOp->getParent() &&
           "invalid subreg kill flags");
    KillOps[*SR] = NULL;
    RegKills.reset(*SR);
  }
}

/// ResurrectKill - Invalidate kill info associated with a previous MI. An
/// optimization may have decided that it's safe to reuse a previously killed
/// register. If we fail to erase the invalid kill flags, then the register
/// scavenger may later clobber the register used by this MI. Note that this
/// must be done even if this MI is being deleted! Consider:
///
/// USE $r1 (vreg1) <kill>
/// ...
/// $r1(vreg3) = COPY $r1 (vreg2)
///
/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
/// vreg1's only use is a kill. The rewriter doesn't know it should be live
/// until it rewrites vreg2. At that points it sees that the copy is dead and
/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
/// vreg1 before deleting the copy.
static void ResurrectKill(MachineInstr &MI, unsigned Reg,
                          const TargetRegisterInfo* TRI, BitVector &RegKills,
                          std::vector<MachineOperand*> &KillOps) {
  if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
    ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
    return;
  }
  // No previous kill for this reg. Check for subreg kills as well.
  // d4 =
  // store d4, fi#0
  // ...
  //    = s8<kill>
  // ...
  //    = d4  <avoiding reload>
  for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
    unsigned SReg = *SR;
    if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
      ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
  }
}

/// InvalidateKills - MI is going to be deleted. If any of its operands are
/// marked kill, then invalidate the information.
static void InvalidateKills(MachineInstr &MI,
                            const TargetRegisterInfo* TRI,
                            BitVector &RegKills,
                            std::vector<MachineOperand*> &KillOps,
                            SmallVector<unsigned, 2> *KillRegs = NULL) {
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
      continue;
    unsigned Reg = MO.getReg();
    if (TargetRegisterInfo::isVirtualRegister(Reg))
      continue;
    if (KillRegs)
      KillRegs->push_back(Reg);
    assert(Reg < KillOps.size());
    if (KillOps[Reg] == &MO) {
      // This operand was the kill, now no longer.
      KillOps[Reg] = NULL;
      RegKills.reset(Reg);
      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
        if (RegKills[*SR]) {
          assert(KillOps[*SR] == &MO && "bad subreg kill flags");
          KillOps[*SR] = NULL;
          RegKills.reset(*SR);
        }
      }
    }
    else {
      // This operand may have reused a previously killed reg. Keep it live in
      // case it continues to be used after erasing this instruction.
      ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
    }
  }
}

/// InvalidateRegDef - If the def operand of the specified def MI is now dead
/// (since its spill instruction is removed), mark it isDead. Also checks if
/// the def MI has other definition operands that are not dead. Returns it by
/// reference.
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
                             MachineInstr &NewDef, unsigned Reg,
                             bool &HasLiveDef,
                             const TargetRegisterInfo *TRI) {
  // Due to remat, it's possible this reg isn't being reused. That is,
  // the def of this reg (by prev MI) is now dead.
  MachineInstr *DefMI = I;
  MachineOperand *DefOp = NULL;
  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = DefMI->getOperand(i);
    if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
      continue;
    if (MO.getReg() == Reg)
      DefOp = &MO;
    else if (!MO.isDead())
      HasLiveDef = true;
  }
  if (!DefOp)
    return false;

  bool FoundUse = false, Done = false;
  MachineBasicBlock::iterator E = &NewDef;
  ++I; ++E;
  for (; !Done && I != E; ++I) {
    MachineInstr *NMI = I;
    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
      MachineOperand &MO = NMI->getOperand(j);
      if (!MO.isReg() || MO.getReg() == 0 ||
          (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
        continue;
      if (MO.isUse())
        FoundUse = true;
      Done = true; // Stop after scanning all the operands of this MI.
    }
  }
  if (!FoundUse) {
    // Def is dead!
    DefOp->setIsDead();
    return true;
  }
  return false;
}

/// UpdateKills - Track and update kill info. If a MI reads a register that is
/// marked kill, then it must be due to register reuse. Transfer the kill info
/// over.
static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
                        BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps) {
  // These do not affect kill info at all.
  if (MI.isDebugValue())
    return;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0)
      continue;

    // This operand may have reused a previously killed reg. Keep it live.
    ResurrectKill(MI, Reg, TRI, RegKills, KillOps);

    if (MO.isKill()) {
      RegKills.set(Reg);
      KillOps[Reg] = &MO;
      for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
        RegKills.set(*SR);
        KillOps[*SR] = &MO;
      }
    }
  }

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.getReg() || !MO.isDef())
      continue;
    unsigned Reg = MO.getReg();
    RegKills.reset(Reg);
    KillOps[Reg] = NULL;
    // It also defines (or partially define) aliases.
    for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
      RegKills.reset(*SR);
      KillOps[*SR] = NULL;
    }
    for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
      RegKills.reset(*SR);
      KillOps[*SR] = NULL;
    }
  }
}

/// ReMaterialize - Re-materialize definition for Reg targeting DestReg.
///
static void ReMaterialize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &MII,
                          unsigned DestReg, unsigned Reg,
                          const TargetInstrInfo *TII,
                          const TargetRegisterInfo *TRI,
                          VirtRegMap &VRM) {
  MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
#ifndef NDEBUG
  const MCInstrDesc &MCID = ReMatDefMI->getDesc();
  assert(MCID.getNumDefs() == 1 &&
         "Don't know how to remat instructions that define > 1 values!");
#endif
  TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
  MachineInstr *NewMI = prior(MII);
  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = NewMI->getOperand(i);
    if (!MO.isReg() || MO.getReg() == 0)
      continue;
    unsigned VirtReg = MO.getReg();
    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
      continue;
    assert(MO.isUse());
    unsigned Phys = VRM.getPhys(VirtReg);
    assert(Phys && "Virtual register is not assigned a register?");
    substitutePhysReg(MO, Phys, *TRI);
  }
  ++NumReMats;
}

/// findSuperReg - Find the SubReg's super-register of given register class
/// where its SubIdx sub-register is SubReg.
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
       I != E; ++I) {
    unsigned Reg = *I;
    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
      return Reg;
  }
  return 0;
}

// ******************************** //
// Available Spills Implementation  //
// ******************************** //

/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int SlotOrReMat = I->second;
    I++;
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
         << " copied, it is available for use but can no longer be modified\n");
  }
}

/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register and its aliases. The register and its aliases may
/// still available but is no longer allowed to be modifed.
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
    disallowClobberPhysRegOnly(*AS);
  disallowClobberPhysRegOnly(PhysReg);
}

/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
  std::multimap<unsigned, int>::iterator I =
    PhysRegsAvailable.lower_bound(PhysReg);
  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
    int SlotOrReMat = I->second;
    PhysRegsAvailable.erase(I++);
    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
           "Bidirectional map mismatch!");
    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
    DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
          << " clobbered, invalidating ");
    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
      DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
    else
      DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
  }
}

/// ClobberPhysReg - This is called when the specified physreg changes
/// value.  We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
    ClobberPhysRegOnly(*AS);
  ClobberPhysRegOnly(PhysReg);
}

/// AddAvailableRegsToLiveIn - Availability information is being kept coming
/// into the specified MBB. Add available physical registers as potential
/// live-in's. If they are reused in the MBB, they will be added to the
/// live-in set to make register scavenger and post-allocation scheduler.
void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
                                        BitVector &RegKills,
                                        std::vector<MachineOperand*> &KillOps) {
  std::set<unsigned> NotAvailable;
  for (std::multimap<unsigned, int>::iterator
         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
       I != E; ++I) {
    unsigned Reg = I->first;
    const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
    // FIXME: A temporary workaround. We can't reuse available value if it's
    // not safe to move the def of the virtual register's class. e.g.
    // X86::RFP* register classes. Do not add it as a live-in.
    if (!TII->isSafeToMoveRegClassDefs(RC))
      // This is no longer available.
      NotAvailable.insert(Reg);
    else {
      MBB.addLiveIn(Reg);
      if (RegKills[Reg])
        ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
    }

    // Skip over the same register.
    std::multimap<unsigned, int>::iterator NI = llvm::next(I);
    while (NI != E && NI->first == Reg) {
      ++I;
      ++NI;
    }
  }

  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
         E = NotAvailable.end(); I != E; ++I) {
    ClobberPhysReg(*I);
    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
       *SubRegs; ++SubRegs)
      ClobberPhysReg(*SubRegs);
  }
}

/// ModifyStackSlotOrReMat - This method is called when the value in a stack
/// slot changes.  This removes information about which register the previous
/// value for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
  std::map<int, unsigned>::iterator It =
    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
  if (It == SpillSlotsOrReMatsAvailable.end()) return;
  unsigned Reg = It->second >> 1;
  SpillSlotsOrReMatsAvailable.erase(It);

  // This register may hold the value of multiple stack slots, only remove this
  // stack slot from the set of values the register contains.
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
  for (; ; ++I) {
    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
           "Map inverse broken!");
    if (I->second == SlotOrReMat) break;
  }
  PhysRegsAvailable.erase(I);
}

void AvailableSpills::ClobberSharingStackSlots(int StackSlot) {
  std::map<int, unsigned>::iterator It =
    SpillSlotsOrReMatsAvailable.find(StackSlot);
  if (It == SpillSlotsOrReMatsAvailable.end()) return;
  unsigned Reg = It->second >> 1;

  // Erase entries in PhysRegsAvailable for other stack slots.
  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
  while (I != PhysRegsAvailable.end() && I->first == Reg) {
    std::multimap<unsigned, int>::iterator NextI = llvm::next(I);
    if (I->second != StackSlot) {
      DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in "
                   << PrintReg(Reg, TRI) << '\n');
      SpillSlotsOrReMatsAvailable.erase(I->second);
      PhysRegsAvailable.erase(I);
    }
    I = NextI;
  }
}

// ************************** //
// Reuse Info Implementation  //
// ************************** //

/// GetRegForReload - We are about to emit a reload into PhysReg.  If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
                         unsigned PhysReg,
                         MachineFunction &MF,
                         MachineInstr *MI, AvailableSpills &Spills,
                         std::vector<MachineInstr*> &MaybeDeadStores,
                         SmallSet<unsigned, 8> &Rejected,
                         BitVector &RegKills,
                         std::vector<MachineOperand*> &KillOps,
                         VirtRegMap &VRM) {
  const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
  const TargetRegisterInfo *TRI = Spills.getRegInfo();

  if (Reuses.empty()) return PhysReg;  // This is most often empty.

  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
    ReusedOp &Op = Reuses[ro];
    // If we find some other reuse that was supposed to use this register
    // exactly for its reload, we can change this reload to use ITS reload
    // register. That is, unless its reload register has already been
    // considered and subsequently rejected because it has also been reused
    // by another operand.
    if (Op.PhysRegReused == PhysReg &&
        Rejected.count(Op.AssignedPhysReg) == 0 &&
        RC->contains(Op.AssignedPhysReg)) {
      // Yup, use the reload register that we didn't use before.
      unsigned NewReg = Op.AssignedPhysReg;
      Rejected.insert(PhysReg);
      return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
                             Rejected, RegKills, KillOps, VRM);
    } else {
      // Otherwise, we might also have a problem if a previously reused
      // value aliases the new register. If so, codegen the previous reload
      // and use this one.
      unsigned PRRU = Op.PhysRegReused;
      if (TRI->regsOverlap(PRRU, PhysReg)) {
        // Okay, we found out that an alias of a reused register
        // was used.  This isn't good because it means we have
        // to undo a previous reuse.
        MachineBasicBlock *MBB = MI->getParent();
        const TargetRegisterClass *AliasRC =
          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);

        // Copy Op out of the vector and remove it, we're going to insert an
        // explicit load for it.
        ReusedOp NewOp = Op;
        Reuses.erase(Reuses.begin()+ro);

        // MI may be using only a sub-register of PhysRegUsed.
        unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
        unsigned SubIdx = 0;
        assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
               "A reuse cannot be a virtual register");
        if (PRRU != RealPhysRegUsed) {
          // What was the sub-register index?
          SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
          assert(SubIdx &&
                 "Operand physreg is not a sub-register of PhysRegUsed");
        }

        // Ok, we're going to try to reload the assigned physreg into the
        // slot that we were supposed to in the first place.  However, that
        // register could hold a reuse.  Check to see if it conflicts or
        // would prefer us to use a different register.
        unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
                                              MF, MI, Spills, MaybeDeadStores,
                                              Rejected, RegKills, KillOps, VRM);

        bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
        int SSorRMId = DoReMat
          ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;

        // Back-schedule reloads and remats.
        MachineBasicBlock::iterator InsertLoc =
          ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
                           DoReMat, SSorRMId, TII, MF);

        if (DoReMat) {
          ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
                        TRI, VRM);
        } else {
          TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
                                    NewOp.StackSlotOrReMat, AliasRC, TRI);
          MachineInstr *LoadMI = prior(InsertLoc);
          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
          // Any stores to this stack slot are not dead anymore.
          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
          ++NumLoads;
        }
        Spills.ClobberPhysReg(NewPhysReg);
        Spills.ClobberPhysReg(NewOp.PhysRegReused);

        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
        MI->getOperand(NewOp.Operand).setReg(RReg);
        MI->getOperand(NewOp.Operand).setSubReg(0);

        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
        UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
        DEBUG(dbgs() << '\t' << *prior(InsertLoc));

        DEBUG(dbgs() << "Reuse undone!\n");
        --NumReused;

        // Finally, PhysReg is now available, go ahead and use it.
        return PhysReg;
      }
    }
  }
  return PhysReg;
}

// ************************************************************************ //

/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
/// stack slot mod/ref. It also checks if it's possible to unfold the
/// instruction by having it define a specified physical register instead.
static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
                                 const TargetInstrInfo *TII,
                                 const TargetRegisterInfo *TRI,
                                 VirtRegMap &VRM) {
  if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
    return false;

  bool Found = false;
  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
    unsigned VirtReg = I->second.first;
    VirtRegMap::ModRef MR = I->second.second;
    if (MR & VirtRegMap::isModRef)
      if (VRM.getStackSlot(VirtReg) == SS) {
        Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
        break;
      }
  }
  if (!Found)
    return false;

  // Does the instruction uses a register that overlaps the scratch register?
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.getReg() == 0)
      continue;
    unsigned Reg = MO.getReg();
    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
      if (!VRM.hasPhys(Reg))
        continue;
      Reg = VRM.getPhys(Reg);
    }
    if (TRI->regsOverlap(PhysReg, Reg))
      return false;
  }
  return true;
}

/// FindFreeRegister - Find a free register of a given register class by looking
/// at (at most) the last two machine instructions.
static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
                                 MachineBasicBlock &MBB,
                                 const TargetRegisterClass *RC,
                                 const TargetRegisterInfo *TRI,
                                 BitVector &AllocatableRegs) {
  BitVector Defs(TRI->getNumRegs());
  BitVector Uses(TRI->getNumRegs());
  SmallVector<unsigned, 4> LocalUses;
  SmallVector<unsigned, 4> Kills;

  // Take a look at 2 instructions at most.
  unsigned Count = 0;
  while (Count < 2) {
    if (MII == MBB.begin())
      break;
    MachineInstr *PrevMI = prior(MII);
    MII = PrevMI;

    if (PrevMI->isDebugValue())
      continue; // Skip over dbg_value instructions.
    ++Count;

    for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = PrevMI->getOperand(i);
      if (!MO.isReg() || MO.getReg() == 0)
        continue;
      unsigned Reg = MO.getReg();
      if (MO.isDef()) {
        Defs.set(Reg);
        for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
          Defs.set(*AS);
      } else  {
        LocalUses.push_back(Reg);
        if (MO.isKill() && AllocatableRegs[Reg])
          Kills.push_back(Reg);
      }
    }

    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
      unsigned Kill = Kills[i];
      if (!Defs[Kill] && !Uses[Kill] &&
          RC->contains(Kill))
        return Kill;
    }
    for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
      unsigned Reg = LocalUses[i];
      Uses.set(Reg);
      for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
        Uses.set(*AS);
    }
  }

  return 0;
}

static
void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
                         const TargetRegisterInfo &TRI) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == VirtReg)
      substitutePhysReg(MO, PhysReg, TRI);
  }
}

namespace {

struct RefSorter {
  bool operator()(const std::pair<MachineInstr*, int> &A,
                  const std::pair<MachineInstr*, int> &B) {
    return A.second < B.second;
  }
};

// ***************************** //
// Local Spiller Implementation  //
// ***************************** //

class LocalRewriter : public VirtRegRewriter {
  MachineRegisterInfo *MRI;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  VirtRegMap *VRM;
  LiveIntervals *LIs;
  BitVector AllocatableRegs;
  DenseMap<MachineInstr*, unsigned> DistanceMap;
  DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;

  MachineBasicBlock *MBB;       // Basic block currently being processed.

public:

  bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
                            LiveIntervals* LIs);

private:
  void EraseInstr(MachineInstr *MI) {
    VRM->RemoveMachineInstrFromMaps(MI);
    LIs->RemoveMachineInstrFromMaps(MI);
    MI->eraseFromParent();
  }

  bool OptimizeByUnfold2(unsigned VirtReg, int SS,
                         MachineBasicBlock::iterator &MII,
                         std::vector<MachineInstr*> &MaybeDeadStores,
                         AvailableSpills &Spills,
                         BitVector &RegKills,
                         std::vector<MachineOperand*> &KillOps);

  bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
                        std::vector<MachineInstr*> &MaybeDeadStores,
                        AvailableSpills &Spills,
                        BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps);

  bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
                           unsigned VirtReg, unsigned SrcReg, int SS,
                           AvailableSpills &Spills,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           const TargetRegisterInfo *TRI);

  void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
                           int Idx, unsigned PhysReg, int StackSlot,
                           const TargetRegisterClass *RC,
                           bool isAvailable, MachineInstr *&LastStore,
                           AvailableSpills &Spills,
                           SmallSet<MachineInstr*, 4> &ReMatDefs,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps);

  void TransferDeadness(unsigned Reg, BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps);

  bool InsertEmergencySpills(MachineInstr *MI);

  bool InsertRestores(MachineInstr *MI,
                      AvailableSpills &Spills,
                      BitVector &RegKills,
                      std::vector<MachineOperand*> &KillOps);

  bool InsertSpills(MachineInstr *MI);

  void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
                   std::vector<MachineInstr*> &MaybeDeadStores,
                   BitVector &RegKills,
                   ReuseInfo &ReusedOperands,
                   std::vector<MachineOperand*> &KillOps);

  void RewriteMBB(LiveIntervals *LIs,
                  AvailableSpills &Spills, BitVector &RegKills,
                  std::vector<MachineOperand*> &KillOps);
};
}

bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
                                         LiveIntervals* lis) {
  MRI = &MF.getRegInfo();
  TRI = MF.getTarget().getRegisterInfo();
  TII = MF.getTarget().getInstrInfo();
  VRM = &vrm;
  LIs = lis;
  AllocatableRegs = TRI->getAllocatableSet(MF);
  DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
        << MF.getFunction()->getName() << "':\n");
  DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
        " reloads!) ****\n");
  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));

  // Spills - Keep track of which spilled values are available in physregs
  // so that we can choose to reuse the physregs instead of emitting
  // reloads. This is usually refreshed per basic block.
  AvailableSpills Spills(TRI, TII);

  // Keep track of kill information.
  BitVector RegKills(TRI->getNumRegs());
  std::vector<MachineOperand*> KillOps;
  KillOps.resize(TRI->getNumRegs(), NULL);

  // SingleEntrySuccs - Successor blocks which have a single predecessor.
  SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
  SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;

  // Traverse the basic blocks depth first.
  MachineBasicBlock *Entry = MF.begin();
  SmallPtrSet<MachineBasicBlock*,16> Visited;
  for (df_ext_iterator<MachineBasicBlock*,
         SmallPtrSet<MachineBasicBlock*,16> >
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
       DFI != E; ++DFI) {
    MBB = *DFI;
    if (!EarlyVisited.count(MBB))
      RewriteMBB(LIs, Spills, RegKills, KillOps);

    // If this MBB is the only predecessor of a successor. Keep the
    // availability information and visit it next.
    do {
      // Keep visiting single predecessor successor as long as possible.
      SinglePredSuccs.clear();
      findSinglePredSuccessor(MBB, SinglePredSuccs);
      if (SinglePredSuccs.empty())
        MBB = 0;
      else {
        // FIXME: More than one successors, each of which has MBB has
        // the only predecessor.
        MBB = SinglePredSuccs[0];
        if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
          Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
          RewriteMBB(LIs, Spills, RegKills, KillOps);
        }
      }
    } while (MBB);

    // Clear the availability info.
    Spills.clear();
  }

  DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
  DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));

  // Mark unused spill slots.
  MachineFrameInfo *MFI = MF.getFrameInfo();
  int SS = VRM->getLowSpillSlot();
  if (SS != VirtRegMap::NO_STACK_SLOT) {
    for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
      SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
      if (!VRM->isSpillSlotUsed(SS)) {
        MFI->RemoveStackObject(SS);
        for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
          MachineInstr *DVMI = DbgValues[j];
          DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
          EraseInstr(DVMI);
        }
        ++NumDSS;
      }
      DbgValues.clear();
    }
  }
  Slot2DbgValues.clear();

  return true;
}

/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
/// a scratch register is available.
///     xorq  %r12<kill>, %r13
///     addq  %rax, -184(%rbp)
///     addq  %r13, -184(%rbp)
/// ==>
///     xorq  %r12<kill>, %r13
///     movq  -184(%rbp), %r12
///     addq  %rax, %r12
///     addq  %r13, %r12
///     movq  %r12, -184(%rbp)
bool LocalRewriter::
OptimizeByUnfold2(unsigned VirtReg, int SS,
                  MachineBasicBlock::iterator &MII,
                  std::vector<MachineInstr*> &MaybeDeadStores,
                  AvailableSpills &Spills,
                  BitVector &RegKills,
                  std::vector<MachineOperand*> &KillOps) {

  MachineBasicBlock::iterator NextMII = llvm::next(MII);
  // Skip over dbg_value instructions.
  while (NextMII != MBB->end() && NextMII->isDebugValue())
    NextMII = llvm::next(NextMII);
  if (NextMII == MBB->end())
    return false;

  if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
    return false;

  // Now let's see if the last couple of instructions happens to have freed up
  // a register.
  const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
  unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
  if (!PhysReg)
    return false;

  MachineFunction &MF = *MBB->getParent();
  TRI = MF.getTarget().getRegisterInfo();
  MachineInstr &MI = *MII;
  if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
    return false;

  // If the next instruction also folds the same SS modref and can be unfoled,
  // then it's worthwhile to issue a load from SS into the free register and
  // then unfold these instructions.
  if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
    return false;

  // Back-schedule reloads and remats.
  ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);

  // Load from SS to the spare physical register.
  TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
  // This invalidates Phys.
  Spills.ClobberPhysReg(PhysReg);
  // Remember it's available.
  Spills.addAvailable(SS, PhysReg);
  MaybeDeadStores[SS] = NULL;

  // Unfold current MI.
  SmallVector<MachineInstr*, 4> NewMIs;
  if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
    llvm_unreachable("Unable unfold the load / store folding instruction!");
  assert(NewMIs.size() == 1);
  AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
  VRM->transferRestorePts(&MI, NewMIs[0]);
  MII = MBB->insert(MII, NewMIs[0]);
  InvalidateKills(MI, TRI, RegKills, KillOps);
  EraseInstr(&MI);
  ++NumModRefUnfold;

  // Unfold next instructions that fold the same SS.
  do {
    MachineInstr &NextMI = *NextMII;
    NextMII = llvm::next(NextMII);
    NewMIs.clear();
    if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
      llvm_unreachable("Unable unfold the load / store folding instruction!");
    assert(NewMIs.size() == 1);
    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
    VRM->transferRestorePts(&NextMI, NewMIs[0]);
    MBB->insert(NextMII, NewMIs[0]);
    InvalidateKills(NextMI, TRI, RegKills, KillOps);
    EraseInstr(&NextMI);
    ++NumModRefUnfold;
    // Skip over dbg_value instructions.
    while (NextMII != MBB->end() && NextMII->isDebugValue())
      NextMII = llvm::next(NextMII);
    if (NextMII == MBB->end())
      break;
  } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));

  // Store the value back into SS.
  TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
  MachineInstr *StoreMI = prior(NextMII);
  VRM->addSpillSlotUse(SS, StoreMI);
  VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);

  return true;
}

/// OptimizeByUnfold - Turn a store folding instruction into a load folding
/// instruction. e.g.
///     xorl  %edi, %eax
///     movl  %eax, -32(%ebp)
///     movl  -36(%ebp), %eax
///     orl   %eax, -32(%ebp)
/// ==>
///     xorl  %edi, %eax
///     orl   -36(%ebp), %eax
///     mov   %eax, -32(%ebp)
/// This enables unfolding optimization for a subsequent instruction which will
/// also eliminate the newly introduced store instruction.
bool LocalRewriter::
OptimizeByUnfold(MachineBasicBlock::iterator &MII,
                 std::vector<MachineInstr*> &MaybeDeadStores,
                 AvailableSpills &Spills,
                 BitVector &RegKills,
                 std::vector<MachineOperand*> &KillOps) {
  MachineFunction &MF = *MBB->getParent();
  MachineInstr &MI = *MII;
  unsigned UnfoldedOpc = 0;
  unsigned UnfoldPR = 0;
  unsigned UnfoldVR = 0;
  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
  for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
    // Only transform a MI that folds a single register.
    if (UnfoldedOpc)
      return false;
    UnfoldVR = I->second.first;
    VirtRegMap::ModRef MR = I->second.second;
    // MI2VirtMap be can updated which invalidate the iterator.
    // Increment the iterator first.
    ++I;
    if (VRM->isAssignedReg(UnfoldVR))
      continue;
    // If this reference is not a use, any previous store is now dead.
    // Otherwise, the store to this stack slot is not dead anymore.
    FoldedSS = VRM->getStackSlot(UnfoldVR);
    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
    if (DeadStore && (MR & VirtRegMap::isModRef)) {
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
        continue;
      UnfoldPR = PhysReg;
      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
                                                    false, true);
    }
  }

  if (!UnfoldedOpc) {
    if (!UnfoldVR)
      return false;

    // Look for other unfolding opportunities.
    return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
                             RegKills, KillOps);
  }

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
      continue;
    unsigned VirtReg = MO.getReg();
    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
      continue;
    if (VRM->isAssignedReg(VirtReg)) {
      unsigned PhysReg = VRM->getPhys(VirtReg);
      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
        return false;
    } else if (VRM->isReMaterialized(VirtReg))
      continue;
    int SS = VRM->getStackSlot(VirtReg);
    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
    if (PhysReg) {
      if (TRI->regsOverlap(PhysReg, UnfoldPR))
        return false;
      continue;
    }
    if (VRM->hasPhys(VirtReg)) {
      PhysReg = VRM->getPhys(VirtReg);
      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
        continue;
    }

    // Ok, we'll need to reload the value into a register which makes
    // it impossible to perform the store unfolding optimization later.
    // Let's see if it is possible to fold the load if the store is
    // unfolded. This allows us to perform the store unfolding
    // optimization.
    SmallVector<MachineInstr*, 4> NewMIs;
    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
      assert(NewMIs.size() == 1);
      MachineInstr *NewMI = NewMIs.back();
      MBB->insert(MII, NewMI);
      NewMIs.clear();
      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
      assert(Idx != -1);
      SmallVector<unsigned, 1> Ops;
      Ops.push_back(Idx);
      MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
      NewMI->eraseFromParent();
      if (FoldedMI) {
        VRM->addSpillSlotUse(SS, FoldedMI);
        if (!VRM->hasPhys(UnfoldVR))
          VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
        VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
        MII = FoldedMI;
        InvalidateKills(MI, TRI, RegKills, KillOps);
        EraseInstr(&MI);
        return true;
      }
    }
  }

  return false;
}

/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
/// where SrcReg is r1 and it is tied to r0. Return true if after
/// commuting this instruction it will be r0 = op r2, r1.
static bool CommuteChangesDestination(MachineInstr *DefMI,
                                      const MCInstrDesc &MCID,
                                      unsigned SrcReg,
                                      const TargetInstrInfo *TII,
                                      unsigned &DstIdx) {
  if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3)
    return false;
  if (!DefMI->getOperand(1).isReg() ||
      DefMI->getOperand(1).getReg() != SrcReg)
    return false;
  unsigned DefIdx;
  if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
    return false;
  unsigned SrcIdx1, SrcIdx2;
  if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
    return false;
  if (SrcIdx1 == 1 && SrcIdx2 == 2) {
    DstIdx = 2;
    return true;
  }
  return false;
}

/// CommuteToFoldReload -
/// Look for
/// r1 = load fi#1
/// r1 = op r1, r2<kill>
/// store r1, fi#1
///
/// If op is commutable and r2 is killed, then we can xform these to
/// r2 = op r2, fi#1
/// store r2, fi#1
bool LocalRewriter::
CommuteToFoldReload(MachineBasicBlock::iterator &MII,
                    unsigned VirtReg, unsigned SrcReg, int SS,
                    AvailableSpills &Spills,
                    BitVector &RegKills,
                    std::vector<MachineOperand*> &KillOps,
                    const TargetRegisterInfo *TRI) {
  if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
    return false;

  MachineInstr &MI = *MII;
  MachineBasicBlock::iterator DefMII = prior(MII);
  MachineInstr *DefMI = DefMII;
  const MCInstrDesc &MCID = DefMI->getDesc();
  unsigned NewDstIdx;
  if (DefMII != MBB->begin() &&
      MCID.isCommutable() &&
      CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) {
    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    unsigned NewReg = NewDstMO.getReg();
    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
      return false;
    MachineInstr *ReloadMI = prior(DefMII);
    int FrameIdx;
    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
    if (DestReg != SrcReg || FrameIdx != SS)
      return false;
    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
    if (UseIdx == -1)
      return false;
    unsigned DefIdx;
    if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
      return false;
    assert(DefMI->getOperand(DefIdx).isReg() &&
           DefMI->getOperand(DefIdx).getReg() == SrcReg);

    // Now commute def instruction.
    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
    if (!CommutedMI)
      return false;
    MBB->insert(MII, CommutedMI);
    SmallVector<unsigned, 1> Ops;
    Ops.push_back(NewDstIdx);
    MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
    // Not needed since foldMemoryOperand returns new MI.
    CommutedMI->eraseFromParent();
    if (!FoldedMI)
      return false;

    VRM->addSpillSlotUse(SS, FoldedMI);
    VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
    // Insert new def MI and spill MI.
    const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
    TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
    MII = prior(MII);
    MachineInstr *StoreMI = MII;
    VRM->addSpillSlotUse(SS, StoreMI);
    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
    MII = FoldedMI;  // Update MII to backtrack.

    // Delete all 3 old instructions.
    InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
    EraseInstr(ReloadMI);
    InvalidateKills(*DefMI, TRI, RegKills, KillOps);
    EraseInstr(DefMI);
    InvalidateKills(MI, TRI, RegKills, KillOps);
    EraseInstr(&MI);

    // If NewReg was previously holding value of some SS, it's now clobbered.
    // This has to be done now because it's a physical register. When this
    // instruction is re-visited, it's ignored.
    Spills.ClobberPhysReg(NewReg);

    ++NumCommutes;
    return true;
  }

  return false;
}

/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
/// the last store to the same slot is now dead. If so, remove the last store.
void LocalRewriter::
SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
                    int Idx, unsigned PhysReg, int StackSlot,
                    const TargetRegisterClass *RC,
                    bool isAvailable, MachineInstr *&LastStore,
                    AvailableSpills &Spills,
                    SmallSet<MachineInstr*, 4> &ReMatDefs,
                    BitVector &RegKills,
                    std::vector<MachineOperand*> &KillOps) {

  MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
  TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
                           TRI);
  MachineInstr *StoreMI = prior(oldNextMII);
  VRM->addSpillSlotUse(StackSlot, StoreMI);
  DEBUG(dbgs() << "Store:\t" << *StoreMI);

  // If there is a dead store to this stack slot, nuke it now.
  if (LastStore) {
    DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
    ++NumDSE;
    SmallVector<unsigned, 2> KillRegs;
    InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
    MachineBasicBlock::iterator PrevMII = LastStore;
    bool CheckDef = PrevMII != MBB->begin();
    if (CheckDef)
      --PrevMII;
    EraseInstr(LastStore);
    if (CheckDef) {
      // Look at defs of killed registers on the store. Mark the defs
      // as dead since the store has been deleted and they aren't
      // being reused.
      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
        bool HasOtherDef = false;
        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
          MachineInstr *DeadDef = PrevMII;
          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
            // FIXME: This assumes a remat def does not have side effects.
            EraseInstr(DeadDef);
            ++NumDRM;
          }
        }
      }
    }
  }

  // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume
  // the last of multiple instructions is the actual store.
  LastStore = prior(oldNextMII);

  // If the stack slot value was previously available in some other
  // register, change it now.  Otherwise, make the register available,
  // in PhysReg.
  Spills.ModifyStackSlotOrReMat(StackSlot);
  Spills.ClobberPhysReg(PhysReg);
  Spills.addAvailable(StackSlot, PhysReg, isAvailable);
  ++NumStores;
}

/// isSafeToDelete - Return true if this instruction doesn't produce any side
/// effect and all of its defs are dead.
static bool isSafeToDelete(MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() ||
      MCID.isCall() || MCID.isBarrier() || MCID.isReturn() ||
      MI.isLabel() || MI.isDebugValue() ||
      MI.hasUnmodeledSideEffects())
    return false;

  // Technically speaking inline asm without side effects and no defs can still
  // be deleted. But there is so much bad inline asm code out there, we should
  // let them be.
  if (MI.isInlineAsm())
    return false;

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || !MO.getReg())
      continue;
    if (MO.isDef() && !MO.isDead())
      return false;
    if (MO.isUse() && MO.isKill())
      // FIXME: We can't remove kill markers or else the scavenger will assert.
      // An alternative is to add a ADD pseudo instruction to replace kill
      // markers.
      return false;
  }
  return true;
}

/// TransferDeadness - A identity copy definition is dead and it's being
/// removed. Find the last def or use and mark it as dead / kill.
void LocalRewriter::
TransferDeadness(unsigned Reg, BitVector &RegKills,
                 std::vector<MachineOperand*> &KillOps) {
  SmallPtrSet<MachineInstr*, 4> Seens;
  SmallVector<std::pair<MachineInstr*, int>,8> Refs;
  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
         RE = MRI->reg_end(); RI != RE; ++RI) {
    MachineInstr *UDMI = &*RI;
    if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
      continue;
    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
    if (DI == DistanceMap.end())
      continue;
    if (Seens.insert(UDMI))
      Refs.push_back(std::make_pair(UDMI, DI->second));
  }

  if (Refs.empty())
    return;
  std::sort(Refs.begin(), Refs.end(), RefSorter());

  while (!Refs.empty()) {
    MachineInstr *LastUDMI = Refs.back().first;
    Refs.pop_back();

    MachineOperand *LastUD = NULL;
    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = LastUDMI->getOperand(i);
      if (!MO.isReg() || MO.getReg() != Reg)
        continue;
      if (!LastUD || (LastUD->isUse() && MO.isDef()))
        LastUD = &MO;
      if (LastUDMI->isRegTiedToDefOperand(i))
        break;
    }
    if (LastUD->isDef()) {
      // If the instruction has no side effect, delete it and propagate
      // backward further. Otherwise, mark is dead and we are done.
      if (!isSafeToDelete(*LastUDMI)) {
        LastUD->setIsDead();
        break;
      }
      EraseInstr(LastUDMI);
    } else {
      LastUD->setIsKill();
      RegKills.set(Reg);
      KillOps[Reg] = LastUD;
      break;
    }
  }
}

/// InsertEmergencySpills - Insert emergency spills before MI if requested by
/// VRM. Return true if spills were inserted.
bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
  if (!VRM->hasEmergencySpills(MI))
    return false;
  MachineBasicBlock::iterator MII = MI;
  SmallSet<int, 4> UsedSS;
  std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
  for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
    unsigned PhysReg = EmSpills[i];
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
    assert(RC && "Unable to determine register class!");
    int SS = VRM->getEmergencySpillSlot(RC);
    if (UsedSS.count(SS))
      llvm_unreachable("Need to spill more than one physical registers!");
    UsedSS.insert(SS);
    TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
    MachineInstr *StoreMI = prior(MII);
    VRM->addSpillSlotUse(SS, StoreMI);

    // Back-schedule reloads and remats.
    MachineBasicBlock::iterator InsertLoc =
      ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
                       TII, *MBB->getParent());

    TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);

    MachineInstr *LoadMI = prior(InsertLoc);
    VRM->addSpillSlotUse(SS, LoadMI);
    ++NumPSpills;
    DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
  }
  return true;
}

/// InsertRestores - Restore registers before MI is requested by VRM. Return
/// true is any instructions were inserted.
bool LocalRewriter::InsertRestores(MachineInstr *MI,
                                   AvailableSpills &Spills,
                                   BitVector &RegKills,
                                   std::vector<MachineOperand*> &KillOps) {
  if (!VRM->isRestorePt(MI))
    return false;
  MachineBasicBlock::iterator MII = MI;
  std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
  for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
    unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
    if (!VRM->getPreSplitReg(VirtReg))
      continue; // Split interval spilled again.
    unsigned Phys = VRM->getPhys(VirtReg);
    MRI->setPhysRegUsed(Phys);

    // Check if the value being restored if available. If so, it must be
    // from a predecessor BB that fallthrough into this BB. We do not
    // expect:
    // BB1:
    // r1 = load fi#1
    // ...
    //    = r1<kill>
    // ... # r1 not clobbered
    // ...
    //    = load fi#1
    bool DoReMat = VRM->isReMaterialized(VirtReg);
    int SSorRMId = DoReMat
      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
    unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
    if (InReg == Phys) {
      // If the value is already available in the expected register, save
      // a reload / remat.
      if (SSorRMId)
        DEBUG(dbgs() << "Reusing RM#"
                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
      else
        DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
      DEBUG(dbgs() << " from physreg "
                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
                   <<" instead of reloading into physreg "
                   << TRI->getName(Phys) << '\n');

      // Reusing a physreg may resurrect it. But we expect ProcessUses to update
      // the kill flags for the current instruction after processing it.

      ++NumOmitted;
      continue;
    } else if (InReg && InReg != Phys) {
      if (SSorRMId)
        DEBUG(dbgs() << "Reusing RM#"
                     << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
      else
        DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
      DEBUG(dbgs() << " from physreg "
                   << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
                   <<" by copying it into physreg "
                   << TRI->getName(Phys) << '\n');

      // If the reloaded / remat value is available in another register,
      // copy it to the desired register.

      // Back-schedule reloads and remats.
      MachineBasicBlock::iterator InsertLoc =
        ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
                         *MBB->getParent());
      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
                                     TII->get(TargetOpcode::COPY), Phys)
                               .addReg(InReg, RegState::Kill);

      // This invalidates Phys.
      Spills.ClobberPhysReg(Phys);
      // Remember it's available.
      Spills.addAvailable(SSorRMId, Phys);

      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
      UpdateKills(*CopyMI, TRI, RegKills, KillOps);

      DEBUG(dbgs() << '\t' << *CopyMI);
      ++NumCopified;
      continue;
    }

    // Back-schedule reloads and remats.
    MachineBasicBlock::iterator InsertLoc =
      ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
                       *MBB->getParent());

    if (VRM->isReMaterialized(VirtReg)) {
      ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
    } else {
      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
      TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
      MachineInstr *LoadMI = prior(InsertLoc);
      VRM->addSpillSlotUse(SSorRMId, LoadMI);
      ++NumLoads;
      DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
    }

    // This invalidates Phys.
    Spills.ClobberPhysReg(Phys);
    // Remember it's available.
    Spills.addAvailable(SSorRMId, Phys);

    UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
    DEBUG(dbgs() << '\t' << *prior(MII));
  }
  return true;
}

/// InsertSpills - Insert spills after MI if requested by VRM. Return
/// true if spills were inserted.
bool LocalRewriter::InsertSpills(MachineInstr *MI) {
  if (!VRM->isSpillPt(MI))
    return false;
  MachineBasicBlock::iterator MII = MI;
  std::vector<std::pair<unsigned,bool> > &SpillRegs =
    VRM->getSpillPtSpills(MI);
  for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
    unsigned VirtReg = SpillRegs[i].first;
    bool isKill = SpillRegs[i].second;
    if (!VRM->getPreSplitReg(VirtReg))
      continue; // Split interval spilled again.
    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    unsigned Phys = VRM->getPhys(VirtReg);
    int StackSlot = VRM->getStackSlot(VirtReg);
    MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
    TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
                             RC, TRI);
    MachineInstr *StoreMI = prior(oldNextMII);
    VRM->addSpillSlotUse(StackSlot, StoreMI);
    DEBUG(dbgs() << "Store:\t" << *StoreMI);
    VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
  }
  return true;
}


/// ProcessUses - Process all of MI's spilled operands and all available
/// operands.
void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
                                std::vector<MachineInstr*> &MaybeDeadStores,
                                BitVector &RegKills,
                                ReuseInfo &ReusedOperands,
                                std::vector<MachineOperand*> &KillOps) {
  // Clear kill info.
  SmallSet<unsigned, 2> KilledMIRegs;
  SmallVector<unsigned, 4> VirtUseOps;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.getReg() == 0)
      continue;   // Ignore non-register operands.

    unsigned VirtReg = MO.getReg();

    if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
      // Ignore physregs for spilling, but remember that it is used by this
      // function.
      MRI->setPhysRegUsed(VirtReg);
      continue;
    }

    // We want to process implicit virtual register uses first.
    if (MO.isImplicit())
      // If the virtual register is implicitly defined, emit a implicit_def
      // before so scavenger knows it's "defined".
      // FIXME: This is a horrible hack done the by register allocator to
      // remat a definition with virtual register operand.
      VirtUseOps.insert(VirtUseOps.begin(), i);
    else
      VirtUseOps.push_back(i);

    // A partial def causes problems because the same operand both reads and
    // writes the register. This rewriter is designed to rewrite uses and defs
    // separately, so a partial def would already have been rewritten to a
    // physreg by the time we get to processing defs.
    // Add an implicit use operand to model the partial def.
    if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
        MI.findRegisterUseOperandIdx(VirtReg) == -1) {
      VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
      MI.addOperand(MachineOperand::CreateReg(VirtReg,
                                              false,  // isDef
                                              true)); // isImplicit
      DEBUG(dbgs() << "Partial redef: " << MI);
    }
  }

  // Process all of the spilled uses and all non spilled reg references.
  SmallVector<int, 2> PotentialDeadStoreSlots;
  KilledMIRegs.clear();
  for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
    unsigned i = VirtUseOps[j];
    unsigned VirtReg = MI.getOperand(i).getReg();
    assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
           "Not a virtual register?");

    unsigned SubIdx = MI.getOperand(i).getSubReg();
    if (VRM->isAssignedReg(VirtReg)) {
      // This virtual register was assigned a physreg!
      unsigned Phys = VRM->getPhys(VirtReg);
      MRI->setPhysRegUsed(Phys);
      if (MI.getOperand(i).isDef())
        ReusedOperands.markClobbered(Phys);
      substitutePhysReg(MI.getOperand(i), Phys, *TRI);
      if (VRM->isImplicitlyDefined(VirtReg))
        // FIXME: Is this needed?
        BuildMI(*MBB, &MI, MI.getDebugLoc(),
                TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
      continue;
    }

    // This virtual register is now known to be a spilled value.
    if (!MI.getOperand(i).isUse())
      continue;  // Handle defs in the loop below (handle use&def here though)

    bool AvoidReload = MI.getOperand(i).isUndef();
    // Check if it is defined by an implicit def. It should not be spilled.
    // Note, this is for correctness reason. e.g.
    // 8   %reg1024<def> = IMPLICIT_DEF
    // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
    // The live range [12, 14) are not part of the r1024 live interval since
    // it's defined by an implicit def. It will not conflicts with live
    // interval of r1025. Now suppose both registers are spilled, you can
    // easily see a situation where both registers are reloaded before
    // the INSERT_SUBREG and both target registers that would overlap.
    bool DoReMat = VRM->isReMaterialized(VirtReg);
    int SSorRMId = DoReMat
      ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
    int ReuseSlot = SSorRMId;

    // Check to see if this stack slot is available.
    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);

    // If this is a sub-register use, make sure the reuse register is in the
    // right register class. For example, for x86 not all of the 32-bit
    // registers have accessible sub-registers.
    // Similarly so for EXTRACT_SUBREG. Consider this:
    // EDI = op
    // MOV32_mr fi#1, EDI
    // ...
    //       = EXTRACT_SUBREG fi#1
    // fi#1 is available in EDI, but it cannot be reused because it's not in
    // the right register file.
    if (PhysReg && !AvoidReload && SubIdx) {
      const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
      if (!RC->contains(PhysReg))
        PhysReg = 0;
    }

    if (PhysReg && !AvoidReload) {
      // This spilled operand might be part of a two-address operand.  If this
      // is the case, then changing it will necessarily require changing the
      // def part of the instruction as well.  However, in some cases, we
      // aren't allowed to modify the reused register.  If none of these cases
      // apply, reuse it.
      bool CanReuse = true;
      bool isTied = MI.isRegTiedToDefOperand(i);
      if (isTied) {
        // Okay, we have a two address operand.  We can reuse this physreg as
        // long as we are allowed to clobber the value and there isn't an
        // earlier def that has already clobbered the physreg.
        CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
          Spills.canClobberPhysReg(PhysReg);
      }
      // If this is an asm, and a PhysReg alias is used elsewhere as an
      // earlyclobber operand, we can't also use it as an input.
      if (MI.isInlineAsm()) {
        for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
          MachineOperand &MOk = MI.getOperand(k);
          if (MOk.isReg() && MOk.isEarlyClobber() &&
              TRI->regsOverlap(MOk.getReg(), PhysReg)) {
            CanReuse = false;
            DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
                         << " for " << PrintReg(VirtReg) << ": " << MOk
                         << '\n');
            break;
          }
        }
      }

      if (CanReuse) {
        // If this stack slot value is already available, reuse it!
        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
          DEBUG(dbgs() << "Reusing RM#"
                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
        else
          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
        DEBUG(dbgs() << " from physreg "
              << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg)
              << " instead of reloading into "
              << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n');
        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
        MI.getOperand(i).setReg(RReg);
        MI.getOperand(i).setSubReg(0);

        // Reusing a physreg may resurrect it. But we expect ProcessUses to
        // update the kill flags for the current instr after processing it.

        // The only technical detail we have is that we don't know that
        // PhysReg won't be clobbered by a reloaded stack slot that occurs
        // later in the instruction.  In particular, consider 'op V1, V2'.
        // If V1 is available in physreg R0, we would choose to reuse it
        // here, instead of reloading it into the register the allocator
        // indicated (say R1).  However, V2 might have to be reloaded
        // later, and it might indicate that it needs to live in R0.  When
        // this occurs, we need to have information available that
        // indicates it is safe to use R1 for the reload instead of R0.
        //
        // To further complicate matters, we might conflict with an alias,
        // or R0 and R1 might not be compatible with each other.  In this
        // case, we actually insert a reload for V1 in R1, ensuring that
        // we can get at R0 or its alias.
        ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
                                VRM->getPhys(VirtReg), VirtReg);
        if (isTied)
          // Only mark it clobbered if this is a use&def operand.
          ReusedOperands.markClobbered(PhysReg);
        ++NumReused;

        if (MI.getOperand(i).isKill() &&
            ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {

          // The store of this spilled value is potentially dead, but we
          // won't know for certain until we've confirmed that the re-use
          // above is valid, which means waiting until the other operands
          // are processed. For now we just track the spill slot, we'll
          // remove it after the other operands are processed if valid.

          PotentialDeadStoreSlots.push_back(ReuseSlot);
        }

        // Mark is isKill if it's there no other uses of the same virtual
        // register and it's not a two-address operand. IsKill will be
        // unset if reg is reused.
        if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
          MI.getOperand(i).setIsKill();
          KilledMIRegs.insert(VirtReg);
        }
        continue;
      }  // CanReuse

      // Otherwise we have a situation where we have a two-address instruction
      // whose mod/ref operand needs to be reloaded.  This reload is already
      // available in some register "PhysReg", but if we used PhysReg as the
      // operand to our 2-addr instruction, the instruction would modify
      // PhysReg.  This isn't cool if something later uses PhysReg and expects
      // to get its initial value.
      //
      // To avoid this problem, and to avoid doing a load right after a store,
      // we emit a copy from PhysReg into the designated register for this
      // operand.
      //
      // This case also applies to an earlyclobber'd PhysReg.
      unsigned DesignatedReg = VRM->getPhys(VirtReg);
      assert(DesignatedReg && "Must map virtreg to physreg!");

      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (ReusedOperands.hasReuses())
        DesignatedReg = ReusedOperands.
          GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
                          MaybeDeadStores, RegKills, KillOps, *VRM);

      // If the mapped designated register is actually the physreg we have
      // incoming, we don't need to inserted a dead copy.
      if (DesignatedReg == PhysReg) {
        // If this stack slot value is already available, reuse it!
        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
          DEBUG(dbgs() << "Reusing RM#"
                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
        else
          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
        DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
              << " for " << PrintReg(VirtReg)
              << " instead of reloading into same physreg.\n");
        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
        MI.getOperand(i).setReg(RReg);
        MI.getOperand(i).setSubReg(0);
        ReusedOperands.markClobbered(RReg);
        ++NumReused;
        continue;
      }

      MRI->setPhysRegUsed(DesignatedReg);
      ReusedOperands.markClobbered(DesignatedReg);

      // Back-schedule reloads and remats.
      MachineBasicBlock::iterator InsertLoc =
        ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
                         SSorRMId, TII, *MBB->getParent());
      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
                                     TII->get(TargetOpcode::COPY),
                                     DesignatedReg).addReg(PhysReg);
      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
      UpdateKills(*CopyMI, TRI, RegKills, KillOps);

      // This invalidates DesignatedReg.
      Spills.ClobberPhysReg(DesignatedReg);

      Spills.addAvailable(ReuseSlot, DesignatedReg);
      unsigned RReg =
        SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
      MI.getOperand(i).setReg(RReg);
      MI.getOperand(i).setSubReg(0);
      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
      ++NumReused;
      continue;
    } // if (PhysReg)

    // Otherwise, reload it and remember that we have it.
    PhysReg = VRM->getPhys(VirtReg);
    assert(PhysReg && "Must map virtreg to physreg!");

    // Note that, if we reused a register for a previous operand, the
    // register we want to reload into might not actually be
    // available.  If this occurs, use the register indicated by the
    // reuser.
    if (ReusedOperands.hasReuses())
      PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
                  Spills, MaybeDeadStores, RegKills, KillOps, *VRM);

    MRI->setPhysRegUsed(PhysReg);
    ReusedOperands.markClobbered(PhysReg);
    if (AvoidReload)
      ++NumAvoided;
    else {
      // Back-schedule reloads and remats.
      MachineBasicBlock::iterator InsertLoc =
        ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
                         SSorRMId, TII, *MBB->getParent());

      if (DoReMat) {
        ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
      } else {
        const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
        TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
        MachineInstr *LoadMI = prior(InsertLoc);
        VRM->addSpillSlotUse(SSorRMId, LoadMI);
        ++NumLoads;
        DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
      }
      // This invalidates PhysReg.
      Spills.ClobberPhysReg(PhysReg);

      // Any stores to this stack slot are not dead anymore.
      if (!DoReMat)
        MaybeDeadStores[SSorRMId] = NULL;
      Spills.addAvailable(SSorRMId, PhysReg);
      // Assumes this is the last use. IsKill will be unset if reg is reused
      // unless it's a two-address operand.
      if (!MI.isRegTiedToDefOperand(i) &&
          KilledMIRegs.count(VirtReg) == 0) {
        MI.getOperand(i).setIsKill();
        KilledMIRegs.insert(VirtReg);
      }

      UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
    }
    unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
    MI.getOperand(i).setReg(RReg);
    MI.getOperand(i).setSubReg(0);
  }

  // Ok - now we can remove stores that have been confirmed dead.
  for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
    // This was the last use and the spilled value is still available
    // for reuse. That means the spill was unnecessary!
    int PDSSlot = PotentialDeadStoreSlots[j];
    MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
    if (DeadStore) {
      DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
      InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
      EraseInstr(DeadStore);
      MaybeDeadStores[PDSSlot] = NULL;
      ++NumDSE;
    }
  }
}

/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them.  If possible, avoid reloading vregs.
void
LocalRewriter::RewriteMBB(LiveIntervals *LIs,
                          AvailableSpills &Spills, BitVector &RegKills,
                          std::vector<MachineOperand*> &KillOps) {

  DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
               << MBB->getName() << "':\n");

  MachineFunction &MF = *MBB->getParent();

  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::vector<MachineInstr*> MaybeDeadStores;
  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);

  // ReMatDefs - These are rematerializable def MIs which are not deleted.
  SmallSet<MachineInstr*, 4> ReMatDefs;

  // Keep track of the registers we have already spilled in case there are
  // multiple defs of the same register in MI.
  SmallSet<unsigned, 8> SpilledMIRegs;

  RegKills.reset();
  KillOps.clear();
  KillOps.resize(TRI->getNumRegs(), NULL);

  DistanceMap.clear();
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E; ) {
    MachineBasicBlock::iterator NextMII = llvm::next(MII);

    if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
      NextMII = llvm::next(MII);

    if (InsertEmergencySpills(MII))
      NextMII = llvm::next(MII);

    InsertRestores(MII, Spills, RegKills, KillOps);

    if (InsertSpills(MII))
      NextMII = llvm::next(MII);

    bool Erased = false;
    bool BackTracked = false;
    MachineInstr &MI = *MII;

    // Remember DbgValue's which reference stack slots.
    if (MI.isDebugValue() && MI.getOperand(0).isFI())
      Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);

    /// ReusedOperands - Keep track of operand reuse in case we need to undo
    /// reuse.
    ReuseInfo ReusedOperands(MI, TRI);

    ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);

    DEBUG(dbgs() << '\t' << MI);


    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register

    // Copy the folded virts to a small vector, we may change MI2VirtMap.
    SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
    // C++0x FTW!
    for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
                   VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
           VRM->getFoldedVirts(&MI);
         FVRange.first != FVRange.second; ++FVRange.first)
      FoldedVirts.push_back(FVRange.first->second);

    SmallSet<int, 2> FoldedSS;
    for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
      unsigned VirtReg = FoldedVirts[FVI].first;
      VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
      DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << "  MR: " << MR);

      int SS = VRM->getStackSlot(VirtReg);
      if (SS == VirtRegMap::NO_STACK_SLOT)
        continue;
      FoldedSS.insert(SS);
      DEBUG(dbgs() << " - StackSlot: " << SS << "\n");

      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
        if (DestReg && FrameIdx == SS) {
          // If this spill slot is available, turn it into a copy (or nothing)
          // instead of leaving it as a load!
          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
            DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
            if (DestReg != InReg) {
              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
              MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
                                             TII->get(TargetOpcode::COPY))
                .addReg(DestReg, RegState::Define, DefMO->getSubReg())
                .addReg(InReg, RegState::Kill);
              // Revisit the copy so we make sure to notice the effects of the
              // operation on the destreg (either needing to RA it if it's
              // virtual or needing to clobber any values if it's physical).
              NextMII = CopyMI;
              NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
              BackTracked = true;
            } else {
              DEBUG(dbgs() << "Removing now-noop copy: " << MI);
              // InvalidateKills resurrects any prior kill of the copy's source
              // allowing the source reg to be reused in place of the copy.
              Spills.disallowClobberPhysReg(InReg);
            }

            InvalidateKills(MI, TRI, RegKills, KillOps);
            EraseInstr(&MI);
            Erased = true;
            goto ProcessNextInst;
          }
        } else {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          if (PhysReg &&
              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
            MBB->insert(MII, NewMIs[0]);
            InvalidateKills(MI, TRI, RegKills, KillOps);
            EraseInstr(&MI);
            Erased = true;
            --NextMII;  // backtrack to the unfolded instruction.
            BackTracked = true;
            goto ProcessNextInst;
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      MachineInstr* DeadStore = MaybeDeadStores[SS];
      if (DeadStore) {
        bool isDead = !(MR & VirtRegMap::isRef);
        MachineInstr *NewStore = NULL;
        if (MR & VirtRegMap::isModRef) {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          // We can reuse this physreg as long as we are allowed to clobber
          // the value and there isn't an earlier def that has already clobbered
          // the physreg.
          if (PhysReg &&
              !ReusedOperands.isClobbered(PhysReg) &&
              Spills.canClobberPhysReg(PhysReg) &&
              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
            MachineOperand *KillOpnd =
              DeadStore->findRegisterUseOperand(PhysReg, true);
            // Note, if the store is storing a sub-register, it's possible the
            // super-register is needed below.
            if (KillOpnd && !KillOpnd->getSubReg() &&
                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
              MBB->insert(MII, NewMIs[0]);
              NewStore = NewMIs[1];
              MBB->insert(MII, NewStore);
              VRM->addSpillSlotUse(SS, NewStore);
              InvalidateKills(MI, TRI, RegKills, KillOps);
              EraseInstr(&MI);
              Erased = true;
              --NextMII;
              --NextMII;  // backtrack to the unfolded instruction.
              BackTracked = true;
              isDead = true;
              ++NumSUnfold;
            }
          }
        }

        if (isDead) {  // Previous store is dead.
          // If we get here, the store is dead, nuke it now.
          DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
          InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
          EraseInstr(DeadStore);
          if (!NewStore)
            ++NumDSE;
        }

        MaybeDeadStores[SS] = NULL;
        if (NewStore) {
          // Treat this store as a spill merged into a copy. That makes the
          // stack slot value available.
          VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
          goto ProcessNextInst;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        // Notice that the value in this stack slot has been modified.
        Spills.ModifyStackSlotOrReMat(SS);

        // If this is *just* a mod of the value, check to see if this is just a
        // store to the spill slot (i.e. the spill got merged into the copy). If
        // so, realize that the vreg is available now, and add the store to the
        // MaybeDeadStore info.
        int StackSlot;
        if (!(MR & VirtRegMap::isRef)) {
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
                   "Src hasn't been allocated yet?");

            if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
                                    Spills, RegKills, KillOps, TRI)) {
              NextMII = llvm::next(MII);
              BackTracked = true;
              goto ProcessNextInst;
            }

            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
            // this as a potentially dead store in case there is a subsequent
            // store into the stack slot without a read from it.
            MaybeDeadStores[StackSlot] = &MI;

            // If the stack slot value was previously available in some other
            // register, change it now.  Otherwise, make the register
            // available in PhysReg.
            Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
          }
        }
      }
    }

    // Process all of the spilled defs.
    SpilledMIRegs.clear();
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
        continue;

      unsigned VirtReg = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        // Also check if it's copying from an "undef", if so, we can't
        // eliminate this or else the undef marker is lost and it will
        // confuses the scavenger. This is extremely rare.
        if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
            MI.getNumOperands() == 2) {
          ++NumDCE;
          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
          SmallVector<unsigned, 2> KillRegs;
          InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
          if (MO.isDead() && !KillRegs.empty()) {
            // Source register or an implicit super/sub-register use is killed.
            assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
            // Last def is now dead.
            TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
          }
          EraseInstr(&MI);
          Erased = true;
          Spills.disallowClobberPhysReg(VirtReg);
          goto ProcessNextInst;
        }

        // If it's not a no-op copy, it clobbers the value in the destreg.
        Spills.ClobberPhysReg(VirtReg);
        ReusedOperands.markClobbered(VirtReg);

        // Check to see if this instruction is a load from a stack slot into
        // a register.  If so, this provides the stack slot value in the reg.
        int FrameIdx;
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
          assert(DestReg == VirtReg && "Unknown load situation!");

          // If it is a folded reference, then it's not safe to clobber.
          bool Folded = FoldedSS.count(FrameIdx);
          // Otherwise, if it wasn't available, remember that it is now!
          Spills.addAvailable(FrameIdx, DestReg, !Folded);
          goto ProcessNextInst;
        }

        continue;
      }

      unsigned SubIdx = MO.getSubReg();
      bool DoReMat = VRM->isReMaterialized(VirtReg);
      if (DoReMat)
        ReMatDefs.insert(&MI);

      // The only vregs left are stack slot definitions.
      int StackSlot = VRM->getStackSlot(VirtReg);
      const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);

      // If this def is part of a two-address operand, make sure to execute
      // the store from the correct physical register.
      unsigned PhysReg;
      unsigned TiedOp;
      if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
        PhysReg = MI.getOperand(TiedOp).getReg();
        if (SubIdx) {
          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
                 "Can't find corresponding super-register!");
          PhysReg = SuperReg;
        }
      } else {
        PhysReg = VRM->getPhys(VirtReg);
        if (ReusedOperands.isClobbered(PhysReg)) {
          // Another def has taken the assigned physreg. It must have been a
          // use&def which got it due to reuse. Undo the reuse!
          PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
                      Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
        }
      }

      // If StackSlot is available in a register that also holds other stack
      // slots, clobber those stack slots now.
      Spills.ClobberSharingStackSlots(StackSlot);

      assert(PhysReg && "VR not assigned a physical register?");
      MRI->setPhysRegUsed(PhysReg);
      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
      ReusedOperands.markClobbered(RReg);
      MI.getOperand(i).setReg(RReg);
      MI.getOperand(i).setSubReg(0);

      if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
        SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
          LastStore, Spills, ReMatDefs, RegKills, KillOps);
        NextMII = llvm::next(MII);

        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        if (MI.isIdentityCopy()) {
          ++NumDCE;
          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
          InvalidateKills(MI, TRI, RegKills, KillOps);
          EraseInstr(&MI);
          Erased = true;
          UpdateKills(*LastStore, TRI, RegKills, KillOps);
          goto ProcessNextInst;
        }
      }
    }
    ProcessNextInst:
    // Delete dead instructions without side effects.
    if (!Erased && !BackTracked && isSafeToDelete(MI)) {
      InvalidateKills(MI, TRI, RegKills, KillOps);
      EraseInstr(&MI);
      Erased = true;
    }
    if (!Erased)
      DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
    if (!Erased && !BackTracked) {
      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
        UpdateKills(*II, TRI, RegKills, KillOps);
    }
    MII = NextMII;
  }

}

llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
  switch (RewriterOpt) {
  default: llvm_unreachable("Unreachable!");
  case local:
    return new LocalRewriter();
  case trivial:
    return new TrivialRewriter();
  }
}
OpenPOWER on IntegriCloud