1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
//===- MIParser.cpp - Machine instructions parser implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing of machine instructions.
//
//===----------------------------------------------------------------------===//
#include "MIParser.h"
#include "MILexer.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
namespace {
class MIParser {
SourceMgr &SM;
MachineFunction &MF;
SMDiagnostic &Error;
StringRef Source, CurrentSource;
MIToken Token;
/// Maps from basic block numbers to MBBs.
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots;
/// Maps from indices to unnamed global values and metadata nodes.
const SlotMapping &IRSlots;
/// Maps from instruction names to op codes.
StringMap<unsigned> Names2InstrOpCodes;
/// Maps from register names to registers.
StringMap<unsigned> Names2Regs;
/// Maps from register mask names to register masks.
StringMap<const uint32_t *> Names2RegMasks;
public:
MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots);
void lex();
/// Report an error at the current location with the given message.
///
/// This function always return true.
bool error(const Twine &Msg);
/// Report an error at the given location with the given message.
///
/// This function always return true.
bool error(StringRef::iterator Loc, const Twine &Msg);
bool parse(MachineInstr *&MI);
bool parseMBB(MachineBasicBlock *&MBB);
bool parseRegister(unsigned &Reg);
bool parseRegisterOperand(MachineOperand &Dest, bool IsDef = false);
bool parseImmediateOperand(MachineOperand &Dest);
bool parseMBBReference(MachineBasicBlock *&MBB);
bool parseMBBOperand(MachineOperand &Dest);
bool parseGlobalAddressOperand(MachineOperand &Dest);
bool parseMachineOperand(MachineOperand &Dest);
private:
/// Convert the integer literal in the current token into an unsigned integer.
///
/// Return true if an error occurred.
bool getUnsigned(unsigned &Result);
void initNames2InstrOpCodes();
/// Try to convert an instruction name to an opcode. Return true if the
/// instruction name is invalid.
bool parseInstrName(StringRef InstrName, unsigned &OpCode);
bool parseInstruction(unsigned &OpCode);
void initNames2Regs();
/// Try to convert a register name to a register number. Return true if the
/// register name is invalid.
bool getRegisterByName(StringRef RegName, unsigned &Reg);
void initNames2RegMasks();
/// Check if the given identifier is a name of a register mask.
///
/// Return null if the identifier isn't a register mask.
const uint32_t *getRegMask(StringRef Identifier);
};
} // end anonymous namespace
MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
StringRef Source,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots)
: SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
Token(MIToken::Error, StringRef()), MBBSlots(MBBSlots), IRSlots(IRSlots) {
}
void MIParser::lex() {
CurrentSource = lexMIToken(
CurrentSource, Token,
[this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
}
bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
// TODO: Get the proper location in the MIR file, not just a location inside
// the string.
assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
Error = SMDiagnostic(
SM, SMLoc(),
SM.getMemoryBuffer(SM.getMainFileID())->getBufferIdentifier(), 1,
Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), Source, None, None);
return true;
}
bool MIParser::parse(MachineInstr *&MI) {
lex();
// Parse any register operands before '='
// TODO: Allow parsing of multiple operands before '='
MachineOperand MO = MachineOperand::CreateImm(0);
SmallVector<MachineOperand, 8> Operands;
if (Token.isRegister()) {
if (parseRegisterOperand(MO, /*IsDef=*/true))
return true;
Operands.push_back(MO);
if (Token.isNot(MIToken::equal))
return error("expected '='");
lex();
}
unsigned OpCode;
if (Token.isError() || parseInstruction(OpCode))
return true;
// TODO: Parse the instruction flags and memory operands.
// Parse the remaining machine operands.
while (Token.isNot(MIToken::Eof)) {
if (parseMachineOperand(MO))
return true;
Operands.push_back(MO);
if (Token.is(MIToken::Eof))
break;
if (Token.isNot(MIToken::comma))
return error("expected ',' before the next machine operand");
lex();
}
const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
// Verify machine operands.
if (!MCID.isVariadic()) {
for (size_t I = 0, E = Operands.size(); I < E; ++I) {
if (I < MCID.getNumOperands())
continue;
// Mark this register as implicit to prevent an assertion when it's added
// to an instruction. This is a temporary workaround until the implicit
// register flag can be parsed.
if (Operands[I].isReg())
Operands[I].setImplicit();
}
}
// TODO: Determine the implicit behaviour when implicit register flags are
// parsed.
MI = MF.CreateMachineInstr(MCID, DebugLoc(), /*NoImplicit=*/true);
for (const auto &Operand : Operands)
MI->addOperand(MF, Operand);
return false;
}
bool MIParser::parseMBB(MachineBasicBlock *&MBB) {
lex();
if (Token.isNot(MIToken::MachineBasicBlock))
return error("expected a machine basic block reference");
if (parseMBBReference(MBB))
return true;
lex();
if (Token.isNot(MIToken::Eof))
return error(
"expected end of string after the machine basic block reference");
return false;
}
bool MIParser::parseInstruction(unsigned &OpCode) {
if (Token.isNot(MIToken::Identifier))
return error("expected a machine instruction");
StringRef InstrName = Token.stringValue();
if (parseInstrName(InstrName, OpCode))
return error(Twine("unknown machine instruction name '") + InstrName + "'");
lex();
return false;
}
bool MIParser::parseRegister(unsigned &Reg) {
switch (Token.kind()) {
case MIToken::underscore:
Reg = 0;
break;
case MIToken::NamedRegister: {
StringRef Name = Token.stringValue();
if (getRegisterByName(Name, Reg))
return error(Twine("unknown register name '") + Name + "'");
break;
}
// TODO: Parse other register kinds.
default:
llvm_unreachable("The current token should be a register");
}
return false;
}
bool MIParser::parseRegisterOperand(MachineOperand &Dest, bool IsDef) {
unsigned Reg;
// TODO: Parse register flags.
if (parseRegister(Reg))
return true;
lex();
// TODO: Parse subregister.
Dest = MachineOperand::CreateReg(Reg, IsDef);
return false;
}
bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
assert(Token.is(MIToken::IntegerLiteral));
const APSInt &Int = Token.integerValue();
if (Int.getMinSignedBits() > 64)
// TODO: Replace this with an error when we can parse CIMM Machine Operands.
llvm_unreachable("Can't parse large integer literals yet!");
Dest = MachineOperand::CreateImm(Int.getExtValue());
lex();
return false;
}
bool MIParser::getUnsigned(unsigned &Result) {
assert(Token.hasIntegerValue() && "Expected a token with an integer value");
const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
if (Val64 == Limit)
return error("expected 32-bit integer (too large)");
Result = Val64;
return false;
}
bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
assert(Token.is(MIToken::MachineBasicBlock));
unsigned Number;
if (getUnsigned(Number))
return true;
auto MBBInfo = MBBSlots.find(Number);
if (MBBInfo == MBBSlots.end())
return error(Twine("use of undefined machine basic block #") +
Twine(Number));
MBB = MBBInfo->second;
if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
return error(Twine("the name of machine basic block #") + Twine(Number) +
" isn't '" + Token.stringValue() + "'");
return false;
}
bool MIParser::parseMBBOperand(MachineOperand &Dest) {
MachineBasicBlock *MBB;
if (parseMBBReference(MBB))
return true;
Dest = MachineOperand::CreateMBB(MBB);
lex();
return false;
}
bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::NamedGlobalValue: {
auto Name = Token.stringValue();
const Module *M = MF.getFunction()->getParent();
if (const auto *GV = M->getNamedValue(Name)) {
Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
break;
}
return error(Twine("use of undefined global value '@") + Name + "'");
}
case MIToken::GlobalValue: {
unsigned GVIdx;
if (getUnsigned(GVIdx))
return true;
if (GVIdx >= IRSlots.GlobalValues.size())
return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
"'");
Dest = MachineOperand::CreateGA(IRSlots.GlobalValues[GVIdx],
/*Offset=*/0);
break;
}
default:
llvm_unreachable("The current token should be a global value");
}
// TODO: Parse offset and target flags.
lex();
return false;
}
bool MIParser::parseMachineOperand(MachineOperand &Dest) {
switch (Token.kind()) {
case MIToken::underscore:
case MIToken::NamedRegister:
return parseRegisterOperand(Dest);
case MIToken::IntegerLiteral:
return parseImmediateOperand(Dest);
case MIToken::MachineBasicBlock:
return parseMBBOperand(Dest);
case MIToken::GlobalValue:
case MIToken::NamedGlobalValue:
return parseGlobalAddressOperand(Dest);
case MIToken::Error:
return true;
case MIToken::Identifier:
if (const auto *RegMask = getRegMask(Token.stringValue())) {
Dest = MachineOperand::CreateRegMask(RegMask);
lex();
break;
}
// fallthrough
default:
// TODO: parse the other machine operands.
return error("expected a machine operand");
}
return false;
}
void MIParser::initNames2InstrOpCodes() {
if (!Names2InstrOpCodes.empty())
return;
const auto *TII = MF.getSubtarget().getInstrInfo();
assert(TII && "Expected target instruction info");
for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
}
bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
initNames2InstrOpCodes();
auto InstrInfo = Names2InstrOpCodes.find(InstrName);
if (InstrInfo == Names2InstrOpCodes.end())
return true;
OpCode = InstrInfo->getValue();
return false;
}
void MIParser::initNames2Regs() {
if (!Names2Regs.empty())
return;
// The '%noreg' register is the register 0.
Names2Regs.insert(std::make_pair("noreg", 0));
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
bool WasInserted =
Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
.second;
(void)WasInserted;
assert(WasInserted && "Expected registers to be unique case-insensitively");
}
}
bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
initNames2Regs();
auto RegInfo = Names2Regs.find(RegName);
if (RegInfo == Names2Regs.end())
return true;
Reg = RegInfo->getValue();
return false;
}
void MIParser::initNames2RegMasks() {
if (!Names2RegMasks.empty())
return;
const auto *TRI = MF.getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
assert(RegMasks.size() == RegMaskNames.size());
for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
Names2RegMasks.insert(
std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
}
const uint32_t *MIParser::getRegMask(StringRef Identifier) {
initNames2RegMasks();
auto RegMaskInfo = Names2RegMasks.find(Identifier);
if (RegMaskInfo == Names2RegMasks.end())
return nullptr;
return RegMaskInfo->getValue();
}
bool llvm::parseMachineInstr(
MachineInstr *&MI, SourceMgr &SM, MachineFunction &MF, StringRef Src,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, MBBSlots, IRSlots).parse(MI);
}
bool llvm::parseMBBReference(
MachineBasicBlock *&MBB, SourceMgr &SM, MachineFunction &MF, StringRef Src,
const DenseMap<unsigned, MachineBasicBlock *> &MBBSlots,
const SlotMapping &IRSlots, SMDiagnostic &Error) {
return MIParser(SM, MF, Error, Src, MBBSlots, IRSlots).parseMBB(MBB);
}
|