1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/* Data references and dependences detectors.
Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#ifndef GCC_TREE_DATA_REF_H
#define GCC_TREE_DATA_REF_H
#include "lambda.h"
/** {base_address + offset + init} is the first location accessed by data-ref
in the loop, and step is the stride of data-ref in the loop in bytes;
e.g.:
Example 1 Example 2
data-ref a[j].b[i][j] a + x + 16B (a is int*)
First location info:
base_address &a a
offset j_0*D_j + i_0*D_i + C_a x
init C_b 16
step D_j 4
access_fn NULL {16, +, 1}
Base object info:
base_object a NULL
access_fn <access_fns of indexes of b> NULL
**/
struct first_location_in_loop
{
tree base_address;
tree offset;
tree init;
tree step;
/* Access function related to first location in the loop. */
VEC(tree,heap) *access_fns;
};
struct base_object_info
{
/* The object. */
tree base_object;
/* A list of chrecs. Access functions related to BASE_OBJECT. */
VEC(tree,heap) *access_fns;
};
enum data_ref_type {
ARRAY_REF_TYPE,
POINTER_REF_TYPE
};
struct data_reference
{
/* A pointer to the statement that contains this DR. */
tree stmt;
/* A pointer to the ARRAY_REF node. */
tree ref;
/* Auxiliary info specific to a pass. */
int aux;
/* True when the data reference is in RHS of a stmt. */
bool is_read;
/* First location accessed by the data-ref in the loop. */
struct first_location_in_loop first_location;
/* Base object related info. */
struct base_object_info object_info;
/* Aliasing information. This field represents the symbol that
should be aliased by a pointer holding the address of this data
reference. If the original data reference was a pointer
dereference, then this field contains the memory tag that should
be used by the new vector-pointer. */
tree memtag;
struct ptr_info_def *ptr_info;
subvar_t subvars;
/* Alignment information. */
/* The offset of the data-reference from its base in bytes. */
tree misalignment;
/* The maximum data-ref's alignment. */
tree aligned_to;
/* The type of the data-ref. */
enum data_ref_type type;
};
typedef struct data_reference *data_reference_p;
DEF_VEC_P(data_reference_p);
DEF_VEC_ALLOC_P (data_reference_p, heap);
#define DR_STMT(DR) (DR)->stmt
#define DR_REF(DR) (DR)->ref
#define DR_BASE_OBJECT(DR) (DR)->object_info.base_object
#define DR_TYPE(DR) (DR)->type
#define DR_ACCESS_FNS(DR)\
(DR_TYPE(DR) == ARRAY_REF_TYPE ? \
(DR)->object_info.access_fns : (DR)->first_location.access_fns)
#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
#define DR_IS_READ(DR) (DR)->is_read
#define DR_BASE_ADDRESS(DR) (DR)->first_location.base_address
#define DR_OFFSET(DR) (DR)->first_location.offset
#define DR_INIT(DR) (DR)->first_location.init
#define DR_STEP(DR) (DR)->first_location.step
#define DR_MEMTAG(DR) (DR)->memtag
#define DR_ALIGNED_TO(DR) (DR)->aligned_to
#define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment
#define DR_PTR_INFO(DR) (DR)->ptr_info
#define DR_SUBVARS(DR) (DR)->subvars
#define DR_ACCESS_FNS_ADDR(DR) \
(DR_TYPE(DR) == ARRAY_REF_TYPE ? \
&((DR)->object_info.access_fns) : &((DR)->first_location.access_fns))
#define DR_SET_ACCESS_FNS(DR, ACC_FNS) \
{ \
if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
(DR)->object_info.access_fns = ACC_FNS; \
else \
(DR)->first_location.access_fns = ACC_FNS; \
}
#define DR_FREE_ACCESS_FNS(DR) \
{ \
if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
VEC_free (tree, heap, (DR)->object_info.access_fns); \
else \
VEC_free (tree, heap, (DR)->first_location.access_fns); \
}
enum data_dependence_direction {
dir_positive,
dir_negative,
dir_equal,
dir_positive_or_negative,
dir_positive_or_equal,
dir_negative_or_equal,
dir_star,
dir_independent
};
/* What is a subscript? Given two array accesses a subscript is the
tuple composed of the access functions for a given dimension.
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
are stored in the data_dependence_relation structure under the form
of an array of subscripts. */
struct subscript
{
/* A description of the iterations for which the elements are
accessed twice. */
tree conflicting_iterations_in_a;
tree conflicting_iterations_in_b;
/* This field stores the information about the iteration domain
validity of the dependence relation. */
tree last_conflict;
/* Distance from the iteration that access a conflicting element in
A to the iteration that access this same conflicting element in
B. The distance is a tree scalar expression, i.e. a constant or a
symbolic expression, but certainly not a chrec function. */
tree distance;
};
typedef struct subscript *subscript_p;
DEF_VEC_P(subscript_p);
DEF_VEC_ALLOC_P (subscript_p, heap);
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
#define SUB_DISTANCE(SUB) SUB->distance
typedef struct loop *loop_p;
DEF_VEC_P(loop_p);
DEF_VEC_ALLOC_P (loop_p, heap);
/* A data_dependence_relation represents a relation between two
data_references A and B. */
struct data_dependence_relation
{
struct data_reference *a;
struct data_reference *b;
/* When the dependence relation is affine, it can be represented by
a distance vector. */
bool affine_p;
/* A "yes/no/maybe" field for the dependence relation:
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
relation between A and B, and the description of this relation
is given in the SUBSCRIPTS array,
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
SUBSCRIPTS is empty,
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
but the analyzer cannot be more specific. */
tree are_dependent;
/* For each subscript in the dependence test, there is an element in
this array. This is the attribute that labels the edge A->B of
the data_dependence_relation. */
VEC (subscript_p, heap) *subscripts;
/* The analyzed loop nest. */
VEC (loop_p, heap) *loop_nest;
/* The classic direction vector. */
VEC (lambda_vector, heap) *dir_vects;
/* The classic distance vector. */
VEC (lambda_vector, heap) *dist_vects;
};
typedef struct data_dependence_relation *ddr_p;
DEF_VEC_P(ddr_p);
DEF_VEC_ALLOC_P(ddr_p,heap);
#define DDR_A(DDR) DDR->a
#define DDR_B(DDR) DDR->b
#define DDR_AFFINE_P(DDR) DDR->affine_p
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
/* The size of the direction/distance vectors: the number of loops in
the loop nest. */
#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
#define DDR_NUM_DIST_VECTS(DDR) \
(VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
#define DDR_NUM_DIR_VECTS(DDR) \
(VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
#define DDR_DIR_VECT(DDR, I) \
VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
#define DDR_DIST_VECT(DDR, I) \
VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
extern tree find_data_references_in_loop (struct loop *,
VEC (data_reference_p, heap) **);
extern void compute_data_dependences_for_loop (struct loop *, bool,
VEC (data_reference_p, heap) **,
VEC (ddr_p, heap) **);
extern void print_direction_vector (FILE *, lambda_vector, int);
extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
extern void dump_subscript (FILE *, struct subscript *);
extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
extern void dump_data_reference (FILE *, struct data_reference *);
extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
extern void debug_data_dependence_relation (struct data_dependence_relation *);
extern void dump_data_dependence_relation (FILE *,
struct data_dependence_relation *);
extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
extern void dump_data_dependence_direction (FILE *,
enum data_dependence_direction);
extern void free_dependence_relation (struct data_dependence_relation *);
extern void free_dependence_relations (VEC (ddr_p, heap) *);
extern void free_data_refs (VEC (data_reference_p, heap) *);
extern struct data_reference *analyze_array (tree, tree, bool);
extern void estimate_iters_using_array (tree, tree);
/* Return the index of the variable VAR in the LOOP_NEST array. */
static inline int
index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
{
struct loop *loopi;
int var_index;
for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
var_index++)
if (loopi->num == var)
break;
return var_index;
}
/* In lambda-code.c */
bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *);
#endif /* GCC_TREE_DATA_REF_H */
|