1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
|
/* Natural loop analysis code for GNU compiler.
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "expr.h"
#include "output.h"
/* Checks whether BB is executed exactly once in each LOOP iteration. */
bool
just_once_each_iteration_p (const struct loop *loop, basic_block bb)
{
/* It must be executed at least once each iteration. */
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
return false;
/* And just once. */
if (bb->loop_father != loop)
return false;
/* But this was not enough. We might have some irreducible loop here. */
if (bb->flags & BB_IRREDUCIBLE_LOOP)
return false;
return true;
}
/* Structure representing edge of a graph. */
struct edge
{
int src, dest; /* Source and destination. */
struct edge *pred_next, *succ_next;
/* Next edge in predecessor and successor lists. */
void *data; /* Data attached to the edge. */
};
/* Structure representing vertex of a graph. */
struct vertex
{
struct edge *pred, *succ;
/* Lists of predecessors and successors. */
int component; /* Number of dfs restarts before reaching the
vertex. */
int post; /* Postorder number. */
};
/* Structure representing a graph. */
struct graph
{
int n_vertices; /* Number of vertices. */
struct vertex *vertices;
/* The vertices. */
};
/* Dumps graph G into F. */
extern void dump_graph (FILE *, struct graph *);
void
dump_graph (FILE *f, struct graph *g)
{
int i;
struct edge *e;
for (i = 0; i < g->n_vertices; i++)
{
if (!g->vertices[i].pred
&& !g->vertices[i].succ)
continue;
fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
for (e = g->vertices[i].pred; e; e = e->pred_next)
fprintf (f, " %d", e->src);
fprintf (f, "\n");
fprintf (f, "\t->");
for (e = g->vertices[i].succ; e; e = e->succ_next)
fprintf (f, " %d", e->dest);
fprintf (f, "\n");
}
}
/* Creates a new graph with N_VERTICES vertices. */
static struct graph *
new_graph (int n_vertices)
{
struct graph *g = XNEW (struct graph);
g->n_vertices = n_vertices;
g->vertices = XCNEWVEC (struct vertex, n_vertices);
return g;
}
/* Adds an edge from F to T to graph G, with DATA attached. */
static void
add_edge (struct graph *g, int f, int t, void *data)
{
struct edge *e = xmalloc (sizeof (struct edge));
e->src = f;
e->dest = t;
e->data = data;
e->pred_next = g->vertices[t].pred;
g->vertices[t].pred = e;
e->succ_next = g->vertices[f].succ;
g->vertices[f].succ = e;
}
/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
The vertices in postorder are stored into QT. If FORWARD is false,
backward dfs is run. */
static void
dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
{
int i, tick = 0, v, comp = 0, top;
struct edge *e;
struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
for (i = 0; i < g->n_vertices; i++)
{
g->vertices[i].component = -1;
g->vertices[i].post = -1;
}
#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
for (i = 0; i < nq; i++)
{
v = qs[i];
if (g->vertices[v].post != -1)
continue;
g->vertices[v].component = comp++;
e = FST_EDGE (v);
top = 0;
while (1)
{
while (e && g->vertices[EDGE_DEST (e)].component != -1)
e = NEXT_EDGE (e);
if (!e)
{
if (qt)
qt[tick] = v;
g->vertices[v].post = tick++;
if (!top)
break;
e = stack[--top];
v = EDGE_SRC (e);
e = NEXT_EDGE (e);
continue;
}
stack[top++] = e;
v = EDGE_DEST (e);
e = FST_EDGE (v);
g->vertices[v].component = comp - 1;
}
}
free (stack);
}
/* Marks the edge E in graph G irreducible if it connects two vertices in the
same scc. */
static void
check_irred (struct graph *g, struct edge *e)
{
edge real = e->data;
/* All edges should lead from a component with higher number to the
one with lower one. */
gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
if (g->vertices[e->src].component != g->vertices[e->dest].component)
return;
real->flags |= EDGE_IRREDUCIBLE_LOOP;
if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
real->src->flags |= BB_IRREDUCIBLE_LOOP;
}
/* Runs CALLBACK for all edges in G. */
static void
for_each_edge (struct graph *g,
void (callback) (struct graph *, struct edge *))
{
struct edge *e;
int i;
for (i = 0; i < g->n_vertices; i++)
for (e = g->vertices[i].succ; e; e = e->succ_next)
callback (g, e);
}
/* Releases the memory occupied by G. */
static void
free_graph (struct graph *g)
{
struct edge *e, *n;
int i;
for (i = 0; i < g->n_vertices; i++)
for (e = g->vertices[i].succ; e; e = n)
{
n = e->succ_next;
free (e);
}
free (g->vertices);
free (g);
}
/* Marks blocks and edges that are part of non-recognized loops; i.e. we
throw away all latch edges and mark blocks inside any remaining cycle.
Everything is a bit complicated due to fact we do not want to do this
for parts of cycles that only "pass" through some loop -- i.e. for
each cycle, we want to mark blocks that belong directly to innermost
loop containing the whole cycle.
LOOPS is the loop tree. */
#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
#define BB_REPR(BB) ((BB)->index + 1)
void
mark_irreducible_loops (struct loops *loops)
{
basic_block act;
edge e;
edge_iterator ei;
int i, src, dest;
struct graph *g;
int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
int nq, depth;
struct loop *cloop;
/* Reset the flags. */
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
act->flags &= ~BB_IRREDUCIBLE_LOOP;
FOR_EACH_EDGE (e, ei, act->succs)
e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
}
/* Create the edge lists. */
g = new_graph (last_basic_block + loops->num);
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
FOR_EACH_EDGE (e, ei, act->succs)
{
/* Ignore edges to exit. */
if (e->dest == EXIT_BLOCK_PTR)
continue;
/* And latch edges. */
if (e->dest->loop_father->header == e->dest
&& e->dest->loop_father->latch == act)
continue;
/* Edges inside a single loop should be left where they are. Edges
to subloop headers should lead to representative of the subloop,
but from the same place.
Edges exiting loops should lead from representative
of the son of nearest common ancestor of the loops in that
act lays. */
src = BB_REPR (act);
dest = BB_REPR (e->dest);
if (e->dest->loop_father->header == e->dest)
dest = LOOP_REPR (e->dest->loop_father);
if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
{
depth = find_common_loop (act->loop_father,
e->dest->loop_father)->depth + 1;
if (depth == act->loop_father->depth)
cloop = act->loop_father;
else
cloop = act->loop_father->pred[depth];
src = LOOP_REPR (cloop);
}
add_edge (g, src, dest, e);
}
/* Find the strongly connected components. Use the algorithm of Tarjan --
first determine the postorder dfs numbering in reversed graph, then
run the dfs on the original graph in the order given by decreasing
numbers assigned by the previous pass. */
nq = 0;
FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
queue1[nq++] = BB_REPR (act);
}
for (i = 1; i < (int) loops->num; i++)
if (loops->parray[i])
queue1[nq++] = LOOP_REPR (loops->parray[i]);
dfs (g, queue1, nq, queue2, false);
for (i = 0; i < nq; i++)
queue1[i] = queue2[nq - i - 1];
dfs (g, queue1, nq, NULL, true);
/* Mark the irreducible loops. */
for_each_edge (g, check_irred);
free_graph (g);
free (queue1);
free (queue2);
loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
}
/* Counts number of insns inside LOOP. */
int
num_loop_insns (struct loop *loop)
{
basic_block *bbs, bb;
unsigned i, ninsns = 0;
rtx insn;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
ninsns++;
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
if (INSN_P (insn))
ninsns++;
}
free(bbs);
return ninsns;
}
/* Counts number of insns executed on average per iteration LOOP. */
int
average_num_loop_insns (struct loop *loop)
{
basic_block *bbs, bb;
unsigned i, binsns, ninsns, ratio;
rtx insn;
ninsns = 0;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
binsns = 1;
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
if (INSN_P (insn))
binsns++;
ratio = loop->header->frequency == 0
? BB_FREQ_MAX
: (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
ninsns += binsns * ratio;
}
free(bbs);
ninsns /= BB_FREQ_MAX;
if (!ninsns)
ninsns = 1; /* To avoid division by zero. */
return ninsns;
}
/* Returns expected number of LOOP iterations.
Compute upper bound on number of iterations in case they do not fit integer
to help loop peeling heuristics. Use exact counts if at all possible. */
unsigned
expected_loop_iterations (const struct loop *loop)
{
edge e;
edge_iterator ei;
if (loop->latch->count || loop->header->count)
{
gcov_type count_in, count_latch, expected;
count_in = 0;
count_latch = 0;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src == loop->latch)
count_latch = e->count;
else
count_in += e->count;
if (count_in == 0)
expected = count_latch * 2;
else
expected = (count_latch + count_in - 1) / count_in;
/* Avoid overflows. */
return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
}
else
{
int freq_in, freq_latch;
freq_in = 0;
freq_latch = 0;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src == loop->latch)
freq_latch = EDGE_FREQUENCY (e);
else
freq_in += EDGE_FREQUENCY (e);
if (freq_in == 0)
return freq_latch * 2;
return (freq_latch + freq_in - 1) / freq_in;
}
}
/* Returns the maximum level of nesting of subloops of LOOP. */
unsigned
get_loop_level (const struct loop *loop)
{
const struct loop *ploop;
unsigned mx = 0, l;
for (ploop = loop->inner; ploop; ploop = ploop->next)
{
l = get_loop_level (ploop);
if (l >= mx)
mx = l + 1;
}
return mx;
}
/* Returns estimate on cost of computing SEQ. */
static unsigned
seq_cost (rtx seq)
{
unsigned cost = 0;
rtx set;
for (; seq; seq = NEXT_INSN (seq))
{
set = single_set (seq);
if (set)
cost += rtx_cost (set, SET);
else
cost++;
}
return cost;
}
/* The properties of the target. */
unsigned target_avail_regs; /* Number of available registers. */
unsigned target_res_regs; /* Number of reserved registers. */
unsigned target_small_cost; /* The cost for register when there is a free one. */
unsigned target_pres_cost; /* The cost for register when there are not too many
free ones. */
unsigned target_spill_cost; /* The cost for register when we need to spill. */
/* Initialize the constants for computing set costs. */
void
init_set_costs (void)
{
rtx seq;
rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
unsigned i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
&& !fixed_regs[i])
target_avail_regs++;
target_res_regs = 3;
/* These are really just heuristic values. */
start_sequence ();
emit_move_insn (reg1, reg2);
seq = get_insns ();
end_sequence ();
target_small_cost = seq_cost (seq);
target_pres_cost = 2 * target_small_cost;
start_sequence ();
emit_move_insn (mem, reg1);
emit_move_insn (reg2, mem);
seq = get_insns ();
end_sequence ();
target_spill_cost = seq_cost (seq);
}
/* Calculates cost for having SIZE new loop global variables. REGS_USED is the
number of global registers used in loop. N_USES is the number of relevant
variable uses. */
unsigned
global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
{
unsigned regs_needed = regs_used + size;
unsigned cost = 0;
if (regs_needed + target_res_regs <= target_avail_regs)
cost += target_small_cost * size;
else if (regs_needed <= target_avail_regs)
cost += target_pres_cost * size;
else
{
cost += target_pres_cost * size;
cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
}
return cost;
}
/* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
void
mark_loop_exit_edges (struct loops *loops)
{
basic_block bb;
edge e;
if (loops->num <= 1)
return;
FOR_EACH_BB (bb)
{
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (bb->loop_father->outer
&& loop_exit_edge_p (bb->loop_father, e))
e->flags |= EDGE_LOOP_EXIT;
else
e->flags &= ~EDGE_LOOP_EXIT;
}
}
}
|