1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/*
* This m4 code has been taken from The SPARC Architecture Manual Version 8.
*/
/*
* Division/Remainder
*
* Input is:
* dividend -- the thing being divided
* divisor -- how many ways to divide it
* Important parameters:
* N -- how many bits per iteration we try to get
* as our current guess:
* WORDSIZE -- how many bits altogether we're talking about:
* obviously:
* A derived constant:
* TOPBITS -- how many bits are in the top "decade" of a number:
*
* Important variables are:
* Q -- the partial quotient under development -- initially 0
* R -- the remainder so far -- initially == the dividend
* ITER -- number of iterations of the main division loop which will
* be required. Equal to CEIL( lg2(quotient)/4 )
* Note that this is log_base_(2ˆ4) of the quotient.
* V -- the current comparand -- initially divisor*2ˆ(ITER*4-1)
* Cost:
* current estimate for non-large dividend is
* CEIL( lg2(quotient) / 4 ) x ( 10 + 74/2 ) + C
* a large dividend is one greater than 2ˆ(31-4 ) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.
* This uses the m4 and cpp macro preprocessors.
*/
/*
* This is the recursive definition of how we develop quotient digits.
* It takes three important parameters:
* $1 -- the current depth, 1<=$1<=4
* $2 -- the current accumulation of quotient bits
* 4 -- max depth
* We add a new bit to $2 and either recurse or insert the bits in the quotient.
* Dynamic input:
* %o3 -- current remainder
* %o2 -- current quotient
* %o5 -- current comparand
* cc -- set on current value of %o3
* Dynamic output:
* %o3', %o2', %o5', cc'
*/
#include "../assembly.h"
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__udivsi3)
b divide
mov 0,%g3 ! result always nonnegative
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__divsi3)
orcc %o1,%o0,%g0 ! are either %o0 or %o1 negative
bge divide ! if not, skip this junk
xor %o1,%o0,%g3 ! record sign of result in sign of %g3
tst %o1
bge 2f
tst %o0
! %o1 < 0
bge divide
neg %o1
2:
! %o0 < 0
neg %o0
! FALL THROUGH
divide:
! Compute size of quotient, scale comparand.
orcc %o1,%g0,%o5 ! movcc %o1,%o5
te 2 ! if %o1 = 0
mov %o0,%o3
mov 0,%o2
sethi %hi(1<<(32-4 -1)),%g1
cmp %o3,%g1
blu not_really_big
mov 0,%o4
!
! Here, the %o0 is >= 2ˆ(31-4) or so. We must be careful here,
! as our usual 4-at-a-shot divide step will cause overflow and havoc.
! The total number of bits in the result here is 4*%o4+%g2, where
! %g2 <= 4.
! Compute %o4 in an unorthodox manner: know we need to Shift %o5 into
! the top decade: so don't even bother to compare to %o3.
1:
cmp %o5,%g1
bgeu 3f
mov 1,%g2
sll %o5,4,%o5
b 1b
inc %o4
! Now compute %g2
2: addcc %o5,%o5,%o5
bcc not_too_big
add %g2,1,%g2
! We're here if the %o1 overflowed when Shifting.
! This means that %o3 has the high-order bit set.
! Restore %o5 and subtract from %o3.
sll %g1,4 ,%g1 ! high order bit
srl %o5,1,%o5 ! rest of %o5
add %o5,%g1,%o5
b do_single_div
dec %g2
not_too_big:
3: cmp %o5,%o3
blu 2b
nop
be do_single_div
nop
! %o5 > %o3: went too far: back up 1 step
! srl %o5,1,%o5
! dec %g2
! do single-bit divide steps
!
! We have to be careful here. We know that %o3 >= %o5, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
! order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
deccc %g2
bl end_regular_divide
nop
sub %o3,%o5,%o3
mov 1,%o2
b,a end_single_divloop
! EMPTY
single_divloop:
sll %o2,1,%o2
bl 1f
srl %o5,1,%o5
! %o3 >= 0
sub %o3,%o5,%o3
b 2f
inc %o2
1: ! %o3 < 0
add %o3,%o5,%o3
dec %o2
2:
end_single_divloop:
deccc %g2
bge single_divloop
tst %o3
b,a end_regular_divide
! EMPTY
not_really_big:
1:
sll %o5,4,%o5
cmp %o5,%o3
bleu 1b
inccc %o4
be got_result
dec %o4
do_regular_divide:
! Do the main division iteration
tst %o3
! Fall through into divide loop
divloop:
sll %o2,4,%o2
!depth 1, accumulated bits 0
bl L.1.16
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 2, accumulated bits 1
bl L.2.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 3, accumulated bits 3
bl L.3.19
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits 7
bl L.4.23
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (7*2+1), %o2
L.4.23:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (7*2-1), %o2
L.3.19:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits 5
bl L.4.21
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (5*2+1), %o2
L.4.21:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (5*2-1), %o2
L.2.17:
! remainder is negative
addcc %o3,%o5,%o3
!depth 3, accumulated bits 1
bl L.3.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits 3
bl L.4.19
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (3*2+1), %o2
L.4.19:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (3*2-1), %o2
L.3.17:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits 1
bl L.4.17
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (1*2+1), %o2
L.4.17:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (1*2-1), %o2
L.1.16:
! remainder is negative
addcc %o3,%o5,%o3
!depth 2, accumulated bits -1
bl L.2.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 3, accumulated bits -1
bl L.3.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits -1
bl L.4.15
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-1*2+1), %o2
L.4.15:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-1*2-1), %o2
L.3.15:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits -3
bl L.4.13
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-3*2+1), %o2
L.4.13:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-3*2-1), %o2
L.2.15:
! remainder is negative
addcc %o3,%o5,%o3
!depth 3, accumulated bits -3
bl L.3.13
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
!depth 4, accumulated bits -5
bl L.4.11
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-5*2+1), %o2
L.4.11:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-5*2-1), %o2
L.3.13:
! remainder is negative
addcc %o3,%o5,%o3
!depth 4, accumulated bits -7
bl L.4.9
srl %o5,1,%o5
! remainder is nonnegative
subcc %o3,%o5,%o3
b 9f
add %o2, (-7*2+1), %o2
L.4.9:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-7*2-1), %o2
9:
end_regular_divide:
deccc %o4
bge divloop
tst %o3
bl,a got_result
! non-restoring fixup if remainder < 0, otherwise annulled
dec %o2
got_result:
tst %g3
bl,a 1f
! negate for answer < 0, otherwise annulled
neg %o2,%o2 ! %o2 <- -%o2
1:
retl ! leaf-routine return
mov %o2,%o0 ! quotient <- %o2
|