| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently this argument is a pointer into the stack which is used by FBT
to fetch the first five probe arguments. On all non-x86 architectures it's
simply the trapframe address, so this change has no functional impact. On
amd64 it's a pointer into the trapframe such that stack[1 .. 5] gives the
first five argument registers, which are deliberately grouped together in
the amd64 trapframe definition.
A trapframe argument simplifies the invop handlers on !x86 and makes the
x86 FBT invop handler easier to understand. Moreover, it allows for invop
handlers that may want to modify the register set of the interrupted thread.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
emulate the instructions used in function entry and exit.
For function entry ARM will use a push instruction to push up to 16
registers to the stack. While we don't expect all 16 to be used we need to
handle any combination the compiler may generate, even if it doesn't make
sense (e.g. pushing the program counter).
On function return we will either have a pop or branch instruction. The
former is similar to the push instruction, but with care to make sure we
update the stack pointer and program counter correctly in the cases they
are either in the list of registers or not. For branch we need to take the
24-bit offset, sign-extend it, and add that number of 4-byte words to the
program counter. Care needs to be taken as, due to historical reasons, the
address the branch is relative to is not the current instruction, but 8
bytes later.
This allows us to use the following probes on ARM boards:
dtrace -n 'fbt::malloc:entry { stack() }'
and
dtrace -n 'fbt::free:return { stack() }'
Differential Revision: https://reviews.freebsd.org/D2007
Reviewed by: gnn, rpaulo
Sponsored by: ABT Systems Ltd
|
|
Submitted by: Howard Su based on work by Oleksandr Tymoshenko
Reviewed by: ian, andrew, rpaulo, markj
|