summaryrefslogtreecommitdiffstats
path: root/tools/regression/lib/msun/test-csqrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/regression/lib/msun/test-csqrt.c')
-rw-r--r--tools/regression/lib/msun/test-csqrt.c295
1 files changed, 0 insertions, 295 deletions
diff --git a/tools/regression/lib/msun/test-csqrt.c b/tools/regression/lib/msun/test-csqrt.c
deleted file mode 100644
index 39176eb..0000000
--- a/tools/regression/lib/msun/test-csqrt.c
+++ /dev/null
@@ -1,295 +0,0 @@
-/*-
- * Copyright (c) 2007 David Schultz <das@FreeBSD.org>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-/*
- * Tests for csqrt{,f}()
- */
-
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD$");
-
-#include <assert.h>
-#include <complex.h>
-#include <float.h>
-#include <math.h>
-#include <stdio.h>
-
-#include "test-utils.h"
-
-#define N(i) (sizeof(i) / sizeof((i)[0]))
-
-/*
- * This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
- * The latter two convert to float or double, respectively, and test csqrtf()
- * and csqrt() with the same arguments.
- */
-long double complex (*t_csqrt)(long double complex);
-
-static long double complex
-_csqrtf(long double complex d)
-{
-
- return (csqrtf((float complex)d));
-}
-
-static long double complex
-_csqrt(long double complex d)
-{
-
- return (csqrt((double complex)d));
-}
-
-#pragma STDC CX_LIMITED_RANGE off
-
-/*
- * Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
- * Fail an assertion if they differ.
- */
-static void
-assert_equal(long double complex d1, long double complex d2)
-{
-
- assert(cfpequal(d1, d2));
-}
-
-/*
- * Test csqrt for some finite arguments where the answer is exact.
- * (We do not test if it produces correctly rounded answers when the
- * result is inexact, nor do we check whether it throws spurious
- * exceptions.)
- */
-static void
-test_finite()
-{
- static const double tests[] = {
- /* csqrt(a + bI) = x + yI */
- /* a b x y */
- 0, 8, 2, 2,
- 0, -8, 2, -2,
- 4, 0, 2, 0,
- -4, 0, 0, 2,
- 3, 4, 2, 1,
- 3, -4, 2, -1,
- -3, 4, 1, 2,
- -3, -4, 1, -2,
- 5, 12, 3, 2,
- 7, 24, 4, 3,
- 9, 40, 5, 4,
- 11, 60, 6, 5,
- 13, 84, 7, 6,
- 33, 56, 7, 4,
- 39, 80, 8, 5,
- 65, 72, 9, 4,
- 987, 9916, 74, 67,
- 5289, 6640, 83, 40,
- 460766389075.0, 16762287900.0, 678910, 12345
- };
- /*
- * We also test some multiples of the above arguments. This
- * array defines which multiples we use. Note that these have
- * to be small enough to not cause overflow for float precision
- * with all of the constants in the above table.
- */
- static const double mults[] = {
- 1,
- 2,
- 3,
- 13,
- 16,
- 0x1.p30,
- 0x1.p-30,
- };
-
- double a, b;
- double x, y;
- int i, j;
-
- for (i = 0; i < N(tests); i += 4) {
- for (j = 0; j < N(mults); j++) {
- a = tests[i] * mults[j] * mults[j];
- b = tests[i + 1] * mults[j] * mults[j];
- x = tests[i + 2] * mults[j];
- y = tests[i + 3] * mults[j];
- assert(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
- }
- }
-
-}
-
-/*
- * Test the handling of +/- 0.
- */
-static void
-test_zeros()
-{
-
- assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
- assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
- assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
- assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
-}
-
-/*
- * Test the handling of infinities when the other argument is not NaN.
- */
-static void
-test_infinities()
-{
- static const double vals[] = {
- 0.0,
- -0.0,
- 42.0,
- -42.0,
- INFINITY,
- -INFINITY,
- };
-
- int i;
-
- for (i = 0; i < N(vals); i++) {
- if (isfinite(vals[i])) {
- assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
- CMPLXL(0.0, copysignl(INFINITY, vals[i])));
- assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
- CMPLXL(INFINITY, copysignl(0.0, vals[i])));
- }
- assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
- CMPLXL(INFINITY, INFINITY));
- assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
- CMPLXL(INFINITY, -INFINITY));
- }
-}
-
-/*
- * Test the handling of NaNs.
- */
-static void
-test_nans()
-{
-
- assert(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
- assert(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
-
- assert(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
- assert(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
-
- assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
- CMPLXL(INFINITY, INFINITY));
- assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
- CMPLXL(INFINITY, -INFINITY));
-
- assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
- assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
-}
-
-/*
- * Test whether csqrt(a + bi) works for inputs that are large enough to
- * cause overflow in hypot(a, b) + a. In this case we are using
- * csqrt(115 + 252*I) == 14 + 9*I
- * scaled up to near MAX_EXP.
- */
-static void
-test_overflow(int maxexp)
-{
- long double a, b;
- long double complex result;
-
- a = ldexpl(115 * 0x1p-8, maxexp);
- b = ldexpl(252 * 0x1p-8, maxexp);
- result = t_csqrt(CMPLXL(a, b));
- assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2));
- assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2));
-}
-
-int
-main(int argc, char *argv[])
-{
-
- printf("1..15\n");
-
- /* Test csqrt() */
- t_csqrt = _csqrt;
-
- test_finite();
- printf("ok 1 - csqrt\n");
-
- test_zeros();
- printf("ok 2 - csqrt\n");
-
- test_infinities();
- printf("ok 3 - csqrt\n");
-
- test_nans();
- printf("ok 4 - csqrt\n");
-
- test_overflow(DBL_MAX_EXP);
- printf("ok 5 - csqrt\n");
-
- /* Now test csqrtf() */
- t_csqrt = _csqrtf;
-
- test_finite();
- printf("ok 6 - csqrt\n");
-
- test_zeros();
- printf("ok 7 - csqrt\n");
-
- test_infinities();
- printf("ok 8 - csqrt\n");
-
- test_nans();
- printf("ok 9 - csqrt\n");
-
- test_overflow(FLT_MAX_EXP);
- printf("ok 10 - csqrt\n");
-
- /* Now test csqrtl() */
- t_csqrt = csqrtl;
-
- test_finite();
- printf("ok 11 - csqrt\n");
-
- test_zeros();
- printf("ok 12 - csqrt\n");
-
- test_infinities();
- printf("ok 13 - csqrt\n");
-
- test_nans();
- printf("ok 14 - csqrt\n");
-
- test_overflow(LDBL_MAX_EXP);
- printf("ok 15 - csqrt\n");
-
- return (0);
-}
OpenPOWER on IntegriCloud