summaryrefslogtreecommitdiffstats
path: root/sys/powerpc/aim/mmu_oea64.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/powerpc/aim/mmu_oea64.c')
-rw-r--r--sys/powerpc/aim/mmu_oea64.c2443
1 files changed, 2443 insertions, 0 deletions
diff --git a/sys/powerpc/aim/mmu_oea64.c b/sys/powerpc/aim/mmu_oea64.c
new file mode 100644
index 0000000..64e8c75
--- /dev/null
+++ b/sys/powerpc/aim/mmu_oea64.c
@@ -0,0 +1,2443 @@
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+/*-
+ * Copyright (C) 1995, 1996 Wolfgang Solfrank.
+ * Copyright (C) 1995, 1996 TooLs GmbH.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by TooLs GmbH.
+ * 4. The name of TooLs GmbH may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
+ */
+/*-
+ * Copyright (C) 2001 Benno Rice.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+/*
+ * Manages physical address maps.
+ *
+ * In addition to hardware address maps, this module is called upon to
+ * provide software-use-only maps which may or may not be stored in the
+ * same form as hardware maps. These pseudo-maps are used to store
+ * intermediate results from copy operations to and from address spaces.
+ *
+ * Since the information managed by this module is also stored by the
+ * logical address mapping module, this module may throw away valid virtual
+ * to physical mappings at almost any time. However, invalidations of
+ * mappings must be done as requested.
+ *
+ * In order to cope with hardware architectures which make virtual to
+ * physical map invalidates expensive, this module may delay invalidate
+ * reduced protection operations until such time as they are actually
+ * necessary. This module is given full information as to which processors
+ * are currently using which maps, and to when physical maps must be made
+ * correct.
+ */
+
+#include "opt_kstack_pages.h"
+
+#include <sys/param.h>
+#include <sys/kernel.h>
+#include <sys/ktr.h>
+#include <sys/lock.h>
+#include <sys/msgbuf.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/sysctl.h>
+#include <sys/systm.h>
+#include <sys/vmmeter.h>
+
+#include <sys/kdb.h>
+
+#include <dev/ofw/openfirm.h>
+
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/vm_kern.h>
+#include <vm/vm_page.h>
+#include <vm/vm_map.h>
+#include <vm/vm_object.h>
+#include <vm/vm_extern.h>
+#include <vm/vm_pageout.h>
+#include <vm/vm_pager.h>
+#include <vm/uma.h>
+
+#include <machine/cpu.h>
+#include <machine/powerpc.h>
+#include <machine/frame.h>
+#include <machine/md_var.h>
+#include <machine/psl.h>
+#include <machine/bat.h>
+#include <machine/pte.h>
+#include <machine/sr.h>
+#include <machine/trap.h>
+#include <machine/mmuvar.h>
+
+#include "mmu_if.h"
+
+#define MOEA_DEBUG
+
+#define TODO panic("%s: not implemented", __func__);
+
+static __inline u_int32_t
+cntlzw(volatile u_int32_t a) {
+ u_int32_t b;
+ __asm ("cntlzw %0, %1" : "=r"(b) : "r"(a));
+ return b;
+}
+
+static __inline uint64_t
+va_to_vsid(pmap_t pm, vm_offset_t va)
+{
+ return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK);
+}
+
+#define TLBSYNC() __asm __volatile("tlbsync; ptesync");
+#define SYNC() __asm __volatile("sync");
+#define EIEIO() __asm __volatile("eieio");
+
+/*
+ * The tlbie instruction must be executed in 64-bit mode
+ * so we have to twiddle MSR[SF] around every invocation.
+ * Just to add to the fun, exceptions must be off as well
+ * so that we can't trap in 64-bit mode. What a pain.
+ */
+
+static __inline void
+TLBIE(pmap_t pmap, vm_offset_t va) {
+ register_t msr;
+ register_t scratch;
+
+ uint64_t vpn;
+ register_t vpn_hi, vpn_lo;
+
+#if 1
+ /*
+ * CPU documentation says that tlbie takes the VPN, not the
+ * VA. I think the code below does this correctly. We will see.
+ */
+
+ vpn = (uint64_t)(va & ADDR_PIDX);
+ if (pmap != NULL)
+ vpn |= (va_to_vsid(pmap,va) << 28);
+#else
+ vpn = va;
+#endif
+
+ vpn_hi = (uint32_t)(vpn >> 32);
+ vpn_lo = (uint32_t)vpn;
+
+ __asm __volatile("\
+ mfmsr %0; \
+ clrldi %1,%0,49; \
+ insrdi %1,1,1,0; \
+ mtmsrd %1; \
+ ptesync; \
+ \
+ sld %1,%2,%4; \
+ or %1,%1,%3; \
+ tlbie %1; \
+ \
+ mtmsrd %0; \
+ eieio; \
+ tlbsync; \
+ ptesync;"
+ : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32));
+}
+
+#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
+#define ENABLE_TRANS(msr) mtmsr(msr); isync()
+
+#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
+#define VSID_TO_SR(vsid) ((vsid) & 0xf)
+#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
+
+#define PVO_PTEGIDX_MASK 0x007 /* which PTEG slot */
+#define PVO_PTEGIDX_VALID 0x008 /* slot is valid */
+#define PVO_WIRED 0x010 /* PVO entry is wired */
+#define PVO_MANAGED 0x020 /* PVO entry is managed */
+#define PVO_BOOTSTRAP 0x080 /* PVO entry allocated during
+ bootstrap */
+#define PVO_FAKE 0x100 /* fictitious phys page */
+#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
+#define PVO_ISFAKE(pvo) ((pvo)->pvo_vaddr & PVO_FAKE)
+#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
+#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
+#define PVO_PTEGIDX_CLR(pvo) \
+ ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
+#define PVO_PTEGIDX_SET(pvo, i) \
+ ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
+
+#define MOEA_PVO_CHECK(pvo)
+
+#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
+#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
+#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
+
+struct ofw_map {
+ vm_offset_t om_va;
+ vm_size_t om_len;
+ vm_offset_t om_pa_hi;
+ vm_offset_t om_pa_lo;
+ u_int om_mode;
+};
+
+/*
+ * Map of physical memory regions.
+ */
+static struct mem_region *regions;
+static struct mem_region *pregions;
+extern u_int phys_avail_count;
+extern int regions_sz, pregions_sz;
+extern int ofw_real_mode;
+static struct ofw_map translations[64];
+
+extern struct pmap ofw_pmap;
+
+extern void bs_remap_earlyboot(void);
+
+
+/*
+ * Lock for the pteg and pvo tables.
+ */
+struct mtx moea64_table_mutex;
+
+/*
+ * PTEG data.
+ */
+static struct lpteg *moea64_pteg_table;
+u_int moea64_pteg_count;
+u_int moea64_pteg_mask;
+
+/*
+ * PVO data.
+ */
+struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
+/* lists of unmanaged pages */
+struct pvo_head moea64_pvo_kunmanaged =
+ LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
+struct pvo_head moea64_pvo_unmanaged =
+ LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
+
+uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
+uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
+
+vm_offset_t pvo_allocator_start;
+vm_offset_t pvo_allocator_end;
+
+#define BPVO_POOL_SIZE 327680
+static struct pvo_entry *moea64_bpvo_pool;
+static int moea64_bpvo_pool_index = 0;
+
+#define VSID_NBPW (sizeof(u_int32_t) * 8)
+static u_int moea64_vsid_bitmap[NPMAPS / VSID_NBPW];
+
+static boolean_t moea64_initialized = FALSE;
+
+/*
+ * Statistics.
+ */
+u_int moea64_pte_valid = 0;
+u_int moea64_pte_overflow = 0;
+u_int moea64_pvo_entries = 0;
+u_int moea64_pvo_enter_calls = 0;
+u_int moea64_pvo_remove_calls = 0;
+SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
+ &moea64_pte_valid, 0, "");
+SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
+ &moea64_pte_overflow, 0, "");
+SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
+ &moea64_pvo_entries, 0, "");
+SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
+ &moea64_pvo_enter_calls, 0, "");
+SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
+ &moea64_pvo_remove_calls, 0, "");
+
+vm_offset_t moea64_scratchpage_va[2];
+struct pvo_entry *moea64_scratchpage_pvo[2];
+struct lpte *moea64_scratchpage_pte[2];
+struct mtx moea64_scratchpage_mtx;
+
+/*
+ * Allocate physical memory for use in moea64_bootstrap.
+ */
+static vm_offset_t moea64_bootstrap_alloc(vm_size_t, u_int);
+
+/*
+ * PTE calls.
+ */
+static int moea64_pte_insert(u_int, struct lpte *);
+
+/*
+ * PVO calls.
+ */
+static int moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
+ vm_offset_t, vm_offset_t, uint64_t, int, int);
+static void moea64_pvo_remove(struct pvo_entry *, int);
+static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t, int *);
+static struct lpte *moea64_pvo_to_pte(const struct pvo_entry *, int);
+
+/*
+ * Utility routines.
+ */
+static void moea64_bridge_bootstrap(mmu_t mmup,
+ vm_offset_t kernelstart, vm_offset_t kernelend);
+static void moea64_bridge_cpu_bootstrap(mmu_t, int ap);
+static void moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
+ vm_prot_t, boolean_t);
+static boolean_t moea64_query_bit(vm_page_t, u_int64_t);
+static u_int moea64_clear_bit(vm_page_t, u_int64_t, u_int64_t *);
+static void moea64_kremove(mmu_t, vm_offset_t);
+static void moea64_syncicache(pmap_t pmap, vm_offset_t va,
+ vm_offset_t pa);
+static void tlbia(void);
+
+/*
+ * Kernel MMU interface
+ */
+void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
+void moea64_clear_modify(mmu_t, vm_page_t);
+void moea64_clear_reference(mmu_t, vm_page_t);
+void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
+void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
+void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
+ vm_prot_t);
+void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
+vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
+vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
+void moea64_init(mmu_t);
+boolean_t moea64_is_modified(mmu_t, vm_page_t);
+boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
+vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
+boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
+int moea64_page_wired_mappings(mmu_t, vm_page_t);
+void moea64_pinit(mmu_t, pmap_t);
+void moea64_pinit0(mmu_t, pmap_t);
+void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
+void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
+void moea64_qremove(mmu_t, vm_offset_t, int);
+void moea64_release(mmu_t, pmap_t);
+void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
+void moea64_remove_all(mmu_t, vm_page_t);
+void moea64_remove_write(mmu_t, vm_page_t);
+void moea64_zero_page(mmu_t, vm_page_t);
+void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
+void moea64_zero_page_idle(mmu_t, vm_page_t);
+void moea64_activate(mmu_t, struct thread *);
+void moea64_deactivate(mmu_t, struct thread *);
+void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
+void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
+vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
+void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
+boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
+boolean_t moea64_page_executable(mmu_t, vm_page_t);
+
+static mmu_method_t moea64_bridge_methods[] = {
+ MMUMETHOD(mmu_change_wiring, moea64_change_wiring),
+ MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
+ MMUMETHOD(mmu_clear_reference, moea64_clear_reference),
+ MMUMETHOD(mmu_copy_page, moea64_copy_page),
+ MMUMETHOD(mmu_enter, moea64_enter),
+ MMUMETHOD(mmu_enter_object, moea64_enter_object),
+ MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
+ MMUMETHOD(mmu_extract, moea64_extract),
+ MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
+ MMUMETHOD(mmu_init, moea64_init),
+ MMUMETHOD(mmu_is_modified, moea64_is_modified),
+ MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
+ MMUMETHOD(mmu_map, moea64_map),
+ MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
+ MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
+ MMUMETHOD(mmu_pinit, moea64_pinit),
+ MMUMETHOD(mmu_pinit0, moea64_pinit0),
+ MMUMETHOD(mmu_protect, moea64_protect),
+ MMUMETHOD(mmu_qenter, moea64_qenter),
+ MMUMETHOD(mmu_qremove, moea64_qremove),
+ MMUMETHOD(mmu_release, moea64_release),
+ MMUMETHOD(mmu_remove, moea64_remove),
+ MMUMETHOD(mmu_remove_all, moea64_remove_all),
+ MMUMETHOD(mmu_remove_write, moea64_remove_write),
+ MMUMETHOD(mmu_zero_page, moea64_zero_page),
+ MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
+ MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
+ MMUMETHOD(mmu_activate, moea64_activate),
+ MMUMETHOD(mmu_deactivate, moea64_deactivate),
+
+ /* Internal interfaces */
+ MMUMETHOD(mmu_bootstrap, moea64_bridge_bootstrap),
+ MMUMETHOD(mmu_cpu_bootstrap, moea64_bridge_cpu_bootstrap),
+ MMUMETHOD(mmu_mapdev, moea64_mapdev),
+ MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
+ MMUMETHOD(mmu_kextract, moea64_kextract),
+ MMUMETHOD(mmu_kenter, moea64_kenter),
+ MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
+ MMUMETHOD(mmu_page_executable, moea64_page_executable),
+
+ { 0, 0 }
+};
+
+static mmu_def_t oea64_bridge_mmu = {
+ MMU_TYPE_G5,
+ moea64_bridge_methods,
+ 0
+};
+MMU_DEF(oea64_bridge_mmu);
+
+static __inline u_int
+va_to_pteg(uint64_t vsid, vm_offset_t addr)
+{
+ u_int hash;
+
+ hash = vsid ^ (((uint64_t)addr & ADDR_PIDX) >>
+ ADDR_PIDX_SHFT);
+ return (hash & moea64_pteg_mask);
+}
+
+static __inline struct pvo_head *
+pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
+{
+ struct vm_page *pg;
+
+ pg = PHYS_TO_VM_PAGE(pa);
+
+ if (pg_p != NULL)
+ *pg_p = pg;
+
+ if (pg == NULL)
+ return (&moea64_pvo_unmanaged);
+
+ return (&pg->md.mdpg_pvoh);
+}
+
+static __inline struct pvo_head *
+vm_page_to_pvoh(vm_page_t m)
+{
+
+ return (&m->md.mdpg_pvoh);
+}
+
+static __inline void
+moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
+{
+
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+ m->md.mdpg_attrs &= ~ptebit;
+}
+
+static __inline u_int64_t
+moea64_attr_fetch(vm_page_t m)
+{
+
+ return (m->md.mdpg_attrs);
+}
+
+static __inline void
+moea64_attr_save(vm_page_t m, u_int64_t ptebit)
+{
+
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+ m->md.mdpg_attrs |= ptebit;
+}
+
+static __inline int
+moea64_pte_compare(const struct lpte *pt, const struct lpte *pvo_pt)
+{
+ if (pt->pte_hi == pvo_pt->pte_hi)
+ return (1);
+
+ return (0);
+}
+
+static __inline int
+moea64_pte_match(struct lpte *pt, uint64_t vsid, vm_offset_t va, int which)
+{
+ return (pt->pte_hi & ~LPTE_VALID) ==
+ ((vsid << LPTE_VSID_SHIFT) |
+ ((uint64_t)(va >> ADDR_API_SHFT64) & LPTE_API) | which);
+}
+
+static __inline void
+moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
+ uint64_t pte_lo)
+{
+ ASSERT_TABLE_LOCK();
+
+ /*
+ * Construct a PTE. Default to IMB initially. Valid bit only gets
+ * set when the real pte is set in memory.
+ *
+ * Note: Don't set the valid bit for correct operation of tlb update.
+ */
+ pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
+ (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
+
+ pt->pte_lo = pte_lo;
+}
+
+static __inline void
+moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
+{
+
+ ASSERT_TABLE_LOCK();
+
+ pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
+}
+
+static __inline void
+moea64_pte_clear(struct lpte *pt, pmap_t pmap, vm_offset_t va, u_int64_t ptebit)
+{
+ ASSERT_TABLE_LOCK();
+
+ /*
+ * As shown in Section 7.6.3.2.3
+ */
+ pt->pte_lo &= ~ptebit;
+ TLBIE(pmap,va);
+}
+
+static __inline void
+moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
+{
+
+ ASSERT_TABLE_LOCK();
+ pvo_pt->pte_hi |= LPTE_VALID;
+
+ /*
+ * Update the PTE as defined in section 7.6.3.1.
+ * Note that the REF/CHG bits are from pvo_pt and thus should have
+ * been saved so this routine can restore them (if desired).
+ */
+ pt->pte_lo = pvo_pt->pte_lo;
+ EIEIO();
+ pt->pte_hi = pvo_pt->pte_hi;
+ SYNC();
+ moea64_pte_valid++;
+}
+
+static __inline void
+moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
+{
+ ASSERT_TABLE_LOCK();
+ pvo_pt->pte_hi &= ~LPTE_VALID;
+
+ /*
+ * Force the reg & chg bits back into the PTEs.
+ */
+ SYNC();
+
+ /*
+ * Invalidate the pte.
+ */
+ pt->pte_hi &= ~LPTE_VALID;
+
+ TLBIE(pmap,va);
+
+ /*
+ * Save the reg & chg bits.
+ */
+ moea64_pte_synch(pt, pvo_pt);
+ moea64_pte_valid--;
+}
+
+static __inline void
+moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
+{
+
+ /*
+ * Invalidate the PTE
+ */
+ moea64_pte_unset(pt, pvo_pt, pmap, va);
+ moea64_pte_set(pt, pvo_pt);
+}
+
+static __inline uint64_t
+moea64_calc_wimg(vm_offset_t pa)
+{
+ uint64_t pte_lo;
+ int i;
+
+ /*
+ * Assume the page is cache inhibited and access is guarded unless
+ * it's in our available memory array.
+ */
+ pte_lo = LPTE_I | LPTE_G;
+ for (i = 0; i < pregions_sz; i++) {
+ if ((pa >= pregions[i].mr_start) &&
+ (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
+ pte_lo &= ~(LPTE_I | LPTE_G);
+ pte_lo |= LPTE_M;
+ break;
+ }
+ }
+
+ return pte_lo;
+}
+
+/*
+ * Quick sort callout for comparing memory regions.
+ */
+static int mr_cmp(const void *a, const void *b);
+static int om_cmp(const void *a, const void *b);
+
+static int
+mr_cmp(const void *a, const void *b)
+{
+ const struct mem_region *regiona;
+ const struct mem_region *regionb;
+
+ regiona = a;
+ regionb = b;
+ if (regiona->mr_start < regionb->mr_start)
+ return (-1);
+ else if (regiona->mr_start > regionb->mr_start)
+ return (1);
+ else
+ return (0);
+}
+
+static int
+om_cmp(const void *a, const void *b)
+{
+ const struct ofw_map *mapa;
+ const struct ofw_map *mapb;
+
+ mapa = a;
+ mapb = b;
+ if (mapa->om_pa_hi < mapb->om_pa_hi)
+ return (-1);
+ else if (mapa->om_pa_hi > mapb->om_pa_hi)
+ return (1);
+ else if (mapa->om_pa_lo < mapb->om_pa_lo)
+ return (-1);
+ else if (mapa->om_pa_lo > mapb->om_pa_lo)
+ return (1);
+ else
+ return (0);
+}
+
+static void
+moea64_bridge_cpu_bootstrap(mmu_t mmup, int ap)
+{
+ int i = 0;
+
+ /*
+ * Initialize segment registers and MMU
+ */
+
+ mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
+ for (i = 0; i < 16; i++) {
+ mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
+ }
+ __asm __volatile ("sync; mtsdr1 %0; isync"
+ :: "r"((u_int)moea64_pteg_table
+ | (32 - cntlzw(moea64_pteg_mask >> 11))));
+ tlbia();
+}
+
+static void
+moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
+{
+ ihandle_t mmui;
+ phandle_t chosen;
+ phandle_t mmu;
+ int sz;
+ int i, j;
+ int ofw_mappings;
+ vm_size_t size, physsz, hwphyssz;
+ vm_offset_t pa, va, off;
+ uint32_t msr;
+
+ /* We don't have a direct map since there is no BAT */
+ hw_direct_map = 0;
+
+ /* Make sure battable is zero, since we have no BAT */
+ for (i = 0; i < 16; i++) {
+ battable[i].batu = 0;
+ battable[i].batl = 0;
+ }
+
+ /* Get physical memory regions from firmware */
+ mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
+ CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
+
+ qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
+ if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
+ panic("moea64_bootstrap: phys_avail too small");
+ qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
+ phys_avail_count = 0;
+ physsz = 0;
+ hwphyssz = 0;
+ TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
+ for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
+ CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
+ regions[i].mr_start + regions[i].mr_size,
+ regions[i].mr_size);
+ if (hwphyssz != 0 &&
+ (physsz + regions[i].mr_size) >= hwphyssz) {
+ if (physsz < hwphyssz) {
+ phys_avail[j] = regions[i].mr_start;
+ phys_avail[j + 1] = regions[i].mr_start +
+ hwphyssz - physsz;
+ physsz = hwphyssz;
+ phys_avail_count++;
+ }
+ break;
+ }
+ phys_avail[j] = regions[i].mr_start;
+ phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
+ phys_avail_count++;
+ physsz += regions[i].mr_size;
+ }
+ physmem = btoc(physsz);
+
+ /*
+ * Allocate PTEG table.
+ */
+#ifdef PTEGCOUNT
+ moea64_pteg_count = PTEGCOUNT;
+#else
+ moea64_pteg_count = 0x1000;
+
+ while (moea64_pteg_count < physmem)
+ moea64_pteg_count <<= 1;
+
+ moea64_pteg_count >>= 1;
+#endif /* PTEGCOUNT */
+
+ size = moea64_pteg_count * sizeof(struct lpteg);
+ CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
+ moea64_pteg_count, size);
+
+ /*
+ * We now need to allocate memory. This memory, to be allocated,
+ * has to reside in a page table. The page table we are about to
+ * allocate. We don't have BAT. So drop to data real mode for a minute
+ * as a measure of last resort. We do this a couple times.
+ */
+
+ moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
+ DISABLE_TRANS(msr);
+ bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
+ ENABLE_TRANS(msr);
+
+ moea64_pteg_mask = moea64_pteg_count - 1;
+
+ CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
+
+ /*
+ * Allocate pv/overflow lists.
+ */
+ size = sizeof(struct pvo_head) * moea64_pteg_count;
+
+ moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
+ PAGE_SIZE);
+ CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
+
+ DISABLE_TRANS(msr);
+ for (i = 0; i < moea64_pteg_count; i++)
+ LIST_INIT(&moea64_pvo_table[i]);
+ ENABLE_TRANS(msr);
+
+ /*
+ * Initialize the lock that synchronizes access to the pteg and pvo
+ * tables.
+ */
+ mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
+ MTX_RECURSE);
+
+ /*
+ * Initialise the unmanaged pvo pool.
+ */
+ moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
+ BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
+ moea64_bpvo_pool_index = 0;
+
+ /*
+ * Make sure kernel vsid is allocated as well as VSID 0.
+ */
+ moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
+ |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
+ moea64_vsid_bitmap[0] |= 1;
+
+ /*
+ * Initialize the kernel pmap (which is statically allocated).
+ */
+ for (i = 0; i < 16; i++)
+ kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
+
+ kernel_pmap->pmap_phys = kernel_pmap;
+ kernel_pmap->pm_active = ~0;
+
+ PMAP_LOCK_INIT(kernel_pmap);
+
+ /*
+ * Now map in all the other buffers we allocated earlier
+ */
+
+ DISABLE_TRANS(msr);
+ size = moea64_pteg_count * sizeof(struct lpteg);
+ off = (vm_offset_t)(moea64_pteg_table);
+ for (pa = off; pa < off + size; pa += PAGE_SIZE)
+ moea64_kenter(mmup, pa, pa);
+ size = sizeof(struct pvo_head) * moea64_pteg_count;
+ off = (vm_offset_t)(moea64_pvo_table);
+ for (pa = off; pa < off + size; pa += PAGE_SIZE)
+ moea64_kenter(mmup, pa, pa);
+ size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
+ off = (vm_offset_t)(moea64_bpvo_pool);
+ for (pa = off; pa < off + size; pa += PAGE_SIZE)
+ moea64_kenter(mmup, pa, pa);
+ ENABLE_TRANS(msr);
+
+ /*
+ * Map certain important things, like ourselves and the exception
+ * vectors
+ */
+
+ DISABLE_TRANS(msr);
+ for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE)
+ moea64_kenter(mmup, pa, pa);
+ for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
+ moea64_kenter(mmup, pa, pa);
+ ENABLE_TRANS(msr);
+
+ if (!ofw_real_mode) {
+ /*
+ * Set up the Open Firmware pmap and add its mappings.
+ */
+
+ moea64_pinit(mmup, &ofw_pmap);
+ ofw_pmap.pm_sr[KERNEL_SR] = kernel_pmap->pm_sr[KERNEL_SR];
+ ofw_pmap.pm_sr[KERNEL2_SR] = kernel_pmap->pm_sr[KERNEL2_SR];
+
+ if ((chosen = OF_finddevice("/chosen")) == -1)
+ panic("moea64_bootstrap: can't find /chosen");
+ OF_getprop(chosen, "mmu", &mmui, 4);
+ if ((mmu = OF_instance_to_package(mmui)) == -1)
+ panic("moea64_bootstrap: can't get mmu package");
+ if ((sz = OF_getproplen(mmu, "translations")) == -1)
+ panic("moea64_bootstrap: can't get ofw translation count");
+
+ bzero(translations, sz);
+ if (OF_getprop(mmu, "translations", translations, sz) == -1)
+ panic("moea64_bootstrap: can't get ofw translations");
+
+ CTR0(KTR_PMAP, "moea64_bootstrap: translations");
+ sz /= sizeof(*translations);
+ qsort(translations, sz, sizeof (*translations), om_cmp);
+
+ for (i = 0, ofw_mappings = 0; i < sz; i++) {
+ CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
+ (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
+ translations[i].om_len);
+
+ if (translations[i].om_pa_lo % PAGE_SIZE)
+ panic("OFW translation not page-aligned!");
+
+ if (translations[i].om_pa_hi)
+ panic("OFW translations above 32-bit boundary!");
+
+ /* Now enter the pages for this mapping */
+
+ /*
+ * Lock the ofw pmap. pmap_kenter(), which we use for the
+ * pages the kernel also needs, does its own locking.
+ */
+ PMAP_LOCK(&ofw_pmap);
+ DISABLE_TRANS(msr);
+ for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
+ struct vm_page m;
+
+ /* Map low memory mappings into the kernel pmap, too.
+ * These are typically mappings made by the loader,
+ * so we need them if we want to keep executing. */
+
+ if (translations[i].om_va + off < SEGMENT_LENGTH)
+ moea64_kenter(mmup, translations[i].om_va + off,
+ translations[i].om_va + off);
+
+ m.phys_addr = translations[i].om_pa_lo + off;
+ moea64_enter_locked(&ofw_pmap,
+ translations[i].om_va + off, &m, VM_PROT_ALL, 1);
+
+ ofw_mappings++;
+ }
+ ENABLE_TRANS(msr);
+ PMAP_UNLOCK(&ofw_pmap);
+ }
+ }
+
+#ifdef SMP
+ TLBSYNC();
+#endif
+
+ /*
+ * Calculate the last available physical address.
+ */
+ for (i = 0; phys_avail[i + 2] != 0; i += 2)
+ ;
+ Maxmem = powerpc_btop(phys_avail[i + 1]);
+
+ /*
+ * Initialize MMU and remap early physical mappings
+ */
+ moea64_bridge_cpu_bootstrap(mmup,0);
+ mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
+ pmap_bootstrapped++;
+ bs_remap_earlyboot();
+
+ /*
+ * Set the start and end of kva.
+ */
+ virtual_avail = VM_MIN_KERNEL_ADDRESS;
+ virtual_end = VM_MAX_KERNEL_ADDRESS;
+
+ /*
+ * Allocate some stupid buffer regions.
+ */
+
+ pvo_allocator_start = virtual_avail;
+ virtual_avail += SEGMENT_LENGTH/4;
+ pvo_allocator_end = virtual_avail;
+
+ /*
+ * Allocate some things for page zeroing
+ */
+
+ mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF);
+ for (i = 0; i < 2; i++) {
+ moea64_scratchpage_va[i] = virtual_avail;
+ virtual_avail += PAGE_SIZE;
+
+ moea64_kenter(mmup,moea64_scratchpage_va[i],kernelstart);
+
+ LOCK_TABLE();
+ moea64_scratchpage_pvo[i] = moea64_pvo_find_va(kernel_pmap,
+ moea64_scratchpage_va[i],&j);
+ moea64_scratchpage_pte[i] = moea64_pvo_to_pte(
+ moea64_scratchpage_pvo[i],j);
+ UNLOCK_TABLE();
+ }
+
+ /*
+ * Allocate a kernel stack with a guard page for thread0 and map it
+ * into the kernel page map.
+ */
+ pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
+ va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
+ virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
+ CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
+ thread0.td_kstack = va;
+ thread0.td_kstack_pages = KSTACK_PAGES;
+ for (i = 0; i < KSTACK_PAGES; i++) {
+ moea64_kenter(mmup, va, pa);;
+ pa += PAGE_SIZE;
+ va += PAGE_SIZE;
+ }
+
+ /*
+ * Allocate virtual address space for the message buffer.
+ */
+ pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
+ msgbufp = (struct msgbuf *)virtual_avail;
+ va = virtual_avail;
+ virtual_avail += round_page(MSGBUF_SIZE);
+ while (va < virtual_avail) {
+ moea64_kenter(mmup, va, pa);;
+ pa += PAGE_SIZE;
+ va += PAGE_SIZE;
+ }
+}
+
+/*
+ * Activate a user pmap. The pmap must be activated before it's address
+ * space can be accessed in any way.
+ */
+void
+moea64_activate(mmu_t mmu, struct thread *td)
+{
+ pmap_t pm, pmr;
+
+ /*
+ * Load all the data we need up front to encourage the compiler to
+ * not issue any loads while we have interrupts disabled below.
+ */
+ pm = &td->td_proc->p_vmspace->vm_pmap;
+ pmr = pm->pmap_phys;
+
+ pm->pm_active |= PCPU_GET(cpumask);
+ PCPU_SET(curpmap, pmr);
+}
+
+void
+moea64_deactivate(mmu_t mmu, struct thread *td)
+{
+ pmap_t pm;
+
+ pm = &td->td_proc->p_vmspace->vm_pmap;
+ pm->pm_active &= ~(PCPU_GET(cpumask));
+ PCPU_SET(curpmap, NULL);
+}
+
+void
+moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
+{
+ struct pvo_entry *pvo;
+
+ PMAP_LOCK(pm);
+ pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
+
+ if (pvo != NULL) {
+ if (wired) {
+ if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
+ pm->pm_stats.wired_count++;
+ pvo->pvo_vaddr |= PVO_WIRED;
+ } else {
+ if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
+ pm->pm_stats.wired_count--;
+ pvo->pvo_vaddr &= ~PVO_WIRED;
+ }
+ }
+ PMAP_UNLOCK(pm);
+}
+
+/*
+ * Zero a page of physical memory by temporarily mapping it into the tlb.
+ */
+void
+moea64_zero_page(mmu_t mmu, vm_page_t m)
+{
+ moea64_zero_page_area(mmu,m,0,PAGE_SIZE);
+}
+
+/*
+ * This goes through and sets the physical address of our
+ * special scratch PTE to the PA we want to zero or copy. Because
+ * of locking issues (this can get called in pvo_enter() by
+ * the UMA allocator), we can't use most other utility functions here
+ */
+
+static __inline
+void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
+ moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
+ (~LPTE_WIMG & ~LPTE_RPGN);
+ moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
+ moea64_calc_wimg(pa) | (uint64_t)pa;
+
+ moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
+ TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
+
+ moea64_scratchpage_pte[which]->pte_lo =
+ moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo;
+ EIEIO();
+
+ moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
+ TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
+}
+
+void
+moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
+{
+ vm_offset_t dst;
+ vm_offset_t src;
+
+ dst = VM_PAGE_TO_PHYS(mdst);
+ src = VM_PAGE_TO_PHYS(msrc);
+
+ mtx_lock(&moea64_scratchpage_mtx);
+
+ moea64_set_scratchpage_pa(0,src);
+ moea64_set_scratchpage_pa(1,dst);
+
+ kcopy((void *)moea64_scratchpage_va[0],
+ (void *)moea64_scratchpage_va[1], PAGE_SIZE);
+
+ __syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE);
+
+ mtx_unlock(&moea64_scratchpage_mtx);
+}
+
+void
+moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
+{
+ vm_offset_t pa = VM_PAGE_TO_PHYS(m);
+
+ if (!moea64_initialized)
+ panic("moea64_zero_page: can't zero pa %#x", pa);
+ if (size + off > PAGE_SIZE)
+ panic("moea64_zero_page: size + off > PAGE_SIZE");
+
+ mtx_lock(&moea64_scratchpage_mtx);
+
+ moea64_set_scratchpage_pa(0,pa);
+ bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
+ __syncicache((void *)moea64_scratchpage_va[0],PAGE_SIZE);
+
+ mtx_unlock(&moea64_scratchpage_mtx);
+}
+
+void
+moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
+{
+
+ moea64_zero_page(mmu, m);
+}
+
+/*
+ * Map the given physical page at the specified virtual address in the
+ * target pmap with the protection requested. If specified the page
+ * will be wired down.
+ */
+void
+moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
+ vm_prot_t prot, boolean_t wired)
+{
+
+ vm_page_lock_queues();
+ PMAP_LOCK(pmap);
+ moea64_enter_locked(pmap, va, m, prot, wired);
+ vm_page_unlock_queues();
+ PMAP_UNLOCK(pmap);
+}
+
+/*
+ * Map the given physical page at the specified virtual address in the
+ * target pmap with the protection requested. If specified the page
+ * will be wired down.
+ *
+ * The page queues and pmap must be locked.
+ */
+
+static void
+moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
+ boolean_t wired)
+{
+ struct pvo_head *pvo_head;
+ uma_zone_t zone;
+ vm_page_t pg;
+ uint64_t pte_lo;
+ u_int pvo_flags;
+ int error;
+
+ if (!moea64_initialized) {
+ pvo_head = &moea64_pvo_kunmanaged;
+ pg = NULL;
+ zone = moea64_upvo_zone;
+ pvo_flags = 0;
+ } else {
+ pvo_head = vm_page_to_pvoh(m);
+ pg = m;
+ zone = moea64_mpvo_zone;
+ pvo_flags = PVO_MANAGED;
+ }
+
+ if (pmap_bootstrapped)
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+ PMAP_LOCK_ASSERT(pmap, MA_OWNED);
+
+ /* XXX change the pvo head for fake pages */
+ if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
+ pvo_flags &= ~PVO_MANAGED;
+ pvo_head = &moea64_pvo_kunmanaged;
+ zone = moea64_upvo_zone;
+ }
+
+ pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
+
+ if (prot & VM_PROT_WRITE) {
+ pte_lo |= LPTE_BW;
+ if (pmap_bootstrapped)
+ vm_page_flag_set(m, PG_WRITEABLE);
+ } else
+ pte_lo |= LPTE_BR;
+
+ if (prot & VM_PROT_EXECUTE)
+ pvo_flags |= VM_PROT_EXECUTE;
+
+ if (wired)
+ pvo_flags |= PVO_WIRED;
+
+ if ((m->flags & PG_FICTITIOUS) != 0)
+ pvo_flags |= PVO_FAKE;
+
+ error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
+ pte_lo, pvo_flags, 0);
+
+ if (pmap == kernel_pmap)
+ TLBIE(pmap, va);
+
+ /*
+ * Flush the page from the instruction cache if this page is
+ * mapped executable and cacheable.
+ */
+ if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
+ moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m));
+ }
+}
+
+static void
+moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa)
+{
+ /*
+ * This is much trickier than on older systems because
+ * we can't sync the icache on physical addresses directly
+ * without a direct map. Instead we check a couple of cases
+ * where the memory is already mapped in and, failing that,
+ * use the same trick we use for page zeroing to create
+ * a temporary mapping for this physical address.
+ */
+
+ if (!pmap_bootstrapped) {
+ /*
+ * If PMAP is not bootstrapped, we are likely to be
+ * in real mode.
+ */
+ __syncicache((void *)pa,PAGE_SIZE);
+ } else if (pmap == kernel_pmap) {
+ __syncicache((void *)va,PAGE_SIZE);
+ } else {
+ /* Use the scratch page to set up a temp mapping */
+
+ mtx_lock(&moea64_scratchpage_mtx);
+
+ moea64_set_scratchpage_pa(1,pa);
+ __syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE);
+
+ mtx_unlock(&moea64_scratchpage_mtx);
+ }
+}
+
+/*
+ * Maps a sequence of resident pages belonging to the same object.
+ * The sequence begins with the given page m_start. This page is
+ * mapped at the given virtual address start. Each subsequent page is
+ * mapped at a virtual address that is offset from start by the same
+ * amount as the page is offset from m_start within the object. The
+ * last page in the sequence is the page with the largest offset from
+ * m_start that can be mapped at a virtual address less than the given
+ * virtual address end. Not every virtual page between start and end
+ * is mapped; only those for which a resident page exists with the
+ * corresponding offset from m_start are mapped.
+ */
+void
+moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
+ vm_page_t m_start, vm_prot_t prot)
+{
+ vm_page_t m;
+ vm_pindex_t diff, psize;
+
+ psize = atop(end - start);
+ m = m_start;
+ PMAP_LOCK(pm);
+ while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
+ moea64_enter_locked(pm, start + ptoa(diff), m, prot &
+ (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
+ m = TAILQ_NEXT(m, listq);
+ }
+ PMAP_UNLOCK(pm);
+}
+
+void
+moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
+ vm_prot_t prot)
+{
+ PMAP_LOCK(pm);
+ moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
+ FALSE);
+ PMAP_UNLOCK(pm);
+
+}
+
+vm_paddr_t
+moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
+{
+ struct pvo_entry *pvo;
+ vm_paddr_t pa;
+
+ PMAP_LOCK(pm);
+ pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
+ if (pvo == NULL)
+ pa = 0;
+ else
+ pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
+ PMAP_UNLOCK(pm);
+ return (pa);
+}
+
+/*
+ * Atomically extract and hold the physical page with the given
+ * pmap and virtual address pair if that mapping permits the given
+ * protection.
+ */
+vm_page_t
+moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
+{
+ struct pvo_entry *pvo;
+ vm_page_t m;
+
+ m = NULL;
+ vm_page_lock_queues();
+ PMAP_LOCK(pmap);
+ pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
+ if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
+ ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
+ (prot & VM_PROT_WRITE) == 0)) {
+ m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
+ vm_page_hold(m);
+ }
+ vm_page_unlock_queues();
+ PMAP_UNLOCK(pmap);
+ return (m);
+}
+
+static void *
+moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
+{
+ /*
+ * This entire routine is a horrible hack to avoid bothering kmem
+ * for new KVA addresses. Because this can get called from inside
+ * kmem allocation routines, calling kmem for a new address here
+ * can lead to multiply locking non-recursive mutexes.
+ */
+ static vm_pindex_t color;
+ vm_offset_t va;
+
+ vm_page_t m;
+ int pflags, needed_lock;
+
+ *flags = UMA_SLAB_PRIV;
+ needed_lock = !PMAP_LOCKED(kernel_pmap);
+
+ if (needed_lock)
+ PMAP_LOCK(kernel_pmap);
+
+ if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
+ pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
+ else
+ pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
+ if (wait & M_ZERO)
+ pflags |= VM_ALLOC_ZERO;
+
+ for (;;) {
+ m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
+ if (m == NULL) {
+ if (wait & M_NOWAIT)
+ return (NULL);
+ VM_WAIT;
+ } else
+ break;
+ }
+
+ va = pvo_allocator_start;
+ pvo_allocator_start += PAGE_SIZE;
+
+ if (pvo_allocator_start >= pvo_allocator_end)
+ panic("Ran out of PVO allocator buffer space!");
+
+ /* Now call pvo_enter in recursive mode */
+ moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
+ &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
+ PVO_WIRED | PVO_BOOTSTRAP, 1);
+
+ TLBIE(kernel_pmap, va);
+
+ if (needed_lock)
+ PMAP_UNLOCK(kernel_pmap);
+
+ if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
+ bzero((void *)va, PAGE_SIZE);
+
+ return (void *)va;
+}
+
+void
+moea64_init(mmu_t mmu)
+{
+
+ CTR0(KTR_PMAP, "moea64_init");
+
+ moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
+ NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
+ UMA_ZONE_VM | UMA_ZONE_NOFREE);
+ moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
+ NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
+ UMA_ZONE_VM | UMA_ZONE_NOFREE);
+
+ if (!hw_direct_map) {
+ uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
+ uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
+ }
+
+ moea64_initialized = TRUE;
+}
+
+boolean_t
+moea64_is_modified(mmu_t mmu, vm_page_t m)
+{
+
+ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
+ return (FALSE);
+
+ return (moea64_query_bit(m, LPTE_CHG));
+}
+
+void
+moea64_clear_reference(mmu_t mmu, vm_page_t m)
+{
+
+ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
+ return;
+ moea64_clear_bit(m, LPTE_REF, NULL);
+}
+
+void
+moea64_clear_modify(mmu_t mmu, vm_page_t m)
+{
+
+ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
+ return;
+ moea64_clear_bit(m, LPTE_CHG, NULL);
+}
+
+/*
+ * Clear the write and modified bits in each of the given page's mappings.
+ */
+void
+moea64_remove_write(mmu_t mmu, vm_page_t m)
+{
+ struct pvo_entry *pvo;
+ struct lpte *pt;
+ pmap_t pmap;
+ uint64_t lo;
+
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
+ (m->flags & PG_WRITEABLE) == 0)
+ return;
+ lo = moea64_attr_fetch(m);
+ SYNC();
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
+ pmap = pvo->pvo_pmap;
+ PMAP_LOCK(pmap);
+ if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
+ LOCK_TABLE();
+ pt = moea64_pvo_to_pte(pvo, -1);
+ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
+ pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
+ if (pt != NULL) {
+ moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
+ lo |= pvo->pvo_pte.lpte.pte_lo;
+ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
+ moea64_pte_change(pt, &pvo->pvo_pte.lpte,
+ pvo->pvo_pmap, pvo->pvo_vaddr);
+ }
+ UNLOCK_TABLE();
+ }
+ PMAP_UNLOCK(pmap);
+ }
+ if ((lo & LPTE_CHG) != 0) {
+ moea64_attr_clear(m, LPTE_CHG);
+ vm_page_dirty(m);
+ }
+ vm_page_flag_clear(m, PG_WRITEABLE);
+}
+
+/*
+ * moea64_ts_referenced:
+ *
+ * Return a count of reference bits for a page, clearing those bits.
+ * It is not necessary for every reference bit to be cleared, but it
+ * is necessary that 0 only be returned when there are truly no
+ * reference bits set.
+ *
+ * XXX: The exact number of bits to check and clear is a matter that
+ * should be tested and standardized at some point in the future for
+ * optimal aging of shared pages.
+ */
+boolean_t
+moea64_ts_referenced(mmu_t mmu, vm_page_t m)
+{
+ int count;
+
+ if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
+ return (0);
+
+ count = moea64_clear_bit(m, LPTE_REF, NULL);
+
+ return (count);
+}
+
+/*
+ * Map a wired page into kernel virtual address space.
+ */
+void
+moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
+{
+ uint64_t pte_lo;
+ int error;
+
+ if (!pmap_bootstrapped) {
+ if (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)
+ panic("Trying to enter an address in KVA -- %#x!\n",pa);
+ }
+
+ pte_lo = moea64_calc_wimg(pa);
+
+ PMAP_LOCK(kernel_pmap);
+ error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
+ &moea64_pvo_kunmanaged, va, pa, pte_lo,
+ PVO_WIRED | VM_PROT_EXECUTE, 0);
+
+ TLBIE(kernel_pmap, va);
+
+ if (error != 0 && error != ENOENT)
+ panic("moea64_kenter: failed to enter va %#x pa %#x: %d", va,
+ pa, error);
+
+ /*
+ * Flush the memory from the instruction cache.
+ */
+ if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
+ __syncicache((void *)va, PAGE_SIZE);
+ }
+ PMAP_UNLOCK(kernel_pmap);
+}
+
+/*
+ * Extract the physical page address associated with the given kernel virtual
+ * address.
+ */
+vm_offset_t
+moea64_kextract(mmu_t mmu, vm_offset_t va)
+{
+ struct pvo_entry *pvo;
+ vm_paddr_t pa;
+
+ PMAP_LOCK(kernel_pmap);
+ pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
+ KASSERT(pvo != NULL, ("moea64_kextract: no addr found"));
+ pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
+ PMAP_UNLOCK(kernel_pmap);
+ return (pa);
+}
+
+/*
+ * Remove a wired page from kernel virtual address space.
+ */
+void
+moea64_kremove(mmu_t mmu, vm_offset_t va)
+{
+ moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
+}
+
+/*
+ * Map a range of physical addresses into kernel virtual address space.
+ *
+ * The value passed in *virt is a suggested virtual address for the mapping.
+ * Architectures which can support a direct-mapped physical to virtual region
+ * can return the appropriate address within that region, leaving '*virt'
+ * unchanged. We cannot and therefore do not; *virt is updated with the
+ * first usable address after the mapped region.
+ */
+vm_offset_t
+moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
+ vm_offset_t pa_end, int prot)
+{
+ vm_offset_t sva, va;
+
+ sva = *virt;
+ va = sva;
+ for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
+ moea64_kenter(mmu, va, pa_start);
+ *virt = va;
+
+ return (sva);
+}
+
+/*
+ * Returns true if the pmap's pv is one of the first
+ * 16 pvs linked to from this page. This count may
+ * be changed upwards or downwards in the future; it
+ * is only necessary that true be returned for a small
+ * subset of pmaps for proper page aging.
+ */
+boolean_t
+moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
+{
+ int loops;
+ struct pvo_entry *pvo;
+
+ if (!moea64_initialized || (m->flags & PG_FICTITIOUS))
+ return FALSE;
+
+ loops = 0;
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
+ if (pvo->pvo_pmap == pmap)
+ return (TRUE);
+ if (++loops >= 16)
+ break;
+ }
+
+ return (FALSE);
+}
+
+/*
+ * Return the number of managed mappings to the given physical page
+ * that are wired.
+ */
+int
+moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
+{
+ struct pvo_entry *pvo;
+ int count;
+
+ count = 0;
+ if (!moea64_initialized || (m->flags & PG_FICTITIOUS) != 0)
+ return (count);
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
+ if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
+ count++;
+ return (count);
+}
+
+static u_int moea64_vsidcontext;
+
+void
+moea64_pinit(mmu_t mmu, pmap_t pmap)
+{
+ int i, mask;
+ u_int entropy;
+
+ PMAP_LOCK_INIT(pmap);
+
+ entropy = 0;
+ __asm __volatile("mftb %0" : "=r"(entropy));
+
+ if (pmap_bootstrapped)
+ pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap);
+ else
+ pmap->pmap_phys = pmap;
+
+ /*
+ * Allocate some segment registers for this pmap.
+ */
+ for (i = 0; i < NPMAPS; i += VSID_NBPW) {
+ u_int hash, n;
+
+ /*
+ * Create a new value by mutiplying by a prime and adding in
+ * entropy from the timebase register. This is to make the
+ * VSID more random so that the PT hash function collides
+ * less often. (Note that the prime casues gcc to do shifts
+ * instead of a multiply.)
+ */
+ moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
+ hash = moea64_vsidcontext & (NPMAPS - 1);
+ if (hash == 0) /* 0 is special, avoid it */
+ continue;
+ n = hash >> 5;
+ mask = 1 << (hash & (VSID_NBPW - 1));
+ hash = (moea64_vsidcontext & 0xfffff);
+ if (moea64_vsid_bitmap[n] & mask) { /* collision? */
+ /* anything free in this bucket? */
+ if (moea64_vsid_bitmap[n] == 0xffffffff) {
+ entropy = (moea64_vsidcontext >> 20);
+ continue;
+ }
+ i = ffs(~moea64_vsid_bitmap[i]) - 1;
+ mask = 1 << i;
+ hash &= 0xfffff & ~(VSID_NBPW - 1);
+ hash |= i;
+ }
+ moea64_vsid_bitmap[n] |= mask;
+ for (i = 0; i < 16; i++) {
+ pmap->pm_sr[i] = VSID_MAKE(i, hash);
+ }
+ return;
+ }
+
+ panic("moea64_pinit: out of segments");
+}
+
+/*
+ * Initialize the pmap associated with process 0.
+ */
+void
+moea64_pinit0(mmu_t mmu, pmap_t pm)
+{
+ moea64_pinit(mmu, pm);
+ bzero(&pm->pm_stats, sizeof(pm->pm_stats));
+}
+
+/*
+ * Set the physical protection on the specified range of this map as requested.
+ */
+void
+moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
+ vm_prot_t prot)
+{
+ struct pvo_entry *pvo;
+ struct lpte *pt;
+ int pteidx;
+
+ CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
+ eva, prot);
+
+
+ KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
+ ("moea64_protect: non current pmap"));
+
+ if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
+ moea64_remove(mmu, pm, sva, eva);
+ return;
+ }
+
+ vm_page_lock_queues();
+ PMAP_LOCK(pm);
+ for (; sva < eva; sva += PAGE_SIZE) {
+ pvo = moea64_pvo_find_va(pm, sva, &pteidx);
+ if (pvo == NULL)
+ continue;
+
+ /*
+ * Grab the PTE pointer before we diddle with the cached PTE
+ * copy.
+ */
+ LOCK_TABLE();
+ pt = moea64_pvo_to_pte(pvo, pteidx);
+
+ /*
+ * Change the protection of the page.
+ */
+ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
+ pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
+ pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
+ if ((prot & VM_PROT_EXECUTE) == 0)
+ pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
+
+ /*
+ * If the PVO is in the page table, update that pte as well.
+ */
+ if (pt != NULL) {
+ moea64_pte_change(pt, &pvo->pvo_pte.lpte,
+ pvo->pvo_pmap, pvo->pvo_vaddr);
+ if ((pvo->pvo_pte.lpte.pte_lo &
+ (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
+ moea64_syncicache(pm, sva,
+ pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
+ }
+ }
+ UNLOCK_TABLE();
+ }
+ vm_page_unlock_queues();
+ PMAP_UNLOCK(pm);
+}
+
+/*
+ * Map a list of wired pages into kernel virtual address space. This is
+ * intended for temporary mappings which do not need page modification or
+ * references recorded. Existing mappings in the region are overwritten.
+ */
+void
+moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
+{
+ while (count-- > 0) {
+ moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
+ va += PAGE_SIZE;
+ m++;
+ }
+}
+
+/*
+ * Remove page mappings from kernel virtual address space. Intended for
+ * temporary mappings entered by moea64_qenter.
+ */
+void
+moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
+{
+ while (count-- > 0) {
+ moea64_kremove(mmu, va);
+ va += PAGE_SIZE;
+ }
+}
+
+void
+moea64_release(mmu_t mmu, pmap_t pmap)
+{
+ int idx, mask;
+
+ /*
+ * Free segment register's VSID
+ */
+ if (pmap->pm_sr[0] == 0)
+ panic("moea64_release");
+
+ idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
+ mask = 1 << (idx % VSID_NBPW);
+ idx /= VSID_NBPW;
+ moea64_vsid_bitmap[idx] &= ~mask;
+ PMAP_LOCK_DESTROY(pmap);
+}
+
+/*
+ * Remove the given range of addresses from the specified map.
+ */
+void
+moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
+{
+ struct pvo_entry *pvo;
+ int pteidx;
+
+ vm_page_lock_queues();
+ PMAP_LOCK(pm);
+ for (; sva < eva; sva += PAGE_SIZE) {
+ pvo = moea64_pvo_find_va(pm, sva, &pteidx);
+ if (pvo != NULL) {
+ moea64_pvo_remove(pvo, pteidx);
+ }
+ }
+ vm_page_unlock_queues();
+ PMAP_UNLOCK(pm);
+}
+
+/*
+ * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
+ * will reflect changes in pte's back to the vm_page.
+ */
+void
+moea64_remove_all(mmu_t mmu, vm_page_t m)
+{
+ struct pvo_head *pvo_head;
+ struct pvo_entry *pvo, *next_pvo;
+ pmap_t pmap;
+
+ mtx_assert(&vm_page_queue_mtx, MA_OWNED);
+
+ pvo_head = vm_page_to_pvoh(m);
+ for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
+ next_pvo = LIST_NEXT(pvo, pvo_vlink);
+
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+ pmap = pvo->pvo_pmap;
+ PMAP_LOCK(pmap);
+ moea64_pvo_remove(pvo, -1);
+ PMAP_UNLOCK(pmap);
+ }
+ vm_page_flag_clear(m, PG_WRITEABLE);
+}
+
+/*
+ * Allocate a physical page of memory directly from the phys_avail map.
+ * Can only be called from moea64_bootstrap before avail start and end are
+ * calculated.
+ */
+static vm_offset_t
+moea64_bootstrap_alloc(vm_size_t size, u_int align)
+{
+ vm_offset_t s, e;
+ int i, j;
+
+ size = round_page(size);
+ for (i = 0; phys_avail[i + 1] != 0; i += 2) {
+ if (align != 0)
+ s = (phys_avail[i] + align - 1) & ~(align - 1);
+ else
+ s = phys_avail[i];
+ e = s + size;
+
+ if (s < phys_avail[i] || e > phys_avail[i + 1])
+ continue;
+
+ if (s == phys_avail[i]) {
+ phys_avail[i] += size;
+ } else if (e == phys_avail[i + 1]) {
+ phys_avail[i + 1] -= size;
+ } else {
+ for (j = phys_avail_count * 2; j > i; j -= 2) {
+ phys_avail[j] = phys_avail[j - 2];
+ phys_avail[j + 1] = phys_avail[j - 1];
+ }
+
+ phys_avail[i + 3] = phys_avail[i + 1];
+ phys_avail[i + 1] = s;
+ phys_avail[i + 2] = e;
+ phys_avail_count++;
+ }
+
+ return (s);
+ }
+ panic("moea64_bootstrap_alloc: could not allocate memory");
+}
+
+static void
+tlbia(void)
+{
+ vm_offset_t i;
+
+ for (i = 0; i < 0xFF000; i += 0x00001000)
+ TLBIE(NULL,i);
+}
+
+static int
+moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
+ vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags, int recurse)
+{
+ struct pvo_entry *pvo;
+ uint64_t vsid;
+ int first;
+ u_int ptegidx;
+ int i;
+ int bootstrap;
+
+ /*
+ * One nasty thing that can happen here is that the UMA calls to
+ * allocate new PVOs need to map more memory, which calls pvo_enter(),
+ * which calls UMA...
+ *
+ * We break the loop by detecting recursion and allocating out of
+ * the bootstrap pool.
+ */
+
+ moea64_pvo_enter_calls++;
+ first = 0;
+ bootstrap = (flags & PVO_BOOTSTRAP);
+
+ if (!moea64_initialized)
+ bootstrap = 1;
+
+ /*
+ * Compute the PTE Group index.
+ */
+ va &= ~ADDR_POFF;
+ vsid = va_to_vsid(pm, va);
+ ptegidx = va_to_pteg(vsid, va);
+
+ /*
+ * Remove any existing mapping for this page. Reuse the pvo entry if
+ * there is a mapping.
+ */
+ if (!recurse)
+ LOCK_TABLE();
+
+ LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
+ if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
+ if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
+ (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
+ (pte_lo & LPTE_PP)) {
+ if (!recurse)
+ UNLOCK_TABLE();
+ return (0);
+ }
+ moea64_pvo_remove(pvo, -1);
+ break;
+ }
+ }
+
+ /*
+ * If we aren't overwriting a mapping, try to allocate.
+ */
+ if (bootstrap) {
+ if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
+ panic("moea64_enter: bpvo pool exhausted, %d, %d, %d",
+ moea64_bpvo_pool_index, BPVO_POOL_SIZE,
+ BPVO_POOL_SIZE * sizeof(struct pvo_entry));
+ }
+ pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
+ moea64_bpvo_pool_index++;
+ bootstrap = 1;
+ } else {
+ pvo = uma_zalloc(zone, M_NOWAIT);
+ }
+
+ if (pvo == NULL) {
+ if (!recurse)
+ UNLOCK_TABLE();
+ return (ENOMEM);
+ }
+
+ moea64_pvo_entries++;
+ pvo->pvo_vaddr = va;
+ pvo->pvo_pmap = pm;
+ LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
+ pvo->pvo_vaddr &= ~ADDR_POFF;
+
+ if (!(flags & VM_PROT_EXECUTE))
+ pte_lo |= LPTE_NOEXEC;
+ if (flags & PVO_WIRED)
+ pvo->pvo_vaddr |= PVO_WIRED;
+ if (pvo_head != &moea64_pvo_kunmanaged)
+ pvo->pvo_vaddr |= PVO_MANAGED;
+ if (bootstrap)
+ pvo->pvo_vaddr |= PVO_BOOTSTRAP;
+ if (flags & PVO_FAKE)
+ pvo->pvo_vaddr |= PVO_FAKE;
+
+ moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
+ (uint64_t)(pa) | pte_lo);
+
+ /*
+ * Remember if the list was empty and therefore will be the first
+ * item.
+ */
+ if (LIST_FIRST(pvo_head) == NULL)
+ first = 1;
+ LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
+
+ if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED)
+ pm->pm_stats.wired_count++;
+ pm->pm_stats.resident_count++;
+
+ /*
+ * We hope this succeeds but it isn't required.
+ */
+ i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
+ if (i >= 0) {
+ PVO_PTEGIDX_SET(pvo, i);
+ } else {
+ panic("moea64_pvo_enter: overflow");
+ moea64_pte_overflow++;
+ }
+
+ if (!recurse)
+ UNLOCK_TABLE();
+
+ return (first ? ENOENT : 0);
+}
+
+static void
+moea64_pvo_remove(struct pvo_entry *pvo, int pteidx)
+{
+ struct lpte *pt;
+
+ /*
+ * If there is an active pte entry, we need to deactivate it (and
+ * save the ref & cfg bits).
+ */
+ LOCK_TABLE();
+ pt = moea64_pvo_to_pte(pvo, pteidx);
+ if (pt != NULL) {
+ moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap,
+ pvo->pvo_vaddr);
+ PVO_PTEGIDX_CLR(pvo);
+ } else {
+ moea64_pte_overflow--;
+ }
+ UNLOCK_TABLE();
+
+ /*
+ * Update our statistics.
+ */
+ pvo->pvo_pmap->pm_stats.resident_count--;
+ if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED)
+ pvo->pvo_pmap->pm_stats.wired_count--;
+
+ /*
+ * Save the REF/CHG bits into their cache if the page is managed.
+ */
+ if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
+ struct vm_page *pg;
+
+ pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
+ if (pg != NULL) {
+ moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
+ (LPTE_REF | LPTE_CHG));
+ }
+ }
+
+ /*
+ * Remove this PVO from the PV list.
+ */
+ LIST_REMOVE(pvo, pvo_vlink);
+
+ /*
+ * Remove this from the overflow list and return it to the pool
+ * if we aren't going to reuse it.
+ */
+ LIST_REMOVE(pvo, pvo_olink);
+ if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
+ uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea64_mpvo_zone :
+ moea64_upvo_zone, pvo);
+ moea64_pvo_entries--;
+ moea64_pvo_remove_calls++;
+}
+
+static __inline int
+moea64_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
+{
+ int pteidx;
+
+ /*
+ * We can find the actual pte entry without searching by grabbing
+ * the PTEG index from 3 unused bits in pte_lo[11:9] and by
+ * noticing the HID bit.
+ */
+ pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
+ if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
+ pteidx ^= moea64_pteg_mask * 8;
+
+ return (pteidx);
+}
+
+static struct pvo_entry *
+moea64_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
+{
+ struct pvo_entry *pvo;
+ int ptegidx;
+ uint64_t vsid;
+
+ va &= ~ADDR_POFF;
+ vsid = va_to_vsid(pm, va);
+ ptegidx = va_to_pteg(vsid, va);
+
+ LOCK_TABLE();
+ LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
+ if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
+ if (pteidx_p)
+ *pteidx_p = moea64_pvo_pte_index(pvo, ptegidx);
+ break;
+ }
+ }
+ UNLOCK_TABLE();
+
+ return (pvo);
+}
+
+static struct lpte *
+moea64_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
+{
+ struct lpte *pt;
+
+ /*
+ * If we haven't been supplied the ptegidx, calculate it.
+ */
+ if (pteidx == -1) {
+ int ptegidx;
+ uint64_t vsid;
+
+ vsid = va_to_vsid(pvo->pvo_pmap, pvo->pvo_vaddr);
+ ptegidx = va_to_pteg(vsid, pvo->pvo_vaddr);
+ pteidx = moea64_pvo_pte_index(pvo, ptegidx);
+ }
+
+ pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
+
+ if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
+ !PVO_PTEGIDX_ISSET(pvo)) {
+ panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
+ "valid pte index", pvo);
+ }
+
+ if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
+ PVO_PTEGIDX_ISSET(pvo)) {
+ panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
+ "pvo but no valid pte", pvo);
+ }
+
+ if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
+ LPTE_VALID) {
+ if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
+ panic("moea64_pvo_to_pte: pvo %p has valid pte in "
+ "moea64_pteg_table %p but invalid in pvo", pvo, pt);
+ }
+
+ if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
+ ~(LPTE_CHG|LPTE_REF)) != 0) {
+ panic("moea64_pvo_to_pte: pvo %p pte does not match "
+ "pte %p in moea64_pteg_table difference is %#x",
+ pvo, pt,
+ (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
+ }
+
+ ASSERT_TABLE_LOCK();
+ return (pt);
+ }
+
+ if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
+ panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
+ "moea64_pteg_table but valid in pvo", pvo, pt);
+ }
+
+ return (NULL);
+}
+
+static int
+moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
+{
+ struct lpte *pt;
+ int i;
+
+ ASSERT_TABLE_LOCK();
+
+ /*
+ * First try primary hash.
+ */
+ for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
+ if ((pt->pte_hi & LPTE_VALID) == 0) {
+ pvo_pt->pte_hi &= ~LPTE_HID;
+ moea64_pte_set(pt, pvo_pt);
+ return (i);
+ }
+ }
+
+ /*
+ * Now try secondary hash.
+ */
+ ptegidx ^= moea64_pteg_mask;
+
+ for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
+ if ((pt->pte_hi & LPTE_VALID) == 0) {
+ pvo_pt->pte_hi |= LPTE_HID;
+ moea64_pte_set(pt, pvo_pt);
+ return (i);
+ }
+ }
+
+ panic("moea64_pte_insert: overflow");
+ return (-1);
+}
+
+static boolean_t
+moea64_query_bit(vm_page_t m, u_int64_t ptebit)
+{
+ struct pvo_entry *pvo;
+ struct lpte *pt;
+
+#if 0
+ if (moea64_attr_fetch(m) & ptebit)
+ return (TRUE);
+#endif
+
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+
+ /*
+ * See if we saved the bit off. If so, cache it and return
+ * success.
+ */
+ if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
+ moea64_attr_save(m, ptebit);
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+ return (TRUE);
+ }
+ }
+
+ /*
+ * No luck, now go through the hard part of looking at the PTEs
+ * themselves. Sync so that any pending REF/CHG bits are flushed to
+ * the PTEs.
+ */
+ SYNC();
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+
+ /*
+ * See if this pvo has a valid PTE. if so, fetch the
+ * REF/CHG bits from the valid PTE. If the appropriate
+ * ptebit is set, cache it and return success.
+ */
+ LOCK_TABLE();
+ pt = moea64_pvo_to_pte(pvo, -1);
+ if (pt != NULL) {
+ moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
+ if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
+ UNLOCK_TABLE();
+
+ moea64_attr_save(m, ptebit);
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+ return (TRUE);
+ }
+ }
+ UNLOCK_TABLE();
+ }
+
+ return (FALSE);
+}
+
+static u_int
+moea64_clear_bit(vm_page_t m, u_int64_t ptebit, u_int64_t *origbit)
+{
+ u_int count;
+ struct pvo_entry *pvo;
+ struct lpte *pt;
+ uint64_t rv;
+
+ /*
+ * Clear the cached value.
+ */
+ rv = moea64_attr_fetch(m);
+ moea64_attr_clear(m, ptebit);
+
+ /*
+ * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
+ * we can reset the right ones). note that since the pvo entries and
+ * list heads are accessed via BAT0 and are never placed in the page
+ * table, we don't have to worry about further accesses setting the
+ * REF/CHG bits.
+ */
+ SYNC();
+
+ /*
+ * For each pvo entry, clear the pvo's ptebit. If this pvo has a
+ * valid pte clear the ptebit from the valid pte.
+ */
+ count = 0;
+ LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+
+ LOCK_TABLE();
+ pt = moea64_pvo_to_pte(pvo, -1);
+ if (pt != NULL) {
+ moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
+ if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
+ count++;
+ moea64_pte_clear(pt, pvo->pvo_pmap, PVO_VADDR(pvo), ptebit);
+ }
+ }
+ UNLOCK_TABLE();
+ rv |= pvo->pvo_pte.lpte.pte_lo;
+ pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
+ MOEA_PVO_CHECK(pvo); /* sanity check */
+ }
+
+ if (origbit != NULL) {
+ *origbit = rv;
+ }
+
+ return (count);
+}
+
+boolean_t
+moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
+{
+ return (EFAULT);
+}
+
+boolean_t
+moea64_page_executable(mmu_t mmu, vm_page_t pg)
+{
+ return (!moea64_query_bit(pg, LPTE_NOEXEC));
+}
+
+/*
+ * Map a set of physical memory pages into the kernel virtual
+ * address space. Return a pointer to where it is mapped. This
+ * routine is intended to be used for mapping device memory,
+ * NOT real memory.
+ */
+void *
+moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
+{
+ vm_offset_t va, tmpva, ppa, offset;
+
+ ppa = trunc_page(pa);
+ offset = pa & PAGE_MASK;
+ size = roundup(offset + size, PAGE_SIZE);
+
+ va = kmem_alloc_nofault(kernel_map, size);
+
+ if (!va)
+ panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
+
+ for (tmpva = va; size > 0;) {
+ moea64_kenter(mmu, tmpva, ppa);
+ size -= PAGE_SIZE;
+ tmpva += PAGE_SIZE;
+ ppa += PAGE_SIZE;
+ }
+
+ return ((void *)(va + offset));
+}
+
+void
+moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
+{
+ vm_offset_t base, offset;
+
+ base = trunc_page(va);
+ offset = va & PAGE_MASK;
+ size = roundup(offset + size, PAGE_SIZE);
+
+ kmem_free(kernel_map, base, size);
+}
+
OpenPOWER on IntegriCloud