summaryrefslogtreecommitdiffstats
path: root/sys/gnu/fs/xfs/xfs_log_recover.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/gnu/fs/xfs/xfs_log_recover.c')
-rw-r--r--sys/gnu/fs/xfs/xfs_log_recover.c4078
1 files changed, 0 insertions, 4078 deletions
diff --git a/sys/gnu/fs/xfs/xfs_log_recover.c b/sys/gnu/fs/xfs/xfs_log_recover.c
deleted file mode 100644
index c0e035b..0000000
--- a/sys/gnu/fs/xfs/xfs_log_recover.c
+++ /dev/null
@@ -1,4078 +0,0 @@
-/*
- * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
- * All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it would be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- */
-#include "xfs.h"
-#include "xfs_fs.h"
-#include "xfs_types.h"
-#include "xfs_bit.h"
-#include "xfs_log.h"
-#include "xfs_inum.h"
-#include "xfs_trans.h"
-#include "xfs_sb.h"
-#include "xfs_ag.h"
-#include "xfs_dir.h"
-#include "xfs_dir2.h"
-#include "xfs_dmapi.h"
-#include "xfs_mount.h"
-#include "xfs_error.h"
-#include "xfs_bmap_btree.h"
-#include "xfs_alloc_btree.h"
-#include "xfs_ialloc_btree.h"
-#include "xfs_dir_sf.h"
-#include "xfs_dir2_sf.h"
-#include "xfs_attr_sf.h"
-#include "xfs_dinode.h"
-#include "xfs_inode.h"
-#include "xfs_inode_item.h"
-#include "xfs_imap.h"
-#include "xfs_alloc.h"
-#include "xfs_ialloc.h"
-#include "xfs_log_priv.h"
-#include "xfs_buf_item.h"
-#include "xfs_log_recover.h"
-#include "xfs_extfree_item.h"
-#include "xfs_trans_priv.h"
-#include "xfs_quota.h"
-#include "xfs_rw.h"
-
-STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
-STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
-STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
- xlog_recover_item_t *item);
-#if defined(DEBUG)
-STATIC void xlog_recover_check_summary(xlog_t *);
-STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
-#else
-#define xlog_recover_check_summary(log)
-#define xlog_recover_check_ail(mp, lip, gen)
-#endif
-
-
-/*
- * Sector aligned buffer routines for buffer create/read/write/access
- */
-
-#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
- ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
- ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
-#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
-
-xfs_buf_t *
-xlog_get_bp(
- xlog_t *log,
- int num_bblks)
-{
- ASSERT(num_bblks > 0);
-
- if (log->l_sectbb_log) {
- if (num_bblks > 1)
- num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
- num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
- }
- return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
-}
-
-void
-xlog_put_bp(
- xfs_buf_t *bp)
-{
- xfs_buf_free(bp);
-}
-
-
-/*
- * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
- */
-int
-xlog_bread(
- xlog_t *log,
- xfs_daddr_t blk_no,
- int nbblks,
- xfs_buf_t *bp)
-{
- int error;
-
- if (log->l_sectbb_log) {
- blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
- nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
- }
-
- ASSERT(nbblks > 0);
- ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
- ASSERT(bp);
-
- XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
- XFS_BUF_READ(bp);
- XFS_BUF_BUSY(bp);
- XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
- XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
-
- xfsbdstrat(log->l_mp, bp);
- if ((error = xfs_iowait(bp)))
- xfs_ioerror_alert("xlog_bread", log->l_mp,
- bp, XFS_BUF_ADDR(bp));
- return error;
-}
-
-/*
- * Write out the buffer at the given block for the given number of blocks.
- * The buffer is kept locked across the write and is returned locked.
- * This can only be used for synchronous log writes.
- */
-STATIC int
-xlog_bwrite(
- xlog_t *log,
- xfs_daddr_t blk_no,
- int nbblks,
- xfs_buf_t *bp)
-{
- int error;
-
- if (log->l_sectbb_log) {
- blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
- nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
- }
-
- ASSERT(nbblks > 0);
- ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
-
- XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
- XFS_BUF_ZEROFLAGS(bp);
- XFS_BUF_BUSY(bp);
- XFS_BUF_HOLD(bp);
- XFS_BUF_PSEMA(bp, PRIBIO);
- XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
- XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
-
- if ((error = xfs_bwrite(log->l_mp, bp)))
- xfs_ioerror_alert("xlog_bwrite", log->l_mp,
- bp, XFS_BUF_ADDR(bp));
- return error;
-}
-
-STATIC xfs_caddr_t
-xlog_align(
- xlog_t *log,
- xfs_daddr_t blk_no,
- int nbblks,
- xfs_buf_t *bp)
-{
- xfs_caddr_t ptr;
-
- if (!log->l_sectbb_log)
- return XFS_BUF_PTR(bp);
-
- ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
- ASSERT(XFS_BUF_SIZE(bp) >=
- BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
- return ptr;
-}
-
-#ifdef DEBUG
-/*
- * dump debug superblock and log record information
- */
-STATIC void
-xlog_header_check_dump(
- xfs_mount_t *mp,
- xlog_rec_header_t *head)
-{
- int b;
-
- printk("%s: SB : uuid = ", __FUNCTION__);
- for (b = 0; b < 16; b++)
- printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
- printk(", fmt = %d\n", XLOG_FMT);
- printk(" log : uuid = ");
- for (b = 0; b < 16; b++)
- printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
- printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
-}
-#else
-#define xlog_header_check_dump(mp, head)
-#endif
-
-/*
- * check log record header for recovery
- */
-STATIC int
-xlog_header_check_recover(
- xfs_mount_t *mp,
- xlog_rec_header_t *head)
-{
- ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
-
- /*
- * IRIX doesn't write the h_fmt field and leaves it zeroed
- * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
- * a dirty log created in IRIX.
- */
- if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
- xlog_warn(
- "XFS: dirty log written in incompatible format - can't recover");
- xlog_header_check_dump(mp, head);
- XFS_ERROR_REPORT("xlog_header_check_recover(1)",
- XFS_ERRLEVEL_HIGH, mp);
- return XFS_ERROR(EFSCORRUPTED);
- } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
- xlog_warn(
- "XFS: dirty log entry has mismatched uuid - can't recover");
- xlog_header_check_dump(mp, head);
- XFS_ERROR_REPORT("xlog_header_check_recover(2)",
- XFS_ERRLEVEL_HIGH, mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- return 0;
-}
-
-/*
- * read the head block of the log and check the header
- */
-STATIC int
-xlog_header_check_mount(
- xfs_mount_t *mp,
- xlog_rec_header_t *head)
-{
- ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
-
- if (uuid_is_nil(&head->h_fs_uuid)) {
- /*
- * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
- * h_fs_uuid is nil, we assume this log was last mounted
- * by IRIX and continue.
- */
- xlog_warn("XFS: nil uuid in log - IRIX style log");
- } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
- xlog_warn("XFS: log has mismatched uuid - can't recover");
- xlog_header_check_dump(mp, head);
- XFS_ERROR_REPORT("xlog_header_check_mount",
- XFS_ERRLEVEL_HIGH, mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- return 0;
-}
-
-STATIC void
-xlog_recover_iodone(
- struct xfs_buf *bp)
-{
- xfs_mount_t *mp;
-
- ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
-
- if (XFS_BUF_GETERROR(bp)) {
- /*
- * We're not going to bother about retrying
- * this during recovery. One strike!
- */
- mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
- xfs_ioerror_alert("xlog_recover_iodone",
- mp, bp, XFS_BUF_ADDR(bp));
- xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
- }
- XFS_BUF_SET_FSPRIVATE(bp, NULL);
- XFS_BUF_CLR_IODONE_FUNC(bp);
- xfs_biodone(bp);
-}
-
-/*
- * This routine finds (to an approximation) the first block in the physical
- * log which contains the given cycle. It uses a binary search algorithm.
- * Note that the algorithm can not be perfect because the disk will not
- * necessarily be perfect.
- */
-STATIC int
-xlog_find_cycle_start(
- xlog_t *log,
- xfs_buf_t *bp,
- xfs_daddr_t first_blk,
- xfs_daddr_t *last_blk,
- uint cycle)
-{
- xfs_caddr_t offset;
- xfs_daddr_t mid_blk;
- uint mid_cycle;
- int error;
-
- mid_blk = BLK_AVG(first_blk, *last_blk);
- while (mid_blk != first_blk && mid_blk != *last_blk) {
- if ((error = xlog_bread(log, mid_blk, 1, bp)))
- return error;
- offset = xlog_align(log, mid_blk, 1, bp);
- mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
- if (mid_cycle == cycle) {
- *last_blk = mid_blk;
- /* last_half_cycle == mid_cycle */
- } else {
- first_blk = mid_blk;
- /* first_half_cycle == mid_cycle */
- }
- mid_blk = BLK_AVG(first_blk, *last_blk);
- }
- ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
- (mid_blk == *last_blk && mid_blk-1 == first_blk));
-
- return 0;
-}
-
-/*
- * Check that the range of blocks does not contain the cycle number
- * given. The scan needs to occur from front to back and the ptr into the
- * region must be updated since a later routine will need to perform another
- * test. If the region is completely good, we end up returning the same
- * last block number.
- *
- * Set blkno to -1 if we encounter no errors. This is an invalid block number
- * since we don't ever expect logs to get this large.
- */
-STATIC int
-xlog_find_verify_cycle(
- xlog_t *log,
- xfs_daddr_t start_blk,
- int nbblks,
- uint stop_on_cycle_no,
- xfs_daddr_t *new_blk)
-{
- xfs_daddr_t i, j;
- uint cycle;
- xfs_buf_t *bp;
- xfs_daddr_t bufblks;
- xfs_caddr_t buf = NULL;
- int error = 0;
-
- bufblks = 1 << ffs(nbblks);
-
- while (!(bp = xlog_get_bp(log, bufblks))) {
- /* can't get enough memory to do everything in one big buffer */
- bufblks >>= 1;
- if (bufblks <= log->l_sectbb_log)
- return ENOMEM;
- }
-
- for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
- int bcount;
-
- bcount = min(bufblks, (start_blk + nbblks - i));
-
- if ((error = xlog_bread(log, i, bcount, bp)))
- goto out;
-
- buf = xlog_align(log, i, bcount, bp);
- for (j = 0; j < bcount; j++) {
- cycle = GET_CYCLE(buf, ARCH_CONVERT);
- if (cycle == stop_on_cycle_no) {
- *new_blk = i+j;
- goto out;
- }
-
- buf += BBSIZE;
- }
- }
-
- *new_blk = -1;
-
-out:
- xlog_put_bp(bp);
- return error;
-}
-
-/*
- * Potentially backup over partial log record write.
- *
- * In the typical case, last_blk is the number of the block directly after
- * a good log record. Therefore, we subtract one to get the block number
- * of the last block in the given buffer. extra_bblks contains the number
- * of blocks we would have read on a previous read. This happens when the
- * last log record is split over the end of the physical log.
- *
- * extra_bblks is the number of blocks potentially verified on a previous
- * call to this routine.
- */
-STATIC int
-xlog_find_verify_log_record(
- xlog_t *log,
- xfs_daddr_t start_blk,
- xfs_daddr_t *last_blk,
- int extra_bblks)
-{
- xfs_daddr_t i;
- xfs_buf_t *bp;
- xfs_caddr_t offset = NULL;
- xlog_rec_header_t *head = NULL;
- int error = 0;
- int smallmem = 0;
- int num_blks = *last_blk - start_blk;
- int xhdrs;
-
- ASSERT(start_blk != 0 || *last_blk != start_blk);
-
- if (!(bp = xlog_get_bp(log, num_blks))) {
- if (!(bp = xlog_get_bp(log, 1)))
- return ENOMEM;
- smallmem = 1;
- } else {
- if ((error = xlog_bread(log, start_blk, num_blks, bp)))
- goto out;
- offset = xlog_align(log, start_blk, num_blks, bp);
- offset += ((num_blks - 1) << BBSHIFT);
- }
-
- for (i = (*last_blk) - 1; i >= 0; i--) {
- if (i < start_blk) {
- /* valid log record not found */
- xlog_warn(
- "XFS: Log inconsistent (didn't find previous header)");
- ASSERT(0);
- error = XFS_ERROR(EIO);
- goto out;
- }
-
- if (smallmem) {
- if ((error = xlog_bread(log, i, 1, bp)))
- goto out;
- offset = xlog_align(log, i, 1, bp);
- }
-
- head = (xlog_rec_header_t *)offset;
-
- if (XLOG_HEADER_MAGIC_NUM ==
- INT_GET(head->h_magicno, ARCH_CONVERT))
- break;
-
- if (!smallmem)
- offset -= BBSIZE;
- }
-
- /*
- * We hit the beginning of the physical log & still no header. Return
- * to caller. If caller can handle a return of -1, then this routine
- * will be called again for the end of the physical log.
- */
- if (i == -1) {
- error = -1;
- goto out;
- }
-
- /*
- * We have the final block of the good log (the first block
- * of the log record _before_ the head. So we check the uuid.
- */
- if ((error = xlog_header_check_mount(log->l_mp, head)))
- goto out;
-
- /*
- * We may have found a log record header before we expected one.
- * last_blk will be the 1st block # with a given cycle #. We may end
- * up reading an entire log record. In this case, we don't want to
- * reset last_blk. Only when last_blk points in the middle of a log
- * record do we update last_blk.
- */
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
-
- xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
- if (h_size % XLOG_HEADER_CYCLE_SIZE)
- xhdrs++;
- } else {
- xhdrs = 1;
- }
-
- if (*last_blk - i + extra_bblks
- != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
- *last_blk = i;
-
-out:
- xlog_put_bp(bp);
- return error;
-}
-
-/*
- * Head is defined to be the point of the log where the next log write
- * write could go. This means that incomplete LR writes at the end are
- * eliminated when calculating the head. We aren't guaranteed that previous
- * LR have complete transactions. We only know that a cycle number of
- * current cycle number -1 won't be present in the log if we start writing
- * from our current block number.
- *
- * last_blk contains the block number of the first block with a given
- * cycle number.
- *
- * Return: zero if normal, non-zero if error.
- */
-STATIC int
-xlog_find_head(
- xlog_t *log,
- xfs_daddr_t *return_head_blk)
-{
- xfs_buf_t *bp;
- xfs_caddr_t offset;
- xfs_daddr_t new_blk, first_blk = 0, start_blk, last_blk, head_blk;
- int num_scan_bblks;
- uint first_half_cycle, last_half_cycle;
- uint stop_on_cycle;
- int error, log_bbnum = log->l_logBBsize;
-
- /* Is the end of the log device zeroed? */
- if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
- *return_head_blk = first_blk;
-
- /* Is the whole lot zeroed? */
- if (!first_blk) {
- /* Linux XFS shouldn't generate totally zeroed logs -
- * mkfs etc write a dummy unmount record to a fresh
- * log so we can store the uuid in there
- */
- xlog_warn("XFS: totally zeroed log");
- }
-
- return 0;
- } else if (error) {
- xlog_warn("XFS: empty log check failed");
- return error;
- }
-
- first_blk = 0; /* get cycle # of 1st block */
- bp = xlog_get_bp(log, 1);
- if (!bp)
- return ENOMEM;
- if ((error = xlog_bread(log, 0, 1, bp)))
- goto bp_err;
- offset = xlog_align(log, 0, 1, bp);
- first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
-
- last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
- if ((error = xlog_bread(log, last_blk, 1, bp)))
- goto bp_err;
- offset = xlog_align(log, last_blk, 1, bp);
- last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
- ASSERT(last_half_cycle != 0);
-
- /*
- * If the 1st half cycle number is equal to the last half cycle number,
- * then the entire log is stamped with the same cycle number. In this
- * case, head_blk can't be set to zero (which makes sense). The below
- * math doesn't work out properly with head_blk equal to zero. Instead,
- * we set it to log_bbnum which is an invalid block number, but this
- * value makes the math correct. If head_blk doesn't changed through
- * all the tests below, *head_blk is set to zero at the very end rather
- * than log_bbnum. In a sense, log_bbnum and zero are the same block
- * in a circular file.
- */
- if (first_half_cycle == last_half_cycle) {
- /*
- * In this case we believe that the entire log should have
- * cycle number last_half_cycle. We need to scan backwards
- * from the end verifying that there are no holes still
- * containing last_half_cycle - 1. If we find such a hole,
- * then the start of that hole will be the new head. The
- * simple case looks like
- * x | x ... | x - 1 | x
- * Another case that fits this picture would be
- * x | x + 1 | x ... | x
- * In this case the head really is somewhere at the end of the
- * log, as one of the latest writes at the beginning was
- * incomplete.
- * One more case is
- * x | x + 1 | x ... | x - 1 | x
- * This is really the combination of the above two cases, and
- * the head has to end up at the start of the x-1 hole at the
- * end of the log.
- *
- * In the 256k log case, we will read from the beginning to the
- * end of the log and search for cycle numbers equal to x-1.
- * We don't worry about the x+1 blocks that we encounter,
- * because we know that they cannot be the head since the log
- * started with x.
- */
- head_blk = log_bbnum;
- stop_on_cycle = last_half_cycle - 1;
- } else {
- /*
- * In this case we want to find the first block with cycle
- * number matching last_half_cycle. We expect the log to be
- * some variation on
- * x + 1 ... | x ...
- * The first block with cycle number x (last_half_cycle) will
- * be where the new head belongs. First we do a binary search
- * for the first occurrence of last_half_cycle. The binary
- * search may not be totally accurate, so then we scan back
- * from there looking for occurrences of last_half_cycle before
- * us. If that backwards scan wraps around the beginning of
- * the log, then we look for occurrences of last_half_cycle - 1
- * at the end of the log. The cases we're looking for look
- * like
- * x + 1 ... | x | x + 1 | x ...
- * ^ binary search stopped here
- * or
- * x + 1 ... | x ... | x - 1 | x
- * <---------> less than scan distance
- */
- stop_on_cycle = last_half_cycle;
- if ((error = xlog_find_cycle_start(log, bp, first_blk,
- &head_blk, last_half_cycle)))
- goto bp_err;
- }
-
- /*
- * Now validate the answer. Scan back some number of maximum possible
- * blocks and make sure each one has the expected cycle number. The
- * maximum is determined by the total possible amount of buffering
- * in the in-core log. The following number can be made tighter if
- * we actually look at the block size of the filesystem.
- */
- num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
- if (head_blk >= num_scan_bblks) {
- /*
- * We are guaranteed that the entire check can be performed
- * in one buffer.
- */
- start_blk = head_blk - num_scan_bblks;
- if ((error = xlog_find_verify_cycle(log,
- start_blk, num_scan_bblks,
- stop_on_cycle, &new_blk)))
- goto bp_err;
- if (new_blk != -1)
- head_blk = new_blk;
- } else { /* need to read 2 parts of log */
- /*
- * We are going to scan backwards in the log in two parts.
- * First we scan the physical end of the log. In this part
- * of the log, we are looking for blocks with cycle number
- * last_half_cycle - 1.
- * If we find one, then we know that the log starts there, as
- * we've found a hole that didn't get written in going around
- * the end of the physical log. The simple case for this is
- * x + 1 ... | x ... | x - 1 | x
- * <---------> less than scan distance
- * If all of the blocks at the end of the log have cycle number
- * last_half_cycle, then we check the blocks at the start of
- * the log looking for occurrences of last_half_cycle. If we
- * find one, then our current estimate for the location of the
- * first occurrence of last_half_cycle is wrong and we move
- * back to the hole we've found. This case looks like
- * x + 1 ... | x | x + 1 | x ...
- * ^ binary search stopped here
- * Another case we need to handle that only occurs in 256k
- * logs is
- * x + 1 ... | x ... | x+1 | x ...
- * ^ binary search stops here
- * In a 256k log, the scan at the end of the log will see the
- * x + 1 blocks. We need to skip past those since that is
- * certainly not the head of the log. By searching for
- * last_half_cycle-1 we accomplish that.
- */
- start_blk = log_bbnum - num_scan_bblks + head_blk;
- ASSERT(head_blk <= INT_MAX &&
- (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
- if ((error = xlog_find_verify_cycle(log, start_blk,
- num_scan_bblks - (int)head_blk,
- (stop_on_cycle - 1), &new_blk)))
- goto bp_err;
- if (new_blk != -1) {
- head_blk = new_blk;
- goto bad_blk;
- }
-
- /*
- * Scan beginning of log now. The last part of the physical
- * log is good. This scan needs to verify that it doesn't find
- * the last_half_cycle.
- */
- start_blk = 0;
- ASSERT(head_blk <= INT_MAX);
- if ((error = xlog_find_verify_cycle(log,
- start_blk, (int)head_blk,
- stop_on_cycle, &new_blk)))
- goto bp_err;
- if (new_blk != -1)
- head_blk = new_blk;
- }
-
- bad_blk:
- /*
- * Now we need to make sure head_blk is not pointing to a block in
- * the middle of a log record.
- */
- num_scan_bblks = XLOG_REC_SHIFT(log);
- if (head_blk >= num_scan_bblks) {
- start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
-
- /* start ptr at last block ptr before head_blk */
- if ((error = xlog_find_verify_log_record(log, start_blk,
- &head_blk, 0)) == -1) {
- error = XFS_ERROR(EIO);
- goto bp_err;
- } else if (error)
- goto bp_err;
- } else {
- start_blk = 0;
- ASSERT(head_blk <= INT_MAX);
- if ((error = xlog_find_verify_log_record(log, start_blk,
- &head_blk, 0)) == -1) {
- /* We hit the beginning of the log during our search */
- start_blk = log_bbnum - num_scan_bblks + head_blk;
- new_blk = log_bbnum;
- ASSERT(start_blk <= INT_MAX &&
- (xfs_daddr_t) log_bbnum-start_blk >= 0);
- ASSERT(head_blk <= INT_MAX);
- if ((error = xlog_find_verify_log_record(log,
- start_blk, &new_blk,
- (int)head_blk)) == -1) {
- error = XFS_ERROR(EIO);
- goto bp_err;
- } else if (error)
- goto bp_err;
- if (new_blk != log_bbnum)
- head_blk = new_blk;
- } else if (error)
- goto bp_err;
- }
-
- xlog_put_bp(bp);
- if (head_blk == log_bbnum)
- *return_head_blk = 0;
- else
- *return_head_blk = head_blk;
- /*
- * When returning here, we have a good block number. Bad block
- * means that during a previous crash, we didn't have a clean break
- * from cycle number N to cycle number N-1. In this case, we need
- * to find the first block with cycle number N-1.
- */
- return 0;
-
- bp_err:
- xlog_put_bp(bp);
-
- if (error)
- xlog_warn("XFS: failed to find log head");
- return error;
-}
-
-/*
- * Find the sync block number or the tail of the log.
- *
- * This will be the block number of the last record to have its
- * associated buffers synced to disk. Every log record header has
- * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
- * to get a sync block number. The only concern is to figure out which
- * log record header to believe.
- *
- * The following algorithm uses the log record header with the largest
- * lsn. The entire log record does not need to be valid. We only care
- * that the header is valid.
- *
- * We could speed up search by using current head_blk buffer, but it is not
- * available.
- */
-int
-xlog_find_tail(
- xlog_t *log,
- xfs_daddr_t *head_blk,
- xfs_daddr_t *tail_blk)
-{
- xlog_rec_header_t *rhead;
- xlog_op_header_t *op_head;
- xfs_caddr_t offset = NULL;
- xfs_buf_t *bp;
- int error, i, found;
- xfs_daddr_t umount_data_blk;
- xfs_daddr_t after_umount_blk;
- xfs_lsn_t tail_lsn;
- int hblks;
-
- found = 0;
-
- /*
- * Find previous log record
- */
- if ((error = xlog_find_head(log, head_blk)))
- return error;
-
- bp = xlog_get_bp(log, 1);
- if (!bp)
- return ENOMEM;
- if (*head_blk == 0) { /* special case */
- if ((error = xlog_bread(log, 0, 1, bp)))
- goto bread_err;
- offset = xlog_align(log, 0, 1, bp);
- if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
- *tail_blk = 0;
- /* leave all other log inited values alone */
- goto exit;
- }
- }
-
- /*
- * Search backwards looking for log record header block
- */
- ASSERT(*head_blk < INT_MAX);
- for (i = (int)(*head_blk) - 1; i >= 0; i--) {
- if ((error = xlog_bread(log, i, 1, bp)))
- goto bread_err;
- offset = xlog_align(log, i, 1, bp);
- if (XLOG_HEADER_MAGIC_NUM ==
- INT_GET(*(uint *)offset, ARCH_CONVERT)) {
- found = 1;
- break;
- }
- }
- /*
- * If we haven't found the log record header block, start looking
- * again from the end of the physical log. XXXmiken: There should be
- * a check here to make sure we didn't search more than N blocks in
- * the previous code.
- */
- if (!found) {
- for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
- if ((error = xlog_bread(log, i, 1, bp)))
- goto bread_err;
- offset = xlog_align(log, i, 1, bp);
- if (XLOG_HEADER_MAGIC_NUM ==
- INT_GET(*(uint*)offset, ARCH_CONVERT)) {
- found = 2;
- break;
- }
- }
- }
- if (!found) {
- xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
- ASSERT(0);
- return XFS_ERROR(EIO);
- }
-
- /* find blk_no of tail of log */
- rhead = (xlog_rec_header_t *)offset;
- *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
-
- /*
- * Reset log values according to the state of the log when we
- * crashed. In the case where head_blk == 0, we bump curr_cycle
- * one because the next write starts a new cycle rather than
- * continuing the cycle of the last good log record. At this
- * point we have guaranteed that all partial log records have been
- * accounted for. Therefore, we know that the last good log record
- * written was complete and ended exactly on the end boundary
- * of the physical log.
- */
- log->l_prev_block = i;
- log->l_curr_block = (int)*head_blk;
- log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
- if (found == 2)
- log->l_curr_cycle++;
- log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
- log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
- log->l_grant_reserve_cycle = log->l_curr_cycle;
- log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
- log->l_grant_write_cycle = log->l_curr_cycle;
- log->l_grant_write_bytes = BBTOB(log->l_curr_block);
-
- /*
- * Look for unmount record. If we find it, then we know there
- * was a clean unmount. Since 'i' could be the last block in
- * the physical log, we convert to a log block before comparing
- * to the head_blk.
- *
- * Save the current tail lsn to use to pass to
- * xlog_clear_stale_blocks() below. We won't want to clear the
- * unmount record if there is one, so we pass the lsn of the
- * unmount record rather than the block after it.
- */
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
- int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
-
- if ((h_version & XLOG_VERSION_2) &&
- (h_size > XLOG_HEADER_CYCLE_SIZE)) {
- hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
- if (h_size % XLOG_HEADER_CYCLE_SIZE)
- hblks++;
- } else {
- hblks = 1;
- }
- } else {
- hblks = 1;
- }
- after_umount_blk = (i + hblks + (int)
- BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
- tail_lsn = log->l_tail_lsn;
- if (*head_blk == after_umount_blk &&
- INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
- umount_data_blk = (i + hblks) % log->l_logBBsize;
- if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
- goto bread_err;
- }
- offset = xlog_align(log, umount_data_blk, 1, bp);
- op_head = (xlog_op_header_t *)offset;
- if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
- /*
- * Set tail and last sync so that newly written
- * log records will point recovery to after the
- * current unmount record.
- */
- ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
- after_umount_blk);
- ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
- after_umount_blk);
- *tail_blk = after_umount_blk;
- }
- }
-
- /*
- * Make sure that there are no blocks in front of the head
- * with the same cycle number as the head. This can happen
- * because we allow multiple outstanding log writes concurrently,
- * and the later writes might make it out before earlier ones.
- *
- * We use the lsn from before modifying it so that we'll never
- * overwrite the unmount record after a clean unmount.
- *
- * Do this only if we are going to recover the filesystem
- *
- * NOTE: This used to say "if (!readonly)"
- * However on Linux, we can & do recover a read-only filesystem.
- * We only skip recovery if NORECOVERY is specified on mount,
- * in which case we would not be here.
- *
- * But... if the -device- itself is readonly, just skip this.
- * We can't recover this device anyway, so it won't matter.
- */
- if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
- error = xlog_clear_stale_blocks(log, tail_lsn);
- }
-
-bread_err:
-exit:
- xlog_put_bp(bp);
-
- if (error)
- xlog_warn("XFS: failed to locate log tail");
- return error;
-}
-
-/*
- * Is the log zeroed at all?
- *
- * The last binary search should be changed to perform an X block read
- * once X becomes small enough. You can then search linearly through
- * the X blocks. This will cut down on the number of reads we need to do.
- *
- * If the log is partially zeroed, this routine will pass back the blkno
- * of the first block with cycle number 0. It won't have a complete LR
- * preceding it.
- *
- * Return:
- * 0 => the log is completely written to
- * -1 => use *blk_no as the first block of the log
- * >0 => error has occurred
- */
-int
-xlog_find_zeroed(
- xlog_t *log,
- xfs_daddr_t *blk_no)
-{
- xfs_buf_t *bp;
- xfs_caddr_t offset;
- uint first_cycle, last_cycle;
- xfs_daddr_t new_blk, last_blk, start_blk;
- xfs_daddr_t num_scan_bblks;
- int error, log_bbnum = log->l_logBBsize;
-
- /* check totally zeroed log */
- bp = xlog_get_bp(log, 1);
- if (!bp)
- return ENOMEM;
- if ((error = xlog_bread(log, 0, 1, bp)))
- goto bp_err;
- offset = xlog_align(log, 0, 1, bp);
- first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
- if (first_cycle == 0) { /* completely zeroed log */
- *blk_no = 0;
- xlog_put_bp(bp);
- return -1;
- }
-
- /* check partially zeroed log */
- if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
- goto bp_err;
- offset = xlog_align(log, log_bbnum-1, 1, bp);
- last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
- if (last_cycle != 0) { /* log completely written to */
- xlog_put_bp(bp);
- return 0;
- } else if (first_cycle != 1) {
- /*
- * If the cycle of the last block is zero, the cycle of
- * the first block must be 1. If it's not, maybe we're
- * not looking at a log... Bail out.
- */
- xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
- return XFS_ERROR(EINVAL);
- }
-
- /* we have a partially zeroed log */
- last_blk = log_bbnum-1;
- if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
- goto bp_err;
-
- /*
- * Validate the answer. Because there is no way to guarantee that
- * the entire log is made up of log records which are the same size,
- * we scan over the defined maximum blocks. At this point, the maximum
- * is not chosen to mean anything special. XXXmiken
- */
- num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
- ASSERT(num_scan_bblks <= INT_MAX);
-
- if (last_blk < num_scan_bblks)
- num_scan_bblks = last_blk;
- start_blk = last_blk - num_scan_bblks;
-
- /*
- * We search for any instances of cycle number 0 that occur before
- * our current estimate of the head. What we're trying to detect is
- * 1 ... | 0 | 1 | 0...
- * ^ binary search ends here
- */
- if ((error = xlog_find_verify_cycle(log, start_blk,
- (int)num_scan_bblks, 0, &new_blk)))
- goto bp_err;
- if (new_blk != -1)
- last_blk = new_blk;
-
- /*
- * Potentially backup over partial log record write. We don't need
- * to search the end of the log because we know it is zero.
- */
- if ((error = xlog_find_verify_log_record(log, start_blk,
- &last_blk, 0)) == -1) {
- error = XFS_ERROR(EIO);
- goto bp_err;
- } else if (error)
- goto bp_err;
-
- *blk_no = last_blk;
-bp_err:
- xlog_put_bp(bp);
- if (error)
- return error;
- return -1;
-}
-
-/*
- * These are simple subroutines used by xlog_clear_stale_blocks() below
- * to initialize a buffer full of empty log record headers and write
- * them into the log.
- */
-STATIC void
-xlog_add_record(
- xlog_t *log,
- xfs_caddr_t buf,
- int cycle,
- int block,
- int tail_cycle,
- int tail_block)
-{
- xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
-
- memset(buf, 0, BBSIZE);
- INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
- INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
- INT_SET(recp->h_version, ARCH_CONVERT,
- XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
- ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
- ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
- INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
- memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
-}
-
-STATIC int
-xlog_write_log_records(
- xlog_t *log,
- int cycle,
- int start_block,
- int blocks,
- int tail_cycle,
- int tail_block)
-{
- xfs_caddr_t offset;
- xfs_buf_t *bp;
- int balign, ealign;
- int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
- int end_block = start_block + blocks;
- int bufblks;
- int error = 0;
- int i, j = 0;
-
- bufblks = 1 << ffs(blocks);
- while (!(bp = xlog_get_bp(log, bufblks))) {
- bufblks >>= 1;
- if (bufblks <= log->l_sectbb_log)
- return ENOMEM;
- }
-
- /* We may need to do a read at the start to fill in part of
- * the buffer in the starting sector not covered by the first
- * write below.
- */
- balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
- if (balign != start_block) {
- if ((error = xlog_bread(log, start_block, 1, bp))) {
- xlog_put_bp(bp);
- return error;
- }
- j = start_block - balign;
- }
-
- for (i = start_block; i < end_block; i += bufblks) {
- int bcount, endcount;
-
- bcount = min(bufblks, end_block - start_block);
- endcount = bcount - j;
-
- /* We may need to do a read at the end to fill in part of
- * the buffer in the final sector not covered by the write.
- * If this is the same sector as the above read, skip it.
- */
- ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
- if (j == 0 && (start_block + endcount > ealign)) {
- offset = XFS_BUF_PTR(bp);
- balign = BBTOB(ealign - start_block);
- XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
- if ((error = xlog_bread(log, ealign, sectbb, bp)))
- break;
- XFS_BUF_SET_PTR(bp, offset, bufblks);
- }
-
- offset = xlog_align(log, start_block, endcount, bp);
- for (; j < endcount; j++) {
- xlog_add_record(log, offset, cycle, i+j,
- tail_cycle, tail_block);
- offset += BBSIZE;
- }
- error = xlog_bwrite(log, start_block, endcount, bp);
- if (error)
- break;
- start_block += endcount;
- j = 0;
- }
- xlog_put_bp(bp);
- return error;
-}
-
-/*
- * This routine is called to blow away any incomplete log writes out
- * in front of the log head. We do this so that we won't become confused
- * if we come up, write only a little bit more, and then crash again.
- * If we leave the partial log records out there, this situation could
- * cause us to think those partial writes are valid blocks since they
- * have the current cycle number. We get rid of them by overwriting them
- * with empty log records with the old cycle number rather than the
- * current one.
- *
- * The tail lsn is passed in rather than taken from
- * the log so that we will not write over the unmount record after a
- * clean unmount in a 512 block log. Doing so would leave the log without
- * any valid log records in it until a new one was written. If we crashed
- * during that time we would not be able to recover.
- */
-STATIC int
-xlog_clear_stale_blocks(
- xlog_t *log,
- xfs_lsn_t tail_lsn)
-{
- int tail_cycle, head_cycle;
- int tail_block, head_block;
- int tail_distance, max_distance;
- int distance;
- int error;
-
- tail_cycle = CYCLE_LSN(tail_lsn);
- tail_block = BLOCK_LSN(tail_lsn);
- head_cycle = log->l_curr_cycle;
- head_block = log->l_curr_block;
-
- /*
- * Figure out the distance between the new head of the log
- * and the tail. We want to write over any blocks beyond the
- * head that we may have written just before the crash, but
- * we don't want to overwrite the tail of the log.
- */
- if (head_cycle == tail_cycle) {
- /*
- * The tail is behind the head in the physical log,
- * so the distance from the head to the tail is the
- * distance from the head to the end of the log plus
- * the distance from the beginning of the log to the
- * tail.
- */
- if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
- XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- tail_distance = tail_block + (log->l_logBBsize - head_block);
- } else {
- /*
- * The head is behind the tail in the physical log,
- * so the distance from the head to the tail is just
- * the tail block minus the head block.
- */
- if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
- XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- tail_distance = tail_block - head_block;
- }
-
- /*
- * If the head is right up against the tail, we can't clear
- * anything.
- */
- if (tail_distance <= 0) {
- ASSERT(tail_distance == 0);
- return 0;
- }
-
- max_distance = XLOG_TOTAL_REC_SHIFT(log);
- /*
- * Take the smaller of the maximum amount of outstanding I/O
- * we could have and the distance to the tail to clear out.
- * We take the smaller so that we don't overwrite the tail and
- * we don't waste all day writing from the head to the tail
- * for no reason.
- */
- max_distance = MIN(max_distance, tail_distance);
-
- if ((head_block + max_distance) <= log->l_logBBsize) {
- /*
- * We can stomp all the blocks we need to without
- * wrapping around the end of the log. Just do it
- * in a single write. Use the cycle number of the
- * current cycle minus one so that the log will look like:
- * n ... | n - 1 ...
- */
- error = xlog_write_log_records(log, (head_cycle - 1),
- head_block, max_distance, tail_cycle,
- tail_block);
- if (error)
- return error;
- } else {
- /*
- * We need to wrap around the end of the physical log in
- * order to clear all the blocks. Do it in two separate
- * I/Os. The first write should be from the head to the
- * end of the physical log, and it should use the current
- * cycle number minus one just like above.
- */
- distance = log->l_logBBsize - head_block;
- error = xlog_write_log_records(log, (head_cycle - 1),
- head_block, distance, tail_cycle,
- tail_block);
-
- if (error)
- return error;
-
- /*
- * Now write the blocks at the start of the physical log.
- * This writes the remainder of the blocks we want to clear.
- * It uses the current cycle number since we're now on the
- * same cycle as the head so that we get:
- * n ... n ... | n - 1 ...
- * ^^^^^ blocks we're writing
- */
- distance = max_distance - (log->l_logBBsize - head_block);
- error = xlog_write_log_records(log, head_cycle, 0, distance,
- tail_cycle, tail_block);
- if (error)
- return error;
- }
-
- return 0;
-}
-
-/******************************************************************************
- *
- * Log recover routines
- *
- ******************************************************************************
- */
-
-STATIC xlog_recover_t *
-xlog_recover_find_tid(
- xlog_recover_t *q,
- xlog_tid_t tid)
-{
- xlog_recover_t *p = q;
-
- while (p != NULL) {
- if (p->r_log_tid == tid)
- break;
- p = p->r_next;
- }
- return p;
-}
-
-STATIC void
-xlog_recover_put_hashq(
- xlog_recover_t **q,
- xlog_recover_t *trans)
-{
- trans->r_next = *q;
- *q = trans;
-}
-
-STATIC void
-xlog_recover_add_item(
- xlog_recover_item_t **itemq)
-{
- xlog_recover_item_t *item;
-
- item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
- xlog_recover_insert_item_backq(itemq, item);
-}
-
-STATIC int
-xlog_recover_add_to_cont_trans(
- xlog_recover_t *trans,
- xfs_caddr_t dp,
- int len)
-{
- xlog_recover_item_t *item;
- xfs_caddr_t ptr, old_ptr;
- int old_len;
-
- item = trans->r_itemq;
- if (item == 0) {
- /* finish copying rest of trans header */
- xlog_recover_add_item(&trans->r_itemq);
- ptr = (xfs_caddr_t) &trans->r_theader +
- sizeof(xfs_trans_header_t) - len;
- memcpy(ptr, dp, len); /* d, s, l */
- return 0;
- }
- item = item->ri_prev;
-
- old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
- old_len = item->ri_buf[item->ri_cnt-1].i_len;
-
- ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
- memcpy(&ptr[old_len], dp, len); /* d, s, l */
- item->ri_buf[item->ri_cnt-1].i_len += len;
- item->ri_buf[item->ri_cnt-1].i_addr = ptr;
- return 0;
-}
-
-/*
- * The next region to add is the start of a new region. It could be
- * a whole region or it could be the first part of a new region. Because
- * of this, the assumption here is that the type and size fields of all
- * format structures fit into the first 32 bits of the structure.
- *
- * This works because all regions must be 32 bit aligned. Therefore, we
- * either have both fields or we have neither field. In the case we have
- * neither field, the data part of the region is zero length. We only have
- * a log_op_header and can throw away the header since a new one will appear
- * later. If we have at least 4 bytes, then we can determine how many regions
- * will appear in the current log item.
- */
-STATIC int
-xlog_recover_add_to_trans(
- xlog_recover_t *trans,
- xfs_caddr_t dp,
- int len)
-{
- xfs_inode_log_format_t *in_f; /* any will do */
- xlog_recover_item_t *item;
- xfs_caddr_t ptr;
-
- if (!len)
- return 0;
- item = trans->r_itemq;
- if (item == 0) {
- ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
- if (len == sizeof(xfs_trans_header_t))
- xlog_recover_add_item(&trans->r_itemq);
- memcpy(&trans->r_theader, dp, len); /* d, s, l */
- return 0;
- }
-
- ptr = kmem_alloc(len, KM_SLEEP);
- memcpy(ptr, dp, len);
- in_f = (xfs_inode_log_format_t *)ptr;
-
- if (item->ri_prev->ri_total != 0 &&
- item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
- xlog_recover_add_item(&trans->r_itemq);
- }
- item = trans->r_itemq;
- item = item->ri_prev;
-
- if (item->ri_total == 0) { /* first region to be added */
- item->ri_total = in_f->ilf_size;
- ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
- item->ri_buf = kmem_zalloc((item->ri_total *
- sizeof(xfs_log_iovec_t)), KM_SLEEP);
- }
- ASSERT(item->ri_total > item->ri_cnt);
- /* Description region is ri_buf[0] */
- item->ri_buf[item->ri_cnt].i_addr = ptr;
- item->ri_buf[item->ri_cnt].i_len = len;
- item->ri_cnt++;
- return 0;
-}
-
-STATIC void
-xlog_recover_new_tid(
- xlog_recover_t **q,
- xlog_tid_t tid,
- xfs_lsn_t lsn)
-{
- xlog_recover_t *trans;
-
- trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
- trans->r_log_tid = tid;
- trans->r_lsn = lsn;
- xlog_recover_put_hashq(q, trans);
-}
-
-STATIC int
-xlog_recover_unlink_tid(
- xlog_recover_t **q,
- xlog_recover_t *trans)
-{
- xlog_recover_t *tp;
- int found = 0;
-
- ASSERT(trans != 0);
- if (trans == *q) {
- *q = (*q)->r_next;
- } else {
- tp = *q;
- while (tp != 0) {
- if (tp->r_next == trans) {
- found = 1;
- break;
- }
- tp = tp->r_next;
- }
- if (!found) {
- xlog_warn(
- "XFS: xlog_recover_unlink_tid: trans not found");
- ASSERT(0);
- return XFS_ERROR(EIO);
- }
- tp->r_next = tp->r_next->r_next;
- }
- return 0;
-}
-
-STATIC void
-xlog_recover_insert_item_backq(
- xlog_recover_item_t **q,
- xlog_recover_item_t *item)
-{
- if (*q == 0) {
- item->ri_prev = item->ri_next = item;
- *q = item;
- } else {
- item->ri_next = *q;
- item->ri_prev = (*q)->ri_prev;
- (*q)->ri_prev = item;
- item->ri_prev->ri_next = item;
- }
-}
-
-STATIC void
-xlog_recover_insert_item_frontq(
- xlog_recover_item_t **q,
- xlog_recover_item_t *item)
-{
- xlog_recover_insert_item_backq(q, item);
- *q = item;
-}
-
-STATIC int
-xlog_recover_reorder_trans(
- xlog_t *log,
- xlog_recover_t *trans)
-{
- xlog_recover_item_t *first_item, *itemq, *itemq_next;
- xfs_buf_log_format_t *buf_f;
- xfs_buf_log_format_v1_t *obuf_f;
- ushort flags = 0;
-
- first_item = itemq = trans->r_itemq;
- trans->r_itemq = NULL;
- do {
- itemq_next = itemq->ri_next;
- buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
- switch (ITEM_TYPE(itemq)) {
- case XFS_LI_BUF:
- flags = buf_f->blf_flags;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- flags = obuf_f->blf_flags;
- break;
- }
-
- switch (ITEM_TYPE(itemq)) {
- case XFS_LI_BUF:
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- if (!(flags & XFS_BLI_CANCEL)) {
- xlog_recover_insert_item_frontq(&trans->r_itemq,
- itemq);
- break;
- }
- case XFS_LI_INODE:
- case XFS_LI_6_1_INODE:
- case XFS_LI_5_3_INODE:
- case XFS_LI_DQUOT:
- case XFS_LI_QUOTAOFF:
- case XFS_LI_EFD:
- case XFS_LI_EFI:
- xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
- break;
- default:
- xlog_warn(
- "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
- ASSERT(0);
- return XFS_ERROR(EIO);
- }
- itemq = itemq_next;
- } while (first_item != itemq);
- return 0;
-}
-
-/*
- * Build up the table of buf cancel records so that we don't replay
- * cancelled data in the second pass. For buffer records that are
- * not cancel records, there is nothing to do here so we just return.
- *
- * If we get a cancel record which is already in the table, this indicates
- * that the buffer was cancelled multiple times. In order to ensure
- * that during pass 2 we keep the record in the table until we reach its
- * last occurrence in the log, we keep a reference count in the cancel
- * record in the table to tell us how many times we expect to see this
- * record during the second pass.
- */
-STATIC void
-xlog_recover_do_buffer_pass1(
- xlog_t *log,
- xfs_buf_log_format_t *buf_f)
-{
- xfs_buf_cancel_t *bcp;
- xfs_buf_cancel_t *nextp;
- xfs_buf_cancel_t *prevp;
- xfs_buf_cancel_t **bucket;
- xfs_buf_log_format_v1_t *obuf_f;
- xfs_daddr_t blkno = 0;
- uint len = 0;
- ushort flags = 0;
-
- switch (buf_f->blf_type) {
- case XFS_LI_BUF:
- blkno = buf_f->blf_blkno;
- len = buf_f->blf_len;
- flags = buf_f->blf_flags;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- blkno = (xfs_daddr_t) obuf_f->blf_blkno;
- len = obuf_f->blf_len;
- flags = obuf_f->blf_flags;
- break;
- }
-
- /*
- * If this isn't a cancel buffer item, then just return.
- */
- if (!(flags & XFS_BLI_CANCEL))
- return;
-
- /*
- * Insert an xfs_buf_cancel record into the hash table of
- * them. If there is already an identical record, bump
- * its reference count.
- */
- bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
- XLOG_BC_TABLE_SIZE];
- /*
- * If the hash bucket is empty then just insert a new record into
- * the bucket.
- */
- if (*bucket == NULL) {
- bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
- KM_SLEEP);
- bcp->bc_blkno = blkno;
- bcp->bc_len = len;
- bcp->bc_refcount = 1;
- bcp->bc_next = NULL;
- *bucket = bcp;
- return;
- }
-
- /*
- * The hash bucket is not empty, so search for duplicates of our
- * record. If we find one them just bump its refcount. If not
- * then add us at the end of the list.
- */
- prevp = NULL;
- nextp = *bucket;
- while (nextp != NULL) {
- if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
- nextp->bc_refcount++;
- return;
- }
- prevp = nextp;
- nextp = nextp->bc_next;
- }
- ASSERT(prevp != NULL);
- bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
- KM_SLEEP);
- bcp->bc_blkno = blkno;
- bcp->bc_len = len;
- bcp->bc_refcount = 1;
- bcp->bc_next = NULL;
- prevp->bc_next = bcp;
-}
-
-/*
- * Check to see whether the buffer being recovered has a corresponding
- * entry in the buffer cancel record table. If it does then return 1
- * so that it will be cancelled, otherwise return 0. If the buffer is
- * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
- * the refcount on the entry in the table and remove it from the table
- * if this is the last reference.
- *
- * We remove the cancel record from the table when we encounter its
- * last occurrence in the log so that if the same buffer is re-used
- * again after its last cancellation we actually replay the changes
- * made at that point.
- */
-STATIC int
-xlog_check_buffer_cancelled(
- xlog_t *log,
- xfs_daddr_t blkno,
- uint len,
- ushort flags)
-{
- xfs_buf_cancel_t *bcp;
- xfs_buf_cancel_t *prevp;
- xfs_buf_cancel_t **bucket;
-
- if (log->l_buf_cancel_table == NULL) {
- /*
- * There is nothing in the table built in pass one,
- * so this buffer must not be cancelled.
- */
- ASSERT(!(flags & XFS_BLI_CANCEL));
- return 0;
- }
-
- bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
- XLOG_BC_TABLE_SIZE];
- bcp = *bucket;
- if (bcp == NULL) {
- /*
- * There is no corresponding entry in the table built
- * in pass one, so this buffer has not been cancelled.
- */
- ASSERT(!(flags & XFS_BLI_CANCEL));
- return 0;
- }
-
- /*
- * Search for an entry in the buffer cancel table that
- * matches our buffer.
- */
- prevp = NULL;
- while (bcp != NULL) {
- if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
- /*
- * We've go a match, so return 1 so that the
- * recovery of this buffer is cancelled.
- * If this buffer is actually a buffer cancel
- * log item, then decrement the refcount on the
- * one in the table and remove it if this is the
- * last reference.
- */
- if (flags & XFS_BLI_CANCEL) {
- bcp->bc_refcount--;
- if (bcp->bc_refcount == 0) {
- if (prevp == NULL) {
- *bucket = bcp->bc_next;
- } else {
- prevp->bc_next = bcp->bc_next;
- }
- kmem_free(bcp,
- sizeof(xfs_buf_cancel_t));
- }
- }
- return 1;
- }
- prevp = bcp;
- bcp = bcp->bc_next;
- }
- /*
- * We didn't find a corresponding entry in the table, so
- * return 0 so that the buffer is NOT cancelled.
- */
- ASSERT(!(flags & XFS_BLI_CANCEL));
- return 0;
-}
-
-STATIC int
-xlog_recover_do_buffer_pass2(
- xlog_t *log,
- xfs_buf_log_format_t *buf_f)
-{
- xfs_buf_log_format_v1_t *obuf_f;
- xfs_daddr_t blkno = 0;
- ushort flags = 0;
- uint len = 0;
-
- switch (buf_f->blf_type) {
- case XFS_LI_BUF:
- blkno = buf_f->blf_blkno;
- flags = buf_f->blf_flags;
- len = buf_f->blf_len;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- blkno = (xfs_daddr_t) obuf_f->blf_blkno;
- flags = obuf_f->blf_flags;
- len = (xfs_daddr_t) obuf_f->blf_len;
- break;
- }
-
- return xlog_check_buffer_cancelled(log, blkno, len, flags);
-}
-
-/*
- * Perform recovery for a buffer full of inodes. In these buffers,
- * the only data which should be recovered is that which corresponds
- * to the di_next_unlinked pointers in the on disk inode structures.
- * The rest of the data for the inodes is always logged through the
- * inodes themselves rather than the inode buffer and is recovered
- * in xlog_recover_do_inode_trans().
- *
- * The only time when buffers full of inodes are fully recovered is
- * when the buffer is full of newly allocated inodes. In this case
- * the buffer will not be marked as an inode buffer and so will be
- * sent to xlog_recover_do_reg_buffer() below during recovery.
- */
-STATIC int
-xlog_recover_do_inode_buffer(
- xfs_mount_t *mp,
- xlog_recover_item_t *item,
- xfs_buf_t *bp,
- xfs_buf_log_format_t *buf_f)
-{
- int i;
- int item_index;
- int bit;
- int nbits;
- int reg_buf_offset;
- int reg_buf_bytes;
- int next_unlinked_offset;
- int inodes_per_buf;
- xfs_agino_t *logged_nextp;
- xfs_agino_t *buffer_nextp;
- xfs_buf_log_format_v1_t *obuf_f;
- unsigned int *data_map = NULL;
- unsigned int map_size = 0;
-
- switch (buf_f->blf_type) {
- case XFS_LI_BUF:
- data_map = buf_f->blf_data_map;
- map_size = buf_f->blf_map_size;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- data_map = obuf_f->blf_data_map;
- map_size = obuf_f->blf_map_size;
- break;
- }
- /*
- * Set the variables corresponding to the current region to
- * 0 so that we'll initialize them on the first pass through
- * the loop.
- */
- reg_buf_offset = 0;
- reg_buf_bytes = 0;
- bit = 0;
- nbits = 0;
- item_index = 0;
- inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
- for (i = 0; i < inodes_per_buf; i++) {
- next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
- offsetof(xfs_dinode_t, di_next_unlinked);
-
- while (next_unlinked_offset >=
- (reg_buf_offset + reg_buf_bytes)) {
- /*
- * The next di_next_unlinked field is beyond
- * the current logged region. Find the next
- * logged region that contains or is beyond
- * the current di_next_unlinked field.
- */
- bit += nbits;
- bit = xfs_next_bit(data_map, map_size, bit);
-
- /*
- * If there are no more logged regions in the
- * buffer, then we're done.
- */
- if (bit == -1) {
- return 0;
- }
-
- nbits = xfs_contig_bits(data_map, map_size,
- bit);
- ASSERT(nbits > 0);
- reg_buf_offset = bit << XFS_BLI_SHIFT;
- reg_buf_bytes = nbits << XFS_BLI_SHIFT;
- item_index++;
- }
-
- /*
- * If the current logged region starts after the current
- * di_next_unlinked field, then move on to the next
- * di_next_unlinked field.
- */
- if (next_unlinked_offset < reg_buf_offset) {
- continue;
- }
-
- ASSERT(item->ri_buf[item_index].i_addr != NULL);
- ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
- ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
-
- /*
- * The current logged region contains a copy of the
- * current di_next_unlinked field. Extract its value
- * and copy it to the buffer copy.
- */
- logged_nextp = (xfs_agino_t *)
- ((char *)(item->ri_buf[item_index].i_addr) +
- (next_unlinked_offset - reg_buf_offset));
- if (unlikely(*logged_nextp == 0)) {
- xfs_fs_cmn_err(CE_ALERT, mp,
- "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
- item, bp);
- XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
- XFS_ERRLEVEL_LOW, mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
-
- buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
- next_unlinked_offset);
- INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
- }
-
- return 0;
-}
-
-/*
- * Perform a 'normal' buffer recovery. Each logged region of the
- * buffer should be copied over the corresponding region in the
- * given buffer. The bitmap in the buf log format structure indicates
- * where to place the logged data.
- */
-/*ARGSUSED*/
-STATIC void
-xlog_recover_do_reg_buffer(
- xfs_mount_t *mp,
- xlog_recover_item_t *item,
- xfs_buf_t *bp,
- xfs_buf_log_format_t *buf_f)
-{
- int i;
- int bit;
- int nbits;
- xfs_buf_log_format_v1_t *obuf_f;
- unsigned int *data_map = NULL;
- unsigned int map_size = 0;
- int error;
-
- switch (buf_f->blf_type) {
- case XFS_LI_BUF:
- data_map = buf_f->blf_data_map;
- map_size = buf_f->blf_map_size;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- data_map = obuf_f->blf_data_map;
- map_size = obuf_f->blf_map_size;
- break;
- }
- bit = 0;
- i = 1; /* 0 is the buf format structure */
- while (1) {
- bit = xfs_next_bit(data_map, map_size, bit);
- if (bit == -1)
- break;
- nbits = xfs_contig_bits(data_map, map_size, bit);
- ASSERT(nbits > 0);
- ASSERT(item->ri_buf[i].i_addr != 0);
- ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
- ASSERT(XFS_BUF_COUNT(bp) >=
- ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
-
- /*
- * Do a sanity check if this is a dquot buffer. Just checking
- * the first dquot in the buffer should do. XXXThis is
- * probably a good thing to do for other buf types also.
- */
- error = 0;
- if (buf_f->blf_flags &
- (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
- error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
- item->ri_buf[i].i_addr,
- -1, 0, XFS_QMOPT_DOWARN,
- "dquot_buf_recover");
- }
- if (!error)
- memcpy(xfs_buf_offset(bp,
- (uint)bit << XFS_BLI_SHIFT), /* dest */
- item->ri_buf[i].i_addr, /* source */
- nbits<<XFS_BLI_SHIFT); /* length */
- i++;
- bit += nbits;
- }
-
- /* Shouldn't be any more regions */
- ASSERT(i == item->ri_total);
-}
-
-/*
- * Do some primitive error checking on ondisk dquot data structures.
- */
-int
-xfs_qm_dqcheck(
- xfs_disk_dquot_t *ddq,
- xfs_dqid_t id,
- uint type, /* used only when IO_dorepair is true */
- uint flags,
- char *str)
-{
- xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
- int errs = 0;
-
- /*
- * We can encounter an uninitialized dquot buffer for 2 reasons:
- * 1. If we crash while deleting the quotainode(s), and those blks got
- * used for user data. This is because we take the path of regular
- * file deletion; however, the size field of quotainodes is never
- * updated, so all the tricks that we play in itruncate_finish
- * don't quite matter.
- *
- * 2. We don't play the quota buffers when there's a quotaoff logitem.
- * But the allocation will be replayed so we'll end up with an
- * uninitialized quota block.
- *
- * This is all fine; things are still consistent, and we haven't lost
- * any quota information. Just don't complain about bad dquot blks.
- */
- if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
- str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
- errs++;
- }
- if (ddq->d_version != XFS_DQUOT_VERSION) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
- str, id, ddq->d_version, XFS_DQUOT_VERSION);
- errs++;
- }
-
- if (ddq->d_flags != XFS_DQ_USER &&
- ddq->d_flags != XFS_DQ_PROJ &&
- ddq->d_flags != XFS_DQ_GROUP) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
- str, id, ddq->d_flags);
- errs++;
- }
-
- if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : ondisk-dquot 0x%p, ID mismatch: "
- "0x%x expected, found id 0x%x",
- str, ddq, id, be32_to_cpu(ddq->d_id));
- errs++;
- }
-
- if (!errs && ddq->d_id) {
- if (ddq->d_blk_softlimit &&
- be64_to_cpu(ddq->d_bcount) >=
- be64_to_cpu(ddq->d_blk_softlimit)) {
- if (!ddq->d_btimer) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : Dquot ID 0x%x (0x%p) "
- "BLK TIMER NOT STARTED",
- str, (int)be32_to_cpu(ddq->d_id), ddq);
- errs++;
- }
- }
- if (ddq->d_ino_softlimit &&
- be64_to_cpu(ddq->d_icount) >=
- be64_to_cpu(ddq->d_ino_softlimit)) {
- if (!ddq->d_itimer) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : Dquot ID 0x%x (0x%p) "
- "INODE TIMER NOT STARTED",
- str, (int)be32_to_cpu(ddq->d_id), ddq);
- errs++;
- }
- }
- if (ddq->d_rtb_softlimit &&
- be64_to_cpu(ddq->d_rtbcount) >=
- be64_to_cpu(ddq->d_rtb_softlimit)) {
- if (!ddq->d_rtbtimer) {
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_ALERT,
- "%s : Dquot ID 0x%x (0x%p) "
- "RTBLK TIMER NOT STARTED",
- str, (int)be32_to_cpu(ddq->d_id), ddq);
- errs++;
- }
- }
- }
-
- if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
- return errs;
-
- if (flags & XFS_QMOPT_DOWARN)
- cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
-
- /*
- * Typically, a repair is only requested by quotacheck.
- */
- ASSERT(id != -1);
- ASSERT(flags & XFS_QMOPT_DQREPAIR);
- memset(d, 0, sizeof(xfs_dqblk_t));
-
- d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
- d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
- d->dd_diskdq.d_flags = type;
- d->dd_diskdq.d_id = cpu_to_be32(id);
-
- return errs;
-}
-
-/*
- * Perform a dquot buffer recovery.
- * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
- * (ie. USR or GRP), then just toss this buffer away; don't recover it.
- * Else, treat it as a regular buffer and do recovery.
- */
-STATIC void
-xlog_recover_do_dquot_buffer(
- xfs_mount_t *mp,
- xlog_t *log,
- xlog_recover_item_t *item,
- xfs_buf_t *bp,
- xfs_buf_log_format_t *buf_f)
-{
- uint type;
-
- /*
- * Filesystems are required to send in quota flags at mount time.
- */
- if (mp->m_qflags == 0) {
- return;
- }
-
- type = 0;
- if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
- type |= XFS_DQ_USER;
- if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
- type |= XFS_DQ_PROJ;
- if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
- type |= XFS_DQ_GROUP;
- /*
- * This type of quotas was turned off, so ignore this buffer
- */
- if (log->l_quotaoffs_flag & type)
- return;
-
- xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
-}
-
-/*
- * This routine replays a modification made to a buffer at runtime.
- * There are actually two types of buffer, regular and inode, which
- * are handled differently. Inode buffers are handled differently
- * in that we only recover a specific set of data from them, namely
- * the inode di_next_unlinked fields. This is because all other inode
- * data is actually logged via inode records and any data we replay
- * here which overlaps that may be stale.
- *
- * When meta-data buffers are freed at run time we log a buffer item
- * with the XFS_BLI_CANCEL bit set to indicate that previous copies
- * of the buffer in the log should not be replayed at recovery time.
- * This is so that if the blocks covered by the buffer are reused for
- * file data before we crash we don't end up replaying old, freed
- * meta-data into a user's file.
- *
- * To handle the cancellation of buffer log items, we make two passes
- * over the log during recovery. During the first we build a table of
- * those buffers which have been cancelled, and during the second we
- * only replay those buffers which do not have corresponding cancel
- * records in the table. See xlog_recover_do_buffer_pass[1,2] above
- * for more details on the implementation of the table of cancel records.
- */
-STATIC int
-xlog_recover_do_buffer_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- int pass)
-{
- xfs_buf_log_format_t *buf_f;
- xfs_buf_log_format_v1_t *obuf_f;
- xfs_mount_t *mp;
- xfs_buf_t *bp;
- int error;
- int cancel;
- xfs_daddr_t blkno;
- int len;
- ushort flags;
-
- buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
-
- if (pass == XLOG_RECOVER_PASS1) {
- /*
- * In this pass we're only looking for buf items
- * with the XFS_BLI_CANCEL bit set.
- */
- xlog_recover_do_buffer_pass1(log, buf_f);
- return 0;
- } else {
- /*
- * In this pass we want to recover all the buffers
- * which have not been cancelled and are not
- * cancellation buffers themselves. The routine
- * we call here will tell us whether or not to
- * continue with the replay of this buffer.
- */
- cancel = xlog_recover_do_buffer_pass2(log, buf_f);
- if (cancel) {
- return 0;
- }
- }
- switch (buf_f->blf_type) {
- case XFS_LI_BUF:
- blkno = buf_f->blf_blkno;
- len = buf_f->blf_len;
- flags = buf_f->blf_flags;
- break;
- case XFS_LI_6_1_BUF:
- case XFS_LI_5_3_BUF:
- obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
- blkno = obuf_f->blf_blkno;
- len = obuf_f->blf_len;
- flags = obuf_f->blf_flags;
- break;
- default:
- xfs_fs_cmn_err(CE_ALERT, log->l_mp,
- "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
- buf_f->blf_type, log->l_mp->m_logname ?
- log->l_mp->m_logname : "internal");
- XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
-
- mp = log->l_mp;
- if (flags & XFS_BLI_INODE_BUF) {
- bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
- XFS_BUF_LOCK);
- } else {
- bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
- }
- if (XFS_BUF_ISERROR(bp)) {
- xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
- bp, blkno);
- error = XFS_BUF_GETERROR(bp);
- xfs_buf_relse(bp);
- return error;
- }
-
- error = 0;
- if (flags & XFS_BLI_INODE_BUF) {
- error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
- } else if (flags &
- (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
- xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
- } else {
- xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
- }
- if (error)
- return XFS_ERROR(error);
-
- /*
- * Perform delayed write on the buffer. Asynchronous writes will be
- * slower when taking into account all the buffers to be flushed.
- *
- * Also make sure that only inode buffers with good sizes stay in
- * the buffer cache. The kernel moves inodes in buffers of 1 block
- * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
- * buffers in the log can be a different size if the log was generated
- * by an older kernel using unclustered inode buffers or a newer kernel
- * running with a different inode cluster size. Regardless, if the
- * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
- * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
- * the buffer out of the buffer cache so that the buffer won't
- * overlap with future reads of those inodes.
- */
- if (XFS_DINODE_MAGIC ==
- INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
- (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
- (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
- XFS_BUF_STALE(bp);
- error = xfs_bwrite(mp, bp);
- } else {
- ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
- XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
- XFS_BUF_SET_FSPRIVATE(bp, mp);
- XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
- xfs_bdwrite(mp, bp);
- }
-
- return (error);
-}
-
-STATIC int
-xlog_recover_do_inode_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- int pass)
-{
- xfs_inode_log_format_t *in_f;
- xfs_mount_t *mp;
- xfs_buf_t *bp;
- xfs_imap_t imap;
- xfs_dinode_t *dip;
- xfs_ino_t ino;
- int len;
- xfs_caddr_t src;
- xfs_caddr_t dest;
- int error;
- int attr_index;
- uint fields;
- xfs_dinode_core_t *dicp;
-
- if (pass == XLOG_RECOVER_PASS1) {
- return 0;
- }
-
- in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
- ino = in_f->ilf_ino;
- mp = log->l_mp;
- if (ITEM_TYPE(item) == XFS_LI_INODE) {
- imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
- imap.im_len = in_f->ilf_len;
- imap.im_boffset = in_f->ilf_boffset;
- } else {
- /*
- * It's an old inode format record. We don't know where
- * its cluster is located on disk, and we can't allow
- * xfs_imap() to figure it out because the inode btrees
- * are not ready to be used. Therefore do not pass the
- * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
- * us only the single block in which the inode lives
- * rather than its cluster, so we must make sure to
- * invalidate the buffer when we write it out below.
- */
- imap.im_blkno = 0;
- xfs_imap(log->l_mp, NULL, ino, &imap, 0);
- }
-
- /*
- * Inode buffers can be freed, look out for it,
- * and do not replay the inode.
- */
- if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
- return 0;
-
- bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
- XFS_BUF_LOCK);
- if (XFS_BUF_ISERROR(bp)) {
- xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
- bp, imap.im_blkno);
- error = XFS_BUF_GETERROR(bp);
- xfs_buf_relse(bp);
- return error;
- }
- error = 0;
- ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
- dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
-
- /*
- * Make sure the place we're flushing out to really looks
- * like an inode!
- */
- if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
- dip, bp, ino);
- XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
- XFS_ERRLEVEL_LOW, mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
- if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
- item, ino);
- XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
- XFS_ERRLEVEL_LOW, mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
-
- /* Skip replay when the on disk inode is newer than the log one */
- if (dicp->di_flushiter <
- INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
- /*
- * Deal with the wrap case, DI_MAX_FLUSH is less
- * than smaller numbers
- */
- if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
- == DI_MAX_FLUSH) &&
- (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
- /* do nothing */
- } else {
- xfs_buf_relse(bp);
- return 0;
- }
- }
- /* Take the opportunity to reset the flush iteration count */
- dicp->di_flushiter = 0;
-
- if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
- if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
- (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
- XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
- XFS_ERRLEVEL_LOW, mp, dicp);
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
- item, dip, bp, ino);
- return XFS_ERROR(EFSCORRUPTED);
- }
- } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
- if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
- (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
- (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
- XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
- XFS_ERRLEVEL_LOW, mp, dicp);
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
- item, dip, bp, ino);
- return XFS_ERROR(EFSCORRUPTED);
- }
- }
- if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
- XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
- XFS_ERRLEVEL_LOW, mp, dicp);
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
- item, dip, bp, ino,
- dicp->di_nextents + dicp->di_anextents,
- dicp->di_nblocks);
- return XFS_ERROR(EFSCORRUPTED);
- }
- if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
- XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
- XFS_ERRLEVEL_LOW, mp, dicp);
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
- item, dip, bp, ino, dicp->di_forkoff);
- return XFS_ERROR(EFSCORRUPTED);
- }
- if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
- XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
- XFS_ERRLEVEL_LOW, mp, dicp);
- xfs_buf_relse(bp);
- xfs_fs_cmn_err(CE_ALERT, mp,
- "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
- item->ri_buf[1].i_len, item);
- return XFS_ERROR(EFSCORRUPTED);
- }
-
- /* The core is in in-core format */
- xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
- (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
-
- /* the rest is in on-disk format */
- if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
- memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
- item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
- item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
- }
-
- fields = in_f->ilf_fields;
- switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
- case XFS_ILOG_DEV:
- INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
-
- break;
- case XFS_ILOG_UUID:
- dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
- break;
- }
-
- if (in_f->ilf_size == 2)
- goto write_inode_buffer;
- len = item->ri_buf[2].i_len;
- src = item->ri_buf[2].i_addr;
- ASSERT(in_f->ilf_size <= 4);
- ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
- ASSERT(!(fields & XFS_ILOG_DFORK) ||
- (len == in_f->ilf_dsize));
-
- switch (fields & XFS_ILOG_DFORK) {
- case XFS_ILOG_DDATA:
- case XFS_ILOG_DEXT:
- memcpy(&dip->di_u, src, len);
- break;
-
- case XFS_ILOG_DBROOT:
- xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
- &(dip->di_u.di_bmbt),
- XFS_DFORK_DSIZE(dip, mp));
- break;
-
- default:
- /*
- * There are no data fork flags set.
- */
- ASSERT((fields & XFS_ILOG_DFORK) == 0);
- break;
- }
-
- /*
- * If we logged any attribute data, recover it. There may or
- * may not have been any other non-core data logged in this
- * transaction.
- */
- if (in_f->ilf_fields & XFS_ILOG_AFORK) {
- if (in_f->ilf_fields & XFS_ILOG_DFORK) {
- attr_index = 3;
- } else {
- attr_index = 2;
- }
- len = item->ri_buf[attr_index].i_len;
- src = item->ri_buf[attr_index].i_addr;
- ASSERT(len == in_f->ilf_asize);
-
- switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
- case XFS_ILOG_ADATA:
- case XFS_ILOG_AEXT:
- dest = XFS_DFORK_APTR(dip);
- ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
- memcpy(dest, src, len);
- break;
-
- case XFS_ILOG_ABROOT:
- dest = XFS_DFORK_APTR(dip);
- xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
- (xfs_bmdr_block_t*)dest,
- XFS_DFORK_ASIZE(dip, mp));
- break;
-
- default:
- xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
- ASSERT(0);
- xfs_buf_relse(bp);
- return XFS_ERROR(EIO);
- }
- }
-
-write_inode_buffer:
- if (ITEM_TYPE(item) == XFS_LI_INODE) {
- ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
- XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
- XFS_BUF_SET_FSPRIVATE(bp, mp);
- XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
- xfs_bdwrite(mp, bp);
- } else {
- XFS_BUF_STALE(bp);
- error = xfs_bwrite(mp, bp);
- }
-
- return (error);
-}
-
-/*
- * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
- * structure, so that we know not to do any dquot item or dquot buffer recovery,
- * of that type.
- */
-STATIC int
-xlog_recover_do_quotaoff_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- int pass)
-{
- xfs_qoff_logformat_t *qoff_f;
-
- if (pass == XLOG_RECOVER_PASS2) {
- return (0);
- }
-
- qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
- ASSERT(qoff_f);
-
- /*
- * The logitem format's flag tells us if this was user quotaoff,
- * group/project quotaoff or both.
- */
- if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
- log->l_quotaoffs_flag |= XFS_DQ_USER;
- if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
- log->l_quotaoffs_flag |= XFS_DQ_PROJ;
- if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
- log->l_quotaoffs_flag |= XFS_DQ_GROUP;
-
- return (0);
-}
-
-/*
- * Recover a dquot record
- */
-STATIC int
-xlog_recover_do_dquot_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- int pass)
-{
- xfs_mount_t *mp;
- xfs_buf_t *bp;
- struct xfs_disk_dquot *ddq, *recddq;
- int error;
- xfs_dq_logformat_t *dq_f;
- uint type;
-
- if (pass == XLOG_RECOVER_PASS1) {
- return 0;
- }
- mp = log->l_mp;
-
- /*
- * Filesystems are required to send in quota flags at mount time.
- */
- if (mp->m_qflags == 0)
- return (0);
-
- recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
- ASSERT(recddq);
- /*
- * This type of quotas was turned off, so ignore this record.
- */
- type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
- (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
- ASSERT(type);
- if (log->l_quotaoffs_flag & type)
- return (0);
-
- /*
- * At this point we know that quota was _not_ turned off.
- * Since the mount flags are not indicating to us otherwise, this
- * must mean that quota is on, and the dquot needs to be replayed.
- * Remember that we may not have fully recovered the superblock yet,
- * so we can't do the usual trick of looking at the SB quota bits.
- *
- * The other possibility, of course, is that the quota subsystem was
- * removed since the last mount - ENOSYS.
- */
- dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
- ASSERT(dq_f);
- if ((error = xfs_qm_dqcheck(recddq,
- dq_f->qlf_id,
- 0, XFS_QMOPT_DOWARN,
- "xlog_recover_do_dquot_trans (log copy)"))) {
- return XFS_ERROR(EIO);
- }
- ASSERT(dq_f->qlf_len == 1);
-
- error = xfs_read_buf(mp, mp->m_ddev_targp,
- dq_f->qlf_blkno,
- XFS_FSB_TO_BB(mp, dq_f->qlf_len),
- 0, &bp);
- if (error) {
- xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
- bp, dq_f->qlf_blkno);
- return error;
- }
- ASSERT(bp);
- ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
-
- /*
- * At least the magic num portion should be on disk because this
- * was among a chunk of dquots created earlier, and we did some
- * minimal initialization then.
- */
- if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
- "xlog_recover_do_dquot_trans")) {
- xfs_buf_relse(bp);
- return XFS_ERROR(EIO);
- }
-
- memcpy(ddq, recddq, item->ri_buf[1].i_len);
-
- ASSERT(dq_f->qlf_size == 2);
- ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
- XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
- XFS_BUF_SET_FSPRIVATE(bp, mp);
- XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
- xfs_bdwrite(mp, bp);
-
- return (0);
-}
-
-/*
- * This routine is called to create an in-core extent free intent
- * item from the efi format structure which was logged on disk.
- * It allocates an in-core efi, copies the extents from the format
- * structure into it, and adds the efi to the AIL with the given
- * LSN.
- */
-STATIC void
-xlog_recover_do_efi_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- xfs_lsn_t lsn,
- int pass)
-{
- xfs_mount_t *mp;
- xfs_efi_log_item_t *efip;
- xfs_efi_log_format_t *efi_formatp;
- SPLDECL(s);
-
- if (pass == XLOG_RECOVER_PASS1) {
- return;
- }
-
- efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
- ASSERT(item->ri_buf[0].i_len ==
- (sizeof(xfs_efi_log_format_t) +
- ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
-
- mp = log->l_mp;
- efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
- memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
- sizeof(xfs_efi_log_format_t) +
- ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
- efip->efi_next_extent = efi_formatp->efi_nextents;
- efip->efi_flags |= XFS_EFI_COMMITTED;
-
- AIL_LOCK(mp,s);
- /*
- * xfs_trans_update_ail() drops the AIL lock.
- */
- xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
-}
-
-
-/*
- * This routine is called when an efd format structure is found in
- * a committed transaction in the log. It's purpose is to cancel
- * the corresponding efi if it was still in the log. To do this
- * it searches the AIL for the efi with an id equal to that in the
- * efd format structure. If we find it, we remove the efi from the
- * AIL and free it.
- */
-STATIC void
-xlog_recover_do_efd_trans(
- xlog_t *log,
- xlog_recover_item_t *item,
- int pass)
-{
- xfs_mount_t *mp;
- xfs_efd_log_format_t *efd_formatp;
- xfs_efi_log_item_t *efip = NULL;
- xfs_log_item_t *lip;
- int gen;
- __uint64_t efi_id;
- SPLDECL(s);
-
- if (pass == XLOG_RECOVER_PASS1) {
- return;
- }
-
- efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
- ASSERT(item->ri_buf[0].i_len ==
- (sizeof(xfs_efd_log_format_t) +
- ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
- efi_id = efd_formatp->efd_efi_id;
-
- /*
- * Search for the efi with the id in the efd format structure
- * in the AIL.
- */
- mp = log->l_mp;
- AIL_LOCK(mp,s);
- lip = xfs_trans_first_ail(mp, &gen);
- while (lip != NULL) {
- if (lip->li_type == XFS_LI_EFI) {
- efip = (xfs_efi_log_item_t *)lip;
- if (efip->efi_format.efi_id == efi_id) {
- /*
- * xfs_trans_delete_ail() drops the
- * AIL lock.
- */
- xfs_trans_delete_ail(mp, lip, s);
- break;
- }
- }
- lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
- }
-
- /*
- * If we found it, then free it up. If it wasn't there, it
- * must have been overwritten in the log. Oh well.
- */
- if (lip != NULL) {
- xfs_efi_item_free(efip);
- } else {
- AIL_UNLOCK(mp, s);
- }
-}
-
-/*
- * Perform the transaction
- *
- * If the transaction modifies a buffer or inode, do it now. Otherwise,
- * EFIs and EFDs get queued up by adding entries into the AIL for them.
- */
-STATIC int
-xlog_recover_do_trans(
- xlog_t *log,
- xlog_recover_t *trans,
- int pass)
-{
- int error = 0;
- xlog_recover_item_t *item, *first_item;
-
- if ((error = xlog_recover_reorder_trans(log, trans)))
- return error;
- first_item = item = trans->r_itemq;
- do {
- /*
- * we don't need to worry about the block number being
- * truncated in > 1 TB buffers because in user-land,
- * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
- * the blknos will get through the user-mode buffer
- * cache properly. The only bad case is o32 kernels
- * where xfs_daddr_t is 32-bits but mount will warn us
- * off a > 1 TB filesystem before we get here.
- */
- if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
- (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
- (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
- if ((error = xlog_recover_do_buffer_trans(log, item,
- pass)))
- break;
- } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
- (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
- (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
- if ((error = xlog_recover_do_inode_trans(log, item,
- pass)))
- break;
- } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
- xlog_recover_do_efi_trans(log, item, trans->r_lsn,
- pass);
- } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
- xlog_recover_do_efd_trans(log, item, pass);
- } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
- if ((error = xlog_recover_do_dquot_trans(log, item,
- pass)))
- break;
- } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
- if ((error = xlog_recover_do_quotaoff_trans(log, item,
- pass)))
- break;
- } else {
- xlog_warn("XFS: xlog_recover_do_trans");
- ASSERT(0);
- error = XFS_ERROR(EIO);
- break;
- }
- item = item->ri_next;
- } while (first_item != item);
-
- return error;
-}
-
-/*
- * Free up any resources allocated by the transaction
- *
- * Remember that EFIs, EFDs, and IUNLINKs are handled later.
- */
-STATIC void
-xlog_recover_free_trans(
- xlog_recover_t *trans)
-{
- xlog_recover_item_t *first_item, *item, *free_item;
- int i;
-
- item = first_item = trans->r_itemq;
- do {
- free_item = item;
- item = item->ri_next;
- /* Free the regions in the item. */
- for (i = 0; i < free_item->ri_cnt; i++) {
- kmem_free(free_item->ri_buf[i].i_addr,
- free_item->ri_buf[i].i_len);
- }
- /* Free the item itself */
- kmem_free(free_item->ri_buf,
- (free_item->ri_total * sizeof(xfs_log_iovec_t)));
- kmem_free(free_item, sizeof(xlog_recover_item_t));
- } while (first_item != item);
- /* Free the transaction recover structure */
- kmem_free(trans, sizeof(xlog_recover_t));
-}
-
-STATIC int
-xlog_recover_commit_trans(
- xlog_t *log,
- xlog_recover_t **q,
- xlog_recover_t *trans,
- int pass)
-{
- int error;
-
- if ((error = xlog_recover_unlink_tid(q, trans)))
- return error;
- if ((error = xlog_recover_do_trans(log, trans, pass)))
- return error;
- xlog_recover_free_trans(trans); /* no error */
- return 0;
-}
-
-STATIC int
-xlog_recover_unmount_trans(
- xlog_recover_t *trans)
-{
- /* Do nothing now */
- xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
- return 0;
-}
-
-/*
- * There are two valid states of the r_state field. 0 indicates that the
- * transaction structure is in a normal state. We have either seen the
- * start of the transaction or the last operation we added was not a partial
- * operation. If the last operation we added to the transaction was a
- * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
- *
- * NOTE: skip LRs with 0 data length.
- */
-STATIC int
-xlog_recover_process_data(
- xlog_t *log,
- xlog_recover_t *rhash[],
- xlog_rec_header_t *rhead,
- xfs_caddr_t dp,
- int pass)
-{
- xfs_caddr_t lp;
- int num_logops;
- xlog_op_header_t *ohead;
- xlog_recover_t *trans;
- xlog_tid_t tid;
- int error;
- unsigned long hash;
- uint flags;
-
- lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
- num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
-
- /* check the log format matches our own - else we can't recover */
- if (xlog_header_check_recover(log->l_mp, rhead))
- return (XFS_ERROR(EIO));
-
- while ((dp < lp) && num_logops) {
- ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
- ohead = (xlog_op_header_t *)dp;
- dp += sizeof(xlog_op_header_t);
- if (ohead->oh_clientid != XFS_TRANSACTION &&
- ohead->oh_clientid != XFS_LOG) {
- xlog_warn(
- "XFS: xlog_recover_process_data: bad clientid");
- ASSERT(0);
- return (XFS_ERROR(EIO));
- }
- tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
- hash = XLOG_RHASH(tid);
- trans = xlog_recover_find_tid(rhash[hash], tid);
- if (trans == NULL) { /* not found; add new tid */
- if (ohead->oh_flags & XLOG_START_TRANS)
- xlog_recover_new_tid(&rhash[hash], tid,
- INT_GET(rhead->h_lsn, ARCH_CONVERT));
- } else {
- ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
- flags = ohead->oh_flags & ~XLOG_END_TRANS;
- if (flags & XLOG_WAS_CONT_TRANS)
- flags &= ~XLOG_CONTINUE_TRANS;
- switch (flags) {
- case XLOG_COMMIT_TRANS:
- error = xlog_recover_commit_trans(log,
- &rhash[hash], trans, pass);
- break;
- case XLOG_UNMOUNT_TRANS:
- error = xlog_recover_unmount_trans(trans);
- break;
- case XLOG_WAS_CONT_TRANS:
- error = xlog_recover_add_to_cont_trans(trans,
- dp, INT_GET(ohead->oh_len,
- ARCH_CONVERT));
- break;
- case XLOG_START_TRANS:
- xlog_warn(
- "XFS: xlog_recover_process_data: bad transaction");
- ASSERT(0);
- error = XFS_ERROR(EIO);
- break;
- case 0:
- case XLOG_CONTINUE_TRANS:
- error = xlog_recover_add_to_trans(trans,
- dp, INT_GET(ohead->oh_len,
- ARCH_CONVERT));
- break;
- default:
- xlog_warn(
- "XFS: xlog_recover_process_data: bad flag");
- ASSERT(0);
- error = XFS_ERROR(EIO);
- break;
- }
- if (error)
- return error;
- }
- dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
- num_logops--;
- }
- return 0;
-}
-
-/*
- * Process an extent free intent item that was recovered from
- * the log. We need to free the extents that it describes.
- */
-STATIC void
-xlog_recover_process_efi(
- xfs_mount_t *mp,
- xfs_efi_log_item_t *efip)
-{
- xfs_efd_log_item_t *efdp;
- xfs_trans_t *tp;
- int i;
- xfs_extent_t *extp;
- xfs_fsblock_t startblock_fsb;
-
- ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
-
- /*
- * First check the validity of the extents described by the
- * EFI. If any are bad, then assume that all are bad and
- * just toss the EFI.
- */
- for (i = 0; i < efip->efi_format.efi_nextents; i++) {
- extp = &(efip->efi_format.efi_extents[i]);
- startblock_fsb = XFS_BB_TO_FSB(mp,
- XFS_FSB_TO_DADDR(mp, extp->ext_start));
- if ((startblock_fsb == 0) ||
- (extp->ext_len == 0) ||
- (startblock_fsb >= mp->m_sb.sb_dblocks) ||
- (extp->ext_len >= mp->m_sb.sb_agblocks)) {
- /*
- * This will pull the EFI from the AIL and
- * free the memory associated with it.
- */
- xfs_efi_release(efip, efip->efi_format.efi_nextents);
- return;
- }
- }
-
- tp = xfs_trans_alloc(mp, 0);
- xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
- efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
-
- for (i = 0; i < efip->efi_format.efi_nextents; i++) {
- extp = &(efip->efi_format.efi_extents[i]);
- xfs_free_extent(tp, extp->ext_start, extp->ext_len);
- xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
- extp->ext_len);
- }
-
- efip->efi_flags |= XFS_EFI_RECOVERED;
- xfs_trans_commit(tp, 0, NULL);
-}
-
-/*
- * Verify that once we've encountered something other than an EFI
- * in the AIL that there are no more EFIs in the AIL.
- */
-#if defined(DEBUG)
-STATIC void
-xlog_recover_check_ail(
- xfs_mount_t *mp,
- xfs_log_item_t *lip,
- int gen)
-{
- int orig_gen = gen;
-
- do {
- ASSERT(lip->li_type != XFS_LI_EFI);
- lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
- /*
- * The check will be bogus if we restart from the
- * beginning of the AIL, so ASSERT that we don't.
- * We never should since we're holding the AIL lock
- * the entire time.
- */
- ASSERT(gen == orig_gen);
- } while (lip != NULL);
-}
-#endif /* DEBUG */
-
-/*
- * When this is called, all of the EFIs which did not have
- * corresponding EFDs should be in the AIL. What we do now
- * is free the extents associated with each one.
- *
- * Since we process the EFIs in normal transactions, they
- * will be removed at some point after the commit. This prevents
- * us from just walking down the list processing each one.
- * We'll use a flag in the EFI to skip those that we've already
- * processed and use the AIL iteration mechanism's generation
- * count to try to speed this up at least a bit.
- *
- * When we start, we know that the EFIs are the only things in
- * the AIL. As we process them, however, other items are added
- * to the AIL. Since everything added to the AIL must come after
- * everything already in the AIL, we stop processing as soon as
- * we see something other than an EFI in the AIL.
- */
-STATIC void
-xlog_recover_process_efis(
- xlog_t *log)
-{
- xfs_log_item_t *lip;
- xfs_efi_log_item_t *efip;
- int gen;
- xfs_mount_t *mp;
- SPLDECL(s);
-
- mp = log->l_mp;
- AIL_LOCK(mp,s);
-
- lip = xfs_trans_first_ail(mp, &gen);
- while (lip != NULL) {
- /*
- * We're done when we see something other than an EFI.
- */
- if (lip->li_type != XFS_LI_EFI) {
- xlog_recover_check_ail(mp, lip, gen);
- break;
- }
-
- /*
- * Skip EFIs that we've already processed.
- */
- efip = (xfs_efi_log_item_t *)lip;
- if (efip->efi_flags & XFS_EFI_RECOVERED) {
- lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
- continue;
- }
-
- AIL_UNLOCK(mp, s);
- xlog_recover_process_efi(mp, efip);
- AIL_LOCK(mp,s);
- lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
- }
- AIL_UNLOCK(mp, s);
-}
-
-/*
- * This routine performs a transaction to null out a bad inode pointer
- * in an agi unlinked inode hash bucket.
- */
-STATIC void
-xlog_recover_clear_agi_bucket(
- xfs_mount_t *mp,
- xfs_agnumber_t agno,
- int bucket)
-{
- xfs_trans_t *tp;
- xfs_agi_t *agi;
- xfs_buf_t *agibp;
- int offset;
- int error;
-
- tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
- xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
-
- error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
- XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
- XFS_FSS_TO_BB(mp, 1), 0, &agibp);
- if (error) {
- xfs_trans_cancel(tp, XFS_TRANS_ABORT);
- return;
- }
-
- agi = XFS_BUF_TO_AGI(agibp);
- if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
- xfs_trans_cancel(tp, XFS_TRANS_ABORT);
- return;
- }
-
- agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
- offset = offsetof(xfs_agi_t, agi_unlinked) +
- (sizeof(xfs_agino_t) * bucket);
- xfs_trans_log_buf(tp, agibp, offset,
- (offset + sizeof(xfs_agino_t) - 1));
-
- (void) xfs_trans_commit(tp, 0, NULL);
-}
-
-/*
- * xlog_iunlink_recover
- *
- * This is called during recovery to process any inodes which
- * we unlinked but not freed when the system crashed. These
- * inodes will be on the lists in the AGI blocks. What we do
- * here is scan all the AGIs and fully truncate and free any
- * inodes found on the lists. Each inode is removed from the
- * lists when it has been fully truncated and is freed. The
- * freeing of the inode and its removal from the list must be
- * atomic.
- */
-void
-xlog_recover_process_iunlinks(
- xlog_t *log)
-{
- xfs_mount_t *mp;
- xfs_agnumber_t agno;
- xfs_agi_t *agi;
- xfs_buf_t *agibp;
- xfs_buf_t *ibp;
- xfs_dinode_t *dip;
- xfs_inode_t *ip;
- xfs_agino_t agino;
- xfs_ino_t ino;
- int bucket;
- int error;
- uint mp_dmevmask;
-
- mp = log->l_mp;
-
- /*
- * Prevent any DMAPI event from being sent while in this function.
- */
- mp_dmevmask = mp->m_dmevmask;
- mp->m_dmevmask = 0;
-
- for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
- /*
- * Find the agi for this ag.
- */
- agibp = xfs_buf_read(mp->m_ddev_targp,
- XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
- XFS_FSS_TO_BB(mp, 1), 0);
- if (XFS_BUF_ISERROR(agibp)) {
- xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
- log->l_mp, agibp,
- XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
- }
- agi = XFS_BUF_TO_AGI(agibp);
- ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
-
- for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
-
- agino = be32_to_cpu(agi->agi_unlinked[bucket]);
- while (agino != NULLAGINO) {
-
- /*
- * Release the agi buffer so that it can
- * be acquired in the normal course of the
- * transaction to truncate and free the inode.
- */
- xfs_buf_relse(agibp);
-
- ino = XFS_AGINO_TO_INO(mp, agno, agino);
- error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
- ASSERT(error || (ip != NULL));
-
- if (!error) {
- /*
- * Get the on disk inode to find the
- * next inode in the bucket.
- */
- error = xfs_itobp(mp, NULL, ip, &dip,
- &ibp, 0, 0);
- ASSERT(error || (dip != NULL));
- }
-
- if (!error) {
- ASSERT(ip->i_d.di_nlink == 0);
-
- /* setup for the next pass */
- agino = INT_GET(dip->di_next_unlinked,
- ARCH_CONVERT);
- xfs_buf_relse(ibp);
- /*
- * Prevent any DMAPI event from
- * being sent when the
- * reference on the inode is
- * dropped.
- */
- ip->i_d.di_dmevmask = 0;
-
- /*
- * If this is a new inode, handle
- * it specially. Otherwise,
- * just drop our reference to the
- * inode. If there are no
- * other references, this will
- * send the inode to
- * xfs_inactive() which will
- * truncate the file and free
- * the inode.
- */
- if (ip->i_d.di_mode == 0)
- xfs_iput_new(ip, 0);
- else
- VN_RELE(XFS_ITOV(ip));
- } else {
- /*
- * We can't read in the inode
- * this bucket points to, or
- * this inode is messed up. Just
- * ditch this bucket of inodes. We
- * will lose some inodes and space,
- * but at least we won't hang. Call
- * xlog_recover_clear_agi_bucket()
- * to perform a transaction to clear
- * the inode pointer in the bucket.
- */
- xlog_recover_clear_agi_bucket(mp, agno,
- bucket);
-
- agino = NULLAGINO;
- }
-
- /*
- * Reacquire the agibuffer and continue around
- * the loop.
- */
- agibp = xfs_buf_read(mp->m_ddev_targp,
- XFS_AG_DADDR(mp, agno,
- XFS_AGI_DADDR(mp)),
- XFS_FSS_TO_BB(mp, 1), 0);
- if (XFS_BUF_ISERROR(agibp)) {
- xfs_ioerror_alert(
- "xlog_recover_process_iunlinks(#2)",
- log->l_mp, agibp,
- XFS_AG_DADDR(mp, agno,
- XFS_AGI_DADDR(mp)));
- }
- agi = XFS_BUF_TO_AGI(agibp);
- ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
- agi->agi_magicnum));
- }
- }
-
- /*
- * Release the buffer for the current agi so we can
- * go on to the next one.
- */
- xfs_buf_relse(agibp);
- }
-
- mp->m_dmevmask = mp_dmevmask;
-}
-
-
-#ifdef DEBUG
-STATIC void
-xlog_pack_data_checksum(
- xlog_t *log,
- xlog_in_core_t *iclog,
- int size)
-{
- int i;
- uint *up;
- uint chksum = 0;
-
- up = (uint *)iclog->ic_datap;
- /* divide length by 4 to get # words */
- for (i = 0; i < (size >> 2); i++) {
- chksum ^= INT_GET(*up, ARCH_CONVERT);
- up++;
- }
- INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
-}
-#else
-#define xlog_pack_data_checksum(log, iclog, size)
-#endif
-
-/*
- * Stamp cycle number in every block
- */
-void
-xlog_pack_data(
- xlog_t *log,
- xlog_in_core_t *iclog,
- int roundoff)
-{
- int i, j, k;
- int size = iclog->ic_offset + roundoff;
- uint cycle_lsn;
- xfs_caddr_t dp;
- xlog_in_core_2_t *xhdr;
-
- xlog_pack_data_checksum(log, iclog, size);
-
- cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
-
- dp = iclog->ic_datap;
- for (i = 0; i < BTOBB(size) &&
- i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
- iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
- *(uint *)dp = cycle_lsn;
- dp += BBSIZE;
- }
-
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
- for ( ; i < BTOBB(size); i++) {
- j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
- k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
- xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
- *(uint *)dp = cycle_lsn;
- dp += BBSIZE;
- }
-
- for (i = 1; i < log->l_iclog_heads; i++) {
- xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
- }
- }
-}
-
-#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
-STATIC void
-xlog_unpack_data_checksum(
- xlog_rec_header_t *rhead,
- xfs_caddr_t dp,
- xlog_t *log)
-{
- uint *up = (uint *)dp;
- uint chksum = 0;
- int i;
-
- /* divide length by 4 to get # words */
- for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
- chksum ^= INT_GET(*up, ARCH_CONVERT);
- up++;
- }
- if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
- if (rhead->h_chksum ||
- ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
- cmn_err(CE_DEBUG,
- "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
- INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
- cmn_err(CE_DEBUG,
-"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- cmn_err(CE_DEBUG,
- "XFS: LogR this is a LogV2 filesystem");
- }
- log->l_flags |= XLOG_CHKSUM_MISMATCH;
- }
- }
-}
-#else
-#define xlog_unpack_data_checksum(rhead, dp, log)
-#endif
-
-STATIC void
-xlog_unpack_data(
- xlog_rec_header_t *rhead,
- xfs_caddr_t dp,
- xlog_t *log)
-{
- int i, j, k;
- xlog_in_core_2_t *xhdr;
-
- for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
- i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
- *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
- dp += BBSIZE;
- }
-
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- xhdr = (xlog_in_core_2_t *)rhead;
- for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
- j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
- k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
- *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
- dp += BBSIZE;
- }
- }
-
- xlog_unpack_data_checksum(rhead, dp, log);
-}
-
-STATIC int
-xlog_valid_rec_header(
- xlog_t *log,
- xlog_rec_header_t *rhead,
- xfs_daddr_t blkno)
-{
- int hlen;
-
- if (unlikely(
- (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
- XLOG_HEADER_MAGIC_NUM))) {
- XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- if (unlikely(
- (!rhead->h_version ||
- (INT_GET(rhead->h_version, ARCH_CONVERT) &
- (~XLOG_VERSION_OKBITS)) != 0))) {
- xlog_warn("XFS: %s: unrecognised log version (%d).",
- __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
- return XFS_ERROR(EIO);
- }
-
- /* LR body must have data or it wouldn't have been written */
- hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
- if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
- XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
- XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
- XFS_ERRLEVEL_LOW, log->l_mp);
- return XFS_ERROR(EFSCORRUPTED);
- }
- return 0;
-}
-
-/*
- * Read the log from tail to head and process the log records found.
- * Handle the two cases where the tail and head are in the same cycle
- * and where the active portion of the log wraps around the end of
- * the physical log separately. The pass parameter is passed through
- * to the routines called to process the data and is not looked at
- * here.
- */
-STATIC int
-xlog_do_recovery_pass(
- xlog_t *log,
- xfs_daddr_t head_blk,
- xfs_daddr_t tail_blk,
- int pass)
-{
- xlog_rec_header_t *rhead;
- xfs_daddr_t blk_no;
- xfs_caddr_t bufaddr, offset;
- xfs_buf_t *hbp, *dbp;
- int error = 0, h_size;
- int bblks, split_bblks;
- int hblks, split_hblks, wrapped_hblks;
- xlog_recover_t *rhash[XLOG_RHASH_SIZE];
-
- ASSERT(head_blk != tail_blk);
-
- /*
- * Read the header of the tail block and get the iclog buffer size from
- * h_size. Use this to tell how many sectors make up the log header.
- */
- if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
- /*
- * When using variable length iclogs, read first sector of
- * iclog header and extract the header size from it. Get a
- * new hbp that is the correct size.
- */
- hbp = xlog_get_bp(log, 1);
- if (!hbp)
- return ENOMEM;
- if ((error = xlog_bread(log, tail_blk, 1, hbp)))
- goto bread_err1;
- offset = xlog_align(log, tail_blk, 1, hbp);
- rhead = (xlog_rec_header_t *)offset;
- error = xlog_valid_rec_header(log, rhead, tail_blk);
- if (error)
- goto bread_err1;
- h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
- if ((INT_GET(rhead->h_version, ARCH_CONVERT)
- & XLOG_VERSION_2) &&
- (h_size > XLOG_HEADER_CYCLE_SIZE)) {
- hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
- if (h_size % XLOG_HEADER_CYCLE_SIZE)
- hblks++;
- xlog_put_bp(hbp);
- hbp = xlog_get_bp(log, hblks);
- } else {
- hblks = 1;
- }
- } else {
- ASSERT(log->l_sectbb_log == 0);
- hblks = 1;
- hbp = xlog_get_bp(log, 1);
- h_size = XLOG_BIG_RECORD_BSIZE;
- }
-
- if (!hbp)
- return ENOMEM;
- dbp = xlog_get_bp(log, BTOBB(h_size));
- if (!dbp) {
- xlog_put_bp(hbp);
- return ENOMEM;
- }
-
- memset(rhash, 0, sizeof(rhash));
- if (tail_blk <= head_blk) {
- for (blk_no = tail_blk; blk_no < head_blk; ) {
- if ((error = xlog_bread(log, blk_no, hblks, hbp)))
- goto bread_err2;
- offset = xlog_align(log, blk_no, hblks, hbp);
- rhead = (xlog_rec_header_t *)offset;
- error = xlog_valid_rec_header(log, rhead, blk_no);
- if (error)
- goto bread_err2;
-
- /* blocks in data section */
- bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
- error = xlog_bread(log, blk_no + hblks, bblks, dbp);
- if (error)
- goto bread_err2;
- offset = xlog_align(log, blk_no + hblks, bblks, dbp);
- xlog_unpack_data(rhead, offset, log);
- if ((error = xlog_recover_process_data(log,
- rhash, rhead, offset, pass)))
- goto bread_err2;
- blk_no += bblks + hblks;
- }
- } else {
- /*
- * Perform recovery around the end of the physical log.
- * When the head is not on the same cycle number as the tail,
- * we can't do a sequential recovery as above.
- */
- blk_no = tail_blk;
- while (blk_no < log->l_logBBsize) {
- /*
- * Check for header wrapping around physical end-of-log
- */
- offset = NULL;
- split_hblks = 0;
- wrapped_hblks = 0;
- if (blk_no + hblks <= log->l_logBBsize) {
- /* Read header in one read */
- error = xlog_bread(log, blk_no, hblks, hbp);
- if (error)
- goto bread_err2;
- offset = xlog_align(log, blk_no, hblks, hbp);
- } else {
- /* This LR is split across physical log end */
- if (blk_no != log->l_logBBsize) {
- /* some data before physical log end */
- ASSERT(blk_no <= INT_MAX);
- split_hblks = log->l_logBBsize - (int)blk_no;
- ASSERT(split_hblks > 0);
- if ((error = xlog_bread(log, blk_no,
- split_hblks, hbp)))
- goto bread_err2;
- offset = xlog_align(log, blk_no,
- split_hblks, hbp);
- }
- /*
- * Note: this black magic still works with
- * large sector sizes (non-512) only because:
- * - we increased the buffer size originally
- * by 1 sector giving us enough extra space
- * for the second read;
- * - the log start is guaranteed to be sector
- * aligned;
- * - we read the log end (LR header start)
- * _first_, then the log start (LR header end)
- * - order is important.
- */
- bufaddr = XFS_BUF_PTR(hbp);
- XFS_BUF_SET_PTR(hbp,
- bufaddr + BBTOB(split_hblks),
- BBTOB(hblks - split_hblks));
- wrapped_hblks = hblks - split_hblks;
- error = xlog_bread(log, 0, wrapped_hblks, hbp);
- if (error)
- goto bread_err2;
- XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
- if (!offset)
- offset = xlog_align(log, 0,
- wrapped_hblks, hbp);
- }
- rhead = (xlog_rec_header_t *)offset;
- error = xlog_valid_rec_header(log, rhead,
- split_hblks ? blk_no : 0);
- if (error)
- goto bread_err2;
-
- bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
- blk_no += hblks;
-
- /* Read in data for log record */
- if (blk_no + bblks <= log->l_logBBsize) {
- error = xlog_bread(log, blk_no, bblks, dbp);
- if (error)
- goto bread_err2;
- offset = xlog_align(log, blk_no, bblks, dbp);
- } else {
- /* This log record is split across the
- * physical end of log */
- offset = NULL;
- split_bblks = 0;
- if (blk_no != log->l_logBBsize) {
- /* some data is before the physical
- * end of log */
- ASSERT(!wrapped_hblks);
- ASSERT(blk_no <= INT_MAX);
- split_bblks =
- log->l_logBBsize - (int)blk_no;
- ASSERT(split_bblks > 0);
- if ((error = xlog_bread(log, blk_no,
- split_bblks, dbp)))
- goto bread_err2;
- offset = xlog_align(log, blk_no,
- split_bblks, dbp);
- }
- /*
- * Note: this black magic still works with
- * large sector sizes (non-512) only because:
- * - we increased the buffer size originally
- * by 1 sector giving us enough extra space
- * for the second read;
- * - the log start is guaranteed to be sector
- * aligned;
- * - we read the log end (LR header start)
- * _first_, then the log start (LR header end)
- * - order is important.
- */
- bufaddr = XFS_BUF_PTR(dbp);
- XFS_BUF_SET_PTR(dbp,
- bufaddr + BBTOB(split_bblks),
- BBTOB(bblks - split_bblks));
- if ((error = xlog_bread(log, wrapped_hblks,
- bblks - split_bblks, dbp)))
- goto bread_err2;
- XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
- if (!offset)
- offset = xlog_align(log, wrapped_hblks,
- bblks - split_bblks, dbp);
- }
- xlog_unpack_data(rhead, offset, log);
- if ((error = xlog_recover_process_data(log, rhash,
- rhead, offset, pass)))
- goto bread_err2;
- blk_no += bblks;
- }
-
- ASSERT(blk_no >= log->l_logBBsize);
- blk_no -= log->l_logBBsize;
-
- /* read first part of physical log */
- while (blk_no < head_blk) {
- if ((error = xlog_bread(log, blk_no, hblks, hbp)))
- goto bread_err2;
- offset = xlog_align(log, blk_no, hblks, hbp);
- rhead = (xlog_rec_header_t *)offset;
- error = xlog_valid_rec_header(log, rhead, blk_no);
- if (error)
- goto bread_err2;
- bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
- if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
- goto bread_err2;
- offset = xlog_align(log, blk_no+hblks, bblks, dbp);
- xlog_unpack_data(rhead, offset, log);
- if ((error = xlog_recover_process_data(log, rhash,
- rhead, offset, pass)))
- goto bread_err2;
- blk_no += bblks + hblks;
- }
- }
-
- bread_err2:
- xlog_put_bp(dbp);
- bread_err1:
- xlog_put_bp(hbp);
- return error;
-}
-
-/*
- * Do the recovery of the log. We actually do this in two phases.
- * The two passes are necessary in order to implement the function
- * of cancelling a record written into the log. The first pass
- * determines those things which have been cancelled, and the
- * second pass replays log items normally except for those which
- * have been cancelled. The handling of the replay and cancellations
- * takes place in the log item type specific routines.
- *
- * The table of items which have cancel records in the log is allocated
- * and freed at this level, since only here do we know when all of
- * the log recovery has been completed.
- */
-STATIC int
-xlog_do_log_recovery(
- xlog_t *log,
- xfs_daddr_t head_blk,
- xfs_daddr_t tail_blk)
-{
- int error;
-
- ASSERT(head_blk != tail_blk);
-
- /*
- * First do a pass to find all of the cancelled buf log items.
- * Store them in the buf_cancel_table for use in the second pass.
- */
- log->l_buf_cancel_table =
- (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
- sizeof(xfs_buf_cancel_t*),
- KM_SLEEP);
- error = xlog_do_recovery_pass(log, head_blk, tail_blk,
- XLOG_RECOVER_PASS1);
- if (error != 0) {
- kmem_free(log->l_buf_cancel_table,
- XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
- log->l_buf_cancel_table = NULL;
- return error;
- }
- /*
- * Then do a second pass to actually recover the items in the log.
- * When it is complete free the table of buf cancel items.
- */
- error = xlog_do_recovery_pass(log, head_blk, tail_blk,
- XLOG_RECOVER_PASS2);
-#ifdef DEBUG
- {
- int i;
-
- for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
- ASSERT(log->l_buf_cancel_table[i] == NULL);
- }
-#endif /* DEBUG */
-
- kmem_free(log->l_buf_cancel_table,
- XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
- log->l_buf_cancel_table = NULL;
-
- return error;
-}
-
-/*
- * Do the actual recovery
- */
-STATIC int
-xlog_do_recover(
- xlog_t *log,
- xfs_daddr_t head_blk,
- xfs_daddr_t tail_blk)
-{
- int error;
- xfs_buf_t *bp;
- xfs_sb_t *sbp;
-
- /*
- * XXX: Disable log recovery for now, until we fix panics.
- */
- printf("XFS log recovery disabled.\n");
- return (EOPNOTSUPP);
- /*
- * First replay the images in the log.
- */
- error = xlog_do_log_recovery(log, head_blk, tail_blk);
- if (error) {
- return error;
- }
-
- XFS_bflush(log->l_mp->m_ddev_targp);
-
- /*
- * If IO errors happened during recovery, bail out.
- */
- if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
- return (EIO);
- }
-
- /*
- * We now update the tail_lsn since much of the recovery has completed
- * and there may be space available to use. If there were no extent
- * or iunlinks, we can free up the entire log and set the tail_lsn to
- * be the last_sync_lsn. This was set in xlog_find_tail to be the
- * lsn of the last known good LR on disk. If there are extent frees
- * or iunlinks they will have some entries in the AIL; so we look at
- * the AIL to determine how to set the tail_lsn.
- */
- xlog_assign_tail_lsn(log->l_mp);
-
- /*
- * Now that we've finished replaying all buffer and inode
- * updates, re-read in the superblock.
- */
- bp = xfs_getsb(log->l_mp, 0);
- XFS_BUF_UNDONE(bp);
- XFS_BUF_READ(bp);
- xfsbdstrat(log->l_mp, bp);
- if ((error = xfs_iowait(bp))) {
- xfs_ioerror_alert("xlog_do_recover",
- log->l_mp, bp, XFS_BUF_ADDR(bp));
- ASSERT(0);
- xfs_buf_relse(bp);
- return error;
- }
-
- /* Convert superblock from on-disk format */
- sbp = &log->l_mp->m_sb;
- xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
- ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
- ASSERT(XFS_SB_GOOD_VERSION(sbp));
- xfs_buf_relse(bp);
-
- xlog_recover_check_summary(log);
-
- /* Normal transactions can now occur */
- log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
- return 0;
-}
-
-/*
- * Perform recovery and re-initialize some log variables in xlog_find_tail.
- *
- * Return error or zero.
- */
-int
-xlog_recover(
- xlog_t *log)
-{
- xfs_daddr_t head_blk, tail_blk;
- int error;
-
- /* find the tail of the log */
- if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
- return error;
-
- if (tail_blk != head_blk) {
- /* There used to be a comment here:
- *
- * disallow recovery on read-only mounts. note -- mount
- * checks for ENOSPC and turns it into an intelligent
- * error message.
- * ...but this is no longer true. Now, unless you specify
- * NORECOVERY (in which case this function would never be
- * called), we just go ahead and recover. We do this all
- * under the vfs layer, so we can get away with it unless
- * the device itself is read-only, in which case we fail.
- */
- if ((error = xfs_dev_is_read_only(log->l_mp,
- "recovery required"))) {
- return error;
- }
-
- cmn_err(CE_NOTE,
- "Starting XFS recovery on filesystem: %s (logdev: %s)",
- log->l_mp->m_fsname, log->l_mp->m_logname ?
- log->l_mp->m_logname : "internal");
-
- error = xlog_do_recover(log, head_blk, tail_blk);
- log->l_flags |= XLOG_RECOVERY_NEEDED;
- }
- return error;
-}
-
-/*
- * In the first part of recovery we replay inodes and buffers and build
- * up the list of extent free items which need to be processed. Here
- * we process the extent free items and clean up the on disk unlinked
- * inode lists. This is separated from the first part of recovery so
- * that the root and real-time bitmap inodes can be read in from disk in
- * between the two stages. This is necessary so that we can free space
- * in the real-time portion of the file system.
- */
-int
-xlog_recover_finish(
- xlog_t *log,
- int mfsi_flags)
-{
- /*
- * Now we're ready to do the transactions needed for the
- * rest of recovery. Start with completing all the extent
- * free intent records and then process the unlinked inode
- * lists. At this point, we essentially run in normal mode
- * except that we're still performing recovery actions
- * rather than accepting new requests.
- */
- if (log->l_flags & XLOG_RECOVERY_NEEDED) {
- xlog_recover_process_efis(log);
- /*
- * Sync the log to get all the EFIs out of the AIL.
- * This isn't absolutely necessary, but it helps in
- * case the unlink transactions would have problems
- * pushing the EFIs out of the way.
- */
- xfs_log_force(log->l_mp, (xfs_lsn_t)0,
- (XFS_LOG_FORCE | XFS_LOG_SYNC));
-
- if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
- xlog_recover_process_iunlinks(log);
- }
-
- xlog_recover_check_summary(log);
-
- cmn_err(CE_NOTE,
- "Ending XFS recovery on filesystem: %s (logdev: %s)",
- log->l_mp->m_fsname, log->l_mp->m_logname ?
- log->l_mp->m_logname : "internal");
- log->l_flags &= ~XLOG_RECOVERY_NEEDED;
- } else {
- cmn_err(CE_DEBUG,
- "!Ending clean XFS mount for filesystem: %s",
- log->l_mp->m_fsname);
- }
- return 0;
-}
-
-
-#if defined(DEBUG)
-/*
- * Read all of the agf and agi counters and check that they
- * are consistent with the superblock counters.
- */
-void
-xlog_recover_check_summary(
- xlog_t *log)
-{
- xfs_mount_t *mp;
- xfs_agf_t *agfp;
- xfs_agi_t *agip;
- xfs_buf_t *agfbp;
- xfs_buf_t *agibp;
- xfs_daddr_t agfdaddr;
- xfs_daddr_t agidaddr;
- xfs_buf_t *sbbp;
-#ifdef XFS_LOUD_RECOVERY
- xfs_sb_t *sbp;
-#endif
- xfs_agnumber_t agno;
- __uint64_t freeblks;
- __uint64_t itotal;
- __uint64_t ifree;
-
- mp = log->l_mp;
-
- freeblks = 0LL;
- itotal = 0LL;
- ifree = 0LL;
- for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
- agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
- agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
- XFS_FSS_TO_BB(mp, 1), 0);
- if (XFS_BUF_ISERROR(agfbp)) {
- xfs_ioerror_alert("xlog_recover_check_summary(agf)",
- mp, agfbp, agfdaddr);
- }
- agfp = XFS_BUF_TO_AGF(agfbp);
- ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
- ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
- ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
-
- freeblks += be32_to_cpu(agfp->agf_freeblks) +
- be32_to_cpu(agfp->agf_flcount);
- xfs_buf_relse(agfbp);
-
- agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
- agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
- XFS_FSS_TO_BB(mp, 1), 0);
- if (XFS_BUF_ISERROR(agibp)) {
- xfs_ioerror_alert("xlog_recover_check_summary(agi)",
- mp, agibp, agidaddr);
- }
- agip = XFS_BUF_TO_AGI(agibp);
- ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
- ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
- ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
-
- itotal += be32_to_cpu(agip->agi_count);
- ifree += be32_to_cpu(agip->agi_freecount);
- xfs_buf_relse(agibp);
- }
-
- sbbp = xfs_getsb(mp, 0);
-#ifdef XFS_LOUD_RECOVERY
- sbp = &mp->m_sb;
- xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
- cmn_err(CE_NOTE,
- "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
- sbp->sb_icount, itotal);
- cmn_err(CE_NOTE,
- "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
- sbp->sb_ifree, ifree);
- cmn_err(CE_NOTE,
- "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
- sbp->sb_fdblocks, freeblks);
-#if 0
- /*
- * This is turned off until I account for the allocation
- * btree blocks which live in free space.
- */
- ASSERT(sbp->sb_icount == itotal);
- ASSERT(sbp->sb_ifree == ifree);
- ASSERT(sbp->sb_fdblocks == freeblks);
-#endif
-#endif
- xfs_buf_relse(sbbp);
-}
-#endif /* DEBUG */
OpenPOWER on IntegriCloud