summaryrefslogtreecommitdiffstats
path: root/sys/dev/raidframe/rf_raid1.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/raidframe/rf_raid1.c')
-rw-r--r--sys/dev/raidframe/rf_raid1.c689
1 files changed, 689 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_raid1.c b/sys/dev/raidframe/rf_raid1.c
new file mode 100644
index 0000000..5831dfe
--- /dev/null
+++ b/sys/dev/raidframe/rf_raid1.c
@@ -0,0 +1,689 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_raid1.c,v 1.5 2000/01/08 22:57:30 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/*****************************************************************************
+ *
+ * rf_raid1.c -- implements RAID Level 1
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_raid1.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagffrd.h>
+#include <dev/raidframe/rf_dagffwr.h>
+#include <dev/raidframe/rf_dagdegrd.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_utils.h>
+#include <dev/raidframe/rf_parityscan.h>
+#include <dev/raidframe/rf_mcpair.h>
+#include <dev/raidframe/rf_layout.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_engine.h>
+#include <dev/raidframe/rf_reconbuffer.h>
+#include <dev/raidframe/rf_kintf.h>
+
+typedef struct RF_Raid1ConfigInfo_s {
+ RF_RowCol_t **stripeIdentifier;
+} RF_Raid1ConfigInfo_t;
+/* start of day code specific to RAID level 1 */
+int
+rf_ConfigureRAID1(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_Raid1ConfigInfo_t *info;
+ RF_RowCol_t i;
+
+ /* create a RAID level 1 configuration structure */
+ RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList);
+ if (info == NULL)
+ return (ENOMEM);
+ layoutPtr->layoutSpecificInfo = (void *) info;
+
+ /* ... and fill it in. */
+ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
+ if (info->stripeIdentifier == NULL)
+ return (ENOMEM);
+ for (i = 0; i < (raidPtr->numCol / 2); i++) {
+ info->stripeIdentifier[i][0] = (2 * i);
+ info->stripeIdentifier[i][1] = (2 * i) + 1;
+ }
+
+ RF_ASSERT(raidPtr->numRow == 1);
+
+ /* this implementation of RAID level 1 uses one row of numCol disks
+ * and allows multiple (numCol / 2) stripes per row. A stripe
+ * consists of a single data unit and a single parity (mirror) unit.
+ * stripe id = raidAddr / stripeUnitSize */
+ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
+ layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
+ layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
+ layoutPtr->numDataCol = 1;
+ layoutPtr->numParityCol = 1;
+ return (0);
+}
+
+
+/* returns the physical disk location of the primary copy in the mirror pair */
+void
+rf_MapSectorRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
+
+ *row = 0;
+ *col = 2 * mirrorPair;
+ *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* Map Parity
+ *
+ * returns the physical disk location of the secondary copy in the mirror
+ * pair
+ */
+void
+rf_MapParityRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidSector,
+ RF_RowCol_t * row,
+ RF_RowCol_t * col,
+ RF_SectorNum_t * diskSector,
+ int remap)
+{
+ RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
+ RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
+
+ *row = 0;
+ *col = (2 * mirrorPair) + 1;
+
+ *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
+}
+
+
+/* IdentifyStripeRAID1
+ *
+ * returns a list of disks for a given redundancy group
+ */
+void
+rf_IdentifyStripeRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t addr,
+ RF_RowCol_t ** diskids,
+ RF_RowCol_t * outRow)
+{
+ RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
+ RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
+ RF_ASSERT(stripeID >= 0);
+ RF_ASSERT(addr >= 0);
+ *outRow = 0;
+ *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
+ RF_ASSERT(*diskids);
+}
+
+
+/* MapSIDToPSIDRAID1
+ *
+ * maps a logical stripe to a stripe in the redundant array
+ */
+void
+rf_MapSIDToPSIDRAID1(
+ RF_RaidLayout_t * layoutPtr,
+ RF_StripeNum_t stripeID,
+ RF_StripeNum_t * psID,
+ RF_ReconUnitNum_t * which_ru)
+{
+ *which_ru = 0;
+ *psID = stripeID;
+}
+
+
+
+/******************************************************************************
+ * select a graph to perform a single-stripe access
+ *
+ * Parameters: raidPtr - description of the physical array
+ * type - type of operation (read or write) requested
+ * asmap - logical & physical addresses for this access
+ * createFunc - name of function to use to create the graph
+ *****************************************************************************/
+
+void
+rf_RAID1DagSelect(
+ RF_Raid_t * raidPtr,
+ RF_IoType_t type,
+ RF_AccessStripeMap_t * asmap,
+ RF_VoidFuncPtr * createFunc)
+{
+ RF_RowCol_t frow, fcol, or, oc;
+ RF_PhysDiskAddr_t *failedPDA;
+ int prior_recon;
+ RF_RowStatus_t rstat;
+ RF_SectorNum_t oo;
+
+
+ RF_ASSERT(RF_IO_IS_R_OR_W(type));
+
+ if (asmap->numDataFailed + asmap->numParityFailed > 1) {
+ RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
+ *createFunc = NULL;
+ return;
+ }
+ if (asmap->numDataFailed + asmap->numParityFailed) {
+ /*
+ * We've got a fault. Re-map to spare space, iff applicable.
+ * Shouldn't the arch-independent code do this for us?
+ * Anyway, it turns out if we don't do this here, then when
+ * we're reconstructing, writes go only to the surviving
+ * original disk, and aren't reflected on the reconstructed
+ * spare. Oops. --jimz
+ */
+ failedPDA = asmap->failedPDAs[0];
+ frow = failedPDA->row;
+ fcol = failedPDA->col;
+ rstat = raidPtr->status[frow];
+ prior_recon = (rstat == rf_rs_reconfigured) || (
+ (rstat == rf_rs_reconstructing) ?
+ rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
+ );
+ if (prior_recon) {
+ or = frow;
+ oc = fcol;
+ oo = failedPDA->startSector;
+ /*
+ * If we did distributed sparing, we'd monkey with that here.
+ * But we don't, so we'll
+ */
+ failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
+ failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
+ /*
+ * Redirect other components, iff necessary. This looks
+ * pretty suspicious to me, but it's what the raid5
+ * DAG select does.
+ */
+ if (asmap->parityInfo->next) {
+ if (failedPDA == asmap->parityInfo) {
+ failedPDA->next->row = failedPDA->row;
+ failedPDA->next->col = failedPDA->col;
+ } else {
+ if (failedPDA == asmap->parityInfo->next) {
+ asmap->parityInfo->row = failedPDA->row;
+ asmap->parityInfo->col = failedPDA->col;
+ }
+ }
+ }
+ if (rf_dagDebug || rf_mapDebug) {
+ printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
+ raidPtr->raidid, type, or, oc,
+ (long) oo, failedPDA->row,
+ failedPDA->col,
+ (long) failedPDA->startSector);
+ }
+ asmap->numDataFailed = asmap->numParityFailed = 0;
+ }
+ }
+ if (type == RF_IO_TYPE_READ) {
+ if (asmap->numDataFailed == 0)
+ *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
+ else
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
+ } else {
+ *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
+ }
+}
+
+int
+rf_VerifyParityRAID1(
+ RF_Raid_t * raidPtr,
+ RF_RaidAddr_t raidAddr,
+ RF_PhysDiskAddr_t * parityPDA,
+ int correct_it,
+ RF_RaidAccessFlags_t flags)
+{
+ int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
+ RF_DagNode_t *blockNode, *unblockNode, *wrBlock;
+ RF_DagHeader_t *rd_dag_h, *wr_dag_h;
+ RF_AccessStripeMapHeader_t *asm_h;
+ RF_AllocListElem_t *allocList;
+ RF_AccTraceEntry_t tracerec;
+ RF_ReconUnitNum_t which_ru;
+ RF_RaidLayout_t *layoutPtr;
+ RF_AccessStripeMap_t *aasm;
+ RF_SectorCount_t nsector;
+ RF_RaidAddr_t startAddr;
+ char *buf, *buf1, *buf2;
+ RF_PhysDiskAddr_t *pda;
+ RF_StripeNum_t psID;
+ RF_MCPair_t *mcpair;
+
+ layoutPtr = &raidPtr->Layout;
+ startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
+ nsector = parityPDA->numSector;
+ nbytes = rf_RaidAddressToByte(raidPtr, nsector);
+ psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
+
+ asm_h = NULL;
+ rd_dag_h = wr_dag_h = NULL;
+ mcpair = NULL;
+
+ ret = RF_PARITY_COULD_NOT_VERIFY;
+
+ rf_MakeAllocList(allocList);
+ if (allocList == NULL)
+ return (RF_PARITY_COULD_NOT_VERIFY);
+ mcpair = rf_AllocMCPair();
+ if (mcpair == NULL)
+ goto done;
+ RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
+ stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
+ bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
+ RF_MallocAndAdd(buf, bcount, (char *), allocList);
+ if (buf == NULL)
+ goto done;
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
+ raidPtr->raidid, (long) buf, bcount, (long) buf,
+ (long) buf + bcount);
+ }
+ /*
+ * Generate a DAG which will read the entire stripe- then we can
+ * just compare data chunks versus "parity" chunks.
+ */
+
+ rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf,
+ rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
+ RF_IO_NORMAL_PRIORITY);
+ if (rd_dag_h == NULL)
+ goto done;
+ blockNode = rd_dag_h->succedents[0];
+ unblockNode = blockNode->succedents[0]->succedents[0];
+
+ /*
+ * Map the access to physical disk addresses (PDAs)- this will
+ * get us both a list of data addresses, and "parity" addresses
+ * (which are really mirror copies).
+ */
+ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
+ buf, RF_DONT_REMAP);
+ aasm = asm_h->stripeMap;
+
+ buf1 = buf;
+ /*
+ * Loop through the data blocks, setting up read nodes for each.
+ */
+ for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
+ /* cannot verify parity with dead disk */
+ goto done;
+ }
+ pda->bufPtr = buf1;
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[1].p = buf1;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ buf1 += nbytes;
+ }
+ RF_ASSERT(pda == NULL);
+ /*
+ * keep i, buf1 running
+ *
+ * Loop through parity blocks, setting up read nodes for each.
+ */
+ for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
+ RF_ASSERT(pda);
+ rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
+ RF_ASSERT(pda->numSector != 0);
+ if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
+ /* cannot verify parity with dead disk */
+ goto done;
+ }
+ pda->bufPtr = buf1;
+ blockNode->succedents[i]->params[0].p = pda;
+ blockNode->succedents[i]->params[1].p = buf1;
+ blockNode->succedents[i]->params[2].v = psID;
+ blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ buf1 += nbytes;
+ }
+ RF_ASSERT(pda == NULL);
+
+ bzero((char *) &tracerec, sizeof(tracerec));
+ rd_dag_h->tracerec = &tracerec;
+
+ if (rf_verifyParityDebug > 1) {
+ printf("raid%d: RAID1 parity verify read dag:\n",
+ raidPtr->raidid);
+ rf_PrintDAGList(rd_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (mcpair->flag == 0) {
+ RF_WAIT_MCPAIR(mcpair);
+ }
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+
+ if (rd_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
+ ret = RF_PARITY_COULD_NOT_VERIFY;
+ goto done;
+ }
+ /*
+ * buf1 is the beginning of the data blocks chunk
+ * buf2 is the beginning of the parity blocks chunk
+ */
+ buf1 = buf;
+ buf2 = buf + (nbytes * layoutPtr->numDataCol);
+ ret = RF_PARITY_OKAY;
+ /*
+ * bbufs is "bad bufs"- an array whose entries are the data
+ * column numbers where we had miscompares. (That is, column 0
+ * and column 1 of the array are mirror copies, and are considered
+ * "data column 0" for this purpose).
+ */
+ RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *),
+ allocList);
+ nbad = 0;
+ /*
+ * Check data vs "parity" (mirror copy).
+ */
+ for (i = 0; i < layoutPtr->numDataCol; i++) {
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
+ raidPtr->raidid, nbytes, i, (long) buf1,
+ (long) buf2, (long) buf);
+ }
+ ret = bcmp(buf1, buf2, nbytes);
+ if (ret) {
+ if (rf_verifyParityDebug > 1) {
+ for (j = 0; j < nbytes; j++) {
+ if (buf1[j] != buf2[j])
+ break;
+ }
+ printf("psid=%ld j=%d\n", (long) psID, j);
+ printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
+ buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
+ printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
+ buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
+ }
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
+ }
+ /*
+ * Parity is bad. Keep track of which columns were bad.
+ */
+ if (bbufs)
+ bbufs[nbad] = i;
+ nbad++;
+ ret = RF_PARITY_BAD;
+ }
+ buf1 += nbytes;
+ buf2 += nbytes;
+ }
+
+ if ((ret != RF_PARITY_OKAY) && correct_it) {
+ ret = RF_PARITY_COULD_NOT_CORRECT;
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
+ }
+ if (bbufs == NULL)
+ goto done;
+ /*
+ * Make a DAG with one write node for each bad unit. We'll simply
+ * write the contents of the data unit onto the parity unit for
+ * correction. (It's possible that the mirror copy was the correct
+ * copy, and that we're spooging good data by writing bad over it,
+ * but there's no way we can know that.
+ */
+ wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf,
+ rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
+ RF_IO_NORMAL_PRIORITY);
+ if (wr_dag_h == NULL)
+ goto done;
+ wrBlock = wr_dag_h->succedents[0];
+ /*
+ * Fill in a write node for each bad compare.
+ */
+ for (i = 0; i < nbad; i++) {
+ j = i + layoutPtr->numDataCol;
+ pda = blockNode->succedents[j]->params[0].p;
+ pda->bufPtr = blockNode->succedents[i]->params[1].p;
+ wrBlock->succedents[i]->params[0].p = pda;
+ wrBlock->succedents[i]->params[1].p = pda->bufPtr;
+ wrBlock->succedents[i]->params[2].v = psID;
+ wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ }
+ bzero((char *) &tracerec, sizeof(tracerec));
+ wr_dag_h->tracerec = &tracerec;
+ if (rf_verifyParityDebug > 1) {
+ printf("Parity verify write dag:\n");
+ rf_PrintDAGList(wr_dag_h);
+ }
+ RF_LOCK_MUTEX(mcpair->mutex);
+ mcpair->flag = 0;
+ /* fire off the write DAG */
+ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
+ (void *) mcpair);
+ while (!mcpair->flag) {
+ RF_WAIT_COND(mcpair->cond, mcpair->mutex);
+ }
+ RF_UNLOCK_MUTEX(mcpair->mutex);
+ if (wr_dag_h->status != rf_enable) {
+ RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
+ goto done;
+ }
+ ret = RF_PARITY_CORRECTED;
+ }
+done:
+ /*
+ * All done. We might've gotten here without doing part of the function,
+ * so cleanup what we have to and return our running status.
+ */
+ if (asm_h)
+ rf_FreeAccessStripeMap(asm_h);
+ if (rd_dag_h)
+ rf_FreeDAG(rd_dag_h);
+ if (wr_dag_h)
+ rf_FreeDAG(wr_dag_h);
+ if (mcpair)
+ rf_FreeMCPair(mcpair);
+ rf_FreeAllocList(allocList);
+ if (rf_verifyParityDebug) {
+ printf("raid%d: RAID1 parity verify, returning %d\n",
+ raidPtr->raidid, ret);
+ }
+ return (ret);
+}
+
+int
+rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed)
+ RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */
+ int keep_it; /* whether we can keep this buffer or we have
+ * to return it */
+ int use_committed; /* whether to use a committed or an available
+ * recon buffer */
+{
+ RF_ReconParityStripeStatus_t *pssPtr;
+ RF_ReconCtrl_t *reconCtrlPtr;
+ RF_RaidLayout_t *layoutPtr;
+ int retcode, created;
+ RF_CallbackDesc_t *cb, *p;
+ RF_ReconBuffer_t *t;
+ RF_Raid_t *raidPtr;
+ caddr_t ta;
+
+ retcode = 0;
+ created = 0;
+
+ raidPtr = rbuf->raidPtr;
+ layoutPtr = &raidPtr->Layout;
+ reconCtrlPtr = raidPtr->reconControl[rbuf->row];
+
+ RF_ASSERT(rbuf);
+ RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
+
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n",
+ raidPtr->raidid, rbuf->row, rbuf->col,
+ (long) rbuf->parityStripeID, rbuf->which_ru,
+ (long) rbuf->failedDiskSectorOffset);
+ }
+ if (rf_reconDebug) {
+ printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
+ (long) rbuf->parityStripeID, (long) rbuf->buffer);
+ printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n",
+ (long) rbuf->parityStripeID,
+ rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3],
+ rbuf->buffer[4]);
+ }
+ RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+
+ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
+
+ pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
+ rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created);
+ RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten
+ * an rbuf for it */
+
+ /*
+ * Since this is simple mirroring, the first submission for a stripe is also
+ * treated as the last.
+ */
+
+ t = NULL;
+ if (keep_it) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
+ raidPtr->raidid);
+ }
+ t = rbuf;
+ } else {
+ if (use_committed) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
+ }
+ t = reconCtrlPtr->committedRbufs;
+ RF_ASSERT(t);
+ reconCtrlPtr->committedRbufs = t->next;
+ t->next = NULL;
+ } else
+ if (reconCtrlPtr->floatingRbufs) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
+ }
+ t = reconCtrlPtr->floatingRbufs;
+ reconCtrlPtr->floatingRbufs = t->next;
+ t->next = NULL;
+ }
+ }
+ if (t == NULL) {
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
+ }
+ RF_ASSERT((keep_it == 0) && (use_committed == 0));
+ raidPtr->procsInBufWait++;
+ if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
+ && (raidPtr->numFullReconBuffers == 0)) {
+ /* ruh-ro */
+ RF_ERRORMSG("Buffer wait deadlock\n");
+ rf_PrintPSStatusTable(raidPtr, rbuf->row);
+ RF_PANIC();
+ }
+ pssPtr->flags |= RF_PSS_BUFFERWAIT;
+ cb = rf_AllocCallbackDesc();
+ cb->row = rbuf->row;
+ cb->col = rbuf->col;
+ cb->callbackArg.v = rbuf->parityStripeID;
+ cb->callbackArg2.v = rbuf->which_ru;
+ cb->next = NULL;
+ if (reconCtrlPtr->bufferWaitList == NULL) {
+ /* we are the wait list- lucky us */
+ reconCtrlPtr->bufferWaitList = cb;
+ } else {
+ /* append to wait list */
+ for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
+ p->next = cb;
+ }
+ retcode = 1;
+ goto out;
+ }
+ if (t != rbuf) {
+ t->row = rbuf->row;
+ t->col = reconCtrlPtr->fcol;
+ t->parityStripeID = rbuf->parityStripeID;
+ t->which_ru = rbuf->which_ru;
+ t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
+ t->spRow = rbuf->spRow;
+ t->spCol = rbuf->spCol;
+ t->spOffset = rbuf->spOffset;
+ /* Swap buffers. DANCE! */
+ ta = t->buffer;
+ t->buffer = rbuf->buffer;
+ rbuf->buffer = ta;
+ }
+ /*
+ * Use the rbuf we've been given as the target.
+ */
+ RF_ASSERT(pssPtr->rbuf == NULL);
+ pssPtr->rbuf = t;
+
+ t->count = 1;
+ /*
+ * Below, we use 1 for numDataCol (which is equal to the count in the
+ * previous line), so we'll always be done.
+ */
+ rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
+
+out:
+ RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID);
+ RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
+ if (rf_reconbufferDebug) {
+ printf("raid%d: RAID1 rbuf submission: returning %d\n",
+ raidPtr->raidid, retcode);
+ }
+ return (retcode);
+}
OpenPOWER on IntegriCloud