summaryrefslogtreecommitdiffstats
path: root/sys/dev/raidframe/rf_parityloggingdags.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/raidframe/rf_parityloggingdags.c')
-rw-r--r--sys/dev/raidframe/rf_parityloggingdags.c673
1 files changed, 673 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_parityloggingdags.c b/sys/dev/raidframe/rf_parityloggingdags.c
new file mode 100644
index 0000000..7ccef55
--- /dev/null
+++ b/sys/dev/raidframe/rf_parityloggingdags.c
@@ -0,0 +1,673 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_parityloggingdags.c,v 1.4 2000/01/07 03:41:04 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: William V. Courtright II
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+#include <dev/raidframe/rf_archs.h>
+
+#if RF_INCLUDE_PARITYLOGGING > 0
+
+/*
+ DAGs specific to parity logging are created here
+ */
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_debugMem.h>
+#include <dev/raidframe/rf_paritylog.h>
+#include <dev/raidframe/rf_memchunk.h>
+#include <dev/raidframe/rf_general.h>
+
+#include <dev/raidframe/rf_parityloggingdags.h>
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a large-write operation:
+ *
+ * / Rod \ / Wnd \
+ * H -- NIL- Rod - NIL - Wnd ------ NIL - T
+ * \ Rod / \ Xor - Lpo /
+ *
+ * The writes are not done until the reads complete because if they were done in
+ * parallel, a failure on one of the reads could leave the parity in an inconsistent
+ * state, so that the retry with a new DAG would produce erroneous parity.
+ *
+ * Note: this DAG has the nasty property that none of the buffers allocated for reading
+ * old data can be freed until the XOR node fires. Need to fix this.
+ *
+ * The last two arguments are the number of faults tolerated, and function for the
+ * redundancy calculation. The undo for the redundancy calc is assumed to be null
+ *
+ *****************************************************************************/
+
+void
+rf_CommonCreateParityLoggingLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *))
+{
+ RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
+ *lpoNode, *blockNode, *unblockNode, *termNode;
+ int nWndNodes, nRodNodes, i;
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+ RF_AccessStripeMapHeader_t *new_asm_h[2];
+ int nodeNum, asmNum;
+ RF_ReconUnitNum_t which_ru;
+ char *sosBuffer, *eosBuffer;
+ RF_PhysDiskAddr_t *pda;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+
+ if (rf_dagDebug)
+ printf("[Creating parity-logging large-write DAG]\n");
+ RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
+ dag_h->creator = "ParityLoggingLargeWriteDAG";
+
+ /* alloc the Wnd nodes, the xor node, and the Lpo node */
+ nWndNodes = asmap->numStripeUnitsAccessed;
+ RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ wndNodes = &nodes[i];
+ i += nWndNodes;
+ xorNode = &nodes[i];
+ i += 1;
+ lpoNode = &nodes[i];
+ i += 1;
+ blockNode = &nodes[i];
+ i += 1;
+ syncNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ termNode = &nodes[i];
+ i += 1;
+
+ dag_h->numCommitNodes = nWndNodes + 1;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
+ if (nRodNodes > 0)
+ RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+
+ /* begin node initialization */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize the Rod nodes */
+ for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
+ if (new_asm_h[asmNum]) {
+ pda = new_asm_h[asmNum]->stripeMap->physInfo;
+ while (pda) {
+ rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
+ rodNodes[nodeNum].params[0].p = pda;
+ rodNodes[nodeNum].params[1].p = pda->bufPtr;
+ rodNodes[nodeNum].params[2].v = parityStripeID;
+ rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ nodeNum++;
+ pda = pda->next;
+ }
+ }
+ }
+ RF_ASSERT(nodeNum == nRodNodes);
+
+ /* initialize the wnd nodes */
+ pda = asmap->physInfo;
+ for (i = 0; i < nWndNodes; i++) {
+ rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
+ RF_ASSERT(pda != NULL);
+ wndNodes[i].params[0].p = pda;
+ wndNodes[i].params[1].p = pda->bufPtr;
+ wndNodes[i].params[2].v = parityStripeID;
+ wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ pda = pda->next;
+ }
+
+ /* initialize the redundancy node */
+ rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
+ xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < nWndNodes; i++) {
+ xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
+ xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
+ }
+ for (i = 0; i < nRodNodes; i++) {
+ xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
+ xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
+ }
+ xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+
+ /* look for an Rod node that reads a complete SU. If none, alloc a
+ * buffer to receive the parity info. Note that we can't use a new
+ * data buffer because it will not have gotten written when the xor
+ * occurs. */
+ for (i = 0; i < nRodNodes; i++)
+ if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
+ break;
+ if (i == nRodNodes) {
+ RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
+ } else {
+ xorNode->results[0] = rodNodes[i].params[1].p;
+ }
+
+ /* initialize the Lpo node */
+ rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
+
+ lpoNode->params[0].p = asmap->parityInfo;
+ lpoNode->params[1].p = xorNode->results[0];
+ RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
+ * describe entire
+ * parity unit */
+
+ /* connect nodes to form graph */
+
+ /* connect dag header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect the block node to the Rod nodes */
+ RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
+ for (i = 0; i < nRodNodes; i++) {
+ RF_ASSERT(rodNodes[i].numAntecedents == 1);
+ blockNode->succedents[i] = &rodNodes[i];
+ rodNodes[i].antecedents[0] = blockNode;
+ rodNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the block node to the sync node */
+ /* necessary if nRodNodes == 0 */
+ RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
+ blockNode->succedents[nRodNodes] = syncNode;
+ syncNode->antecedents[0] = blockNode;
+ syncNode->antType[0] = rf_control;
+
+ /* connect the Rod nodes to the syncNode */
+ for (i = 0; i < nRodNodes; i++) {
+ rodNodes[i].succedents[0] = syncNode;
+ syncNode->antecedents[1 + i] = &rodNodes[i];
+ syncNode->antType[1 + i] = rf_control;
+ }
+
+ /* connect the sync node to the xor node */
+ RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
+ RF_ASSERT(xorNode->numAntecedents == 1);
+ syncNode->succedents[0] = xorNode;
+ xorNode->antecedents[0] = syncNode;
+ xorNode->antType[0] = rf_trueData; /* carry forward from sync */
+
+ /* connect the sync node to the Wnd nodes */
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numAntecedents == 1);
+ syncNode->succedents[1 + i] = &wndNodes[i];
+ wndNodes[i].antecedents[0] = syncNode;
+ wndNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect the xor node to the Lpo node */
+ RF_ASSERT(xorNode->numSuccedents == 1);
+ RF_ASSERT(lpoNode->numAntecedents == 1);
+ xorNode->succedents[0] = lpoNode;
+ lpoNode->antecedents[0] = xorNode;
+ lpoNode->antType[0] = rf_trueData;
+
+ /* connect the Wnd nodes to the unblock node */
+ RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
+ for (i = 0; i < nWndNodes; i++) {
+ RF_ASSERT(wndNodes->numSuccedents == 1);
+ wndNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &wndNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+
+ /* connect the Lpo node to the unblock node */
+ RF_ASSERT(lpoNode->numSuccedents == 1);
+ lpoNode->succedents[0] = unblockNode;
+ unblockNode->antecedents[nWndNodes] = lpoNode;
+ unblockNode->antType[nWndNodes] = rf_control;
+
+ /* connect unblock node to terminator */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+
+
+/******************************************************************************
+ *
+ * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
+ *
+ * Header
+ * |
+ * Block
+ * / | ... \ \
+ * / | \ \
+ * Rod Rod Rod Rop
+ * | \ /| \ / | \/ |
+ * | | | /\ |
+ * Wnd Wnd Wnd X
+ * | \ / |
+ * | \ / |
+ * \ \ / Lpo
+ * \ \ / /
+ * +-> Unblock <-+
+ * |
+ * T
+ *
+ *
+ * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
+ * When the access spans a stripe unit boundary and is less than one SU in size, there will
+ * be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
+ * The second output from each Rod node goes to the X node. In the double-XOR
+ * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
+ * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
+ *
+ * The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
+ *
+ * Note: this DAG ignores all the optimizations related to making the RMWs atomic.
+ * it also has the nasty property that none of the buffers allocated for reading
+ * old data & parity can be freed until the XOR node fires. Need to fix this.
+ *
+ * A null qfuncs indicates single fault tolerant
+ *****************************************************************************/
+
+void
+rf_CommonCreateParityLoggingSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
+ RF_DagNode_t *readDataNodes, *readParityNodes;
+ RF_DagNode_t *writeDataNodes, *lpuNodes;
+ RF_DagNode_t *unlockDataNodes = NULL, *termNode;
+ RF_PhysDiskAddr_t *pda = asmap->physInfo;
+ int numDataNodes = asmap->numStripeUnitsAccessed;
+ int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
+ int i, j, nNodes, totalNumNodes;
+ RF_ReconUnitNum_t which_ru;
+ int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
+ int (*qfunc) (RF_DagNode_t * node);
+ char *name, *qname;
+ RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
+ long nfaults = qfuncs ? 2 : 1;
+ int lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
+
+ if (rf_dagDebug)
+ printf("[Creating parity-logging small-write DAG]\n");
+ RF_ASSERT(numDataNodes > 0);
+ RF_ASSERT(nfaults == 1);
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+
+ /* DAG creation occurs in three steps: 1. count the number of nodes in
+ * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
+ * nodes */
+
+ /* Step 1. compute number of nodes in the graph */
+
+ /* number of nodes: a read and write for each data unit a redundancy
+ * computation node for each parity node a read and Lpu for each
+ * parity unit a block and unblock node (2) a terminator node if
+ * atomic RMW an unlock node for each data unit, redundancy unit */
+ totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
+ if (lu_flag)
+ totalNumNodes += numDataNodes;
+
+ nNodes = numDataNodes + numParityNodes;
+
+ dag_h->numCommitNodes = numDataNodes + numParityNodes;
+ dag_h->numCommits = 0;
+ dag_h->numSuccedents = 1;
+
+ /* Step 2. create the nodes */
+ RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
+ i = 0;
+ blockNode = &nodes[i];
+ i += 1;
+ unblockNode = &nodes[i];
+ i += 1;
+ readDataNodes = &nodes[i];
+ i += numDataNodes;
+ readParityNodes = &nodes[i];
+ i += numParityNodes;
+ writeDataNodes = &nodes[i];
+ i += numDataNodes;
+ lpuNodes = &nodes[i];
+ i += numParityNodes;
+ xorNodes = &nodes[i];
+ i += numParityNodes;
+ termNode = &nodes[i];
+ i += 1;
+ if (lu_flag) {
+ unlockDataNodes = &nodes[i];
+ i += numDataNodes;
+ }
+ RF_ASSERT(i == totalNumNodes);
+
+ /* Step 3. initialize the nodes */
+ /* initialize block node (Nil) */
+ rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize unblock node (Nil) */
+ rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
+
+ /* initialize terminatory node (Trm) */
+ rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
+
+ /* initialize nodes which read old data (Rod) */
+ for (i = 0; i < numDataNodes; i++) {
+ rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
+ RF_ASSERT(pda != NULL);
+ readDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * data */
+ readDataNodes[i].params[2].v = parityStripeID;
+ readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
+ pda = pda->next;
+ readDataNodes[i].propList[0] = NULL;
+ readDataNodes[i].propList[1] = NULL;
+ }
+
+ /* initialize nodes which read old parity (Rop) */
+ pda = asmap->parityInfo;
+ i = 0;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
+ readParityNodes[i].params[0].p = pda;
+ readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
+ * parity */
+ readParityNodes[i].params[2].v = parityStripeID;
+ readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+ readParityNodes[i].propList[0] = NULL;
+ pda = pda->next;
+ }
+
+ /* initialize nodes which write new data (Wnd) */
+ pda = asmap->physInfo;
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(pda != NULL);
+ rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
+ writeDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
+ * data to be written */
+ writeDataNodes[i].params[2].v = parityStripeID;
+ writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
+
+ if (lu_flag) {
+ /* initialize node to unlock the disk queue */
+ rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
+ unlockDataNodes[i].params[0].p = pda; /* physical disk addr
+ * desc */
+ unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
+ }
+ pda = pda->next;
+ }
+
+
+ /* initialize nodes which compute new parity */
+ /* we use the simple XOR func in the double-XOR case, and when we're
+ * accessing only a portion of one stripe unit. the distinction
+ * between the two is that the regular XOR func assumes that the
+ * targbuf is a full SU in size, and examines the pda associated with
+ * the buffer to decide where within the buffer to XOR the data,
+ * whereas the simple XOR func just XORs the data into the start of
+ * the buffer. */
+ if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
+ func = pfuncs->simple;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->SimpleName;
+ if (qfuncs) {
+ qfunc = qfuncs->simple;
+ qname = qfuncs->SimpleName;
+ }
+ } else {
+ func = pfuncs->regular;
+ undoFunc = rf_NullNodeUndoFunc;
+ name = pfuncs->RegularName;
+ if (qfuncs) {
+ qfunc = qfuncs->regular;
+ qname = qfuncs->RegularName;
+ }
+ }
+ /* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
+ * nodes, and raidPtr */
+ if (numParityNodes == 2) { /* double-xor case */
+ for (i = 0; i < numParityNodes; i++) {
+ rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
+ * xor */
+ xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
+ xorNodes[i].params[0] = readDataNodes[i].params[0];
+ xorNodes[i].params[1] = readDataNodes[i].params[1];
+ xorNodes[i].params[2] = readParityNodes[i].params[0];
+ xorNodes[i].params[3] = readParityNodes[i].params[1];
+ xorNodes[i].params[4] = writeDataNodes[i].params[0];
+ xorNodes[i].params[5] = writeDataNodes[i].params[1];
+ xorNodes[i].params[6].p = raidPtr;
+ xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
+ * target buf */
+ }
+ } else {
+ /* there is only one xor node in this case */
+ rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
+ xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
+ for (i = 0; i < numDataNodes + 1; i++) {
+ /* set up params related to Rod and Rop nodes */
+ xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
+ }
+ for (i = 0; i < numDataNodes; i++) {
+ /* set up params related to Wnd and Wnp nodes */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
+ xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
+ }
+ xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
+ * at RAID information */
+ xorNodes[0].results[0] = readParityNodes[0].params[1].p;
+ }
+
+ /* initialize the log node(s) */
+ pda = asmap->parityInfo;
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(pda);
+ rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
+ lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
+ lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
+ * parity */
+ pda = pda->next;
+ }
+
+
+ /* Step 4. connect the nodes */
+
+ /* connect header to block node */
+ RF_ASSERT(dag_h->numSuccedents == 1);
+ RF_ASSERT(blockNode->numAntecedents == 0);
+ dag_h->succedents[0] = blockNode;
+
+ /* connect block node to read old data nodes */
+ RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
+ for (i = 0; i < numDataNodes; i++) {
+ blockNode->succedents[i] = &readDataNodes[i];
+ RF_ASSERT(readDataNodes[i].numAntecedents == 1);
+ readDataNodes[i].antecedents[0] = blockNode;
+ readDataNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect block node to read old parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
+ RF_ASSERT(readParityNodes[i].numAntecedents == 1);
+ readParityNodes[i].antecedents[0] = blockNode;
+ readParityNodes[i].antType[0] = rf_control;
+ }
+
+ /* connect read old data nodes to write new data nodes */
+ for (i = 0; i < numDataNodes; i++) {
+ RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
+ for (j = 0; j < numDataNodes; j++) {
+ RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[j] = &writeDataNodes[j];
+ writeDataNodes[j].antecedents[i] = &readDataNodes[i];
+ if (i == j)
+ writeDataNodes[j].antType[i] = rf_antiData;
+ else
+ writeDataNodes[j].antType[i] = rf_control;
+ }
+ }
+
+ /* connect read old data nodes to xor nodes */
+ for (i = 0; i < numDataNodes; i++)
+ for (j = 0; j < numParityNodes; j++) {
+ RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
+ readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
+ xorNodes[j].antecedents[i] = &readDataNodes[i];
+ xorNodes[j].antType[i] = rf_trueData;
+ }
+
+ /* connect read old parity nodes to write new data nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
+ for (j = 0; j < numDataNodes; j++) {
+ readParityNodes[i].succedents[j] = &writeDataNodes[j];
+ writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ writeDataNodes[j].antType[numDataNodes + i] = rf_control;
+ }
+ }
+
+ /* connect read old parity nodes to xor nodes */
+ for (i = 0; i < numParityNodes; i++)
+ for (j = 0; j < numParityNodes; j++) {
+ readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
+ xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
+ xorNodes[j].antType[numDataNodes + i] = rf_trueData;
+ }
+
+ /* connect xor nodes to write new parity nodes */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(xorNodes[i].numSuccedents == 1);
+ RF_ASSERT(lpuNodes[i].numAntecedents == 1);
+ xorNodes[i].succedents[0] = &lpuNodes[i];
+ lpuNodes[i].antecedents[0] = &xorNodes[i];
+ lpuNodes[i].antType[0] = rf_trueData;
+ }
+
+ for (i = 0; i < numDataNodes; i++) {
+ if (lu_flag) {
+ /* connect write new data nodes to unlock nodes */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
+ writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
+ unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
+ unlockDataNodes[i].antType[0] = rf_control;
+
+ /* connect unlock nodes to unblock node */
+ RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ unlockDataNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &unlockDataNodes[i];
+ unblockNode->antType[i] = rf_control;
+ } else {
+ /* connect write new data nodes to unblock node */
+ RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
+ RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
+ writeDataNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[i] = &writeDataNodes[i];
+ unblockNode->antType[i] = rf_control;
+ }
+ }
+
+ /* connect write new parity nodes to unblock node */
+ for (i = 0; i < numParityNodes; i++) {
+ RF_ASSERT(lpuNodes[i].numSuccedents == 1);
+ lpuNodes[i].succedents[0] = unblockNode;
+ unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
+ unblockNode->antType[numDataNodes + i] = rf_control;
+ }
+
+ /* connect unblock node to terminator */
+ RF_ASSERT(unblockNode->numSuccedents == 1);
+ RF_ASSERT(termNode->numAntecedents == 1);
+ RF_ASSERT(termNode->numSuccedents == 0);
+ unblockNode->succedents[0] = termNode;
+ termNode->antecedents[0] = unblockNode;
+ termNode->antType[0] = rf_control;
+}
+
+
+void
+rf_CreateParityLoggingSmallWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ RF_RedFuncs_t * pfuncs,
+ RF_RedFuncs_t * qfuncs)
+{
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+ rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
+}
+
+
+void
+rf_CreateParityLoggingLargeWriteDAG(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_DagHeader_t * dag_h,
+ void *bp,
+ RF_RaidAccessFlags_t flags,
+ RF_AllocListElem_t * allocList,
+ int nfaults,
+ int (*redFunc) (RF_DagNode_t *))
+{
+ dag_h->creator = "ParityLoggingSmallWriteDAG";
+ rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
+}
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
OpenPOWER on IntegriCloud