summaryrefslogtreecommitdiffstats
path: root/sys/dev/raidframe/rf_diskqueue.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/raidframe/rf_diskqueue.c')
-rw-r--r--sys/dev/raidframe/rf_diskqueue.c591
1 files changed, 591 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_diskqueue.c b/sys/dev/raidframe/rf_diskqueue.c
new file mode 100644
index 0000000..3359ae5
--- /dev/null
+++ b/sys/dev/raidframe/rf_diskqueue.c
@@ -0,0 +1,591 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_diskqueue.c,v 1.13 2000/03/04 04:22:34 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Author: Mark Holland
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/****************************************************************************
+ *
+ * rf_diskqueue.c -- higher-level disk queue code
+ *
+ * the routines here are a generic wrapper around the actual queueing
+ * routines. The code here implements thread scheduling, synchronization,
+ * and locking ops (see below) on top of the lower-level queueing code.
+ *
+ * to support atomic RMW, we implement "locking operations". When a
+ * locking op is dispatched to the lower levels of the driver, the
+ * queue is locked, and no further I/Os are dispatched until the queue
+ * receives & completes a corresponding "unlocking operation". This
+ * code relies on the higher layers to guarantee that a locking op
+ * will always be eventually followed by an unlocking op. The model
+ * is that the higher layers are structured so locking and unlocking
+ * ops occur in pairs, i.e. an unlocking op cannot be generated until
+ * after a locking op reports completion. There is no good way to
+ * check to see that an unlocking op "corresponds" to the op that
+ * currently has the queue locked, so we make no such attempt. Since
+ * by definition there can be only one locking op outstanding on a
+ * disk, this should not be a problem.
+ *
+ * In the kernel, we allow multiple I/Os to be concurrently dispatched
+ * to the disk driver. In order to support locking ops in this
+ * environment, when we decide to do a locking op, we stop dispatching
+ * new I/Os and wait until all dispatched I/Os have completed before
+ * dispatching the locking op.
+ *
+ * Unfortunately, the code is different in the 3 different operating
+ * states (user level, kernel, simulator). In the kernel, I/O is
+ * non-blocking, and we have no disk threads to dispatch for us.
+ * Therefore, we have to dispatch new I/Os to the scsi driver at the
+ * time of enqueue, and also at the time of completion. At user
+ * level, I/O is blocking, and so only the disk threads may dispatch
+ * I/Os. Thus at user level, all we can do at enqueue time is enqueue
+ * and wake up the disk thread to do the dispatch.
+ *
+ ****************************************************************************/
+
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_diskqueue.h>
+#include <dev/raidframe/rf_alloclist.h>
+#include <dev/raidframe/rf_acctrace.h>
+#include <dev/raidframe/rf_etimer.h>
+#include <dev/raidframe/rf_configure.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_debugprint.h>
+#include <dev/raidframe/rf_shutdown.h>
+#include <dev/raidframe/rf_cvscan.h>
+#include <dev/raidframe/rf_sstf.h>
+#include <dev/raidframe/rf_fifo.h>
+#include <dev/raidframe/rf_kintf.h>
+
+static int init_dqd(RF_DiskQueueData_t *);
+static void clean_dqd(RF_DiskQueueData_t *);
+static void rf_ShutdownDiskQueueSystem(void *);
+
+#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
+#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
+
+/*****************************************************************************
+ *
+ * the disk queue switch defines all the functions used in the
+ * different queueing disciplines queue ID, init routine, enqueue
+ * routine, dequeue routine
+ *
+ ****************************************************************************/
+
+static RF_DiskQueueSW_t diskqueuesw[] = {
+ {"fifo", /* FIFO */
+ rf_FifoCreate,
+ rf_FifoEnqueue,
+ rf_FifoDequeue,
+ rf_FifoPeek,
+ rf_FifoPromote},
+
+ {"cvscan", /* cvscan */
+ rf_CvscanCreate,
+ rf_CvscanEnqueue,
+ rf_CvscanDequeue,
+ rf_CvscanPeek,
+ rf_CvscanPromote},
+
+ {"sstf", /* shortest seek time first */
+ rf_SstfCreate,
+ rf_SstfEnqueue,
+ rf_SstfDequeue,
+ rf_SstfPeek,
+ rf_SstfPromote},
+
+ {"scan", /* SCAN (two-way elevator) */
+ rf_ScanCreate,
+ rf_SstfEnqueue,
+ rf_ScanDequeue,
+ rf_ScanPeek,
+ rf_SstfPromote},
+
+ {"cscan", /* CSCAN (one-way elevator) */
+ rf_CscanCreate,
+ rf_SstfEnqueue,
+ rf_CscanDequeue,
+ rf_CscanPeek,
+ rf_SstfPromote},
+
+};
+#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
+
+static RF_FreeList_t *rf_dqd_freelist;
+
+#define RF_MAX_FREE_DQD 256
+#define RF_DQD_INC 16
+#define RF_DQD_INITIAL 64
+
+#if defined(__FreeBSD__) && __FreeBSD_version > 500005
+#include <sys/bio.h>
+#endif
+
+#include <sys/buf.h>
+
+static int
+init_dqd(dqd)
+ RF_DiskQueueData_t *dqd;
+{
+
+ dqd->bp = (RF_Buf_t) malloc(sizeof(RF_Buf_t), M_RAIDFRAME, M_NOWAIT);
+ if (dqd->bp == NULL) {
+ return (ENOMEM);
+ }
+ memset(dqd->bp, 0, sizeof(RF_Buf_t)); /* if you don't do it, nobody
+ * else will.. */
+ return (0);
+}
+
+static void
+clean_dqd(dqd)
+ RF_DiskQueueData_t *dqd;
+{
+ free(dqd->bp, M_RAIDFRAME);
+}
+/* configures a single disk queue */
+
+int
+rf_ConfigureDiskQueue(
+ RF_Raid_t * raidPtr,
+ RF_DiskQueue_t * diskqueue,
+ RF_RowCol_t r, /* row & col -- debug only. BZZT not any
+ * more... */
+ RF_RowCol_t c,
+ RF_DiskQueueSW_t * p,
+ RF_SectorCount_t sectPerDisk,
+ dev_t dev,
+ int maxOutstanding,
+ RF_ShutdownList_t ** listp,
+ RF_AllocListElem_t * clList)
+{
+ int rc;
+
+ diskqueue->row = r;
+ diskqueue->col = c;
+ diskqueue->qPtr = p;
+ diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
+ diskqueue->dev = dev;
+ diskqueue->numOutstanding = 0;
+ diskqueue->queueLength = 0;
+ diskqueue->maxOutstanding = maxOutstanding;
+ diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
+ diskqueue->nextLockingOp = NULL;
+ diskqueue->unlockingOp = NULL;
+ diskqueue->numWaiting = 0;
+ diskqueue->flags = 0;
+ diskqueue->raidPtr = raidPtr;
+ diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
+ rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ rc = rf_create_managed_cond(listp, &diskqueue->cond);
+ if (rc) {
+ RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
+ __LINE__, rc);
+ return (rc);
+ }
+ return (0);
+}
+
+static void
+rf_ShutdownDiskQueueSystem(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
+}
+
+int
+rf_ConfigureDiskQueueSystem(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
+ RF_DQD_INC, sizeof(RF_DiskQueueData_t));
+ if (rf_dqd_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownDiskQueueSystem(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
+ (RF_DiskQueueData_t *), init_dqd);
+ return (0);
+}
+
+int
+rf_ConfigureDiskQueues(
+ RF_ShutdownList_t ** listp,
+ RF_Raid_t * raidPtr,
+ RF_Config_t * cfgPtr)
+{
+ RF_DiskQueue_t **diskQueues, *spareQueues;
+ RF_DiskQueueSW_t *p;
+ RF_RowCol_t r, c;
+ int rc, i;
+
+ raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
+
+ for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
+ if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
+ p = &diskqueuesw[i];
+ break;
+ }
+ }
+ if (p == NULL) {
+ RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
+ p = &diskqueuesw[0];
+ }
+ raidPtr->qType = p;
+ RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
+ if (diskQueues == NULL) {
+ return (ENOMEM);
+ }
+ raidPtr->Queues = diskQueues;
+ for (r = 0; r < raidPtr->numRow; r++) {
+ RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
+ ((r == 0) ? RF_MAXSPARE : 0),
+ sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
+ raidPtr->cleanupList);
+ if (diskQueues[r] == NULL)
+ return (ENOMEM);
+ for (c = 0; c < raidPtr->numCol; c++) {
+ rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
+ r, c, p,
+ raidPtr->sectorsPerDisk,
+ raidPtr->Disks[r][c].dev,
+ cfgPtr->maxOutstandingDiskReqs,
+ listp, raidPtr->cleanupList);
+ if (rc)
+ return (rc);
+ }
+ }
+
+ spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
+ for (r = 0; r < raidPtr->numSpare; r++) {
+ rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
+ 0, raidPtr->numCol + r, p,
+ raidPtr->sectorsPerDisk,
+ raidPtr->Disks[0][raidPtr->numCol + r].dev,
+ cfgPtr->maxOutstandingDiskReqs, listp,
+ raidPtr->cleanupList);
+ if (rc)
+ return (rc);
+ }
+ return (0);
+}
+/* Enqueue a disk I/O
+ *
+ * Unfortunately, we have to do things differently in the different
+ * environments (simulator, user-level, kernel).
+ * At user level, all I/O is blocking, so we have 1 or more threads/disk
+ * and the thread that enqueues is different from the thread that dequeues.
+ * In the kernel, I/O is non-blocking and so we'd like to have multiple
+ * I/Os outstanding on the physical disks when possible.
+ *
+ * when any request arrives at a queue, we have two choices:
+ * dispatch it to the lower levels
+ * queue it up
+ *
+ * kernel rules for when to do what:
+ * locking request: queue empty => dispatch and lock queue,
+ * else queue it
+ * unlocking req : always dispatch it
+ * normal req : queue empty => dispatch it & set priority
+ * queue not full & priority is ok => dispatch it
+ * else queue it
+ *
+ * user-level rules:
+ * always enqueue. In the special case of an unlocking op, enqueue
+ * in a special way that will cause the unlocking op to be the next
+ * thing dequeued.
+ *
+ * simulator rules:
+ * Do the same as at user level, with the sleeps and wakeups suppressed.
+ */
+void
+rf_DiskIOEnqueue(queue, req, pri)
+ RF_DiskQueue_t *queue;
+ RF_DiskQueueData_t *req;
+ int pri;
+{
+ RF_ETIMER_START(req->qtime);
+ RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
+ req->priority = pri;
+
+ if (rf_queueDebug && (req->numSector == 0)) {
+ printf("Warning: Enqueueing zero-sector access\n");
+ }
+ /*
+ * kernel
+ */
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
+ /* locking request */
+ if (RF_LOCKING_REQ(req)) {
+ if (RF_QUEUE_EMPTY(queue)) {
+ Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
+ RF_LOCK_QUEUE(queue);
+ rf_DispatchKernelIO(queue, req);
+ } else {
+ queue->queueLength++; /* increment count of number
+ * of requests waiting in this
+ * queue */
+ Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
+ req->queue = (void *) queue;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
+ }
+ }
+ /* unlocking request */
+ else
+ if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
+ * when this I/O completes */
+ Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
+ RF_ASSERT(RF_QUEUE_LOCKED(queue));
+ rf_DispatchKernelIO(queue, req);
+ }
+ /* normal request */
+ else
+ if (RF_OK_TO_DISPATCH(queue, req)) {
+ Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ } else {
+ queue->queueLength++; /* increment count of
+ * number of requests
+ * waiting in this queue */
+ Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
+ req->queue = (void *) queue;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, pri);
+ }
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
+}
+
+
+/* get the next set of I/Os started, kernel version only */
+void
+rf_DiskIOComplete(queue, req, status)
+ RF_DiskQueue_t *queue;
+ RF_DiskQueueData_t *req;
+ int status;
+{
+ int done = 0;
+
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
+
+ /* unlock the queue: (1) after an unlocking req completes (2) after a
+ * locking req fails */
+ if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
+ Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
+ RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
+ RF_UNLOCK_QUEUE(queue);
+ }
+ queue->numOutstanding--;
+ RF_ASSERT(queue->numOutstanding >= 0);
+
+ /* dispatch requests to the disk until we find one that we can't. */
+ /* no reason to continue once we've filled up the queue */
+ /* no reason to even start if the queue is locked */
+
+ while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
+ if (queue->nextLockingOp) {
+ req = queue->nextLockingOp;
+ queue->nextLockingOp = NULL;
+ Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
+ } else {
+ req = (queue->qPtr->Dequeue) (queue->qHdr);
+ if (req != NULL) {
+ Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
+ } else {
+ Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
+ }
+ }
+ if (req) {
+ queue->queueLength--; /* decrement count of number
+ * of requests waiting in this
+ * queue */
+ RF_ASSERT(queue->queueLength >= 0);
+ }
+ if (!req)
+ done = 1;
+ else
+ if (RF_LOCKING_REQ(req)) {
+ if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
+ Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
+ RF_LOCK_QUEUE(queue);
+ rf_DispatchKernelIO(queue, req);
+ done = 1;
+ } else { /* put it aside to wait for
+ * the queue to drain */
+ Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
+ RF_ASSERT(queue->nextLockingOp == NULL);
+ queue->nextLockingOp = req;
+ done = 1;
+ }
+ } else
+ if (RF_UNLOCKING_REQ(req)) { /* should not happen:
+ * unlocking ops should
+ * not get queued */
+ RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
+ * the future */
+ Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ done = 1;
+ } else
+ if (RF_OK_TO_DISPATCH(queue, req)) {
+ Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
+ rf_DispatchKernelIO(queue, req);
+ } else { /* we can't dispatch it,
+ * so just re-enqueue
+ * it. */
+ /* potential trouble here if
+ * disk queues batch reqs */
+ Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
+ queue->queueLength++;
+ (queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
+ done = 1;
+ }
+ }
+
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
+}
+/* promotes accesses tagged with the given parityStripeID from low priority
+ * to normal priority. This promotion is optional, meaning that a queue
+ * need not implement it. If there is no promotion routine associated with
+ * a queue, this routine does nothing and returns -1.
+ */
+int
+rf_DiskIOPromote(queue, parityStripeID, which_ru)
+ RF_DiskQueue_t *queue;
+ RF_StripeNum_t parityStripeID;
+ RF_ReconUnitNum_t which_ru;
+{
+ int retval;
+
+ if (!queue->qPtr->Promote)
+ return (-1);
+ RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
+ retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
+ RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
+ return (retval);
+}
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueData(
+ RF_IoType_t typ,
+ RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect,
+ caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg,
+ RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ void *raidPtr,
+ RF_DiskQueueDataFlags_t flags,
+ void *kb_proc)
+{
+ RF_DiskQueueData_t *p;
+
+ RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
+
+ p->sectorOffset = ssect + rf_protectedSectors;
+ p->numSector = nsect;
+ p->type = typ;
+ p->buf = buf;
+ p->parityStripeID = parityStripeID;
+ p->which_ru = which_ru;
+ p->CompleteFunc = wakeF;
+ p->argument = arg;
+ p->next = next;
+ p->tracerec = tracerec;
+ p->priority = RF_IO_NORMAL_PRIORITY;
+ p->AuxFunc = NULL;
+ p->buf2 = NULL;
+ p->raidPtr = raidPtr;
+ p->flags = flags;
+ p->b_proc = kb_proc;
+ return (p);
+}
+
+RF_DiskQueueData_t *
+rf_CreateDiskQueueDataFull(
+ RF_IoType_t typ,
+ RF_SectorNum_t ssect,
+ RF_SectorCount_t nsect,
+ caddr_t buf,
+ RF_StripeNum_t parityStripeID,
+ RF_ReconUnitNum_t which_ru,
+ int (*wakeF) (void *, int),
+ void *arg,
+ RF_DiskQueueData_t * next,
+ RF_AccTraceEntry_t * tracerec,
+ int priority,
+ int (*AuxFunc) (void *,...),
+ caddr_t buf2,
+ void *raidPtr,
+ RF_DiskQueueDataFlags_t flags,
+ void *kb_proc)
+{
+ RF_DiskQueueData_t *p;
+
+ RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
+
+ p->sectorOffset = ssect + rf_protectedSectors;
+ p->numSector = nsect;
+ p->type = typ;
+ p->buf = buf;
+ p->parityStripeID = parityStripeID;
+ p->which_ru = which_ru;
+ p->CompleteFunc = wakeF;
+ p->argument = arg;
+ p->next = next;
+ p->tracerec = tracerec;
+ p->priority = priority;
+ p->AuxFunc = AuxFunc;
+ p->buf2 = buf2;
+ p->raidPtr = raidPtr;
+ p->flags = flags;
+ p->b_proc = kb_proc;
+ return (p);
+}
+
+void
+rf_FreeDiskQueueData(p)
+ RF_DiskQueueData_t *p;
+{
+ RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
+}
OpenPOWER on IntegriCloud