summaryrefslogtreecommitdiffstats
path: root/sys/dev/raidframe/rf_dagutils.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/raidframe/rf_dagutils.c')
-rw-r--r--sys/dev/raidframe/rf_dagutils.c1297
1 files changed, 1297 insertions, 0 deletions
diff --git a/sys/dev/raidframe/rf_dagutils.c b/sys/dev/raidframe/rf_dagutils.c
new file mode 100644
index 0000000..dd851a4
--- /dev/null
+++ b/sys/dev/raidframe/rf_dagutils.c
@@ -0,0 +1,1297 @@
+/* $FreeBSD$ */
+/* $NetBSD: rf_dagutils.c,v 1.6 1999/12/09 02:26:09 oster Exp $ */
+/*
+ * Copyright (c) 1995 Carnegie-Mellon University.
+ * All rights reserved.
+ *
+ * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
+ *
+ * Permission to use, copy, modify and distribute this software and
+ * its documentation is hereby granted, provided that both the copyright
+ * notice and this permission notice appear in all copies of the
+ * software, derivative works or modified versions, and any portions
+ * thereof, and that both notices appear in supporting documentation.
+ *
+ * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
+ * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
+ * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
+ *
+ * Carnegie Mellon requests users of this software to return to
+ *
+ * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
+ * School of Computer Science
+ * Carnegie Mellon University
+ * Pittsburgh PA 15213-3890
+ *
+ * any improvements or extensions that they make and grant Carnegie the
+ * rights to redistribute these changes.
+ */
+
+/******************************************************************************
+ *
+ * rf_dagutils.c -- utility routines for manipulating dags
+ *
+ *****************************************************************************/
+
+#include <dev/raidframe/rf_archs.h>
+#include <dev/raidframe/rf_types.h>
+#include <dev/raidframe/rf_threadstuff.h>
+#include <dev/raidframe/rf_raid.h>
+#include <dev/raidframe/rf_dag.h>
+#include <dev/raidframe/rf_dagutils.h>
+#include <dev/raidframe/rf_dagfuncs.h>
+#include <dev/raidframe/rf_general.h>
+#include <dev/raidframe/rf_freelist.h>
+#include <dev/raidframe/rf_map.h>
+#include <dev/raidframe/rf_shutdown.h>
+
+#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
+
+RF_RedFuncs_t rf_xorFuncs = {
+ rf_RegularXorFunc, "Reg Xr",
+rf_SimpleXorFunc, "Simple Xr"};
+
+RF_RedFuncs_t rf_xorRecoveryFuncs = {
+ rf_RecoveryXorFunc, "Recovery Xr",
+rf_RecoveryXorFunc, "Recovery Xr"};
+
+static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
+static void rf_PrintDAG(RF_DagHeader_t *);
+static int
+rf_ValidateBranch(RF_DagNode_t *, int *, int *,
+ RF_DagNode_t **, int);
+static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
+static void rf_ValidateVisitedBits(RF_DagHeader_t *);
+
+/******************************************************************************
+ *
+ * InitNode - initialize a dag node
+ *
+ * the size of the propList array is always the same as that of the
+ * successors array.
+ *
+ *****************************************************************************/
+void
+rf_InitNode(
+ RF_DagNode_t * node,
+ RF_NodeStatus_t initstatus,
+ int commit,
+ int (*doFunc) (RF_DagNode_t * node),
+ int (*undoFunc) (RF_DagNode_t * node),
+ int (*wakeFunc) (RF_DagNode_t * node, int status),
+ int nSucc,
+ int nAnte,
+ int nParam,
+ int nResult,
+ RF_DagHeader_t * hdr,
+ char *name,
+ RF_AllocListElem_t * alist)
+{
+ void **ptrs;
+ int nptrs;
+
+ if (nAnte > RF_MAX_ANTECEDENTS)
+ RF_PANIC();
+ node->status = initstatus;
+ node->commitNode = commit;
+ node->doFunc = doFunc;
+ node->undoFunc = undoFunc;
+ node->wakeFunc = wakeFunc;
+ node->numParams = nParam;
+ node->numResults = nResult;
+ node->numAntecedents = nAnte;
+ node->numAntDone = 0;
+ node->next = NULL;
+ node->numSuccedents = nSucc;
+ node->name = name;
+ node->dagHdr = hdr;
+ node->visited = 0;
+
+ /* allocate all the pointers with one call to malloc */
+ nptrs = nSucc + nAnte + nResult + nSucc;
+
+ if (nptrs <= RF_DAG_PTRCACHESIZE) {
+ /*
+ * The dag_ptrs field of the node is basically some scribble
+ * space to be used here. We could get rid of it, and always
+ * allocate the range of pointers, but that's expensive. So,
+ * we pick a "common case" size for the pointer cache. Hopefully,
+ * we'll find that:
+ * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
+ * only a little bit (least efficient case)
+ * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
+ * (wasted memory)
+ */
+ ptrs = (void **) node->dag_ptrs;
+ } else {
+ RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
+ }
+ node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
+ node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
+ node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
+ node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
+
+ if (nParam) {
+ if (nParam <= RF_DAG_PARAMCACHESIZE) {
+ node->params = (RF_DagParam_t *) node->dag_params;
+ } else {
+ RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
+ }
+ } else {
+ node->params = NULL;
+ }
+}
+
+
+
+/******************************************************************************
+ *
+ * allocation and deallocation routines
+ *
+ *****************************************************************************/
+
+void
+rf_FreeDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ RF_AccessStripeMapHeader_t *asmap, *t_asmap;
+ RF_DagHeader_t *nextDag;
+ int i;
+
+ while (dag_h) {
+ nextDag = dag_h->next;
+ for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
+ /* release mem chunks */
+ rf_ReleaseMemChunk(dag_h->memChunk[i]);
+ dag_h->memChunk[i] = NULL;
+ }
+
+ RF_ASSERT(i == dag_h->chunkIndex);
+ if (dag_h->xtraChunkCnt > 0) {
+ /* free xtraMemChunks */
+ for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
+ rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
+ dag_h->xtraMemChunk[i] = NULL;
+ }
+ RF_ASSERT(i == dag_h->xtraChunkIndex);
+ /* free ptrs to xtraMemChunks */
+ RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
+ }
+ rf_FreeAllocList(dag_h->allocList);
+ for (asmap = dag_h->asmList; asmap;) {
+ t_asmap = asmap;
+ asmap = asmap->next;
+ rf_FreeAccessStripeMap(t_asmap);
+ }
+ rf_FreeDAGHeader(dag_h);
+ dag_h = nextDag;
+ }
+}
+
+RF_PropHeader_t *
+rf_MakePropListEntry(
+ RF_DagHeader_t * dag_h,
+ int resultNum,
+ int paramNum,
+ RF_PropHeader_t * next,
+ RF_AllocListElem_t * allocList)
+{
+ RF_PropHeader_t *p;
+
+ RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
+ (RF_PropHeader_t *), allocList);
+ p->resultNum = resultNum;
+ p->paramNum = paramNum;
+ p->next = next;
+ return (p);
+}
+
+static RF_FreeList_t *rf_dagh_freelist;
+
+#define RF_MAX_FREE_DAGH 128
+#define RF_DAGH_INC 16
+#define RF_DAGH_INITIAL 32
+
+static void rf_ShutdownDAGs(void *);
+static void
+rf_ShutdownDAGs(ignored)
+ void *ignored;
+{
+ RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
+}
+
+int
+rf_ConfigureDAGs(listp)
+ RF_ShutdownList_t **listp;
+{
+ int rc;
+
+ RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
+ RF_DAGH_INC, sizeof(RF_DagHeader_t));
+ if (rf_dagh_freelist == NULL)
+ return (ENOMEM);
+ rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
+ if (rc) {
+ RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
+ __FILE__, __LINE__, rc);
+ rf_ShutdownDAGs(NULL);
+ return (rc);
+ }
+ RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
+ (RF_DagHeader_t *));
+ return (0);
+}
+
+RF_DagHeader_t *
+rf_AllocDAGHeader()
+{
+ RF_DagHeader_t *dh;
+
+ RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
+ if (dh) {
+ bzero((char *) dh, sizeof(RF_DagHeader_t));
+ }
+ return (dh);
+}
+
+void
+rf_FreeDAGHeader(RF_DagHeader_t * dh)
+{
+ RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
+}
+/* allocates a buffer big enough to hold the data described by pda */
+void *
+rf_AllocBuffer(
+ RF_Raid_t * raidPtr,
+ RF_DagHeader_t * dag_h,
+ RF_PhysDiskAddr_t * pda,
+ RF_AllocListElem_t * allocList)
+{
+ char *p;
+
+ RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
+ (char *), allocList);
+ return ((void *) p);
+}
+/******************************************************************************
+ *
+ * debug routines
+ *
+ *****************************************************************************/
+
+char *
+rf_NodeStatusString(RF_DagNode_t * node)
+{
+ switch (node->status) {
+ case rf_wait:return ("wait");
+ case rf_fired:
+ return ("fired");
+ case rf_good:
+ return ("good");
+ case rf_bad:
+ return ("bad");
+ default:
+ return ("?");
+ }
+}
+
+void
+rf_PrintNodeInfoString(RF_DagNode_t * node)
+{
+ RF_PhysDiskAddr_t *pda;
+ int (*df) (RF_DagNode_t *) = node->doFunc;
+ int i, lk, unlk;
+ void *bufPtr;
+
+ if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
+ || (df == rf_DiskReadMirrorIdleFunc)
+ || (df == rf_DiskReadMirrorPartitionFunc)) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ bufPtr = (void *) node->params[1].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
+ return;
+ }
+ if (df == rf_DiskUnlockFunc) {
+ pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
+ unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
+ RF_ASSERT(!(lk && unlk));
+ printf("r %d c %d %s\n", pda->row, pda->col,
+ (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
+ return;
+ }
+ if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
+ || (df == rf_RecoveryXorFunc)) {
+ printf("result buf 0x%lx\n", (long) node->results[0]);
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" buf 0x%lx r%d c%d offs %ld nsect %d\n",
+ (long) bufPtr, pda->row, pda->col,
+ (long) pda->startSector, (int) pda->numSector);
+ }
+ return;
+ }
+#if RF_INCLUDE_PARITYLOGGING > 0
+ if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
+ for (i = 0; i < node->numParams - 1; i += 2) {
+ pda = (RF_PhysDiskAddr_t *) node->params[i].p;
+ bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
+ printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
+ pda->row, pda->col, (long) pda->startSector,
+ (int) pda->numSector, (long) bufPtr);
+ }
+ return;
+ }
+#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
+
+ if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
+ printf("\n");
+ return;
+ }
+ printf("?\n");
+}
+
+static void
+rf_RecurPrintDAG(node, depth, unvisited)
+ RF_DagNode_t *node;
+ int depth;
+ int unvisited;
+{
+ char *anttype;
+ int i;
+
+ node->visited = (unvisited) ? 0 : 1;
+ printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
+ node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
+ node->numSuccedents, node->numSuccFired, node->numSuccDone,
+ node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
+ for (i = 0; i < node->numSuccedents; i++) {
+ printf("%d%s", node->succedents[i]->nodeNum,
+ ((i == node->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("} A{");
+ for (i = 0; i < node->numAntecedents; i++) {
+ switch (node->antType[i]) {
+ case rf_trueData:
+ anttype = "T";
+ break;
+ case rf_antiData:
+ anttype = "A";
+ break;
+ case rf_outputData:
+ anttype = "O";
+ break;
+ case rf_control:
+ anttype = "C";
+ break;
+ default:
+ anttype = "?";
+ break;
+ }
+ printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
+ }
+ printf("}; ");
+ rf_PrintNodeInfoString(node);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
+ }
+}
+
+static void
+rf_PrintDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ int unvisited, i;
+ char *status;
+
+ /* set dag status */
+ switch (dag_h->status) {
+ case rf_enable:
+ status = "enable";
+ break;
+ case rf_rollForward:
+ status = "rollForward";
+ break;
+ case rf_rollBackward:
+ status = "rollBackward";
+ break;
+ default:
+ status = "illegal!";
+ break;
+ }
+ /* find out if visited bits are currently set or clear */
+ unvisited = dag_h->succedents[0]->visited;
+
+ printf("DAG type: %s\n", dag_h->creator);
+ printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
+ printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
+ status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ printf("%d%s", dag_h->succedents[i]->nodeNum,
+ ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
+ }
+ printf("};\n");
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if (dag_h->succedents[i]->visited == unvisited)
+ rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
+ }
+}
+/* assigns node numbers */
+int
+rf_AssignNodeNums(RF_DagHeader_t * dag_h)
+{
+ int unvisited, i, nnum;
+ RF_DagNode_t *node;
+
+ nnum = 0;
+ unvisited = dag_h->succedents[0]->visited;
+
+ dag_h->nodeNum = nnum++;
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ node = dag_h->succedents[i];
+ if (node->visited == unvisited) {
+ nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
+ }
+ }
+ return (nnum);
+}
+
+int
+rf_RecurAssignNodeNums(node, num, unvisited)
+ RF_DagNode_t *node;
+ int num;
+ int unvisited;
+{
+ int i;
+
+ node->visited = (unvisited) ? 0 : 1;
+
+ node->nodeNum = num++;
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
+ }
+ }
+ return (num);
+}
+/* set the header pointers in each node to "newptr" */
+void
+rf_ResetDAGHeaderPointers(dag_h, newptr)
+ RF_DagHeader_t *dag_h;
+ RF_DagHeader_t *newptr;
+{
+ int i;
+ for (i = 0; i < dag_h->numSuccedents; i++)
+ if (dag_h->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
+}
+
+void
+rf_RecurResetDAGHeaderPointers(node, newptr)
+ RF_DagNode_t *node;
+ RF_DagHeader_t *newptr;
+{
+ int i;
+ node->dagHdr = newptr;
+ for (i = 0; i < node->numSuccedents; i++)
+ if (node->succedents[i]->dagHdr != newptr)
+ rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
+}
+
+
+void
+rf_PrintDAGList(RF_DagHeader_t * dag_h)
+{
+ int i = 0;
+
+ for (; dag_h; dag_h = dag_h->next) {
+ rf_AssignNodeNums(dag_h);
+ printf("\n\nDAG %d IN LIST:\n", i++);
+ rf_PrintDAG(dag_h);
+ }
+}
+
+static int
+rf_ValidateBranch(node, scount, acount, nodes, unvisited)
+ RF_DagNode_t *node;
+ int *scount;
+ int *acount;
+ RF_DagNode_t **nodes;
+ int unvisited;
+{
+ int i, retcode = 0;
+
+ /* construct an array of node pointers indexed by node num */
+ node->visited = (unvisited) ? 0 : 1;
+ nodes[node->nodeNum] = node;
+
+ if (node->next != NULL) {
+ printf("INVALID DAG: next pointer in node is not NULL\n");
+ retcode = 1;
+ }
+ if (node->status != rf_wait) {
+ printf("INVALID DAG: Node status is not wait\n");
+ retcode = 1;
+ }
+ if (node->numAntDone != 0) {
+ printf("INVALID DAG: numAntDone is not zero\n");
+ retcode = 1;
+ }
+ if (node->doFunc == rf_TerminateFunc) {
+ if (node->numSuccedents != 0) {
+ printf("INVALID DAG: Terminator node has succedents\n");
+ retcode = 1;
+ }
+ } else {
+ if (node->numSuccedents == 0) {
+ printf("INVALID DAG: Non-terminator node has no succedents\n");
+ retcode = 1;
+ }
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (!node->succedents[i]) {
+ printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ scount[node->succedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numAntecedents; i++) {
+ if (!node->antecedents[i]) {
+ printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
+ retcode = 1;
+ }
+ acount[node->antecedents[i]->nodeNum]++;
+ }
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i]->visited == unvisited) {
+ if (rf_ValidateBranch(node->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ }
+ return (retcode);
+}
+
+static void
+rf_ValidateBranchVisitedBits(node, unvisited, rl)
+ RF_DagNode_t *node;
+ int unvisited;
+ int rl;
+{
+ int i;
+
+ RF_ASSERT(node->visited == unvisited);
+ for (i = 0; i < node->numSuccedents; i++) {
+ if (node->succedents[i] == NULL) {
+ printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
+ }
+}
+/* NOTE: never call this on a big dag, because it is exponential
+ * in execution time
+ */
+static void
+rf_ValidateVisitedBits(dag)
+ RF_DagHeader_t *dag;
+{
+ int i, unvisited;
+
+ unvisited = dag->succedents[0]->visited;
+
+ for (i = 0; i < dag->numSuccedents; i++) {
+ if (dag->succedents[i] == NULL) {
+ printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
+ RF_ASSERT(0);
+ }
+ rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
+ }
+}
+/* validate a DAG. _at entry_ verify that:
+ * -- numNodesCompleted is zero
+ * -- node queue is null
+ * -- dag status is rf_enable
+ * -- next pointer is null on every node
+ * -- all nodes have status wait
+ * -- numAntDone is zero in all nodes
+ * -- terminator node has zero successors
+ * -- no other node besides terminator has zero successors
+ * -- no successor or antecedent pointer in a node is NULL
+ * -- number of times that each node appears as a successor of another node
+ * is equal to the antecedent count on that node
+ * -- number of times that each node appears as an antecedent of another node
+ * is equal to the succedent count on that node
+ * -- what else?
+ */
+int
+rf_ValidateDAG(dag_h)
+ RF_DagHeader_t *dag_h;
+{
+ int i, nodecount;
+ int *scount, *acount;/* per-node successor and antecedent counts */
+ RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
+ int retcode = 0;
+ int unvisited;
+ int commitNodeCount = 0;
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ if (dag_h->numNodesCompleted != 0) {
+ printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->status != rf_enable) {
+ printf("INVALID DAG: not enabled\n");
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numCommits != 0) {
+ printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ if (dag_h->numSuccedents != 1) {
+ /* currently, all dags must have only one succedent */
+ printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
+ retcode = 1;
+ goto validate_dag_bad;
+ }
+ nodecount = rf_AssignNodeNums(dag_h);
+
+ unvisited = dag_h->succedents[0]->visited;
+
+ RF_Calloc(scount, nodecount, sizeof(int), (int *));
+ RF_Calloc(acount, nodecount, sizeof(int), (int *));
+ RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
+ for (i = 0; i < dag_h->numSuccedents; i++) {
+ if ((dag_h->succedents[i]->visited == unvisited)
+ && rf_ValidateBranch(dag_h->succedents[i], scount,
+ acount, nodes, unvisited)) {
+ retcode = 1;
+ }
+ }
+ /* start at 1 to skip the header node */
+ for (i = 1; i < nodecount; i++) {
+ if (nodes[i]->commitNode)
+ commitNodeCount++;
+ if (nodes[i]->doFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->undoFunc == NULL) {
+ printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
+ nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
+ printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
+ nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+ }
+
+ if (dag_h->numCommitNodes != commitNodeCount) {
+ printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
+ dag_h->numCommitNodes, commitNodeCount);
+ retcode = 1;
+ goto validate_dag_out;
+ }
+validate_dag_out:
+ RF_Free(scount, nodecount * sizeof(int));
+ RF_Free(acount, nodecount * sizeof(int));
+ RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
+ if (retcode)
+ rf_PrintDAGList(dag_h);
+
+ if (rf_validateVisitedDebug)
+ rf_ValidateVisitedBits(dag_h);
+
+ return (retcode);
+
+validate_dag_bad:
+ rf_PrintDAGList(dag_h);
+ return (retcode);
+}
+
+
+/******************************************************************************
+ *
+ * misc construction routines
+ *
+ *****************************************************************************/
+
+void
+rf_redirect_asm(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap)
+{
+ int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
+ int row = asmap->physInfo->row;
+ int fcol = raidPtr->reconControl[row]->fcol;
+ int srow = raidPtr->reconControl[row]->spareRow;
+ int scol = raidPtr->reconControl[row]->spareCol;
+ RF_PhysDiskAddr_t *pda;
+
+ RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
+ for (pda = asmap->physInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
+ pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ /* printf("Remapped data for large write\n"); */
+ if (ds) {
+ raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
+ &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
+ }
+ for (pda = asmap->parityInfo; pda; pda = pda->next) {
+ if (pda->col == fcol) {
+ if (rf_dagDebug) {
+ if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
+ RF_PANIC();
+ }
+ }
+ }
+ if (ds) {
+ (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
+ } else {
+ pda->row = srow;
+ pda->col = scol;
+ }
+ }
+}
+
+
+/* this routine allocates read buffers and generates stripe maps for the
+ * regions of the array from the start of the stripe to the start of the
+ * access, and from the end of the access to the end of the stripe. It also
+ * computes and returns the number of DAG nodes needed to read all this data.
+ * Note that this routine does the wrong thing if the access is fully
+ * contained within one stripe unit, so we RF_ASSERT against this case at the
+ * start.
+ */
+void
+rf_MapUnaccessedPortionOfStripe(
+ RF_Raid_t * raidPtr,
+ RF_RaidLayout_t * layoutPtr,/* in: layout information */
+ RF_AccessStripeMap_t * asmap, /* in: access stripe map */
+ RF_DagHeader_t * dag_h, /* in: header of the dag to create */
+ RF_AccessStripeMapHeader_t ** new_asm_h, /* in: ptr to array of 2
+ * headers, to be filled in */
+ int *nRodNodes, /* out: num nodes to be generated to read
+ * unaccessed data */
+ char **sosBuffer, /* out: pointers to newly allocated buffer */
+ char **eosBuffer,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
+ RF_SectorNum_t sosNumSector, eosNumSector;
+
+ RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
+ /* generate an access map for the region of the array from start of
+ * stripe to start of access */
+ new_asm_h[0] = new_asm_h[1] = NULL;
+ *nRodNodes = 0;
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
+ sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosNumSector = asmap->raidAddress - sosRaidAddress;
+ RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
+ new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
+ }
+ /* generate an access map for the region of the array from end of
+ * access to end of stripe */
+ if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
+ eosRaidAddress = asmap->endRaidAddress;
+ eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
+ RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
+ new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+
+ RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
+ /* we're totally within one stripe here */
+ if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
+ rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
+ }
+}
+
+
+
+/* returns non-zero if the indicated ranges of stripe unit offsets overlap */
+int
+rf_PDAOverlap(
+ RF_RaidLayout_t * layoutPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest)
+{
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ /* use -1 to be sure we stay within SU */
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
+}
+
+
+/* GenerateFailedAccessASMs
+ *
+ * this routine figures out what portion of the stripe needs to be read
+ * to effect the degraded read or write operation. It's primary function
+ * is to identify everything required to recover the data, and then
+ * eliminate anything that is already being accessed by the user.
+ *
+ * The main result is two new ASMs, one for the region from the start of the
+ * stripe to the start of the access, and one for the region from the end of
+ * the access to the end of the stripe. These ASMs describe everything that
+ * needs to be read to effect the degraded access. Other results are:
+ * nXorBufs -- the total number of buffers that need to be XORed together to
+ * recover the lost data,
+ * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
+ * at entry, not allocated.
+ * overlappingPDAs --
+ * describes which of the non-failed PDAs in the user access
+ * overlap data that needs to be read to effect recovery.
+ * overlappingPDAs[i]==1 if and only if, neglecting the failed
+ * PDA, the ith pda in the input asm overlaps data that needs
+ * to be read for recovery.
+ */
+ /* in: asm - ASM for the actual access, one stripe only */
+ /* in: faildPDA - which component of the access has failed */
+ /* in: dag_h - header of the DAG we're going to create */
+ /* out: new_asm_h - the two new ASMs */
+ /* out: nXorBufs - the total number of xor bufs required */
+ /* out: rpBufPtr - a buffer for the parity read */
+void
+rf_GenerateFailedAccessASMs(
+ RF_Raid_t * raidPtr,
+ RF_AccessStripeMap_t * asmap,
+ RF_PhysDiskAddr_t * failedPDA,
+ RF_DagHeader_t * dag_h,
+ RF_AccessStripeMapHeader_t ** new_asm_h,
+ int *nXorBufs,
+ char **rpBufPtr,
+ char *overlappingPDAs,
+ RF_AllocListElem_t * allocList)
+{
+ RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
+
+ /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
+ RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
+
+ RF_SectorCount_t numSect[2], numParitySect;
+ RF_PhysDiskAddr_t *pda;
+ char *rdBuf, *bufP;
+ int foundit, i;
+
+ bufP = NULL;
+ foundit = 0;
+ /* first compute the following raid addresses: start of stripe,
+ * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
+ * MAX(end of access, end of failed SU), (eosStartAddr) end of
+ * stripe (i.e. start of next stripe) (eosAddr) */
+ sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
+ sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
+ eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
+
+ /* now generate access stripe maps for each of the above regions of
+ * the stripe. Use a dummy (NULL) buf ptr for now */
+
+ new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
+ new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
+
+ /* walk through the PDAs and range-restrict each SU to the region of
+ * the SU touched on the failed PDA. also compute total data buffer
+ * space requirements in this step. Ignore the parity for now. */
+
+ numSect[0] = numSect[1] = 0;
+ if (new_asm_h[0]) {
+ new_asm_h[0]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[0];
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[0] += pda->numSector;
+ }
+ }
+ if (new_asm_h[1]) {
+ new_asm_h[1]->next = dag_h->asmList;
+ dag_h->asmList = new_asm_h[1];
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
+ numSect[1] += pda->numSector;
+ }
+ }
+ numParitySect = failedPDA->numSector;
+
+ /* allocate buffer space for the data & parity we have to read to
+ * recover from the failure */
+
+ if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) { /* don't allocate parity
+ * buf if not needed */
+ RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
+ bufP = rdBuf;
+ if (rf_degDagDebug)
+ printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
+ (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
+ }
+ /* now walk through the pdas one last time and assign buffer pointers
+ * (ugh!). Again, ignore the parity. also, count nodes to find out
+ * how many bufs need to be xored together */
+ (*nXorBufs) = 1; /* in read case, 1 is for parity. In write
+ * case, 1 is for failed data */
+ if (new_asm_h[0]) {
+ for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ *nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (new_asm_h[1]) {
+ for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
+ pda->bufPtr = bufP;
+ bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
+ }
+ (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
+ }
+ if (rpBufPtr)
+ *rpBufPtr = bufP; /* the rest of the buffer is for
+ * parity */
+
+ /* the last step is to figure out how many more distinct buffers need
+ * to get xor'd to produce the missing unit. there's one for each
+ * user-data read node that overlaps the portion of the failed unit
+ * being accessed */
+
+ for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
+ if (pda == failedPDA) {
+ i--;
+ foundit = 1;
+ continue;
+ }
+ if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
+ overlappingPDAs[i] = 1;
+ (*nXorBufs)++;
+ }
+ }
+ if (!foundit) {
+ RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
+ RF_ASSERT(0);
+ }
+ if (rf_degDagDebug) {
+ if (new_asm_h[0]) {
+ printf("First asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
+ }
+ if (new_asm_h[1]) {
+ printf("Second asm:\n");
+ rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
+ }
+ }
+}
+
+
+/* adjusts the offset and number of sectors in the destination pda so that
+ * it covers at most the region of the SU covered by the source PDA. This
+ * is exclusively a restriction: the number of sectors indicated by the
+ * target PDA can only shrink.
+ *
+ * For example: s = sectors within SU indicated by source PDA
+ * d = sectors within SU indicated by dest PDA
+ * r = results, stored in dest PDA
+ *
+ * |--------------- one stripe unit ---------------------|
+ * | sssssssssssssssssssssssssssssssss |
+ * | ddddddddddddddddddddddddddddddddddddddddddddd |
+ * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
+ *
+ * Another example:
+ *
+ * |--------------- one stripe unit ---------------------|
+ * | sssssssssssssssssssssssssssssssss |
+ * | ddddddddddddddddddddddd |
+ * | rrrrrrrrrrrrrrrr |
+ *
+ */
+void
+rf_RangeRestrictPDA(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * src,
+ RF_PhysDiskAddr_t * dest,
+ int dobuffer,
+ int doraidaddr)
+{
+ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
+ RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
+ RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
+ * stay within SU */
+ RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
+ RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
+
+ dest->startSector = subAddr + RF_MAX(soffs, doffs);
+ dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
+
+ if (dobuffer)
+ dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
+ if (doraidaddr) {
+ dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
+ rf_StripeUnitOffset(layoutPtr, dest->startSector);
+ }
+}
+/*
+ * Want the highest of these primes to be the largest one
+ * less than the max expected number of columns (won't hurt
+ * to be too small or too large, but won't be optimal, either)
+ * --jimz
+ */
+#define NLOWPRIMES 8
+static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
+/*****************************************************************************
+ * compute the workload shift factor. (chained declustering)
+ *
+ * return nonzero if access should shift to secondary, otherwise,
+ * access is to primary
+ *****************************************************************************/
+int
+rf_compute_workload_shift(
+ RF_Raid_t * raidPtr,
+ RF_PhysDiskAddr_t * pda)
+{
+ /*
+ * variables:
+ * d = column of disk containing primary
+ * f = column of failed disk
+ * n = number of disks in array
+ * sd = "shift distance" (number of columns that d is to the right of f)
+ * row = row of array the access is in
+ * v = numerator of redirection ratio
+ * k = denominator of redirection ratio
+ */
+ RF_RowCol_t d, f, sd, row, n;
+ int k, v, ret, i;
+
+ row = pda->row;
+ n = raidPtr->numCol;
+
+ /* assign column of primary copy to d */
+ d = pda->col;
+
+ /* assign column of dead disk to f */
+ for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
+
+ RF_ASSERT(f < n);
+ RF_ASSERT(f != d);
+
+ sd = (f > d) ? (n + d - f) : (d - f);
+ RF_ASSERT(sd < n);
+
+ /*
+ * v of every k accesses should be redirected
+ *
+ * v/k := (n-1-sd)/(n-1)
+ */
+ v = (n - 1 - sd);
+ k = (n - 1);
+
+#if 1
+ /*
+ * XXX
+ * Is this worth it?
+ *
+ * Now reduce the fraction, by repeatedly factoring
+ * out primes (just like they teach in elementary school!)
+ */
+ for (i = 0; i < NLOWPRIMES; i++) {
+ if (lowprimes[i] > v)
+ break;
+ while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
+ v /= lowprimes[i];
+ k /= lowprimes[i];
+ }
+ }
+#endif
+
+ raidPtr->hist_diskreq[row][d]++;
+ if (raidPtr->hist_diskreq[row][d] > v) {
+ ret = 0; /* do not redirect */
+ } else {
+ ret = 1; /* redirect */
+ }
+
+#if 0
+ printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
+ raidPtr->hist_diskreq[row][d]);
+#endif
+
+ if (raidPtr->hist_diskreq[row][d] >= k) {
+ /* reset counter */
+ raidPtr->hist_diskreq[row][d] = 0;
+ }
+ return (ret);
+}
+/*
+ * Disk selection routines
+ */
+
+/*
+ * Selects the disk with the shortest queue from a mirror pair.
+ * Both the disk I/Os queued in RAIDframe as well as those at the physical
+ * disk are counted as members of the "queue"
+ */
+void
+rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ int dataQueueLength, mirrorQueueLength, usemirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
+
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
+ RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+ mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
+#ifdef RF_LOCK_QUEUES_TO_READ_LEN
+ RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
+#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (raidPtr->parity_good == RF_RAID_DIRTY) {
+ /* Trust only the main disk */
+ usemirror = 0;
+ } else
+ if (dataQueueLength < mirrorQueueLength) {
+ usemirror = 0;
+ } else
+ if (mirrorQueueLength < dataQueueLength) {
+ usemirror = 1;
+ } else {
+ /* queues are equal length. attempt
+ * cleverness. */
+ if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
+ <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
+ /* printf("dataQueueLength %d, mirrorQueueLength
+ * %d\n",dataQueueLength, mirrorQueueLength); */
+}
+/*
+ * Do simple partitioning. This assumes that
+ * the data and parity disks are laid out identically.
+ */
+void
+rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
+{
+ RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
+ RF_RowCol_t rowData, colData, rowMirror, colMirror;
+ RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
+ RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
+ RF_PhysDiskAddr_t *tmp_pda;
+ RF_RaidDisk_t **disks = raidPtr->Disks;
+ RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
+ int usemirror;
+
+ /* return the [row col] of the disk with the shortest queue */
+ rowData = data_pda->row;
+ colData = data_pda->col;
+ rowMirror = mirror_pda->row;
+ colMirror = mirror_pda->col;
+ dataQueue = &(dqs[rowData][colData]);
+ mirrorQueue = &(dqs[rowMirror][colMirror]);
+
+ usemirror = 0;
+ if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
+ usemirror = 0;
+ } else
+ if (RF_DEAD_DISK(disks[rowData][colData].status)) {
+ usemirror = 1;
+ } else
+ if (raidPtr->parity_good == RF_RAID_DIRTY) {
+ /* Trust only the main disk */
+ usemirror = 0;
+ } else
+ if (data_pda->startSector <
+ (disks[rowData][colData].numBlocks / 2)) {
+ usemirror = 0;
+ } else {
+ usemirror = 1;
+ }
+
+ if (usemirror) {
+ /* use mirror (parity) disk, swap params 0 & 4 */
+ tmp_pda = data_pda;
+ node->params[0].p = mirror_pda;
+ node->params[4].p = tmp_pda;
+ } else {
+ /* use data disk, leave param 0 unchanged */
+ }
+}
OpenPOWER on IntegriCloud