summaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp23
-rw-r--r--lib/Analysis/AliasAnalysisCounter.cpp66
-rw-r--r--lib/Analysis/AliasAnalysisEvaluator.cpp108
-rw-r--r--lib/Analysis/AliasSetTracker.cpp53
-rw-r--r--lib/Analysis/Analysis.cpp1
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp411
-rw-r--r--lib/Analysis/CFGPrinter.cpp68
-rw-r--r--lib/Analysis/CMakeLists.txt11
-rw-r--r--lib/Analysis/CaptureTracking.cpp2
-rw-r--r--lib/Analysis/ConstantFolding.cpp463
-rw-r--r--lib/Analysis/DbgInfoPrinter.cpp9
-rw-r--r--lib/Analysis/DebugInfo.cpp1199
-rw-r--r--lib/Analysis/IPA/Andersens.cpp168
-rw-r--r--lib/Analysis/IPA/CallGraph.cpp102
-rw-r--r--lib/Analysis/IPA/CallGraphSCCPass.cpp295
-rw-r--r--lib/Analysis/IPA/FindUsedTypes.cpp11
-rw-r--r--lib/Analysis/IPA/GlobalsModRef.cpp9
-rw-r--r--lib/Analysis/IVUsers.cpp57
-rw-r--r--lib/Analysis/InlineCost.cpp338
-rw-r--r--lib/Analysis/InstCount.cpp9
-rw-r--r--lib/Analysis/Interval.cpp21
-rw-r--r--lib/Analysis/IntervalPartition.cpp2
-rw-r--r--lib/Analysis/LibCallAliasAnalysis.cpp2
-rw-r--r--lib/Analysis/LibCallSemantics.cpp5
-rw-r--r--lib/Analysis/LoopDependenceAnalysis.cpp279
-rw-r--r--lib/Analysis/LoopInfo.cpp366
-rw-r--r--lib/Analysis/LoopPass.cpp60
-rw-r--r--lib/Analysis/MallocHelper.cpp230
-rw-r--r--lib/Analysis/MemoryDependenceAnalysis.cpp125
-rw-r--r--lib/Analysis/PointerTracking.cpp265
-rw-r--r--lib/Analysis/PostDominators.cpp10
-rw-r--r--lib/Analysis/ProfileEstimatorPass.cpp310
-rw-r--r--lib/Analysis/ProfileInfo.cpp166
-rw-r--r--lib/Analysis/ProfileInfoLoader.cpp193
-rw-r--r--lib/Analysis/ProfileInfoLoaderPass.cpp237
-rw-r--r--lib/Analysis/ProfileVerifierPass.cpp343
-rw-r--r--lib/Analysis/README.txt18
-rw-r--r--lib/Analysis/ScalarEvolution.cpp2109
-rw-r--r--lib/Analysis/ScalarEvolutionAliasAnalysis.cpp133
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp482
-rw-r--r--lib/Analysis/SparsePropagation.cpp30
-rw-r--r--lib/Analysis/Trace.cpp10
-rw-r--r--lib/Analysis/ValueTracking.cpp167
-rw-r--r--lib/Archive/Archive.cpp21
-rw-r--r--lib/Archive/ArchiveReader.cpp16
-rw-r--r--lib/Archive/ArchiveWriter.cpp19
-rw-r--r--lib/AsmParser/LLLexer.cpp59
-rw-r--r--lib/AsmParser/LLLexer.h6
-rw-r--r--lib/AsmParser/LLParser.cpp1334
-rw-r--r--lib/AsmParser/LLParser.h16
-rw-r--r--lib/AsmParser/LLToken.h16
-rw-r--r--lib/AsmParser/Parser.cpp39
-rw-r--r--lib/Bitcode/Reader/BitReader.cpp12
-rw-r--r--lib/Bitcode/Reader/BitcodeReader.cpp844
-rw-r--r--lib/Bitcode/Reader/BitcodeReader.h50
-rw-r--r--lib/Bitcode/Reader/Deserialize.cpp14
-rw-r--r--lib/Bitcode/Writer/BitWriter.cpp28
-rw-r--r--lib/Bitcode/Writer/BitcodeWriter.cpp571
-rw-r--r--lib/Bitcode/Writer/BitcodeWriterPass.cpp21
-rw-r--r--lib/Bitcode/Writer/Serialize.cpp9
-rw-r--r--lib/Bitcode/Writer/ValueEnumerator.cpp167
-rw-r--r--lib/Bitcode/Writer/ValueEnumerator.h23
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinter.cpp1194
-rw-r--r--lib/CodeGen/AsmPrinter/DIE.cpp57
-rw-r--r--lib/CodeGen/AsmPrinter/DIE.h34
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.cpp1161
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfDebug.h115
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfException.cpp917
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfException.h60
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfLabel.cpp7
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfLabel.h10
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfPrinter.cpp40
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfPrinter.h10
-rw-r--r--lib/CodeGen/AsmPrinter/DwarfWriter.cpp34
-rw-r--r--lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp70
-rw-r--r--lib/CodeGen/BranchFolding.cpp175
-rw-r--r--lib/CodeGen/BranchFolding.h84
-rw-r--r--lib/CodeGen/CMakeLists.txt10
-rw-r--r--lib/CodeGen/CodePlacementOpt.cpp4
-rw-r--r--lib/CodeGen/DeadMachineInstructionElim.cpp9
-rw-r--r--lib/CodeGen/DwarfEHPrepare.cpp55
-rw-r--r--lib/CodeGen/ELF.h232
-rw-r--r--lib/CodeGen/ELFCodeEmitter.cpp155
-rw-r--r--lib/CodeGen/ELFCodeEmitter.h102
-rw-r--r--lib/CodeGen/ELFWriter.cpp903
-rw-r--r--lib/CodeGen/ELFWriter.h191
-rw-r--r--lib/CodeGen/ExactHazardRecognizer.cpp160
-rw-r--r--lib/CodeGen/ExactHazardRecognizer.h61
-rw-r--r--lib/CodeGen/GCMetadata.cpp34
-rw-r--r--lib/CodeGen/GCMetadataPrinter.cpp4
-rw-r--r--lib/CodeGen/GCStrategy.cpp23
-rw-r--r--lib/CodeGen/IfConversion.cpp64
-rw-r--r--lib/CodeGen/IntrinsicLowering.cpp490
-rw-r--r--lib/CodeGen/LLVMTargetMachine.cpp136
-rw-r--r--lib/CodeGen/LiveInterval.cpp148
-rw-r--r--lib/CodeGen/LiveIntervalAnalysis.cpp1002
-rw-r--r--lib/CodeGen/LiveStackAnalysis.cpp12
-rw-r--r--lib/CodeGen/LiveVariables.cpp280
-rw-r--r--lib/CodeGen/LowerSubregs.cpp146
-rw-r--r--lib/CodeGen/MachO.h119
-rw-r--r--lib/CodeGen/MachOCodeEmitter.cpp84
-rw-r--r--lib/CodeGen/MachOCodeEmitter.h88
-rw-r--r--lib/CodeGen/MachOWriter.cpp222
-rw-r--r--lib/CodeGen/MachOWriter.h161
-rw-r--r--lib/CodeGen/MachineBasicBlock.cpp90
-rw-r--r--lib/CodeGen/MachineDominators.cpp4
-rw-r--r--lib/CodeGen/MachineFunction.cpp313
-rw-r--r--lib/CodeGen/MachineFunctionAnalysis.cpp50
-rw-r--r--lib/CodeGen/MachineFunctionPass.cpp50
-rw-r--r--lib/CodeGen/MachineInstr.cpp268
-rw-r--r--lib/CodeGen/MachineLICM.cpp76
-rw-r--r--lib/CodeGen/MachineLoopInfo.cpp9
-rw-r--r--lib/CodeGen/MachineModuleInfo.cpp81
-rw-r--r--lib/CodeGen/MachineModuleInfoImpls.cpp45
-rw-r--r--lib/CodeGen/MachineRegisterInfo.cpp8
-rw-r--r--lib/CodeGen/MachineSink.cpp59
-rw-r--r--lib/CodeGen/MachineVerifier.cpp382
-rw-r--r--lib/CodeGen/ObjectCodeEmitter.cpp141
-rw-r--r--lib/CodeGen/PBQP/AnnotatedGraph.h184
-rw-r--r--lib/CodeGen/PBQP/ExhaustiveSolver.h110
-rw-r--r--lib/CodeGen/PBQP/GraphBase.h582
-rw-r--r--lib/CodeGen/PBQP/HeuristicSolver.h789
-rw-r--r--lib/CodeGen/PBQP/Heuristics/Briggs.h383
-rw-r--r--lib/CodeGen/PBQP/PBQPMath.h288
-rw-r--r--lib/CodeGen/PBQP/SimpleGraph.h100
-rw-r--r--lib/CodeGen/PBQP/Solution.h88
-rw-r--r--lib/CodeGen/PBQP/Solver.h31
-rw-r--r--lib/CodeGen/PHIElimination.cpp113
-rw-r--r--lib/CodeGen/PHIElimination.h125
-rw-r--r--lib/CodeGen/PostRASchedulerList.cpp659
-rw-r--r--lib/CodeGen/PreAllocSplitting.cpp228
-rw-r--r--lib/CodeGen/PrologEpilogInserter.cpp362
-rw-r--r--lib/CodeGen/PrologEpilogInserter.h14
-rw-r--r--lib/CodeGen/PseudoSourceValue.cpp20
-rw-r--r--lib/CodeGen/README.txt67
-rw-r--r--lib/CodeGen/RegAllocLinearScan.cpp188
-rw-r--r--lib/CodeGen/RegAllocLocal.cpp92
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp241
-rw-r--r--lib/CodeGen/RegisterScavenging.cpp495
-rw-r--r--lib/CodeGen/ScheduleDAG.cpp103
-rw-r--r--lib/CodeGen/ScheduleDAGEmit.cpp4
-rw-r--r--lib/CodeGen/ScheduleDAGInstrs.cpp135
-rw-r--r--lib/CodeGen/ScheduleDAGInstrs.h15
-rw-r--r--lib/CodeGen/ScheduleDAGPrinter.cpp14
-rw-r--r--lib/CodeGen/SelectionDAG/CMakeLists.txt6
-rw-r--r--lib/CodeGen/SelectionDAG/CallingConvLower.cpp121
-rw-r--r--lib/CodeGen/SelectionDAG/DAGCombiner.cpp654
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp183
-rw-r--r--lib/CodeGen/SelectionDAG/InstrEmitter.cpp693
-rw-r--r--lib/CodeGen/SelectionDAG/InstrEmitter.h119
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeDAG.cpp448
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp154
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp318
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.cpp130
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypes.h45
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp68
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp24
-rw-r--r--lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp589
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp81
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp26
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp73
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp113
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h69
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAG.cpp1245
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp1269
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuild.h34
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp423
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp38
-rw-r--r--lib/CodeGen/SelectionDAG/TargetLowering.cpp836
-rw-r--r--lib/CodeGen/ShadowStackGC.cpp87
-rw-r--r--lib/CodeGen/ShrinkWrapping.cpp223
-rw-r--r--lib/CodeGen/SimpleHazardRecognizer.h89
-rw-r--r--lib/CodeGen/SimpleRegisterCoalescing.cpp1176
-rw-r--r--lib/CodeGen/SimpleRegisterCoalescing.h88
-rw-r--r--lib/CodeGen/SjLjEHPrepare.cpp520
-rw-r--r--lib/CodeGen/Spiller.cpp95
-rw-r--r--lib/CodeGen/StackProtector.cpp13
-rw-r--r--lib/CodeGen/StackSlotColoring.cpp75
-rw-r--r--lib/CodeGen/StrongPHIElimination.cpp71
-rw-r--r--lib/CodeGen/TargetInstrInfoImpl.cpp159
-rw-r--r--lib/CodeGen/TwoAddressInstructionPass.cpp459
-rw-r--r--lib/CodeGen/UnreachableBlockElim.cpp25
-rw-r--r--lib/CodeGen/VirtRegMap.cpp5
-rw-r--r--lib/CodeGen/VirtRegMap.h22
-rw-r--r--lib/CodeGen/VirtRegRewriter.cpp470
-rw-r--r--lib/CodeGen/VirtRegRewriter.h18
-rw-r--r--lib/CompilerDriver/BuiltinOptions.cpp2
-rw-r--r--lib/CompilerDriver/CompilationGraph.cpp6
-rw-r--r--lib/CompilerDriver/Main.cpp28
-rw-r--r--lib/CompilerDriver/Plugin.cpp8
-rw-r--r--lib/CompilerDriver/Tool.cpp2
-rw-r--r--lib/ExecutionEngine/ExecutionEngine.cpp321
-rw-r--r--lib/ExecutionEngine/ExecutionEngineBindings.cpp25
-rw-r--r--lib/ExecutionEngine/Interpreter/Execution.cpp188
-rw-r--r--lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp108
-rw-r--r--lib/ExecutionEngine/Interpreter/Interpreter.cpp4
-rw-r--r--lib/ExecutionEngine/Interpreter/Interpreter.h18
-rw-r--r--lib/ExecutionEngine/JIT/CMakeLists.txt2
-rw-r--r--lib/ExecutionEngine/JIT/Intercept.cpp11
-rw-r--r--lib/ExecutionEngine/JIT/JIT.cpp172
-rw-r--r--lib/ExecutionEngine/JIT/JIT.h47
-rw-r--r--lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp208
-rw-r--r--lib/ExecutionEngine/JIT/JITDebugRegisterer.h116
-rw-r--r--lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp182
-rw-r--r--lib/ExecutionEngine/JIT/JITDwarfEmitter.h4
-rw-r--r--lib/ExecutionEngine/JIT/JITEmitter.cpp292
-rw-r--r--lib/ExecutionEngine/JIT/JITMemoryManager.cpp387
-rw-r--r--lib/ExecutionEngine/JIT/MacOSJITEventListener.cpp5
-rw-r--r--lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp178
-rw-r--r--lib/ExecutionEngine/JIT/TargetSelect.cpp85
-rw-r--r--lib/Linker/LinkArchives.cpp11
-rw-r--r--lib/Linker/LinkItems.cpp33
-rw-r--r--lib/Linker/LinkModules.cpp121
-rw-r--r--lib/Linker/Linker.cpp45
-rw-r--r--lib/MC/CMakeLists.txt19
-rw-r--r--lib/MC/MCAsmInfo.cpp107
-rw-r--r--lib/MC/MCAsmInfoCOFF.cpp37
-rw-r--r--lib/MC/MCAsmInfoDarwin.cpp52
-rw-r--r--lib/MC/MCAsmLexer.cpp23
-rw-r--r--lib/MC/MCAsmParser.cpp18
-rw-r--r--lib/MC/MCAsmStreamer.cpp311
-rw-r--r--lib/MC/MCAssembler.cpp1190
-rw-r--r--lib/MC/MCCodeEmitter.cpp18
-rw-r--r--lib/MC/MCContext.cpp33
-rw-r--r--lib/MC/MCDisassembler.cpp14
-rw-r--r--lib/MC/MCExpr.cpp286
-rw-r--r--lib/MC/MCInst.cpp50
-rw-r--r--lib/MC/MCInstPrinter.cpp14
-rw-r--r--lib/MC/MCMachOStreamer.cpp379
-rw-r--r--lib/MC/MCNullStreamer.cpp70
-rw-r--r--lib/MC/MCSection.cpp45
-rw-r--r--lib/MC/MCSectionELF.cpp138
-rw-r--r--lib/MC/MCSectionMachO.cpp271
-rw-r--r--lib/MC/MCStreamer.cpp2
-rw-r--r--lib/MC/MCSymbol.cpp110
-rw-r--r--lib/MC/MCValue.cpp34
-rw-r--r--lib/MC/TargetAsmParser.cpp19
-rw-r--r--lib/Makefile2
-rw-r--r--lib/Support/APFloat.cpp301
-rw-r--r--lib/Support/APInt.cpp455
-rw-r--r--lib/Support/Allocator.cpp242
-rw-r--r--lib/Support/CMakeLists.txt15
-rw-r--r--lib/Support/COPYRIGHT.regex54
-rw-r--r--lib/Support/CommandLine.cpp696
-rw-r--r--lib/Support/ConstantRange.cpp330
-rw-r--r--lib/Support/Debug.cpp56
-rw-r--r--lib/Support/Dwarf.cpp43
-rw-r--r--lib/Support/ErrorHandling.cpp73
-rw-r--r--lib/Support/FoldingSet.cpp17
-rw-r--r--lib/Support/FormattedStream.cpp93
-rw-r--r--lib/Support/GraphWriter.cpp128
-rw-r--r--lib/Support/MemoryObject.cpp34
-rw-r--r--lib/Support/PluginLoader.cpp13
-rw-r--r--lib/Support/PrettyStackTrace.cpp11
-rw-r--r--lib/Support/Regex.cpp92
-rw-r--r--lib/Support/SlowOperationInformer.cpp11
-rw-r--r--lib/Support/SourceMgr.cpp40
-rw-r--r--lib/Support/Statistic.cpp16
-rw-r--r--lib/Support/StringMap.cpp26
-rw-r--r--lib/Support/StringPool.cpp8
-rw-r--r--lib/Support/StringRef.cpp188
-rw-r--r--lib/Support/SystemUtils.cpp41
-rw-r--r--lib/Support/TargetRegistry.cpp92
-rw-r--r--lib/Support/Timer.cpp92
-rw-r--r--lib/Support/Triple.cpp352
-rw-r--r--lib/Support/Twine.cpp133
-rw-r--r--lib/Support/raw_os_ostream.cpp30
-rw-r--r--lib/Support/raw_ostream.cpp355
-rw-r--r--lib/Support/regcclass.h70
-rw-r--r--lib/Support/regcname.h139
-rw-r--r--lib/Support/regcomp.c1525
-rw-r--r--lib/Support/regengine.inc1027
-rw-r--r--lib/Support/regerror.c135
-rw-r--r--lib/Support/regex2.h157
-rw-r--r--lib/Support/regex_impl.h108
-rw-r--r--lib/Support/regexec.c161
-rw-r--r--lib/Support/regfree.c72
-rw-r--r--lib/Support/regstrlcpy.c52
-rw-r--r--lib/Support/regutils.h53
-rw-r--r--lib/System/CMakeLists.txt25
-rw-r--r--lib/System/Disassembler.cpp2
-rw-r--r--lib/System/DynamicLibrary.cpp79
-rw-r--r--lib/System/Errno.cpp5
-rw-r--r--lib/System/Makefile6
-rw-r--r--lib/System/Memory.cpp19
-rw-r--r--lib/System/Mutex.cpp9
-rw-r--r--lib/System/Path.cpp22
-rw-r--r--lib/System/Program.cpp27
-rw-r--r--lib/System/RWMutex.cpp12
-rw-r--r--lib/System/Threading.cpp1
-rw-r--r--lib/System/Unix/Alarm.inc2
-rw-r--r--lib/System/Unix/Host.inc46
-rw-r--r--lib/System/Unix/Memory.inc7
-rw-r--r--lib/System/Unix/Path.inc73
-rw-r--r--lib/System/Unix/Process.inc29
-rw-r--r--lib/System/Unix/Program.inc131
-rw-r--r--lib/System/Unix/Signals.inc14
-rw-r--r--lib/System/Unix/TimeValue.inc2
-rw-r--r--lib/System/Win32/DynamicLibrary.inc44
-rw-r--r--lib/System/Win32/Memory.inc7
-rw-r--r--lib/System/Win32/Path.inc30
-rw-r--r--lib/System/Win32/Process.inc10
-rw-r--r--lib/System/Win32/Program.inc130
-rw-r--r--lib/System/Win32/Signals.inc53
-rw-r--r--lib/System/Win32/TimeValue.inc2
-rw-r--r--lib/Target/ARM/ARM.h23
-rw-r--r--lib/Target/ARM/ARM.td33
-rw-r--r--lib/Target/ARM/ARMAddressingModes.h109
-rw-r--r--lib/Target/ARM/ARMBaseInstrInfo.cpp1060
-rw-r--r--lib/Target/ARM/ARMBaseInstrInfo.h333
-rw-r--r--lib/Target/ARM/ARMBaseRegisterInfo.cpp1360
-rw-r--r--lib/Target/ARM/ARMBaseRegisterInfo.h148
-rw-r--r--lib/Target/ARM/ARMCallingConv.td2
-rw-r--r--lib/Target/ARM/ARMCodeEmitter.cpp211
-rw-r--r--lib/Target/ARM/ARMConstantIslandPass.cpp775
-rw-r--r--lib/Target/ARM/ARMConstantPoolValue.cpp36
-rw-r--r--lib/Target/ARM/ARMConstantPoolValue.h33
-rw-r--r--lib/Target/ARM/ARMFrameInfo.h4
-rw-r--r--lib/Target/ARM/ARMISelDAGToDAG.cpp1196
-rw-r--r--lib/Target/ARM/ARMISelLowering.cpp1523
-rw-r--r--lib/Target/ARM/ARMISelLowering.h91
-rw-r--r--lib/Target/ARM/ARMInstrFormats.td906
-rw-r--r--lib/Target/ARM/ARMInstrInfo.cpp856
-rw-r--r--lib/Target/ARM/ARMInstrInfo.h243
-rw-r--r--lib/Target/ARM/ARMInstrInfo.td682
-rw-r--r--lib/Target/ARM/ARMInstrNEON.td2127
-rw-r--r--lib/Target/ARM/ARMInstrThumb.td662
-rw-r--r--lib/Target/ARM/ARMInstrThumb2.td826
-rw-r--r--lib/Target/ARM/ARMInstrVFP.td195
-rw-r--r--lib/Target/ARM/ARMJITInfo.cpp68
-rw-r--r--lib/Target/ARM/ARMLoadStoreOptimizer.cpp562
-rw-r--r--lib/Target/ARM/ARMMCAsmInfo.cpp72
-rw-r--r--lib/Target/ARM/ARMMCAsmInfo.h31
-rw-r--r--lib/Target/ARM/ARMMachineFunctionInfo.h19
-rw-r--r--lib/Target/ARM/ARMPerfectShuffle.h6586
-rw-r--r--lib/Target/ARM/ARMRegisterInfo.cpp1367
-rw-r--r--lib/Target/ARM/ARMRegisterInfo.h121
-rw-r--r--lib/Target/ARM/ARMRegisterInfo.td99
-rw-r--r--lib/Target/ARM/ARMSchedule.td149
-rw-r--r--lib/Target/ARM/ARMScheduleV6.td12
-rw-r--r--lib/Target/ARM/ARMScheduleV7.td587
-rw-r--r--lib/Target/ARM/ARMSubtarget.cpp77
-rw-r--r--lib/Target/ARM/ARMSubtarget.h31
-rw-r--r--lib/Target/ARM/ARMTargetMachine.cpp218
-rw-r--r--lib/Target/ARM/ARMTargetMachine.h50
-rw-r--r--lib/Target/ARM/ARMTargetObjectFile.h39
-rw-r--r--lib/Target/ARM/AsmParser/ARMAsmParser.cpp618
-rw-r--r--lib/Target/ARM/AsmParser/CMakeLists.txt6
-rw-r--r--lib/Target/ARM/AsmParser/Makefile15
-rw-r--r--lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp691
-rw-r--r--lib/Target/ARM/AsmPrinter/Makefile2
-rw-r--r--lib/Target/ARM/CMakeLists.txt7
-rw-r--r--lib/Target/ARM/Makefile2
-rw-r--r--lib/Target/ARM/NEONPreAllocPass.cpp394
-rw-r--r--lib/Target/ARM/README-Thumb.txt28
-rw-r--r--lib/Target/ARM/README-Thumb2.txt6
-rw-r--r--lib/Target/ARM/README.txt63
-rw-r--r--lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp23
-rw-r--r--lib/Target/ARM/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/ARM/TargetInfo/Makefile15
-rw-r--r--lib/Target/ARM/Thumb1InstrInfo.cpp185
-rw-r--r--lib/Target/ARM/Thumb1InstrInfo.h27
-rw-r--r--lib/Target/ARM/Thumb1RegisterInfo.cpp323
-rw-r--r--lib/Target/ARM/Thumb1RegisterInfo.h39
-rw-r--r--lib/Target/ARM/Thumb2ITBlockPass.cpp158
-rw-r--r--lib/Target/ARM/Thumb2InstrInfo.cpp635
-rw-r--r--lib/Target/ARM/Thumb2InstrInfo.h74
-rw-r--r--lib/Target/ARM/Thumb2RegisterInfo.cpp724
-rw-r--r--lib/Target/ARM/Thumb2RegisterInfo.h29
-rw-r--r--lib/Target/ARM/Thumb2SizeReduction.cpp685
-rw-r--r--lib/Target/Alpha/Alpha.h12
-rw-r--r--lib/Target/Alpha/Alpha.td6
-rw-r--r--lib/Target/Alpha/AlphaBranchSelector.cpp2
-rw-r--r--lib/Target/Alpha/AlphaCallingConv.td37
-rw-r--r--lib/Target/Alpha/AlphaCodeEmitter.cpp36
-rw-r--r--lib/Target/Alpha/AlphaISelDAGToDAG.cpp168
-rw-r--r--lib/Target/Alpha/AlphaISelLowering.cpp514
-rw-r--r--lib/Target/Alpha/AlphaISelLowering.h42
-rw-r--r--lib/Target/Alpha/AlphaInstrInfo.cpp50
-rw-r--r--lib/Target/Alpha/AlphaInstrInfo.h10
-rw-r--r--lib/Target/Alpha/AlphaInstrInfo.td12
-rw-r--r--lib/Target/Alpha/AlphaJITInfo.cpp46
-rw-r--r--lib/Target/Alpha/AlphaMCAsmInfo.cpp22
-rw-r--r--lib/Target/Alpha/AlphaMCAsmInfo.h29
-rw-r--r--lib/Target/Alpha/AlphaRegisterInfo.cpp39
-rw-r--r--lib/Target/Alpha/AlphaRegisterInfo.h5
-rw-r--r--lib/Target/Alpha/AlphaSubtarget.cpp2
-rw-r--r--lib/Target/Alpha/AlphaSubtarget.h5
-rw-r--r--lib/Target/Alpha/AlphaTargetMachine.cpp99
-rw-r--r--lib/Target/Alpha/AlphaTargetMachine.h34
-rw-r--r--lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp122
-rw-r--r--lib/Target/Alpha/AsmPrinter/Makefile2
-rw-r--r--lib/Target/Alpha/CMakeLists.txt3
-rw-r--r--lib/Target/Alpha/Makefile4
-rw-r--r--lib/Target/Alpha/TargetInfo/AlphaTargetInfo.cpp20
-rw-r--r--lib/Target/Alpha/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/Alpha/TargetInfo/Makefile15
-rw-r--r--lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp242
-rw-r--r--lib/Target/Blackfin/AsmPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/Blackfin/AsmPrinter/Makefile16
-rw-r--r--lib/Target/Blackfin/Blackfin.h38
-rw-r--r--lib/Target/Blackfin/Blackfin.td201
-rw-r--r--lib/Target/Blackfin/BlackfinCallingConv.td30
-rw-r--r--lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp191
-rw-r--r--lib/Target/Blackfin/BlackfinISelLowering.cpp614
-rw-r--r--lib/Target/Blackfin/BlackfinISelLowering.h81
-rw-r--r--lib/Target/Blackfin/BlackfinInstrFormats.td34
-rw-r--r--lib/Target/Blackfin/BlackfinInstrInfo.cpp280
-rw-r--r--lib/Target/Blackfin/BlackfinInstrInfo.h80
-rw-r--r--lib/Target/Blackfin/BlackfinInstrInfo.td873
-rw-r--r--lib/Target/Blackfin/BlackfinMCAsmInfo.cpp21
-rw-r--r--lib/Target/Blackfin/BlackfinMCAsmInfo.h29
-rw-r--r--lib/Target/Blackfin/BlackfinRegisterInfo.cpp472
-rw-r--r--lib/Target/Blackfin/BlackfinRegisterInfo.h104
-rw-r--r--lib/Target/Blackfin/BlackfinRegisterInfo.td385
-rw-r--r--lib/Target/Blackfin/BlackfinSubtarget.cpp36
-rw-r--r--lib/Target/Blackfin/BlackfinSubtarget.h45
-rw-r--r--lib/Target/Blackfin/BlackfinTargetMachine.cpp42
-rw-r--r--lib/Target/Blackfin/BlackfinTargetMachine.h54
-rw-r--r--lib/Target/Blackfin/CMakeLists.txt21
-rw-r--r--lib/Target/Blackfin/Makefile23
-rw-r--r--lib/Target/Blackfin/README.txt244
-rw-r--r--lib/Target/Blackfin/TargetInfo/BlackfinTargetInfo.cpp21
-rw-r--r--lib/Target/Blackfin/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/Blackfin/TargetInfo/Makefile15
-rw-r--r--lib/Target/CBackend/CBackend.cpp383
-rw-r--r--lib/Target/CBackend/CTargetMachine.h17
-rw-r--r--lib/Target/CBackend/Makefile3
-rw-r--r--lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp19
-rw-r--r--lib/Target/CBackend/TargetInfo/CMakeLists.txt6
-rw-r--r--lib/Target/CBackend/TargetInfo/Makefile15
-rw-r--r--lib/Target/CMakeLists.txt8
-rw-r--r--lib/Target/CellSPU/AsmPrinter/CMakeLists.txt2
-rw-r--r--lib/Target/CellSPU/AsmPrinter/Makefile2
-rw-r--r--lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp160
-rw-r--r--lib/Target/CellSPU/CMakeLists.txt2
-rw-r--r--lib/Target/CellSPU/Makefile2
-rw-r--r--lib/Target/CellSPU/SPU.h8
-rw-r--r--lib/Target/CellSPU/SPUHazardRecognizers.cpp7
-rw-r--r--lib/Target/CellSPU/SPUISelDAGToDAG.cpp317
-rw-r--r--lib/Target/CellSPU/SPUISelLowering.cpp615
-rw-r--r--lib/Target/CellSPU/SPUISelLowering.h43
-rw-r--r--lib/Target/CellSPU/SPUInstrInfo.cpp103
-rw-r--r--lib/Target/CellSPU/SPUInstrInfo.h12
-rw-r--r--lib/Target/CellSPU/SPUInstrInfo.td7
-rw-r--r--lib/Target/CellSPU/SPUMCAsmInfo.cpp40
-rw-r--r--lib/Target/CellSPU/SPUMCAsmInfo.h28
-rw-r--r--lib/Target/CellSPU/SPUNodes.td6
-rw-r--r--lib/Target/CellSPU/SPURegisterInfo.cpp28
-rw-r--r--lib/Target/CellSPU/SPURegisterInfo.h8
-rw-r--r--lib/Target/CellSPU/SPUSubtarget.cpp6
-rw-r--r--lib/Target/CellSPU/SPUSubtarget.h9
-rw-r--r--lib/Target/CellSPU/SPUTargetMachine.cpp65
-rw-r--r--lib/Target/CellSPU/SPUTargetMachine.h27
-rw-r--r--lib/Target/CellSPU/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/CellSPU/TargetInfo/CellSPUTargetInfo.cpp20
-rw-r--r--lib/Target/CellSPU/TargetInfo/Makefile15
-rw-r--r--lib/Target/CppBackend/CPPBackend.cpp130
-rw-r--r--lib/Target/CppBackend/CPPTargetMachine.h19
-rw-r--r--lib/Target/CppBackend/Makefile3
-rw-r--r--lib/Target/CppBackend/TargetInfo/CMakeLists.txt6
-rw-r--r--lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp26
-rw-r--r--lib/Target/CppBackend/TargetInfo/Makefile15
-rw-r--r--lib/Target/MSIL/MSILWriter.cpp184
-rw-r--r--lib/Target/MSIL/MSILWriter.h29
-rw-r--r--lib/Target/MSIL/Makefile3
-rw-r--r--lib/Target/MSIL/TargetInfo/CMakeLists.txt6
-rw-r--r--lib/Target/MSIL/TargetInfo/MSILTargetInfo.cpp26
-rw-r--r--lib/Target/MSIL/TargetInfo/Makefile15
-rw-r--r--lib/Target/MSP430/AsmPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/MSP430/AsmPrinter/MSP430AsmPrinter.cpp281
-rw-r--r--lib/Target/MSP430/AsmPrinter/Makefile15
-rw-r--r--lib/Target/MSP430/CMakeLists.txt8
-rw-r--r--lib/Target/MSP430/MSP430.h8
-rw-r--r--lib/Target/MSP430/MSP430ISelDAGToDAG.cpp189
-rw-r--r--lib/Target/MSP430/MSP430ISelLowering.cpp262
-rw-r--r--lib/Target/MSP430/MSP430ISelLowering.h60
-rw-r--r--lib/Target/MSP430/MSP430InstrInfo.cpp7
-rw-r--r--lib/Target/MSP430/MSP430InstrInfo.td82
-rw-r--r--lib/Target/MSP430/MSP430MCAsmInfo.cpp20
-rw-r--r--lib/Target/MSP430/MSP430MCAsmInfo.h28
-rw-r--r--lib/Target/MSP430/MSP430RegisterInfo.cpp35
-rw-r--r--lib/Target/MSP430/MSP430RegisterInfo.h7
-rw-r--r--lib/Target/MSP430/MSP430Subtarget.cpp4
-rw-r--r--lib/Target/MSP430/MSP430Subtarget.h7
-rw-r--r--lib/Target/MSP430/MSP430TargetMachine.cpp57
-rw-r--r--lib/Target/MSP430/MSP430TargetMachine.h10
-rw-r--r--lib/Target/MSP430/Makefile4
-rw-r--r--lib/Target/MSP430/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp20
-rw-r--r--lib/Target/MSP430/TargetInfo/Makefile15
-rw-r--r--lib/Target/Mips/AsmPrinter/CMakeLists.txt2
-rw-r--r--lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp236
-rw-r--r--lib/Target/Mips/CMakeLists.txt3
-rw-r--r--lib/Target/Mips/Makefile2
-rw-r--r--lib/Target/Mips/Mips.h9
-rw-r--r--lib/Target/Mips/MipsISelDAGToDAG.cpp82
-rw-r--r--lib/Target/Mips/MipsISelLowering.cpp302
-rw-r--r--lib/Target/Mips/MipsISelLowering.h48
-rw-r--r--lib/Target/Mips/MipsInstrInfo.cpp50
-rw-r--r--lib/Target/Mips/MipsInstrInfo.h45
-rw-r--r--lib/Target/Mips/MipsMCAsmInfo.cpp27
-rw-r--r--lib/Target/Mips/MipsMCAsmInfo.h30
-rw-r--r--lib/Target/Mips/MipsMachineFunction.h4
-rw-r--r--lib/Target/Mips/MipsRegisterInfo.cpp45
-rw-r--r--lib/Target/Mips/MipsRegisterInfo.h7
-rw-r--r--lib/Target/Mips/MipsSubtarget.cpp36
-rw-r--r--lib/Target/Mips/MipsSubtarget.h20
-rw-r--r--lib/Target/Mips/MipsTargetMachine.cpp101
-rw-r--r--lib/Target/Mips/MipsTargetMachine.h31
-rw-r--r--lib/Target/Mips/MipsTargetObjectFile.cpp93
-rw-r--r--lib/Target/Mips/MipsTargetObjectFile.h41
-rw-r--r--lib/Target/Mips/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/Mips/TargetInfo/Makefile15
-rw-r--r--lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp21
-rw-r--r--lib/Target/PIC16/AsmPrinter/CMakeLists.txt9
-rw-r--r--lib/Target/PIC16/AsmPrinter/Makefile15
-rw-r--r--lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.cpp484
-rw-r--r--lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.h80
-rw-r--r--lib/Target/PIC16/CMakeLists.txt4
-rw-r--r--lib/Target/PIC16/MCSectionPIC16.h88
-rw-r--r--lib/Target/PIC16/Makefile4
-rw-r--r--lib/Target/PIC16/PIC16.h50
-rw-r--r--lib/Target/PIC16/PIC16DebugInfo.cpp197
-rw-r--r--lib/Target/PIC16/PIC16DebugInfo.h16
-rw-r--r--lib/Target/PIC16/PIC16ISelDAGToDAG.cpp2
-rw-r--r--lib/Target/PIC16/PIC16ISelDAGToDAG.h2
-rw-r--r--lib/Target/PIC16/PIC16ISelLowering.cpp431
-rw-r--r--lib/Target/PIC16/PIC16ISelLowering.h65
-rw-r--r--lib/Target/PIC16/PIC16InstrInfo.cpp5
-rw-r--r--lib/Target/PIC16/PIC16InstrInfo.td11
-rw-r--r--lib/Target/PIC16/PIC16MCAsmInfo.cpp58
-rw-r--r--lib/Target/PIC16/PIC16MCAsmInfo.h35
-rw-r--r--lib/Target/PIC16/PIC16MemSelOpt.cpp2
-rw-r--r--lib/Target/PIC16/PIC16RegisterInfo.cpp17
-rw-r--r--lib/Target/PIC16/PIC16RegisterInfo.h5
-rw-r--r--lib/Target/PIC16/PIC16Subtarget.cpp2
-rw-r--r--lib/Target/PIC16/PIC16Subtarget.h5
-rw-r--r--lib/Target/PIC16/PIC16TargetMachine.cpp57
-rw-r--r--lib/Target/PIC16/PIC16TargetMachine.h18
-rw-r--r--lib/Target/PIC16/PIC16TargetObjectFile.cpp440
-rw-r--r--lib/Target/PIC16/PIC16TargetObjectFile.h120
-rw-r--r--lib/Target/PIC16/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/PIC16/TargetInfo/Makefile15
-rw-r--r--lib/Target/PIC16/TargetInfo/PIC16TargetInfo.cpp21
-rw-r--r--lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp565
-rw-r--r--lib/Target/PowerPC/CMakeLists.txt2
-rw-r--r--lib/Target/PowerPC/Makefile2
-rw-r--r--lib/Target/PowerPC/PPC.h13
-rw-r--r--lib/Target/PowerPC/PPCCodeEmitter.cpp37
-rw-r--r--lib/Target/PowerPC/PPCFrameInfo.h285
-rw-r--r--lib/Target/PowerPC/PPCHazardRecognizers.cpp10
-rw-r--r--lib/Target/PowerPC/PPCISelDAGToDAG.cpp271
-rw-r--r--lib/Target/PowerPC/PPCISelLowering.cpp836
-rw-r--r--lib/Target/PowerPC/PPCISelLowering.h142
-rw-r--r--lib/Target/PowerPC/PPCInstr64Bit.td50
-rw-r--r--lib/Target/PowerPC/PPCInstrBuilder.h2
-rw-r--r--lib/Target/PowerPC/PPCInstrInfo.cpp86
-rw-r--r--lib/Target/PowerPC/PPCInstrInfo.h10
-rw-r--r--lib/Target/PowerPC/PPCInstrInfo.td63
-rw-r--r--lib/Target/PowerPC/PPCJITInfo.cpp10
-rw-r--r--lib/Target/PowerPC/PPCMCAsmInfo.cpp58
-rw-r--r--lib/Target/PowerPC/PPCMCAsmInfo.h31
-rw-r--r--lib/Target/PowerPC/PPCMachOWriterInfo.cpp5
-rw-r--r--lib/Target/PowerPC/PPCPredicates.cpp3
-rw-r--r--lib/Target/PowerPC/PPCRegisterInfo.cpp149
-rw-r--r--lib/Target/PowerPC/PPCRegisterInfo.h7
-rw-r--r--lib/Target/PowerPC/PPCRegisterInfo.td18
-rw-r--r--lib/Target/PowerPC/PPCSubtarget.cpp28
-rw-r--r--lib/Target/PowerPC/PPCSubtarget.h25
-rw-r--r--lib/Target/PowerPC/PPCTargetMachine.cpp177
-rw-r--r--lib/Target/PowerPC/PPCTargetMachine.h45
-rw-r--r--lib/Target/PowerPC/README.txt2
-rw-r--r--lib/Target/PowerPC/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/PowerPC/TargetInfo/Makefile15
-rw-r--r--lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp23
-rw-r--r--lib/Target/README.txt125
-rw-r--r--lib/Target/Sparc/AsmPrinter/Makefile2
-rw-r--r--lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp203
-rw-r--r--lib/Target/Sparc/CMakeLists.txt2
-rw-r--r--lib/Target/Sparc/FPMover.cpp10
-rw-r--r--lib/Target/Sparc/Makefile2
-rw-r--r--lib/Target/Sparc/Sparc.h10
-rw-r--r--lib/Target/Sparc/SparcISelDAGToDAG.cpp33
-rw-r--r--lib/Target/Sparc/SparcISelLowering.cpp257
-rw-r--r--lib/Target/Sparc/SparcISelLowering.h39
-rw-r--r--lib/Target/Sparc/SparcInstrInfo.cpp73
-rw-r--r--lib/Target/Sparc/SparcInstrInfo.h12
-rw-r--r--lib/Target/Sparc/SparcInstrInfo.td65
-rw-r--r--lib/Target/Sparc/SparcMCAsmInfo.cpp38
-rw-r--r--lib/Target/Sparc/SparcMCAsmInfo.h28
-rw-r--r--lib/Target/Sparc/SparcMachineFunctionInfo.h32
-rw-r--r--lib/Target/Sparc/SparcRegisterInfo.cpp21
-rw-r--r--lib/Target/Sparc/SparcRegisterInfo.h5
-rw-r--r--lib/Target/Sparc/SparcRegisterInfo.td12
-rw-r--r--lib/Target/Sparc/SparcSubtarget.cpp2
-rw-r--r--lib/Target/Sparc/SparcSubtarget.h5
-rw-r--r--lib/Target/Sparc/SparcTargetMachine.cpp66
-rw-r--r--lib/Target/Sparc/SparcTargetMachine.h24
-rw-r--r--lib/Target/Sparc/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/Sparc/TargetInfo/Makefile15
-rw-r--r--lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp19
-rw-r--r--lib/Target/SubtargetFeature.cpp45
-rw-r--r--lib/Target/SystemZ/AsmPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/SystemZ/AsmPrinter/Makefile15
-rw-r--r--lib/Target/SystemZ/AsmPrinter/SystemZAsmPrinter.cpp391
-rw-r--r--lib/Target/SystemZ/CMakeLists.txt23
-rw-r--r--lib/Target/SystemZ/Makefile22
-rw-r--r--lib/Target/SystemZ/SystemZ.h61
-rw-r--r--lib/Target/SystemZ/SystemZ.td61
-rw-r--r--lib/Target/SystemZ/SystemZCallingConv.td46
-rw-r--r--lib/Target/SystemZ/SystemZISelDAGToDAG.cpp829
-rw-r--r--lib/Target/SystemZ/SystemZISelLowering.cpp843
-rw-r--r--lib/Target/SystemZ/SystemZISelLowering.h141
-rw-r--r--lib/Target/SystemZ/SystemZInstrBuilder.h128
-rw-r--r--lib/Target/SystemZ/SystemZInstrFP.td340
-rw-r--r--lib/Target/SystemZ/SystemZInstrFormats.td133
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.cpp648
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.h119
-rw-r--r--lib/Target/SystemZ/SystemZInstrInfo.td1155
-rw-r--r--lib/Target/SystemZ/SystemZMCAsmInfo.cpp26
-rw-r--r--lib/Target/SystemZ/SystemZMCAsmInfo.h29
-rw-r--r--lib/Target/SystemZ/SystemZMachineFunctionInfo.h50
-rw-r--r--lib/Target/SystemZ/SystemZOperands.td306
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.cpp343
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.h82
-rw-r--r--lib/Target/SystemZ/SystemZRegisterInfo.td490
-rw-r--r--lib/Target/SystemZ/SystemZSubtarget.cpp47
-rw-r--r--lib/Target/SystemZ/SystemZSubtarget.h45
-rw-r--r--lib/Target/SystemZ/SystemZTargetMachine.cpp44
-rw-r--r--lib/Target/SystemZ/SystemZTargetMachine.h61
-rw-r--r--lib/Target/SystemZ/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/SystemZ/TargetInfo/Makefile15
-rw-r--r--lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp19
-rw-r--r--lib/Target/Target.cpp2
-rw-r--r--lib/Target/TargetData.cpp90
-rw-r--r--lib/Target/TargetInstrInfo.cpp69
-rw-r--r--lib/Target/TargetLoweringObjectFile.cpp1089
-rw-r--r--lib/Target/TargetMachine.cpp39
-rw-r--r--lib/Target/TargetRegisterInfo.cpp10
-rw-r--r--lib/Target/X86/AsmParser/CMakeLists.txt6
-rw-r--r--lib/Target/X86/AsmParser/Makefile15
-rw-r--r--lib/Target/X86/AsmParser/X86AsmParser.cpp479
-rw-r--r--lib/Target/X86/AsmPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/X86/AsmPrinter/Makefile2
-rw-r--r--lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp84
-rw-r--r--lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h86
-rw-r--r--lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp947
-rw-r--r--lib/Target/X86/AsmPrinter/X86AsmPrinter.h150
-rw-r--r--lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp131
-rw-r--r--lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h99
-rw-r--r--lib/Target/X86/AsmPrinter/X86MCInstLower.cpp485
-rw-r--r--lib/Target/X86/AsmPrinter/X86MCInstLower.h54
-rw-r--r--lib/Target/X86/CMakeLists.txt14
-rw-r--r--lib/Target/X86/Makefile4
-rw-r--r--lib/Target/X86/README-X86-64.txt49
-rw-r--r--lib/Target/X86/README.txt20
-rw-r--r--lib/Target/X86/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/X86/TargetInfo/Makefile15
-rw-r--r--lib/Target/X86/TargetInfo/X86TargetInfo.cpp23
-rw-r--r--lib/Target/X86/X86.h17
-rw-r--r--lib/Target/X86/X86.td32
-rw-r--r--lib/Target/X86/X86COFFMachineModuleInfo.cpp123
-rw-r--r--lib/Target/X86/X86COFFMachineModuleInfo.h67
-rw-r--r--lib/Target/X86/X86CallingConv.td45
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp672
-rw-r--r--lib/Target/X86/X86CompilationCallback_Win64.asm31
-rw-r--r--lib/Target/X86/X86ELFWriterInfo.cpp93
-rw-r--r--lib/Target/X86/X86ELFWriterInfo.h23
-rw-r--r--lib/Target/X86/X86FastISel.cpp415
-rw-r--r--lib/Target/X86/X86FloatingPoint.cpp45
-rw-r--r--lib/Target/X86/X86FloatingPointRegKill.cpp6
-rw-r--r--lib/Target/X86/X86ISelDAGToDAG.cpp1124
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp2359
-rw-r--r--lib/Target/X86/X86ISelLowering.h188
-rw-r--r--lib/Target/X86/X86Instr64bit.td468
-rw-r--r--lib/Target/X86/X86InstrBuilder.h52
-rw-r--r--lib/Target/X86/X86InstrFPStack.td25
-rw-r--r--lib/Target/X86/X86InstrFormats.td30
-rw-r--r--lib/Target/X86/X86InstrInfo.cpp1336
-rw-r--r--lib/Target/X86/X86InstrInfo.h122
-rw-r--r--lib/Target/X86/X86InstrInfo.td802
-rw-r--r--lib/Target/X86/X86InstrMMX.td121
-rw-r--r--lib/Target/X86/X86InstrSSE.td560
-rw-r--r--lib/Target/X86/X86JITInfo.cpp81
-rw-r--r--lib/Target/X86/X86JITInfo.h7
-rw-r--r--lib/Target/X86/X86MCAsmInfo.cpp123
-rw-r--r--lib/Target/X86/X86MCAsmInfo.h42
-rw-r--r--lib/Target/X86/X86RegisterInfo.cpp616
-rw-r--r--lib/Target/X86/X86RegisterInfo.h27
-rw-r--r--lib/Target/X86/X86RegisterInfo.td344
-rw-r--r--lib/Target/X86/X86Relocations.h30
-rw-r--r--lib/Target/X86/X86Subtarget.cpp232
-rw-r--r--lib/Target/X86/X86Subtarget.h107
-rw-r--r--lib/Target/X86/X86TargetMachine.cpp279
-rw-r--r--lib/Target/X86/X86TargetMachine.h50
-rw-r--r--lib/Target/X86/X86TargetObjectFile.cpp65
-rw-r--r--lib/Target/X86/X86TargetObjectFile.h40
-rw-r--r--lib/Target/XCore/AsmPrinter/CMakeLists.txt6
-rw-r--r--lib/Target/XCore/AsmPrinter/Makefile16
-rw-r--r--lib/Target/XCore/AsmPrinter/XCoreAsmPrinter.cpp374
-rw-r--r--lib/Target/XCore/CMakeLists.txt5
-rw-r--r--lib/Target/XCore/MCSectionXCore.cpp35
-rw-r--r--lib/Target/XCore/MCSectionXCore.h54
-rw-r--r--lib/Target/XCore/Makefile4
-rw-r--r--lib/Target/XCore/TargetInfo/CMakeLists.txt7
-rw-r--r--lib/Target/XCore/TargetInfo/Makefile15
-rw-r--r--lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp19
-rw-r--r--lib/Target/XCore/XCore.h8
-rw-r--r--lib/Target/XCore/XCore.td17
-rw-r--r--lib/Target/XCore/XCoreISelDAGToDAG.cpp64
-rw-r--r--lib/Target/XCore/XCoreISelLowering.cpp606
-rw-r--r--lib/Target/XCore/XCoreISelLowering.h57
-rw-r--r--lib/Target/XCore/XCoreInstrInfo.cpp47
-rw-r--r--lib/Target/XCore/XCoreInstrInfo.h14
-rw-r--r--lib/Target/XCore/XCoreInstrInfo.td68
-rw-r--r--lib/Target/XCore/XCoreMCAsmInfo.cpp31
-rw-r--r--lib/Target/XCore/XCoreMCAsmInfo.h29
-rw-r--r--lib/Target/XCore/XCoreRegisterInfo.cpp97
-rw-r--r--lib/Target/XCore/XCoreRegisterInfo.h5
-rw-r--r--lib/Target/XCore/XCoreSubtarget.cpp10
-rw-r--r--lib/Target/XCore/XCoreSubtarget.h11
-rw-r--r--lib/Target/XCore/XCoreTargetMachine.cpp50
-rw-r--r--lib/Target/XCore/XCoreTargetMachine.h13
-rw-r--r--lib/Target/XCore/XCoreTargetObjectFile.cpp67
-rw-r--r--lib/Target/XCore/XCoreTargetObjectFile.h26
-rw-r--r--lib/Transforms/Hello/Hello.cpp6
-rw-r--r--lib/Transforms/IPO/ArgumentPromotion.cpp122
-rw-r--r--lib/Transforms/IPO/CMakeLists.txt7
-rw-r--r--lib/Transforms/IPO/ConstantMerge.cpp2
-rw-r--r--lib/Transforms/IPO/DeadArgumentElimination.cpp62
-rw-r--r--lib/Transforms/IPO/ExtractGV.cpp9
-rw-r--r--lib/Transforms/IPO/FunctionAttrs.cpp38
-rw-r--r--lib/Transforms/IPO/GlobalDCE.cpp4
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp838
-rw-r--r--lib/Transforms/IPO/IPConstantPropagation.cpp10
-rw-r--r--lib/Transforms/IPO/IndMemRemoval.cpp19
-rw-r--r--lib/Transforms/IPO/InlineAlways.cpp2
-rw-r--r--lib/Transforms/IPO/InlineSimple.cpp4
-rw-r--r--lib/Transforms/IPO/Inliner.cpp441
-rw-r--r--lib/Transforms/IPO/Internalize.cpp13
-rw-r--r--lib/Transforms/IPO/LoopExtractor.cpp108
-rw-r--r--lib/Transforms/IPO/LowerSetJmp.cpp62
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp45
-rw-r--r--lib/Transforms/IPO/PartialInlining.cpp3
-rw-r--r--lib/Transforms/IPO/PruneEH.cpp17
-rw-r--r--lib/Transforms/IPO/RaiseAllocations.cpp45
-rw-r--r--lib/Transforms/IPO/StripSymbols.cpp180
-rw-r--r--lib/Transforms/IPO/StructRetPromotion.cpp105
-rw-r--r--lib/Transforms/Instrumentation/BlockProfiling.cpp31
-rw-r--r--lib/Transforms/Instrumentation/CMakeLists.txt1
-rw-r--r--lib/Transforms/Instrumentation/EdgeProfiling.cpp36
-rw-r--r--lib/Transforms/Instrumentation/MaximumSpanningTree.h95
-rw-r--r--lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp219
-rw-r--r--lib/Transforms/Instrumentation/ProfilingUtils.cpp39
-rw-r--r--lib/Transforms/Instrumentation/RSProfiling.cpp68
-rw-r--r--lib/Transforms/Makefile2
-rw-r--r--lib/Transforms/Scalar/ADCE.cpp4
-rw-r--r--lib/Transforms/Scalar/BasicBlockPlacement.cpp7
-rw-r--r--lib/Transforms/Scalar/CMakeLists.txt3
-rw-r--r--lib/Transforms/Scalar/CodeGenLICM.cpp112
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp84
-rw-r--r--lib/Transforms/Scalar/CondPropagate.cpp12
-rw-r--r--lib/Transforms/Scalar/ConstantProp.cpp5
-rw-r--r--lib/Transforms/Scalar/DCE.cpp3
-rw-r--r--lib/Transforms/Scalar/DeadStoreElimination.cpp67
-rw-r--r--lib/Transforms/Scalar/GVN.cpp1386
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp137
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp4048
-rw-r--r--lib/Transforms/Scalar/JumpThreading.cpp550
-rw-r--r--lib/Transforms/Scalar/LICM.cpp51
-rw-r--r--lib/Transforms/Scalar/LoopDeletion.cpp70
-rw-r--r--lib/Transforms/Scalar/LoopIndexSplit.cpp38
-rw-r--r--lib/Transforms/Scalar/LoopRotation.cpp72
-rw-r--r--lib/Transforms/Scalar/LoopStrengthReduce.cpp349
-rw-r--r--lib/Transforms/Scalar/LoopUnroll.cpp58
-rw-r--r--lib/Transforms/Scalar/LoopUnswitch.cpp227
-rw-r--r--lib/Transforms/Scalar/MemCpyOptimizer.cpp230
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp83
-rw-r--r--lib/Transforms/Scalar/Reg2Mem.cpp133
-rw-r--r--lib/Transforms/Scalar/SCCP.cpp148
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp199
-rw-r--r--lib/Transforms/Scalar/SimplifyCFGPass.cpp13
-rw-r--r--lib/Transforms/Scalar/SimplifyHalfPowrLibCalls.cpp15
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp1044
-rw-r--r--lib/Transforms/Scalar/TailDuplication.cpp20
-rw-r--r--lib/Transforms/Scalar/TailRecursionElimination.cpp5
-rw-r--r--lib/Transforms/Utils/AddrModeMatcher.cpp15
-rw-r--r--lib/Transforms/Utils/BasicBlockUtils.cpp118
-rw-r--r--lib/Transforms/Utils/BasicInliner.cpp20
-rw-r--r--lib/Transforms/Utils/BreakCriticalEdges.cpp118
-rw-r--r--lib/Transforms/Utils/CMakeLists.txt7
-rw-r--r--lib/Transforms/Utils/CloneFunction.cpp33
-rw-r--r--lib/Transforms/Utils/CloneModule.cpp12
-rw-r--r--lib/Transforms/Utils/CodeExtractor.cpp139
-rw-r--r--lib/Transforms/Utils/DemoteRegToStack.cpp6
-rw-r--r--lib/Transforms/Utils/InlineFunction.cpp314
-rw-r--r--lib/Transforms/Utils/InstructionNamer.cpp4
-rw-r--r--lib/Transforms/Utils/LCSSA.cpp305
-rw-r--r--lib/Transforms/Utils/Local.cpp16
-rw-r--r--lib/Transforms/Utils/LoopSimplify.cpp218
-rw-r--r--lib/Transforms/Utils/LowerAllocations.cpp73
-rw-r--r--lib/Transforms/Utils/LowerInvoke.cpp107
-rw-r--r--lib/Transforms/Utils/LowerSwitch.cpp48
-rw-r--r--lib/Transforms/Utils/Mem2Reg.cpp2
-rw-r--r--lib/Transforms/Utils/PromoteMemoryToRegister.cpp54
-rw-r--r--lib/Transforms/Utils/SSAUpdater.cpp335
-rw-r--r--lib/Transforms/Utils/SSI.cpp332
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp241
-rw-r--r--lib/Transforms/Utils/UnifyFunctionExitNodes.cpp18
-rw-r--r--lib/Transforms/Utils/UnrollLoop.cpp27
-rw-r--r--lib/Transforms/Utils/ValueMapper.cpp54
-rw-r--r--lib/VMCore/AsmWriter.cpp870
-rw-r--r--lib/VMCore/Attributes.cpp30
-rw-r--r--lib/VMCore/AutoUpgrade.cpp188
-rw-r--r--lib/VMCore/BasicBlock.cpp15
-rw-r--r--lib/VMCore/CMakeLists.txt3
-rw-r--r--lib/VMCore/ConstantFold.cpp1096
-rw-r--r--lib/VMCore/ConstantFold.h53
-rw-r--r--lib/VMCore/Constants.cpp2274
-rw-r--r--lib/VMCore/ConstantsContext.h787
-rw-r--r--lib/VMCore/Core.cpp725
-rw-r--r--lib/VMCore/Dominators.cpp104
-rw-r--r--lib/VMCore/Function.cpp31
-rw-r--r--lib/VMCore/Globals.cpp33
-rw-r--r--lib/VMCore/InlineAsm.cpp34
-rw-r--r--lib/VMCore/Instruction.cpp104
-rw-r--r--lib/VMCore/Instructions.cpp1051
-rw-r--r--lib/VMCore/IntrinsicInst.cpp10
-rw-r--r--lib/VMCore/LLVMContext.cpp507
-rw-r--r--lib/VMCore/LLVMContextImpl.h202
-rw-r--r--lib/VMCore/LeakDetector.cpp119
-rw-r--r--lib/VMCore/LeaksContext.h89
-rw-r--r--lib/VMCore/Mangler.cpp172
-rw-r--r--lib/VMCore/Metadata.cpp433
-rw-r--r--lib/VMCore/Module.cpp79
-rw-r--r--lib/VMCore/Pass.cpp40
-rw-r--r--lib/VMCore/PassManager.cpp244
-rw-r--r--lib/VMCore/Type.cpp876
-rw-r--r--lib/VMCore/TypeSymbolTable.cpp60
-rw-r--r--lib/VMCore/TypesContext.h424
-rw-r--r--lib/VMCore/Use.cpp2
-rw-r--r--lib/VMCore/Value.cpp337
-rw-r--r--lib/VMCore/ValueSymbolTable.cpp68
-rw-r--r--lib/VMCore/ValueTypes.cpp148
-rw-r--r--lib/VMCore/Verifier.cpp396
846 files changed, 103941 insertions, 43828 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index c5523ec..c456990 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -88,7 +88,7 @@ AliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(LoadInst *L, Value *P, unsigned Size) {
- return alias(L->getOperand(0), TD->getTypeStoreSize(L->getType()),
+ return alias(L->getOperand(0), getTypeStoreSize(L->getType()),
P, Size) ? Ref : NoModRef;
}
@@ -97,7 +97,7 @@ AliasAnalysis::getModRefInfo(StoreInst *S, Value *P, unsigned Size) {
// If the stored address cannot alias the pointer in question, then the
// pointer cannot be modified by the store.
if (!alias(S->getOperand(1),
- TD->getTypeStoreSize(S->getOperand(0)->getType()), P, Size))
+ getTypeStoreSize(S->getOperand(0)->getType()), P, Size))
return NoModRef;
// If the pointer is a pointer to constant memory, then it could not have been
@@ -177,18 +177,23 @@ AliasAnalysis::~AliasAnalysis() {}
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
- TD = &P->getAnalysis<TargetData>();
+ TD = P->getAnalysisIfAvailable<TargetData>();
AA = &P->getAnalysis<AliasAnalysis>();
}
// getAnalysisUsage - All alias analysis implementations should invoke this
-// directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
-// TargetData is required by the pass.
+// directly (using AliasAnalysis::getAnalysisUsage(AU)).
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>(); // All AA's need TargetData.
AU.addRequired<AliasAnalysis>(); // All AA's chain
}
+/// getTypeStoreSize - Return the TargetData store size for the given type,
+/// if known, or a conservative value otherwise.
+///
+unsigned AliasAnalysis::getTypeStoreSize(const Type *Ty) {
+ return TD ? TD->getTypeStoreSize(Ty) : ~0u;
+}
+
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
///
@@ -228,13 +233,15 @@ bool llvm::isNoAliasCall(const Value *V) {
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
-/// Global Variables and Functions
+/// Global Variables and Functions (but not Global Aliases)
/// Allocas and Mallocs
/// ByVal and NoAlias Arguments
/// NoAlias returns
///
bool llvm::isIdentifiedObject(const Value *V) {
- if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isNoAliasCall(V))
+ if (isa<AllocationInst>(V) || isNoAliasCall(V))
+ return true;
+ if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
return true;
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr() || A->hasByValAttr();
diff --git a/lib/Analysis/AliasAnalysisCounter.cpp b/lib/Analysis/AliasAnalysisCounter.cpp
index 4362d7d..272c871 100644
--- a/lib/Analysis/AliasAnalysisCounter.cpp
+++ b/lib/Analysis/AliasAnalysisCounter.cpp
@@ -18,11 +18,12 @@
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
-PrintAll("count-aa-print-all-queries", cl::ReallyHidden);
+PrintAll("count-aa-print-all-queries", cl::ReallyHidden, cl::init(true));
static cl::opt<bool>
PrintAllFailures("count-aa-print-all-failed-queries", cl::ReallyHidden);
@@ -41,33 +42,33 @@ namespace {
}
void printLine(const char *Desc, unsigned Val, unsigned Sum) {
- cerr << " " << Val << " " << Desc << " responses ("
- << Val*100/Sum << "%)\n";
+ errs() << " " << Val << " " << Desc << " responses ("
+ << Val*100/Sum << "%)\n";
}
~AliasAnalysisCounter() {
unsigned AASum = No+May+Must;
unsigned MRSum = NoMR+JustRef+JustMod+MR;
if (AASum + MRSum) { // Print a report if any counted queries occurred...
- cerr << "\n===== Alias Analysis Counter Report =====\n"
- << " Analysis counted: " << Name << "\n"
- << " " << AASum << " Total Alias Queries Performed\n";
+ errs() << "\n===== Alias Analysis Counter Report =====\n"
+ << " Analysis counted: " << Name << "\n"
+ << " " << AASum << " Total Alias Queries Performed\n";
if (AASum) {
printLine("no alias", No, AASum);
printLine("may alias", May, AASum);
printLine("must alias", Must, AASum);
- cerr << " Alias Analysis Counter Summary: " << No*100/AASum << "%/"
- << May*100/AASum << "%/" << Must*100/AASum<<"%\n\n";
+ errs() << " Alias Analysis Counter Summary: " << No*100/AASum << "%/"
+ << May*100/AASum << "%/" << Must*100/AASum<<"%\n\n";
}
- cerr << " " << MRSum << " Total Mod/Ref Queries Performed\n";
+ errs() << " " << MRSum << " Total Mod/Ref Queries Performed\n";
if (MRSum) {
printLine("no mod/ref", NoMR, MRSum);
printLine("ref", JustRef, MRSum);
printLine("mod", JustMod, MRSum);
printLine("mod/ref", MR, MRSum);
- cerr << " Mod/Ref Analysis Counter Summary: " <<NoMR*100/MRSum<< "%/"
- << JustRef*100/MRSum << "%/" << JustMod*100/MRSum << "%/"
- << MR*100/MRSum <<"%\n\n";
+ errs() << " Mod/Ref Analysis Counter Summary: " <<NoMR*100/MRSum
+ << "%/" << JustRef*100/MRSum << "%/" << JustMod*100/MRSum
+ << "%/" << MR*100/MRSum <<"%\n\n";
}
}
}
@@ -89,19 +90,6 @@ namespace {
bool pointsToConstantMemory(const Value *P) {
return getAnalysis<AliasAnalysis>().pointsToConstantMemory(P);
}
- bool doesNotAccessMemory(CallSite CS) {
- return getAnalysis<AliasAnalysis>().doesNotAccessMemory(CS);
- }
- bool doesNotAccessMemory(Function *F) {
- return getAnalysis<AliasAnalysis>().doesNotAccessMemory(F);
- }
- bool onlyReadsMemory(CallSite CS) {
- return getAnalysis<AliasAnalysis>().onlyReadsMemory(CS);
- }
- bool onlyReadsMemory(Function *F) {
- return getAnalysis<AliasAnalysis>().onlyReadsMemory(F);
- }
-
// Forwarding functions: just delegate to a real AA implementation, counting
// the number of responses...
@@ -131,20 +119,20 @@ AliasAnalysisCounter::alias(const Value *V1, unsigned V1Size,
const char *AliasString;
switch (R) {
- default: assert(0 && "Unknown alias type!");
+ default: llvm_unreachable("Unknown alias type!");
case NoAlias: No++; AliasString = "No alias"; break;
case MayAlias: May++; AliasString = "May alias"; break;
case MustAlias: Must++; AliasString = "Must alias"; break;
}
if (PrintAll || (PrintAllFailures && R == MayAlias)) {
- cerr << AliasString << ":\t";
- cerr << "[" << V1Size << "B] ";
- WriteAsOperand(*cerr.stream(), V1, true, M);
- cerr << ", ";
- cerr << "[" << V2Size << "B] ";
- WriteAsOperand(*cerr.stream(), V2, true, M);
- cerr << "\n";
+ errs() << AliasString << ":\t";
+ errs() << "[" << V1Size << "B] ";
+ WriteAsOperand(errs(), V1, true, M);
+ errs() << ", ";
+ errs() << "[" << V2Size << "B] ";
+ WriteAsOperand(errs(), V2, true, M);
+ errs() << "\n";
}
return R;
@@ -156,7 +144,7 @@ AliasAnalysisCounter::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
const char *MRString;
switch (R) {
- default: assert(0 && "Unknown mod/ref type!");
+ default: llvm_unreachable("Unknown mod/ref type!");
case NoModRef: NoMR++; MRString = "NoModRef"; break;
case Ref: JustRef++; MRString = "JustRef"; break;
case Mod: JustMod++; MRString = "JustMod"; break;
@@ -164,10 +152,10 @@ AliasAnalysisCounter::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
}
if (PrintAll || (PrintAllFailures && R == ModRef)) {
- cerr << MRString << ": Ptr: ";
- cerr << "[" << Size << "B] ";
- WriteAsOperand(*cerr.stream(), P, true, M);
- cerr << "\t<->" << *CS.getInstruction();
+ errs() << MRString << ": Ptr: ";
+ errs() << "[" << Size << "B] ";
+ WriteAsOperand(errs(), P, true, M);
+ errs() << "\t<->" << *CS.getInstruction();
}
return R;
}
diff --git a/lib/Analysis/AliasAnalysisEvaluator.cpp b/lib/Analysis/AliasAnalysisEvaluator.cpp
index 07820e3..bb95c01 100644
--- a/lib/Analysis/AliasAnalysisEvaluator.cpp
+++ b/lib/Analysis/AliasAnalysisEvaluator.cpp
@@ -29,9 +29,8 @@
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
-#include <set>
-#include <sstream>
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SetVector.h"
using namespace llvm;
static cl::opt<bool> PrintAll("print-all-alias-modref-info", cl::ReallyHidden);
@@ -81,18 +80,21 @@ X("aa-eval", "Exhaustive Alias Analysis Precision Evaluator", false, true);
FunctionPass *llvm::createAAEvalPass() { return new AAEval(); }
-static void PrintResults(const char *Msg, bool P, const Value *V1, const Value *V2,
- const Module *M) {
+static void PrintResults(const char *Msg, bool P, const Value *V1,
+ const Value *V2, const Module *M) {
if (P) {
- std::stringstream s1, s2;
- WriteAsOperand(s1, V1, true, M);
- WriteAsOperand(s2, V2, true, M);
- std::string o1(s1.str()), o2(s2.str());
+ std::string o1, o2;
+ {
+ raw_string_ostream os1(o1), os2(o2);
+ WriteAsOperand(os1, V1, true, M);
+ WriteAsOperand(os2, V2, true, M);
+ }
+
if (o2 < o1)
- std::swap(o1, o2);
- cerr << " " << Msg << ":\t"
- << o1 << ", "
- << o2 << "\n";
+ std::swap(o1, o2);
+ errs() << " " << Msg << ":\t"
+ << o1 << ", "
+ << o2 << "\n";
}
}
@@ -100,19 +102,17 @@ static inline void
PrintModRefResults(const char *Msg, bool P, Instruction *I, Value *Ptr,
Module *M) {
if (P) {
- cerr << " " << Msg << ": Ptr: ";
- WriteAsOperand(*cerr.stream(), Ptr, true, M);
- cerr << "\t<->" << *I;
+ errs() << " " << Msg << ": Ptr: ";
+ WriteAsOperand(errs(), Ptr, true, M);
+ errs() << "\t<->" << *I << '\n';
}
}
bool AAEval::runOnFunction(Function &F) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- const TargetData &TD = AA.getTargetData();
-
- std::set<Value *> Pointers;
- std::set<CallSite> CallSites;
+ SetVector<Value *> Pointers;
+ SetVector<CallSite> CallSites;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
if (isa<PointerType>(I->getType())) // Add all pointer arguments
@@ -136,20 +136,20 @@ bool AAEval::runOnFunction(Function &F) {
if (PrintNoAlias || PrintMayAlias || PrintMustAlias ||
PrintNoModRef || PrintMod || PrintRef || PrintModRef)
- cerr << "Function: " << F.getName() << ": " << Pointers.size()
- << " pointers, " << CallSites.size() << " call sites\n";
+ errs() << "Function: " << F.getName() << ": " << Pointers.size()
+ << " pointers, " << CallSites.size() << " call sites\n";
// iterate over the worklist, and run the full (n^2)/2 disambiguations
- for (std::set<Value *>::iterator I1 = Pointers.begin(), E = Pointers.end();
+ for (SetVector<Value *>::iterator I1 = Pointers.begin(), E = Pointers.end();
I1 != E; ++I1) {
- unsigned I1Size = 0;
+ unsigned I1Size = ~0u;
const Type *I1ElTy = cast<PointerType>((*I1)->getType())->getElementType();
- if (I1ElTy->isSized()) I1Size = TD.getTypeStoreSize(I1ElTy);
+ if (I1ElTy->isSized()) I1Size = AA.getTypeStoreSize(I1ElTy);
- for (std::set<Value *>::iterator I2 = Pointers.begin(); I2 != I1; ++I2) {
- unsigned I2Size = 0;
+ for (SetVector<Value *>::iterator I2 = Pointers.begin(); I2 != I1; ++I2) {
+ unsigned I2Size = ~0u;
const Type *I2ElTy =cast<PointerType>((*I2)->getType())->getElementType();
- if (I2ElTy->isSized()) I2Size = TD.getTypeStoreSize(I2ElTy);
+ if (I2ElTy->isSized()) I2Size = AA.getTypeStoreSize(I2ElTy);
switch (AA.alias(*I1, I1Size, *I2, I2Size)) {
case AliasAnalysis::NoAlias:
@@ -162,21 +162,21 @@ bool AAEval::runOnFunction(Function &F) {
PrintResults("MustAlias", PrintMustAlias, *I1, *I2, F.getParent());
++MustAlias; break;
default:
- cerr << "Unknown alias query result!\n";
+ errs() << "Unknown alias query result!\n";
}
}
}
// Mod/ref alias analysis: compare all pairs of calls and values
- for (std::set<CallSite>::iterator C = CallSites.begin(),
+ for (SetVector<CallSite>::iterator C = CallSites.begin(),
Ce = CallSites.end(); C != Ce; ++C) {
Instruction *I = C->getInstruction();
- for (std::set<Value *>::iterator V = Pointers.begin(), Ve = Pointers.end();
+ for (SetVector<Value *>::iterator V = Pointers.begin(), Ve = Pointers.end();
V != Ve; ++V) {
- unsigned Size = 0;
+ unsigned Size = ~0u;
const Type *ElTy = cast<PointerType>((*V)->getType())->getElementType();
- if (ElTy->isSized()) Size = TD.getTypeStoreSize(ElTy);
+ if (ElTy->isSized()) Size = AA.getTypeStoreSize(ElTy);
switch (AA.getModRefInfo(*C, *V, Size)) {
case AliasAnalysis::NoModRef:
@@ -192,7 +192,7 @@ bool AAEval::runOnFunction(Function &F) {
PrintModRefResults(" ModRef", PrintModRef, I, *V, F.getParent());
++ModRef; break;
default:
- cerr << "Unknown alias query result!\n";
+ errs() << "Unknown alias query result!\n";
}
}
}
@@ -201,45 +201,45 @@ bool AAEval::runOnFunction(Function &F) {
}
static void PrintPercent(unsigned Num, unsigned Sum) {
- cerr << "(" << Num*100ULL/Sum << "."
- << ((Num*1000ULL/Sum) % 10) << "%)\n";
+ errs() << "(" << Num*100ULL/Sum << "."
+ << ((Num*1000ULL/Sum) % 10) << "%)\n";
}
bool AAEval::doFinalization(Module &M) {
unsigned AliasSum = NoAlias + MayAlias + MustAlias;
- cerr << "===== Alias Analysis Evaluator Report =====\n";
+ errs() << "===== Alias Analysis Evaluator Report =====\n";
if (AliasSum == 0) {
- cerr << " Alias Analysis Evaluator Summary: No pointers!\n";
+ errs() << " Alias Analysis Evaluator Summary: No pointers!\n";
} else {
- cerr << " " << AliasSum << " Total Alias Queries Performed\n";
- cerr << " " << NoAlias << " no alias responses ";
+ errs() << " " << AliasSum << " Total Alias Queries Performed\n";
+ errs() << " " << NoAlias << " no alias responses ";
PrintPercent(NoAlias, AliasSum);
- cerr << " " << MayAlias << " may alias responses ";
+ errs() << " " << MayAlias << " may alias responses ";
PrintPercent(MayAlias, AliasSum);
- cerr << " " << MustAlias << " must alias responses ";
+ errs() << " " << MustAlias << " must alias responses ";
PrintPercent(MustAlias, AliasSum);
- cerr << " Alias Analysis Evaluator Pointer Alias Summary: "
- << NoAlias*100/AliasSum << "%/" << MayAlias*100/AliasSum << "%/"
- << MustAlias*100/AliasSum << "%\n";
+ errs() << " Alias Analysis Evaluator Pointer Alias Summary: "
+ << NoAlias*100/AliasSum << "%/" << MayAlias*100/AliasSum << "%/"
+ << MustAlias*100/AliasSum << "%\n";
}
// Display the summary for mod/ref analysis
unsigned ModRefSum = NoModRef + Mod + Ref + ModRef;
if (ModRefSum == 0) {
- cerr << " Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!\n";
+ errs() << " Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!\n";
} else {
- cerr << " " << ModRefSum << " Total ModRef Queries Performed\n";
- cerr << " " << NoModRef << " no mod/ref responses ";
+ errs() << " " << ModRefSum << " Total ModRef Queries Performed\n";
+ errs() << " " << NoModRef << " no mod/ref responses ";
PrintPercent(NoModRef, ModRefSum);
- cerr << " " << Mod << " mod responses ";
+ errs() << " " << Mod << " mod responses ";
PrintPercent(Mod, ModRefSum);
- cerr << " " << Ref << " ref responses ";
+ errs() << " " << Ref << " ref responses ";
PrintPercent(Ref, ModRefSum);
- cerr << " " << ModRef << " mod & ref responses ";
+ errs() << " " << ModRef << " mod & ref responses ";
PrintPercent(ModRef, ModRefSum);
- cerr << " Alias Analysis Evaluator Mod/Ref Summary: "
- << NoModRef*100/ModRefSum << "%/" << Mod*100/ModRefSum << "%/"
- << Ref*100/ModRefSum << "%/" << ModRef*100/ModRefSum << "%\n";
+ errs() << " Alias Analysis Evaluator Mod/Ref Summary: "
+ << NoModRef*100/ModRefSum << "%/" << Mod*100/ModRefSum << "%/"
+ << Ref*100/ModRefSum << "%/" << ModRef*100/ModRefSum << "%\n";
}
return false;
diff --git a/lib/Analysis/AliasSetTracker.cpp b/lib/Analysis/AliasSetTracker.cpp
index 18c2b665..b056d00 100644
--- a/lib/Analysis/AliasSetTracker.cpp
+++ b/lib/Analysis/AliasSetTracker.cpp
@@ -20,8 +20,10 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstIterator.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// mergeSetIn - Merge the specified alias set into this alias set.
@@ -186,8 +188,8 @@ bool AliasSet::aliasesCallSite(CallSite CS, AliasAnalysis &AA) const {
void AliasSetTracker::clear() {
// Delete all the PointerRec entries.
- for (DenseMap<Value*, AliasSet::PointerRec*>::iterator I = PointerMap.begin(),
- E = PointerMap.end(); I != E; ++I)
+ for (PointerMapType::iterator I = PointerMap.begin(), E = PointerMap.end();
+ I != E; ++I)
I->second->eraseFromList();
PointerMap.clear();
@@ -279,7 +281,7 @@ bool AliasSetTracker::add(Value *Ptr, unsigned Size) {
bool AliasSetTracker::add(LoadInst *LI) {
bool NewPtr;
AliasSet &AS = addPointer(LI->getOperand(0),
- AA.getTargetData().getTypeStoreSize(LI->getType()),
+ AA.getTypeStoreSize(LI->getType()),
AliasSet::Refs, NewPtr);
if (LI->isVolatile()) AS.setVolatile();
return NewPtr;
@@ -289,7 +291,7 @@ bool AliasSetTracker::add(StoreInst *SI) {
bool NewPtr;
Value *Val = SI->getOperand(0);
AliasSet &AS = addPointer(SI->getOperand(1),
- AA.getTargetData().getTypeStoreSize(Val->getType()),
+ AA.getTypeStoreSize(Val->getType()),
AliasSet::Mods, NewPtr);
if (SI->isVolatile()) AS.setVolatile();
return NewPtr;
@@ -411,7 +413,7 @@ bool AliasSetTracker::remove(Value *Ptr, unsigned Size) {
}
bool AliasSetTracker::remove(LoadInst *LI) {
- unsigned Size = AA.getTargetData().getTypeStoreSize(LI->getType());
+ unsigned Size = AA.getTypeStoreSize(LI->getType());
AliasSet *AS = findAliasSetForPointer(LI->getOperand(0), Size);
if (!AS) return false;
remove(*AS);
@@ -419,8 +421,7 @@ bool AliasSetTracker::remove(LoadInst *LI) {
}
bool AliasSetTracker::remove(StoreInst *SI) {
- unsigned Size =
- AA.getTargetData().getTypeStoreSize(SI->getOperand(0)->getType());
+ unsigned Size = AA.getTypeStoreSize(SI->getOperand(0)->getType());
AliasSet *AS = findAliasSetForPointer(SI->getOperand(1), Size);
if (!AS) return false;
remove(*AS);
@@ -485,7 +486,7 @@ void AliasSetTracker::deleteValue(Value *PtrVal) {
AS->removeCallSite(CS);
// First, look up the PointerRec for this pointer.
- DenseMap<Value*, AliasSet::PointerRec*>::iterator I = PointerMap.find(PtrVal);
+ PointerMapType::iterator I = PointerMap.find(PtrVal);
if (I == PointerMap.end()) return; // Noop
// If we found one, remove the pointer from the alias set it is in.
@@ -511,7 +512,7 @@ void AliasSetTracker::copyValue(Value *From, Value *To) {
AA.copyValue(From, To);
// First, look up the PointerRec for this pointer.
- DenseMap<Value*, AliasSet::PointerRec*>::iterator I = PointerMap.find(From);
+ PointerMapType::iterator I = PointerMap.find(From);
if (I == PointerMap.end())
return; // Noop
assert(I->second->hasAliasSet() && "Dead entry?");
@@ -531,15 +532,15 @@ void AliasSetTracker::copyValue(Value *From, Value *To) {
// AliasSet/AliasSetTracker Printing Support
//===----------------------------------------------------------------------===//
-void AliasSet::print(std::ostream &OS) const {
- OS << " AliasSet[" << (void*)this << "," << RefCount << "] ";
+void AliasSet::print(raw_ostream &OS) const {
+ OS << " AliasSet[" << format("0x%p", (void*)this) << "," << RefCount << "] ";
OS << (AliasTy == MustAlias ? "must" : "may") << " alias, ";
switch (AccessTy) {
case NoModRef: OS << "No access "; break;
case Refs : OS << "Ref "; break;
case Mods : OS << "Mod "; break;
case ModRef : OS << "Mod/Ref "; break;
- default: assert(0 && "Bad value for AccessTy!");
+ default: llvm_unreachable("Bad value for AccessTy!");
}
if (isVolatile()) OS << "[volatile] ";
if (Forward)
@@ -564,7 +565,7 @@ void AliasSet::print(std::ostream &OS) const {
OS << "\n";
}
-void AliasSetTracker::print(std::ostream &OS) const {
+void AliasSetTracker::print(raw_ostream &OS) const {
OS << "Alias Set Tracker: " << AliasSets.size() << " alias sets for "
<< PointerMap.size() << " pointer values.\n";
for (const_iterator I = begin(), E = end(); I != E; ++I)
@@ -572,8 +573,26 @@ void AliasSetTracker::print(std::ostream &OS) const {
OS << "\n";
}
-void AliasSet::dump() const { print (cerr); }
-void AliasSetTracker::dump() const { print(cerr); }
+void AliasSet::dump() const { print(errs()); }
+void AliasSetTracker::dump() const { print(errs()); }
+
+//===----------------------------------------------------------------------===//
+// ASTCallbackVH Class Implementation
+//===----------------------------------------------------------------------===//
+
+void AliasSetTracker::ASTCallbackVH::deleted() {
+ assert(AST && "ASTCallbackVH called with a null AliasSetTracker!");
+ AST->deleteValue(getValPtr());
+ // this now dangles!
+}
+
+AliasSetTracker::ASTCallbackVH::ASTCallbackVH(Value *V, AliasSetTracker *ast)
+ : CallbackVH(V), AST(ast) {}
+
+AliasSetTracker::ASTCallbackVH &
+AliasSetTracker::ASTCallbackVH::operator=(Value *V) {
+ return *this = ASTCallbackVH(V, AST);
+}
//===----------------------------------------------------------------------===//
// AliasSetPrinter Pass
@@ -596,7 +615,7 @@ namespace {
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Tracker->add(&*I);
- Tracker->print(cerr);
+ Tracker->print(errs());
delete Tracker;
return false;
}
diff --git a/lib/Analysis/Analysis.cpp b/lib/Analysis/Analysis.cpp
index 493c6e8..f8cb323 100644
--- a/lib/Analysis/Analysis.cpp
+++ b/lib/Analysis/Analysis.cpp
@@ -9,7 +9,6 @@
#include "llvm-c/Analysis.h"
#include "llvm/Analysis/Verifier.h"
-#include <fstream>
#include <cstring>
using namespace llvm;
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index f689dca..2c4efc4 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -15,6 +15,7 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
@@ -22,11 +23,15 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <algorithm>
using namespace llvm;
@@ -35,12 +40,8 @@ using namespace llvm;
// Useful predicates
//===----------------------------------------------------------------------===//
-static const User *isGEP(const Value *V) {
- if (isa<GetElementPtrInst>(V) ||
- (isa<ConstantExpr>(V) &&
- cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
- return cast<User>(V);
- return 0;
+static const GEPOperator *isGEP(const Value *V) {
+ return dyn_cast<GEPOperator>(V);
}
static const Value *GetGEPOperands(const Value *V,
@@ -103,7 +104,7 @@ static bool isNonEscapingLocalObject(const Value *V) {
/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, unsigned Size,
- const TargetData &TD) {
+ LLVMContext &Context, const TargetData &TD) {
const Type *AccessTy;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
AccessTy = GV->getType()->getElementType();
@@ -112,6 +113,12 @@ static bool isObjectSmallerThan(const Value *V, unsigned Size,
AccessTy = AI->getType()->getElementType();
else
return false;
+ } else if (const CallInst* CI = extractMallocCall(V)) {
+ if (!isArrayMalloc(V, Context, &TD))
+ // The size is the argument to the malloc call.
+ if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
+ return (C->getZExtValue() < Size);
+ return false;
} else if (const Argument *A = dyn_cast<Argument>(V)) {
if (A->hasByValAttr())
AccessTy = cast<PointerType>(A->getType())->getElementType();
@@ -142,11 +149,10 @@ namespace {
explicit NoAA(void *PID) : ImmutablePass(PID) { }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
virtual void initializePass() {
- TD = &getAnalysis<TargetData>();
+ TD = getAnalysisIfAvailable<TargetData>();
}
virtual AliasResult alias(const Value *V1, unsigned V1Size,
@@ -156,7 +162,7 @@ namespace {
virtual void getArgumentAccesses(Function *F, CallSite CS,
std::vector<PointerAccessInfo> &Info) {
- assert(0 && "This method may not be called on this function!");
+ llvm_unreachable("This method may not be called on this function!");
}
virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
@@ -196,7 +202,12 @@ namespace {
static char ID; // Class identification, replacement for typeinfo
BasicAliasAnalysis() : NoAA(&ID) {}
AliasResult alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size);
+ const Value *V2, unsigned V2Size) {
+ assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
+ AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
+ VisitedPHIs.clear();
+ return Alias;
+ }
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
@@ -210,6 +221,22 @@ namespace {
bool pointsToConstantMemory(const Value *P);
private:
+ // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
+ SmallSet<const PHINode*, 16> VisitedPHIs;
+
+ // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
+ // against another.
+ AliasResult aliasGEP(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+
+ // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
+ // against another.
+ AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
+ const Value *V2, unsigned V2Size);
+
+ AliasResult aliasCheck(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+
// CheckGEPInstructions - Check two GEP instructions with known
// must-aliasing base pointers. This checks to see if the index expressions
// preclude the pointers from aliasing...
@@ -279,6 +306,27 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
if (!passedAsArg)
return NoModRef;
}
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::atomic_cmp_swap:
+ case Intrinsic::atomic_swap:
+ case Intrinsic::atomic_load_add:
+ case Intrinsic::atomic_load_sub:
+ case Intrinsic::atomic_load_and:
+ case Intrinsic::atomic_load_nand:
+ case Intrinsic::atomic_load_or:
+ case Intrinsic::atomic_load_xor:
+ case Intrinsic::atomic_load_max:
+ case Intrinsic::atomic_load_min:
+ case Intrinsic::atomic_load_umax:
+ case Intrinsic::atomic_load_umin:
+ if (alias(II->getOperand(1), Size, P, Size) == NoAlias)
+ return NoModRef;
+ break;
+ }
+ }
}
// The AliasAnalysis base class has some smarts, lets use them.
@@ -303,71 +351,12 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
return NoAA::getModRefInfo(CS1, CS2);
}
-
-// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
-// as array references.
+// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
+// against another.
//
AliasAnalysis::AliasResult
-BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
- // Strip off any constant expression casts if they exist
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
- if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
- V1 = CE->getOperand(0);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
- if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
- V2 = CE->getOperand(0);
-
- // Are we checking for alias of the same value?
- if (V1 == V2) return MustAlias;
-
- if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
- return NoAlias; // Scalars cannot alias each other
-
- // Strip off cast instructions. Since V1 and V2 are pointers, they must be
- // pointer<->pointer bitcasts.
- if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
- return alias(I->getOperand(0), V1Size, V2, V2Size);
- if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
- return alias(V1, V1Size, I->getOperand(0), V2Size);
-
- // Figure out what objects these things are pointing to if we can.
- const Value *O1 = V1->getUnderlyingObject();
- const Value *O2 = V2->getUnderlyingObject();
-
- if (O1 != O2) {
- // If V1/V2 point to two different objects we know that we have no alias.
- if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
- return NoAlias;
-
- // Arguments can't alias with local allocations or noalias calls.
- if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
- (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
- return NoAlias;
-
- // Most objects can't alias null.
- if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
- (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
- return NoAlias;
- }
-
- // If the size of one access is larger than the entire object on the other
- // side, then we know such behavior is undefined and can assume no alias.
- const TargetData &TD = getTargetData();
- if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
- (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
- return NoAlias;
-
- // If one pointer is the result of a call/invoke and the other is a
- // non-escaping local object, then we know the object couldn't escape to a
- // point where the call could return it.
- if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
- isNonEscapingLocalObject(O2) && O1 != O2)
- return NoAlias;
- if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
- isNonEscapingLocalObject(O1) && O1 != O2)
- return NoAlias;
-
+BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
// If we have two gep instructions with must-alias'ing base pointers, figure
// out if the indexes to the GEP tell us anything about the derived pointer.
// Note that we also handle chains of getelementptr instructions as well as
@@ -387,8 +376,8 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
// All operands are the same, ignoring the base.
std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
- return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
-
+ return aliasCheck(GEP1->getOperand(0), V1Size,
+ GEP2->getOperand(0), V2Size);
// Drill down into the first non-gep value, to test for must-aliasing of
// the base pointers.
@@ -405,7 +394,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
const Value *BasePtr2 = GEP2->getOperand(0);
// Do the base pointers alias?
- AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
+ AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
if (BaseAlias == NoAlias) return NoAlias;
if (BaseAlias == MustAlias) {
// If the base pointers alias each other exactly, check to see if we can
@@ -435,79 +424,190 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
// instruction. If one pointer is a GEP with a non-zero index of the other
// pointer, we know they cannot alias.
//
- if (isGEP(V2)) {
- std::swap(V1, V2);
- std::swap(V1Size, V2Size);
- }
+ if (V1Size == ~0U || V2Size == ~0U)
+ return MayAlias;
- if (V1Size != ~0U && V2Size != ~0U)
- if (isGEP(V1)) {
- SmallVector<Value*, 16> GEPOperands;
- const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
-
- AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
- if (R == MustAlias) {
- // If there is at least one non-zero constant index, we know they cannot
- // alias.
- bool ConstantFound = false;
- bool AllZerosFound = true;
- for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
- if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
- if (!C->isNullValue()) {
- ConstantFound = true;
- AllZerosFound = false;
- break;
- }
- } else {
- AllZerosFound = false;
- }
+ SmallVector<Value*, 16> GEPOperands;
+ const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
+
+ AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
+ if (R != MustAlias)
+ // If V2 may alias GEP base pointer, conservatively returns MayAlias.
+ // If V2 is known not to alias GEP base pointer, then the two values
+ // cannot alias per GEP semantics: "A pointer value formed from a
+ // getelementptr instruction is associated with the addresses associated
+ // with the first operand of the getelementptr".
+ return R;
+
+ // If there is at least one non-zero constant index, we know they cannot
+ // alias.
+ bool ConstantFound = false;
+ bool AllZerosFound = true;
+ for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
+ if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
+ if (!C->isNullValue()) {
+ ConstantFound = true;
+ AllZerosFound = false;
+ break;
+ }
+ } else {
+ AllZerosFound = false;
+ }
- // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
- // the ptr, the end result is a must alias also.
- if (AllZerosFound)
- return MustAlias;
+ // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
+ // the ptr, the end result is a must alias also.
+ if (AllZerosFound)
+ return MustAlias;
- if (ConstantFound) {
- if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
- return NoAlias;
+ if (ConstantFound) {
+ if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
+ return NoAlias;
- // Otherwise we have to check to see that the distance is more than
- // the size of the argument... build an index vector that is equal to
- // the arguments provided, except substitute 0's for any variable
- // indexes we find...
- if (cast<PointerType>(
- BasePtr->getType())->getElementType()->isSized()) {
- for (unsigned i = 0; i != GEPOperands.size(); ++i)
- if (!isa<ConstantInt>(GEPOperands[i]))
- GEPOperands[i] =
- Constant::getNullValue(GEPOperands[i]->getType());
- int64_t Offset =
- getTargetData().getIndexedOffset(BasePtr->getType(),
- &GEPOperands[0],
- GEPOperands.size());
-
- if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
- return NoAlias;
- }
- }
- }
+ // Otherwise we have to check to see that the distance is more than
+ // the size of the argument... build an index vector that is equal to
+ // the arguments provided, except substitute 0's for any variable
+ // indexes we find...
+ if (TD &&
+ cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
+ for (unsigned i = 0; i != GEPOperands.size(); ++i)
+ if (!isa<ConstantInt>(GEPOperands[i]))
+ GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
+ int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
+ &GEPOperands[0],
+ GEPOperands.size());
+
+ if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
+ return NoAlias;
}
+ }
+
+ return MayAlias;
+}
+
+// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
+// against another.
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
+ const Value *V2, unsigned V2Size) {
+ // The PHI node has already been visited, avoid recursion any further.
+ if (!VisitedPHIs.insert(PN))
+ return MayAlias;
+
+ SmallSet<Value*, 4> UniqueSrc;
+ SmallVector<Value*, 4> V1Srcs;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *PV1 = PN->getIncomingValue(i);
+ if (isa<PHINode>(PV1))
+ // If any of the source itself is a PHI, return MayAlias conservatively
+ // to avoid compile time explosion. The worst possible case is if both
+ // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
+ // and 'n' are the number of PHI sources.
+ return MayAlias;
+ if (UniqueSrc.insert(PV1))
+ V1Srcs.push_back(PV1);
+ }
+
+ AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
+ // Early exit if the check of the first PHI source against V2 is MayAlias.
+ // Other results are not possible.
+ if (Alias == MayAlias)
+ return MayAlias;
+
+ // If all sources of the PHI node NoAlias or MustAlias V2, then returns
+ // NoAlias / MustAlias. Otherwise, returns MayAlias.
+ for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
+ Value *V = V1Srcs[i];
+ AliasResult ThisAlias = aliasCheck(V, PNSize, V2, V2Size);
+ if (ThisAlias != Alias || ThisAlias == MayAlias)
+ return MayAlias;
+ }
+
+ return Alias;
+}
+
+// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
+// such as array references.
+//
+AliasAnalysis::AliasResult
+BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size) {
+ // Strip off any casts if they exist.
+ V1 = V1->stripPointerCasts();
+ V2 = V2->stripPointerCasts();
+
+ // Are we checking for alias of the same value?
+ if (V1 == V2) return MustAlias;
+
+ if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
+ return NoAlias; // Scalars cannot alias each other
+
+ // Figure out what objects these things are pointing to if we can.
+ const Value *O1 = V1->getUnderlyingObject();
+ const Value *O2 = V2->getUnderlyingObject();
+
+ if (O1 != O2) {
+ // If V1/V2 point to two different objects we know that we have no alias.
+ if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
+ return NoAlias;
+
+ // Arguments can't alias with local allocations or noalias calls.
+ if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
+ (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
+ return NoAlias;
+
+ // Most objects can't alias null.
+ if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
+ (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
+ return NoAlias;
+ }
+
+ // If the size of one access is larger than the entire object on the other
+ // side, then we know such behavior is undefined and can assume no alias.
+ LLVMContext &Context = V1->getContext();
+ if (TD)
+ if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
+ (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
+ return NoAlias;
+
+ // If one pointer is the result of a call/invoke and the other is a
+ // non-escaping local object, then we know the object couldn't escape to a
+ // point where the call could return it.
+ if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
+ isNonEscapingLocalObject(O2) && O1 != O2)
+ return NoAlias;
+ if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
+ isNonEscapingLocalObject(O1) && O1 != O2)
+ return NoAlias;
+
+ if (!isGEP(V1) && isGEP(V2)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ }
+ if (isGEP(V1))
+ return aliasGEP(V1, V1Size, V2, V2Size);
+
+ if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
+ std::swap(V1, V2);
+ std::swap(V1Size, V2Size);
+ }
+ if (const PHINode *PN = dyn_cast<PHINode>(V1))
+ return aliasPHI(PN, V1Size, V2, V2Size);
return MayAlias;
}
// This function is used to determine if the indices of two GEP instructions are
// equal. V1 and V2 are the indices.
-static bool IndexOperandsEqual(Value *V1, Value *V2) {
+static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
if (V1->getType() == V2->getType())
return V1 == V2;
if (Constant *C1 = dyn_cast<Constant>(V1))
if (Constant *C2 = dyn_cast<Constant>(V2)) {
// Sign extend the constants to long types, if necessary
- if (C1->getType() != Type::Int64Ty)
- C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
- if (C2->getType() != Type::Int64Ty)
- C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
+ if (C1->getType() != Type::getInt64Ty(Context))
+ C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
+ if (C2->getType() != Type::getInt64Ty(Context))
+ C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
return C1 == C2;
}
return false;
@@ -528,6 +628,8 @@ BasicAliasAnalysis::CheckGEPInstructions(
const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
+ LLVMContext &Context = GEPPointerTy->getContext();
+
// Find the (possibly empty) initial sequence of equal values... which are not
// necessarily constants.
unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
@@ -535,7 +637,8 @@ BasicAliasAnalysis::CheckGEPInstructions(
unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
unsigned UnequalOper = 0;
while (UnequalOper != MinOperands &&
- IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
+ IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
+ Context)) {
// Advance through the type as we go...
++UnequalOper;
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
@@ -599,10 +702,10 @@ BasicAliasAnalysis::CheckGEPInstructions(
if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
if (G1OC->getType() != G2OC->getType()) {
// Sign extend both operands to long.
- if (G1OC->getType() != Type::Int64Ty)
- G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
- if (G2OC->getType() != Type::Int64Ty)
- G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
+ if (G1OC->getType() != Type::getInt64Ty(Context))
+ G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
+ if (G2OC->getType() != Type::getInt64Ty(Context))
+ G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
GEP1Ops[FirstConstantOper] = G1OC;
GEP2Ops[FirstConstantOper] = G2OC;
}
@@ -673,6 +776,10 @@ BasicAliasAnalysis::CheckGEPInstructions(
// However, one GEP may have more operands than the other. If this is the
// case, there may still be hope. Check this now.
if (FirstConstantOper == MinOperands) {
+ // Without TargetData, we won't know what the offsets are.
+ if (!TD)
+ return MayAlias;
+
// Make GEP1Ops be the longer one if there is a longer one.
if (NumGEP1Ops < NumGEP2Ops) {
std::swap(GEP1Ops, GEP2Ops);
@@ -692,13 +799,12 @@ BasicAliasAnalysis::CheckGEPInstructions(
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
// Okay, now get the offset. This is the relative offset for the full
// instruction.
- const TargetData &TD = getTargetData();
- int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
- NumGEP1Ops);
+ int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
+ NumGEP1Ops);
// Now check without any constants at the end.
- int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
- MinOperands);
+ int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
+ MinOperands);
// Make sure we compare the absolute difference.
if (Offset1 > Offset2)
@@ -734,7 +840,8 @@ BasicAliasAnalysis::CheckGEPInstructions(
const Type *ZeroIdxTy = GEPPointerTy;
for (unsigned i = 0; i != FirstConstantOper; ++i) {
if (!isa<StructType>(ZeroIdxTy))
- GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
+ GEP1Ops[i] = GEP2Ops[i] =
+ Constant::getNullValue(Type::getInt32Ty(Context));
if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
@@ -775,9 +882,13 @@ BasicAliasAnalysis::CheckGEPInstructions(
// value possible.
//
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
- GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
+ GEP1Ops[i] =
+ ConstantInt::get(Type::getInt64Ty(Context),
+ AT->getNumElements()-1);
else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
- GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
+ GEP1Ops[i] =
+ ConstantInt::get(Type::getInt64Ty(Context),
+ VT->getNumElements()-1);
}
}
@@ -812,11 +923,11 @@ BasicAliasAnalysis::CheckGEPInstructions(
}
}
- if (GEPPointerTy->getElementType()->isSized()) {
+ if (TD && GEPPointerTy->getElementType()->isSized()) {
int64_t Offset1 =
- getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
+ TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
int64_t Offset2 =
- getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
+ TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
assert(Offset1 != Offset2 &&
"There is at least one different constant here!");
diff --git a/lib/Analysis/CFGPrinter.cpp b/lib/Analysis/CFGPrinter.cpp
index 8ada5a3..6fed400 100644
--- a/lib/Analysis/CFGPrinter.cpp
+++ b/lib/Analysis/CFGPrinter.cpp
@@ -25,38 +25,36 @@
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GraphWriter.h"
-#include "llvm/Config/config.h"
-#include <iosfwd>
-#include <sstream>
-#include <fstream>
using namespace llvm;
namespace llvm {
template<>
struct DOTGraphTraits<const Function*> : public DefaultDOTGraphTraits {
static std::string getGraphName(const Function *F) {
- return "CFG for '" + F->getName() + "' function";
+ return "CFG for '" + F->getNameStr() + "' function";
}
static std::string getNodeLabel(const BasicBlock *Node,
const Function *Graph,
bool ShortNames) {
if (ShortNames && !Node->getName().empty())
- return Node->getName() + ":";
+ return Node->getNameStr() + ":";
+
+ std::string Str;
+ raw_string_ostream OS(Str);
- std::ostringstream Out;
if (ShortNames) {
- WriteAsOperand(Out, Node, false);
- return Out.str();
+ WriteAsOperand(OS, Node, false);
+ return OS.str();
}
if (Node->getName().empty()) {
- WriteAsOperand(Out, Node, false);
- Out << ":";
+ WriteAsOperand(OS, Node, false);
+ OS << ":";
}
-
- Out << *Node;
- std::string OutStr = Out.str();
+
+ OS << *Node;
+ std::string OutStr = OS.str();
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
@@ -94,7 +92,7 @@ namespace {
return false;
}
- void print(std::ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -112,11 +110,11 @@ namespace {
CFGOnlyViewer() : FunctionPass(&ID) {}
virtual bool runOnFunction(Function &F) {
- F.viewCFG();
+ F.viewCFGOnly();
return false;
}
- void print(std::ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -136,19 +134,21 @@ namespace {
explicit CFGPrinter(void *pid) : FunctionPass(pid) {}
virtual bool runOnFunction(Function &F) {
- std::string Filename = "cfg." + F.getName() + ".dot";
- cerr << "Writing '" << Filename << "'...";
- std::ofstream File(Filename.c_str());
+ std::string Filename = "cfg." + F.getNameStr() + ".dot";
+ errs() << "Writing '" << Filename << "'...";
+
+ std::string ErrorInfo;
+ raw_fd_ostream File(Filename.c_str(), ErrorInfo);
- if (File.good())
+ if (ErrorInfo.empty())
WriteGraph(File, (const Function*)&F);
else
- cerr << " error opening file for writing!";
- cerr << "\n";
+ errs() << " error opening file for writing!";
+ errs() << "\n";
return false;
}
- void print(std::ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -166,18 +166,20 @@ namespace {
CFGOnlyPrinter() : FunctionPass(&ID) {}
explicit CFGOnlyPrinter(void *pid) : FunctionPass(pid) {}
virtual bool runOnFunction(Function &F) {
- std::string Filename = "cfg." + F.getName() + ".dot";
- cerr << "Writing '" << Filename << "'...";
- std::ofstream File(Filename.c_str());
+ std::string Filename = "cfg." + F.getNameStr() + ".dot";
+ errs() << "Writing '" << Filename << "'...";
- if (File.good())
+ std::string ErrorInfo;
+ raw_fd_ostream File(Filename.c_str(), ErrorInfo);
+
+ if (ErrorInfo.empty())
WriteGraph(File, (const Function*)&F, true);
else
- cerr << " error opening file for writing!";
- cerr << "\n";
+ errs() << " error opening file for writing!";
+ errs() << "\n";
return false;
}
- void print(std::ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -196,7 +198,7 @@ P2("dot-cfg-only",
/// being a 'dot' and 'gv' program in your path.
///
void Function::viewCFG() const {
- ViewGraph(this, "cfg" + getName());
+ ViewGraph(this, "cfg" + getNameStr());
}
/// viewCFGOnly - This function is meant for use from the debugger. It works
@@ -205,7 +207,7 @@ void Function::viewCFG() const {
/// his can make the graph smaller.
///
void Function::viewCFGOnly() const {
- ViewGraph(this, "cfg" + getName(), true);
+ ViewGraph(this, "cfg" + getNameStr(), true);
}
FunctionPass *llvm::createCFGPrinterPass () {
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index 6f2a06c..1d2f118 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -6,28 +6,33 @@ add_llvm_library(LLVMAnalysis
AliasSetTracker.cpp
Analysis.cpp
BasicAliasAnalysis.cpp
- CaptureTracking.cpp
CFGPrinter.cpp
+ CaptureTracking.cpp
ConstantFolding.cpp
DbgInfoPrinter.cpp
DebugInfo.cpp
+ IVUsers.cpp
+ InlineCost.cpp
InstCount.cpp
Interval.cpp
IntervalPartition.cpp
- IVUsers.cpp
LibCallAliasAnalysis.cpp
LibCallSemantics.cpp
LiveValues.cpp
LoopDependenceAnalysis.cpp
LoopInfo.cpp
LoopPass.cpp
- LoopVR.cpp
+ MallocHelper.cpp
MemoryDependenceAnalysis.cpp
+ PointerTracking.cpp
PostDominators.cpp
+ ProfileEstimatorPass.cpp
ProfileInfo.cpp
ProfileInfoLoader.cpp
ProfileInfoLoaderPass.cpp
+ ProfileVerifierPass.cpp
ScalarEvolution.cpp
+ ScalarEvolutionAliasAnalysis.cpp
ScalarEvolutionExpander.cpp
SparsePropagation.cpp
Trace.cpp
diff --git a/lib/Analysis/CaptureTracking.cpp b/lib/Analysis/CaptureTracking.cpp
index a19b8e4..b30ac71 100644
--- a/lib/Analysis/CaptureTracking.cpp
+++ b/lib/Analysis/CaptureTracking.cpp
@@ -54,7 +54,7 @@ bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures) {
// its return value and doesn't unwind (a readonly function can leak bits
// by throwing an exception or not depending on the input value).
if (CS.onlyReadsMemory() && CS.doesNotThrow() &&
- I->getType() == Type::VoidTy)
+ I->getType() == Type::getVoidTy(V->getContext()))
break;
// Not captured if only passed via 'nocapture' arguments. Note that
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 5aa4d56..0ce1c24 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -1,4 +1,4 @@
-//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
+//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,8 +7,12 @@
//
//===----------------------------------------------------------------------===//
//
-// This family of functions determines the possibility of performing constant
-// folding.
+// This file defines routines for folding instructions into constants.
+//
+// Also, to supplement the basic VMCore ConstantExpr simplifications,
+// this file defines some additional folding routines that can make use of
+// TargetData information. These functions cannot go in VMCore due to library
+// dependency issues.
//
//===----------------------------------------------------------------------===//
@@ -19,9 +23,11 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
@@ -92,7 +98,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1, const TargetData *TD){
+ Constant *Op1, const TargetData *TD,
+ LLVMContext &Context){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
@@ -121,40 +128,103 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
const Type *ResultTy,
+ LLVMContext &Context,
const TargetData *TD) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
return 0;
-
- uint64_t BasePtr = 0;
+
+ unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
+ APInt BasePtr(BitWidth, 0);
+ bool BaseIsInt = true;
if (!Ptr->isNullValue()) {
// If this is a inttoptr from a constant int, we can fold this as the base,
// otherwise we can't.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getZExtValue();
+ if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
+ BasePtr = Base->getValue();
+ BasePtr.zextOrTrunc(BitWidth);
+ }
if (BasePtr == 0)
- return 0;
+ BaseIsInt = false;
}
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1; i != NumOps; ++i)
if (!isa<ConstantInt>(Ops[i]))
- return false;
+ return 0;
- uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
- (Value**)Ops+1, NumOps-1);
- Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
- return ConstantExpr::getIntToPtr(C, ResultTy);
+ APInt Offset = APInt(BitWidth,
+ TD->getIndexedOffset(Ptr->getType(),
+ (Value**)Ops+1, NumOps-1));
+ // If the base value for this address is a literal integer value, fold the
+ // getelementptr to the resulting integer value casted to the pointer type.
+ if (BaseIsInt) {
+ Constant *C = ConstantInt::get(Context, Offset+BasePtr);
+ return ConstantExpr::getIntToPtr(C, ResultTy);
+ }
+
+ // Otherwise form a regular getelementptr. Recompute the indices so that
+ // we eliminate over-indexing of the notional static type array bounds.
+ // This makes it easy to determine if the getelementptr is "inbounds".
+ // Also, this helps GlobalOpt do SROA on GlobalVariables.
+ const Type *Ty = Ptr->getType();
+ SmallVector<Constant*, 32> NewIdxs;
+ do {
+ if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
+ // The only pointer indexing we'll do is on the first index of the GEP.
+ if (isa<PointerType>(ATy) && !NewIdxs.empty())
+ break;
+ // Determine which element of the array the offset points into.
+ APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
+ if (ElemSize == 0)
+ return 0;
+ APInt NewIdx = Offset.udiv(ElemSize);
+ Offset -= NewIdx * ElemSize;
+ NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
+ Ty = ATy->getElementType();
+ } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ // Determine which field of the struct the offset points into. The
+ // getZExtValue is at least as safe as the StructLayout API because we
+ // know the offset is within the struct at this point.
+ const StructLayout &SL = *TD->getStructLayout(STy);
+ unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
+ NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
+ Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
+ Ty = STy->getTypeAtIndex(ElIdx);
+ } else {
+ // We've reached some non-indexable type.
+ break;
+ }
+ } while (Ty != cast<PointerType>(ResultTy)->getElementType());
+
+ // If we haven't used up the entire offset by descending the static
+ // type, then the offset is pointing into the middle of an indivisible
+ // member, so we can't simplify it.
+ if (Offset != 0)
+ return 0;
+
+ // Create a GEP.
+ Constant *C =
+ ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
+ assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
+ "Computed GetElementPtr has unexpected type!");
+
+ // If we ended up indexing a member with a type that doesn't match
+ // the type of what the original indices indexed, add a cast.
+ if (Ty != cast<PointerType>(ResultTy)->getElementType())
+ C = ConstantExpr::getBitCast(C, ResultTy);
+
+ return C;
}
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// targetdata. Return 0 if unfoldable.
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
- const TargetData &TD) {
+ const TargetData &TD, LLVMContext &Context) {
// If this is a bitcast from constant vector -> vector, fold it.
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
@@ -180,10 +250,10 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
if (DstEltTy->isFloatingPoint()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
- NumDstElt);
+ const Type *DestIVTy = VectorType::get(
+ IntegerType::get(Context, FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, TD);
+ C = FoldBitCast(C, DestIVTy, TD, Context);
if (!C) return 0;
// Finally, VMCore can handle this now that #elts line up.
@@ -194,8 +264,8 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
// it to integer first.
if (SrcEltTy->isFloatingPoint()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
- NumSrcElt);
+ const Type *SrcIVTy = VectorType::get(
+ IntegerType::get(Context, FPWidth), NumSrcElt);
// Ask VMCore to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
CV = dyn_cast<ConstantVector>(C);
@@ -228,7 +298,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
+ ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
@@ -251,7 +321,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
+ ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
@@ -278,7 +348,8 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
-Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
+Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
+ const TargetData *TD) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
return UndefValue::get(PN->getType());
@@ -306,16 +377,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
- Ops.data(), Ops.size(), TD);
- else
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Ops.data(), Ops.size(), TD);
+ Ops.data(), Ops.size(),
+ Context, TD);
+
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
+ Ops.data(), Ops.size(), Context, TD);
}
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
+ LLVMContext &Context,
const TargetData *TD) {
SmallVector<Constant*, 8> Ops;
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
@@ -323,10 +396,10 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(),
- Ops.data(), Ops.size(), TD);
- else
- return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
- Ops.data(), Ops.size(), TD);
+ Ops.data(), Ops.size(),
+ Context, TD);
+ return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
+ Ops.data(), Ops.size(), Context, TD);
}
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@@ -337,11 +410,13 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant* const* Ops, unsigned NumOps,
+ LLVMContext &Context,
const TargetData *TD) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
+ if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
+ Context))
return C;
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
@@ -356,9 +431,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
return 0;
case Instruction::ICmp:
case Instruction::FCmp:
- case Instruction::VICmp:
- case Instruction::VFCmp:
- assert(0 &&"This function is invalid for compares: no predicate specified");
+ llvm_unreachable("This function is invalid for compares: no predicate specified");
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
@@ -368,7 +441,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
- ConstantInt::get(APInt::getLowBitsSet(InWidth,
+ ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
}
@@ -387,7 +460,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
CE->getType()->getScalarSizeInBits()) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *Input = CE->getOperand(0);
- Constant *C = FoldBitCast(Input, DestTy, *TD);
+ Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
return C ? C : ConstantExpr::getBitCast(Input, DestTy);
}
// If there's a constant offset added to the integer value before
@@ -412,9 +485,10 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
AT->getNumElements()))) {
Constant *Index[] = {
Constant::getNullValue(CE->getType()),
- ConstantInt::get(ElemIdx)
+ ConstantInt::get(Context, ElemIdx)
};
- return ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
+ return
+ ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
}
}
}
@@ -434,7 +508,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
- if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
+ if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
return C;
return ConstantExpr::getBitCast(Ops[0], DestTy);
case Instruction::Select:
@@ -446,7 +520,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
- if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
+ if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
@@ -460,6 +534,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops,
unsigned NumOps,
+ LLVMContext &Context,
const TargetData *TD) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
@@ -470,14 +545,15 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
if (TD && Ops[1]->isNullValue()) {
- const Type *IntPtrTy = TD->getIntPtrType();
+ const Type *IntPtrTy = TD->getIntPtrType(Context);
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
+ Context, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
@@ -487,13 +563,14 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *C = CE0->getOperand(0);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
// FIXME!
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
+ Context, TD);
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
- const Type *IntPtrTy = TD->getIntPtrType();
+ const Type *IntPtrTy = TD->getIntPtrType(Context);
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
@@ -503,7 +580,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C0, C1 };
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
+ Context, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
@@ -514,7 +592,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *NewOps[] = {
CE0->getOperand(0), CE1->getOperand(0)
};
- return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
+ Context, TD);
}
}
}
@@ -597,74 +676,47 @@ llvm::canConstantFoldCallTo(const Function *F) {
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
return true;
- default: break;
+ default:
+ return false;
+ case 0: break;
}
if (!F->hasName()) return false;
- const char *Str = F->getNameStart();
- unsigned Len = F->getNameLen();
+ StringRef Name = F->getName();
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
- switch (Str[0]) {
+ switch (Name[0]) {
default: return false;
case 'a':
- if (Len == 4)
- return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
- !strcmp(Str, "atan");
- else if (Len == 5)
- return !strcmp(Str, "atan2");
- return false;
+ return Name == "acos" || Name == "asin" ||
+ Name == "atan" || Name == "atan2";
case 'c':
- if (Len == 3)
- return !strcmp(Str, "cos");
- else if (Len == 4)
- return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
- !strcmp(Str, "cosh");
- return false;
+ return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
case 'e':
- if (Len == 3)
- return !strcmp(Str, "exp");
- return false;
+ return Name == "exp";
case 'f':
- if (Len == 4)
- return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
- else if (Len == 5)
- return !strcmp(Str, "floor");
- return false;
- break;
+ return Name == "fabs" || Name == "fmod" || Name == "floor";
case 'l':
- if (Len == 3 && !strcmp(Str, "log"))
- return true;
- if (Len == 5 && !strcmp(Str, "log10"))
- return true;
- return false;
+ return Name == "log" || Name == "log10";
case 'p':
- if (Len == 3 && !strcmp(Str, "pow"))
- return true;
- return false;
+ return Name == "pow";
case 's':
- if (Len == 3)
- return !strcmp(Str, "sin");
- if (Len == 4)
- return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
- !strcmp(Str, "sinf");
- if (Len == 5)
- return !strcmp(Str, "sqrtf");
- return false;
+ return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
+ Name == "sinf" || Name == "sqrtf";
case 't':
- if (Len == 3 && !strcmp(Str, "tan"))
- return true;
- else if (Len == 4 && !strcmp(Str, "tanh"))
- return true;
- return false;
+ return Name == "tan" || Name == "tanh";
}
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
- const Type *Ty) {
+ const Type *Ty, LLVMContext &Context) {
errno = 0;
V = NativeFP(V);
if (errno != 0) {
@@ -672,17 +724,18 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
return 0;
}
- if (Ty == Type::FloatTy)
- return ConstantFP::get(APFloat((float)V));
- if (Ty == Type::DoubleTy)
- return ConstantFP::get(APFloat(V));
- assert(0 && "Can only constant fold float/double");
+ if (Ty->isFloatTy())
+ return ConstantFP::get(Context, APFloat((float)V));
+ if (Ty->isDoubleTy())
+ return ConstantFP::get(Context, APFloat(V));
+ llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W,
- const Type *Ty) {
+ const Type *Ty,
+ LLVMContext &Context) {
errno = 0;
V = NativeFP(V, W);
if (errno != 0) {
@@ -690,137 +743,195 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
return 0;
}
- if (Ty == Type::FloatTy)
- return ConstantFP::get(APFloat((float)V));
- if (Ty == Type::DoubleTy)
- return ConstantFP::get(APFloat(V));
- assert(0 && "Can only constant fold float/double");
+ if (Ty->isFloatTy())
+ return ConstantFP::get(Context, APFloat((float)V));
+ if (Ty->isDoubleTy())
+ return ConstantFP::get(Context, APFloat(V));
+ llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
-
Constant *
llvm::ConstantFoldCall(Function *F,
- Constant* const* Operands, unsigned NumOperands) {
+ Constant *const *Operands, unsigned NumOperands) {
if (!F->hasName()) return 0;
- const char *Str = F->getNameStart();
- unsigned Len = F->getNameLen();
-
+ LLVMContext &Context = F->getContext();
+ StringRef Name = F->getName();
+
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
- double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
+ double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
Op->getValueAPF().convertToDouble();
- switch (Str[0]) {
+ switch (Name[0]) {
case 'a':
- if (Len == 4 && !strcmp(Str, "acos"))
- return ConstantFoldFP(acos, V, Ty);
- else if (Len == 4 && !strcmp(Str, "asin"))
- return ConstantFoldFP(asin, V, Ty);
- else if (Len == 4 && !strcmp(Str, "atan"))
- return ConstantFoldFP(atan, V, Ty);
+ if (Name == "acos")
+ return ConstantFoldFP(acos, V, Ty, Context);
+ else if (Name == "asin")
+ return ConstantFoldFP(asin, V, Ty, Context);
+ else if (Name == "atan")
+ return ConstantFoldFP(atan, V, Ty, Context);
break;
case 'c':
- if (Len == 4 && !strcmp(Str, "ceil"))
- return ConstantFoldFP(ceil, V, Ty);
- else if (Len == 3 && !strcmp(Str, "cos"))
- return ConstantFoldFP(cos, V, Ty);
- else if (Len == 4 && !strcmp(Str, "cosh"))
- return ConstantFoldFP(cosh, V, Ty);
- else if (Len == 4 && !strcmp(Str, "cosf"))
- return ConstantFoldFP(cos, V, Ty);
+ if (Name == "ceil")
+ return ConstantFoldFP(ceil, V, Ty, Context);
+ else if (Name == "cos")
+ return ConstantFoldFP(cos, V, Ty, Context);
+ else if (Name == "cosh")
+ return ConstantFoldFP(cosh, V, Ty, Context);
+ else if (Name == "cosf")
+ return ConstantFoldFP(cos, V, Ty, Context);
break;
case 'e':
- if (Len == 3 && !strcmp(Str, "exp"))
- return ConstantFoldFP(exp, V, Ty);
+ if (Name == "exp")
+ return ConstantFoldFP(exp, V, Ty, Context);
break;
case 'f':
- if (Len == 4 && !strcmp(Str, "fabs"))
- return ConstantFoldFP(fabs, V, Ty);
- else if (Len == 5 && !strcmp(Str, "floor"))
- return ConstantFoldFP(floor, V, Ty);
+ if (Name == "fabs")
+ return ConstantFoldFP(fabs, V, Ty, Context);
+ else if (Name == "floor")
+ return ConstantFoldFP(floor, V, Ty, Context);
break;
case 'l':
- if (Len == 3 && !strcmp(Str, "log") && V > 0)
- return ConstantFoldFP(log, V, Ty);
- else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
- return ConstantFoldFP(log10, V, Ty);
- else if (!strcmp(Str, "llvm.sqrt.f32") ||
- !strcmp(Str, "llvm.sqrt.f64")) {
+ if (Name == "log" && V > 0)
+ return ConstantFoldFP(log, V, Ty, Context);
+ else if (Name == "log10" && V > 0)
+ return ConstantFoldFP(log10, V, Ty, Context);
+ else if (Name == "llvm.sqrt.f32" ||
+ Name == "llvm.sqrt.f64") {
if (V >= -0.0)
- return ConstantFoldFP(sqrt, V, Ty);
+ return ConstantFoldFP(sqrt, V, Ty, Context);
else // Undefined
return Constant::getNullValue(Ty);
}
break;
case 's':
- if (Len == 3 && !strcmp(Str, "sin"))
- return ConstantFoldFP(sin, V, Ty);
- else if (Len == 4 && !strcmp(Str, "sinh"))
- return ConstantFoldFP(sinh, V, Ty);
- else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
- return ConstantFoldFP(sqrt, V, Ty);
- else if (Len == 4 && !strcmp(Str, "sinf"))
- return ConstantFoldFP(sin, V, Ty);
+ if (Name == "sin")
+ return ConstantFoldFP(sin, V, Ty, Context);
+ else if (Name == "sinh")
+ return ConstantFoldFP(sinh, V, Ty, Context);
+ else if (Name == "sqrt" && V >= 0)
+ return ConstantFoldFP(sqrt, V, Ty, Context);
+ else if (Name == "sqrtf" && V >= 0)
+ return ConstantFoldFP(sqrt, V, Ty, Context);
+ else if (Name == "sinf")
+ return ConstantFoldFP(sin, V, Ty, Context);
break;
case 't':
- if (Len == 3 && !strcmp(Str, "tan"))
- return ConstantFoldFP(tan, V, Ty);
- else if (Len == 4 && !strcmp(Str, "tanh"))
- return ConstantFoldFP(tanh, V, Ty);
+ if (Name == "tan")
+ return ConstantFoldFP(tan, V, Ty, Context);
+ else if (Name == "tanh")
+ return ConstantFoldFP(tanh, V, Ty, Context);
break;
default:
break;
}
- } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
- return ConstantInt::get(Op->getValue().byteSwap());
- else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
+ return 0;
+ }
+
+
+ if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
+ if (Name.startswith("llvm.bswap"))
+ return ConstantInt::get(Context, Op->getValue().byteSwap());
+ else if (Name.startswith("llvm.ctpop"))
return ConstantInt::get(Ty, Op->getValue().countPopulation());
- else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
+ else if (Name.startswith("llvm.cttz"))
return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
- else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
+ else if (Name.startswith("llvm.ctlz"))
return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
+ return 0;
}
- } else if (NumOperands == 2) {
+
+ return 0;
+ }
+
+ if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
- double Op1V = Ty==Type::FloatTy ?
- (double)Op1->getValueAPF().convertToFloat():
+ double Op1V = Ty->isFloatTy() ?
+ (double)Op1->getValueAPF().convertToFloat() :
Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- double Op2V = Ty==Type::FloatTy ?
+ if (Op2->getType() != Op1->getType())
+ return 0;
+
+ double Op2V = Ty->isFloatTy() ?
(double)Op2->getValueAPF().convertToFloat():
Op2->getValueAPF().convertToDouble();
- if (Len == 3 && !strcmp(Str, "pow")) {
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- } else if (Len == 4 && !strcmp(Str, "fmod")) {
- return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
- } else if (Len == 5 && !strcmp(Str, "atan2")) {
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
- }
+ if (Name == "pow")
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
+ if (Name == "fmod")
+ return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
+ if (Name == "atan2")
+ return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (!strcmp(Str, "llvm.powi.f32")) {
- return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
+ if (Name == "llvm.powi.f32")
+ return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
- } else if (!strcmp(Str, "llvm.powi.f64")) {
- return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
+ if (Name == "llvm.powi.f64")
+ return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
+ }
+ return 0;
+ }
+
+
+ if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
+ if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow: {
+ Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result.
+ Constant *Ops[] = {
+ Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
+ };
+ return ConstantStruct::get(F->getContext(), Ops, 2, false);
+ }
+ case Intrinsic::usub_with_overflow: {
+ Constant *Res = ConstantExpr::getSub(Op1, Op2); // result.
+ Constant *Ops[] = {
+ Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
+ };
+ return ConstantStruct::get(F->getContext(), Ops, 2, false);
+ }
+ case Intrinsic::sadd_with_overflow: {
+ Constant *Res = ConstantExpr::getAdd(Op1, Op2); // result.
+ Constant *Overflow = ConstantExpr::getSelect(
+ ConstantExpr::getICmp(CmpInst::ICMP_SGT,
+ ConstantInt::get(Op1->getType(), 0), Op1),
+ ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),
+ ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.
+
+ Constant *Ops[] = { Res, Overflow };
+ return ConstantStruct::get(F->getContext(), Ops, 2, false);
+ }
+ case Intrinsic::ssub_with_overflow: {
+ Constant *Res = ConstantExpr::getSub(Op1, Op2); // result.
+ Constant *Overflow = ConstantExpr::getSelect(
+ ConstantExpr::getICmp(CmpInst::ICMP_SGT,
+ ConstantInt::get(Op2->getType(), 0), Op2),
+ ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),
+ ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.
+
+ Constant *Ops[] = { Res, Overflow };
+ return ConstantStruct::get(F->getContext(), Ops, 2, false);
+ }
}
}
+
+ return 0;
}
+ return 0;
}
return 0;
}
diff --git a/lib/Analysis/DbgInfoPrinter.cpp b/lib/Analysis/DbgInfoPrinter.cpp
index 6c549e63..2bbe2e0 100644
--- a/lib/Analysis/DbgInfoPrinter.cpp
+++ b/lib/Analysis/DbgInfoPrinter.cpp
@@ -90,10 +90,9 @@ void PrintDbgInfo::printStopPoint(const DbgStopPointInst *DSI) {
}
void PrintDbgInfo::printFuncStart(const DbgFuncStartInst *FS) {
- DISubprogram Subprogram(cast<GlobalVariable>(FS->getSubprogram()));
- std::string Res1, Res2;
- Out << "; fully qualified function name: " << Subprogram.getDisplayName(Res1)
- << " return type: " << Subprogram.getReturnTypeName(Res2)
+ DISubprogram Subprogram(FS->getSubprogram());
+ Out << "; fully qualified function name: " << Subprogram.getDisplayName()
+ << " return type: " << Subprogram.getReturnTypeName()
<< " at line " << Subprogram.getLineNumber()
<< "\n\n";
}
@@ -152,7 +151,7 @@ bool PrintDbgInfo::runOnFunction(Function &F) {
Printed = true;
}
- Out << *i;
+ Out << *i << '\n';
printVariableDeclaration(i);
if (const User *U = dyn_cast<User>(i)) {
diff --git a/lib/Analysis/DebugInfo.cpp b/lib/Analysis/DebugInfo.cpp
index 9eecc33..7bb7e9b 100644
--- a/lib/Analysis/DebugInfo.cpp
+++ b/lib/Analysis/DebugInfo.cpp
@@ -18,12 +18,13 @@
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/DebugLoc.h"
-#include "llvm/Support/Streams.h"
-
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::dwarf;
@@ -32,18 +33,12 @@ using namespace llvm::dwarf;
//===----------------------------------------------------------------------===//
/// ValidDebugInfo - Return true if V represents valid debug info value.
-bool DIDescriptor::ValidDebugInfo(Value *V, CodeGenOpt::Level OptLevel) {
- if (!V)
- return false;
-
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V->stripPointerCasts());
- if (!GV)
- return false;
-
- if (!GV->hasInternalLinkage () && !GV->hasLinkOnceLinkage())
+/// FIXME : Add DIDescriptor.isValid()
+bool DIDescriptor::ValidDebugInfo(MDNode *N, CodeGenOpt::Level OptLevel) {
+ if (!N)
return false;
- DIDescriptor DI(GV);
+ DIDescriptor DI(N);
// Check current version. Allow Version6 for now.
unsigned Version = DI.getVersion();
@@ -53,13 +48,13 @@ bool DIDescriptor::ValidDebugInfo(Value *V, CodeGenOpt::Level OptLevel) {
unsigned Tag = DI.getTag();
switch (Tag) {
case DW_TAG_variable:
- assert(DIVariable(GV).Verify() && "Invalid DebugInfo value");
+ assert(DIVariable(N).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_compile_unit:
- assert(DICompileUnit(GV).Verify() && "Invalid DebugInfo value");
+ assert(DICompileUnit(N).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_subprogram:
- assert(DISubprogram(GV).Verify() && "Invalid DebugInfo value");
+ assert(DISubprogram(N).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_lexical_block:
// FIXME: This interfers with the quality of generated code during
@@ -74,84 +69,75 @@ bool DIDescriptor::ValidDebugInfo(Value *V, CodeGenOpt::Level OptLevel) {
return true;
}
-DIDescriptor::DIDescriptor(GlobalVariable *GV, unsigned RequiredTag) {
- DbgGV = GV;
-
- // If this is non-null, check to see if the Tag matches. If not, set to null.
- if (GV && getTag() != RequiredTag)
- DbgGV = 0;
-}
+DIDescriptor::DIDescriptor(MDNode *N, unsigned RequiredTag) {
+ DbgNode = N;
-const std::string &
-DIDescriptor::getStringField(unsigned Elt, std::string &Result) const {
- if (DbgGV == 0) {
- Result.clear();
- return Result;
+ // If this is non-null, check to see if the Tag matches. If not, set to null.
+ if (N && getTag() != RequiredTag) {
+ DbgNode = 0;
}
+}
- Constant *C = DbgGV->getInitializer();
- if (C == 0 || Elt >= C->getNumOperands()) {
- Result.clear();
- return Result;
- }
+const char *
+DIDescriptor::getStringField(unsigned Elt) const {
+ if (DbgNode == 0)
+ return NULL;
- // Fills in the string if it succeeds
- if (!GetConstantStringInfo(C->getOperand(Elt), Result))
- Result.clear();
+ if (Elt < DbgNode->getNumElements())
+ if (MDString *MDS = dyn_cast_or_null<MDString>(DbgNode->getElement(Elt)))
+ return MDS->getString().data();
- return Result;
+ return NULL;
}
uint64_t DIDescriptor::getUInt64Field(unsigned Elt) const {
- if (DbgGV == 0) return 0;
-
- Constant *C = DbgGV->getInitializer();
- if (C == 0 || Elt >= C->getNumOperands())
+ if (DbgNode == 0)
return 0;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C->getOperand(Elt)))
- return CI->getZExtValue();
+ if (Elt < DbgNode->getNumElements())
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(DbgNode->getElement(Elt)))
+ return CI->getZExtValue();
+
return 0;
}
DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const {
- if (DbgGV == 0) return DIDescriptor();
-
- Constant *C = DbgGV->getInitializer();
- if (C == 0 || Elt >= C->getNumOperands())
+ if (DbgNode == 0)
return DIDescriptor();
- C = C->getOperand(Elt);
- return DIDescriptor(dyn_cast<GlobalVariable>(C->stripPointerCasts()));
+ if (Elt < DbgNode->getNumElements() && DbgNode->getElement(Elt))
+ return DIDescriptor(dyn_cast<MDNode>(DbgNode->getElement(Elt)));
+
+ return DIDescriptor();
}
GlobalVariable *DIDescriptor::getGlobalVariableField(unsigned Elt) const {
- if (DbgGV == 0) return 0;
-
- Constant *C = DbgGV->getInitializer();
- if (C == 0 || Elt >= C->getNumOperands())
+ if (DbgNode == 0)
return 0;
- C = C->getOperand(Elt);
- return dyn_cast<GlobalVariable>(C->stripPointerCasts());
+ if (Elt < DbgNode->getNumElements())
+ return dyn_cast_or_null<GlobalVariable>(DbgNode->getElement(Elt));
+ return 0;
}
//===----------------------------------------------------------------------===//
-// Simple Descriptor Constructors and other Methods
+// Predicates
//===----------------------------------------------------------------------===//
-// Needed by DIVariable::getType().
-DIType::DIType(GlobalVariable *GV) : DIDescriptor(GV) {
- if (!GV) return;
- unsigned tag = getTag();
- if (tag != dwarf::DW_TAG_base_type && !DIDerivedType::isDerivedType(tag) &&
- !DICompositeType::isCompositeType(tag))
- DbgGV = 0;
+/// isBasicType - Return true if the specified tag is legal for
+/// DIBasicType.
+bool DIDescriptor::isBasicType() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_base_type;
}
-/// isDerivedType - Return true if the specified tag is legal for
-/// DIDerivedType.
-bool DIType::isDerivedType(unsigned Tag) {
+/// isDerivedType - Return true if the specified tag is legal for DIDerivedType.
+bool DIDescriptor::isDerivedType() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
switch (Tag) {
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_pointer_type:
@@ -163,16 +149,18 @@ bool DIType::isDerivedType(unsigned Tag) {
case dwarf::DW_TAG_inheritance:
return true;
default:
- // FIXME: Even though it doesn't make sense, CompositeTypes are current
- // modelled as DerivedTypes, this should return true for them as well.
- return false;
+ // CompositeTypes are currently modelled as DerivedTypes.
+ return isCompositeType();
}
}
/// isCompositeType - Return true if the specified tag is legal for
/// DICompositeType.
-bool DIType::isCompositeType(unsigned TAG) {
- switch (TAG) {
+bool DIDescriptor::isCompositeType() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ switch (Tag) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_union_type:
@@ -187,7 +175,10 @@ bool DIType::isCompositeType(unsigned TAG) {
}
/// isVariable - Return true if the specified tag is legal for DIVariable.
-bool DIVariable::isVariable(unsigned Tag) {
+bool DIDescriptor::isVariable() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
switch (Tag) {
case dwarf::DW_TAG_auto_variable:
case dwarf::DW_TAG_arg_variable:
@@ -198,19 +189,126 @@ bool DIVariable::isVariable(unsigned Tag) {
}
}
+/// isType - Return true if the specified tag is legal for DIType.
+bool DIDescriptor::isType() const {
+ return isBasicType() || isCompositeType() || isDerivedType();
+}
+
+/// isSubprogram - Return true if the specified tag is legal for
+/// DISubprogram.
+bool DIDescriptor::isSubprogram() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_subprogram;
+}
+
+/// isGlobalVariable - Return true if the specified tag is legal for
+/// DIGlobalVariable.
+bool DIDescriptor::isGlobalVariable() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_variable;
+}
+
+/// isGlobal - Return true if the specified tag is legal for DIGlobal.
+bool DIDescriptor::isGlobal() const {
+ return isGlobalVariable();
+}
+
+/// isScope - Return true if the specified tag is one of the scope
+/// related tag.
+bool DIDescriptor::isScope() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ switch (Tag) {
+ case dwarf::DW_TAG_compile_unit:
+ case dwarf::DW_TAG_lexical_block:
+ case dwarf::DW_TAG_subprogram:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+
+/// isCompileUnit - Return true if the specified tag is DW_TAG_compile_unit.
+bool DIDescriptor::isCompileUnit() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_compile_unit;
+}
+
+/// isLexicalBlock - Return true if the specified tag is DW_TAG_lexical_block.
+bool DIDescriptor::isLexicalBlock() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_lexical_block;
+}
+
+/// isSubrange - Return true if the specified tag is DW_TAG_subrange_type.
+bool DIDescriptor::isSubrange() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_subrange_type;
+}
+
+/// isEnumerator - Return true if the specified tag is DW_TAG_enumerator.
+bool DIDescriptor::isEnumerator() const {
+ assert (!isNull() && "Invalid descriptor!");
+ unsigned Tag = getTag();
+
+ return Tag == dwarf::DW_TAG_enumerator;
+}
+
+//===----------------------------------------------------------------------===//
+// Simple Descriptor Constructors and other Methods
+//===----------------------------------------------------------------------===//
+
+DIType::DIType(MDNode *N) : DIDescriptor(N) {
+ if (!N) return;
+ if (!isBasicType() && !isDerivedType() && !isCompositeType()) {
+ DbgNode = 0;
+ }
+}
+
unsigned DIArray::getNumElements() const {
- assert (DbgGV && "Invalid DIArray");
- Constant *C = DbgGV->getInitializer();
- assert (C && "Invalid DIArray initializer");
- return C->getNumOperands();
+ assert (DbgNode && "Invalid DIArray");
+ return DbgNode->getNumElements();
+}
+
+/// replaceAllUsesWith - Replace all uses of debug info referenced by
+/// this descriptor. After this completes, the current debug info value
+/// is erased.
+void DIDerivedType::replaceAllUsesWith(DIDescriptor &D) {
+ if (isNull())
+ return;
+
+ assert (!D.isNull() && "Can not replace with null");
+
+ // Since we use a TrackingVH for the node, its easy for clients to manufacture
+ // legitimate situations where they want to replaceAllUsesWith() on something
+ // which, due to uniquing, has merged with the source. We shield clients from
+ // this detail by allowing a value to be replaced with replaceAllUsesWith()
+ // itself.
+ if (getNode() != D.getNode()) {
+ MDNode *Node = DbgNode;
+ Node->replaceAllUsesWith(D.getNode());
+ delete Node;
+ }
}
/// Verify - Verify that a compile unit is well formed.
bool DICompileUnit::Verify() const {
- if (isNull())
+ if (isNull())
return false;
- std::string Res;
- if (getFilename(Res).empty())
+ const char *N = getFilename();
+ if (!N)
return false;
// It is possible that directory and produce string is empty.
return true;
@@ -218,26 +316,26 @@ bool DICompileUnit::Verify() const {
/// Verify - Verify that a type descriptor is well formed.
bool DIType::Verify() const {
- if (isNull())
+ if (isNull())
return false;
- if (getContext().isNull())
+ if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
- if (!CU.isNull() && !CU.Verify())
+ if (!CU.isNull() && !CU.Verify())
return false;
return true;
}
/// Verify - Verify that a composite type descriptor is well formed.
bool DICompositeType::Verify() const {
- if (isNull())
+ if (isNull())
return false;
- if (getContext().isNull())
+ if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
- if (!CU.isNull() && !CU.Verify())
+ if (!CU.isNull() && !CU.Verify())
return false;
return true;
}
@@ -246,12 +344,12 @@ bool DICompositeType::Verify() const {
bool DISubprogram::Verify() const {
if (isNull())
return false;
-
+
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
- if (!CU.Verify())
+ if (!CU.Verify())
return false;
DICompositeType Ty = getType();
@@ -264,12 +362,12 @@ bool DISubprogram::Verify() const {
bool DIGlobalVariable::Verify() const {
if (isNull())
return false;
-
+
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
- if (!CU.isNull() && !CU.Verify())
+ if (!CU.isNull() && !CU.Verify())
return false;
DIType Ty = getType();
@@ -286,7 +384,7 @@ bool DIGlobalVariable::Verify() const {
bool DIVariable::Verify() const {
if (isNull())
return false;
-
+
if (getContext().isNull())
return false;
@@ -312,15 +410,38 @@ uint64_t DIDerivedType::getOriginalTypeSize() const {
/// information for the function F.
bool DISubprogram::describes(const Function *F) {
assert (F && "Invalid function");
- std::string Name;
- getLinkageName(Name);
- if (Name.empty())
- getName(Name);
- if (!Name.empty() && (strcmp(Name.c_str(), F->getNameStart()) == false))
+ const char *Name = getLinkageName();
+ if (!Name)
+ Name = getName();
+ if (strcmp(F->getName().data(), Name) == 0)
return true;
return false;
}
+const char *DIScope::getFilename() const {
+ if (isLexicalBlock())
+ return DILexicalBlock(DbgNode).getFilename();
+ else if (isSubprogram())
+ return DISubprogram(DbgNode).getFilename();
+ else if (isCompileUnit())
+ return DICompileUnit(DbgNode).getFilename();
+ else
+ assert (0 && "Invalid DIScope!");
+ return NULL;
+}
+
+const char *DIScope::getDirectory() const {
+ if (isLexicalBlock())
+ return DILexicalBlock(DbgNode).getDirectory();
+ else if (isSubprogram())
+ return DISubprogram(DbgNode).getDirectory();
+ else if (isCompileUnit())
+ return DICompileUnit(DbgNode).getDirectory();
+ else
+ assert (0 && "Invalid DIScope!");
+ return NULL;
+}
+
//===----------------------------------------------------------------------===//
// DIDescriptor: dump routines for all descriptors.
//===----------------------------------------------------------------------===//
@@ -328,69 +449,67 @@ bool DISubprogram::describes(const Function *F) {
/// dump - Print descriptor.
void DIDescriptor::dump() const {
- cerr << "[" << dwarf::TagString(getTag()) << "] ";
- cerr << std::hex << "[GV:" << DbgGV << "]" << std::dec;
+ errs() << "[" << dwarf::TagString(getTag()) << "] ";
+ errs().write_hex((intptr_t) &*DbgNode) << ']';
}
/// dump - Print compile unit.
void DICompileUnit::dump() const {
if (getLanguage())
- cerr << " [" << dwarf::LanguageString(getLanguage()) << "] ";
+ errs() << " [" << dwarf::LanguageString(getLanguage()) << "] ";
- std::string Res1, Res2;
- cerr << " [" << getDirectory(Res1) << "/" << getFilename(Res2) << " ]";
+ errs() << " [" << getDirectory() << "/" << getFilename() << " ]";
}
/// dump - Print type.
void DIType::dump() const {
if (isNull()) return;
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
+ if (const char *Res = getName())
+ errs() << " [" << Res << "] ";
unsigned Tag = getTag();
- cerr << " [" << dwarf::TagString(Tag) << "] ";
+ errs() << " [" << dwarf::TagString(Tag) << "] ";
// TODO : Print context
getCompileUnit().dump();
- cerr << " ["
- << getLineNumber() << ", "
- << getSizeInBits() << ", "
- << getAlignInBits() << ", "
- << getOffsetInBits()
- << "] ";
-
- if (isPrivate())
- cerr << " [private] ";
+ errs() << " ["
+ << getLineNumber() << ", "
+ << getSizeInBits() << ", "
+ << getAlignInBits() << ", "
+ << getOffsetInBits()
+ << "] ";
+
+ if (isPrivate())
+ errs() << " [private] ";
else if (isProtected())
- cerr << " [protected] ";
+ errs() << " [protected] ";
if (isForwardDecl())
- cerr << " [fwd] ";
-
- if (isBasicType(Tag))
- DIBasicType(DbgGV).dump();
- else if (isDerivedType(Tag))
- DIDerivedType(DbgGV).dump();
- else if (isCompositeType(Tag))
- DICompositeType(DbgGV).dump();
+ errs() << " [fwd] ";
+
+ if (isBasicType())
+ DIBasicType(DbgNode).dump();
+ else if (isDerivedType())
+ DIDerivedType(DbgNode).dump();
+ else if (isCompositeType())
+ DICompositeType(DbgNode).dump();
else {
- cerr << "Invalid DIType\n";
+ errs() << "Invalid DIType\n";
return;
}
- cerr << "\n";
+ errs() << "\n";
}
/// dump - Print basic type.
void DIBasicType::dump() const {
- cerr << " [" << dwarf::AttributeEncodingString(getEncoding()) << "] ";
+ errs() << " [" << dwarf::AttributeEncodingString(getEncoding()) << "] ";
}
/// dump - Print derived type.
void DIDerivedType::dump() const {
- cerr << "\n\t Derived From: "; getTypeDerivedFrom().dump();
+ errs() << "\n\t Derived From: "; getTypeDerivedFrom().dump();
}
/// dump - Print composite type.
@@ -398,54 +517,72 @@ void DICompositeType::dump() const {
DIArray A = getTypeArray();
if (A.isNull())
return;
- cerr << " [" << A.getNumElements() << " elements]";
+ errs() << " [" << A.getNumElements() << " elements]";
}
/// dump - Print global.
void DIGlobal::dump() const {
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
+ if (const char *Res = getName())
+ errs() << " [" << Res << "] ";
unsigned Tag = getTag();
- cerr << " [" << dwarf::TagString(Tag) << "] ";
+ errs() << " [" << dwarf::TagString(Tag) << "] ";
// TODO : Print context
getCompileUnit().dump();
- cerr << " [" << getLineNumber() << "] ";
+ errs() << " [" << getLineNumber() << "] ";
if (isLocalToUnit())
- cerr << " [local] ";
+ errs() << " [local] ";
if (isDefinition())
- cerr << " [def] ";
+ errs() << " [def] ";
- if (isGlobalVariable(Tag))
- DIGlobalVariable(DbgGV).dump();
+ if (isGlobalVariable())
+ DIGlobalVariable(DbgNode).dump();
- cerr << "\n";
+ errs() << "\n";
}
/// dump - Print subprogram.
void DISubprogram::dump() const {
- DIGlobal::dump();
+ if (const char *Res = getName())
+ errs() << " [" << Res << "] ";
+
+ unsigned Tag = getTag();
+ errs() << " [" << dwarf::TagString(Tag) << "] ";
+
+ // TODO : Print context
+ getCompileUnit().dump();
+ errs() << " [" << getLineNumber() << "] ";
+
+ if (isLocalToUnit())
+ errs() << " [local] ";
+
+ if (isDefinition())
+ errs() << " [def] ";
+
+ errs() << "\n";
}
/// dump - Print global variable.
void DIGlobalVariable::dump() const {
- cerr << " ["; getGlobal()->dump(); cerr << "] ";
+ errs() << " [";
+ getGlobal()->dump();
+ errs() << "] ";
}
/// dump - Print variable.
void DIVariable::dump() const {
- std::string Res;
- if (!getName(Res).empty())
- cerr << " [" << Res << "] ";
+ if (const char *Res = getName())
+ errs() << " [" << Res << "] ";
getCompileUnit().dump();
- cerr << " [" << getLineNumber() << "] ";
+ errs() << " [" << getLineNumber() << "] ";
getType().dump();
- cerr << "\n";
+ errs() << "\n";
+
+ // FIXME: Dump complex addresses
}
//===----------------------------------------------------------------------===//
@@ -453,98 +590,46 @@ void DIVariable::dump() const {
//===----------------------------------------------------------------------===//
DIFactory::DIFactory(Module &m)
- : M(m), StopPointFn(0), FuncStartFn(0), RegionStartFn(0), RegionEndFn(0),
+ : M(m), VMContext(M.getContext()), StopPointFn(0), FuncStartFn(0),
+ RegionStartFn(0), RegionEndFn(0),
DeclareFn(0) {
- EmptyStructPtr = PointerType::getUnqual(StructType::get());
-}
-
-/// getCastToEmpty - Return this descriptor as a Constant* with type '{}*'.
-/// This is only valid when the descriptor is non-null.
-Constant *DIFactory::getCastToEmpty(DIDescriptor D) {
- if (D.isNull()) return Constant::getNullValue(EmptyStructPtr);
- return ConstantExpr::getBitCast(D.getGV(), EmptyStructPtr);
+ EmptyStructPtr = PointerType::getUnqual(StructType::get(VMContext));
}
Constant *DIFactory::GetTagConstant(unsigned TAG) {
assert((TAG & LLVMDebugVersionMask) == 0 &&
"Tag too large for debug encoding!");
- return ConstantInt::get(Type::Int32Ty, TAG | LLVMDebugVersion);
-}
-
-Constant *DIFactory::GetStringConstant(const std::string &String) {
- // Check string cache for previous edition.
- Constant *&Slot = StringCache[String];
-
- // Return Constant if previously defined.
- if (Slot) return Slot;
-
- const PointerType *DestTy = PointerType::getUnqual(Type::Int8Ty);
-
- // If empty string then use a i8* null instead.
- if (String.empty())
- return Slot = ConstantPointerNull::get(DestTy);
-
- // Construct string as an llvm constant.
- Constant *ConstStr = ConstantArray::get(String);
-
- // Otherwise create and return a new string global.
- GlobalVariable *StrGV = new GlobalVariable(ConstStr->getType(), true,
- GlobalVariable::InternalLinkage,
- ConstStr, ".str", &M);
- StrGV->setSection("llvm.metadata");
- return Slot = ConstantExpr::getBitCast(StrGV, DestTy);
+ return ConstantInt::get(Type::getInt32Ty(VMContext), TAG | LLVMDebugVersion);
}
//===----------------------------------------------------------------------===//
// DIFactory: Primary Constructors
//===----------------------------------------------------------------------===//
-/// GetOrCreateArray - Create an descriptor for an array of descriptors.
+/// GetOrCreateArray - Create an descriptor for an array of descriptors.
/// This implicitly uniques the arrays created.
DIArray DIFactory::GetOrCreateArray(DIDescriptor *Tys, unsigned NumTys) {
- SmallVector<Constant*, 16> Elts;
-
- for (unsigned i = 0; i != NumTys; ++i)
- Elts.push_back(getCastToEmpty(Tys[i]));
-
- Constant *Init = ConstantArray::get(ArrayType::get(EmptyStructPtr,
- Elts.size()),
- Elts.data(), Elts.size());
- // If we already have this array, just return the uniqued version.
- DIDescriptor &Entry = SimpleConstantCache[Init];
- if (!Entry.isNull()) return DIArray(Entry.getGV());
-
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.array", &M);
- GV->setSection("llvm.metadata");
- Entry = DIDescriptor(GV);
- return DIArray(GV);
+ SmallVector<Value*, 16> Elts;
+
+ if (NumTys == 0)
+ Elts.push_back(llvm::Constant::getNullValue(Type::getInt32Ty(VMContext)));
+ else
+ for (unsigned i = 0; i != NumTys; ++i)
+ Elts.push_back(Tys[i].getNode());
+
+ return DIArray(MDNode::get(VMContext,Elts.data(), Elts.size()));
}
/// GetOrCreateSubrange - Create a descriptor for a value range. This
/// implicitly uniques the values returned.
DISubrange DIFactory::GetOrCreateSubrange(int64_t Lo, int64_t Hi) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_subrange_type),
- ConstantInt::get(Type::Int64Ty, Lo),
- ConstantInt::get(Type::Int64Ty, Hi)
+ ConstantInt::get(Type::getInt64Ty(VMContext), Lo),
+ ConstantInt::get(Type::getInt64Ty(VMContext), Hi)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- // If we already have this range, just return the uniqued version.
- DIDescriptor &Entry = SimpleConstantCache[Init];
- if (!Entry.isNull()) return DISubrange(Entry.getGV());
-
- M.addTypeName("llvm.dbg.subrange.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.subrange", &M);
- GV->setSection("llvm.metadata");
- Entry = DIDescriptor(GV);
- return DISubrange(GV);
+ return DISubrange(MDNode::get(VMContext, &Elts[0], 3));
}
@@ -552,92 +637,69 @@ DISubrange DIFactory::GetOrCreateSubrange(int64_t Lo, int64_t Hi) {
/// CreateCompileUnit - Create a new descriptor for the specified compile
/// unit. Note that this does not unique compile units within the module.
DICompileUnit DIFactory::CreateCompileUnit(unsigned LangID,
- const std::string &Filename,
- const std::string &Directory,
- const std::string &Producer,
+ StringRef Filename,
+ StringRef Directory,
+ StringRef Producer,
bool isMain,
bool isOptimized,
const char *Flags,
unsigned RunTimeVer) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_compile_unit),
- Constant::getNullValue(EmptyStructPtr),
- ConstantInt::get(Type::Int32Ty, LangID),
- GetStringConstant(Filename),
- GetStringConstant(Directory),
- GetStringConstant(Producer),
- ConstantInt::get(Type::Int1Ty, isMain),
- ConstantInt::get(Type::Int1Ty, isOptimized),
- GetStringConstant(Flags),
- ConstantInt::get(Type::Int32Ty, RunTimeVer)
+ llvm::Constant::getNullValue(Type::getInt32Ty(VMContext)),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LangID),
+ MDString::get(VMContext, Filename),
+ MDString::get(VMContext, Directory),
+ MDString::get(VMContext, Producer),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isMain),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isOptimized),
+ MDString::get(VMContext, Flags),
+ ConstantInt::get(Type::getInt32Ty(VMContext), RunTimeVer)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.compile_unit.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::LinkOnceAnyLinkage,
- Init, "llvm.dbg.compile_unit", &M);
- GV->setSection("llvm.metadata");
- return DICompileUnit(GV);
+
+ return DICompileUnit(MDNode::get(VMContext, &Elts[0], 10));
}
/// CreateEnumerator - Create a single enumerator value.
-DIEnumerator DIFactory::CreateEnumerator(const std::string &Name, uint64_t Val){
- Constant *Elts[] = {
+DIEnumerator DIFactory::CreateEnumerator(StringRef Name, uint64_t Val){
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_enumerator),
- GetStringConstant(Name),
- ConstantInt::get(Type::Int64Ty, Val)
+ MDString::get(VMContext, Name),
+ ConstantInt::get(Type::getInt64Ty(VMContext), Val)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.enumerator.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.enumerator", &M);
- GV->setSection("llvm.metadata");
- return DIEnumerator(GV);
+ return DIEnumerator(MDNode::get(VMContext, &Elts[0], 3));
}
/// CreateBasicType - Create a basic type like int, float, etc.
DIBasicType DIFactory::CreateBasicType(DIDescriptor Context,
- const std::string &Name,
+ StringRef Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
uint64_t AlignInBits,
uint64_t OffsetInBits, unsigned Flags,
unsigned Encoding) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_base_type),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNumber),
- ConstantInt::get(Type::Int64Ty, SizeInBits),
- ConstantInt::get(Type::Int64Ty, AlignInBits),
- ConstantInt::get(Type::Int64Ty, OffsetInBits),
- ConstantInt::get(Type::Int32Ty, Flags),
- ConstantInt::get(Type::Int32Ty, Encoding)
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
+ ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
+ ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
+ ConstantInt::get(Type::getInt32Ty(VMContext), Encoding)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.basictype.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.basictype", &M);
- GV->setSection("llvm.metadata");
- return DIBasicType(GV);
+ return DIBasicType(MDNode::get(VMContext, &Elts[0], 10));
}
/// CreateDerivedType - Create a derived type like const qualified type,
/// pointer, typedef, etc.
DIDerivedType DIFactory::CreateDerivedType(unsigned Tag,
DIDescriptor Context,
- const std::string &Name,
+ StringRef Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
@@ -645,33 +707,25 @@ DIDerivedType DIFactory::CreateDerivedType(unsigned Tag,
uint64_t OffsetInBits,
unsigned Flags,
DIType DerivedFrom) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(Tag),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNumber),
- ConstantInt::get(Type::Int64Ty, SizeInBits),
- ConstantInt::get(Type::Int64Ty, AlignInBits),
- ConstantInt::get(Type::Int64Ty, OffsetInBits),
- ConstantInt::get(Type::Int32Ty, Flags),
- getCastToEmpty(DerivedFrom)
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
+ ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
+ ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
+ DerivedFrom.getNode(),
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.derivedtype.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.derivedtype", &M);
- GV->setSection("llvm.metadata");
- return DIDerivedType(GV);
+ return DIDerivedType(MDNode::get(VMContext, &Elts[0], 10));
}
/// CreateCompositeType - Create a composite type like array, struct, etc.
DICompositeType DIFactory::CreateCompositeType(unsigned Tag,
DIDescriptor Context,
- const std::string &Name,
+ StringRef Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
@@ -682,143 +736,143 @@ DICompositeType DIFactory::CreateCompositeType(unsigned Tag,
DIArray Elements,
unsigned RuntimeLang) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(Tag),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNumber),
- ConstantInt::get(Type::Int64Ty, SizeInBits),
- ConstantInt::get(Type::Int64Ty, AlignInBits),
- ConstantInt::get(Type::Int64Ty, OffsetInBits),
- ConstantInt::get(Type::Int32Ty, Flags),
- getCastToEmpty(DerivedFrom),
- getCastToEmpty(Elements),
- ConstantInt::get(Type::Int32Ty, RuntimeLang)
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNumber),
+ ConstantInt::get(Type::getInt64Ty(VMContext), SizeInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), AlignInBits),
+ ConstantInt::get(Type::getInt64Ty(VMContext), OffsetInBits),
+ ConstantInt::get(Type::getInt32Ty(VMContext), Flags),
+ DerivedFrom.getNode(),
+ Elements.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), RuntimeLang)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.composite.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.composite", &M);
- GV->setSection("llvm.metadata");
- return DICompositeType(GV);
+ return DICompositeType(MDNode::get(VMContext, &Elts[0], 12));
}
/// CreateSubprogram - Create a new descriptor for the specified subprogram.
/// See comments in DISubprogram for descriptions of these fields. This
/// method does not unique the generated descriptors.
-DISubprogram DIFactory::CreateSubprogram(DIDescriptor Context,
- const std::string &Name,
- const std::string &DisplayName,
- const std::string &LinkageName,
+DISubprogram DIFactory::CreateSubprogram(DIDescriptor Context,
+ StringRef Name,
+ StringRef DisplayName,
+ StringRef LinkageName,
DICompileUnit CompileUnit,
unsigned LineNo, DIType Type,
bool isLocalToUnit,
bool isDefinition) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_subprogram),
- Constant::getNullValue(EmptyStructPtr),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- GetStringConstant(DisplayName),
- GetStringConstant(LinkageName),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNo),
- getCastToEmpty(Type),
- ConstantInt::get(Type::Int1Ty, isLocalToUnit),
- ConstantInt::get(Type::Int1Ty, isDefinition)
+ llvm::Constant::getNullValue(Type::getInt32Ty(VMContext)),
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ MDString::get(VMContext, DisplayName),
+ MDString::get(VMContext, LinkageName),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
+ Type.getNode(),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isLocalToUnit),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isDefinition)
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.subprogram.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::LinkOnceAnyLinkage,
- Init, "llvm.dbg.subprogram", &M);
- GV->setSection("llvm.metadata");
- return DISubprogram(GV);
+ return DISubprogram(MDNode::get(VMContext, &Elts[0], 11));
}
/// CreateGlobalVariable - Create a new descriptor for the specified global.
DIGlobalVariable
-DIFactory::CreateGlobalVariable(DIDescriptor Context, const std::string &Name,
- const std::string &DisplayName,
- const std::string &LinkageName,
+DIFactory::CreateGlobalVariable(DIDescriptor Context, StringRef Name,
+ StringRef DisplayName,
+ StringRef LinkageName,
DICompileUnit CompileUnit,
unsigned LineNo, DIType Type,bool isLocalToUnit,
bool isDefinition, llvm::GlobalVariable *Val) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_variable),
- Constant::getNullValue(EmptyStructPtr),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- GetStringConstant(DisplayName),
- GetStringConstant(LinkageName),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNo),
- getCastToEmpty(Type),
- ConstantInt::get(Type::Int1Ty, isLocalToUnit),
- ConstantInt::get(Type::Int1Ty, isDefinition),
- ConstantExpr::getBitCast(Val, EmptyStructPtr)
+ llvm::Constant::getNullValue(Type::getInt32Ty(VMContext)),
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ MDString::get(VMContext, DisplayName),
+ MDString::get(VMContext, LinkageName),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
+ Type.getNode(),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isLocalToUnit),
+ ConstantInt::get(Type::getInt1Ty(VMContext), isDefinition),
+ Val
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.global_variable.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::LinkOnceAnyLinkage,
- Init, "llvm.dbg.global_variable", &M);
- GV->setSection("llvm.metadata");
- return DIGlobalVariable(GV);
+
+ Value *const *Vs = &Elts[0];
+ MDNode *Node = MDNode::get(VMContext,Vs, 12);
+
+ // Create a named metadata so that we do not lose this mdnode.
+ NamedMDNode *NMD = M.getOrInsertNamedMetadata("llvm.dbg.gv");
+ NMD->addElement(Node);
+
+ return DIGlobalVariable(Node);
}
/// CreateVariable - Create a new descriptor for the specified variable.
DIVariable DIFactory::CreateVariable(unsigned Tag, DIDescriptor Context,
- const std::string &Name,
+ StringRef Name,
DICompileUnit CompileUnit, unsigned LineNo,
DIType Type) {
- Constant *Elts[] = {
+ Value *Elts[] = {
GetTagConstant(Tag),
- getCastToEmpty(Context),
- GetStringConstant(Name),
- getCastToEmpty(CompileUnit),
- ConstantInt::get(Type::Int32Ty, LineNo),
- getCastToEmpty(Type)
+ Context.getNode(),
+ MDString::get(VMContext, Name),
+ CompileUnit.getNode(),
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
+ Type.getNode(),
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.variable.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.variable", &M);
- GV->setSection("llvm.metadata");
- return DIVariable(GV);
+ return DIVariable(MDNode::get(VMContext, &Elts[0], 6));
+}
+
+
+/// CreateComplexVariable - Create a new descriptor for the specified variable
+/// which has a complex address expression for its address.
+DIVariable DIFactory::CreateComplexVariable(unsigned Tag, DIDescriptor Context,
+ const std::string &Name,
+ DICompileUnit CompileUnit,
+ unsigned LineNo,
+ DIType Type, SmallVector<Value *, 9> &addr) {
+ SmallVector<Value *, 9> Elts;
+ Elts.push_back(GetTagConstant(Tag));
+ Elts.push_back(Context.getNode());
+ Elts.push_back(MDString::get(VMContext, Name));
+ Elts.push_back(CompileUnit.getNode());
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(VMContext), LineNo));
+ Elts.push_back(Type.getNode());
+ Elts.insert(Elts.end(), addr.begin(), addr.end());
+
+ return DIVariable(MDNode::get(VMContext, &Elts[0], 6+addr.size()));
}
/// CreateBlock - This creates a descriptor for a lexical block with the
-/// specified parent context.
-DIBlock DIFactory::CreateBlock(DIDescriptor Context) {
- Constant *Elts[] = {
+/// specified parent VMContext.
+DILexicalBlock DIFactory::CreateLexicalBlock(DIDescriptor Context) {
+ Value *Elts[] = {
GetTagConstant(dwarf::DW_TAG_lexical_block),
- getCastToEmpty(Context)
+ Context.getNode()
+ };
+ return DILexicalBlock(MDNode::get(VMContext, &Elts[0], 2));
+}
+
+/// CreateLocation - Creates a debug info location.
+DILocation DIFactory::CreateLocation(unsigned LineNo, unsigned ColumnNo,
+ DIScope S, DILocation OrigLoc) {
+ Value *Elts[] = {
+ ConstantInt::get(Type::getInt32Ty(VMContext), LineNo),
+ ConstantInt::get(Type::getInt32Ty(VMContext), ColumnNo),
+ S.getNode(),
+ OrigLoc.getNode(),
};
-
- Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
-
- M.addTypeName("llvm.dbg.block.type", Init->getType());
- GlobalVariable *GV = new GlobalVariable(Init->getType(), true,
- GlobalValue::InternalLinkage,
- Init, "llvm.dbg.block", &M);
- GV->setSection("llvm.metadata");
- return DIBlock(GV);
+ return DILocation(MDNode::get(VMContext, &Elts[0], 4));
}
@@ -830,17 +884,17 @@ DIBlock DIFactory::CreateBlock(DIDescriptor Context) {
/// inserting it at the end of the specified basic block.
void DIFactory::InsertStopPoint(DICompileUnit CU, unsigned LineNo,
unsigned ColNo, BasicBlock *BB) {
-
+
// Lazily construct llvm.dbg.stoppoint function.
if (!StopPointFn)
- StopPointFn = llvm::Intrinsic::getDeclaration(&M,
+ StopPointFn = llvm::Intrinsic::getDeclaration(&M,
llvm::Intrinsic::dbg_stoppoint);
-
+
// Invoke llvm.dbg.stoppoint
Value *Args[] = {
- llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo),
- llvm::ConstantInt::get(llvm::Type::Int32Ty, ColNo),
- getCastToEmpty(CU)
+ ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo),
+ ConstantInt::get(llvm::Type::getInt32Ty(VMContext), ColNo),
+ CU.getNode()
};
CallInst::Create(StopPointFn, Args, Args+3, "", BB);
}
@@ -851,9 +905,9 @@ void DIFactory::InsertSubprogramStart(DISubprogram SP, BasicBlock *BB) {
// Lazily construct llvm.dbg.func.start.
if (!FuncStartFn)
FuncStartFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_func_start);
-
+
// Call llvm.dbg.func.start which also implicitly sets a stoppoint.
- CallInst::Create(FuncStartFn, getCastToEmpty(SP), "", BB);
+ CallInst::Create(FuncStartFn, SP.getNode(), "", BB);
}
/// InsertRegionStart - Insert a new llvm.dbg.region.start intrinsic call to
@@ -864,7 +918,7 @@ void DIFactory::InsertRegionStart(DIDescriptor D, BasicBlock *BB) {
RegionStartFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_region_start);
// Call llvm.dbg.func.start.
- CallInst::Create(RegionStartFn, getCastToEmpty(D), "", BB);
+ CallInst::Create(RegionStartFn, D.getNode(), "", BB);
}
/// InsertRegionEnd - Insert a new llvm.dbg.region.end intrinsic call to
@@ -875,19 +929,220 @@ void DIFactory::InsertRegionEnd(DIDescriptor D, BasicBlock *BB) {
RegionEndFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_region_end);
// Call llvm.dbg.region.end.
- CallInst::Create(RegionEndFn, getCastToEmpty(D), "", BB);
+ CallInst::Create(RegionEndFn, D.getNode(), "", BB);
}
/// InsertDeclare - Insert a new llvm.dbg.declare intrinsic call.
-void DIFactory::InsertDeclare(Value *Storage, DIVariable D, BasicBlock *BB) {
+void DIFactory::InsertDeclare(Value *Storage, DIVariable D,
+ Instruction *InsertBefore) {
// Cast the storage to a {}* for the call to llvm.dbg.declare.
- Storage = new BitCastInst(Storage, EmptyStructPtr, "", BB);
-
+ Storage = new BitCastInst(Storage, EmptyStructPtr, "", InsertBefore);
+
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
- Value *Args[] = { Storage, getCastToEmpty(D) };
- CallInst::Create(DeclareFn, Args, Args+2, "", BB);
+ Value *Args[] = { Storage, D.getNode() };
+ CallInst::Create(DeclareFn, Args, Args+2, "", InsertBefore);
+}
+
+/// InsertDeclare - Insert a new llvm.dbg.declare intrinsic call.
+void DIFactory::InsertDeclare(Value *Storage, DIVariable D,
+ BasicBlock *InsertAtEnd) {
+ // Cast the storage to a {}* for the call to llvm.dbg.declare.
+ Storage = new BitCastInst(Storage, EmptyStructPtr, "", InsertAtEnd);
+
+ if (!DeclareFn)
+ DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
+
+ Value *Args[] = { Storage, D.getNode() };
+ CallInst::Create(DeclareFn, Args, Args+2, "", InsertAtEnd);
+}
+
+
+//===----------------------------------------------------------------------===//
+// DebugInfoFinder implementations.
+//===----------------------------------------------------------------------===//
+
+/// processModule - Process entire module and collect debug info.
+void DebugInfoFinder::processModule(Module &M) {
+
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ MetadataContext &TheMetadata = M.getContext().getMetadata();
+ unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
+#endif
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ for (Function::iterator FI = (*I).begin(), FE = (*I).end(); FI != FE; ++FI)
+ for (BasicBlock::iterator BI = (*FI).begin(), BE = (*FI).end(); BI != BE;
+ ++BI) {
+ if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(BI))
+ processStopPoint(SPI);
+ else if (DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI))
+ processFuncStart(FSI);
+ else if (DbgRegionStartInst *DRS = dyn_cast<DbgRegionStartInst>(BI))
+ processRegionStart(DRS);
+ else if (DbgRegionEndInst *DRE = dyn_cast<DbgRegionEndInst>(BI))
+ processRegionEnd(DRE);
+ else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
+ processDeclare(DDI);
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ else if (MDDbgKind) {
+ if (MDNode *L = TheMetadata.getMD(MDDbgKind, BI)) {
+ DILocation Loc(L);
+ DIScope S(Loc.getScope().getNode());
+ if (S.isCompileUnit())
+ addCompileUnit(DICompileUnit(S.getNode()));
+ else if (S.isSubprogram())
+ processSubprogram(DISubprogram(S.getNode()));
+ else if (S.isLexicalBlock())
+ processLexicalBlock(DILexicalBlock(S.getNode()));
+ }
+ }
+#endif
+ }
+
+ NamedMDNode *NMD = M.getNamedMetadata("llvm.dbg.gv");
+ if (!NMD)
+ return;
+
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
+ DIGlobalVariable DIG(cast<MDNode>(NMD->getElement(i)));
+ if (addGlobalVariable(DIG)) {
+ addCompileUnit(DIG.getCompileUnit());
+ processType(DIG.getType());
+ }
+ }
+}
+
+/// processType - Process DIType.
+void DebugInfoFinder::processType(DIType DT) {
+ if (!addType(DT))
+ return;
+
+ addCompileUnit(DT.getCompileUnit());
+ if (DT.isCompositeType()) {
+ DICompositeType DCT(DT.getNode());
+ processType(DCT.getTypeDerivedFrom());
+ DIArray DA = DCT.getTypeArray();
+ if (!DA.isNull())
+ for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) {
+ DIDescriptor D = DA.getElement(i);
+ DIType TypeE = DIType(D.getNode());
+ if (!TypeE.isNull())
+ processType(TypeE);
+ else
+ processSubprogram(DISubprogram(D.getNode()));
+ }
+ } else if (DT.isDerivedType()) {
+ DIDerivedType DDT(DT.getNode());
+ if (!DDT.isNull())
+ processType(DDT.getTypeDerivedFrom());
+ }
+}
+
+/// processLexicalBlock
+void DebugInfoFinder::processLexicalBlock(DILexicalBlock LB) {
+ if (LB.isNull())
+ return;
+ DIScope Context = LB.getContext();
+ if (Context.isLexicalBlock())
+ return processLexicalBlock(DILexicalBlock(Context.getNode()));
+ else
+ return processSubprogram(DISubprogram(Context.getNode()));
+}
+
+/// processSubprogram - Process DISubprogram.
+void DebugInfoFinder::processSubprogram(DISubprogram SP) {
+ if (SP.isNull())
+ return;
+ if (!addSubprogram(SP))
+ return;
+ addCompileUnit(SP.getCompileUnit());
+ processType(SP.getType());
+}
+
+/// processStopPoint - Process DbgStopPointInst.
+void DebugInfoFinder::processStopPoint(DbgStopPointInst *SPI) {
+ MDNode *Context = dyn_cast<MDNode>(SPI->getContext());
+ addCompileUnit(DICompileUnit(Context));
+}
+
+/// processFuncStart - Process DbgFuncStartInst.
+void DebugInfoFinder::processFuncStart(DbgFuncStartInst *FSI) {
+ MDNode *SP = dyn_cast<MDNode>(FSI->getSubprogram());
+ processSubprogram(DISubprogram(SP));
+}
+
+/// processRegionStart - Process DbgRegionStart.
+void DebugInfoFinder::processRegionStart(DbgRegionStartInst *DRS) {
+ MDNode *SP = dyn_cast<MDNode>(DRS->getContext());
+ processSubprogram(DISubprogram(SP));
+}
+
+/// processRegionEnd - Process DbgRegionEnd.
+void DebugInfoFinder::processRegionEnd(DbgRegionEndInst *DRE) {
+ MDNode *SP = dyn_cast<MDNode>(DRE->getContext());
+ processSubprogram(DISubprogram(SP));
+}
+
+/// processDeclare - Process DbgDeclareInst.
+void DebugInfoFinder::processDeclare(DbgDeclareInst *DDI) {
+ DIVariable DV(cast<MDNode>(DDI->getVariable()));
+ if (DV.isNull())
+ return;
+
+ if (!NodesSeen.insert(DV.getNode()))
+ return;
+
+ addCompileUnit(DV.getCompileUnit());
+ processType(DV.getType());
+}
+
+/// addType - Add type into Tys.
+bool DebugInfoFinder::addType(DIType DT) {
+ if (DT.isNull())
+ return false;
+
+ if (!NodesSeen.insert(DT.getNode()))
+ return false;
+
+ TYs.push_back(DT.getNode());
+ return true;
+}
+
+/// addCompileUnit - Add compile unit into CUs.
+bool DebugInfoFinder::addCompileUnit(DICompileUnit CU) {
+ if (CU.isNull())
+ return false;
+
+ if (!NodesSeen.insert(CU.getNode()))
+ return false;
+
+ CUs.push_back(CU.getNode());
+ return true;
+}
+
+/// addGlobalVariable - Add global variable into GVs.
+bool DebugInfoFinder::addGlobalVariable(DIGlobalVariable DIG) {
+ if (DIG.isNull())
+ return false;
+
+ if (!NodesSeen.insert(DIG.getNode()))
+ return false;
+
+ GVs.push_back(DIG.getNode());
+ return true;
+}
+
+// addSubprogram - Add subprgoram into SPs.
+bool DebugInfoFinder::addSubprogram(DISubprogram SP) {
+ if (SP.isNull())
+ return false;
+
+ if (!NodesSeen.insert(SP.getNode()))
+ return false;
+
+ SPs.push_back(SP.getNode());
+ return true;
}
namespace llvm {
@@ -939,30 +1194,17 @@ namespace llvm {
Value *findDbgGlobalDeclare(GlobalVariable *V) {
const Module *M = V->getParent();
- const Type *Ty = M->getTypeByName("llvm.dbg.global_variable.type");
- if (!Ty) return 0;
-
- Ty = PointerType::get(Ty, 0);
-
- Value *Val = V->stripPointerCasts();
- for (Value::use_iterator I = Val->use_begin(), E = Val->use_end();
- I != E; ++I) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I)) {
- if (CE->getOpcode() == Instruction::BitCast) {
- Value *VV = CE;
-
- while (VV->hasOneUse())
- VV = *VV->use_begin();
+ NamedMDNode *NMD = M->getNamedMetadata("llvm.dbg.gv");
+ if (!NMD)
+ return 0;
- if (VV->getType() == Ty)
- return VV;
- }
- }
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
+ DIGlobalVariable DIG(cast_or_null<MDNode>(NMD->getElement(i)));
+ if (DIG.isNull())
+ continue;
+ if (DIG.getGlobal() == V)
+ return DIG.getNode();
}
-
- if (Val->getType() == Ty)
- return Val;
-
return 0;
}
@@ -990,8 +1232,8 @@ namespace llvm {
return 0;
}
- bool getLocationInfo(const Value *V, std::string &DisplayName,
- std::string &Type, unsigned &LineNo, std::string &File,
+bool getLocationInfo(const Value *V, std::string &DisplayName,
+ std::string &Type, unsigned &LineNo, std::string &File,
std::string &Dir) {
DICompileUnit Unit;
DIType TypeD;
@@ -999,81 +1241,56 @@ namespace llvm {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(const_cast<Value*>(V))) {
Value *DIGV = findDbgGlobalDeclare(GV);
if (!DIGV) return false;
- DIGlobalVariable Var(cast<GlobalVariable>(DIGV));
+ DIGlobalVariable Var(cast<MDNode>(DIGV));
- Var.getDisplayName(DisplayName);
+ if (const char *D = Var.getDisplayName())
+ DisplayName = D;
LineNo = Var.getLineNumber();
Unit = Var.getCompileUnit();
TypeD = Var.getType();
} else {
const DbgDeclareInst *DDI = findDbgDeclare(V);
if (!DDI) return false;
- DIVariable Var(cast<GlobalVariable>(DDI->getVariable()));
+ DIVariable Var(cast<MDNode>(DDI->getVariable()));
- Var.getName(DisplayName);
+ if (const char *D = Var.getName())
+ DisplayName = D;
LineNo = Var.getLineNumber();
Unit = Var.getCompileUnit();
TypeD = Var.getType();
}
- TypeD.getName(Type);
- Unit.getFilename(File);
- Unit.getDirectory(Dir);
+ if (const char *T = TypeD.getName())
+ Type = T;
+ if (const char *F = Unit.getFilename())
+ File = F;
+ if (const char *D = Unit.getDirectory())
+ Dir = D;
return true;
}
- /// CollectDebugInfoAnchors - Collect debugging information anchors.
- void CollectDebugInfoAnchors(Module &M,
- SmallVector<GlobalVariable *, 2> &CUs,
- SmallVector<GlobalVariable *, 4> &GVs,
- SmallVector<GlobalVariable *, 4> &SPs) {
-
- for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
- GVI != E; GVI++) {
- GlobalVariable *GV = GVI;
- if (GV->hasName() && strncmp(GV->getNameStart(), "llvm.dbg", 8) == 0
- && GV->isConstant() && GV->hasInitializer()) {
- DICompileUnit C(GV);
- if (C.isNull() == false) {
- CUs.push_back(GV);
- continue;
- }
- DIGlobalVariable G(GV);
- if (G.isNull() == false) {
- GVs.push_back(GV);
- continue;
- }
- DISubprogram S(GV);
- if (S.isNull() == false) {
- SPs.push_back(GV);
- continue;
- }
- }
- }
- }
-
- /// isValidDebugInfoIntrinsic - Return true if SPI is a valid debug
+ /// isValidDebugInfoIntrinsic - Return true if SPI is a valid debug
/// info intrinsic.
- bool isValidDebugInfoIntrinsic(DbgStopPointInst &SPI,
+ bool isValidDebugInfoIntrinsic(DbgStopPointInst &SPI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(SPI.getContext(), OptLev);
}
- /// isValidDebugInfoIntrinsic - Return true if FSI is a valid debug
+ /// isValidDebugInfoIntrinsic - Return true if FSI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgFuncStartInst &FSI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(FSI.getSubprogram(), OptLev);
}
- /// isValidDebugInfoIntrinsic - Return true if RSI is a valid debug
+ /// isValidDebugInfoIntrinsic - Return true if RSI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgRegionStartInst &RSI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(RSI.getContext(), OptLev);
}
- /// isValidDebugInfoIntrinsic - Return true if REI is a valid debug
+ /// isValidDebugInfoIntrinsic - Return true if REI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgRegionEndInst &REI,
CodeGenOpt::Level OptLev) {
@@ -1081,14 +1298,14 @@ namespace llvm {
}
- /// isValidDebugInfoIntrinsic - Return true if DI is a valid debug
+ /// isValidDebugInfoIntrinsic - Return true if DI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgDeclareInst &DI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(DI.getVariable(), OptLev);
}
- /// ExtractDebugLocation - Extract debug location information
+ /// ExtractDebugLocation - Extract debug location information
/// from llvm.dbg.stoppoint intrinsic.
DebugLoc ExtractDebugLocation(DbgStopPointInst &SPI,
DebugLocTracker &DebugLocInfo) {
@@ -1096,7 +1313,7 @@ namespace llvm {
Value *Context = SPI.getContext();
// If this location is already tracked then use it.
- DebugLocTuple Tuple(cast<GlobalVariable>(Context), SPI.getLine(),
+ DebugLocTuple Tuple(cast<MDNode>(Context), NULL, SPI.getLine(),
SPI.getColumn());
DenseMap<DebugLocTuple, unsigned>::iterator II
= DebugLocInfo.DebugIdMap.find(Tuple);
@@ -1107,23 +1324,48 @@ namespace llvm {
unsigned Id = DebugLocInfo.DebugLocations.size();
DebugLocInfo.DebugLocations.push_back(Tuple);
DebugLocInfo.DebugIdMap[Tuple] = Id;
-
+
+ return DebugLoc::get(Id);
+ }
+
+ /// ExtractDebugLocation - Extract debug location information
+ /// from DILocation.
+ DebugLoc ExtractDebugLocation(DILocation &Loc,
+ DebugLocTracker &DebugLocInfo) {
+ DebugLoc DL;
+ MDNode *Context = Loc.getScope().getNode();
+ MDNode *InlinedLoc = NULL;
+ if (!Loc.getOrigLocation().isNull())
+ InlinedLoc = Loc.getOrigLocation().getNode();
+ // If this location is already tracked then use it.
+ DebugLocTuple Tuple(Context, InlinedLoc, Loc.getLineNumber(),
+ Loc.getColumnNumber());
+ DenseMap<DebugLocTuple, unsigned>::iterator II
+ = DebugLocInfo.DebugIdMap.find(Tuple);
+ if (II != DebugLocInfo.DebugIdMap.end())
+ return DebugLoc::get(II->second);
+
+ // Add a new location entry.
+ unsigned Id = DebugLocInfo.DebugLocations.size();
+ DebugLocInfo.DebugLocations.push_back(Tuple);
+ DebugLocInfo.DebugIdMap[Tuple] = Id;
+
return DebugLoc::get(Id);
}
- /// ExtractDebugLocation - Extract debug location information
+ /// ExtractDebugLocation - Extract debug location information
/// from llvm.dbg.func_start intrinsic.
DebugLoc ExtractDebugLocation(DbgFuncStartInst &FSI,
DebugLocTracker &DebugLocInfo) {
DebugLoc DL;
Value *SP = FSI.getSubprogram();
- DISubprogram Subprogram(cast<GlobalVariable>(SP));
+ DISubprogram Subprogram(cast<MDNode>(SP));
unsigned Line = Subprogram.getLineNumber();
DICompileUnit CU(Subprogram.getCompileUnit());
// If this location is already tracked then use it.
- DebugLocTuple Tuple(CU.getGV(), Line, /* Column */ 0);
+ DebugLocTuple Tuple(CU.getNode(), NULL, Line, /* Column */ 0);
DenseMap<DebugLocTuple, unsigned>::iterator II
= DebugLocInfo.DebugIdMap.find(Tuple);
if (II != DebugLocInfo.DebugIdMap.end())
@@ -1133,13 +1375,13 @@ namespace llvm {
unsigned Id = DebugLocInfo.DebugLocations.size();
DebugLocInfo.DebugLocations.push_back(Tuple);
DebugLocInfo.DebugIdMap[Tuple] = Id;
-
+
return DebugLoc::get(Id);
}
/// isInlinedFnStart - Return true if FSI is starting an inlined function.
bool isInlinedFnStart(DbgFuncStartInst &FSI, const Function *CurrentFn) {
- DISubprogram Subprogram(cast<GlobalVariable>(FSI.getSubprogram()));
+ DISubprogram Subprogram(cast<MDNode>(FSI.getSubprogram()));
if (Subprogram.describes(CurrentFn))
return false;
@@ -1148,11 +1390,10 @@ namespace llvm {
/// isInlinedFnEnd - Return true if REI is ending an inlined function.
bool isInlinedFnEnd(DbgRegionEndInst &REI, const Function *CurrentFn) {
- DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext()));
+ DISubprogram Subprogram(cast<MDNode>(REI.getContext()));
if (Subprogram.isNull() || Subprogram.describes(CurrentFn))
return false;
return true;
}
-
}
diff --git a/lib/Analysis/IPA/Andersens.cpp b/lib/Analysis/IPA/Andersens.cpp
index 3fb6526..1c9159d 100644
--- a/lib/Analysis/IPA/Andersens.cpp
+++ b/lib/Analysis/IPA/Andersens.cpp
@@ -60,9 +60,11 @@
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/System/Atomic.h"
@@ -84,7 +86,9 @@
#define FULL_UNIVERSAL 0
using namespace llvm;
+#ifndef NDEBUG
STATISTIC(NumIters , "Number of iterations to reach convergence");
+#endif
STATISTIC(NumConstraints, "Number of constraints");
STATISTIC(NumNodes , "Number of nodes");
STATISTIC(NumUnified , "Number of variables unified");
@@ -507,7 +511,7 @@ namespace {
#ifndef NDEBUG
V->dump();
#endif
- assert(0 && "Value does not have a node in the points-to graph!");
+ llvm_unreachable("Value does not have a node in the points-to graph!");
}
return I->second;
}
@@ -589,9 +593,12 @@ namespace {
friend class InstVisitor<Andersens>;
void visitReturnInst(ReturnInst &RI);
void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
- void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
+ void visitCallInst(CallInst &CI) {
+ if (isMalloc(&CI)) visitAllocationInst(CI);
+ else visitCallSite(CallSite(&CI));
+ }
void visitCallSite(CallSite CS);
- void visitAllocationInst(AllocationInst &AI);
+ void visitAllocationInst(Instruction &I);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
@@ -606,7 +613,7 @@ namespace {
//===------------------------------------------------------------------===//
// Implement Analyize interface
//
- void print(std::ostream &O, const Module* M) const {
+ void print(raw_ostream &O, const Module*) const {
PrintPointsToGraph();
}
};
@@ -614,7 +621,8 @@ namespace {
char Andersens::ID = 0;
static RegisterPass<Andersens>
-X("anders-aa", "Andersen's Interprocedural Alias Analysis", false, true);
+X("anders-aa", "Andersen's Interprocedural Alias Analysis (experimental)",
+ false, true);
static RegisterAnalysisGroup<AliasAnalysis> Y(X);
// Initialize Timestamp Counter (static).
@@ -786,6 +794,8 @@ void Andersens::IdentifyObjects(Module &M) {
ValueNodes[&*II] = NumObjects++;
if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
ObjectNodes[AI] = NumObjects++;
+ else if (isMalloc(&*II))
+ ObjectNodes[&*II] = NumObjects++;
}
// Calls to inline asm need to be added as well because the callee isn't
@@ -825,11 +835,11 @@ unsigned Andersens::getNodeForConstantPointer(Constant *C) {
case Instruction::BitCast:
return getNodeForConstantPointer(CE->getOperand(0));
default:
- cerr << "Constant Expr not yet handled: " << *CE << "\n";
- assert(0);
+ errs() << "Constant Expr not yet handled: " << *CE << "\n";
+ llvm_unreachable(0);
}
} else {
- assert(0 && "Unknown constant pointer!");
+ llvm_unreachable("Unknown constant pointer!");
}
return 0;
}
@@ -852,11 +862,11 @@ unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
case Instruction::BitCast:
return getNodeForConstantPointerTarget(CE->getOperand(0));
default:
- cerr << "Constant Expr not yet handled: " << *CE << "\n";
- assert(0);
+ errs() << "Constant Expr not yet handled: " << *CE << "\n";
+ llvm_unreachable(0);
}
} else {
- assert(0 && "Unknown constant pointer!");
+ llvm_unreachable("Unknown constant pointer!");
}
return 0;
}
@@ -996,7 +1006,7 @@ bool Andersens::AnalyzeUsesOfFunction(Value *V) {
if (!isa<PointerType>(V->getType())) return true;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
- if (dyn_cast<LoadInst>(*UI)) {
+ if (isa<LoadInst>(*UI)) {
return false;
} else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (V == SI->getOperand(1)) {
@@ -1027,7 +1037,7 @@ bool Andersens::AnalyzeUsesOfFunction(Value *V) {
} else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
return true; // Allow comparison against null.
- } else if (dyn_cast<FreeInst>(*UI)) {
+ } else if (isa<FreeInst>(*UI)) {
return false;
} else {
return true;
@@ -1060,7 +1070,7 @@ void Andersens::CollectConstraints(Module &M) {
Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
ObjectIndex));
- if (I->hasInitializer()) {
+ if (I->hasDefinitiveInitializer()) {
AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
} else {
// If it doesn't have an initializer (i.e. it's defined in another
@@ -1152,15 +1162,15 @@ void Andersens::visitInstruction(Instruction &I) {
return;
default:
// Is this something we aren't handling yet?
- cerr << "Unknown instruction: " << I;
- abort();
+ errs() << "Unknown instruction: " << I;
+ llvm_unreachable(0);
}
}
-void Andersens::visitAllocationInst(AllocationInst &AI) {
- unsigned ObjectIndex = getObject(&AI);
- GraphNodes[ObjectIndex].setValue(&AI);
- Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI),
+void Andersens::visitAllocationInst(Instruction &I) {
+ unsigned ObjectIndex = getObject(&I);
+ GraphNodes[ObjectIndex].setValue(&I);
+ Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(I),
ObjectIndex));
}
@@ -1243,7 +1253,7 @@ void Andersens::visitSelectInst(SelectInst &SI) {
}
void Andersens::visitVAArg(VAArgInst &I) {
- assert(0 && "vaarg not handled yet!");
+ llvm_unreachable("vaarg not handled yet!");
}
/// AddConstraintsForCall - Add constraints for a call with actual arguments
@@ -1395,12 +1405,6 @@ bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
return Result;
}
-void dumpToDOUT(SparseBitVector<> *bitmap) {
-#ifndef NDEBUG
- dump(*bitmap, DOUT);
-#endif
-}
-
/// Clump together address taken variables so that the points-to sets use up
/// less space and can be operated on faster.
@@ -1424,7 +1428,7 @@ void Andersens::ClumpAddressTaken() {
unsigned Pos = NewPos++;
Translate[i] = Pos;
NewGraphNodes.push_back(GraphNodes[i]);
- DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
+ DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
}
// I believe this ends up being faster than making two vectors and splicing
@@ -1434,7 +1438,7 @@ void Andersens::ClumpAddressTaken() {
unsigned Pos = NewPos++;
Translate[i] = Pos;
NewGraphNodes.push_back(GraphNodes[i]);
- DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
+ DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
}
}
@@ -1443,7 +1447,7 @@ void Andersens::ClumpAddressTaken() {
unsigned Pos = NewPos++;
Translate[i] = Pos;
NewGraphNodes.push_back(GraphNodes[i]);
- DOUT << "Renumbering node " << i << " to node " << Pos << "\n";
+ DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
}
}
@@ -1515,7 +1519,7 @@ void Andersens::ClumpAddressTaken() {
/// receive &D from E anyway.
void Andersens::HVN() {
- DOUT << "Beginning HVN\n";
+ DEBUG(errs() << "Beginning HVN\n");
// Build a predecessor graph. This is like our constraint graph with the
// edges going in the opposite direction, and there are edges for all the
// constraints, instead of just copy constraints. We also build implicit
@@ -1586,7 +1590,7 @@ void Andersens::HVN() {
Node2DFS.clear();
Node2Deleted.clear();
Node2Visited.clear();
- DOUT << "Finished HVN\n";
+ DEBUG(errs() << "Finished HVN\n");
}
@@ -1710,7 +1714,7 @@ void Andersens::HVNValNum(unsigned NodeIndex) {
/// and is equivalent to value numbering the collapsed constraint graph
/// including evaluating unions.
void Andersens::HU() {
- DOUT << "Beginning HU\n";
+ DEBUG(errs() << "Beginning HU\n");
// Build a predecessor graph. This is like our constraint graph with the
// edges going in the opposite direction, and there are edges for all the
// constraints, instead of just copy constraints. We also build implicit
@@ -1790,7 +1794,7 @@ void Andersens::HU() {
}
// PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
Set2PEClass.clear();
- DOUT << "Finished HU\n";
+ DEBUG(errs() << "Finished HU\n");
}
@@ -1968,12 +1972,12 @@ void Andersens::RewriteConstraints() {
// to anything.
if (LHSLabel == 0) {
DEBUG(PrintNode(&GraphNodes[LHSNode]));
- DOUT << " is a non-pointer, ignoring constraint.\n";
+ DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
continue;
}
if (RHSLabel == 0) {
DEBUG(PrintNode(&GraphNodes[RHSNode]));
- DOUT << " is a non-pointer, ignoring constraint.\n";
+ DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
continue;
}
// This constraint may be useless, and it may become useless as we translate
@@ -2021,19 +2025,19 @@ void Andersens::PrintLabels() const {
if (i < FirstRefNode) {
PrintNode(&GraphNodes[i]);
} else if (i < FirstAdrNode) {
- DOUT << "REF(";
+ DEBUG(errs() << "REF(");
PrintNode(&GraphNodes[i-FirstRefNode]);
- DOUT <<")";
+ DEBUG(errs() <<")");
} else {
- DOUT << "ADR(";
+ DEBUG(errs() << "ADR(");
PrintNode(&GraphNodes[i-FirstAdrNode]);
- DOUT <<")";
+ DEBUG(errs() <<")");
}
- DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel
+ DEBUG(errs() << " has pointer label " << GraphNodes[i].PointerEquivLabel
<< " and SCC rep " << VSSCCRep[i]
<< " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
- << "\n";
+ << "\n");
}
}
@@ -2047,7 +2051,7 @@ void Andersens::PrintLabels() const {
/// operation are stored in SDT and are later used in SolveContraints()
/// and UniteNodes().
void Andersens::HCD() {
- DOUT << "Starting HCD.\n";
+ DEBUG(errs() << "Starting HCD.\n");
HCDSCCRep.resize(GraphNodes.size());
for (unsigned i = 0; i < GraphNodes.size(); ++i) {
@@ -2096,7 +2100,7 @@ void Andersens::HCD() {
Node2Visited.clear();
Node2Deleted.clear();
HCDSCCRep.clear();
- DOUT << "HCD complete.\n";
+ DEBUG(errs() << "HCD complete.\n");
}
// Component of HCD:
@@ -2168,7 +2172,7 @@ void Andersens::Search(unsigned Node) {
/// Optimize the constraints by performing offline variable substitution and
/// other optimizations.
void Andersens::OptimizeConstraints() {
- DOUT << "Beginning constraint optimization\n";
+ DEBUG(errs() << "Beginning constraint optimization\n");
SDTActive = false;
@@ -2252,7 +2256,7 @@ void Andersens::OptimizeConstraints() {
// HCD complete.
- DOUT << "Finished constraint optimization\n";
+ DEBUG(errs() << "Finished constraint optimization\n");
FirstRefNode = 0;
FirstAdrNode = 0;
}
@@ -2260,7 +2264,7 @@ void Andersens::OptimizeConstraints() {
/// Unite pointer but not location equivalent variables, now that the constraint
/// graph is built.
void Andersens::UnitePointerEquivalences() {
- DOUT << "Uniting remaining pointer equivalences\n";
+ DEBUG(errs() << "Uniting remaining pointer equivalences\n");
for (unsigned i = 0; i < GraphNodes.size(); ++i) {
if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
unsigned Label = GraphNodes[i].PointerEquivLabel;
@@ -2269,7 +2273,7 @@ void Andersens::UnitePointerEquivalences() {
UniteNodes(i, PENLEClass2Node[Label]);
}
}
- DOUT << "Finished remaining pointer equivalences\n";
+ DEBUG(errs() << "Finished remaining pointer equivalences\n");
PENLEClass2Node.clear();
}
@@ -2425,7 +2429,7 @@ void Andersens::SolveConstraints() {
std::vector<unsigned int> RSV;
#endif
while( !CurrWL->empty() ) {
- DOUT << "Starting iteration #" << ++NumIters << "\n";
+ DEBUG(errs() << "Starting iteration #" << ++NumIters << "\n");
Node* CurrNode;
unsigned CurrNodeIndex;
@@ -2728,11 +2732,11 @@ unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
SecondNode->OldPointsTo = NULL;
NumUnified++;
- DOUT << "Unified Node ";
+ DEBUG(errs() << "Unified Node ");
DEBUG(PrintNode(FirstNode));
- DOUT << " and Node ";
+ DEBUG(errs() << " and Node ");
DEBUG(PrintNode(SecondNode));
- DOUT << "\n";
+ DEBUG(errs() << "\n");
if (SDTActive)
if (SDT[Second] >= 0) {
@@ -2777,17 +2781,17 @@ unsigned Andersens::FindNode(unsigned NodeIndex) const {
void Andersens::PrintNode(const Node *N) const {
if (N == &GraphNodes[UniversalSet]) {
- cerr << "<universal>";
+ errs() << "<universal>";
return;
} else if (N == &GraphNodes[NullPtr]) {
- cerr << "<nullptr>";
+ errs() << "<nullptr>";
return;
} else if (N == &GraphNodes[NullObject]) {
- cerr << "<null>";
+ errs() << "<null>";
return;
}
if (!N->getValue()) {
- cerr << "artificial" << (intptr_t) N;
+ errs() << "artificial" << (intptr_t) N;
return;
}
@@ -2796,85 +2800,85 @@ void Andersens::PrintNode(const Node *N) const {
if (Function *F = dyn_cast<Function>(V)) {
if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
N == &GraphNodes[getReturnNode(F)]) {
- cerr << F->getName() << ":retval";
+ errs() << F->getName() << ":retval";
return;
} else if (F->getFunctionType()->isVarArg() &&
N == &GraphNodes[getVarargNode(F)]) {
- cerr << F->getName() << ":vararg";
+ errs() << F->getName() << ":vararg";
return;
}
}
if (Instruction *I = dyn_cast<Instruction>(V))
- cerr << I->getParent()->getParent()->getName() << ":";
+ errs() << I->getParent()->getParent()->getName() << ":";
else if (Argument *Arg = dyn_cast<Argument>(V))
- cerr << Arg->getParent()->getName() << ":";
+ errs() << Arg->getParent()->getName() << ":";
if (V->hasName())
- cerr << V->getName();
+ errs() << V->getName();
else
- cerr << "(unnamed)";
+ errs() << "(unnamed)";
- if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
+ if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isMalloc(V))
if (N == &GraphNodes[getObject(V)])
- cerr << "<mem>";
+ errs() << "<mem>";
}
void Andersens::PrintConstraint(const Constraint &C) const {
if (C.Type == Constraint::Store) {
- cerr << "*";
+ errs() << "*";
if (C.Offset != 0)
- cerr << "(";
+ errs() << "(";
}
PrintNode(&GraphNodes[C.Dest]);
if (C.Type == Constraint::Store && C.Offset != 0)
- cerr << " + " << C.Offset << ")";
- cerr << " = ";
+ errs() << " + " << C.Offset << ")";
+ errs() << " = ";
if (C.Type == Constraint::Load) {
- cerr << "*";
+ errs() << "*";
if (C.Offset != 0)
- cerr << "(";
+ errs() << "(";
}
else if (C.Type == Constraint::AddressOf)
- cerr << "&";
+ errs() << "&";
PrintNode(&GraphNodes[C.Src]);
if (C.Offset != 0 && C.Type != Constraint::Store)
- cerr << " + " << C.Offset;
+ errs() << " + " << C.Offset;
if (C.Type == Constraint::Load && C.Offset != 0)
- cerr << ")";
- cerr << "\n";
+ errs() << ")";
+ errs() << "\n";
}
void Andersens::PrintConstraints() const {
- cerr << "Constraints:\n";
+ errs() << "Constraints:\n";
for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
PrintConstraint(Constraints[i]);
}
void Andersens::PrintPointsToGraph() const {
- cerr << "Points-to graph:\n";
+ errs() << "Points-to graph:\n";
for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
const Node *N = &GraphNodes[i];
if (FindNode(i) != i) {
PrintNode(N);
- cerr << "\t--> same as ";
+ errs() << "\t--> same as ";
PrintNode(&GraphNodes[FindNode(i)]);
- cerr << "\n";
+ errs() << "\n";
} else {
- cerr << "[" << (N->PointsTo->count()) << "] ";
+ errs() << "[" << (N->PointsTo->count()) << "] ";
PrintNode(N);
- cerr << "\t--> ";
+ errs() << "\t--> ";
bool first = true;
for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
bi != N->PointsTo->end();
++bi) {
if (!first)
- cerr << ", ";
+ errs() << ", ";
PrintNode(&GraphNodes[*bi]);
first = false;
}
- cerr << "\n";
+ errs() << "\n";
}
}
}
diff --git a/lib/Analysis/IPA/CallGraph.cpp b/lib/Analysis/IPA/CallGraph.cpp
index 6dabcdb..e2b288d 100644
--- a/lib/Analysis/IPA/CallGraph.cpp
+++ b/lib/Analysis/IPA/CallGraph.cpp
@@ -18,8 +18,7 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
-#include <ostream>
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
@@ -54,7 +53,7 @@ public:
CallsExternalNode = new CallGraphNode(0);
Root = 0;
- // Add every function to the call graph...
+ // Add every function to the call graph.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
addToCallGraph(I);
@@ -68,30 +67,21 @@ public:
AU.setPreservesAll();
}
- void print(std::ostream *o, const Module *M) const {
- if (o) print(*o, M);
- }
-
- virtual void print(std::ostream &o, const Module *M) const {
- o << "CallGraph Root is: ";
+ virtual void print(raw_ostream &OS, const Module *) const {
+ OS << "CallGraph Root is: ";
if (Function *F = getRoot()->getFunction())
- o << F->getName() << "\n";
- else
- o << "<<null function: 0x" << getRoot() << ">>\n";
+ OS << F->getName() << "\n";
+ else {
+ OS << "<<null function: 0x" << getRoot() << ">>\n";
+ }
- CallGraph::print(o, M);
+ CallGraph::print(OS, 0);
}
virtual void releaseMemory() {
destroy();
}
- /// dump - Print out this call graph.
- ///
- inline void dump() const {
- print(cerr, Mod);
- }
-
CallGraphNode* getExternalCallingNode() const { return ExternalCallingNode; }
CallGraphNode* getCallsExternalNode() const { return CallsExternalNode; }
@@ -179,21 +169,20 @@ void CallGraph::initialize(Module &M) {
}
void CallGraph::destroy() {
- if (!FunctionMap.empty()) {
- for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
- I != E; ++I)
- delete I->second;
- FunctionMap.clear();
- }
+ if (FunctionMap.empty()) return;
+
+ for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
+ I != E; ++I)
+ delete I->second;
+ FunctionMap.clear();
}
-void CallGraph::print(std::ostream &OS, const Module *M) const {
+void CallGraph::print(raw_ostream &OS, Module*) const {
for (CallGraph::const_iterator I = begin(), E = end(); I != E; ++I)
I->second->print(OS);
}
-
void CallGraph::dump() const {
- print(cerr, 0);
+ print(errs(), 0);
}
//===----------------------------------------------------------------------===//
@@ -207,7 +196,7 @@ void CallGraph::dump() const {
// is to dropAllReferences before calling this.
//
Function *CallGraph::removeFunctionFromModule(CallGraphNode *CGN) {
- assert(CGN->CalledFunctions.empty() && "Cannot remove function from call "
+ assert(CGN->empty() && "Cannot remove function from call "
"graph if it references other functions!");
Function *F = CGN->getFunction(); // Get the function for the call graph node
delete CGN; // Delete the call graph node for this func
@@ -217,20 +206,6 @@ Function *CallGraph::removeFunctionFromModule(CallGraphNode *CGN) {
return F;
}
-// changeFunction - This method changes the function associated with this
-// CallGraphNode, for use by transformations that need to change the prototype
-// of a Function (thus they must create a new Function and move the old code
-// over).
-void CallGraph::changeFunction(Function *OldF, Function *NewF) {
- iterator I = FunctionMap.find(OldF);
- CallGraphNode *&New = FunctionMap[NewF];
- assert(I != FunctionMap.end() && I->second && !New &&
- "OldF didn't exist in CG or NewF already does!");
- New = I->second;
- New->F = NewF;
- FunctionMap.erase(I);
-}
-
// getOrInsertFunction - This method is identical to calling operator[], but
// it will insert a new CallGraphNode for the specified function if one does
// not already exist.
@@ -242,11 +217,13 @@ CallGraphNode *CallGraph::getOrInsertFunction(const Function *F) {
return CGN = new CallGraphNode(const_cast<Function*>(F));
}
-void CallGraphNode::print(std::ostream &OS) const {
+void CallGraphNode::print(raw_ostream &OS) const {
if (Function *F = getFunction())
- OS << "Call graph node for function: '" << F->getName() <<"'\n";
+ OS << "Call graph node for function: '" << F->getName() << "'";
else
- OS << "Call graph node <<null function: 0x" << this << ">>:\n";
+ OS << "Call graph node <<null function>>";
+
+ OS << "<<0x" << this << ">> #uses=" << getNumReferences() << '\n';
for (const_iterator I = begin(), E = end(); I != E; ++I)
if (Function *FI = I->second->getFunction())
@@ -256,7 +233,7 @@ void CallGraphNode::print(std::ostream &OS) const {
OS << "\n";
}
-void CallGraphNode::dump() const { print(cerr); }
+void CallGraphNode::dump() const { print(errs()); }
/// removeCallEdgeFor - This method removes the edge in the node for the
/// specified call site. Note that this method takes linear time, so it
@@ -264,8 +241,10 @@ void CallGraphNode::dump() const { print(cerr); }
void CallGraphNode::removeCallEdgeFor(CallSite CS) {
for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
assert(I != CalledFunctions.end() && "Cannot find callsite to remove!");
- if (I->first == CS) {
- CalledFunctions.erase(I);
+ if (I->first == CS.getInstruction()) {
+ I->second->DropRef();
+ *I = CalledFunctions.back();
+ CalledFunctions.pop_back();
return;
}
}
@@ -278,6 +257,7 @@ void CallGraphNode::removeCallEdgeFor(CallSite CS) {
void CallGraphNode::removeAnyCallEdgeTo(CallGraphNode *Callee) {
for (unsigned i = 0, e = CalledFunctions.size(); i != e; ++i)
if (CalledFunctions[i].second == Callee) {
+ Callee->DropRef();
CalledFunctions[i] = CalledFunctions.back();
CalledFunctions.pop_back();
--i; --e;
@@ -290,21 +270,27 @@ void CallGraphNode::removeOneAbstractEdgeTo(CallGraphNode *Callee) {
for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
assert(I != CalledFunctions.end() && "Cannot find callee to remove!");
CallRecord &CR = *I;
- if (CR.second == Callee && !CR.first.getInstruction()) {
- CalledFunctions.erase(I);
+ if (CR.second == Callee && CR.first == 0) {
+ Callee->DropRef();
+ *I = CalledFunctions.back();
+ CalledFunctions.pop_back();
return;
}
}
}
-/// replaceCallSite - Make the edge in the node for Old CallSite be for
-/// New CallSite instead. Note that this method takes linear time, so it
-/// should be used sparingly.
-void CallGraphNode::replaceCallSite(CallSite Old, CallSite New) {
+/// replaceCallEdge - This method replaces the edge in the node for the
+/// specified call site with a new one. Note that this method takes linear
+/// time, so it should be used sparingly.
+void CallGraphNode::replaceCallEdge(CallSite CS,
+ CallSite NewCS, CallGraphNode *NewNode){
for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
- assert(I != CalledFunctions.end() && "Cannot find callsite to replace!");
- if (I->first == Old) {
- I->first = New;
+ assert(I != CalledFunctions.end() && "Cannot find callsite to remove!");
+ if (I->first == CS.getInstruction()) {
+ I->second->DropRef();
+ I->first = NewCS.getInstruction();
+ I->second = NewNode;
+ NewNode->AddRef();
return;
}
}
diff --git a/lib/Analysis/IPA/CallGraphSCCPass.cpp b/lib/Analysis/IPA/CallGraphSCCPass.cpp
index 3880d0a..a96a5c5 100644
--- a/lib/Analysis/IPA/CallGraphSCCPass.cpp
+++ b/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -15,22 +15,25 @@
//
//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "cgscc-passmgr"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/PassManagers.h"
#include "llvm/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// CGPassManager
//
-/// CGPassManager manages FPPassManagers and CalLGraphSCCPasses.
+/// CGPassManager manages FPPassManagers and CallGraphSCCPasses.
namespace {
class CGPassManager : public ModulePass, public PMDataManager {
-
public:
static char ID;
explicit CGPassManager(int Depth)
@@ -56,7 +59,7 @@ public:
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
- llvm::cerr << std::string(Offset*2, ' ') << "Call Graph SCC Pass Manager\n";
+ errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
Pass *P = getContainedPass(Index);
P->dumpPassStructure(Offset + 1);
@@ -65,56 +68,275 @@ public:
}
Pass *getContainedPass(unsigned N) {
- assert ( N < PassVector.size() && "Pass number out of range!");
- Pass *FP = static_cast<Pass *>(PassVector[N]);
- return FP;
+ assert(N < PassVector.size() && "Pass number out of range!");
+ return static_cast<Pass *>(PassVector[N]);
}
virtual PassManagerType getPassManagerType() const {
return PMT_CallGraphPassManager;
}
+
+private:
+ bool RunPassOnSCC(Pass *P, std::vector<CallGraphNode*> &CurSCC,
+ CallGraph &CG, bool &CallGraphUpToDate);
+ void RefreshCallGraph(std::vector<CallGraphNode*> &CurSCC, CallGraph &CG,
+ bool IsCheckingMode);
};
-}
+} // end anonymous namespace.
char CGPassManager::ID = 0;
+
+bool CGPassManager::RunPassOnSCC(Pass *P, std::vector<CallGraphNode*> &CurSCC,
+ CallGraph &CG, bool &CallGraphUpToDate) {
+ bool Changed = false;
+ if (CallGraphSCCPass *CGSP = dynamic_cast<CallGraphSCCPass*>(P)) {
+ if (!CallGraphUpToDate) {
+ RefreshCallGraph(CurSCC, CG, false);
+ CallGraphUpToDate = true;
+ }
+
+ Timer *T = StartPassTimer(CGSP);
+ Changed = CGSP->runOnSCC(CurSCC);
+ StopPassTimer(CGSP, T);
+
+ // After the CGSCCPass is done, when assertions are enabled, use
+ // RefreshCallGraph to verify that the callgraph was correctly updated.
+#ifndef NDEBUG
+ if (Changed)
+ RefreshCallGraph(CurSCC, CG, true);
+#endif
+
+ return Changed;
+ }
+
+ FPPassManager *FPP = dynamic_cast<FPPassManager *>(P);
+ assert(FPP && "Invalid CGPassManager member");
+
+ // Run pass P on all functions in the current SCC.
+ for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) {
+ if (Function *F = CurSCC[i]->getFunction()) {
+ dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName());
+ Timer *T = StartPassTimer(FPP);
+ Changed |= FPP->runOnFunction(*F);
+ StopPassTimer(FPP, T);
+ }
+ }
+
+ // The function pass(es) modified the IR, they may have clobbered the
+ // callgraph.
+ if (Changed && CallGraphUpToDate) {
+ DEBUG(errs() << "CGSCCPASSMGR: Pass Dirtied SCC: "
+ << P->getPassName() << '\n');
+ CallGraphUpToDate = false;
+ }
+ return Changed;
+}
+
+
+/// RefreshCallGraph - Scan the functions in the specified CFG and resync the
+/// callgraph with the call sites found in it. This is used after
+/// FunctionPasses have potentially munged the callgraph, and can be used after
+/// CallGraphSCC passes to verify that they correctly updated the callgraph.
+///
+void CGPassManager::RefreshCallGraph(std::vector<CallGraphNode*> &CurSCC,
+ CallGraph &CG, bool CheckingMode) {
+ DenseMap<Value*, CallGraphNode*> CallSites;
+
+ DEBUG(errs() << "CGSCCPASSMGR: Refreshing SCC with " << CurSCC.size()
+ << " nodes:\n";
+ for (unsigned i = 0, e = CurSCC.size(); i != e; ++i)
+ CurSCC[i]->dump();
+ );
+
+ bool MadeChange = false;
+
+ // Scan all functions in the SCC.
+ for (unsigned sccidx = 0, e = CurSCC.size(); sccidx != e; ++sccidx) {
+ CallGraphNode *CGN = CurSCC[sccidx];
+ Function *F = CGN->getFunction();
+ if (F == 0 || F->isDeclaration()) continue;
+
+ // Walk the function body looking for call sites. Sync up the call sites in
+ // CGN with those actually in the function.
+
+ // Get the set of call sites currently in the function.
+ for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) {
+ // If this call site is null, then the function pass deleted the call
+ // entirely and the WeakVH nulled it out.
+ if (I->first == 0 ||
+ // If we've already seen this call site, then the FunctionPass RAUW'd
+ // one call with another, which resulted in two "uses" in the edge
+ // list of the same call.
+ CallSites.count(I->first) ||
+
+ // If the call edge is not from a call or invoke, then the function
+ // pass RAUW'd a call with another value. This can happen when
+ // constant folding happens of well known functions etc.
+ CallSite::get(I->first).getInstruction() == 0) {
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // Just remove the edge from the set of callees, keep track of whether
+ // I points to the last element of the vector.
+ bool WasLast = I + 1 == E;
+ CGN->removeCallEdge(I);
+
+ // If I pointed to the last element of the vector, we have to bail out:
+ // iterator checking rejects comparisons of the resultant pointer with
+ // end.
+ if (WasLast)
+ break;
+ E = CGN->end();
+ continue;
+ }
+
+ assert(!CallSites.count(I->first) &&
+ "Call site occurs in node multiple times");
+ CallSites.insert(std::make_pair(I->first, I->second));
+ ++I;
+ }
+
+ // Loop over all of the instructions in the function, getting the callsites.
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ CallSite CS = CallSite::get(I);
+ if (!CS.getInstruction() || isa<DbgInfoIntrinsic>(I)) continue;
+
+ // If this call site already existed in the callgraph, just verify it
+ // matches up to expectations and remove it from CallSites.
+ DenseMap<Value*, CallGraphNode*>::iterator ExistingIt =
+ CallSites.find(CS.getInstruction());
+ if (ExistingIt != CallSites.end()) {
+ CallGraphNode *ExistingNode = ExistingIt->second;
+
+ // Remove from CallSites since we have now seen it.
+ CallSites.erase(ExistingIt);
+
+ // Verify that the callee is right.
+ if (ExistingNode->getFunction() == CS.getCalledFunction())
+ continue;
+
+ // If we are in checking mode, we are not allowed to actually mutate
+ // the callgraph. If this is a case where we can infer that the
+ // callgraph is less precise than it could be (e.g. an indirect call
+ // site could be turned direct), don't reject it in checking mode, and
+ // don't tweak it to be more precise.
+ if (CheckingMode && CS.getCalledFunction() &&
+ ExistingNode->getFunction() == 0)
+ continue;
+
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // If not, we either went from a direct call to indirect, indirect to
+ // direct, or direct to different direct.
+ CallGraphNode *CalleeNode;
+ if (Function *Callee = CS.getCalledFunction())
+ CalleeNode = CG.getOrInsertFunction(Callee);
+ else
+ CalleeNode = CG.getCallsExternalNode();
+
+ // Update the edge target in CGN.
+ for (CallGraphNode::iterator I = CGN->begin(); ; ++I) {
+ assert(I != CGN->end() && "Didn't find call entry");
+ if (I->first == CS.getInstruction()) {
+ I->second = CalleeNode;
+ break;
+ }
+ }
+ MadeChange = true;
+ continue;
+ }
+
+ assert(!CheckingMode &&
+ "CallGraphSCCPass did not update the CallGraph correctly!");
+
+ // If the call site didn't exist in the CGN yet, add it. We assume that
+ // newly introduced call sites won't be indirect. This could be fixed
+ // in the future.
+ CallGraphNode *CalleeNode;
+ if (Function *Callee = CS.getCalledFunction())
+ CalleeNode = CG.getOrInsertFunction(Callee);
+ else
+ CalleeNode = CG.getCallsExternalNode();
+
+ CGN->addCalledFunction(CS, CalleeNode);
+ MadeChange = true;
+ }
+
+ // After scanning this function, if we still have entries in callsites, then
+ // they are dangling pointers. WeakVH should save us for this, so abort if
+ // this happens.
+ assert(CallSites.empty() && "Dangling pointers found in call sites map");
+
+ // Periodically do an explicit clear to remove tombstones when processing
+ // large scc's.
+ if ((sccidx & 15) == 0)
+ CallSites.clear();
+ }
+
+ DEBUG(if (MadeChange) {
+ errs() << "CGSCCPASSMGR: Refreshed SCC is now:\n";
+ for (unsigned i = 0, e = CurSCC.size(); i != e; ++i)
+ CurSCC[i]->dump();
+ } else {
+ errs() << "CGSCCPASSMGR: SCC Refresh didn't change call graph.\n";
+ }
+ );
+}
+
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool CGPassManager::runOnModule(Module &M) {
CallGraph &CG = getAnalysis<CallGraph>();
bool Changed = doInitialization(CG);
- // Walk SCC
- for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG);
- I != E; ++I) {
-
- // Run all passes on current SCC
- for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
- Pass *P = getContainedPass(Index);
-
- dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, "");
+ std::vector<CallGraphNode*> CurSCC;
+
+ // Walk the callgraph in bottom-up SCC order.
+ for (scc_iterator<CallGraph*> CGI = scc_begin(&CG), E = scc_end(&CG);
+ CGI != E;) {
+ // Copy the current SCC and increment past it so that the pass can hack
+ // on the SCC if it wants to without invalidating our iterator.
+ CurSCC = *CGI;
+ ++CGI;
+
+
+ // CallGraphUpToDate - Keep track of whether the callgraph is known to be
+ // up-to-date or not. The CGSSC pass manager runs two types of passes:
+ // CallGraphSCC Passes and other random function passes. Because other
+ // random function passes are not CallGraph aware, they may clobber the
+ // call graph by introducing new calls or deleting other ones. This flag
+ // is set to false when we run a function pass so that we know to clean up
+ // the callgraph when we need to run a CGSCCPass again.
+ bool CallGraphUpToDate = true;
+
+ // Run all passes on current SCC.
+ for (unsigned PassNo = 0, e = getNumContainedPasses();
+ PassNo != e; ++PassNo) {
+ Pass *P = getContainedPass(PassNo);
+
+ // If we're in -debug-pass=Executions mode, construct the SCC node list,
+ // otherwise avoid constructing this string as it is expensive.
+ if (isPassDebuggingExecutionsOrMore()) {
+ std::string Functions;
+#ifndef NDEBUG
+ raw_string_ostream OS(Functions);
+ for (unsigned i = 0, e = CurSCC.size(); i != e; ++i) {
+ if (i) OS << ", ";
+ CurSCC[i]->print(OS);
+ }
+ OS.flush();
+#endif
+ dumpPassInfo(P, EXECUTION_MSG, ON_CG_MSG, Functions);
+ }
dumpRequiredSet(P);
initializeAnalysisImpl(P);
- StartPassTimer(P);
- if (CallGraphSCCPass *CGSP = dynamic_cast<CallGraphSCCPass *>(P))
- Changed |= CGSP->runOnSCC(*I); // TODO : What if CG is changed ?
- else {
- FPPassManager *FPP = dynamic_cast<FPPassManager *>(P);
- assert (FPP && "Invalid CGPassManager member");
-
- // Run pass P on all functions current SCC
- std::vector<CallGraphNode*> &SCC = *I;
- for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
- Function *F = SCC[i]->getFunction();
- if (F) {
- dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getNameStart());
- Changed |= FPP->runOnFunction(*F);
- }
- }
- }
- StopPassTimer(P);
+ // Actually run this pass on the current SCC.
+ Changed |= RunPassOnSCC(P, CurSCC, CG, CallGraphUpToDate);
if (Changed)
dumpPassInfo(P, MODIFICATION_MSG, ON_CG_MSG, "");
@@ -125,6 +347,11 @@ bool CGPassManager::runOnModule(Module &M) {
recordAvailableAnalysis(P);
removeDeadPasses(P, "", ON_CG_MSG);
}
+
+ // If the callgraph was left out of date (because the last pass run was a
+ // functionpass), refresh it before we move on to the next SCC.
+ if (!CallGraphUpToDate)
+ RefreshCallGraph(CurSCC, CG, false);
}
Changed |= doFinalization(CG);
return Changed;
diff --git a/lib/Analysis/IPA/FindUsedTypes.cpp b/lib/Analysis/IPA/FindUsedTypes.cpp
index 920ee37..c4fb0b9 100644
--- a/lib/Analysis/IPA/FindUsedTypes.cpp
+++ b/lib/Analysis/IPA/FindUsedTypes.cpp
@@ -92,13 +92,12 @@ bool FindUsedTypes::runOnModule(Module &m) {
// passed in, then the types are printed symbolically if possible, using the
// symbol table from the module.
//
-void FindUsedTypes::print(std::ostream &OS, const Module *M) const {
- raw_os_ostream RO(OS);
- RO << "Types in use by this module:\n";
+void FindUsedTypes::print(raw_ostream &OS, const Module *M) const {
+ OS << "Types in use by this module:\n";
for (std::set<const Type *>::const_iterator I = UsedTypes.begin(),
E = UsedTypes.end(); I != E; ++I) {
- RO << " ";
- WriteTypeSymbolic(RO, *I, M);
- RO << '\n';
+ OS << " ";
+ WriteTypeSymbolic(OS, *I, M);
+ OS << '\n';
}
}
diff --git a/lib/Analysis/IPA/GlobalsModRef.cpp b/lib/Analysis/IPA/GlobalsModRef.cpp
index 2e9884a..f5c1108 100644
--- a/lib/Analysis/IPA/GlobalsModRef.cpp
+++ b/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -23,6 +23,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/InstIterator.h"
@@ -236,6 +237,9 @@ bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
}
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
+ } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
+ if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
+ return true;
} else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
// Make sure that this is just the function being called, not that it is
// passing into the function.
@@ -299,7 +303,7 @@ bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
// Check the value being stored.
Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
- if (isa<MallocInst>(Ptr)) {
+ if (isa<MallocInst>(Ptr) || isMalloc(Ptr)) {
// Okay, easy case.
} else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
Function *F = CI->getCalledFunction();
@@ -435,7 +439,8 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
if (cast<StoreInst>(*II).isVolatile())
// Treat volatile stores as reading memory somewhere.
FunctionEffect |= Ref;
- } else if (isa<MallocInst>(*II) || isa<FreeInst>(*II)) {
+ } else if (isa<MallocInst>(*II) || isa<FreeInst>(*II) ||
+ isMalloc(&cast<Instruction>(*II))) {
FunctionEffect |= ModRef;
}
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index caeb14b..543e017 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -19,7 +19,6 @@
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/ADT/STLExtras.h"
@@ -39,7 +38,7 @@ Pass *llvm::createIVUsersPass() {
/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
/// subexpression that is an AddRec from a loop other than L. An outer loop
/// of L is OK, but not an inner loop nor a disjoint loop.
-static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
+static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
// This is very common, put it first.
if (isa<SCEVConstant>(S))
return false;
@@ -54,7 +53,7 @@ static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
if (newLoop == L)
return false;
// if newLoop is an outer loop of L, this is OK.
- if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
+ if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop))
return false;
}
return true;
@@ -80,10 +79,10 @@ static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
/// a mix of loop invariant and loop variant expressions. The start cannot,
/// however, contain an AddRec from a different loop, unless that loop is an
/// outer loop of the current loop.
-static bool getSCEVStartAndStride(const SCEV* &SH, Loop *L, Loop *UseLoop,
- const SCEV* &Start, const SCEV* &Stride,
+static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop,
+ const SCEV *&Start, const SCEV *&Stride,
ScalarEvolution *SE, DominatorTree *DT) {
- const SCEV* TheAddRec = Start; // Initialize to zero.
+ const SCEV *TheAddRec = Start; // Initialize to zero.
// If the outer level is an AddExpr, the operands are all start values except
// for a nested AddRecExpr.
@@ -109,9 +108,9 @@ static bool getSCEVStartAndStride(const SCEV* &SH, Loop *L, Loop *UseLoop,
// Use getSCEVAtScope to attempt to simplify other loops out of
// the picture.
- const SCEV* AddRecStart = AddRec->getStart();
+ const SCEV *AddRecStart = AddRec->getStart();
AddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop);
- const SCEV* AddRecStride = AddRec->getStepRecurrence(*SE);
+ const SCEV *AddRecStride = AddRec->getStepRecurrence(*SE);
// FIXME: If Start contains an SCEVAddRecExpr from a different loop, other
// than an outer loop of the current loop, reject it. LSR has no concept of
@@ -122,15 +121,15 @@ static bool getSCEVStartAndStride(const SCEV* &SH, Loop *L, Loop *UseLoop,
Start = SE->getAddExpr(Start, AddRecStart);
- // If stride is an instruction, make sure it dominates the loop preheader.
+ // If stride is an instruction, make sure it properly dominates the header.
// Otherwise we could end up with a use before def situation.
if (!isa<SCEVConstant>(AddRecStride)) {
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!AddRecStride->dominates(Preheader, DT))
+ BasicBlock *Header = L->getHeader();
+ if (!AddRecStride->properlyDominates(Header, DT))
return false;
- DOUT << "[" << L->getHeader()->getName()
- << "] Variable stride: " << *AddRec << "\n";
+ DEBUG(errs() << "[" << L->getHeader()->getName()
+ << "] Variable stride: " << *AddRec << "\n");
}
Stride = AddRecStride;
@@ -196,13 +195,13 @@ bool IVUsers::AddUsersIfInteresting(Instruction *I) {
return true; // Instruction already handled.
// Get the symbolic expression for this instruction.
- const SCEV* ISE = SE->getSCEV(I);
+ const SCEV *ISE = SE->getSCEV(I);
if (isa<SCEVCouldNotCompute>(ISE)) return false;
// Get the start and stride for this expression.
Loop *UseLoop = LI->getLoopFor(I->getParent());
- const SCEV* Start = SE->getIntegerSCEV(0, ISE->getType());
- const SCEV* Stride = Start;
+ const SCEV *Start = SE->getIntegerSCEV(0, ISE->getType());
+ const SCEV *Stride = Start;
if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, SE, DT))
return false; // Non-reducible symbolic expression, bail out.
@@ -228,14 +227,14 @@ bool IVUsers::AddUsersIfInteresting(Instruction *I) {
if (LI->getLoopFor(User->getParent()) != L) {
if (isa<PHINode>(User) || Processed.count(User) ||
!AddUsersIfInteresting(User)) {
- DOUT << "FOUND USER in other loop: " << *User
- << " OF SCEV: " << *ISE << "\n";
+ DEBUG(errs() << "FOUND USER in other loop: " << *User << '\n'
+ << " OF SCEV: " << *ISE << '\n');
AddUserToIVUsers = true;
}
} else if (Processed.count(User) ||
!AddUsersIfInteresting(User)) {
- DOUT << "FOUND USER: " << *User
- << " OF SCEV: " << *ISE << "\n";
+ DEBUG(errs() << "FOUND USER: " << *User << '\n'
+ << " OF SCEV: " << *ISE << '\n');
AddUserToIVUsers = true;
}
@@ -254,10 +253,10 @@ bool IVUsers::AddUsersIfInteresting(Instruction *I) {
if (IVUseShouldUsePostIncValue(User, I, L, LI, DT, this)) {
// The value used will be incremented by the stride more than we are
// expecting, so subtract this off.
- const SCEV* NewStart = SE->getMinusSCEV(Start, Stride);
+ const SCEV *NewStart = SE->getMinusSCEV(Start, Stride);
StrideUses->addUser(NewStart, User, I);
StrideUses->Users.back().setIsUseOfPostIncrementedValue(true);
- DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
+ DEBUG(errs() << " USING POSTINC SCEV, START=" << *NewStart<< "\n");
} else {
StrideUses->addUser(Start, User, I);
}
@@ -295,9 +294,9 @@ bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace of the given IVStrideUse.
-const SCEV* IVUsers::getReplacementExpr(const IVStrideUse &U) const {
+const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const {
// Start with zero.
- const SCEV* RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
+ const SCEV *RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
// Create the basic add recurrence.
RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L);
// Add the offset in a separate step, because it may be loop-variant.
@@ -308,7 +307,7 @@ const SCEV* IVUsers::getReplacementExpr(const IVStrideUse &U) const {
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(U.getUser()->getParent())) {
- const SCEV* ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
+ const SCEV *ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
if (ExitVal->isLoopInvariant(L))
RetVal = ExitVal;
}
@@ -325,7 +324,7 @@ void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << ":\n";
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
- std::map<const SCEV*, IVUsersOfOneStride*>::const_iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride*>::const_iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
OS << " Stride " << *SI->first->getType() << " " << *SI->first << ":\n";
@@ -340,15 +339,11 @@ void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << " (post-inc)";
OS << " in ";
UI->getUser()->print(OS);
+ OS << '\n';
}
}
}
-void IVUsers::print(std::ostream &o, const Module *M) const {
- raw_os_ostream OS(o);
- print(OS, M);
-}
-
void IVUsers::dump() const {
print(errs());
}
diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/InlineCost.cpp
new file mode 100644
index 0000000..3b0d2c9
--- /dev/null
+++ b/lib/Analysis/InlineCost.cpp
@@ -0,0 +1,338 @@
+//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements inline cost analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/CallingConv.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/ADT/SmallPtrSet.h"
+using namespace llvm;
+
+// CountCodeReductionForConstant - Figure out an approximation for how many
+// instructions will be constant folded if the specified value is constant.
+//
+unsigned InlineCostAnalyzer::FunctionInfo::
+ CountCodeReductionForConstant(Value *V) {
+ unsigned Reduction = 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+ if (isa<BranchInst>(*UI))
+ Reduction += 40; // Eliminating a conditional branch is a big win
+ else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
+ // Eliminating a switch is a big win, proportional to the number of edges
+ // deleted.
+ Reduction += (SI->getNumSuccessors()-1) * 40;
+ else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+ // Turning an indirect call into a direct call is a BIG win
+ Reduction += CI->getCalledValue() == V ? 500 : 0;
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+ // Turning an indirect call into a direct call is a BIG win
+ Reduction += II->getCalledValue() == V ? 500 : 0;
+ } else {
+ // Figure out if this instruction will be removed due to simple constant
+ // propagation.
+ Instruction &Inst = cast<Instruction>(**UI);
+
+ // We can't constant propagate instructions which have effects or
+ // read memory.
+ //
+ // FIXME: It would be nice to capture the fact that a load from a
+ // pointer-to-constant-global is actually a *really* good thing to zap.
+ // Unfortunately, we don't know the pointer that may get propagated here,
+ // so we can't make this decision.
+ if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
+ isa<AllocationInst>(Inst))
+ continue;
+
+ bool AllOperandsConstant = true;
+ for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
+ AllOperandsConstant = false;
+ break;
+ }
+
+ if (AllOperandsConstant) {
+ // We will get to remove this instruction...
+ Reduction += 7;
+
+ // And any other instructions that use it which become constants
+ // themselves.
+ Reduction += CountCodeReductionForConstant(&Inst);
+ }
+ }
+
+ return Reduction;
+}
+
+// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
+// the function will be if it is inlined into a context where an argument
+// becomes an alloca.
+//
+unsigned InlineCostAnalyzer::FunctionInfo::
+ CountCodeReductionForAlloca(Value *V) {
+ if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
+ unsigned Reduction = 0;
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+ Instruction *I = cast<Instruction>(*UI);
+ if (isa<LoadInst>(I) || isa<StoreInst>(I))
+ Reduction += 10;
+ else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ // If the GEP has variable indices, we won't be able to do much with it.
+ if (!GEP->hasAllConstantIndices())
+ Reduction += CountCodeReductionForAlloca(GEP)+15;
+ } else {
+ // If there is some other strange instruction, we're not going to be able
+ // to do much if we inline this.
+ return 0;
+ }
+ }
+
+ return Reduction;
+}
+
+/// analyzeBasicBlock - Fill in the current structure with information gleaned
+/// from the specified block.
+void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
+ ++NumBlocks;
+
+ for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
+ II != E; ++II) {
+ if (isa<PHINode>(II)) continue; // PHI nodes don't count.
+
+ // Special handling for calls.
+ if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
+ if (isa<DbgInfoIntrinsic>(II))
+ continue; // Debug intrinsics don't count as size.
+
+ CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
+
+ // If this function contains a call to setjmp or _setjmp, never inline
+ // it. This is a hack because we depend on the user marking their local
+ // variables as volatile if they are live across a setjmp call, and they
+ // probably won't do this in callers.
+ if (Function *F = CS.getCalledFunction())
+ if (F->isDeclaration() &&
+ (F->getName() == "setjmp" || F->getName() == "_setjmp"))
+ NeverInline = true;
+
+ // Calls often compile into many machine instructions. Bump up their
+ // cost to reflect this.
+ if (!isa<IntrinsicInst>(II))
+ NumInsts += InlineConstants::CallPenalty;
+ }
+
+ // These, too, are calls.
+ if (isa<MallocInst>(II) || isa<FreeInst>(II))
+ NumInsts += InlineConstants::CallPenalty;
+
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ if (!AI->isStaticAlloca())
+ this->usesDynamicAlloca = true;
+ }
+
+ if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
+ ++NumVectorInsts;
+
+ // Noop casts, including ptr <-> int, don't count.
+ if (const CastInst *CI = dyn_cast<CastInst>(II)) {
+ if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
+ isa<PtrToIntInst>(CI))
+ continue;
+ } else if (const GetElementPtrInst *GEPI =
+ dyn_cast<GetElementPtrInst>(II)) {
+ // If a GEP has all constant indices, it will probably be folded with
+ // a load/store.
+ if (GEPI->hasAllConstantIndices())
+ continue;
+ }
+
+ if (isa<ReturnInst>(II))
+ ++NumRets;
+
+ ++NumInsts;
+ }
+}
+
+/// analyzeFunction - Fill in the current structure with information gleaned
+/// from the specified function.
+void CodeMetrics::analyzeFunction(Function *F) {
+ // Look at the size of the callee.
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ analyzeBasicBlock(&*BB);
+}
+
+/// analyzeFunction - Fill in the current structure with information gleaned
+/// from the specified function.
+void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
+ Metrics.analyzeFunction(F);
+
+ // A function with exactly one return has it removed during the inlining
+ // process (see InlineFunction), so don't count it.
+ // FIXME: This knowledge should really be encoded outside of FunctionInfo.
+ if (Metrics.NumRets==1)
+ --Metrics.NumInsts;
+
+ // Check out all of the arguments to the function, figuring out how much
+ // code can be eliminated if one of the arguments is a constant.
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+ ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
+ CountCodeReductionForAlloca(I)));
+}
+
+// getInlineCost - The heuristic used to determine if we should inline the
+// function call or not.
+//
+InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
+ SmallPtrSet<const Function *, 16> &NeverInline) {
+ Instruction *TheCall = CS.getInstruction();
+ Function *Callee = CS.getCalledFunction();
+ Function *Caller = TheCall->getParent()->getParent();
+
+ // Don't inline functions which can be redefined at link-time to mean
+ // something else. Don't inline functions marked noinline.
+ if (Callee->mayBeOverridden() ||
+ Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
+ return llvm::InlineCost::getNever();
+
+ // InlineCost - This value measures how good of an inline candidate this call
+ // site is to inline. A lower inline cost make is more likely for the call to
+ // be inlined. This value may go negative.
+ //
+ int InlineCost = 0;
+
+ // If there is only one call of the function, and it has internal linkage,
+ // make it almost guaranteed to be inlined.
+ //
+ if (Callee->hasLocalLinkage() && Callee->hasOneUse())
+ InlineCost += InlineConstants::LastCallToStaticBonus;
+
+ // If this function uses the coldcc calling convention, prefer not to inline
+ // it.
+ if (Callee->getCallingConv() == CallingConv::Cold)
+ InlineCost += InlineConstants::ColdccPenalty;
+
+ // If the instruction after the call, or if the normal destination of the
+ // invoke is an unreachable instruction, the function is noreturn. As such,
+ // there is little point in inlining this.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
+ if (isa<UnreachableInst>(II->getNormalDest()->begin()))
+ InlineCost += InlineConstants::NoreturnPenalty;
+ } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
+ InlineCost += InlineConstants::NoreturnPenalty;
+
+ // Get information about the callee...
+ FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
+
+ // If we haven't calculated this information yet, do so now.
+ if (CalleeFI.Metrics.NumBlocks == 0)
+ CalleeFI.analyzeFunction(Callee);
+
+ // If we should never inline this, return a huge cost.
+ if (CalleeFI.Metrics.NeverInline)
+ return InlineCost::getNever();
+
+ // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
+ // could move this up and avoid computing the FunctionInfo for
+ // things we are going to just return always inline for. This
+ // requires handling setjmp somewhere else, however.
+ if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
+ return InlineCost::getAlways();
+
+ if (CalleeFI.Metrics.usesDynamicAlloca) {
+ // Get infomation about the caller...
+ FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
+
+ // If we haven't calculated this information yet, do so now.
+ if (CallerFI.Metrics.NumBlocks == 0)
+ CallerFI.analyzeFunction(Caller);
+
+ // Don't inline a callee with dynamic alloca into a caller without them.
+ // Functions containing dynamic alloca's are inefficient in various ways;
+ // don't create more inefficiency.
+ if (!CallerFI.Metrics.usesDynamicAlloca)
+ return InlineCost::getNever();
+ }
+
+ // Add to the inline quality for properties that make the call valuable to
+ // inline. This includes factors that indicate that the result of inlining
+ // the function will be optimizable. Currently this just looks at arguments
+ // passed into the function.
+ //
+ unsigned ArgNo = 0;
+ for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ I != E; ++I, ++ArgNo) {
+ // Each argument passed in has a cost at both the caller and the callee
+ // sides. This favors functions that take many arguments over functions
+ // that take few arguments.
+ InlineCost -= 20;
+
+ // If this is a function being passed in, it is very likely that we will be
+ // able to turn an indirect function call into a direct function call.
+ if (isa<Function>(I))
+ InlineCost -= 100;
+
+ // If an alloca is passed in, inlining this function is likely to allow
+ // significant future optimization possibilities (like scalar promotion, and
+ // scalarization), so encourage the inlining of the function.
+ //
+ else if (isa<AllocaInst>(I)) {
+ if (ArgNo < CalleeFI.ArgumentWeights.size())
+ InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
+
+ // If this is a constant being passed into the function, use the argument
+ // weights calculated for the callee to determine how much will be folded
+ // away with this information.
+ } else if (isa<Constant>(I)) {
+ if (ArgNo < CalleeFI.ArgumentWeights.size())
+ InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
+ }
+ }
+
+ // Now that we have considered all of the factors that make the call site more
+ // likely to be inlined, look at factors that make us not want to inline it.
+
+ // Don't inline into something too big, which would make it bigger.
+ // "size" here is the number of basic blocks, not instructions.
+ //
+ InlineCost += Caller->size()/15;
+
+ // Look at the size of the callee. Each instruction counts as 5.
+ InlineCost += CalleeFI.Metrics.NumInsts*5;
+
+ return llvm::InlineCost::get(InlineCost);
+}
+
+// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
+// higher threshold to determine if the function call should be inlined.
+float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
+ Function *Callee = CS.getCalledFunction();
+
+ // Get information about the callee...
+ FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
+
+ // If we haven't calculated this information yet, do so now.
+ if (CalleeFI.Metrics.NumBlocks == 0)
+ CalleeFI.analyzeFunction(Callee);
+
+ float Factor = 1.0f;
+ // Single BB functions are often written to be inlined.
+ if (CalleeFI.Metrics.NumBlocks == 1)
+ Factor += 0.5f;
+
+ // Be more aggressive if the function contains a good chunk (if it mades up
+ // at least 10% of the instructions) of vector instructions.
+ if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
+ Factor += 2.0f;
+ else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
+ Factor += 1.5f;
+ return Factor;
+}
diff --git a/lib/Analysis/InstCount.cpp b/lib/Analysis/InstCount.cpp
index 2b34ad3..83724ca 100644
--- a/lib/Analysis/InstCount.cpp
+++ b/lib/Analysis/InstCount.cpp
@@ -16,8 +16,9 @@
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -46,8 +47,8 @@ namespace {
#include "llvm/Instruction.def"
void visitInstruction(Instruction &I) {
- cerr << "Instruction Count does not know about " << I;
- abort();
+ errs() << "Instruction Count does not know about " << I;
+ llvm_unreachable(0);
}
public:
static char ID; // Pass identification, replacement for typeid
@@ -58,7 +59,7 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
- virtual void print(std::ostream &O, const Module *M) const {}
+ virtual void print(raw_ostream &O, const Module *M) const {}
};
}
diff --git a/lib/Analysis/Interval.cpp b/lib/Analysis/Interval.cpp
index 16b1947..ca9cdca 100644
--- a/lib/Analysis/Interval.cpp
+++ b/lib/Analysis/Interval.cpp
@@ -15,6 +15,7 @@
#include "llvm/Analysis/Interval.h"
#include "llvm/BasicBlock.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
@@ -29,29 +30,29 @@ bool Interval::isLoop() const {
// There is a loop in this interval iff one of the predecessors of the header
// node lives in the interval.
for (::pred_iterator I = ::pred_begin(HeaderNode), E = ::pred_end(HeaderNode);
- I != E; ++I) {
- if (contains(*I)) return true;
- }
+ I != E; ++I)
+ if (contains(*I))
+ return true;
return false;
}
-void Interval::print(std::ostream &o) const {
- o << "-------------------------------------------------------------\n"
+void Interval::print(raw_ostream &OS) const {
+ OS << "-------------------------------------------------------------\n"
<< "Interval Contents:\n";
// Print out all of the basic blocks in the interval...
for (std::vector<BasicBlock*>::const_iterator I = Nodes.begin(),
E = Nodes.end(); I != E; ++I)
- o << **I << "\n";
+ OS << **I << "\n";
- o << "Interval Predecessors:\n";
+ OS << "Interval Predecessors:\n";
for (std::vector<BasicBlock*>::const_iterator I = Predecessors.begin(),
E = Predecessors.end(); I != E; ++I)
- o << **I << "\n";
+ OS << **I << "\n";
- o << "Interval Successors:\n";
+ OS << "Interval Successors:\n";
for (std::vector<BasicBlock*>::const_iterator I = Successors.begin(),
E = Successors.end(); I != E; ++I)
- o << **I << "\n";
+ OS << **I << "\n";
}
diff --git a/lib/Analysis/IntervalPartition.cpp b/lib/Analysis/IntervalPartition.cpp
index cb8a85d..1f17b77 100644
--- a/lib/Analysis/IntervalPartition.cpp
+++ b/lib/Analysis/IntervalPartition.cpp
@@ -32,7 +32,7 @@ void IntervalPartition::releaseMemory() {
RootInterval = 0;
}
-void IntervalPartition::print(std::ostream &O, const Module*) const {
+void IntervalPartition::print(raw_ostream &O, const Module*) const {
for(unsigned i = 0, e = Intervals.size(); i != e; ++i)
Intervals[i]->print(O);
}
diff --git a/lib/Analysis/LibCallAliasAnalysis.cpp b/lib/Analysis/LibCallAliasAnalysis.cpp
index 971e6e7..7419659 100644
--- a/lib/Analysis/LibCallAliasAnalysis.cpp
+++ b/lib/Analysis/LibCallAliasAnalysis.cpp
@@ -16,7 +16,6 @@
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetData.h"
using namespace llvm;
// Register this pass...
@@ -37,7 +36,6 @@ LibCallAliasAnalysis::~LibCallAliasAnalysis() {
void LibCallAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
- AU.addRequired<TargetData>();
AU.setPreservesAll(); // Does not transform code
}
diff --git a/lib/Analysis/LibCallSemantics.cpp b/lib/Analysis/LibCallSemantics.cpp
index 2985047..e0060c3 100644
--- a/lib/Analysis/LibCallSemantics.cpp
+++ b/lib/Analysis/LibCallSemantics.cpp
@@ -57,9 +57,6 @@ const LibCallFunctionInfo *LibCallInfo::getFunctionInfo(Function *F) const {
}
// Look up this function in the string map.
- const char *ValueName = F->getNameStart();
- StringMap<const LibCallFunctionInfo*>::iterator I =
- Map->find(ValueName, ValueName+F->getNameLen());
- return I != Map->end() ? I->second : 0;
+ return Map->lookup(F->getName());
}
diff --git a/lib/Analysis/LoopDependenceAnalysis.cpp b/lib/Analysis/LoopDependenceAnalysis.cpp
index f605783..32d2266 100644
--- a/lib/Analysis/LoopDependenceAnalysis.cpp
+++ b/lib/Analysis/LoopDependenceAnalysis.cpp
@@ -15,18 +15,33 @@
//
// TODO: adapt as implementation progresses.
//
+// TODO: document lingo (pair, subscript, index)
+//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lda"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopDependenceAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
+STATISTIC(NumAnswered, "Number of dependence queries answered");
+STATISTIC(NumAnalysed, "Number of distinct dependence pairs analysed");
+STATISTIC(NumDependent, "Number of pairs with dependent accesses");
+STATISTIC(NumIndependent, "Number of pairs with independent accesses");
+STATISTIC(NumUnknown, "Number of pairs with unknown accesses");
+
LoopPass *llvm::createLoopDependenceAnalysisPass() {
return new LoopDependenceAnalysis();
}
@@ -44,14 +59,14 @@ static inline bool IsMemRefInstr(const Value *V) {
return I && (I->mayReadFromMemory() || I->mayWriteToMemory());
}
-static void GetMemRefInstrs(
- const Loop *L, SmallVectorImpl<Instruction*> &memrefs) {
+static void GetMemRefInstrs(const Loop *L,
+ SmallVectorImpl<Instruction*> &Memrefs) {
for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
- b != be; ++b)
+ b != be; ++b)
for (BasicBlock::iterator i = (*b)->begin(), ie = (*b)->end();
- i != ie; ++i)
+ i != ie; ++i)
if (IsMemRefInstr(i))
- memrefs.push_back(i);
+ Memrefs.push_back(i);
}
static bool IsLoadOrStoreInst(Value *I) {
@@ -63,53 +78,223 @@ static Value *GetPointerOperand(Value *I) {
return i->getPointerOperand();
if (StoreInst *i = dyn_cast<StoreInst>(I))
return i->getPointerOperand();
- assert(0 && "Value is no load or store instruction!");
+ llvm_unreachable("Value is no load or store instruction!");
// Never reached.
return 0;
}
+static AliasAnalysis::AliasResult UnderlyingObjectsAlias(AliasAnalysis *AA,
+ const Value *A,
+ const Value *B) {
+ const Value *aObj = A->getUnderlyingObject();
+ const Value *bObj = B->getUnderlyingObject();
+ return AA->alias(aObj, AA->getTypeStoreSize(aObj->getType()),
+ bObj, AA->getTypeStoreSize(bObj->getType()));
+}
+
+static inline const SCEV *GetZeroSCEV(ScalarEvolution *SE) {
+ return SE->getConstant(Type::getInt32Ty(SE->getContext()), 0L);
+}
+
//===----------------------------------------------------------------------===//
// Dependence Testing
//===----------------------------------------------------------------------===//
-bool LoopDependenceAnalysis::isDependencePair(const Value *x,
- const Value *y) const {
- return IsMemRefInstr(x) &&
- IsMemRefInstr(y) &&
- (cast<const Instruction>(x)->mayWriteToMemory() ||
- cast<const Instruction>(y)->mayWriteToMemory());
+bool LoopDependenceAnalysis::isDependencePair(const Value *A,
+ const Value *B) const {
+ return IsMemRefInstr(A) &&
+ IsMemRefInstr(B) &&
+ (cast<const Instruction>(A)->mayWriteToMemory() ||
+ cast<const Instruction>(B)->mayWriteToMemory());
+}
+
+bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *A,
+ Value *B,
+ DependencePair *&P) {
+ void *insertPos = 0;
+ FoldingSetNodeID id;
+ id.AddPointer(A);
+ id.AddPointer(B);
+
+ P = Pairs.FindNodeOrInsertPos(id, insertPos);
+ if (P) return true;
+
+ P = PairAllocator.Allocate<DependencePair>();
+ new (P) DependencePair(id, A, B);
+ Pairs.InsertNode(P, insertPos);
+ return false;
+}
+
+void LoopDependenceAnalysis::getLoops(const SCEV *S,
+ DenseSet<const Loop*>* Loops) const {
+ // Refactor this into an SCEVVisitor, if efficiency becomes a concern.
+ for (const Loop *L = this->L; L != 0; L = L->getParentLoop())
+ if (!S->isLoopInvariant(L))
+ Loops->insert(L);
+}
+
+bool LoopDependenceAnalysis::isLoopInvariant(const SCEV *S) const {
+ DenseSet<const Loop*> loops;
+ getLoops(S, &loops);
+ return loops.empty();
+}
+
+bool LoopDependenceAnalysis::isAffine(const SCEV *S) const {
+ const SCEVAddRecExpr *rec = dyn_cast<SCEVAddRecExpr>(S);
+ return isLoopInvariant(S) || (rec && rec->isAffine());
+}
+
+bool LoopDependenceAnalysis::isZIVPair(const SCEV *A, const SCEV *B) const {
+ return isLoopInvariant(A) && isLoopInvariant(B);
+}
+
+bool LoopDependenceAnalysis::isSIVPair(const SCEV *A, const SCEV *B) const {
+ DenseSet<const Loop*> loops;
+ getLoops(A, &loops);
+ getLoops(B, &loops);
+ return loops.size() == 1;
+}
+
+LoopDependenceAnalysis::DependenceResult
+LoopDependenceAnalysis::analyseZIV(const SCEV *A,
+ const SCEV *B,
+ Subscript *S) const {
+ assert(isZIVPair(A, B) && "Attempted to ZIV-test non-ZIV SCEVs!");
+ return A == B ? Dependent : Independent;
}
-bool LoopDependenceAnalysis::depends(Value *src, Value *dst) {
- assert(isDependencePair(src, dst) && "Values form no dependence pair!");
- DOUT << "== LDA test ==\n" << *src << *dst;
+LoopDependenceAnalysis::DependenceResult
+LoopDependenceAnalysis::analyseSIV(const SCEV *A,
+ const SCEV *B,
+ Subscript *S) const {
+ return Unknown; // TODO: Implement.
+}
+
+LoopDependenceAnalysis::DependenceResult
+LoopDependenceAnalysis::analyseMIV(const SCEV *A,
+ const SCEV *B,
+ Subscript *S) const {
+ return Unknown; // TODO: Implement.
+}
- // We only analyse loads and stores; for possible memory accesses by e.g.
- // free, call, or invoke instructions we conservatively assume dependence.
- if (!IsLoadOrStoreInst(src) || !IsLoadOrStoreInst(dst))
- return true;
+LoopDependenceAnalysis::DependenceResult
+LoopDependenceAnalysis::analyseSubscript(const SCEV *A,
+ const SCEV *B,
+ Subscript *S) const {
+ DEBUG(errs() << " Testing subscript: " << *A << ", " << *B << "\n");
- Value *srcPtr = GetPointerOperand(src);
- Value *dstPtr = GetPointerOperand(dst);
- const Value *srcObj = srcPtr->getUnderlyingObject();
- const Value *dstObj = dstPtr->getUnderlyingObject();
- AliasAnalysis::AliasResult alias = AA->alias(
- srcObj, AA->getTargetData().getTypeStoreSize(srcObj->getType()),
- dstObj, AA->getTargetData().getTypeStoreSize(dstObj->getType()));
+ if (A == B) {
+ DEBUG(errs() << " -> [D] same SCEV\n");
+ return Dependent;
+ }
- // If we don't know whether or not the two objects alias, assume dependence.
- if (alias == AliasAnalysis::MayAlias)
- return true;
+ if (!isAffine(A) || !isAffine(B)) {
+ DEBUG(errs() << " -> [?] not affine\n");
+ return Unknown;
+ }
- // If the objects noalias, they are distinct, accesses are independent.
- if (alias == AliasAnalysis::NoAlias)
- return false;
+ if (isZIVPair(A, B))
+ return analyseZIV(A, B, S);
- // TODO: the underlying objects MustAlias, test for dependence
+ if (isSIVPair(A, B))
+ return analyseSIV(A, B, S);
- // We couldn't establish a more precise result, so we have to conservatively
- // assume full dependence.
- return true;
+ return analyseMIV(A, B, S);
+}
+
+LoopDependenceAnalysis::DependenceResult
+LoopDependenceAnalysis::analysePair(DependencePair *P) const {
+ DEBUG(errs() << "Analysing:\n" << *P->A << "\n" << *P->B << "\n");
+
+ // We only analyse loads and stores but no possible memory accesses by e.g.
+ // free, call, or invoke instructions.
+ if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
+ DEBUG(errs() << "--> [?] no load/store\n");
+ return Unknown;
+ }
+
+ Value *aPtr = GetPointerOperand(P->A);
+ Value *bPtr = GetPointerOperand(P->B);
+
+ switch (UnderlyingObjectsAlias(AA, aPtr, bPtr)) {
+ case AliasAnalysis::MayAlias:
+ // We can not analyse objects if we do not know about their aliasing.
+ DEBUG(errs() << "---> [?] may alias\n");
+ return Unknown;
+
+ case AliasAnalysis::NoAlias:
+ // If the objects noalias, they are distinct, accesses are independent.
+ DEBUG(errs() << "---> [I] no alias\n");
+ return Independent;
+
+ case AliasAnalysis::MustAlias:
+ break; // The underlying objects alias, test accesses for dependence.
+ }
+
+ const GEPOperator *aGEP = dyn_cast<GEPOperator>(aPtr);
+ const GEPOperator *bGEP = dyn_cast<GEPOperator>(bPtr);
+
+ if (!aGEP || !bGEP)
+ return Unknown;
+
+ // FIXME: Is filtering coupled subscripts necessary?
+
+ // Collect GEP operand pairs (FIXME: use GetGEPOperands from BasicAA), adding
+ // trailing zeroes to the smaller GEP, if needed.
+ typedef SmallVector<std::pair<const SCEV*, const SCEV*>, 4> GEPOpdPairsTy;
+ GEPOpdPairsTy opds;
+ for(GEPOperator::const_op_iterator aIdx = aGEP->idx_begin(),
+ aEnd = aGEP->idx_end(),
+ bIdx = bGEP->idx_begin(),
+ bEnd = bGEP->idx_end();
+ aIdx != aEnd && bIdx != bEnd;
+ aIdx += (aIdx != aEnd), bIdx += (bIdx != bEnd)) {
+ const SCEV* aSCEV = (aIdx != aEnd) ? SE->getSCEV(*aIdx) : GetZeroSCEV(SE);
+ const SCEV* bSCEV = (bIdx != bEnd) ? SE->getSCEV(*bIdx) : GetZeroSCEV(SE);
+ opds.push_back(std::make_pair(aSCEV, bSCEV));
+ }
+
+ if (!opds.empty() && opds[0].first != opds[0].second) {
+ // We cannot (yet) handle arbitrary GEP pointer offsets. By limiting
+ //
+ // TODO: this could be relaxed by adding the size of the underlying object
+ // to the first subscript. If we have e.g. (GEP x,0,i; GEP x,2,-i) and we
+ // know that x is a [100 x i8]*, we could modify the first subscript to be
+ // (i, 200-i) instead of (i, -i).
+ return Unknown;
+ }
+
+ // Now analyse the collected operand pairs (skipping the GEP ptr offsets).
+ for (GEPOpdPairsTy::const_iterator i = opds.begin() + 1, end = opds.end();
+ i != end; ++i) {
+ Subscript subscript;
+ DependenceResult result = analyseSubscript(i->first, i->second, &subscript);
+ if (result != Dependent) {
+ // We either proved independence or failed to analyse this subscript.
+ // Further subscripts will not improve the situation, so abort early.
+ return result;
+ }
+ P->Subscripts.push_back(subscript);
+ }
+ // We successfully analysed all subscripts but failed to prove independence.
+ return Dependent;
+}
+
+bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
+ assert(isDependencePair(A, B) && "Values form no dependence pair!");
+ ++NumAnswered;
+
+ DependencePair *p;
+ if (!findOrInsertDependencePair(A, B, p)) {
+ // The pair is not cached, so analyse it.
+ ++NumAnalysed;
+ switch (p->Result = analysePair(p)) {
+ case Dependent: ++NumDependent; break;
+ case Independent: ++NumIndependent; break;
+ case Unknown: ++NumUnknown; break;
+ }
+ }
+ return p->Result != Independent;
}
//===----------------------------------------------------------------------===//
@@ -123,14 +308,19 @@ bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
return false;
}
+void LoopDependenceAnalysis::releaseMemory() {
+ Pairs.clear();
+ PairAllocator.Reset();
+}
+
void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<ScalarEvolution>();
}
-static void PrintLoopInfo(
- raw_ostream &OS, LoopDependenceAnalysis *LDA, const Loop *L) {
+static void PrintLoopInfo(raw_ostream &OS,
+ LoopDependenceAnalysis *LDA, const Loop *L) {
if (!L->empty()) return; // ignore non-innermost loops
SmallVector<Instruction*, 8> memrefs;
@@ -142,14 +332,14 @@ static void PrintLoopInfo(
OS << " Load/store instructions: " << memrefs.size() << "\n";
for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
- end = memrefs.end(); x != end; ++x)
- OS << "\t" << (x - memrefs.begin()) << ": " << **x;
+ end = memrefs.end(); x != end; ++x)
+ OS << "\t" << (x - memrefs.begin()) << ": " << **x << "\n";
OS << " Pairwise dependence results:\n";
for (SmallVector<Instruction*, 8>::const_iterator x = memrefs.begin(),
- end = memrefs.end(); x != end; ++x)
+ end = memrefs.end(); x != end; ++x)
for (SmallVector<Instruction*, 8>::const_iterator y = x + 1;
- y != end; ++y)
+ y != end; ++y)
if (LDA->isDependencePair(*x, *y))
OS << "\t" << (x - memrefs.begin()) << "," << (y - memrefs.begin())
<< ": " << (LDA->depends(*x, *y) ? "dependent" : "independent")
@@ -160,8 +350,3 @@ void LoopDependenceAnalysis::print(raw_ostream &OS, const Module*) const {
// TODO: doc why const_cast is safe
PrintLoopInfo(OS, const_cast<LoopDependenceAnalysis*>(this), this->L);
}
-
-void LoopDependenceAnalysis::print(std::ostream &OS, const Module *M) const {
- raw_os_ostream os(OS);
- print(os, M);
-}
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index bb53589..ce2d29f 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -20,12 +20,22 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
using namespace llvm;
+// Always verify loopinfo if expensive checking is enabled.
+#ifdef XDEBUG
+bool VerifyLoopInfo = true;
+#else
+bool VerifyLoopInfo = false;
+#endif
+static cl::opt<bool,true>
+VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
+ cl::desc("Verify loop info (time consuming)"));
+
char LoopInfo::ID = 0;
static RegisterPass<LoopInfo>
X("loops", "Natural Loop Information", true, true);
@@ -34,6 +44,338 @@ X("loops", "Natural Loop Information", true, true);
// Loop implementation
//
+/// isLoopInvariant - Return true if the specified value is loop invariant
+///
+bool Loop::isLoopInvariant(Value *V) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return isLoopInvariant(I);
+ return true; // All non-instructions are loop invariant
+}
+
+/// isLoopInvariant - Return true if the specified instruction is
+/// loop-invariant.
+///
+bool Loop::isLoopInvariant(Instruction *I) const {
+ return !contains(I->getParent());
+}
+
+/// makeLoopInvariant - If the given value is an instruciton inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the value after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Value *V, bool &Changed,
+ Instruction *InsertPt) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return makeLoopInvariant(I, Changed, InsertPt);
+ return true; // All non-instructions are loop-invariant.
+}
+
+/// makeLoopInvariant - If the given instruction is inside of the
+/// loop and it can be hoisted, do so to make it trivially loop-invariant.
+/// Return true if the instruction after any hoisting is loop invariant. This
+/// function can be used as a slightly more aggressive replacement for
+/// isLoopInvariant.
+///
+/// If InsertPt is specified, it is the point to hoist instructions to.
+/// If null, the terminator of the loop preheader is used.
+///
+bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
+ Instruction *InsertPt) const {
+ // Test if the value is already loop-invariant.
+ if (isLoopInvariant(I))
+ return true;
+ if (!I->isSafeToSpeculativelyExecute())
+ return false;
+ if (I->mayReadFromMemory())
+ return false;
+ // Determine the insertion point, unless one was given.
+ if (!InsertPt) {
+ BasicBlock *Preheader = getLoopPreheader();
+ // Without a preheader, hoisting is not feasible.
+ if (!Preheader)
+ return false;
+ InsertPt = Preheader->getTerminator();
+ }
+ // Don't hoist instructions with loop-variant operands.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
+ return false;
+ // Hoist.
+ I->moveBefore(InsertPt);
+ Changed = true;
+ return true;
+}
+
+/// getCanonicalInductionVariable - Check to see if the loop has a canonical
+/// induction variable: an integer recurrence that starts at 0 and increments
+/// by one each time through the loop. If so, return the phi node that
+/// corresponds to it.
+///
+/// The IndVarSimplify pass transforms loops to have a canonical induction
+/// variable.
+///
+PHINode *Loop::getCanonicalInductionVariable() const {
+ BasicBlock *H = getHeader();
+
+ BasicBlock *Incoming = 0, *Backedge = 0;
+ typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
+ InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
+ assert(PI != InvBlockTraits::child_end(H) &&
+ "Loop must have at least one backedge!");
+ Backedge = *PI++;
+ if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
+ Incoming = *PI++;
+ if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
+
+ if (contains(Incoming)) {
+ if (contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical indvar.
+ for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
+ if (CI->isNullValue())
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
+ if (Inc->getOpcode() == Instruction::Add &&
+ Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1))
+ return PN;
+ }
+ return 0;
+}
+
+/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
+/// the canonical induction variable value for the "next" iteration of the
+/// loop. This always succeeds if getCanonicalInductionVariable succeeds.
+///
+Instruction *Loop::getCanonicalInductionVariableIncrement() const {
+ if (PHINode *PN = getCanonicalInductionVariable()) {
+ bool P1InLoop = contains(PN->getIncomingBlock(1));
+ return cast<Instruction>(PN->getIncomingValue(P1InLoop));
+ }
+ return 0;
+}
+
+/// getTripCount - Return a loop-invariant LLVM value indicating the number of
+/// times the loop will be executed. Note that this means that the backedge
+/// of the loop executes N-1 times. If the trip-count cannot be determined,
+/// this returns null.
+///
+/// The IndVarSimplify pass transforms loops to have a form that this
+/// function easily understands.
+///
+Value *Loop::getTripCount() const {
+ // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
+ // canonical induction variable and V is the trip count of the loop.
+ Instruction *Inc = getCanonicalInductionVariableIncrement();
+ if (Inc == 0) return 0;
+ PHINode *IV = cast<PHINode>(Inc->getOperand(0));
+
+ BasicBlock *BackedgeBlock =
+ IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
+ if (BI->isConditional()) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getOperand(0) == Inc) {
+ if (BI->getSuccessor(0) == getHeader()) {
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ return ICI->getOperand(1);
+ } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+ return ICI->getOperand(1);
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/// getSmallConstantTripCount - Returns the trip count of this loop as a
+/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
+/// of not constant. Will also return 0 if the trip count is very large
+/// (>= 2^32)
+unsigned Loop::getSmallConstantTripCount() const {
+ Value* TripCount = this->getTripCount();
+ if (TripCount) {
+ if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
+ // Guard against huge trip counts.
+ if (TripCountC->getValue().getActiveBits() <= 32) {
+ return (unsigned)TripCountC->getZExtValue();
+ }
+ }
+ }
+ return 0;
+}
+
+/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
+/// trip count of this loop as a normal unsigned value, if possible. This
+/// means that the actual trip count is always a multiple of the returned
+/// value (don't forget the trip count could very well be zero as well!).
+///
+/// Returns 1 if the trip count is unknown or not guaranteed to be the
+/// multiple of a constant (which is also the case if the trip count is simply
+/// constant, use getSmallConstantTripCount for that case), Will also return 1
+/// if the trip count is very large (>= 2^32).
+unsigned Loop::getSmallConstantTripMultiple() const {
+ Value* TripCount = this->getTripCount();
+ // This will hold the ConstantInt result, if any
+ ConstantInt *Result = NULL;
+ if (TripCount) {
+ // See if the trip count is constant itself
+ Result = dyn_cast<ConstantInt>(TripCount);
+ // if not, see if it is a multiplication
+ if (!Result)
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
+ switch (BO->getOpcode()) {
+ case BinaryOperator::Mul:
+ Result = dyn_cast<ConstantInt>(BO->getOperand(1));
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ // Guard against huge trip counts.
+ if (Result && Result->getValue().getActiveBits() <= 32) {
+ return (unsigned)Result->getZExtValue();
+ } else {
+ return 1;
+ }
+}
+
+/// isLCSSAForm - Return true if the Loop is in LCSSA form
+bool Loop::isLCSSAForm() const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
+
+ for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
+ BasicBlock *BB = *BI;
+ for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(*UI)) {
+ UserBB = P->getIncomingBlock(UI);
+ }
+
+ // Check the current block, as a fast-path. Most values are used in
+ // the same block they are defined in.
+ if (UserBB != BB && !LoopBBs.count(UserBB))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// isLoopSimplifyForm - Return true if the Loop is in the form that
+/// the LoopSimplify form transforms loops to, which is sometimes called
+/// normal form.
+bool Loop::isLoopSimplifyForm() const {
+ // Normal-form loops have a preheader.
+ if (!getLoopPreheader())
+ return false;
+ // Normal-form loops have a single backedge.
+ if (!getLoopLatch())
+ return false;
+ // Each predecessor of each exit block of a normal loop is contained
+ // within the loop.
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ for (pred_iterator PI = pred_begin(ExitBlocks[i]),
+ PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
+ if (!contains(*PI))
+ return false;
+ // All the requirements are met.
+ return true;
+}
+
+/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
+/// These are the blocks _outside of the current loop_ which are branched to.
+/// This assumes that loop is in canonical form.
+///
+void
+Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
+ assert(isLoopSimplifyForm() &&
+ "getUniqueExitBlocks assumes the loop is in canonical form!");
+
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ SmallVector<BasicBlock *, 32> switchExitBlocks;
+
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
+
+ BasicBlock *current = *BI;
+ switchExitBlocks.clear();
+
+ typedef GraphTraits<BasicBlock *> BlockTraits;
+ typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits;
+ for (BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I) {
+ // If block is inside the loop then it is not a exit block.
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ continue;
+
+ InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I);
+ BasicBlock *firstPred = *PI;
+
+ // If current basic block is this exit block's first predecessor
+ // then only insert exit block in to the output ExitBlocks vector.
+ // This ensures that same exit block is not inserted twice into
+ // ExitBlocks vector.
+ if (current != firstPred)
+ continue;
+
+ // If a terminator has more then two successors, for example SwitchInst,
+ // then it is possible that there are multiple edges from current block
+ // to one exit block.
+ if (std::distance(BlockTraits::child_begin(current),
+ BlockTraits::child_end(current)) <= 2) {
+ ExitBlocks.push_back(*I);
+ continue;
+ }
+
+ // In case of multiple edges from current block to exit block, collect
+ // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
+ // duplicate edges.
+ if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
+ == switchExitBlocks.end()) {
+ switchExitBlocks.push_back(*I);
+ ExitBlocks.push_back(*I);
+ }
+ }
+ }
+}
+
+/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
+/// block, return that block. Otherwise return null.
+BasicBlock *Loop::getUniqueExitBlock() const {
+ SmallVector<BasicBlock *, 8> UniqueExitBlocks;
+ getUniqueExitBlocks(UniqueExitBlocks);
+ if (UniqueExitBlocks.size() == 1)
+ return UniqueExitBlocks[0];
+ return 0;
+}
+
//===----------------------------------------------------------------------===//
// LoopInfo implementation
//
@@ -43,7 +385,29 @@ bool LoopInfo::runOnFunction(Function &) {
return false;
}
+void LoopInfo::verifyAnalysis() const {
+ // LoopInfo is a FunctionPass, but verifying every loop in the function
+ // each time verifyAnalysis is called is very expensive. The
+ // -verify-loop-info option can enable this. In order to perform some
+ // checking by default, LoopPass has been taught to call verifyLoop
+ // manually during loop pass sequences.
+
+ if (!VerifyLoopInfo) return;
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
+ (*I)->verifyLoopNest();
+ }
+
+ // TODO: check BBMap consistency.
+}
+
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
+
+void LoopInfo::print(raw_ostream &OS, const Module*) const {
+ LI.print(OS);
+}
+
diff --git a/lib/Analysis/LoopPass.cpp b/lib/Analysis/LoopPass.cpp
index ee03556..43463cd 100644
--- a/lib/Analysis/LoopPass.cpp
+++ b/lib/Analysis/LoopPass.cpp
@@ -21,7 +21,6 @@ using namespace llvm;
//
char LPPassManager::ID = 0;
-/// LPPassManager manages FPPassManagers and CalLGraphSCCPasses.
LPPassManager::LPPassManager(int Depth)
: FunctionPass(&ID), PMDataManager(Depth) {
@@ -111,17 +110,21 @@ void LPPassManager::insertLoop(Loop *L, Loop *ParentLoop) {
else
LI->addTopLevelLoop(L);
+ insertLoopIntoQueue(L);
+}
+
+void LPPassManager::insertLoopIntoQueue(Loop *L) {
// Insert L into loop queue
if (L == CurrentLoop)
redoLoop(L);
- else if (!ParentLoop)
+ else if (!L->getParentLoop())
// This is top level loop.
LQ.push_front(L);
else {
- // Insert L after ParentLoop
+ // Insert L after the parent loop.
for (std::deque<Loop *>::iterator I = LQ.begin(),
E = LQ.end(); I != E; ++I) {
- if (*I == ParentLoop) {
+ if (*I == L->getParentLoop()) {
// deque does not support insert after.
++I;
LQ.insert(I, 1, L);
@@ -217,41 +220,66 @@ bool LPPassManager::runOnFunction(Function &F) {
skipThisLoop = false;
redoThisLoop = false;
- // Run all passes on current SCC
+ // Run all passes on the current Loop.
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
Pass *P = getContainedPass(Index);
- dumpPassInfo(P, EXECUTION_MSG, ON_LOOP_MSG, "");
+ dumpPassInfo(P, EXECUTION_MSG, ON_LOOP_MSG,
+ CurrentLoop->getHeader()->getNameStr());
dumpRequiredSet(P);
initializeAnalysisImpl(P);
LoopPass *LP = dynamic_cast<LoopPass *>(P);
+ assert(LP && "Invalid LPPassManager member");
{
PassManagerPrettyStackEntry X(LP, *CurrentLoop->getHeader());
- StartPassTimer(P);
- assert(LP && "Invalid LPPassManager member");
+ Timer *T = StartPassTimer(P);
Changed |= LP->runOnLoop(CurrentLoop, *this);
- StopPassTimer(P);
+ StopPassTimer(P, T);
}
if (Changed)
- dumpPassInfo(P, MODIFICATION_MSG, ON_LOOP_MSG, "");
+ dumpPassInfo(P, MODIFICATION_MSG, ON_LOOP_MSG,
+ skipThisLoop ? "<deleted>" :
+ CurrentLoop->getHeader()->getNameStr());
dumpPreservedSet(P);
- verifyPreservedAnalysis(LP);
+ if (!skipThisLoop) {
+ // Manually check that this loop is still healthy. This is done
+ // instead of relying on LoopInfo::verifyLoop since LoopInfo
+ // is a function pass and it's really expensive to verify every
+ // loop in the function every time. That level of checking can be
+ // enabled with the -verify-loop-info option.
+ Timer *T = StartPassTimer(LI);
+ CurrentLoop->verifyLoop();
+ StopPassTimer(LI, T);
+
+ // Then call the regular verifyAnalysis functions.
+ verifyPreservedAnalysis(LP);
+ }
+
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
- removeDeadPasses(P, "", ON_LOOP_MSG);
-
- // If dominator information is available then verify the info if requested.
- verifyDomInfo(*LP, F);
+ removeDeadPasses(P,
+ skipThisLoop ? "<deleted>" :
+ CurrentLoop->getHeader()->getNameStr(),
+ ON_LOOP_MSG);
if (skipThisLoop)
// Do not run other passes on this loop.
break;
}
+ // If the loop was deleted, release all the loop passes. This frees up
+ // some memory, and avoids trouble with the pass manager trying to call
+ // verifyAnalysis on them.
+ if (skipThisLoop)
+ for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
+ Pass *P = getContainedPass(Index);
+ freePass(P, "<deleted>", ON_LOOP_MSG);
+ }
+
// Pop the loop from queue after running all passes.
LQ.pop_back();
@@ -272,7 +300,7 @@ bool LPPassManager::runOnFunction(Function &F) {
/// Print passes managed by this manager
void LPPassManager::dumpPassStructure(unsigned Offset) {
- llvm::cerr << std::string(Offset*2, ' ') << "Loop Pass Manager\n";
+ errs().indent(Offset*2) << "Loop Pass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
Pass *P = getContainedPass(Index);
P->dumpPassStructure(Offset + 1);
diff --git a/lib/Analysis/MallocHelper.cpp b/lib/Analysis/MallocHelper.cpp
new file mode 100644
index 0000000..89051d1
--- /dev/null
+++ b/lib/Analysis/MallocHelper.cpp
@@ -0,0 +1,230 @@
+//===-- MallocHelper.cpp - Functions to identify malloc calls -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions identifies calls to malloc, bitcasts of malloc
+// calls, and the types and array sizes associated with them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MallocHelper.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Analysis/ConstantFolding.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// malloc Call Utility Functions.
+//
+
+/// isMalloc - Returns true if the the value is either a malloc call or a
+/// bitcast of the result of a malloc call.
+bool llvm::isMalloc(const Value* I) {
+ return extractMallocCall(I) || extractMallocCallFromBitCast(I);
+}
+
+static bool isMallocCall(const CallInst *CI) {
+ if (!CI)
+ return false;
+
+ const Module* M = CI->getParent()->getParent()->getParent();
+ Function *MallocFunc = M->getFunction("malloc");
+
+ if (CI->getOperand(0) != MallocFunc)
+ return false;
+
+ // Check malloc prototype.
+ // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
+ // attribute will exist.
+ const FunctionType *FTy = MallocFunc->getFunctionType();
+ if (FTy->getNumParams() != 1)
+ return false;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(FTy->param_begin()->get())) {
+ if (ITy->getBitWidth() != 32 && ITy->getBitWidth() != 64)
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+/// extractMallocCall - Returns the corresponding CallInst if the instruction
+/// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
+/// ignore InvokeInst here.
+const CallInst* llvm::extractMallocCall(const Value* I) {
+ const CallInst *CI = dyn_cast<CallInst>(I);
+ return (isMallocCall(CI)) ? CI : NULL;
+}
+
+CallInst* llvm::extractMallocCall(Value* I) {
+ CallInst *CI = dyn_cast<CallInst>(I);
+ return (isMallocCall(CI)) ? CI : NULL;
+}
+
+static bool isBitCastOfMallocCall(const BitCastInst* BCI) {
+ if (!BCI)
+ return false;
+
+ return isMallocCall(dyn_cast<CallInst>(BCI->getOperand(0)));
+}
+
+/// extractMallocCallFromBitCast - Returns the corresponding CallInst if the
+/// instruction is a bitcast of the result of a malloc call.
+CallInst* llvm::extractMallocCallFromBitCast(Value* I) {
+ BitCastInst *BCI = dyn_cast<BitCastInst>(I);
+ return (isBitCastOfMallocCall(BCI)) ? cast<CallInst>(BCI->getOperand(0))
+ : NULL;
+}
+
+const CallInst* llvm::extractMallocCallFromBitCast(const Value* I) {
+ const BitCastInst *BCI = dyn_cast<BitCastInst>(I);
+ return (isBitCastOfMallocCall(BCI)) ? cast<CallInst>(BCI->getOperand(0))
+ : NULL;
+}
+
+static bool isArrayMallocHelper(const CallInst *CI, LLVMContext &Context,
+ const TargetData* TD) {
+ if (!CI)
+ return false;
+
+ const Type* T = getMallocAllocatedType(CI);
+
+ // We can only indentify an array malloc if we know the type of the malloc
+ // call.
+ if (!T) return false;
+
+ Value* MallocArg = CI->getOperand(1);
+ Constant *ElementSize = ConstantExpr::getSizeOf(T);
+ ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize,
+ MallocArg->getType());
+ Constant *FoldedElementSize = ConstantFoldConstantExpression(
+ cast<ConstantExpr>(ElementSize),
+ Context, TD);
+
+
+ if (isa<ConstantExpr>(MallocArg))
+ return (MallocArg != ElementSize);
+
+ BinaryOperator *BI = dyn_cast<BinaryOperator>(MallocArg);
+ if (!BI)
+ return false;
+
+ if (BI->getOpcode() == Instruction::Mul)
+ // ArraySize * ElementSize
+ if (BI->getOperand(1) == ElementSize ||
+ (FoldedElementSize && BI->getOperand(1) == FoldedElementSize))
+ return true;
+
+ // TODO: Detect case where MallocArg mul has been transformed to shl.
+
+ return false;
+}
+
+/// isArrayMalloc - Returns the corresponding CallInst if the instruction
+/// matches the malloc call IR generated by CallInst::CreateMalloc(). This
+/// means that it is a malloc call with one bitcast use AND the malloc call's
+/// size argument is:
+/// 1. a constant not equal to the malloc's allocated type
+/// or
+/// 2. the result of a multiplication by the malloc's allocated type
+/// Otherwise it returns NULL.
+/// The unique bitcast is needed to determine the type/size of the array
+/// allocation.
+CallInst* llvm::isArrayMalloc(Value* I, LLVMContext &Context,
+ const TargetData* TD) {
+ CallInst *CI = extractMallocCall(I);
+ return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL;
+}
+
+const CallInst* llvm::isArrayMalloc(const Value* I, LLVMContext &Context,
+ const TargetData* TD) {
+ const CallInst *CI = extractMallocCall(I);
+ return (isArrayMallocHelper(CI, Context, TD)) ? CI : NULL;
+}
+
+/// getMallocType - Returns the PointerType resulting from the malloc call.
+/// This PointerType is the result type of the call's only bitcast use.
+/// If there is no unique bitcast use, then return NULL.
+const PointerType* llvm::getMallocType(const CallInst* CI) {
+ assert(isMalloc(CI) && "GetMallocType and not malloc call");
+
+ const BitCastInst* BCI = NULL;
+
+ // Determine if CallInst has a bitcast use.
+ for (Value::use_const_iterator UI = CI->use_begin(), E = CI->use_end();
+ UI != E; )
+ if ((BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++))))
+ break;
+
+ // Malloc call has 1 bitcast use and no other uses, so type is the bitcast's
+ // destination type.
+ if (BCI && CI->hasOneUse())
+ return cast<PointerType>(BCI->getDestTy());
+
+ // Malloc call was not bitcast, so type is the malloc function's return type.
+ if (!BCI)
+ return cast<PointerType>(CI->getType());
+
+ // Type could not be determined.
+ return NULL;
+}
+
+/// getMallocAllocatedType - Returns the Type allocated by malloc call. This
+/// Type is the result type of the call's only bitcast use. If there is no
+/// unique bitcast use, then return NULL.
+const Type* llvm::getMallocAllocatedType(const CallInst* CI) {
+ const PointerType* PT = getMallocType(CI);
+ return PT ? PT->getElementType() : NULL;
+}
+
+/// isConstantOne - Return true only if val is constant int 1.
+static bool isConstantOne(Value *val) {
+ return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
+}
+
+/// getMallocArraySize - Returns the array size of a malloc call. The array
+/// size is computated in 1 of 3 ways:
+/// 1. If the element type if of size 1, then array size is the argument to
+/// malloc.
+/// 2. Else if the malloc's argument is a constant, the array size is that
+/// argument divided by the element type's size.
+/// 3. Else the malloc argument must be a multiplication and the array size is
+/// the first operand of the multiplication.
+/// This function returns constant 1 if:
+/// 1. The malloc call's allocated type cannot be determined.
+/// 2. IR wasn't created by a call to CallInst::CreateMalloc() with a non-NULL
+/// ArraySize.
+Value* llvm::getMallocArraySize(CallInst* CI, LLVMContext &Context,
+ const TargetData* TD) {
+ // Match CreateMalloc's use of constant 1 array-size for non-array mallocs.
+ if (!isArrayMalloc(CI, Context, TD))
+ return ConstantInt::get(CI->getOperand(1)->getType(), 1);
+
+ Value* MallocArg = CI->getOperand(1);
+ assert(getMallocAllocatedType(CI) && "getMallocArraySize and no type");
+ Constant *ElementSize = ConstantExpr::getSizeOf(getMallocAllocatedType(CI));
+ ElementSize = ConstantExpr::getTruncOrBitCast(ElementSize,
+ MallocArg->getType());
+
+ Constant* CO = dyn_cast<Constant>(MallocArg);
+ BinaryOperator* BO = dyn_cast<BinaryOperator>(MallocArg);
+ assert((isConstantOne(ElementSize) || CO || BO) &&
+ "getMallocArraySize and malformed malloc IR");
+
+ if (isConstantOne(ElementSize))
+ return MallocArg;
+
+ if (CO)
+ return CO->getOperand(0);
+
+ // TODO: Detect case where MallocArg mul has been transformed to shl.
+
+ assert(BO && "getMallocArraySize not constant but not multiplication either");
+ return BO->getOperand(0);
+}
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp
index 3b21029..d640075 100644
--- a/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -16,16 +16,15 @@
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetData.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
@@ -71,12 +70,10 @@ void MemoryDependenceAnalysis::releaseMemory() {
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
- AU.addRequiredTransitive<TargetData>();
}
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
- TD = &getAnalysis<TargetData>();
if (PredCache == 0)
PredCache.reset(new PredIteratorCache());
return false;
@@ -112,10 +109,10 @@ getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
- PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
+ PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
- PointerSize = TD->getTypeStoreSize(V->getType());
+ PointerSize = AA->getTypeStoreSize(V->getType());
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
Pointer = F->getPointerOperand();
@@ -185,7 +182,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
// a load depends on another must aliased load from the same value.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = LI->getPointerOperand();
- uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
+ uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
@@ -211,7 +208,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
// Ok, this store might clobber the query pointer. Check to see if it is
// a must alias: in this case, we want to return this as a def.
Value *Pointer = SI->getPointerOperand();
- uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
+ uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
// If we found a pointer, check if it could be the same as our pointer.
AliasAnalysis::AliasResult R =
@@ -228,15 +225,19 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
// the allocation, return Def. This means that there is no dependence and
// the access can be optimized based on that. For example, a load could
// turn into undef.
- if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
+ // Note: Only determine this to be a malloc if Inst is the malloc call, not
+ // a subsequent bitcast of the malloc call result. There can be stores to
+ // the malloced memory between the malloc call and its bitcast uses, and we
+ // need to continue scanning until the malloc call.
+ if (isa<AllocationInst>(Inst) || extractMallocCall(Inst)) {
Value *AccessPtr = MemPtr->getUnderlyingObject();
- if (AccessPtr == AI ||
- AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
- return MemDepResult::getDef(AI);
+ if (AccessPtr == Inst ||
+ AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
+ return MemDepResult::getDef(Inst);
continue;
}
-
+
// See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
case AliasAnalysis::NoModRef:
@@ -302,7 +303,7 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = SI->getPointerOperand();
- MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
+ MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
}
} else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
// If this is a volatile load, don't mess around with it. Just return the
@@ -311,7 +312,7 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
else {
MemPtr = LI->getPointerOperand();
- MemSize = TD->getTypeStoreSize(LI->getType());
+ MemSize = AA->getTypeStoreSize(LI->getType());
}
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
CallSite QueryCS = CallSite::get(QueryInst);
@@ -513,7 +514,7 @@ getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
// We know that the pointer value is live into FromBB find the def/clobbers
// from presecessors.
const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
- uint64_t PointeeSize = TD->getTypeStoreSize(EltTy);
+ uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
@@ -599,6 +600,42 @@ GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
return Dep;
}
+/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
+/// number of elements in the array that are already properly ordered. This is
+/// optimized for the case when only a few entries are added.
+static void
+SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
+ unsigned NumSortedEntries) {
+ switch (Cache.size() - NumSortedEntries) {
+ case 0:
+ // done, no new entries.
+ break;
+ case 2: {
+ // Two new entries, insert the last one into place.
+ MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
+ Cache.pop_back();
+ MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
+ std::upper_bound(Cache.begin(), Cache.end()-1, Val);
+ Cache.insert(Entry, Val);
+ // FALL THROUGH.
+ }
+ case 1:
+ // One new entry, Just insert the new value at the appropriate position.
+ if (Cache.size() != 1) {
+ MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
+ Cache.pop_back();
+ MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
+ std::upper_bound(Cache.begin(), Cache.end(), Val);
+ Cache.insert(Entry, Val);
+ }
+ break;
+ default:
+ // Added many values, do a full scale sort.
+ std::sort(Cache.begin(), Cache.end());
+ break;
+ }
+}
+
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
@@ -731,10 +768,22 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If we do need to do phi translation, then there are a bunch of different
// cases, because we have to find a Value* live in the predecessor block. We
// know that PtrInst is defined in this block at least.
+
+ // We may have added values to the cache list before this PHI translation.
+ // If so, we haven't done anything to ensure that the cache remains sorted.
+ // Sort it now (if needed) so that recursive invocations of
+ // getNonLocalPointerDepFromBB and other routines that could reuse the cache
+ // value will only see properly sorted cache arrays.
+ if (Cache && NumSortedEntries != Cache->size()) {
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
+ NumSortedEntries = Cache->size();
+ }
// If this is directly a PHI node, just use the incoming values for each
// pred as the phi translated version.
if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
+ Cache = 0;
+
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
BasicBlock *Pred = *PI;
Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
@@ -759,15 +808,6 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
goto PredTranslationFailure;
}
- // We may have added values to the cache list before this PHI
- // translation. If so, we haven't done anything to ensure that the
- // cache remains sorted. Sort it now (if needed) so that recursive
- // invocations of getNonLocalPointerDepFromBB that could reuse the cache
- // value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size())
- std::sort(Cache->begin(), Cache->end());
- Cache = 0;
-
// FIXME: it is entirely possible that PHI translating will end up with
// the same value. Consider PHI translating something like:
// X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
@@ -779,7 +819,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
Result, Visited))
goto PredTranslationFailure;
}
-
+
// Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
@@ -806,11 +846,8 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->second;
NumSortedEntries = Cache->size();
- } else if (NumSortedEntries != Cache->size()) {
- std::sort(Cache->begin(), Cache->end());
- NumSortedEntries = Cache->size();
}
-
+
// Since we did phi translation, the "Cache" set won't contain all of the
// results for the query. This is ok (we can still use it to accelerate
// specific block queries) but we can't do the fastpath "return all
@@ -841,33 +878,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
}
// Okay, we're done now. If we added new values to the cache, re-sort it.
- switch (Cache->size()-NumSortedEntries) {
- case 0:
- // done, no new entries.
- break;
- case 2: {
- // Two new entries, insert the last one into place.
- NonLocalDepEntry Val = Cache->back();
- Cache->pop_back();
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache->begin(), Cache->end()-1, Val);
- Cache->insert(Entry, Val);
- // FALL THROUGH.
- }
- case 1:
- // One new entry, Just insert the new value at the appropriate position.
- if (Cache->size() != 1) {
- NonLocalDepEntry Val = Cache->back();
- Cache->pop_back();
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache->begin(), Cache->end(), Val);
- Cache->insert(Entry, Val);
- }
- break;
- default:
- // Added many values, do a full scale sort.
- std::sort(Cache->begin(), Cache->end());
- }
+ SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
DEBUG(AssertSorted(*Cache));
return false;
}
diff --git a/lib/Analysis/PointerTracking.cpp b/lib/Analysis/PointerTracking.cpp
new file mode 100644
index 0000000..43f4af3
--- /dev/null
+++ b/lib/Analysis/PointerTracking.cpp
@@ -0,0 +1,265 @@
+//===- PointerTracking.cpp - Pointer Bounds Tracking ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements tracking of pointer bounds.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MallocHelper.h"
+#include "llvm/Analysis/PointerTracking.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Constants.h"
+#include "llvm/Module.h"
+#include "llvm/Value.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetData.h"
+using namespace llvm;
+
+char PointerTracking::ID = 0;
+PointerTracking::PointerTracking() : FunctionPass(&ID) {}
+
+bool PointerTracking::runOnFunction(Function &F) {
+ predCache.clear();
+ assert(analyzing.empty());
+ FF = &F;
+ TD = getAnalysisIfAvailable<TargetData>();
+ SE = &getAnalysis<ScalarEvolution>();
+ LI = &getAnalysis<LoopInfo>();
+ DT = &getAnalysis<DominatorTree>();
+ return false;
+}
+
+void PointerTracking::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredTransitive<DominatorTree>();
+ AU.addRequiredTransitive<LoopInfo>();
+ AU.addRequiredTransitive<ScalarEvolution>();
+ AU.setPreservesAll();
+}
+
+bool PointerTracking::doInitialization(Module &M) {
+ const Type *PTy = Type::getInt8PtrTy(M.getContext());
+
+ // Find calloc(i64, i64) or calloc(i32, i32).
+ callocFunc = M.getFunction("calloc");
+ if (callocFunc) {
+ const FunctionType *Ty = callocFunc->getFunctionType();
+
+ std::vector<const Type*> args, args2;
+ args.push_back(Type::getInt64Ty(M.getContext()));
+ args.push_back(Type::getInt64Ty(M.getContext()));
+ args2.push_back(Type::getInt32Ty(M.getContext()));
+ args2.push_back(Type::getInt32Ty(M.getContext()));
+ const FunctionType *Calloc1Type =
+ FunctionType::get(PTy, args, false);
+ const FunctionType *Calloc2Type =
+ FunctionType::get(PTy, args2, false);
+ if (Ty != Calloc1Type && Ty != Calloc2Type)
+ callocFunc = 0; // Give up
+ }
+
+ // Find realloc(i8*, i64) or realloc(i8*, i32).
+ reallocFunc = M.getFunction("realloc");
+ if (reallocFunc) {
+ const FunctionType *Ty = reallocFunc->getFunctionType();
+ std::vector<const Type*> args, args2;
+ args.push_back(PTy);
+ args.push_back(Type::getInt64Ty(M.getContext()));
+ args2.push_back(PTy);
+ args2.push_back(Type::getInt32Ty(M.getContext()));
+
+ const FunctionType *Realloc1Type =
+ FunctionType::get(PTy, args, false);
+ const FunctionType *Realloc2Type =
+ FunctionType::get(PTy, args2, false);
+ if (Ty != Realloc1Type && Ty != Realloc2Type)
+ reallocFunc = 0; // Give up
+ }
+ return false;
+}
+
+// Calculates the number of elements allocated for pointer P,
+// the type of the element is stored in Ty.
+const SCEV *PointerTracking::computeAllocationCount(Value *P,
+ const Type *&Ty) const {
+ Value *V = P->stripPointerCasts();
+ if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
+ Value *arraySize = AI->getArraySize();
+ Ty = AI->getAllocatedType();
+ // arraySize elements of type Ty.
+ return SE->getSCEV(arraySize);
+ }
+
+ if (CallInst *CI = extractMallocCall(V)) {
+ Value *arraySize = getMallocArraySize(CI, P->getContext(), TD);
+ Ty = getMallocAllocatedType(CI);
+ if (!Ty || !arraySize) return SE->getCouldNotCompute();
+ // arraySize elements of type Ty.
+ return SE->getSCEV(arraySize);
+ }
+
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
+ if (GV->hasDefinitiveInitializer()) {
+ Constant *C = GV->getInitializer();
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
+ Ty = ATy->getElementType();
+ return SE->getConstant(Type::getInt32Ty(P->getContext()),
+ ATy->getNumElements());
+ }
+ }
+ Ty = GV->getType();
+ return SE->getConstant(Type::getInt32Ty(P->getContext()), 1);
+ //TODO: implement more tracking for globals
+ }
+
+ if (CallInst *CI = dyn_cast<CallInst>(V)) {
+ CallSite CS(CI);
+ Function *F = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
+ const Loop *L = LI->getLoopFor(CI->getParent());
+ if (F == callocFunc) {
+ Ty = Type::getInt8Ty(P->getContext());
+ // calloc allocates arg0*arg1 bytes.
+ return SE->getSCEVAtScope(SE->getMulExpr(SE->getSCEV(CS.getArgument(0)),
+ SE->getSCEV(CS.getArgument(1))),
+ L);
+ } else if (F == reallocFunc) {
+ Ty = Type::getInt8Ty(P->getContext());
+ // realloc allocates arg1 bytes.
+ return SE->getSCEVAtScope(CS.getArgument(1), L);
+ }
+ }
+
+ return SE->getCouldNotCompute();
+}
+
+// Calculates the number of elements of type Ty allocated for P.
+const SCEV *PointerTracking::computeAllocationCountForType(Value *P,
+ const Type *Ty)
+ const {
+ const Type *elementTy;
+ const SCEV *Count = computeAllocationCount(P, elementTy);
+ if (isa<SCEVCouldNotCompute>(Count))
+ return Count;
+ if (elementTy == Ty)
+ return Count;
+
+ if (!TD) // need TargetData from this point forward
+ return SE->getCouldNotCompute();
+
+ uint64_t elementSize = TD->getTypeAllocSize(elementTy);
+ uint64_t wantSize = TD->getTypeAllocSize(Ty);
+ if (elementSize == wantSize)
+ return Count;
+ if (elementSize % wantSize) //fractional counts not possible
+ return SE->getCouldNotCompute();
+ return SE->getMulExpr(Count, SE->getConstant(Count->getType(),
+ elementSize/wantSize));
+}
+
+const SCEV *PointerTracking::getAllocationElementCount(Value *V) const {
+ // We only deal with pointers.
+ const PointerType *PTy = cast<PointerType>(V->getType());
+ return computeAllocationCountForType(V, PTy->getElementType());
+}
+
+const SCEV *PointerTracking::getAllocationSizeInBytes(Value *V) const {
+ return computeAllocationCountForType(V, Type::getInt8Ty(V->getContext()));
+}
+
+// Helper for isLoopGuardedBy that checks the swapped and inverted predicate too
+enum SolverResult PointerTracking::isLoopGuardedBy(const Loop *L,
+ Predicate Pred,
+ const SCEV *A,
+ const SCEV *B) const {
+ if (SE->isLoopGuardedByCond(L, Pred, A, B))
+ return AlwaysTrue;
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ if (SE->isLoopGuardedByCond(L, Pred, B, A))
+ return AlwaysTrue;
+
+ Pred = ICmpInst::getInversePredicate(Pred);
+ if (SE->isLoopGuardedByCond(L, Pred, B, A))
+ return AlwaysFalse;
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ if (SE->isLoopGuardedByCond(L, Pred, A, B))
+ return AlwaysTrue;
+ return Unknown;
+}
+
+enum SolverResult PointerTracking::checkLimits(const SCEV *Offset,
+ const SCEV *Limit,
+ BasicBlock *BB)
+{
+ //FIXME: merge implementation
+ return Unknown;
+}
+
+void PointerTracking::getPointerOffset(Value *Pointer, Value *&Base,
+ const SCEV *&Limit,
+ const SCEV *&Offset) const
+{
+ Pointer = Pointer->stripPointerCasts();
+ Base = Pointer->getUnderlyingObject();
+ Limit = getAllocationSizeInBytes(Base);
+ if (isa<SCEVCouldNotCompute>(Limit)) {
+ Base = 0;
+ Offset = Limit;
+ return;
+ }
+
+ Offset = SE->getMinusSCEV(SE->getSCEV(Pointer), SE->getSCEV(Base));
+ if (isa<SCEVCouldNotCompute>(Offset)) {
+ Base = 0;
+ Limit = Offset;
+ }
+}
+
+void PointerTracking::print(raw_ostream &OS, const Module* M) const {
+ // Calling some PT methods may cause caches to be updated, however
+ // this should be safe for the same reason its safe for SCEV.
+ PointerTracking &PT = *const_cast<PointerTracking*>(this);
+ for (inst_iterator I=inst_begin(*FF), E=inst_end(*FF); I != E; ++I) {
+ if (!isa<PointerType>(I->getType()))
+ continue;
+ Value *Base;
+ const SCEV *Limit, *Offset;
+ getPointerOffset(&*I, Base, Limit, Offset);
+ if (!Base)
+ continue;
+
+ if (Base == &*I) {
+ const SCEV *S = getAllocationElementCount(Base);
+ OS << *Base << " ==> " << *S << " elements, ";
+ OS << *Limit << " bytes allocated\n";
+ continue;
+ }
+ OS << &*I << " -- base: " << *Base;
+ OS << " offset: " << *Offset;
+
+ enum SolverResult res = PT.checkLimits(Offset, Limit, I->getParent());
+ switch (res) {
+ case AlwaysTrue:
+ OS << " always safe\n";
+ break;
+ case AlwaysFalse:
+ OS << " always unsafe\n";
+ break;
+ case Unknown:
+ OS << " <<unknown>>\n";
+ break;
+ }
+ }
+}
+
+static RegisterPass<PointerTracking> X("pointertracking",
+ "Track pointer bounds", false, true);
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index 4853c2a..69d6b47 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -33,15 +33,19 @@ F("postdomtree", "Post-Dominator Tree Construction", true, true);
bool PostDominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
- DEBUG(DT->dump());
+ DEBUG(DT->print(errs()));
return false;
}
-PostDominatorTree::~PostDominatorTree()
-{
+PostDominatorTree::~PostDominatorTree() {
delete DT;
}
+void PostDominatorTree::print(raw_ostream &OS, const Module *) const {
+ DT->print(OS);
+}
+
+
FunctionPass* llvm::createPostDomTree() {
return new PostDominatorTree();
}
diff --git a/lib/Analysis/ProfileEstimatorPass.cpp b/lib/Analysis/ProfileEstimatorPass.cpp
new file mode 100644
index 0000000..c585c1d
--- /dev/null
+++ b/lib/Analysis/ProfileEstimatorPass.cpp
@@ -0,0 +1,310 @@
+//===- ProfileEstimatorPass.cpp - LLVM Pass to estimate profile info ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a concrete implementation of profiling information that
+// estimates the profiling information in a very crude and unimaginative way.
+//
+//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "profile-estimator"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Format.h"
+using namespace llvm;
+
+static cl::opt<double>
+LoopWeight(
+ "profile-estimator-loop-weight", cl::init(10),
+ cl::value_desc("loop-weight"),
+ cl::desc("Number of loop executions used for profile-estimator")
+);
+
+namespace {
+ class VISIBILITY_HIDDEN ProfileEstimatorPass :
+ public FunctionPass, public ProfileInfo {
+ double ExecCount;
+ LoopInfo *LI;
+ std::set<BasicBlock*> BBToVisit;
+ std::map<Loop*,double> LoopExitWeights;
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+ explicit ProfileEstimatorPass(const double execcount = 0)
+ : FunctionPass(&ID), ExecCount(execcount) {
+ if (execcount == 0) ExecCount = LoopWeight;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<LoopInfo>();
+ }
+
+ virtual const char *getPassName() const {
+ return "Profiling information estimator";
+ }
+
+ /// run - Estimate the profile information from the specified file.
+ virtual bool runOnFunction(Function &F);
+
+ virtual void recurseBasicBlock(BasicBlock *BB);
+
+ void inline printEdgeWeight(Edge);
+ };
+} // End of anonymous namespace
+
+char ProfileEstimatorPass::ID = 0;
+static RegisterPass<ProfileEstimatorPass>
+X("profile-estimator", "Estimate profiling information", false, true);
+
+static RegisterAnalysisGroup<ProfileInfo> Y(X);
+
+namespace llvm {
+ const PassInfo *ProfileEstimatorPassID = &X;
+
+ FunctionPass *createProfileEstimatorPass() {
+ return new ProfileEstimatorPass();
+ }
+
+ /// createProfileEstimatorPass - This function returns a Pass that estimates
+ /// profiling information using the given loop execution count.
+ Pass *createProfileEstimatorPass(const unsigned execcount) {
+ return new ProfileEstimatorPass(execcount);
+ }
+}
+
+static double ignoreMissing(double w) {
+ if (w == ProfileInfo::MissingValue) return 0;
+ return w;
+}
+
+static void inline printEdgeError(ProfileInfo::Edge e, const char *M) {
+ DEBUG(errs() << "-- Edge " << e << " is not calculated, " << M << "\n");
+}
+
+void inline ProfileEstimatorPass::printEdgeWeight(Edge E) {
+ DEBUG(errs() << "-- Weight of Edge " << E << ":"
+ << format("%g", getEdgeWeight(E)) << "\n");
+}
+
+// recurseBasicBlock() - This calculates the ProfileInfo estimation for a
+// single block and then recurses into the successors.
+// The algorithm preserves the flow condition, meaning that the sum of the
+// weight of the incoming edges must be equal the block weight which must in
+// turn be equal to the sume of the weights of the outgoing edges.
+// Since the flow of an block is deterimined from the current state of the
+// flow, once an edge has a flow assigned this flow is never changed again,
+// otherwise it would be possible to violate the flow condition in another
+// block.
+void ProfileEstimatorPass::recurseBasicBlock(BasicBlock *BB) {
+
+ // Break the recursion if this BasicBlock was already visited.
+ if (BBToVisit.find(BB) == BBToVisit.end()) return;
+
+ // Read the LoopInfo for this block.
+ bool BBisHeader = LI->isLoopHeader(BB);
+ Loop* BBLoop = LI->getLoopFor(BB);
+
+ // To get the block weight, read all incoming edges.
+ double BBWeight = 0;
+ std::set<BasicBlock*> ProcessedPreds;
+ for ( pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
+ bbi != bbe; ++bbi ) {
+ // If this block was not considered already, add weight.
+ Edge edge = getEdge(*bbi,BB);
+ double w = getEdgeWeight(edge);
+ if (ProcessedPreds.insert(*bbi).second) {
+ BBWeight += ignoreMissing(w);
+ }
+ // If this block is a loop header and the predecessor is contained in this
+ // loop, thus the edge is a backedge, continue and do not check if the
+ // value is valid.
+ if (BBisHeader && BBLoop->contains(*bbi)) {
+ printEdgeError(edge, "but is backedge, continueing");
+ continue;
+ }
+ // If the edges value is missing (and this is no loop header, and this is
+ // no backedge) return, this block is currently non estimatable.
+ if (w == MissingValue) {
+ printEdgeError(edge, "returning");
+ return;
+ }
+ }
+ if (getExecutionCount(BB) != MissingValue) {
+ BBWeight = getExecutionCount(BB);
+ }
+
+ // Fetch all necessary information for current block.
+ SmallVector<Edge, 8> ExitEdges;
+ SmallVector<Edge, 8> Edges;
+ if (BBLoop) {
+ BBLoop->getExitEdges(ExitEdges);
+ }
+
+ // If this is a loop header, consider the following:
+ // Exactly the flow that is entering this block, must exit this block too. So
+ // do the following:
+ // *) get all the exit edges, read the flow that is already leaving this
+ // loop, remember the edges that do not have any flow on them right now.
+ // (The edges that have already flow on them are most likely exiting edges of
+ // other loops, do not touch those flows because the previously caclulated
+ // loopheaders would not be exact anymore.)
+ // *) In case there is not a single exiting edge left, create one at the loop
+ // latch to prevent the flow from building up in the loop.
+ // *) Take the flow that is not leaving the loop already and distribute it on
+ // the remaining exiting edges.
+ // (This ensures that all flow that enters the loop also leaves it.)
+ // *) Increase the flow into the loop by increasing the weight of this block.
+ // There is at least one incoming backedge that will bring us this flow later
+ // on. (So that the flow condition in this node is valid again.)
+ if (BBisHeader) {
+ double incoming = BBWeight;
+ // Subtract the flow leaving the loop.
+ std::set<Edge> ProcessedExits;
+ for (SmallVector<Edge, 8>::iterator ei = ExitEdges.begin(),
+ ee = ExitEdges.end(); ei != ee; ++ei) {
+ if (ProcessedExits.insert(*ei).second) {
+ double w = getEdgeWeight(*ei);
+ if (w == MissingValue) {
+ Edges.push_back(*ei);
+ } else {
+ incoming -= w;
+ }
+ }
+ }
+ // If no exit edges, create one:
+ if (Edges.size() == 0) {
+ BasicBlock *Latch = BBLoop->getLoopLatch();
+ if (Latch) {
+ Edge edge = getEdge(Latch,0);
+ EdgeInformation[BB->getParent()][edge] = BBWeight;
+ printEdgeWeight(edge);
+ edge = getEdge(Latch, BB);
+ EdgeInformation[BB->getParent()][edge] = BBWeight * ExecCount;
+ printEdgeWeight(edge);
+ }
+ }
+ // Distribute remaining weight onto the exit edges.
+ for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
+ ei != ee; ++ei) {
+ EdgeInformation[BB->getParent()][*ei] += incoming/Edges.size();
+ printEdgeWeight(*ei);
+ }
+ // Increase flow into the loop.
+ BBWeight *= (ExecCount+1);
+ }
+
+ BlockInformation[BB->getParent()][BB] = BBWeight;
+ // Up until now we considered only the loop exiting edges, now we have a
+ // definite block weight and must ditribute this onto the outgoing edges.
+ // Since there may be already flow attached to some of the edges, read this
+ // flow first and remember the edges that have still now flow attached.
+ Edges.clear();
+ std::set<BasicBlock*> ProcessedSuccs;
+
+ succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ // Also check for (BB,0) edges that may already contain some flow. (But only
+ // in case there are no successors.)
+ if (bbi == bbe) {
+ Edge edge = getEdge(BB,0);
+ EdgeInformation[BB->getParent()][edge] = BBWeight;
+ printEdgeWeight(edge);
+ }
+ for ( ; bbi != bbe; ++bbi ) {
+ if (ProcessedSuccs.insert(*bbi).second) {
+ Edge edge = getEdge(BB,*bbi);
+ double w = getEdgeWeight(edge);
+ if (w != MissingValue) {
+ BBWeight -= getEdgeWeight(edge);
+ } else {
+ Edges.push_back(edge);
+ }
+ }
+ }
+
+ // Finally we know what flow is still not leaving the block, distribute this
+ // flow onto the empty edges.
+ for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
+ ei != ee; ++ei) {
+ EdgeInformation[BB->getParent()][*ei] += BBWeight/Edges.size();
+ printEdgeWeight(*ei);
+ }
+
+ // This block is visited, mark this before the recursion.
+ BBToVisit.erase(BB);
+
+ // Recurse into successors.
+ for (succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ bbi != bbe; ++bbi) {
+ recurseBasicBlock(*bbi);
+ }
+}
+
+bool ProfileEstimatorPass::runOnFunction(Function &F) {
+ if (F.isDeclaration()) return false;
+
+ // Fetch LoopInfo and clear ProfileInfo for this function.
+ LI = &getAnalysis<LoopInfo>();
+ FunctionInformation.erase(&F);
+ BlockInformation[&F].clear();
+ EdgeInformation[&F].clear();
+
+ // Mark all blocks as to visit.
+ for (Function::iterator bi = F.begin(), be = F.end(); bi != be; ++bi)
+ BBToVisit.insert(bi);
+
+ DEBUG(errs() << "Working on function " << F.getNameStr() << "\n");
+
+ // Since the entry block is the first one and has no predecessors, the edge
+ // (0,entry) is inserted with the starting weight of 1.
+ BasicBlock *entry = &F.getEntryBlock();
+ BlockInformation[&F][entry] = 1;
+ Edge edge = getEdge(0,entry);
+ EdgeInformation[&F][edge] = 1;
+ printEdgeWeight(edge);
+
+ // Since recurseBasicBlock() maybe returns with a block which was not fully
+ // estimated, use recurseBasicBlock() until everything is calculated.
+ recurseBasicBlock(entry);
+ while (BBToVisit.size() > 0) {
+ // Remember number of open blocks, this is later used to check if progress
+ // was made.
+ unsigned size = BBToVisit.size();
+
+ // Try to calculate all blocks in turn.
+ for (std::set<BasicBlock*>::iterator bi = BBToVisit.begin(),
+ be = BBToVisit.end(); bi != be; ++bi) {
+ recurseBasicBlock(*bi);
+ // If at least one block was finished, break because iterator may be
+ // invalid.
+ if (BBToVisit.size() < size) break;
+ }
+
+ // If there was not a single block resovled, make some assumptions.
+ if (BBToVisit.size() == size) {
+ BasicBlock *BB = *(BBToVisit.begin());
+ // Since this BB was not calculated because of missing incoming edges,
+ // set these edges to zero.
+ for (pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
+ bbi != bbe; ++bbi) {
+ Edge e = getEdge(*bbi,BB);
+ double w = getEdgeWeight(e);
+ if (w == MissingValue) {
+ EdgeInformation[&F][e] = 0;
+ DEBUG(errs() << "Assuming edge weight: ");
+ printEdgeWeight(e);
+ }
+ }
+ }
+ }
+
+ return false;
+}
diff --git a/lib/Analysis/ProfileInfo.cpp b/lib/Analysis/ProfileInfo.cpp
index a0965b6..9efdd23 100644
--- a/lib/Analysis/ProfileInfo.cpp
+++ b/lib/Analysis/ProfileInfo.cpp
@@ -17,6 +17,9 @@
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Format.h"
#include <set>
using namespace llvm;
@@ -26,56 +29,149 @@ char ProfileInfo::ID = 0;
ProfileInfo::~ProfileInfo() {}
-unsigned ProfileInfo::getExecutionCount(BasicBlock *BB) const {
- pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+const double ProfileInfo::MissingValue = -1;
+
+double ProfileInfo::getExecutionCount(const BasicBlock *BB) {
+ std::map<const Function*, BlockCounts>::iterator J =
+ BlockInformation.find(BB->getParent());
+ if (J != BlockInformation.end()) {
+ BlockCounts::iterator I = J->second.find(BB);
+ if (I != J->second.end())
+ return I->second;
+ }
+
+ pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
// Are there zero predecessors of this block?
if (PI == PE) {
// If this is the entry block, look for the Null -> Entry edge.
if (BB == &BB->getParent()->getEntryBlock())
- return getEdgeWeight(0, BB);
+ return getEdgeWeight(getEdge(0, BB));
else
return 0; // Otherwise, this is a dead block.
}
// Otherwise, if there are predecessors, the execution count of this block is
- // the sum of the edge frequencies from the incoming edges. Note that if
- // there are multiple edges from a predecessor to this block that we don't
- // want to count its weight multiple times. For this reason, we keep track of
- // the predecessors we've seen and only count them if we haven't run into them
- // yet.
- //
- // We don't want to create an std::set unless we are dealing with a block that
- // has a LARGE number of in-edges. Handle the common case of having only a
- // few in-edges with special code.
- //
- BasicBlock *FirstPred = *PI;
- unsigned Count = getEdgeWeight(FirstPred, BB);
- ++PI;
- if (PI == PE) return Count; // Quick exit for single predecessor blocks
-
- BasicBlock *SecondPred = *PI;
- if (SecondPred != FirstPred) Count += getEdgeWeight(SecondPred, BB);
- ++PI;
- if (PI == PE) return Count; // Quick exit for two predecessor blocks
-
- BasicBlock *ThirdPred = *PI;
- if (ThirdPred != FirstPred && ThirdPred != SecondPred)
- Count += getEdgeWeight(ThirdPred, BB);
- ++PI;
- if (PI == PE) return Count; // Quick exit for three predecessor blocks
-
- std::set<BasicBlock*> ProcessedPreds;
- ProcessedPreds.insert(FirstPred);
- ProcessedPreds.insert(SecondPred);
- ProcessedPreds.insert(ThirdPred);
+ // the sum of the edge frequencies from the incoming edges.
+ std::set<const BasicBlock*> ProcessedPreds;
+ double Count = 0;
for (; PI != PE; ++PI)
- if (ProcessedPreds.insert(*PI).second)
- Count += getEdgeWeight(*PI, BB);
+ if (ProcessedPreds.insert(*PI).second) {
+ double w = getEdgeWeight(getEdge(*PI, BB));
+ if (w == MissingValue) {
+ Count = MissingValue;
+ break;
+ }
+ Count += w;
+ }
+
+ if (Count != MissingValue) BlockInformation[BB->getParent()][BB] = Count;
+ return Count;
+}
+
+double ProfileInfo::getExecutionCount(const Function *F) {
+ std::map<const Function*, double>::iterator J =
+ FunctionInformation.find(F);
+ if (J != FunctionInformation.end())
+ return J->second;
+
+ // isDeclaration() is checked here and not at start of function to allow
+ // functions without a body still to have a execution count.
+ if (F->isDeclaration()) return MissingValue;
+
+ double Count = getExecutionCount(&F->getEntryBlock());
+ if (Count != MissingValue) FunctionInformation[F] = Count;
return Count;
}
+/// Replaces all occurences of RmBB in the ProfilingInfo with DestBB.
+/// This checks all edges of the function the blocks reside in and replaces the
+/// occurences of RmBB with DestBB.
+void ProfileInfo::replaceAllUses(const BasicBlock *RmBB,
+ const BasicBlock *DestBB) {
+ DEBUG(errs() << "Replacing " << RmBB->getNameStr()
+ << " with " << DestBB->getNameStr() << "\n");
+ const Function *F = DestBB->getParent();
+ std::map<const Function*, EdgeWeights>::iterator J =
+ EdgeInformation.find(F);
+ if (J == EdgeInformation.end()) return;
+
+ for (EdgeWeights::iterator I = J->second.begin(), E = J->second.end();
+ I != E; ++I) {
+ Edge e = I->first;
+ Edge newedge; bool foundedge = false;
+ if (e.first == RmBB) {
+ newedge = getEdge(DestBB, e.second);
+ foundedge = true;
+ }
+ if (e.second == RmBB) {
+ newedge = getEdge(e.first, DestBB);
+ foundedge = true;
+ }
+ if (foundedge) {
+ double w = getEdgeWeight(e);
+ EdgeInformation[F][newedge] = w;
+ DEBUG(errs() << "Replacing " << e << " with " << newedge << "\n");
+ J->second.erase(e);
+ }
+ }
+}
+
+/// Splits an edge in the ProfileInfo and redirects flow over NewBB.
+/// Since its possible that there is more than one edge in the CFG from FristBB
+/// to SecondBB its necessary to redirect the flow proporionally.
+void ProfileInfo::splitEdge(const BasicBlock *FirstBB,
+ const BasicBlock *SecondBB,
+ const BasicBlock *NewBB,
+ bool MergeIdenticalEdges) {
+ const Function *F = FirstBB->getParent();
+ std::map<const Function*, EdgeWeights>::iterator J =
+ EdgeInformation.find(F);
+ if (J == EdgeInformation.end()) return;
+
+ // Generate edges and read current weight.
+ Edge e = getEdge(FirstBB, SecondBB);
+ Edge n1 = getEdge(FirstBB, NewBB);
+ Edge n2 = getEdge(NewBB, SecondBB);
+ EdgeWeights &ECs = J->second;
+ double w = ECs[e];
+
+ int succ_count = 0;
+ if (!MergeIdenticalEdges) {
+ // First count the edges from FristBB to SecondBB, if there is more than
+ // one, only slice out a proporional part for NewBB.
+ for(succ_const_iterator BBI = succ_begin(FirstBB), BBE = succ_end(FirstBB);
+ BBI != BBE; ++BBI) {
+ if (*BBI == SecondBB) succ_count++;
+ }
+ // When the NewBB is completely new, increment the count by one so that
+ // the counts are properly distributed.
+ if (getExecutionCount(NewBB) == ProfileInfo::MissingValue) succ_count++;
+ } else {
+ // When the edges are merged anyway, then redirect all flow.
+ succ_count = 1;
+ }
+ // We know now how many edges there are from FirstBB to SecondBB, reroute a
+ // proportional part of the edge weight over NewBB.
+ double neww = w / succ_count;
+ ECs[n1] += neww;
+ ECs[n2] += neww;
+ BlockInformation[F][NewBB] += neww;
+ if (succ_count == 1) {
+ ECs.erase(e);
+ } else {
+ ECs[e] -= neww;
+ }
+}
+
+raw_ostream& llvm::operator<<(raw_ostream &O, ProfileInfo::Edge E) {
+ O << "(";
+ O << (E.first ? E.first->getNameStr() : "0");
+ O << ",";
+ O << (E.second ? E.second->getNameStr() : "0");
+ return O << ")";
+}
//===----------------------------------------------------------------------===//
// NoProfile ProfileInfo implementation
diff --git a/lib/Analysis/ProfileInfoLoader.cpp b/lib/Analysis/ProfileInfoLoader.cpp
index adb2bdc..25481b2 100644
--- a/lib/Analysis/ProfileInfoLoader.cpp
+++ b/lib/Analysis/ProfileInfoLoader.cpp
@@ -16,7 +16,7 @@
#include "llvm/Analysis/ProfileInfoTypes.h"
#include "llvm/Module.h"
#include "llvm/InstrTypes.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <cstdlib>
#include <map>
@@ -26,10 +26,17 @@ using namespace llvm;
//
static inline unsigned ByteSwap(unsigned Var, bool Really) {
if (!Really) return Var;
- return ((Var & (255<< 0)) << 24) |
- ((Var & (255<< 8)) << 8) |
- ((Var & (255<<16)) >> 8) |
- ((Var & (255<<24)) >> 24);
+ return ((Var & (255U<< 0U)) << 24U) |
+ ((Var & (255U<< 8U)) << 8U) |
+ ((Var & (255U<<16U)) >> 8U) |
+ ((Var & (255U<<24U)) >> 24U);
+}
+
+static unsigned AddCounts(unsigned A, unsigned B) {
+ // If either value is undefined, use the other.
+ if (A == ProfileInfoLoader::Uncounted) return B;
+ if (B == ProfileInfoLoader::Uncounted) return A;
+ return A + B;
}
static void ReadProfilingBlock(const char *ToolName, FILE *F,
@@ -38,7 +45,7 @@ static void ReadProfilingBlock(const char *ToolName, FILE *F,
// Read the number of entries...
unsigned NumEntries;
if (fread(&NumEntries, sizeof(unsigned), 1, F) != 1) {
- cerr << ToolName << ": data packet truncated!\n";
+ errs() << ToolName << ": data packet truncated!\n";
perror(0);
exit(1);
}
@@ -49,35 +56,41 @@ static void ReadProfilingBlock(const char *ToolName, FILE *F,
// Read in the block of data...
if (fread(&TempSpace[0], sizeof(unsigned)*NumEntries, 1, F) != 1) {
- cerr << ToolName << ": data packet truncated!\n";
+ errs() << ToolName << ": data packet truncated!\n";
perror(0);
exit(1);
}
- // Make sure we have enough space...
+ // Make sure we have enough space... The space is initialised to -1 to
+ // facitiltate the loading of missing values for OptimalEdgeProfiling.
if (Data.size() < NumEntries)
- Data.resize(NumEntries);
+ Data.resize(NumEntries, ProfileInfoLoader::Uncounted);
// Accumulate the data we just read into the data.
if (!ShouldByteSwap) {
- for (unsigned i = 0; i != NumEntries; ++i)
- Data[i] += TempSpace[i];
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ Data[i] = AddCounts(TempSpace[i], Data[i]);
+ }
} else {
- for (unsigned i = 0; i != NumEntries; ++i)
- Data[i] += ByteSwap(TempSpace[i], true);
+ for (unsigned i = 0; i != NumEntries; ++i) {
+ Data[i] = AddCounts(ByteSwap(TempSpace[i], true), Data[i]);
+ }
}
}
+const unsigned ProfileInfoLoader::Uncounted = ~0U;
+
// ProfileInfoLoader ctor - Read the specified profiling data file, exiting the
// program if the file is invalid or broken.
//
ProfileInfoLoader::ProfileInfoLoader(const char *ToolName,
const std::string &Filename,
- Module &TheModule) :
- M(TheModule), Warned(false) {
- FILE *F = fopen(Filename.c_str(), "r");
+ Module &TheModule) :
+ Filename(Filename),
+ M(TheModule), Warned(false) {
+ FILE *F = fopen(Filename.c_str(), "rb");
if (F == 0) {
- cerr << ToolName << ": Error opening '" << Filename << "': ";
+ errs() << ToolName << ": Error opening '" << Filename << "': ";
perror(0);
exit(1);
}
@@ -95,7 +108,7 @@ ProfileInfoLoader::ProfileInfoLoader(const char *ToolName,
case ArgumentInfo: {
unsigned ArgLength;
if (fread(&ArgLength, sizeof(unsigned), 1, F) != 1) {
- cerr << ToolName << ": arguments packet truncated!\n";
+ errs() << ToolName << ": arguments packet truncated!\n";
perror(0);
exit(1);
}
@@ -106,7 +119,7 @@ ProfileInfoLoader::ProfileInfoLoader(const char *ToolName,
if (ArgLength)
if (fread(&Chars[0], (ArgLength+3) & ~3, 1, F) != 1) {
- cerr << ToolName << ": arguments packet truncated!\n";
+ errs() << ToolName << ": arguments packet truncated!\n";
perror(0);
exit(1);
}
@@ -126,12 +139,16 @@ ProfileInfoLoader::ProfileInfoLoader(const char *ToolName,
ReadProfilingBlock(ToolName, F, ShouldByteSwap, EdgeCounts);
break;
+ case OptEdgeInfo:
+ ReadProfilingBlock(ToolName, F, ShouldByteSwap, OptimalEdgeCounts);
+ break;
+
case BBTraceInfo:
ReadProfilingBlock(ToolName, F, ShouldByteSwap, BBTrace);
break;
default:
- cerr << ToolName << ": Unknown packet type #" << PacketType << "!\n";
+ errs() << ToolName << ": Unknown packet type #" << PacketType << "!\n";
exit(1);
}
}
@@ -139,139 +156,3 @@ ProfileInfoLoader::ProfileInfoLoader(const char *ToolName,
fclose(F);
}
-
-// getFunctionCounts - This method is used by consumers of function counting
-// information. If we do not directly have function count information, we
-// compute it from other, more refined, types of profile information.
-//
-void ProfileInfoLoader::getFunctionCounts(std::vector<std::pair<Function*,
- unsigned> > &Counts) {
- if (FunctionCounts.empty()) {
- if (hasAccurateBlockCounts()) {
- // Synthesize function frequency information from the number of times
- // their entry blocks were executed.
- std::vector<std::pair<BasicBlock*, unsigned> > BlockCounts;
- getBlockCounts(BlockCounts);
-
- for (unsigned i = 0, e = BlockCounts.size(); i != e; ++i)
- if (&BlockCounts[i].first->getParent()->getEntryBlock() ==
- BlockCounts[i].first)
- Counts.push_back(std::make_pair(BlockCounts[i].first->getParent(),
- BlockCounts[i].second));
- } else {
- cerr << "Function counts are not available!\n";
- }
- return;
- }
-
- unsigned Counter = 0;
- for (Module::iterator I = M.begin(), E = M.end();
- I != E && Counter != FunctionCounts.size(); ++I)
- if (!I->isDeclaration())
- Counts.push_back(std::make_pair(I, FunctionCounts[Counter++]));
-}
-
-// getBlockCounts - This method is used by consumers of block counting
-// information. If we do not directly have block count information, we
-// compute it from other, more refined, types of profile information.
-//
-void ProfileInfoLoader::getBlockCounts(std::vector<std::pair<BasicBlock*,
- unsigned> > &Counts) {
- if (BlockCounts.empty()) {
- if (hasAccurateEdgeCounts()) {
- // Synthesize block count information from edge frequency information.
- // The block execution frequency is equal to the sum of the execution
- // frequency of all outgoing edges from a block.
- //
- // If a block has no successors, this will not be correct, so we have to
- // special case it. :(
- std::vector<std::pair<Edge, unsigned> > EdgeCounts;
- getEdgeCounts(EdgeCounts);
-
- std::map<BasicBlock*, unsigned> InEdgeFreqs;
-
- BasicBlock *LastBlock = 0;
- TerminatorInst *TI = 0;
- for (unsigned i = 0, e = EdgeCounts.size(); i != e; ++i) {
- if (EdgeCounts[i].first.first != LastBlock) {
- LastBlock = EdgeCounts[i].first.first;
- TI = LastBlock->getTerminator();
- Counts.push_back(std::make_pair(LastBlock, 0));
- }
- Counts.back().second += EdgeCounts[i].second;
- unsigned SuccNum = EdgeCounts[i].first.second;
- if (SuccNum >= TI->getNumSuccessors()) {
- if (!Warned) {
- cerr << "WARNING: profile info doesn't seem to match"
- << " the program!\n";
- Warned = true;
- }
- } else {
- // If this successor has no successors of its own, we will never
- // compute an execution count for that block. Remember the incoming
- // edge frequencies to add later.
- BasicBlock *Succ = TI->getSuccessor(SuccNum);
- if (Succ->getTerminator()->getNumSuccessors() == 0)
- InEdgeFreqs[Succ] += EdgeCounts[i].second;
- }
- }
-
- // Now we have to accumulate information for those blocks without
- // successors into our table.
- for (std::map<BasicBlock*, unsigned>::iterator I = InEdgeFreqs.begin(),
- E = InEdgeFreqs.end(); I != E; ++I) {
- unsigned i = 0;
- for (; i != Counts.size() && Counts[i].first != I->first; ++i)
- /*empty*/;
- if (i == Counts.size()) Counts.push_back(std::make_pair(I->first, 0));
- Counts[i].second += I->second;
- }
-
- } else {
- cerr << "Block counts are not available!\n";
- }
- return;
- }
-
- unsigned Counter = 0;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
- Counts.push_back(std::make_pair(BB, BlockCounts[Counter++]));
- if (Counter == BlockCounts.size())
- return;
- }
-}
-
-// getEdgeCounts - This method is used by consumers of edge counting
-// information. If we do not directly have edge count information, we compute
-// it from other, more refined, types of profile information.
-//
-void ProfileInfoLoader::getEdgeCounts(std::vector<std::pair<Edge,
- unsigned> > &Counts) {
- if (EdgeCounts.empty()) {
- cerr << "Edge counts not available, and no synthesis "
- << "is implemented yet!\n";
- return;
- }
-
- unsigned Counter = 0;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- for (unsigned i = 0, e = BB->getTerminator()->getNumSuccessors();
- i != e; ++i) {
- Counts.push_back(std::make_pair(Edge(BB, i), EdgeCounts[Counter++]));
- if (Counter == EdgeCounts.size())
- return;
- }
-}
-
-// getBBTrace - This method is used by consumers of basic-block trace
-// information.
-//
-void ProfileInfoLoader::getBBTrace(std::vector<BasicBlock *> &Trace) {
- if (BBTrace.empty ()) {
- cerr << "Basic block trace is not available!\n";
- return;
- }
- cerr << "Basic block trace loading is not implemented yet!\n";
-}
diff --git a/lib/Analysis/ProfileInfoLoaderPass.cpp b/lib/Analysis/ProfileInfoLoaderPass.cpp
index 0a8a87b..89d90bc 100644
--- a/lib/Analysis/ProfileInfoLoaderPass.cpp
+++ b/lib/Analysis/ProfileInfoLoaderPass.cpp
@@ -11,18 +11,27 @@
// loads the information from a profile dump file.
//
//===----------------------------------------------------------------------===//
-
+#define DEBUG_TYPE "profile-loader"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"
+#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Format.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallSet.h"
+#include <set>
using namespace llvm;
+STATISTIC(NumEdgesRead, "The # of edges read.");
+
static cl::opt<std::string>
ProfileInfoFilename("profile-info-file", cl::init("llvmprof.out"),
cl::value_desc("filename"),
@@ -31,6 +40,9 @@ ProfileInfoFilename("profile-info-file", cl::init("llvmprof.out"),
namespace {
class VISIBILITY_HIDDEN LoaderPass : public ModulePass, public ProfileInfo {
std::string Filename;
+ std::set<Edge> SpanningTree;
+ std::set<const BasicBlock*> BBisUnvisited;
+ unsigned ReadCount;
public:
static char ID; // Class identification, replacement for typeinfo
explicit LoaderPass(const std::string &filename = "")
@@ -46,6 +58,12 @@ namespace {
return "Profiling information loader";
}
+ // recurseBasicBlock() - Calculates the edge weights for as much basic
+ // blocks as possbile.
+ virtual void recurseBasicBlock(const BasicBlock *BB);
+ virtual void readEdgeOrRemember(Edge, Edge&, unsigned &, unsigned &);
+ virtual void readEdge(ProfileInfo::Edge, std::vector<unsigned>&);
+
/// run - Load the profile information from the specified file.
virtual bool runOnModule(Module &M);
};
@@ -66,25 +84,210 @@ Pass *llvm::createProfileLoaderPass(const std::string &Filename) {
return new LoaderPass(Filename);
}
+void LoaderPass::readEdgeOrRemember(Edge edge, Edge &tocalc,
+ unsigned &uncalc, unsigned &count) {
+ double w;
+ if ((w = getEdgeWeight(edge)) == MissingValue) {
+ tocalc = edge;
+ uncalc++;
+ } else {
+ count+=w;
+ }
+}
+
+// recurseBasicBlock - Visits all neighbours of a block and then tries to
+// calculate the missing edge values.
+void LoaderPass::recurseBasicBlock(const BasicBlock *BB) {
+
+ // break recursion if already visited
+ if (BBisUnvisited.find(BB) == BBisUnvisited.end()) return;
+ BBisUnvisited.erase(BB);
+ if (!BB) return;
+
+ for (succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ bbi != bbe; ++bbi) {
+ recurseBasicBlock(*bbi);
+ }
+ for (pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
+ bbi != bbe; ++bbi) {
+ recurseBasicBlock(*bbi);
+ }
+
+ Edge edgetocalc;
+ unsigned uncalculated = 0;
+
+ // collect weights of all incoming and outgoing edges, rememer edges that
+ // have no value
+ unsigned incount = 0;
+ SmallSet<const BasicBlock*,8> pred_visited;
+ pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
+ if (bbi==bbe) {
+ readEdgeOrRemember(getEdge(0, BB),edgetocalc,uncalculated,incount);
+ }
+ for (;bbi != bbe; ++bbi) {
+ if (pred_visited.insert(*bbi)) {
+ readEdgeOrRemember(getEdge(*bbi, BB),edgetocalc,uncalculated,incount);
+ }
+ }
+
+ unsigned outcount = 0;
+ SmallSet<const BasicBlock*,8> succ_visited;
+ succ_const_iterator sbbi = succ_begin(BB), sbbe = succ_end(BB);
+ if (sbbi==sbbe) {
+ readEdgeOrRemember(getEdge(BB, 0),edgetocalc,uncalculated,outcount);
+ }
+ for (;sbbi != sbbe; ++sbbi) {
+ if (succ_visited.insert(*sbbi)) {
+ readEdgeOrRemember(getEdge(BB, *sbbi),edgetocalc,uncalculated,outcount);
+ }
+ }
+
+ // if exactly one edge weight was missing, calculate it and remove it from
+ // spanning tree
+ if (uncalculated == 1) {
+ if (incount < outcount) {
+ EdgeInformation[BB->getParent()][edgetocalc] = outcount-incount;
+ } else {
+ EdgeInformation[BB->getParent()][edgetocalc] = incount-outcount;
+ }
+ DEBUG(errs() << "--Calc Edge Counter for " << edgetocalc << ": "
+ << format("%g", getEdgeWeight(edgetocalc)) << "\n");
+ SpanningTree.erase(edgetocalc);
+ }
+}
+
+void LoaderPass::readEdge(ProfileInfo::Edge e,
+ std::vector<unsigned> &ECs) {
+ if (ReadCount < ECs.size()) {
+ double weight = ECs[ReadCount++];
+ if (weight != ProfileInfoLoader::Uncounted) {
+ // Here the data realm changes from the unsigned of the file to the
+ // double of the ProfileInfo. This conversion is save because we know
+ // that everything thats representable in unsinged is also representable
+ // in double.
+ EdgeInformation[getFunction(e)][e] += (double)weight;
+
+ DEBUG(errs() << "--Read Edge Counter for " << e
+ << " (# "<< (ReadCount-1) << "): "
+ << (unsigned)getEdgeWeight(e) << "\n");
+ } else {
+ // This happens only if reading optimal profiling information, not when
+ // reading regular profiling information.
+ SpanningTree.insert(e);
+ }
+ }
+}
+
bool LoaderPass::runOnModule(Module &M) {
ProfileInfoLoader PIL("profile-loader", Filename, M);
- EdgeCounts.clear();
- bool PrintedWarning = false;
-
- std::vector<std::pair<ProfileInfoLoader::Edge, unsigned> > ECs;
- PIL.getEdgeCounts(ECs);
- for (unsigned i = 0, e = ECs.size(); i != e; ++i) {
- BasicBlock *BB = ECs[i].first.first;
- unsigned SuccNum = ECs[i].first.second;
- TerminatorInst *TI = BB->getTerminator();
- if (SuccNum >= TI->getNumSuccessors()) {
- if (!PrintedWarning) {
- cerr << "WARNING: profile information is inconsistent with "
+
+ EdgeInformation.clear();
+ std::vector<unsigned> Counters = PIL.getRawEdgeCounts();
+ if (Counters.size() > 0) {
+ ReadCount = 0;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
+ readEdge(getEdge(0,&F->getEntryBlock()), Counters);
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
+ TerminatorInst *TI = BB->getTerminator();
+ for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
+ readEdge(getEdge(BB,TI->getSuccessor(s)), Counters);
+ }
+ }
+ }
+ if (ReadCount != Counters.size()) {
+ errs() << "WARNING: profile information is inconsistent with "
<< "the current program!\n";
- PrintedWarning = true;
+ }
+ NumEdgesRead = ReadCount;
+ }
+
+ Counters = PIL.getRawOptimalEdgeCounts();
+ if (Counters.size() > 0) {
+ ReadCount = 0;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
+ readEdge(getEdge(0,&F->getEntryBlock()), Counters);
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
+ TerminatorInst *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 0) {
+ readEdge(getEdge(BB,0), Counters);
+ }
+ for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
+ readEdge(getEdge(BB,TI->getSuccessor(s)), Counters);
+ }
}
- } else {
- EdgeCounts[std::make_pair(BB, TI->getSuccessor(SuccNum))]+= ECs[i].second;
+ while (SpanningTree.size() > 0) {
+#if 0
+ unsigned size = SpanningTree.size();
+#endif
+ BBisUnvisited.clear();
+ for (std::set<Edge>::iterator ei = SpanningTree.begin(),
+ ee = SpanningTree.end(); ei != ee; ++ei) {
+ BBisUnvisited.insert(ei->first);
+ BBisUnvisited.insert(ei->second);
+ }
+ while (BBisUnvisited.size() > 0) {
+ recurseBasicBlock(*BBisUnvisited.begin());
+ }
+#if 0
+ if (SpanningTree.size() == size) {
+ DEBUG(errs()<<"{");
+ for (std::set<Edge>::iterator ei = SpanningTree.begin(),
+ ee = SpanningTree.end(); ei != ee; ++ei) {
+ DEBUG(errs()<<"("<<(ei->first?ei->first->getName():"0")<<","
+ <<(ei->second?ei->second->getName():"0")<<"),");
+ }
+ assert(0 && "No edge calculated!");
+ }
+#endif
+ }
+ }
+ if (ReadCount != Counters.size()) {
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
+ }
+ NumEdgesRead = ReadCount;
+ }
+
+ BlockInformation.clear();
+ Counters = PIL.getRawBlockCounts();
+ if (Counters.size() > 0) {
+ ReadCount = 0;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ if (ReadCount < Counters.size())
+ // Here the data realm changes from the unsigned of the file to the
+ // double of the ProfileInfo. This conversion is save because we know
+ // that everything thats representable in unsinged is also
+ // representable in double.
+ BlockInformation[F][BB] = (double)Counters[ReadCount++];
+ }
+ if (ReadCount != Counters.size()) {
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
+ }
+ }
+
+ FunctionInformation.clear();
+ Counters = PIL.getRawFunctionCounts();
+ if (Counters.size() > 0) {
+ ReadCount = 0;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ if (ReadCount < Counters.size())
+ // Here the data realm changes from the unsigned of the file to the
+ // double of the ProfileInfo. This conversion is save because we know
+ // that everything thats representable in unsinged is also
+ // representable in double.
+ FunctionInformation[F] = (double)Counters[ReadCount++];
+ }
+ if (ReadCount != Counters.size()) {
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
}
diff --git a/lib/Analysis/ProfileVerifierPass.cpp b/lib/Analysis/ProfileVerifierPass.cpp
new file mode 100644
index 0000000..9766da5
--- /dev/null
+++ b/lib/Analysis/ProfileVerifierPass.cpp
@@ -0,0 +1,343 @@
+//===- ProfileVerifierPass.cpp - LLVM Pass to estimate profile info -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a pass that checks profiling information for
+// plausibility.
+//
+//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "profile-verifier"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/InstIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Debug.h"
+#include <set>
+using namespace llvm;
+
+static cl::opt<bool,false>
+ProfileVerifierDisableAssertions("profile-verifier-noassert",
+ cl::desc("Disable assertions"));
+
+namespace {
+ class VISIBILITY_HIDDEN ProfileVerifierPass : public FunctionPass {
+
+ struct DetailedBlockInfo {
+ const BasicBlock *BB;
+ double BBWeight;
+ double inWeight;
+ int inCount;
+ double outWeight;
+ int outCount;
+ };
+
+ ProfileInfo *PI;
+ std::set<const BasicBlock*> BBisVisited;
+ std::set<const Function*> FisVisited;
+ bool DisableAssertions;
+
+ // When debugging is enabled, the verifier prints a whole slew of debug
+ // information, otherwise its just the assert. These are all the helper
+ // functions.
+ bool PrintedDebugTree;
+ std::set<const BasicBlock*> BBisPrinted;
+ void debugEntry(DetailedBlockInfo*);
+ void printDebugInfo(const BasicBlock *BB);
+
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+
+ explicit ProfileVerifierPass () : FunctionPass(&ID) {
+ DisableAssertions = ProfileVerifierDisableAssertions;
+ }
+ explicit ProfileVerifierPass (bool da) : FunctionPass(&ID),
+ DisableAssertions(da) {
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<ProfileInfo>();
+ }
+
+ const char *getPassName() const {
+ return "Profiling information verifier";
+ }
+
+ /// run - Verify the profile information.
+ bool runOnFunction(Function &F);
+ void recurseBasicBlock(const BasicBlock*);
+
+ bool exitReachable(const Function*);
+ double ReadOrAssert(ProfileInfo::Edge);
+ void CheckValue(bool, const char*, DetailedBlockInfo*);
+ };
+} // End of anonymous namespace
+
+char ProfileVerifierPass::ID = 0;
+static RegisterPass<ProfileVerifierPass>
+X("profile-verifier", "Verify profiling information", false, true);
+
+namespace llvm {
+ FunctionPass *createProfileVerifierPass() {
+ return new ProfileVerifierPass(ProfileVerifierDisableAssertions);
+ }
+}
+
+void ProfileVerifierPass::printDebugInfo(const BasicBlock *BB) {
+
+ if (BBisPrinted.find(BB) != BBisPrinted.end()) return;
+
+ double BBWeight = PI->getExecutionCount(BB);
+ if (BBWeight == ProfileInfo::MissingValue) { BBWeight = 0; }
+ double inWeight = 0;
+ int inCount = 0;
+ std::set<const BasicBlock*> ProcessedPreds;
+ for ( pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
+ bbi != bbe; ++bbi ) {
+ if (ProcessedPreds.insert(*bbi).second) {
+ ProfileInfo::Edge E = PI->getEdge(*bbi,BB);
+ double EdgeWeight = PI->getEdgeWeight(E);
+ if (EdgeWeight == ProfileInfo::MissingValue) { EdgeWeight = 0; }
+ errs() << "calculated in-edge " << E << ": " << EdgeWeight << "\n";
+ inWeight += EdgeWeight;
+ inCount++;
+ }
+ }
+ double outWeight = 0;
+ int outCount = 0;
+ std::set<const BasicBlock*> ProcessedSuccs;
+ for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ bbi != bbe; ++bbi ) {
+ if (ProcessedSuccs.insert(*bbi).second) {
+ ProfileInfo::Edge E = PI->getEdge(BB,*bbi);
+ double EdgeWeight = PI->getEdgeWeight(E);
+ if (EdgeWeight == ProfileInfo::MissingValue) { EdgeWeight = 0; }
+ errs() << "calculated out-edge " << E << ": " << EdgeWeight << "\n";
+ outWeight += EdgeWeight;
+ outCount++;
+ }
+ }
+ errs()<<"Block "<<BB->getNameStr()<<" in "<<BB->getParent()->getNameStr()
+ <<",BBWeight="<<BBWeight<<",inWeight="<<inWeight<<",inCount="<<inCount
+ <<",outWeight="<<outWeight<<",outCount"<<outCount<<"\n";
+
+ // mark as visited and recurse into subnodes
+ BBisPrinted.insert(BB);
+ for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ bbi != bbe; ++bbi ) {
+ printDebugInfo(*bbi);
+ }
+}
+
+void ProfileVerifierPass::debugEntry (DetailedBlockInfo *DI) {
+ errs() << "TROUBLE: Block " << DI->BB->getNameStr() << " in "
+ << DI->BB->getParent()->getNameStr() << ":";
+ errs() << "BBWeight=" << DI->BBWeight << ",";
+ errs() << "inWeight=" << DI->inWeight << ",";
+ errs() << "inCount=" << DI->inCount << ",";
+ errs() << "outWeight=" << DI->outWeight << ",";
+ errs() << "outCount=" << DI->outCount << "\n";
+ if (!PrintedDebugTree) {
+ PrintedDebugTree = true;
+ printDebugInfo(&(DI->BB->getParent()->getEntryBlock()));
+ }
+}
+
+// This compares A and B but considering maybe small differences.
+static bool Equals(double A, double B) {
+ double maxRelativeError = 0.0000001;
+ if (A == B)
+ return true;
+ double relativeError;
+ if (fabs(B) > fabs(A))
+ relativeError = fabs((A - B) / B);
+ else
+ relativeError = fabs((A - B) / A);
+ if (relativeError <= maxRelativeError) return true;
+ return false;
+}
+
+// This checks if the function "exit" is reachable from an given function
+// via calls, this is necessary to check if a profile is valid despite the
+// counts not fitting exactly.
+bool ProfileVerifierPass::exitReachable(const Function *F) {
+ if (!F) return false;
+
+ if (FisVisited.count(F)) return false;
+
+ Function *Exit = F->getParent()->getFunction("exit");
+ if (Exit == F) {
+ return true;
+ }
+
+ FisVisited.insert(F);
+ bool exits = false;
+ for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
+ if (const CallInst *CI = dyn_cast<CallInst>(&*I)) {
+ exits |= exitReachable(CI->getCalledFunction());
+ if (exits) break;
+ }
+ }
+ return exits;
+}
+
+#define ASSERTMESSAGE(M) \
+ errs() << (M) << "\n"; \
+ if (!DisableAssertions) assert(0 && (M));
+
+double ProfileVerifierPass::ReadOrAssert(ProfileInfo::Edge E) {
+ double EdgeWeight = PI->getEdgeWeight(E);
+ if (EdgeWeight == ProfileInfo::MissingValue) {
+ errs() << "Edge " << E << " in Function "
+ << ProfileInfo::getFunction(E)->getNameStr() << ": ";
+ ASSERTMESSAGE("ASSERT:Edge has missing value");
+ return 0;
+ } else {
+ return EdgeWeight;
+ }
+}
+
+void ProfileVerifierPass::CheckValue(bool Error, const char *Message,
+ DetailedBlockInfo *DI) {
+ if (Error) {
+ DEBUG(debugEntry(DI));
+ errs() << "Block " << DI->BB->getNameStr() << " in Function "
+ << DI->BB->getParent()->getNameStr() << ": ";
+ ASSERTMESSAGE(Message);
+ }
+ return;
+}
+
+// This calculates the Information for a block and then recurses into the
+// successors.
+void ProfileVerifierPass::recurseBasicBlock(const BasicBlock *BB) {
+
+ // Break the recursion by remembering all visited blocks.
+ if (BBisVisited.find(BB) != BBisVisited.end()) return;
+
+ // Use a data structure to store all the information, this can then be handed
+ // to debug printers.
+ DetailedBlockInfo DI;
+ DI.BB = BB;
+ DI.outCount = DI.inCount = DI.inWeight = DI.outWeight = 0;
+
+ // Read predecessors.
+ std::set<const BasicBlock*> ProcessedPreds;
+ pred_const_iterator bpi = pred_begin(BB), bpe = pred_end(BB);
+ // If there are none, check for (0,BB) edge.
+ if (bpi == bpe) {
+ DI.inWeight += ReadOrAssert(PI->getEdge(0,BB));
+ DI.inCount++;
+ }
+ for (;bpi != bpe; ++bpi) {
+ if (ProcessedPreds.insert(*bpi).second) {
+ DI.inWeight += ReadOrAssert(PI->getEdge(*bpi,BB));
+ DI.inCount++;
+ }
+ }
+
+ // Read successors.
+ std::set<const BasicBlock*> ProcessedSuccs;
+ succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ // If there is an (0,BB) edge, consider it too. (This is done not only when
+ // there are no successors, but every time; not every function contains
+ // return blocks with no successors (think loop latch as return block)).
+ double w = PI->getEdgeWeight(PI->getEdge(BB,0));
+ if (w != ProfileInfo::MissingValue) {
+ DI.outWeight += w;
+ DI.outCount++;
+ }
+ for (;bbi != bbe; ++bbi) {
+ if (ProcessedSuccs.insert(*bbi).second) {
+ DI.outWeight += ReadOrAssert(PI->getEdge(BB,*bbi));
+ DI.outCount++;
+ }
+ }
+
+ // Read block weight.
+ DI.BBWeight = PI->getExecutionCount(BB);
+ CheckValue(DI.BBWeight == ProfileInfo::MissingValue,
+ "ASSERT:BasicBlock has missing value", &DI);
+
+ // Check if this block is a setjmp target.
+ bool isSetJmpTarget = false;
+ if (DI.outWeight > DI.inWeight) {
+ for (BasicBlock::const_iterator i = BB->begin(), ie = BB->end();
+ i != ie; ++i) {
+ if (const CallInst *CI = dyn_cast<CallInst>(&*i)) {
+ Function *F = CI->getCalledFunction();
+ if (F && (F->getNameStr() == "_setjmp")) {
+ isSetJmpTarget = true; break;
+ }
+ }
+ }
+ }
+ // Check if this block is eventually reaching exit.
+ bool isExitReachable = false;
+ if (DI.inWeight > DI.outWeight) {
+ for (BasicBlock::const_iterator i = BB->begin(), ie = BB->end();
+ i != ie; ++i) {
+ if (const CallInst *CI = dyn_cast<CallInst>(&*i)) {
+ FisVisited.clear();
+ isExitReachable |= exitReachable(CI->getCalledFunction());
+ if (isExitReachable) break;
+ }
+ }
+ }
+
+ if (DI.inCount > 0 && DI.outCount == 0) {
+ // If this is a block with no successors.
+ if (!isSetJmpTarget) {
+ CheckValue(!Equals(DI.inWeight,DI.BBWeight),
+ "ASSERT:inWeight and BBWeight do not match", &DI);
+ }
+ } else if (DI.inCount == 0 && DI.outCount > 0) {
+ // If this is a block with no predecessors.
+ if (!isExitReachable)
+ CheckValue(!Equals(DI.BBWeight,DI.outWeight),
+ "ASSERT:BBWeight and outWeight do not match", &DI);
+ } else {
+ // If this block has successors and predecessors.
+ if (DI.inWeight > DI.outWeight && !isExitReachable)
+ CheckValue(!Equals(DI.inWeight,DI.outWeight),
+ "ASSERT:inWeight and outWeight do not match", &DI);
+ if (DI.inWeight < DI.outWeight && !isSetJmpTarget)
+ CheckValue(!Equals(DI.inWeight,DI.outWeight),
+ "ASSERT:inWeight and outWeight do not match", &DI);
+ }
+
+
+ // Mark this block as visited, rescurse into successors.
+ BBisVisited.insert(BB);
+ for ( succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
+ bbi != bbe; ++bbi ) {
+ recurseBasicBlock(*bbi);
+ }
+}
+
+bool ProfileVerifierPass::runOnFunction(Function &F) {
+ PI = &getAnalysis<ProfileInfo>();
+
+ // Prepare global variables.
+ PrintedDebugTree = false;
+ BBisVisited.clear();
+
+ // Fetch entry block and recurse into it.
+ const BasicBlock *entry = &F.getEntryBlock();
+ recurseBasicBlock(entry);
+
+ if (!DisableAssertions)
+ assert((PI->getExecutionCount(&F)==PI->getExecutionCount(entry)) &&
+ "Function count and entry block count do not match");
+ return false;
+}
diff --git a/lib/Analysis/README.txt b/lib/Analysis/README.txt
new file mode 100644
index 0000000..c401090
--- /dev/null
+++ b/lib/Analysis/README.txt
@@ -0,0 +1,18 @@
+Analysis Opportunities:
+
+//===---------------------------------------------------------------------===//
+
+In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the
+ScalarEvolution expression for %r is this:
+
+ {1,+,3,+,2}<loop>
+
+Outside the loop, this could be evaluated simply as (%n * %n), however
+ScalarEvolution currently evaluates it as
+
+ (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n))
+
+In addition to being much more complicated, it involves i65 arithmetic,
+which is very inefficient when expanded into code.
+
+//===---------------------------------------------------------------------===//
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 4081562..62f3aa1 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -14,9 +14,8 @@
// There are several aspects to this library. First is the representation of
// scalar expressions, which are represented as subclasses of the SCEV class.
// These classes are used to represent certain types of subexpressions that we
-// can handle. These classes are reference counted, managed by the const SCEV*
-// class. We only create one SCEV of a particular shape, so pointer-comparisons
-// for equality are legal.
+// can handle. We only create one SCEV of a particular shape, so
+// pointer-comparisons for equality are legal.
//
// One important aspect of the SCEV objects is that they are never cyclic, even
// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
@@ -64,7 +63,10 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -74,12 +76,14 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
using namespace llvm;
@@ -118,11 +122,6 @@ void SCEV::dump() const {
errs() << '\n';
}
-void SCEV::print(std::ostream &o) const {
- raw_os_ostream OS(o);
- print(OS);
-}
-
bool SCEV::isZero() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isZero();
@@ -142,33 +141,26 @@ bool SCEV::isAllOnesValue() const {
}
SCEVCouldNotCompute::SCEVCouldNotCompute() :
- SCEV(scCouldNotCompute) {}
-
-void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const {
- assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
-}
+ SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
- assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return false;
}
const Type *SCEVCouldNotCompute::getType() const {
- assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return 0;
}
bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
- assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return false;
}
-const SCEV *
-SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
- const SCEV *Sym,
- const SCEV *Conc,
- ScalarEvolution &SE) const {
- return this;
+bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
+ return false;
}
void SCEVCouldNotCompute::print(raw_ostream &OS) const {
@@ -179,30 +171,26 @@ bool SCEVCouldNotCompute::classof(const SCEV *S) {
return S->getSCEVType() == scCouldNotCompute;
}
-const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
+const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
- new (S) SCEVConstant(V);
+ new (S) SCEVConstant(ID, V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
-const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
- return getConstant(ConstantInt::get(Val));
+const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
+ return getConstant(ConstantInt::get(getContext(), Val));
}
-const SCEV*
+const SCEV *
ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
- return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
-}
-
-void SCEVConstant::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(scConstant);
- ID.AddPointer(V);
+ return getConstant(
+ ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
}
const Type *SCEVConstant::getType() const { return V->getType(); }
@@ -211,22 +199,21 @@ void SCEVConstant::print(raw_ostream &OS) const {
WriteAsOperand(OS, V, false);
}
-SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
- const SCEV* op, const Type *ty)
- : SCEV(SCEVTy), Op(op), Ty(ty) {}
-
-void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(getSCEVType());
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
-}
+SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
+ unsigned SCEVTy, const SCEV *op, const Type *ty)
+ : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return Op->dominates(BB, DT);
}
-SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
- : SCEVCastExpr(scTruncate, op, ty) {
+bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+ return Op->properlyDominates(BB, DT);
+}
+
+SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
+ const SCEV *op, const Type *ty)
+ : SCEVCastExpr(ID, scTruncate, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot truncate non-integer value!");
@@ -236,8 +223,9 @@ void SCEVTruncateExpr::print(raw_ostream &OS) const {
OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
-SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
- : SCEVCastExpr(scZeroExtend, op, ty) {
+SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
+ const SCEV *op, const Type *ty)
+ : SCEVCastExpr(ID, scZeroExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot zero extend non-integer value!");
@@ -247,8 +235,9 @@ void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
-SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
- : SCEVCastExpr(scSignExtend, op, ty) {
+SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
+ const SCEV *op, const Type *ty)
+ : SCEVCastExpr(ID, scSignExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot sign extend non-integer value!");
@@ -267,46 +256,6 @@ void SCEVCommutativeExpr::print(raw_ostream &OS) const {
OS << ")";
}
-const SCEV *
-SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
- const SCEV *Sym,
- const SCEV *Conc,
- ScalarEvolution &SE) const {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- const SCEV* H =
- getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
- if (H != getOperand(i)) {
- SmallVector<const SCEV*, 8> NewOps;
- NewOps.reserve(getNumOperands());
- for (unsigned j = 0; j != i; ++j)
- NewOps.push_back(getOperand(j));
- NewOps.push_back(H);
- for (++i; i != e; ++i)
- NewOps.push_back(getOperand(i)->
- replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
-
- if (isa<SCEVAddExpr>(this))
- return SE.getAddExpr(NewOps);
- else if (isa<SCEVMulExpr>(this))
- return SE.getMulExpr(NewOps);
- else if (isa<SCEVSMaxExpr>(this))
- return SE.getSMaxExpr(NewOps);
- else if (isa<SCEVUMaxExpr>(this))
- return SE.getUMaxExpr(NewOps);
- else
- assert(0 && "Unknown commutative expr!");
- }
- }
- return this;
-}
-
-void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(getSCEVType());
- ID.AddInteger(Operands.size());
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- ID.AddPointer(Operands[i]);
-}
-
bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (!getOperand(i)->dominates(BB, DT))
@@ -315,16 +264,22 @@ bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return true;
}
-void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(scUDivExpr);
- ID.AddPointer(LHS);
- ID.AddPointer(RHS);
+bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ if (!getOperand(i)->properlyDominates(BB, DT))
+ return false;
+ }
+ return true;
}
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
}
+bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+ return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
+}
+
void SCEVUDivExpr::print(raw_ostream &OS) const {
OS << "(" << *LHS << " /u " << *RHS << ")";
}
@@ -338,38 +293,6 @@ const Type *SCEVUDivExpr::getType() const {
return RHS->getType();
}
-void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(scAddRecExpr);
- ID.AddInteger(Operands.size());
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- ID.AddPointer(Operands[i]);
- ID.AddPointer(L);
-}
-
-const SCEV *
-SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
- const SCEV *Conc,
- ScalarEvolution &SE) const {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- const SCEV* H =
- getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
- if (H != getOperand(i)) {
- SmallVector<const SCEV*, 8> NewOps;
- NewOps.reserve(getNumOperands());
- for (unsigned j = 0; j != i; ++j)
- NewOps.push_back(getOperand(j));
- NewOps.push_back(H);
- for (++i; i != e; ++i)
- NewOps.push_back(getOperand(i)->
- replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
-
- return SE.getAddRecExpr(NewOps, L);
- }
- }
- return this;
-}
-
-
bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
// Add recurrences are never invariant in the function-body (null loop).
if (!QueryLoop)
@@ -396,9 +319,13 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "}<" << L->getHeader()->getName() + ">";
}
-void SCEVUnknown::Profile(FoldingSetNodeID &ID) const {
- ID.AddInteger(scUnknown);
- ID.AddPointer(V);
+void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
+ // LLVM struct fields don't have names, so just print the field number.
+ OS << "offsetof(" << *STy << ", " << FieldNo << ")";
+}
+
+void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
+ OS << "sizeof(" << *AllocTy << ")";
}
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
@@ -417,6 +344,12 @@ bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
return true;
}
+bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
+ if (Instruction *I = dyn_cast<Instruction>(getValue()))
+ return DT->properlyDominates(I->getParent(), BB);
+ return true;
+}
+
const Type *SCEVUnknown::getType() const {
return V->getType();
}
@@ -429,6 +362,41 @@ void SCEVUnknown::print(raw_ostream &OS) const {
// SCEV Utilities
//===----------------------------------------------------------------------===//
+static bool CompareTypes(const Type *A, const Type *B) {
+ if (A->getTypeID() != B->getTypeID())
+ return A->getTypeID() < B->getTypeID();
+ if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
+ const IntegerType *BI = cast<IntegerType>(B);
+ return AI->getBitWidth() < BI->getBitWidth();
+ }
+ if (const PointerType *AI = dyn_cast<PointerType>(A)) {
+ const PointerType *BI = cast<PointerType>(B);
+ return CompareTypes(AI->getElementType(), BI->getElementType());
+ }
+ if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
+ const ArrayType *BI = cast<ArrayType>(B);
+ if (AI->getNumElements() != BI->getNumElements())
+ return AI->getNumElements() < BI->getNumElements();
+ return CompareTypes(AI->getElementType(), BI->getElementType());
+ }
+ if (const VectorType *AI = dyn_cast<VectorType>(A)) {
+ const VectorType *BI = cast<VectorType>(B);
+ if (AI->getNumElements() != BI->getNumElements())
+ return AI->getNumElements() < BI->getNumElements();
+ return CompareTypes(AI->getElementType(), BI->getElementType());
+ }
+ if (const StructType *AI = dyn_cast<StructType>(A)) {
+ const StructType *BI = cast<StructType>(B);
+ if (AI->getNumElements() != BI->getNumElements())
+ return AI->getNumElements() < BI->getNumElements();
+ for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
+ if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
+ CompareTypes(BI->getElementType(i), AI->getElementType(i)))
+ return CompareTypes(AI->getElementType(i), BI->getElementType(i));
+ }
+ return false;
+}
+
namespace {
/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
/// than the complexity of the RHS. This comparator is used to canonicalize
@@ -439,6 +407,10 @@ namespace {
explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
bool operator()(const SCEV *LHS, const SCEV *RHS) const {
+ // Fast-path: SCEVs are uniqued so we can do a quick equality check.
+ if (LHS == RHS)
+ return false;
+
// Primarily, sort the SCEVs by their getSCEVType().
if (LHS->getSCEVType() != RHS->getSCEVType())
return LHS->getSCEVType() < RHS->getSCEVType();
@@ -495,6 +467,8 @@ namespace {
// Compare constant values.
if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
const SCEVConstant *RC = cast<SCEVConstant>(RHS);
+ if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
+ return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
return LC->getValue()->getValue().ult(RC->getValue()->getValue());
}
@@ -539,7 +513,22 @@ namespace {
return operator()(LC->getOperand(), RC->getOperand());
}
- assert(0 && "Unknown SCEV kind!");
+ // Compare offsetof expressions.
+ if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
+ const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
+ if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
+ CompareTypes(RA->getStructType(), LA->getStructType()))
+ return CompareTypes(LA->getStructType(), RA->getStructType());
+ return LA->getFieldNo() < RA->getFieldNo();
+ }
+
+ // Compare sizeof expressions by the allocation type.
+ if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
+ const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
+ return CompareTypes(LA->getAllocType(), RA->getAllocType());
+ }
+
+ llvm_unreachable("Unknown SCEV kind!");
return false;
}
};
@@ -555,7 +544,7 @@ namespace {
/// this to depend on where the addresses of various SCEV objects happened to
/// land in memory.
///
-static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
+static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
LoopInfo *LI) {
if (Ops.size() < 2) return; // Noop
if (Ops.size() == 2) {
@@ -598,9 +587,9 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
/// BinomialCoefficient - Compute BC(It, K). The result has width W.
/// Assume, K > 0.
-static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
- ScalarEvolution &SE,
- const Type* ResultTy) {
+static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
+ ScalarEvolution &SE,
+ const Type* ResultTy) {
// Handle the simplest case efficiently.
if (K == 1)
return SE.getTruncateOrZeroExtend(It, ResultTy);
@@ -690,16 +679,17 @@ static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
MultiplyFactor = MultiplyFactor.trunc(W);
// Calculate the product, at width T+W
- const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
- const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
+ const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
+ CalculationBits);
+ const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
for (unsigned i = 1; i != K; ++i) {
- const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
+ const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Dividend = SE.getMulExpr(Dividend,
SE.getTruncateOrZeroExtend(S, CalculationTy));
}
// Divide by 2^T
- const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
+ const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
// Truncate the result, and divide by K! / 2^T.
@@ -716,14 +706,14 @@ static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
///
/// where BC(It, k) stands for binomial coefficient.
///
-const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
- ScalarEvolution &SE) const {
- const SCEV* Result = getStart();
+const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
+ ScalarEvolution &SE) const {
+ const SCEV *Result = getStart();
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
// The computation is correct in the face of overflow provided that the
// multiplication is performed _after_ the evaluation of the binomial
// coefficient.
- const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
+ const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
if (isa<SCEVCouldNotCompute>(Coeff))
return Coeff;
@@ -736,14 +726,21 @@ const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
// SCEV Expression folder implementations
//===----------------------------------------------------------------------===//
-const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
- const Type *Ty) {
+const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
+ const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
"This is not a truncating conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
+ FoldingSetNodeID ID;
+ ID.AddInteger(scTruncate);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
@@ -763,26 +760,23 @@ const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
// If the input value is a chrec scev, truncate the chrec's operands.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
return getAddRecExpr(Operands, AddRec->getLoop());
}
- FoldingSetNodeID ID;
- ID.AddInteger(scTruncate);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
+ // The cast wasn't folded; create an explicit cast node.
+ // Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
- new (S) SCEVTruncateExpr(Op, Ty);
+ new (S) SCEVTruncateExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
-const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
- const Type *Ty) {
+const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
+ const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
@@ -801,12 +795,33 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getZeroExtendExpr(SZ->getOperand(), Ty);
+ // Before doing any expensive analysis, check to see if we've already
+ // computed a SCEV for this Op and Ty.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scZeroExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can zero extend all of the
// operands (often constants). This allows analysis of something like
// this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
+ unsigned BitWidth = getTypeSizeInBits(AR->getType());
+ const Loop *L = AR->getLoop();
+
+ // If we have special knowledge that this addrec won't overflow,
+ // we don't need to do any further analysis.
+ if (AR->hasNoUnsignedWrap())
+ return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+ getZeroExtendExpr(Step, Ty),
+ L);
+
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
@@ -815,28 +830,25 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
- const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
- const SCEV* Start = AR->getStart();
- const SCEV* Step = AR->getStepRecurrence(*this);
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
- const SCEV* CastedMaxBECount =
+ const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV* RecastedMaxBECount =
+ const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
- const Type *WideTy =
- IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
+ const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no unsigned overflow.
- const SCEV* ZMul =
+ const SCEV *ZMul =
getMulExpr(CastedMaxBECount,
getTruncateOrZeroExtend(Step, Start->getType()));
- const SCEV* Add = getAddExpr(Start, ZMul);
- const SCEV* OperandExtendedAdd =
+ const SCEV *Add = getAddExpr(Start, ZMul);
+ const SCEV *OperandExtendedAdd =
getAddExpr(getZeroExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getZeroExtendExpr(Step, WideTy)));
@@ -844,11 +856,11 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getZeroExtendExpr(Step, Ty),
- AR->getLoop());
+ L);
// Similar to above, only this time treat the step value as signed.
// This covers loops that count down.
- const SCEV* SMul =
+ const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
Add = getAddExpr(Start, SMul);
@@ -860,25 +872,50 @@ const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
- AR->getLoop());
+ L);
+ }
+
+ // If the backedge is guarded by a comparison with the pre-inc value
+ // the addrec is safe. Also, if the entry is guarded by a comparison
+ // with the start value and the backedge is guarded by a comparison
+ // with the post-inc value, the addrec is safe.
+ if (isKnownPositive(Step)) {
+ const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
+ getUnsignedRange(Step).getUnsignedMax());
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
+ (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
+ isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
+ AR->getPostIncExpr(*this), N)))
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+ getZeroExtendExpr(Step, Ty),
+ L);
+ } else if (isKnownNegative(Step)) {
+ const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
+ getSignedRange(Step).getSignedMin());
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
+ (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
+ isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
+ AR->getPostIncExpr(*this), N)))
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+ getSignExtendExpr(Step, Ty),
+ L);
}
}
}
- FoldingSetNodeID ID;
- ID.AddInteger(scZeroExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
+ // The cast wasn't folded; create an explicit cast node.
+ // Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
- new (S) SCEVZeroExtendExpr(Op, Ty);
+ new (S) SCEVZeroExtendExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
-const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
- const Type *Ty) {
+const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
+ const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
@@ -897,12 +934,33 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
return getSignExtendExpr(SS->getOperand(), Ty);
+ // Before doing any expensive analysis, check to see if we've already
+ // computed a SCEV for this Op and Ty.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scSignExtend);
+ ID.AddPointer(Op);
+ ID.AddPointer(Ty);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
// operands (often constants). This allows analysis of something like
// this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
+ unsigned BitWidth = getTypeSizeInBits(AR->getType());
+ const Loop *L = AR->getLoop();
+
+ // If we have special knowledge that this addrec won't overflow,
+ // we don't need to do any further analysis.
+ if (AR->hasNoSignedWrap())
+ return getAddRecExpr(getSignExtendExpr(Start, Ty),
+ getSignExtendExpr(Step, Ty),
+ L);
+
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
@@ -911,28 +969,25 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
- const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
- const SCEV* Start = AR->getStart();
- const SCEV* Step = AR->getStepRecurrence(*this);
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
- const SCEV* CastedMaxBECount =
+ const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV* RecastedMaxBECount =
+ const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
- const Type *WideTy =
- IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
+ const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
// Check whether Start+Step*MaxBECount has no signed overflow.
- const SCEV* SMul =
+ const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
- const SCEV* Add = getAddExpr(Start, SMul);
- const SCEV* OperandExtendedAdd =
+ const SCEV *Add = getAddExpr(Start, SMul);
+ const SCEV *OperandExtendedAdd =
getAddExpr(getSignExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getSignExtendExpr(Step, WideTy)));
@@ -940,19 +995,60 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
// Return the expression with the addrec on the outside.
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
- AR->getLoop());
+ L);
+
+ // Similar to above, only this time treat the step value as unsigned.
+ // This covers loops that count up with an unsigned step.
+ const SCEV *UMul =
+ getMulExpr(CastedMaxBECount,
+ getTruncateOrZeroExtend(Step, Start->getType()));
+ Add = getAddExpr(Start, UMul);
+ OperandExtendedAdd =
+ getAddExpr(getSignExtendExpr(Start, WideTy),
+ getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
+ getZeroExtendExpr(Step, WideTy)));
+ if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(getSignExtendExpr(Start, Ty),
+ getZeroExtendExpr(Step, Ty),
+ L);
+ }
+
+ // If the backedge is guarded by a comparison with the pre-inc value
+ // the addrec is safe. Also, if the entry is guarded by a comparison
+ // with the start value and the backedge is guarded by a comparison
+ // with the post-inc value, the addrec is safe.
+ if (isKnownPositive(Step)) {
+ const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
+ getSignedRange(Step).getSignedMax());
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
+ (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
+ isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
+ AR->getPostIncExpr(*this), N)))
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(getSignExtendExpr(Start, Ty),
+ getSignExtendExpr(Step, Ty),
+ L);
+ } else if (isKnownNegative(Step)) {
+ const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
+ getSignedRange(Step).getSignedMin());
+ if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
+ (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
+ isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
+ AR->getPostIncExpr(*this), N)))
+ // Return the expression with the addrec on the outside.
+ return getAddRecExpr(getSignExtendExpr(Start, Ty),
+ getSignExtendExpr(Step, Ty),
+ L);
}
}
}
- FoldingSetNodeID ID;
- ID.AddInteger(scSignExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = 0;
+ // The cast wasn't folded; create an explicit cast node.
+ // Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
- new (S) SCEVSignExtendExpr(Op, Ty);
+ new (S) SCEVSignExtendExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@@ -960,8 +1056,8 @@ const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
/// unspecified bits out to the given type.
///
-const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
- const Type *Ty) {
+const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
+ const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
@@ -975,19 +1071,19 @@ const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
// Peel off a truncate cast.
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
- const SCEV* NewOp = T->getOperand();
+ const SCEV *NewOp = T->getOperand();
if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
return getAnyExtendExpr(NewOp, Ty);
return getTruncateOrNoop(NewOp, Ty);
}
// Next try a zext cast. If the cast is folded, use it.
- const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
+ const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
if (!isa<SCEVZeroExtendExpr>(ZExt))
return ZExt;
// Next try a sext cast. If the cast is folded, use it.
- const SCEV* SExt = getSignExtendExpr(Op, Ty);
+ const SCEV *SExt = getSignExtendExpr(Op, Ty);
if (!isa<SCEVSignExtendExpr>(SExt))
return SExt;
@@ -1025,10 +1121,10 @@ const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
/// is also used as a check to avoid infinite recursion.
///
static bool
-CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
- SmallVector<const SCEV*, 8> &NewOps,
+CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
+ SmallVector<const SCEV *, 8> &NewOps,
APInt &AccumulatedConstant,
- const SmallVectorImpl<const SCEV*> &Ops,
+ const SmallVectorImpl<const SCEV *> &Ops,
const APInt &Scale,
ScalarEvolution &SE) {
bool Interesting = false;
@@ -1049,9 +1145,9 @@ CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
} else {
// A multiplication of a constant with some other value. Update
// the map.
- SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
- const SCEV* Key = SE.getMulExpr(MulOps);
- std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *Key = SE.getMulExpr(MulOps);
+ std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
M.insert(std::make_pair(Key, NewScale));
if (Pair.second) {
NewOps.push_back(Pair.first->first);
@@ -1069,7 +1165,7 @@ CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
AccumulatedConstant += Scale * C->getValue()->getValue();
} else {
// An ordinary operand. Update the map.
- std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
+ std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
M.insert(std::make_pair(Ops[i], Scale));
if (Pair.second) {
NewOps.push_back(Pair.first->first);
@@ -1095,7 +1191,8 @@ namespace {
/// getAddExpr - Get a canonical add expression, or something simpler if
/// possible.
-const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+ bool HasNUW, bool HasNSW) {
assert(!Ops.empty() && "Cannot get empty add!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1139,13 +1236,13 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
// Found a match, merge the two values into a multiply, and add any
// remaining values to the result.
- const SCEV* Two = getIntegerSCEV(2, Ty);
- const SCEV* Mul = getMulExpr(Ops[i], Two);
+ const SCEV *Two = getIntegerSCEV(2, Ty);
+ const SCEV *Mul = getMulExpr(Ops[i], Two);
if (Ops.size() == 2)
return Mul;
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Ops.push_back(Mul);
- return getAddExpr(Ops);
+ return getAddExpr(Ops, HasNUW, HasNSW);
}
// Check for truncates. If all the operands are truncated from the same
@@ -1156,7 +1253,7 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
const Type *DstType = Trunc->getType();
const Type *SrcType = Trunc->getOperand()->getType();
- SmallVector<const SCEV*, 8> LargeOps;
+ SmallVector<const SCEV *, 8> LargeOps;
bool Ok = true;
// Check all the operands to see if they can be represented in the
// source type of the truncate.
@@ -1172,7 +1269,7 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
// is much more likely to be foldable here.
LargeOps.push_back(getSignExtendExpr(C, SrcType));
} else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
- SmallVector<const SCEV*, 8> LargeMulOps;
+ SmallVector<const SCEV *, 8> LargeMulOps;
for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
if (const SCEVTruncateExpr *T =
dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
@@ -1200,7 +1297,7 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
}
if (Ok) {
// Evaluate the expression in the larger type.
- const SCEV* Fold = getAddExpr(LargeOps);
+ const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
// If it folds to something simple, use it. Otherwise, don't.
if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
return getTruncateExpr(Fold, DstType);
@@ -1237,16 +1334,16 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
// operands multiplied by constant values.
if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
uint64_t BitWidth = getTypeSizeInBits(Ty);
- DenseMap<const SCEV*, APInt> M;
- SmallVector<const SCEV*, 8> NewOps;
+ DenseMap<const SCEV *, APInt> M;
+ SmallVector<const SCEV *, 8> NewOps;
APInt AccumulatedConstant(BitWidth, 0);
if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Ops, APInt(BitWidth, 1), *this)) {
// Some interesting folding opportunity is present, so its worthwhile to
// re-generate the operands list. Group the operands by constant scale,
// to avoid multiplying by the same constant scale multiple times.
- std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
- for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
+ std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
+ for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
E = NewOps.end(); I != E; ++I)
MulOpLists[M.find(*I)->second].push_back(*I);
// Re-generate the operands list.
@@ -1276,17 +1373,17 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
// Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
- const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
+ const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
// If the multiply has more than two operands, we must get the
// Y*Z term.
- SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
MulOps.erase(MulOps.begin()+MulOp);
InnerMul = getMulExpr(MulOps);
}
- const SCEV* One = getIntegerSCEV(1, Ty);
- const SCEV* AddOne = getAddExpr(InnerMul, One);
- const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
+ const SCEV *One = getIntegerSCEV(1, Ty);
+ const SCEV *AddOne = getAddExpr(InnerMul, One);
+ const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
if (Ops.size() == 2) return OuterMul;
if (AddOp < Idx) {
Ops.erase(Ops.begin()+AddOp);
@@ -1310,22 +1407,22 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
OMulOp != e; ++OMulOp)
if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
// Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
- const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
+ const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Mul->op_end());
MulOps.erase(MulOps.begin()+MulOp);
InnerMul1 = getMulExpr(MulOps);
}
- const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+ const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
if (OtherMul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
OtherMul->op_end());
MulOps.erase(MulOps.begin()+OMulOp);
InnerMul2 = getMulExpr(MulOps);
}
- const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
- const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
+ const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
+ const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
if (Ops.size() == 2) return OuterMul;
Ops.erase(Ops.begin()+Idx);
Ops.erase(Ops.begin()+OtherMulIdx-1);
@@ -1346,7 +1443,7 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this add and add them to the vector if
// they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV*, 8> LIOps;
+ SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
@@ -1360,11 +1457,11 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
// NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
LIOps.push_back(AddRec->getStart());
- SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
+ SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
AddRec->op_end());
AddRecOps[0] = getAddExpr(LIOps);
- const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
+ const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
@@ -1396,7 +1493,7 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
}
NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
}
- const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
+ const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
if (Ops.size() == 2) return NewAddRec;
@@ -1420,16 +1517,19 @@ const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
- new (S) SCEVAddExpr(Ops);
+ SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
+ new (S) SCEVAddExpr(ID, Ops);
UniqueSCEVs.InsertNode(S, IP);
+ if (HasNUW) S->setHasNoUnsignedWrap(true);
+ if (HasNSW) S->setHasNoSignedWrap(true);
return S;
}
/// getMulExpr - Get a canonical multiply expression, or something simpler if
/// possible.
-const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+ bool HasNUW, bool HasNSW) {
assert(!Ops.empty() && "Cannot get empty mul!");
#ifndef NDEBUG
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
@@ -1457,7 +1557,8 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
++Idx;
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
+ ConstantInt *Fold = ConstantInt::get(getContext(),
+ LHSC->getValue()->getValue() *
RHSC->getValue()->getValue());
Ops[0] = getConstant(Fold);
Ops.erase(Ops.begin()+1); // Erase the folded element
@@ -1510,7 +1611,7 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this mul and add them to the vector if
// they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV*, 8> LIOps;
+ SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
@@ -1522,7 +1623,7 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
// If we found some loop invariants, fold them into the recurrence.
if (!LIOps.empty()) {
// NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
- SmallVector<const SCEV*, 4> NewOps;
+ SmallVector<const SCEV *, 4> NewOps;
NewOps.reserve(AddRec->getNumOperands());
if (LIOps.size() == 1) {
const SCEV *Scale = LIOps[0];
@@ -1530,13 +1631,13 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
} else {
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
+ SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
MulOps.push_back(AddRec->getOperand(i));
NewOps.push_back(getMulExpr(MulOps));
}
}
- const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
+ const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
@@ -1560,14 +1661,14 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
// F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
- const SCEV* NewStart = getMulExpr(F->getStart(),
+ const SCEV *NewStart = getMulExpr(F->getStart(),
G->getStart());
- const SCEV* B = F->getStepRecurrence(*this);
- const SCEV* D = G->getStepRecurrence(*this);
- const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
+ const SCEV *B = F->getStepRecurrence(*this);
+ const SCEV *D = G->getStepRecurrence(*this);
+ const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
getMulExpr(G, B),
getMulExpr(B, D));
- const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
+ const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
F->getLoop());
if (Ops.size() == 2) return NewAddRec;
@@ -1591,14 +1692,16 @@ const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
ID.AddPointer(Ops[i]);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
- new (S) SCEVMulExpr(Ops);
+ SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
+ new (S) SCEVMulExpr(ID, Ops);
UniqueSCEVs.InsertNode(S, IP);
+ if (HasNUW) S->setHasNoUnsignedWrap(true);
+ if (HasNSW) S->setHasNoSignedWrap(true);
return S;
}
-/// getUDivExpr - Get a canonical multiply expression, or something simpler if
-/// possible.
+/// getUDivExpr - Get a canonical unsigned division expression, or something
+/// simpler if possible.
const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
const SCEV *RHS) {
assert(getEffectiveSCEVType(LHS->getType()) ==
@@ -1607,7 +1710,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
if (RHSC->getValue()->equalsInt(1))
- return LHS; // X udiv 1 --> x
+ return LHS; // X udiv 1 --> x
if (RHSC->isZero())
return getIntegerSCEV(0, LHS->getType()); // value is undefined
@@ -1622,7 +1725,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
if (!RHSC->getValue()->getValue().isPowerOf2())
++MaxShiftAmt;
const IntegerType *ExtTy =
- IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
+ IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
// {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
if (const SCEVConstant *Step =
@@ -1633,24 +1736,24 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
getZeroExtendExpr(Step, ExtTy),
AR->getLoop())) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
return getAddRecExpr(Operands, AR->getLoop());
}
// (A*B)/C --> A*(B/C) if safe and B/C can be folded.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
// Find an operand that's safely divisible.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV* Op = M->getOperand(i);
- const SCEV* Div = getUDivExpr(Op, RHSC);
+ const SCEV *Op = M->getOperand(i);
+ const SCEV *Div = getUDivExpr(Op, RHSC);
if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
- const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
- Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
+ const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+ Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
MOperands.end());
Operands[i] = Div;
return getMulExpr(Operands);
@@ -1659,13 +1762,13 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
}
// (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
Operands.clear();
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
+ const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
break;
Operands.push_back(Op);
@@ -1691,7 +1794,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
- new (S) SCEVUDivExpr(LHS, RHS);
+ new (S) SCEVUDivExpr(ID, LHS, RHS);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@@ -1699,9 +1802,10 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
/// Simplify the expression as much as possible.
-const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
- const SCEV* Step, const Loop *L) {
- SmallVector<const SCEV*, 4> Operands;
+const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
+ const SCEV *Step, const Loop *L,
+ bool HasNUW, bool HasNSW) {
+ SmallVector<const SCEV *, 4> Operands;
Operands.push_back(Start);
if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
if (StepChrec->getLoop() == L) {
@@ -1711,14 +1815,15 @@ const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
}
Operands.push_back(Step);
- return getAddRecExpr(Operands, L);
+ return getAddRecExpr(Operands, L, HasNUW, HasNSW);
}
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
/// Simplify the expression as much as possible.
const SCEV *
-ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
- const Loop *L) {
+ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
+ const Loop *L,
+ bool HasNUW, bool HasNSW) {
if (Operands.size() == 1) return Operands[0];
#ifndef NDEBUG
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
@@ -1729,14 +1834,14 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
if (Operands.back()->isZero()) {
Operands.pop_back();
- return getAddRecExpr(Operands, L); // {X,+,0} --> X
+ return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
}
// Canonicalize nested AddRecs in by nesting them in order of loop depth.
if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
const Loop* NestedLoop = NestedAR->getLoop();
if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
- SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
+ SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
NestedAR->op_end());
Operands[0] = NestedAR->getStart();
// AddRecs require their operands be loop-invariant with respect to their
@@ -1758,7 +1863,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
}
if (AllInvariant)
// Ok, both add recurrences are valid after the transformation.
- return getAddRecExpr(NestedOperands, NestedLoop);
+ return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
}
// Reset Operands to its original state.
Operands[0] = NestedAR;
@@ -1773,22 +1878,24 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
ID.AddPointer(L);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
- new (S) SCEVAddRecExpr(Operands, L);
+ SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
+ new (S) SCEVAddRecExpr(ID, Operands, L);
UniqueSCEVs.InsertNode(S, IP);
+ if (HasNUW) S->setHasNoUnsignedWrap(true);
+ if (HasNSW) S->setHasNoSignedWrap(true);
return S;
}
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
const SCEV *RHS) {
- SmallVector<const SCEV*, 2> Ops;
+ SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getSMaxExpr(Ops);
}
-const SCEV*
-ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *
+ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty smax!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1808,7 +1915,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
assert(Idx < Ops.size());
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(
+ ConstantInt *Fold = ConstantInt::get(getContext(),
APIntOps::smax(LHSC->getValue()->getValue(),
RHSC->getValue()->getValue()));
Ops[0] = getConstant(Fold);
@@ -1871,21 +1978,21 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
- new (S) SCEVSMaxExpr(Ops);
+ new (S) SCEVSMaxExpr(ID, Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
const SCEV *RHS) {
- SmallVector<const SCEV*, 2> Ops;
+ SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getUMaxExpr(Ops);
}
-const SCEV*
-ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *
+ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty umax!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1905,7 +2012,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
assert(Idx < Ops.size());
while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
// We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(
+ ConstantInt *Fold = ConstantInt::get(getContext(),
APIntOps::umax(LHSC->getValue()->getValue(),
RHSC->getValue()->getValue()));
Ops[0] = getConstant(Fold);
@@ -1968,7 +2075,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
- new (S) SCEVUMaxExpr(Ops);
+ new (S) SCEVUMaxExpr(ID, Ops);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@@ -1985,7 +2092,77 @@ const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
}
-const SCEV* ScalarEvolution::getUnknown(Value *V) {
+const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
+ unsigned FieldNo) {
+ // If we have TargetData we can determine the constant offset.
+ if (TD) {
+ const Type *IntPtrTy = TD->getIntPtrType(getContext());
+ const StructLayout &SL = *TD->getStructLayout(STy);
+ uint64_t Offset = SL.getElementOffset(FieldNo);
+ return getIntegerSCEV(Offset, IntPtrTy);
+ }
+
+ // Field 0 is always at offset 0.
+ if (FieldNo == 0) {
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
+ return getIntegerSCEV(0, Ty);
+ }
+
+ // Okay, it looks like we really DO need an offsetof expr. Check to see if we
+ // already have one, otherwise create a new one.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scFieldOffset);
+ ID.AddPointer(STy);
+ ID.AddInteger(FieldNo);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
+ new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
+}
+
+const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
+ // If we have TargetData we can determine the constant size.
+ if (TD && AllocTy->isSized()) {
+ const Type *IntPtrTy = TD->getIntPtrType(getContext());
+ return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
+ }
+
+ // Expand an array size into the element size times the number
+ // of elements.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
+ const SCEV *E = getAllocSizeExpr(ATy->getElementType());
+ return getMulExpr(
+ E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
+ ATy->getNumElements())));
+ }
+
+ // Expand a vector size into the element size times the number
+ // of elements.
+ if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
+ const SCEV *E = getAllocSizeExpr(VTy->getElementType());
+ return getMulExpr(
+ E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
+ VTy->getNumElements())));
+ }
+
+ // Okay, it looks like we really DO need a sizeof expr. Check to see if we
+ // already have one, otherwise create a new one.
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAllocSize);
+ ID.AddPointer(AllocTy);
+ void *IP = 0;
+ if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
+ SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
+ const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
+ new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
+ UniqueSCEVs.InsertNode(S, IP);
+ return S;
+}
+
+const SCEV *ScalarEvolution::getUnknown(Value *V) {
// Don't attempt to do anything other than create a SCEVUnknown object
// here. createSCEV only calls getUnknown after checking for all other
// interesting possibilities, and any other code that calls getUnknown
@@ -1997,7 +2174,7 @@ const SCEV* ScalarEvolution::getUnknown(Value *V) {
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
- new (S) SCEVUnknown(V);
+ new (S) SCEVUnknown(ID, V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
@@ -2011,17 +2188,8 @@ const SCEV* ScalarEvolution::getUnknown(Value *V) {
/// can optionally include pointer types if the ScalarEvolution class
/// has access to target-specific information.
bool ScalarEvolution::isSCEVable(const Type *Ty) const {
- // Integers are always SCEVable.
- if (Ty->isInteger())
- return true;
-
- // Pointers are SCEVable if TargetData information is available
- // to provide pointer size information.
- if (isa<PointerType>(Ty))
- return TD != NULL;
-
- // Otherwise it's not SCEVable.
- return false;
+ // Integers and pointers are always SCEVable.
+ return Ty->isInteger() || isa<PointerType>(Ty);
}
/// getTypeSizeInBits - Return the size in bits of the specified type,
@@ -2033,9 +2201,14 @@ uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
if (TD)
return TD->getTypeSizeInBits(Ty);
- // Otherwise, we support only integer types.
- assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
- return Ty->getPrimitiveSizeInBits();
+ // Integer types have fixed sizes.
+ if (Ty->isInteger())
+ return Ty->getPrimitiveSizeInBits();
+
+ // The only other support type is pointer. Without TargetData, conservatively
+ // assume pointers are 64-bit.
+ assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
+ return 64;
}
/// getEffectiveSCEVType - Return a type with the same bitwidth as
@@ -2048,58 +2221,60 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
if (Ty->isInteger())
return Ty;
+ // The only other support type is pointer.
assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
- return TD->getIntPtrType();
-}
+ if (TD) return TD->getIntPtrType(getContext());
-const SCEV* ScalarEvolution::getCouldNotCompute() {
- return &CouldNotCompute;
+ // Without TargetData, conservatively assume pointers are 64-bit.
+ return Type::getInt64Ty(getContext());
}
-/// hasSCEV - Return true if the SCEV for this value has already been
-/// computed.
-bool ScalarEvolution::hasSCEV(Value *V) const {
- return Scalars.count(V);
+const SCEV *ScalarEvolution::getCouldNotCompute() {
+ return &CouldNotCompute;
}
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
/// expression and create a new one.
-const SCEV* ScalarEvolution::getSCEV(Value *V) {
+const SCEV *ScalarEvolution::getSCEV(Value *V) {
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
- std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
+ std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
if (I != Scalars.end()) return I->second;
- const SCEV* S = createSCEV(V);
+ const SCEV *S = createSCEV(V);
Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
return S;
}
/// getIntegerSCEV - Given a SCEVable type, create a constant for the
/// specified signed integer value and return a SCEV for the constant.
-const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
+const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
return getConstant(ConstantInt::get(ITy, Val));
}
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
///
-const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
+const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
const Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
- return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
+ return getMulExpr(V,
+ getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
}
/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
-const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
+const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
+ return getConstant(
+ cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
const Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
- const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
+ const SCEV *AllOnes =
+ getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
return getMinusSCEV(AllOnes, V);
}
@@ -2114,12 +2289,12 @@ const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is zero
/// extended.
-const SCEV*
-ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
+const SCEV *
+ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
@@ -2131,12 +2306,12 @@ ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is sign
/// extended.
-const SCEV*
-ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
+const SCEV *
+ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot truncate or zero extend with non-integer arguments!");
if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
return V; // No conversion
@@ -2148,11 +2323,11 @@ ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is zero
/// extended. The conversion must not be narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot noop or zero extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!");
@@ -2164,11 +2339,11 @@ ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is sign
/// extended. The conversion must not be narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot noop or sign extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!");
@@ -2181,11 +2356,11 @@ ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
/// the input value to the specified type. If the type must be extended,
/// it is extended with unspecified bits. The conversion must not be
/// narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot noop or any extend with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!");
@@ -2196,11 +2371,11 @@ ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. The conversion must not be widening.
-const SCEV*
-ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
- assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
- (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
+ assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ (Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot truncate or noop with non-integer arguments!");
assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!");
@@ -2214,8 +2389,8 @@ ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
/// with them.
const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
- const SCEV* PromotedLHS = LHS;
- const SCEV* PromotedRHS = RHS;
+ const SCEV *PromotedLHS = LHS;
+ const SCEV *PromotedRHS = RHS;
if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
@@ -2230,8 +2405,8 @@ const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
/// with them.
const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
- const SCEV* PromotedLHS = LHS;
- const SCEV* PromotedRHS = RHS;
+ const SCEV *PromotedLHS = LHS;
+ const SCEV *PromotedRHS = RHS;
if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
@@ -2241,34 +2416,60 @@ const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
return getUMinExpr(PromotedLHS, PromotedRHS);
}
-/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
-/// the specified instruction and replaces any references to the symbolic value
-/// SymName with the specified value. This is used during PHI resolution.
+/// PushDefUseChildren - Push users of the given Instruction
+/// onto the given Worklist.
+static void
+PushDefUseChildren(Instruction *I,
+ SmallVectorImpl<Instruction *> &Worklist) {
+ // Push the def-use children onto the Worklist stack.
+ for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
+ UI != UE; ++UI)
+ Worklist.push_back(cast<Instruction>(UI));
+}
+
+/// ForgetSymbolicValue - This looks up computed SCEV values for all
+/// instructions that depend on the given instruction and removes them from
+/// the Scalars map if they reference SymName. This is used during PHI
+/// resolution.
void
-ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
- const SCEV *SymName,
- const SCEV *NewVal) {
- std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
- Scalars.find(SCEVCallbackVH(I, this));
- if (SI == Scalars.end()) return;
+ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
+ SmallVector<Instruction *, 16> Worklist;
+ PushDefUseChildren(I, Worklist);
- const SCEV* NV =
- SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
- if (NV == SI->second) return; // No change.
+ SmallPtrSet<Instruction *, 8> Visited;
+ Visited.insert(I);
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ if (!Visited.insert(I)) continue;
- SI->second = NV; // Update the scalars map!
+ std::map<SCEVCallbackVH, const SCEV*>::iterator It =
+ Scalars.find(static_cast<Value *>(I));
+ if (It != Scalars.end()) {
+ // Short-circuit the def-use traversal if the symbolic name
+ // ceases to appear in expressions.
+ if (!It->second->hasOperand(SymName))
+ continue;
+
+ // SCEVUnknown for a PHI either means that it has an unrecognized
+ // structure, or it's a PHI that's in the progress of being computed
+ // by createNodeForPHI. In the former case, additional loop trip
+ // count information isn't going to change anything. In the later
+ // case, createNodeForPHI will perform the necessary updates on its
+ // own when it gets to that point.
+ if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
+ ValuesAtScopes.erase(It->second);
+ Scalars.erase(It);
+ }
+ }
- // Any instruction values that use this instruction might also need to be
- // updated!
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI)
- ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
+ PushDefUseChildren(I, Worklist);
+ }
}
/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
/// a loop header, making it a potential recurrence, or it doesn't.
///
-const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
+const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
if (const Loop *L = LI->getLoopFor(PN->getParent()))
if (L->getHeader() == PN->getParent()) {
@@ -2278,14 +2479,15 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
unsigned BackEdge = IncomingEdge^1;
// While we are analyzing this PHI node, handle its value symbolically.
- const SCEV* SymbolicName = getUnknown(PN);
+ const SCEV *SymbolicName = getUnknown(PN);
assert(Scalars.find(PN) == Scalars.end() &&
"PHI node already processed?");
Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
// Using this symbolic name for the PHI, analyze the value coming around
// the back-edge.
- const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
+ Value *BEValueV = PN->getIncomingValue(BackEdge);
+ const SCEV *BEValue = getSCEV(BEValueV);
// NOTE: If BEValue is loop invariant, we know that the PHI node just
// has a special value for the first iteration of the loop.
@@ -2305,11 +2507,11 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (FoundIndex != Add->getNumOperands()) {
// Create an add with everything but the specified operand.
- SmallVector<const SCEV*, 8> Ops;
+ SmallVector<const SCEV *, 8> Ops;
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if (i != FoundIndex)
Ops.push_back(Add->getOperand(i));
- const SCEV* Accum = getAddExpr(Ops);
+ const SCEV *Accum = getAddExpr(Ops);
// This is not a valid addrec if the step amount is varying each
// loop iteration, but is not itself an addrec in this loop.
@@ -2318,15 +2520,35 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
const SCEV *StartVal =
getSCEV(PN->getIncomingValue(IncomingEdge));
- const SCEV *PHISCEV =
- getAddRecExpr(StartVal, Accum, L);
+ const SCEVAddRecExpr *PHISCEV =
+ cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
+
+ // If the increment doesn't overflow, then neither the addrec nor the
+ // post-increment will overflow.
+ if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
+ if (OBO->getOperand(0) == PN &&
+ getSCEV(OBO->getOperand(1)) ==
+ PHISCEV->getStepRecurrence(*this)) {
+ const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
+ if (OBO->hasNoUnsignedWrap()) {
+ const_cast<SCEVAddRecExpr *>(PHISCEV)
+ ->setHasNoUnsignedWrap(true);
+ const_cast<SCEVAddRecExpr *>(PostInc)
+ ->setHasNoUnsignedWrap(true);
+ }
+ if (OBO->hasNoSignedWrap()) {
+ const_cast<SCEVAddRecExpr *>(PHISCEV)
+ ->setHasNoSignedWrap(true);
+ const_cast<SCEVAddRecExpr *>(PostInc)
+ ->setHasNoSignedWrap(true);
+ }
+ }
// Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and update all of the
- // entries for the scalars that use the PHI (except for the PHI
- // itself) to use the new analyzed value instead of the "symbolic"
- // value.
- ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
+ // to be symbolic. We now need to go back and purge all of the
+ // entries for the scalars that use the symbolic expression.
+ ForgetSymbolicName(PN, SymbolicName);
+ Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
return PHISCEV;
}
}
@@ -2338,21 +2560,20 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
// Because the other in-value of i (0) fits the evolution of BEValue
// i really is an addrec evolution.
if (AddRec->getLoop() == L && AddRec->isAffine()) {
- const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+ const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
// If StartVal = j.start - j.stride, we can use StartVal as the
// initial step of the addrec evolution.
if (StartVal == getMinusSCEV(AddRec->getOperand(0),
AddRec->getOperand(1))) {
- const SCEV* PHISCEV =
+ const SCEV *PHISCEV =
getAddRecExpr(StartVal, AddRec->getOperand(1), L);
// Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and update all of the
- // entries for the scalars that use the PHI (except for the PHI
- // itself) to use the new analyzed value instead of the "symbolic"
- // value.
- ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
+ // to be symbolic. We now need to go back and purge all of the
+ // entries for the scalars that use the symbolic expression.
+ ForgetSymbolicName(PN, SymbolicName);
+ Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
return PHISCEV;
}
}
@@ -2361,6 +2582,10 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
return SymbolicName;
}
+ // It's tempting to recognize PHIs with a unique incoming value, however
+ // this leads passes like indvars to break LCSSA form. Fortunately, such
+ // PHIs are rare, as instcombine zaps them.
+
// If it's not a loop phi, we can't handle it yet.
return getUnknown(PN);
}
@@ -2368,14 +2593,14 @@ const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
/// createNodeForGEP - Expand GEP instructions into add and multiply
/// operations. This allows them to be analyzed by regular SCEV code.
///
-const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
+const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
- const Type *IntPtrTy = TD->getIntPtrType();
+ const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Value *Base = GEP->getOperand(0);
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
return getUnknown(GEP);
- const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
+ const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
gep_type_iterator GTI = gep_type_begin(GEP);
for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
E = GEP->op_end();
@@ -2384,22 +2609,16 @@ const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
// Compute the (potentially symbolic) offset in bytes for this index.
if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
- const StructLayout &SL = *TD->getStructLayout(STy);
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- uint64_t Offset = SL.getElementOffset(FieldNo);
TotalOffset = getAddExpr(TotalOffset,
- getIntegerSCEV(Offset, IntPtrTy));
+ getFieldOffsetExpr(STy, FieldNo));
} else {
// For an array, add the element offset, explicitly scaled.
- const SCEV* LocalOffset = getSCEV(Index);
+ const SCEV *LocalOffset = getSCEV(Index);
if (!isa<PointerType>(LocalOffset->getType()))
// Getelementptr indicies are signed.
- LocalOffset = getTruncateOrSignExtend(LocalOffset,
- IntPtrTy);
- LocalOffset =
- getMulExpr(LocalOffset,
- getIntegerSCEV(TD->getTypeAllocSize(*GTI),
- IntPtrTy));
+ LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
+ LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI));
TotalOffset = getAddExpr(TotalOffset, LocalOffset);
}
}
@@ -2411,7 +2630,7 @@ const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
uint32_t
-ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
+ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return C->getValue()->getValue().countTrailingZeros();
@@ -2487,18 +2706,100 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
return 0;
}
-uint32_t
-ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
- // TODO: Handle other SCEV expression types here.
+/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return C->getValue()->getValue().countLeadingZeros();
+ return ConstantRange(C->getValue()->getValue());
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ ConstantRange X = getUnsignedRange(Add->getOperand(0));
+ for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+ X = X.add(getUnsignedRange(Add->getOperand(i)));
+ return X;
+ }
+
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ ConstantRange X = getUnsignedRange(Mul->getOperand(0));
+ for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+ X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
+ return X;
+ }
+
+ if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+ ConstantRange X = getUnsignedRange(SMax->getOperand(0));
+ for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+ X = X.smax(getUnsignedRange(SMax->getOperand(i)));
+ return X;
+ }
+
+ if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+ ConstantRange X = getUnsignedRange(UMax->getOperand(0));
+ for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+ X = X.umax(getUnsignedRange(UMax->getOperand(i)));
+ return X;
+ }
- if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
- // A zero-extension cast adds zero bits.
- return GetMinLeadingZeros(C->getOperand()) +
- (getTypeSizeInBits(C->getType()) -
- getTypeSizeInBits(C->getOperand()->getType()));
+ if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+ ConstantRange X = getUnsignedRange(UDiv->getLHS());
+ ConstantRange Y = getUnsignedRange(UDiv->getRHS());
+ return X.udiv(Y);
+ }
+
+ if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+ ConstantRange X = getUnsignedRange(ZExt->getOperand());
+ return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+ }
+
+ if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+ ConstantRange X = getUnsignedRange(SExt->getOperand());
+ return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+ }
+
+ if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+ ConstantRange X = getUnsignedRange(Trunc->getOperand());
+ return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+ }
+
+ ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
+
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
+ const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
+ if (!Trip) return FullSet;
+
+ // TODO: non-affine addrec
+ if (AddRec->isAffine()) {
+ const Type *Ty = AddRec->getType();
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+ if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+ MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+ const SCEV *Start = AddRec->getStart();
+ const SCEV *Step = AddRec->getStepRecurrence(*this);
+ const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+ // Check for overflow.
+ // TODO: This is very conservative.
+ if (!(Step->isOne() &&
+ isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
+ !(Step->isAllOnesValue() &&
+ isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
+ return FullSet;
+
+ ConstantRange StartRange = getUnsignedRange(Start);
+ ConstantRange EndRange = getUnsignedRange(End);
+ APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
+ EndRange.getUnsignedMin());
+ APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
+ EndRange.getUnsignedMax());
+ if (Min.isMinValue() && Max.isMaxValue())
+ return FullSet;
+ return ConstantRange(Min, Max+1);
+ }
+ }
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
@@ -2507,73 +2808,128 @@ ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
- return Zeros.countLeadingOnes();
+ if (Ones == ~Zeros + 1)
+ return FullSet;
+ return ConstantRange(Ones, ~Zeros + 1);
}
- return 1;
+ return FullSet;
}
-uint32_t
-ScalarEvolution::GetMinSignBits(const SCEV* S) {
- // TODO: Handle other SCEV expression types here.
+/// getSignedRange - Determine the signed range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getSignedRange(const SCEV *S) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- const APInt &A = C->getValue()->getValue();
- return A.isNegative() ? A.countLeadingOnes() :
- A.countLeadingZeros();
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+ return ConstantRange(C->getValue()->getValue());
+
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+ ConstantRange X = getSignedRange(Add->getOperand(0));
+ for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+ X = X.add(getSignedRange(Add->getOperand(i)));
+ return X;
}
- if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
- // A sign-extension cast adds sign bits.
- return GetMinSignBits(C->getOperand()) +
- (getTypeSizeInBits(C->getType()) -
- getTypeSizeInBits(C->getOperand()->getType()));
+ if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+ ConstantRange X = getSignedRange(Mul->getOperand(0));
+ for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+ X = X.multiply(getSignedRange(Mul->getOperand(i)));
+ return X;
}
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
- unsigned BitWidth = getTypeSizeInBits(A->getType());
-
- // Special case decrementing a value (ADD X, -1):
- if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
- if (CRHS->isAllOnesValue()) {
- SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
- const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
- unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
-
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if (LZ == BitWidth - 1)
- return BitWidth;
-
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (LZ > 0)
- return GetMinSignBits(OtherOpsAdd);
- }
+ if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+ ConstantRange X = getSignedRange(SMax->getOperand(0));
+ for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+ X = X.smax(getSignedRange(SMax->getOperand(i)));
+ return X;
+ }
+
+ if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+ ConstantRange X = getSignedRange(UMax->getOperand(0));
+ for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+ X = X.umax(getSignedRange(UMax->getOperand(i)));
+ return X;
+ }
+
+ if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+ ConstantRange X = getSignedRange(UDiv->getLHS());
+ ConstantRange Y = getSignedRange(UDiv->getRHS());
+ return X.udiv(Y);
+ }
+
+ if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+ ConstantRange X = getSignedRange(ZExt->getOperand());
+ return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+ }
+
+ if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+ ConstantRange X = getSignedRange(SExt->getOperand());
+ return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+ }
+
+ if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+ ConstantRange X = getSignedRange(Trunc->getOperand());
+ return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+ }
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- unsigned Min = BitWidth;
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- unsigned N = GetMinSignBits(A->getOperand(i));
- Min = std::min(Min, N) - 1;
- if (Min == 0) return 1;
+ ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
+
+ if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
+ const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
+ if (!Trip) return FullSet;
+
+ // TODO: non-affine addrec
+ if (AddRec->isAffine()) {
+ const Type *Ty = AddRec->getType();
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+ if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+ MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+ const SCEV *Start = AddRec->getStart();
+ const SCEV *Step = AddRec->getStepRecurrence(*this);
+ const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+ // Check for overflow.
+ // TODO: This is very conservative.
+ if (!(Step->isOne() &&
+ isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
+ !(Step->isAllOnesValue() &&
+ isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
+ return FullSet;
+
+ ConstantRange StartRange = getSignedRange(Start);
+ ConstantRange EndRange = getSignedRange(End);
+ APInt Min = APIntOps::smin(StartRange.getSignedMin(),
+ EndRange.getSignedMin());
+ APInt Max = APIntOps::smax(StartRange.getSignedMax(),
+ EndRange.getSignedMax());
+ if (Min.isMinSignedValue() && Max.isMaxSignedValue())
+ return FullSet;
+ return ConstantRange(Min, Max+1);
+ }
}
- return 1;
}
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
- return ComputeNumSignBits(U->getValue(), TD);
+ unsigned BitWidth = getTypeSizeInBits(U->getType());
+ unsigned NS = ComputeNumSignBits(U->getValue(), TD);
+ if (NS == 1)
+ return FullSet;
+ return
+ ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
+ APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
}
- return 1;
+ return FullSet;
}
/// createSCEV - We know that there is no SCEV for the specified value.
/// Analyze the expression.
///
-const SCEV* ScalarEvolution::createSCEV(Value *V) {
+const SCEV *ScalarEvolution::createSCEV(Value *V) {
if (!isSCEVable(V->getType()))
return getUnknown(V);
@@ -2588,15 +2944,23 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
return getIntegerSCEV(0, V->getType());
else if (isa<UndefValue>(V))
return getIntegerSCEV(0, V->getType());
+ else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
else
return getUnknown(V);
- User *U = cast<User>(V);
+ Operator *U = cast<Operator>(V);
switch (Opcode) {
case Instruction::Add:
+ // Don't transfer the NSW and NUW bits from the Add instruction to the
+ // Add expression, because the Instruction may be guarded by control
+ // flow and the no-overflow bits may not be valid for the expression in
+ // any context.
return getAddExpr(getSCEV(U->getOperand(0)),
getSCEV(U->getOperand(1)));
case Instruction::Mul:
+ // Don't transfer the NSW and NUW bits from the Mul instruction to the
+ // Mul expression, as with Add.
return getMulExpr(getSCEV(U->getOperand(0)),
getSCEV(U->getOperand(1)));
case Instruction::UDiv:
@@ -2630,7 +2994,7 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
return
getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
- IntegerType::get(BitWidth - LZ)),
+ IntegerType::get(getContext(), BitWidth - LZ)),
U->getType());
}
break;
@@ -2643,11 +3007,23 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
// In order for this transformation to be safe, the LHS must be of the
// form X*(2^n) and the Or constant must be less than 2^n.
if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- const SCEV* LHS = getSCEV(U->getOperand(0));
+ const SCEV *LHS = getSCEV(U->getOperand(0));
const APInt &CIVal = CI->getValue();
if (GetMinTrailingZeros(LHS) >=
- (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
- return getAddExpr(LHS, getSCEV(U->getOperand(1)));
+ (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
+ // Build a plain add SCEV.
+ const SCEV *S = getAddExpr(LHS, getSCEV(CI));
+ // If the LHS of the add was an addrec and it has no-wrap flags,
+ // transfer the no-wrap flags, since an or won't introduce a wrap.
+ if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
+ if (OldAR->hasNoUnsignedWrap())
+ const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
+ if (OldAR->hasNoSignedWrap())
+ const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
+ }
+ return S;
+ }
}
break;
case Instruction::Xor:
@@ -2673,7 +3049,7 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
if (const SCEVZeroExtendExpr *Z =
dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
const Type *UTy = U->getType();
- const SCEV* Z0 = Z->getOperand();
+ const SCEV *Z0 = Z->getOperand();
const Type *Z0Ty = Z0->getType();
unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
@@ -2699,7 +3075,7 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
// Turn shift left of a constant amount into a multiply.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
- Constant *X = ConstantInt::get(
+ Constant *X = ConstantInt::get(getContext(),
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
}
@@ -2709,7 +3085,7 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
// Turn logical shift right of a constant into a unsigned divide.
if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
- Constant *X = ConstantInt::get(
+ Constant *X = ConstantInt::get(getContext(),
APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
}
@@ -2729,7 +3105,7 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
return getIntegerSCEV(0, U->getType()); // value is undefined
return
getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
- IntegerType::get(Amt)),
+ IntegerType::get(getContext(), Amt)),
U->getType());
}
break;
@@ -2749,18 +3125,12 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
return getSCEV(U->getOperand(0));
break;
- case Instruction::IntToPtr:
- if (!TD) break; // Without TD we can't analyze pointers.
- return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
- TD->getIntPtrType());
-
- case Instruction::PtrToInt:
- if (!TD) break; // Without TD we can't analyze pointers.
- return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
- U->getType());
+ // It's tempting to handle inttoptr and ptrtoint, however this can
+ // lead to pointer expressions which cannot be expanded to GEPs
+ // (because they may overflow). For now, the only pointer-typed
+ // expressions we handle are GEPs and address literals.
case Instruction::GetElementPtr:
- if (!TD) break; // Without TD we can't analyze pointers.
return createNodeForGEP(U);
case Instruction::PHI:
@@ -2842,17 +3212,29 @@ const SCEV* ScalarEvolution::createSCEV(Value *V) {
/// loop-invariant backedge-taken count (see
/// hasLoopInvariantBackedgeTakenCount).
///
-const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
+const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenInfo(L).Exact;
}
/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
/// return the least SCEV value that is known never to be less than the
/// actual backedge taken count.
-const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
+const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenInfo(L).Max;
}
+/// PushLoopPHIs - Push PHI nodes in the header of the given loop
+/// onto the given Worklist.
+static void
+PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
+ BasicBlock *Header = L->getHeader();
+
+ // Push all Loop-header PHIs onto the Worklist stack.
+ for (BasicBlock::iterator I = Header->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I)
+ Worklist.push_back(PN);
+}
+
const ScalarEvolution::BackedgeTakenInfo &
ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// Initially insert a CouldNotCompute for this loop. If the insertion
@@ -2883,10 +3265,39 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
// Now that we know more about the trip count for this loop, forget any
// existing SCEV values for PHI nodes in this loop since they are only
- // conservative estimates made without the benefit
- // of trip count information.
- if (ItCount.hasAnyInfo())
- forgetLoopPHIs(L);
+ // conservative estimates made without the benefit of trip count
+ // information. This is similar to the code in
+ // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
+ // nodes specially.
+ if (ItCount.hasAnyInfo()) {
+ SmallVector<Instruction *, 16> Worklist;
+ PushLoopPHIs(L, Worklist);
+
+ SmallPtrSet<Instruction *, 8> Visited;
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ if (!Visited.insert(I)) continue;
+
+ std::map<SCEVCallbackVH, const SCEV*>::iterator It =
+ Scalars.find(static_cast<Value *>(I));
+ if (It != Scalars.end()) {
+ // SCEVUnknown for a PHI either means that it has an unrecognized
+ // structure, or it's a PHI that's in the progress of being computed
+ // by createNodeForPHI. In the former case, additional loop trip
+ // count information isn't going to change anything. In the later
+ // case, createNodeForPHI will perform the necessary updates on its
+ // own when it gets to that point.
+ if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
+ ValuesAtScopes.erase(It->second);
+ Scalars.erase(It);
+ }
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ ConstantEvolutionLoopExitValue.erase(PN);
+ }
+
+ PushDefUseChildren(I, Worklist);
+ }
+ }
}
return Pair.first->second;
}
@@ -2897,37 +3308,25 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
/// is deleted.
void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
BackedgeTakenCounts.erase(L);
- forgetLoopPHIs(L);
-}
-/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
-/// PHI nodes in the given loop. This is used when the trip count of
-/// the loop may have changed.
-void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
- BasicBlock *Header = L->getHeader();
-
- // Push all Loop-header PHIs onto the Worklist stack, except those
- // that are presently represented via a SCEVUnknown. SCEVUnknown for
- // a PHI either means that it has an unrecognized structure, or it's
- // a PHI that's in the progress of being computed by createNodeForPHI.
- // In the former case, additional loop trip count information isn't
- // going to change anything. In the later case, createNodeForPHI will
- // perform the necessary updates on its own when it gets to that point.
SmallVector<Instruction *, 16> Worklist;
- for (BasicBlock::iterator I = Header->begin();
- PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- std::map<SCEVCallbackVH, const SCEV*>::iterator It =
- Scalars.find((Value*)I);
- if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
- Worklist.push_back(PN);
- }
+ PushLoopPHIs(L, Worklist);
+ SmallPtrSet<Instruction *, 8> Visited;
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
- if (Scalars.erase(I))
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
- UI != UE; ++UI)
- Worklist.push_back(cast<Instruction>(UI));
+ if (!Visited.insert(I)) continue;
+
+ std::map<SCEVCallbackVH, const SCEV*>::iterator It =
+ Scalars.find(static_cast<Value *>(I));
+ if (It != Scalars.end()) {
+ ValuesAtScopes.erase(It->second);
+ Scalars.erase(It);
+ if (PHINode *PN = dyn_cast<PHINode>(I))
+ ConstantEvolutionLoopExitValue.erase(PN);
+ }
+
+ PushDefUseChildren(I, Worklist);
}
}
@@ -2939,8 +3338,8 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
L->getExitingBlocks(ExitingBlocks);
// Examine all exits and pick the most conservative values.
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
bool CouldNotComputeBECount = false;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BackedgeTakenInfo NewBTI =
@@ -3049,8 +3448,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
if (L->contains(TBB)) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
@@ -3084,8 +3483,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
if (L->contains(FBB)) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
@@ -3143,7 +3542,7 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
// Handle common loops like: for (X = "string"; *X; ++X)
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
- const SCEV* ItCnt =
+ const SCEV *ItCnt =
ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
if (!isa<SCEVCouldNotCompute>(ItCnt)) {
unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
@@ -3153,8 +3552,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
}
}
- const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
- const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
+ const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
+ const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
// Try to evaluate any dependencies out of the loop.
LHS = getSCEVAtScope(LHS, L);
@@ -3177,20 +3576,20 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
ConstantRange CompRange(
ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
- const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
+ const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
}
switch (Cond) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
- const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
+ const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
}
- case ICmpInst::ICMP_EQ: {
- // Convert to: while (X-Y == 0) // while (X == Y)
- const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
+ case ICmpInst::ICMP_EQ: { // while (X == Y)
+ // Convert to: while (X-Y == 0)
+ const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
}
@@ -3234,8 +3633,8 @@ ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
ScalarEvolution &SE) {
- const SCEV* InVal = SE.getConstant(C);
- const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
+ const SCEV *InVal = SE.getConstant(C);
+ const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
assert(isa<SCEVConstant>(Val) &&
"Evaluation of SCEV at constant didn't fold correctly?");
return cast<SCEVConstant>(Val)->getValue();
@@ -3246,7 +3645,7 @@ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
/// the addressed element of the initializer or null if the index expression is
/// invalid.
static Constant *
-GetAddressedElementFromGlobal(GlobalVariable *GV,
+GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
const std::vector<ConstantInt*> &Indices) {
Constant *Init = GV->getInitializer();
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
@@ -3265,7 +3664,7 @@ GetAddressedElementFromGlobal(GlobalVariable *GV,
if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Init = Constant::getNullValue(ATy->getElementType());
} else {
- assert(0 && "Unknown constant aggregate type!");
+ llvm_unreachable("Unknown constant aggregate type!");
}
return 0;
} else {
@@ -3293,7 +3692,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
// Make sure that it is really a constant global we are gepping, with an
// initializer, and make sure the first IDX is really 0.
GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
return getCouldNotCompute();
@@ -3314,7 +3713,7 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
// Check to see if X is a loop variant variable value now.
- const SCEV* Idx = getSCEV(VarIdx);
+ const SCEV *Idx = getSCEV(VarIdx);
Idx = getSCEVAtScope(Idx, L);
// We can only recognize very limited forms of loop index expressions, in
@@ -3327,14 +3726,14 @@ ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
unsigned MaxSteps = MaxBruteForceIterations;
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
- ConstantInt *ItCst =
- ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
+ ConstantInt *ItCst = ConstantInt::get(
+ cast<IntegerType>(IdxExpr->getType()), IterationNum);
ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
// Form the GEP offset.
Indexes[VarIdxNum] = Val;
- Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
+ Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
if (Result == 0) break; // Cannot compute!
// Evaluate the condition for this iteration.
@@ -3418,6 +3817,7 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (Constant *C = dyn_cast<Constant>(V)) return C;
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Instruction *I = cast<Instruction>(V);
+ LLVMContext &Context = I->getParent()->getContext();
std::vector<Constant*> Operands;
Operands.resize(I->getNumOperands());
@@ -3429,10 +3829,12 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
- &Operands[0], Operands.size());
+ &Operands[0], Operands.size(),
+ Context);
else
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- &Operands[0], Operands.size());
+ &Operands[0], Operands.size(),
+ Context);
}
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
@@ -3487,7 +3889,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
}
}
-/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
+/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
/// constant number of times (the condition evolves only from constants),
/// try to evaluate a few iterations of the loop until we get the exit
/// condition gets a value of ExitWhen (true or false). If we cannot
@@ -3526,7 +3928,7 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
if (CondVal->getValue() == uint64_t(ExitWhen)) {
++NumBruteForceTripCountsComputed;
- return getConstant(Type::Int32Ty, IterationNum);
+ return getConstant(Type::getInt32Ty(getContext()), IterationNum);
}
// Compute the value of the PHI node for the next iteration.
@@ -3540,7 +3942,7 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
return getCouldNotCompute();
}
-/// getSCEVAtScope - Return a SCEV expression handle for the specified value
+/// getSCEVAtScope - Return a SCEV expression for the specified value
/// at the specified scope in the program. The L value specifies a loop
/// nest to evaluate the expression at, where null is the top-level or a
/// specified loop is immediately inside of the loop.
@@ -3550,9 +3952,21 @@ ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
///
/// In the case that a relevant loop exit value cannot be computed, the
/// original value V is returned.
-const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
- // FIXME: this should be turned into a virtual method on SCEV!
+const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
+ // Check to see if we've folded this expression at this loop before.
+ std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
+ std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
+ Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
+ if (!Pair.second)
+ return Pair.first->second ? Pair.first->second : V;
+ // Otherwise compute it.
+ const SCEV *C = computeSCEVAtScope(V, L);
+ ValuesAtScopes[V][L] = C;
+ return C;
+}
+
+const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
if (isa<SCEVConstant>(V)) return V;
// If this instruction is evolved from a constant-evolving PHI, compute the
@@ -3567,7 +3981,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// to see if the loop that contains it has a known backedge-taken
// count. If so, we may be able to force computation of the exit
// value.
- const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
if (const SCEVConstant *BTCC =
dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
// Okay, we know how many times the containing loop executes. If
@@ -3585,13 +3999,6 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// the arguments into constants, and if so, try to constant propagate the
// result. This is particularly useful for computing loop exit values.
if (CanConstantFold(I)) {
- // Check to see if we've folded this instruction at this loop before.
- std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
- std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
- Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
- if (!Pair.second)
- return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
-
std::vector<Constant*> Operands;
Operands.reserve(I->getNumOperands());
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
@@ -3605,7 +4012,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
if (!isSCEVable(Op->getType()))
return V;
- const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
+ const SCEV* OpV = getSCEVAtScope(Op, L);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Constant *C = SC->getValue();
if (C->getType() != Op->getType())
@@ -3634,11 +4041,12 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Constant *C;
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
- &Operands[0], Operands.size());
+ &Operands[0], Operands.size(),
+ getContext());
else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- &Operands[0], Operands.size());
- Pair.first->second = C;
+ &Operands[0], Operands.size(),
+ getContext());
return getSCEV(C);
}
}
@@ -3651,7 +4059,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// Avoid performing the look-up in the common case where the specified
// expression has no loop-variant portions.
for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
- const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+ const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
if (OpAtScope != Comm->getOperand(i)) {
// Okay, at least one of these operands is loop variant but might be
// foldable. Build a new instance of the folded commutative expression.
@@ -3671,7 +4079,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
return getSMaxExpr(NewOps);
if (isa<SCEVUMaxExpr>(Comm))
return getUMaxExpr(NewOps);
- assert(0 && "Unknown commutative SCEV type!");
+ llvm_unreachable("Unknown commutative SCEV type!");
}
}
// If we got here, all operands are loop invariant.
@@ -3679,8 +4087,8 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
}
if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
- const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
- const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
+ const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
+ const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
if (LHS == Div->getLHS() && RHS == Div->getRHS())
return Div; // must be loop invariant
return getUDivExpr(LHS, RHS);
@@ -3692,7 +4100,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
- const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
// Then, evaluate the AddRec.
@@ -3702,33 +4110,36 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
}
if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getZeroExtendExpr(Op, Cast->getType());
}
if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getSignExtendExpr(Op, Cast->getType());
}
if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getTruncateExpr(Op, Cast->getType());
}
- assert(0 && "Unknown SCEV type!");
+ if (isa<SCEVTargetDataConstant>(V))
+ return V;
+
+ llvm_unreachable("Unknown SCEV type!");
return 0;
}
/// getSCEVAtScope - This is a convenience function which does
/// getSCEVAtScope(getSCEV(V), L).
-const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
+const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
return getSCEVAtScope(getSCEV(V), L);
}
@@ -3741,7 +4152,7 @@ const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
/// A and B isn't important.
///
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
-static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
+static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
ScalarEvolution &SE) {
uint32_t BW = A.getBitWidth();
assert(BW == B.getBitWidth() && "Bit widths must be the same.");
@@ -3784,7 +4195,7 @@ static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
/// might be the same) or two SCEVCouldNotCompute objects.
///
-static std::pair<const SCEV*,const SCEV*>
+static std::pair<const SCEV *,const SCEV *>
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
@@ -3833,8 +4244,12 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
return std::make_pair(CNC, CNC);
}
- ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
- ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
+ LLVMContext &Context = SE.getContext();
+
+ ConstantInt *Solution1 =
+ ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
+ ConstantInt *Solution2 =
+ ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
return std::make_pair(SE.getConstant(Solution1),
SE.getConstant(Solution2));
@@ -3843,7 +4258,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
/// HowFarToZero - Return the number of times a backedge comparing the specified
/// value to zero will execute. If not computable, return CouldNotCompute.
-const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
+const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
@@ -3878,7 +4293,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// First, handle unitary steps.
if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
- return getNegativeSCEV(Start); // N = -Start (as unsigned)
+ return getNegativeSCEV(Start); // N = -Start (as unsigned)
if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
return Start; // N = Start (as unsigned)
@@ -3891,7 +4306,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
} else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
// the quadratic equation to solve it.
- std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
+ std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
*this);
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
@@ -3910,7 +4325,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// We can only use this value if the chrec ends up with an exact zero
// value at this index. When solving for "X*X != 5", for example, we
// should not accept a root of 2.
- const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
+ const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
if (Val->isZero())
return R1; // We found a quadratic root!
}
@@ -3923,7 +4338,7 @@ const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
/// HowFarToNonZero - Return the number of times a backedge checking the
/// specified value for nonzero will execute. If not computable, return
/// CouldNotCompute
-const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
+const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
// Loops that look like: while (X == 0) are very strange indeed. We don't
// handle them yet except for the trivial case. This could be expanded in the
// future as needed.
@@ -3984,7 +4399,7 @@ ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
/// more general, since a front-end may have replicated the controlling
/// expression.
///
-static bool HasSameValue(const SCEV* A, const SCEV* B) {
+static bool HasSameValue(const SCEV *A, const SCEV *B) {
// Quick check to see if they are the same SCEV.
if (A == B) return true;
@@ -3994,19 +4409,142 @@ static bool HasSameValue(const SCEV* A, const SCEV* B) {
if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
- if (AI->isIdenticalTo(BI))
+ if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
return true;
// Otherwise assume they may have a different value.
return false;
}
-/// isLoopGuardedByCond - Test whether entry to the loop is protected by
-/// a conditional between LHS and RHS. This is used to help avoid max
-/// expressions in loop trip counts.
-bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
+bool ScalarEvolution::isKnownNegative(const SCEV *S) {
+ return getSignedRange(S).getSignedMax().isNegative();
+}
+
+bool ScalarEvolution::isKnownPositive(const SCEV *S) {
+ return getSignedRange(S).getSignedMin().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
+ return !getSignedRange(S).getSignedMin().isNegative();
+}
+
+bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
+ return !getSignedRange(S).getSignedMax().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
+ return isKnownNegative(S) || isKnownPositive(S);
+}
+
+bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+
+ if (HasSameValue(LHS, RHS))
+ return ICmpInst::isTrueWhenEqual(Pred);
+
+ switch (Pred) {
+ default:
+ llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+ break;
+ case ICmpInst::ICMP_SGT:
+ Pred = ICmpInst::ICMP_SLT;
+ std::swap(LHS, RHS);
+ case ICmpInst::ICMP_SLT: {
+ ConstantRange LHSRange = getSignedRange(LHS);
+ ConstantRange RHSRange = getSignedRange(RHS);
+ if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
+ return true;
+ if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
+ return false;
+ break;
+ }
+ case ICmpInst::ICMP_SGE:
+ Pred = ICmpInst::ICMP_SLE;
+ std::swap(LHS, RHS);
+ case ICmpInst::ICMP_SLE: {
+ ConstantRange LHSRange = getSignedRange(LHS);
+ ConstantRange RHSRange = getSignedRange(RHS);
+ if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
+ return true;
+ if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
+ return false;
+ break;
+ }
+ case ICmpInst::ICMP_UGT:
+ Pred = ICmpInst::ICMP_ULT;
+ std::swap(LHS, RHS);
+ case ICmpInst::ICMP_ULT: {
+ ConstantRange LHSRange = getUnsignedRange(LHS);
+ ConstantRange RHSRange = getUnsignedRange(RHS);
+ if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
+ return true;
+ if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
+ return false;
+ break;
+ }
+ case ICmpInst::ICMP_UGE:
+ Pred = ICmpInst::ICMP_ULE;
+ std::swap(LHS, RHS);
+ case ICmpInst::ICMP_ULE: {
+ ConstantRange LHSRange = getUnsignedRange(LHS);
+ ConstantRange RHSRange = getUnsignedRange(RHS);
+ if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
+ return true;
+ if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
+ return false;
+ break;
+ }
+ case ICmpInst::ICMP_NE: {
+ if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
+ return true;
+ if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
+ return true;
+
+ const SCEV *Diff = getMinusSCEV(LHS, RHS);
+ if (isKnownNonZero(Diff))
+ return true;
+ break;
+ }
+ case ICmpInst::ICMP_EQ:
+ // The check at the top of the function catches the case where
+ // the values are known to be equal.
+ break;
+ }
+ return false;
+}
+
+/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
+/// protected by a conditional between LHS and RHS. This is used to
+/// to eliminate casts.
+bool
+ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
+ // Interpret a null as meaning no loop, where there is obviously no guard
+ // (interprocedural conditions notwithstanding).
+ if (!L) return true;
+
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return false;
+
+ BranchInst *LoopContinuePredicate =
+ dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!LoopContinuePredicate ||
+ LoopContinuePredicate->isUnconditional())
+ return false;
+
+ return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
+ LoopContinuePredicate->getSuccessor(0) != L->getHeader());
+}
+
+/// isLoopGuardedByCond - Test whether entry to the loop is protected
+/// by a conditional between LHS and RHS. This is used to help avoid max
+/// expressions in loop trip counts, and to eliminate casts.
+bool
+ScalarEvolution::isLoopGuardedByCond(const Loop *L,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS) {
// Interpret a null as meaning no loop, where there is obviously no guard
// (interprocedural conditions notwithstanding).
if (!L) return false;
@@ -4027,136 +4565,308 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
LoopEntryPredicate->isUnconditional())
continue;
- if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
- LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
+ if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
+ LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
return true;
}
return false;
}
-/// isNecessaryCond - Test whether the given CondValue value is a condition
-/// which is at least as strict as the one described by Pred, LHS, and RHS.
-bool ScalarEvolution::isNecessaryCond(Value *CondValue,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- bool Inverse) {
+/// isImpliedCond - Test whether the condition described by Pred, LHS,
+/// and RHS is true whenever the given Cond value evaluates to true.
+bool ScalarEvolution::isImpliedCond(Value *CondValue,
+ ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ bool Inverse) {
// Recursivly handle And and Or conditions.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
if (BO->getOpcode() == Instruction::And) {
if (!Inverse)
- return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
- isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+ return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+ isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
} else if (BO->getOpcode() == Instruction::Or) {
if (Inverse)
- return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
- isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
+ return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
+ isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
}
}
ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
if (!ICI) return false;
+ // Bail if the ICmp's operands' types are wider than the needed type
+ // before attempting to call getSCEV on them. This avoids infinite
+ // recursion, since the analysis of widening casts can require loop
+ // exit condition information for overflow checking, which would
+ // lead back here.
+ if (getTypeSizeInBits(LHS->getType()) <
+ getTypeSizeInBits(ICI->getOperand(0)->getType()))
+ return false;
+
// Now that we found a conditional branch that dominates the loop, check to
// see if it is the comparison we are looking for.
- Value *PreCondLHS = ICI->getOperand(0);
- Value *PreCondRHS = ICI->getOperand(1);
- ICmpInst::Predicate Cond;
+ ICmpInst::Predicate FoundPred;
if (Inverse)
- Cond = ICI->getInversePredicate();
+ FoundPred = ICI->getInversePredicate();
else
- Cond = ICI->getPredicate();
+ FoundPred = ICI->getPredicate();
+
+ const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
+ const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
+
+ // Balance the types. The case where FoundLHS' type is wider than
+ // LHS' type is checked for above.
+ if (getTypeSizeInBits(LHS->getType()) >
+ getTypeSizeInBits(FoundLHS->getType())) {
+ if (CmpInst::isSigned(Pred)) {
+ FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
+ FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
+ } else {
+ FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
+ FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
+ }
+ }
- if (Cond == Pred)
- ; // An exact match.
- else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
- ; // The actual condition is beyond sufficient.
- else
- // Check a few special cases.
- switch (Cond) {
+ // Canonicalize the query to match the way instcombine will have
+ // canonicalized the comparison.
+ // First, put a constant operand on the right.
+ if (isa<SCEVConstant>(LHS)) {
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+ // Then, canonicalize comparisons with boundary cases.
+ if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
+ const APInt &RA = RC->getValue()->getValue();
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ break;
+ case ICmpInst::ICMP_UGE:
+ if ((RA - 1).isMinValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ RHS = getConstant(RA - 1);
+ break;
+ }
+ if (RA.isMaxValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ }
+ if (RA.isMinValue()) return true;
+ break;
+ case ICmpInst::ICMP_ULE:
+ if ((RA + 1).isMaxValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ RHS = getConstant(RA + 1);
+ break;
+ }
+ if (RA.isMinValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ }
+ if (RA.isMaxValue()) return true;
+ break;
+ case ICmpInst::ICMP_SGE:
+ if ((RA - 1).isMinSignedValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ RHS = getConstant(RA - 1);
+ break;
+ }
+ if (RA.isMaxSignedValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ }
+ if (RA.isMinSignedValue()) return true;
+ break;
+ case ICmpInst::ICMP_SLE:
+ if ((RA + 1).isMaxSignedValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ RHS = getConstant(RA + 1);
+ break;
+ }
+ if (RA.isMinSignedValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ }
+ if (RA.isMaxSignedValue()) return true;
+ break;
case ICmpInst::ICMP_UGT:
- if (Pred == ICmpInst::ICMP_ULT) {
- std::swap(PreCondLHS, PreCondRHS);
- Cond = ICmpInst::ICMP_ULT;
+ if (RA.isMinValue()) {
+ Pred = ICmpInst::ICMP_NE;
break;
}
- return false;
+ if ((RA + 1).isMaxValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ RHS = getConstant(RA + 1);
+ break;
+ }
+ if (RA.isMaxValue()) return false;
+ break;
+ case ICmpInst::ICMP_ULT:
+ if (RA.isMaxValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ }
+ if ((RA - 1).isMinValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ RHS = getConstant(RA - 1);
+ break;
+ }
+ if (RA.isMinValue()) return false;
+ break;
case ICmpInst::ICMP_SGT:
- if (Pred == ICmpInst::ICMP_SLT) {
- std::swap(PreCondLHS, PreCondRHS);
- Cond = ICmpInst::ICMP_SLT;
+ if (RA.isMinSignedValue()) {
+ Pred = ICmpInst::ICMP_NE;
break;
}
- return false;
- case ICmpInst::ICMP_NE:
- // Expressions like (x >u 0) are often canonicalized to (x != 0),
- // so check for this case by checking if the NE is comparing against
- // a minimum or maximum constant.
- if (!ICmpInst::isTrueWhenEqual(Pred))
- if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
- const APInt &A = CI->getValue();
- switch (Pred) {
- case ICmpInst::ICMP_SLT:
- if (A.isMaxSignedValue()) break;
- return false;
- case ICmpInst::ICMP_SGT:
- if (A.isMinSignedValue()) break;
- return false;
- case ICmpInst::ICMP_ULT:
- if (A.isMaxValue()) break;
- return false;
- case ICmpInst::ICMP_UGT:
- if (A.isMinValue()) break;
- return false;
- default:
- return false;
- }
- Cond = ICmpInst::ICMP_NE;
- // NE is symmetric but the original comparison may not be. Swap
- // the operands if necessary so that they match below.
- if (isa<SCEVConstant>(LHS))
- std::swap(PreCondLHS, PreCondRHS);
- break;
- }
- return false;
- default:
- // We weren't able to reconcile the condition.
- return false;
+ if ((RA + 1).isMaxSignedValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ RHS = getConstant(RA + 1);
+ break;
+ }
+ if (RA.isMaxSignedValue()) return false;
+ break;
+ case ICmpInst::ICMP_SLT:
+ if (RA.isMaxSignedValue()) {
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ }
+ if ((RA - 1).isMinSignedValue()) {
+ Pred = ICmpInst::ICMP_EQ;
+ RHS = getConstant(RA - 1);
+ break;
+ }
+ if (RA.isMinSignedValue()) return false;
+ break;
+ }
+ }
+
+ // Check to see if we can make the LHS or RHS match.
+ if (LHS == FoundRHS || RHS == FoundLHS) {
+ if (isa<SCEVConstant>(RHS)) {
+ std::swap(FoundLHS, FoundRHS);
+ FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
+ } else {
+ std::swap(LHS, RHS);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
}
+ }
- if (!PreCondLHS->getType()->isInteger()) return false;
+ // Check whether the found predicate is the same as the desired predicate.
+ if (FoundPred == Pred)
+ return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
- const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
- const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
- return (HasSameValue(LHS, PreCondLHSSCEV) &&
- HasSameValue(RHS, PreCondRHSSCEV)) ||
- (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
- HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
+ // Check whether swapping the found predicate makes it the same as the
+ // desired predicate.
+ if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
+ if (isa<SCEVConstant>(RHS))
+ return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
+ else
+ return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
+ RHS, LHS, FoundLHS, FoundRHS);
+ }
+
+ // Check whether the actual condition is beyond sufficient.
+ if (FoundPred == ICmpInst::ICMP_EQ)
+ if (ICmpInst::isTrueWhenEqual(Pred))
+ if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+ if (Pred == ICmpInst::ICMP_NE)
+ if (!ICmpInst::isTrueWhenEqual(FoundPred))
+ if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
+ return true;
+
+ // Otherwise assume the worst.
+ return false;
+}
+
+/// isImpliedCondOperands - Test whether the condition described by Pred,
+/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
+/// and FoundRHS is true.
+bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ return isImpliedCondOperandsHelper(Pred, LHS, RHS,
+ FoundLHS, FoundRHS) ||
+ // ~x < ~y --> x > y
+ isImpliedCondOperandsHelper(Pred, LHS, RHS,
+ getNotSCEV(FoundRHS),
+ getNotSCEV(FoundLHS));
+}
+
+/// isImpliedCondOperandsHelper - Test whether the condition described by
+/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
+/// FoundLHS, and FoundRHS is true.
+bool
+ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
+ const SCEV *LHS, const SCEV *RHS,
+ const SCEV *FoundLHS,
+ const SCEV *FoundRHS) {
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+ isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+ isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+ isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+ return true;
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+ isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+ return true;
+ break;
+ }
+
+ return false;
}
/// getBECount - Subtract the end and start values and divide by the step,
/// rounding up, to get the number of times the backedge is executed. Return
/// CouldNotCompute if an intermediate computation overflows.
-const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
- const SCEV* End,
- const SCEV* Step) {
+const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
+ const SCEV *End,
+ const SCEV *Step,
+ bool NoWrap) {
const Type *Ty = Start->getType();
- const SCEV* NegOne = getIntegerSCEV(-1, Ty);
- const SCEV* Diff = getMinusSCEV(End, Start);
- const SCEV* RoundUp = getAddExpr(Step, NegOne);
+ const SCEV *NegOne = getIntegerSCEV(-1, Ty);
+ const SCEV *Diff = getMinusSCEV(End, Start);
+ const SCEV *RoundUp = getAddExpr(Step, NegOne);
// Add an adjustment to the difference between End and Start so that
// the division will effectively round up.
- const SCEV* Add = getAddExpr(Diff, RoundUp);
-
- // Check Add for unsigned overflow.
- // TODO: More sophisticated things could be done here.
- const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
- const SCEV* OperandExtendedAdd =
- getAddExpr(getZeroExtendExpr(Diff, WideTy),
- getZeroExtendExpr(RoundUp, WideTy));
- if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
- return getCouldNotCompute();
+ const SCEV *Add = getAddExpr(Diff, RoundUp);
+
+ if (!NoWrap) {
+ // Check Add for unsigned overflow.
+ // TODO: More sophisticated things could be done here.
+ const Type *WideTy = IntegerType::get(getContext(),
+ getTypeSizeInBits(Ty) + 1);
+ const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
+ const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
+ const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
+ if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
+ return getCouldNotCompute();
+ }
return getUDivExpr(Add, Step);
}
@@ -4174,10 +4884,14 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (!AddRec || AddRec->getLoop() != L)
return getCouldNotCompute();
+ // Check to see if we have a flag which makes analysis easy.
+ bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
+ AddRec->hasNoUnsignedWrap();
+
if (AddRec->isAffine()) {
// FORNOW: We only support unit strides.
unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
- const SCEV* Step = AddRec->getStepRecurrence(*this);
+ const SCEV *Step = AddRec->getStepRecurrence(*this);
// TODO: handle non-constant strides.
const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
@@ -4186,7 +4900,10 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (CStep->isOne()) {
// With unit stride, the iteration never steps past the limit value.
} else if (CStep->getValue()->getValue().isStrictlyPositive()) {
- if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
+ if (NoWrap) {
+ // We know the iteration won't step past the maximum value for its type.
+ ;
+ } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
// Test whether a positive iteration iteration can step past the limit
// value and past the maximum value for its type in a single step.
if (isSigned) {
@@ -4213,39 +4930,37 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
// treat m-n as signed nor unsigned due to overflow possibility.
// First, we get the value of the LHS in the first iteration: n
- const SCEV* Start = AddRec->getOperand(0);
+ const SCEV *Start = AddRec->getOperand(0);
// Determine the minimum constant start value.
- const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
- getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
- APInt::getMinValue(BitWidth));
+ const SCEV *MinStart = getConstant(isSigned ?
+ getSignedRange(Start).getSignedMin() :
+ getUnsignedRange(Start).getUnsignedMin());
// If we know that the condition is true in order to enter the loop,
// then we know that it will run exactly (m-n)/s times. Otherwise, we
// only know that it will execute (max(m,n)-n)/s times. In both cases,
// the division must round up.
- const SCEV* End = RHS;
+ const SCEV *End = RHS;
if (!isLoopGuardedByCond(L,
- isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ isSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT,
getMinusSCEV(Start, Step), RHS))
End = isSigned ? getSMaxExpr(RHS, Start)
: getUMaxExpr(RHS, Start);
// Determine the maximum constant end value.
- const SCEV* MaxEnd =
- isa<SCEVConstant>(End) ? End :
- getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
- .ashr(GetMinSignBits(End) - 1) :
- APInt::getMaxValue(BitWidth)
- .lshr(GetMinLeadingZeros(End)));
+ const SCEV *MaxEnd = getConstant(isSigned ?
+ getSignedRange(End).getSignedMax() :
+ getUnsignedRange(End).getUnsignedMax());
// Finally, we subtract these two values and divide, rounding up, to get
// the number of times the backedge is executed.
- const SCEV* BECount = getBECount(Start, End, Step);
+ const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
// The maximum backedge count is similar, except using the minimum start
// value and the maximum end value.
- const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);
+ const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
return BackedgeTakenInfo(BECount, MaxBECount);
}
@@ -4258,7 +4973,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
/// this is that it returns the first iteration number where the value is not in
/// the condition, thus computing the exit count. If the iteration count can't
/// be computed, an instance of SCEVCouldNotCompute is returned.
-const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
+const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
ScalarEvolution &SE) const {
if (Range.isFullSet()) // Infinite loop.
return SE.getCouldNotCompute();
@@ -4266,9 +4981,9 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// If the start is a non-zero constant, shift the range to simplify things.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
if (!SC->getValue()->isZero()) {
- SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
+ SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Operands[0] = SE.getIntegerSCEV(0, SC->getType());
- const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
+ const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
if (const SCEVAddRecExpr *ShiftedAddRec =
dyn_cast<SCEVAddRecExpr>(Shifted))
return ShiftedAddRec->getNumIterationsInRange(
@@ -4307,7 +5022,7 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// The exit value should be (End+A)/A.
APInt ExitVal = (End + A).udiv(A);
- ConstantInt *ExitValue = ConstantInt::get(ExitVal);
+ ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
// Evaluate at the exit value. If we really did fall out of the valid
// range, then we computed our trip count, otherwise wrap around or other
@@ -4319,7 +5034,7 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// Ensure that the previous value is in the range. This is a sanity check.
assert(Range.contains(
EvaluateConstantChrecAtConstant(this,
- ConstantInt::get(ExitVal - One), SE)->getValue()) &&
+ ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!");
return SE.getConstant(ExitValue);
} else if (isQuadratic()) {
@@ -4327,12 +5042,12 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// quadratic equation to solve it. To do this, we must frame our problem in
// terms of figuring out when zero is crossed, instead of when
// Range.getUpper() is crossed.
- SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
+ SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
- const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
+ const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
// Next, solve the constructed addrec
- std::pair<const SCEV*,const SCEV*> Roots =
+ std::pair<const SCEV *,const SCEV *> Roots =
SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
@@ -4340,7 +5055,7 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// Pick the smallest positive root value.
if (ConstantInt *CB =
dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
- R1->getValue(), R2->getValue()))) {
+ R1->getValue(), R2->getValue()))) {
if (CB->getZExtValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
@@ -4352,7 +5067,8 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
SE);
if (Range.contains(R1Val->getValue())) {
// The next iteration must be out of the range...
- ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
+ ConstantInt *NextVal =
+ ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
if (!Range.contains(R1Val->getValue()))
@@ -4362,7 +5078,8 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
// If R1 was not in the range, then it is a good return value. Make
// sure that R1-1 WAS in the range though, just in case.
- ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
+ ConstantInt *NextVal =
+ ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
if (Range.contains(R1Val->getValue()))
return R1;
@@ -4381,22 +5098,21 @@ const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
//===----------------------------------------------------------------------===//
void ScalarEvolution::SCEVCallbackVH::deleted() {
- assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
+ assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
SE->ConstantEvolutionLoopExitValue.erase(PN);
- if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
- SE->ValuesAtScopes.erase(I);
SE->Scalars.erase(getValPtr());
// this now dangles!
}
void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
- assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
+ assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
// Forget all the expressions associated with users of the old value,
// so that future queries will recompute the expressions using the new
// value.
SmallVector<User *, 16> Worklist;
+ SmallPtrSet<User *, 8> Visited;
Value *Old = getValPtr();
bool DeleteOld = false;
for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
@@ -4410,20 +5126,19 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
DeleteOld = true;
continue;
}
+ if (!Visited.insert(U))
+ continue;
if (PHINode *PN = dyn_cast<PHINode>(U))
SE->ConstantEvolutionLoopExitValue.erase(PN);
- if (Instruction *I = dyn_cast<Instruction>(U))
- SE->ValuesAtScopes.erase(I);
- if (SE->Scalars.erase(U))
- for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
- UI != UE; ++UI)
- Worklist.push_back(*UI);
+ SE->Scalars.erase(U);
+ for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
+ UI != UE; ++UI)
+ Worklist.push_back(*UI);
}
+ // Delete the Old value if it (indirectly) references itself.
if (DeleteOld) {
if (PHINode *PN = dyn_cast<PHINode>(Old))
SE->ConstantEvolutionLoopExitValue.erase(PN);
- if (Instruction *I = dyn_cast<Instruction>(Old))
- SE->ValuesAtScopes.erase(I);
SE->Scalars.erase(Old);
// this now dangles!
}
@@ -4502,21 +5217,21 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
// out SCEV values of all instructions that are interesting. Doing
// this potentially causes it to create new SCEV objects though,
// which technically conflicts with the const qualifier. This isn't
- // observable from outside the class though (the hasSCEV function
- // notwithstanding), so casting away the const isn't dangerous.
+ // observable from outside the class though, so casting away the
+ // const isn't dangerous.
ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
OS << "Classifying expressions for: " << F->getName() << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (isSCEVable(I->getType())) {
- OS << *I;
+ OS << *I << '\n';
OS << " --> ";
- const SCEV* SV = SE.getSCEV(&*I);
+ const SCEV *SV = SE.getSCEV(&*I);
SV->print(OS);
const Loop *L = LI->getLoopFor((*I).getParent());
- const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
+ const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
if (AtUse != SV) {
OS << " --> ";
AtUse->print(OS);
@@ -4524,7 +5239,7 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
if (L) {
OS << "\t\t" "Exits: ";
- const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
+ const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
if (!ExitValue->isLoopInvariant(L)) {
OS << "<<Unknown>>";
} else {
@@ -4540,7 +5255,3 @@ void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
PrintLoopInfo(OS, &SE, *I);
}
-void ScalarEvolution::print(std::ostream &o, const Module *M) const {
- raw_os_ostream OS(o);
- print(OS, M);
-}
diff --git a/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
new file mode 100644
index 0000000..cc79e6c
--- /dev/null
+++ b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
@@ -0,0 +1,133 @@
+//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ScalarEvolutionAliasAnalysis pass, which implements a
+// simple alias analysis implemented in terms of ScalarEvolution queries.
+//
+// ScalarEvolution has a more complete understanding of pointer arithmetic
+// than BasicAliasAnalysis' collection of ad-hoc analyses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Compiler.h"
+using namespace llvm;
+
+namespace {
+ /// ScalarEvolutionAliasAnalysis - This is a simple alias analysis
+ /// implementation that uses ScalarEvolution to answer queries.
+ class VISIBILITY_HIDDEN ScalarEvolutionAliasAnalysis : public FunctionPass,
+ public AliasAnalysis {
+ ScalarEvolution *SE;
+
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+ ScalarEvolutionAliasAnalysis() : FunctionPass(&ID), SE(0) {}
+
+ private:
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ virtual bool runOnFunction(Function &F);
+ virtual AliasResult alias(const Value *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size);
+
+ Value *GetUnderlyingIdentifiedObject(const SCEV *S);
+ };
+} // End of anonymous namespace
+
+// Register this pass...
+char ScalarEvolutionAliasAnalysis::ID = 0;
+static RegisterPass<ScalarEvolutionAliasAnalysis>
+X("scev-aa", "ScalarEvolution-based Alias Analysis", false, true);
+
+// Declare that we implement the AliasAnalysis interface
+static RegisterAnalysisGroup<AliasAnalysis> Y(X);
+
+FunctionPass *llvm::createScalarEvolutionAliasAnalysisPass() {
+ return new ScalarEvolutionAliasAnalysis();
+}
+
+void
+ScalarEvolutionAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredTransitive<ScalarEvolution>();
+ AU.setPreservesAll();
+ AliasAnalysis::getAnalysisUsage(AU);
+}
+
+bool
+ScalarEvolutionAliasAnalysis::runOnFunction(Function &F) {
+ InitializeAliasAnalysis(this);
+ SE = &getAnalysis<ScalarEvolution>();
+ return false;
+}
+
+/// GetUnderlyingIdentifiedObject - Given an expression, try to find an
+/// "identified object" (see AliasAnalysis::isIdentifiedObject) base
+/// value. Return null is none was found.
+Value *
+ScalarEvolutionAliasAnalysis::GetUnderlyingIdentifiedObject(const SCEV *S) {
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ // In an addrec, assume that the base will be in the start, rather
+ // than the step.
+ return GetUnderlyingIdentifiedObject(AR->getStart());
+ } else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
+ // If there's a pointer operand, it'll be sorted at the end of the list.
+ const SCEV *Last = A->getOperand(A->getNumOperands()-1);
+ if (isa<PointerType>(Last->getType()))
+ return GetUnderlyingIdentifiedObject(Last);
+ } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ // Determine if we've found an Identified object.
+ Value *V = U->getValue();
+ if (isIdentifiedObject(V))
+ return V;
+ }
+ // No Identified object found.
+ return 0;
+}
+
+AliasAnalysis::AliasResult
+ScalarEvolutionAliasAnalysis::alias(const Value *A, unsigned ASize,
+ const Value *B, unsigned BSize) {
+ // This is ScalarEvolutionAliasAnalysis. Get the SCEVs!
+ const SCEV *AS = SE->getSCEV(const_cast<Value *>(A));
+ const SCEV *BS = SE->getSCEV(const_cast<Value *>(B));
+
+ // If they evaluate to the same expression, it's a MustAlias.
+ if (AS == BS) return MustAlias;
+
+ // If something is known about the difference between the two addresses,
+ // see if it's enough to prove a NoAlias.
+ if (SE->getEffectiveSCEVType(AS->getType()) ==
+ SE->getEffectiveSCEVType(BS->getType())) {
+ unsigned BitWidth = SE->getTypeSizeInBits(AS->getType());
+ APInt AI(BitWidth, ASize);
+ const SCEV *BA = SE->getMinusSCEV(BS, AS);
+ if (AI.ule(SE->getUnsignedRange(BA).getUnsignedMin())) {
+ APInt BI(BitWidth, BSize);
+ const SCEV *AB = SE->getMinusSCEV(AS, BS);
+ if (BI.ule(SE->getUnsignedRange(AB).getUnsignedMin()))
+ return NoAlias;
+ }
+ }
+
+ // If ScalarEvolution can find an underlying object, form a new query.
+ // The correctness of this depends on ScalarEvolution not recognizing
+ // inttoptr and ptrtoint operators.
+ Value *AO = GetUnderlyingIdentifiedObject(AS);
+ Value *BO = GetUnderlyingIdentifiedObject(BS);
+ if ((AO && AO != A) || (BO && BO != B))
+ if (alias(AO ? AO : A, AO ? ~0u : ASize,
+ BO ? BO : B, BO ? ~0u : BSize) == NoAlias)
+ return NoAlias;
+
+ // Forward the query to the next analysis.
+ return AliasAnalysis::alias(A, ASize, B, BSize);
+}
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index 729a0c3..d674ee8 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -15,6 +15,7 @@
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
@@ -52,10 +53,9 @@ Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
return CE->getOperand(0);
}
- // FIXME: keep track of the cast instruction.
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(Op, C, Ty);
-
+
if (Argument *A = dyn_cast<Argument>(V)) {
// Check to see if there is already a cast!
for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
@@ -155,55 +155,95 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
-static bool FactorOutConstant(const SCEV* &S,
- const SCEV* &Remainder,
- const APInt &Factor,
- ScalarEvolution &SE) {
+static bool FactorOutConstant(const SCEV *&S,
+ const SCEV *&Remainder,
+ const SCEV *Factor,
+ ScalarEvolution &SE,
+ const TargetData *TD) {
// Everything is divisible by one.
- if (Factor == 1)
+ if (Factor->isOne())
+ return true;
+
+ // x/x == 1.
+ if (S == Factor) {
+ S = SE.getIntegerSCEV(1, S->getType());
return true;
+ }
// For a Constant, check for a multiple of the given factor.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- ConstantInt *CI =
- ConstantInt::get(C->getValue()->getValue().sdiv(Factor));
- // If the quotient is zero and the remainder is non-zero, reject
- // the value at this scale. It will be considered for subsequent
- // smaller scales.
- if (C->isZero() || !CI->isZero()) {
- const SCEV* Div = SE.getConstant(CI);
- S = Div;
- Remainder =
- SE.getAddExpr(Remainder,
- SE.getConstant(C->getValue()->getValue().srem(Factor)));
+ // 0/x == 0.
+ if (C->isZero())
return true;
+ // Check for divisibility.
+ if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
+ ConstantInt *CI =
+ ConstantInt::get(SE.getContext(),
+ C->getValue()->getValue().sdiv(
+ FC->getValue()->getValue()));
+ // If the quotient is zero and the remainder is non-zero, reject
+ // the value at this scale. It will be considered for subsequent
+ // smaller scales.
+ if (!CI->isZero()) {
+ const SCEV *Div = SE.getConstant(CI);
+ S = Div;
+ Remainder =
+ SE.getAddExpr(Remainder,
+ SE.getConstant(C->getValue()->getValue().srem(
+ FC->getValue()->getValue())));
+ return true;
+ }
}
}
// In a Mul, check if there is a constant operand which is a multiple
// of the given factor.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
- if (!C->getValue()->getValue().srem(Factor)) {
- const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
- SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
- MOperands.end());
- NewMulOps[0] =
- SE.getConstant(C->getValue()->getValue().sdiv(Factor));
- S = SE.getMulExpr(NewMulOps);
- return true;
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
+ if (TD) {
+ // With TargetData, the size is known. Check if there is a constant
+ // operand which is a multiple of the given factor. If so, we can
+ // factor it.
+ const SCEVConstant *FC = cast<SCEVConstant>(Factor);
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
+ if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
+ const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+ SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
+ MOperands.end());
+ NewMulOps[0] =
+ SE.getConstant(C->getValue()->getValue().sdiv(
+ FC->getValue()->getValue()));
+ S = SE.getMulExpr(NewMulOps);
+ return true;
+ }
+ } else {
+ // Without TargetData, check if Factor can be factored out of any of the
+ // Mul's operands. If so, we can just remove it.
+ for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
+ const SCEV *SOp = M->getOperand(i);
+ const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
+ if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
+ Remainder->isZero()) {
+ const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+ SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
+ MOperands.end());
+ NewMulOps[i] = SOp;
+ S = SE.getMulExpr(NewMulOps);
+ return true;
+ }
}
+ }
+ }
// In an AddRec, check if both start and step are divisible.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV* Step = A->getStepRecurrence(SE);
- const SCEV* StepRem = SE.getIntegerSCEV(0, Step->getType());
- if (!FactorOutConstant(Step, StepRem, Factor, SE))
+ const SCEV *Step = A->getStepRecurrence(SE);
+ const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
+ if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
return false;
if (!StepRem->isZero())
return false;
- const SCEV* Start = A->getStart();
- if (!FactorOutConstant(Start, Remainder, Factor, SE))
+ const SCEV *Start = A->getStart();
+ if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
return false;
S = SE.getAddRecExpr(Start, Step, A->getLoop());
return true;
@@ -212,15 +252,81 @@ static bool FactorOutConstant(const SCEV* &S,
return false;
}
-/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
-/// instead of using ptrtoint+arithmetic+inttoptr. This helps
-/// BasicAliasAnalysis analyze the result. However, it suffers from the
-/// underlying bug described in PR2831. Addition in LLVM currently always
-/// has two's complement wrapping guaranteed. However, the semantics for
-/// getelementptr overflow are ambiguous. In the common case though, this
-/// expansion gets used when a GEP in the original code has been converted
-/// into integer arithmetic, in which case the resulting code will be no
-/// more undefined than it was originally.
+/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
+/// is the number of SCEVAddRecExprs present, which are kept at the end of
+/// the list.
+///
+static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
+ const Type *Ty,
+ ScalarEvolution &SE) {
+ unsigned NumAddRecs = 0;
+ for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
+ ++NumAddRecs;
+ // Group Ops into non-addrecs and addrecs.
+ SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
+ SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
+ // Let ScalarEvolution sort and simplify the non-addrecs list.
+ const SCEV *Sum = NoAddRecs.empty() ?
+ SE.getIntegerSCEV(0, Ty) :
+ SE.getAddExpr(NoAddRecs);
+ // If it returned an add, use the operands. Otherwise it simplified
+ // the sum into a single value, so just use that.
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
+ Ops = Add->getOperands();
+ else {
+ Ops.clear();
+ if (!Sum->isZero())
+ Ops.push_back(Sum);
+ }
+ // Then append the addrecs.
+ Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
+}
+
+/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
+/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
+/// This helps expose more opportunities for folding parts of the expressions
+/// into GEP indices.
+///
+static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
+ const Type *Ty,
+ ScalarEvolution &SE) {
+ // Find the addrecs.
+ SmallVector<const SCEV *, 8> AddRecs;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
+ const SCEV *Start = A->getStart();
+ if (Start->isZero()) break;
+ const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
+ AddRecs.push_back(SE.getAddRecExpr(Zero,
+ A->getStepRecurrence(SE),
+ A->getLoop()));
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
+ Ops[i] = Zero;
+ Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
+ e += Add->getNumOperands();
+ } else {
+ Ops[i] = Start;
+ }
+ }
+ if (!AddRecs.empty()) {
+ // Add the addrecs onto the end of the list.
+ Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
+ // Resort the operand list, moving any constants to the front.
+ SimplifyAddOperands(Ops, Ty, SE);
+ }
+}
+
+/// expandAddToGEP - Expand an addition expression with a pointer type into
+/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
+/// BasicAliasAnalysis and other passes analyze the result. See the rules
+/// for getelementptr vs. inttoptr in
+/// http://llvm.org/docs/LangRef.html#pointeraliasing
+/// for details.
+///
+/// Design note: The correctness of using getelmeentptr here depends on
+/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
+/// they may introduce pointer arithmetic which may not be safely converted
+/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
@@ -237,92 +343,130 @@ static bool FactorOutConstant(const SCEV* &S,
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
-Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
- const SCEV* const *op_end,
+Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
+ const SCEV *const *op_end,
const PointerType *PTy,
const Type *Ty,
Value *V) {
const Type *ElTy = PTy->getElementType();
SmallVector<Value *, 4> GepIndices;
- SmallVector<const SCEV*, 8> Ops(op_begin, op_end);
+ SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
bool AnyNonZeroIndices = false;
+ // Split AddRecs up into parts as either of the parts may be usable
+ // without the other.
+ SplitAddRecs(Ops, Ty, SE);
+
// Decend down the pointer's type and attempt to convert the other
// operands into GEP indices, at each level. The first index in a GEP
// indexes into the array implied by the pointer operand; the rest of
// the indices index into the element or field type selected by the
// preceding index.
for (;;) {
- APInt ElSize = APInt(SE.getTypeSizeInBits(Ty),
- ElTy->isSized() ? SE.TD->getTypeAllocSize(ElTy) : 0);
- SmallVector<const SCEV*, 8> NewOps;
- SmallVector<const SCEV*, 8> ScaledOps;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- // Split AddRecs up into parts as either of the parts may be usable
- // without the other.
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
- if (!A->getStart()->isZero()) {
- const SCEV* Start = A->getStart();
- Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
- A->getStepRecurrence(SE),
- A->getLoop()));
- Ops[i] = Start;
- ++e;
- }
- // If the scale size is not 0, attempt to factor out a scale.
- if (ElSize != 0) {
- const SCEV* Op = Ops[i];
- const SCEV* Remainder = SE.getIntegerSCEV(0, Op->getType());
- if (FactorOutConstant(Op, Remainder, ElSize, SE)) {
- ScaledOps.push_back(Op); // Op now has ElSize factored out.
- NewOps.push_back(Remainder);
- continue;
+ const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
+ // If the scale size is not 0, attempt to factor out a scale for
+ // array indexing.
+ SmallVector<const SCEV *, 8> ScaledOps;
+ if (ElTy->isSized() && !ElSize->isZero()) {
+ SmallVector<const SCEV *, 8> NewOps;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ const SCEV *Op = Ops[i];
+ const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
+ if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
+ // Op now has ElSize factored out.
+ ScaledOps.push_back(Op);
+ if (!Remainder->isZero())
+ NewOps.push_back(Remainder);
+ AnyNonZeroIndices = true;
+ } else {
+ // The operand was not divisible, so add it to the list of operands
+ // we'll scan next iteration.
+ NewOps.push_back(Ops[i]);
}
}
- // If the operand was not divisible, add it to the list of operands
- // we'll scan next iteration.
- NewOps.push_back(Ops[i]);
+ // If we made any changes, update Ops.
+ if (!ScaledOps.empty()) {
+ Ops = NewOps;
+ SimplifyAddOperands(Ops, Ty, SE);
+ }
}
- Ops = NewOps;
- AnyNonZeroIndices |= !ScaledOps.empty();
+
+ // Record the scaled array index for this level of the type. If
+ // we didn't find any operands that could be factored, tentatively
+ // assume that element zero was selected (since the zero offset
+ // would obviously be folded away).
Value *Scaled = ScaledOps.empty() ?
Constant::getNullValue(Ty) :
expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
GepIndices.push_back(Scaled);
// Collect struct field index operands.
- if (!Ops.empty())
- while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+ while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+ bool FoundFieldNo = false;
+ // An empty struct has no fields.
+ if (STy->getNumElements() == 0) break;
+ if (SE.TD) {
+ // With TargetData, field offsets are known. See if a constant offset
+ // falls within any of the struct fields.
+ if (Ops.empty()) break;
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
if (SE.getTypeSizeInBits(C->getType()) <= 64) {
const StructLayout &SL = *SE.TD->getStructLayout(STy);
uint64_t FullOffset = C->getValue()->getZExtValue();
if (FullOffset < SL.getSizeInBytes()) {
unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
- GepIndices.push_back(ConstantInt::get(Type::Int32Ty, ElIdx));
+ GepIndices.push_back(
+ ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
ElTy = STy->getTypeAtIndex(ElIdx);
Ops[0] =
SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
AnyNonZeroIndices = true;
- continue;
+ FoundFieldNo = true;
}
}
- break;
+ } else {
+ // Without TargetData, just check for a SCEVFieldOffsetExpr of the
+ // appropriate struct type.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ if (const SCEVFieldOffsetExpr *FO =
+ dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
+ if (FO->getStructType() == STy) {
+ unsigned FieldNo = FO->getFieldNo();
+ GepIndices.push_back(
+ ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ FieldNo));
+ ElTy = STy->getTypeAtIndex(FieldNo);
+ Ops[i] = SE.getConstant(Ty, 0);
+ AnyNonZeroIndices = true;
+ FoundFieldNo = true;
+ break;
+ }
+ }
+ // If no struct field offsets were found, tentatively assume that
+ // field zero was selected (since the zero offset would obviously
+ // be folded away).
+ if (!FoundFieldNo) {
+ ElTy = STy->getTypeAtIndex(0u);
+ GepIndices.push_back(
+ Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
}
+ }
- if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
ElTy = ATy->getElementType();
- continue;
- }
- break;
+ else
+ break;
}
// If none of the operands were convertable to proper GEP indices, cast
// the base to i8* and do an ugly getelementptr with that. It's still
// better than ptrtoint+arithmetic+inttoptr at least.
if (!AnyNonZeroIndices) {
+ // Cast the base to i8*.
V = InsertNoopCastOfTo(V,
- Type::Int8Ty->getPointerTo(PTy->getAddressSpace()));
+ Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
+
+ // Expand the operands for a plain byte offset.
Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
// Fold a GEP with constant operands.
@@ -345,12 +489,15 @@ Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
}
}
- Value *GEP = Builder.CreateGEP(V, Idx, "scevgep");
+ // Emit a GEP.
+ Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
InsertedValues.insert(GEP);
return GEP;
}
- // Insert a pretty getelementptr.
+ // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
+ // because ScalarEvolution may have changed the address arithmetic to
+ // compute a value which is beyond the end of the allocated object.
Value *GEP = Builder.CreateGEP(V,
GepIndices.begin(),
GepIndices.end(),
@@ -361,21 +508,37 @@ Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
}
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
+ int NumOperands = S->getNumOperands();
const Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *V = expand(S->getOperand(S->getNumOperands()-1));
+
+ // Find the index of an operand to start with. Choose the operand with
+ // pointer type, if there is one, or the last operand otherwise.
+ int PIdx = 0;
+ for (; PIdx != NumOperands - 1; ++PIdx)
+ if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;
+
+ // Expand code for the operand that we chose.
+ Value *V = expand(S->getOperand(PIdx));
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
- if (SE.TD)
- if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
- const SmallVectorImpl<const SCEV*> &Ops = S->getOperands();
- return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
- }
+ if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
+ // Take the operand at PIdx out of the list.
+ const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
+ SmallVector<const SCEV *, 8> NewOps;
+ NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
+ NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
+ // Make a GEP.
+ return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
+ }
+ // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
+ // arithmetic.
V = InsertNoopCastOfTo(V, Ty);
// Emit a bunch of add instructions
- for (int i = S->getNumOperands()-2; i >= 0; --i) {
+ for (int i = NumOperands-1; i >= 0; --i) {
+ if (i == PIdx) continue;
Value *W = expandCodeFor(S->getOperand(i), Ty);
V = InsertBinop(Instruction::Add, V, W);
}
@@ -422,7 +585,7 @@ Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
-static void ExposePointerBase(const SCEV* &Base, const SCEV* &Rest,
+static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
ScalarEvolution &SE) {
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
Base = A->getStart();
@@ -433,7 +596,7 @@ static void ExposePointerBase(const SCEV* &Base, const SCEV* &Rest,
}
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
Base = A->getOperand(A->getNumOperands()-1);
- SmallVector<const SCEV*, 8> NewAddOps(A->op_begin(), A->op_end());
+ SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
NewAddOps.back() = Rest;
Rest = SE.getAddExpr(NewAddOps);
ExposePointerBase(Base, Rest, SE);
@@ -457,11 +620,11 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
if (CanonicalIV &&
SE.getTypeSizeInBits(CanonicalIV->getType()) >
SE.getTypeSizeInBits(Ty)) {
- const SCEV *Start = SE.getAnyExtendExpr(S->getStart(),
- CanonicalIV->getType());
- const SCEV *Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
- CanonicalIV->getType());
- Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
+ const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
+ SmallVector<const SCEV *, 4> NewOps(Ops.size());
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
+ Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
BasicBlock::iterator NewInsertPt =
@@ -475,28 +638,26 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
- const SmallVectorImpl<const SCEV*> &SOperands = S->getOperands();
- SmallVector<const SCEV*, 4> NewOps(SOperands.begin(), SOperands.end());
+ const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
+ SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
NewOps[0] = SE.getIntegerSCEV(0, Ty);
- const SCEV* Rest = SE.getAddRecExpr(NewOps, L);
+ const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
- if (SE.TD) {
- const SCEV* Base = S->getStart();
- const SCEV* RestArray[1] = { Rest };
- // Dig into the expression to find the pointer base for a GEP.
- ExposePointerBase(Base, RestArray[0], SE);
- // If we found a pointer, expand the AddRec with a GEP.
- if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
- // Make sure the Base isn't something exotic, such as a multiplied
- // or divided pointer value. In those cases, the result type isn't
- // actually a pointer type.
- if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
- Value *StartV = expand(Base);
- assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
- return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
- }
+ const SCEV *Base = S->getStart();
+ const SCEV *RestArray[1] = { Rest };
+ // Dig into the expression to find the pointer base for a GEP.
+ ExposePointerBase(Base, RestArray[0], SE);
+ // If we found a pointer, expand the AddRec with a GEP.
+ if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
+ // Make sure the Base isn't something exotic, such as a multiplied
+ // or divided pointer value. In those cases, the result type isn't
+ // actually a pointer type.
+ if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
+ Value *StartV = expand(Base);
+ assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
+ return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
}
}
@@ -519,29 +680,22 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
- BasicBlock *Preheader = L->getLoopPreheader();
PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
InsertedValues.insert(PN);
- PN->addIncoming(Constant::getNullValue(Ty), Preheader);
- pred_iterator HPI = pred_begin(Header);
- assert(HPI != pred_end(Header) && "Loop with zero preds???");
- if (!L->contains(*HPI)) ++HPI;
- assert(HPI != pred_end(Header) && L->contains(*HPI) &&
- "No backedge in loop?");
-
- // Insert a unit add instruction right before the terminator corresponding
- // to the back-edge.
Constant *One = ConstantInt::get(Ty, 1);
- Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
- (*HPI)->getTerminator());
- InsertedValues.insert(Add);
-
- pred_iterator PI = pred_begin(Header);
- if (*PI == Preheader)
- ++PI;
- PN->addIncoming(Add, *PI);
- return PN;
+ for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
+ HPI != HPE; ++HPI)
+ if (L->contains(*HPI)) {
+ // Insert a unit add instruction right before the terminator corresponding
+ // to the back-edge.
+ Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
+ (*HPI)->getTerminator());
+ InsertedValues.insert(Add);
+ PN->addIncoming(Add, *HPI);
+ } else {
+ PN->addIncoming(Constant::getNullValue(Ty), *HPI);
+ }
}
// {0,+,F} --> {0,+,1} * F
@@ -563,19 +717,19 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
- const SCEV* IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
+ const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
// Promote S up to the canonical IV type, if the cast is foldable.
- const SCEV* NewS = S;
- const SCEV* Ext = SE.getNoopOrAnyExtend(S, I->getType());
+ const SCEV *NewS = S;
+ const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
if (isa<SCEVAddRecExpr>(Ext))
NewS = Ext;
- const SCEV* V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
+ const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
//cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
// Truncate the result down to the original type, if needed.
- const SCEV* T = SE.getTruncateOrNoop(V, Ty);
+ const SCEV *T = SE.getTruncateOrNoop(V, Ty);
return expand(T);
}
@@ -607,9 +761,15 @@ Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
}
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
- const Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *LHS = expandCodeFor(S->getOperand(0), Ty);
- for (unsigned i = 1; i < S->getNumOperands(); ++i) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
+ const Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands()-2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ if (S->getOperand(i)->getType() != Ty) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
@@ -617,13 +777,23 @@ Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
InsertedValues.insert(Sel);
LHS = Sel;
}
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
return LHS;
}
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
- const Type *Ty = SE.getEffectiveSCEVType(S->getType());
- Value *LHS = expandCodeFor(S->getOperand(0), Ty);
- for (unsigned i = 1; i < S->getNumOperands(); ++i) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
+ const Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands()-2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ if (S->getOperand(i)->getType() != Ty) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
Value *RHS = expandCodeFor(S->getOperand(i), Ty);
Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
InsertedValues.insert(ICmp);
@@ -631,10 +801,22 @@ Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
InsertedValues.insert(Sel);
LHS = Sel;
}
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
return LHS;
}
-Value *SCEVExpander::expandCodeFor(const SCEV* SH, const Type *Ty) {
+Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
+ return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
+}
+
+Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
+ return ConstantExpr::getSizeOf(S->getAllocType());
+}
+
+Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
// Expand the code for this SCEV.
Value *V = expand(SH);
if (Ty) {
@@ -695,7 +877,7 @@ Value *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
const Type *Ty) {
assert(Ty->isInteger() && "Can only insert integer induction variables!");
- const SCEV* H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
+ const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
SE.getIntegerSCEV(1, Ty), L);
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
diff --git a/lib/Analysis/SparsePropagation.cpp b/lib/Analysis/SparsePropagation.cpp
index 5433068..b7844f0 100644
--- a/lib/Analysis/SparsePropagation.cpp
+++ b/lib/Analysis/SparsePropagation.cpp
@@ -17,7 +17,9 @@
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -27,7 +29,7 @@ using namespace llvm;
AbstractLatticeFunction::~AbstractLatticeFunction() {}
/// PrintValue - Render the specified lattice value to the specified stream.
-void AbstractLatticeFunction::PrintValue(LatticeVal V, std::ostream &OS) {
+void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) {
if (V == UndefVal)
OS << "undefined";
else if (V == OverdefinedVal)
@@ -87,7 +89,7 @@ void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
- DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
+ DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
BBExecutable.insert(BB); // Basic block is executable!
BBWorkList.push_back(BB); // Add the block to the work list!
}
@@ -98,8 +100,8 @@ void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
return; // This edge is already known to be executable!
- DOUT << "Marking Edge Executable: " << Source->getNameStart()
- << " -> " << Dest->getNameStart() << "\n";
+ DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
+ << " -> " << Dest->getName() << "\n");
if (BBExecutable.count(Dest)) {
// The destination is already executable, but we just made an edge
@@ -153,7 +155,7 @@ void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
}
// Constant condition variables mean the branch can only go a single way
- Succs[C == ConstantInt::getFalse()] = true;
+ Succs[C == ConstantInt::getFalse(*Context)] = true;
return;
}
@@ -221,6 +223,16 @@ void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
}
void SparseSolver::visitPHINode(PHINode &PN) {
+ // The lattice function may store more information on a PHINode than could be
+ // computed from its incoming values. For example, SSI form stores its sigma
+ // functions as PHINodes with a single incoming value.
+ if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
+ LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
+ if (IV != LatticeFunc->getUntrackedVal())
+ UpdateState(PN, IV);
+ return;
+ }
+
LatticeVal PNIV = getOrInitValueState(&PN);
LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
@@ -283,7 +295,7 @@ void SparseSolver::Solve(Function &F) {
Instruction *I = InstWorkList.back();
InstWorkList.pop_back();
- DOUT << "\nPopped off I-WL: " << *I;
+ DEBUG(errs() << "\nPopped off I-WL: " << *I << "\n");
// "I" got into the work list because it made a transition. See if any
// users are both live and in need of updating.
@@ -300,7 +312,7 @@ void SparseSolver::Solve(Function &F) {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
- DOUT << "\nPopped off BBWL: " << *BB;
+ DEBUG(errs() << "\nPopped off BBWL: " << *BB);
// Notify all instructions in this basic block that they are newly
// executable.
@@ -310,7 +322,7 @@ void SparseSolver::Solve(Function &F) {
}
}
-void SparseSolver::Print(Function &F, std::ostream &OS) const {
+void SparseSolver::Print(Function &F, raw_ostream &OS) const {
OS << "\nFUNCTION: " << F.getNameStr() << "\n";
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (!BBExecutable.count(BB))
@@ -322,7 +334,7 @@ void SparseSolver::Print(Function &F, std::ostream &OS) const {
OS << "; anon bb\n";
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
LatticeFunc->PrintValue(getLatticeState(I), OS);
- OS << *I;
+ OS << *I << "\n";
}
OS << "\n";
diff --git a/lib/Analysis/Trace.cpp b/lib/Analysis/Trace.cpp
index 8f19fda..c9b303b 100644
--- a/lib/Analysis/Trace.cpp
+++ b/lib/Analysis/Trace.cpp
@@ -18,7 +18,7 @@
#include "llvm/Analysis/Trace.h"
#include "llvm/Function.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
Function *Trace::getFunction() const {
@@ -31,9 +31,9 @@ Module *Trace::getModule() const {
/// print - Write trace to output stream.
///
-void Trace::print(std::ostream &O) const {
- Function *F = getFunction ();
- O << "; Trace from function " << F->getName() << ", blocks:\n";
+void Trace::print(raw_ostream &O) const {
+ Function *F = getFunction();
+ O << "; Trace from function " << F->getNameStr() << ", blocks:\n";
for (const_iterator i = begin(), e = end(); i != e; ++i) {
O << "; ";
WriteAsOperand(O, *i, true, getModule());
@@ -46,5 +46,5 @@ void Trace::print(std::ostream &O) const {
/// output stream.
///
void Trace::dump() const {
- print(cerr);
+ print(errs());
}
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 07a18fe..baa347a 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -16,25 +16,16 @@
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
using namespace llvm;
-/// getOpcode - If this is an Instruction or a ConstantExpr, return the
-/// opcode value. Otherwise return UserOp1.
-static unsigned getOpcode(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getOpcode();
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode();
- // Use UserOp1 to mean there's no opcode.
- return Instruction::UserOp1;
-}
-
-
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
@@ -45,9 +36,15 @@ static unsigned getOpcode(const Value *V) {
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt &KnownZero, APInt &KnownOne,
- TargetData *TD, unsigned Depth) {
+ const TargetData *TD, unsigned Depth) {
const unsigned MaxDepth = 6;
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
@@ -91,8 +88,16 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// The address of an aligned GlobalValue has trailing zeros.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
- if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
- Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
+ if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
+ const Type *ObjectType = GV->getType()->getElementType();
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (!GV->isDeclaration() && !GV->mayBeOverridden())
+ Align = TD->getPrefTypeAlignment(ObjectType);
+ else
+ Align = TD->getABITypeAlignment(ObjectType);
+ }
if (Align > 0)
KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
CountTrailingZeros_32(Align));
@@ -101,17 +106,28 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
KnownOne.clear();
return;
}
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden()) {
+ KnownZero.clear(); KnownOne.clear();
+ } else {
+ ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
+ TD, Depth+1);
+ }
+ return;
+ }
KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
if (Depth == MaxDepth || Mask == 0)
return; // Limit search depth.
- User *I = dyn_cast<User>(V);
+ Operator *I = dyn_cast<Operator>(V);
if (!I) return;
APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
- switch (getOpcode(I)) {
+ switch (I->getOpcode()) {
default: break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
@@ -228,12 +244,16 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
+ const Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
- const Type *SrcTy = I->getOperand(0)->getType();
- unsigned SrcBitWidth = TD ?
- TD->getTypeSizeInBits(SrcTy) :
- SrcTy->getScalarSizeInBits();
+ if (isa<PointerType>(SrcTy))
+ SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
+ else
+ SrcBitWidth = SrcTy->getScalarSizeInBits();
+
APInt MaskIn(Mask);
MaskIn.zextOrTrunc(SrcBitWidth);
KnownZero.zextOrTrunc(SrcBitWidth);
@@ -261,8 +281,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
- const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
- unsigned SrcBitWidth = SrcTy->getBitWidth();
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
APInt MaskIn(Mask);
MaskIn.trunc(SrcBitWidth);
@@ -382,7 +401,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// Determine which operand has more trailing zeros, and use that
// many bits from the other operand.
if (LHSKnownZeroOut > RHSKnownZeroOut) {
- if (getOpcode(I) == Instruction::Add) {
+ if (I->getOpcode() == Instruction::Add) {
APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
KnownZero |= KnownZero2 & Mask;
KnownOne |= KnownOne2 & Mask;
@@ -462,10 +481,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Align =
std::max(Align,
- (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
+ (unsigned)TD->getABITypeAlignment(
+ Type::getDoubleTy(V->getContext())));
Align =
std::max(Align,
- (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
+ (unsigned)TD->getABITypeAlignment(
+ Type::getInt64Ty(V->getContext())));
}
}
@@ -522,10 +543,10 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
- User *LU = dyn_cast<User>(L);
+ Operator *LU = dyn_cast<Operator>(L);
if (!LU)
continue;
- unsigned Opcode = getOpcode(LU);
+ unsigned Opcode = LU->getOpcode();
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
@@ -608,8 +629,14 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
- TargetData *TD, unsigned Depth) {
+ const TargetData *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
@@ -626,7 +653,8 @@ bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
///
/// 'Op' must have a scalar integer type.
///
-unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
+unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
+ unsigned Depth) {
assert((TD || V->getType()->isIntOrIntVector()) &&
"ComputeNumSignBits requires a TargetData object to operate "
"on non-integer values!");
@@ -642,8 +670,8 @@ unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
if (Depth == 6)
return 1; // Limit search depth.
- User *U = dyn_cast<User>(V);
- switch (getOpcode(V)) {
+ Operator *U = dyn_cast<Operator>(V);
+ switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
@@ -789,7 +817,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (Depth == 6)
return 1; // Limit search depth.
- const Instruction *I = dyn_cast<Instruction>(V);
+ const Operator *I = dyn_cast<Operator>(V);
if (I == 0) return false;
// (add x, 0.0) is guaranteed to return +0.0, not -0.0.
@@ -810,15 +838,15 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction()) {
if (F->isDeclaration()) {
- switch (F->getNameLen()) {
- case 3: // abs(x) != -0.0
- if (!strcmp(F->getNameStart(), "abs")) return true;
- break;
- case 4: // abs[lf](x) != -0.0
- if (!strcmp(F->getNameStart(), "absf")) return true;
- if (!strcmp(F->getNameStart(), "absl")) return true;
- break;
- }
+ // abs(x) != -0.0
+ if (F->getName() == "abs") return true;
+ // fabs[lf](x) != -0.0
+ if (F->getName() == "fabs") return true;
+ if (F->getName() == "fabsf") return true;
+ if (F->getName() == "fabsl") return true;
+ if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
+ F->getName() == "sqrtl")
+ return CannotBeNegativeZero(CI->getOperand(1), Depth+1);
}
}
@@ -831,10 +859,11 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
-Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
- SmallVector<unsigned, 10> &Idxs,
- unsigned IdxSkip,
- Instruction *InsertBefore) {
+static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
+ SmallVector<unsigned, 10> &Idxs,
+ unsigned IdxSkip,
+ LLVMContext &Context,
+ Instruction *InsertBefore) {
const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
@@ -845,7 +874,7 @@ Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
- InsertBefore);
+ Context, InsertBefore);
Idxs.pop_back();
if (!To) {
// Couldn't find any inserted value for this index? Cleanup
@@ -868,7 +897,7 @@ Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
- Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
+ Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
if (!V)
return NULL;
@@ -890,8 +919,9 @@ Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
-Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
- const unsigned *idx_end, Instruction *InsertBefore) {
+static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
+ const unsigned *idx_end, LLVMContext &Context,
+ Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_begin,
@@ -900,7 +930,8 @@ Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
unsigned IdxSkip = Idxs.size();
- return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
+ Context, InsertBefore);
}
/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
@@ -910,7 +941,8 @@ Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
- const unsigned *idx_end, Instruction *InsertBefore) {
+ const unsigned *idx_end, LLVMContext &Context,
+ Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion)
if (idx_begin == idx_end)
@@ -921,20 +953,20 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
&& "Invalid indices for type?");
const CompositeType *PTy = cast<CompositeType>(V->getType());
-
+
if (isa<UndefValue>(V))
return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
idx_begin,
idx_end));
else if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
- idx_begin,
- idx_end));
+ idx_begin,
+ idx_end));
else if (Constant *C = dyn_cast<Constant>(V)) {
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
// Recursively process this constant
- return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
- InsertBefore);
+ return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
+ idx_end, Context, InsertBefore);
} else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
@@ -953,7 +985,8 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
// %C = insertvalue {i32, i32 } %A, i32 11, 1
// which allows the unused 0,0 element from the nested struct to be
// removed.
- return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
+ return BuildSubAggregate(V, idx_begin, req_idx,
+ Context, InsertBefore);
else
// We can't handle this without inserting insertvalues
return 0;
@@ -964,13 +997,13 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
// looking for, then.
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
- InsertBefore);
+ Context, InsertBefore);
}
// If we end up here, the indices of the insertvalue match with those
// requested (though possibly only partially). Now we recursively look at
// the inserted value, passing any remaining indices.
return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
- InsertBefore);
+ Context, InsertBefore);
} else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregrate that was extracted from
// something else, we can extract from that something else directly instead.
@@ -994,7 +1027,7 @@ Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
- InsertBefore);
+ Context, InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
@@ -1035,7 +1068,7 @@ bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
// Make sure the index-ee is a pointer to array of i8.
const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (AT == 0 || AT->getElementType() != Type::Int8Ty)
+ if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
return false;
// Check to make sure that the first operand of the GEP is an integer and
@@ -1056,11 +1089,16 @@ bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
StopAtNul);
}
+ if (MDString *MDStr = dyn_cast<MDString>(V)) {
+ Str = MDStr->getString();
+ return true;
+ }
+
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
- if (!GV || !GV->isConstant() || !GV->hasInitializer())
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
Constant *GlobalInit = GV->getInitializer();
@@ -1074,7 +1112,8 @@ bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
+ if (Array == 0 ||
+ Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
return false;
// Get the number of elements in the array
diff --git a/lib/Archive/Archive.cpp b/lib/Archive/Archive.cpp
index bb57262..00778d9 100644
--- a/lib/Archive/Archive.cpp
+++ b/lib/Archive/Archive.cpp
@@ -31,7 +31,7 @@ ArchiveMember::getMemberSize() const {
// If it has a long filename, include the name length
if (hasLongFilename())
- result += path.toString().length() + 1;
+ result += path.str().length() + 1;
// If its now odd lengthed, include the padding byte
if (result % 2 != 0 )
@@ -76,38 +76,38 @@ bool ArchiveMember::replaceWith(const sys::Path& newFile, std::string* ErrMsg) {
path = newFile;
// SVR4 symbol tables have an empty name
- if (path.toString() == ARFILE_SVR4_SYMTAB_NAME)
+ if (path.str() == ARFILE_SVR4_SYMTAB_NAME)
flags |= SVR4SymbolTableFlag;
else
flags &= ~SVR4SymbolTableFlag;
// BSD4.4 symbol tables have a special name
- if (path.toString() == ARFILE_BSD4_SYMTAB_NAME)
+ if (path.str() == ARFILE_BSD4_SYMTAB_NAME)
flags |= BSD4SymbolTableFlag;
else
flags &= ~BSD4SymbolTableFlag;
// LLVM symbol tables have a very specific name
- if (path.toString() == ARFILE_LLVM_SYMTAB_NAME)
+ if (path.str() == ARFILE_LLVM_SYMTAB_NAME)
flags |= LLVMSymbolTableFlag;
else
flags &= ~LLVMSymbolTableFlag;
// String table name
- if (path.toString() == ARFILE_STRTAB_NAME)
+ if (path.str() == ARFILE_STRTAB_NAME)
flags |= StringTableFlag;
else
flags &= ~StringTableFlag;
// If it has a slash then it has a path
- bool hasSlash = path.toString().find('/') != std::string::npos;
+ bool hasSlash = path.str().find('/') != std::string::npos;
if (hasSlash)
flags |= HasPathFlag;
else
flags &= ~HasPathFlag;
// If it has a slash or its over 15 chars then its a long filename format
- if (hasSlash || path.toString().length() > 15)
+ if (hasSlash || path.str().length() > 15)
flags |= HasLongFilenameFlag;
else
flags &= ~HasLongFilenameFlag;
@@ -126,8 +126,11 @@ bool ArchiveMember::replaceWith(const sys::Path& newFile, std::string* ErrMsg) {
return true;
}
- // Determine what kind of file it is
+ // Determine what kind of file it is.
switch (sys::IdentifyFileType(signature,4)) {
+ case sys::Bitcode_FileType:
+ flags |= BitcodeFlag;
+ break;
default:
flags &= ~BitcodeFlag;
break;
@@ -214,7 +217,7 @@ bool llvm::GetBitcodeSymbols(const sys::Path& fName,
std::auto_ptr<MemoryBuffer> Buffer(
MemoryBuffer::getFileOrSTDIN(fName.c_str()));
if (!Buffer.get()) {
- if (ErrMsg) *ErrMsg = "Could not open file '" + fName.toString() + "'";
+ if (ErrMsg) *ErrMsg = "Could not open file '" + fName.str() + "'";
return true;
}
diff --git a/lib/Archive/ArchiveReader.cpp b/lib/Archive/ArchiveReader.cpp
index 718d446..74895d8 100644
--- a/lib/Archive/ArchiveReader.cpp
+++ b/lib/Archive/ArchiveReader.cpp
@@ -344,8 +344,8 @@ Archive::getAllModules(std::vector<Module*>& Modules,
for (iterator I=begin(), E=end(); I != E; ++I) {
if (I->isBitcode()) {
- std::string FullMemberName = archPath.toString() +
- "(" + I->getPath().toString() + ")";
+ std::string FullMemberName = archPath.str() +
+ "(" + I->getPath().str() + ")";
MemoryBuffer *Buffer =
MemoryBuffer::getNewMemBuffer(I->getSize(), FullMemberName.c_str());
memcpy((char*)Buffer->getBufferStart(), I->getData(), I->getSize());
@@ -484,8 +484,8 @@ Archive::findModuleDefiningSymbol(const std::string& symbol,
return 0;
// Now, load the bitcode module to get the ModuleProvider
- std::string FullMemberName = archPath.toString() + "(" +
- mbr->getPath().toString() + ")";
+ std::string FullMemberName = archPath.str() + "(" +
+ mbr->getPath().str() + ")";
MemoryBuffer *Buffer =MemoryBuffer::getNewMemBuffer(mbr->getSize(),
FullMemberName.c_str());
memcpy((char*)Buffer->getBufferStart(), mbr->getData(), mbr->getSize());
@@ -534,8 +534,8 @@ Archive::findModulesDefiningSymbols(std::set<std::string>& symbols,
if (mbr->isBitcode()) {
// Get the symbols
std::vector<std::string> symbols;
- std::string FullMemberName = archPath.toString() + "(" +
- mbr->getPath().toString() + ")";
+ std::string FullMemberName = archPath.str() + "(" +
+ mbr->getPath().str() + ")";
ModuleProvider* MP =
GetBitcodeSymbols((const unsigned char*)At, mbr->getSize(),
FullMemberName, Context, symbols, error);
@@ -552,7 +552,7 @@ Archive::findModulesDefiningSymbols(std::set<std::string>& symbols,
} else {
if (error)
*error = "Can't parse bitcode member: " +
- mbr->getPath().toString() + ": " + *error;
+ mbr->getPath().str() + ": " + *error;
delete mbr;
return false;
}
@@ -612,7 +612,7 @@ bool Archive::isBitcodeArchive() {
continue;
std::string FullMemberName =
- archPath.toString() + "(" + I->getPath().toString() + ")";
+ archPath.str() + "(" + I->getPath().str() + ")";
MemoryBuffer *Buffer =
MemoryBuffer::getNewMemBuffer(I->getSize(), FullMemberName.c_str());
diff --git a/lib/Archive/ArchiveWriter.cpp b/lib/Archive/ArchiveWriter.cpp
index 881d75b..d17f6b5 100644
--- a/lib/Archive/ArchiveWriter.cpp
+++ b/lib/Archive/ArchiveWriter.cpp
@@ -95,7 +95,7 @@ Archive::fillHeader(const ArchiveMember &mbr, ArchiveMemberHeader& hdr,
memcpy(hdr.date,buffer,12);
// Get rid of trailing blanks in the name
- std::string mbrPath = mbr.getPath().toString();
+ std::string mbrPath = mbr.getPath().str();
size_t mbrLen = mbrPath.length();
while (mbrLen > 0 && mbrPath[mbrLen-1] == ' ') {
mbrPath.erase(mbrLen-1,1);
@@ -173,10 +173,10 @@ Archive::addFileBefore(const sys::Path& filePath, iterator where,
mbr->info = *FSInfo;
unsigned flags = 0;
- bool hasSlash = filePath.toString().find('/') != std::string::npos;
+ bool hasSlash = filePath.str().find('/') != std::string::npos;
if (hasSlash)
flags |= ArchiveMember::HasPathFlag;
- if (hasSlash || filePath.toString().length() > 15)
+ if (hasSlash || filePath.str().length() > 15)
flags |= ArchiveMember::HasLongFilenameFlag;
std::string magic;
mbr->path.getMagicNumber(magic,4);
@@ -223,8 +223,7 @@ Archive::writeMember(
// symbol table if its a bitcode file.
if (CreateSymbolTable && member.isBitcode()) {
std::vector<std::string> symbols;
- std::string FullMemberName = archPath.toString() + "(" +
- member.getPath().toString()
+ std::string FullMemberName = archPath.str() + "(" + member.getPath().str()
+ ")";
ModuleProvider* MP =
GetBitcodeSymbols((const unsigned char*)data,fSize,
@@ -249,7 +248,7 @@ Archive::writeMember(
} else {
delete mFile;
if (ErrMsg)
- *ErrMsg = "Can't parse bitcode member: " + member.getPath().toString()
+ *ErrMsg = "Can't parse bitcode member: " + member.getPath().str()
+ ": " + *ErrMsg;
return true;
}
@@ -266,8 +265,8 @@ Archive::writeMember(
// Write the long filename if its long
if (writeLongName) {
- ARFile.write(member.getPath().toString().data(),
- member.getPath().toString().length());
+ ARFile.write(member.getPath().str().data(),
+ member.getPath().str().length());
}
// Write the (possibly compressed) member's content to the file.
@@ -371,7 +370,7 @@ Archive::writeToDisk(bool CreateSymbolTable, bool TruncateNames, bool Compress,
if (TmpArchive.exists())
TmpArchive.eraseFromDisk();
if (ErrMsg)
- *ErrMsg = "Error opening archive file: " + archPath.toString();
+ *ErrMsg = "Error opening archive file: " + archPath.str();
return true;
}
@@ -425,7 +424,7 @@ Archive::writeToDisk(bool CreateSymbolTable, bool TruncateNames, bool Compress,
if (TmpArchive.exists())
TmpArchive.eraseFromDisk();
if (ErrMsg)
- *ErrMsg = "Error opening archive file: " + FinalFilePath.toString();
+ *ErrMsg = "Error opening archive file: " + FinalFilePath.str();
return true;
}
diff --git a/lib/AsmParser/LLLexer.cpp b/lib/AsmParser/LLLexer.cpp
index 741c538..0e9f1a0 100644
--- a/lib/AsmParser/LLLexer.cpp
+++ b/lib/AsmParser/LLLexer.cpp
@@ -14,11 +14,14 @@
#include "LLLexer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Assembly/Parser.h"
+#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace llvm;
@@ -180,8 +183,9 @@ static const char *isLabelTail(const char *CurPtr) {
// Lexer definition.
//===----------------------------------------------------------------------===//
-LLLexer::LLLexer(MemoryBuffer *StartBuf, SourceMgr &sm, SMDiagnostic &Err)
- : CurBuf(StartBuf), ErrorInfo(Err), SM(sm), APFloatVal(0.0) {
+LLLexer::LLLexer(MemoryBuffer *StartBuf, SourceMgr &sm, SMDiagnostic &Err,
+ LLVMContext &C)
+ : CurBuf(StartBuf), ErrorInfo(Err), SM(sm), Context(C), APFloatVal(0.0) {
CurPtr = CurBuf->getBufferStart();
}
@@ -250,7 +254,7 @@ lltok::Kind LLLexer::LexToken() {
case ';':
SkipLineComment();
return LexToken();
- case '!': return lltok::Metadata;
+ case '!': return LexMetadata();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '-':
@@ -418,7 +422,23 @@ static bool JustWhitespaceNewLine(const char *&Ptr) {
return false;
}
+/// LexMetadata:
+/// !{...}
+/// !42
+/// !foo
+lltok::Kind LLLexer::LexMetadata() {
+ if (isalpha(CurPtr[0])) {
+ ++CurPtr;
+ while (isalnum(CurPtr[0]) || CurPtr[0] == '-' || CurPtr[0] == '$' ||
+ CurPtr[0] == '.' || CurPtr[0] == '_')
+ ++CurPtr;
+ StrVal.assign(TokStart+1, CurPtr); // Skip !
+ return lltok::NamedOrCustomMD;
+ }
+ return lltok::Metadata;
+}
+
/// LexIdentifier: Handle several related productions:
/// Label [-a-zA-Z$._0-9]+:
/// IntegerType i[0-9]+
@@ -452,7 +472,7 @@ lltok::Kind LLLexer::LexIdentifier() {
Error("bitwidth for integer type out of range!");
return lltok::Error;
}
- TyVal = IntegerType::get(NumBits);
+ TyVal = IntegerType::get(Context, NumBits);
return lltok::Type;
}
@@ -471,6 +491,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(global); KEYWORD(constant);
KEYWORD(private);
+ KEYWORD(linker_private);
KEYWORD(internal);
KEYWORD(available_externally);
KEYWORD(linkonce);
@@ -497,6 +518,10 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(deplibs);
KEYWORD(datalayout);
KEYWORD(volatile);
+ KEYWORD(nuw);
+ KEYWORD(nsw);
+ KEYWORD(exact);
+ KEYWORD(inbounds);
KEYWORD(align);
KEYWORD(addrspace);
KEYWORD(section);
@@ -504,6 +529,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(module);
KEYWORD(asm);
KEYWORD(sideeffect);
+ KEYWORD(msasm);
KEYWORD(gc);
KEYWORD(ccc);
@@ -531,6 +557,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(readnone);
KEYWORD(readonly);
+ KEYWORD(inlinehint);
KEYWORD(noinline);
KEYWORD(alwaysinline);
KEYWORD(optsize);
@@ -538,6 +565,7 @@ lltok::Kind LLLexer::LexIdentifier() {
KEYWORD(sspreq);
KEYWORD(noredzone);
KEYWORD(noimplicitfloat);
+ KEYWORD(naked);
KEYWORD(type);
KEYWORD(opaque);
@@ -554,14 +582,14 @@ lltok::Kind LLLexer::LexIdentifier() {
#define TYPEKEYWORD(STR, LLVMTY) \
if (Len == strlen(STR) && !memcmp(StartChar, STR, strlen(STR))) { \
TyVal = LLVMTY; return lltok::Type; }
- TYPEKEYWORD("void", Type::VoidTy);
- TYPEKEYWORD("float", Type::FloatTy);
- TYPEKEYWORD("double", Type::DoubleTy);
- TYPEKEYWORD("x86_fp80", Type::X86_FP80Ty);
- TYPEKEYWORD("fp128", Type::FP128Ty);
- TYPEKEYWORD("ppc_fp128", Type::PPC_FP128Ty);
- TYPEKEYWORD("label", Type::LabelTy);
- TYPEKEYWORD("metadata", Type::MetadataTy);
+ TYPEKEYWORD("void", Type::getVoidTy(Context));
+ TYPEKEYWORD("float", Type::getFloatTy(Context));
+ TYPEKEYWORD("double", Type::getDoubleTy(Context));
+ TYPEKEYWORD("x86_fp80", Type::getX86_FP80Ty(Context));
+ TYPEKEYWORD("fp128", Type::getFP128Ty(Context));
+ TYPEKEYWORD("ppc_fp128", Type::getPPC_FP128Ty(Context));
+ TYPEKEYWORD("label", Type::getLabelTy(Context));
+ TYPEKEYWORD("metadata", Type::getMetadataTy(Context));
#undef TYPEKEYWORD
// Handle special forms for autoupgrading. Drop these in LLVM 3.0. This is
@@ -589,7 +617,6 @@ lltok::Kind LLLexer::LexIdentifier() {
INSTKEYWORD(shl, Shl); INSTKEYWORD(lshr, LShr); INSTKEYWORD(ashr, AShr);
INSTKEYWORD(and, And); INSTKEYWORD(or, Or); INSTKEYWORD(xor, Xor);
INSTKEYWORD(icmp, ICmp); INSTKEYWORD(fcmp, FCmp);
- INSTKEYWORD(vicmp, VICmp); INSTKEYWORD(vfcmp, VFCmp);
INSTKEYWORD(phi, PHI);
INSTKEYWORD(call, Call);
@@ -635,7 +662,7 @@ lltok::Kind LLLexer::LexIdentifier() {
TokStart[1] == '0' && TokStart[2] == 'x' && isxdigit(TokStart[3])) {
int len = CurPtr-TokStart-3;
uint32_t bits = len * 4;
- APInt Tmp(bits, TokStart+3, len, 16);
+ APInt Tmp(bits, StringRef(TokStart+3, len), 16);
uint32_t activeBits = Tmp.getActiveBits();
if (activeBits > 0 && activeBits < bits)
Tmp.trunc(activeBits);
@@ -698,7 +725,7 @@ lltok::Kind LLLexer::Lex0x() {
uint64_t Pair[2];
switch (Kind) {
- default: assert(0 && "Unknown kind!");
+ default: llvm_unreachable("Unknown kind!");
case 'K':
// F80HexFPConstant - x87 long double in hexadecimal format (10 bytes)
FP80HexToIntPair(TokStart+3, CurPtr, Pair);
@@ -761,7 +788,7 @@ lltok::Kind LLLexer::LexDigitOrNegative() {
return Lex0x();
unsigned Len = CurPtr-TokStart;
uint32_t numBits = ((Len * 64) / 19) + 2;
- APInt Tmp(numBits, TokStart, Len, 10);
+ APInt Tmp(numBits, StringRef(TokStart, Len), 10);
if (TokStart[0] == '-') {
uint32_t minBits = Tmp.getMinSignedBits();
if (minBits > 0 && minBits < numBits)
diff --git a/lib/AsmParser/LLLexer.h b/lib/AsmParser/LLLexer.h
index b5e58f1..de39272 100644
--- a/lib/AsmParser/LLLexer.h
+++ b/lib/AsmParser/LLLexer.h
@@ -24,12 +24,14 @@ namespace llvm {
class MemoryBuffer;
class Type;
class SMDiagnostic;
+ class LLVMContext;
class LLLexer {
const char *CurPtr;
MemoryBuffer *CurBuf;
SMDiagnostic &ErrorInfo;
SourceMgr &SM;
+ LLVMContext &Context;
// Information about the current token.
const char *TokStart;
@@ -42,7 +44,8 @@ namespace llvm {
std::string TheError;
public:
- explicit LLLexer(MemoryBuffer *StartBuf, SourceMgr &SM, SMDiagnostic &);
+ explicit LLLexer(MemoryBuffer *StartBuf, SourceMgr &SM, SMDiagnostic &,
+ LLVMContext &C);
~LLLexer() {}
lltok::Kind Lex() {
@@ -72,6 +75,7 @@ namespace llvm {
lltok::Kind LexDigitOrNegative();
lltok::Kind LexPositive();
lltok::Kind LexAt();
+ lltok::Kind LexMetadata();
lltok::Kind LexPercent();
lltok::Kind LexQuote();
lltok::Kind Lex0x();
diff --git a/lib/AsmParser/LLParser.cpp b/lib/AsmParser/LLParser.cpp
index 3966ab3..09bc5f7 100644
--- a/lib/AsmParser/LLParser.cpp
+++ b/lib/AsmParser/LLParser.cpp
@@ -19,11 +19,13 @@
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
-#include "llvm/MDNode.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
+#include "llvm/Operator.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -40,15 +42,17 @@ namespace llvm {
t_Null, t_Undef, t_Zero, // No value.
t_EmptyArray, // No value: []
t_Constant, // Value in ConstantVal.
- t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
+ t_InlineAsm, // Value in StrVal/StrVal2/UIntVal.
+ t_Metadata // Value in MetadataVal.
} Kind;
-
+
LLParser::LocTy Loc;
unsigned UIntVal;
std::string StrVal, StrVal2;
APSInt APSIntVal;
APFloat APFloatVal;
Constant *ConstantVal;
+ MetadataBase *MetadataVal;
ValID() : APFloatVal(0.0) {}
};
}
@@ -73,21 +77,29 @@ bool LLParser::ValidateEndOfModule() {
return Error(ForwardRefTypeIDs.begin()->second.second,
"use of undefined type '%" +
utostr(ForwardRefTypeIDs.begin()->first) + "'");
-
+
if (!ForwardRefVals.empty())
return Error(ForwardRefVals.begin()->second.second,
"use of undefined value '@" + ForwardRefVals.begin()->first +
"'");
-
+
if (!ForwardRefValIDs.empty())
return Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '@" +
utostr(ForwardRefValIDs.begin()->first) + "'");
-
+
+ if (!ForwardRefMDNodes.empty())
+ return Error(ForwardRefMDNodes.begin()->second.second,
+ "use of undefined metadata '!" +
+ utostr(ForwardRefMDNodes.begin()->first) + "'");
+
+
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
-
+
+ // Check debug info intrinsics.
+ CheckDebugInfoIntrinsics(M);
return false;
}
@@ -107,27 +119,31 @@ bool LLParser::ParseTopLevelEntities() {
case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
case lltok::kw_type: if (ParseUnnamedType()) return true; break;
+ case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
case lltok::LocalVar: if (ParseNamedType()) return true; break;
+ case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break;
+ case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
// The Global variable production with no name can have many different
// optional leading prefixes, the production is:
// GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
// OptionalAddrSpace ('constant'|'global') ...
- case lltok::kw_private: // OptionalLinkage
- case lltok::kw_internal: // OptionalLinkage
- case lltok::kw_weak: // OptionalLinkage
- case lltok::kw_weak_odr: // OptionalLinkage
- case lltok::kw_linkonce: // OptionalLinkage
- case lltok::kw_linkonce_odr: // OptionalLinkage
- case lltok::kw_appending: // OptionalLinkage
- case lltok::kw_dllexport: // OptionalLinkage
- case lltok::kw_common: // OptionalLinkage
- case lltok::kw_dllimport: // OptionalLinkage
- case lltok::kw_extern_weak: // OptionalLinkage
- case lltok::kw_external: { // OptionalLinkage
+ case lltok::kw_private : // OptionalLinkage
+ case lltok::kw_linker_private: // OptionalLinkage
+ case lltok::kw_internal: // OptionalLinkage
+ case lltok::kw_weak: // OptionalLinkage
+ case lltok::kw_weak_odr: // OptionalLinkage
+ case lltok::kw_linkonce: // OptionalLinkage
+ case lltok::kw_linkonce_odr: // OptionalLinkage
+ case lltok::kw_appending: // OptionalLinkage
+ case lltok::kw_dllexport: // OptionalLinkage
+ case lltok::kw_common: // OptionalLinkage
+ case lltok::kw_dllimport: // OptionalLinkage
+ case lltok::kw_extern_weak: // OptionalLinkage
+ case lltok::kw_external: { // OptionalLinkage
unsigned Linkage, Visibility;
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
@@ -144,7 +160,7 @@ bool LLParser::ParseTopLevelEntities() {
return true;
break;
}
-
+
case lltok::kw_thread_local: // OptionalThreadLocal
case lltok::kw_addrspace: // OptionalAddrSpace
case lltok::kw_constant: // GlobalType
@@ -161,11 +177,11 @@ bool LLParser::ParseTopLevelEntities() {
bool LLParser::ParseModuleAsm() {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
-
- std::string AsmStr;
+
+ std::string AsmStr;
if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
ParseStringConstant(AsmStr)) return true;
-
+
const std::string &AsmSoFar = M->getModuleInlineAsm();
if (AsmSoFar.empty())
M->setModuleInlineAsm(AsmStr);
@@ -211,7 +227,7 @@ bool LLParser::ParseDepLibs() {
if (EatIfPresent(lltok::rsquare))
return false;
-
+
std::string Str;
if (ParseStringConstant(Str)) return true;
M->addLibrary(Str);
@@ -224,32 +240,44 @@ bool LLParser::ParseDepLibs() {
return ParseToken(lltok::rsquare, "expected ']' at end of list");
}
-/// toplevelentity
+/// ParseUnnamedType:
/// ::= 'type' type
+/// ::= LocalVarID '=' 'type' type
bool LLParser::ParseUnnamedType() {
+ unsigned TypeID = NumberedTypes.size();
+
+ // Handle the LocalVarID form.
+ if (Lex.getKind() == lltok::LocalVarID) {
+ if (Lex.getUIntVal() != TypeID)
+ return Error(Lex.getLoc(), "type expected to be numbered '%" +
+ utostr(TypeID) + "'");
+ Lex.Lex(); // eat LocalVarID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name"))
+ return true;
+ }
+
assert(Lex.getKind() == lltok::kw_type);
LocTy TypeLoc = Lex.getLoc();
Lex.Lex(); // eat kw_type
- PATypeHolder Ty(Type::VoidTy);
+ PATypeHolder Ty(Type::getVoidTy(Context));
if (ParseType(Ty)) return true;
-
- unsigned TypeID = NumberedTypes.size();
-
+
// See if this type was previously referenced.
std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
FI = ForwardRefTypeIDs.find(TypeID);
if (FI != ForwardRefTypeIDs.end()) {
if (FI->second.first.get() == Ty)
return Error(TypeLoc, "self referential type is invalid");
-
+
cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
Ty = FI->second.first.get();
ForwardRefTypeIDs.erase(FI);
}
-
+
NumberedTypes.push_back(Ty);
-
+
return false;
}
@@ -259,14 +287,14 @@ bool LLParser::ParseNamedType() {
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex(); // eat LocalVar.
-
- PATypeHolder Ty(Type::VoidTy);
-
+
+ PATypeHolder Ty(Type::getVoidTy(Context));
+
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after name") ||
ParseType(Ty))
return true;
-
+
// Set the type name, checking for conflicts as we do so.
bool AlreadyExists = M->addTypeName(Name, Ty);
if (!AlreadyExists) return false;
@@ -283,16 +311,16 @@ bool LLParser::ParseNamedType() {
Ty = FI->second.first.get();
ForwardRefTypes.erase(FI);
}
-
+
// Inserting a name that is already defined, get the existing name.
const Type *Existing = M->getTypeByName(Name);
assert(Existing && "Conflict but no matching type?!");
-
+
// Otherwise, this is an attempt to redefine a type. That's okay if
// the redefinition is identical to the original.
// FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
if (Existing == Ty) return false;
-
+
// Any other kind of (non-equivalent) redefinition is an error.
return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
Ty->getDescription() + "'");
@@ -304,7 +332,7 @@ bool LLParser::ParseNamedType() {
bool LLParser::ParseDeclare() {
assert(Lex.getKind() == lltok::kw_declare);
Lex.Lex();
-
+
Function *F;
return ParseFunctionHeader(F, false);
}
@@ -314,7 +342,7 @@ bool LLParser::ParseDeclare() {
bool LLParser::ParseDefine() {
assert(Lex.getKind() == lltok::kw_define);
Lex.Lex();
-
+
Function *F;
return ParseFunctionHeader(F, true) ||
ParseFunctionBody(*F);
@@ -336,6 +364,38 @@ bool LLParser::ParseGlobalType(bool &IsConstant) {
return false;
}
+/// ParseUnnamedGlobal:
+/// OptionalVisibility ALIAS ...
+/// OptionalLinkage OptionalVisibility ... -> global variable
+/// GlobalID '=' OptionalVisibility ALIAS ...
+/// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
+bool LLParser::ParseUnnamedGlobal() {
+ unsigned VarID = NumberedVals.size();
+ std::string Name;
+ LocTy NameLoc = Lex.getLoc();
+
+ // Handle the GlobalID form.
+ if (Lex.getKind() == lltok::GlobalID) {
+ if (Lex.getUIntVal() != VarID)
+ return Error(Lex.getLoc(), "variable expected to be numbered '%" +
+ utostr(VarID) + "'");
+ Lex.Lex(); // eat GlobalID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name"))
+ return true;
+ }
+
+ bool HasLinkage;
+ unsigned Linkage, Visibility;
+ if (ParseOptionalLinkage(Linkage, HasLinkage) ||
+ ParseOptionalVisibility(Visibility))
+ return true;
+
+ if (HasLinkage || Lex.getKind() != lltok::kw_alias)
+ return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
+ return ParseAlias(Name, NameLoc, Visibility);
+}
+
/// ParseNamedGlobal:
/// GlobalVar '=' OptionalVisibility ALIAS ...
/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
@@ -344,21 +404,96 @@ bool LLParser::ParseNamedGlobal() {
LocTy NameLoc = Lex.getLoc();
std::string Name = Lex.getStrVal();
Lex.Lex();
-
+
bool HasLinkage;
unsigned Linkage, Visibility;
if (ParseToken(lltok::equal, "expected '=' in global variable") ||
ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility))
return true;
-
+
if (HasLinkage || Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
return ParseAlias(Name, NameLoc, Visibility);
}
+// MDString:
+// ::= '!' STRINGCONSTANT
+bool LLParser::ParseMDString(MetadataBase *&MDS) {
+ std::string Str;
+ if (ParseStringConstant(Str)) return true;
+ MDS = MDString::get(Context, Str);
+ return false;
+}
+
+// MDNode:
+// ::= '!' MDNodeNumber
+bool LLParser::ParseMDNode(MetadataBase *&Node) {
+ // !{ ..., !42, ... }
+ unsigned MID = 0;
+ if (ParseUInt32(MID)) return true;
+
+ // Check existing MDNode.
+ std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
+ if (I != MetadataCache.end()) {
+ Node = I->second;
+ return false;
+ }
+
+ // Check known forward references.
+ std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
+ FI = ForwardRefMDNodes.find(MID);
+ if (FI != ForwardRefMDNodes.end()) {
+ Node = FI->second.first;
+ return false;
+ }
+
+ // Create MDNode forward reference
+ SmallVector<Value *, 1> Elts;
+ std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
+ Elts.push_back(MDString::get(Context, FwdRefName));
+ MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
+ ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
+ Node = FwdNode;
+ return false;
+}
+
+///ParseNamedMetadata:
+/// !foo = !{ !1, !2 }
+bool LLParser::ParseNamedMetadata() {
+ assert(Lex.getKind() == lltok::NamedOrCustomMD);
+ Lex.Lex();
+ std::string Name = Lex.getStrVal();
+
+ if (ParseToken(lltok::equal, "expected '=' here"))
+ return true;
+
+ if (Lex.getKind() != lltok::Metadata)
+ return TokError("Expected '!' here");
+ Lex.Lex();
+
+ if (Lex.getKind() != lltok::lbrace)
+ return TokError("Expected '{' here");
+ Lex.Lex();
+ SmallVector<MetadataBase *, 8> Elts;
+ do {
+ if (Lex.getKind() != lltok::Metadata)
+ return TokError("Expected '!' here");
+ Lex.Lex();
+ MetadataBase *N = 0;
+ if (ParseMDNode(N)) return true;
+ Elts.push_back(N);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rbrace, "expected end of metadata node"))
+ return true;
+
+ NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
+ return false;
+}
+
/// ParseStandaloneMetadata:
-/// !42 = !{...}
+/// !42 = !{...}
bool LLParser::ParseStandaloneMetadata() {
assert(Lex.getKind() == lltok::Metadata);
Lex.Lex();
@@ -371,17 +506,32 @@ bool LLParser::ParseStandaloneMetadata() {
return true;
LocTy TyLoc;
- bool IsConstant;
- PATypeHolder Ty(Type::VoidTy);
- if (ParseGlobalType(IsConstant) ||
- ParseType(Ty, TyLoc))
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ if (ParseType(Ty, TyLoc))
return true;
-
- Constant *Init = 0;
- if (ParseGlobalValue(Ty, Init))
- return true;
+ if (Lex.getKind() != lltok::Metadata)
+ return TokError("Expected metadata here");
+
+ Lex.Lex();
+ if (Lex.getKind() != lltok::lbrace)
+ return TokError("Expected '{' here");
+
+ SmallVector<Value *, 16> Elts;
+ if (ParseMDNodeVector(Elts)
+ || ParseToken(lltok::rbrace, "expected end of metadata node"))
+ return true;
+
+ MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
MetadataCache[MetadataID] = Init;
+ std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
+ FI = ForwardRefMDNodes.find(MetadataID);
+ if (FI != ForwardRefMDNodes.end()) {
+ MDNode *FwdNode = cast<MDNode>(FI->second.first);
+ FwdNode->replaceAllUsesWith(Init);
+ ForwardRefMDNodes.erase(FI);
+ }
+
return false;
}
@@ -390,7 +540,7 @@ bool LLParser::ParseStandaloneMetadata() {
/// Aliasee
/// ::= TypeAndValue
/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
-/// ::= 'getelementptr' '(' ... ')'
+/// ::= 'getelementptr' 'inbounds'? '(' ... ')'
///
/// Everything through visibility has already been parsed.
///
@@ -407,9 +557,10 @@ bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
Linkage != GlobalValue::WeakAnyLinkage &&
Linkage != GlobalValue::WeakODRLinkage &&
Linkage != GlobalValue::InternalLinkage &&
- Linkage != GlobalValue::PrivateLinkage)
+ Linkage != GlobalValue::PrivateLinkage &&
+ Linkage != GlobalValue::LinkerPrivateLinkage)
return Error(LinkageLoc, "invalid linkage type for alias");
-
+
Constant *Aliasee;
LocTy AliaseeLoc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_bitcast &&
@@ -423,7 +574,7 @@ bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
return Error(AliaseeLoc, "invalid aliasee");
Aliasee = ID.ConstantVal;
}
-
+
if (!isa<PointerType>(Aliasee->getType()))
return Error(AliaseeLoc, "alias must have pointer type");
@@ -432,7 +583,7 @@ bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
(GlobalValue::LinkageTypes)Linkage, Name,
Aliasee);
GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
-
+
// See if this value already exists in the symbol table. If so, it is either
// a redefinition or a definition of a forward reference.
if (GlobalValue *Val =
@@ -449,18 +600,18 @@ bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
if (Val->getType() != GA->getType())
return Error(NameLoc,
"forward reference and definition of alias have different types");
-
+
// If they agree, just RAUW the old value with the alias and remove the
// forward ref info.
Val->replaceAllUsesWith(GA);
Val->eraseFromParent();
ForwardRefVals.erase(I);
}
-
+
// Insert into the module, we know its name won't collide now.
M->getAliasList().push_back(GA);
assert(GA->getNameStr() == Name && "Should not be a name conflict!");
-
+
return false;
}
@@ -478,14 +629,14 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
unsigned AddrSpace;
bool ThreadLocal, IsConstant;
LocTy TyLoc;
-
- PATypeHolder Ty(Type::VoidTy);
+
+ PATypeHolder Ty(Type::getVoidTy(Context));
if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
ParseOptionalAddrSpace(AddrSpace) ||
ParseGlobalType(IsConstant) ||
ParseType(Ty, TyLoc))
return true;
-
+
// If the linkage is specified and is external, then no initializer is
// present.
Constant *Init = 0;
@@ -496,9 +647,9 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
return true;
}
- if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
+ if (isa<FunctionType>(Ty) || Ty->isLabelTy())
return Error(TyLoc, "invalid type for global variable");
-
+
GlobalVariable *GV = 0;
// See if the global was forward referenced, if so, use the global.
@@ -516,20 +667,20 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
}
if (GV == 0) {
- GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
- M, false, AddrSpace);
+ GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
+ Name, 0, false, AddrSpace);
} else {
if (GV->getType()->getElementType() != Ty)
return Error(TyLoc,
"forward reference and definition of global have different types");
-
+
// Move the forward-reference to the correct spot in the module.
M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
}
if (Name.empty())
NumberedVals.push_back(GV);
-
+
// Set the parsed properties on the global.
if (Init)
GV->setInitializer(Init);
@@ -537,11 +688,11 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GV->setThreadLocal(ThreadLocal);
-
+
// Parse attributes on the global.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
-
+
if (Lex.getKind() == lltok::kw_section) {
Lex.Lex();
GV->setSection(Lex.getStrVal());
@@ -555,7 +706,7 @@ bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
TokError("unknown global variable property!");
}
}
-
+
return false;
}
@@ -574,11 +725,11 @@ GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
Error(Loc, "global variable reference must have pointer type");
return 0;
}
-
+
// Look this name up in the normal function symbol table.
GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
-
+
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
@@ -587,7 +738,7 @@ GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
if (I != ForwardRefVals.end())
Val = I->second.first;
}
-
+
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
@@ -595,7 +746,7 @@ GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
Val->getType()->getDescription() + "'");
return 0;
}
-
+
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
@@ -604,13 +755,13 @@ GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
Error(Loc, "function may not return opaque type");
return 0;
}
-
+
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
} else {
- FwdVal = new GlobalVariable(PTy->getElementType(), false,
- GlobalValue::ExternalWeakLinkage, 0, Name, M);
+ FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, 0, Name);
}
-
+
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
@@ -621,9 +772,9 @@ GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
Error(Loc, "global variable reference must have pointer type");
return 0;
}
-
+
GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
-
+
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
@@ -632,7 +783,7 @@ GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
-
+
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
@@ -640,7 +791,7 @@ GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
Val->getType()->getDescription() + "'");
return 0;
}
-
+
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
@@ -651,10 +802,10 @@ GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
}
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
} else {
- FwdVal = new GlobalVariable(PTy->getElementType(), false,
- GlobalValue::ExternalWeakLinkage, 0, "", M);
+ FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, 0, "");
}
-
+
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
@@ -707,7 +858,7 @@ bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
return ParseToken(lltok::lparen, "expected '(' in address space") ||
ParseUInt32(AddrSpace) ||
ParseToken(lltok::rparen, "expected ')' in address space");
-}
+}
/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
/// indicates what kind of attribute list this is: 0: function arg, 1: result,
@@ -716,7 +867,7 @@ bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
Attrs = Attribute::None;
LocTy AttrLoc = Lex.getLoc();
-
+
while (1) {
switch (Lex.getKind()) {
case lltok::kw_sext:
@@ -737,10 +888,10 @@ bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
default: // End of attributes.
if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
return Error(AttrLoc, "invalid use of function-only attribute");
-
+
if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
return Error(AttrLoc, "invalid use of parameter-only attribute");
-
+
return false;
case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
case lltok::kw_signext: Attrs |= Attribute::SExt; break;
@@ -756,13 +907,15 @@ bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
+ case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
-
+ case lltok::kw_naked: Attrs |= Attribute::Naked; break;
+
case lltok::kw_align: {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment))
@@ -778,6 +931,7 @@ bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
/// ParseOptionalLinkage
/// ::= /*empty*/
/// ::= 'private'
+/// ::= 'linker_private'
/// ::= 'internal'
/// ::= 'weak'
/// ::= 'weak_odr'
@@ -792,22 +946,23 @@ bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
HasLinkage = false;
switch (Lex.getKind()) {
- default: Res = GlobalValue::ExternalLinkage; return false;
- case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
- case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
- case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
- case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
- case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
- case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
+ default: Res=GlobalValue::ExternalLinkage; return false;
+ case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
+ case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
+ case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
+ case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
+ case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
+ case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
+ case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
case lltok::kw_available_externally:
Res = GlobalValue::AvailableExternallyLinkage;
break;
- case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
- case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
- case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
- case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
- case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
- case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
+ case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
+ case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
+ case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
+ case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
+ case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
+ case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
}
Lex.Lex();
HasLinkage = true;
@@ -819,7 +974,7 @@ bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
/// ::= 'default'
/// ::= 'hidden'
/// ::= 'protected'
-///
+///
bool LLParser::ParseOptionalVisibility(unsigned &Res) {
switch (Lex.getKind()) {
default: Res = GlobalValue::DefaultVisibility; return false;
@@ -843,7 +998,7 @@ bool LLParser::ParseOptionalVisibility(unsigned &Res) {
/// ::= 'arm_aapcs_vfpcc'
/// ::= 'cc' UINT
///
-bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
+bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
@@ -854,9 +1009,47 @@ bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
- case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
+ case lltok::kw_cc: {
+ unsigned ArbitraryCC;
+ Lex.Lex();
+ if (ParseUInt32(ArbitraryCC)) {
+ return true;
+ } else
+ CC = static_cast<CallingConv::ID>(ArbitraryCC);
+ return false;
+ }
+ break;
}
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseOptionalCustomMetadata
+/// ::= /* empty */
+/// ::= !dbg !42
+bool LLParser::ParseOptionalCustomMetadata() {
+
+ std::string Name;
+ if (Lex.getKind() == lltok::NamedOrCustomMD) {
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ } else
+ return false;
+
+ if (Lex.getKind() != lltok::Metadata)
+ return TokError("Expected '!' here");
Lex.Lex();
+
+ MetadataBase *Node;
+ if (ParseMDNode(Node)) return true;
+
+ MetadataContext &TheMetadata = M->getContext().getMetadata();
+ unsigned MDK = TheMetadata.getMDKind(Name.c_str());
+ if (!MDK)
+ MDK = TheMetadata.RegisterMDKind(Name.c_str());
+ MDsOnInst.push_back(std::make_pair(MDK, cast<MDNode>(Node)));
+
return false;
}
@@ -874,29 +1067,36 @@ bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
return false;
}
-/// ParseOptionalCommaAlignment
-/// ::= /* empty */
-/// ::= ',' 'align' 4
-bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
- Alignment = 0;
- if (!EatIfPresent(lltok::comma))
- return false;
- return ParseToken(lltok::kw_align, "expected 'align'") ||
- ParseUInt32(Alignment);
+/// ParseOptionalInfo
+/// ::= OptionalInfo (',' OptionalInfo)+
+bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
+
+ // FIXME: Handle customized metadata info attached with an instruction.
+ do {
+ if (Lex.getKind() == lltok::NamedOrCustomMD) {
+ if (ParseOptionalCustomMetadata()) return true;
+ } else if (Lex.getKind() == lltok::kw_align) {
+ if (ParseOptionalAlignment(Alignment)) return true;
+ } else
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ return false;
}
+
/// ParseIndexList
/// ::= (',' uint32)+
bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
if (Lex.getKind() != lltok::comma)
return TokError("expected ',' as start of index list");
-
+
while (EatIfPresent(lltok::comma)) {
unsigned Idx;
if (ParseUInt32(Idx)) return true;
Indices.push_back(Idx);
}
-
+
return false;
}
@@ -908,14 +1108,14 @@ bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
LocTy TypeLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
-
+
// Verify no unresolved uprefs.
if (!UpRefs.empty())
return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
-
- if (!AllowVoid && Result.get() == Type::VoidTy)
+
+ if (!AllowVoid && Result.get()->isVoidTy())
return Error(TypeLoc, "void type only allowed for function results");
-
+
return false;
}
@@ -930,26 +1130,26 @@ PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
// If Ty isn't abstract, or if there are no up-references in it, then there is
// nothing to resolve here.
if (!ty->isAbstract() || UpRefs.empty()) return ty;
-
+
PATypeHolder Ty(ty);
#if 0
errs() << "Type '" << Ty->getDescription()
<< "' newly formed. Resolving upreferences.\n"
<< UpRefs.size() << " upreferences active!\n";
#endif
-
+
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
// to zero), we resolve them all together before we resolve them to Ty. At
// the end of the loop, if there is anything to resolve to Ty, it will be in
// this variable.
OpaqueType *TypeToResolve = 0;
-
+
for (unsigned i = 0; i != UpRefs.size(); ++i) {
// Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
bool ContainsType =
std::find(Ty->subtype_begin(), Ty->subtype_end(),
UpRefs[i].LastContainedTy) != Ty->subtype_end();
-
+
#if 0
errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].LastContainedTy->getDescription() << ") = "
@@ -958,15 +1158,15 @@ PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
#endif
if (!ContainsType)
continue;
-
+
// Decrement level of upreference
unsigned Level = --UpRefs[i].NestingLevel;
UpRefs[i].LastContainedTy = Ty;
-
+
// If the Up-reference has a non-zero level, it shouldn't be resolved yet.
if (Level != 0)
continue;
-
+
#if 0
errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
#endif
@@ -977,10 +1177,10 @@ PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
--i; // Do not skip the next element.
}
-
+
if (TypeToResolve)
TypeToResolve->refineAbstractTypeTo(Ty);
-
+
return Ty;
}
@@ -994,11 +1194,11 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
case lltok::Type:
// TypeRec ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
- Lex.Lex();
+ Lex.Lex();
break;
case lltok::kw_opaque:
// TypeRec ::= 'opaque'
- Result = Context.getOpaqueType();
+ Result = OpaqueType::get(Context);
Lex.Lex();
break;
case lltok::lbrace:
@@ -1028,7 +1228,7 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
Result = T;
} else {
- Result = Context.getOpaqueType();
+ Result = OpaqueType::get(Context);
ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
std::make_pair(Result,
Lex.getLoc())));
@@ -1036,7 +1236,7 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
}
Lex.Lex();
break;
-
+
case lltok::LocalVarID:
// TypeRec ::= %4
if (Lex.getUIntVal() < NumberedTypes.size())
@@ -1047,7 +1247,7 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
if (I != ForwardRefTypeIDs.end())
Result = I->second.first;
else {
- Result = Context.getOpaqueType();
+ Result = OpaqueType::get(Context);
ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
std::make_pair(Result,
Lex.getLoc())));
@@ -1060,36 +1260,36 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
Lex.Lex();
unsigned Val;
if (ParseUInt32(Val)) return true;
- OpaqueType *OT = Context.getOpaqueType(); //Use temporary placeholder.
+ OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
Result = OT;
break;
}
}
-
- // Parse the type suffixes.
+
+ // Parse the type suffixes.
while (1) {
switch (Lex.getKind()) {
// End of type.
- default: return false;
+ default: return false;
// TypeRec ::= TypeRec '*'
case lltok::star:
- if (Result.get() == Type::LabelTy)
+ if (Result.get()->isLabelTy())
return TokError("basic block pointers are invalid");
- if (Result.get() == Type::VoidTy)
+ if (Result.get()->isVoidTy())
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result.get()))
return TokError("pointer to this type is invalid");
- Result = HandleUpRefs(Context.getPointerTypeUnqual(Result.get()));
+ Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
Lex.Lex();
break;
// TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
case lltok::kw_addrspace: {
- if (Result.get() == Type::LabelTy)
+ if (Result.get()->isLabelTy())
return TokError("basic block pointers are invalid");
- if (Result.get() == Type::VoidTy)
+ if (Result.get()->isVoidTy())
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result.get()))
return TokError("pointer to this type is invalid");
@@ -1098,10 +1298,10 @@ bool LLParser::ParseTypeRec(PATypeHolder &Result) {
ParseToken(lltok::star, "expected '*' in address space"))
return true;
- Result = HandleUpRefs(Context.getPointerType(Result.get(), AddrSpace));
+ Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
break;
}
-
+
/// Types '(' ArgTypeListI ')' OptFuncAttrs
case lltok::lparen:
if (ParseFunctionType(Result))
@@ -1120,16 +1320,16 @@ bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS) {
if (ParseToken(lltok::lparen, "expected '(' in call"))
return true;
-
+
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first argument, we need a comma.
if (!ArgList.empty() &&
ParseToken(lltok::comma, "expected ',' in argument list"))
return true;
-
+
// Parse the argument.
LocTy ArgLoc;
- PATypeHolder ArgTy(Type::VoidTy);
+ PATypeHolder ArgTy(Type::getVoidTy(Context));
unsigned ArgAttrs1, ArgAttrs2;
Value *V;
if (ParseType(ArgTy, ArgLoc) ||
@@ -1162,7 +1362,7 @@ bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
isVarArg = false;
assert(Lex.getKind() == lltok::lparen);
Lex.Lex(); // eat the (.
-
+
if (Lex.getKind() == lltok::rparen) {
// empty
} else if (Lex.getKind() == lltok::dotdotdot) {
@@ -1170,19 +1370,19 @@ bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
Lex.Lex();
} else {
LocTy TypeLoc = Lex.getLoc();
- PATypeHolder ArgTy(Type::VoidTy);
+ PATypeHolder ArgTy(Type::getVoidTy(Context));
unsigned Attrs;
std::string Name;
-
+
// If we're parsing a type, use ParseTypeRec, because we allow recursive
// types (such as a function returning a pointer to itself). If parsing a
// function prototype, we require fully resolved types.
if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
ParseOptionalAttrs(Attrs, 0)) return true;
-
- if (ArgTy == Type::VoidTy)
+
+ if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
-
+
if (Lex.getKind() == lltok::LocalVar ||
Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
Name = Lex.getStrVal();
@@ -1191,22 +1391,22 @@ bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
if (!FunctionType::isValidArgumentType(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
-
+
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
-
+
while (EatIfPresent(lltok::comma)) {
// Handle ... at end of arg list.
if (EatIfPresent(lltok::dotdotdot)) {
isVarArg = true;
break;
}
-
+
// Otherwise must be an argument type.
TypeLoc = Lex.getLoc();
if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
ParseOptionalAttrs(Attrs, 0)) return true;
- if (ArgTy == Type::VoidTy)
+ if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar ||
@@ -1219,14 +1419,14 @@ bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
-
+
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
}
}
-
+
return ParseToken(lltok::rparen, "expected ')' at end of argument list");
}
-
+
/// ParseFunctionType
/// ::= Type ArgumentList OptionalAttrs
bool LLParser::ParseFunctionType(PATypeHolder &Result) {
@@ -1234,7 +1434,7 @@ bool LLParser::ParseFunctionType(PATypeHolder &Result) {
if (!FunctionType::isValidReturnType(Result))
return TokError("invalid function return type");
-
+
std::vector<ArgInfo> ArgList;
bool isVarArg;
unsigned Attrs;
@@ -1243,7 +1443,7 @@ bool LLParser::ParseFunctionType(PATypeHolder &Result) {
// FIXME: Remove in LLVM 3.0
ParseOptionalAttrs(Attrs, 2))
return true;
-
+
// Reject names on the arguments lists.
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
if (!ArgList[i].Name.empty())
@@ -1254,12 +1454,12 @@ bool LLParser::ParseFunctionType(PATypeHolder &Result) {
// FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
}
}
-
+
std::vector<const Type*> ArgListTy;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ArgListTy.push_back(ArgList[i].Type);
-
- Result = HandleUpRefs(Context.getFunctionType(Result.get(),
+
+ Result = HandleUpRefs(FunctionType::get(Result.get(),
ArgListTy, isVarArg));
return false;
}
@@ -1273,9 +1473,9 @@ bool LLParser::ParseFunctionType(PATypeHolder &Result) {
bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex(); // Consume the '{'
-
+
if (EatIfPresent(lltok::rbrace)) {
- Result = Context.getStructType(Packed);
+ Result = StructType::get(Context, Packed);
return false;
}
@@ -1283,62 +1483,62 @@ bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
LocTy EltTyLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
ParamsList.push_back(Result);
-
- if (Result == Type::VoidTy)
+
+ if (Result->isVoidTy())
return Error(EltTyLoc, "struct element can not have void type");
if (!StructType::isValidElementType(Result))
return Error(EltTyLoc, "invalid element type for struct");
-
+
while (EatIfPresent(lltok::comma)) {
EltTyLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
-
- if (Result == Type::VoidTy)
+
+ if (Result->isVoidTy())
return Error(EltTyLoc, "struct element can not have void type");
if (!StructType::isValidElementType(Result))
return Error(EltTyLoc, "invalid element type for struct");
-
+
ParamsList.push_back(Result);
}
-
+
if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
return true;
-
+
std::vector<const Type*> ParamsListTy;
for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
ParamsListTy.push_back(ParamsList[i].get());
- Result = HandleUpRefs(Context.getStructType(ParamsListTy, Packed));
+ Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
return false;
}
/// ParseArrayVectorType - Parse an array or vector type, assuming the first
/// token has already been consumed.
-/// TypeRec
+/// TypeRec
/// ::= '[' APSINTVAL 'x' Types ']'
/// ::= '<' APSINTVAL 'x' Types '>'
bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
Lex.getAPSIntVal().getBitWidth() > 64)
return TokError("expected number in address space");
-
+
LocTy SizeLoc = Lex.getLoc();
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Lex.Lex();
-
+
if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
return true;
LocTy TypeLoc = Lex.getLoc();
- PATypeHolder EltTy(Type::VoidTy);
+ PATypeHolder EltTy(Type::getVoidTy(Context));
if (ParseTypeRec(EltTy)) return true;
-
- if (EltTy == Type::VoidTy)
+
+ if (EltTy->isVoidTy())
return Error(TypeLoc, "array and vector element type cannot be void");
if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
"expected end of sequential type"))
return true;
-
+
if (isVector) {
if (Size == 0)
return Error(SizeLoc, "zero element vector is illegal");
@@ -1346,11 +1546,11 @@ bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
return Error(SizeLoc, "size too large for vector");
if (!VectorType::isValidElementType(EltTy))
return Error(TypeLoc, "vector element type must be fp or integer");
- Result = Context.getVectorType(EltTy, unsigned(Size));
+ Result = VectorType::get(EltTy, unsigned(Size));
} else {
if (!ArrayType::isValidElementType(EltTy))
return Error(TypeLoc, "invalid array element type");
- Result = HandleUpRefs(Context.getArrayType(EltTy, Size));
+ Result = HandleUpRefs(ArrayType::get(EltTy, Size));
}
return false;
}
@@ -1375,16 +1575,16 @@ LLParser::PerFunctionState::~PerFunctionState() {
I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
- P.getContext().getUndef(I->second.first->getType()));
+ UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
-
+
for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
- P.getContext().getUndef(I->second.first->getType()));
+ UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
@@ -1410,7 +1610,7 @@ Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
const Type *Ty, LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = F.getValueSymbolTable().lookup(Name);
-
+
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
@@ -1419,31 +1619,32 @@ Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
if (I != ForwardRefVals.end())
Val = I->second.first;
}
-
+
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
- if (Ty == Type::LabelTy)
+ if (Ty->isLabelTy())
P.Error(Loc, "'%" + Name + "' is not a basic block");
else
P.Error(Loc, "'%" + Name + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
-
+
// Don't make placeholders with invalid type.
- if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
+ if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
+ Ty != Type::getLabelTy(F.getContext())) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
-
+
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
- if (Ty == Type::LabelTy)
- FwdVal = BasicBlock::Create(Name, &F);
+ if (Ty->isLabelTy())
+ FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
else
FwdVal = new Argument(Ty, Name);
-
+
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
@@ -1452,7 +1653,7 @@ Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
-
+
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
@@ -1461,30 +1662,31 @@ Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
-
+
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
- if (Ty == Type::LabelTy)
+ if (Ty->isLabelTy())
P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
else
P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
-
- if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
+
+ if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
+ Ty != Type::getLabelTy(F.getContext())) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
-
+
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
- if (Ty == Type::LabelTy)
- FwdVal = BasicBlock::Create("", &F);
+ if (Ty->isLabelTy())
+ FwdVal = BasicBlock::Create(F.getContext(), "", &F);
else
FwdVal = new Argument(Ty);
-
+
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
@@ -1495,30 +1697,31 @@ bool LLParser::PerFunctionState::SetInstName(int NameID,
const std::string &NameStr,
LocTy NameLoc, Instruction *Inst) {
// If this instruction has void type, it cannot have a name or ID specified.
- if (Inst->getType() == Type::VoidTy) {
+ if (Inst->getType()->isVoidTy()) {
if (NameID != -1 || !NameStr.empty())
return P.Error(NameLoc, "instructions returning void cannot have a name");
return false;
}
-
+
// If this was a numbered instruction, verify that the instruction is the
// expected value and resolve any forward references.
if (NameStr.empty()) {
// If neither a name nor an ID was specified, just use the next ID.
if (NameID == -1)
NameID = NumberedVals.size();
-
+
if (unsigned(NameID) != NumberedVals.size())
return P.Error(NameLoc, "instruction expected to be numbered '%" +
utostr(NumberedVals.size()) + "'");
-
+
std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
ForwardRefValIDs.find(NameID);
if (FI != ForwardRefValIDs.end()) {
if (FI->second.first->getType() != Inst->getType())
- return P.Error(NameLoc, "instruction forward referenced with type '" +
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
FI->second.first->getType()->getDescription() + "'");
FI->second.first->replaceAllUsesWith(Inst);
+ delete FI->second.first;
ForwardRefValIDs.erase(FI);
}
@@ -1531,17 +1734,18 @@ bool LLParser::PerFunctionState::SetInstName(int NameID,
FI = ForwardRefVals.find(NameStr);
if (FI != ForwardRefVals.end()) {
if (FI->second.first->getType() != Inst->getType())
- return P.Error(NameLoc, "instruction forward referenced with type '" +
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
FI->second.first->getType()->getDescription() + "'");
FI->second.first->replaceAllUsesWith(Inst);
+ delete FI->second.first;
ForwardRefVals.erase(FI);
}
-
+
// Set the name on the instruction.
Inst->setName(NameStr);
-
+
if (Inst->getNameStr() != NameStr)
- return P.Error(NameLoc, "multiple definition of local value named '" +
+ return P.Error(NameLoc, "multiple definition of local value named '" +
NameStr + "'");
return false;
}
@@ -1550,11 +1754,13 @@ bool LLParser::PerFunctionState::SetInstName(int NameID,
/// forward reference record if needed.
BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
LocTy Loc) {
- return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
+ return cast_or_null<BasicBlock>(GetVal(Name,
+ Type::getLabelTy(F.getContext()), Loc));
}
BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
- return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
+ return cast_or_null<BasicBlock>(GetVal(ID,
+ Type::getLabelTy(F.getContext()), Loc));
}
/// DefineBB - Define the specified basic block, which is either named or
@@ -1568,11 +1774,11 @@ BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
else
BB = GetBB(Name, Loc);
if (BB == 0) return 0; // Already diagnosed error.
-
+
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
-
+
// Remove the block from forward ref sets.
if (Name.empty()) {
ForwardRefValIDs.erase(NumberedVals.size());
@@ -1581,7 +1787,7 @@ BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
// BB forward references are already in the function symbol table.
ForwardRefVals.erase(Name);
}
-
+
return BB;
}
@@ -1615,7 +1821,7 @@ bool LLParser::ParseValID(ValID &ID) {
ID.Kind = ValID::t_LocalName;
break;
case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
- ID.Kind = ValID::t_Constant;
+ ID.Kind = ValID::t_Metadata;
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
SmallVector<Value*, 16> Elts;
@@ -1623,31 +1829,23 @@ bool LLParser::ParseValID(ValID &ID) {
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
- ID.ConstantVal = Context.getMDNode(Elts.data(), Elts.size());
+ ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
return false;
}
// Standalone metadata reference
// !{ ..., !42, ... }
- unsigned MID = 0;
- if (!ParseUInt32(MID)) {
- std::map<unsigned, Constant *>::iterator I = MetadataCache.find(MID);
- if (I == MetadataCache.end())
- return TokError("Unknown metadata reference");
- ID.ConstantVal = I->second;
+ if (!ParseMDNode(ID.MetadataVal))
return false;
- }
-
+
// MDString:
// ::= '!' STRINGCONSTANT
- std::string Str;
- if (ParseStringConstant(Str)) return true;
-
- ID.ConstantVal = Context.getMDString(Str.data(), Str.data() + Str.size());
+ if (ParseMDString(ID.MetadataVal)) return true;
+ ID.Kind = ValID::t_Metadata;
return false;
}
case lltok::APSInt:
- ID.APSIntVal = Lex.getAPSIntVal();
+ ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
break;
case lltok::APFloat:
@@ -1655,17 +1853,17 @@ bool LLParser::ParseValID(ValID &ID) {
ID.Kind = ValID::t_APFloat;
break;
case lltok::kw_true:
- ID.ConstantVal = Context.getConstantIntTrue();
+ ID.ConstantVal = ConstantInt::getTrue(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_false:
- ID.ConstantVal = Context.getConstantIntFalse();
+ ID.ConstantVal = ConstantInt::getFalse(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
-
+
case lltok::lbrace: {
// ValID ::= '{' ConstVector '}'
Lex.Lex();
@@ -1673,8 +1871,9 @@ bool LLParser::ParseValID(ValID &ID) {
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rbrace, "expected end of struct constant"))
return true;
-
- ID.ConstantVal = Context.getConstantStruct(Elts.data(), Elts.size(), false);
+
+ ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
+ Elts.size(), false);
ID.Kind = ValID::t_Constant;
return false;
}
@@ -1683,7 +1882,7 @@ bool LLParser::ParseValID(ValID &ID) {
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
Lex.Lex();
bool isPackedStruct = EatIfPresent(lltok::lbrace);
-
+
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
@@ -1691,14 +1890,14 @@ bool LLParser::ParseValID(ValID &ID) {
ParseToken(lltok::rbrace, "expected end of packed struct")) ||
ParseToken(lltok::greater, "expected end of constant"))
return true;
-
+
if (isPackedStruct) {
ID.ConstantVal =
- Context.getConstantStruct(Elts.data(), Elts.size(), true);
+ ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
ID.Kind = ValID::t_Constant;
return false;
}
-
+
if (Elts.empty())
return Error(ID.Loc, "constant vector must not be empty");
@@ -1706,15 +1905,15 @@ bool LLParser::ParseValID(ValID &ID) {
!Elts[0]->getType()->isFloatingPoint())
return Error(FirstEltLoc,
"vector elements must have integer or floating point type");
-
+
// Verify that all the vector elements have the same type.
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"vector element #" + utostr(i) +
" is not of type '" + Elts[0]->getType()->getDescription());
-
- ID.ConstantVal = Context.getConstantVector(Elts.data(), Elts.size());
+
+ ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
ID.Kind = ValID::t_Constant;
return false;
}
@@ -1733,13 +1932,13 @@ bool LLParser::ParseValID(ValID &ID) {
ID.Kind = ValID::t_EmptyArray;
return false;
}
-
+
if (!Elts[0]->getType()->isFirstClassType())
- return Error(FirstEltLoc, "invalid array element type: " +
+ return Error(FirstEltLoc, "invalid array element type: " +
Elts[0]->getType()->getDescription());
-
- ArrayType *ATy = Context.getArrayType(Elts[0]->getType(), Elts.size());
-
+
+ ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
+
// Verify all elements are correct type!
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
if (Elts[i]->getType() != Elts[0]->getType())
@@ -1747,33 +1946,34 @@ bool LLParser::ParseValID(ValID &ID) {
"array element #" + utostr(i) +
" is not of type '" +Elts[0]->getType()->getDescription());
}
-
- ID.ConstantVal = Context.getConstantArray(ATy, Elts.data(), Elts.size());
+
+ ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_c: // c "foo"
Lex.Lex();
- ID.ConstantVal = Context.getConstantArray(Lex.getStrVal(), false);
+ ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
if (ParseToken(lltok::StringConstant, "expected string")) return true;
ID.Kind = ValID::t_Constant;
return false;
case lltok::kw_asm: {
- // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
- bool HasSideEffect;
+ // ValID ::= 'asm' SideEffect? MsAsm? STRINGCONSTANT ',' STRINGCONSTANT
+ bool HasSideEffect, MsAsm;
Lex.Lex();
if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
+ ParseOptionalToken(lltok::kw_msasm, MsAsm) ||
ParseStringConstant(ID.StrVal) ||
ParseToken(lltok::comma, "expected comma in inline asm expression") ||
ParseToken(lltok::StringConstant, "expected constraint string"))
return true;
ID.StrVal2 = Lex.getStrVal();
- ID.UIntVal = HasSideEffect;
+ ID.UIntVal = HasSideEffect | ((unsigned)MsAsm<<1);
ID.Kind = ValID::t_InlineAsm;
return false;
}
-
+
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
@@ -1783,11 +1983,11 @@ bool LLParser::ParseValID(ValID &ID) {
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
- case lltok::kw_fptosi:
+ case lltok::kw_fptosi:
case lltok::kw_inttoptr:
- case lltok::kw_ptrtoint: {
+ case lltok::kw_ptrtoint: {
unsigned Opc = Lex.getUIntVal();
- PATypeHolder DestTy(Type::VoidTy);
+ PATypeHolder DestTy(Type::getVoidTy(Context));
Constant *SrcVal;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
@@ -1800,7 +2000,7 @@ bool LLParser::ParseValID(ValID &ID) {
return Error(ID.Loc, "invalid cast opcode for cast from '" +
SrcVal->getType()->getDescription() + "' to '" +
DestTy->getDescription() + "'");
- ID.ConstantVal = Context.getConstantExprCast((Instruction::CastOps)Opc,
+ ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
SrcVal, DestTy);
ID.Kind = ValID::t_Constant;
return false;
@@ -1820,7 +2020,7 @@ bool LLParser::ParseValID(ValID &ID) {
Indices.end()))
return Error(ID.Loc, "invalid indices for extractvalue");
ID.ConstantVal =
- Context.getConstantExprExtractValue(Val, Indices.data(), Indices.size());
+ ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
ID.Kind = ValID::t_Constant;
return false;
}
@@ -1840,15 +2040,13 @@ bool LLParser::ParseValID(ValID &ID) {
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
Indices.end()))
return Error(ID.Loc, "invalid indices for insertvalue");
- ID.ConstantVal = Context.getConstantExprInsertValue(Val0, Val1,
+ ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
Indices.data(), Indices.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_icmp:
- case lltok::kw_fcmp:
- case lltok::kw_vicmp:
- case lltok::kw_vfcmp: {
+ case lltok::kw_fcmp: {
unsigned PredVal, Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
@@ -1859,38 +2057,27 @@ bool LLParser::ParseValID(ValID &ID) {
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
return true;
-
+
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "compare operands must have the same type");
-
+
CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
-
+
if (Opc == Instruction::FCmp) {
if (!Val0->getType()->isFPOrFPVector())
return Error(ID.Loc, "fcmp requires floating point operands");
- ID.ConstantVal = Context.getConstantExprFCmp(Pred, Val0, Val1);
- } else if (Opc == Instruction::ICmp) {
+ ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
+ } else {
+ assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
if (!Val0->getType()->isIntOrIntVector() &&
!isa<PointerType>(Val0->getType()))
return Error(ID.Loc, "icmp requires pointer or integer operands");
- ID.ConstantVal = Context.getConstantExprICmp(Pred, Val0, Val1);
- } else if (Opc == Instruction::VFCmp) {
- // FIXME: REMOVE VFCMP Support
- if (!Val0->getType()->isFPOrFPVector() ||
- !isa<VectorType>(Val0->getType()))
- return Error(ID.Loc, "vfcmp requires vector floating point operands");
- ID.ConstantVal = Context.getConstantExprVFCmp(Pred, Val0, Val1);
- } else if (Opc == Instruction::VICmp) {
- // FIXME: REMOVE VICMP Support
- if (!Val0->getType()->isIntOrIntVector() ||
- !isa<VectorType>(Val0->getType()))
- return Error(ID.Loc, "vicmp requires vector floating point operands");
- ID.ConstantVal = Context.getConstantExprVICmp(Pred, Val0, Val1);
+ ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
}
ID.Kind = ValID::t_Constant;
return false;
}
-
+
// Binary Operators.
case lltok::kw_add:
case lltok::kw_fadd:
@@ -1904,9 +2091,27 @@ bool LLParser::ParseValID(ValID &ID) {
case lltok::kw_urem:
case lltok::kw_srem:
case lltok::kw_frem: {
+ bool NUW = false;
+ bool NSW = false;
+ bool Exact = false;
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
+ LocTy ModifierLoc = Lex.getLoc();
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul) {
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ if (EatIfPresent(lltok::kw_nsw)) {
+ NSW = true;
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ }
+ } else if (Opc == Instruction::SDiv) {
+ if (EatIfPresent(lltok::kw_exact))
+ Exact = true;
+ }
if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
@@ -1915,14 +2120,27 @@ bool LLParser::ParseValID(ValID &ID) {
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
+ if (!Val0->getType()->isIntOrIntVector()) {
+ if (NUW)
+ return Error(ModifierLoc, "nuw only applies to integer operations");
+ if (NSW)
+ return Error(ModifierLoc, "nsw only applies to integer operations");
+ }
+ // API compatibility: Accept either integer or floating-point types with
+ // add, sub, and mul.
if (!Val0->getType()->isIntOrIntVector() &&
!Val0->getType()->isFPOrFPVector())
return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
- ID.ConstantVal = Context.getConstantExpr(Opc, Val0, Val1);
+ unsigned Flags = 0;
+ if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+ if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
+ if (Exact) Flags |= SDivOperator::IsExact;
+ Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
+ ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
}
-
+
// Logical Operations
case lltok::kw_shl:
case lltok::kw_lshr:
@@ -1944,11 +2162,11 @@ bool LLParser::ParseValID(ValID &ID) {
if (!Val0->getType()->isIntOrIntVector())
return Error(ID.Loc,
"constexpr requires integer or integer vector operands");
- ID.ConstantVal = Context.getConstantExpr(Opc, Val0, Val1);
+ ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
- }
-
+ }
+
case lltok::kw_getelementptr:
case lltok::kw_shufflevector:
case lltok::kw_insertelement:
@@ -1956,41 +2174,49 @@ bool LLParser::ParseValID(ValID &ID) {
case lltok::kw_select: {
unsigned Opc = Lex.getUIntVal();
SmallVector<Constant*, 16> Elts;
+ bool InBounds = false;
Lex.Lex();
+ if (Opc == Instruction::GetElementPtr)
+ InBounds = EatIfPresent(lltok::kw_inbounds);
if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rparen, "expected ')' in constantexpr"))
return true;
-
+
if (Opc == Instruction::GetElementPtr) {
if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
return Error(ID.Loc, "getelementptr requires pointer operand");
-
+
if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
- (Value**)&Elts[1], Elts.size()-1))
+ (Value**)(Elts.data() + 1),
+ Elts.size() - 1))
return Error(ID.Loc, "invalid indices for getelementptr");
- ID.ConstantVal = Context.getConstantExprGetElementPtr(Elts[0],
- &Elts[1], Elts.size()-1);
+ ID.ConstantVal = InBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(Elts[0],
+ Elts.data() + 1,
+ Elts.size() - 1) :
+ ConstantExpr::getGetElementPtr(Elts[0],
+ Elts.data() + 1, Elts.size() - 1);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to select");
if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
Elts[2]))
return Error(ID.Loc, Reason);
- ID.ConstantVal = Context.getConstantExprSelect(Elts[0], Elts[1], Elts[2]);
+ ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
} else if (Opc == Instruction::ShuffleVector) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to shufflevector");
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid operands to shufflevector");
ID.ConstantVal =
- Context.getConstantExprShuffleVector(Elts[0], Elts[1],Elts[2]);
+ ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
} else if (Opc == Instruction::ExtractElement) {
if (Elts.size() != 2)
return Error(ID.Loc, "expected two operands to extractelement");
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
return Error(ID.Loc, "invalid extractelement operands");
- ID.ConstantVal = Context.getConstantExprExtractElement(Elts[0], Elts[1]);
+ ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
} else {
assert(Opc == Instruction::InsertElement && "Unknown opcode");
if (Elts.size() != 3)
@@ -1998,14 +2224,14 @@ bool LLParser::ParseValID(ValID &ID) {
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid insertelement operands");
ID.ConstantVal =
- Context.getConstantExprInsertElement(Elts[0], Elts[1],Elts[2]);
+ ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
}
-
+
ID.Kind = ValID::t_Constant;
return false;
}
}
-
+
Lex.Lex();
return false;
}
@@ -2024,9 +2250,11 @@ bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
Constant *&V) {
if (isa<FunctionType>(Ty))
return Error(ID.Loc, "functions are not values, refer to them as pointers");
-
+
switch (ID.Kind) {
- default: assert(0 && "Unknown ValID!");
+ default: llvm_unreachable("Unknown ValID!");
+ case ValID::t_Metadata:
+ return Error(ID.Loc, "invalid use of metadata");
case ValID::t_LocalID:
case ValID::t_LocalName:
return Error(ID.Loc, "invalid use of function-local name");
@@ -2042,50 +2270,50 @@ bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
if (!isa<IntegerType>(Ty))
return Error(ID.Loc, "integer constant must have integer type");
ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
- V = Context.getConstantInt(ID.APSIntVal);
+ V = ConstantInt::get(Context, ID.APSIntVal);
return false;
case ValID::t_APFloat:
if (!Ty->isFloatingPoint() ||
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
return Error(ID.Loc, "floating point constant invalid for type");
-
+
// The lexer has no type info, so builds all float and double FP constants
// as double. Fix this here. Long double does not need this.
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
- Ty == Type::FloatTy) {
+ Ty->isFloatTy()) {
bool Ignored;
ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
&Ignored);
}
- V = Context.getConstantFP(ID.APFloatVal);
-
+ V = ConstantFP::get(Context, ID.APFloatVal);
+
if (V->getType() != Ty)
return Error(ID.Loc, "floating point constant does not have type '" +
Ty->getDescription() + "'");
-
+
return false;
case ValID::t_Null:
if (!isa<PointerType>(Ty))
return Error(ID.Loc, "null must be a pointer type");
- V = Context.getConstantPointerNull(cast<PointerType>(Ty));
+ V = ConstantPointerNull::get(cast<PointerType>(Ty));
return false;
case ValID::t_Undef:
// FIXME: LabelTy should not be a first-class type.
- if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
+ if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
!isa<OpaqueType>(Ty))
return Error(ID.Loc, "invalid type for undef constant");
- V = Context.getUndef(Ty);
+ V = UndefValue::get(Ty);
return false;
case ValID::t_EmptyArray:
if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
return Error(ID.Loc, "invalid empty array initializer");
- V = Context.getUndef(Ty);
+ V = UndefValue::get(Ty);
return false;
case ValID::t_Zero:
// FIXME: LabelTy should not be a first-class type.
- if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
+ if (!Ty->isFirstClassType() || Ty->isLabelTy())
return Error(ID.Loc, "invalid type for null constant");
- V = Context.getNullValue(Ty);
+ V = Constant::getNullValue(Ty);
return false;
case ValID::t_Constant:
if (ID.ConstantVal->getType() != Ty)
@@ -2094,12 +2322,12 @@ bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
return false;
}
}
-
+
bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
- PATypeHolder Type(Type::VoidTy);
+ PATypeHolder Type(Type::getVoidTy(Context));
return ParseType(Type) ||
ParseGlobalValue(Type, V);
-}
+}
/// ParseGlobalValueVector
/// ::= /*empty*/
@@ -2111,16 +2339,16 @@ bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
Lex.getKind() == lltok::greater ||
Lex.getKind() == lltok::rparen)
return false;
-
+
Constant *C;
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
-
+
while (EatIfPresent(lltok::comma)) {
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
}
-
+
return false;
}
@@ -2141,8 +2369,10 @@ bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
return Error(ID.Loc, "invalid type for inline asm constraint string");
- V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
+ V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
return false;
+ } else if (ID.Kind == ValID::t_Metadata) {
+ V = ID.MetadataVal;
} else {
Constant *C;
if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
@@ -2161,7 +2391,7 @@ bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
}
bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
- PATypeHolder T(Type::VoidTy);
+ PATypeHolder T(Type::getVoidTy(Context));
return ParseType(T) ||
ParseValue(T, V, PFS);
}
@@ -2174,9 +2404,10 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
// Parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
unsigned Linkage;
-
- unsigned Visibility, CC, RetAttrs;
- PATypeHolder RetType(Type::VoidTy);
+
+ unsigned Visibility, RetAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
LocTy RetTypeLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
@@ -2195,6 +2426,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
return Error(LinkageLoc, "invalid linkage for function definition");
break;
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
@@ -2210,11 +2442,11 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
case GlobalValue::CommonLinkage:
return Error(LinkageLoc, "invalid function linkage type");
}
-
+
if (!FunctionType::isValidReturnType(RetType) ||
isa<OpaqueType>(RetType))
return Error(RetTypeLoc, "invalid function return type");
-
+
LocTy NameLoc = Lex.getLoc();
std::string FunctionName;
@@ -2229,12 +2461,12 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
} else {
return TokError("expected function name");
}
-
+
Lex.Lex();
-
+
if (Lex.getKind() != lltok::lparen)
return TokError("expected '(' in function argument list");
-
+
std::vector<ArgInfo> ArgList;
bool isVarArg;
unsigned FuncAttrs;
@@ -2256,22 +2488,22 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
FuncAttrs &= ~Attribute::Alignment;
}
-
+
// Okay, if we got here, the function is syntactically valid. Convert types
// and do semantic checks.
std::vector<const Type*> ParamTypeList;
SmallVector<AttributeWithIndex, 8> Attrs;
- // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
+ // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
// attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
if (FuncAttrs & ObsoleteFuncAttrs) {
RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
FuncAttrs &= ~ObsoleteFuncAttrs;
}
-
+
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
-
+
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
ParamTypeList.push_back(ArgList[i].Type);
if (ArgList[i].Attrs != Attribute::None)
@@ -2282,14 +2514,14 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
-
+
if (PAL.paramHasAttr(1, Attribute::StructRet) &&
- RetType != Type::VoidTy)
- return Error(RetTypeLoc, "functions with 'sret' argument must return void");
-
+ RetType != Type::getVoidTy(Context))
+ return Error(RetTypeLoc, "functions with 'sret' argument must return void");
+
const FunctionType *FT =
- Context.getFunctionType(RetType, ParamTypeList, isVarArg);
- const PointerType *PFT = Context.getPointerTypeUnqual(FT);
+ FunctionType::get(RetType, ParamTypeList, isVarArg);
+ const PointerType *PFT = PointerType::getUnqual(FT);
Fn = 0;
if (!FunctionName.empty()) {
@@ -2317,8 +2549,8 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
AI->setName("");
}
}
-
- } else if (FunctionName.empty()) {
+
+ } else {
// If this is a definition of a forward referenced function, make sure the
// types agree.
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
@@ -2339,7 +2571,7 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
if (FunctionName.empty())
NumberedVals.push_back(Fn);
-
+
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
Fn->setCallingConv(CC);
@@ -2347,21 +2579,21 @@ bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
Fn->setAlignment(Alignment);
Fn->setSection(Section);
if (!GC.empty()) Fn->setGC(GC.c_str());
-
+
// Add all of the arguments we parsed to the function.
Function::arg_iterator ArgIt = Fn->arg_begin();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
// If the argument has a name, insert it into the argument symbol table.
if (ArgList[i].Name.empty()) continue;
-
+
// Set the name, if it conflicted, it will be auto-renamed.
ArgIt->setName(ArgList[i].Name);
-
+
if (ArgIt->getNameStr() != ArgList[i].Name)
return Error(ArgList[i].Loc, "redefinition of argument '%" +
ArgList[i].Name + "'");
}
-
+
return false;
}
@@ -2374,15 +2606,15 @@ bool LLParser::ParseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
return TokError("expected '{' in function body");
Lex.Lex(); // eat the {.
-
+
PerFunctionState PFS(*this, Fn);
-
+
while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
if (ParseBasicBlock(PFS)) return true;
-
+
// Eat the }.
Lex.Lex();
-
+
// Verify function is ok.
return PFS.VerifyFunctionComplete();
}
@@ -2397,12 +2629,12 @@ bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
Name = Lex.getStrVal();
Lex.Lex();
}
-
+
BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
if (BB == 0) return true;
-
+
std::string NameStr;
-
+
// Parse the instructions in this block until we get a terminator.
Instruction *Inst;
do {
@@ -2411,7 +2643,7 @@ bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
LocTy NameLoc = Lex.getLoc();
int NameID = -1;
NameStr = "";
-
+
if (Lex.getKind() == lltok::LocalVarID) {
NameID = Lex.getUIntVal();
Lex.Lex();
@@ -2425,15 +2657,24 @@ bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
if (ParseToken(lltok::equal, "expected '=' after instruction name"))
return true;
}
-
+
if (ParseInstruction(Inst, BB, PFS)) return true;
-
+ if (EatIfPresent(lltok::comma))
+ ParseOptionalCustomMetadata();
+
+ // Set metadata attached with this instruction.
+ MetadataContext &TheMetadata = M->getContext().getMetadata();
+ for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
+ MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
+ TheMetadata.addMD(MDI->first, MDI->second, Inst);
+ MDsOnInst.clear();
+
BB->getInstList().push_back(Inst);
// Set the name on the instruction.
if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
} while (!isa<TerminatorInst>(Inst));
-
+
return false;
}
@@ -2451,12 +2692,12 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
LocTy Loc = Lex.getLoc();
unsigned KeywordVal = Lex.getUIntVal();
Lex.Lex(); // Eat the keyword.
-
+
switch (Token) {
default: return Error(Loc, "expected instruction opcode");
// Terminator Instructions.
- case lltok::kw_unwind: Inst = new UnwindInst(); return false;
- case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
+ case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
+ case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
case lltok::kw_br: return ParseBr(Inst, PFS);
case lltok::kw_switch: return ParseSwitch(Inst, PFS);
@@ -2464,15 +2705,49 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
- case lltok::kw_mul:
+ case lltok::kw_mul: {
+ bool NUW = false;
+ bool NSW = false;
+ LocTy ModifierLoc = Lex.getLoc();
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ if (EatIfPresent(lltok::kw_nsw)) {
+ NSW = true;
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ }
// API compatibility: Accept either integer or floating-point types.
- return ParseArithmetic(Inst, PFS, KeywordVal, 0);
+ bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
+ if (!Result) {
+ if (!Inst->getType()->isIntOrIntVector()) {
+ if (NUW)
+ return Error(ModifierLoc, "nuw only applies to integer operations");
+ if (NSW)
+ return Error(ModifierLoc, "nsw only applies to integer operations");
+ }
+ if (NUW)
+ cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
+ if (NSW)
+ cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
+ }
+ return Result;
+ }
case lltok::kw_fadd:
case lltok::kw_fsub:
case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
+ case lltok::kw_sdiv: {
+ bool Exact = false;
+ if (EatIfPresent(lltok::kw_exact))
+ Exact = true;
+ bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
+ if (!Result)
+ if (Exact)
+ cast<BinaryOperator>(Inst)->setIsExact(true);
+ return Result;
+ }
+
case lltok::kw_udiv:
- case lltok::kw_sdiv:
case lltok::kw_urem:
case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
case lltok::kw_fdiv:
@@ -2484,9 +2759,7 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
case lltok::kw_or:
case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
case lltok::kw_icmp:
- case lltok::kw_fcmp:
- case lltok::kw_vicmp:
- case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
+ case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
// Casts.
case lltok::kw_trunc:
case lltok::kw_zext:
@@ -2497,7 +2770,7 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
- case lltok::kw_fptosi:
+ case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
// Other.
@@ -2531,8 +2804,7 @@ bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
- // FIXME: REMOVE vicmp/vfcmp!
- if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
+ if (Opc == Instruction::FCmp) {
switch (Lex.getKind()) {
default: TokError("expected fcmp predicate (e.g. 'oeq')");
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
@@ -2576,42 +2848,57 @@ bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
//===----------------------------------------------------------------------===//
/// ParseRet - Parse a return instruction.
-/// ::= 'ret' void
-/// ::= 'ret' TypeAndValue
-/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
+/// ::= 'ret' void (',' !dbg, !1)
+/// ::= 'ret' TypeAndValue (',' !dbg, !1)
+/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)
+/// [[obsolete: LLVM 3.0]]
bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
- PATypeHolder Ty(Type::VoidTy);
+ PATypeHolder Ty(Type::getVoidTy(Context));
if (ParseType(Ty, true /*void allowed*/)) return true;
-
- if (Ty == Type::VoidTy) {
- Inst = ReturnInst::Create();
+
+ if (Ty->isVoidTy()) {
+ if (EatIfPresent(lltok::comma))
+ if (ParseOptionalCustomMetadata()) return true;
+ Inst = ReturnInst::Create(Context);
return false;
}
-
+
Value *RV;
if (ParseValue(Ty, RV, PFS)) return true;
-
- // The normal case is one return value.
- if (Lex.getKind() == lltok::comma) {
- // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
- // of 'ret {i32,i32} {i32 1, i32 2}'
- SmallVector<Value*, 8> RVs;
- RVs.push_back(RV);
-
- while (EatIfPresent(lltok::comma)) {
- if (ParseTypeAndValue(RV, PFS)) return true;
+
+ if (EatIfPresent(lltok::comma)) {
+ // Parse optional custom metadata, e.g. !dbg
+ if (Lex.getKind() == lltok::NamedOrCustomMD) {
+ if (ParseOptionalCustomMetadata()) return true;
+ } else {
+ // The normal case is one return value.
+ // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
+ // of 'ret {i32,i32} {i32 1, i32 2}'
+ SmallVector<Value*, 8> RVs;
RVs.push_back(RV);
- }
- RV = Context.getUndef(PFS.getFunction().getReturnType());
- for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
- Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
- BB->getInstList().push_back(I);
- RV = I;
+ do {
+ // If optional custom metadata, e.g. !dbg is seen then this is the
+ // end of MRV.
+ if (Lex.getKind() == lltok::NamedOrCustomMD)
+ break;
+ if (ParseTypeAndValue(RV, PFS)) return true;
+ RVs.push_back(RV);
+ } while (EatIfPresent(lltok::comma));
+
+ RV = UndefValue::get(PFS.getFunction().getReturnType());
+ for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
+ Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
+ BB->getInstList().push_back(I);
+ RV = I;
+ }
}
}
- Inst = ReturnInst::Create(RV);
+ if (EatIfPresent(lltok::comma))
+ if (ParseOptionalCustomMetadata()) return true;
+
+ Inst = ReturnInst::Create(Context, RV);
return false;
}
@@ -2623,26 +2910,26 @@ bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc, Loc2;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
-
+
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
Inst = BranchInst::Create(BB);
return false;
}
-
- if (Op0->getType() != Type::Int1Ty)
+
+ if (Op0->getType() != Type::getInt1Ty(Context))
return Error(Loc, "branch condition must have 'i1' type");
-
+
if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
ParseTypeAndValue(Op1, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after true destination") ||
ParseTypeAndValue(Op2, Loc2, PFS))
return true;
-
+
if (!isa<BasicBlock>(Op1))
return Error(Loc, "true destination of branch must be a basic block");
if (!isa<BasicBlock>(Op2))
return Error(Loc2, "true destination of branch must be a basic block");
-
+
Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
return false;
}
@@ -2665,13 +2952,13 @@ bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
return Error(CondLoc, "switch condition must have integer type");
if (!isa<BasicBlock>(DefaultBB))
return Error(BBLoc, "default destination must be a basic block");
-
+
// Parse the jump table pairs.
SmallPtrSet<Value*, 32> SeenCases;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
while (Lex.getKind() != lltok::rsquare) {
Value *Constant, *DestBB;
-
+
if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after case value") ||
ParseTypeAndValue(DestBB, BBLoc, PFS))
@@ -2683,13 +2970,13 @@ bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
return Error(CondLoc, "case value is not a constant integer");
if (!isa<BasicBlock>(DestBB))
return Error(BBLoc, "case destination is not a basic block");
-
+
Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
cast<BasicBlock>(DestBB)));
}
-
+
Lex.Lex(); // Eat the ']'.
-
+
SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
Table.size());
for (unsigned i = 0, e = Table.size(); i != e; ++i)
@@ -2703,8 +2990,9 @@ bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
- unsigned CC, RetAttrs, FnAttrs;
- PATypeHolder RetType(Type::VoidTy);
+ unsigned RetAttrs, FnAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
@@ -2721,12 +3009,12 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
ParseTypeAndValue(UnwindBB, PFS))
return true;
-
+
if (!isa<BasicBlock>(NormalBB))
return Error(CallLoc, "normal destination is not a basic block");
if (!isa<BasicBlock>(UnwindBB))
return Error(CallLoc, "unwind destination is not a basic block");
-
+
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
@@ -2738,18 +3026,18 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
std::vector<const Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
-
+
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
-
- Ty = Context.getFunctionType(RetType, ParamTypes, false);
- PFTy = Context.getPointerTypeUnqual(Ty);
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ PFTy = PointerType::getUnqual(Ty);
}
-
+
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
-
+
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
@@ -2757,14 +3045,14 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
FnAttrs &= ~ObsoleteFuncAttrs;
}
-
+
// Set up the Attributes for the function.
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
-
+
SmallVector<Value*, 8> Args;
-
+
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
@@ -2776,7 +3064,7 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
-
+
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
ExpectedTy->getDescription() + "'");
@@ -2784,16 +3072,16 @@ bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
-
+
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
-
+
if (FnAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
-
+
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
-
+
InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
cast<BasicBlock>(UnwindBB),
Args.begin(), Args.end());
@@ -2824,7 +3112,7 @@ bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
bool Valid;
switch (OperandType) {
- default: assert(0 && "Unknown operand type!");
+ default: llvm_unreachable("Unknown operand type!");
case 0: // int or FP.
Valid = LHS->getType()->isIntOrIntVector() ||
LHS->getType()->isFPOrFPVector();
@@ -2832,10 +3120,10 @@ bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
}
-
+
if (!Valid)
return Error(Loc, "invalid operand type for instruction");
-
+
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
@@ -2861,8 +3149,6 @@ bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
/// ParseCompare
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
-/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
-/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
// Parse the integer/fp comparison predicate.
@@ -2874,24 +3160,17 @@ bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
ParseToken(lltok::comma, "expected ',' after compare value") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
-
+
if (Opc == Instruction::FCmp) {
if (!LHS->getType()->isFPOrFPVector())
return Error(Loc, "fcmp requires floating point operands");
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
- } else if (Opc == Instruction::ICmp) {
+ } else {
+ assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
if (!LHS->getType()->isIntOrIntVector() &&
!isa<PointerType>(LHS->getType()))
return Error(Loc, "icmp requires integer operands");
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
- } else if (Opc == Instruction::VFCmp) {
- if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
- return Error(Loc, "vfcmp requires vector floating point operands");
- Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
- } else if (Opc == Instruction::VICmp) {
- if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
- return Error(Loc, "vicmp requires vector floating point operands");
- Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
}
return false;
}
@@ -2906,12 +3185,12 @@ bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *Op;
- PATypeHolder DestTy(Type::VoidTy);
+ PATypeHolder DestTy(Type::getVoidTy(Context));
if (ParseTypeAndValue(Op, Loc, PFS) ||
ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
ParseType(DestTy))
return true;
-
+
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
return Error(Loc, "invalid cast opcode for cast from '" +
@@ -2933,10 +3212,10 @@ bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::comma, "expected ',' after select value") ||
ParseTypeAndValue(Op2, PFS))
return true;
-
+
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
return Error(Loc, Reason);
-
+
Inst = SelectInst::Create(Op0, Op1, Op2);
return false;
}
@@ -2945,13 +3224,13 @@ bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
/// ::= 'va_arg' TypeAndValue ',' Type
bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Op;
- PATypeHolder EltTy(Type::VoidTy);
+ PATypeHolder EltTy(Type::getVoidTy(Context));
LocTy TypeLoc;
if (ParseTypeAndValue(Op, PFS) ||
ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
ParseType(EltTy, TypeLoc))
return true;
-
+
if (!EltTy->isFirstClassType())
return Error(TypeLoc, "va_arg requires operand with first class type");
@@ -2968,11 +3247,11 @@ bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::comma, "expected ',' after extract value") ||
ParseTypeAndValue(Op1, PFS))
return true;
-
+
if (!ExtractElementInst::isValidOperands(Op0, Op1))
return Error(Loc, "invalid extractelement operands");
-
- Inst = new ExtractElementInst(Op0, Op1);
+
+ Inst = ExtractElementInst::Create(Op0, Op1);
return false;
}
@@ -2987,10 +3266,10 @@ bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op2, PFS))
return true;
-
+
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
- return Error(Loc, "invalid extractelement operands");
-
+ return Error(Loc, "invalid insertelement operands");
+
Inst = InsertElementInst::Create(Op0, Op1, Op2);
return false;
}
@@ -3006,10 +3285,10 @@ bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::comma, "expected ',' after shuffle value") ||
ParseTypeAndValue(Op2, PFS))
return true;
-
+
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid extractelement operands");
-
+
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
return false;
}
@@ -3017,33 +3296,33 @@ bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
/// ParsePHI
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
- PATypeHolder Ty(Type::VoidTy);
+ PATypeHolder Ty(Type::getVoidTy(Context));
Value *Op0, *Op1;
LocTy TypeLoc = Lex.getLoc();
-
+
if (ParseType(Ty) ||
ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
- ParseValue(Type::LabelTy, Op1, PFS) ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
-
+
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
while (1) {
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
-
+
if (!EatIfPresent(lltok::comma))
break;
if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
- ParseValue(Type::LabelTy, Op1, PFS) ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
}
-
+
if (!Ty->isFirstClassType())
return Error(TypeLoc, "phi node must have first class type");
@@ -3060,13 +3339,14 @@ bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
/// ParameterList OptionalAttrs
bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
bool isTail) {
- unsigned CC, RetAttrs, FnAttrs;
- PATypeHolder RetType(Type::VoidTy);
+ unsigned RetAttrs, FnAttrs;
+ CallingConv::ID CC;
+ PATypeHolder RetType(Type::getVoidTy(Context));
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
LocTy CallLoc = Lex.getLoc();
-
+
if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
@@ -3075,7 +3355,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
ParseParameterList(ArgList, PFS) ||
ParseOptionalAttrs(FnAttrs, 2))
return true;
-
+
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
@@ -3087,18 +3367,18 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
std::vector<const Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
-
+
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
-
- Ty = Context.getFunctionType(RetType, ParamTypes, false);
- PFTy = Context.getPointerTypeUnqual(Ty);
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ PFTy = PointerType::getUnqual(Ty);
}
-
+
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
-
+
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
@@ -3111,9 +3391,9 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
-
+
SmallVector<Value*, 8> Args;
-
+
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
@@ -3125,7 +3405,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
-
+
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
ExpectedTy->getDescription() + "'");
@@ -3133,7 +3413,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
-
+
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
@@ -3142,7 +3422,7 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
-
+
CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
CI->setTailCall(isTail);
CI->setCallingConv(CC);
@@ -3156,26 +3436,28 @@ bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
//===----------------------------------------------------------------------===//
/// ParseAlloc
-/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
-/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
+/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
+/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
- PATypeHolder Ty(Type::VoidTy);
+ PATypeHolder Ty(Type::getVoidTy(Context));
Value *Size = 0;
LocTy SizeLoc;
unsigned Alignment = 0;
if (ParseType(Ty)) return true;
if (EatIfPresent(lltok::comma)) {
- if (Lex.getKind() == lltok::kw_align) {
- if (ParseOptionalAlignment(Alignment)) return true;
- } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
- ParseOptionalCommaAlignment(Alignment)) {
- return true;
+ if (Lex.getKind() == lltok::kw_align
+ || Lex.getKind() == lltok::NamedOrCustomMD) {
+ if (ParseOptionalInfo(Alignment)) return true;
+ } else {
+ if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
+ if (EatIfPresent(lltok::comma))
+ if (ParseOptionalInfo(Alignment)) return true;
}
}
- if (Size && Size->getType() != Type::Int32Ty)
+ if (Size && Size->getType() != Type::getInt32Ty(Context))
return Error(SizeLoc, "element count must be i32");
if (Opc == Instruction::Malloc)
@@ -3197,19 +3479,20 @@ bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
}
/// ParseLoad
-/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
+/// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
bool isVolatile) {
Value *Val; LocTy Loc;
- unsigned Alignment;
- if (ParseTypeAndValue(Val, Loc, PFS) ||
- ParseOptionalCommaAlignment(Alignment))
- return true;
+ unsigned Alignment = 0;
+ if (ParseTypeAndValue(Val, Loc, PFS)) return true;
+
+ if (EatIfPresent(lltok::comma))
+ if (ParseOptionalInfo(Alignment)) return true;
if (!isa<PointerType>(Val->getType()) ||
!cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
return Error(Loc, "load operand must be a pointer to a first class type");
-
+
Inst = new LoadInst(Val, "", isVolatile, Alignment);
return false;
}
@@ -3219,20 +3502,22 @@ bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
bool isVolatile) {
Value *Val, *Ptr; LocTy Loc, PtrLoc;
- unsigned Alignment;
+ unsigned Alignment = 0;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after store operand") ||
- ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
- ParseOptionalCommaAlignment(Alignment))
+ ParseTypeAndValue(Ptr, PtrLoc, PFS))
return true;
-
+
+ if (EatIfPresent(lltok::comma))
+ if (ParseOptionalInfo(Alignment)) return true;
+
if (!isa<PointerType>(Ptr->getType()))
return Error(PtrLoc, "store operand must be a pointer");
if (!Val->getType()->isFirstClassType())
return Error(Loc, "store operand must be a first class value");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(Loc, "stored value and pointer type do not match");
-
+
Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
return false;
}
@@ -3247,7 +3532,7 @@ bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
ParseToken(lltok::comma, "expected ',' after getresult operand") ||
ParseUInt32(Element, EltLoc))
return true;
-
+
if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
return Error(ValLoc, "getresult inst requires an aggregate operand");
if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
@@ -3257,26 +3542,35 @@ bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
}
/// ParseGetElementPtr
-/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
+/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Val; LocTy Loc, EltLoc;
+
+ bool InBounds = EatIfPresent(lltok::kw_inbounds);
+
if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
-
+
if (!isa<PointerType>(Ptr->getType()))
return Error(Loc, "base of getelementptr must be a pointer");
-
+
SmallVector<Value*, 16> Indices;
while (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::NamedOrCustomMD)
+ break;
if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
if (!isa<IntegerType>(Val->getType()))
return Error(EltLoc, "getelementptr index must be an integer");
Indices.push_back(Val);
}
-
+ if (Lex.getKind() == lltok::NamedOrCustomMD)
+ if (ParseOptionalCustomMetadata()) return true;
+
if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
Indices.begin(), Indices.end()))
return Error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
+ if (InBounds)
+ cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
return false;
}
@@ -3309,10 +3603,10 @@ bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
ParseTypeAndValue(Val1, Loc1, PFS) ||
ParseIndexList(Indices))
return true;
-
+
if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
return Error(Loc0, "extractvalue operand must be array or struct");
-
+
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
Indices.end()))
return Error(Loc0, "invalid indices for insertvalue");
@@ -3332,14 +3626,28 @@ bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex();
do {
- Value *V;
+ Value *V = 0;
if (Lex.getKind() == lltok::kw_null) {
Lex.Lex();
V = 0;
} else {
- Constant *C;
- if (ParseGlobalTypeAndValue(C)) return true;
- V = C;
+ PATypeHolder Ty(Type::getVoidTy(Context));
+ if (ParseType(Ty)) return true;
+ if (Lex.getKind() == lltok::Metadata) {
+ Lex.Lex();
+ MetadataBase *Node = 0;
+ if (!ParseMDNode(Node))
+ V = Node;
+ else {
+ MetadataBase *MDS = 0;
+ if (ParseMDString(MDS)) return true;
+ V = MDS;
+ }
+ } else {
+ Constant *C;
+ if (ParseGlobalValue(Ty, C)) return true;
+ V = C;
+ }
}
Elts.push_back(V);
} while (EatIfPresent(lltok::comma));
diff --git a/lib/AsmParser/LLParser.h b/lib/AsmParser/LLParser.h
index 6659620..97bf2f3 100644
--- a/lib/AsmParser/LLParser.h
+++ b/lib/AsmParser/LLParser.h
@@ -28,6 +28,7 @@ namespace llvm {
class Instruction;
class Constant;
class GlobalValue;
+ class MetadataBase;
class MDString;
class MDNode;
struct ValID;
@@ -45,7 +46,9 @@ namespace llvm {
std::map<unsigned, std::pair<PATypeHolder, LocTy> > ForwardRefTypeIDs;
std::vector<PATypeHolder> NumberedTypes;
/// MetadataCache - This map keeps track of parsed metadata constants.
- std::map<unsigned, Constant *> MetadataCache;
+ std::map<unsigned, MetadataBase *> MetadataCache;
+ std::map<unsigned, std::pair<MetadataBase *, LocTy> > ForwardRefMDNodes;
+ SmallVector<std::pair<unsigned, MDNode *>, 2> MDsOnInst;
struct UpRefRecord {
/// Loc - This is the location of the upref.
LocTy Loc;
@@ -74,7 +77,7 @@ namespace llvm {
std::vector<GlobalValue*> NumberedVals;
public:
LLParser(MemoryBuffer *F, SourceMgr &SM, SMDiagnostic &Err, Module *m) :
- Context(m->getContext()), Lex(F, SM, Err), M(m) {}
+ Context(m->getContext()), Lex(F, SM, Err, m->getContext()), M(m) {}
bool Run();
LLVMContext& getContext() { return Context; }
@@ -123,9 +126,10 @@ namespace llvm {
bool HasLinkage; return ParseOptionalLinkage(Linkage, HasLinkage);
}
bool ParseOptionalVisibility(unsigned &Visibility);
- bool ParseOptionalCallingConv(unsigned &CC);
+ bool ParseOptionalCallingConv(CallingConv::ID &CC);
bool ParseOptionalAlignment(unsigned &Alignment);
- bool ParseOptionalCommaAlignment(unsigned &Alignment);
+ bool ParseOptionalCustomMetadata();
+ bool ParseOptionalInfo(unsigned &Alignment);
bool ParseIndexList(SmallVectorImpl<unsigned> &Indices);
// Top-Level Entities
@@ -140,11 +144,15 @@ namespace llvm {
bool ParseDefine();
bool ParseGlobalType(bool &IsConstant);
+ bool ParseUnnamedGlobal();
bool ParseNamedGlobal();
bool ParseGlobal(const std::string &Name, LocTy Loc, unsigned Linkage,
bool HasLinkage, unsigned Visibility);
bool ParseAlias(const std::string &Name, LocTy Loc, unsigned Visibility);
bool ParseStandaloneMetadata();
+ bool ParseNamedMetadata();
+ bool ParseMDString(MetadataBase *&S);
+ bool ParseMDNode(MetadataBase *&N);
// Type Parsing.
bool ParseType(PATypeHolder &Result, bool AllowVoid = false);
diff --git a/lib/AsmParser/LLToken.h b/lib/AsmParser/LLToken.h
index cff89f8..b3c59ee 100644
--- a/lib/AsmParser/LLToken.h
+++ b/lib/AsmParser/LLToken.h
@@ -36,8 +36,9 @@ namespace lltok {
kw_declare, kw_define,
kw_global, kw_constant,
- kw_private, kw_internal, kw_linkonce, kw_linkonce_odr, kw_weak, kw_weak_odr,
- kw_appending, kw_dllimport, kw_dllexport, kw_common,kw_available_externally,
+ kw_private, kw_linker_private, kw_internal, kw_linkonce, kw_linkonce_odr,
+ kw_weak, kw_weak_odr, kw_appending, kw_dllimport, kw_dllexport, kw_common,
+ kw_available_externally,
kw_default, kw_hidden, kw_protected,
kw_extern_weak,
kw_external, kw_thread_local,
@@ -50,6 +51,10 @@ namespace lltok {
kw_deplibs,
kw_datalayout,
kw_volatile,
+ kw_nuw,
+ kw_nsw,
+ kw_exact,
+ kw_inbounds,
kw_align,
kw_addrspace,
kw_section,
@@ -57,7 +62,9 @@ namespace lltok {
kw_module,
kw_asm,
kw_sideeffect,
+ kw_msasm,
kw_gc,
+ kw_dbg,
kw_c,
kw_cc, kw_ccc, kw_fastcc, kw_coldcc,
@@ -77,6 +84,7 @@ namespace lltok {
kw_readnone,
kw_readonly,
+ kw_inlinehint,
kw_noinline,
kw_alwaysinline,
kw_optsize,
@@ -84,6 +92,7 @@ namespace lltok {
kw_sspreq,
kw_noredzone,
kw_noimplicitfloat,
+ kw_naked,
kw_type,
kw_opaque,
@@ -96,7 +105,7 @@ namespace lltok {
kw_add, kw_fadd, kw_sub, kw_fsub, kw_mul, kw_fmul,
kw_udiv, kw_sdiv, kw_fdiv,
kw_urem, kw_srem, kw_frem, kw_shl, kw_lshr, kw_ashr,
- kw_and, kw_or, kw_xor, kw_icmp, kw_fcmp, kw_vicmp, kw_vfcmp,
+ kw_and, kw_or, kw_xor, kw_icmp, kw_fcmp,
kw_phi, kw_call,
kw_trunc, kw_zext, kw_sext, kw_fptrunc, kw_fpext, kw_uitofp, kw_sitofp,
@@ -119,6 +128,7 @@ namespace lltok {
GlobalVar, // @foo @"foo"
LocalVar, // %foo %"foo"
StringConstant, // "foo"
+ NamedOrCustomMD, // !foo
// Metadata valued tokens.
Metadata, // !"foo" !{i8 42}
diff --git a/lib/AsmParser/Parser.cpp b/lib/AsmParser/Parser.cpp
index d66c13d..331a233 100644
--- a/lib/AsmParser/Parser.cpp
+++ b/lib/AsmParser/Parser.cpp
@@ -21,6 +21,24 @@
#include <cstring>
using namespace llvm;
+Module *llvm::ParseAssembly(MemoryBuffer *F,
+ Module *M,
+ SMDiagnostic &Err,
+ LLVMContext &Context) {
+ SourceMgr SM;
+ SM.AddNewSourceBuffer(F, SMLoc());
+
+ // If we are parsing into an existing module, do it.
+ if (M)
+ return LLParser(F, SM, Err, M).Run() ? 0 : M;
+
+ // Otherwise create a new module.
+ OwningPtr<Module> M2(new Module(F->getBufferIdentifier(), Context));
+ if (LLParser(F, SM, Err, M2.get()).Run())
+ return 0;
+ return M2.take();
+}
+
Module *llvm::ParseAssemblyFile(const std::string &Filename, SMDiagnostic &Err,
LLVMContext &Context) {
std::string ErrorStr;
@@ -31,13 +49,7 @@ Module *llvm::ParseAssemblyFile(const std::string &Filename, SMDiagnostic &Err,
return 0;
}
- SourceMgr SM;
- SM.AddNewSourceBuffer(F, SMLoc());
-
- OwningPtr<Module> M(new Module(Filename, Context));
- if (LLParser(F, SM, Err, M.get()).Run())
- return 0;
- return M.take();
+ return ParseAssembly(F, 0, Err, Context);
}
Module *llvm::ParseAssemblyString(const char *AsmString, Module *M,
@@ -45,17 +57,6 @@ Module *llvm::ParseAssemblyString(const char *AsmString, Module *M,
MemoryBuffer *F =
MemoryBuffer::getMemBuffer(AsmString, AsmString+strlen(AsmString),
"<string>");
-
- SourceMgr SM;
- SM.AddNewSourceBuffer(F, SMLoc());
- // If we are parsing into an existing module, do it.
- if (M)
- return LLParser(F, SM, Err, M).Run() ? 0 : M;
-
- // Otherwise create a new module.
- OwningPtr<Module> M2(new Module("<string>", Context));
- if (LLParser(F, SM, Err, M2.get()).Run())
- return 0;
- return M2.take();
+ return ParseAssembly(F, M, Err, Context);
}
diff --git a/lib/Bitcode/Reader/BitReader.cpp b/lib/Bitcode/Reader/BitReader.cpp
index e5b8f7c..f513d41 100644
--- a/lib/Bitcode/Reader/BitReader.cpp
+++ b/lib/Bitcode/Reader/BitReader.cpp
@@ -34,12 +34,12 @@ int LLVMParseBitcode(LLVMMemoryBufferRef MemBuf,
return 0;
}
-int LLVMParseBitcodeInContext(LLVMMemoryBufferRef MemBuf,
- LLVMContextRef ContextRef,
+int LLVMParseBitcodeInContext(LLVMContextRef ContextRef,
+ LLVMMemoryBufferRef MemBuf,
LLVMModuleRef *OutModule, char **OutMessage) {
std::string Message;
- *OutModule = wrap(ParseBitcodeFile(unwrap(MemBuf), *unwrap(ContextRef),
+ *OutModule = wrap(ParseBitcodeFile(unwrap(MemBuf), *unwrap(ContextRef),
&Message));
if (!*OutModule) {
if (OutMessage)
@@ -70,13 +70,13 @@ int LLVMGetBitcodeModuleProvider(LLVMMemoryBufferRef MemBuf,
return 0;
}
-int LLVMGetBitcodeModuleProviderInContext(LLVMMemoryBufferRef MemBuf,
- LLVMContextRef ContextRef,
+int LLVMGetBitcodeModuleProviderInContext(LLVMContextRef ContextRef,
+ LLVMMemoryBufferRef MemBuf,
LLVMModuleProviderRef *OutMP,
char **OutMessage) {
std::string Message;
- *OutMP = wrap(getBitcodeModuleProvider(unwrap(MemBuf), *unwrap(ContextRef),
+ *OutMP = wrap(getBitcodeModuleProvider(unwrap(MemBuf), *unwrap(ContextRef),
&Message));
if (!*OutMP) {
if (OutMessage)
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
index 5943de2..4eb12c6 100644
--- a/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -16,9 +16,11 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
-#include "llvm/Instructions.h"
-#include "llvm/MDNode.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
+#include "llvm/Operator.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
@@ -32,7 +34,8 @@ void BitcodeReader::FreeState() {
Buffer = 0;
std::vector<PATypeHolder>().swap(TypeList);
ValueList.clear();
-
+ MDValueList.clear();
+
std::vector<AttrListPtr>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
@@ -50,7 +53,7 @@ static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
-
+
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
@@ -59,19 +62,20 @@ static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
- case 0: return GlobalValue::ExternalLinkage;
- case 1: return GlobalValue::WeakAnyLinkage;
- case 2: return GlobalValue::AppendingLinkage;
- case 3: return GlobalValue::InternalLinkage;
- case 4: return GlobalValue::LinkOnceAnyLinkage;
- case 5: return GlobalValue::DLLImportLinkage;
- case 6: return GlobalValue::DLLExportLinkage;
- case 7: return GlobalValue::ExternalWeakLinkage;
- case 8: return GlobalValue::CommonLinkage;
- case 9: return GlobalValue::PrivateLinkage;
+ case 0: return GlobalValue::ExternalLinkage;
+ case 1: return GlobalValue::WeakAnyLinkage;
+ case 2: return GlobalValue::AppendingLinkage;
+ case 3: return GlobalValue::InternalLinkage;
+ case 4: return GlobalValue::LinkOnceAnyLinkage;
+ case 5: return GlobalValue::DLLImportLinkage;
+ case 6: return GlobalValue::DLLExportLinkage;
+ case 7: return GlobalValue::ExternalWeakLinkage;
+ case 8: return GlobalValue::CommonLinkage;
+ case 9: return GlobalValue::PrivateLinkage;
case 10: return GlobalValue::WeakODRLinkage;
case 11: return GlobalValue::LinkOnceODRLinkage;
case 12: return GlobalValue::AvailableExternallyLinkage;
+ case 13: return GlobalValue::LinkerPrivateLinkage;
}
}
@@ -137,19 +141,19 @@ namespace {
void *operator new(size_t s) {
return User::operator new(s, 1);
}
- explicit ConstantPlaceHolder(const Type *Ty)
+ explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
- Op<0>() = UndefValue::get(Type::Int32Ty);
+ Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
}
-
+
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const ConstantPlaceHolder *) { return true; }
static bool classof(const Value *V) {
- return isa<ConstantExpr>(V) &&
+ return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
-
-
+
+
/// Provide fast operand accessors
//DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
@@ -157,7 +161,7 @@ namespace {
// FIXME: can we inherit this from ConstantExpr?
template <>
-struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
+struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
};
}
@@ -167,16 +171,16 @@ void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
push_back(V);
return;
}
-
+
if (Idx >= size())
resize(Idx+1);
-
+
WeakVH &OldV = ValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
-
+
// Handle constants and non-constants (e.g. instrs) differently for
// efficiency.
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
@@ -189,7 +193,7 @@ void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
delete PrevVal;
}
}
-
+
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
const Type *Ty) {
@@ -202,7 +206,7 @@ Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
}
// Create and return a placeholder, which will later be RAUW'd.
- Constant *C = new ConstantPlaceHolder(Ty);
+ Constant *C = new ConstantPlaceHolder(Ty, Context);
ValuePtrs[Idx] = C;
return C;
}
@@ -210,15 +214,15 @@ Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
-
+
if (Value *V = ValuePtrs[Idx]) {
assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
-
+
// No type specified, must be invalid reference.
if (Ty == 0) return 0;
-
+
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
ValuePtrs[Idx] = V;
@@ -233,30 +237,30 @@ Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
- // Sort the values by-pointer so that they are efficient to look up with a
+ // Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
-
+
SmallVector<Constant*, 64> NewOps;
-
+
while (!ResolveConstants.empty()) {
Value *RealVal = operator[](ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
-
+
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
Value::use_iterator UI = Placeholder->use_begin();
-
+
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
UI.getUse().set(RealVal);
continue;
}
-
+
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(*UI);
@@ -271,8 +275,8 @@ void BitcodeReaderValueList::ResolveConstantForwardRefs() {
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
- ResolveConstantsTy::iterator It =
- std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
+ ResolveConstantsTy::iterator It =
+ std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
@@ -285,10 +289,11 @@ void BitcodeReaderValueList::ResolveConstantForwardRefs() {
// Make the new constant.
Constant *NewC;
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
- NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
+ NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
+ NewOps.size());
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
- NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
- UserCS->getType()->isPacked());
+ NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
+ UserCS->getType()->isPacked());
} else if (isa<ConstantVector>(UserC)) {
NewC = ConstantVector::get(&NewOps[0], NewOps.size());
} else {
@@ -296,29 +301,67 @@ void BitcodeReaderValueList::ResolveConstantForwardRefs() {
NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
NewOps.size());
}
-
+
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
-
+
// Update all ValueHandles, they should be the only users at this point.
Placeholder->replaceAllUsesWith(RealVal);
delete Placeholder;
}
}
+void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
+ if (Idx == size()) {
+ push_back(V);
+ return;
+ }
+
+ if (Idx >= size())
+ resize(Idx+1);
+
+ WeakVH &OldV = MDValuePtrs[Idx];
+ if (OldV == 0) {
+ OldV = V;
+ return;
+ }
+
+ // If there was a forward reference to this value, replace it.
+ Value *PrevVal = OldV;
+ OldV->replaceAllUsesWith(V);
+ delete PrevVal;
+ // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
+ // value for Idx.
+ MDValuePtrs[Idx] = V;
+}
+
+Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
+ if (Idx >= size())
+ resize(Idx + 1);
+
+ if (Value *V = MDValuePtrs[Idx]) {
+ assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
+ return V;
+ }
+
+ // Create and return a placeholder, which will later be RAUW'd.
+ Value *V = new Argument(Type::getMetadataTy(Context));
+ MDValuePtrs[Idx] = V;
+ return V;
+}
const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
// If the TypeID is in range, return it.
if (ID < TypeList.size())
return TypeList[ID].get();
if (!isTypeTable) return 0;
-
+
// The type table allows forward references. Push as many Opaque types as
// needed to get up to ID.
while (TypeList.size() <= ID)
- TypeList.push_back(OpaqueType::get());
+ TypeList.push_back(OpaqueType::get(Context));
return TypeList.back().get();
}
@@ -329,14 +372,14 @@ const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
bool BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Malformed block record");
-
+
if (!MAttributes.empty())
return Error("Multiple PARAMATTR blocks found!");
-
+
SmallVector<uint64_t, 64> Record;
-
+
SmallVector<AttributeWithIndex, 8> Attrs;
-
+
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
@@ -345,7 +388,7 @@ bool BitcodeReader::ParseAttributeBlock() {
return Error("Error at end of PARAMATTR block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -353,12 +396,12 @@ bool BitcodeReader::ParseAttributeBlock() {
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -397,14 +440,14 @@ bool BitcodeReader::ParseAttributeBlock() {
unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
Attribute::ReadOnly|Attribute::ReadNone);
-
+
if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
(RetAttribute & OldRetAttrs) != 0) {
if (FnAttribute == Attribute::None) { // add a slot so they get added.
Record.push_back(~0U);
Record.push_back(0);
}
-
+
FnAttribute |= RetAttribute & OldRetAttrs;
RetAttribute &= ~OldRetAttrs;
}
@@ -432,7 +475,7 @@ bool BitcodeReader::ParseAttributeBlock() {
bool BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
return Error("Malformed block record");
-
+
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
@@ -449,7 +492,7 @@ bool BitcodeReader::ParseTypeTable() {
return Error("Error at end of type table block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -457,12 +500,12 @@ bool BitcodeReader::ParseTypeTable() {
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
const Type *ResultTy = 0;
@@ -478,46 +521,47 @@ bool BitcodeReader::ParseTypeTable() {
TypeList.reserve(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
- ResultTy = Type::VoidTy;
+ ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
- ResultTy = Type::FloatTy;
+ ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
- ResultTy = Type::DoubleTy;
+ ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
- ResultTy = Type::X86_FP80Ty;
+ ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
- ResultTy = Type::FP128Ty;
+ ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
- ResultTy = Type::PPC_FP128Ty;
+ ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
- ResultTy = Type::LabelTy;
+ ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_OPAQUE: // OPAQUE
ResultTy = 0;
break;
case bitc::TYPE_CODE_METADATA: // METADATA
- ResultTy = Type::MetadataTy;
+ ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
-
- ResultTy = IntegerType::get(Record[0]);
+
+ ResultTy = IntegerType::get(Context, Record[0]);
break;
- case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
+ case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
- ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
+ ResultTy = PointerType::get(getTypeByID(Record[0], true),
+ AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
@@ -528,7 +572,7 @@ bool BitcodeReader::ParseTypeTable() {
std::vector<const Type*> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i)
ArgTys.push_back(getTypeByID(Record[i], true));
-
+
ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
Record[0]);
break;
@@ -539,7 +583,7 @@ bool BitcodeReader::ParseTypeTable() {
std::vector<const Type*> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i)
EltTys.push_back(getTypeByID(Record[i], true));
- ResultTy = StructType::get(EltTys, Record[0]);
+ ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
@@ -553,10 +597,10 @@ bool BitcodeReader::ParseTypeTable() {
ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
break;
}
-
+
if (NumRecords == TypeList.size()) {
// If this is a new type slot, just append it.
- TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
+ TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
++NumRecords;
} else if (ResultTy == 0) {
// Otherwise, this was forward referenced, so an opaque type was created,
@@ -568,14 +612,14 @@ bool BitcodeReader::ParseTypeTable() {
// Resolve the opaque type to the real type now.
assert(NumRecords < TypeList.size() && "Typelist imbalance");
const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
-
+
// Don't directly push the new type on the Tab. Instead we want to replace
// the opaque type we previously inserted with the new concrete value. The
// refinement from the abstract (opaque) type to the new type causes all
// uses of the abstract type to use the concrete type (NewTy). This will
// also cause the opaque type to be deleted.
const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
-
+
// This should have replaced the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the
// system. Let's just make sure it did.
@@ -589,9 +633,9 @@ bool BitcodeReader::ParseTypeTable() {
bool BitcodeReader::ParseTypeSymbolTable() {
if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
-
+
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this type table.
std::string TypeName;
while (1) {
@@ -601,7 +645,7 @@ bool BitcodeReader::ParseTypeSymbolTable() {
return Error("Error at end of type symbol table block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -609,12 +653,12 @@ bool BitcodeReader::ParseTypeSymbolTable() {
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -639,7 +683,7 @@ bool BitcodeReader::ParseValueSymbolTable() {
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
@@ -648,7 +692,7 @@ bool BitcodeReader::ParseValueSymbolTable() {
if (Stream.ReadBlockEnd())
return Error("Error at end of value symbol table block");
return false;
- }
+ }
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -656,12 +700,12 @@ bool BitcodeReader::ParseValueSymbolTable() {
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -674,8 +718,8 @@ bool BitcodeReader::ParseValueSymbolTable() {
if (ValueID >= ValueList.size())
return Error("Invalid Value ID in VST_ENTRY record");
Value *V = ValueList[ValueID];
-
- V->setName(&ValueName[0], ValueName.size());
+
+ V->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
@@ -685,8 +729,8 @@ bool BitcodeReader::ParseValueSymbolTable() {
BasicBlock *BB = getBasicBlock(Record[0]);
if (BB == 0)
return Error("Invalid BB ID in VST_BBENTRY record");
-
- BB->setName(&ValueName[0], ValueName.size());
+
+ BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
@@ -694,12 +738,121 @@ bool BitcodeReader::ParseValueSymbolTable() {
}
}
+bool BitcodeReader::ParseMetadata() {
+ unsigned NextValueNo = MDValueList.size();
+
+ if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
+ return Error("Malformed block record");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records.
+ while (1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of PARAMATTR block");
+ return false;
+ }
+
+ if (Code == bitc::ENTER_SUBBLOCK) {
+ // No known subblocks, always skip them.
+ Stream.ReadSubBlockID();
+ if (Stream.SkipBlock())
+ return Error("Malformed block record");
+ continue;
+ }
+
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+
+ // Read a record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::METADATA_NAME: {
+ // Read named of the named metadata.
+ unsigned NameLength = Record.size();
+ SmallString<8> Name;
+ Name.resize(NameLength);
+ for (unsigned i = 0; i != NameLength; ++i)
+ Name[i] = Record[i];
+ Record.clear();
+ Code = Stream.ReadCode();
+
+ // METADATA_NAME is always followed by METADATA_NAMED_NODE.
+ if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
+ assert ( 0 && "Inavlid Named Metadata record");
+
+ // Read named metadata elements.
+ unsigned Size = Record.size();
+ SmallVector<MetadataBase*, 8> Elts;
+ for (unsigned i = 0; i != Size; ++i) {
+ Value *MD = MDValueList.getValueFwdRef(Record[i]);
+ if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
+ Elts.push_back(B);
+ }
+ Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
+ Elts.size(), TheModule);
+ MDValueList.AssignValue(V, NextValueNo++);
+ break;
+ }
+ case bitc::METADATA_NODE: {
+ if (Record.empty() || Record.size() % 2 == 1)
+ return Error("Invalid METADATA_NODE record");
+
+ unsigned Size = Record.size();
+ SmallVector<Value*, 8> Elts;
+ for (unsigned i = 0; i != Size; i += 2) {
+ const Type *Ty = getTypeByID(Record[i], false);
+ if (Ty->isMetadataTy())
+ Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
+ else if (Ty != Type::getVoidTy(Context))
+ Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
+ else
+ Elts.push_back(NULL);
+ }
+ Value *V = MDNode::get(Context, &Elts[0], Elts.size());
+ MDValueList.AssignValue(V, NextValueNo++);
+ break;
+ }
+ case bitc::METADATA_STRING: {
+ unsigned MDStringLength = Record.size();
+ SmallString<8> String;
+ String.resize(MDStringLength);
+ for (unsigned i = 0; i != MDStringLength; ++i)
+ String[i] = Record[i];
+ Value *V = MDString::get(Context,
+ StringRef(String.data(), String.size()));
+ MDValueList.AssignValue(V, NextValueNo++);
+ break;
+ }
+ case bitc::METADATA_KIND: {
+ unsigned RecordLength = Record.size();
+ if (Record.empty() || RecordLength < 2)
+ return Error("Invalid METADATA_KIND record");
+ SmallString<8> Name;
+ Name.resize(RecordLength-1);
+ unsigned Kind = Record[0];
+ for (unsigned i = 1; i != RecordLength; ++i)
+ Name[i-1] = Record[i];
+ MetadataContext &TheMetadata = Context.getMetadata();
+ TheMetadata.MDHandlerNames[Name.str()] = Kind;
+ break;
+ }
+ }
+ }
+}
+
/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
/// the LSB for dense VBR encoding.
static uint64_t DecodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
- if (V != 1)
+ if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
@@ -710,7 +863,7 @@ static uint64_t DecodeSignRotatedValue(uint64_t V) {
bool BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
-
+
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
@@ -725,7 +878,7 @@ bool BitcodeReader::ResolveGlobalAndAliasInits() {
else
return Error("Global variable initializer is not a constant!");
}
- GlobalInitWorklist.pop_back();
+ GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
@@ -738,26 +891,25 @@ bool BitcodeReader::ResolveGlobalAndAliasInits() {
else
return Error("Alias initializer is not a constant!");
}
- AliasInitWorklist.pop_back();
+ AliasInitWorklist.pop_back();
}
return false;
}
-
bool BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this value table.
- const Type *CurTy = Type::Int32Ty;
+ const Type *CurTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK)
break;
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -765,16 +917,17 @@ bool BitcodeReader::ParseConstants() {
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
Value *V = 0;
- switch (Stream.ReadRecord(Code, Record)) {
+ unsigned BitCode = Stream.ReadRecord(Code, Record);
+ switch (BitCode) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
@@ -797,45 +950,46 @@ bool BitcodeReader::ParseConstants() {
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!isa<IntegerType>(CurTy) || Record.empty())
return Error("Invalid WIDE_INTEGER record");
-
+
unsigned NumWords = Record.size();
SmallVector<uint64_t, 8> Words;
Words.resize(NumWords);
for (unsigned i = 0; i != NumWords; ++i)
Words[i] = DecodeSignRotatedValue(Record[i]);
- V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
- NumWords, &Words[0]));
+ V = ConstantInt::get(Context,
+ APInt(cast<IntegerType>(CurTy)->getBitWidth(),
+ NumWords, &Words[0]));
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return Error("Invalid FLOAT record");
- if (CurTy == Type::FloatTy)
- V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
- else if (CurTy == Type::DoubleTy)
- V = ConstantFP::get(APFloat(APInt(64, Record[0])));
- else if (CurTy == Type::X86_FP80Ty) {
+ if (CurTy->isFloatTy())
+ V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
+ else if (CurTy->isDoubleTy())
+ V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
+ else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
- V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
- } else if (CurTy == Type::FP128Ty)
- V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
- else if (CurTy == Type::PPC_FP128Ty)
- V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
+ V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
+ } else if (CurTy->isFP128Ty())
+ V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
+ else if (CurTy->isPPC_FP128Ty())
+ V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
else
V = UndefValue::get(CurTy);
break;
}
-
+
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
-
+
if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
@@ -862,7 +1016,7 @@ bool BitcodeReader::ParseConstants() {
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
@@ -873,10 +1027,10 @@ bool BitcodeReader::ParseConstants() {
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
-
+
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
@@ -893,10 +1047,24 @@ bool BitcodeReader::ParseConstants() {
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
- V = ConstantExpr::get(Opc, LHS, RHS);
+ unsigned Flags = 0;
+ if (Record.size() >= 4) {
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul) {
+ if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+ Flags |= OverflowingBinaryOperator::NoSignedWrap;
+ if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+ Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+ } else if (Opc == Instruction::SDiv) {
+ if (Record[3] & (1 << bitc::SDIV_EXACT))
+ Flags |= SDivOperator::IsExact;
+ }
+ }
+ V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
- }
+ }
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3) return Error("Invalid CE_CAST record");
int Opc = GetDecodedCastOpcode(Record[0]);
@@ -909,7 +1077,8 @@ bool BitcodeReader::ParseConstants() {
V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
- }
+ }
+ case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1) return Error("Invalid CE_GEP record");
SmallVector<Constant*, 16> Elts;
@@ -918,23 +1087,28 @@ bool BitcodeReader::ParseConstants() {
if (!ElTy) return Error("Invalid CE_GEP record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
- V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
+ if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
+ V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
+ Elts.size()-1);
+ else
+ V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
+ Elts.size()-1);
break;
}
case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3) return Error("Invalid CE_SELECT record");
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
- Type::Int1Ty),
+ Type::getInt1Ty(Context)),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
- const VectorType *OpTy =
+ const VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
- Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
+ Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
@@ -945,7 +1119,7 @@ bool BitcodeReader::ParseConstants() {
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
- Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
+ Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
@@ -955,7 +1129,8 @@ bool BitcodeReader::ParseConstants() {
return Error("Invalid CE_SHUFFLEVEC record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
- const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
+ const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+ OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
@@ -967,7 +1142,8 @@ bool BitcodeReader::ParseConstants() {
return Error("Invalid CE_SHUFVEC_EX record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
- const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
+ const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+ RTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
@@ -981,72 +1157,43 @@ bool BitcodeReader::ParseConstants() {
if (OpTy->isFloatingPoint())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
- else if (!isa<VectorType>(OpTy))
- V = ConstantExpr::getICmp(Record[3], Op0, Op1);
- else if (OpTy->isFPOrFPVector())
- V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
else
- V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
+ V = ConstantExpr::getICmp(Record[3], Op0, Op1);
break;
}
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2) return Error("Invalid INLINEASM record");
std::string AsmStr, ConstrStr;
- bool HasSideEffects = Record[0];
+ bool HasSideEffects = Record[0] & 1;
+ bool IsMsAsm = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid INLINEASM record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
-
+
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
const PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
- AsmStr, ConstrStr, HasSideEffects);
- break;
- }
- case bitc::CST_CODE_MDSTRING: {
- if (Record.size() < 2) return Error("Invalid MDSTRING record");
- unsigned MDStringLength = Record.size();
- SmallString<8> String;
- String.resize(MDStringLength);
- for (unsigned i = 0; i != MDStringLength; ++i)
- String[i] = Record[i];
- V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
- break;
- }
- case bitc::CST_CODE_MDNODE: {
- if (Record.empty() || Record.size() % 2 == 1)
- return Error("Invalid CST_MDNODE record");
-
- unsigned Size = Record.size();
- SmallVector<Value*, 8> Elts;
- for (unsigned i = 0; i != Size; i += 2) {
- const Type *Ty = getTypeByID(Record[i], false);
- if (Ty != Type::VoidTy)
- Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
- else
- Elts.push_back(NULL);
- }
- V = MDNode::get(&Elts[0], Elts.size());
+ AsmStr, ConstrStr, HasSideEffects, IsMsAsm);
break;
}
}
-
+
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
-
+
if (NextCstNo != ValueList.size())
return Error("Invalid constant reference!");
-
+
if (Stream.ReadBlockEnd())
return Error("Error at end of constants block");
-
+
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
@@ -1060,18 +1207,18 @@ bool BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
-
+
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
-
+
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
-
+
// Set the functions linkage to GhostLinkage so we know it is lazily
// deserialized.
Fn->setLinkage(GlobalValue::GhostLinkage);
-
+
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Malformed block record");
@@ -1082,13 +1229,13 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Multiple MODULE_BLOCKs in same stream");
-
+
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
// Otherwise, create the module.
TheModule = new Module(ModuleID, Context);
-
+
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
@@ -1122,7 +1269,7 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
std::vector<Function*>().swap(FunctionsWithBodies);
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
@@ -1153,6 +1300,10 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
if (ParseConstants() || ResolveGlobalAndAliasInits())
return true;
break;
+ case bitc::METADATA_BLOCK_ID:
+ if (ParseMetadata())
+ return true;
+ break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
@@ -1160,19 +1311,19 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
HasReversedFunctionsWithBodies = true;
}
-
+
if (RememberAndSkipFunctionBody())
return true;
break;
}
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
switch (Stream.ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
@@ -1235,7 +1386,7 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
return Error("Global not a pointer type!");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
-
+
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
@@ -1253,16 +1404,16 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
isThreadLocal = Record[7];
GlobalVariable *NewGV =
- new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
+ new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
isThreadLocal, AddressSpace);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setThreadLocal(isThreadLocal);
-
+
ValueList.push_back(NewGV);
-
+
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
@@ -1284,11 +1435,11 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
- Func->setCallingConv(Record[1]);
+ Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
bool isProto = Record[2];
Func->setLinkage(GetDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
-
+
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
@@ -1302,7 +1453,7 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
Func->setGC(GCTable[Record[8]-1].c_str());
}
ValueList.push_back(Func);
-
+
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto)
@@ -1317,7 +1468,7 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
const Type *Ty = getTypeByID(Record[0]);
if (!isa<PointerType>(Ty))
return Error("Function not a pointer type!");
-
+
GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
"", 0, TheModule);
// Old bitcode files didn't have visibility field.
@@ -1337,28 +1488,28 @@ bool BitcodeReader::ParseModule(const std::string &ModuleID) {
}
Record.clear();
}
-
+
return Error("Premature end of bitstream");
}
bool BitcodeReader::ParseBitcode() {
TheModule = 0;
-
+
if (Buffer->getBufferSize() & 3)
return Error("Bitcode stream should be a multiple of 4 bytes in length");
-
+
unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
-
+
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
return Error("Invalid bitcode wrapper header");
-
+
StreamFile.init(BufPtr, BufEnd);
Stream.init(StreamFile);
-
+
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
@@ -1367,17 +1518,17 @@ bool BitcodeReader::ParseBitcode() {
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
-
+
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
-
+
if (Code != bitc::ENTER_SUBBLOCK)
return Error("Invalid record at top-level");
-
+
unsigned BlockID = Stream.ReadSubBlockID();
-
+
// We only know the MODULE subblock ID.
switch (BlockID) {
case bitc::BLOCKINFO_BLOCK_ID:
@@ -1394,22 +1545,61 @@ bool BitcodeReader::ParseBitcode() {
break;
}
}
-
+
return false;
}
+/// ParseMetadataAttachment - Parse metadata attachments.
+bool BitcodeReader::ParseMetadataAttachment() {
+ if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
+ return Error("Malformed block record");
+
+ MetadataContext &TheMetadata = Context.getMetadata();
+ SmallVector<uint64_t, 64> Record;
+ while(1) {
+ unsigned Code = Stream.ReadCode();
+ if (Code == bitc::END_BLOCK) {
+ if (Stream.ReadBlockEnd())
+ return Error("Error at end of PARAMATTR block");
+ break;
+ }
+ if (Code == bitc::DEFINE_ABBREV) {
+ Stream.ReadAbbrevRecord();
+ continue;
+ }
+ // Read a metadata attachment record.
+ Record.clear();
+ switch (Stream.ReadRecord(Code, Record)) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::METADATA_ATTACHMENT: {
+ unsigned RecordLength = Record.size();
+ if (Record.empty() || (RecordLength - 1) % 2 == 1)
+ return Error ("Invalid METADATA_ATTACHMENT reader!");
+ Instruction *Inst = InstructionList[Record[0]];
+ for (unsigned i = 1; i != RecordLength; i = i+2) {
+ unsigned Kind = Record[i];
+ Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
+ TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst);
+ }
+ break;
+ }
+ }
+ }
+ return false;
+}
/// ParseFunctionBody - Lazily parse the specified function body block.
bool BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Malformed block record");
-
+
unsigned ModuleValueListSize = ValueList.size();
-
+
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
-
+
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = 0;
unsigned CurBBNo = 0;
@@ -1423,7 +1613,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
return Error("Error at end of function block");
break;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
@@ -1437,19 +1627,23 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable()) return true;
break;
+ case bitc::METADATA_ATTACHMENT_ID:
+ if (ParseMetadataAttachment()) return true;
+ break;
}
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
Instruction *I = 0;
- switch (Stream.ReadRecord(Code, Record)) {
+ unsigned BitCode = Stream.ReadRecord(Code, Record);
+ switch (BitCode) {
default: // Default behavior: reject
return Error("Unknown instruction");
case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
@@ -1458,21 +1652,35 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
- FunctionBBs[i] = BasicBlock::Create("", F);
+ FunctionBBs[i] = BasicBlock::Create(Context, "", F);
CurBB = FunctionBBs[0];
continue;
-
+
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
- OpNum+1 != Record.size())
+ OpNum+1 > Record.size())
return Error("Invalid BINOP record");
-
- int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
+
+ int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ InstructionList.push_back(I);
+ if (OpNum < Record.size()) {
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul) {
+ if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+ cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
+ if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+ cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
+ } else if (Opc == Instruction::SDiv) {
+ if (Record[3] & (1 << bitc::SDIV_EXACT))
+ cast<BinaryOperator>(I)->setIsExact(true);
+ }
+ }
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
@@ -1481,14 +1689,16 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid CAST record");
-
+
const Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || ResTy == 0)
return Error("Invalid CAST record");
I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
+ InstructionList.push_back(I);
break;
}
+ case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
unsigned OpNum = 0;
Value *BasePtr;
@@ -1504,9 +1714,12 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
}
I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
+ InstructionList.push_back(I);
+ if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
+ cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}
-
+
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
@@ -1525,9 +1738,10 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
I = ExtractValueInst::Create(Agg,
EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
@@ -1549,9 +1763,10 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
I = InsertValueInst::Create(Agg, Val,
INSERTVALIdx.begin(), INSERTVALIdx.end());
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
@@ -1559,13 +1774,14 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
- getValue(Record, OpNum, Type::Int1Ty, Cond))
+ getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
return Error("Invalid SELECT record");
-
+
I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
@@ -1580,40 +1796,43 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (const VectorType* vector_type =
dyn_cast<const VectorType>(Cond->getType())) {
// expect <n x i1>
- if (vector_type->getElementType() != Type::Int1Ty)
+ if (vector_type->getElementType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
} else {
// expect i1
- if (Cond->getType() != Type::Int1Ty)
+ if (Cond->getType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
- }
-
+ }
+
I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
- getValue(Record, OpNum, Type::Int32Ty, Idx))
+ getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
return Error("Invalid EXTRACTELT record");
- I = new ExtractElementInst(Vec, Idx);
+ I = ExtractElementInst::Create(Vec, Idx);
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
- getValue(Record, OpNum,
+ getValue(Record, OpNum,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
- getValue(Record, OpNum, Type::Int32Ty, Idx))
+ getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
return Error("Invalid INSERTELT record");
I = InsertElementInst::Create(Vec, Elt, Idx);
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
@@ -1624,44 +1843,32 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
return Error("Invalid SHUFFLEVEC record");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
+ InstructionList.push_back(I);
break;
}
- case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
- // VFCmp/VICmp
- // or old form of ICmp/FCmp returning bool
- unsigned OpNum = 0;
- Value *LHS, *RHS;
- if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
- getValue(Record, OpNum, LHS->getType(), RHS) ||
- OpNum+1 != Record.size())
- return Error("Invalid CMP record");
-
- if (LHS->getType()->isFloatingPoint())
- I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
- else if (!isa<VectorType>(LHS->getType()))
- I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
- else if (LHS->getType()->isFPOrFPVector())
- I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
- else
- I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
- break;
- }
+ case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
+ // Old form of ICmp/FCmp returning bool
+ // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
+ // both legal on vectors but had different behaviour.
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
- // Fcmp/ICmp returning bool or vector of bool
+ // FCmp/ICmp returning bool or vector of bool
+
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
- return Error("Invalid CMP2 record");
-
+ return Error("Invalid CMP record");
+
if (LHS->getType()->isFPOrFPVector())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
- else
+ else
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
+ InstructionList.push_back(I);
break;
}
+
case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
if (Record.size() != 2)
return Error("Invalid GETRESULT record");
@@ -1670,14 +1877,16 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
getValueTypePair(Record, OpNum, NextValueNo, Op);
unsigned Index = Record[1];
I = ExtractValueInst::Create(Op, Index);
+ InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
- I = ReturnInst::Create();
+ I = ReturnInst::Create(Context);
+ InstructionList.push_back(I);
break;
}
@@ -1697,15 +1906,18 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
Value *RV = UndefValue::get(ReturnType);
for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
+ InstructionList.push_back(I);
CurBB->getInstList().push_back(I);
ValueList.AssignValue(I, NextValueNo++);
RV = I;
}
- I = ReturnInst::Create(RV);
+ I = ReturnInst::Create(Context, RV);
+ InstructionList.push_back(I);
break;
}
- I = ReturnInst::Create(Vs[0]);
+ I = ReturnInst::Create(Context, Vs[0]);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
@@ -1715,14 +1927,17 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (TrueDest == 0)
return Error("Invalid BR record");
- if (Record.size() == 1)
+ if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
+ InstructionList.push_back(I);
+ }
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
- Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
+ Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
if (FalseDest == 0 || Cond == 0)
return Error("Invalid BR record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
+ InstructionList.push_back(I);
}
break;
}
@@ -1736,8 +1951,9 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
return Error("Invalid SWITCH record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
+ InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
- ConstantInt *CaseVal =
+ ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (CaseVal == 0 || DestBB == 0) {
@@ -1749,7 +1965,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
I = SI;
break;
}
-
+
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4) return Error("Invalid INVOKE record");
@@ -1757,12 +1973,12 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
-
+
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid INVOKE record");
-
+
const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = !CalleeTy ? 0 :
dyn_cast<FunctionType>(CalleeTy->getElementType());
@@ -1771,13 +1987,13 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
Record.size() < OpNum+FTy->getNumParams())
return Error("Invalid INVOKE record");
-
+
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Ops.back() == 0) return Error("Invalid INVOKE record");
}
-
+
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return Error("Invalid INVOKE record");
@@ -1790,28 +2006,33 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
Ops.push_back(Op);
}
}
-
+
I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
Ops.begin(), Ops.end());
- cast<InvokeInst>(I)->setCallingConv(CCInfo);
+ InstructionList.push_back(I);
+ cast<InvokeInst>(I)->setCallingConv(
+ static_cast<CallingConv::ID>(CCInfo));
cast<InvokeInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
- I = new UnwindInst();
+ I = new UnwindInst(Context);
+ InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
- I = new UnreachableInst();
+ I = new UnreachableInst(Context);
+ InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1 || ((Record.size()-1)&1))
return Error("Invalid PHI record");
const Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid PHI record");
-
+
PHINode *PN = PHINode::Create(Ty);
+ InstructionList.push_back(PN);
PN->reserveOperandSpace((Record.size()-1)/2);
-
+
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
Value *V = getFnValueByID(Record[1+i], Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
@@ -1821,16 +2042,17 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
I = PN;
break;
}
-
+
case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
if (Record.size() < 3)
return Error("Invalid MALLOC record");
const PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
- Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
unsigned Align = Record[2];
if (!Ty || !Size) return Error("Invalid MALLOC record");
I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
@@ -1840,6 +2062,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
OpNum != Record.size())
return Error("Invalid FREE record");
I = new FreeInst(Op);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
@@ -1847,10 +2070,11 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
return Error("Invalid ALLOCA record");
const PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
- Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
+ Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
unsigned Align = Record[2];
if (!Ty || !Size) return Error("Invalid ALLOCA record");
I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
@@ -1859,20 +2083,22 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid LOAD record");
-
+
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
- getValue(Record, OpNum,
+ getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
-
+
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
@@ -1880,32 +2106,34 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
- getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
+ getValue(Record, OpNum,
+ PointerType::getUnqual(Val->getType()), Ptr)||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
-
+
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return Error("Invalid CALL record");
-
+
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
-
+
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid CALL record");
-
+
const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = 0;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
return Error("Invalid CALL record");
-
+
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
@@ -1915,7 +2143,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Args.back() == 0) return Error("Invalid CALL record");
}
-
+
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
@@ -1928,9 +2156,11 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
Args.push_back(Op);
}
}
-
+
I = CallInst::Create(Callee, Args.begin(), Args.end());
- cast<CallInst>(I)->setCallingConv(CCInfo>>1);
+ InstructionList.push_back(I);
+ cast<CallInst>(I)->setCallingConv(
+ static_cast<CallingConv::ID>(CCInfo>>1));
cast<CallInst>(I)->setTailCall(CCInfo & 1);
cast<CallInst>(I)->setAttributes(PAL);
break;
@@ -1944,6 +2174,7 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
if (!OpTy || !Op || !ResTy)
return Error("Invalid VAARG record");
I = new VAArgInst(Op, ResTy);
+ InstructionList.push_back(I);
break;
}
}
@@ -1955,18 +2186,18 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
-
+
// If this was a terminator instruction, move to the next block.
if (isa<TerminatorInst>(I)) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
}
-
+
// Non-void values get registered in the value table for future use.
- if (I && I->getType() != Type::VoidTy)
+ if (I && I->getType() != Type::getVoidTy(Context))
ValueList.AssignValue(I, NextValueNo++);
}
-
+
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (A->getParent() == 0) {
@@ -1980,11 +2211,11 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
return Error("Never resolved value found in function!");
}
}
-
+
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
-
+
return false;
}
@@ -1996,16 +2227,16 @@ bool BitcodeReader::ParseFunctionBody(Function *F) {
bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
// If it already is material, ignore the request.
if (!F->hasNotBeenReadFromBitcode()) return false;
-
- DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
+
+ DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
-
+
// Move the bit stream to the saved position of the deferred function body and
// restore the real linkage type for the function.
Stream.JumpToBit(DFII->second.first);
F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
-
+
if (ParseFunctionBody(F)) {
if (ErrInfo) *ErrInfo = ErrorString;
return true;
@@ -2022,7 +2253,7 @@ bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
}
}
}
-
+
return false;
}
@@ -2030,9 +2261,9 @@ void BitcodeReader::dematerializeFunction(Function *F) {
// If this function isn't materialized, or if it is a proto, this is a noop.
if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
return;
-
+
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
-
+
// Just forget the function body, we can remat it later.
F->deleteBody();
F->setLinkage(GlobalValue::GhostLinkage);
@@ -2048,9 +2279,9 @@ Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
materializeFunction(F, ErrInfo))
return 0;
- // Upgrade any intrinsic calls that slipped through (should not happen!) and
- // delete the old functions to clean up. We can't do this unless the entire
- // module is materialized because there could always be another function body
+ // Upgrade any intrinsic calls that slipped through (should not happen!) and
+ // delete the old functions to clean up. We can't do this unless the entire
+ // module is materialized because there could always be another function body
// with calls to the old function.
for (std::vector<std::pair<Function*, Function*> >::iterator I =
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
@@ -2066,7 +2297,10 @@ Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
}
}
std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
-
+
+ // Check debug info intrinsics.
+ CheckDebugInfoIntrinsics(TheModule);
+
return TheModule;
}
@@ -2096,7 +2330,7 @@ ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
if (R->ParseBitcode()) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
-
+
// Don't let the BitcodeReader dtor delete 'Buffer'.
R->releaseMemoryBuffer();
delete R;
@@ -2107,25 +2341,25 @@ ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
/// If an error occurs, return null and fill in *ErrMsg if non-null.
-Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
+Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
std::string *ErrMsg){
BitcodeReader *R;
- R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
+ R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
ErrMsg));
if (!R) return 0;
-
+
// Read in the entire module.
Module *M = R->materializeModule(ErrMsg);
// Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
// there was an error.
R->releaseMemoryBuffer();
-
+
// If there was no error, tell ModuleProvider not to delete it when its dtor
// is run.
if (M)
M = R->releaseModule(ErrMsg);
-
+
delete R;
return M;
}
diff --git a/lib/Bitcode/Reader/BitcodeReader.h b/lib/Bitcode/Reader/BitcodeReader.h
index 662631b..eefc7bd 100644
--- a/lib/Bitcode/Reader/BitcodeReader.h
+++ b/lib/Bitcode/Reader/BitcodeReader.h
@@ -44,8 +44,9 @@ class BitcodeReaderValueList {
/// number that holds the resolved value.
typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
ResolveConstantsTy ResolveConstants;
+ LLVMContext& Context;
public:
- BitcodeReaderValueList() {}
+ BitcodeReaderValueList(LLVMContext& C) : Context(C) {}
~BitcodeReaderValueList() {
assert(ResolveConstants.empty() && "Constants not resolved?");
}
@@ -85,6 +86,41 @@ public:
void ResolveConstantForwardRefs();
};
+
+//===----------------------------------------------------------------------===//
+// BitcodeReaderMDValueList Class
+//===----------------------------------------------------------------------===//
+
+class BitcodeReaderMDValueList {
+ std::vector<WeakVH> MDValuePtrs;
+
+ LLVMContext& Context;
+public:
+ BitcodeReaderMDValueList(LLVMContext& C) : Context(C) {}
+
+ // vector compatibility methods
+ unsigned size() const { return MDValuePtrs.size(); }
+ void resize(unsigned N) { MDValuePtrs.resize(N); }
+ void push_back(Value *V) { MDValuePtrs.push_back(V); }
+ void clear() { MDValuePtrs.clear(); }
+ Value *back() const { return MDValuePtrs.back(); }
+ void pop_back() { MDValuePtrs.pop_back(); }
+ bool empty() const { return MDValuePtrs.empty(); }
+
+ Value *operator[](unsigned i) const {
+ assert(i < MDValuePtrs.size());
+ return MDValuePtrs[i];
+ }
+
+ void shrinkTo(unsigned N) {
+ assert(N <= size() && "Invalid shrinkTo request!");
+ MDValuePtrs.resize(N);
+ }
+
+ Value *getValueFwdRef(unsigned Idx);
+ void AssignValue(Value *V, unsigned Idx);
+};
+
class BitcodeReader : public ModuleProvider {
LLVMContext& Context;
MemoryBuffer *Buffer;
@@ -95,6 +131,9 @@ class BitcodeReader : public ModuleProvider {
std::vector<PATypeHolder> TypeList;
BitcodeReaderValueList ValueList;
+ BitcodeReaderMDValueList MDValueList;
+ SmallVector<Instruction *, 64> InstructionList;
+
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
@@ -126,7 +165,7 @@ class BitcodeReader : public ModuleProvider {
DenseMap<Function*, std::pair<uint64_t, unsigned> > DeferredFunctionInfo;
public:
explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext& C)
- : Context(C), Buffer(buffer), ErrorString(0) {
+ : Context(C), Buffer(buffer), ErrorString(0), ValueList(C), MDValueList(C) {
HasReversedFunctionsWithBodies = false;
}
~BitcodeReader() {
@@ -159,7 +198,10 @@ public:
private:
const Type *getTypeByID(unsigned ID, bool isTypeTable = false);
Value *getFnValueByID(unsigned ID, const Type *Ty) {
- return ValueList.getValueFwdRef(ID, Ty);
+ if (Ty == Type::getMetadataTy(Context))
+ return MDValueList.getValueFwdRef(ID);
+ else
+ return ValueList.getValueFwdRef(ID, Ty);
}
BasicBlock *getBasicBlock(unsigned ID) const {
if (ID >= FunctionBBs.size()) return 0; // Invalid ID
@@ -209,6 +251,8 @@ private:
bool RememberAndSkipFunctionBody();
bool ParseFunctionBody(Function *F);
bool ResolveGlobalAndAliasInits();
+ bool ParseMetadata();
+ bool ParseMetadataAttachment();
};
} // End llvm namespace
diff --git a/lib/Bitcode/Reader/Deserialize.cpp b/lib/Bitcode/Reader/Deserialize.cpp
index 06da6ce..67607ef 100644
--- a/lib/Bitcode/Reader/Deserialize.cpp
+++ b/lib/Bitcode/Reader/Deserialize.cpp
@@ -12,11 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/Deserialize.h"
-
-#ifdef DEBUG_BACKPATCH
-#include "llvm/Support/Streams.h"
-#endif
-
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
Deserializer::Deserializer(BitstreamReader& stream)
@@ -357,7 +353,7 @@ void Deserializer::RegisterPtr(const SerializedPtrID& PtrId,
assert (!HasFinalPtr(E) && "Pointer already registered.");
#ifdef DEBUG_BACKPATCH
- llvm::cerr << "RegisterPtr: " << PtrId << " => " << Ptr << "\n";
+ errs() << "RegisterPtr: " << PtrId << " => " << Ptr << "\n";
#endif
SetPtr(E,Ptr);
@@ -377,8 +373,8 @@ void Deserializer::ReadUIntPtr(uintptr_t& PtrRef,
PtrRef = GetFinalPtr(E);
#ifdef DEBUG_BACKPATCH
- llvm::cerr << "ReadUintPtr: " << PtrId
- << " <-- " << (void*) GetFinalPtr(E) << '\n';
+ errs() << "ReadUintPtr: " << PtrId
+ << " <-- " << (void*) GetFinalPtr(E) << '\n';
#endif
}
else {
@@ -386,7 +382,7 @@ void Deserializer::ReadUIntPtr(uintptr_t& PtrRef,
"Client forbids backpatching for this pointer.");
#ifdef DEBUG_BACKPATCH
- llvm::cerr << "ReadUintPtr: " << PtrId << " (NO PTR YET)\n";
+ errs() << "ReadUintPtr: " << PtrId << " (NO PTR YET)\n";
#endif
// Register backpatch. Check the freelist for a BPNode.
diff --git a/lib/Bitcode/Writer/BitWriter.cpp b/lib/Bitcode/Writer/BitWriter.cpp
index 8834964..7ed651b 100644
--- a/lib/Bitcode/Writer/BitWriter.cpp
+++ b/lib/Bitcode/Writer/BitWriter.cpp
@@ -9,43 +9,31 @@
#include "llvm-c/BitWriter.h"
#include "llvm/Bitcode/ReaderWriter.h"
-#include <fstream>
-
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/*===-- Operations on modules ---------------------------------------------===*/
int LLVMWriteBitcodeToFile(LLVMModuleRef M, const char *Path) {
- std::ofstream OS(Path, std::ios_base::out|std::ios::trunc|std::ios::binary);
-
- if (!OS.fail())
- WriteBitcodeToFile(unwrap(M), OS);
+ std::string ErrorInfo;
+ raw_fd_ostream OS(Path, ErrorInfo,
+ raw_fd_ostream::F_Binary);
- if (OS.fail())
+ if (!ErrorInfo.empty())
return -1;
+ WriteBitcodeToFile(unwrap(M), OS);
return 0;
}
#if defined(__GNUC__) && (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR >= 4)
#include <ext/stdio_filebuf.h>
-// FIXME: Control this with configure? Provide some portable abstraction in
-// libSystem? As is, the user will just get a linker error if they use this on
-// non-GCC. Some C++ stdlibs even have ofstream::ofstream(int fd).
int LLVMWriteBitcodeToFileHandle(LLVMModuleRef M, int FileHandle) {
- __gnu_cxx::stdio_filebuf<char> Buffer(FileHandle, std::ios_base::out |
- std::ios::trunc |
- std::ios::binary);
- std::ostream OS(&Buffer);
-
- if (!OS.fail())
- WriteBitcodeToFile(unwrap(M), OS);
-
- if (OS.fail())
- return -1;
+ raw_fd_ostream OS(FileHandle, false);
+ WriteBitcodeToFile(unwrap(M), OS);
return 0;
}
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
index 6dcdded..12a1f5e 100644
--- a/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -19,12 +19,13 @@
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
-#include "llvm/MDNode.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
+#include "llvm/Operator.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Program.h"
using namespace llvm;
@@ -33,22 +34,23 @@ using namespace llvm;
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
CurVersion = 0,
-
+
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
-
+
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
-
+
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_BINOP_FLAGS_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
@@ -58,7 +60,7 @@ enum {
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
switch (Opcode) {
- default: assert(0 && "Unknown cast instruction!");
+ default: llvm_unreachable("Unknown cast instruction!");
case Instruction::Trunc : return bitc::CAST_TRUNC;
case Instruction::ZExt : return bitc::CAST_ZEXT;
case Instruction::SExt : return bitc::CAST_SEXT;
@@ -76,7 +78,7 @@ static unsigned GetEncodedCastOpcode(unsigned Opcode) {
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
switch (Opcode) {
- default: assert(0 && "Unknown binary instruction!");
+ default: llvm_unreachable("Unknown binary instruction!");
case Instruction::Add:
case Instruction::FAdd: return bitc::BINOP_ADD;
case Instruction::Sub:
@@ -100,24 +102,24 @@ static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
-static void WriteStringRecord(unsigned Code, const std::string &Str,
+static void WriteStringRecord(unsigned Code, const std::string &Str,
unsigned AbbrevToUse, BitstreamWriter &Stream) {
SmallVector<unsigned, 64> Vals;
-
+
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i)
Vals.push_back(Str[i]);
-
+
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
// Emit information about parameter attributes.
-static void WriteAttributeTable(const ValueEnumerator &VE,
+static void WriteAttributeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
if (Attrs.empty()) return;
-
+
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
@@ -138,21 +140,21 @@ static void WriteAttributeTable(const ValueEnumerator &VE,
Record.push_back(FauxAttr);
}
-
+
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
-
+
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
-
+
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
-
+
// Abbrev for TYPE_CODE_POINTER.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
@@ -160,7 +162,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
@@ -170,7 +172,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_STRUCT.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
@@ -179,7 +181,7 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_ARRAY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
@@ -187,20 +189,20 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
-
+
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
const Type *T = TypeList[i].first;
int AbbrevToUse = 0;
unsigned Code = 0;
-
+
switch (T->getTypeID()) {
- default: assert(0 && "Unknown type!");
+ default: llvm_unreachable("Unknown type!");
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
@@ -272,33 +274,34 @@ static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
-
+
Stream.ExitBlock();
}
static unsigned getEncodedLinkage(const GlobalValue *GV) {
switch (GV->getLinkage()) {
- default: assert(0 && "Invalid linkage!");
+ default: llvm_unreachable("Invalid linkage!");
case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
- case GlobalValue::ExternalLinkage: return 0;
- case GlobalValue::WeakAnyLinkage: return 1;
- case GlobalValue::AppendingLinkage: return 2;
- case GlobalValue::InternalLinkage: return 3;
- case GlobalValue::LinkOnceAnyLinkage: return 4;
- case GlobalValue::DLLImportLinkage: return 5;
- case GlobalValue::DLLExportLinkage: return 6;
- case GlobalValue::ExternalWeakLinkage: return 7;
- case GlobalValue::CommonLinkage: return 8;
- case GlobalValue::PrivateLinkage: return 9;
- case GlobalValue::WeakODRLinkage: return 10;
- case GlobalValue::LinkOnceODRLinkage: return 11;
- case GlobalValue::AvailableExternallyLinkage: return 12;
+ case GlobalValue::ExternalLinkage: return 0;
+ case GlobalValue::WeakAnyLinkage: return 1;
+ case GlobalValue::AppendingLinkage: return 2;
+ case GlobalValue::InternalLinkage: return 3;
+ case GlobalValue::LinkOnceAnyLinkage: return 4;
+ case GlobalValue::DLLImportLinkage: return 5;
+ case GlobalValue::DLLExportLinkage: return 6;
+ case GlobalValue::ExternalWeakLinkage: return 7;
+ case GlobalValue::CommonLinkage: return 8;
+ case GlobalValue::PrivateLinkage: return 9;
+ case GlobalValue::WeakODRLinkage: return 10;
+ case GlobalValue::LinkOnceODRLinkage: return 11;
+ case GlobalValue::AvailableExternallyLinkage: return 12;
+ case GlobalValue::LinkerPrivateLinkage: return 13;
}
}
static unsigned getEncodedVisibility(const GlobalValue *GV) {
switch (GV->getVisibility()) {
- default: assert(0 && "Invalid visibility!");
+ default: llvm_unreachable("Invalid visibility!");
case GlobalValue::DefaultVisibility: return 0;
case GlobalValue::HiddenVisibility: return 1;
case GlobalValue::ProtectedVisibility: return 2;
@@ -334,7 +337,7 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
GV != E; ++GV) {
MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
-
+
if (!GV->hasSection()) continue;
// Give section names unique ID's.
unsigned &Entry = SectionMap[GV->getSection()];
@@ -364,10 +367,10 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
}
}
}
-
+
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
- if (!M->global_empty()) {
+ if (!M->global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
@@ -391,14 +394,14 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
}
-
+
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
GV != E; ++GV) {
unsigned AbbrevToUse = 0;
- // GLOBALVAR: [type, isconst, initid,
+ // GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal]
Vals.push_back(VE.getTypeID(GV->getType()));
Vals.push_back(GV->isConstant());
@@ -407,14 +410,14 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(Log2_32(GV->getAlignment())+1);
Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
- if (GV->isThreadLocal() ||
+ if (GV->isThreadLocal() ||
GV->getVisibility() != GlobalValue::DefaultVisibility) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(GV->isThreadLocal());
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
-
+
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
@@ -432,13 +435,13 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
-
+
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
-
-
+
+
// Emit the alias information.
for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
AI != E; ++AI) {
@@ -452,20 +455,185 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
}
}
+static uint64_t GetOptimizationFlags(const Value *V) {
+ uint64_t Flags = 0;
+
+ if (const OverflowingBinaryOperator *OBO =
+ dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (OBO->hasNoSignedWrap())
+ Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+ if (OBO->hasNoUnsignedWrap())
+ Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+ } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
+ if (Div->isExact())
+ Flags |= 1 << bitc::SDIV_EXACT;
+ }
+
+ return Flags;
+}
+
+static void WriteMDNode(const MDNode *N,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream,
+ SmallVector<uint64_t, 64> &Record) {
+ for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
+ if (N->getElement(i)) {
+ Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
+ Record.push_back(VE.getValueID(N->getElement(i)));
+ } else {
+ Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
+ Record.push_back(0);
+ }
+ }
+ Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
+ Record.clear();
+}
+
+static void WriteModuleMetadata(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const ValueEnumerator::ValueList &Vals = VE.getMDValues();
+ bool StartedMetadataBlock = false;
+ unsigned MDSAbbrev = 0;
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+
+ if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ WriteMDNode(N, VE, Stream, Record);
+ } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+ // Abbrev for METADATA_STRING.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ MDSAbbrev = Stream.EmitAbbrev(Abbv);
+ StartedMetadataBlock = true;
+ }
+
+ // Code: [strchar x N]
+ const char *StrBegin = MDS->begin();
+ for (unsigned i = 0, e = MDS->length(); i != e; ++i)
+ Record.push_back(StrBegin[i]);
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
+ Record.clear();
+ } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+
+ // Write name.
+ std::string Str = NMD->getNameStr();
+ const char *StrBegin = Str.c_str();
+ for (unsigned i = 0, e = Str.length(); i != e; ++i)
+ Record.push_back(StrBegin[i]);
+ Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
+ Record.clear();
+
+ // Write named metadata elements.
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
+ if (NMD->getElement(i))
+ Record.push_back(VE.getValueID(NMD->getElement(i)));
+ else
+ Record.push_back(0);
+ }
+ Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+ Record.clear();
+ }
+ }
+
+ if (StartedMetadataBlock)
+ Stream.ExitBlock();
+}
+
+static void WriteMetadataAttachment(const Function &F,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ bool StartedMetadataBlock = false;
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata attachments
+ // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+ MetadataContext &TheMetadata = F.getContext().getMetadata();
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ const MetadataContext::MDMapTy *P = TheMetadata.getMDs(I);
+ if (!P) continue;
+ bool RecordedInstruction = false;
+ for (MetadataContext::MDMapTy::const_iterator PI = P->begin(),
+ PE = P->end(); PI != PE; ++PI) {
+ if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) {
+ if (RecordedInstruction == false) {
+ Record.push_back(VE.getInstructionID(I));
+ RecordedInstruction = true;
+ }
+ Record.push_back(PI->first);
+ Record.push_back(VE.getValueID(ND));
+ }
+ }
+ if (!Record.empty()) {
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+ Record.clear();
+ }
+ }
+
+ if (StartedMetadataBlock)
+ Stream.ExitBlock();
+}
+
+static void WriteModuleMetadataStore(const Module *M,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+
+ bool StartedMetadataBlock = false;
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata kinds
+ // METADATA_KIND - [n x [id, name]]
+ MetadataContext &TheMetadata = M->getContext().getMetadata();
+ const StringMap<unsigned> *Kinds = TheMetadata.getHandlerNames();
+ for (StringMap<unsigned>::const_iterator
+ I = Kinds->begin(), E = Kinds->end(); I != E; ++I) {
+ Record.push_back(I->second);
+ StringRef KName = I->first();
+ for (unsigned i = 0, e = KName.size(); i != e; ++i)
+ Record.push_back(KName[i]);
+ if (!StartedMetadataBlock) {
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+ StartedMetadataBlock = true;
+ }
+ Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+ Record.clear();
+ }
+
+ if (StartedMetadataBlock)
+ Stream.ExitBlock();
+}
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
const ValueEnumerator &VE,
BitstreamWriter &Stream, bool isGlobal) {
if (FirstVal == LastVal) return;
-
+
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned String8Abbrev = 0;
unsigned CString7Abbrev = 0;
unsigned CString6Abbrev = 0;
- unsigned MDString8Abbrev = 0;
- unsigned MDString6Abbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
@@ -493,21 +661,8 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(Abbv);
+ }
- // Abbrev for CST_CODE_MDSTRING.
- Abbv = new BitCodeAbbrev();
- Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
- MDString8Abbrev = Stream.EmitAbbrev(Abbv);
- // Abbrev for CST_CODE_MDSTRING.
- Abbv = new BitCodeAbbrev();
- Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
- Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
- MDString6Abbrev = Stream.EmitAbbrev(Abbv);
- }
-
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
@@ -522,16 +677,17 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
-
+
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
- Record.push_back(unsigned(IA->hasSideEffects()));
-
+ Record.push_back(unsigned(IA->hasSideEffects()) |
+ unsigned(IA->isMsAsm()) << 1);
+
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
Record.push_back(AsmStr[i]);
-
+
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
@@ -558,11 +714,11 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
- // We have an arbitrary precision integer value to write whose
- // bit width is > 64. However, in canonical unsigned integer
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
- unsigned NWords = IV->getValue().getActiveWords();
+ unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
int64_t V = RawWords[i];
@@ -576,16 +732,16 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = bitc::CST_CODE_FLOAT;
const Type *Ty = CFP->getType();
- if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
+ if (Ty->isFloatTy() || Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
- } else if (Ty == Type::X86_FP80Ty) {
+ } else if (Ty->isX86_FP80Ty()) {
// api needed to prevent premature destruction
// bits are not in the same order as a normal i80 APInt, compensate.
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back((p[1] << 48) | (p[0] >> 16));
Record.push_back(p[0] & 0xffffLL);
- } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
+ } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
@@ -610,10 +766,10 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
- if (isCStrChar6)
+ if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
-
+
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
@@ -639,10 +795,15 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
+ uint64_t Flags = GetOptimizationFlags(CE);
+ if (Flags != 0)
+ Record.push_back(Flags);
}
break;
case Instruction::GetElementPtr:
Code = bitc::CST_CODE_CE_GEP;
+ if (cast<GEPOperator>(C)->isInBounds())
+ Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i)));
@@ -683,45 +844,15 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
break;
case Instruction::ICmp:
case Instruction::FCmp:
- case Instruction::VICmp:
- case Instruction::VFCmp:
- if (isa<VectorType>(C->getOperand(0)->getType())
- && (CE->getOpcode() == Instruction::ICmp
- || CE->getOpcode() == Instruction::FCmp)) {
- // compare returning vector of Int1Ty
- assert(0 && "Unsupported constant!");
- } else {
- Code = bitc::CST_CODE_CE_CMP;
- }
+ Code = bitc::CST_CODE_CE_CMP;
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0)));
Record.push_back(VE.getValueID(C->getOperand(1)));
Record.push_back(CE->getPredicate());
break;
}
- } else if (const MDString *S = dyn_cast<MDString>(C)) {
- Code = bitc::CST_CODE_MDSTRING;
- AbbrevToUse = MDString6Abbrev;
- for (unsigned i = 0, e = S->size(); i != e; ++i) {
- char V = S->begin()[i];
- Record.push_back(V);
-
- if (!BitCodeAbbrevOp::isChar6(V))
- AbbrevToUse = MDString8Abbrev;
- }
- } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
- Code = bitc::CST_CODE_MDNODE;
- for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
- if (N->getElement(i)) {
- Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
- Record.push_back(VE.getValueID(N->getElement(i)));
- } else {
- Record.push_back(VE.getTypeID(Type::VoidTy));
- Record.push_back(0);
- }
- }
} else {
- assert(0 && "Unknown constant!");
+ llvm_unreachable("Unknown constant!");
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
@@ -733,7 +864,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
static void WriteModuleConstants(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const ValueEnumerator::ValueList &Vals = VE.getValues();
-
+
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
@@ -753,7 +884,7 @@ static void WriteModuleConstants(const ValueEnumerator &VE,
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID.
static bool PushValueAndType(const Value *V, unsigned InstID,
- SmallVector<unsigned, 64> &Vals,
+ SmallVector<unsigned, 64> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(ValID);
@@ -770,6 +901,7 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
SmallVector<unsigned, 64> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
+ VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
@@ -785,11 +917,19 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+ uint64_t Flags = GetOptimizationFlags(&I);
+ if (Flags != 0) {
+ if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
+ AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
+ Vals.push_back(Flags);
+ }
}
break;
case Instruction::GetElementPtr:
Code = bitc::FUNC_CODE_INST_GEP;
+ if (cast<GEPOperator>(&I)->isInBounds())
+ Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
break;
@@ -835,21 +975,14 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
break;
case Instruction::ICmp:
case Instruction::FCmp:
- case Instruction::VICmp:
- case Instruction::VFCmp:
- if (I.getOpcode() == Instruction::ICmp
- || I.getOpcode() == Instruction::FCmp) {
- // compare returning Int1Ty or vector of Int1Ty
- Code = bitc::FUNC_CODE_INST_CMP2;
- } else {
- Code = bitc::FUNC_CODE_INST_CMP;
- }
+ // compare returning Int1Ty or vector of Int1Ty
+ Code = bitc::FUNC_CODE_INST_CMP2;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
Vals.push_back(VE.getValueID(I.getOperand(1)));
Vals.push_back(cast<CmpInst>(I).getPredicate());
break;
- case Instruction::Ret:
+ case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
@@ -887,13 +1020,13 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_INVOKE;
-
+
Vals.push_back(VE.getAttributeID(II->getAttributes()));
Vals.push_back(II->getCallingConv());
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
PushValueAndType(Callee, InstID, Vals, VE);
-
+
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
@@ -913,38 +1046,38 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
-
+
case Instruction::PHI:
Code = bitc::FUNC_CODE_INST_PHI;
Vals.push_back(VE.getTypeID(I.getType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
-
+
case Instruction::Malloc:
Code = bitc::FUNC_CODE_INST_MALLOC;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
break;
-
+
case Instruction::Free:
Code = bitc::FUNC_CODE_INST_FREE;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
break;
-
+
case Instruction::Alloca:
Code = bitc::FUNC_CODE_INST_ALLOCA;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
break;
-
+
case Instruction::Load:
Code = bitc::FUNC_CODE_INST_LOAD;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
-
+
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
break;
@@ -960,16 +1093,16 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_CALL;
-
+
const CallInst *CI = cast<CallInst>(&I);
Vals.push_back(VE.getAttributeID(CI->getAttributes()));
Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
-
+
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
-
+
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
@@ -986,7 +1119,7 @@ static void WriteInstruction(const Instruction &I, unsigned InstID,
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
}
-
+
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
@@ -1001,27 +1134,27 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
-
+
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
SI != SE; ++SI) {
-
+
const ValueName &Name = *SI;
-
+
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
C != E; ++C) {
- if (isChar6)
+ if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
-
+
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
-
+
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
@@ -1036,12 +1169,12 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
-
+
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
-
+
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
@@ -1050,39 +1183,40 @@ static void WriteValueSymbolTable(const ValueSymbolTable &VST,
}
/// WriteFunction - Emit a function body to the module stream.
-static void WriteFunction(const Function &F, ValueEnumerator &VE,
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
-
+
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
-
+
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream, false);
-
- // Keep a running idea of what the instruction ID is.
+
+ // Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
-
+
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
WriteInstruction(*I, InstID, VE, Stream, Vals);
- if (I->getType() != Type::VoidTy)
+ if (I->getType() != Type::getVoidTy(F.getContext()))
++InstID;
}
-
+
// Emit names for all the instructions etc.
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
-
+
+ WriteMetadataAttachment(F, VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
}
@@ -1092,9 +1226,9 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
if (TST.empty()) return;
-
+
Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
-
+
// 7-bit fixed width VST_CODE_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1103,14 +1237,14 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
-
+
SmallVector<unsigned, 64> NameVals;
-
- for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI) {
// TST_ENTRY: [typeid, namechar x N]
NameVals.push_back(VE.getTypeID(TI->second));
-
+
const std::string &Str = TI->first;
bool is7Bit = true;
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
@@ -1118,12 +1252,12 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
if (Str[i] & 128)
is7Bit = false;
}
-
+
// Emit the finished record.
Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
NameVals.clear();
}
-
+
Stream.ExitBlock();
}
@@ -1133,18 +1267,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
// blocks can defined their abbrevs inline.
Stream.EnterBlockInfoBlock(2);
-
+
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
- if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_8_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // 7-bit fixed width VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1153,7 +1287,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_7_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1163,7 +1297,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_6_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1173,11 +1307,11 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_BBENTRY_6_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
-
-
+
+
+
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
@@ -1185,18 +1319,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Log2_32_Ceil(VE.getTypes().size()+1)));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_SETTYPE_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
@@ -1207,18 +1341,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_CE_CAST_Abbrev)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_NULL_Abbrev)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
// FIXME: This should only use space for first class types!
-
+
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
@@ -1227,7 +1361,7 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_LOAD_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1237,7 +1371,18 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_BINOP_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1248,15 +1393,15 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_CAST_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
@@ -1264,16 +1409,16 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
- assert(0 && "Unexpected abbrev ordering!");
+ llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
Stream.ExitBlock();
}
@@ -1281,44 +1426,50 @@ static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
-
+
// Emit the version number if it is non-zero.
if (CurVersion) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
}
-
+
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
-
+
// Emit information about parameter attributes.
WriteAttributeTable(VE, Stream);
-
+
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
-
+
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
-
+
// Emit constants.
WriteModuleConstants(VE, Stream);
-
+
+ // Emit metadata.
+ WriteModuleMetadata(VE, Stream);
+
// Emit function bodies.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
WriteFunction(*I, VE, Stream);
-
+
+ // Emit metadata.
+ WriteModuleMetadataStore(M, VE, Stream);
+
// Emit the type symbol table information.
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
-
+
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
-
+
Stream.ExitBlock();
}
@@ -1326,7 +1477,7 @@ static void WriteModule(const Module *M, BitstreamWriter &Stream) {
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
-///
+///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
@@ -1343,7 +1494,7 @@ enum {
static void EmitDarwinBCHeader(BitstreamWriter &Stream,
const std::string &TT) {
unsigned CPUType = ~0U;
-
+
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
// magic number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
@@ -1352,7 +1503,7 @@ static void EmitDarwinBCHeader(BitstreamWriter &Stream,
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_POWERPC = 18
};
-
+
if (TT.find("x86_64-") == 0)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
@@ -1362,10 +1513,10 @@ static void EmitDarwinBCHeader(BitstreamWriter &Stream,
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (TT.find("powerpc64-") == 0)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
-
+
// Traditional Bitcode starts after header.
unsigned BCOffset = DarwinBCHeaderSize;
-
+
Stream.Emit(0x0B17C0DE, 32);
Stream.Emit(0 , 32); // Version.
Stream.Emit(BCOffset , 32);
@@ -1378,7 +1529,7 @@ static void EmitDarwinBCHeader(BitstreamWriter &Stream,
static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
// Update the size field in the header.
Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
-
+
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (BufferSize & 15) {
Stream.Emit(0, 8);
@@ -1389,31 +1540,21 @@ static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
-void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
- raw_os_ostream RawOut(Out);
- // If writing to stdout, set binary mode.
- if (llvm::cout == Out)
- sys::Program::ChangeStdoutToBinary();
- WriteBitcodeToFile(M, RawOut);
-}
-
-/// WriteBitcodeToFile - Write the specified module to the specified output
-/// stream.
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
std::vector<unsigned char> Buffer;
BitstreamWriter Stream(Buffer);
-
+
Buffer.reserve(256*1024);
WriteBitcodeToStream( M, Stream );
-
+
// If writing to stdout, set binary mode.
if (&llvm::outs() == &Out)
sys::Program::ChangeStdoutToBinary();
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
-
+
// Make sure it hits disk now.
Out.flush();
}
@@ -1425,7 +1566,7 @@ void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
if (isDarwin)
EmitDarwinBCHeader(Stream, M->getTargetTriple());
-
+
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
diff --git a/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
index 209cf09..3a0d3ce 100644
--- a/lib/Bitcode/Writer/BitcodeWriterPass.cpp
+++ b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
@@ -17,24 +17,16 @@ using namespace llvm;
namespace {
class WriteBitcodePass : public ModulePass {
- // FIXME: Kill off std::ostream
- std::ostream *Out;
- raw_ostream *RawOut; // raw_ostream to print on
+ raw_ostream &OS; // raw_ostream to print on
public:
static char ID; // Pass identification, replacement for typeid
- explicit WriteBitcodePass(std::ostream &o)
- : ModulePass(&ID), Out(&o), RawOut(0) {}
explicit WriteBitcodePass(raw_ostream &o)
- : ModulePass(&ID), Out(0), RawOut(&o) {}
+ : ModulePass(&ID), OS(o) {}
const char *getPassName() const { return "Bitcode Writer"; }
bool runOnModule(Module &M) {
- if (Out) {
- WriteBitcodeToFile(&M, *Out);
- } else {
- WriteBitcodeToFile(&M, *RawOut);
- }
+ WriteBitcodeToFile(&M, OS);
return false;
}
};
@@ -42,13 +34,6 @@ namespace {
char WriteBitcodePass::ID = 0;
-/// CreateBitcodeWriterPass - Create and return a pass that writes the module
-/// to the specified ostream.
-ModulePass *llvm::CreateBitcodeWriterPass(std::ostream &Str) {
- return new WriteBitcodePass(Str);
-}
-
-
/// createBitcodeWriterPass - Create and return a pass that writes the module
/// to the specified ostream.
ModulePass *llvm::createBitcodeWriterPass(raw_ostream &Str) {
diff --git a/lib/Bitcode/Writer/Serialize.cpp b/lib/Bitcode/Writer/Serialize.cpp
index 79464a6..a6beb17 100644
--- a/lib/Bitcode/Writer/Serialize.cpp
+++ b/lib/Bitcode/Writer/Serialize.cpp
@@ -12,11 +12,8 @@
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/Serialize.h"
-#include "string.h"
-
-#ifdef DEBUG_BACKPATCH
-#include "llvm/Support/Streams.h"
-#endif
+#include "llvm/Support/raw_ostream.h"
+#include <cstring>
using namespace llvm;
@@ -86,7 +83,7 @@ SerializedPtrID Serializer::getPtrId(const void* ptr) {
if (I == PtrMap.end()) {
unsigned id = PtrMap.size()+1;
#ifdef DEBUG_BACKPATCH
- llvm::cerr << "Registered PTR: " << ptr << " => " << id << "\n";
+ errs() << "Registered PTR: " << ptr << " => " << id << "\n";
#endif
PtrMap[ptr] = id;
return id;
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp
index 32b2819..60253ad 100644
--- a/lib/Bitcode/Writer/ValueEnumerator.cpp
+++ b/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -14,7 +14,7 @@
#include "ValueEnumerator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
-#include "llvm/MDNode.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
@@ -40,6 +40,8 @@ static bool CompareByFrequency(const std::pair<const llvm::Type*,
/// ValueEnumerator - Enumerate module-level information.
ValueEnumerator::ValueEnumerator(const Module *M) {
+ InstructionCount = 0;
+
// Enumerate the global variables.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
@@ -55,10 +57,10 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I);
-
+
// Remember what is the cutoff between globalvalue's and other constants.
unsigned FirstConstant = Values.size();
-
+
// Enumerate the global variable initializers.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
@@ -69,24 +71,25 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I->getAliasee());
-
+
// Enumerate types used by the type symbol table.
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
// Insert constants that are named at module level into the slot pool so that
// the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
-
+
// Enumerate types used by function bodies and argument lists.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
-
+
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
EnumerateType(I->getType());
-
+
+ MetadataContext &TheMetadata = F->getContext().getMetadata();
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
- for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI)
EnumerateOperandType(*OI);
EnumerateType(I->getType());
@@ -94,16 +97,24 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
EnumerateAttributes(CI->getAttributes());
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
EnumerateAttributes(II->getAttributes());
+
+ // Enumerate metadata attached with this instruction.
+ const MetadataContext::MDMapTy *MDs = TheMetadata.getMDs(I);
+ if (MDs)
+ for (MetadataContext::MDMapTy::const_iterator MI = MDs->begin(),
+ ME = MDs->end(); MI != ME; ++MI)
+ if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
+ EnumerateMetadata(MDN);
}
}
-
+
// Optimize constant ordering.
OptimizeConstants(FirstConstant, Values.size());
-
+
// Sort the type table by frequency so that most commonly used types are early
// in the table (have low bit-width).
std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
-
+
// Partition the Type ID's so that the single-value types occur before the
// aggregate types. This allows the aggregate types to be dropped from the
// type table after parsing the global variable initializers.
@@ -114,6 +125,28 @@ ValueEnumerator::ValueEnumerator(const Module *M) {
TypeMap[Types[i].first] = i+1;
}
+unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
+ InstructionMapType::const_iterator I = InstructionMap.find(Inst);
+ assert (I != InstructionMap.end() && "Instruction is not mapped!");
+ return I->second;
+}
+
+void ValueEnumerator::setInstructionID(const Instruction *I) {
+ InstructionMap[I] = InstructionCount++;
+}
+
+unsigned ValueEnumerator::getValueID(const Value *V) const {
+ if (isa<MetadataBase>(V)) {
+ ValueMapType::const_iterator I = MDValueMap.find(V);
+ assert(I != MDValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+ }
+
+ ValueMapType::const_iterator I = ValueMap.find(V);
+ assert(I != ValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+}
+
// Optimize constant ordering.
namespace {
struct CstSortPredicate {
@@ -123,7 +156,7 @@ namespace {
const std::pair<const Value*, unsigned> &RHS) {
// Sort by plane.
if (LHS.first->getType() != RHS.first->getType())
- return VE.getTypeID(LHS.first->getType()) <
+ return VE.getTypeID(LHS.first->getType()) <
VE.getTypeID(RHS.first->getType());
// Then by frequency.
return LHS.second > RHS.second;
@@ -134,15 +167,15 @@ namespace {
/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
-
+
CstSortPredicate P(*this);
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
-
+
// Ensure that integer constants are at the start of the constant pool. This
// is important so that GEP structure indices come before gep constant exprs.
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
isIntegerValue);
-
+
// Rebuild the modified portion of ValueMap.
for (; CstStart != CstEnd; ++CstStart)
ValueMap[Values[CstStart].first] = CstStart+1;
@@ -152,7 +185,7 @@ void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
/// table.
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
- for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
EnumerateType(TI->second);
}
@@ -160,14 +193,57 @@ void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
- for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
VI != VE; ++VI)
EnumerateValue(VI->getValue());
}
+void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
+ // Check to see if it's already in!
+ unsigned &MDValueID = MDValueMap[MD];
+ if (MDValueID) {
+ // Increment use count.
+ MDValues[MDValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(MD->getType());
+
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueMap[MD] = MDValues.size();
+ MDValueID = MDValues.size();
+ for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
+ I != E; ++I) {
+ if (*I)
+ EnumerateValue(*I);
+ else
+ EnumerateType(Type::getVoidTy(MD->getContext()));
+ }
+ return;
+ } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(MD)) {
+ for(NamedMDNode::const_elem_iterator I = N->elem_begin(),
+ E = N->elem_end(); I != E; ++I) {
+ MetadataBase *M = *I;
+ EnumerateValue(M);
+ }
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueMap[MD] = Values.size();
+ return;
+ }
+
+ // Add the value.
+ MDValues.push_back(std::make_pair(MD, 1U));
+ MDValueID = MDValues.size();
+}
+
void ValueEnumerator::EnumerateValue(const Value *V) {
- assert(V->getType() != Type::VoidTy && "Can't insert void values!");
-
+ assert(V->getType() != Type::getVoidTy(V->getContext()) &&
+ "Can't insert void values!");
+ if (const MetadataBase *MB = dyn_cast<MetadataBase>(V))
+ return EnumerateMetadata(MB);
+
// Check to see if it's already in!
unsigned &ValueID = ValueMap[V];
if (ValueID) {
@@ -178,7 +254,7 @@ void ValueEnumerator::EnumerateValue(const Value *V) {
// Enumerate the type of this value.
EnumerateType(V->getType());
-
+
if (const Constant *C = dyn_cast<Constant>(V)) {
if (isa<GlobalValue>(C)) {
// Initializers for globals are handled explicitly elsewhere.
@@ -190,7 +266,7 @@ void ValueEnumerator::EnumerateValue(const Value *V) {
// If a constant has operands, enumerate them. This makes sure that if a
// constant has uses (for example an array of const ints), that they are
// inserted also.
-
+
// We prefer to enumerate them with values before we enumerate the user
// itself. This makes it more likely that we can avoid forward references
// in the reader. We know that there can be no cycles in the constants
@@ -198,27 +274,15 @@ void ValueEnumerator::EnumerateValue(const Value *V) {
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
EnumerateValue(*I);
-
+
// Finally, add the value. Doing this could make the ValueID reference be
// dangling, don't reuse it.
Values.push_back(std::make_pair(V, 1U));
ValueMap[V] = Values.size();
return;
- } else if (const MDNode *N = dyn_cast<MDNode>(C)) {
- for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
- I != E; ++I) {
- if (*I)
- EnumerateValue(*I);
- else
- EnumerateType(Type::VoidTy);
- }
-
- Values.push_back(std::make_pair(V, 1U));
- ValueMap[V] = Values.size();
- return;
}
}
-
+
// Add the value.
Values.push_back(std::make_pair(V, 1U));
ValueID = Values.size();
@@ -227,17 +291,17 @@ void ValueEnumerator::EnumerateValue(const Value *V) {
void ValueEnumerator::EnumerateType(const Type *Ty) {
unsigned &TypeID = TypeMap[Ty];
-
+
if (TypeID) {
// If we've already seen this type, just increase its occurrence count.
Types[TypeID-1].second++;
return;
}
-
+
// First time we saw this type, add it.
Types.push_back(std::make_pair(Ty, 1U));
TypeID = Types.size();
-
+
// Enumerate subtypes.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
@@ -259,10 +323,14 @@ void ValueEnumerator::EnumerateOperandType(const Value *V) {
EnumerateOperandType(C->getOperand(i));
if (const MDNode *N = dyn_cast<MDNode>(V)) {
- for (unsigned i = 0, e = N->getNumElements(); i != e; ++i)
- EnumerateOperandType(N->getElement(i));
+ for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
+ Value *Elem = N->getElement(i);
+ if (Elem)
+ EnumerateOperandType(Elem);
+ }
}
- }
+ } else if (isa<MDString>(V) || isa<MDNode>(V))
+ EnumerateValue(V);
}
void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
@@ -279,18 +347,18 @@ void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
void ValueEnumerator::incorporateFunction(const Function &F) {
NumModuleValues = Values.size();
-
+
// Adding function arguments to the value table.
for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I)
EnumerateValue(I);
FirstFuncConstantID = Values.size();
-
+
// Add all function-level constants to the value table.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
- for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
isa<InlineAsm>(*OI))
@@ -299,20 +367,20 @@ void ValueEnumerator::incorporateFunction(const Function &F) {
BasicBlocks.push_back(BB);
ValueMap[BB] = BasicBlocks.size();
}
-
+
// Optimize the constant layout.
OptimizeConstants(FirstFuncConstantID, Values.size());
-
+
// Add the function's parameter attributes so they are available for use in
// the function's instruction.
EnumerateAttributes(F.getAttributes());
FirstInstID = Values.size();
-
+
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
- if (I->getType() != Type::VoidTy)
+ if (I->getType() != Type::getVoidTy(F.getContext()))
EnumerateValue(I);
}
}
@@ -324,8 +392,7 @@ void ValueEnumerator::purgeFunction() {
ValueMap.erase(Values[i].first);
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
ValueMap.erase(BasicBlocks[i]);
-
+
Values.resize(NumModuleValues);
BasicBlocks.clear();
}
-
diff --git a/lib/Bitcode/Writer/ValueEnumerator.h b/lib/Bitcode/Writer/ValueEnumerator.h
index 40eeabb..da63dde 100644
--- a/lib/Bitcode/Writer/ValueEnumerator.h
+++ b/lib/Bitcode/Writer/ValueEnumerator.h
@@ -22,9 +22,11 @@ namespace llvm {
class Type;
class Value;
+class Instruction;
class BasicBlock;
class Function;
class Module;
+class MetadataBase;
class AttrListPtr;
class TypeSymbolTable;
class ValueSymbolTable;
@@ -44,11 +46,17 @@ private:
typedef DenseMap<const Value*, unsigned> ValueMapType;
ValueMapType ValueMap;
ValueList Values;
+ ValueList MDValues;
+ ValueMapType MDValueMap;
typedef DenseMap<void*, unsigned> AttributeMapType;
AttributeMapType AttributeMap;
std::vector<AttrListPtr> Attributes;
+ typedef DenseMap<const Instruction*, unsigned> InstructionMapType;
+ InstructionMapType InstructionMap;
+ unsigned InstructionCount;
+
/// BasicBlocks - This contains all the basic blocks for the currently
/// incorporated function. Their reverse mapping is stored in ValueMap.
std::vector<const BasicBlock*> BasicBlocks;
@@ -64,18 +72,17 @@ private:
public:
ValueEnumerator(const Module *M);
- unsigned getValueID(const Value *V) const {
- ValueMapType::const_iterator I = ValueMap.find(V);
- assert(I != ValueMap.end() && "Value not in slotcalculator!");
- return I->second-1;
- }
-
+ unsigned getValueID(const Value *V) const;
+
unsigned getTypeID(const Type *T) const {
TypeMapType::const_iterator I = TypeMap.find(T);
assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
return I->second-1;
}
-
+
+ unsigned getInstructionID(const Instruction *I) const;
+ void setInstructionID(const Instruction *I);
+
unsigned getAttributeID(const AttrListPtr &PAL) const {
if (PAL.isEmpty()) return 0; // Null maps to zero.
AttributeMapType::const_iterator I = AttributeMap.find(PAL.getRawPointer());
@@ -91,6 +98,7 @@ public:
}
const ValueList &getValues() const { return Values; }
+ const ValueList &getMDValues() const { return MDValues; }
const TypeList &getTypes() const { return Types; }
const std::vector<const BasicBlock*> &getBasicBlocks() const {
return BasicBlocks;
@@ -108,6 +116,7 @@ public:
private:
void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
+ void EnumerateMetadata(const MetadataBase *MD);
void EnumerateValue(const Value *V);
void EnumerateType(const Type *T);
void EnumerateOperandType(const Value *V);
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 6d12581..8bc5ef9 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -18,16 +18,25 @@
#include "llvm/Module.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Mangler.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -41,12 +50,17 @@ AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
cl::init(cl::BOU_UNSET));
char AsmPrinter::ID = 0;
-AsmPrinter::AsmPrinter(raw_ostream &o, TargetMachine &tm,
- const TargetAsmInfo *T, bool VDef)
+AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
+ const MCAsmInfo *T, bool VDef)
: MachineFunctionPass(&ID), FunctionNumber(0), O(o),
- TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
- IsInTextSection(false), LastMI(0), LastFn(0), Counter(~0U),
- PrevDLT(0, ~0U, ~0U) {
+ TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
+
+ OutContext(*new MCContext()),
+ // FIXME: Pass instprinter to streamer.
+ OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
+
+ LastMI(0), LastFn(0), Counter(~0U),
+ PrevDLT(0, 0, ~0U, ~0U) {
DW = 0; MMI = 0;
switch (AsmVerbose) {
case cl::BOU_UNSET: VerboseAsm = VDef; break;
@@ -59,188 +73,124 @@ AsmPrinter::~AsmPrinter() {
for (gcp_iterator I = GCMetadataPrinters.begin(),
E = GCMetadataPrinters.end(); I != E; ++I)
delete I->second;
-}
-
-/// SwitchToTextSection - Switch to the specified text section of the executable
-/// if we are not already in it!
-///
-void AsmPrinter::SwitchToTextSection(const char *NewSection,
- const GlobalValue *GV) {
- std::string NS;
- if (GV && GV->hasSection())
- NS = TAI->getSwitchToSectionDirective() + GV->getSection();
- else
- NS = NewSection;
- // If we're already in this section, we're done.
- if (CurrentSection == NS) return;
-
- // Close the current section, if applicable.
- if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
- O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
-
- CurrentSection = NS;
-
- if (!CurrentSection.empty())
- O << CurrentSection << TAI->getTextSectionStartSuffix() << '\n';
-
- IsInTextSection = true;
+ delete &OutStreamer;
+ delete &OutContext;
}
-/// SwitchToDataSection - Switch to the specified data section of the executable
-/// if we are not already in it!
-///
-void AsmPrinter::SwitchToDataSection(const char *NewSection,
- const GlobalValue *GV) {
- std::string NS;
- if (GV && GV->hasSection())
- NS = TAI->getSwitchToSectionDirective() + GV->getSection();
- else
- NS = NewSection;
-
- // If we're already in this section, we're done.
- if (CurrentSection == NS) return;
-
- // Close the current section, if applicable.
- if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
- O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
-
- CurrentSection = NS;
-
- if (!CurrentSection.empty())
- O << CurrentSection << TAI->getDataSectionStartSuffix() << '\n';
-
- IsInTextSection = false;
+TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
+ return TM.getTargetLowering()->getObjFileLowering();
}
-/// SwitchToSection - Switch to the specified section of the executable if we
-/// are not already in it!
-void AsmPrinter::SwitchToSection(const Section* NS) {
- const std::string& NewSection = NS->getName();
-
- // If we're already in this section, we're done.
- if (CurrentSection == NewSection) return;
-
- // Close the current section, if applicable.
- if (TAI->getSectionEndDirectiveSuffix() && !CurrentSection.empty())
- O << CurrentSection << TAI->getSectionEndDirectiveSuffix() << '\n';
-
- // FIXME: Make CurrentSection a Section* in the future
- CurrentSection = NewSection;
- CurrentSection_ = NS;
-
- if (!CurrentSection.empty()) {
- // If section is named we need to switch into it via special '.section'
- // directive and also append funky flags. Otherwise - section name is just
- // some magic assembler directive.
- if (NS->isNamed())
- O << TAI->getSwitchToSectionDirective()
- << CurrentSection
- << TAI->getSectionFlags(NS->getFlags());
- else
- O << CurrentSection;
- O << TAI->getDataSectionStartSuffix() << '\n';
- }
-
- IsInTextSection = (NS->getFlags() & SectionFlags::Code);
+/// getCurrentSection() - Return the current section we are emitting to.
+const MCSection *AsmPrinter::getCurrentSection() const {
+ return OutStreamer.getCurrentSection();
}
+
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<GCModuleInfo>();
+ if (VerboseAsm)
+ AU.addRequired<MachineLoopInfo>();
}
bool AsmPrinter::doInitialization(Module &M) {
- Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix());
+ // Initialize TargetLoweringObjectFile.
+ const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
+ .Initialize(OutContext, TM);
- if (TAI->doesAllowQuotesInName())
+ Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
+ MAI->getLinkerPrivateGlobalPrefix());
+
+ if (MAI->doesAllowQuotesInName())
Mang->setUseQuotes(true);
+
+ if (MAI->doesAllowNameToStartWithDigit())
+ Mang->setSymbolsCanStartWithDigit(true);
- GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
- assert(MI && "AsmPrinter didn't require GCModuleInfo?");
+ // Allow the target to emit any magic that it wants at the start of the file.
+ EmitStartOfAsmFile(M);
- if (TAI->hasSingleParameterDotFile()) {
+ if (MAI->hasSingleParameterDotFile()) {
/* Very minimal debug info. It is ignored if we emit actual
- debug info. If we don't, this at helps the user find where
+ debug info. If we don't, this at least helps the user find where
a function came from. */
O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
}
+ GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
+ assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
- MP->beginAssembly(O, *this, *TAI);
+ MP->beginAssembly(O, *this, *MAI);
if (!M.getModuleInlineAsm().empty())
- O << TAI->getCommentString() << " Start of file scope inline assembly\n"
+ O << MAI->getCommentString() << " Start of file scope inline assembly\n"
<< M.getModuleInlineAsm()
- << '\n' << TAI->getCommentString()
+ << '\n' << MAI->getCommentString()
<< " End of file scope inline assembly\n";
- SwitchToDataSection(""); // Reset back to no section.
-
- if (TAI->doesSupportDebugInformation() ||
- TAI->doesSupportExceptionHandling()) {
- MMI = getAnalysisIfAvailable<MachineModuleInfo>();
- if (MMI)
- MMI->AnalyzeModule(M);
- DW = getAnalysisIfAvailable<DwarfWriter>();
- if (DW)
- DW->BeginModule(&M, MMI, O, this, TAI);
- }
+ MMI = getAnalysisIfAvailable<MachineModuleInfo>();
+ if (MMI)
+ MMI->AnalyzeModule(M);
+ DW = getAnalysisIfAvailable<DwarfWriter>();
+ if (DW)
+ DW->BeginModule(&M, MMI, O, this, MAI);
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
+ // Emit global variables.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ PrintGlobalVariable(I);
+
// Emit final debug information.
- if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
+ if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
DW->EndModule();
// If the target wants to know about weak references, print them all.
- if (TAI->getWeakRefDirective()) {
+ if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
- SwitchToDataSection("");
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalWeakLinkage())
- O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n';
+ O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
}
- for (Module::const_iterator I = M.begin(), E = M.end();
- I != E; ++I) {
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (I->hasExternalWeakLinkage())
- O << TAI->getWeakRefDirective() << Mang->getValueName(I) << '\n';
+ O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
}
}
- if (TAI->getSetDirective()) {
- if (!M.alias_empty())
- SwitchToSection(TAI->getTextSection());
-
+ if (MAI->getSetDirective()) {
O << '\n';
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
- std::string Name = Mang->getValueName(I);
- std::string Target;
+ std::string Name = Mang->getMangledName(I);
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
- Target = Mang->getValueName(GV);
+ std::string Target = Mang->getMangledName(GV);
- if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
+ if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
O << "\t.globl\t" << Name << '\n';
else if (I->hasWeakLinkage())
- O << TAI->getWeakRefDirective() << Name << '\n';
+ O << MAI->getWeakRefDirective() << Name << '\n';
else if (!I->hasLocalLinkage())
- assert(0 && "Invalid alias linkage");
+ llvm_unreachable("Invalid alias linkage");
printVisibility(Name, I->getVisibility());
- O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
+ O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
}
}
@@ -248,45 +198,43 @@ bool AsmPrinter::doFinalization(Module &M) {
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
- MP->finishAssembly(O, *this, *TAI);
+ MP->finishAssembly(O, *this, *MAI);
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
- if (TAI->getNonexecutableStackDirective())
- O << TAI->getNonexecutableStackDirective() << '\n';
+ if (MAI->getNonexecutableStackDirective())
+ O << MAI->getNonexecutableStackDirective() << '\n';
+
+ // Allow the target to emit any magic that it wants at the end of the file,
+ // after everything else has gone out.
+ EmitEndOfAsmFile(M);
+
delete Mang; Mang = 0;
DW = 0; MMI = 0;
+
+ OutStreamer.Finish();
return false;
}
-const std::string &
-AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF,
- std::string &Name) const {
- assert(MF && "No machine function?");
- Name = MF->getFunction()->getName();
- if (Name.empty())
- Name = Mang->getValueName(MF->getFunction());
- Name = Mang->makeNameProper(TAI->getEHGlobalPrefix() +
- Name + ".eh", TAI->getGlobalPrefix());
- return Name;
-}
-
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
- CurrentFnName = Mang->getValueName(MF.getFunction());
+ CurrentFnName = Mang->getMangledName(MF.getFunction());
IncrementFunctionNumber();
+
+ if (VerboseAsm)
+ LI = &getAnalysis<MachineLoopInfo>();
}
namespace {
// SectionCPs - Keep track the alignment, constpool entries per Section.
struct SectionCPs {
- const Section *S;
+ const MCSection *S;
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
- SectionCPs(const Section *s, unsigned a) : S(s), Alignment(a) {};
+ SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
};
}
@@ -303,9 +251,27 @@ void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
// the same section together to reduce amount of section switch statements.
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
- MachineConstantPoolEntry CPE = CP[i];
+ const MachineConstantPoolEntry &CPE = CP[i];
unsigned Align = CPE.getAlignment();
- const Section* S = TAI->SelectSectionForMachineConst(CPE.getType());
+
+ SectionKind Kind;
+ switch (CPE.getRelocationInfo()) {
+ default: llvm_unreachable("Unknown section kind");
+ case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
+ case 1:
+ Kind = SectionKind::getReadOnlyWithRelLocal();
+ break;
+ case 0:
+ switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
+ case 4: Kind = SectionKind::getMergeableConst4(); break;
+ case 8: Kind = SectionKind::getMergeableConst8(); break;
+ case 16: Kind = SectionKind::getMergeableConst16();break;
+ default: Kind = SectionKind::getMergeableConst(); break;
+ }
+ }
+
+ const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
+
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
@@ -328,7 +294,7 @@ void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
// Now print stuff into the calculated sections.
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
- SwitchToSection(CPSections[i].S);
+ OutStreamer.SwitchSection(CPSections[i].S);
EmitAlignment(Log2_32(CPSections[i].Alignment));
unsigned Offset = 0;
@@ -344,11 +310,12 @@ void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const Type *Ty = CPE.getType();
Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
- << CPI << ":\t\t\t\t\t";
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
+ << CPI << ':';
if (VerboseAsm) {
- O << TAI->getCommentString() << ' ';
- WriteTypeSymbolic(O, CPE.getType(), 0);
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " constant ";
+ WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
}
O << '\n';
if (CPE.isMachineConstantPoolEntry())
@@ -373,20 +340,21 @@ void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
- const char* JumpTableDataSection = TAI->getJumpTableDataSection();
const Function *F = MF.getFunction();
- unsigned SectionFlags = TAI->SectionFlagsForGlobal(F);
bool JTInDiffSection = false;
- if ((IsPic && !(LoweringInfo && LoweringInfo->usesGlobalOffsetTable())) ||
- !JumpTableDataSection ||
- SectionFlags & SectionFlags::Linkonce) {
+ if (F->isWeakForLinker() ||
+ (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL or function is declared in
// discardable section.
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
+ TM));
} else {
- SwitchToDataSection(JumpTableDataSection);
+ // Otherwise, drop it in the readonly section.
+ const MCSection *ReadOnlySection =
+ getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
+ OutStreamer.SwitchSection(ReadOnlySection);
JTInDiffSection = true;
}
@@ -402,21 +370,21 @@ void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
- if (TAI->getSetDirective() && IsPic)
+ if (MAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]))
printPICJumpTableSetLabel(i, JTBBs[ii]);
- // On some targets (e.g. darwin) we want to emit two consequtive labels
+ // On some targets (e.g. Darwin) we want to emit two consequtive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
- if (JTInDiffSection) {
- if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
- O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
+ if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
+ O << MAI->getLinkerPrivateGlobalPrefix()
+ << "JTI" << getFunctionNumber() << '_' << i << ":\n";
}
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << i << ":\n";
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
@@ -429,15 +397,15 @@ void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
- bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
+ bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
- const char *JTEntryDirective = TAI->getJumpTableDirective();
+ const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
- TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
+ MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
}
O << JTEntryDirective << ' ';
@@ -447,20 +415,18 @@ void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
- if (IsPic) {
- if (TAI->getSetDirective()) {
- O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
- << '_' << uid << "_set_" << MBB->getNumber();
- } else {
- printBasicBlockLabel(MBB, false, false, false);
- // If the arch uses custom Jump Table directives, don't calc relative to
- // JT
- if (!HadJTEntryDirective)
- O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
- << getFunctionNumber() << '_' << uid;
- }
+ if (!isPIC) {
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ } else if (MAI->getSetDirective()) {
+ O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
+ << '_' << uid << "_set_" << MBB->getNumber();
} else {
- printBasicBlockLabel(MBB, false, false, false);
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ // If the arch uses custom Jump Table directives, don't calc relative to
+ // JT
+ if (!HadJTEntryDirective)
+ O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
+ << getFunctionNumber() << '_' << uid;
}
}
@@ -470,12 +436,12 @@ void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
- if (TAI->getUsedDirective() != 0) // No need to emit this at all.
+ if (MAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
- // Ignore debug and non-emitted data.
+ // Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
@@ -487,14 +453,14 @@ bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
if (GV->getName() == "llvm.global_ctors") {
- SwitchToDataSection(TAI->getStaticCtorsSection());
+ OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors") {
- SwitchToDataSection(TAI->getStaticDtorsSection());
+ OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
@@ -503,45 +469,20 @@ bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
return false;
}
-/// findGlobalValue - if CV is an expression equivalent to a single
-/// global value, return that value.
-const GlobalValue * AsmPrinter::findGlobalValue(const Constant *CV) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
- return GV;
- else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
- const TargetData *TD = TM.getTargetData();
- unsigned Opcode = CE->getOpcode();
- switch (Opcode) {
- case Instruction::GetElementPtr: {
- const Constant *ptrVal = CE->getOperand(0);
- SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
- if (TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], idxVec.size()))
- return 0;
- return findGlobalValue(ptrVal);
- }
- case Instruction::BitCast:
- return findGlobalValue(CE->getOperand(0));
- default:
- return 0;
- }
- }
- return 0;
-}
-
-/// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
+/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
-
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
- const char *Directive = TAI->getUsedDirective();
+ const char *Directive = MAI->getUsedDirective();
// Should be an array of 'i8*'.
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
- const GlobalValue *GV = findGlobalValue(InitList->getOperand(i));
- if (TAI->emitUsedDirectiveFor(GV, Mang)) {
+ const GlobalValue *GV =
+ dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
+ if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << '\n';
@@ -567,32 +508,6 @@ void AsmPrinter::EmitXXStructorList(Constant *List) {
}
}
-/// getGlobalLinkName - Returns the asm/link name of of the specified
-/// global variable. Should be overridden by each target asm printer to
-/// generate the appropriate value.
-const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
- std::string &LinkName) const {
- if (isa<Function>(GV)) {
- LinkName += TAI->getFunctionAddrPrefix();
- LinkName += Mang->getValueName(GV);
- LinkName += TAI->getFunctionAddrSuffix();
- } else {
- LinkName += TAI->getGlobalVarAddrPrefix();
- LinkName += Mang->getValueName(GV);
- LinkName += TAI->getGlobalVarAddrSuffix();
- }
-
- return LinkName;
-}
-
-/// EmitExternalGlobal - Emit the external reference to a global variable.
-/// Should be overridden if an indirect reference should be used.
-void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
- std::string GLN;
- O << getGlobalLinkName(GV, GLN);
-}
-
-
//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.
@@ -646,8 +561,8 @@ void AsmPrinter::EOL() const {
void AsmPrinter::EOL(const std::string &Comment) const {
if (VerboseAsm && !Comment.empty()) {
- O << '\t'
- << TAI->getCommentString()
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
<< ' '
<< Comment;
}
@@ -656,22 +571,72 @@ void AsmPrinter::EOL(const std::string &Comment) const {
void AsmPrinter::EOL(const char* Comment) const {
if (VerboseAsm && *Comment) {
- O << '\t'
- << TAI->getCommentString()
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
<< ' '
<< Comment;
}
O << '\n';
}
+static const char *DecodeDWARFEncoding(unsigned Encoding) {
+ switch (Encoding) {
+ case dwarf::DW_EH_PE_absptr:
+ return "absptr";
+ case dwarf::DW_EH_PE_omit:
+ return "omit";
+ case dwarf::DW_EH_PE_pcrel:
+ return "pcrel";
+ case dwarf::DW_EH_PE_udata4:
+ return "udata4";
+ case dwarf::DW_EH_PE_udata8:
+ return "udata8";
+ case dwarf::DW_EH_PE_sdata4:
+ return "sdata4";
+ case dwarf::DW_EH_PE_sdata8:
+ return "sdata8";
+ case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
+ return "pcrel udata4";
+ case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
+ return "pcrel sdata4";
+ case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
+ return "pcrel udata8";
+ case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
+ return "pcrel sdata8";
+ case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
+ return "indirect pcrel udata4";
+ case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
+ return "indirect pcrel sdata4";
+ case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
+ return "indirect pcrel udata8";
+ case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
+ return "indirect pcrel sdata8";
+ }
+
+ return 0;
+}
+
+void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
+ if (VerboseAsm && *Comment) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << ' '
+ << Comment;
+
+ if (const char *EncStr = DecodeDWARFEncoding(Encoding))
+ O << " (" << EncStr << ')';
+ }
+ O << '\n';
+}
+
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
- if (TAI->hasLEB128()) {
+ if (MAI->hasLEB128()) {
O << "\t.uleb128\t"
<< Value;
} else {
- O << TAI->getData8bitsDirective();
+ O << MAI->getData8bitsDirective();
PrintULEB128(Value);
}
}
@@ -679,11 +644,11 @@ void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
- if (TAI->hasLEB128()) {
+ if (MAI->hasLEB128()) {
O << "\t.sleb128\t"
<< Value;
} else {
- O << TAI->getData8bitsDirective();
+ O << MAI->getData8bitsDirective();
PrintSLEB128(Value);
}
}
@@ -691,29 +656,29 @@ void AsmPrinter::EmitSLEB128Bytes(int Value) const {
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
- O << TAI->getData8bitsDirective();
+ O << MAI->getData8bitsDirective();
PrintHex(Value & 0xFF);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
- O << TAI->getData16bitsDirective();
+ O << MAI->getData16bitsDirective();
PrintHex(Value & 0xFFFF);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
- O << TAI->getData32bitsDirective();
+ O << MAI->getData32bitsDirective();
PrintHex(Value);
}
/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
- if (TAI->getData64bitsDirective()) {
- O << TAI->getData64bitsDirective();
+ if (MAI->getData64bitsDirective()) {
+ O << MAI->getData64bitsDirective();
PrintHex(Value);
} else {
if (TM.getTargetData()->isBigEndian()) {
@@ -734,7 +699,7 @@ static inline char toOctal(int X) {
/// printStringChar - Print a char, escaped if necessary.
///
-static void printStringChar(raw_ostream &O, unsigned char C) {
+static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
@@ -766,11 +731,11 @@ void AsmPrinter::EmitString(const std::string &String) const {
}
void AsmPrinter::EmitString(const char *String, unsigned Size) const {
- const char* AscizDirective = TAI->getAscizDirective();
+ const char* AscizDirective = MAI->getAscizDirective();
if (AscizDirective)
O << AscizDirective;
else
- O << TAI->getAsciiDirective();
+ O << MAI->getAsciiDirective();
O << '\"';
for (unsigned i = 0; i < Size; ++i)
printStringChar(O, String[i]);
@@ -813,31 +778,26 @@ void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
NumBits = std::max(NumBits, ForcedAlignBits);
if (NumBits == 0) return; // No need to emit alignment.
- if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
- O << TAI->getAlignDirective() << NumBits;
-
- unsigned FillValue = TAI->getTextAlignFillValue();
- UseFillExpr &= IsInTextSection && FillValue;
- if (UseFillExpr) {
- O << ',';
- PrintHex(FillValue);
- }
- O << '\n';
+
+ unsigned FillValue = 0;
+ if (getCurrentSection()->getKind().isText())
+ FillValue = MAI->getTextAlignFillValue();
+
+ OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
}
-
/// EmitZeros - Emit a block of zeros.
///
void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
if (NumZeros) {
- if (TAI->getZeroDirective()) {
- O << TAI->getZeroDirective() << NumZeros;
- if (TAI->getZeroDirectiveSuffix())
- O << TAI->getZeroDirectiveSuffix();
+ if (MAI->getZeroDirective()) {
+ O << MAI->getZeroDirective() << NumZeros;
+ if (MAI->getZeroDirectiveSuffix())
+ O << MAI->getZeroDirectiveSuffix();
O << '\n';
} else {
for (; NumZeros; --NumZeros)
- O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
+ O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
}
}
}
@@ -851,22 +811,22 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
O << CI->getZExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
- // name of the variable or function as the address value, possibly
- // decorating it with GlobalVarAddrPrefix/Suffix or
- // FunctionAddrPrefix/Suffix (these all default to "" )
- if (isa<Function>(GV)) {
- O << TAI->getFunctionAddrPrefix()
- << Mang->getValueName(GV)
- << TAI->getFunctionAddrSuffix();
- } else {
- O << TAI->getGlobalVarAddrPrefix()
- << Mang->getValueName(GV)
- << TAI->getGlobalVarAddrSuffix();
- }
+ // name of the variable or function as the address value.
+ O << Mang->getMangledName(GV);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ llvm_unreachable("FIXME: Don't support this constant cast expr");
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
@@ -891,17 +851,6 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
}
break;
}
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- assert(0 && "FIXME: Don't yet support this kind of constant cast expr");
- break;
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
@@ -909,7 +858,8 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/);
+ Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
+ false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
@@ -922,16 +872,17 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
- if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
+ if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
O << "((";
EmitConstantValueOnly(Op);
- APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
+ APInt ptrMask =
+ APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
- O << ") & " << S.c_str() << ')';
+ O << ") & " << S.str() << ')';
break;
}
case Instruction::Add:
@@ -966,17 +917,17 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
O << ')';
break;
default:
- assert(0 && "Unsupported operator!");
+ llvm_unreachable("Unsupported operator!");
}
} else {
- assert(0 && "Unknown constant value!");
+ llvm_unreachable("Unknown constant value!");
}
}
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
-static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
+static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
@@ -993,12 +944,12 @@ static void printAsCString(raw_ostream &O, const ConstantArray *CVA,
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
- if (TAI->getAscizDirective() && NumElts &&
+ if (MAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
- O << TAI->getAscizDirective();
+ O << MAI->getAscizDirective();
printAsCString(O, CVA, NumElts-1);
} else {
- O << TAI->getAsciiDirective();
+ O << MAI->getAsciiDirective();
printAsCString(O, CVA, NumElts);
}
O << '\n';
@@ -1053,48 +1004,65 @@ void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
unsigned AddrSpace) {
// FP Constants are printed as integer constants to avoid losing
// precision...
+ LLVMContext &Context = CFP->getContext();
const TargetData *TD = TM.getTargetData();
- if (CFP->getType() == Type::DoubleTy) {
+ if (CFP->getType()->isDoubleTy()) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- if (TAI->getData64bitsDirective(AddrSpace)) {
- O << TAI->getData64bitsDirective(AddrSpace) << i;
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " double value: " << Val;
+ if (MAI->getData64bitsDirective(AddrSpace)) {
+ O << MAI->getData64bitsDirective(AddrSpace) << i;
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " double " << Val;
+ }
O << '\n';
} else if (TD->isBigEndian()) {
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " double most significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant word of double " << Val;
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " double least significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant word of double " << Val;
+ }
O << '\n';
} else {
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " double least significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant word of double " << Val;
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " double most significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant word of double " << Val;
+ }
O << '\n';
}
return;
- } else if (CFP->getType() == Type::FloatTy) {
+ }
+
+ if (CFP->getType()->isFloatTy()) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
- O << TAI->getData32bitsDirective(AddrSpace)
+ O << MAI->getData32bitsDirective(AddrSpace)
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " float " << Val;
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " float " << Val;
+ }
O << '\n';
return;
- } else if (CFP->getType() == Type::X86_FP80Ty) {
+ }
+
+ if (CFP->getType()->isX86_FP80Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
@@ -1105,110 +1073,148 @@ void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
if (TD->isBigEndian()) {
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double most significant halfword of ~"
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant halfword of x86_fp80 ~"
<< DoubleVal.convertToDouble();
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double least significant halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant halfword";
+ }
O << '\n';
} else {
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double least significant halfword of ~"
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant halfword of x86_fp80 ~"
<< DoubleVal.convertToDouble();
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next halfword";
+ }
O << '\n';
- O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double most significant halfword";
+ O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant halfword";
+ }
O << '\n';
}
- EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
- TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
+ EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
+ TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
return;
- } else if (CFP->getType() == Type::PPC_FP128Ty) {
+ }
+
+ if (CFP->getType()->isPPC_FP128Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double most significant word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant word of ppc_fp128";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next word";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next word";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double least significant word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant word";
+ }
O << '\n';
} else {
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double least significant word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant word of ppc_fp128";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next word";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double next word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " next word";
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " long double most significant word";
+ O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant word";
+ }
O << '\n';
}
return;
- } else assert(0 && "Floating point constant type not handled");
+ } else llvm_unreachable("Floating point constant type not handled");
}
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
@@ -1229,29 +1235,37 @@ void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
else
Val = RawData[i];
- if (TAI->getData64bitsDirective(AddrSpace))
- O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
+ if (MAI->getData64bitsDirective(AddrSpace))
+ O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
else if (TD->isBigEndian()) {
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " Double-word most significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant half of i64 " << Val;
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " Double-word least significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant half of i64 " << Val;
+ }
O << '\n';
} else {
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " Double-word least significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " least significant half of i64 " << Val;
+ }
O << '\n';
- O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString()
- << " Double-word most significant word " << Val;
+ O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString()
+ << " most significant half of i64 " << Val;
+ }
O << '\n';
}
}
@@ -1292,7 +1306,8 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
- O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str();
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " 0x" << S.str();
}
}
O << '\n';
@@ -1300,7 +1315,7 @@ void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
- abort();
+ llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
/// PrintSpecial - Print information related to the specified machine instr
@@ -1311,10 +1326,10 @@ void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
if (!strcmp(Code, "private")) {
- O << TAI->getPrivateGlobalPrefix();
+ O << MAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
if (VerboseAsm)
- O << TAI->getCommentString();
+ O << MAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
@@ -1328,23 +1343,38 @@ void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
}
O << Counter;
} else {
- cerr << "Unknown special formatter '" << Code
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Unknown special formatter '" << Code
<< "' for machine instr: " << *MI;
- exit(1);
+ llvm_report_error(Msg.str());
}
}
/// processDebugLoc - Processes the debug information of each machine
/// instruction's DebugLoc.
-void AsmPrinter::processDebugLoc(DebugLoc DL) {
- if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
+void AsmPrinter::processDebugLoc(const MachineInstr *MI,
+ bool BeforePrintingInsn) {
+ if (!MAI || !DW)
+ return;
+ DebugLoc DL = MI->getDebugLoc();
+ if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
if (!DL.isUnknown()) {
DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
-
- if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
- printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
- DICompileUnit(CurDLT.CompileUnit)));
-
+ if (BeforePrintingInsn) {
+ if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
+ unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
+ CurDLT.Scope);
+ printLabel(L);
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ DW->SetDbgScopeBeginLabels(MI, L);
+#endif
+ } else {
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ DW->SetDbgScopeEndLabels(MI, 0);
+#endif
+ }
+ }
PrevDLT = CurDLT;
}
}
@@ -1369,14 +1399,15 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
- O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n';
+ O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
+ O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
return;
}
- O << TAI->getInlineAsmStart() << "\n\t";
+ O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
// The variant of the current asmprinter.
- int AsmPrinterVariant = TAI->getAssemblerDialect();
+ int AsmPrinterVariant = MAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
@@ -1413,9 +1444,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
- cerr << "Nested variants found in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Nested variants found in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
CurVariant = 0; // We're in the first variant now.
break;
@@ -1450,9 +1480,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
if (StrEnd == 0) {
- cerr << "Unterminated ${:foo} operand in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
std::string Val(StrStart, StrEnd);
@@ -1466,9 +1495,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
errno = 0;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
- cerr << "Bad $ operand number in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Bad $ operand number in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
LastEmitted = IDEnd;
@@ -1480,9 +1508,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
- cerr << "Bad ${:} expression in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Bad ${:} expression in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
Modifier[0] = *LastEmitted;
@@ -1490,17 +1517,15 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
}
if (*LastEmitted != '}') {
- cerr << "Bad ${} expression in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Bad ${} expression in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
- cerr << "Invalid $ operand number in inline asm string: '"
- << AsmStr << "'\n";
- exit(1);
+ llvm_report_error("Invalid $ operand number in inline asm string: '"
+ + std::string(AsmStr) + "'");
}
// Okay, we finally have a value number. Ask the target to print this
@@ -1524,8 +1549,8 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
++OpNo; // Skip over the ID number.
if (Modifier[0]=='l') // labels are target independent
- printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
- false, false, false);
+ GetMBBSymbol(MI->getOperand(OpNo).getMBB()
+ ->getNumber())->print(O, MAI);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4) {
@@ -1538,25 +1563,28 @@ void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
}
}
if (Error) {
- cerr << "Invalid operand found in inline asm: '"
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Invalid operand found in inline asm: '"
<< AsmStr << "'\n";
- MI->dump();
- exit(1);
+ MI->print(Msg);
+ llvm_report_error(Msg.str());
}
}
break;
}
}
}
- O << "\n\t" << TAI->getInlineAsmEnd() << '\n';
+ O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
- if (VerboseAsm)
- O << '\t' << TAI->getCommentString() << " implicit-def: "
- << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
+ if (!VerboseAsm) return;
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " implicit-def: "
+ << TRI->getName(MI->getOperand(0).getReg());
}
/// printLabel - This method prints a local label used by debug and
@@ -1566,17 +1594,7 @@ void AsmPrinter::printLabel(const MachineInstr *MI) const {
}
void AsmPrinter::printLabel(unsigned Id) const {
- O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
-}
-
-/// printDeclare - This method prints a local variable declaration used by
-/// debug tables.
-/// FIXME: It doesn't really print anything rather it inserts a DebugVariable
-/// entry into dwarf table.
-void AsmPrinter::printDeclare(const MachineInstr *MI) const {
- unsigned FI = MI->getOperand(0).getIndex();
- GlobalValue *GV = MI->getOperand(1).getGlobal();
- DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
+ O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
@@ -1595,51 +1613,69 @@ bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
return true;
}
-/// printBasicBlockLabel - This method prints the label for the specified
-/// MachineBasicBlock
-void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
- bool printAlign,
- bool printColon,
- bool printComment) const {
- if (printAlign) {
- unsigned Align = MBB->getAlignment();
- if (Align)
- EmitAlignment(Log2_32(Align));
- }
+MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
+ SmallString<60> Name;
+ raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
+ << getFunctionNumber() << '_' << MBBID;
+
+ return OutContext.GetOrCreateSymbol(Name.str());
+}
+
- O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
- << MBB->getNumber();
- if (printColon)
+/// EmitBasicBlockStart - This method prints the label for the specified
+/// MachineBasicBlock, an alignment (if present) and a comment describing
+/// it if appropriate.
+void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
+ if (unsigned Align = MBB->getAlignment())
+ EmitAlignment(Log2_32(Align));
+
+ if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
+ if (VerboseAsm)
+ O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
+ } else {
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << ':';
- if (printComment && MBB->getBasicBlock())
- O << '\t' << TAI->getCommentString() << ' '
- << MBB->getBasicBlock()->getNameStart();
+ if (!VerboseAsm)
+ O << '\n';
+ }
+
+ if (VerboseAsm) {
+ if (const BasicBlock *BB = MBB->getBasicBlock())
+ if (BB->hasName()) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, BB, /*PrintType=*/false);
+ }
+
+ EmitComments(*MBB);
+ O << '\n';
+ }
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
- if (!TAI->getSetDirective())
+ if (!MAI->getSetDirective())
return;
- O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
+ O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
- printBasicBlockLabel(MBB, false, false, false);
- O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
- if (!TAI->getSetDirective())
+ if (!MAI->getSetDirective())
return;
- O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
+ O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
- printBasicBlockLabel(MBB, false, false, false);
- O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '_' << uid2 << '\n';
}
@@ -1648,73 +1684,51 @@ void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
+ case Type::FloatTyID: case Type::DoubleTyID:
+ case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
+ assert(0 && "Should have already output floating point constant.");
+ default:
+ assert(0 && "Can't handle printing this type of thing");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
- O << TAI->getData8bitsDirective(AddrSpace);
+ O << MAI->getData8bitsDirective(AddrSpace);
else if (BitWidth <= 16)
- O << TAI->getData16bitsDirective(AddrSpace);
+ O << MAI->getData16bitsDirective(AddrSpace);
else if (BitWidth <= 32)
- O << TAI->getData32bitsDirective(AddrSpace);
+ O << MAI->getData32bitsDirective(AddrSpace);
else if (BitWidth <= 64) {
- assert(TAI->getData64bitsDirective(AddrSpace) &&
+ assert(MAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit constant exprs!");
- O << TAI->getData64bitsDirective(AddrSpace);
+ O << MAI->getData64bitsDirective(AddrSpace);
} else {
- assert(0 && "Target cannot handle given data directive width!");
+ llvm_unreachable("Target cannot handle given data directive width!");
}
break;
}
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
- assert(TAI->getData64bitsDirective(AddrSpace) &&
+ assert(MAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit pointer exprs!");
- O << TAI->getData64bitsDirective(AddrSpace);
+ O << MAI->getData64bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 2) {
- O << TAI->getData16bitsDirective(AddrSpace);
+ O << MAI->getData16bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 1) {
- O << TAI->getData8bitsDirective(AddrSpace);
+ O << MAI->getData8bitsDirective(AddrSpace);
} else {
- O << TAI->getData32bitsDirective(AddrSpace);
+ O << MAI->getData32bitsDirective(AddrSpace);
}
break;
- case Type::FloatTyID: case Type::DoubleTyID:
- case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
- assert (0 && "Should have already output floating point constant.");
- default:
- assert (0 && "Can't handle printing this type of thing");
- break;
}
}
-void AsmPrinter::printSuffixedName(const char *Name, const char *Suffix,
- const char *Prefix) {
- if (Name[0]=='\"')
- O << '\"';
- O << TAI->getPrivateGlobalPrefix();
- if (Prefix) O << Prefix;
- if (Name[0]=='\"')
- O << '\"';
- if (Name[0]=='\"')
- O << Name[1];
- else
- O << Name;
- O << Suffix;
- if (Name[0]=='\"')
- O << '\"';
-}
-
-void AsmPrinter::printSuffixedName(const std::string &Name, const char* Suffix) {
- printSuffixedName(Name.c_str(), Suffix);
-}
-
void AsmPrinter::printVisibility(const std::string& Name,
unsigned Visibility) const {
if (Visibility == GlobalValue::HiddenVisibility) {
- if (const char *Directive = TAI->getHiddenDirective())
+ if (const char *Directive = MAI->getHiddenDirective())
O << Directive << Name << '\n';
} else if (Visibility == GlobalValue::ProtectedVisibility) {
- if (const char *Directive = TAI->getProtectedDirective())
+ if (const char *Directive = MAI->getProtectedDirective())
O << Directive << Name << '\n';
}
}
@@ -1746,6 +1760,104 @@ GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
return GMP;
}
- cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
- abort();
+ errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
+ llvm_unreachable(0);
+}
+
+/// EmitComments - Pretty-print comments for instructions
+void AsmPrinter::EmitComments(const MachineInstr &MI) const {
+ assert(VerboseAsm && !MI.getDebugLoc().isUnknown());
+
+ DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
+
+ // Print source line info.
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " SrcLine ";
+ if (DLT.Scope) {
+ DICompileUnit CU(DLT.Scope);
+ if (!CU.isNull())
+ O << CU.getFilename() << " ";
+ }
+ O << DLT.Line;
+ if (DLT.Col != 0)
+ O << ":" << DLT.Col;
+}
+
+/// PrintChildLoopComment - Print comments about child loops within
+/// the loop for this basic block, with nesting.
+///
+static void PrintChildLoopComment(formatted_raw_ostream &O,
+ const MachineLoop *loop,
+ const MCAsmInfo *MAI,
+ int FunctionNumber) {
+ // Add child loop information
+ for(MachineLoop::iterator cl = loop->begin(),
+ clend = loop->end();
+ cl != clend;
+ ++cl) {
+ MachineBasicBlock *Header = (*cl)->getHeader();
+ assert(Header && "No header for loop");
+
+ O << '\n';
+ O.PadToColumn(MAI->getCommentColumn());
+
+ O << MAI->getCommentString();
+ O.indent(((*cl)->getLoopDepth()-1)*2)
+ << " Child Loop BB" << FunctionNumber << "_"
+ << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
+
+ PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
+ }
+}
+
+/// EmitComments - Pretty-print comments for basic blocks
+void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
+{
+ if (VerboseAsm) {
+ // Add loop depth information
+ const MachineLoop *loop = LI->getLoopFor(&MBB);
+
+ if (loop) {
+ // Print a newline after bb# annotation.
+ O << "\n";
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
+ << '\n';
+
+ O.PadToColumn(MAI->getCommentColumn());
+
+ MachineBasicBlock *Header = loop->getHeader();
+ assert(Header && "No header for loop");
+
+ if (Header == &MBB) {
+ O << MAI->getCommentString() << " Loop Header";
+ PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
+ }
+ else {
+ O << MAI->getCommentString() << " Loop Header is BB"
+ << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
+ }
+
+ if (loop->empty()) {
+ O << '\n';
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << " Inner Loop";
+ }
+
+ // Add parent loop information
+ for (const MachineLoop *CurLoop = loop->getParentLoop();
+ CurLoop;
+ CurLoop = CurLoop->getParentLoop()) {
+ MachineBasicBlock *Header = CurLoop->getHeader();
+ assert(Header && "No header for loop");
+
+ O << '\n';
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString();
+ O.indent((CurLoop->getLoopDepth()-1)*2)
+ << " Inside Loop BB" << getFunctionNumber() << "_"
+ << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
+ }
+ }
+ }
}
diff --git a/lib/CodeGen/AsmPrinter/DIE.cpp b/lib/CodeGen/AsmPrinter/DIE.cpp
index 01c431c..ecf0007 100644
--- a/lib/CodeGen/AsmPrinter/DIE.cpp
+++ b/lib/CodeGen/AsmPrinter/DIE.cpp
@@ -14,9 +14,10 @@
#include "DIE.h"
#include "DwarfPrinter.h"
#include "llvm/CodeGen/AsmPrinter.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
-#include <ostream>
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -75,24 +76,24 @@ void DIEAbbrev::Emit(const AsmPrinter *Asm) const {
}
#ifndef NDEBUG
-void DIEAbbrev::print(std::ostream &O) {
+void DIEAbbrev::print(raw_ostream &O) {
O << "Abbreviation @"
- << std::hex << (intptr_t)this << std::dec
+ << format("0x%lx", (long)(intptr_t)this)
<< " "
<< dwarf::TagString(Tag)
<< " "
<< dwarf::ChildrenString(ChildrenFlag)
- << "\n";
+ << '\n';
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << " "
<< dwarf::AttributeString(Data[i].getAttribute())
<< " "
<< dwarf::FormEncodingString(Data[i].getForm())
- << "\n";
+ << '\n';
}
}
-void DIEAbbrev::dump() { print(cerr); }
+void DIEAbbrev::dump() { print(errs()); }
#endif
//===----------------------------------------------------------------------===//
@@ -125,7 +126,7 @@ void DIE::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIE::print(std::ostream &O, unsigned IncIndent) {
+void DIE::print(raw_ostream &O, unsigned IncIndent) {
IndentCount += IncIndent;
const std::string Indent(IndentCount, ' ');
bool isBlock = Abbrev.getTag() == 0;
@@ -133,7 +134,7 @@ void DIE::print(std::ostream &O, unsigned IncIndent) {
if (!isBlock) {
O << Indent
<< "Die: "
- << "0x" << std::hex << (intptr_t)this << std::dec
+ << format("0x%lx", (long)(intptr_t)this)
<< ", Offset: " << Offset
<< ", Size: " << Size
<< "\n";
@@ -175,14 +176,14 @@ void DIE::print(std::ostream &O, unsigned IncIndent) {
}
void DIE::dump() {
- print(cerr);
+ print(errs());
}
#endif
#ifndef NDEBUG
void DIEValue::dump() {
- print(cerr);
+ print(errs());
}
#endif
@@ -206,7 +207,7 @@ void DIEInteger::EmitValue(Dwarf *D, unsigned Form) const {
case dwarf::DW_FORM_data8: Asm->EmitInt64(Integer); break;
case dwarf::DW_FORM_udata: Asm->EmitULEB128Bytes(Integer); break;
case dwarf::DW_FORM_sdata: Asm->EmitSLEB128Bytes(Integer); break;
- default: assert(0 && "DIE Value form not supported yet"); break;
+ default: llvm_unreachable("DIE Value form not supported yet");
}
}
@@ -223,9 +224,9 @@ unsigned DIEInteger::SizeOf(const TargetData *TD, unsigned Form) const {
case dwarf::DW_FORM_data4: return sizeof(int32_t);
case dwarf::DW_FORM_ref8: // Fall thru
case dwarf::DW_FORM_data8: return sizeof(int64_t);
- case dwarf::DW_FORM_udata: return TargetAsmInfo::getULEB128Size(Integer);
- case dwarf::DW_FORM_sdata: return TargetAsmInfo::getSLEB128Size(Integer);
- default: assert(0 && "DIE Value form not supported yet"); break;
+ case dwarf::DW_FORM_udata: return MCAsmInfo::getULEB128Size(Integer);
+ case dwarf::DW_FORM_sdata: return MCAsmInfo::getSLEB128Size(Integer);
+ default: llvm_unreachable("DIE Value form not supported yet"); break;
}
return 0;
}
@@ -241,9 +242,9 @@ void DIEInteger::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEInteger::print(std::ostream &O) {
+void DIEInteger::print(raw_ostream &O) {
O << "Int: " << (int64_t)Integer
- << " 0x" << std::hex << Integer << std::dec;
+ << format(" 0x%llx", (unsigned long long)Integer);
}
#endif
@@ -268,7 +269,7 @@ void DIEString::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEString::print(std::ostream &O) {
+void DIEString::print(raw_ostream &O) {
O << "Str: \"" << Str << "\"";
}
#endif
@@ -302,7 +303,7 @@ void DIEDwarfLabel::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEDwarfLabel::print(std::ostream &O) {
+void DIEDwarfLabel::print(raw_ostream &O) {
O << "Lbl: ";
Label.print(O);
}
@@ -337,7 +338,7 @@ void DIEObjectLabel::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEObjectLabel::print(std::ostream &O) {
+void DIEObjectLabel::print(raw_ostream &O) {
O << "Obj: " << Label;
}
#endif
@@ -377,7 +378,7 @@ void DIESectionOffset::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIESectionOffset::print(std::ostream &O) {
+void DIESectionOffset::print(raw_ostream &O) {
O << "Off: ";
Label.print(O);
O << "-";
@@ -417,7 +418,7 @@ void DIEDelta::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEDelta::print(std::ostream &O) {
+void DIEDelta::print(raw_ostream &O) {
O << "Del: ";
LabelHi.print(O);
O << "-";
@@ -451,8 +452,8 @@ void DIEEntry::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEEntry::print(std::ostream &O) {
- O << "Die: 0x" << std::hex << (intptr_t)Entry << std::dec;
+void DIEEntry::print(raw_ostream &O) {
+ O << format("Die: 0x%lx", (long)(intptr_t)Entry);
}
#endif
@@ -481,7 +482,7 @@ void DIEBlock::EmitValue(Dwarf *D, unsigned Form) const {
case dwarf::DW_FORM_block2: Asm->EmitInt16(Size); break;
case dwarf::DW_FORM_block4: Asm->EmitInt32(Size); break;
case dwarf::DW_FORM_block: Asm->EmitULEB128Bytes(Size); break;
- default: assert(0 && "Improper form for block"); break;
+ default: llvm_unreachable("Improper form for block"); break;
}
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev.getData();
@@ -498,8 +499,8 @@ unsigned DIEBlock::SizeOf(const TargetData *TD, unsigned Form) const {
case dwarf::DW_FORM_block1: return Size + sizeof(int8_t);
case dwarf::DW_FORM_block2: return Size + sizeof(int16_t);
case dwarf::DW_FORM_block4: return Size + sizeof(int32_t);
- case dwarf::DW_FORM_block: return Size + TargetAsmInfo::getULEB128Size(Size);
- default: assert(0 && "Improper form for block"); break;
+ case dwarf::DW_FORM_block: return Size + MCAsmInfo::getULEB128Size(Size);
+ default: llvm_unreachable("Improper form for block"); break;
}
return 0;
}
@@ -510,7 +511,7 @@ void DIEBlock::Profile(FoldingSetNodeID &ID) {
}
#ifndef NDEBUG
-void DIEBlock::print(std::ostream &O) {
+void DIEBlock::print(raw_ostream &O) {
O << "Blk: ";
DIE::print(O, 5);
}
diff --git a/lib/CodeGen/AsmPrinter/DIE.h b/lib/CodeGen/AsmPrinter/DIE.h
index 5b60327..62b51ec 100644
--- a/lib/CodeGen/AsmPrinter/DIE.h
+++ b/lib/CodeGen/AsmPrinter/DIE.h
@@ -19,8 +19,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Dwarf.h"
-#include "llvm/Support/raw_ostream.h"
-#include <iosfwd>
+#include <vector>
namespace llvm {
class AsmPrinter;
@@ -103,10 +102,7 @@ namespace llvm {
void Emit(const AsmPrinter *Asm) const;
#ifndef NDEBUG
- void print(std::ostream *O) {
- if (O) print(*O);
- }
- void print(std::ostream &O);
+ void print(raw_ostream &O);
void dump();
#endif
};
@@ -198,10 +194,7 @@ namespace llvm {
void Profile(FoldingSetNodeID &ID) ;
#ifndef NDEBUG
- void print(std::ostream *O, unsigned IncIndent = 0) {
- if (O) print(*O, IncIndent);
- }
- void print(std::ostream &O, unsigned IncIndent = 0);
+ void print(raw_ostream &O, unsigned IncIndent = 0);
void dump();
#endif
};
@@ -248,10 +241,7 @@ namespace llvm {
static bool classof(const DIEValue *) { return true; }
#ifndef NDEBUG
- void print(std::ostream *O) {
- if (O) print(*O);
- }
- virtual void print(std::ostream &O) = 0;
+ virtual void print(raw_ostream &O) = 0;
void dump();
#endif
};
@@ -297,7 +287,7 @@ namespace llvm {
static bool classof(const DIEValue *I) { return I->getType() == isInteger; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -329,7 +319,7 @@ namespace llvm {
static bool classof(const DIEValue *S) { return S->getType() == isString; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -359,7 +349,7 @@ namespace llvm {
static bool classof(const DIEValue *L) { return L->getType() == isLabel; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -392,7 +382,7 @@ namespace llvm {
}
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -431,7 +421,7 @@ namespace llvm {
}
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -464,7 +454,7 @@ namespace llvm {
static bool classof(const DIEValue *D) { return D->getType() == isDelta; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -500,7 +490,7 @@ namespace llvm {
static bool classof(const DIEValue *E) { return E->getType() == isEntry; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
@@ -544,7 +534,7 @@ namespace llvm {
static bool classof(const DIEValue *E) { return E->getType() == isBlock; }
#ifndef NDEBUG
- virtual void print(std::ostream &O);
+ virtual void print(raw_ostream &O);
#endif
};
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
index 547140f..4394ec0 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.cpp
@@ -10,16 +10,24 @@
// This file contains support for writing dwarf debug info into asm files.
//
//===----------------------------------------------------------------------===//
-
+#define DEBUG_TYPE "dwarfdebug"
#include "DwarfDebug.h"
#include "llvm/Module.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/Support/Timer.h"
-#include "llvm/System/Path.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/System/Path.h"
using namespace llvm;
static TimerGroup &getDwarfTimerGroup() {
@@ -51,11 +59,13 @@ class VISIBILITY_HIDDEN CompileUnit {
/// GVToDieMap - Tracks the mapping of unit level debug informaton
/// variables to debug information entries.
- std::map<GlobalVariable *, DIE *> GVToDieMap;
+ /// FIXME : Rename GVToDieMap -> NodeToDieMap
+ std::map<MDNode *, DIE *> GVToDieMap;
/// GVToDIEEntryMap - Tracks the mapping of unit level debug informaton
/// descriptors to debug information entries using a DIEEntry proxy.
- std::map<GlobalVariable *, DIEEntry *> GVToDIEEntryMap;
+ /// FIXME : Rename
+ std::map<MDNode *, DIEEntry *> GVToDIEEntryMap;
/// Globals - A map of globally visible named entities for this unit.
///
@@ -84,12 +94,12 @@ public:
/// getDieMapSlotFor - Returns the debug information entry map slot for the
/// specified debug variable.
- DIE *&getDieMapSlotFor(GlobalVariable *GV) { return GVToDieMap[GV]; }
+ DIE *&getDieMapSlotFor(MDNode *N) { return GVToDieMap[N]; }
- /// getDIEEntrySlotFor - Returns the debug information entry proxy slot for the
- /// specified debug variable.
- DIEEntry *&getDIEEntrySlotFor(GlobalVariable *GV) {
- return GVToDIEEntryMap[GV];
+ /// getDIEEntrySlotFor - Returns the debug information entry proxy slot for
+ /// the specified debug variable.
+ DIEEntry *&getDIEEntrySlotFor(MDNode *N) {
+ return GVToDIEEntryMap[N];
}
/// AddDie - Adds or interns the DIE to the compile unit.
@@ -138,15 +148,18 @@ class VISIBILITY_HIDDEN DbgScope {
// Either subprogram or block.
unsigned StartLabelID; // Label ID of the beginning of scope.
unsigned EndLabelID; // Label ID of the end of scope.
+ const MachineInstr *LastInsn; // Last instruction of this scope.
+ const MachineInstr *FirstInsn; // First instruction of this scope.
SmallVector<DbgScope *, 4> Scopes; // Scopes defined in scope.
SmallVector<DbgVariable *, 8> Variables;// Variables declared in scope.
SmallVector<DbgConcreteScope *, 8> ConcreteInsts;// Concrete insts of funcs.
-
+
// Private state for dump()
mutable unsigned IndentLevel;
public:
DbgScope(DbgScope *P, DIDescriptor D)
- : Parent(P), Desc(D), StartLabelID(0), EndLabelID(0), IndentLevel(0) {}
+ : Parent(P), Desc(D), StartLabelID(0), EndLabelID(0), LastInsn(0),
+ FirstInsn(0), IndentLevel(0) {}
virtual ~DbgScope();
// Accessors.
@@ -159,7 +172,10 @@ public:
SmallVector<DbgConcreteScope*,8> &getConcreteInsts() { return ConcreteInsts; }
void setStartLabelID(unsigned S) { StartLabelID = S; }
void setEndLabelID(unsigned E) { EndLabelID = E; }
-
+ void setLastInsn(const MachineInstr *MI) { LastInsn = MI; }
+ const MachineInstr *getLastInsn() { return LastInsn; }
+ void setFirstInsn(const MachineInstr *MI) { FirstInsn = MI; }
+ const MachineInstr *getFirstInsn() { return FirstInsn; }
/// AddScope - Add a scope to the scope.
///
void AddScope(DbgScope *S) { Scopes.push_back(S); }
@@ -172,6 +188,21 @@ public:
///
void AddConcreteInst(DbgConcreteScope *C) { ConcreteInsts.push_back(C); }
+ void FixInstructionMarkers() {
+ assert (getFirstInsn() && "First instruction is missing!");
+ if (getLastInsn())
+ return;
+
+ // If a scope does not have an instruction to mark an end then use
+ // the end of last child scope.
+ SmallVector<DbgScope *, 4> &Scopes = getScopes();
+ assert (!Scopes.empty() && "Inner most scope does not have last insn!");
+ DbgScope *L = Scopes.back();
+ if (!L->getLastInsn())
+ L->FixInstructionMarkers();
+ setLastInsn(L->getLastInsn());
+ }
+
#ifndef NDEBUG
void dump() const;
#endif
@@ -179,10 +210,10 @@ public:
#ifndef NDEBUG
void DbgScope::dump() const {
- std::string Indent(IndentLevel, ' ');
-
- cerr << Indent; Desc.dump();
- cerr << " [" << StartLabelID << ", " << EndLabelID << "]\n";
+ raw_ostream &err = errs();
+ err.indent(IndentLevel);
+ Desc.dump();
+ err << " [" << StartLabelID << ", " << EndLabelID << "]\n";
IndentLevel += 2;
@@ -220,10 +251,10 @@ DbgScope::~DbgScope() {
} // end llvm namespace
-DwarfDebug::DwarfDebug(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
+DwarfDebug::DwarfDebug(raw_ostream &OS, AsmPrinter *A, const MCAsmInfo *T)
: Dwarf(OS, A, T, "dbg"), ModuleCU(0),
AbbreviationsSet(InitAbbreviationsSetSize), Abbreviations(),
- ValuesSet(InitValuesSetSize), Values(), StringPool(), SectionMap(),
+ ValuesSet(InitValuesSetSize), Values(), StringPool(),
SectionSourceLines(), didInitial(false), shouldEmit(false),
FunctionDbgScope(0), DebugTimer(0) {
if (TimePassesIsEnabled)
@@ -234,7 +265,7 @@ DwarfDebug::~DwarfDebug() {
for (unsigned j = 0, M = Values.size(); j < M; ++j)
delete Values[j];
- for (DenseMap<const GlobalVariable *, DbgScope *>::iterator
+ for (DenseMap<const MDNode *, DbgScope *>::iterator
I = AbstractInstanceRootMap.begin(),
E = AbstractInstanceRootMap.end(); I != E;++I)
delete I->second;
@@ -479,6 +510,27 @@ void DwarfDebug::AddSourceLine(DIE *Die, const DIGlobal *G) {
AddUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
AddUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
}
+
+/// AddSourceLine - Add location information to specified debug information
+/// entry.
+void DwarfDebug::AddSourceLine(DIE *Die, const DISubprogram *SP) {
+ // If there is no compile unit specified, don't add a line #.
+ if (SP->getCompileUnit().isNull())
+ return;
+ // If the line number is 0, don't add it.
+ if (SP->getLineNumber() == 0)
+ return;
+
+
+ unsigned Line = SP->getLineNumber();
+ unsigned FileID = FindCompileUnit(SP->getCompileUnit()).getID();
+ assert(FileID && "Invalid file id");
+ AddUInt(Die, dwarf::DW_AT_decl_file, 0, FileID);
+ AddUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
+}
+
+/// AddSourceLine - Add location information to specified debug information
+/// entry.
void DwarfDebug::AddSourceLine(DIE *Die, const DIType *Ty) {
// If there is no compile unit specified, don't add a line #.
DICompileUnit CU = Ty->getCompileUnit();
@@ -492,6 +544,270 @@ void DwarfDebug::AddSourceLine(DIE *Die, const DIType *Ty) {
AddUInt(Die, dwarf::DW_AT_decl_line, 0, Line);
}
+/* Byref variables, in Blocks, are declared by the programmer as
+ "SomeType VarName;", but the compiler creates a
+ __Block_byref_x_VarName struct, and gives the variable VarName
+ either the struct, or a pointer to the struct, as its type. This
+ is necessary for various behind-the-scenes things the compiler
+ needs to do with by-reference variables in blocks.
+
+ However, as far as the original *programmer* is concerned, the
+ variable should still have type 'SomeType', as originally declared.
+
+ The following function dives into the __Block_byref_x_VarName
+ struct to find the original type of the variable. This will be
+ passed back to the code generating the type for the Debug
+ Information Entry for the variable 'VarName'. 'VarName' will then
+ have the original type 'SomeType' in its debug information.
+
+ The original type 'SomeType' will be the type of the field named
+ 'VarName' inside the __Block_byref_x_VarName struct.
+
+ NOTE: In order for this to not completely fail on the debugger
+ side, the Debug Information Entry for the variable VarName needs to
+ have a DW_AT_location that tells the debugger how to unwind through
+ the pointers and __Block_byref_x_VarName struct to find the actual
+ value of the variable. The function AddBlockByrefType does this. */
+
+/// Find the type the programmer originally declared the variable to be
+/// and return that type.
+///
+DIType DwarfDebug::GetBlockByrefType(DIType Ty, std::string Name) {
+
+ DIType subType = Ty;
+ unsigned tag = Ty.getTag();
+
+ if (tag == dwarf::DW_TAG_pointer_type) {
+ DIDerivedType DTy = DIDerivedType(Ty.getNode());
+ subType = DTy.getTypeDerivedFrom();
+ }
+
+ DICompositeType blockStruct = DICompositeType(subType.getNode());
+
+ DIArray Elements = blockStruct.getTypeArray();
+
+ if (Elements.isNull())
+ return Ty;
+
+ for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
+ DIDescriptor Element = Elements.getElement(i);
+ DIDerivedType DT = DIDerivedType(Element.getNode());
+ if (strcmp(Name.c_str(), DT.getName()) == 0)
+ return (DT.getTypeDerivedFrom());
+ }
+
+ return Ty;
+}
+
+/// AddComplexAddress - Start with the address based on the location provided,
+/// and generate the DWARF information necessary to find the actual variable
+/// given the extra address information encoded in the DIVariable, starting from
+/// the starting location. Add the DWARF information to the die.
+///
+void DwarfDebug::AddComplexAddress(DbgVariable *&DV, DIE *Die,
+ unsigned Attribute,
+ const MachineLocation &Location) {
+ const DIVariable &VD = DV->getVariable();
+ DIType Ty = VD.getType();
+
+ // Decode the original location, and use that as the start of the byref
+ // variable's location.
+ unsigned Reg = RI->getDwarfRegNum(Location.getReg(), false);
+ DIEBlock *Block = new DIEBlock();
+
+ if (Location.isReg()) {
+ if (Reg < 32) {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_reg0 + Reg);
+ } else {
+ Reg = Reg - dwarf::DW_OP_reg0;
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + Reg);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, Reg);
+ }
+ } else {
+ if (Reg < 32)
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + Reg);
+ else {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_bregx);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, Reg);
+ }
+
+ AddUInt(Block, 0, dwarf::DW_FORM_sdata, Location.getOffset());
+ }
+
+ for (unsigned i = 0, N = VD.getNumAddrElements(); i < N; ++i) {
+ uint64_t Element = VD.getAddrElement(i);
+
+ if (Element == DIFactory::OpPlus) {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, VD.getAddrElement(++i));
+ } else if (Element == DIFactory::OpDeref) {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+ } else llvm_unreachable("unknown DIFactory Opcode");
+ }
+
+ // Now attach the location information to the DIE.
+ AddBlock(Die, Attribute, 0, Block);
+}
+
+/* Byref variables, in Blocks, are declared by the programmer as "SomeType
+ VarName;", but the compiler creates a __Block_byref_x_VarName struct, and
+ gives the variable VarName either the struct, or a pointer to the struct, as
+ its type. This is necessary for various behind-the-scenes things the
+ compiler needs to do with by-reference variables in Blocks.
+
+ However, as far as the original *programmer* is concerned, the variable
+ should still have type 'SomeType', as originally declared.
+
+ The function GetBlockByrefType dives into the __Block_byref_x_VarName
+ struct to find the original type of the variable, which is then assigned to
+ the variable's Debug Information Entry as its real type. So far, so good.
+ However now the debugger will expect the variable VarName to have the type
+ SomeType. So we need the location attribute for the variable to be an
+ expression that explains to the debugger how to navigate through the
+ pointers and struct to find the actual variable of type SomeType.
+
+ The following function does just that. We start by getting
+ the "normal" location for the variable. This will be the location
+ of either the struct __Block_byref_x_VarName or the pointer to the
+ struct __Block_byref_x_VarName.
+
+ The struct will look something like:
+
+ struct __Block_byref_x_VarName {
+ ... <various fields>
+ struct __Block_byref_x_VarName *forwarding;
+ ... <various other fields>
+ SomeType VarName;
+ ... <maybe more fields>
+ };
+
+ If we are given the struct directly (as our starting point) we
+ need to tell the debugger to:
+
+ 1). Add the offset of the forwarding field.
+
+ 2). Follow that pointer to get the the real __Block_byref_x_VarName
+ struct to use (the real one may have been copied onto the heap).
+
+ 3). Add the offset for the field VarName, to find the actual variable.
+
+ If we started with a pointer to the struct, then we need to
+ dereference that pointer first, before the other steps.
+ Translating this into DWARF ops, we will need to append the following
+ to the current location description for the variable:
+
+ DW_OP_deref -- optional, if we start with a pointer
+ DW_OP_plus_uconst <forward_fld_offset>
+ DW_OP_deref
+ DW_OP_plus_uconst <varName_fld_offset>
+
+ That is what this function does. */
+
+/// AddBlockByrefAddress - Start with the address based on the location
+/// provided, and generate the DWARF information necessary to find the
+/// actual Block variable (navigating the Block struct) based on the
+/// starting location. Add the DWARF information to the die. For
+/// more information, read large comment just above here.
+///
+void DwarfDebug::AddBlockByrefAddress(DbgVariable *&DV, DIE *Die,
+ unsigned Attribute,
+ const MachineLocation &Location) {
+ const DIVariable &VD = DV->getVariable();
+ DIType Ty = VD.getType();
+ DIType TmpTy = Ty;
+ unsigned Tag = Ty.getTag();
+ bool isPointer = false;
+
+ const char *varName = VD.getName();
+
+ if (Tag == dwarf::DW_TAG_pointer_type) {
+ DIDerivedType DTy = DIDerivedType(Ty.getNode());
+ TmpTy = DTy.getTypeDerivedFrom();
+ isPointer = true;
+ }
+
+ DICompositeType blockStruct = DICompositeType(TmpTy.getNode());
+
+ // Find the __forwarding field and the variable field in the __Block_byref
+ // struct.
+ DIArray Fields = blockStruct.getTypeArray();
+ DIDescriptor varField = DIDescriptor();
+ DIDescriptor forwardingField = DIDescriptor();
+
+
+ for (unsigned i = 0, N = Fields.getNumElements(); i < N; ++i) {
+ DIDescriptor Element = Fields.getElement(i);
+ DIDerivedType DT = DIDerivedType(Element.getNode());
+ const char *fieldName = DT.getName();
+ if (strcmp(fieldName, "__forwarding") == 0)
+ forwardingField = Element;
+ else if (strcmp(fieldName, varName) == 0)
+ varField = Element;
+ }
+
+ assert(!varField.isNull() && "Can't find byref variable in Block struct");
+ assert(!forwardingField.isNull()
+ && "Can't find forwarding field in Block struct");
+
+ // Get the offsets for the forwarding field and the variable field.
+ unsigned int forwardingFieldOffset =
+ DIDerivedType(forwardingField.getNode()).getOffsetInBits() >> 3;
+ unsigned int varFieldOffset =
+ DIDerivedType(varField.getNode()).getOffsetInBits() >> 3;
+
+ // Decode the original location, and use that as the start of the byref
+ // variable's location.
+ unsigned Reg = RI->getDwarfRegNum(Location.getReg(), false);
+ DIEBlock *Block = new DIEBlock();
+
+ if (Location.isReg()) {
+ if (Reg < 32)
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_reg0 + Reg);
+ else {
+ Reg = Reg - dwarf::DW_OP_reg0;
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + Reg);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, Reg);
+ }
+ } else {
+ if (Reg < 32)
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + Reg);
+ else {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_bregx);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, Reg);
+ }
+
+ AddUInt(Block, 0, dwarf::DW_FORM_sdata, Location.getOffset());
+ }
+
+ // If we started with a pointer to the __Block_byref... struct, then
+ // the first thing we need to do is dereference the pointer (DW_OP_deref).
+ if (isPointer)
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+
+ // Next add the offset for the '__forwarding' field:
+ // DW_OP_plus_uconst ForwardingFieldOffset. Note there's no point in
+ // adding the offset if it's 0.
+ if (forwardingFieldOffset > 0) {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, forwardingFieldOffset);
+ }
+
+ // Now dereference the __forwarding field to get to the real __Block_byref
+ // struct: DW_OP_deref.
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_deref);
+
+ // Now that we've got the real __Block_byref... struct, add the offset
+ // for the variable's field to get to the location of the actual variable:
+ // DW_OP_plus_uconst varFieldOffset. Again, don't add if it's 0.
+ if (varFieldOffset > 0) {
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_plus_uconst);
+ AddUInt(Block, 0, dwarf::DW_FORM_udata, varFieldOffset);
+ }
+
+ // Now attach the location information to the DIE.
+ AddBlock(Die, Attribute, 0, Block);
+}
+
/// AddAddress - Add an address attribute to a die based on the location
/// provided.
void DwarfDebug::AddAddress(DIE *Die, unsigned Attribute,
@@ -526,7 +842,7 @@ void DwarfDebug::AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) {
return;
// Check for pre-existence.
- DIEEntry *&Slot = DW_Unit->getDIEEntrySlotFor(Ty.getGV());
+ DIEEntry *&Slot = DW_Unit->getDIEEntrySlotFor(Ty.getNode());
// If it exists then use the existing value.
if (Slot) {
@@ -539,20 +855,20 @@ void DwarfDebug::AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) {
// Construct type.
DIE Buffer(dwarf::DW_TAG_base_type);
- if (Ty.isBasicType(Ty.getTag()))
- ConstructTypeDIE(DW_Unit, Buffer, DIBasicType(Ty.getGV()));
- else if (Ty.isDerivedType(Ty.getTag()))
- ConstructTypeDIE(DW_Unit, Buffer, DIDerivedType(Ty.getGV()));
+ if (Ty.isBasicType())
+ ConstructTypeDIE(DW_Unit, Buffer, DIBasicType(Ty.getNode()));
+ else if (Ty.isCompositeType())
+ ConstructTypeDIE(DW_Unit, Buffer, DICompositeType(Ty.getNode()));
else {
- assert(Ty.isCompositeType(Ty.getTag()) && "Unknown kind of DIType");
- ConstructTypeDIE(DW_Unit, Buffer, DICompositeType(Ty.getGV()));
+ assert(Ty.isDerivedType() && "Unknown kind of DIType");
+ ConstructTypeDIE(DW_Unit, Buffer, DIDerivedType(Ty.getNode()));
}
// Add debug information entry to entity and appropriate context.
DIE *Die = NULL;
DIDescriptor Context = Ty.getContext();
if (!Context.isNull())
- Die = DW_Unit->getDieMapSlotFor(Context.getGV());
+ Die = DW_Unit->getDieMapSlotFor(Context.getNode());
if (Die) {
DIE *Child = new DIE(Buffer);
@@ -571,14 +887,13 @@ void DwarfDebug::AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty) {
void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIBasicType BTy) {
// Get core information.
- std::string Name;
- BTy.getName(Name);
+ const char *Name = BTy.getName();
Buffer.setTag(dwarf::DW_TAG_base_type);
AddUInt(&Buffer, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1,
BTy.getEncoding());
// Add name if not anonymous or intermediate type.
- if (!Name.empty())
+ if (Name)
AddString(&Buffer, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
uint64_t Size = BTy.getSizeInBits() >> 3;
AddUInt(&Buffer, dwarf::DW_AT_byte_size, 0, Size);
@@ -588,8 +903,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DIDerivedType DTy) {
// Get core information.
- std::string Name;
- DTy.getName(Name);
+ const char *Name = DTy.getName();
uint64_t Size = DTy.getSizeInBits() >> 3;
unsigned Tag = DTy.getTag();
@@ -603,7 +917,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
AddType(DW_Unit, &Buffer, FromTy);
// Add name if not anonymous or intermediate type.
- if (!Name.empty())
+ if (Name)
AddString(&Buffer, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
// Add size if non-zero (derived types might be zero-sized.)
@@ -619,8 +933,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
DICompositeType CTy) {
// Get core information.
- std::string Name;
- CTy.getName(Name);
+ const char *Name = CTy.getName();
uint64_t Size = CTy.getSizeInBits() >> 3;
unsigned Tag = CTy.getTag();
@@ -637,9 +950,11 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
// Add enumerators to enumeration type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIE *ElemDie = NULL;
- DIEnumerator Enum(Elements.getElement(i).getGV());
- ElemDie = ConstructEnumTypeDIE(DW_Unit, &Enum);
- Buffer.AddChild(ElemDie);
+ DIEnumerator Enum(Elements.getElement(i).getNode());
+ if (!Enum.isNull()) {
+ ElemDie = ConstructEnumTypeDIE(DW_Unit, &Enum);
+ Buffer.AddChild(ElemDie);
+ }
}
}
break;
@@ -647,7 +962,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
// Add return type.
DIArray Elements = CTy.getTypeArray();
DIDescriptor RTy = Elements.getElement(0);
- AddType(DW_Unit, &Buffer, DIType(RTy.getGV()));
+ AddType(DW_Unit, &Buffer, DIType(RTy.getNode()));
// Add prototype flag.
AddUInt(&Buffer, dwarf::DW_AT_prototyped, dwarf::DW_FORM_flag, 1);
@@ -656,7 +971,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
for (unsigned i = 1, N = Elements.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter);
DIDescriptor Ty = Elements.getElement(i);
- AddType(DW_Unit, Arg, DIType(Ty.getGV()));
+ AddType(DW_Unit, Arg, DIType(Ty.getNode()));
Buffer.AddChild(Arg);
}
}
@@ -674,20 +989,19 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
// Add elements to structure type.
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
+ if (Element.isNull())
+ continue;
DIE *ElemDie = NULL;
if (Element.getTag() == dwarf::DW_TAG_subprogram)
ElemDie = CreateSubprogramDIE(DW_Unit,
- DISubprogram(Element.getGV()));
+ DISubprogram(Element.getNode()));
else
ElemDie = CreateMemberDIE(DW_Unit,
- DIDerivedType(Element.getGV()));
+ DIDerivedType(Element.getNode()));
Buffer.AddChild(ElemDie);
}
- // FIXME: We'd like an API to register additional attributes for the
- // frontend to use while synthesizing, and then we'd use that api in clang
- // instead of this.
- if (Name == "__block_literal_generic")
+ if (CTy.isAppleBlockExtension())
AddUInt(&Buffer, dwarf::DW_AT_APPLE_block, dwarf::DW_FORM_flag, 1);
unsigned RLang = CTy.getRunTimeLang();
@@ -701,7 +1015,7 @@ void DwarfDebug::ConstructTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
}
// Add name if not anonymous or intermediate type.
- if (!Name.empty())
+ if (Name)
AddString(&Buffer, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
if (Tag == dwarf::DW_TAG_enumeration_type ||
@@ -729,12 +1043,11 @@ void DwarfDebug::ConstructSubrangeDIE(DIE &Buffer, DISubrange SR, DIE *IndexTy){
int64_t H = SR.getHi();
DIE *DW_Subrange = new DIE(dwarf::DW_TAG_subrange_type);
- if (L != H) {
- AddDIEEntry(DW_Subrange, dwarf::DW_AT_type, dwarf::DW_FORM_ref4, IndexTy);
- if (L)
- AddSInt(DW_Subrange, dwarf::DW_AT_lower_bound, 0, L);
+ AddDIEEntry(DW_Subrange, dwarf::DW_AT_type, dwarf::DW_FORM_ref4, IndexTy);
+ if (L)
+ AddSInt(DW_Subrange, dwarf::DW_AT_lower_bound, 0, L);
+ if (H)
AddSInt(DW_Subrange, dwarf::DW_AT_upper_bound, 0, H);
- }
Buffer.AddChild(DW_Subrange);
}
@@ -761,15 +1074,14 @@ void DwarfDebug::ConstructArrayTypeDIE(CompileUnit *DW_Unit, DIE &Buffer,
for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
DIDescriptor Element = Elements.getElement(i);
if (Element.getTag() == dwarf::DW_TAG_subrange_type)
- ConstructSubrangeDIE(Buffer, DISubrange(Element.getGV()), IndexTy);
+ ConstructSubrangeDIE(Buffer, DISubrange(Element.getNode()), IndexTy);
}
}
/// ConstructEnumTypeDIE - Construct enum type DIE from DIEnumerator.
DIE *DwarfDebug::ConstructEnumTypeDIE(CompileUnit *DW_Unit, DIEnumerator *ETy) {
DIE *Enumerator = new DIE(dwarf::DW_TAG_enumerator);
- std::string Name;
- ETy->getName(Name);
+ const char *Name = ETy->getName();
AddString(Enumerator, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
int64_t Value = ETy->getEnumValue();
AddSInt(Enumerator, dwarf::DW_AT_const_value, dwarf::DW_FORM_sdata, Value);
@@ -780,27 +1092,39 @@ DIE *DwarfDebug::ConstructEnumTypeDIE(CompileUnit *DW_Unit, DIEnumerator *ETy) {
DIE *DwarfDebug::CreateGlobalVariableDIE(CompileUnit *DW_Unit,
const DIGlobalVariable &GV) {
DIE *GVDie = new DIE(dwarf::DW_TAG_variable);
- std::string Name;
- GV.getDisplayName(Name);
- AddString(GVDie, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
- std::string LinkageName;
- GV.getLinkageName(LinkageName);
- if (!LinkageName.empty())
+ AddString(GVDie, dwarf::DW_AT_name, dwarf::DW_FORM_string,
+ GV.getDisplayName());
+
+ const char *LinkageName = GV.getLinkageName();
+ if (LinkageName) {
+ // Skip special LLVM prefix that is used to inform the asm printer to not
+ // emit usual symbol prefix before the symbol name. This happens for
+ // Objective-C symbol names and symbol whose name is replaced using GCC's
+ // __asm__ attribute.
+ if (LinkageName[0] == 1)
+ LinkageName = &LinkageName[1];
AddString(GVDie, dwarf::DW_AT_MIPS_linkage_name, dwarf::DW_FORM_string,
LinkageName);
+ }
AddType(DW_Unit, GVDie, GV.getType());
if (!GV.isLocalToUnit())
AddUInt(GVDie, dwarf::DW_AT_external, dwarf::DW_FORM_flag, 1);
AddSourceLine(GVDie, &GV);
+
+ // Add address.
+ DIEBlock *Block = new DIEBlock();
+ AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_addr);
+ AddObjectLabel(Block, 0, dwarf::DW_FORM_udata,
+ Asm->Mang->getMangledName(GV.getGlobal()));
+ AddBlock(GVDie, dwarf::DW_AT_location, 0, Block);
+
return GVDie;
}
/// CreateMemberDIE - Create new member DIE.
DIE *DwarfDebug::CreateMemberDIE(CompileUnit *DW_Unit, const DIDerivedType &DT){
DIE *MemberDie = new DIE(DT.getTag());
- std::string Name;
- DT.getName(Name);
- if (!Name.empty())
+ if (const char *Name = DT.getName())
AddString(MemberDie, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
AddType(DW_Unit, MemberDie, DT.getTypeDerivedFrom());
@@ -849,17 +1173,19 @@ DIE *DwarfDebug::CreateSubprogramDIE(CompileUnit *DW_Unit,
bool IsInlined) {
DIE *SPDie = new DIE(dwarf::DW_TAG_subprogram);
- std::string Name;
- SP.getName(Name);
+ const char * Name = SP.getName();
AddString(SPDie, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
- std::string LinkageName;
- SP.getLinkageName(LinkageName);
-
- if (!LinkageName.empty())
+ const char *LinkageName = SP.getLinkageName();
+ if (LinkageName) {
+ // Skip special LLVM prefix that is used to inform the asm printer to not emit
+ // usual symbol prefix before the symbol name. This happens for Objective-C
+ // symbol names and symbol whose name is replaced using GCC's __asm__ attribute.
+ if (LinkageName[0] == 1)
+ LinkageName = &LinkageName[1];
AddString(SPDie, dwarf::DW_AT_MIPS_linkage_name, dwarf::DW_FORM_string,
LinkageName);
-
+ }
AddSourceLine(SPDie, &SP);
DICompositeType SPTy = SP.getType();
@@ -877,7 +1203,7 @@ DIE *DwarfDebug::CreateSubprogramDIE(CompileUnit *DW_Unit,
if (Args.isNull() || SPTag != dwarf::DW_TAG_subroutine_type)
AddType(DW_Unit, SPDie, SPTy);
else
- AddType(DW_Unit, SPDie, DIType(Args.getElement(0).getGV()));
+ AddType(DW_Unit, SPDie, DIType(Args.getElement(0).getNode()));
}
if (!SP.isDefinition()) {
@@ -888,7 +1214,7 @@ DIE *DwarfDebug::CreateSubprogramDIE(CompileUnit *DW_Unit,
if (SPTag == dwarf::DW_TAG_subroutine_type)
for (unsigned i = 1, N = Args.getNumElements(); i < N; ++i) {
DIE *Arg = new DIE(dwarf::DW_TAG_formal_parameter);
- AddType(DW_Unit, Arg, DIType(Args.getElement(i).getGV()));
+ AddType(DW_Unit, Arg, DIType(Args.getElement(i).getNode()));
AddUInt(Arg, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag, 1); // ??
SPDie->AddChild(Arg);
}
@@ -898,7 +1224,7 @@ DIE *DwarfDebug::CreateSubprogramDIE(CompileUnit *DW_Unit,
AddUInt(SPDie, dwarf::DW_AT_external, dwarf::DW_FORM_flag, 1);
// DW_TAG_inlined_subroutine may refer to this DIE.
- DIE *&Slot = DW_Unit->getDieMapSlotFor(SP.getGV());
+ DIE *&Slot = DW_Unit->getDieMapSlotFor(SP.getNode());
Slot = SPDie;
return SPDie;
}
@@ -907,7 +1233,7 @@ DIE *DwarfDebug::CreateSubprogramDIE(CompileUnit *DW_Unit,
///
CompileUnit &DwarfDebug::FindCompileUnit(DICompileUnit Unit) const {
DenseMap<Value *, CompileUnit *>::const_iterator I =
- CompileUnitMap.find(Unit.getGV());
+ CompileUnitMap.find(Unit.getNode());
assert(I != CompileUnitMap.end() && "Missing compile unit.");
return *I->second;
}
@@ -935,15 +1261,18 @@ DIE *DwarfDebug::CreateDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) {
// Define variable debug information entry.
DIE *VariableDie = new DIE(Tag);
- std::string Name;
- VD.getName(Name);
+ const char *Name = VD.getName();
AddString(VariableDie, dwarf::DW_AT_name, dwarf::DW_FORM_string, Name);
// Add source line info if available.
AddSourceLine(VariableDie, &VD);
// Add variable type.
- AddType(Unit, VariableDie, VD.getType());
+ // FIXME: isBlockByrefVariable should be reformulated in terms of complex addresses instead.
+ if (VD.isBlockByrefVariable())
+ AddType(Unit, VariableDie, GetBlockByrefType(VD.getType(), Name));
+ else
+ AddType(Unit, VariableDie, VD.getType());
// Add variable address.
if (!DV->isInlinedFnVar()) {
@@ -952,7 +1281,14 @@ DIE *DwarfDebug::CreateDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) {
MachineLocation Location;
Location.set(RI->getFrameRegister(*MF),
RI->getFrameIndexOffset(*MF, DV->getFrameIndex()));
- AddAddress(VariableDie, dwarf::DW_AT_location, Location);
+
+
+ if (VD.hasComplexAddress())
+ AddComplexAddress(DV, VariableDie, dwarf::DW_AT_location, Location);
+ else if (VD.isBlockByrefVariable())
+ AddBlockByrefAddress(DV, VariableDie, dwarf::DW_AT_location, Location);
+ else
+ AddAddress(VariableDie, dwarf::DW_AT_location, Location);
}
return VariableDie;
@@ -960,26 +1296,64 @@ DIE *DwarfDebug::CreateDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit) {
/// getOrCreateScope - Returns the scope associated with the given descriptor.
///
-DbgScope *DwarfDebug::getOrCreateScope(GlobalVariable *V) {
- DbgScope *&Slot = DbgScopeMap[V];
+DbgScope *DwarfDebug::getDbgScope(MDNode *N, const MachineInstr *MI) {
+ DbgScope *&Slot = DbgScopeMap[N];
+ if (Slot) return Slot;
+
+ DbgScope *Parent = NULL;
+
+ DIDescriptor Scope(N);
+ if (Scope.isCompileUnit()) {
+ return NULL;
+ } else if (Scope.isSubprogram()) {
+ DISubprogram SP(N);
+ DIDescriptor ParentDesc = SP.getContext();
+ if (!ParentDesc.isNull() && !ParentDesc.isCompileUnit())
+ Parent = getDbgScope(ParentDesc.getNode(), MI);
+ } else if (Scope.isLexicalBlock()) {
+ DILexicalBlock DB(N);
+ DIDescriptor ParentDesc = DB.getContext();
+ if (!ParentDesc.isNull())
+ Parent = getDbgScope(ParentDesc.getNode(), MI);
+ } else
+ assert (0 && "Unexpected scope info");
+
+ Slot = new DbgScope(Parent, DIDescriptor(N));
+ Slot->setFirstInsn(MI);
+
+ if (Parent)
+ Parent->AddScope(Slot);
+ else
+ // First function is top level function.
+ if (!FunctionDbgScope)
+ FunctionDbgScope = Slot;
+
+ return Slot;
+}
+
+
+/// getOrCreateScope - Returns the scope associated with the given descriptor.
+/// FIXME - Remove this method.
+DbgScope *DwarfDebug::getOrCreateScope(MDNode *N) {
+ DbgScope *&Slot = DbgScopeMap[N];
if (Slot) return Slot;
DbgScope *Parent = NULL;
- DIBlock Block(V);
+ DILexicalBlock Block(N);
// Don't create a new scope if we already created one for an inlined function.
- DenseMap<const GlobalVariable *, DbgScope *>::iterator
- II = AbstractInstanceRootMap.find(V);
+ DenseMap<const MDNode *, DbgScope *>::iterator
+ II = AbstractInstanceRootMap.find(N);
if (II != AbstractInstanceRootMap.end())
return LexicalScopeStack.back();
if (!Block.isNull()) {
DIDescriptor ParentDesc = Block.getContext();
Parent =
- ParentDesc.isNull() ? NULL : getOrCreateScope(ParentDesc.getGV());
+ ParentDesc.isNull() ? NULL : getOrCreateScope(ParentDesc.getNode());
}
- Slot = new DbgScope(Parent, DIDescriptor(V));
+ Slot = new DbgScope(Parent, DIDescriptor(N));
if (Parent)
Parent->AddScope(Slot);
@@ -1088,10 +1462,14 @@ void DwarfDebug::ConstructFunctionDbgScope(DbgScope *RootScope,
return;
// Get the subprogram debug information entry.
- DISubprogram SPD(Desc.getGV());
+ DISubprogram SPD(Desc.getNode());
// Get the subprogram die.
- DIE *SPDie = ModuleCU->getDieMapSlotFor(SPD.getGV());
+ DIE *SPDie = ModuleCU->getDieMapSlotFor(SPD.getNode());
+ if (!SPDie) {
+ ConstructSubprogram(SPD.getNode());
+ SPDie = ModuleCU->getDieMapSlotFor(SPD.getNode());
+ }
assert(SPDie && "Missing subprogram descriptor");
if (!AbstractScope) {
@@ -1105,23 +1483,33 @@ void DwarfDebug::ConstructFunctionDbgScope(DbgScope *RootScope,
}
ConstructDbgScope(RootScope, 0, 0, SPDie, ModuleCU);
+ // If there are global variables at this scope then add their dies.
+ for (SmallVector<WeakVH, 4>::iterator SGI = ScopedGVs.begin(),
+ SGE = ScopedGVs.end(); SGI != SGE; ++SGI) {
+ MDNode *N = dyn_cast_or_null<MDNode>(*SGI);
+ if (!N) continue;
+ DIGlobalVariable GV(N);
+ if (GV.getContext().getNode() == RootScope->getDesc().getNode()) {
+ DIE *ScopedGVDie = CreateGlobalVariableDIE(ModuleCU, GV);
+ SPDie->AddChild(ScopedGVDie);
+ }
+ }
}
/// ConstructDefaultDbgScope - Construct a default scope for the subprogram.
///
void DwarfDebug::ConstructDefaultDbgScope(MachineFunction *MF) {
- const char *FnName = MF->getFunction()->getNameStart();
StringMap<DIE*> &Globals = ModuleCU->getGlobals();
- StringMap<DIE*>::iterator GI = Globals.find(FnName);
+ StringMap<DIE*>::iterator GI = Globals.find(MF->getFunction()->getName());
if (GI != Globals.end()) {
DIE *SPDie = GI->second;
-
+
// Add the function bounds.
AddLabel(SPDie, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, dwarf::DW_AT_high_pc, dwarf::DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
-
+
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, dwarf::DW_AT_frame_base, Location);
}
@@ -1131,8 +1519,8 @@ void DwarfDebug::ConstructDefaultDbgScope(MachineFunction *MF) {
/// source file names. If none currently exists, create a new id and insert it
/// in the SourceIds map. This can update DirectoryNames and SourceFileNames
/// maps as well.
-unsigned DwarfDebug::GetOrCreateSourceID(const std::string &DirName,
- const std::string &FileName) {
+unsigned DwarfDebug::GetOrCreateSourceID(const char *DirName,
+ const char *FileName) {
unsigned DId;
StringMap<unsigned>::iterator DI = DirectoryIdMap.find(DirName);
if (DI != DirectoryIdMap.end()) {
@@ -1165,30 +1553,28 @@ unsigned DwarfDebug::GetOrCreateSourceID(const std::string &DirName,
return SrcId;
}
-void DwarfDebug::ConstructCompileUnit(GlobalVariable *GV) {
- DICompileUnit DIUnit(GV);
- std::string Dir, FN, Prod;
- unsigned ID = GetOrCreateSourceID(DIUnit.getDirectory(Dir),
- DIUnit.getFilename(FN));
+void DwarfDebug::ConstructCompileUnit(MDNode *N) {
+ DICompileUnit DIUnit(N);
+ const char *FN = DIUnit.getFilename();
+ const char *Dir = DIUnit.getDirectory();
+ unsigned ID = GetOrCreateSourceID(Dir, FN);
DIE *Die = new DIE(dwarf::DW_TAG_compile_unit);
AddSectionOffset(Die, dwarf::DW_AT_stmt_list, dwarf::DW_FORM_data4,
DWLabel("section_line", 0), DWLabel("section_line", 0),
false);
AddString(Die, dwarf::DW_AT_producer, dwarf::DW_FORM_string,
- DIUnit.getProducer(Prod));
+ DIUnit.getProducer());
AddUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data1,
DIUnit.getLanguage());
AddString(Die, dwarf::DW_AT_name, dwarf::DW_FORM_string, FN);
- if (!Dir.empty())
+ if (Dir)
AddString(Die, dwarf::DW_AT_comp_dir, dwarf::DW_FORM_string, Dir);
if (DIUnit.isOptimized())
AddUInt(Die, dwarf::DW_AT_APPLE_optimized, dwarf::DW_FORM_flag, 1);
- std::string Flags;
- DIUnit.getFlags(Flags);
- if (!Flags.empty())
+ if (const char *Flags = DIUnit.getFlags())
AddString(Die, dwarf::DW_AT_APPLE_flags, dwarf::DW_FORM_string, Flags);
unsigned RVer = DIUnit.getRunTimeVersion();
@@ -1203,28 +1589,24 @@ void DwarfDebug::ConstructCompileUnit(GlobalVariable *GV) {
ModuleCU = Unit;
}
- CompileUnitMap[DIUnit.getGV()] = Unit;
+ CompileUnitMap[DIUnit.getNode()] = Unit;
CompileUnits.push_back(Unit);
}
-void DwarfDebug::ConstructGlobalVariableDIE(GlobalVariable *GV) {
- DIGlobalVariable DI_GV(GV);
+void DwarfDebug::ConstructGlobalVariableDIE(MDNode *N) {
+ DIGlobalVariable DI_GV(N);
+
+ // If debug information is malformed then ignore it.
+ if (DI_GV.Verify() == false)
+ return;
// Check for pre-existence.
- DIE *&Slot = ModuleCU->getDieMapSlotFor(DI_GV.getGV());
+ DIE *&Slot = ModuleCU->getDieMapSlotFor(DI_GV.getNode());
if (Slot)
return;
DIE *VariableDie = CreateGlobalVariableDIE(ModuleCU, DI_GV);
- // Add address.
- DIEBlock *Block = new DIEBlock();
- AddUInt(Block, 0, dwarf::DW_FORM_data1, dwarf::DW_OP_addr);
- std::string GLN;
- AddObjectLabel(Block, 0, dwarf::DW_FORM_udata,
- Asm->getGlobalLinkName(DI_GV.getGlobal(), GLN));
- AddBlock(VariableDie, dwarf::DW_AT_location, 0, Block);
-
// Add to map.
Slot = VariableDie;
@@ -1232,16 +1614,15 @@ void DwarfDebug::ConstructGlobalVariableDIE(GlobalVariable *GV) {
ModuleCU->getDie()->AddChild(VariableDie);
// Expose as global. FIXME - need to check external flag.
- std::string Name;
- ModuleCU->AddGlobal(DI_GV.getName(Name), VariableDie);
+ ModuleCU->AddGlobal(DI_GV.getName(), VariableDie);
return;
}
-void DwarfDebug::ConstructSubprogram(GlobalVariable *GV) {
- DISubprogram SP(GV);
+void DwarfDebug::ConstructSubprogram(MDNode *N) {
+ DISubprogram SP(N);
// Check for pre-existence.
- DIE *&Slot = ModuleCU->getDieMapSlotFor(GV);
+ DIE *&Slot = ModuleCU->getDieMapSlotFor(N);
if (Slot)
return;
@@ -1259,28 +1640,25 @@ void DwarfDebug::ConstructSubprogram(GlobalVariable *GV) {
ModuleCU->getDie()->AddChild(SubprogramDie);
// Expose as global.
- std::string Name;
- ModuleCU->AddGlobal(SP.getName(Name), SubprogramDie);
+ ModuleCU->AddGlobal(SP.getName(), SubprogramDie);
return;
}
- /// BeginModule - Emit all Dwarf sections that should come prior to the
- /// content. Create global DIEs and emit initial debug info sections.
- /// This is inovked by the target AsmPrinter.
+/// BeginModule - Emit all Dwarf sections that should come prior to the
+/// content. Create global DIEs and emit initial debug info sections.
+/// This is inovked by the target AsmPrinter.
void DwarfDebug::BeginModule(Module *M, MachineModuleInfo *mmi) {
this->M = M;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- SmallVector<GlobalVariable *, 2> CUs;
- SmallVector<GlobalVariable *, 4> GVs;
- SmallVector<GlobalVariable *, 4> SPs;
- CollectDebugInfoAnchors(*M, CUs, GVs, SPs);
+ DebugInfoFinder DbgFinder;
+ DbgFinder.processModule(*M);
// Create all the compile unit DIEs.
- for (SmallVector<GlobalVariable *, 2>::iterator I = CUs.begin(),
- E = CUs.end(); I != E; ++I)
+ for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
+ E = DbgFinder.compile_unit_end(); I != E; ++I)
ConstructCompileUnit(*I);
if (CompileUnits.empty()) {
@@ -1295,23 +1673,19 @@ void DwarfDebug::BeginModule(Module *M, MachineModuleInfo *mmi) {
if (!ModuleCU)
ModuleCU = CompileUnits[0];
- // If there is not any debug info available for any global variables and any
- // subprograms then there is not any debug info to emit.
- if (GVs.empty() && SPs.empty()) {
- if (TimePassesIsEnabled)
- DebugTimer->stopTimer();
-
- return;
- }
-
// Create DIEs for each of the externally visible global variables.
- for (SmallVector<GlobalVariable *, 4>::iterator I = GVs.begin(),
- E = GVs.end(); I != E; ++I)
- ConstructGlobalVariableDIE(*I);
+ for (DebugInfoFinder::iterator I = DbgFinder.global_variable_begin(),
+ E = DbgFinder.global_variable_end(); I != E; ++I) {
+ DIGlobalVariable GV(*I);
+ if (GV.getContext().getNode() != GV.getCompileUnit().getNode())
+ ScopedGVs.push_back(*I);
+ else
+ ConstructGlobalVariableDIE(*I);
+ }
// Create DIEs for each of the externally visible subprograms.
- for (SmallVector<GlobalVariable *, 4>::iterator I = SPs.begin(),
- E = SPs.end(); I != E; ++I)
+ for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
+ E = DbgFinder.subprogram_end(); I != E; ++I)
ConstructSubprogram(*I);
MMI = mmi;
@@ -1319,11 +1693,11 @@ void DwarfDebug::BeginModule(Module *M, MachineModuleInfo *mmi) {
MMI->setDebugInfoAvailability(true);
// Prime section data.
- SectionMap.insert(TAI->getTextSection());
+ SectionMap.insert(Asm->getObjFileLowering().getTextSection());
// Print out .file directives to specify files for .loc directives. These are
// printed out early so that they precede any .loc directives.
- if (TAI->hasDotLocAndDotFile()) {
+ if (MAI->hasDotLocAndDotFile()) {
for (unsigned i = 1, e = getNumSourceIds()+1; i != e; ++i) {
// Remember source id starts at 1.
std::pair<unsigned, unsigned> Id = getSourceDirectoryAndFileIds(i);
@@ -1332,7 +1706,7 @@ void DwarfDebug::BeginModule(Module *M, MachineModuleInfo *mmi) {
FullPath.appendComponent(getSourceFileName(Id.second));
assert(AppendOk && "Could not append filename to directory!");
AppendOk = false;
- Asm->EmitFile(i, FullPath.toString());
+ Asm->EmitFile(i, FullPath.str());
Asm->EOL();
}
}
@@ -1347,21 +1721,21 @@ void DwarfDebug::BeginModule(Module *M, MachineModuleInfo *mmi) {
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void DwarfDebug::EndModule() {
- if (!ShouldEmitDwarfDebug())
+ if (!ModuleCU)
return;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
// Standard sections final addresses.
- Asm->SwitchToSection(TAI->getTextSection());
+ Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getTextSection());
EmitLabel("text_end", 0);
- Asm->SwitchToSection(TAI->getDataSection());
+ Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getDataSection());
EmitLabel("data_end", 0);
// End text sections.
for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) {
- Asm->SwitchToSection(SectionMap[i]);
+ Asm->OutStreamer.SwitchSection(SectionMap[i]);
EmitLabel("section_end", i);
}
@@ -1410,6 +1784,135 @@ void DwarfDebug::EndModule() {
DebugTimer->stopTimer();
}
+/// CollectVariableInfo - Populate DbgScope entries with variables' info.
+void DwarfDebug::CollectVariableInfo() {
+ if (!MMI) return;
+ MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
+ for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
+ VE = VMap.end(); VI != VE; ++VI) {
+ MetadataBase *MB = VI->first;
+ MDNode *Var = dyn_cast_or_null<MDNode>(MB);
+ DIVariable DV (Var);
+ if (DV.isNull()) continue;
+ unsigned VSlot = VI->second;
+ DbgScope *Scope = getDbgScope(DV.getContext().getNode(), NULL);
+ Scope->AddVariable(new DbgVariable(DV, VSlot, false));
+ }
+}
+
+/// SetDbgScopeBeginLabels - Update DbgScope begin labels for the scopes that
+/// start with this machine instruction.
+void DwarfDebug::SetDbgScopeBeginLabels(const MachineInstr *MI, unsigned Label) {
+ InsnToDbgScopeMapTy::iterator I = DbgScopeBeginMap.find(MI);
+ if (I == DbgScopeBeginMap.end())
+ return;
+ SmallVector<DbgScope *, 2> &SD = I->second;
+ for (SmallVector<DbgScope *, 2>::iterator SDI = SD.begin(), SDE = SD.end();
+ SDI != SDE; ++SDI)
+ (*SDI)->setStartLabelID(Label);
+}
+
+/// SetDbgScopeEndLabels - Update DbgScope end labels for the scopes that
+/// end with this machine instruction.
+void DwarfDebug::SetDbgScopeEndLabels(const MachineInstr *MI, unsigned Label) {
+ InsnToDbgScopeMapTy::iterator I = DbgScopeEndMap.find(MI);
+ if (I == DbgScopeEndMap.end())
+ return;
+ SmallVector<DbgScope *, 2> &SD = I->second;
+ for (SmallVector<DbgScope *, 2>::iterator SDI = SD.begin(), SDE = SD.end();
+ SDI != SDE; ++SDI)
+ (*SDI)->setEndLabelID(Label);
+}
+
+/// ExtractScopeInformation - Scan machine instructions in this function
+/// and collect DbgScopes. Return true, if atleast one scope was found.
+bool DwarfDebug::ExtractScopeInformation(MachineFunction *MF) {
+ // If scope information was extracted using .dbg intrinsics then there is not
+ // any need to extract these information by scanning each instruction.
+ if (!DbgScopeMap.empty())
+ return false;
+
+ // Scan each instruction and create scopes.
+ for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
+ I != E; ++I) {
+ for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
+ II != IE; ++II) {
+ const MachineInstr *MInsn = II;
+ DebugLoc DL = MInsn->getDebugLoc();
+ if (DL.isUnknown())
+ continue;
+ DebugLocTuple DLT = MF->getDebugLocTuple(DL);
+ if (!DLT.Scope)
+ continue;
+ // There is no need to create another DIE for compile unit. For all
+ // other scopes, create one DbgScope now. This will be translated
+ // into a scope DIE at the end.
+ DIDescriptor D(DLT.Scope);
+ if (!D.isCompileUnit()) {
+ DbgScope *Scope = getDbgScope(DLT.Scope, MInsn);
+ Scope->setLastInsn(MInsn);
+ }
+ }
+ }
+
+ // If a scope's last instruction is not set then use its child scope's
+ // last instruction as this scope's last instrunction.
+ for (DenseMap<MDNode *, DbgScope *>::iterator DI = DbgScopeMap.begin(),
+ DE = DbgScopeMap.end(); DI != DE; ++DI) {
+ assert (DI->second->getFirstInsn() && "Invalid first instruction!");
+ DI->second->FixInstructionMarkers();
+ assert (DI->second->getLastInsn() && "Invalid last instruction!");
+ }
+
+ // Each scope has first instruction and last instruction to mark beginning
+ // and end of a scope respectively. Create an inverse map that list scopes
+ // starts (and ends) with an instruction. One instruction may start (or end)
+ // multiple scopes.
+ for (DenseMap<MDNode *, DbgScope *>::iterator DI = DbgScopeMap.begin(),
+ DE = DbgScopeMap.end(); DI != DE; ++DI) {
+ DbgScope *S = DI->second;
+ assert (S && "DbgScope is missing!");
+ const MachineInstr *MI = S->getFirstInsn();
+ assert (MI && "DbgScope does not have first instruction!");
+
+ InsnToDbgScopeMapTy::iterator IDI = DbgScopeBeginMap.find(MI);
+ if (IDI != DbgScopeBeginMap.end())
+ IDI->second.push_back(S);
+ else
+ DbgScopeBeginMap.insert(std::make_pair(MI,
+ SmallVector<DbgScope *, 2>(2, S)));
+
+ MI = S->getLastInsn();
+ assert (MI && "DbgScope does not have last instruction!");
+ IDI = DbgScopeEndMap.find(MI);
+ if (IDI != DbgScopeEndMap.end())
+ IDI->second.push_back(S);
+ else
+ DbgScopeEndMap.insert(std::make_pair(MI,
+ SmallVector<DbgScope *, 2>(2, S)));
+ }
+
+ return !DbgScopeMap.empty();
+}
+
+static DISubprogram getDISubprogram(MDNode *N) {
+
+ DIDescriptor D(N);
+ if (D.isNull())
+ return DISubprogram();
+
+ if (D.isCompileUnit())
+ return DISubprogram();
+
+ if (D.isSubprogram())
+ return DISubprogram(N);
+
+ if (D.isLexicalBlock())
+ return getDISubprogram(DILexicalBlock(N).getContext().getNode());
+
+ llvm_unreachable("Unexpected Descriptor!");
+}
+
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void DwarfDebug::BeginFunction(MachineFunction *MF) {
@@ -1420,6 +1923,12 @@ void DwarfDebug::BeginFunction(MachineFunction *MF) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ if (!ExtractScopeInformation(MF))
+ return;
+ CollectVariableInfo();
+#endif
+
// Begin accumulating function debug information.
MMI->BeginFunction(MF);
@@ -1428,14 +1937,28 @@ void DwarfDebug::BeginFunction(MachineFunction *MF) {
// Emit label for the implicitly defined dbg.stoppoint at the start of the
// function.
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
DebugLoc FDL = MF->getDefaultDebugLoc();
if (!FDL.isUnknown()) {
DebugLocTuple DLT = MF->getDebugLocTuple(FDL);
- unsigned LabelID = RecordSourceLine(DLT.Line, DLT.Col,
- DICompileUnit(DLT.CompileUnit));
+ unsigned LabelID = 0;
+ DISubprogram SP = getDISubprogram(DLT.Scope);
+ if (!SP.isNull())
+ LabelID = RecordSourceLine(SP.getLineNumber(), 0, DLT.Scope);
+ else
+ LabelID = RecordSourceLine(DLT.Line, DLT.Col, DLT.Scope);
Asm->printLabel(LabelID);
+ O << '\n';
}
-
+#else
+ DebugLoc FDL = MF->getDefaultDebugLoc();
+ if (!FDL.isUnknown()) {
+ DebugLocTuple DLT = MF->getDebugLocTuple(FDL);
+ unsigned LabelID = RecordSourceLine(DLT.Line, DLT.Col, DLT.Scope);
+ Asm->printLabel(LabelID);
+ O << '\n';
+ }
+#endif
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
}
@@ -1448,13 +1971,17 @@ void DwarfDebug::EndFunction(MachineFunction *MF) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ if (DbgScopeMap.empty())
+ return;
+#endif
// Define end label for subprogram.
EmitLabel("func_end", SubprogramCount);
// Get function line info.
if (!Lines.empty()) {
// Get section line info.
- unsigned ID = SectionMap.insert(Asm->CurrentSection_);
+ unsigned ID = SectionMap.insert(Asm->getCurrentSection());
if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
std::vector<SrcLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
// Append the function info to section info.
@@ -1489,9 +2016,10 @@ void DwarfDebug::EndFunction(MachineFunction *MF) {
if (FunctionDbgScope) {
delete FunctionDbgScope;
DbgScopeMap.clear();
+ DbgScopeBeginMap.clear();
+ DbgScopeEndMap.clear();
DbgAbstractScopeMap.clear();
DbgConcreteScopeMap.clear();
- InlinedVariableScopes.clear();
FunctionDbgScope = NULL;
LexicalScopeStack.clear();
AbstractInstanceRootList.clear();
@@ -1507,32 +2035,34 @@ void DwarfDebug::EndFunction(MachineFunction *MF) {
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
-unsigned DwarfDebug::RecordSourceLine(Value *V, unsigned Line, unsigned Col) {
- if (TimePassesIsEnabled)
- DebugTimer->startTimer();
-
- CompileUnit *Unit = CompileUnitMap[V];
- assert(Unit && "Unable to find CompileUnit");
- unsigned ID = MMI->NextLabelID();
- Lines.push_back(SrcLineInfo(Line, Col, Unit->getID(), ID));
+unsigned DwarfDebug::RecordSourceLine(unsigned Line, unsigned Col,
+ MDNode *S) {
+ if (!MMI)
+ return 0;
if (TimePassesIsEnabled)
- DebugTimer->stopTimer();
-
- return ID;
-}
-
-/// RecordSourceLine - Records location information and associates it with a
-/// label. Returns a unique label ID used to generate a label and provide
-/// correspondence to the source line list.
-unsigned DwarfDebug::RecordSourceLine(unsigned Line, unsigned Col,
- DICompileUnit CU) {
- if (TimePassesIsEnabled)
DebugTimer->startTimer();
- std::string Dir, Fn;
- unsigned Src = GetOrCreateSourceID(CU.getDirectory(Dir),
- CU.getFilename(Fn));
+ const char *Dir = NULL;
+ const char *Fn = NULL;
+
+ DIDescriptor Scope(S);
+ if (Scope.isCompileUnit()) {
+ DICompileUnit CU(S);
+ Dir = CU.getDirectory();
+ Fn = CU.getFilename();
+ } else if (Scope.isSubprogram()) {
+ DISubprogram SP(S);
+ Dir = SP.getDirectory();
+ Fn = SP.getFilename();
+ } else if (Scope.isLexicalBlock()) {
+ DILexicalBlock DB(S);
+ Dir = DB.getDirectory();
+ Fn = DB.getFilename();
+ } else
+ assert (0 && "Unexpected scope info");
+
+ unsigned Src = GetOrCreateSourceID(Dir, Fn);
unsigned ID = MMI->NextLabelID();
Lines.push_back(SrcLineInfo(Line, Col, Src, ID));
@@ -1552,7 +2082,7 @@ unsigned DwarfDebug::getOrCreateSourceID(const std::string &DirName,
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- unsigned SrcId = GetOrCreateSourceID(DirName, FileName);
+ unsigned SrcId = GetOrCreateSourceID(DirName.c_str(), FileName.c_str());
if (TimePassesIsEnabled)
DebugTimer->stopTimer();
@@ -1561,11 +2091,11 @@ unsigned DwarfDebug::getOrCreateSourceID(const std::string &DirName,
}
/// RecordRegionStart - Indicate the start of a region.
-unsigned DwarfDebug::RecordRegionStart(GlobalVariable *V) {
+unsigned DwarfDebug::RecordRegionStart(MDNode *N) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- DbgScope *Scope = getOrCreateScope(V);
+ DbgScope *Scope = getOrCreateScope(N);
unsigned ID = MMI->NextLabelID();
if (!Scope->getStartLabelID()) Scope->setStartLabelID(ID);
LexicalScopeStack.push_back(Scope);
@@ -1577,11 +2107,11 @@ unsigned DwarfDebug::RecordRegionStart(GlobalVariable *V) {
}
/// RecordRegionEnd - Indicate the end of a region.
-unsigned DwarfDebug::RecordRegionEnd(GlobalVariable *V) {
+unsigned DwarfDebug::RecordRegionEnd(MDNode *N) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- DbgScope *Scope = getOrCreateScope(V);
+ DbgScope *Scope = getOrCreateScope(N);
unsigned ID = MMI->NextLabelID();
Scope->setEndLabelID(ID);
// FIXME : region.end() may not be in the last basic block.
@@ -1598,62 +2128,36 @@ unsigned DwarfDebug::RecordRegionEnd(GlobalVariable *V) {
}
/// RecordVariable - Indicate the declaration of a local variable.
-void DwarfDebug::RecordVariable(GlobalVariable *GV, unsigned FrameIndex,
- const MachineInstr *MI) {
+void DwarfDebug::RecordVariable(MDNode *N, unsigned FrameIndex) {
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- DIDescriptor Desc(GV);
+ DIDescriptor Desc(N);
DbgScope *Scope = NULL;
bool InlinedFnVar = false;
- if (Desc.getTag() == dwarf::DW_TAG_variable) {
- // GV is a global variable.
- DIGlobalVariable DG(GV);
- Scope = getOrCreateScope(DG.getContext().getGV());
- } else {
- DenseMap<const MachineInstr *, DbgScope *>::iterator
- SI = InlinedVariableScopes.find(MI);
-
- if (SI != InlinedVariableScopes.end()) {
- // or GV is an inlined local variable.
- Scope = SI->second;
- } else {
- DIVariable DV(GV);
- GlobalVariable *V = DV.getContext().getGV();
-
- // FIXME: The code that checks for the inlined local variable is a hack!
- DenseMap<const GlobalVariable *, DbgScope *>::iterator
- AI = AbstractInstanceRootMap.find(V);
-
- if (AI != AbstractInstanceRootMap.end()) {
- // This method is called each time a DECLARE node is encountered. For an
- // inlined function, this could be many, many times. We don't want to
- // re-add variables to that DIE for each time. We just want to add them
- // once. Check to make sure that we haven't added them already.
- DenseMap<const GlobalVariable *,
- SmallSet<const GlobalVariable *, 32> >::iterator
- IP = InlinedParamMap.find(V);
-
- if (IP != InlinedParamMap.end() && IP->second.count(GV) > 0) {
- if (TimePassesIsEnabled)
- DebugTimer->stopTimer();
- return;
- }
-
- // or GV is an inlined local variable.
- Scope = AI->second;
- InlinedParamMap[V].insert(GV);
- InlinedFnVar = true;
- } else {
- // or GV is a local variable.
- Scope = getOrCreateScope(V);
+ if (Desc.getTag() == dwarf::DW_TAG_variable)
+ Scope = getOrCreateScope(DIGlobalVariable(N).getContext().getNode());
+ else {
+ bool InlinedVar = false;
+ MDNode *Context = DIVariable(N).getContext().getNode();
+ DISubprogram SP(Context);
+ if (!SP.isNull()) {
+ // SP is inserted into DbgAbstractScopeMap when inlined function
+ // start was recorded by RecordInlineFnStart.
+ DenseMap<MDNode *, DbgScope *>::iterator
+ I = DbgAbstractScopeMap.find(SP.getNode());
+ if (I != DbgAbstractScopeMap.end()) {
+ InlinedVar = true;
+ Scope = I->second;
}
}
+ if (!InlinedVar)
+ Scope = getOrCreateScope(Context);
}
assert(Scope && "Unable to find the variable's scope");
- DbgVariable *DV = new DbgVariable(DIVariable(GV), FrameIndex, InlinedFnVar);
+ DbgVariable *DV = new DbgVariable(DIVariable(N), FrameIndex, InlinedFnVar);
Scope->AddVariable(DV);
if (TimePassesIsEnabled)
@@ -1665,23 +2169,23 @@ unsigned DwarfDebug::RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
unsigned Line, unsigned Col) {
unsigned LabelID = MMI->NextLabelID();
- if (!TAI->doesDwarfUsesInlineInfoSection())
+ if (!MAI->doesDwarfUsesInlineInfoSection())
return LabelID;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- GlobalVariable *GV = SP.getGV();
- DenseMap<const GlobalVariable *, DbgScope *>::iterator
- II = AbstractInstanceRootMap.find(GV);
+ MDNode *Node = SP.getNode();
+ DenseMap<const MDNode *, DbgScope *>::iterator
+ II = AbstractInstanceRootMap.find(Node);
if (II == AbstractInstanceRootMap.end()) {
// Create an abstract instance entry for this inlined function if it doesn't
// already exist.
- DbgScope *Scope = new DbgScope(NULL, DIDescriptor(GV));
+ DbgScope *Scope = new DbgScope(NULL, DIDescriptor(Node));
// Get the compile unit context.
- DIE *SPDie = ModuleCU->getDieMapSlotFor(GV);
+ DIE *SPDie = ModuleCU->getDieMapSlotFor(Node);
if (!SPDie)
SPDie = CreateSubprogramDIE(ModuleCU, SP, false, true);
@@ -1693,18 +2197,18 @@ unsigned DwarfDebug::RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
AddUInt(SPDie, dwarf::DW_AT_inline, 0, dwarf::DW_INL_declared_not_inlined);
// Keep track of the abstract scope for this function.
- DbgAbstractScopeMap[GV] = Scope;
+ DbgAbstractScopeMap[Node] = Scope;
- AbstractInstanceRootMap[GV] = Scope;
+ AbstractInstanceRootMap[Node] = Scope;
AbstractInstanceRootList.push_back(Scope);
}
// Create a concrete inlined instance for this inlined function.
- DbgConcreteScope *ConcreteScope = new DbgConcreteScope(DIDescriptor(GV));
+ DbgConcreteScope *ConcreteScope = new DbgConcreteScope(DIDescriptor(Node));
DIE *ScopeDie = new DIE(dwarf::DW_TAG_inlined_subroutine);
ScopeDie->setAbstractCompileUnit(ModuleCU);
- DIE *Origin = ModuleCU->getDieMapSlotFor(GV);
+ DIE *Origin = ModuleCU->getDieMapSlotFor(Node);
AddDIEEntry(ScopeDie, dwarf::DW_AT_abstract_origin,
dwarf::DW_FORM_ref4, Origin);
AddUInt(ScopeDie, dwarf::DW_AT_call_file, 0, ModuleCU->getID());
@@ -1718,20 +2222,20 @@ unsigned DwarfDebug::RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
LexicalScopeStack.back()->AddConcreteInst(ConcreteScope);
// Keep track of the concrete scope that's inlined into this function.
- DenseMap<GlobalVariable *, SmallVector<DbgScope *, 8> >::iterator
- SI = DbgConcreteScopeMap.find(GV);
+ DenseMap<MDNode *, SmallVector<DbgScope *, 8> >::iterator
+ SI = DbgConcreteScopeMap.find(Node);
if (SI == DbgConcreteScopeMap.end())
- DbgConcreteScopeMap[GV].push_back(ConcreteScope);
+ DbgConcreteScopeMap[Node].push_back(ConcreteScope);
else
SI->second.push_back(ConcreteScope);
// Track the start label for this inlined function.
- DenseMap<GlobalVariable *, SmallVector<unsigned, 4> >::iterator
- I = InlineInfo.find(GV);
+ DenseMap<MDNode *, SmallVector<unsigned, 4> >::iterator
+ I = InlineInfo.find(Node);
if (I == InlineInfo.end())
- InlineInfo[GV].push_back(LabelID);
+ InlineInfo[Node].push_back(LabelID);
else
I->second.push_back(LabelID);
@@ -1743,15 +2247,15 @@ unsigned DwarfDebug::RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
/// RecordInlinedFnEnd - Indicate the end of inlined subroutine.
unsigned DwarfDebug::RecordInlinedFnEnd(DISubprogram &SP) {
- if (!TAI->doesDwarfUsesInlineInfoSection())
+ if (!MAI->doesDwarfUsesInlineInfoSection())
return 0;
if (TimePassesIsEnabled)
DebugTimer->startTimer();
- GlobalVariable *GV = SP.getGV();
- DenseMap<GlobalVariable *, SmallVector<DbgScope *, 8> >::iterator
- I = DbgConcreteScopeMap.find(GV);
+ MDNode *Node = SP.getNode();
+ DenseMap<MDNode *, SmallVector<DbgScope *, 8> >::iterator
+ I = DbgConcreteScopeMap.find(Node);
if (I == DbgConcreteScopeMap.end()) {
// FIXME: Can this situation actually happen? And if so, should it?
@@ -1781,33 +2285,6 @@ unsigned DwarfDebug::RecordInlinedFnEnd(DISubprogram &SP) {
return ID;
}
-/// RecordVariableScope - Record scope for the variable declared by
-/// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE. Record scopes
-/// for only inlined subroutine variables. Other variables's scopes are
-/// determined during RecordVariable().
-void DwarfDebug::RecordVariableScope(DIVariable &DV,
- const MachineInstr *DeclareMI) {
- if (TimePassesIsEnabled)
- DebugTimer->startTimer();
-
- DISubprogram SP(DV.getContext().getGV());
-
- if (SP.isNull()) {
- if (TimePassesIsEnabled)
- DebugTimer->stopTimer();
-
- return;
- }
-
- DenseMap<GlobalVariable *, DbgScope *>::iterator
- I = DbgAbstractScopeMap.find(SP.getGV());
- if (I != DbgAbstractScopeMap.end())
- InlinedVariableScopes[DeclareMI] = I->second;
-
- if (TimePassesIsEnabled)
- DebugTimer->stopTimer();
-}
-
//===----------------------------------------------------------------------===//
// Emit Methods
//===----------------------------------------------------------------------===//
@@ -1832,7 +2309,7 @@ unsigned DwarfDebug::SizeAndOffsetDie(DIE *Die, unsigned Offset, bool Last) {
Die->setOffset(Offset);
// Start the size with the size of abbreviation code.
- Offset += TargetAsmInfo::getULEB128Size(AbbrevNumber);
+ Offset += MCAsmInfo::getULEB128Size(AbbrevNumber);
const SmallVector<DIEValue*, 32> &Values = Die->getValues();
const SmallVector<DIEAbbrevData, 8> &AbbrevData = Abbrev->getData();
@@ -1879,38 +2356,40 @@ void DwarfDebug::EmitInitial() {
if (didInitial) return;
didInitial = true;
+ const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
+
// Dwarf sections base addresses.
- if (TAI->doesDwarfRequireFrameSection()) {
- Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
+ if (MAI->doesDwarfRequireFrameSection()) {
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfFrameSection());
EmitLabel("section_debug_frame", 0);
}
- Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfInfoSection());
EmitLabel("section_info", 0);
- Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfAbbrevSection());
EmitLabel("section_abbrev", 0);
- Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfARangesSection());
EmitLabel("section_aranges", 0);
- if (const char *LineInfoDirective = TAI->getDwarfMacroInfoSection()) {
- Asm->SwitchToDataSection(LineInfoDirective);
+ if (const MCSection *LineInfoDirective = TLOF.getDwarfMacroInfoSection()) {
+ Asm->OutStreamer.SwitchSection(LineInfoDirective);
EmitLabel("section_macinfo", 0);
}
- Asm->SwitchToDataSection(TAI->getDwarfLineSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfLineSection());
EmitLabel("section_line", 0);
- Asm->SwitchToDataSection(TAI->getDwarfLocSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfLocSection());
EmitLabel("section_loc", 0);
- Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfPubNamesSection());
EmitLabel("section_pubnames", 0);
- Asm->SwitchToDataSection(TAI->getDwarfStrSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfStrSection());
EmitLabel("section_str", 0);
- Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDwarfRangesSection());
EmitLabel("section_ranges", 0);
- Asm->SwitchToSection(TAI->getTextSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getTextSection());
EmitLabel("text_begin", 0);
- Asm->SwitchToSection(TAI->getDataSection());
+ Asm->OutStreamer.SwitchSection(TLOF.getDataSection());
EmitLabel("data_begin", 0);
}
@@ -2012,7 +2491,8 @@ void DwarfDebug::EmitDebugInfoPerCU(CompileUnit *Unit) {
void DwarfDebug::EmitDebugInfo() {
// Start debug info section.
- Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfInfoSection());
EmitDebugInfoPerCU(ModuleCU);
}
@@ -2023,7 +2503,8 @@ void DwarfDebug::EmitAbbreviations() const {
// Check to see if it is worth the effort.
if (!Abbreviations.empty()) {
// Start the debug abbrev section.
- Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfAbbrevSection());
EmitLabel("abbrev_begin", 0);
@@ -2071,7 +2552,7 @@ void DwarfDebug::EmitEndOfLineMatrix(unsigned SectionEnd) {
void DwarfDebug::EmitDebugLines() {
// If the target is using .loc/.file, the assembler will be emitting the
// .debug_line table automatically.
- if (TAI->hasDotLocAndDotFile())
+ if (MAI->hasDotLocAndDotFile())
return;
// Minimum line delta, thus ranging from -10..(255-10).
@@ -2080,7 +2561,8 @@ void DwarfDebug::EmitDebugLines() {
const int MaxLineDelta = 255 + MinLineDelta;
// Start the dwarf line section.
- Asm->SwitchToDataSection(TAI->getDwarfLineSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfLineSection());
// Construct the section header.
EmitDifference("line_end", 0, "line_begin", 0, true);
@@ -2147,13 +2629,12 @@ void DwarfDebug::EmitDebugLines() {
// Isolate current sections line info.
const std::vector<SrcLineInfo> &LineInfos = SectionSourceLines[j];
- if (Asm->isVerbose()) {
- const Section* S = SectionMap[j + 1];
- O << '\t' << TAI->getCommentString() << " Section"
+ /*if (Asm->isVerbose()) {
+ const MCSection *S = SectionMap[j + 1];
+ O << '\t' << MAI->getCommentString() << " Section"
<< S->getName() << '\n';
- } else {
- Asm->EOL();
- }
+ }*/
+ Asm->EOL();
// Dwarf assumes we start with first line of first source file.
unsigned Source = 1;
@@ -2165,12 +2646,14 @@ void DwarfDebug::EmitDebugLines() {
unsigned LabelID = MMI->MappedLabel(LineInfo.getLabelID());
if (!LabelID) continue;
+ if (LineInfo.getLine() == 0) continue;
+
if (!Asm->isVerbose())
Asm->EOL();
else {
std::pair<unsigned, unsigned> SourceID =
getSourceDirectoryAndFileIds(LineInfo.getSourceID());
- O << '\t' << TAI->getCommentString() << ' '
+ O << '\t' << MAI->getCommentString() << ' '
<< getSourceDirectoryName(SourceID.first) << ' '
<< getSourceFileName(SourceID.second)
<<" :" << utostr_32(LineInfo.getLine()) << '\n';
@@ -2231,7 +2714,7 @@ void DwarfDebug::EmitDebugLines() {
/// EmitCommonDebugFrame - Emit common frame info into a debug frame section.
///
void DwarfDebug::EmitCommonDebugFrame() {
- if (!TAI->doesDwarfRequireFrameSection())
+ if (!MAI->doesDwarfRequireFrameSection())
return;
int stackGrowth =
@@ -2240,7 +2723,8 @@ void DwarfDebug::EmitCommonDebugFrame() {
TD->getPointerSize() : -TD->getPointerSize();
// Start the dwarf frame section.
- Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfFrameSection());
EmitLabel("debug_frame_common", 0);
EmitDifference("debug_frame_common_end", 0,
@@ -2276,11 +2760,12 @@ void DwarfDebug::EmitCommonDebugFrame() {
/// section.
void
DwarfDebug::EmitFunctionDebugFrame(const FunctionDebugFrameInfo&DebugFrameInfo){
- if (!TAI->doesDwarfRequireFrameSection())
+ if (!MAI->doesDwarfRequireFrameSection())
return;
// Start the dwarf frame section.
- Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfFrameSection());
EmitDifference("debug_frame_end", DebugFrameInfo.Number,
"debug_frame_begin", DebugFrameInfo.Number, true);
@@ -2344,7 +2829,8 @@ void DwarfDebug::EmitDebugPubNamesPerCU(CompileUnit *Unit) {
///
void DwarfDebug::EmitDebugPubNames() {
// Start the dwarf pubnames section.
- Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfPubNamesSection());
EmitDebugPubNamesPerCU(ModuleCU);
}
@@ -2355,7 +2841,8 @@ void DwarfDebug::EmitDebugStr() {
// Check to see if it is worth the effort.
if (!StringPool.empty()) {
// Start the dwarf str section.
- Asm->SwitchToDataSection(TAI->getDwarfStrSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfStrSection());
// For each of strings in the string pool.
for (unsigned StringID = 1, N = StringPool.size();
@@ -2376,7 +2863,8 @@ void DwarfDebug::EmitDebugStr() {
///
void DwarfDebug::EmitDebugLoc() {
// Start the dwarf loc section.
- Asm->SwitchToDataSection(TAI->getDwarfLocSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfLocSection());
Asm->EOL();
}
@@ -2384,7 +2872,8 @@ void DwarfDebug::EmitDebugLoc() {
///
void DwarfDebug::EmitDebugARanges() {
// Start the dwarf aranges section.
- Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfARangesSection());
// FIXME - Mock up
#if 0
@@ -2420,16 +2909,18 @@ void DwarfDebug::EmitDebugARanges() {
///
void DwarfDebug::EmitDebugRanges() {
// Start the dwarf ranges section.
- Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfRangesSection());
Asm->EOL();
}
/// EmitDebugMacInfo - Emit visible names into a debug macinfo section.
///
void DwarfDebug::EmitDebugMacInfo() {
- if (const char *LineInfoDirective = TAI->getDwarfMacroInfoSection()) {
+ if (const MCSection *LineInfo =
+ Asm->getObjFileLowering().getDwarfMacroInfoSection()) {
// Start the dwarf macinfo section.
- Asm->SwitchToDataSection(LineInfoDirective);
+ Asm->OutStreamer.SwitchSection(LineInfo);
Asm->EOL();
}
}
@@ -2453,13 +2944,14 @@ void DwarfDebug::EmitDebugMacInfo() {
/// __debug_info section, and the low_pc is the starting address for the
/// inlining instance.
void DwarfDebug::EmitDebugInlineInfo() {
- if (!TAI->doesDwarfUsesInlineInfoSection())
+ if (!MAI->doesDwarfUsesInlineInfoSection())
return;
if (!ModuleCU)
return;
- Asm->SwitchToDataSection(TAI->getDwarfDebugInlineSection());
+ Asm->OutStreamer.SwitchSection(
+ Asm->getObjFileLowering().getDwarfDebugInlineSection());
Asm->EOL();
EmitDifference("debug_inlined_end", 1,
"debug_inlined_begin", 1, true);
@@ -2470,18 +2962,25 @@ void DwarfDebug::EmitDebugInlineInfo() {
Asm->EmitInt16(dwarf::DWARF_VERSION); Asm->EOL("Dwarf Version");
Asm->EmitInt8(TD->getPointerSize()); Asm->EOL("Address Size (in bytes)");
- for (DenseMap<GlobalVariable *, SmallVector<unsigned, 4> >::iterator
+ for (DenseMap<MDNode *, SmallVector<unsigned, 4> >::iterator
I = InlineInfo.begin(), E = InlineInfo.end(); I != E; ++I) {
- GlobalVariable *GV = I->first;
+ MDNode *Node = I->first;
SmallVector<unsigned, 4> &Labels = I->second;
- DISubprogram SP(GV);
- std::string Name;
- std::string LName;
-
- SP.getLinkageName(LName);
- SP.getName(Name);
+ DISubprogram SP(Node);
+ const char *LName = SP.getLinkageName();
+ const char *Name = SP.getName();
- Asm->EmitString(LName.empty() ? Name : LName);
+ if (!LName)
+ Asm->EmitString(Name);
+ else {
+ // Skip special LLVM prefix that is used to inform the asm printer to not
+ // emit usual symbol prefix before the symbol name. This happens for
+ // Objective-C symbol names and symbol whose name is replaced using GCC's
+ // __asm__ attribute.
+ if (LName[0] == 1)
+ LName = &LName[1];
+ Asm->EmitString(LName);
+ }
Asm->EOL("MIPS linkage name");
Asm->EmitString(Name); Asm->EOL("Function name");
@@ -2490,13 +2989,13 @@ void DwarfDebug::EmitDebugInlineInfo() {
for (SmallVector<unsigned, 4>::iterator LI = Labels.begin(),
LE = Labels.end(); LI != LE; ++LI) {
- DIE *SP = ModuleCU->getDieMapSlotFor(GV);
+ DIE *SP = ModuleCU->getDieMapSlotFor(Node);
Asm->EmitInt32(SP->getOffset()); Asm->EOL("DIE offset");
if (TD->getPointerSize() == sizeof(int32_t))
- O << TAI->getData32bitsDirective();
+ O << MAI->getData32bitsDirective();
else
- O << TAI->getData64bitsDirective();
+ O << MAI->getData64bitsDirective();
PrintLabelName("label", *LI); Asm->EOL("low_pc");
}
diff --git a/lib/CodeGen/AsmPrinter/DwarfDebug.h b/lib/CodeGen/AsmPrinter/DwarfDebug.h
index 101dc70..bd377c5 100644
--- a/lib/CodeGen/AsmPrinter/DwarfDebug.h
+++ b/lib/CodeGen/AsmPrinter/DwarfDebug.h
@@ -35,7 +35,7 @@ class DbgScope;
class DbgConcreteScope;
class MachineFrameInfo;
class MachineModuleInfo;
-class TargetAsmInfo;
+class MCAsmInfo;
class Timer;
//===----------------------------------------------------------------------===//
@@ -120,7 +120,7 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
/// SectionMap - Provides a unique id per text section.
///
- UniqueVector<const Section*> SectionMap;
+ UniqueVector<const MCSection*> SectionMap;
/// SectionSourceLines - Tracks line numbers per text section.
///
@@ -139,34 +139,38 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
DbgScope *FunctionDbgScope;
/// DbgScopeMap - Tracks the scopes in the current function.
- DenseMap<GlobalVariable *, DbgScope *> DbgScopeMap;
+ DenseMap<MDNode *, DbgScope *> DbgScopeMap;
+
+ /// ScopedGVs - Tracks global variables that are not at file scope.
+ /// For example void f() { static int b = 42; }
+ SmallVector<WeakVH, 4> ScopedGVs;
+
+ typedef DenseMap<const MachineInstr *, SmallVector<DbgScope *, 2> >
+ InsnToDbgScopeMapTy;
+
+ /// DbgScopeBeginMap - Maps instruction with a list DbgScopes it starts.
+ InsnToDbgScopeMapTy DbgScopeBeginMap;
+
+ /// DbgScopeEndMap - Maps instruction with a list DbgScopes it ends.
+ InsnToDbgScopeMapTy DbgScopeEndMap;
/// DbgAbstractScopeMap - Tracks abstract instance scopes in the current
/// function.
- DenseMap<GlobalVariable *, DbgScope *> DbgAbstractScopeMap;
+ DenseMap<MDNode *, DbgScope *> DbgAbstractScopeMap;
/// DbgConcreteScopeMap - Tracks concrete instance scopes in the current
/// function.
- DenseMap<GlobalVariable *,
+ DenseMap<MDNode *,
SmallVector<DbgScope *, 8> > DbgConcreteScopeMap;
/// InlineInfo - Keep track of inlined functions and their location. This
/// information is used to populate debug_inlined section.
- DenseMap<GlobalVariable *, SmallVector<unsigned, 4> > InlineInfo;
-
- /// InlinedVariableScopes - Scopes information for the inlined subroutine
- /// variables.
- DenseMap<const MachineInstr *, DbgScope *> InlinedVariableScopes;
+ DenseMap<MDNode *, SmallVector<unsigned, 4> > InlineInfo;
/// AbstractInstanceRootMap - Map of abstract instance roots of inlined
/// functions. These are subroutine entries that contain a DW_AT_inline
/// attribute.
- DenseMap<const GlobalVariable *, DbgScope *> AbstractInstanceRootMap;
-
- /// InlinedParamMap - A map keeping track of which parameters are assigned to
- /// which abstract instance.
- DenseMap<const GlobalVariable *,
- SmallSet<const GlobalVariable *, 32> > InlinedParamMap;
+ DenseMap<const MDNode *, DbgScope *> AbstractInstanceRootMap;
/// AbstractInstanceRootList - List of abstract instance roots of inlined
/// functions. These are subroutine entries that contain a DW_AT_inline
@@ -284,11 +288,8 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, const DIVariable *V);
-
- /// AddSourceLine - Add location information to specified debug information
- /// entry.
void AddSourceLine(DIE *Die, const DIGlobal *G);
-
+ void AddSourceLine(DIE *Die, const DISubprogram *SP);
void AddSourceLine(DIE *Die, const DIType *Ty);
/// AddAddress - Add an address attribute to a die based on the location
@@ -296,6 +297,24 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
void AddAddress(DIE *Die, unsigned Attribute,
const MachineLocation &Location);
+ /// AddComplexAddress - Start with the address based on the location provided,
+ /// and generate the DWARF information necessary to find the actual variable
+ /// (navigating the extra location information encoded in the type) based on
+ /// the starting location. Add the DWARF information to the die.
+ ///
+ void AddComplexAddress(DbgVariable *&DV, DIE *Die, unsigned Attribute,
+ const MachineLocation &Location);
+
+ // FIXME: Should be reformulated in terms of AddComplexAddress.
+ /// AddBlockByrefAddress - Start with the address based on the location
+ /// provided, and generate the DWARF information necessary to find the
+ /// actual Block variable (navigating the Block struct) based on the
+ /// starting location. Add the DWARF information to the die. Obsolete,
+ /// please use AddComplexAddress instead.
+ ///
+ void AddBlockByrefAddress(DbgVariable *&DV, DIE *Die, unsigned Attribute,
+ const MachineLocation &Location);
+
/// AddType - Add a new type attribute to the specified entity.
void AddType(CompileUnit *DW_Unit, DIE *Entity, DIType Ty);
@@ -342,9 +361,10 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
///
DIE *CreateDbgScopeVariable(DbgVariable *DV, CompileUnit *Unit);
- /// getOrCreateScope - Returns the scope associated with the given descriptor.
+ /// getDbgScope - Returns the scope associated with the given descriptor.
///
- DbgScope *getOrCreateScope(GlobalVariable *V);
+ DbgScope *getOrCreateScope(MDNode *N);
+ DbgScope *getDbgScope(MDNode *N, const MachineInstr *MI);
/// ConstructDbgScope - Construct the components of a scope.
///
@@ -454,20 +474,26 @@ class VISIBILITY_HIDDEN DwarfDebug : public Dwarf {
/// source file names. If none currently exists, create a new id and insert it
/// in the SourceIds map. This can update DirectoryNames and SourceFileNames maps
/// as well.
- unsigned GetOrCreateSourceID(const std::string &DirName,
- const std::string &FileName);
+ unsigned GetOrCreateSourceID(const char *DirName,
+ const char *FileName);
- void ConstructCompileUnit(GlobalVariable *GV);
+ void ConstructCompileUnit(MDNode *N);
- void ConstructGlobalVariableDIE(GlobalVariable *GV);
+ void ConstructGlobalVariableDIE(MDNode *N);
- void ConstructSubprogram(GlobalVariable *GV);
+ void ConstructSubprogram(MDNode *N);
+
+ // FIXME: This should go away in favor of complex addresses.
+ /// Find the type the programmer originally declared the variable to be
+ /// and return that type. Obsolete, use GetComplexAddrType instead.
+ ///
+ DIType GetBlockByrefType(DIType Ty, std::string Name);
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
- DwarfDebug(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T);
+ DwarfDebug(raw_ostream &OS, AsmPrinter *A, const MCAsmInfo *T);
virtual ~DwarfDebug();
/// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should
@@ -493,12 +519,7 @@ public:
/// RecordSourceLine - Records location information and associates it with a
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
- unsigned RecordSourceLine(Value *V, unsigned Line, unsigned Col);
-
- /// RecordSourceLine - Records location information and associates it with a
- /// label. Returns a unique label ID used to generate a label and provide
- /// correspondence to the source line list.
- unsigned RecordSourceLine(unsigned Line, unsigned Col, DICompileUnit CU);
+ unsigned RecordSourceLine(unsigned Line, unsigned Col, MDNode *Scope);
/// getRecordSourceLineCount - Return the number of source lines in the debug
/// info.
@@ -515,14 +536,13 @@ public:
const std::string &FileName);
/// RecordRegionStart - Indicate the start of a region.
- unsigned RecordRegionStart(GlobalVariable *V);
+ unsigned RecordRegionStart(MDNode *N);
/// RecordRegionEnd - Indicate the end of a region.
- unsigned RecordRegionEnd(GlobalVariable *V);
+ unsigned RecordRegionEnd(MDNode *N);
/// RecordVariable - Indicate the declaration of a local variable.
- void RecordVariable(GlobalVariable *GV, unsigned FrameIndex,
- const MachineInstr *MI);
+ void RecordVariable(MDNode *N, unsigned FrameIndex);
//// RecordInlinedFnStart - Indicate the start of inlined subroutine.
unsigned RecordInlinedFnStart(DISubprogram &SP, DICompileUnit CU,
@@ -531,11 +551,20 @@ public:
/// RecordInlinedFnEnd - Indicate the end of inlined subroutine.
unsigned RecordInlinedFnEnd(DISubprogram &SP);
- /// RecordVariableScope - Record scope for the variable declared by
- /// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE. Record scopes
- /// for only inlined subroutine variables. Other variables's scopes are
- /// determined during RecordVariable().
- void RecordVariableScope(DIVariable &DV, const MachineInstr *DeclareMI);
+ /// ExtractScopeInformation - Scan machine instructions in this function
+ /// and collect DbgScopes. Return true, if atleast one scope was found.
+ bool ExtractScopeInformation(MachineFunction *MF);
+
+ /// CollectVariableInfo - Populate DbgScope entries with variables' info.
+ void CollectVariableInfo();
+
+ /// SetDbgScopeBeginLabels - Update DbgScope begin labels for the scopes that
+ /// start with this machine instruction.
+ void SetDbgScopeBeginLabels(const MachineInstr *MI, unsigned Label);
+
+ /// SetDbgScopeEndLabels - Update DbgScope end labels for the scopes that
+ /// end with this machine instruction.
+ void SetDbgScopeEndLabels(const MachineInstr *MI, unsigned Label);
};
} // End of namespace llvm
diff --git a/lib/CodeGen/AsmPrinter/DwarfException.cpp b/lib/CodeGen/AsmPrinter/DwarfException.cpp
index 37466ab..626523b 100644
--- a/lib/CodeGen/AsmPrinter/DwarfException.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfException.cpp
@@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
-// This file contains support for writing dwarf exception info into asm files.
+// This file contains support for writing DWARF exception info into asm files.
//
//===----------------------------------------------------------------------===//
@@ -15,30 +15,38 @@
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLocation.h"
-#include "llvm/Support/Dwarf.h"
-#include "llvm/Support/Timer.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
static TimerGroup &getDwarfTimerGroup() {
- static TimerGroup DwarfTimerGroup("Dwarf Exception");
+ static TimerGroup DwarfTimerGroup("DWARF Exception");
return DwarfTimerGroup;
}
DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
- const TargetAsmInfo *T)
+ const MCAsmInfo *T)
: Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
shouldEmitTableModule(false), shouldEmitMovesModule(false),
ExceptionTimer(0) {
- if (TimePassesIsEnabled)
- ExceptionTimer = new Timer("Dwarf Exception Writer",
+ if (TimePassesIsEnabled)
+ ExceptionTimer = new Timer("DWARF Exception Writer",
getDwarfTimerGroup());
}
@@ -46,21 +54,45 @@ DwarfException::~DwarfException() {
delete ExceptionTimer;
}
-void DwarfException::EmitCommonEHFrame(const Function *Personality,
- unsigned Index) {
+/// SizeOfEncodedValue - Return the size of the encoding in bytes.
+unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
+ if (Encoding == dwarf::DW_EH_PE_omit)
+ return 0;
+
+ switch (Encoding & 0x07) {
+ case dwarf::DW_EH_PE_absptr:
+ return TD->getPointerSize();
+ case dwarf::DW_EH_PE_udata2:
+ return 2;
+ case dwarf::DW_EH_PE_udata4:
+ return 4;
+ case dwarf::DW_EH_PE_udata8:
+ return 8;
+ }
+
+ assert(0 && "Invalid encoded value.");
+ return 0;
+}
+
+/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
+/// is shared among many Frame Description Entries. There is at least one CIE
+/// in every non-empty .debug_frame section.
+void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
// Size and sign of stack growth.
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize();
+ const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
+
// Begin eh frame section.
- Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
-
- if (!TAI->doesRequireNonLocalEHFrameLabel())
- O << TAI->getEHGlobalPrefix();
+ Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
+ if (MAI->is_EHSymbolPrivate())
+ O << MAI->getPrivateGlobalPrefix();
O << "EH_frame" << Index << ":\n";
+
EmitLabel("section_eh_frame", Index);
// Define base labels.
@@ -79,8 +111,53 @@ void DwarfException::EmitCommonEHFrame(const Function *Personality,
Asm->EOL("CIE Version");
// The personality presence indicates that language specific information will
- // show up in the eh frame.
- Asm->EmitString(Personality ? "zPLR" : "zR");
+ // show up in the eh frame. Find out how we are supposed to lower the
+ // personality function reference:
+ const MCExpr *PersonalityRef = 0;
+ bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
+ if (PersonalityFn) {
+ // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
+
+ // In non-static mode, ask the object file how to represent this reference.
+ PersonalityRef =
+ TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
+ Asm->MMI,
+ IsPersonalityIndirect,
+ IsPersonalityPCRel);
+ }
+
+ unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
+ if (IsPersonalityIndirect)
+ PerEncoding |= dwarf::DW_EH_PE_indirect;
+ unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
+ unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
+
+ char Augmentation[5] = { 0 };
+ unsigned AugmentationSize = 0;
+ char *APtr = Augmentation + 1;
+
+ if (PersonalityRef) {
+ // There is a personality function.
+ *APtr++ = 'P';
+ AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
+ }
+
+ if (UsesLSDA[Index]) {
+ // An LSDA pointer is in the FDE augmentation.
+ *APtr++ = 'L';
+ ++AugmentationSize;
+ }
+
+ if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
+ // A non-default pointer encoding for the FDE.
+ *APtr++ = 'R';
+ ++AugmentationSize;
+ }
+
+ if (APtr != Augmentation + 1)
+ Augmentation[0] = 'z';
+
+ Asm->EmitString(Augmentation);
Asm->EOL("CIE Augmentation");
// Round out reader.
@@ -91,39 +168,41 @@ void DwarfException::EmitCommonEHFrame(const Function *Personality,
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
Asm->EOL("CIE Return Address Column");
- // If there is a personality, we need to indicate the functions location.
- if (Personality) {
- Asm->EmitULEB128Bytes(7);
- Asm->EOL("Augmentation Size");
-
- if (TAI->getNeedsIndirectEncoding()) {
- Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 |
- dwarf::DW_EH_PE_indirect);
- Asm->EOL("Personality (pcrel sdata4 indirect)");
- } else {
- Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- Asm->EOL("Personality (pcrel sdata4)");
+ Asm->EmitULEB128Bytes(AugmentationSize);
+ Asm->EOL("Augmentation Size");
+
+ Asm->EmitInt8(PerEncoding);
+ Asm->EOL("Personality", PerEncoding);
+
+ // If there is a personality, we need to indicate the function's location.
+ if (PersonalityRef) {
+ // If the reference to the personality function symbol is not already
+ // pc-relative, then we need to subtract our current address from it. Do
+ // this by emitting a label and subtracting it from the expression we
+ // already have. This is equivalent to emitting "foo - .", but we have to
+ // emit the label for "." directly.
+ if (!IsPersonalityPCRel) {
+ SmallString<64> Name;
+ raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
+ << "personalityref_addr" << Asm->getFunctionNumber() << "_" << Index;
+ MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
+ Asm->OutStreamer.EmitLabel(DotSym);
+
+ PersonalityRef =
+ MCBinaryExpr::CreateSub(PersonalityRef,
+ MCSymbolRefExpr::Create(DotSym,Asm->OutContext),
+ Asm->OutContext);
}
-
- PrintRelDirective(true);
- O << TAI->getPersonalityPrefix();
- Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
- O << TAI->getPersonalitySuffix();
- if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL"))
- O << "-" << TAI->getPCSymbol();
+
+ O << MAI->getData32bitsDirective();
+ PersonalityRef->print(O, MAI);
Asm->EOL("Personality");
- Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- Asm->EOL("LSDA Encoding (pcrel sdata4)");
+ Asm->EmitInt8(LSDAEncoding);
+ Asm->EOL("LSDA Encoding", LSDAEncoding);
- Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- Asm->EOL("FDE Encoding (pcrel sdata4)");
- } else {
- Asm->EmitULEB128Bytes(1);
- Asm->EOL("Augmentation Size");
-
- Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
- Asm->EOL("FDE Encoding (pcrel sdata4)");
+ Asm->EmitInt8(FDEEncoding);
+ Asm->EOL("FDE Encoding", FDEEncoding);
}
// Indicate locations of general callee saved registers in frame.
@@ -134,55 +213,44 @@ void DwarfException::EmitCommonEHFrame(const Function *Personality,
// On Darwin the linker honors the alignment of eh_frame, which means it must
// be 8-byte on 64-bit targets to match what gcc does. Otherwise you get
// holes which confuse readers of eh_frame.
- Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
- 0, 0, false);
+ Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
EmitLabel("eh_frame_common_end", Index);
Asm->EOL();
}
-/// EmitEHFrame - Emit function exception frame information.
-///
-void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
- assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
+/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
+void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
+ assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
"Should not emit 'available externally' functions at all");
- Function::LinkageTypes linkage = EHFrameInfo.function->getLinkage();
- Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
+ const Function *TheFunc = EHFrameInfo.function;
+
+ Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
// Externally visible entry into the functions eh frame info. If the
// corresponding function is static, this should not be externally visible.
- if (linkage != Function::InternalLinkage &&
- linkage != Function::PrivateLinkage) {
- if (const char *GlobalEHDirective = TAI->getGlobalEHDirective())
+ if (!TheFunc->hasLocalLinkage())
+ if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
- }
// If corresponding function is weak definition, this should be too.
- if ((linkage == Function::WeakAnyLinkage ||
- linkage == Function::WeakODRLinkage ||
- linkage == Function::LinkOnceAnyLinkage ||
- linkage == Function::LinkOnceODRLinkage) &&
- TAI->getWeakDefDirective())
- O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
+ if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
+ O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
// If there are no calls then you can't unwind. This may mean we can omit the
// EH Frame, but some environments do not handle weak absolute symbols. If
// UnwindTablesMandatory is set we cannot do this optimization; the unwind
// info is to be available for non-EH uses.
- if (!EHFrameInfo.hasCalls &&
- !UnwindTablesMandatory &&
- ((linkage != Function::WeakAnyLinkage &&
- linkage != Function::WeakODRLinkage &&
- linkage != Function::LinkOnceAnyLinkage &&
- linkage != Function::LinkOnceODRLinkage) ||
- !TAI->getWeakDefDirective() ||
- TAI->getSupportsWeakOmittedEHFrame())) {
+ if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
+ (!TheFunc->isWeakForLinker() ||
+ !MAI->getWeakDefDirective() ||
+ MAI->getSupportsWeakOmittedEHFrame())) {
O << EHFrameInfo.FnName << " = 0\n";
// This name has no connection to the function, so it might get
// dead-stripped when the function is not, erroneously. Prohibit
// dead-stripping unconditionally.
- if (const char *UsedDirective = TAI->getUsedDirective())
+ if (const char *UsedDirective = MAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
} else {
O << EHFrameInfo.FnName << ":\n";
@@ -194,17 +262,9 @@ void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
EmitLabel("eh_frame_begin", EHFrameInfo.Number);
- if (TAI->doesRequireNonLocalEHFrameLabel()) {
- PrintRelDirective(true, true);
- PrintLabelName("eh_frame_begin", EHFrameInfo.Number);
-
- if (!TAI->isAbsoluteEHSectionOffsets())
- O << "-EH_frame" << EHFrameInfo.PersonalityIndex;
- } else {
- EmitSectionOffset("eh_frame_begin", "eh_frame_common",
- EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
- true, true, false);
- }
+ EmitSectionOffset("eh_frame_begin", "eh_frame_common",
+ EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
+ true, true, false);
Asm->EOL("FDE CIE offset");
@@ -216,14 +276,20 @@ void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
- if (EHFrameInfo.PersonalityIndex) {
- Asm->EmitULEB128Bytes(4);
+ if (MMI->getPersonalities()[0] != NULL) {
+ bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
+
+ Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
Asm->EOL("Augmentation size");
if (EHFrameInfo.hasLandingPads)
- EmitReference("exception", EHFrameInfo.Number, true, true);
- else
- Asm->EmitInt32((int)0);
+ EmitReference("exception", EHFrameInfo.Number, true, false);
+ else {
+ if (is4Byte)
+ Asm->EmitInt32((int)0);
+ else
+ Asm->EmitInt64((int)0);
+ }
Asm->EOL("Language Specific Data Area");
} else {
Asm->EmitULEB128Bytes(0);
@@ -231,7 +297,7 @@ void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
}
// Indicate locations of function specific callee saved registers in frame.
- EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
+ EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
true);
// On Darwin the linker honors the alignment of eh_frame, which means it
@@ -246,32 +312,13 @@ void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
// retains the function in this case, and there is code around that depends
// on unused functions (calling undefined externals) being dead-stripped to
// link correctly. Yes, there really is.
- if (MMI->getUsedFunctions().count(EHFrameInfo.function))
- if (const char *UsedDirective = TAI->getUsedDirective())
+ if (MMI->isUsedFunction(EHFrameInfo.function))
+ if (const char *UsedDirective = MAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << "\n\n";
}
-}
-/// EmitExceptionTable - Emit landing pads and actions.
-///
-/// The general organization of the table is complex, but the basic concepts are
-/// easy. First there is a header which describes the location and organization
-/// of the three components that follow.
-///
-/// 1. The landing pad site information describes the range of code covered by
-/// the try. In our case it's an accumulation of the ranges covered by the
-/// invokes in the try. There is also a reference to the landing pad that
-/// handles the exception once processed. Finally an index into the actions
-/// table.
-/// 2. The action table, in our case, is composed of pairs of type ids and next
-/// action offset. Starting with the action index from the landing pad
-/// site, each type Id is checked for a match to the current exception. If
-/// it matches then the exception and type id are passed on to the landing
-/// pad. Otherwise the next action is looked up. This chain is terminated
-/// with a next action of zero. If no type id is found the the frame is
-/// unwound and handling continues.
-/// 3. Type id table contains references to all the C++ typeinfo for all
-/// catches in the function. This tables is reversed indexed base 1.
+ Asm->EOL();
+}
/// SharedTypeIds - How many leading type ids two landing pads have in common.
unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
@@ -301,51 +348,58 @@ bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
return LSize < RSize;
}
-void DwarfException::EmitExceptionTable() {
- const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
- const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
- const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
- if (PadInfos.empty()) return;
-
- // Sort the landing pads in order of their type ids. This is used to fold
- // duplicate actions.
- SmallVector<const LandingPadInfo *, 64> LandingPads;
- LandingPads.reserve(PadInfos.size());
- for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
- LandingPads.push_back(&PadInfos[i]);
- std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
-
- // Negative type ids index into FilterIds, positive type ids index into
- // TypeInfos. The value written for a positive type id is just the type id
- // itself. For a negative type id, however, the value written is the
+/// ComputeActionsTable - Compute the actions table and gather the first action
+/// index for each landing pad site.
+unsigned DwarfException::
+ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
+ SmallVectorImpl<ActionEntry> &Actions,
+ SmallVectorImpl<unsigned> &FirstActions) {
+
+ // The action table follows the call-site table in the LSDA. The individual
+ // records are of two types:
+ //
+ // * Catch clause
+ // * Exception specification
+ //
+ // The two record kinds have the same format, with only small differences.
+ // They are distinguished by the "switch value" field: Catch clauses
+ // (TypeInfos) have strictly positive switch values, and exception
+ // specifications (FilterIds) have strictly negative switch values. Value 0
+ // indicates a catch-all clause.
+ //
+ // Negative type IDs index into FilterIds. Positive type IDs index into
+ // TypeInfos. The value written for a positive type ID is just the type ID
+ // itself. For a negative type ID, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
- // offset is usually equal to the type id, because the FilterIds entries are
- // written using a variable width encoding which outputs one byte per entry as
- // long as the value written is not too large, but can differ. This kind of
- // complication does not occur for positive type ids because type infos are
+ // offset is usually equal to the type ID (because the FilterIds entries are
+ // written using a variable width encoding, which outputs one byte per entry
+ // as long as the value written is not too large) but can differ. This kind
+ // of complication does not occur for positive type IDs because type infos are
// output using a fixed width encoding. FilterOffsets[i] holds the byte
// offset corresponding to FilterIds[i].
+
+ const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
- for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
- E = FilterIds.end(); I != E; ++I) {
+
+ for (std::vector<unsigned>::const_iterator
+ I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
- Offset -= TargetAsmInfo::getULEB128Size(*I);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
}
- // Compute the actions table and gather the first action index for each
- // landing pad site.
- SmallVector<ActionEntry, 32> Actions;
- SmallVector<unsigned, 64> FirstActions;
FirstActions.reserve(LandingPads.size());
int FirstAction = 0;
unsigned SizeActions = 0;
- for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
- const LandingPadInfo *LP = LandingPads[i];
- const std::vector<int> &TypeIds = LP->TypeIds;
- const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
+ const LandingPadInfo *PrevLPI = 0;
+
+ for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
+ I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
+ const LandingPadInfo *LPI = *I;
+ const std::vector<int> &TypeIds = LPI->TypeIds;
+ const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
@@ -353,34 +407,33 @@ void DwarfException::EmitExceptionTable() {
ActionEntry *PrevAction = 0;
if (NumShared) {
- const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
+ const unsigned SizePrevIds = PrevLPI->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
- SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
- TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
SizeAction -=
- TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
}
// Compute the actions.
- for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
- int TypeID = TypeIds[I];
- assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
+ for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
+ int TypeID = TypeIds[J];
+ assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
- unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
- SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
- ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
+ ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
Actions.push_back(Action);
-
PrevAction = &Actions.back();
}
@@ -388,35 +441,34 @@ void DwarfException::EmitExceptionTable() {
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
+ // Information used when created the call-site table. The action record
+ // field of the call site record is the offset of the first associated
+ // action record, relative to the start of the actions table. This value is
+ // biased by 1 (1 in dicating the start of the actions table), and 0
+ // indicates that there are no actions.
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
- }
-
- // Compute the call-site table. The entry for an invoke has a try-range
- // containing the call, a non-zero landing pad and an appropriate action. The
- // entry for an ordinary call has a try-range containing the call and zero for
- // the landing pad and the action. Calls marked 'nounwind' have no entry and
- // must not be contained in the try-range of any entry - they form gaps in the
- // table. Entries must be ordered by try-range address.
- SmallVector<CallSiteEntry, 64> CallSites;
-
- RangeMapType PadMap;
- // Invokes and nounwind calls have entries in PadMap (due to being bracketed
- // by try-range labels when lowered). Ordinary calls do not, so appropriate
- // try-ranges for them need be deduced.
- for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
- const LandingPadInfo *LandingPad = LandingPads[i];
- for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
- unsigned BeginLabel = LandingPad->BeginLabels[j];
- assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
- PadRange P = { i, j };
- PadMap[BeginLabel] = P;
- }
+ PrevLPI = LPI;
}
+ return SizeActions;
+}
+
+/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
+/// has a try-range containing the call, a non-zero landing pad, and an
+/// appropriate action. The entry for an ordinary call has a try-range
+/// containing the call and zero for the landing pad and the action. Calls
+/// marked 'nounwind' have no entry and must not be contained in the try-range
+/// of any entry - they form gaps in the table. Entries must be ordered by
+/// try-range address.
+void DwarfException::
+ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
+ const RangeMapType &PadMap,
+ const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
+ const SmallVectorImpl<unsigned> &FirstActions) {
// The end label of the previous invoke or nounwind try-range.
unsigned LastLabel = 0;
@@ -424,7 +476,7 @@ void DwarfException::EmitExceptionTable() {
// an ordinary call) between the end of the previous try-range and now.
bool SawPotentiallyThrowing = false;
- // Whether the last callsite entry was for an invoke.
+ // Whether the last CallSite entry was for an invoke.
bool PreviousIsInvoke = false;
// Visit all instructions in order of address.
@@ -450,17 +502,18 @@ void DwarfException::EmitExceptionTable() {
// Nope, it was just some random label.
continue;
- PadRange P = L->second;
+ const PadRange &P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
-
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
"Inconsistent landing pad map!");
- // If some instruction between the previous try-range and this one may
- // throw, create a call-site entry with no landing pad for the region
- // between the try-ranges.
- if (SawPotentiallyThrowing) {
- CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
+ // For Dwarf exception handling (SjLj handling doesn't use this). If some
+ // instruction between the previous try-range and this one may throw,
+ // create a call-site entry with no landing pad for the region between the
+ // try-ranges.
+ if (SawPotentiallyThrowing &&
+ MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
+ CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
CallSites.push_back(Site);
PreviousIsInvoke = false;
}
@@ -470,12 +523,16 @@ void DwarfException::EmitExceptionTable() {
if (LandingPad->LandingPadLabel) {
// This try-range is for an invoke.
- CallSiteEntry Site = {BeginLabel, LastLabel,
- LandingPad->LandingPadLabel,
- FirstActions[P.PadIndex]};
-
- // Try to merge with the previous call-site.
- if (PreviousIsInvoke) {
+ CallSiteEntry Site = {
+ BeginLabel,
+ LastLabel,
+ LandingPad->LandingPadLabel,
+ FirstActions[P.PadIndex]
+ };
+
+ // Try to merge with the previous call-site. SJLJ doesn't do this
+ if (PreviousIsInvoke &&
+ MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
CallSiteEntry &Prev = CallSites.back();
if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
@@ -497,128 +554,363 @@ void DwarfException::EmitExceptionTable() {
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
- if (SawPotentiallyThrowing) {
- CallSiteEntry Site = {LastLabel, 0, 0, 0};
+ if (SawPotentiallyThrowing &&
+ MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
+ CallSiteEntry Site = { LastLabel, 0, 0, 0 };
CallSites.push_back(Site);
}
+}
+
+/// EmitExceptionTable - Emit landing pads and actions.
+///
+/// The general organization of the table is complex, but the basic concepts are
+/// easy. First there is a header which describes the location and organization
+/// of the three components that follow.
+///
+/// 1. The landing pad site information describes the range of code covered by
+/// the try. In our case it's an accumulation of the ranges covered by the
+/// invokes in the try. There is also a reference to the landing pad that
+/// handles the exception once processed. Finally an index into the actions
+/// table.
+/// 2. The action table, in our case, is composed of pairs of type IDs and next
+/// action offset. Starting with the action index from the landing pad
+/// site, each type ID is checked for a match to the current exception. If
+/// it matches then the exception and type id are passed on to the landing
+/// pad. Otherwise the next action is looked up. This chain is terminated
+/// with a next action of zero. If no type id is found then the frame is
+/// unwound and handling continues.
+/// 3. Type ID table contains references to all the C++ typeinfo for all
+/// catches in the function. This tables is reverse indexed base 1.
+void DwarfException::EmitExceptionTable() {
+ const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+ if (PadInfos.empty()) return;
+
+ // Sort the landing pads in order of their type ids. This is used to fold
+ // duplicate actions.
+ SmallVector<const LandingPadInfo *, 64> LandingPads;
+ LandingPads.reserve(PadInfos.size());
+
+ for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
+ LandingPads.push_back(&PadInfos[i]);
+
+ std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
+
+ // Compute the actions table and gather the first action index for each
+ // landing pad site.
+ SmallVector<ActionEntry, 32> Actions;
+ SmallVector<unsigned, 64> FirstActions;
+ unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
+ FirstActions);
+
+ // Invokes and nounwind calls have entries in PadMap (due to being bracketed
+ // by try-range labels when lowered). Ordinary calls do not, so appropriate
+ // try-ranges for them need be deduced when using DWARF exception handling.
+ RangeMapType PadMap;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LandingPad = LandingPads[i];
+ for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
+ unsigned BeginLabel = LandingPad->BeginLabels[j];
+ assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
+ PadRange P = { i, j };
+ PadMap[BeginLabel] = P;
+ }
+ }
+
+ // Compute the call-site table.
+ SmallVector<CallSiteEntry, 64> CallSites;
+ ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
// Final tallies.
// Call sites.
- const unsigned SiteStartSize = sizeof(int32_t); // DW_EH_PE_udata4
- const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4
- const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4
- unsigned SizeSites = CallSites.size() * (SiteStartSize +
- SiteLengthSize +
- LandingPadSize);
- for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
- SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
+ const unsigned SiteStartSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
+ const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
+ const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
+ bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
+ bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
+ unsigned SizeSites;
+
+ if (IsSJLJ)
+ SizeSites = 0;
+ else
+ SizeSites = CallSites.size() *
+ (SiteStartSize + SiteLengthSize + LandingPadSize);
+
+ for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
+ if (IsSJLJ)
+ SizeSites += MCAsmInfo::getULEB128Size(i);
+ }
// Type infos.
- const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr
- unsigned SizeTypes = TypeInfos.size() * TypeInfoSize;
-
- unsigned TypeOffset = sizeof(int8_t) + // Call site format
- TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
- SizeSites + SizeActions + SizeTypes;
-
- unsigned TotalSize = sizeof(int8_t) + // LPStart format
- sizeof(int8_t) + // TType format
- TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
- TypeOffset;
+ const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
+ unsigned TTypeFormat;
+ unsigned TypeFormatSize;
+
+ if (!HaveTTData) {
+ // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
+ // that we're omitting that bit.
+ TTypeFormat = dwarf::DW_EH_PE_omit;
+ TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
+ } else {
+ // Okay, we have actual filters or typeinfos to emit. As such, we need to
+ // pick a type encoding for them. We're about to emit a list of pointers to
+ // typeinfo objects at the end of the LSDA. However, unless we're in static
+ // mode, this reference will require a relocation by the dynamic linker.
+ //
+ // Because of this, we have a couple of options:
+ //
+ // 1) If we are in -static mode, we can always use an absolute reference
+ // from the LSDA, because the static linker will resolve it.
+ //
+ // 2) Otherwise, if the LSDA section is writable, we can output the direct
+ // reference to the typeinfo and allow the dynamic linker to relocate
+ // it. Since it is in a writable section, the dynamic linker won't
+ // have a problem.
+ //
+ // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
+ // we need to use some form of indirection. For example, on Darwin,
+ // we can output a statically-relocatable reference to a dyld stub. The
+ // offset to the stub is constant, but the contents are in a section
+ // that is updated by the dynamic linker. This is easy enough, but we
+ // need to tell the personality function of the unwinder to indirect
+ // through the dyld stub.
+ //
+ // FIXME: When (3) is actually implemented, we'll have to emit the stubs
+ // somewhere. This predicate should be moved to a shared location that is
+ // in target-independent code.
+ //
+ if (LSDASection->getKind().isWriteable() ||
+ Asm->TM.getRelocationModel() == Reloc::Static)
+ TTypeFormat = dwarf::DW_EH_PE_absptr;
+ else
+ TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
+ dwarf::DW_EH_PE_sdata4;
- unsigned SizeAlign = (4 - TotalSize) & 3;
+ TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
+ }
// Begin the exception table.
- Asm->SwitchToDataSection(TAI->getDwarfExceptionSection());
+ Asm->OutStreamer.SwitchSection(LSDASection);
Asm->EmitAlignment(2, 0, 0, false);
+
O << "GCC_except_table" << SubprogramCount << ":\n";
+ // The type infos need to be aligned. GCC does this by inserting padding just
+ // before the type infos. However, this changes the size of the exception
+ // table, so you need to take this into account when you output the exception
+ // table size. However, the size is output using a variable length encoding.
+ // So by increasing the size by inserting padding, you may increase the number
+ // of bytes used for writing the size. If it increases, say by one byte, then
+ // you now need to output one less byte of padding to get the type infos
+ // aligned. However this decreases the size of the exception table. This
+ // changes the value you have to output for the exception table size. Due to
+ // the variable length encoding, the number of bytes used for writing the
+ // length may decrease. If so, you then have to increase the amount of
+ // padding. And so on. If you look carefully at the GCC code you will see that
+ // it indeed does this in a loop, going on and on until the values stabilize.
+ // We chose another solution: don't output padding inside the table like GCC
+ // does, instead output it before the table.
+ unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
+ unsigned TyOffset = sizeof(int8_t) + // Call site format
+ MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
+ SizeSites + SizeActions + SizeTypes;
+ unsigned TotalSize = sizeof(int8_t) + // LPStart format
+ sizeof(int8_t) + // TType format
+ (HaveTTData ?
+ MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
+ TyOffset;
+ unsigned SizeAlign = (4 - TotalSize) & 3;
+
for (unsigned i = 0; i != SizeAlign; ++i) {
Asm->EmitInt8(0);
Asm->EOL("Padding");
- }
+ }
EmitLabel("exception", SubprogramCount);
+ if (IsSJLJ) {
+ SmallString<16> LSDAName;
+ raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
+ "_LSDA_" << Asm->getFunctionNumber();
+ O << LSDAName.str() << ":\n";
+ }
+
// Emit the header.
Asm->EmitInt8(dwarf::DW_EH_PE_omit);
- Asm->EOL("LPStart format (DW_EH_PE_omit)");
- Asm->EmitInt8(dwarf::DW_EH_PE_absptr);
- Asm->EOL("TType format (DW_EH_PE_absptr)");
- Asm->EmitULEB128Bytes(TypeOffset);
- Asm->EOL("TType base offset");
- Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
- Asm->EOL("Call site format (DW_EH_PE_udata4)");
- Asm->EmitULEB128Bytes(SizeSites);
- Asm->EOL("Call-site table length");
-
- // Emit the landing pad site information.
- for (unsigned i = 0; i < CallSites.size(); ++i) {
- CallSiteEntry &S = CallSites[i];
- const char *BeginTag;
- unsigned BeginNumber;
-
- if (!S.BeginLabel) {
- BeginTag = "eh_func_begin";
- BeginNumber = SubprogramCount;
- } else {
- BeginTag = "label";
- BeginNumber = S.BeginLabel;
- }
+ Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
- EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
- true, true);
- Asm->EOL("Region start");
+ Asm->EmitInt8(TTypeFormat);
+ Asm->EOL("@TType format", TTypeFormat);
- if (!S.EndLabel)
- EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
- true);
- else
- EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
+ if (HaveTTData) {
+ Asm->EmitULEB128Bytes(TyOffset);
+ Asm->EOL("@TType base offset");
+ }
- Asm->EOL("Region length");
+ // SjLj Exception handling
+ if (IsSJLJ) {
+ Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
+ Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
+ Asm->EmitULEB128Bytes(SizeSites);
+ Asm->EOL("Call site table length");
+
+ // Emit the landing pad site information.
+ unsigned idx = 0;
+ for (SmallVectorImpl<CallSiteEntry>::const_iterator
+ I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
+ const CallSiteEntry &S = *I;
+
+ // Offset of the landing pad, counted in 16-byte bundles relative to the
+ // @LPStart address.
+ Asm->EmitULEB128Bytes(idx);
+ Asm->EOL("Landing pad");
+
+ // Offset of the first associated action record, relative to the start of
+ // the action table. This value is biased by 1 (1 indicates the start of
+ // the action table), and 0 indicates that there are no actions.
+ Asm->EmitULEB128Bytes(S.Action);
+ Asm->EOL("Action");
+ }
+ } else {
+ // DWARF Exception handling
+ assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
+
+ // The call-site table is a list of all call sites that may throw an
+ // exception (including C++ 'throw' statements) in the procedure
+ // fragment. It immediately follows the LSDA header. Each entry indicates,
+ // for a given call, the first corresponding action record and corresponding
+ // landing pad.
+ //
+ // The table begins with the number of bytes, stored as an LEB128
+ // compressed, unsigned integer. The records immediately follow the record
+ // count. They are sorted in increasing call-site address. Each record
+ // indicates:
+ //
+ // * The position of the call-site.
+ // * The position of the landing pad.
+ // * The first action record for that call site.
+ //
+ // A missing entry in the call-site table indicates that a call is not
+ // supposed to throw.
+
+ // Emit the landing pad call site table.
+ Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
+ Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
+ Asm->EmitULEB128Bytes(SizeSites);
+ Asm->EOL("Call site table size");
+
+ for (SmallVectorImpl<CallSiteEntry>::const_iterator
+ I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
+ const CallSiteEntry &S = *I;
+ const char *BeginTag;
+ unsigned BeginNumber;
+
+ if (!S.BeginLabel) {
+ BeginTag = "eh_func_begin";
+ BeginNumber = SubprogramCount;
+ } else {
+ BeginTag = "label";
+ BeginNumber = S.BeginLabel;
+ }
- if (!S.PadLabel)
- Asm->EmitInt32(0);
- else
- EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
+ // Offset of the call site relative to the previous call site, counted in
+ // number of 16-byte bundles. The first call site is counted relative to
+ // the start of the procedure fragment.
+ EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
true, true);
+ Asm->EOL("Region start");
+
+ if (!S.EndLabel)
+ EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
+ true);
+ else
+ EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
+
+ Asm->EOL("Region length");
- Asm->EOL("Landing pad");
+ // Offset of the landing pad, counted in 16-byte bundles relative to the
+ // @LPStart address.
+ if (!S.PadLabel)
+ Asm->EmitInt32(0);
+ else
+ EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
+ true, true);
+
+ Asm->EOL("Landing pad");
- Asm->EmitULEB128Bytes(S.Action);
- Asm->EOL("Action");
+ // Offset of the first associated action record, relative to the start of
+ // the action table. This value is biased by 1 (1 indicates the start of
+ // the action table), and 0 indicates that there are no actions.
+ Asm->EmitULEB128Bytes(S.Action);
+ Asm->EOL("Action");
+ }
}
- // Emit the actions.
- for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
- ActionEntry &Action = Actions[I];
+ // Emit the Action Table.
+ for (SmallVectorImpl<ActionEntry>::const_iterator
+ I = Actions.begin(), E = Actions.end(); I != E; ++I) {
+ const ActionEntry &Action = *I;
+
+ // Type Filter
+ //
+ // Used by the runtime to match the type of the thrown exception to the
+ // type of the catch clauses or the types in the exception specification.
Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
Asm->EOL("TypeInfo index");
+
+ // Action Record
+ //
+ // Self-relative signed displacement in bytes of the next action record,
+ // or 0 if there is no next action record.
+
Asm->EmitSLEB128Bytes(Action.NextAction);
Asm->EOL("Next action");
}
- // Emit the type ids.
- for (unsigned M = TypeInfos.size(); M; --M) {
- GlobalVariable *GV = TypeInfos[M - 1];
+ // Emit the Catch Clauses. The code for the catch clauses following the same
+ // try is similar to a switch statement. The catch clause action record
+ // informs the runtime about the type of a catch clause and about the
+ // associated switch value.
+ //
+ // Action Record Fields:
+ //
+ // * Filter Value
+ // Positive value, starting at 1. Index in the types table of the
+ // __typeinfo for the catch-clause type. 1 is the first word preceding
+ // TTBase, 2 is the second word, and so on. Used by the runtime to check
+ // if the thrown exception type matches the catch-clause type. Back-end
+ // generated switch statements check against this value.
+ //
+ // * Next
+ // Signed offset, in bytes from the start of this field, to the next
+ // chained action record, or zero if none.
+ //
+ // The order of the action records determined by the next field is the order
+ // of the catch clauses as they appear in the source code, and must be kept in
+ // the same order. As a result, changing the order of the catch clause would
+ // change the semantics of the program.
+ for (std::vector<GlobalVariable *>::const_reverse_iterator
+ I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
+ const GlobalVariable *GV = *I;
PrintRelDirective();
if (GV) {
- std::string GLN;
- O << Asm->getGlobalLinkName(GV, GLN);
+ O << Asm->Mang->getMangledName(GV);
} else {
- O << "0";
+ O << "0x0";
}
Asm->EOL("TypeInfo");
}
- // Emit the filter typeids.
- for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
- unsigned TypeID = FilterIds[j];
+ // Emit the Type Table.
+ for (std::vector<unsigned>::const_iterator
+ I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
+ unsigned TypeID = *I;
Asm->EmitULEB128Bytes(TypeID);
Asm->EOL("Filter TypeInfo index");
}
@@ -629,48 +921,53 @@ void DwarfException::EmitExceptionTable() {
/// EndModule - Emit all exception information that should come after the
/// content.
void DwarfException::EndModule() {
+ if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
+ return;
+
+ if (!shouldEmitMovesModule && !shouldEmitTableModule)
+ return;
+
if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
- if (shouldEmitMovesModule || shouldEmitTableModule) {
- const std::vector<Function *> Personalities = MMI->getPersonalities();
- for (unsigned i = 0; i < Personalities.size(); ++i)
- EmitCommonEHFrame(Personalities[i], i);
+ const std::vector<Function *> Personalities = MMI->getPersonalities();
- for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(),
- E = EHFrames.end(); I != E; ++I)
- EmitEHFrame(*I);
- }
+ for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
+ EmitCIE(Personalities[I], I);
+
+ for (std::vector<FunctionEHFrameInfo>::iterator
+ I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
+ EmitFDE(*I);
if (TimePassesIsEnabled)
ExceptionTimer->stopTimer();
}
-/// BeginFunction - Gather pre-function exception information. Assumes being
-/// emitted immediately after the function entry point.
+/// BeginFunction - Gather pre-function exception information. Assumes it's
+/// being emitted immediately after the function entry point.
void DwarfException::BeginFunction(MachineFunction *MF) {
+ if (!MMI || !MAI->doesSupportExceptionHandling()) return;
+
if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
this->MF = MF;
shouldEmitTable = shouldEmitMoves = false;
- if (MMI && TAI->doesSupportExceptionHandling()) {
- // Map all labels and get rid of any dead landing pads.
- MMI->TidyLandingPads();
+ // Map all labels and get rid of any dead landing pads.
+ MMI->TidyLandingPads();
- // If any landing pads survive, we need an EH table.
- if (MMI->getLandingPads().size())
- shouldEmitTable = true;
+ // If any landing pads survive, we need an EH table.
+ if (!MMI->getLandingPads().empty())
+ shouldEmitTable = true;
- // See if we need frame move info.
- if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
- shouldEmitMoves = true;
+ // See if we need frame move info.
+ if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
+ shouldEmitMoves = true;
- if (shouldEmitMoves || shouldEmitTable)
- // Assumes in correct section after the entry point.
- EmitLabel("eh_func_begin", ++SubprogramCount);
- }
+ if (shouldEmitMoves || shouldEmitTable)
+ // Assumes in correct section after the entry point.
+ EmitLabel("eh_func_begin", ++SubprogramCount);
shouldEmitTableModule |= shouldEmitTable;
shouldEmitMovesModule |= shouldEmitMoves;
@@ -682,25 +979,29 @@ void DwarfException::BeginFunction(MachineFunction *MF) {
/// EndFunction - Gather and emit post-function exception information.
///
void DwarfException::EndFunction() {
- if (TimePassesIsEnabled)
+ if (!shouldEmitMoves && !shouldEmitTable) return;
+
+ if (TimePassesIsEnabled)
ExceptionTimer->startTimer();
- if (shouldEmitMoves || shouldEmitTable) {
- EmitLabel("eh_func_end", SubprogramCount);
- EmitExceptionTable();
-
- // Save EH frame information
- std::string Name;
- EHFrames.push_back(
- FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF, Name),
- SubprogramCount,
- MMI->getPersonalityIndex(),
- MF->getFrameInfo()->hasCalls(),
- !MMI->getLandingPads().empty(),
- MMI->getFrameMoves(),
- MF->getFunction()));
- }
+ EmitLabel("eh_func_end", SubprogramCount);
+ EmitExceptionTable();
- if (TimePassesIsEnabled)
+ std::string FunctionEHName =
+ Asm->Mang->getMangledName(MF->getFunction(), ".eh",
+ Asm->MAI->is_EHSymbolPrivate());
+
+ // Save EH frame information
+ EHFrames.push_back(FunctionEHFrameInfo(FunctionEHName, SubprogramCount,
+ MMI->getPersonalityIndex(),
+ MF->getFrameInfo()->hasCalls(),
+ !MMI->getLandingPads().empty(),
+ MMI->getFrameMoves(),
+ MF->getFunction()));
+
+ // Record if this personality index uses a landing pad.
+ UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
+
+ if (TimePassesIsEnabled)
ExceptionTimer->stopTimer();
}
diff --git a/lib/CodeGen/AsmPrinter/DwarfException.h b/lib/CodeGen/AsmPrinter/DwarfException.h
index f1c3e56..f6f5025 100644
--- a/lib/CodeGen/AsmPrinter/DwarfException.h
+++ b/lib/CodeGen/AsmPrinter/DwarfException.h
@@ -11,8 +11,8 @@
//
//===----------------------------------------------------------------------===//
-#ifndef CODEGEN_ASMPRINTER_DWARFEXCEPTION_H__
-#define CODEGEN_ASMPRINTER_DWARFEXCEPTION_H__
+#ifndef LLVM_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
+#define LLVM_CODEGEN_ASMPRINTER_DWARFEXCEPTION_H
#include "DIE.h"
#include "DwarfPrinter.h"
@@ -24,7 +24,7 @@ namespace llvm {
struct LandingPadInfo;
class MachineModuleInfo;
-class TargetAsmInfo;
+class MCAsmInfo;
class Timer;
class raw_ostream;
@@ -51,6 +51,11 @@ class VISIBILITY_HIDDEN DwarfException : public Dwarf {
std::vector<FunctionEHFrameInfo> EHFrames;
+ /// UsesLSDA - Indicates whether an FDE that uses the CIE at the given index
+ /// uses an LSDA. If so, then we need to encode that information in the CIE's
+ /// augmentation.
+ DenseMap<unsigned, bool> UsesLSDA;
+
/// shouldEmitTable - Per-function flag to indicate if EH tables should
/// be emitted.
bool shouldEmitTable;
@@ -70,13 +75,16 @@ class VISIBILITY_HIDDEN DwarfException : public Dwarf {
/// ExceptionTimer - Timer for the Dwarf exception writer.
Timer *ExceptionTimer;
- /// EmitCommonEHFrame - Emit the common eh unwind frame.
- ///
- void EmitCommonEHFrame(const Function *Personality, unsigned Index);
+ /// SizeOfEncodedValue - Return the size of the encoding in bytes.
+ unsigned SizeOfEncodedValue(unsigned Encoding);
- /// EmitEHFrame - Emit function exception frame information.
- ///
- void EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo);
+ /// EmitCIE - Emit a Common Information Entry (CIE). This holds information
+ /// that is shared among many Frame Description Entries. There is at least
+ /// one CIE in every non-empty .debug_frame section.
+ void EmitCIE(const Function *Personality, unsigned Index);
+
+ /// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
+ void EmitFDE(const FunctionEHFrameInfo &EHFrameInfo);
/// EmitExceptionTable - Emit landing pads and actions.
///
@@ -113,13 +121,6 @@ class VISIBILITY_HIDDEN DwarfException : public Dwarf {
static bool isPod() { return true; }
};
- /// ActionEntry - Structure describing an entry in the actions table.
- struct ActionEntry {
- int ValueForTypeID; // The value to write - may not be equal to the type id.
- int NextAction;
- struct ActionEntry *Previous;
- };
-
/// PadRange - Structure holding a try-range and the associated landing pad.
struct PadRange {
// The index of the landing pad.
@@ -130,23 +131,48 @@ class VISIBILITY_HIDDEN DwarfException : public Dwarf {
typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
+ /// ActionEntry - Structure describing an entry in the actions table.
+ struct ActionEntry {
+ int ValueForTypeID; // The value to write - may not be equal to the type id.
+ int NextAction;
+ struct ActionEntry *Previous;
+ };
+
/// CallSiteEntry - Structure describing an entry in the call-site table.
struct CallSiteEntry {
// The 'try-range' is BeginLabel .. EndLabel.
unsigned BeginLabel; // zero indicates the start of the function.
unsigned EndLabel; // zero indicates the end of the function.
+
// The landing pad starts at PadLabel.
unsigned PadLabel; // zero indicates that there is no landing pad.
unsigned Action;
};
+ /// ComputeActionsTable - Compute the actions table and gather the first
+ /// action index for each landing pad site.
+ unsigned ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*>&LPs,
+ SmallVectorImpl<ActionEntry> &Actions,
+ SmallVectorImpl<unsigned> &FirstActions);
+
+ /// ComputeCallSiteTable - Compute the call-site table. The entry for an
+ /// invoke has a try-range containing the call, a non-zero landing pad and an
+ /// appropriate action. The entry for an ordinary call has a try-range
+ /// containing the call and zero for the landing pad and the action. Calls
+ /// marked 'nounwind' have no entry and must not be contained in the try-range
+ /// of any entry - they form gaps in the table. Entries must be ordered by
+ /// try-range address.
+ void ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
+ const RangeMapType &PadMap,
+ const SmallVectorImpl<const LandingPadInfo *> &LPs,
+ const SmallVectorImpl<unsigned> &FirstActions);
void EmitExceptionTable();
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
- DwarfException(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T);
+ DwarfException(raw_ostream &OS, AsmPrinter *A, const MCAsmInfo *T);
virtual ~DwarfException();
/// BeginModule - Emit all exception information that should come prior to the
diff --git a/lib/CodeGen/AsmPrinter/DwarfLabel.cpp b/lib/CodeGen/AsmPrinter/DwarfLabel.cpp
index 8021b7c..6e9293a 100644
--- a/lib/CodeGen/AsmPrinter/DwarfLabel.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfLabel.cpp
@@ -13,7 +13,7 @@
#include "DwarfLabel.h"
#include "llvm/ADT/FoldingSet.h"
-#include <ostream>
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -25,10 +25,7 @@ void DWLabel::Profile(FoldingSetNodeID &ID) const {
}
#ifndef NDEBUG
-void DWLabel::print(std::ostream *O) const {
- if (O) print(*O);
-}
-void DWLabel::print(std::ostream &O) const {
+void DWLabel::print(raw_ostream &O) const {
O << "." << Tag;
if (Number) O << Number;
}
diff --git a/lib/CodeGen/AsmPrinter/DwarfLabel.h b/lib/CodeGen/AsmPrinter/DwarfLabel.h
index b493903..0c0cc4b 100644
--- a/lib/CodeGen/AsmPrinter/DwarfLabel.h
+++ b/lib/CodeGen/AsmPrinter/DwarfLabel.h
@@ -14,19 +14,16 @@
#ifndef CODEGEN_ASMPRINTER_DWARFLABEL_H__
#define CODEGEN_ASMPRINTER_DWARFLABEL_H__
-#include "llvm/Support/Compiler.h"
-#include <iosfwd>
-#include <vector>
-
namespace llvm {
class FoldingSetNodeID;
+ class raw_ostream;
//===--------------------------------------------------------------------===//
/// DWLabel - Labels are used to track locations in the assembler file.
/// Labels appear in the form @verbatim <prefix><Tag><Number> @endverbatim,
/// where the tag is a category of label (Ex. location) and number is a value
/// unique in that category.
- class VISIBILITY_HIDDEN DWLabel {
+ class DWLabel {
/// Tag - Label category tag. Should always be a statically declared C
/// string.
///
@@ -47,8 +44,7 @@ namespace llvm {
void Profile(FoldingSetNodeID &ID) const;
#ifndef NDEBUG
- void print(std::ostream *O) const;
- void print(std::ostream &O) const;
+ void print(raw_ostream &O) const;
#endif
};
} // end llvm namespace
diff --git a/lib/CodeGen/AsmPrinter/DwarfPrinter.cpp b/lib/CodeGen/AsmPrinter/DwarfPrinter.cpp
index a1b97df..20b959b 100644
--- a/lib/CodeGen/AsmPrinter/DwarfPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfPrinter.cpp
@@ -15,39 +15,41 @@
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/Support/Dwarf.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
-
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/StringExtras.h"
using namespace llvm;
-Dwarf::Dwarf(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T,
+Dwarf::Dwarf(raw_ostream &OS, AsmPrinter *A, const MCAsmInfo *T,
const char *flavor)
-: O(OS), Asm(A), TAI(T), TD(Asm->TM.getTargetData()),
+: O(OS), Asm(A), MAI(T), TD(Asm->TM.getTargetData()),
RI(Asm->TM.getRegisterInfo()), M(NULL), MF(NULL), MMI(NULL),
SubprogramCount(0), Flavor(flavor), SetCounter(1) {}
void Dwarf::PrintRelDirective(bool Force32Bit, bool isInSection) const {
- if (isInSection && TAI->getDwarfSectionOffsetDirective())
- O << TAI->getDwarfSectionOffsetDirective();
+ if (isInSection && MAI->getDwarfSectionOffsetDirective())
+ O << MAI->getDwarfSectionOffsetDirective();
else if (Force32Bit || TD->getPointerSize() == sizeof(int32_t))
- O << TAI->getData32bitsDirective();
+ O << MAI->getData32bitsDirective();
else
- O << TAI->getData64bitsDirective();
+ O << MAI->getData64bitsDirective();
}
/// PrintLabelName - Print label name in form used by Dwarf writer.
///
void Dwarf::PrintLabelName(const char *Tag, unsigned Number) const {
- O << TAI->getPrivateGlobalPrefix() << Tag;
+ O << MAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
}
void Dwarf::PrintLabelName(const char *Tag, unsigned Number,
const char *Suffix) const {
- O << TAI->getPrivateGlobalPrefix() << Tag;
+ O << MAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
O << Suffix;
}
@@ -65,13 +67,13 @@ void Dwarf::EmitReference(const char *Tag, unsigned Number,
bool IsPCRelative, bool Force32Bit) const {
PrintRelDirective(Force32Bit);
PrintLabelName(Tag, Number);
- if (IsPCRelative) O << "-" << TAI->getPCSymbol();
+ if (IsPCRelative) O << "-" << MAI->getPCSymbol();
}
void Dwarf::EmitReference(const std::string &Name, bool IsPCRelative,
bool Force32Bit) const {
PrintRelDirective(Force32Bit);
O << Name;
- if (IsPCRelative) O << "-" << TAI->getPCSymbol();
+ if (IsPCRelative) O << "-" << MAI->getPCSymbol();
}
/// EmitDifference - Emit the difference between two labels. Some assemblers do
@@ -80,7 +82,7 @@ void Dwarf::EmitReference(const std::string &Name, bool IsPCRelative,
void Dwarf::EmitDifference(const char *TagHi, unsigned NumberHi,
const char *TagLo, unsigned NumberLo,
bool IsSmall) {
- if (TAI->needsSet()) {
+ if (MAI->needsSet()) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
@@ -106,11 +108,11 @@ void Dwarf::EmitSectionOffset(const char* Label, const char* Section,
bool useSet) {
bool printAbsolute = false;
if (isEH)
- printAbsolute = TAI->isAbsoluteEHSectionOffsets();
+ printAbsolute = MAI->isAbsoluteEHSectionOffsets();
else
- printAbsolute = TAI->isAbsoluteDebugSectionOffsets();
+ printAbsolute = MAI->isAbsoluteDebugSectionOffsets();
- if (TAI->needsSet() && useSet) {
+ if (MAI->needsSet() && useSet) {
O << "\t.set\t";
PrintLabelName("set", SetCounter, Flavor);
O << ",";
@@ -190,7 +192,7 @@ void Dwarf::EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID,
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
- assert(0 && "Machine move not supported yet.");
+ llvm_unreachable("Machine move not supported yet.");
}
} else if (Src.isReg() &&
Src.getReg() == MachineLocation::VirtualFP) {
@@ -200,7 +202,7 @@ void Dwarf::EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID,
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), isEH));
Asm->EOL("Register");
} else {
- assert(0 && "Machine move not supported yet.");
+ llvm_unreachable("Machine move not supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getReg(), isEH);
diff --git a/lib/CodeGen/AsmPrinter/DwarfPrinter.h b/lib/CodeGen/AsmPrinter/DwarfPrinter.h
index 6e75992..33ebb3b 100644
--- a/lib/CodeGen/AsmPrinter/DwarfPrinter.h
+++ b/lib/CodeGen/AsmPrinter/DwarfPrinter.h
@@ -25,7 +25,7 @@ namespace llvm {
class MachineFunction;
class MachineModuleInfo;
class Module;
- class TargetAsmInfo;
+ class MCAsmInfo;
class TargetData;
class TargetRegisterInfo;
@@ -43,9 +43,9 @@ namespace llvm {
///
AsmPrinter *Asm;
- /// TAI - Target asm information.
+ /// MAI - Target asm information.
///
- const TargetAsmInfo *TAI;
+ const MCAsmInfo *MAI;
/// TD - Target data.
///
@@ -80,7 +80,7 @@ namespace llvm {
///
unsigned SetCounter;
- Dwarf(raw_ostream &OS, AsmPrinter *A, const TargetAsmInfo *T,
+ Dwarf(raw_ostream &OS, AsmPrinter *A, const MCAsmInfo *T,
const char *flavor);
public:
//===------------------------------------------------------------------===//
@@ -88,7 +88,7 @@ namespace llvm {
//
const AsmPrinter *getAsm() const { return Asm; }
MachineModuleInfo *getMMI() const { return MMI; }
- const TargetAsmInfo *getTargetAsmInfo() const { return TAI; }
+ const MCAsmInfo *getMCAsmInfo() const { return MAI; }
const TargetData *getTargetData() const { return TD; }
void PrintRelDirective(bool Force32Bit = false,
diff --git a/lib/CodeGen/AsmPrinter/DwarfWriter.cpp b/lib/CodeGen/AsmPrinter/DwarfWriter.cpp
index 89084989..0638d35 100644
--- a/lib/CodeGen/AsmPrinter/DwarfWriter.cpp
+++ b/lib/CodeGen/AsmPrinter/DwarfWriter.cpp
@@ -39,7 +39,7 @@ DwarfWriter::~DwarfWriter() {
void DwarfWriter::BeginModule(Module *M,
MachineModuleInfo *MMI,
raw_ostream &OS, AsmPrinter *A,
- const TargetAsmInfo *T) {
+ const MCAsmInfo *T) {
DE = new DwarfException(OS, A, T);
DD = new DwarfDebug(OS, A, T);
DE->BeginModule(M, MMI);
@@ -51,6 +51,8 @@ void DwarfWriter::BeginModule(Module *M,
void DwarfWriter::EndModule() {
DE->EndModule();
DD->EndModule();
+ delete DD; DD = 0;
+ delete DE; DE = 0;
}
/// BeginFunction - Gather pre-function debug information. Assumes being
@@ -75,18 +77,18 @@ void DwarfWriter::EndFunction(MachineFunction *MF) {
/// label. Returns a unique label ID used to generate a label and provide
/// correspondence to the source line list.
unsigned DwarfWriter::RecordSourceLine(unsigned Line, unsigned Col,
- DICompileUnit CU) {
- return DD->RecordSourceLine(Line, Col, CU);
+ MDNode *Scope) {
+ return DD->RecordSourceLine(Line, Col, Scope);
}
/// RecordRegionStart - Indicate the start of a region.
-unsigned DwarfWriter::RecordRegionStart(GlobalVariable *V) {
- return DD->RecordRegionStart(V);
+unsigned DwarfWriter::RecordRegionStart(MDNode *N) {
+ return DD->RecordRegionStart(N);
}
/// RecordRegionEnd - Indicate the end of a region.
-unsigned DwarfWriter::RecordRegionEnd(GlobalVariable *V) {
- return DD->RecordRegionEnd(V);
+unsigned DwarfWriter::RecordRegionEnd(MDNode *N) {
+ return DD->RecordRegionEnd(N);
}
/// getRecordSourceLineCount - Count source lines.
@@ -96,9 +98,8 @@ unsigned DwarfWriter::getRecordSourceLineCount() {
/// RecordVariable - Indicate the declaration of a local variable.
///
-void DwarfWriter::RecordVariable(GlobalVariable *GV, unsigned FrameIndex,
- const MachineInstr *MI) {
- DD->RecordVariable(GV, FrameIndex, MI);
+void DwarfWriter::RecordVariable(MDNode *N, unsigned FrameIndex) {
+ DD->RecordVariable(N, FrameIndex);
}
/// ShouldEmitDwarfDebug - Returns true if Dwarf debugging declarations should
@@ -107,8 +108,7 @@ bool DwarfWriter::ShouldEmitDwarfDebug() const {
return DD && DD->ShouldEmitDwarfDebug();
}
-//// RecordInlinedFnStart - Global variable GV is inlined at the location marked
-//// by LabelID label.
+//// RecordInlinedFnStart
unsigned DwarfWriter::RecordInlinedFnStart(DISubprogram SP, DICompileUnit CU,
unsigned Line, unsigned Col) {
return DD->RecordInlinedFnStart(SP, CU, Line, Col);
@@ -119,9 +119,9 @@ unsigned DwarfWriter::RecordInlinedFnEnd(DISubprogram SP) {
return DD->RecordInlinedFnEnd(SP);
}
-/// RecordVariableScope - Record scope for the variable declared by
-/// DeclareMI. DeclareMI must describe TargetInstrInfo::DECLARE.
-void DwarfWriter::RecordVariableScope(DIVariable &DV,
- const MachineInstr *DeclareMI) {
- DD->RecordVariableScope(DV, DeclareMI);
+void DwarfWriter::SetDbgScopeBeginLabels(const MachineInstr *MI, unsigned L) {
+ DD->SetDbgScopeEndLabels(MI, L);
+}
+void DwarfWriter::SetDbgScopeEndLabels(const MachineInstr *MI, unsigned L) {
+ DD->SetDbgScopeBeginLabels(MI, L);
}
diff --git a/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp b/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
index 8ba903a..06b92b7 100644
--- a/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/OcamlGCPrinter.cpp
@@ -15,12 +15,14 @@
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/Module.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
-
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
@@ -28,10 +30,10 @@ namespace {
class VISIBILITY_HIDDEN OcamlGCMetadataPrinter : public GCMetadataPrinter {
public:
void beginAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI);
+ const MCAsmInfo &MAI);
void finishAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI);
+ const MCAsmInfo &MAI);
};
}
@@ -42,11 +44,11 @@ Y("ocaml", "ocaml 3.10-compatible collector");
void llvm::linkOcamlGCPrinter() { }
static void EmitCamlGlobal(const Module &M, raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI, const char *Id) {
+ const MCAsmInfo &MAI, const char *Id) {
const std::string &MId = M.getModuleIdentifier();
std::string Mangled;
- Mangled += TAI.getGlobalPrefix();
+ Mangled += MAI.getGlobalPrefix();
Mangled += "caml";
size_t Letter = Mangled.size();
Mangled.append(MId.begin(), std::find(MId.begin(), MId.end(), '.'));
@@ -56,18 +58,18 @@ static void EmitCamlGlobal(const Module &M, raw_ostream &OS, AsmPrinter &AP,
// Capitalize the first letter of the module name.
Mangled[Letter] = toupper(Mangled[Letter]);
- if (const char *GlobalDirective = TAI.getGlobalDirective())
+ if (const char *GlobalDirective = MAI.getGlobalDirective())
OS << GlobalDirective << Mangled << "\n";
OS << Mangled << ":\n";
}
void OcamlGCMetadataPrinter::beginAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI) {
- AP.SwitchToSection(TAI.getTextSection());
- EmitCamlGlobal(getModule(), OS, AP, TAI, "code_begin");
+ const MCAsmInfo &MAI) {
+ AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
+ EmitCamlGlobal(getModule(), OS, AP, MAI, "code_begin");
- AP.SwitchToSection(TAI.getDataSection());
- EmitCamlGlobal(getModule(), OS, AP, TAI, "data_begin");
+ AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
+ EmitCamlGlobal(getModule(), OS, AP, MAI, "data_begin");
}
/// emitAssembly - Print the frametable. The ocaml frametable format is thus:
@@ -87,55 +89,59 @@ void OcamlGCMetadataPrinter::beginAssembly(raw_ostream &OS, AsmPrinter &AP,
/// either condition is detected in a function which uses the GC.
///
void OcamlGCMetadataPrinter::finishAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI) {
+ const MCAsmInfo &MAI) {
const char *AddressDirective;
int AddressAlignLog;
if (AP.TM.getTargetData()->getPointerSize() == sizeof(int32_t)) {
- AddressDirective = TAI.getData32bitsDirective();
+ AddressDirective = MAI.getData32bitsDirective();
AddressAlignLog = 2;
} else {
- AddressDirective = TAI.getData64bitsDirective();
+ AddressDirective = MAI.getData64bitsDirective();
AddressAlignLog = 3;
}
- AP.SwitchToSection(TAI.getTextSection());
- EmitCamlGlobal(getModule(), OS, AP, TAI, "code_end");
+ AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
+ EmitCamlGlobal(getModule(), OS, AP, MAI, "code_end");
- AP.SwitchToSection(TAI.getDataSection());
- EmitCamlGlobal(getModule(), OS, AP, TAI, "data_end");
+ AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
+ EmitCamlGlobal(getModule(), OS, AP, MAI, "data_end");
OS << AddressDirective << 0; // FIXME: Why does ocaml emit this??
AP.EOL();
- AP.SwitchToSection(TAI.getDataSection());
- EmitCamlGlobal(getModule(), OS, AP, TAI, "frametable");
+ AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
+ EmitCamlGlobal(getModule(), OS, AP, MAI, "frametable");
for (iterator I = begin(), IE = end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
uint64_t FrameSize = FI.getFrameSize();
if (FrameSize >= 1<<16) {
- cerr << "Function '" << FI.getFunction().getNameStart()
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Function '" << FI.getFunction().getName()
<< "' is too large for the ocaml GC! "
<< "Frame size " << FrameSize << " >= 65536.\n";
- cerr << "(" << uintptr_t(&FI) << ")\n";
- abort(); // Very rude!
+ Msg << "(" << uintptr_t(&FI) << ")";
+ llvm_report_error(Msg.str()); // Very rude!
}
- OS << "\t" << TAI.getCommentString() << " live roots for "
- << FI.getFunction().getNameStart() << "\n";
+ OS << "\t" << MAI.getCommentString() << " live roots for "
+ << FI.getFunction().getName() << "\n";
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
size_t LiveCount = FI.live_size(J);
if (LiveCount >= 1<<16) {
- cerr << "Function '" << FI.getFunction().getNameStart()
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Function '" << FI.getFunction().getName()
<< "' is too large for the ocaml GC! "
- << "Live root count " << LiveCount << " >= 65536.\n";
- abort(); // Very rude!
+ << "Live root count " << LiveCount << " >= 65536.";
+ llvm_report_error(Msg.str()); // Very rude!
}
OS << AddressDirective
- << TAI.getPrivateGlobalPrefix() << "label" << J->Num;
+ << MAI.getPrivateGlobalPrefix() << "label" << J->Num;
AP.EOL("call return address");
AP.EmitInt16(FrameSize);
diff --git a/lib/CodeGen/BranchFolding.cpp b/lib/CodeGen/BranchFolding.cpp
index 2635303..f9abeac 100644
--- a/lib/CodeGen/BranchFolding.cpp
+++ b/lib/CodeGen/BranchFolding.cpp
@@ -17,6 +17,7 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "branchfolding"
+#include "BranchFolding.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
@@ -27,6 +28,8 @@
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
@@ -44,70 +47,35 @@ TailMergeThreshold("tail-merge-threshold",
cl::desc("Max number of predecessors to consider tail merging"),
cl::init(150), cl::Hidden);
-namespace {
- struct VISIBILITY_HIDDEN BranchFolder : public MachineFunctionPass {
- static char ID;
- explicit BranchFolder(bool defaultEnableTailMerge) :
- MachineFunctionPass(&ID) {
- switch (FlagEnableTailMerge) {
- case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
- case cl::BOU_TRUE: EnableTailMerge = true; break;
- case cl::BOU_FALSE: EnableTailMerge = false; break;
- }
- }
- virtual bool runOnMachineFunction(MachineFunction &MF);
- virtual const char *getPassName() const { return "Control Flow Optimizer"; }
- const TargetInstrInfo *TII;
- MachineModuleInfo *MMI;
- bool MadeChange;
- private:
- // Tail Merging.
- bool EnableTailMerge;
- bool TailMergeBlocks(MachineFunction &MF);
- bool TryMergeBlocks(MachineBasicBlock* SuccBB,
- MachineBasicBlock* PredBB);
- void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
- MachineBasicBlock *NewDest);
- MachineBasicBlock *SplitMBBAt(MachineBasicBlock &CurMBB,
- MachineBasicBlock::iterator BBI1);
- unsigned ComputeSameTails(unsigned CurHash, unsigned minCommonTailLength);
- void RemoveBlocksWithHash(unsigned CurHash, MachineBasicBlock* SuccBB,
- MachineBasicBlock* PredBB);
- unsigned CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
- unsigned maxCommonTailLength);
-
- typedef std::pair<unsigned,MachineBasicBlock*> MergePotentialsElt;
- typedef std::vector<MergePotentialsElt>::iterator MPIterator;
- std::vector<MergePotentialsElt> MergePotentials;
-
- typedef std::pair<MPIterator, MachineBasicBlock::iterator> SameTailElt;
- std::vector<SameTailElt> SameTails;
-
- const TargetRegisterInfo *RegInfo;
- RegScavenger *RS;
- // Branch optzn.
- bool OptimizeBranches(MachineFunction &MF);
- void OptimizeBlock(MachineBasicBlock *MBB);
- void RemoveDeadBlock(MachineBasicBlock *MBB);
- bool OptimizeImpDefsBlock(MachineBasicBlock *MBB);
-
- bool CanFallThrough(MachineBasicBlock *CurBB);
- bool CanFallThrough(MachineBasicBlock *CurBB, bool BranchUnAnalyzable,
- MachineBasicBlock *TBB, MachineBasicBlock *FBB,
- const SmallVectorImpl<MachineOperand> &Cond);
- };
- char BranchFolder::ID = 0;
-}
+char BranchFolderPass::ID = 0;
FunctionPass *llvm::createBranchFoldingPass(bool DefaultEnableTailMerge) {
- return new BranchFolder(DefaultEnableTailMerge); }
+ return new BranchFolderPass(DefaultEnableTailMerge);
+}
+
+bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
+ return OptimizeFunction(MF,
+ MF.getTarget().getInstrInfo(),
+ MF.getTarget().getRegisterInfo(),
+ getAnalysisIfAvailable<MachineModuleInfo>());
+}
+
+
+
+BranchFolder::BranchFolder(bool defaultEnableTailMerge) {
+ switch (FlagEnableTailMerge) {
+ case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
+ case cl::BOU_TRUE: EnableTailMerge = true; break;
+ case cl::BOU_FALSE: EnableTailMerge = false; break;
+ }
+}
/// RemoveDeadBlock - Remove the specified dead machine basic block from the
/// function, updating the CFG.
void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
assert(MBB->pred_empty() && "MBB must be dead!");
- DOUT << "\nRemoving MBB: " << *MBB;
+ DEBUG(errs() << "\nRemoving MBB: " << *MBB);
MachineFunction *MF = MBB->getParent();
// drop all successors.
@@ -146,7 +114,7 @@ bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) {
break;
unsigned Reg = I->getOperand(0).getReg();
ImpDefRegs.insert(Reg);
- for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs)
ImpDefRegs.insert(SubReg);
++I;
@@ -180,32 +148,37 @@ bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock *MBB) {
return true;
}
-bool BranchFolder::runOnMachineFunction(MachineFunction &MF) {
- TII = MF.getTarget().getInstrInfo();
- if (!TII) return false;
+/// OptimizeFunction - Perhaps branch folding, tail merging and other
+/// CFG optimizations on the given function.
+bool BranchFolder::OptimizeFunction(MachineFunction &MF,
+ const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri,
+ MachineModuleInfo *mmi) {
+ if (!tii) return false;
+
+ TII = tii;
+ TRI = tri;
+ MMI = mmi;
- RegInfo = MF.getTarget().getRegisterInfo();
+ RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : NULL;
// Fix CFG. The later algorithms expect it to be right.
- bool EverMadeChange = false;
+ bool MadeChange = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; I++) {
MachineBasicBlock *MBB = I, *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (!TII->AnalyzeBranch(*MBB, TBB, FBB, Cond, true))
- EverMadeChange |= MBB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
- EverMadeChange |= OptimizeImpDefsBlock(MBB);
+ MadeChange |= MBB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
+ MadeChange |= OptimizeImpDefsBlock(MBB);
}
- RS = RegInfo->requiresRegisterScavenging(MF) ? new RegScavenger() : NULL;
-
- MMI = getAnalysisIfAvailable<MachineModuleInfo>();
bool MadeChangeThisIteration = true;
while (MadeChangeThisIteration) {
MadeChangeThisIteration = false;
MadeChangeThisIteration |= TailMergeBlocks(MF);
MadeChangeThisIteration |= OptimizeBranches(MF);
- EverMadeChange |= MadeChangeThisIteration;
+ MadeChange |= MadeChangeThisIteration;
}
// See if any jump tables have become mergable or dead as the code generator
@@ -222,8 +195,12 @@ bool BranchFolder::runOnMachineFunction(MachineFunction &MF) {
// Scan the jump tables, seeing if there are any duplicates. Note that this
// is N^2, which should be fixed someday.
- for (unsigned i = 1, e = JTs.size(); i != e; ++i)
- JTMapping.push_back(JTI->getJumpTableIndex(JTs[i].MBBs));
+ for (unsigned i = 1, e = JTs.size(); i != e; ++i) {
+ if (JTs[i].MBBs.empty())
+ JTMapping.push_back(i);
+ else
+ JTMapping.push_back(JTI->getJumpTableIndex(JTs[i].MBBs));
+ }
// If a jump table was merge with another one, walk the function rewriting
// references to jump tables to reference the new JT ID's. Keep track of
@@ -250,12 +227,12 @@ bool BranchFolder::runOnMachineFunction(MachineFunction &MF) {
for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
if (!JTIsLive.test(i)) {
JTI->RemoveJumpTable(i);
- EverMadeChange = true;
+ MadeChange = true;
}
}
-
+
delete RS;
- return EverMadeChange;
+ return MadeChange;
}
//===----------------------------------------------------------------------===//
@@ -395,9 +372,9 @@ MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
RS->enterBasicBlock(&CurMBB);
if (!CurMBB.empty())
RS->forward(prior(CurMBB.end()));
- BitVector RegsLiveAtExit(RegInfo->getNumRegs());
+ BitVector RegsLiveAtExit(TRI->getNumRegs());
RS->getRegsUsed(RegsLiveAtExit, false);
- for (unsigned int i=0, e=RegInfo->getNumRegs(); i!=e; i++)
+ for (unsigned int i=0, e=TRI->getNumRegs(); i!=e; i++)
if (RegsLiveAtExit[i])
NewMBB->addLiveIn(i);
}
@@ -461,7 +438,7 @@ static bool MergeCompare(const std::pair<unsigned,MachineBasicBlock*> &p,
// _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
// an object with itself.
#ifndef _GLIBCXX_DEBUG
- assert(0 && "Predecessor appears twice");
+ llvm_unreachable("Predecessor appears twice");
#endif
return false;
}
@@ -567,8 +544,8 @@ unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
MachineBasicBlock::iterator BBI = SameTails[commonTailIndex].second;
MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
- DOUT << "\nSplitting " << MBB->getNumber() << ", size " <<
- maxCommonTailLength;
+ DEBUG(errs() << "\nSplitting " << MBB->getNumber() << ", size "
+ << maxCommonTailLength);
MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI);
SameTails[commonTailIndex].first->second = newMBB;
@@ -590,13 +567,14 @@ unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
bool BranchFolder::TryMergeBlocks(MachineBasicBlock *SuccBB,
MachineBasicBlock* PredBB) {
+ bool MadeChange = false;
+
// It doesn't make sense to save a single instruction since tail merging
// will add a jump.
// FIXME: Ask the target to provide the threshold?
unsigned minCommonTailLength = (SuccBB ? 1 : 2) + 1;
- MadeChange = false;
- DOUT << "\nTryMergeBlocks " << MergePotentials.size() << '\n';
+ DEBUG(errs() << "\nTryMergeBlocks " << MergePotentials.size() << '\n');
// Sort by hash value so that blocks with identical end sequences sort
// together.
@@ -643,17 +621,17 @@ bool BranchFolder::TryMergeBlocks(MachineBasicBlock *SuccBB,
MachineBasicBlock *MBB = SameTails[commonTailIndex].first->second;
// MBB is common tail. Adjust all other BB's to jump to this one.
// Traversal must be forwards so erases work.
- DOUT << "\nUsing common tail " << MBB->getNumber() << " for ";
+ DEBUG(errs() << "\nUsing common tail " << MBB->getNumber() << " for ");
for (unsigned int i=0; i<SameTails.size(); ++i) {
if (commonTailIndex==i)
continue;
- DOUT << SameTails[i].first->second->getNumber() << ",";
+ DEBUG(errs() << SameTails[i].first->second->getNumber() << ",");
// Hack the end off BB i, making it jump to BB commonTailIndex instead.
ReplaceTailWithBranchTo(SameTails[i].second, MBB);
// BB i is no longer a predecessor of SuccBB; remove it from the worklist.
MergePotentials.erase(SameTails[i].first);
}
- DOUT << "\n";
+ DEBUG(errs() << "\n");
// We leave commonTailIndex in the worklist in case there are other blocks
// that match it with a smaller number of instructions.
MadeChange = true;
@@ -665,7 +643,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
if (!EnableTailMerge) return false;
- MadeChange = false;
+ bool MadeChange = false;
// First find blocks with no successors.
MergePotentials.clear();
@@ -699,6 +677,7 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
if (I->pred_size() >= 2 && I->pred_size() < TailMergeThreshold) {
+ SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
MachineBasicBlock *IBB = I;
MachineBasicBlock *PredBB = prior(I);
MergePotentials.clear();
@@ -709,6 +688,9 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
// Skip blocks that loop to themselves, can't tail merge these.
if (PBB==IBB)
continue;
+ // Visit each predecessor only once.
+ if (!UniquePreds.insert(PBB))
+ continue;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (!TII->AnalyzeBranch(*PBB, TBB, FBB, Cond, true)) {
@@ -772,14 +754,14 @@ bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
//===----------------------------------------------------------------------===//
bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
- MadeChange = false;
+ bool MadeChange = false;
// Make sure blocks are numbered in order
MF.RenumberBlocks();
for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
MachineBasicBlock *MBB = I++;
- OptimizeBlock(MBB);
+ MadeChange |= OptimizeBlock(MBB);
// If it is dead, remove it.
if (MBB->pred_empty()) {
@@ -873,7 +855,9 @@ static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
/// OptimizeBlock - Analyze and optimize control flow related to the specified
/// block. This is never called on the entry block.
-void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
+bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
+ bool MadeChange = false;
+
MachineFunction::iterator FallThrough = MBB;
++FallThrough;
@@ -882,7 +866,7 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
// points to this block.
if (MBB->empty() && !MBB->isLandingPad()) {
// Dead block? Leave for cleanup later.
- if (MBB->pred_empty()) return;
+ if (MBB->pred_empty()) return MadeChange;
if (FallThrough == MBB->getParent()->end()) {
// TODO: Simplify preds to not branch here if possible!
@@ -893,14 +877,13 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
MachineBasicBlock *Pred = *(MBB->pred_end()-1);
Pred->ReplaceUsesOfBlockWith(MBB, FallThrough);
}
-
// If MBB was the target of a jump table, update jump tables to go to the
// fallthrough instead.
MBB->getParent()->getJumpTableInfo()->
ReplaceMBBInJumpTables(MBB, FallThrough);
MadeChange = true;
}
- return;
+ return MadeChange;
}
// Check to see if we can simplify the terminator of the block before this
@@ -1004,8 +987,8 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
// Reverse the branch so we will fall through on the previous true cond.
SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
if (!TII->ReverseBranchCondition(NewPriorCond)) {
- DOUT << "\nMoving MBB: " << *MBB;
- DOUT << "To make fallthrough to: " << *PriorTBB << "\n";
+ DEBUG(errs() << "\nMoving MBB: " << *MBB
+ << "To make fallthrough to: " << *PriorTBB << "\n");
TII->RemoveBranch(PrevBB);
TII->InsertBranch(PrevBB, MBB, 0, NewPriorCond);
@@ -1014,7 +997,7 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
MBB->moveAfter(--MBB->getParent()->end());
MadeChange = true;
++NumBranchOpts;
- return;
+ return MadeChange;
}
}
}
@@ -1116,7 +1099,7 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
if (DidChange) {
++NumBranchOpts;
MadeChange = true;
- if (!HasBranchToSelf) return;
+ if (!HasBranchToSelf) return MadeChange;
}
}
}
@@ -1197,8 +1180,10 @@ void BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
PrevBB.isSuccessor(FallThrough)) {
MBB->moveAfter(--MBB->getParent()->end());
MadeChange = true;
- return;
+ return MadeChange;
}
}
}
+
+ return MadeChange;
}
diff --git a/lib/CodeGen/BranchFolding.h b/lib/CodeGen/BranchFolding.h
new file mode 100644
index 0000000..9763e33
--- /dev/null
+++ b/lib/CodeGen/BranchFolding.h
@@ -0,0 +1,84 @@
+//===-- BranchFolding.h - Fold machine code branch instructions --*- C++ -*===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_BRANCHFOLDING_HPP
+#define LLVM_CODEGEN_BRANCHFOLDING_HPP
+
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include <vector>
+
+namespace llvm {
+ class MachineFunction;
+ class MachineModuleInfo;
+ class RegScavenger;
+ class TargetInstrInfo;
+ class TargetRegisterInfo;
+
+ class BranchFolder {
+ public:
+ explicit BranchFolder(bool defaultEnableTailMerge);
+
+ bool OptimizeFunction(MachineFunction &MF,
+ const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri,
+ MachineModuleInfo *mmi);
+ private:
+ typedef std::pair<unsigned,MachineBasicBlock*> MergePotentialsElt;
+ typedef std::vector<MergePotentialsElt>::iterator MPIterator;
+ std::vector<MergePotentialsElt> MergePotentials;
+
+ typedef std::pair<MPIterator, MachineBasicBlock::iterator> SameTailElt;
+ std::vector<SameTailElt> SameTails;
+
+ bool EnableTailMerge;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineModuleInfo *MMI;
+ RegScavenger *RS;
+
+ bool TailMergeBlocks(MachineFunction &MF);
+ bool TryMergeBlocks(MachineBasicBlock* SuccBB,
+ MachineBasicBlock* PredBB);
+ void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
+ MachineBasicBlock *NewDest);
+ MachineBasicBlock *SplitMBBAt(MachineBasicBlock &CurMBB,
+ MachineBasicBlock::iterator BBI1);
+ unsigned ComputeSameTails(unsigned CurHash, unsigned minCommonTailLength);
+ void RemoveBlocksWithHash(unsigned CurHash, MachineBasicBlock* SuccBB,
+ MachineBasicBlock* PredBB);
+ unsigned CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
+ unsigned maxCommonTailLength);
+
+ bool OptimizeBranches(MachineFunction &MF);
+ bool OptimizeBlock(MachineBasicBlock *MBB);
+ void RemoveDeadBlock(MachineBasicBlock *MBB);
+ bool OptimizeImpDefsBlock(MachineBasicBlock *MBB);
+
+ bool CanFallThrough(MachineBasicBlock *CurBB);
+ bool CanFallThrough(MachineBasicBlock *CurBB, bool BranchUnAnalyzable,
+ MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond);
+ };
+
+
+ /// BranchFolderPass - Wrap branch folder in a machine function pass.
+ class BranchFolderPass : public MachineFunctionPass,
+ public BranchFolder {
+ public:
+ static char ID;
+ explicit BranchFolderPass(bool defaultEnableTailMerge)
+ : MachineFunctionPass(&ID), BranchFolder(defaultEnableTailMerge) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+ virtual const char *getPassName() const { return "Control Flow Optimizer"; }
+ };
+}
+
+#endif /* LLVM_CODEGEN_BRANCHFOLDING_HPP */
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 48f17d0..713c30c 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -5,6 +5,7 @@ add_llvm_library(LLVMCodeGen
DwarfEHPrepare.cpp
ELFCodeEmitter.cpp
ELFWriter.cpp
+ ExactHazardRecognizer.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
@@ -12,7 +13,6 @@ add_llvm_library(LLVMCodeGen
IntrinsicLowering.cpp
LLVMTargetMachine.cpp
LatencyPriorityQueue.cpp
- LazyLiveness.cpp
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveStackAnalysis.cpp
@@ -23,27 +23,28 @@ add_llvm_library(LLVMCodeGen
MachineBasicBlock.cpp
MachineDominators.cpp
MachineFunction.cpp
+ MachineFunctionAnalysis.cpp
+ MachineFunctionPass.cpp
MachineInstr.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineModuleInfo.cpp
+ MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSink.cpp
MachineVerifier.cpp
+ ObjectCodeEmitter.cpp
OcamlGC.cpp
- PBQP.cpp
PHIElimination.cpp
Passes.cpp
PostRASchedulerList.cpp
PreAllocSplitting.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
- RegAllocBigBlock.cpp
RegAllocLinearScan.cpp
RegAllocLocal.cpp
RegAllocPBQP.cpp
- RegAllocSimple.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
ScheduleDAG.cpp
@@ -53,6 +54,7 @@ add_llvm_library(LLVMCodeGen
ShadowStackGC.cpp
ShrinkWrapping.cpp
SimpleRegisterCoalescing.cpp
+ SjLjEHPrepare.cpp
Spiller.cpp
StackProtector.cpp
StackSlotColoring.cpp
diff --git a/lib/CodeGen/CodePlacementOpt.cpp b/lib/CodeGen/CodePlacementOpt.cpp
index 383098e..932fae4 100644
--- a/lib/CodeGen/CodePlacementOpt.cpp
+++ b/lib/CodeGen/CodePlacementOpt.cpp
@@ -95,11 +95,11 @@ FunctionPass *llvm::createCodePlacementOptPass() {
/// ...
/// jmp B
///
-/// C: --> new loop header
+/// C:
/// ...
/// <fallthough to B>
///
-/// B:
+/// B: --> loop header
/// ...
/// jcc <cond> C, [exit]
///
diff --git a/lib/CodeGen/DeadMachineInstructionElim.cpp b/lib/CodeGen/DeadMachineInstructionElim.cpp
index 4832a5e..078ed3d 100644
--- a/lib/CodeGen/DeadMachineInstructionElim.cpp
+++ b/lib/CodeGen/DeadMachineInstructionElim.cpp
@@ -17,6 +17,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
@@ -36,7 +37,7 @@ namespace {
DeadMachineInstructionElim() : MachineFunctionPass(&ID) {}
private:
- bool isDead(MachineInstr *MI) const;
+ bool isDead(const MachineInstr *MI) const;
};
}
char DeadMachineInstructionElim::ID = 0;
@@ -49,10 +50,10 @@ FunctionPass *llvm::createDeadMachineInstructionElimPass() {
return new DeadMachineInstructionElim();
}
-bool DeadMachineInstructionElim::isDead(MachineInstr *MI) const {
+bool DeadMachineInstructionElim::isDead(const MachineInstr *MI) const {
// Don't delete instructions with side effects.
bool SawStore = false;
- if (!MI->isSafeToMove(TII, SawStore))
+ if (!MI->isSafeToMove(TII, SawStore, 0))
return false;
// Examine each operand.
@@ -110,7 +111,7 @@ bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
// If the instruction is dead, delete it!
if (isDead(MI)) {
- DOUT << "DeadMachineInstructionElim: DELETING: " << *MI;
+ DEBUG(errs() << "DeadMachineInstructionElim: DELETING: " << *MI);
AnyChanges = true;
MI->eraseFromParent();
MIE = MBB->rend();
diff --git a/lib/CodeGen/DwarfEHPrepare.cpp b/lib/CodeGen/DwarfEHPrepare.cpp
index 720e3d1..72b3f92 100644
--- a/lib/CodeGen/DwarfEHPrepare.cpp
+++ b/lib/CodeGen/DwarfEHPrepare.cpp
@@ -107,7 +107,9 @@ FunctionPass *llvm::createDwarfEHPass(const TargetLowering *tli, bool fast) {
/// NormalizeLandingPads - Normalize and discover landing pads, noting them
/// in the LandingPads set. A landing pad is normal if the only CFG edges
-/// that end at it are unwind edges from invoke instructions.
+/// that end at it are unwind edges from invoke instructions. If we inlined
+/// through an invoke we could have a normal branch from the previous
+/// unwind block through to the landing pad for the original invoke.
/// Abnormal landing pads are fixed up by redirecting all unwind edges to
/// a new basic block which falls through to the original.
bool DwarfEHPrepare::NormalizeLandingPads() {
@@ -132,6 +134,7 @@ bool DwarfEHPrepare::NormalizeLandingPads() {
break;
}
}
+
if (OnlyUnwoundTo) {
// Only unwind edges lead to the landing pad. Remember the landing pad.
LandingPads.insert(LPad);
@@ -142,7 +145,8 @@ bool DwarfEHPrepare::NormalizeLandingPads() {
// edges to a new basic block which falls through into this one.
// Create the new basic block.
- BasicBlock *NewBB = BasicBlock::Create(LPad->getName() + "_unwind_edge");
+ BasicBlock *NewBB = BasicBlock::Create(F->getContext(),
+ LPad->getName() + "_unwind_edge");
// Insert it into the function right before the original landing pad.
LPad->getParent()->getBasicBlockList().insert(LPad, NewBB);
@@ -218,28 +222,43 @@ bool DwarfEHPrepare::NormalizeLandingPads() {
/// at runtime if there is no such exception: using unwind to throw a new
/// exception is currently not supported.
bool DwarfEHPrepare::LowerUnwinds() {
- bool Changed = false;
+ SmallVector<TerminatorInst*, 16> UnwindInsts;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
- if (!isa<UnwindInst>(TI))
- continue;
+ if (isa<UnwindInst>(TI))
+ UnwindInsts.push_back(TI);
+ }
+
+ if (UnwindInsts.empty()) return false;
+
+ // Find the rewind function if we didn't already.
+ if (!RewindFunction) {
+ LLVMContext &Ctx = UnwindInsts[0]->getContext();
+ std::vector<const Type*>
+ Params(1, Type::getInt8PtrTy(Ctx));
+ FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
+ Params, false);
+ const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME);
+ RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy);
+ }
+
+ bool Changed = false;
+
+ for (SmallVectorImpl<TerminatorInst*>::iterator
+ I = UnwindInsts.begin(), E = UnwindInsts.end(); I != E; ++I) {
+ TerminatorInst *TI = *I;
// Replace the unwind instruction with a call to _Unwind_Resume (or the
// appropriate target equivalent) followed by an UnreachableInst.
- // Find the rewind function if we didn't already.
- if (!RewindFunction) {
- std::vector<const Type*> Params(1, PointerType::getUnqual(Type::Int8Ty));
- FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false);
- const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME);
- RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy);
- }
-
// Create the call...
- CallInst::Create(RewindFunction, CreateReadOfExceptionValue(I), "", TI);
+ CallInst *CI = CallInst::Create(RewindFunction,
+ CreateReadOfExceptionValue(TI->getParent()),
+ "", TI);
+ CI->setCallingConv(TLI->getLibcallCallingConv(RTLIB::UNWIND_RESUME));
// ...followed by an UnreachableInst.
- new UnreachableInst(TI);
+ new UnreachableInst(TI->getContext(), TI);
// Nuke the unwind instruction.
TI->eraseFromParent();
@@ -314,7 +333,7 @@ bool DwarfEHPrepare::PromoteStackTemporaries() {
if (ExceptionValueVar && DT && DF && isAllocaPromotable(ExceptionValueVar)) {
// Turn the exception temporary into registers and phi nodes if possible.
std::vector<AllocaInst*> Allocas(1, ExceptionValueVar);
- PromoteMemToReg(Allocas, *DT, *DF);
+ PromoteMemToReg(Allocas, *DT, *DF, ExceptionValueVar->getContext());
return true;
}
return false;
@@ -354,8 +373,8 @@ Instruction *DwarfEHPrepare::CreateValueLoad(BasicBlock *BB) {
// Create the temporary if we didn't already.
if (!ExceptionValueVar) {
- ExceptionValueVar = new AllocaInst(PointerType::getUnqual(Type::Int8Ty),
- "eh.value", F->begin()->begin());
+ ExceptionValueVar = new AllocaInst(PointerType::getUnqual(
+ Type::getInt8Ty(BB->getContext())), "eh.value", F->begin()->begin());
++NumStackTempsIntroduced;
}
diff --git a/lib/CodeGen/ELF.h b/lib/CodeGen/ELF.h
index 7e983a4..b466e89 100644
--- a/lib/CodeGen/ELF.h
+++ b/lib/CodeGen/ELF.h
@@ -52,6 +52,159 @@ namespace llvm {
EV_CURRENT = 1
};
+ /// ELFSym - This struct contains information about each symbol that is
+ /// added to logical symbol table for the module. This is eventually
+ /// turned into a real symbol table in the file.
+ struct ELFSym {
+
+ // ELF symbols are related to llvm ones by being one of the two llvm
+ // types, for the other ones (section, file, func) a null pointer is
+ // assumed by default.
+ union {
+ const GlobalValue *GV; // If this is a pointer to a GV
+ const char *Ext; // If this is a pointer to a named symbol
+ } Source;
+
+ // Describes from which source type this ELF symbol comes from,
+ // they can be GlobalValue, ExternalSymbol or neither.
+ enum {
+ isGV, // The Source.GV field is valid.
+ isExtSym, // The Source.ExtSym field is valid.
+ isOther // Not a GlobalValue or External Symbol
+ };
+ unsigned SourceType;
+
+ bool isGlobalValue() const { return SourceType == isGV; }
+ bool isExternalSym() const { return SourceType == isExtSym; }
+
+ // getGlobalValue - If this is a global value which originated the
+ // elf symbol, return a reference to it.
+ const GlobalValue *getGlobalValue() const {
+ assert(SourceType == isGV && "This is not a global value");
+ return Source.GV;
+ };
+
+ // getExternalSym - If this is an external symbol which originated the
+ // elf symbol, return a reference to it.
+ const char *getExternalSymbol() const {
+ assert(SourceType == isExtSym && "This is not an external symbol");
+ return Source.Ext;
+ };
+
+ // getGV - From a global value return a elf symbol to represent it
+ static ELFSym *getGV(const GlobalValue *GV, unsigned Bind,
+ unsigned Type, unsigned Visibility) {
+ ELFSym *Sym = new ELFSym();
+ Sym->Source.GV = GV;
+ Sym->setBind(Bind);
+ Sym->setType(Type);
+ Sym->setVisibility(Visibility);
+ Sym->SourceType = isGV;
+ return Sym;
+ }
+
+ // getExtSym - Create and return an elf symbol to represent an
+ // external symbol
+ static ELFSym *getExtSym(const char *Ext) {
+ ELFSym *Sym = new ELFSym();
+ Sym->Source.Ext = Ext;
+ Sym->setBind(STB_GLOBAL);
+ Sym->setType(STT_NOTYPE);
+ Sym->setVisibility(STV_DEFAULT);
+ Sym->SourceType = isExtSym;
+ return Sym;
+ }
+
+ // getSectionSym - Returns a elf symbol to represent an elf section
+ static ELFSym *getSectionSym() {
+ ELFSym *Sym = new ELFSym();
+ Sym->setBind(STB_LOCAL);
+ Sym->setType(STT_SECTION);
+ Sym->setVisibility(STV_DEFAULT);
+ Sym->SourceType = isOther;
+ return Sym;
+ }
+
+ // getFileSym - Returns a elf symbol to represent the module identifier
+ static ELFSym *getFileSym() {
+ ELFSym *Sym = new ELFSym();
+ Sym->setBind(STB_LOCAL);
+ Sym->setType(STT_FILE);
+ Sym->setVisibility(STV_DEFAULT);
+ Sym->SectionIdx = 0xfff1; // ELFSection::SHN_ABS;
+ Sym->SourceType = isOther;
+ return Sym;
+ }
+
+ // getUndefGV - Returns a STT_NOTYPE symbol
+ static ELFSym *getUndefGV(const GlobalValue *GV, unsigned Bind) {
+ ELFSym *Sym = new ELFSym();
+ Sym->Source.GV = GV;
+ Sym->setBind(Bind);
+ Sym->setType(STT_NOTYPE);
+ Sym->setVisibility(STV_DEFAULT);
+ Sym->SectionIdx = 0; //ELFSection::SHN_UNDEF;
+ Sym->SourceType = isGV;
+ return Sym;
+ }
+
+ // ELF specific fields
+ unsigned NameIdx; // Index in .strtab of name, once emitted.
+ uint64_t Value;
+ unsigned Size;
+ uint8_t Info;
+ uint8_t Other;
+ unsigned short SectionIdx;
+
+ // Symbol index into the Symbol table
+ unsigned SymTabIdx;
+
+ enum {
+ STB_LOCAL = 0, // Local sym, not visible outside obj file containing def
+ STB_GLOBAL = 1, // Global sym, visible to all object files being combined
+ STB_WEAK = 2 // Weak symbol, like global but lower-precedence
+ };
+
+ enum {
+ STT_NOTYPE = 0, // Symbol's type is not specified
+ STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
+ STT_FUNC = 2, // Symbol is executable code (function, etc.)
+ STT_SECTION = 3, // Symbol refers to a section
+ STT_FILE = 4 // Local, absolute symbol that refers to a file
+ };
+
+ enum {
+ STV_DEFAULT = 0, // Visibility is specified by binding type
+ STV_INTERNAL = 1, // Defined by processor supplements
+ STV_HIDDEN = 2, // Not visible to other components
+ STV_PROTECTED = 3 // Visible in other components but not preemptable
+ };
+
+ ELFSym() : SourceType(isOther), NameIdx(0), Value(0),
+ Size(0), Info(0), Other(STV_DEFAULT), SectionIdx(0),
+ SymTabIdx(0) {}
+
+ unsigned getBind() const { return (Info >> 4) & 0xf; }
+ unsigned getType() const { return Info & 0xf; }
+ bool isLocalBind() const { return getBind() == STB_LOCAL; }
+ bool isFileType() const { return getType() == STT_FILE; }
+
+ void setBind(unsigned X) {
+ assert(X == (X & 0xF) && "Bind value out of range!");
+ Info = (Info & 0x0F) | (X << 4);
+ }
+
+ void setType(unsigned X) {
+ assert(X == (X & 0xF) && "Type value out of range!");
+ Info = (Info & 0xF0) | X;
+ }
+
+ void setVisibility(unsigned V) {
+ assert(V == (V & 0x3) && "Visibility value out of range!");
+ Other = V;
+ }
+ };
+
/// ELFSection - This struct contains information about each section that is
/// emitted to the file. This is eventually turned into the section header
/// table at the end of the file.
@@ -117,78 +270,19 @@ namespace llvm {
/// SectionIdx - The number of the section in the Section Table.
unsigned short SectionIdx;
- ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
- : BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
- Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0) {}
- };
-
- /// ELFSym - This struct contains information about each symbol that is
- /// added to logical symbol table for the module. This is eventually
- /// turned into a real symbol table in the file.
- struct ELFSym {
- // The global value this corresponds to. Global symbols can be on of the
- // 3 types : if this symbol has a zero initializer, it is common or should
- // be placed in bss section otherwise it's a constant.
- const GlobalValue *GV;
- bool IsCommon;
- bool IsBss;
- bool IsConstant;
-
- // ELF specific fields
- unsigned NameIdx; // Index in .strtab of name, once emitted.
- uint64_t Value;
- unsigned Size;
- uint8_t Info;
- uint8_t Other;
- unsigned short SectionIdx;
+ /// Sym - The symbol to represent this section if it has one.
+ ELFSym *Sym;
- // Symbol index into the Symbol table
- unsigned SymTabIdx;
-
- enum {
- STB_LOCAL = 0,
- STB_GLOBAL = 1,
- STB_WEAK = 2
- };
-
- enum {
- STT_NOTYPE = 0,
- STT_OBJECT = 1,
- STT_FUNC = 2,
- STT_SECTION = 3,
- STT_FILE = 4
- };
-
- enum {
- STV_DEFAULT = 0, // Visibility is specified by binding type
- STV_INTERNAL = 1, // Defined by processor supplements
- STV_HIDDEN = 2, // Not visible to other components
- STV_PROTECTED = 3 // Visible in other components but not preemptable
- };
-
- ELFSym(const GlobalValue *gv) : GV(gv), IsCommon(false), IsBss(false),
- IsConstant(false), NameIdx(0), Value(0),
- Size(0), Info(0), Other(STV_DEFAULT),
- SectionIdx(ELFSection::SHN_UNDEF),
- SymTabIdx(0) {}
-
- unsigned getBind() { return (Info >> 4) & 0xf; }
- unsigned getType() { return Info & 0xf; }
-
- void setBind(unsigned X) {
- assert(X == (X & 0xF) && "Bind value out of range!");
- Info = (Info & 0x0F) | (X << 4);
+ /// getSymIndex - Returns the symbol table index of the symbol
+ /// representing this section.
+ unsigned getSymbolTableIndex() const {
+ assert(Sym && "section not present in the symbol table");
+ return Sym->SymTabIdx;
}
- void setType(unsigned X) {
- assert(X == (X & 0xF) && "Type value out of range!");
- Info = (Info & 0xF0) | X;
- }
-
- void setVisibility(unsigned V) {
- assert(V == (V & 0x3) && "Type value out of range!");
- Other = V;
- }
+ ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
+ : BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
+ Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0), Sym(0) {}
};
/// ELFRelocation - This class contains all the information necessary to
diff --git a/lib/CodeGen/ELFCodeEmitter.cpp b/lib/CodeGen/ELFCodeEmitter.cpp
index 691f194..a6429f7 100644
--- a/lib/CodeGen/ELFCodeEmitter.cpp
+++ b/lib/CodeGen/ELFCodeEmitter.cpp
@@ -17,12 +17,16 @@
#include "llvm/Function.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetELFWriterInfo.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
//===----------------------------------------------------------------------===//
// ELFCodeEmitter Implementation
@@ -33,84 +37,75 @@ namespace llvm {
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void ELFCodeEmitter::startFunction(MachineFunction &MF) {
- // Get the ELF Section that this function belongs in.
- ES = &EW.getTextSection();
+ DEBUG(errs() << "processing function: "
+ << MF.getFunction()->getName() << "\n");
- DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
+ // Get the ELF Section that this function belongs in.
+ ES = &EW.getTextSection(MF.getFunction());
- // FIXME: better memory management, this will be replaced by BinaryObjects
- BinaryData &BD = ES->getData();
- BD.reserve(4096);
- BufferBegin = &BD[0];
- BufferEnd = BufferBegin + BD.capacity();
+ // Set the desired binary object to be used by the code emitters
+ setBinaryObject(ES);
// Get the function alignment in bytes
unsigned Align = (1 << MF.getAlignment());
- // Align the section size with the function alignment, so the function can
- // start in a aligned offset, also update the section alignment if needed.
- if (ES->Align < Align) ES->Align = Align;
- ES->Size = (ES->Size + (Align-1)) & (-Align);
-
- // Snaity check on allocated space for text section
- assert( ES->Size < 4096 && "no more space in TextSection" );
-
- // FIXME: Using ES->Size directly here instead of calculating it from the
- // output buffer size (impossible because the code emitter deals only in raw
- // bytes) forces us to manually synchronize size and write padding zero bytes
- // to the output buffer for all non-text sections. For text sections, we do
- // not synchonize the output buffer, and we just blow up if anyone tries to
- // write non-code to it. An assert should probably be added to
- // AddSymbolToSection to prevent calling it on the text section.
- CurBufferPtr = BufferBegin + ES->Size;
-
- // Record function start address relative to BufferBegin
- FnStartPtr = CurBufferPtr;
+ // The function must start on its required alignment
+ ES->emitAlignment(Align);
+
+ // Update the section alignment if needed.
+ ES->Align = std::max(ES->Align, Align);
+
+ // Record the function start offset
+ FnStartOff = ES->getCurrentPCOffset();
+
+ // Emit constant pool and jump tables to their appropriate sections.
+ // They need to be emitted before the function because in some targets
+ // the later may reference JT or CP entry address.
+ emitConstantPool(MF.getConstantPool());
+ emitJumpTables(MF.getJumpTableInfo());
}
/// finishFunction - This callback is invoked after the function is completely
/// finished.
bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
- // Update Section Size
- ES->Size = CurBufferPtr - BufferBegin;
-
// Add a symbol to represent the function.
const Function *F = MF.getFunction();
- ELFSym FnSym(F);
- FnSym.setType(ELFSym::STT_FUNC);
- FnSym.setBind(EW.getGlobalELFLinkage(F));
- FnSym.setVisibility(EW.getGlobalELFVisibility(F));
- FnSym.SectionIdx = ES->SectionIdx;
- FnSym.Size = CurBufferPtr-FnStartPtr;
+ ELFSym *FnSym = ELFSym::getGV(F, EW.getGlobalELFBinding(F), ELFSym::STT_FUNC,
+ EW.getGlobalELFVisibility(F));
+ FnSym->SectionIdx = ES->SectionIdx;
+ FnSym->Size = ES->getCurrentPCOffset()-FnStartOff;
+ EW.AddPendingGlobalSymbol(F, true);
// Offset from start of Section
- FnSym.Value = FnStartPtr-BufferBegin;
-
- // Locals should go on the symbol list front
- if (!F->hasPrivateLinkage()) {
- if (FnSym.getBind() == ELFSym::STB_LOCAL)
- EW.SymbolList.push_front(FnSym);
- else
- EW.SymbolList.push_back(FnSym);
+ FnSym->Value = FnStartOff;
+
+ if (!F->hasPrivateLinkage())
+ EW.SymbolList.push_back(FnSym);
+
+ // Patch up Jump Table Section relocations to use the real MBBs offsets
+ // now that the MBB label offsets inside the function are known.
+ if (!MF.getJumpTableInfo()->isEmpty()) {
+ ELFSection &JTSection = EW.getJumpTableSection();
+ for (std::vector<MachineRelocation>::iterator MRI = JTRelocations.begin(),
+ MRE = JTRelocations.end(); MRI != MRE; ++MRI) {
+ MachineRelocation &MR = *MRI;
+ unsigned MBBOffset = getMachineBasicBlockAddress(MR.getBasicBlock());
+ MR.setResultPointer((void*)MBBOffset);
+ MR.setConstantVal(ES->SectionIdx);
+ JTSection.addRelocation(MR);
+ }
}
- // Emit constant pool to appropriate section(s)
- emitConstantPool(MF.getConstantPool());
-
- // Emit jump tables to appropriate section
- emitJumpTables(MF.getJumpTableInfo());
-
- // Relocations
- // -----------
// If we have emitted any relocations to function-specific objects such as
// basic blocks, constant pools entries, or jump tables, record their
- // addresses now so that we can rewrite them with the correct addresses
- // later.
+ // addresses now so that we can rewrite them with the correct addresses later
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
intptr_t Addr;
if (MR.isGlobalValue()) {
- EW.PendingGlobals.insert(MR.getGlobalValue());
+ EW.AddPendingGlobalSymbol(MR.getGlobalValue());
+ } else if (MR.isExternalSymbol()) {
+ EW.AddPendingExternalSymbol(MR.getExternalSymbol());
} else if (MR.isBasicBlock()) {
Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
MR.setConstantVal(ES->SectionIdx);
@@ -120,16 +115,18 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]);
MR.setResultPointer((void*)Addr);
} else if (MR.isJumpTableIndex()) {
+ ELFSection &JTSection = EW.getJumpTableSection();
Addr = getJumpTableEntryAddress(MR.getJumpTableIndex());
+ MR.setConstantVal(JTSection.SectionIdx);
MR.setResultPointer((void*)Addr);
- MR.setConstantVal(JumpTableSectionIdx);
} else {
- assert(0 && "Unhandled relocation type");
+ llvm_unreachable("Unhandled relocation type");
}
ES->addRelocation(MR);
}
// Clear per-function data structures.
+ JTRelocations.clear();
Relocations.clear();
CPLocations.clear();
CPSections.clear();
@@ -148,25 +145,19 @@ void ELFCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
assert(TM.getRelocationModel() != Reloc::PIC_ &&
"PIC codegen not yet handled for elf constant pools!");
- const TargetAsmInfo *TAI = TM.getTargetAsmInfo();
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = CP[i];
- // Get the right ELF Section for this constant pool entry
- std::string CstPoolName =
- TAI->SelectSectionForMachineConst(CPE.getType())->getName();
- ELFSection &CstPoolSection =
- EW.getConstantPoolSection(CstPoolName, CPE.getAlignment());
-
// Record the constant pool location and the section index
- CPLocations.push_back(CstPoolSection.size());
- CPSections.push_back(CstPoolSection.SectionIdx);
+ ELFSection &CstPool = EW.getConstantPoolSection(CPE);
+ CPLocations.push_back(CstPool.size());
+ CPSections.push_back(CstPool.SectionIdx);
if (CPE.isMachineConstantPoolEntry())
assert("CPE.isMachineConstantPoolEntry not supported yet");
// Emit the constant to constant pool section
- EW.EmitGlobalConstant(CPE.Val.ConstVal, CstPoolSection);
+ EW.EmitGlobalConstant(CPE.Val.ConstVal, CstPool);
}
}
@@ -180,44 +171,32 @@ void ELFCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
assert(TM.getRelocationModel() != Reloc::PIC_ &&
"PIC codegen not yet handled for elf jump tables!");
- const TargetAsmInfo *TAI = TM.getTargetAsmInfo();
+ const TargetELFWriterInfo *TEW = TM.getELFWriterInfo();
+ unsigned EntrySize = MJTI->getEntrySize();
// Get the ELF Section to emit the jump table
- unsigned Align = TM.getTargetData()->getPointerABIAlignment();
- std::string JTName(TAI->getJumpTableDataSection());
- ELFSection &JTSection = EW.getJumpTableSection(JTName, Align);
- JumpTableSectionIdx = JTSection.SectionIdx;
-
- // Entries in the JT Section are relocated against the text section
- ELFSection &TextSection = EW.getTextSection();
+ ELFSection &JTSection = EW.getJumpTableSection();
// For each JT, record its offset from the start of the section
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
- DOUT << "JTSection.size(): " << JTSection.size() << "\n";
- DOUT << "JTLocations.size: " << JTLocations.size() << "\n";
-
// Record JT 'i' offset in the JT section
JTLocations.push_back(JTSection.size());
// Each MBB entry in the Jump table section has a relocation entry
// against the current text section.
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
+ unsigned MachineRelTy = TEW->getAbsoluteLabelMachineRelTy();
MachineRelocation MR =
- MachineRelocation::getBB(JTSection.size(),
- MachineRelocation::VANILLA,
- MBBs[mi]);
-
- // Offset of JT 'i' in JT section
- MR.setResultPointer((void*)getMachineBasicBlockAddress(MBBs[mi]));
- MR.setConstantVal(TextSection.SectionIdx);
+ MachineRelocation::getBB(JTSection.size(), MachineRelTy, MBBs[mi]);
// Add the relocation to the Jump Table section
- JTSection.addRelocation(MR);
+ JTRelocations.push_back(MR);
// Output placeholder for MBB in the JT section
- JTSection.emitWord(0);
+ for (unsigned s=0; s < EntrySize; ++s)
+ JTSection.emitByte(0);
}
}
}
diff --git a/lib/CodeGen/ELFCodeEmitter.h b/lib/CodeGen/ELFCodeEmitter.h
index 982aebf..b5e9c84 100644
--- a/lib/CodeGen/ELFCodeEmitter.h
+++ b/lib/CodeGen/ELFCodeEmitter.h
@@ -10,7 +10,7 @@
#ifndef ELFCODEEMITTER_H
#define ELFCODEEMITTER_H
-#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include <vector>
namespace llvm {
@@ -19,7 +19,7 @@ namespace llvm {
/// ELFCodeEmitter - This class is used by the ELFWriter to
/// emit the code for functions to the ELF file.
- class ELFCodeEmitter : public MachineCodeEmitter {
+ class ELFCodeEmitter : public ObjectCodeEmitter {
ELFWriter &EW;
/// Target machine description
@@ -28,102 +28,48 @@ namespace llvm {
/// Section containing code for functions
ELFSection *ES;
- /// Relocations - These are the relocations that the function needs, as
- /// emitted.
+ /// Relocations - Record relocations needed by the current function
std::vector<MachineRelocation> Relocations;
- /// CPLocations - This is a map of constant pool indices to offsets from the
- /// start of the section for that constant pool index.
- std::vector<uintptr_t> CPLocations;
+ /// JTRelocations - Record relocations needed by the relocation
+ /// section.
+ std::vector<MachineRelocation> JTRelocations;
- /// CPSections - This is a map of constant pool indices to the MachOSection
- /// containing the constant pool entry for that index.
- std::vector<unsigned> CPSections;
-
- /// JTLocations - This is a map of jump table indices to offsets from the
- /// start of the section for that jump table index.
- std::vector<uintptr_t> JTLocations;
-
- /// MBBLocations - This vector is a mapping from MBB ID's to their address.
- /// It is filled in by the StartMachineBasicBlock callback and queried by
- /// the getMachineBasicBlockAddress callback.
- std::vector<uintptr_t> MBBLocations;
-
- /// FnStartPtr - Pointer to the start location of the current function
- /// in the buffer
- uint8_t *FnStartPtr;
-
- /// JumpTableSectionIdx - Holds the index of the Jump Table Section
- unsigned JumpTableSectionIdx;
+ /// FnStartPtr - Function offset from the beginning of ELFSection 'ES'
+ uintptr_t FnStartOff;
public:
- explicit ELFCodeEmitter(ELFWriter &ew) : EW(ew), TM(EW.TM),
- JumpTableSectionIdx(0) {}
-
- void startFunction(MachineFunction &F);
- bool finishFunction(MachineFunction &F);
+ explicit ELFCodeEmitter(ELFWriter &ew) : EW(ew), TM(EW.TM) {}
+ /// addRelocation - Register new relocations for this function
void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
- virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
- if (MBBLocations.size() <= (unsigned)MBB->getNumber())
- MBBLocations.resize((MBB->getNumber()+1)*2);
- MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
- }
+ /// emitConstantPool - For each constant pool entry, figure out which
+ /// section the constant should live in and emit data to it
+ void emitConstantPool(MachineConstantPool *MCP);
- virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const {
- assert(CPLocations.size() > Index && "CP not emitted!");
- return CPLocations[Index];
- }
+ /// emitJumpTables - Emit all the jump tables for a given jump table
+ /// info and record them to the appropriate section.
+ void emitJumpTables(MachineJumpTableInfo *MJTI);
- virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const {
- assert(JTLocations.size() > Index && "JT not emitted!");
- return JTLocations[Index];
- }
+ void startFunction(MachineFunction &F);
+ bool finishFunction(MachineFunction &F);
- virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
- assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
- MBBLocations[MBB->getNumber()] && "MBB not emitted!");
- return MBBLocations[MBB->getNumber()];
+ /// emitLabel - Emits a label
+ virtual void emitLabel(uint64_t LabelID) {
+ assert("emitLabel not implemented");
}
+ /// getLabelAddress - Return the address of the specified LabelID,
+ /// only usable after the LabelID has been emitted.
virtual uintptr_t getLabelAddress(uint64_t Label) const {
- assert(0 && "Label address not implementated yet!");
- abort();
+ assert("getLabelAddress not implemented");
return 0;
}
- virtual void emitLabel(uint64_t LabelID) {
- assert(0 && "emit Label not implementated yet!");
- abort();
- }
-
- /// emitConstantPool - For each constant pool entry, figure out which section
- /// the constant should live in and emit the constant.
- void emitConstantPool(MachineConstantPool *MCP);
-
- /// emitJumpTables - Emit all the jump tables for a given jump table info
- /// record to the appropriate section.
- void emitJumpTables(MachineJumpTableInfo *MJTI);
-
virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) {}
- /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
- void startGVStub(const GlobalValue* F, unsigned StubSize,
- unsigned Alignment = 1) {
- assert(0 && "JIT specific function called!");
- abort();
- }
- void startGVStub(const GlobalValue* F, void *Buffer, unsigned StubSize) {
- assert(0 && "JIT specific function called!");
- abort();
- }
- void *finishGVStub(const GlobalValue *F) {
- assert(0 && "JIT specific function called!");
- abort();
- return 0;
- }
}; // end class ELFCodeEmitter
} // end namespace llvm
diff --git a/lib/CodeGen/ELFWriter.cpp b/lib/CodeGen/ELFWriter.cpp
index 9e91524..3e1ee11 100644
--- a/lib/CodeGen/ELFWriter.cpp
+++ b/lib/CodeGen/ELFWriter.cpp
@@ -29,7 +29,6 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "elfwriter"
-
#include "ELF.h"
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
@@ -40,26 +39,33 @@
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
+#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetELFWriterInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
-#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Support/Debug.h"
+
using namespace llvm;
char ELFWriter::ID = 0;
-/// AddELFWriter - Concrete function to add the ELF writer to the function pass
-/// manager.
-MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
- raw_ostream &O,
- TargetMachine &TM) {
+
+/// AddELFWriter - Add the ELF writer to the function pass manager
+ObjectCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
+ raw_ostream &O,
+ TargetMachine &TM) {
ELFWriter *EW = new ELFWriter(O, TM);
PM.add(EW);
- return &EW->getMachineCodeEmitter();
+ return EW->getObjectCodeEmitter();
}
//===----------------------------------------------------------------------===//
@@ -68,27 +74,51 @@ MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
: MachineFunctionPass(&ID), O(o), TM(tm),
+ OutContext(*new MCContext()),
+ TLOF(TM.getTargetLowering()->getObjFileLowering()),
is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
isLittleEndian(TM.getTargetData()->isLittleEndian()),
ElfHdr(isLittleEndian, is64Bit) {
- TAI = TM.getTargetAsmInfo();
+ MAI = TM.getMCAsmInfo();
TEW = TM.getELFWriterInfo();
- // Create the machine code emitter object for this target.
- MCE = new ELFCodeEmitter(*this);
+ // Create the object code emitter object for this target.
+ ElfCE = new ELFCodeEmitter(*this);
// Inital number of sections
NumSections = 0;
}
ELFWriter::~ELFWriter() {
- delete MCE;
+ delete ElfCE;
+ delete &OutContext;
+
+ while(!SymbolList.empty()) {
+ delete SymbolList.back();
+ SymbolList.pop_back();
+ }
+
+ while(!PrivateSyms.empty()) {
+ delete PrivateSyms.back();
+ PrivateSyms.pop_back();
+ }
+
+ while(!SectionList.empty()) {
+ delete SectionList.back();
+ SectionList.pop_back();
+ }
+
+ // Release the name mangler object.
+ delete Mang; Mang = 0;
}
// doInitialization - Emit the file header and all of the global variables for
// the module to the ELF file.
bool ELFWriter::doInitialization(Module &M) {
+ // Initialize TargetLoweringObjectFile.
+ const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
+
Mang = new Mangler(M);
// ELF Header
@@ -138,13 +168,115 @@ bool ELFWriter::doInitialization(Module &M) {
// Add the null section, which is required to be first in the file.
getNullSection();
+ // The first entry in the symtab is the null symbol and the second
+ // is a local symbol containing the module/file name
+ SymbolList.push_back(new ELFSym());
+ SymbolList.push_back(ELFSym::getFileSym());
+
return false;
}
+// AddPendingGlobalSymbol - Add a global to be processed and to
+// the global symbol lookup, use a zero index because the table
+// index will be determined later.
+void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV,
+ bool AddToLookup /* = false */) {
+ PendingGlobals.insert(GV);
+ if (AddToLookup)
+ GblSymLookup[GV] = 0;
+}
+
+// AddPendingExternalSymbol - Add the external to be processed
+// and to the external symbol lookup, use a zero index because
+// the symbol table index will be determined later.
+void ELFWriter::AddPendingExternalSymbol(const char *External) {
+ PendingExternals.insert(External);
+ ExtSymLookup[External] = 0;
+}
+
+ELFSection &ELFWriter::getDataSection() {
+ const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
+ return getSection(Data->getSectionName(), Data->getType(),
+ Data->getFlags(), 4);
+}
+
+ELFSection &ELFWriter::getBSSSection() {
+ const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
+ return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
+}
+
+// getCtorSection - Get the static constructor section
+ELFSection &ELFWriter::getCtorSection() {
+ const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
+ return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags());
+}
+
+// getDtorSection - Get the static destructor section
+ELFSection &ELFWriter::getDtorSection() {
+ const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
+ return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
+}
+
+// getTextSection - Get the text section for the specified function
+ELFSection &ELFWriter::getTextSection(Function *F) {
+ const MCSectionELF *Text =
+ (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
+ return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
+}
+
+// getJumpTableSection - Get a read only section for constants when
+// emitting jump tables. TODO: add PIC support
+ELFSection &ELFWriter::getJumpTableSection() {
+ const MCSectionELF *JT =
+ (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
+ return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
+ TM.getTargetData()->getPointerABIAlignment());
+}
+
+// getConstantPoolSection - Get a constant pool section based on the machine
+// constant pool entry type and relocation info.
+ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
+ SectionKind Kind;
+ switch (CPE.getRelocationInfo()) {
+ default: llvm_unreachable("Unknown section kind");
+ case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
+ case 1:
+ Kind = SectionKind::getReadOnlyWithRelLocal();
+ break;
+ case 0:
+ switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
+ case 4: Kind = SectionKind::getMergeableConst4(); break;
+ case 8: Kind = SectionKind::getMergeableConst8(); break;
+ case 16: Kind = SectionKind::getMergeableConst16(); break;
+ default: Kind = SectionKind::getMergeableConst(); break;
+ }
+ }
+
+ const MCSectionELF *CPSect =
+ (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
+ return getSection(CPSect->getSectionName(), CPSect->getType(),
+ CPSect->getFlags(), CPE.getAlignment());
+}
+
+// getRelocSection - Return the relocation section of section 'S'. 'RelA'
+// is true if the relocation section contains entries with addends.
+ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
+ unsigned SectionType = TEW->hasRelocationAddend() ?
+ ELFSection::SHT_RELA : ELFSection::SHT_REL;
+
+ std::string SectionName(".rel");
+ if (TEW->hasRelocationAddend())
+ SectionName.append("a");
+ SectionName.append(S.getName());
+
+ return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
+}
+
+// getGlobalELFVisibility - Returns the ELF specific visibility type
unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
switch (GV->getVisibility()) {
default:
- assert(0 && "unknown visibility type");
+ llvm_unreachable("unknown visibility type");
case GlobalValue::DefaultVisibility:
return ELFSym::STV_DEFAULT;
case GlobalValue::HiddenVisibility:
@@ -152,134 +284,132 @@ unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
case GlobalValue::ProtectedVisibility:
return ELFSym::STV_PROTECTED;
}
-
return 0;
}
-unsigned ELFWriter::getGlobalELFLinkage(const GlobalValue *GV) {
+// getGlobalELFBinding - Returns the ELF specific binding type
+unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
if (GV->hasInternalLinkage())
return ELFSym::STB_LOCAL;
- if (GV->hasWeakLinkage())
+ if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
return ELFSym::STB_WEAK;
return ELFSym::STB_GLOBAL;
}
-// getElfSectionFlags - Get the ELF Section Header based on the
-// flags defined in ELFTargetAsmInfo.
-unsigned ELFWriter::getElfSectionFlags(unsigned Flags) {
- unsigned ElfSectionFlags = ELFSection::SHF_ALLOC;
-
- if (Flags & SectionFlags::Code)
- ElfSectionFlags |= ELFSection::SHF_EXECINSTR;
- if (Flags & SectionFlags::Writeable)
- ElfSectionFlags |= ELFSection::SHF_WRITE;
- if (Flags & SectionFlags::Mergeable)
- ElfSectionFlags |= ELFSection::SHF_MERGE;
- if (Flags & SectionFlags::TLS)
- ElfSectionFlags |= ELFSection::SHF_TLS;
- if (Flags & SectionFlags::Strings)
- ElfSectionFlags |= ELFSection::SHF_STRINGS;
-
- return ElfSectionFlags;
-}
-
-// For global symbols without a section, return the Null section as a
-// placeholder
-ELFSection &ELFWriter::getGlobalSymELFSection(const GlobalVariable *GV,
- ELFSym &Sym) {
- // If this is a declaration, the symbol does not have a section.
- if (!GV->hasInitializer()) {
- Sym.SectionIdx = ELFSection::SHN_UNDEF;
- return getNullSection();
- }
+// getGlobalELFType - Returns the ELF specific type for a global
+unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
+ if (GV->isDeclaration())
+ return ELFSym::STT_NOTYPE;
- // Get the name and flags of the section for the global
- const Section *S = TAI->SectionForGlobal(GV);
- unsigned SectionType = ELFSection::SHT_PROGBITS;
- unsigned SectionFlags = getElfSectionFlags(S->getFlags());
- DOUT << "Section " << S->getName() << " for global " << GV->getName() << "\n";
+ if (isa<Function>(GV))
+ return ELFSym::STT_FUNC;
- const TargetData *TD = TM.getTargetData();
- unsigned Align = TD->getPreferredAlignment(GV);
- Constant *CV = GV->getInitializer();
-
- // If this global has a zero initializer, go to .bss or common section.
- // Variables are part of the common block if they are zero initialized
- // and allowed to be merged with other symbols.
- if (CV->isNullValue() || isa<UndefValue>(CV)) {
- SectionType = ELFSection::SHT_NOBITS;
- ELFSection &ElfS = getSection(S->getName(), SectionType, SectionFlags);
- if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
- GV->hasCommonLinkage()) {
- Sym.SectionIdx = ELFSection::SHN_COMMON;
- Sym.IsCommon = true;
- ElfS.Align = 1;
- return ElfS;
- }
- Sym.IsBss = true;
- Sym.SectionIdx = ElfS.SectionIdx;
- if (Align) ElfS.Size = (ElfS.Size + Align-1) & ~(Align-1);
- ElfS.Align = std::max(ElfS.Align, Align);
- return ElfS;
- }
-
- Sym.IsConstant = true;
- ELFSection &ElfS = getSection(S->getName(), SectionType, SectionFlags);
- Sym.SectionIdx = ElfS.SectionIdx;
- ElfS.Align = std::max(ElfS.Align, Align);
- return ElfS;
+ return ELFSym::STT_OBJECT;
}
-void ELFWriter::EmitFunctionDeclaration(const Function *F) {
- ELFSym GblSym(F);
- GblSym.setBind(ELFSym::STB_GLOBAL);
- GblSym.setType(ELFSym::STT_NOTYPE);
- GblSym.setVisibility(ELFSym::STV_DEFAULT);
- GblSym.SectionIdx = ELFSection::SHN_UNDEF;
- SymbolList.push_back(GblSym);
+// IsELFUndefSym - True if the global value must be marked as a symbol
+// which points to a SHN_UNDEF section. This means that the symbol has
+// no definition on the module.
+static bool IsELFUndefSym(const GlobalValue *GV) {
+ return GV->isDeclaration() || (isa<Function>(GV));
}
-void ELFWriter::EmitGlobalVar(const GlobalVariable *GV) {
- unsigned SymBind = getGlobalELFLinkage(GV);
- unsigned Align=0, Size=0;
- ELFSym GblSym(GV);
- GblSym.setBind(SymBind);
- GblSym.setVisibility(getGlobalELFVisibility(GV));
-
- if (GV->hasInitializer()) {
- GblSym.setType(ELFSym::STT_OBJECT);
- const TargetData *TD = TM.getTargetData();
- Align = TD->getPreferredAlignment(GV);
- Size = TD->getTypeAllocSize(GV->getInitializer()->getType());
- GblSym.Size = Size;
+// AddToSymbolList - Update the symbol lookup and If the symbol is
+// private add it to PrivateSyms list, otherwise to SymbolList.
+void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
+ assert(GblSym->isGlobalValue() && "Symbol must be a global value");
+
+ const GlobalValue *GV = GblSym->getGlobalValue();
+ if (GV->hasPrivateLinkage()) {
+ // For a private symbols, keep track of the index inside
+ // the private list since it will never go to the symbol
+ // table and won't be patched up later.
+ PrivateSyms.push_back(GblSym);
+ GblSymLookup[GV] = PrivateSyms.size()-1;
} else {
- GblSym.setType(ELFSym::STT_NOTYPE);
+ // Non private symbol are left with zero indices until
+ // they are patched up during the symbol table emition
+ // (where the indicies are created).
+ SymbolList.push_back(GblSym);
+ GblSymLookup[GV] = 0;
}
+}
- ELFSection &GblSection = getGlobalSymELFSection(GV, GblSym);
-
- if (GblSym.IsCommon) {
- GblSym.Value = Align;
- } else if (GblSym.IsBss) {
- GblSym.Value = GblSection.Size;
- GblSection.Size += Size;
- } else if (GblSym.IsConstant){
- // GblSym.Value should contain the symbol index inside the section,
- // and all symbols should start on their required alignment boundary
- GblSym.Value = (GblSection.size() + (Align-1)) & (-Align);
- GblSection.emitAlignment(Align);
- EmitGlobalConstant(GV->getInitializer(), GblSection);
- }
+// EmitGlobal - Choose the right section for global and emit it
+void ELFWriter::EmitGlobal(const GlobalValue *GV) {
- // Local symbols should come first on the symbol table.
- if (!GV->hasPrivateLinkage()) {
- if (SymBind == ELFSym::STB_LOCAL)
- SymbolList.push_front(GblSym);
- else
- SymbolList.push_back(GblSym);
+ // Check if the referenced symbol is already emitted
+ if (GblSymLookup.find(GV) != GblSymLookup.end())
+ return;
+
+ // Handle ELF Bind, Visibility and Type for the current symbol
+ unsigned SymBind = getGlobalELFBinding(GV);
+ unsigned SymType = getGlobalELFType(GV);
+ bool IsUndefSym = IsELFUndefSym(GV);
+
+ ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
+ : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
+
+ if (!IsUndefSym) {
+ assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+
+ // Handle special llvm globals
+ if (EmitSpecialLLVMGlobal(GVar))
+ return;
+
+ // Get the ELF section where this global belongs from TLOF
+ const MCSectionELF *S =
+ (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
+ ELFSection &ES =
+ getSection(S->getSectionName(), S->getType(), S->getFlags());
+ SectionKind Kind = S->getKind();
+
+ // The symbol align should update the section alignment if needed
+ const TargetData *TD = TM.getTargetData();
+ unsigned Align = TD->getPreferredAlignment(GVar);
+ unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
+ GblSym->Size = Size;
+
+ if (S->HasCommonSymbols()) { // Symbol must go to a common section
+ GblSym->SectionIdx = ELFSection::SHN_COMMON;
+
+ // A new linkonce section is created for each global in the
+ // common section, the default alignment is 1 and the symbol
+ // value contains its alignment.
+ ES.Align = 1;
+ GblSym->Value = Align;
+
+ } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
+ GblSym->SectionIdx = ES.SectionIdx;
+
+ // Update the size with alignment and the next object can
+ // start in the right offset in the section
+ if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
+ ES.Align = std::max(ES.Align, Align);
+
+ // GblSym->Value should contain the virtual offset inside the section.
+ // Virtual because the BSS space is not allocated on ELF objects
+ GblSym->Value = ES.Size;
+ ES.Size += Size;
+
+ } else { // The symbol must go to some kind of data section
+ GblSym->SectionIdx = ES.SectionIdx;
+
+ // GblSym->Value should contain the symbol offset inside the section,
+ // and all symbols should start on their required alignment boundary
+ ES.Align = std::max(ES.Align, Align);
+ ES.emitAlignment(Align);
+ GblSym->Value = ES.size();
+
+ // Emit the global to the data section 'ES'
+ EmitGlobalConstant(GVar->getInitializer(), ES);
+ }
}
+
+ AddToSymbolList(GblSym);
}
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
@@ -305,8 +435,7 @@ void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
- for (unsigned p=0; p < padSize; p++)
- GblS.emitByte(0);
+ GblS.emitZeros(padSize);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
@@ -317,65 +446,242 @@ void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
unsigned Size = TD->getTypeAllocSize(CV->getType());
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
- if (CVA->isString()) {
- std::string GblStr = CVA->getAsString();
- GblStr.resize(GblStr.size()-1);
- GblS.emitString(GblStr);
- } else { // Not a string. Print the values in successive locations
- for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
- EmitGlobalConstant(CVA->getOperand(i), GblS);
- }
+ for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
+ EmitGlobalConstant(CVA->getOperand(i), GblS);
+ return;
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ GblS.emitZeros(Size);
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, GblS);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
- if (CFP->getType() == Type::DoubleTy)
- GblS.emitWord64(Val);
- else if (CFP->getType() == Type::FloatTy)
- GblS.emitWord32(Val);
- else if (CFP->getType() == Type::X86_FP80Ty) {
- assert(0 && "X86_FP80Ty global emission not implemented");
- } else if (CFP->getType() == Type::PPC_FP128Ty)
- assert(0 && "PPC_FP128Ty global emission not implemented");
+ APInt Val = CFP->getValueAPF().bitcastToAPInt();
+ if (CFP->getType()->isDoubleTy())
+ GblS.emitWord64(Val.getZExtValue());
+ else if (CFP->getType()->isFloatTy())
+ GblS.emitWord32(Val.getZExtValue());
+ else if (CFP->getType()->isX86_FP80Ty()) {
+ unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
+ TD->getTypeStoreSize(CFP->getType());
+ GblS.emitWordFP80(Val.getRawData(), PadSize);
+ } else if (CFP->getType()->isPPC_FP128Ty())
+ llvm_unreachable("PPC_FP128Ty global emission not implemented");
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- if (Size == 4)
+ if (Size == 1)
+ GblS.emitByte(CI->getZExtValue());
+ else if (Size == 2)
+ GblS.emitWord16(CI->getZExtValue());
+ else if (Size == 4)
GblS.emitWord32(CI->getZExtValue());
- else if (Size == 8)
- GblS.emitWord64(CI->getZExtValue());
- else
- assert(0 && "LargeInt global emission not implemented");
+ else
+ EmitGlobalConstantLargeInt(CI, GblS);
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I), GblS);
return;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ // Resolve a constant expression which returns a (Constant, Offset)
+ // pair. If 'Res.first' is a GlobalValue, emit a relocation with
+ // the offset 'Res.second', otherwise emit a global constant like
+ // it is always done for not contant expression types.
+ CstExprResTy Res = ResolveConstantExpr(CE);
+ const Constant *Op = Res.first;
+
+ if (isa<GlobalValue>(Op))
+ EmitGlobalDataRelocation(cast<const GlobalValue>(Op),
+ TD->getTypeAllocSize(Op->getType()),
+ GblS, Res.second);
+ else
+ EmitGlobalConstant(Op, GblS);
+
+ return;
+ } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
+ // Fill the data entry with zeros or emit a relocation entry
+ if (isa<ConstantPointerNull>(CV))
+ GblS.emitZeros(Size);
+ else
+ EmitGlobalDataRelocation(cast<const GlobalValue>(CV),
+ Size, GblS);
+ return;
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
+ // This is a constant address for a global variable or function and
+ // therefore must be referenced using a relocation entry.
+ EmitGlobalDataRelocation(GV, Size, GblS);
+ return;
+ }
+
+ std::string msg;
+ raw_string_ostream ErrorMsg(msg);
+ ErrorMsg << "Constant unimp for type: " << *CV->getType();
+ llvm_report_error(ErrorMsg.str());
+}
+
+// ResolveConstantExpr - Resolve the constant expression until it stop
+// yielding other constant expressions.
+CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
+ const TargetData *TD = TM.getTargetData();
+
+ // There ins't constant expression inside others anymore
+ if (!isa<ConstantExpr>(CV))
+ return std::make_pair(CV, 0);
+
+ const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
+ switch (CE->getOpcode()) {
+ case Instruction::BitCast:
+ return ResolveConstantExpr(CE->getOperand(0));
+
+ case Instruction::GetElementPtr: {
+ const Constant *ptrVal = CE->getOperand(0);
+ SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
+ int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
+ idxVec.size());
+ return std::make_pair(ptrVal, Offset);
+ }
+ case Instruction::IntToPtr: {
+ Constant *Op = CE->getOperand(0);
+ Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
+ false/*ZExt*/);
+ return ResolveConstantExpr(Op);
+ }
+ case Instruction::PtrToInt: {
+ Constant *Op = CE->getOperand(0);
+ const Type *Ty = CE->getType();
+
+ // We can emit the pointer value into this slot if the slot is an
+ // integer slot greater or equal to the size of the pointer.
+ if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
+ return ResolveConstantExpr(Op);
+
+ llvm_unreachable("Integer size less then pointer size");
+ }
+ case Instruction::Add:
+ case Instruction::Sub: {
+ // Only handle cases where there's a constant expression with GlobalValue
+ // as first operand and ConstantInt as second, which are the cases we can
+ // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
+ // 1) Instruction::Add => (global) + CstInt
+ // 2) Instruction::Sub => (global) + -CstInt
+ const Constant *Op0 = CE->getOperand(0);
+ const Constant *Op1 = CE->getOperand(1);
+ assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");
+
+ CstExprResTy Res = ResolveConstantExpr(Op0);
+ assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");
+
+ const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
+ switch (CE->getOpcode()) {
+ case Instruction::Add:
+ return std::make_pair(Res.first, RHS.getSExtValue());
+ case Instruction::Sub:
+ return std::make_pair(Res.first, (-RHS).getSExtValue());
+ }
+ }
+ }
+
+ std::string msg(CE->getOpcodeName());
+ raw_string_ostream ErrorMsg(msg);
+ ErrorMsg << ": Unsupported ConstantExpr type";
+ llvm_report_error(ErrorMsg.str());
+
+ return std::make_pair(CV, 0); // silence warning
+}
+
+void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
+ ELFSection &GblS, int64_t Offset) {
+ // Create the relocation entry for the global value
+ MachineRelocation MR =
+ MachineRelocation::getGV(GblS.getCurrentPCOffset(),
+ TEW->getAbsoluteLabelMachineRelTy(),
+ const_cast<GlobalValue*>(GV),
+ Offset);
+
+ // Fill the data entry with zeros
+ GblS.emitZeros(Size);
+
+ // Add the relocation entry for the current data section
+ GblS.addRelocation(MR);
+}
+
+void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
+ ELFSection &S) {
+ const TargetData *TD = TM.getTargetData();
+ unsigned BitWidth = CI->getBitWidth();
+ assert(isPowerOf2_32(BitWidth) &&
+ "Non-power-of-2-sized integers not handled!");
+
+ const uint64_t *RawData = CI->getValue().getRawData();
+ uint64_t Val = 0;
+ for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
+ Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
+ S.emitWord64(Val);
}
- assert(0 && "unknown global constant");
}
+/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
+/// special global used by LLVM. If so, emit it and return true, otherwise
+/// do nothing and return false.
+bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
+ if (GV->getName() == "llvm.used")
+ llvm_unreachable("not implemented yet");
+
+ // Ignore debug and non-emitted data. This handles llvm.compiler.used.
+ if (GV->getSection() == "llvm.metadata" ||
+ GV->hasAvailableExternallyLinkage())
+ return true;
+
+ if (!GV->hasAppendingLinkage()) return false;
+
+ assert(GV->hasInitializer() && "Not a special LLVM global!");
+
+ const TargetData *TD = TM.getTargetData();
+ unsigned Align = TD->getPointerPrefAlignment();
+ if (GV->getName() == "llvm.global_ctors") {
+ ELFSection &Ctor = getCtorSection();
+ Ctor.emitAlignment(Align);
+ EmitXXStructorList(GV->getInitializer(), Ctor);
+ return true;
+ }
+
+ if (GV->getName() == "llvm.global_dtors") {
+ ELFSection &Dtor = getDtorSection();
+ Dtor.emitAlignment(Align);
+ EmitXXStructorList(GV->getInitializer(), Dtor);
+ return true;
+ }
+
+ return false;
+}
+
+/// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
+/// function pointers, ignoring the init priority.
+void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) {
+ // Should be an array of '{ int, void ()* }' structs. The first value is the
+ // init priority, which we ignore.
+ if (!isa<ConstantArray>(List)) return;
+ ConstantArray *InitList = cast<ConstantArray>(List);
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
+ if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
+
+ if (CS->getOperand(1)->isNullValue())
+ return; // Found a null terminator, exit printing.
+ // Emit the function pointer.
+ EmitGlobalConstant(CS->getOperand(1), Xtor);
+ }
+}
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
- // Nothing to do here, this is all done through the MCE object above.
+ // Nothing to do here, this is all done through the ElfCE object above.
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
- /// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the
- /// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data
- /// vector size for .text sections, so this is a quick dirty fix
- ELFSection &TS = getTextSection();
- if (TS.Size) {
- BinaryData &BD = TS.getData();
- for (unsigned e=0; e<TS.Size; ++e)
- BD.push_back(BD[e]);
- }
-
// Emit .data section placeholder
getDataSection();
@@ -384,57 +690,34 @@ bool ELFWriter::doFinalization(Module &M) {
// Build and emit data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- EmitGlobalVar(I);
- GblSymLookup[I] = 0;
- }
+ I != E; ++I)
+ EmitGlobal(I);
// Emit all pending globals
- // TODO: this should be done only for referenced symbols
- for (SetVector<GlobalValue*>::const_iterator I = PendingGlobals.begin(),
- E = PendingGlobals.end(); I != E; ++I) {
+ for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
+ I != E; ++I)
+ EmitGlobal(*I);
- // No need to emit the symbol again
- if (GblSymLookup.find(*I) != GblSymLookup.end())
- continue;
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) {
- EmitGlobalVar(GV);
- } else if (Function *F = dyn_cast<Function>(*I)) {
- // If function is not in GblSymLookup, it doesn't have a body,
- // so emit the symbol as a function declaration (no section associated)
- EmitFunctionDeclaration(F);
- } else {
- assert("unknown howto handle pending global");
- }
- GblSymLookup[*I] = 0;
- }
+ // Emit all pending externals
+ for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
+ I != E; ++I)
+ SymbolList.push_back(ELFSym::getExtSym(*I));
// Emit non-executable stack note
- if (TAI->getNonexecutableStackDirective())
+ if (MAI->getNonexecutableStackDirective())
getNonExecStackSection();
- // Emit a symbol for each section created until now
- for (std::map<std::string, ELFSection*>::iterator I = SectionLookup.begin(),
- E = SectionLookup.end(); I != E; ++I) {
- ELFSection *ES = I->second;
-
- // Skip null section
- if (ES->SectionIdx == 0) continue;
-
- ELFSym SectionSym(0);
- SectionSym.SectionIdx = ES->SectionIdx;
- SectionSym.Size = 0;
- SectionSym.setBind(ELFSym::STB_LOCAL);
- SectionSym.setType(ELFSym::STT_SECTION);
- SectionSym.setVisibility(ELFSym::STV_DEFAULT);
-
- // Local symbols go in the list front
- SymbolList.push_front(SectionSym);
+ // Emit a symbol for each section created until now, skip null section
+ for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
+ ELFSection &ES = *SectionList[i];
+ ELFSym *SectionSym = ELFSym::getSectionSym();
+ SectionSym->SectionIdx = ES.SectionIdx;
+ SymbolList.push_back(SectionSym);
+ ES.Sym = SymbolList.back();
}
// Emit string table
- EmitStringTable();
+ EmitStringTable(M.getModuleIdentifier());
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
@@ -448,77 +731,106 @@ bool ELFWriter::doFinalization(Module &M) {
// Dump the sections and section table to the .o file.
OutputSectionsAndSectionTable();
- // We are done with the abstract symbols.
- SectionList.clear();
- NumSections = 0;
-
- // Release the name mangler object.
- delete Mang; Mang = 0;
return false;
}
+// RelocateField - Patch relocatable field with 'Offset' in 'BO'
+// using a 'Value' of known 'Size'
+void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
+ int64_t Value, unsigned Size) {
+ if (Size == 32)
+ BO.fixWord32(Value, Offset);
+ else if (Size == 64)
+ BO.fixWord64(Value, Offset);
+ else
+ llvm_unreachable("don't know howto patch relocatable field");
+}
+
/// EmitRelocations - Emit relocations
void ELFWriter::EmitRelocations() {
+ // True if the target uses the relocation entry to hold the addend,
+ // otherwise the addend is written directly to the relocatable field.
+ bool HasRelA = TEW->hasRelocationAddend();
+
// Create Relocation sections for each section which needs it.
- for (std::list<ELFSection>::iterator I = SectionList.begin(),
- E = SectionList.end(); I != E; ++I) {
+ for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
+ ELFSection &S = *SectionList[i];
// This section does not have relocations
- if (!I->hasRelocations()) continue;
-
- // Get the relocation section for section 'I'
- bool HasRelA = TEW->hasRelocationAddend();
- ELFSection &RelSec = getRelocSection(I->getName(), HasRelA,
- TEW->getPrefELFAlignment());
+ if (!S.hasRelocations()) continue;
+ ELFSection &RelSec = getRelocSection(S);
// 'Link' - Section hdr idx of the associated symbol table
// 'Info' - Section hdr idx of the section to which the relocation applies
ELFSection &SymTab = getSymbolTableSection();
RelSec.Link = SymTab.SectionIdx;
- RelSec.Info = I->SectionIdx;
+ RelSec.Info = S.SectionIdx;
RelSec.EntSize = TEW->getRelocationEntrySize();
// Get the relocations from Section
- std::vector<MachineRelocation> Relos = I->getRelocations();
+ std::vector<MachineRelocation> Relos = S.getRelocations();
for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
MRE = Relos.end(); MRI != MRE; ++MRI) {
MachineRelocation &MR = *MRI;
- // Offset from the start of the section containing the symbol
- unsigned Offset = MR.getMachineCodeOffset();
+ // Relocatable field offset from the section start
+ unsigned RelOffset = MR.getMachineCodeOffset();
// Symbol index in the symbol table
unsigned SymIdx = 0;
- // Target specific ELF relocation type
+ // Target specific relocation field type and size
unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
-
- // Constant addend used to compute the value to be stored
- // into the relocatable field
+ unsigned RelTySize = TEW->getRelocationTySize(RelType);
int64_t Addend = 0;
// There are several machine relocations types, and each one of
// them needs a different approach to retrieve the symbol table index.
if (MR.isGlobalValue()) {
const GlobalValue *G = MR.getGlobalValue();
+ int64_t GlobalOffset = MR.getConstantVal();
SymIdx = GblSymLookup[G];
- Addend = TEW->getAddendForRelTy(RelType);
+ if (G->hasPrivateLinkage()) {
+ // If the target uses a section offset in the relocation:
+ // SymIdx + Addend = section sym for global + section offset
+ unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
+ Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
+ SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
+ } else {
+ Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
+ }
+ } else if (MR.isExternalSymbol()) {
+ const char *ExtSym = MR.getExternalSymbol();
+ SymIdx = ExtSymLookup[ExtSym];
+ Addend = TEW->getDefaultAddendForRelTy(RelType);
} else {
+ // Get the symbol index for the section symbol
unsigned SectionIdx = MR.getConstantVal();
- // TODO: use a map for this.
- for (std::list<ELFSym>::iterator I = SymbolList.begin(),
- E = SymbolList.end(); I != E; ++I)
- if ((SectionIdx == I->SectionIdx) &&
- (I->getType() == ELFSym::STT_SECTION)) {
- SymIdx = I->SymTabIdx;
- break;
- }
- Addend = (uint64_t)MR.getResultPointer();
+ SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
+
+ // The symbol offset inside the section
+ int64_t SymOffset = (int64_t)MR.getResultPointer();
+
+ // For pc relative relocations where symbols are defined in the same
+ // section they are referenced, ignore the relocation entry and patch
+ // the relocatable field with the symbol offset directly.
+ if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
+ int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
+ RelocateField(S, RelOffset, Value, RelTySize);
+ continue;
+ }
+
+ Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
}
+ // The target without addend on the relocation symbol must be
+ // patched in the relocation place itself to contain the addend
+ // otherwise write zeros to make sure there is no garbage there
+ RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
+
// Get the relocation entry and emit to the relocation section
- ELFRelocation Rel(Offset, SymIdx, RelType, HasRelA, Addend);
+ ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
EmitRelocation(RelSec, Rel, HasRelA);
}
}
@@ -554,7 +866,7 @@ void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
/// Section Header Table
-void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
+void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
const ELFSection &SHdr) {
SHdrTab.emitWord32(SHdr.NameIdx);
SHdrTab.emitWord32(SHdr.Type);
@@ -581,27 +893,30 @@ void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
/// EmitStringTable - If the current symbol table is non-empty, emit the string
/// table for it
-void ELFWriter::EmitStringTable() {
+void ELFWriter::EmitStringTable(const std::string &ModuleName) {
if (!SymbolList.size()) return; // Empty symbol table.
ELFSection &StrTab = getStringTableSection();
// Set the zero'th symbol to a null byte, as required.
StrTab.emitByte(0);
- // Walk on the symbol list and write symbol names into the
- // string table.
+ // Walk on the symbol list and write symbol names into the string table.
unsigned Index = 1;
- for (std::list<ELFSym>::iterator I = SymbolList.begin(),
- E = SymbolList.end(); I != E; ++I) {
+ for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
+ ELFSym &Sym = *(*I);
- // Use the name mangler to uniquify the LLVM symbol.
std::string Name;
- if (I->GV) Name.append(Mang->getValueName(I->GV));
+ if (Sym.isGlobalValue())
+ Name.append(Mang->getMangledName(Sym.getGlobalValue()));
+ else if (Sym.isExternalSym())
+ Name.append(Sym.getExternalSymbol());
+ else if (Sym.isFileType())
+ Name.append(ModuleName);
if (Name.empty()) {
- I->NameIdx = 0;
+ Sym.NameIdx = 0;
} else {
- I->NameIdx = Index;
+ Sym.NameIdx = Index;
StrTab.emitString(Name);
// Keep track of the number of bytes emitted to this section.
@@ -612,11 +927,38 @@ void ELFWriter::EmitStringTable() {
StrTab.Size = Index;
}
+// SortSymbols - On the symbol table local symbols must come before
+// all other symbols with non-local bindings. The return value is
+// the position of the first non local symbol.
+unsigned ELFWriter::SortSymbols() {
+ unsigned FirstNonLocalSymbol;
+ std::vector<ELFSym*> LocalSyms, OtherSyms;
+
+ for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
+ if ((*I)->isLocalBind())
+ LocalSyms.push_back(*I);
+ else
+ OtherSyms.push_back(*I);
+ }
+ SymbolList.clear();
+ FirstNonLocalSymbol = LocalSyms.size();
+
+ for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
+ SymbolList.push_back(LocalSyms[i]);
+
+ for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
+ SymbolList.push_back(*I);
+
+ LocalSyms.clear();
+ OtherSyms.clear();
+
+ return FirstNonLocalSymbol;
+}
+
/// EmitSymbolTable - Emit the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (!SymbolList.size()) return; // Empty symbol table.
- unsigned FirstNonLocalSymbol = 1;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
ELFSection &SymTab = getSymbolTableSection();
@@ -628,30 +970,27 @@ void ELFWriter::EmitSymbolTable() {
// Size of each symtab entry.
SymTab.EntSize = TEW->getSymTabEntrySize();
- // The first entry in the symtab is the null symbol
- ELFSym NullSym = ELFSym(0);
- EmitSymbol(SymTab, NullSym);
+ // Reorder the symbol table with local symbols first!
+ unsigned FirstNonLocalSymbol = SortSymbols();
- // Emit all the symbols to the symbol table. Skip the null
- // symbol, cause it's emitted already
- unsigned Index = 1;
- for (std::list<ELFSym>::iterator I = SymbolList.begin(),
- E = SymbolList.end(); I != E; ++I, ++Index) {
- // Keep track of the first non-local symbol
- if (I->getBind() == ELFSym::STB_LOCAL)
- FirstNonLocalSymbol++;
+ // Emit all the symbols to the symbol table.
+ for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
+ ELFSym &Sym = *SymbolList[i];
// Emit symbol to the symbol table
- EmitSymbol(SymTab, *I);
+ EmitSymbol(SymTab, Sym);
- // Record the symbol table index for each global value
- if (I->GV)
- GblSymLookup[I->GV] = Index;
+ // Record the symbol table index for each symbol
+ if (Sym.isGlobalValue())
+ GblSymLookup[Sym.getGlobalValue()] = i;
+ else if (Sym.isExternalSym())
+ ExtSymLookup[Sym.getExternalSymbol()] = i;
// Keep track on the symbol index into the symbol table
- I->SymTabIdx = Index;
+ Sym.SymTabIdx = i;
}
+ // One greater than the symbol table index of the last local symbol
SymTab.Info = FirstNonLocalSymbol;
SymTab.Size = SymTab.size();
}
@@ -671,15 +1010,15 @@ void ELFWriter::EmitSectionTableStringTable() {
// the string table.
unsigned Index = 0;
- for (std::list<ELFSection>::iterator I = SectionList.begin(),
- E = SectionList.end(); I != E; ++I) {
+ for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
+ ELFSection &S = *(*I);
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
- I->NameIdx = Index;
- SHStrTab.emitString(I->getName());
+ S.NameIdx = Index;
+ SHStrTab.emitString(S.getName());
// Keep track of the number of bytes emitted to this section.
- Index += I->getName().size()+1;
+ Index += S.getName().size()+1;
}
// Set the size of .shstrtab now that we know what it is.
@@ -694,29 +1033,24 @@ void ELFWriter::OutputSectionsAndSectionTable() {
// Pass #1: Compute the file offset for each section.
size_t FileOff = ElfHdr.size(); // File header first.
- // Adjust alignment of all section if needed.
- for (std::list<ELFSection>::iterator I = SectionList.begin(),
- E = SectionList.end(); I != E; ++I) {
-
- // Section idx 0 has 0 offset
- if (!I->SectionIdx)
- continue;
-
- if (!I->size()) {
- I->Offset = FileOff;
+ // Adjust alignment of all section if needed, skip the null section.
+ for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
+ ELFSection &ES = *SectionList[i];
+ if (!ES.size()) {
+ ES.Offset = FileOff;
continue;
}
// Update Section size
- if (!I->Size)
- I->Size = I->size();
+ if (!ES.Size)
+ ES.Size = ES.size();
// Align FileOff to whatever the alignment restrictions of the section are.
- if (I->Align)
- FileOff = (FileOff+I->Align-1) & ~(I->Align-1);
+ if (ES.Align)
+ FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
- I->Offset = FileOff;
- FileOff += I->Size;
+ ES.Offset = FileOff;
+ FileOff += ES.Size;
}
// Align Section Header.
@@ -740,11 +1074,11 @@ void ELFWriter::OutputSectionsAndSectionTable() {
BinaryObject SHdrTable(isLittleEndian, is64Bit);
// Emit all of sections to the file and build the section header table.
- while (!SectionList.empty()) {
- ELFSection &S = *SectionList.begin();
- DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
- << ", Size: " << S.Size << ", Offset: " << S.Offset
- << ", SectionData Size: " << S.size() << "\n";
+ for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
+ ELFSection &S = *(*I);
+ DEBUG(errs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
+ << ", Size: " << S.Size << ", Offset: " << S.Offset
+ << ", SectionData Size: " << S.size() << "\n");
// Align FileOff to whatever the alignment restrictions of the section are.
if (S.size()) {
@@ -758,7 +1092,6 @@ void ELFWriter::OutputSectionsAndSectionTable() {
}
EmitSectionHeader(SHdrTable, S);
- SectionList.pop_front();
}
// Align output for the section table.
diff --git a/lib/CodeGen/ELFWriter.h b/lib/CodeGen/ELFWriter.h
index bab118c..b61b484 100644
--- a/lib/CodeGen/ELFWriter.h
+++ b/lib/CodeGen/ELFWriter.h
@@ -16,23 +16,35 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
-#include <list>
#include <map>
namespace llvm {
class BinaryObject;
class Constant;
+ class ConstantInt;
class ConstantStruct;
class ELFCodeEmitter;
+ class ELFRelocation;
+ class ELFSection;
+ struct ELFSym;
class GlobalVariable;
+ class JITDebugRegisterer;
class Mangler;
class MachineCodeEmitter;
- class TargetAsmInfo;
+ class MachineConstantPoolEntry;
+ class ObjectCodeEmitter;
+ class MCAsmInfo;
class TargetELFWriterInfo;
+ class TargetLoweringObjectFile;
class raw_ostream;
- class ELFSection;
- class ELFSym;
- class ELFRelocation;
+ class SectionKind;
+ class MCContext;
+
+ typedef std::vector<ELFSym*>::iterator ELFSymIter;
+ typedef std::vector<ELFSection*>::iterator ELFSectionIter;
+ typedef SetVector<const GlobalValue*>::const_iterator PendingGblsIter;
+ typedef SetVector<const char *>::const_iterator PendingExtsIter;
+ typedef std::pair<const Constant *, int64_t> CstExprResTy;
/// ELFWriter - This class implements the common target-independent code for
/// writing ELF files. Targets should derive a class from this to
@@ -40,18 +52,18 @@ namespace llvm {
///
class ELFWriter : public MachineFunctionPass {
friend class ELFCodeEmitter;
+ friend class JITDebugRegisterer;
public:
static char ID;
- MachineCodeEmitter &getMachineCodeEmitter() const {
- return *(MachineCodeEmitter*)MCE;
+ /// Return the ELFCodeEmitter as an instance of ObjectCodeEmitter
+ ObjectCodeEmitter *getObjectCodeEmitter() {
+ return reinterpret_cast<ObjectCodeEmitter*>(ElfCE);
}
ELFWriter(raw_ostream &O, TargetMachine &TM);
~ELFWriter();
- typedef std::vector<unsigned char> DataBuffer;
-
protected:
/// Output stream to send the resultant object file to.
raw_ostream &O;
@@ -59,6 +71,9 @@ namespace llvm {
/// Target machine description.
TargetMachine &TM;
+ /// Context object for machine code objects.
+ MCContext &OutContext;
+
/// Target Elf Writer description.
const TargetELFWriterInfo *TEW;
@@ -67,11 +82,15 @@ namespace llvm {
/// MCE - The MachineCodeEmitter object that we are exposing to emit machine
/// code for functions to the .o file.
- ELFCodeEmitter *MCE;
+ ELFCodeEmitter *ElfCE;
- /// TAI - Target Asm Info, provide information about section names for
+ /// TLOF - Target Lowering Object File, provide section names for globals
+ /// and other object file specific stuff
+ const TargetLoweringObjectFile &TLOF;
+
+ /// MAI - Target Asm Info, provide information about section names for
/// globals and other target specific stuff.
- const TargetAsmInfo *TAI;
+ const MCAsmInfo *MAI;
//===------------------------------------------------------------------===//
// Properties inferred automatically from the target machine.
@@ -95,59 +114,49 @@ namespace llvm {
BinaryObject ElfHdr;
/// SectionList - This is the list of sections that we have emitted to the
- /// file. Once the file has been completely built, the section header table
+ /// file. Once the file has been completely built, the section header table
/// is constructed from this info.
- std::list<ELFSection> SectionList;
+ std::vector<ELFSection*> SectionList;
unsigned NumSections; // Always = SectionList.size()
/// SectionLookup - This is a mapping from section name to section number in
- /// the SectionList.
+ /// the SectionList. Used to quickly gather the Section Index from MAI names
std::map<std::string, ELFSection*> SectionLookup;
+ /// PendingGlobals - Globals not processed as symbols yet.
+ SetVector<const GlobalValue*> PendingGlobals;
+
/// GblSymLookup - This is a mapping from global value to a symbol index
- /// in the symbol table. This is useful since relocations symbol references
- /// must be quickly mapped to a symbol table index
+ /// in the symbol table or private symbols list. This is useful since reloc
+ /// symbol references must be quickly mapped to their indices on the lists.
std::map<const GlobalValue*, uint32_t> GblSymLookup;
- /// SymbolList - This is the list of symbols emitted to the symbol table
- /// Local symbols go to the front and Globals to the back.
- std::list<ELFSym> SymbolList;
-
- /// PendingGlobals - List of externally defined symbols that we have been
- /// asked to emit, but have not seen a reference to. When a reference
- /// is seen, the symbol will move from this list to the SymbolList.
- SetVector<GlobalValue*> PendingGlobals;
-
- // Remove tab from section name prefix. This is necessary becase TAI
- // sometimes return a section name prefixed with a "\t" char. This is
- // a little bit dirty. FIXME: find a better approach, maybe add more
- // methods to TAI to get the clean name?
- void fixNameForSection(std::string &Name) {
- size_t Pos = Name.find("\t");
- if (Pos != std::string::npos)
- Name.erase(Pos, 1);
-
- Pos = Name.find(".section ");
- if (Pos != std::string::npos)
- Name.erase(Pos, 9);
-
- Pos = Name.find("\n");
- if (Pos != std::string::npos)
- Name.erase(Pos, 1);
- }
+ /// PendingExternals - Externals not processed as symbols yet.
+ SetVector<const char *> PendingExternals;
+
+ /// ExtSymLookup - This is a mapping from externals to a symbol index
+ /// in the symbol table list. This is useful since reloc symbol references
+ /// must be quickly mapped to their symbol table indices.
+ std::map<const char *, uint32_t> ExtSymLookup;
+
+ /// SymbolList - This is the list of symbols emitted to the symbol table.
+ /// When the SymbolList is finally built, local symbols must be placed in
+ /// the beginning while non-locals at the end.
+ std::vector<ELFSym*> SymbolList;
+
+ /// PrivateSyms - Record private symbols, every symbol here must never be
+ /// present in the SymbolList.
+ std::vector<ELFSym*> PrivateSyms;
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
ELFSection &getSection(const std::string &Name, unsigned Type,
unsigned Flags = 0, unsigned Align = 0) {
- std::string SectionName(Name);
- fixNameForSection(SectionName);
-
- ELFSection *&SN = SectionLookup[SectionName];
+ ELFSection *&SN = SectionLookup[Name];
if (SN) return *SN;
- SectionList.push_back(ELFSection(SectionName, isLittleEndian, is64Bit));
- SN = &SectionList.back();
+ SectionList.push_back(new ELFSection(Name, isLittleEndian, is64Bit));
+ SN = SectionList.back();
SN->SectionIdx = NumSections++;
SN->Type = Type;
SN->Flags = Flags;
@@ -156,37 +165,6 @@ namespace llvm {
return *SN;
}
- /// TODO: support mangled names here to emit the right .text section
- /// for c++ object files.
- ELFSection &getTextSection() {
- return getSection(".text", ELFSection::SHT_PROGBITS,
- ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
- }
-
- /// Get jump table section on the section name returned by TAI
- ELFSection &getJumpTableSection(std::string SName, unsigned Align) {
- return getSection(SName, ELFSection::SHT_PROGBITS,
- ELFSection::SHF_ALLOC, Align);
- }
-
- /// Get a constant pool section based on the section name returned by TAI
- ELFSection &getConstantPoolSection(std::string SName, unsigned Align) {
- return getSection(SName, ELFSection::SHT_PROGBITS,
- ELFSection::SHF_MERGE | ELFSection::SHF_ALLOC, Align);
- }
-
- /// Return the relocation section of section 'S'. 'RelA' is true
- /// if the relocation section contains entries with addends.
- ELFSection &getRelocSection(std::string SName, bool RelA, unsigned Align) {
- std::string RelSName(".rel");
- unsigned SHdrTy = RelA ? ELFSection::SHT_RELA : ELFSection::SHT_REL;
-
- if (RelA) RelSName.append("a");
- RelSName.append(SName);
-
- return getSection(RelSName, SHdrTy, 0, Align);
- }
-
ELFSection &getNonExecStackSection() {
return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
}
@@ -203,24 +181,38 @@ namespace llvm {
return getSection(".shstrtab", ELFSection::SHT_STRTAB, 0, 1);
}
- ELFSection &getDataSection() {
- return getSection(".data", ELFSection::SHT_PROGBITS,
- ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 4);
- }
-
- ELFSection &getBSSSection() {
- return getSection(".bss", ELFSection::SHT_NOBITS,
- ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 4);
- }
-
ELFSection &getNullSection() {
return getSection("", ELFSection::SHT_NULL, 0);
}
+ ELFSection &getDataSection();
+ ELFSection &getBSSSection();
+ ELFSection &getCtorSection();
+ ELFSection &getDtorSection();
+ ELFSection &getJumpTableSection();
+ ELFSection &getConstantPoolSection(MachineConstantPoolEntry &CPE);
+ ELFSection &getTextSection(Function *F);
+ ELFSection &getRelocSection(ELFSection &S);
+
// Helpers for obtaining ELF specific info.
- unsigned getGlobalELFLinkage(const GlobalValue *GV);
+ unsigned getGlobalELFBinding(const GlobalValue *GV);
+ unsigned getGlobalELFType(const GlobalValue *GV);
unsigned getGlobalELFVisibility(const GlobalValue *GV);
- unsigned getElfSectionFlags(unsigned Flags);
+
+ // AddPendingGlobalSymbol - Add a global to be processed and to
+ // the global symbol lookup, use a zero index because the table
+ // index will be determined later.
+ void AddPendingGlobalSymbol(const GlobalValue *GV,
+ bool AddToLookup = false);
+
+ // AddPendingExternalSymbol - Add the external to be processed
+ // and to the external symbol lookup, use a zero index because
+ // the symbol table index will be determined later.
+ void AddPendingExternalSymbol(const char *External);
+
+ // AddToSymbolList - Update the symbol lookup and If the symbol is
+ // private add it to PrivateSyms list, otherwise to SymbolList.
+ void AddToSymbolList(ELFSym *GblSym);
// As we complete the ELF file, we need to update fields in the ELF header
// (e.g. the location of the section table). These members keep track of
@@ -231,20 +223,27 @@ namespace llvm {
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
private:
- void EmitFunctionDeclaration(const Function *F);
- void EmitGlobalVar(const GlobalVariable *GV);
+ void EmitGlobal(const GlobalValue *GV);
void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
void EmitGlobalConstantStruct(const ConstantStruct *CVS,
ELFSection &GblS);
- ELFSection &getGlobalSymELFSection(const GlobalVariable *GV, ELFSym &Sym);
+ void EmitGlobalConstantLargeInt(const ConstantInt *CI, ELFSection &S);
+ void EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
+ ELFSection &GblS, int64_t Offset = 0);
+ bool EmitSpecialLLVMGlobal(const GlobalVariable *GV);
+ void EmitXXStructorList(Constant *List, ELFSection &Xtor);
void EmitRelocations();
void EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, bool HasRelA);
void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
void EmitSectionTableStringTable();
void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);
void EmitSymbolTable();
- void EmitStringTable();
+ void EmitStringTable(const std::string &ModuleName);
void OutputSectionsAndSectionTable();
+ void RelocateField(BinaryObject &BO, uint32_t Offset, int64_t Value,
+ unsigned Size);
+ unsigned SortSymbols();
+ CstExprResTy ResolveConstantExpr(const Constant *CV);
};
}
diff --git a/lib/CodeGen/ExactHazardRecognizer.cpp b/lib/CodeGen/ExactHazardRecognizer.cpp
new file mode 100644
index 0000000..4f32c2b
--- /dev/null
+++ b/lib/CodeGen/ExactHazardRecognizer.cpp
@@ -0,0 +1,160 @@
+//===----- ExactHazardRecognizer.cpp - hazard recognizer -------- ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a a hazard recognizer using the instructions itineraries
+// defined for the current target.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "exact-hazards"
+#include "ExactHazardRecognizer.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrItineraries.h"
+
+using namespace llvm;
+
+ExactHazardRecognizer::ExactHazardRecognizer(const InstrItineraryData &LItinData) :
+ ScheduleHazardRecognizer(), ItinData(LItinData)
+{
+ // Determine the maximum depth of any itinerary. This determines the
+ // depth of the scoreboard. We always make the scoreboard at least 1
+ // cycle deep to avoid dealing with the boundary condition.
+ ScoreboardDepth = 1;
+ if (!ItinData.isEmpty()) {
+ for (unsigned idx = 0; ; ++idx) {
+ if (ItinData.isEndMarker(idx))
+ break;
+
+ const InstrStage *IS = ItinData.beginStage(idx);
+ const InstrStage *E = ItinData.endStage(idx);
+ unsigned ItinDepth = 0;
+ for (; IS != E; ++IS)
+ ItinDepth += IS->getCycles();
+
+ ScoreboardDepth = std::max(ScoreboardDepth, ItinDepth);
+ }
+ }
+
+ Scoreboard = new unsigned[ScoreboardDepth];
+ ScoreboardHead = 0;
+
+ DEBUG(errs() << "Using exact hazard recognizer: ScoreboardDepth = "
+ << ScoreboardDepth << '\n');
+}
+
+ExactHazardRecognizer::~ExactHazardRecognizer() {
+ delete [] Scoreboard;
+}
+
+void ExactHazardRecognizer::Reset() {
+ memset(Scoreboard, 0, ScoreboardDepth * sizeof(unsigned));
+ ScoreboardHead = 0;
+}
+
+unsigned ExactHazardRecognizer::getFutureIndex(unsigned offset) {
+ return (ScoreboardHead + offset) % ScoreboardDepth;
+}
+
+void ExactHazardRecognizer::dumpScoreboard() {
+ errs() << "Scoreboard:\n";
+
+ unsigned last = ScoreboardDepth - 1;
+ while ((last > 0) && (Scoreboard[getFutureIndex(last)] == 0))
+ last--;
+
+ for (unsigned i = 0; i <= last; i++) {
+ unsigned FUs = Scoreboard[getFutureIndex(i)];
+ errs() << "\t";
+ for (int j = 31; j >= 0; j--)
+ errs() << ((FUs & (1 << j)) ? '1' : '0');
+ errs() << '\n';
+ }
+}
+
+ExactHazardRecognizer::HazardType ExactHazardRecognizer::getHazardType(SUnit *SU) {
+ if (ItinData.isEmpty())
+ return NoHazard;
+
+ unsigned cycle = 0;
+
+ // Use the itinerary for the underlying instruction to check for
+ // free FU's in the scoreboard at the appropriate future cycles.
+ unsigned idx = SU->getInstr()->getDesc().getSchedClass();
+ for (const InstrStage *IS = ItinData.beginStage(idx),
+ *E = ItinData.endStage(idx); IS != E; ++IS) {
+ // We must find one of the stage's units free for every cycle the
+ // stage is occupied. FIXME it would be more accurate to find the
+ // same unit free in all the cycles.
+ for (unsigned int i = 0; i < IS->getCycles(); ++i) {
+ assert(((cycle + i) < ScoreboardDepth) &&
+ "Scoreboard depth exceeded!");
+
+ unsigned index = getFutureIndex(cycle + i);
+ unsigned freeUnits = IS->getUnits() & ~Scoreboard[index];
+ if (!freeUnits) {
+ DEBUG(errs() << "*** Hazard in cycle " << (cycle + i) << ", ");
+ DEBUG(errs() << "SU(" << SU->NodeNum << "): ");
+ DEBUG(SU->getInstr()->dump());
+ return Hazard;
+ }
+ }
+
+ // Advance the cycle to the next stage.
+ cycle += IS->getNextCycles();
+ }
+
+ return NoHazard;
+}
+
+void ExactHazardRecognizer::EmitInstruction(SUnit *SU) {
+ if (ItinData.isEmpty())
+ return;
+
+ unsigned cycle = 0;
+
+ // Use the itinerary for the underlying instruction to reserve FU's
+ // in the scoreboard at the appropriate future cycles.
+ unsigned idx = SU->getInstr()->getDesc().getSchedClass();
+ for (const InstrStage *IS = ItinData.beginStage(idx),
+ *E = ItinData.endStage(idx); IS != E; ++IS) {
+ // We must reserve one of the stage's units for every cycle the
+ // stage is occupied. FIXME it would be more accurate to reserve
+ // the same unit free in all the cycles.
+ for (unsigned int i = 0; i < IS->getCycles(); ++i) {
+ assert(((cycle + i) < ScoreboardDepth) &&
+ "Scoreboard depth exceeded!");
+
+ unsigned index = getFutureIndex(cycle + i);
+ unsigned freeUnits = IS->getUnits() & ~Scoreboard[index];
+
+ // reduce to a single unit
+ unsigned freeUnit = 0;
+ do {
+ freeUnit = freeUnits;
+ freeUnits = freeUnit & (freeUnit - 1);
+ } while (freeUnits);
+
+ assert(freeUnit && "No function unit available!");
+ Scoreboard[index] |= freeUnit;
+ }
+
+ // Advance the cycle to the next stage.
+ cycle += IS->getNextCycles();
+ }
+
+ DEBUG(dumpScoreboard());
+}
+
+void ExactHazardRecognizer::AdvanceCycle() {
+ Scoreboard[ScoreboardHead] = 0;
+ ScoreboardHead = getFutureIndex(1);
+}
diff --git a/lib/CodeGen/ExactHazardRecognizer.h b/lib/CodeGen/ExactHazardRecognizer.h
new file mode 100644
index 0000000..71ac979
--- /dev/null
+++ b/lib/CodeGen/ExactHazardRecognizer.h
@@ -0,0 +1,61 @@
+//=- llvm/CodeGen/ExactHazardRecognizer.h - Scheduling Support -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ExactHazardRecognizer class, which
+// implements hazard-avoidance heuristics for scheduling, based on the
+// scheduling itineraries specified for the target.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_EXACTHAZARDRECOGNIZER_H
+#define LLVM_CODEGEN_EXACTHAZARDRECOGNIZER_H
+
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/Target/TargetInstrItineraries.h"
+
+namespace llvm {
+ class ExactHazardRecognizer : public ScheduleHazardRecognizer {
+ // Itinerary data for the target.
+ const InstrItineraryData &ItinData;
+
+ // Scoreboard to track function unit usage. Scoreboard[0] is a
+ // mask of the FUs in use in the cycle currently being
+ // schedule. Scoreboard[1] is a mask for the next cycle. The
+ // Scoreboard is used as a circular buffer with the current cycle
+ // indicated by ScoreboardHead.
+ unsigned *Scoreboard;
+
+ // The maximum number of cycles monitored by the Scoreboard. This
+ // value is determined based on the target itineraries to ensure
+ // that all hazards can be tracked.
+ unsigned ScoreboardDepth;
+
+ // Indices into the Scoreboard that represent the current cycle.
+ unsigned ScoreboardHead;
+
+ // Return the scoreboard index to use for 'offset' cycles in the
+ // future. 'offset' of 0 returns ScoreboardHead.
+ unsigned getFutureIndex(unsigned offset);
+
+ // Print the scoreboard.
+ void dumpScoreboard();
+
+ public:
+ ExactHazardRecognizer(const InstrItineraryData &ItinData);
+ ~ExactHazardRecognizer();
+
+ virtual HazardType getHazardType(SUnit *SU);
+ virtual void Reset();
+ virtual void EmitInstruction(SUnit *SU);
+ virtual void AdvanceCycle();
+ };
+}
+
+#endif
diff --git a/lib/CodeGen/GCMetadata.cpp b/lib/CodeGen/GCMetadata.cpp
index cf2ebb3..a57296c 100644
--- a/lib/CodeGen/GCMetadata.cpp
+++ b/lib/CodeGen/GCMetadata.cpp
@@ -18,17 +18,20 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
-
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class VISIBILITY_HIDDEN Printer : public FunctionPass {
static char ID;
- std::ostream &OS;
+ raw_ostream &OS;
public:
- explicit Printer(std::ostream &OS = *cerr);
+ Printer() : FunctionPass(&ID), OS(errs()) {}
+ explicit Printer(raw_ostream &OS) : FunctionPass(&ID), OS(OS) {}
+
const char *getPassName() const;
void getAnalysisUsage(AnalysisUsage &AU) const;
@@ -74,27 +77,24 @@ GCModuleInfo::~GCModuleInfo() {
GCStrategy *GCModuleInfo::getOrCreateStrategy(const Module *M,
const std::string &Name) {
- const char *Start = Name.c_str();
-
- strategy_map_type::iterator NMI =
- StrategyMap.find(Start, Start + Name.size());
+ strategy_map_type::iterator NMI = StrategyMap.find(Name);
if (NMI != StrategyMap.end())
return NMI->getValue();
for (GCRegistry::iterator I = GCRegistry::begin(),
E = GCRegistry::end(); I != E; ++I) {
- if (strcmp(Start, I->getName()) == 0) {
+ if (Name == I->getName()) {
GCStrategy *S = I->instantiate();
S->M = M;
S->Name = Name;
- StrategyMap.GetOrCreateValue(Start, Start + Name.size()).setValue(S);
+ StrategyMap.GetOrCreateValue(Name).setValue(S);
StrategyList.push_back(S);
return S;
}
}
-
- cerr << "unsupported GC: " << Name << "\n";
- abort();
+
+ errs() << "unsupported GC: " << Name << "\n";
+ llvm_unreachable(0);
}
GCFunctionInfo &GCModuleInfo::getFunctionInfo(const Function &F) {
@@ -124,12 +124,10 @@ void GCModuleInfo::clear() {
char Printer::ID = 0;
-FunctionPass *llvm::createGCInfoPrinter(std::ostream &OS) {
+FunctionPass *llvm::createGCInfoPrinter(raw_ostream &OS) {
return new Printer(OS);
}
-Printer::Printer(std::ostream &OS)
- : FunctionPass(&ID), OS(OS) {}
const char *Printer::getPassName() const {
return "Print Garbage Collector Information";
@@ -143,7 +141,7 @@ void Printer::getAnalysisUsage(AnalysisUsage &AU) const {
static const char *DescKind(GC::PointKind Kind) {
switch (Kind) {
- default: assert(0 && "Unknown GC point kind");
+ default: llvm_unreachable("Unknown GC point kind");
case GC::Loop: return "loop";
case GC::Return: return "return";
case GC::PreCall: return "pre-call";
@@ -155,12 +153,12 @@ bool Printer::runOnFunction(Function &F) {
if (!F.hasGC()) {
GCFunctionInfo *FD = &getAnalysis<GCModuleInfo>().getFunctionInfo(F);
- OS << "GC roots for " << FD->getFunction().getNameStart() << ":\n";
+ OS << "GC roots for " << FD->getFunction().getNameStr() << ":\n";
for (GCFunctionInfo::roots_iterator RI = FD->roots_begin(),
RE = FD->roots_end(); RI != RE; ++RI)
OS << "\t" << RI->Num << "\t" << RI->StackOffset << "[sp]\n";
- OS << "GC safe points for " << FD->getFunction().getNameStart() << ":\n";
+ OS << "GC safe points for " << FD->getFunction().getNameStr() << ":\n";
for (GCFunctionInfo::iterator PI = FD->begin(),
PE = FD->end(); PI != PE; ++PI) {
diff --git a/lib/CodeGen/GCMetadataPrinter.cpp b/lib/CodeGen/GCMetadataPrinter.cpp
index 5a5ef84..9cd2925 100644
--- a/lib/CodeGen/GCMetadataPrinter.cpp
+++ b/lib/CodeGen/GCMetadataPrinter.cpp
@@ -20,11 +20,11 @@ GCMetadataPrinter::GCMetadataPrinter() { }
GCMetadataPrinter::~GCMetadataPrinter() { }
void GCMetadataPrinter::beginAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI) {
+ const MCAsmInfo &MAI) {
// Default is no action.
}
void GCMetadataPrinter::finishAssembly(raw_ostream &OS, AsmPrinter &AP,
- const TargetAsmInfo &TAI) {
+ const MCAsmInfo &MAI) {
// Default is no action.
}
diff --git a/lib/CodeGen/GCStrategy.cpp b/lib/CodeGen/GCStrategy.cpp
index ad7421a..6d0de41 100644
--- a/lib/CodeGen/GCStrategy.cpp
+++ b/lib/CodeGen/GCStrategy.cpp
@@ -28,6 +28,8 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -70,7 +72,8 @@ namespace {
void FindSafePoints(MachineFunction &MF);
void VisitCallPoint(MachineBasicBlock::iterator MI);
unsigned InsertLabel(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const;
+ MachineBasicBlock::iterator MI,
+ DebugLoc DL) const;
void FindStackOffsets(MachineFunction &MF);
@@ -107,8 +110,8 @@ GCStrategy::~GCStrategy() {
bool GCStrategy::initializeCustomLowering(Module &M) { return false; }
bool GCStrategy::performCustomLowering(Function &F) {
- cerr << "gc " << getName() << " must override performCustomLowering.\n";
- abort();
+ errs() << "gc " << getName() << " must override performCustomLowering.\n";
+ llvm_unreachable(0);
return 0;
}
@@ -327,11 +330,13 @@ void MachineCodeAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
}
unsigned MachineCodeAnalysis::InsertLabel(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock::iterator MI,
+ DebugLoc DL) const {
unsigned Label = MMI->NextLabelID();
- // N.B. we assume that MI is *not* equal to the "end()" iterator.
- BuildMI(MBB, MI, MI->getDebugLoc(),
+
+ BuildMI(MBB, MI, DL,
TII->get(TargetInstrInfo::GC_LABEL)).addImm(Label);
+
return Label;
}
@@ -342,10 +347,12 @@ void MachineCodeAnalysis::VisitCallPoint(MachineBasicBlock::iterator CI) {
++RAI;
if (FI->getStrategy().needsSafePoint(GC::PreCall))
- FI->addSafePoint(GC::PreCall, InsertLabel(*CI->getParent(), CI));
+ FI->addSafePoint(GC::PreCall, InsertLabel(*CI->getParent(), CI,
+ CI->getDebugLoc()));
if (FI->getStrategy().needsSafePoint(GC::PostCall))
- FI->addSafePoint(GC::PostCall, InsertLabel(*CI->getParent(), RAI));
+ FI->addSafePoint(GC::PostCall, InsertLabel(*CI->getParent(), RAI,
+ CI->getDebugLoc()));
}
void MachineCodeAnalysis::FindSafePoints(MachineFunction &MF) {
diff --git a/lib/CodeGen/IfConversion.cpp b/lib/CodeGen/IfConversion.cpp
index d5e7ea5..7b613ff 100644
--- a/lib/CodeGen/IfConversion.cpp
+++ b/lib/CodeGen/IfConversion.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ifcvt"
+#include "BranchFolding.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
@@ -21,6 +22,8 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
@@ -226,14 +229,14 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
if (!TII) return false;
- DOUT << "\nIfcvt: function (" << ++FnNum << ") \'"
- << MF.getFunction()->getName() << "\'";
+ DEBUG(errs() << "\nIfcvt: function (" << ++FnNum << ") \'"
+ << MF.getFunction()->getName() << "\'");
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
- DOUT << " skipped\n";
+ DEBUG(errs() << " skipped\n");
return false;
}
- DOUT << "\n";
+ DEBUG(errs() << "\n");
MF.RenumberBlocks();
BBAnalysis.resize(MF.getNumBlockIDs());
@@ -278,13 +281,13 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
case ICSimpleFalse: {
bool isFalse = Kind == ICSimpleFalse;
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
- DOUT << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" :"")
- << "): BB#" << BBI.BB->getNumber() << " ("
- << ((Kind == ICSimpleFalse)
- ? BBI.FalseBB->getNumber()
- : BBI.TrueBB->getNumber()) << ") ";
+ DEBUG(errs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" :"")
+ << "): BB#" << BBI.BB->getNumber() << " ("
+ << ((Kind == ICSimpleFalse)
+ ? BBI.FalseBB->getNumber()
+ : BBI.TrueBB->getNumber()) << ") ");
RetVal = IfConvertSimple(BBI, Kind);
- DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
+ DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) NumSimpleFalse++;
else NumSimple++;
@@ -301,16 +304,16 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
if (DisableTriangleR && !isFalse && isRev) break;
if (DisableTriangleF && isFalse && !isRev) break;
if (DisableTriangleFR && isFalse && isRev) break;
- DOUT << "Ifcvt (Triangle";
+ DEBUG(errs() << "Ifcvt (Triangle");
if (isFalse)
- DOUT << " false";
+ DEBUG(errs() << " false");
if (isRev)
- DOUT << " rev";
- DOUT << "): BB#" << BBI.BB->getNumber() << " (T:"
- << BBI.TrueBB->getNumber() << ",F:"
- << BBI.FalseBB->getNumber() << ") ";
+ DEBUG(errs() << " rev");
+ DEBUG(errs() << "): BB#" << BBI.BB->getNumber() << " (T:"
+ << BBI.TrueBB->getNumber() << ",F:"
+ << BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertTriangle(BBI, Kind);
- DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
+ DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) {
if (isFalse) {
if (isRev) NumTriangleFRev++;
@@ -324,11 +327,11 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
}
case ICDiamond: {
if (DisableDiamond) break;
- DOUT << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
- << BBI.TrueBB->getNumber() << ",F:"
- << BBI.FalseBB->getNumber() << ") ";
+ DEBUG(errs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
+ << BBI.TrueBB->getNumber() << ",F:"
+ << BBI.FalseBB->getNumber() << ") ");
RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
- DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
+ DEBUG(errs() << (RetVal ? "succeeded!" : "failed!") << "\n");
if (RetVal) NumDiamonds++;
break;
}
@@ -358,6 +361,13 @@ bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
Roots.clear();
BBAnalysis.clear();
+ if (MadeChange) {
+ BranchFolder BF(false);
+ BF.OptimizeFunction(MF, TII,
+ MF.getTarget().getRegisterInfo(),
+ getAnalysisIfAvailable<MachineModuleInfo>());
+ }
+
return MadeChange;
}
@@ -1130,8 +1140,10 @@ void IfConverter::PredicateBlock(BBInfo &BBI,
if (TII->isPredicated(I))
continue;
if (!TII->PredicateInstruction(I, Cond)) {
- cerr << "Unable to predicate " << *I << "!\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Unable to predicate " << *I << "!\n";
+#endif
+ llvm_unreachable(0);
}
}
@@ -1164,8 +1176,10 @@ void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
if (!isPredicated)
if (!TII->PredicateInstruction(MI, Cond)) {
- cerr << "Unable to predicate " << *MI << "!\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Unable to predicate " << *I << "!\n";
+#endif
+ llvm_unreachable(0);
}
}
diff --git a/lib/CodeGen/IntrinsicLowering.cpp b/lib/CodeGen/IntrinsicLowering.cpp
index 052334a..3e3b28a 100644
--- a/lib/CodeGen/IntrinsicLowering.cpp
+++ b/lib/CodeGen/IntrinsicLowering.cpp
@@ -16,7 +16,9 @@
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
@@ -39,11 +41,11 @@ static void EnsureFPIntrinsicsExist(Module &M, Function *Fn,
switch((int)Fn->arg_begin()->getType()->getTypeID()) {
case Type::FloatTyID:
EnsureFunctionExists(M, FName, Fn->arg_begin(), Fn->arg_end(),
- Type::FloatTy);
+ Type::getFloatTy(M.getContext()));
break;
case Type::DoubleTyID:
EnsureFunctionExists(M, DName, Fn->arg_begin(), Fn->arg_end(),
- Type::DoubleTy);
+ Type::getDoubleTy(M.getContext()));
break;
case Type::X86_FP80TyID:
case Type::FP128TyID:
@@ -82,39 +84,43 @@ static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
}
void IntrinsicLowering::AddPrototypes(Module &M) {
+ LLVMContext &Context = M.getContext();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->isDeclaration() && !I->use_empty())
switch (I->getIntrinsicID()) {
default: break;
case Intrinsic::setjmp:
EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
- Type::Int32Ty);
+ Type::getInt32Ty(M.getContext()));
break;
case Intrinsic::longjmp:
EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
- Type::VoidTy);
+ Type::getVoidTy(M.getContext()));
break;
case Intrinsic::siglongjmp:
EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
- Type::VoidTy);
+ Type::getVoidTy(M.getContext()));
break;
case Intrinsic::memcpy:
- M.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty),
- PointerType::getUnqual(Type::Int8Ty),
- PointerType::getUnqual(Type::Int8Ty),
- TD.getIntPtrType(), (Type *)0);
+ M.getOrInsertFunction("memcpy",
+ Type::getInt8PtrTy(Context),
+ Type::getInt8PtrTy(Context),
+ Type::getInt8PtrTy(Context),
+ TD.getIntPtrType(Context), (Type *)0);
break;
case Intrinsic::memmove:
- M.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty),
- PointerType::getUnqual(Type::Int8Ty),
- PointerType::getUnqual(Type::Int8Ty),
- TD.getIntPtrType(), (Type *)0);
+ M.getOrInsertFunction("memmove",
+ Type::getInt8PtrTy(Context),
+ Type::getInt8PtrTy(Context),
+ Type::getInt8PtrTy(Context),
+ TD.getIntPtrType(Context), (Type *)0);
break;
case Intrinsic::memset:
- M.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty),
- PointerType::getUnqual(Type::Int8Ty),
- Type::Int32Ty,
- TD.getIntPtrType(), (Type *)0);
+ M.getOrInsertFunction("memset",
+ Type::getInt8PtrTy(Context),
+ Type::getInt8PtrTy(Context),
+ Type::getInt32Ty(M.getContext()),
+ TD.getIntPtrType(Context), (Type *)0);
break;
case Intrinsic::sqrt:
EnsureFPIntrinsicsExist(M, I, "sqrtf", "sqrt", "sqrtl");
@@ -148,7 +154,7 @@ void IntrinsicLowering::AddPrototypes(Module &M) {
/// LowerBSWAP - Emit the code to lower bswap of V before the specified
/// instruction IP.
-static Value *LowerBSWAP(Value *V, Instruction *IP) {
+static Value *LowerBSWAP(LLVMContext &Context, Value *V, Instruction *IP) {
assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
@@ -156,7 +162,7 @@ static Value *LowerBSWAP(Value *V, Instruction *IP) {
IRBuilder<> Builder(IP->getParent(), IP);
switch(BitSize) {
- default: assert(0 && "Unhandled type size of value to byteswap!");
+ default: llvm_unreachable("Unhandled type size of value to byteswap!");
case 16: {
Value *Tmp1 = Builder.CreateShl(V, ConstantInt::get(V->getType(), 8),
"bswap.2");
@@ -172,11 +178,13 @@ static Value *LowerBSWAP(Value *V, Instruction *IP) {
"bswap.3");
Value *Tmp2 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 8),
"bswap.2");
- Value *Tmp1 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 24),
+ Value *Tmp1 = Builder.CreateLShr(V,ConstantInt::get(V->getType(), 24),
"bswap.1");
- Tmp3 = Builder.CreateAnd(Tmp3, ConstantInt::get(Type::Int32Ty, 0xFF0000),
+ Tmp3 = Builder.CreateAnd(Tmp3,
+ ConstantInt::get(Type::getInt32Ty(Context), 0xFF0000),
"bswap.and3");
- Tmp2 = Builder.CreateAnd(Tmp2, ConstantInt::get(Type::Int32Ty, 0xFF00),
+ Tmp2 = Builder.CreateAnd(Tmp2,
+ ConstantInt::get(Type::getInt32Ty(Context), 0xFF00),
"bswap.and2");
Tmp4 = Builder.CreateOr(Tmp4, Tmp3, "bswap.or1");
Tmp2 = Builder.CreateOr(Tmp2, Tmp1, "bswap.or2");
@@ -194,31 +202,38 @@ static Value *LowerBSWAP(Value *V, Instruction *IP) {
"bswap.5");
Value* Tmp4 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 8),
"bswap.4");
- Value* Tmp3 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 24),
+ Value* Tmp3 = Builder.CreateLShr(V,
+ ConstantInt::get(V->getType(), 24),
"bswap.3");
- Value* Tmp2 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 40),
+ Value* Tmp2 = Builder.CreateLShr(V,
+ ConstantInt::get(V->getType(), 40),
"bswap.2");
- Value* Tmp1 = Builder.CreateLShr(V, ConstantInt::get(V->getType(), 56),
+ Value* Tmp1 = Builder.CreateLShr(V,
+ ConstantInt::get(V->getType(), 56),
"bswap.1");
Tmp7 = Builder.CreateAnd(Tmp7,
- ConstantInt::get(Type::Int64Ty,
+ ConstantInt::get(Type::getInt64Ty(Context),
0xFF000000000000ULL),
"bswap.and7");
Tmp6 = Builder.CreateAnd(Tmp6,
- ConstantInt::get(Type::Int64Ty,
+ ConstantInt::get(Type::getInt64Ty(Context),
0xFF0000000000ULL),
"bswap.and6");
Tmp5 = Builder.CreateAnd(Tmp5,
- ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
+ ConstantInt::get(Type::getInt64Ty(Context),
+ 0xFF00000000ULL),
"bswap.and5");
Tmp4 = Builder.CreateAnd(Tmp4,
- ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
+ ConstantInt::get(Type::getInt64Ty(Context),
+ 0xFF000000ULL),
"bswap.and4");
Tmp3 = Builder.CreateAnd(Tmp3,
- ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
+ ConstantInt::get(Type::getInt64Ty(Context),
+ 0xFF0000ULL),
"bswap.and3");
Tmp2 = Builder.CreateAnd(Tmp2,
- ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
+ ConstantInt::get(Type::getInt64Ty(Context),
+ 0xFF00ULL),
"bswap.and2");
Tmp8 = Builder.CreateOr(Tmp8, Tmp7, "bswap.or1");
Tmp6 = Builder.CreateOr(Tmp6, Tmp5, "bswap.or2");
@@ -235,7 +250,7 @@ static Value *LowerBSWAP(Value *V, Instruction *IP) {
/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
/// instruction IP.
-static Value *LowerCTPOP(Value *V, Instruction *IP) {
+static Value *LowerCTPOP(LLVMContext &Context, Value *V, Instruction *IP) {
assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
static const uint64_t MaskValues[6] = {
@@ -257,7 +272,7 @@ static Value *LowerCTPOP(Value *V, Instruction *IP) {
Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
Value *LHS = Builder.CreateAnd(PartValue, MaskCst, "cppop.and1");
Value *VShift = Builder.CreateLShr(PartValue,
- ConstantInt::get(V->getType(), i),
+ ConstantInt::get(V->getType(), i),
"ctpop.sh");
Value *RHS = Builder.CreateAnd(VShift, MaskCst, "cppop.and2");
PartValue = Builder.CreateAdd(LHS, RHS, "ctpop.step");
@@ -275,7 +290,7 @@ static Value *LowerCTPOP(Value *V, Instruction *IP) {
/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
/// instruction IP.
-static Value *LowerCTLZ(Value *V, Instruction *IP) {
+static Value *LowerCTLZ(LLVMContext &Context, Value *V, Instruction *IP) {
IRBuilder<> Builder(IP->getParent(), IP);
@@ -287,353 +302,21 @@ static Value *LowerCTLZ(Value *V, Instruction *IP) {
}
V = Builder.CreateNot(V);
- return LowerCTPOP(V, IP);
-}
-
-/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
-/// three integer arguments. The first argument is the Value from which the
-/// bits will be selected. It may be of any bit width. The second and third
-/// arguments specify a range of bits to select with the second argument
-/// specifying the low bit and the third argument specifying the high bit. Both
-/// must be type i32. The result is the corresponding selected bits from the
-/// Value in the same width as the Value (first argument). If the low bit index
-/// is higher than the high bit index then the inverse selection is done and
-/// the bits are returned in inverse order.
-/// @brief Lowering of llvm.part.select intrinsic.
-static Instruction *LowerPartSelect(CallInst *CI) {
- IRBuilder<> Builder;
-
- // Make sure we're dealing with a part select intrinsic here
- Function *F = CI->getCalledFunction();
- const FunctionType *FT = F->getFunctionType();
- if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
- FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
- !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
- return CI;
-
- // Get the intrinsic implementation function by converting all the . to _
- // in the intrinsic's function name and then reconstructing the function
- // declaration.
- std::string Name(F->getName());
- for (unsigned i = 4; i < Name.length(); ++i)
- if (Name[i] == '.')
- Name[i] = '_';
- Module* M = F->getParent();
- F = cast<Function>(M->getOrInsertFunction(Name, FT));
- F->setLinkage(GlobalValue::WeakAnyLinkage);
-
- // If we haven't defined the impl function yet, do so now
- if (F->isDeclaration()) {
-
- // Get the arguments to the function
- Function::arg_iterator args = F->arg_begin();
- Value* Val = args++; Val->setName("Val");
- Value* Lo = args++; Lo->setName("Lo");
- Value* Hi = args++; Hi->setName("High");
-
- // We want to select a range of bits here such that [Hi, Lo] is shifted
- // down to the low bits. However, it is quite possible that Hi is smaller
- // than Lo in which case the bits have to be reversed.
-
- // Create the blocks we will need for the two cases (forward, reverse)
- BasicBlock* CurBB = BasicBlock::Create("entry", F);
- BasicBlock *RevSize = BasicBlock::Create("revsize", CurBB->getParent());
- BasicBlock *FwdSize = BasicBlock::Create("fwdsize", CurBB->getParent());
- BasicBlock *Compute = BasicBlock::Create("compute", CurBB->getParent());
- BasicBlock *Reverse = BasicBlock::Create("reverse", CurBB->getParent());
- BasicBlock *RsltBlk = BasicBlock::Create("result", CurBB->getParent());
-
- Builder.SetInsertPoint(CurBB);
-
- // Cast Hi and Lo to the size of Val so the widths are all the same
- if (Hi->getType() != Val->getType())
- Hi = Builder.CreateIntCast(Hi, Val->getType(), /* isSigned */ false,
- "tmp");
- if (Lo->getType() != Val->getType())
- Lo = Builder.CreateIntCast(Lo, Val->getType(), /* isSigned */ false,
- "tmp");
-
- // Compute a few things that both cases will need, up front.
- Constant* Zero = ConstantInt::get(Val->getType(), 0);
- Constant* One = ConstantInt::get(Val->getType(), 1);
- Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
-
- // Compare the Hi and Lo bit positions. This is used to determine
- // which case we have (forward or reverse)
- Value *Cmp = Builder.CreateICmpULT(Hi, Lo, "less");
- Builder.CreateCondBr(Cmp, RevSize, FwdSize);
-
- // First, compute the number of bits in the forward case.
- Builder.SetInsertPoint(FwdSize);
- Value* FBitSize = Builder.CreateSub(Hi, Lo, "fbits");
- Builder.CreateBr(Compute);
-
- // Second, compute the number of bits in the reverse case.
- Builder.SetInsertPoint(RevSize);
- Value* RBitSize = Builder.CreateSub(Lo, Hi, "rbits");
- Builder.CreateBr(Compute);
-
- // Now, compute the bit range. Start by getting the bitsize and the shift
- // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
- // the number of bits we want in the range. We shift the bits down to the
- // least significant bits, apply the mask to zero out unwanted high bits,
- // and we have computed the "forward" result. It may still need to be
- // reversed.
- Builder.SetInsertPoint(Compute);
-
- // Get the BitSize from one of the two subtractions
- PHINode *BitSize = Builder.CreatePHI(Val->getType(), "bits");
- BitSize->reserveOperandSpace(2);
- BitSize->addIncoming(FBitSize, FwdSize);
- BitSize->addIncoming(RBitSize, RevSize);
-
- // Get the ShiftAmount as the smaller of Hi/Lo
- PHINode *ShiftAmt = Builder.CreatePHI(Val->getType(), "shiftamt");
- ShiftAmt->reserveOperandSpace(2);
- ShiftAmt->addIncoming(Lo, FwdSize);
- ShiftAmt->addIncoming(Hi, RevSize);
-
- // Increment the bit size
- Value *BitSizePlusOne = Builder.CreateAdd(BitSize, One, "bits");
-
- // Create a Mask to zero out the high order bits.
- Value* Mask = Builder.CreateShl(AllOnes, BitSizePlusOne, "mask");
- Mask = Builder.CreateNot(Mask, "mask");
-
- // Shift the bits down and apply the mask
- Value* FRes = Builder.CreateLShr(Val, ShiftAmt, "fres");
- FRes = Builder.CreateAnd(FRes, Mask, "fres");
- Builder.CreateCondBr(Cmp, Reverse, RsltBlk);
-
- // In the Reverse block we have the mask already in FRes but we must reverse
- // it by shifting FRes bits right and putting them in RRes by shifting them
- // in from left.
- Builder.SetInsertPoint(Reverse);
-
- // First set up our loop counters
- PHINode *Count = Builder.CreatePHI(Val->getType(), "count");
- Count->reserveOperandSpace(2);
- Count->addIncoming(BitSizePlusOne, Compute);
-
- // Next, get the value that we are shifting.
- PHINode *BitsToShift = Builder.CreatePHI(Val->getType(), "val");
- BitsToShift->reserveOperandSpace(2);
- BitsToShift->addIncoming(FRes, Compute);
-
- // Finally, get the result of the last computation
- PHINode *RRes = Builder.CreatePHI(Val->getType(), "rres");
- RRes->reserveOperandSpace(2);
- RRes->addIncoming(Zero, Compute);
-
- // Decrement the counter
- Value *Decr = Builder.CreateSub(Count, One, "decr");
- Count->addIncoming(Decr, Reverse);
-
- // Compute the Bit that we want to move
- Value *Bit = Builder.CreateAnd(BitsToShift, One, "bit");
-
- // Compute the new value for next iteration.
- Value *NewVal = Builder.CreateLShr(BitsToShift, One, "rshift");
- BitsToShift->addIncoming(NewVal, Reverse);
-
- // Shift the bit into the low bits of the result.
- Value *NewRes = Builder.CreateShl(RRes, One, "lshift");
- NewRes = Builder.CreateOr(NewRes, Bit, "addbit");
- RRes->addIncoming(NewRes, Reverse);
-
- // Terminate loop if we've moved all the bits.
- Value *Cond = Builder.CreateICmpEQ(Decr, Zero, "cond");
- Builder.CreateCondBr(Cond, RsltBlk, Reverse);
-
- // Finally, in the result block, select one of the two results with a PHI
- // node and return the result;
- Builder.SetInsertPoint(RsltBlk);
- PHINode *BitSelect = Builder.CreatePHI(Val->getType(), "part_select");
- BitSelect->reserveOperandSpace(2);
- BitSelect->addIncoming(FRes, Compute);
- BitSelect->addIncoming(NewRes, Reverse);
- Builder.CreateRet(BitSelect);
- }
-
- // Return a call to the implementation function
- Builder.SetInsertPoint(CI->getParent(), CI);
- CallInst *NewCI = Builder.CreateCall3(F, CI->getOperand(1),
- CI->getOperand(2), CI->getOperand(3));
- NewCI->setName(CI->getName());
- return NewCI;
-}
-
-/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
-/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
-/// The first two arguments can be any bit width. The result is the same width
-/// as %Value. The operation replaces bits between %Low and %High with the value
-/// in %Replacement. If %Replacement is not the same width, it is truncated or
-/// zero extended as appropriate to fit the bits being replaced. If %Low is
-/// greater than %High then the inverse set of bits are replaced.
-/// @brief Lowering of llvm.bit.part.set intrinsic.
-static Instruction *LowerPartSet(CallInst *CI) {
- IRBuilder<> Builder;
-
- // Make sure we're dealing with a part select intrinsic here
- Function *F = CI->getCalledFunction();
- const FunctionType *FT = F->getFunctionType();
- if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
- FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
- !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
- !FT->getParamType(3)->isInteger())
- return CI;
-
- // Get the intrinsic implementation function by converting all the . to _
- // in the intrinsic's function name and then reconstructing the function
- // declaration.
- std::string Name(F->getName());
- for (unsigned i = 4; i < Name.length(); ++i)
- if (Name[i] == '.')
- Name[i] = '_';
- Module* M = F->getParent();
- F = cast<Function>(M->getOrInsertFunction(Name, FT));
- F->setLinkage(GlobalValue::WeakAnyLinkage);
-
- // If we haven't defined the impl function yet, do so now
- if (F->isDeclaration()) {
- // Get the arguments for the function.
- Function::arg_iterator args = F->arg_begin();
- Value* Val = args++; Val->setName("Val");
- Value* Rep = args++; Rep->setName("Rep");
- Value* Lo = args++; Lo->setName("Lo");
- Value* Hi = args++; Hi->setName("Hi");
-
- // Get some types we need
- const IntegerType* ValTy = cast<IntegerType>(Val->getType());
- const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
- uint32_t RepBits = RepTy->getBitWidth();
-
- // Constant Definitions
- ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
- ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
- ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
- ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
- ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
- ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
- ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
-
- // Basic blocks we fill in below.
- BasicBlock* entry = BasicBlock::Create("entry", F, 0);
- BasicBlock* large = BasicBlock::Create("large", F, 0);
- BasicBlock* small = BasicBlock::Create("small", F, 0);
- BasicBlock* reverse = BasicBlock::Create("reverse", F, 0);
- BasicBlock* result = BasicBlock::Create("result", F, 0);
-
- // BASIC BLOCK: entry
- Builder.SetInsertPoint(entry);
- // First, get the number of bits that we're placing as an i32
- Value* is_forward = Builder.CreateICmpULT(Lo, Hi);
- Value* Hi_pn = Builder.CreateSelect(is_forward, Hi, Lo);
- Value* Lo_pn = Builder.CreateSelect(is_forward, Lo, Hi);
- Value* NumBits = Builder.CreateSub(Hi_pn, Lo_pn);
- NumBits = Builder.CreateAdd(NumBits, One);
- // Now, convert Lo and Hi to ValTy bit width
- Lo = Builder.CreateIntCast(Lo_pn, ValTy, /* isSigned */ false);
- // Determine if the replacement bits are larger than the number of bits we
- // are replacing and deal with it.
- Value* is_large = Builder.CreateICmpULT(NumBits, RepBitWidth);
- Builder.CreateCondBr(is_large, large, small);
-
- // BASIC BLOCK: large
- Builder.SetInsertPoint(large);
- Value* MaskBits = Builder.CreateSub(RepBitWidth, NumBits);
- MaskBits = Builder.CreateIntCast(MaskBits, RepMask->getType(),
- /* isSigned */ false);
- Value* Mask1 = Builder.CreateLShr(RepMask, MaskBits);
- Value* Rep2 = Builder.CreateAnd(Mask1, Rep);
- Builder.CreateBr(small);
-
- // BASIC BLOCK: small
- Builder.SetInsertPoint(small);
- PHINode* Rep3 = Builder.CreatePHI(RepTy);
- Rep3->reserveOperandSpace(2);
- Rep3->addIncoming(Rep2, large);
- Rep3->addIncoming(Rep, entry);
- Value* Rep4 = Builder.CreateIntCast(Rep3, ValTy, /* isSigned */ false);
- Builder.CreateCondBr(is_forward, result, reverse);
-
- // BASIC BLOCK: reverse (reverses the bits of the replacement)
- Builder.SetInsertPoint(reverse);
- // Set up our loop counter as a PHI so we can decrement on each iteration.
- // We will loop for the number of bits in the replacement value.
- PHINode *Count = Builder.CreatePHI(Type::Int32Ty, "count");
- Count->reserveOperandSpace(2);
- Count->addIncoming(NumBits, small);
-
- // Get the value that we are shifting bits out of as a PHI because
- // we'll change this with each iteration.
- PHINode *BitsToShift = Builder.CreatePHI(Val->getType(), "val");
- BitsToShift->reserveOperandSpace(2);
- BitsToShift->addIncoming(Rep4, small);
-
- // Get the result of the last computation or zero on first iteration
- PHINode *RRes = Builder.CreatePHI(Val->getType(), "rres");
- RRes->reserveOperandSpace(2);
- RRes->addIncoming(ValZero, small);
-
- // Decrement the loop counter by one
- Value *Decr = Builder.CreateSub(Count, One);
- Count->addIncoming(Decr, reverse);
-
- // Get the bit that we want to move into the result
- Value *Bit = Builder.CreateAnd(BitsToShift, ValOne);
-
- // Compute the new value of the bits to shift for the next iteration.
- Value *NewVal = Builder.CreateLShr(BitsToShift, ValOne);
- BitsToShift->addIncoming(NewVal, reverse);
-
- // Shift the bit we extracted into the low bit of the result.
- Value *NewRes = Builder.CreateShl(RRes, ValOne);
- NewRes = Builder.CreateOr(NewRes, Bit);
- RRes->addIncoming(NewRes, reverse);
-
- // Terminate loop if we've moved all the bits.
- Value *Cond = Builder.CreateICmpEQ(Decr, Zero);
- Builder.CreateCondBr(Cond, result, reverse);
-
- // BASIC BLOCK: result
- Builder.SetInsertPoint(result);
- PHINode *Rplcmnt = Builder.CreatePHI(Val->getType());
- Rplcmnt->reserveOperandSpace(2);
- Rplcmnt->addIncoming(NewRes, reverse);
- Rplcmnt->addIncoming(Rep4, small);
- Value* t0 = Builder.CreateIntCast(NumBits, ValTy, /* isSigned */ false);
- Value* t1 = Builder.CreateShl(ValMask, Lo);
- Value* t2 = Builder.CreateNot(t1);
- Value* t3 = Builder.CreateShl(t1, t0);
- Value* t4 = Builder.CreateOr(t2, t3);
- Value* t5 = Builder.CreateAnd(t4, Val);
- Value* t6 = Builder.CreateShl(Rplcmnt, Lo);
- Value* Rslt = Builder.CreateOr(t5, t6, "part_set");
- Builder.CreateRet(Rslt);
- }
-
- // Return a call to the implementation function
- Builder.SetInsertPoint(CI->getParent(), CI);
- CallInst *NewCI = Builder.CreateCall4(F, CI->getOperand(1),
- CI->getOperand(2), CI->getOperand(3),
- CI->getOperand(4));
- NewCI->setName(CI->getName());
- return NewCI;
+ return LowerCTPOP(Context, V, IP);
}
static void ReplaceFPIntrinsicWithCall(CallInst *CI, const char *Fname,
const char *Dname,
const char *LDname) {
switch (CI->getOperand(1)->getType()->getTypeID()) {
- default: assert(0 && "Invalid type in intrinsic"); abort();
+ default: llvm_unreachable("Invalid type in intrinsic");
case Type::FloatTyID:
ReplaceCallWith(Fname, CI, CI->op_begin() + 1, CI->op_end(),
- Type::FloatTy);
+ Type::getFloatTy(CI->getContext()));
break;
case Type::DoubleTyID:
ReplaceCallWith(Dname, CI, CI->op_begin() + 1, CI->op_end(),
- Type::DoubleTy);
+ Type::getDoubleTy(CI->getContext()));
break;
case Type::X86_FP80TyID:
case Type::FP128TyID:
@@ -646,19 +329,18 @@ static void ReplaceFPIntrinsicWithCall(CallInst *CI, const char *Fname,
void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
IRBuilder<> Builder(CI->getParent(), CI);
+ LLVMContext &Context = CI->getContext();
Function *Callee = CI->getCalledFunction();
assert(Callee && "Cannot lower an indirect call!");
switch (Callee->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
- cerr << "Cannot lower a call to a non-intrinsic function '"
- << Callee->getName() << "'!\n";
- abort();
+ llvm_report_error("Cannot lower a call to a non-intrinsic function '"+
+ Callee->getName() + "'!");
default:
- cerr << "Error: Code generator does not support intrinsic function '"
- << Callee->getName() << "'!\n";
- abort();
+ llvm_report_error("Code generator does not support intrinsic function '"+
+ Callee->getName()+"'!");
// The setjmp/longjmp intrinsics should only exist in the code if it was
// never optimized (ie, right out of the CFE), or if it has been hacked on
@@ -666,38 +348,38 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
// convert the call to an explicit setjmp or longjmp call.
case Intrinsic::setjmp: {
Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin() + 1, CI->op_end(),
- Type::Int32Ty);
- if (CI->getType() != Type::VoidTy)
+ Type::getInt32Ty(Context));
+ if (CI->getType() != Type::getVoidTy(Context))
CI->replaceAllUsesWith(V);
break;
}
case Intrinsic::sigsetjmp:
- if (CI->getType() != Type::VoidTy)
+ if (CI->getType() != Type::getVoidTy(Context))
CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
break;
case Intrinsic::longjmp: {
ReplaceCallWith("longjmp", CI, CI->op_begin() + 1, CI->op_end(),
- Type::VoidTy);
+ Type::getVoidTy(Context));
break;
}
case Intrinsic::siglongjmp: {
// Insert the call to abort
ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
- Type::VoidTy);
+ Type::getVoidTy(Context));
break;
}
case Intrinsic::ctpop:
- CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
+ CI->replaceAllUsesWith(LowerCTPOP(Context, CI->getOperand(1), CI));
break;
case Intrinsic::bswap:
- CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
+ CI->replaceAllUsesWith(LowerBSWAP(Context, CI->getOperand(1), CI));
break;
case Intrinsic::ctlz:
- CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
+ CI->replaceAllUsesWith(LowerCTLZ(Context, CI->getOperand(1), CI));
break;
case Intrinsic::cttz: {
@@ -707,24 +389,16 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
NotSrc->setName(Src->getName() + ".not");
Value *SrcM1 = ConstantInt::get(Src->getType(), 1);
SrcM1 = Builder.CreateSub(Src, SrcM1);
- Src = LowerCTPOP(Builder.CreateAnd(NotSrc, SrcM1), CI);
+ Src = LowerCTPOP(Context, Builder.CreateAnd(NotSrc, SrcM1), CI);
CI->replaceAllUsesWith(Src);
break;
}
- case Intrinsic::part_select:
- CI->replaceAllUsesWith(LowerPartSelect(CI));
- break;
-
- case Intrinsic::part_set:
- CI->replaceAllUsesWith(LowerPartSet(CI));
- break;
-
case Intrinsic::stacksave:
case Intrinsic::stackrestore: {
if (!Warned)
- cerr << "WARNING: this target does not support the llvm.stack"
- << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
+ errs() << "WARNING: this target does not support the llvm.stack"
+ << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
"save" : "restore") << " intrinsic.\n";
Warned = true;
if (Callee->getIntrinsicID() == Intrinsic::stacksave)
@@ -734,8 +408,8 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
- cerr << "WARNING: this target does not support the llvm."
- << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
+ errs() << "WARNING: this target does not support the llvm."
+ << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
"return" : "frame") << "address intrinsic.\n";
CI->replaceAllUsesWith(ConstantPointerNull::get(
cast<PointerType>(CI->getType())));
@@ -747,9 +421,9 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
case Intrinsic::pcmarker:
break; // Simply strip out pcmarker on unsupported architectures
case Intrinsic::readcyclecounter: {
- cerr << "WARNING: this target does not support the llvm.readcyclecoun"
- << "ter intrinsic. It is being lowered to a constant 0\n";
- CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
+ errs() << "WARNING: this target does not support the llvm.readcyclecoun"
+ << "ter intrinsic. It is being lowered to a constant 0\n";
+ CI->replaceAllUsesWith(ConstantInt::get(Type::getInt64Ty(Context), 0));
break;
}
@@ -761,13 +435,11 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break; // Simply strip out debugging intrinsics
case Intrinsic::eh_exception:
- case Intrinsic::eh_selector_i32:
- case Intrinsic::eh_selector_i64:
+ case Intrinsic::eh_selector:
CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
break;
- case Intrinsic::eh_typeid_for_i32:
- case Intrinsic::eh_typeid_for_i64:
+ case Intrinsic::eh_typeid_for:
// Return something different to eh_selector.
CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
break;
@@ -776,7 +448,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break; // Strip out annotate intrinsic
case Intrinsic::memcpy: {
- const IntegerType *IntPtr = TD.getIntPtrType();
+ const IntegerType *IntPtr = TD.getIntPtrType(Context);
Value *Size = Builder.CreateIntCast(CI->getOperand(3), IntPtr,
/* isSigned */ false);
Value *Ops[3];
@@ -787,7 +459,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::memmove: {
- const IntegerType *IntPtr = TD.getIntPtrType();
+ const IntegerType *IntPtr = TD.getIntPtrType(Context);
Value *Size = Builder.CreateIntCast(CI->getOperand(3), IntPtr,
/* isSigned */ false);
Value *Ops[3];
@@ -798,13 +470,13 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::memset: {
- const IntegerType *IntPtr = TD.getIntPtrType();
+ const IntegerType *IntPtr = TD.getIntPtrType(Context);
Value *Size = Builder.CreateIntCast(CI->getOperand(3), IntPtr,
/* isSigned */ false);
Value *Ops[3];
Ops[0] = CI->getOperand(1);
// Extend the amount to i32.
- Ops[1] = Builder.CreateIntCast(CI->getOperand(2), Type::Int32Ty,
+ Ops[1] = Builder.CreateIntCast(CI->getOperand(2), Type::getInt32Ty(Context),
/* isSigned */ false);
Ops[2] = Size;
ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType());
@@ -840,7 +512,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
}
case Intrinsic::flt_rounds:
// Lower to "round to the nearest"
- if (CI->getType() != Type::VoidTy)
+ if (CI->getType() != Type::getVoidTy(Context))
CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
break;
}
diff --git a/lib/CodeGen/LLVMTargetMachine.cpp b/lib/CodeGen/LLVMTargetMachine.cpp
index a163cac..4e713a6 100644
--- a/lib/CodeGen/LLVMTargetMachine.cpp
+++ b/lib/CodeGen/LLVMTargetMachine.cpp
@@ -15,14 +15,16 @@
#include "llvm/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/PrintModulePass.h"
-#include "llvm/Analysis/LoopPass.h"
+#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/Target/TargetOptions.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
using namespace llvm;
namespace llvm {
@@ -37,26 +39,31 @@ static cl::opt<bool> PrintEmittedAsm("print-emitted-asm", cl::Hidden,
cl::desc("Dump emitter generated instructions as assembly"));
static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
cl::desc("Dump garbage collector data"));
+static cl::opt<bool> HoistConstants("hoist-constants", cl::Hidden,
+ cl::desc("Hoist constants out of loops"));
static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
cl::desc("Verify generated machine code"),
cl::init(getenv("LLVM_VERIFY_MACHINEINSTRS")!=NULL));
-// When this works it will be on by default.
-static cl::opt<bool>
-DisablePostRAScheduler("disable-post-RA-scheduler",
- cl::desc("Disable scheduling after register allocation"),
- cl::init(true));
-
// Enable or disable FastISel. Both options are needed, because
// FastISel is enabled by default with -fast, and we wish to be
-// able to enable or disable fast-isel independently from -fast.
+// able to enable or disable fast-isel independently from -O0.
static cl::opt<cl::boolOrDefault>
EnableFastISelOption("fast-isel", cl::Hidden,
- cl::desc("Enable the experimental \"fast\" instruction selector"));
+ cl::desc("Enable the \"fast\" instruction selector"));
+
+
+LLVMTargetMachine::LLVMTargetMachine(const Target &T,
+ const std::string &TargetTriple)
+ : TargetMachine(T) {
+ AsmInfo = T.createAsmInfo(TargetTriple);
+}
+
+
FileModel::Model
LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
- raw_ostream &Out,
+ formatted_raw_ostream &Out,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel) {
// Add common CodeGen passes.
@@ -67,10 +74,10 @@ LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
PM.add(createDebugLabelFoldingPass());
if (PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(cerr));
+ PM.add(createMachineFunctionPrinterPass(errs()));
if (addPreEmitPass(PM, OptLevel) && PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(cerr));
+ PM.add(createMachineFunctionPrinterPass(errs()));
if (OptLevel != CodeGenOpt::None)
PM.add(createCodePlacementOptPass());
@@ -92,6 +99,19 @@ LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
return FileModel::Error;
}
+bool LLVMTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ bool Verbose,
+ formatted_raw_ostream &Out) {
+ FunctionPass *Printer =
+ getTarget().createAsmPrinter(Out, *this, getMCAsmInfo(), Verbose);
+ if (!Printer)
+ return true;
+
+ PM.add(Printer);
+ return false;
+}
+
/// addPassesToEmitFileFinish - If the passes to emit the specified file had to
/// be split up (e.g., to add an object writer pass), this method can be used to
/// finish up adding passes to emit the file, if necessary.
@@ -99,13 +119,12 @@ bool LLVMTargetMachine::addPassesToEmitFileFinish(PassManagerBase &PM,
MachineCodeEmitter *MCE,
CodeGenOpt::Level OptLevel) {
if (MCE)
- addSimpleCodeEmitter(PM, OptLevel, PrintEmittedAsm, *MCE);
+ addSimpleCodeEmitter(PM, OptLevel, *MCE);
+ if (PrintEmittedAsm)
+ addAssemblyEmitter(PM, OptLevel, true, ferrs());
PM.add(createGCInfoDeleter());
- // Delete machine code for this function
- PM.add(createMachineCodeDeleter());
-
return false; // success!
}
@@ -116,12 +135,27 @@ bool LLVMTargetMachine::addPassesToEmitFileFinish(PassManagerBase &PM,
JITCodeEmitter *JCE,
CodeGenOpt::Level OptLevel) {
if (JCE)
- addSimpleCodeEmitter(PM, OptLevel, PrintEmittedAsm, *JCE);
+ addSimpleCodeEmitter(PM, OptLevel, *JCE);
+ if (PrintEmittedAsm)
+ addAssemblyEmitter(PM, OptLevel, true, ferrs());
PM.add(createGCInfoDeleter());
- // Delete machine code for this function
- PM.add(createMachineCodeDeleter());
+ return false; // success!
+}
+
+/// addPassesToEmitFileFinish - If the passes to emit the specified file had to
+/// be split up (e.g., to add an object writer pass), this method can be used to
+/// finish up adding passes to emit the file, if necessary.
+bool LLVMTargetMachine::addPassesToEmitFileFinish(PassManagerBase &PM,
+ ObjectCodeEmitter *OCE,
+ CodeGenOpt::Level OptLevel) {
+ if (OCE)
+ addSimpleCodeEmitter(PM, OptLevel, *OCE);
+ if (PrintEmittedAsm)
+ addAssemblyEmitter(PM, OptLevel, true, ferrs());
+
+ PM.add(createGCInfoDeleter());
return false; // success!
}
@@ -140,15 +174,14 @@ bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM,
return true;
if (addPreEmitPass(PM, OptLevel) && PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(cerr));
+ PM.add(createMachineFunctionPrinterPass(errs()));
- addCodeEmitter(PM, OptLevel, PrintEmittedAsm, MCE);
+ addCodeEmitter(PM, OptLevel, MCE);
+ if (PrintEmittedAsm)
+ addAssemblyEmitter(PM, OptLevel, true, ferrs());
PM.add(createGCInfoDeleter());
- // Delete machine code for this function
- PM.add(createMachineCodeDeleter());
-
return false; // success!
}
@@ -166,22 +199,21 @@ bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM,
return true;
if (addPreEmitPass(PM, OptLevel) && PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(cerr));
+ PM.add(createMachineFunctionPrinterPass(errs()));
- addCodeEmitter(PM, OptLevel, PrintEmittedAsm, JCE);
+ addCodeEmitter(PM, OptLevel, JCE);
+ if (PrintEmittedAsm)
+ addAssemblyEmitter(PM, OptLevel, true, ferrs());
PM.add(createGCInfoDeleter());
- // Delete machine code for this function
- PM.add(createMachineCodeDeleter());
-
return false; // success!
}
static void printAndVerify(PassManagerBase &PM,
bool allowDoubleDefs = false) {
if (PrintMachineCode)
- PM.add(createMachineFunctionPrinterPass(cerr));
+ PM.add(createMachineFunctionPrinterPass(errs()));
if (VerifyMachineCode)
PM.add(createMachineVerifierPass(allowDoubleDefs));
@@ -203,18 +235,31 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
// Turn exception handling constructs into something the code generators can
// handle.
- if (!getTargetAsmInfo()->doesSupportExceptionHandling())
- PM.add(createLowerInvokePass(getTargetLowering()));
- else
+ switch (getMCAsmInfo()->getExceptionHandlingType())
+ {
+ case ExceptionHandling::SjLj:
+ // SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
PM.add(createDwarfEHPass(getTargetLowering(), OptLevel==CodeGenOpt::None));
+ PM.add(createSjLjEHPass(getTargetLowering()));
+ break;
+ case ExceptionHandling::Dwarf:
+ PM.add(createDwarfEHPass(getTargetLowering(), OptLevel==CodeGenOpt::None));
+ break;
+ case ExceptionHandling::None:
+ PM.add(createLowerInvokePass(getTargetLowering()));
+ break;
+ }
PM.add(createGCLoweringPass());
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
- if (OptLevel != CodeGenOpt::None)
+ if (OptLevel != CodeGenOpt::None) {
+ if (HoistConstants)
+ PM.add(createCodeGenLICMPass());
PM.add(createCodeGenPreparePass(getTargetLowering()));
+ }
PM.add(createStackProtectorPass(getTargetLowering()));
@@ -225,6 +270,9 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
// Standard Lower-Level Passes.
+ // Set up a MachineFunction for the rest of CodeGen to work on.
+ PM.add(new MachineFunctionAnalysis(*this, OptLevel));
+
// Enable FastISel with -fast, but allow that to be overridden.
if (EnableFastISelOption == cl::BOU_TRUE ||
(OptLevel == CodeGenOpt::None && EnableFastISelOption != cl::BOU_FALSE))
@@ -240,19 +288,21 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None) {
PM.add(createMachineLICMPass());
PM.add(createMachineSinkingPass());
- printAndVerify(PM, /* allowDoubleDefs= */ false);
+ printAndVerify(PM, /* allowDoubleDefs= */ true);
}
// Run pre-ra passes.
if (addPreRegAlloc(PM, OptLevel))
- printAndVerify(PM);
+ printAndVerify(PM, /* allowDoubleDefs= */ true);
// Perform register allocation.
PM.add(createRegisterAllocator());
// Perform stack slot coloring.
if (OptLevel != CodeGenOpt::None)
- PM.add(createStackSlotColoringPass(OptLevel >= CodeGenOpt::Aggressive));
+ // FIXME: Re-enable coloring with register when it's capable of adding
+ // kill markers.
+ PM.add(createStackSlotColoringPass(false));
printAndVerify(PM); // Print the register-allocated code
@@ -267,8 +317,12 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
PM.add(createPrologEpilogCodeInserter());
printAndVerify(PM);
+ // Run pre-sched2 passes.
+ if (addPreSched2(PM, OptLevel))
+ printAndVerify(PM);
+
// Second pass scheduler.
- if (OptLevel != CodeGenOpt::None && !DisablePostRAScheduler) {
+ if (OptLevel != CodeGenOpt::None) {
PM.add(createPostRAScheduler());
printAndVerify(PM);
}
@@ -283,7 +337,7 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
printAndVerify(PM);
if (PrintGCInfo)
- PM.add(createGCInfoPrinter(*cerr));
+ PM.add(createGCInfoPrinter(errs()));
return false;
}
diff --git a/lib/CodeGen/LiveInterval.cpp b/lib/CodeGen/LiveInterval.cpp
index 26722a3..a02a4a6 100644
--- a/lib/CodeGen/LiveInterval.cpp
+++ b/lib/CodeGen/LiveInterval.cpp
@@ -23,12 +23,16 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
-#include <ostream>
using namespace llvm;
+// Print a LiveIndex to a raw_ostream.
+void LiveIndex::print(raw_ostream &os) const {
+ os << (index & ~PHI_BIT);
+}
+
// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining this
@@ -36,7 +40,7 @@ using namespace llvm;
// variable it represents. This is because slot 1 is used (def slot) and spans
// up to slot 3 (store slot).
//
-bool LiveInterval::liveAt(unsigned I) const {
+bool LiveInterval::liveAt(LiveIndex I) const {
Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I);
if (r == ranges.begin())
@@ -49,7 +53,7 @@ bool LiveInterval::liveAt(unsigned I) const {
// liveBeforeAndAt - Check if the interval is live at the index and the index
// just before it. If index is liveAt, check if it starts a new live range.
// If it does, then check if the previous live range ends at index-1.
-bool LiveInterval::liveBeforeAndAt(unsigned I) const {
+bool LiveInterval::liveBeforeAndAt(LiveIndex I) const {
Ranges::const_iterator r = std::upper_bound(ranges.begin(), ranges.end(), I);
if (r == ranges.begin())
@@ -127,7 +131,7 @@ bool LiveInterval::overlapsFrom(const LiveInterval& other,
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
-bool LiveInterval::overlaps(unsigned Start, unsigned End) const {
+bool LiveInterval::overlaps(LiveIndex Start, LiveIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = begin();
const_iterator E = end();
@@ -145,10 +149,10 @@ bool LiveInterval::overlaps(unsigned Start, unsigned End) const {
/// specified by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with. The iterator is
/// not invalidated.
-void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
+void LiveInterval::extendIntervalEndTo(Ranges::iterator I, LiveIndex NewEnd) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
- unsigned OldEnd = I->end;
+ LiveIndex OldEnd = I->end;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = next(I);
@@ -163,7 +167,7 @@ void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
ranges.erase(next(I), MergeTo);
// Update kill info.
- removeKills(ValNo, OldEnd, I->end-1);
+ ValNo->removeKills(OldEnd, I->end.prevSlot_());
// If the newly formed range now touches the range after it and if they have
// the same value number, merge the two ranges into one range.
@@ -179,7 +183,7 @@ void LiveInterval::extendIntervalEndTo(Ranges::iterator I, unsigned NewEnd) {
/// specified by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with.
LiveInterval::Ranges::iterator
-LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) {
+LiveInterval::extendIntervalStartTo(Ranges::iterator I, LiveIndex NewStart) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
@@ -212,7 +216,7 @@ LiveInterval::extendIntervalStartTo(Ranges::iterator I, unsigned NewStart) {
LiveInterval::iterator
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
- unsigned Start = LR.start, End = LR.end;
+ LiveIndex Start = LR.start, End = LR.end;
iterator it = std::upper_bound(From, ranges.end(), Start);
// If the inserted interval starts in the middle or right at the end of
@@ -246,7 +250,7 @@ LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
extendIntervalEndTo(it, End);
else if (End < it->end)
// Overlapping intervals, there might have been a kill here.
- removeKill(it->valno, End);
+ it->valno->removeKill(End);
return it;
}
} else {
@@ -262,33 +266,32 @@ LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
return ranges.insert(it, LR);
}
-/// isInOneLiveRange - Return true if the range specified is entirely in the
+/// isInOneLiveRange - Return true if the range specified is entirely in
/// a single LiveRange of the live interval.
-bool LiveInterval::isInOneLiveRange(unsigned Start, unsigned End) {
+bool LiveInterval::isInOneLiveRange(LiveIndex Start, LiveIndex End) {
Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start);
if (I == ranges.begin())
return false;
--I;
- return I->contains(Start) && I->contains(End-1);
+ return I->containsRange(Start, End);
}
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be in a single LiveRange in its entirety.
-void LiveInterval::removeRange(unsigned Start, unsigned End,
+void LiveInterval::removeRange(LiveIndex Start, LiveIndex End,
bool RemoveDeadValNo) {
// Find the LiveRange containing this span.
Ranges::iterator I = std::upper_bound(ranges.begin(), ranges.end(), Start);
assert(I != ranges.begin() && "Range is not in interval!");
--I;
- assert(I->contains(Start) && I->contains(End-1) &&
- "Range is not entirely in interval!");
+ assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
// If the span we are removing is at the start of the LiveRange, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
- removeKills(I->valno, Start, End);
+ ValNo->removeKills(Start, End);
if (RemoveDeadValNo) {
// Check if val# is dead.
bool isDead = true;
@@ -322,13 +325,13 @@ void LiveInterval::removeRange(unsigned Start, unsigned End,
// Otherwise if the span we are removing is at the end of the LiveRange,
// adjust the other way.
if (I->end == End) {
- removeKills(ValNo, Start, End);
+ ValNo->removeKills(Start, End);
I->end = Start;
return;
}
// Otherwise, we are splitting the LiveRange into two pieces.
- unsigned OldEnd = I->end;
+ LiveIndex OldEnd = I->end;
I->end = Start; // Trim the old interval.
// Insert the new one.
@@ -362,11 +365,12 @@ void LiveInterval::removeValNo(VNInfo *ValNo) {
/// scaleNumbering - Renumber VNI and ranges to provide gaps for new
/// instructions.
+
void LiveInterval::scaleNumbering(unsigned factor) {
// Scale ranges.
for (iterator RI = begin(), RE = end(); RI != RE; ++RI) {
- RI->start = InstrSlots::scale(RI->start, factor);
- RI->end = InstrSlots::scale(RI->end, factor);
+ RI->start = RI->start.scale(factor);
+ RI->end = RI->end.scale(factor);
}
// Scale VNI info.
@@ -374,19 +378,20 @@ void LiveInterval::scaleNumbering(unsigned factor) {
VNInfo *vni = *VNI;
if (vni->isDefAccurate())
- vni->def = InstrSlots::scale(vni->def, factor);
+ vni->def = vni->def.scale(factor);
for (unsigned i = 0; i < vni->kills.size(); ++i) {
- if (vni->kills[i] != 0)
- vni->kills[i] = InstrSlots::scale(vni->kills[i], factor);
+ if (!vni->kills[i].isPHIIndex())
+ vni->kills[i] = vni->kills[i].scale(factor);
}
}
}
+
/// getLiveRangeContaining - Return the live range that contains the
/// specified index, or null if there is none.
LiveInterval::const_iterator
-LiveInterval::FindLiveRangeContaining(unsigned Idx) const {
+LiveInterval::FindLiveRangeContaining(LiveIndex Idx) const {
const_iterator It = std::upper_bound(begin(), end(), Idx);
if (It != ranges.begin()) {
--It;
@@ -398,7 +403,7 @@ LiveInterval::FindLiveRangeContaining(unsigned Idx) const {
}
LiveInterval::iterator
-LiveInterval::FindLiveRangeContaining(unsigned Idx) {
+LiveInterval::FindLiveRangeContaining(LiveIndex Idx) {
iterator It = std::upper_bound(begin(), end(), Idx);
if (It != begin()) {
--It;
@@ -409,17 +414,27 @@ LiveInterval::FindLiveRangeContaining(unsigned Idx) {
return end();
}
-/// findDefinedVNInfo - Find the VNInfo that's defined at the specified index
-/// (register interval) or defined by the specified register (stack inteval).
-VNInfo *LiveInterval::findDefinedVNInfo(unsigned DefIdxOrReg) const {
- VNInfo *VNI = NULL;
+/// findDefinedVNInfo - Find the VNInfo defined by the specified
+/// index (register interval).
+VNInfo *LiveInterval::findDefinedVNInfoForRegInt(LiveIndex Idx) const {
for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
- i != e; ++i)
- if ((*i)->def == DefIdxOrReg) {
- VNI = *i;
- break;
- }
- return VNI;
+ i != e; ++i) {
+ if ((*i)->def == Idx)
+ return *i;
+ }
+
+ return 0;
+}
+
+/// findDefinedVNInfo - Find the VNInfo defined by the specified
+/// register (stack inteval).
+VNInfo *LiveInterval::findDefinedVNInfoForStackInt(unsigned reg) const {
+ for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
+ i != e; ++i) {
+ if ((*i)->getReg() == reg)
+ return *i;
+ }
+ return 0;
}
/// join - Join two live intervals (this, and other) together. This applies
@@ -502,7 +517,7 @@ void LiveInterval::join(LiveInterval &Other, const int *LHSValNoAssignments,
InsertPos = addRangeFrom(*I, InsertPos);
}
- weight += Other.weight;
+ ComputeJoinedWeight(Other);
// Update regalloc hint if currently there isn't one.
if (TargetRegisterInfo::isVirtualRegister(reg) &&
@@ -546,7 +561,7 @@ void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
if (I->valno != RHSValNo)
continue;
- unsigned Start = I->start, End = I->end;
+ LiveIndex Start = I->start, End = I->end;
IP = std::upper_bound(IP, end(), Start);
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > Start) {
@@ -622,20 +637,21 @@ void LiveInterval::MergeInClobberRanges(const LiveInterval &Clobbers,
else if (UnusedValNo)
ClobberValNo = UnusedValNo;
else {
- UnusedValNo = ClobberValNo = getNextValue(0, 0, false, VNInfoAllocator);
+ UnusedValNo = ClobberValNo =
+ getNextValue(LiveIndex(), 0, false, VNInfoAllocator);
ValNoMaps.insert(std::make_pair(I->valno, ClobberValNo));
}
bool Done = false;
- unsigned Start = I->start, End = I->end;
+ LiveIndex Start = I->start, End = I->end;
// If a clobber range starts before an existing range and ends after
// it, the clobber range will need to be split into multiple ranges.
// Loop until the entire clobber range is handled.
while (!Done) {
Done = true;
IP = std::upper_bound(IP, end(), Start);
- unsigned SubRangeStart = Start;
- unsigned SubRangeEnd = End;
+ LiveIndex SubRangeStart = Start;
+ LiveIndex SubRangeEnd = End;
// If the start of this range overlaps with an existing liverange, trim it.
if (IP != begin() && IP[-1].end > SubRangeStart) {
@@ -671,11 +687,13 @@ void LiveInterval::MergeInClobberRanges(const LiveInterval &Clobbers,
}
}
-void LiveInterval::MergeInClobberRange(unsigned Start, unsigned End,
+void LiveInterval::MergeInClobberRange(LiveIndex Start,
+ LiveIndex End,
BumpPtrAllocator &VNInfoAllocator) {
// Find a value # to use for the clobber ranges. If there is already a value#
// for unknown values, use it.
- VNInfo *ClobberValNo = getNextValue(0, 0, false, VNInfoAllocator);
+ VNInfo *ClobberValNo =
+ getNextValue(LiveIndex(), 0, false, VNInfoAllocator);
iterator IP = begin();
IP = std::upper_bound(IP, end(), Start);
@@ -711,7 +729,7 @@ VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
// Make sure V2 is smaller than V1.
if (V1->id < V2->id) {
- copyValNumInfo(V1, V2);
+ V1->copyFrom(*V2);
std::swap(V1, V2);
}
@@ -788,20 +806,42 @@ void LiveInterval::Copy(const LiveInterval &RHS,
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
for (const_iterator I = begin(), E = end(); I != E; ++I)
- Sum += I->end - I->start;
+ Sum += I->start.distance(I->end);
return Sum;
}
-std::ostream& llvm::operator<<(std::ostream& os, const LiveRange &LR) {
+/// ComputeJoinedWeight - Set the weight of a live interval Joined
+/// after Other has been merged into it.
+void LiveInterval::ComputeJoinedWeight(const LiveInterval &Other) {
+ // If either of these intervals was spilled, the weight is the
+ // weight of the non-spilled interval. This can only happen with
+ // iterative coalescers.
+
+ if (Other.weight != HUGE_VALF) {
+ weight += Other.weight;
+ }
+ else if (weight == HUGE_VALF &&
+ !TargetRegisterInfo::isPhysicalRegister(reg)) {
+ // Remove this assert if you have an iterative coalescer
+ assert(0 && "Joining to spilled interval");
+ weight = Other.weight;
+ }
+ else {
+ // Otherwise the weight stays the same
+ // Remove this assert if you have an iterative coalescer
+ assert(0 && "Joining from spilled interval");
+ }
+}
+
+raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
}
void LiveRange::dump() const {
- cerr << *this << "\n";
+ errs() << *this << "\n";
}
-void LiveInterval::print(std::ostream &OS,
- const TargetRegisterInfo *TRI) const {
+void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
if (isStackSlot())
OS << "SS#" << getStackSlotIndex();
else if (TRI && TargetRegisterInfo::isPhysicalRegister(reg))
@@ -841,6 +881,8 @@ void LiveInterval::print(std::ostream &OS,
OS << "-(";
for (unsigned j = 0; j != ee; ++j) {
OS << vni->kills[j];
+ if (vni->kills[j].isPHIIndex())
+ OS << "*";
if (j != ee-1)
OS << " ";
}
@@ -857,10 +899,10 @@ void LiveInterval::print(std::ostream &OS,
}
void LiveInterval::dump() const {
- cerr << *this << "\n";
+ errs() << *this << "\n";
}
-void LiveRange::print(std::ostream &os) const {
+void LiveRange::print(raw_ostream &os) const {
os << *this;
}
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp
index 52a30bc..93d3d4c 100644
--- a/lib/CodeGen/LiveIntervalAnalysis.cpp
+++ b/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -25,6 +25,7 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
@@ -34,6 +35,8 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
@@ -47,24 +50,24 @@ using namespace llvm;
static cl::opt<bool> DisableReMat("disable-rematerialization",
cl::init(false), cl::Hidden);
-static cl::opt<bool> SplitAtBB("split-intervals-at-bb",
- cl::init(true), cl::Hidden);
-static cl::opt<int> SplitLimit("split-limit",
- cl::init(-1), cl::Hidden);
-
-static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden);
-
static cl::opt<bool> EnableFastSpilling("fast-spill",
cl::init(false), cl::Hidden);
-STATISTIC(numIntervals, "Number of original intervals");
-STATISTIC(numFolds , "Number of loads/stores folded into instructions");
-STATISTIC(numSplits , "Number of intervals split");
+static cl::opt<bool> EarlyCoalescing("early-coalescing", cl::init(false));
+
+static cl::opt<int> CoalescingLimit("early-coalescing-limit",
+ cl::init(-1), cl::Hidden);
+
+STATISTIC(numIntervals , "Number of original intervals");
+STATISTIC(numFolds , "Number of loads/stores folded into instructions");
+STATISTIC(numSplits , "Number of intervals split");
+STATISTIC(numCoalescing, "Number of early coalescing performed");
char LiveIntervals::ID = 0;
static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
@@ -92,15 +95,32 @@ void LiveIntervals::releaseMemory() {
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
+ terminatorGaps.clear();
+ phiJoinCopies.clear();
+
// Release VNInfo memroy regions after all VNInfo objects are dtor'd.
VNInfoAllocator.Reset();
- while (!ClonedMIs.empty()) {
- MachineInstr *MI = ClonedMIs.back();
- ClonedMIs.pop_back();
+ while (!CloneMIs.empty()) {
+ MachineInstr *MI = CloneMIs.back();
+ CloneMIs.pop_back();
mf_->DeleteMachineInstr(MI);
}
}
+static bool CanTurnIntoImplicitDef(MachineInstr *MI, unsigned Reg,
+ unsigned OpIdx, const TargetInstrInfo *tii_){
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
+ Reg == SrcReg)
+ return true;
+
+ if (OpIdx == 2 && MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
+ return true;
+ if (OpIdx == 1 && MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
+ return true;
+ return false;
+}
+
/// processImplicitDefs - Process IMPLICIT_DEF instructions and make sure
/// there is one implicit_def for each use. Add isUndef marker to
/// implicit_def defs and their uses.
@@ -119,16 +139,33 @@ void LiveIntervals::processImplicitDefs() {
++I;
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
unsigned Reg = MI->getOperand(0).getReg();
- MI->getOperand(0).setIsUndef();
ImpDefRegs.insert(Reg);
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (const unsigned *SS = tri_->getSubRegisters(Reg); *SS; ++SS)
+ ImpDefRegs.insert(*SS);
+ }
ImpDefMIs.push_back(MI);
continue;
}
+ if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
+ MachineOperand &MO = MI->getOperand(2);
+ if (ImpDefRegs.count(MO.getReg())) {
+ // %reg1032<def> = INSERT_SUBREG %reg1032, undef, 2
+ // This is an identity copy, eliminate it now.
+ if (MO.isKill()) {
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(MO.getReg());
+ vi.removeKill(MI);
+ }
+ MI->eraseFromParent();
+ continue;
+ }
+ }
+
bool ChangedToImpDef = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
- if (!MO.isReg() || !MO.isUse())
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
@@ -136,22 +173,30 @@ void LiveIntervals::processImplicitDefs() {
if (!ImpDefRegs.count(Reg))
continue;
// Use is a copy, just turn it into an implicit_def.
- unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
- Reg == SrcReg) {
+ if (CanTurnIntoImplicitDef(MI, Reg, i, tii_)) {
bool isKill = MO.isKill();
MI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
MI->RemoveOperand(j);
- if (isKill)
+ if (isKill) {
ImpDefRegs.erase(Reg);
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(Reg);
+ vi.removeKill(MI);
+ }
ChangedToImpDef = true;
break;
}
MO.setIsUndef();
- if (MO.isKill() || MI->isRegTiedToDefOperand(i))
+ if (MO.isKill() || MI->isRegTiedToDefOperand(i)) {
+ // Make sure other uses of
+ for (unsigned j = i+1; j != e; ++j) {
+ MachineOperand &MOJ = MI->getOperand(j);
+ if (MOJ.isReg() && MOJ.isUse() && MOJ.getReg() == Reg)
+ MOJ.setIsUndef();
+ }
ImpDefRegs.erase(Reg);
+ }
}
if (ChangedToImpDef) {
@@ -171,11 +216,13 @@ void LiveIntervals::processImplicitDefs() {
for (unsigned i = 0, e = ImpDefMIs.size(); i != e; ++i) {
MachineInstr *MI = ImpDefMIs[i];
unsigned Reg = MI->getOperand(0).getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- // Physical registers are not liveout (yet).
- continue;
- if (!ImpDefRegs.count(Reg))
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !ImpDefRegs.count(Reg)) {
+ // Delete all "local" implicit_def's. That include those which define
+ // physical registers since they cannot be liveout.
+ MI->eraseFromParent();
continue;
+ }
// If there are multiple defs of the same register and at least one
// is not an implicit_def, do not insert implicit_def's before the
@@ -191,6 +238,10 @@ void LiveIntervals::processImplicitDefs() {
if (Skip)
continue;
+ // The only implicit_def which we want to keep are those that are live
+ // out of its block.
+ MI->eraseFromParent();
+
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
UE = mri_->use_end(); UI != UE; ) {
MachineOperand &RMO = UI.getOperand();
@@ -199,12 +250,19 @@ void LiveIntervals::processImplicitDefs() {
MachineBasicBlock *RMBB = RMI->getParent();
if (RMBB == MBB)
continue;
+
+ // Turn a copy use into an implicit_def.
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (tii_->isMoveInstr(*RMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
+ Reg == SrcReg) {
+ RMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
+ for (int j = RMI->getNumOperands() - 1, ee = 0; j > ee; --j)
+ RMI->RemoveOperand(j);
+ continue;
+ }
+
const TargetRegisterClass* RC = mri_->getRegClass(Reg);
unsigned NewVReg = mri_->createVirtualRegister(RC);
- MachineInstrBuilder MIB =
- BuildMI(*RMBB, RMI, RMI->getDebugLoc(),
- tii_->get(TargetInstrInfo::IMPLICIT_DEF), NewVReg);
- (*MIB).getOperand(0).setIsUndef();
RMO.setReg(NewVReg);
RMO.setIsUndef();
RMO.setIsKill();
@@ -215,6 +273,7 @@ void LiveIntervals::processImplicitDefs() {
}
}
+
void LiveIntervals::computeNumbering() {
Index2MiMap OldI2MI = i2miMap_;
std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
@@ -223,44 +282,79 @@ void LiveIntervals::computeNumbering() {
MBB2IdxMap.clear();
mi2iMap_.clear();
i2miMap_.clear();
+ terminatorGaps.clear();
+ phiJoinCopies.clear();
FunctionSize = 0;
// Number MachineInstrs and MachineBasicBlocks.
// Initialize MBB indexes to a sentinal.
- MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
+ MBB2IdxMap.resize(mf_->getNumBlockIDs(),
+ std::make_pair(LiveIndex(),LiveIndex()));
- unsigned MIIndex = 0;
+ LiveIndex MIIndex;
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
MBB != E; ++MBB) {
- unsigned StartIdx = MIIndex;
+ LiveIndex StartIdx = MIIndex;
// Insert an empty slot at the beginning of each block.
- MIIndex += InstrSlots::NUM;
+ MIIndex = getNextIndex(MIIndex);
i2miMap_.push_back(0);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
+
+ if (I == MBB->getFirstTerminator()) {
+ // Leave a gap for before terminators, this is where we will point
+ // PHI kills.
+ LiveIndex tGap(true, MIIndex);
+ bool inserted =
+ terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
+ assert(inserted &&
+ "Multiple 'first' terminators encountered during numbering.");
+ inserted = inserted; // Avoid compiler warning if assertions turned off.
+ i2miMap_.push_back(0);
+
+ MIIndex = getNextIndex(MIIndex);
+ }
+
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
inserted = true;
i2miMap_.push_back(I);
- MIIndex += InstrSlots::NUM;
+ MIIndex = getNextIndex(MIIndex);
FunctionSize++;
// Insert max(1, numdefs) empty slots after every instruction.
unsigned Slots = I->getDesc().getNumDefs();
if (Slots == 0)
Slots = 1;
- MIIndex += InstrSlots::NUM * Slots;
- while (Slots--)
+ while (Slots--) {
+ MIIndex = getNextIndex(MIIndex);
i2miMap_.push_back(0);
+ }
+
+ }
+
+ if (MBB->getFirstTerminator() == MBB->end()) {
+ // Leave a gap for before terminators, this is where we will point
+ // PHI kills.
+ LiveIndex tGap(true, MIIndex);
+ bool inserted =
+ terminatorGaps.insert(std::make_pair(&*MBB, tGap)).second;
+ assert(inserted &&
+ "Multiple 'first' terminators encountered during numbering.");
+ inserted = inserted; // Avoid compiler warning if assertions turned off.
+ i2miMap_.push_back(0);
+
+ MIIndex = getNextIndex(MIIndex);
}
// Set the MBB2IdxMap entry for this MBB.
- MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
+ MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, getPrevSlot(MIIndex));
Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
}
+
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
if (!OldI2MI.empty())
@@ -272,9 +366,9 @@ void LiveIntervals::computeNumbering() {
// number, or our best guess at what it _should_ correspond to if the
// original instruction has been erased. This is either the following
// instruction or its predecessor.
- unsigned index = LI->start / InstrSlots::NUM;
- unsigned offset = LI->start % InstrSlots::NUM;
- if (offset == InstrSlots::LOAD) {
+ unsigned index = LI->start.getVecIndex();
+ LiveIndex::Slot offset = LI->start.getSlot();
+ if (LI->start.isLoad()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start);
// Take the pair containing the index
@@ -283,29 +377,34 @@ void LiveIntervals::computeNumbering() {
LI->start = getMBBStartIdx(J->second);
} else {
- LI->start = mi2iMap_[OldI2MI[index]] + offset;
+ LI->start = LiveIndex(
+ LiveIndex(mi2iMap_[OldI2MI[index]]),
+ (LiveIndex::Slot)offset);
}
// Remap the ending index in the same way that we remapped the start,
// except for the final step where we always map to the immediately
// following instruction.
- index = (LI->end - 1) / InstrSlots::NUM;
- offset = LI->end % InstrSlots::NUM;
- if (offset == InstrSlots::LOAD) {
+ index = (getPrevSlot(LI->end)).getVecIndex();
+ offset = LI->end.getSlot();
+ if (LI->end.isLoad()) {
// VReg dies at end of block.
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end);
--I;
- LI->end = getMBBEndIdx(I->second) + 1;
+ LI->end = getNextSlot(getMBBEndIdx(I->second));
} else {
unsigned idx = index;
while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
if (index != OldI2MI.size())
- LI->end = mi2iMap_[OldI2MI[index]] + (idx == index ? offset : 0);
+ LI->end =
+ LiveIndex(mi2iMap_[OldI2MI[index]],
+ (idx == index ? offset : LiveIndex::LOAD));
else
- LI->end = InstrSlots::NUM * i2miMap_.size();
+ LI->end =
+ LiveIndex(LiveIndex::NUM * i2miMap_.size());
}
}
@@ -317,9 +416,9 @@ void LiveIntervals::computeNumbering() {
// start indices above. VN's with special sentinel defs
// don't need to be remapped.
if (vni->isDefAccurate() && !vni->isUnused()) {
- unsigned index = vni->def / InstrSlots::NUM;
- unsigned offset = vni->def % InstrSlots::NUM;
- if (offset == InstrSlots::LOAD) {
+ unsigned index = vni->def.getVecIndex();
+ LiveIndex::Slot offset = vni->def.getSlot();
+ if (vni->def.isLoad()) {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def);
// Take the pair containing the index
@@ -328,25 +427,36 @@ void LiveIntervals::computeNumbering() {
vni->def = getMBBStartIdx(J->second);
} else {
- vni->def = mi2iMap_[OldI2MI[index]] + offset;
+ vni->def = LiveIndex(mi2iMap_[OldI2MI[index]], offset);
}
}
// Remap the VNInfo kill indices, which works the same as
// the end indices above.
for (size_t i = 0; i < vni->kills.size(); ++i) {
- // PHI kills don't need to be remapped.
- if (!vni->kills[i]) continue;
-
- unsigned index = (vni->kills[i]-1) / InstrSlots::NUM;
- unsigned offset = vni->kills[i] % InstrSlots::NUM;
- if (offset == InstrSlots::LOAD) {
- std::vector<IdxMBBPair>::const_iterator I =
+ unsigned index = getPrevSlot(vni->kills[i]).getVecIndex();
+ LiveIndex::Slot offset = vni->kills[i].getSlot();
+
+ if (vni->kills[i].isLoad()) {
+ assert("Value killed at a load slot.");
+ /*std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
--I;
- vni->kills[i] = getMBBEndIdx(I->second);
+ vni->kills[i] = getMBBEndIdx(I->second);*/
} else {
+ if (vni->kills[i].isPHIIndex()) {
+ std::vector<IdxMBBPair>::const_iterator I =
+ std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
+ --I;
+ vni->kills[i] = terminatorGaps[I->second];
+ } else {
+ assert(OldI2MI[index] != 0 &&
+ "Kill refers to instruction not present in index maps.");
+ vni->kills[i] = LiveIndex(mi2iMap_[OldI2MI[index]], offset);
+ }
+
+ /*
unsigned idx = index;
while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
@@ -355,6 +465,7 @@ void LiveIntervals::computeNumbering() {
(idx == index ? offset : 0);
else
vni->kills[i] = InstrSlots::NUM * i2miMap_.size();
+ */
}
}
}
@@ -372,13 +483,20 @@ void LiveIntervals::scaleNumbering(int factor) {
Idx2MBBMap.clear();
for (MachineFunction::iterator MBB = mf_->begin(), MBBE = mf_->end();
MBB != MBBE; ++MBB) {
- std::pair<unsigned, unsigned> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
- mbbIndices.first = InstrSlots::scale(mbbIndices.first, factor);
- mbbIndices.second = InstrSlots::scale(mbbIndices.second, factor);
+ std::pair<LiveIndex, LiveIndex> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
+ mbbIndices.first = mbbIndices.first.scale(factor);
+ mbbIndices.second = mbbIndices.second.scale(factor);
Idx2MBBMap.push_back(std::make_pair(mbbIndices.first, MBB));
}
std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
+ // Scale terminator gaps.
+ for (DenseMap<MachineBasicBlock*, LiveIndex>::iterator
+ TGI = terminatorGaps.begin(), TGE = terminatorGaps.end();
+ TGI != TGE; ++TGI) {
+ terminatorGaps[TGI->first] = TGI->second.scale(factor);
+ }
+
// Scale the intervals.
for (iterator LI = begin(), LE = end(); LI != LE; ++LI) {
LI->second->scaleNumbering(factor);
@@ -386,19 +504,20 @@ void LiveIntervals::scaleNumbering(int factor) {
// Scale MachineInstrs.
Mi2IndexMap oldmi2iMap = mi2iMap_;
- unsigned highestSlot = 0;
+ LiveIndex highestSlot;
for (Mi2IndexMap::iterator MI = oldmi2iMap.begin(), ME = oldmi2iMap.end();
MI != ME; ++MI) {
- unsigned newSlot = InstrSlots::scale(MI->second, factor);
+ LiveIndex newSlot = MI->second.scale(factor);
mi2iMap_[MI->first] = newSlot;
highestSlot = std::max(highestSlot, newSlot);
}
+ unsigned highestVIndex = highestSlot.getVecIndex();
i2miMap_.clear();
- i2miMap_.resize(highestSlot + 1);
+ i2miMap_.resize(highestVIndex + 1);
for (Mi2IndexMap::iterator MI = mi2iMap_.begin(), ME = mi2iMap_.end();
MI != ME; ++MI) {
- i2miMap_[MI->second] = MI->first;
+ i2miMap_[MI->second.getVecIndex()] = const_cast<MachineInstr *>(MI->first);
}
}
@@ -419,6 +538,7 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
processImplicitDefs();
computeNumbering();
computeIntervals();
+ performEarlyCoalescing();
numIntervals += getNumIntervals();
@@ -427,36 +547,45 @@ bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
}
/// print - Implement the dump method.
-void LiveIntervals::print(std::ostream &O, const Module* ) const {
- O << "********** INTERVALS **********\n";
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
- I->second->print(O, tri_);
- O << "\n";
+ I->second->print(OS, tri_);
+ OS << "\n";
}
- O << "********** MACHINEINSTRS **********\n";
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
- O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
+ OS << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
- O << getInstructionIndex(mii) << '\t' << *mii;
+ OS << getInstructionIndex(mii) << '\t' << *mii;
}
}
}
+void LiveIntervals::dumpInstrs() const {
+ printInstrs(errs());
+}
+
/// conflictsWithPhysRegDef - Returns true if the specified register
/// is defined during the duration of the specified interval.
bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
VirtRegMap &vrm, unsigned reg) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- for (unsigned index = getBaseIndex(I->start),
- end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
- index += InstrSlots::NUM) {
+ for (LiveIndex index = getBaseIndex(I->start),
+ end = getNextIndex(getBaseIndex(getPrevSlot(I->end))); index != end;
+ index = getNextIndex(index)) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
- index += InstrSlots::NUM;
+ index = getNextIndex(index);
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
@@ -492,16 +621,16 @@ bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
- for (unsigned index = getBaseIndex(I->start),
- end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
- index += InstrSlots::NUM) {
+ for (LiveIndex index = getBaseIndex(I->start),
+ end = getNextIndex(getBaseIndex(getPrevSlot(I->end))); index != end;
+ index = getNextIndex(index)) {
// Skip deleted instructions.
MachineInstr *MI = 0;
while (index != end) {
MI = getInstructionFromIndex(index);
if (MI)
break;
- index += InstrSlots::NUM;
+ index = getNextIndex(index);
}
if (index == end) break;
@@ -525,35 +654,36 @@ bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
return false;
}
-
-void LiveIntervals::printRegName(unsigned reg) const {
+#ifndef NDEBUG
+static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
if (TargetRegisterInfo::isPhysicalRegister(reg))
- cerr << tri_->getName(reg);
+ errs() << tri_->getName(reg);
else
- cerr << "%reg" << reg;
+ errs() << "%reg" << reg;
}
+#endif
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
MachineBasicBlock::iterator mi,
- unsigned MIIdx, MachineOperand& MO,
+ LiveIndex MIIdx,
+ MachineOperand& MO,
unsigned MOIdx,
LiveInterval &interval) {
- DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
- LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
-
- if (mi->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
- DOUT << "is a implicit_def\n";
- return;
- }
+ DEBUG({
+ errs() << "\t\tregister: ";
+ printRegName(interval.reg, tri_);
+ });
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
+ LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
- unsigned defIndex = getDefIndex(MIIdx);
- // Earlyclobbers move back one.
+ LiveIndex defIndex = getDefIndex(MIIdx);
+ // Earlyclobbers move back one, so that they overlap the live range
+ // of inputs.
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
VNInfo *ValNo;
@@ -575,11 +705,16 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
- unsigned killIdx;
+ LiveIndex killIdx;
if (vi.Kills[0] != mi)
- killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
+ killIdx = getNextSlot(getUseIndex(getInstructionIndex(vi.Kills[0])));
+ else if (MO.isEarlyClobber())
+ // Earlyclobbers that die in this instruction move up one extra, to
+ // compensate for having the starting point moved back one. This
+ // gets them to overlap the live range of other outputs.
+ killIdx = getNextSlot(getNextSlot(defIndex));
else
- killIdx = defIndex+1;
+ killIdx = getNextSlot(defIndex);
// If the kill happens after the definition, we have an intra-block
// live range.
@@ -588,8 +723,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
interval.addRange(LR);
- DOUT << " +" << LR << "\n";
- interval.addKill(ValNo, killIdx);
+ DEBUG(errs() << " +" << LR << "\n");
+ ValNo->addKill(killIdx);
return;
}
}
@@ -598,8 +733,8 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
- LiveRange NewLR(defIndex, getMBBEndIdx(mbb)+1, ValNo);
- DOUT << " +" << NewLR;
+ LiveRange NewLR(defIndex, getNextSlot(getMBBEndIdx(mbb)), ValNo);
+ DEBUG(errs() << " +" << NewLR);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
@@ -608,22 +743,22 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
LiveRange LR(getMBBStartIdx(*I),
- getMBBEndIdx(*I)+1, // MBB ends at -1.
+ getNextSlot(getMBBEndIdx(*I)), // MBB ends at -1.
ValNo);
interval.addRange(LR);
- DOUT << " +" << LR;
+ DEBUG(errs() << " +" << LR);
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
- unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
- LiveRange LR(getMBBStartIdx(Kill->getParent()),
- killIdx, ValNo);
+ LiveIndex killIdx =
+ getNextSlot(getUseIndex(getInstructionIndex(Kill)));
+ LiveRange LR(getMBBStartIdx(Kill->getParent()), killIdx, ValNo);
interval.addRange(LR);
- interval.addKill(ValNo, killIdx);
- DOUT << " +" << LR;
+ ValNo->addKill(killIdx);
+ DEBUG(errs() << " +" << LR);
}
} else {
@@ -638,12 +773,13 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// need to take the LiveRegion that defines this register and split it
// into two values.
assert(interval.containsOneValue());
- unsigned DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
- unsigned RedefIndex = getDefIndex(MIIdx);
+ LiveIndex DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
+ LiveIndex RedefIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
RedefIndex = getUseIndex(MIIdx);
- const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(getPrevSlot(RedefIndex));
VNInfo *OldValNo = OldLR->valno;
// Delete the initial value, which should be short and continuous,
@@ -656,68 +792,85 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
- VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->copy,
+ VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
false, // update at *
VNInfoAllocator);
ValNo->setFlags(OldValNo->getFlags()); // * <- updating here
// Value#0 is now defined by the 2-addr instruction.
OldValNo->def = RedefIndex;
- OldValNo->copy = 0;
+ OldValNo->setCopy(0);
if (MO.isEarlyClobber())
OldValNo->setHasRedefByEC(true);
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
- DOUT << " replace range with " << LR;
+ DEBUG(errs() << " replace range with " << LR);
interval.addRange(LR);
- interval.addKill(ValNo, RedefIndex);
+ ValNo->addKill(RedefIndex);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
if (MO.isDead())
- interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
-
- DOUT << " RESULT: ";
- interval.print(DOUT, tri_);
-
+ interval.addRange(
+ LiveRange(RedefIndex, MO.isEarlyClobber() ?
+ getNextSlot(getNextSlot(RedefIndex)) :
+ getNextSlot(RedefIndex), OldValNo));
+
+ DEBUG({
+ errs() << " RESULT: ";
+ interval.print(errs(), tri_);
+ });
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
- assert(vi.Kills.size() == 1 &&
- "PHI elimination vreg should have one kill, the PHI itself!");
-
// Remove the old range that we now know has an incorrect number.
VNInfo *VNI = interval.getValNumInfo(0);
MachineInstr *Killer = vi.Kills[0];
- unsigned Start = getMBBStartIdx(Killer->getParent());
- unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
- DOUT << " Removing [" << Start << "," << End << "] from: ";
- interval.print(DOUT, tri_); DOUT << "\n";
- interval.removeRange(Start, End);
+ phiJoinCopies.push_back(Killer);
+ LiveIndex Start = getMBBStartIdx(Killer->getParent());
+ LiveIndex End =
+ getNextSlot(getUseIndex(getInstructionIndex(Killer)));
+ DEBUG({
+ errs() << " Removing [" << Start << "," << End << "] from: ";
+ interval.print(errs(), tri_);
+ errs() << "\n";
+ });
+ interval.removeRange(Start, End);
+ assert(interval.ranges.size() == 1 &&
+ "Newly discovered PHI interval has >1 ranges.");
+ MachineBasicBlock *killMBB = getMBBFromIndex(interval.endIndex());
+ VNI->addKill(terminatorGaps[killMBB]);
VNI->setHasPHIKill(true);
- DOUT << " RESULT: "; interval.print(DOUT, tri_);
+ DEBUG({
+ errs() << " RESULT: ";
+ interval.print(errs(), tri_);
+ });
// Replace the interval with one of a NEW value number. Note that this
// value number isn't actually defined by an instruction, weird huh? :)
LiveRange LR(Start, End,
- interval.getNextValue(mbb->getNumber(), 0, false, VNInfoAllocator));
+ interval.getNextValue(LiveIndex(mbb->getNumber()),
+ 0, false, VNInfoAllocator));
LR.valno->setIsPHIDef(true);
- DOUT << " replace range with " << LR;
+ DEBUG(errs() << " replace range with " << LR);
interval.addRange(LR);
- interval.addKill(LR.valno, End);
- DOUT << " RESULT: "; interval.print(DOUT, tri_);
+ LR.valno->addKill(End);
+ DEBUG({
+ errs() << " RESULT: ";
+ interval.print(errs(), tri_);
+ });
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
- unsigned defIndex = getDefIndex(MIIdx);
+ LiveIndex defIndex = getDefIndex(MIIdx);
if (MO.isEarlyClobber())
defIndex = getUseIndex(MIIdx);
-
+
VNInfo *ValNo;
MachineInstr *CopyMI = NULL;
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
@@ -728,55 +881,63 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
- unsigned killIndex = getMBBEndIdx(mbb) + 1;
+ LiveIndex killIndex = getNextSlot(getMBBEndIdx(mbb));
LiveRange LR(defIndex, killIndex, ValNo);
interval.addRange(LR);
- interval.addKill(ValNo, killIndex);
+ ValNo->addKill(terminatorGaps[mbb]);
ValNo->setHasPHIKill(true);
- DOUT << " +" << LR;
+ DEBUG(errs() << " +" << LR);
}
}
- DOUT << '\n';
+ DEBUG(errs() << '\n');
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator mi,
- unsigned MIIdx,
+ LiveIndex MIIdx,
MachineOperand& MO,
LiveInterval &interval,
MachineInstr *CopyMI) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
- DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
+ DEBUG({
+ errs() << "\t\tregister: ";
+ printRegName(interval.reg, tri_);
+ });
- unsigned baseIndex = MIIdx;
- unsigned start = getDefIndex(baseIndex);
+ LiveIndex baseIndex = MIIdx;
+ LiveIndex start = getDefIndex(baseIndex);
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
start = getUseIndex(MIIdx);
- unsigned end = start;
+ LiveIndex end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
+ // For earlyclobbers, the defSlot was pushed back one; the extra
+ // advance below compensates.
if (MO.isDead()) {
- DOUT << " dead";
- end = start + 1;
+ DEBUG(errs() << " dead");
+ if (MO.isEarlyClobber())
+ end = getNextSlot(getNextSlot(start));
+ else
+ end = getNextSlot(start);
goto exit;
}
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
- baseIndex += InstrSlots::NUM;
+ baseIndex = getNextIndex(baseIndex);
while (++mi != MBB->end()) {
- while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
- baseIndex += InstrSlots::NUM;
+ baseIndex = getNextIndex(baseIndex);
if (mi->killsRegister(interval.reg, tri_)) {
- DOUT << " killed";
- end = getUseIndex(baseIndex) + 1;
+ DEBUG(errs() << " killed");
+ end = getNextSlot(getUseIndex(baseIndex));
goto exit;
} else {
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
@@ -791,21 +952,21 @@ void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
- DOUT << " dead";
- end = start + 1;
+ DEBUG(errs() << " dead");
+ end = getNextSlot(start);
}
goto exit;
}
}
- baseIndex += InstrSlots::NUM;
+ baseIndex = getNextIndex(baseIndex);
}
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
// and never used. Another possible case is the implicit use of the
// physical register has been deleted by two-address pass.
- end = start + 1;
+ end = getNextSlot(start);
exit:
assert(start < end && "did not find end of interval?");
@@ -819,13 +980,13 @@ exit:
ValNo->setHasRedefByEC(true);
LiveRange LR(start, end, ValNo);
interval.addRange(LR);
- interval.addKill(LR.valno, end);
- DOUT << " +" << LR << '\n';
+ LR.valno->addKill(end);
+ DEBUG(errs() << " +" << LR << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
- unsigned MIIdx,
+ LiveIndex MIIdx,
MachineOperand& MO,
unsigned MOIdx) {
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
@@ -852,25 +1013,28 @@ void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
}
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
- unsigned MIIdx,
+ LiveIndex MIIdx,
LiveInterval &interval, bool isAlias) {
- DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
+ DEBUG({
+ errs() << "\t\tlivein register: ";
+ printRegName(interval.reg, tri_);
+ });
// Look for kills, if it reaches a def before it's killed, then it shouldn't
// be considered a livein.
MachineBasicBlock::iterator mi = MBB->begin();
- unsigned baseIndex = MIIdx;
- unsigned start = baseIndex;
- while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ LiveIndex baseIndex = MIIdx;
+ LiveIndex start = baseIndex;
+ while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
- baseIndex += InstrSlots::NUM;
- unsigned end = baseIndex;
+ baseIndex = getNextIndex(baseIndex);
+ LiveIndex end = baseIndex;
bool SeenDefUse = false;
while (mi != MBB->end()) {
if (mi->killsRegister(interval.reg, tri_)) {
- DOUT << " killed";
- end = getUseIndex(baseIndex) + 1;
+ DEBUG(errs() << " killed");
+ end = getNextSlot(getUseIndex(baseIndex));
SeenDefUse = true;
break;
} else if (mi->modifiesRegister(interval.reg, tri_)) {
@@ -878,40 +1042,167 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
- DOUT << " dead";
- end = getDefIndex(start) + 1;
+ DEBUG(errs() << " dead");
+ end = getNextSlot(getDefIndex(start));
SeenDefUse = true;
break;
}
- baseIndex += InstrSlots::NUM;
+ baseIndex = getNextIndex(baseIndex);
++mi;
if (mi != MBB->end()) {
- while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
+ while (baseIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(baseIndex) == 0)
- baseIndex += InstrSlots::NUM;
+ baseIndex = getNextIndex(baseIndex);
}
}
// Live-in register might not be used at all.
if (!SeenDefUse) {
if (isAlias) {
- DOUT << " dead";
- end = getDefIndex(MIIdx) + 1;
+ DEBUG(errs() << " dead");
+ end = getNextSlot(getDefIndex(MIIdx));
} else {
- DOUT << " live through";
+ DEBUG(errs() << " live through");
end = baseIndex;
}
}
VNInfo *vni =
- interval.getNextValue(MBB->getNumber(), 0, false, VNInfoAllocator);
+ interval.getNextValue(LiveIndex(MBB->getNumber()),
+ 0, false, VNInfoAllocator);
vni->setIsPHIDef(true);
LiveRange LR(start, end, vni);
interval.addRange(LR);
- interval.addKill(LR.valno, end);
- DOUT << " +" << LR << '\n';
+ LR.valno->addKill(end);
+ DEBUG(errs() << " +" << LR << '\n');
+}
+
+bool
+LiveIntervals::isProfitableToCoalesce(LiveInterval &DstInt, LiveInterval &SrcInt,
+ SmallVector<MachineInstr*,16> &IdentCopies,
+ SmallVector<MachineInstr*,16> &OtherCopies) {
+ bool HaveConflict = false;
+ unsigned NumIdent = 0;
+ for (MachineRegisterInfo::def_iterator ri = mri_->def_begin(SrcInt.reg),
+ re = mri_->def_end(); ri != re; ++ri) {
+ MachineInstr *MI = &*ri;
+ unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
+ if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ return false;
+ if (SrcReg != DstInt.reg) {
+ OtherCopies.push_back(MI);
+ HaveConflict |= DstInt.liveAt(getInstructionIndex(MI));
+ } else {
+ IdentCopies.push_back(MI);
+ ++NumIdent;
+ }
+ }
+
+ if (!HaveConflict)
+ return false; // Let coalescer handle it
+ return IdentCopies.size() > OtherCopies.size();
+}
+
+void LiveIntervals::performEarlyCoalescing() {
+ if (!EarlyCoalescing)
+ return;
+
+ /// Perform early coalescing: eliminate copies which feed into phi joins
+ /// and whose sources are defined by the phi joins.
+ for (unsigned i = 0, e = phiJoinCopies.size(); i != e; ++i) {
+ MachineInstr *Join = phiJoinCopies[i];
+ if (CoalescingLimit != -1 && (int)numCoalescing == CoalescingLimit)
+ break;
+
+ unsigned PHISrc, PHIDst, SrcSubReg, DstSubReg;
+ bool isMove= tii_->isMoveInstr(*Join, PHISrc, PHIDst, SrcSubReg, DstSubReg);
+#ifndef NDEBUG
+ assert(isMove && "PHI join instruction must be a move!");
+#else
+ isMove = isMove;
+#endif
+
+ LiveInterval &DstInt = getInterval(PHIDst);
+ LiveInterval &SrcInt = getInterval(PHISrc);
+ SmallVector<MachineInstr*, 16> IdentCopies;
+ SmallVector<MachineInstr*, 16> OtherCopies;
+ if (!isProfitableToCoalesce(DstInt, SrcInt, IdentCopies, OtherCopies))
+ continue;
+
+ DEBUG(errs() << "PHI Join: " << *Join);
+ assert(DstInt.containsOneValue() && "PHI join should have just one val#!");
+ VNInfo *VNI = DstInt.getValNumInfo(0);
+
+ // Change the non-identity copies to directly target the phi destination.
+ for (unsigned i = 0, e = OtherCopies.size(); i != e; ++i) {
+ MachineInstr *PHICopy = OtherCopies[i];
+ DEBUG(errs() << "Moving: " << *PHICopy);
+
+ LiveIndex MIIndex = getInstructionIndex(PHICopy);
+ LiveIndex DefIndex = getDefIndex(MIIndex);
+ LiveRange *SLR = SrcInt.getLiveRangeContaining(DefIndex);
+ LiveIndex StartIndex = SLR->start;
+ LiveIndex EndIndex = SLR->end;
+
+ // Delete val# defined by the now identity copy and add the range from
+ // beginning of the mbb to the end of the range.
+ SrcInt.removeValNo(SLR->valno);
+ DEBUG(errs() << " added range [" << StartIndex << ','
+ << EndIndex << "] to reg" << DstInt.reg << '\n');
+ if (DstInt.liveAt(StartIndex))
+ DstInt.removeRange(StartIndex, EndIndex);
+ VNInfo *NewVNI = DstInt.getNextValue(DefIndex, PHICopy, true,
+ VNInfoAllocator);
+ NewVNI->setHasPHIKill(true);
+ DstInt.addRange(LiveRange(StartIndex, EndIndex, NewVNI));
+ for (unsigned j = 0, ee = PHICopy->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = PHICopy->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != PHISrc)
+ continue;
+ MO.setReg(PHIDst);
+ }
+ }
+
+ // Now let's eliminate all the would-be identity copies.
+ for (unsigned i = 0, e = IdentCopies.size(); i != e; ++i) {
+ MachineInstr *PHICopy = IdentCopies[i];
+ DEBUG(errs() << "Coalescing: " << *PHICopy);
+
+ LiveIndex MIIndex = getInstructionIndex(PHICopy);
+ LiveIndex DefIndex = getDefIndex(MIIndex);
+ LiveRange *SLR = SrcInt.getLiveRangeContaining(DefIndex);
+ LiveIndex StartIndex = SLR->start;
+ LiveIndex EndIndex = SLR->end;
+
+ // Delete val# defined by the now identity copy and add the range from
+ // beginning of the mbb to the end of the range.
+ SrcInt.removeValNo(SLR->valno);
+ RemoveMachineInstrFromMaps(PHICopy);
+ PHICopy->eraseFromParent();
+ DEBUG(errs() << " added range [" << StartIndex << ','
+ << EndIndex << "] to reg" << DstInt.reg << '\n');
+ DstInt.addRange(LiveRange(StartIndex, EndIndex, VNI));
+ }
+
+ // Remove the phi join and update the phi block liveness.
+ LiveIndex MIIndex = getInstructionIndex(Join);
+ LiveIndex UseIndex = getUseIndex(MIIndex);
+ LiveIndex DefIndex = getDefIndex(MIIndex);
+ LiveRange *SLR = SrcInt.getLiveRangeContaining(UseIndex);
+ LiveRange *DLR = DstInt.getLiveRangeContaining(DefIndex);
+ DLR->valno->setCopy(0);
+ DLR->valno->setIsDefAccurate(false);
+ DstInt.addRange(LiveRange(SLR->start, SLR->end, DLR->valno));
+ SrcInt.removeRange(SLR->start, SLR->end);
+ assert(SrcInt.empty());
+ removeInterval(PHISrc);
+ RemoveMachineInstrFromMaps(Join);
+ Join->eraseFromParent();
+
+ ++numCoalescing;
+ }
}
/// computeIntervals - computes the live intervals for virtual
@@ -919,17 +1210,17 @@ void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
+ DEBUG(errs() << "********** COMPUTING LIVE INTERVALS **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
- DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
- << "********** Function: "
- << ((Value*)mf_->getFunction())->getName() << '\n';
-
+ SmallVector<unsigned, 8> UndefUses;
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
// Track the index of the current machine instr.
- unsigned MIIndex = getMBBStartIdx(MBB);
- DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
+ LiveIndex MIIndex = getMBBStartIdx(MBB);
+ DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
@@ -945,37 +1236,52 @@ void LiveIntervals::computeIntervals() {
}
// Skip over empty initial indices.
- while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ while (MIIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(MIIndex) == 0)
- MIIndex += InstrSlots::NUM;
+ MIIndex = getNextIndex(MIIndex);
for (; MI != miEnd; ++MI) {
- DOUT << MIIndex << "\t" << *MI;
+ DEBUG(errs() << MIIndex << "\t" << *MI);
// Handle defs.
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+
// handle register defs - build intervals
- if (MO.isReg() && MO.getReg() && MO.isDef()) {
+ if (MO.isDef())
handleRegisterDef(MBB, MI, MIIndex, MO, i);
- }
+ else if (MO.isUndef())
+ UndefUses.push_back(MO.getReg());
}
// Skip over the empty slots after each instruction.
unsigned Slots = MI->getDesc().getNumDefs();
if (Slots == 0)
Slots = 1;
- MIIndex += InstrSlots::NUM * Slots;
+
+ while (Slots--)
+ MIIndex = getNextIndex(MIIndex);
// Skip over empty indices.
- while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
+ while (MIIndex.getVecIndex() < i2miMap_.size() &&
getInstructionFromIndex(MIIndex) == 0)
- MIIndex += InstrSlots::NUM;
+ MIIndex = getNextIndex(MIIndex);
}
}
+
+ // Create empty intervals for registers defined by implicit_def's (except
+ // for those implicit_def that define values which are liveout of their
+ // blocks.
+ for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
+ unsigned UndefReg = UndefUses[i];
+ (void)getOrCreateInterval(UndefReg);
+ }
}
-bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
+bool LiveIntervals::findLiveInMBBs(
+ LiveIndex Start, LiveIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
@@ -991,7 +1297,8 @@ bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
return ResVal;
}
-bool LiveIntervals::findReachableMBBs(unsigned Start, unsigned End,
+bool LiveIntervals::findReachableMBBs(
+ LiveIndex Start, LiveIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
std::vector<IdxMBBPair>::const_iterator I =
std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
@@ -1028,23 +1335,23 @@ LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
/// getVNInfoSourceReg - Helper function that parses the specified VNInfo
/// copy field and returns the source register that defines it.
unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
- if (!VNI->copy)
+ if (!VNI->getCopy())
return 0;
- if (VNI->copy->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
+ if (VNI->getCopy()->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
// If it's extracting out of a physical register, return the sub-register.
- unsigned Reg = VNI->copy->getOperand(1).getReg();
+ unsigned Reg = VNI->getCopy()->getOperand(1).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
- Reg = tri_->getSubReg(Reg, VNI->copy->getOperand(2).getImm());
+ Reg = tri_->getSubReg(Reg, VNI->getCopy()->getOperand(2).getImm());
return Reg;
- } else if (VNI->copy->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
- VNI->copy->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
- return VNI->copy->getOperand(2).getReg();
+ } else if (VNI->getCopy()->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ VNI->getCopy()->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
+ return VNI->getCopy()->getOperand(2).getReg();
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
- if (tii_->isMoveInstr(*VNI->copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
+ if (tii_->isMoveInstr(*VNI->getCopy(), SrcReg, DstReg, SrcSubReg, DstSubReg))
return SrcReg;
- assert(0 && "Unrecognized copy instruction!");
+ llvm_unreachable("Unrecognized copy instruction!");
return 0;
}
@@ -1083,8 +1390,8 @@ unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use index.
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
- unsigned UseIdx) const {
- unsigned Index = getInstructionIndex(MI);
+ LiveIndex UseIdx) const {
+ LiveIndex Index = getInstructionIndex(MI);
VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
return UI != li.end() && UI->valno == ValNo;
@@ -1099,102 +1406,19 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
if (DisableReMat)
return false;
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
- return true;
-
- int FrameIdx = 0;
- if (tii_->isLoadFromStackSlot(MI, FrameIdx) &&
- mf_->getFrameInfo()->isImmutableObjectIndex(FrameIdx))
- // FIXME: Let target specific isReallyTriviallyReMaterializable determines
- // this but remember this is not safe to fold into a two-address
- // instruction.
- // This is a load from fixed stack slot. It can be rematerialized.
- return true;
-
- // If the target-specific rules don't identify an instruction as
- // being trivially rematerializable, use some target-independent
- // rules.
- if (!MI->getDesc().isRematerializable() ||
- !tii_->isTriviallyReMaterializable(MI)) {
- if (!EnableAggressiveRemat)
- return false;
-
- // If the instruction accesses memory but the memoperands have been lost,
- // we can't analyze it.
- const TargetInstrDesc &TID = MI->getDesc();
- if ((TID.mayLoad() || TID.mayStore()) && MI->memoperands_empty())
- return false;
-
- // Avoid instructions obviously unsafe for remat.
- if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable())
- return false;
-
- // If the instruction accesses memory and the memory could be non-constant,
- // assume the instruction is not rematerializable.
- for (std::list<MachineMemOperand>::const_iterator
- I = MI->memoperands_begin(), E = MI->memoperands_end(); I != E; ++I){
- const MachineMemOperand &MMO = *I;
- if (MMO.isVolatile() || MMO.isStore())
- return false;
- const Value *V = MMO.getValue();
- if (!V)
- return false;
- if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
- if (!PSV->isConstant(mf_->getFrameInfo()))
- return false;
- } else if (!aa_->pointsToConstantMemory(V))
- return false;
- }
-
- // If any of the registers accessed are non-constant, conservatively assume
- // the instruction is not rematerializable.
- unsigned ImpUse = 0;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg()) {
- unsigned Reg = MO.getReg();
- if (Reg == 0)
- continue;
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- return false;
-
- // Only allow one def, and that in the first operand.
- if (MO.isDef() != (i == 0))
- return false;
-
- // Only allow constant-valued registers.
- bool IsLiveIn = mri_->isLiveIn(Reg);
- MachineRegisterInfo::def_iterator I = mri_->def_begin(Reg),
- E = mri_->def_end();
-
- // For the def, it should be the only def of that register.
- if (MO.isDef() && (next(I) != E || IsLiveIn))
- return false;
-
- if (MO.isUse()) {
- // Only allow one use other register use, as that's all the
- // remat mechanisms support currently.
- if (Reg != li.reg) {
- if (ImpUse == 0)
- ImpUse = Reg;
- else if (Reg != ImpUse)
- return false;
- }
- // For the use, there should be only one associated def.
- if (I != E && (next(I) != E || IsLiveIn))
- return false;
- }
- }
- }
- }
+ if (!tii_->isTriviallyReMaterializable(MI, aa_))
+ return false;
+ // Target-specific code can mark an instruction as being rematerializable
+ // if it has one virtual reg use, though it had better be something like
+ // a PIC base register which is likely to be live everywhere.
unsigned ImpUse = getReMatImplicitUse(li, MI);
if (ImpUse) {
const LiveInterval &ImpLi = getInterval(ImpUse);
for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
re = mri_->use_end(); ri != re; ++ri) {
MachineInstr *UseMI = &*ri;
- unsigned UseIdx = getInstructionIndex(UseMI);
+ LiveIndex UseIdx = getInstructionIndex(UseMI);
if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
continue;
if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
@@ -1279,7 +1503,7 @@ static bool FilterFoldedOps(MachineInstr *MI,
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
VirtRegMap &vrm, MachineInstr *DefMI,
- unsigned InstrIdx,
+ LiveIndex InstrIdx,
SmallVector<unsigned, 2> &Ops,
bool isSS, int Slot, unsigned Reg) {
// If it is an implicit def instruction, just delete it.
@@ -1318,7 +1542,7 @@ bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
vrm.transferRestorePts(MI, fmi);
vrm.transferEmergencySpills(MI, fmi);
mi2iMap_.erase(MI);
- i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
+ i2miMap_[InstrIdx.getVecIndex()] = fmi;
mi2iMap_[fmi] = InstrIdx;
MI = MBB.insert(MBB.erase(MI), fmi);
++numFolds;
@@ -1391,7 +1615,8 @@ void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
bool LiveIntervals::
rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
- bool TrySplit, unsigned index, unsigned end, MachineInstr *MI,
+ bool TrySplit, LiveIndex index, LiveIndex end,
+ MachineInstr *MI,
MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
unsigned Slot, int LdSlot,
bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
@@ -1422,8 +1647,8 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
// If this is the rematerializable definition MI itself and
// all of its uses are rematerialized, simply delete it.
if (MI == ReMatOrigDefMI && CanDelete) {
- DOUT << "\t\t\t\tErasing re-materlizable def: ";
- DOUT << MI << '\n';
+ DEBUG(errs() << "\t\t\t\tErasing re-materlizable def: "
+ << MI << '\n');
RemoveMachineInstrFromMaps(MI);
vrm.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
@@ -1465,23 +1690,13 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
continue;
if (RegJ == RegI) {
Ops.push_back(j);
- HasUse |= MOj.isUse();
- HasDef |= MOj.isDef();
+ if (!MOj.isUndef()) {
+ HasUse |= MOj.isUse();
+ HasDef |= MOj.isDef();
+ }
}
}
- if (HasUse && !li.liveAt(getUseIndex(index)))
- // Must be defined by an implicit def. It should not be spilled. Note,
- // this is for correctness reason. e.g.
- // 8 %reg1024<def> = IMPLICIT_DEF
- // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
- // The live range [12, 14) are not part of the r1024 live interval since
- // it's defined by an implicit def. It will not conflicts with live
- // interval of r1025. Now suppose both registers are spilled, you can
- // easily see a situation where both registers are reloaded before
- // the INSERT_SUBREG and both target registers that would overlap.
- HasUse = false;
-
// Create a new virtual register for the spill interval.
// Create the new register now so we can map the fold instruction
// to the new register so when it is unfolded we get the correct
@@ -1537,7 +1752,7 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
if (CreatedNewVReg) {
if (DefIsReMat) {
- vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
+ vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
// Each valnum may have its own remat id.
ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
@@ -1577,38 +1792,46 @@ rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
if (HasUse) {
if (CreatedNewVReg) {
- LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
- nI.getNextValue(0, 0, false, VNInfoAllocator));
- DOUT << " +" << LR;
+ LiveRange LR(getLoadIndex(index), getNextSlot(getUseIndex(index)),
+ nI.getNextValue(LiveIndex(), 0, false,
+ VNInfoAllocator));
+ DEBUG(errs() << " +" << LR);
nI.addRange(LR);
} else {
// Extend the split live interval to this def / use.
- unsigned End = getUseIndex(index)+1;
+ LiveIndex End = getNextSlot(getUseIndex(index));
LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
nI.getValNumInfo(nI.getNumValNums()-1));
- DOUT << " +" << LR;
+ DEBUG(errs() << " +" << LR);
nI.addRange(LR);
}
}
if (HasDef) {
LiveRange LR(getDefIndex(index), getStoreIndex(index),
- nI.getNextValue(0, 0, false, VNInfoAllocator));
- DOUT << " +" << LR;
+ nI.getNextValue(LiveIndex(), 0, false,
+ VNInfoAllocator));
+ DEBUG(errs() << " +" << LR);
nI.addRange(LR);
}
- DOUT << "\t\t\t\tAdded new interval: ";
- nI.print(DOUT, tri_);
- DOUT << '\n';
+ DEBUG({
+ errs() << "\t\t\t\tAdded new interval: ";
+ nI.print(errs(), tri_);
+ errs() << '\n';
+ });
}
return CanFold;
}
bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
const VNInfo *VNI,
- MachineBasicBlock *MBB, unsigned Idx) const {
- unsigned End = getMBBEndIdx(MBB);
+ MachineBasicBlock *MBB,
+ LiveIndex Idx) const {
+ LiveIndex End = getMBBEndIdx(MBB);
for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
- unsigned KillIdx = VNI->kills[j];
+ if (VNI->kills[j].isPHIIndex())
+ continue;
+
+ LiveIndex KillIdx = VNI->kills[j];
if (KillIdx > Idx && KillIdx < End)
return true;
}
@@ -1619,11 +1842,11 @@ bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
/// during spilling.
namespace {
struct RewriteInfo {
- unsigned Index;
+ LiveIndex Index;
MachineInstr *MI;
bool HasUse;
bool HasDef;
- RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d)
+ RewriteInfo(LiveIndex i, MachineInstr *mi, bool u, bool d)
: Index(i), MI(mi), HasUse(u), HasDef(d) {}
};
@@ -1652,8 +1875,8 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
std::vector<LiveInterval*> &NewLIs) {
bool AllCanFold = true;
unsigned NewVReg = 0;
- unsigned start = getBaseIndex(I->start);
- unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
+ LiveIndex start = getBaseIndex(I->start);
+ LiveIndex end = getNextIndex(getBaseIndex(getPrevSlot(I->end)));
// First collect all the def / use in this live range that will be rewritten.
// Make sure they are sorted according to instruction index.
@@ -1664,10 +1887,11 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
MachineOperand &O = ri.getOperand();
++ri;
assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
- unsigned index = getInstructionIndex(MI);
+ LiveIndex index = getInstructionIndex(MI);
if (index < start || index >= end)
continue;
- if (O.isUse() && !li.liveAt(getUseIndex(index)))
+
+ if (O.isUndef())
// Must be defined by an implicit def. It should not be spilled. Note,
// this is for correctness reason. e.g.
// 8 %reg1024<def> = IMPLICIT_DEF
@@ -1687,7 +1911,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
RewriteInfo &rwi = RewriteMIs[i];
++i;
- unsigned index = rwi.Index;
+ LiveIndex index = rwi.Index;
bool MIHasUse = rwi.HasUse;
bool MIHasDef = rwi.HasDef;
MachineInstr *MI = rwi.MI;
@@ -1773,7 +1997,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
else {
// If this is a two-address code, then this index starts a new VNInfo.
- const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index));
+ const VNInfo *VNI = li.findDefinedVNInfoForRegInt(getDefIndex(index));
if (VNI)
HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
}
@@ -1786,7 +2010,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillIdxes.insert(std::make_pair(MBBId, S));
} else if (SII->second.back().vreg != NewVReg) {
SII->second.push_back(SRInfo(index, NewVReg, true));
- } else if ((int)index > SII->second.back().index) {
+ } else if (index > SII->second.back().index) {
// If there is an earlier def and this is a two-address
// instruction, then it's not possible to fold the store (which
// would also fold the load).
@@ -1797,7 +2021,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillMBBs.set(MBBId);
} else if (SII != SpillIdxes.end() &&
SII->second.back().vreg == NewVReg &&
- (int)index > SII->second.back().index) {
+ index > SII->second.back().index) {
// There is an earlier def that's not killed (must be two-address).
// The spill is no longer needed.
SII->second.pop_back();
@@ -1814,7 +2038,7 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
SpillIdxes.find(MBBId);
if (SII != SpillIdxes.end() &&
SII->second.back().vreg == NewVReg &&
- (int)index > SII->second.back().index)
+ index > SII->second.back().index)
// Use(s) following the last def, it's not safe to fold the spill.
SII->second.back().canFold = false;
DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
@@ -1848,8 +2072,8 @@ rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
}
}
-bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
- BitVector &RestoreMBBs,
+bool LiveIntervals::alsoFoldARestore(int Id, LiveIndex index,
+ unsigned vr, BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
if (!RestoreMBBs[Id])
return false;
@@ -1862,15 +2086,15 @@ bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
return false;
}
-void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
- BitVector &RestoreMBBs,
+void LiveIntervals::eraseRestoreInfo(int Id, LiveIndex index,
+ unsigned vr, BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
if (!RestoreMBBs[Id])
return;
std::vector<SRInfo> &Restores = RestoreIdxes[Id];
for (unsigned i = 0, e = Restores.size(); i != e; ++i)
if (Restores[i].index == index && Restores[i].vreg)
- Restores[i].index = -1;
+ Restores[i].index = LiveIndex();
}
/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
@@ -1920,9 +2144,11 @@ addIntervalsForSpillsFast(const LiveInterval &li,
assert(li.weight != HUGE_VALF &&
"attempt to spill already spilled interval!");
- DOUT << "\t\t\t\tadding intervals for spills for interval: ";
- DEBUG(li.dump());
- DOUT << '\n';
+ DEBUG({
+ errs() << "\t\t\t\tadding intervals for spills for interval: ";
+ li.dump();
+ errs() << '\n';
+ });
const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
@@ -1967,27 +2193,31 @@ addIntervalsForSpillsFast(const LiveInterval &li,
}
// Fill in the new live interval.
- unsigned index = getInstructionIndex(MI);
+ LiveIndex index = getInstructionIndex(MI);
if (HasUse) {
LiveRange LR(getLoadIndex(index), getUseIndex(index),
- nI.getNextValue(0, 0, false, getVNInfoAllocator()));
- DOUT << " +" << LR;
+ nI.getNextValue(LiveIndex(), 0, false,
+ getVNInfoAllocator()));
+ DEBUG(errs() << " +" << LR);
nI.addRange(LR);
vrm.addRestorePoint(NewVReg, MI);
}
if (HasDef) {
LiveRange LR(getDefIndex(index), getStoreIndex(index),
- nI.getNextValue(0, 0, false, getVNInfoAllocator()));
- DOUT << " +" << LR;
+ nI.getNextValue(LiveIndex(), 0, false,
+ getVNInfoAllocator()));
+ DEBUG(errs() << " +" << LR);
nI.addRange(LR);
vrm.addSpillPoint(NewVReg, true, MI);
}
added.push_back(&nI);
- DOUT << "\t\t\t\tadded new interval: ";
- DEBUG(nI.dump());
- DOUT << '\n';
+ DEBUG({
+ errs() << "\t\t\t\tadded new interval: ";
+ nI.dump();
+ errs() << '\n';
+ });
}
@@ -2008,9 +2238,11 @@ addIntervalsForSpills(const LiveInterval &li,
assert(li.weight != HUGE_VALF &&
"attempt to spill already spilled interval!");
- DOUT << "\t\t\t\tadding intervals for spills for interval: ";
- li.print(DOUT, tri_);
- DOUT << '\n';
+ DEBUG({
+ errs() << "\t\t\t\tadding intervals for spills for interval: ";
+ li.print(errs(), tri_);
+ errs() << '\n';
+ });
// Each bit specify whether a spill is required in the MBB.
BitVector SpillMBBs(mf_->getNumBlockIDs());
@@ -2036,8 +2268,8 @@ addIntervalsForSpills(const LiveInterval &li,
if (vrm.getPreSplitReg(li.reg)) {
vrm.setIsSplitFromReg(li.reg, 0);
// Unset the split kill marker on the last use.
- unsigned KillIdx = vrm.getKillPoint(li.reg);
- if (KillIdx) {
+ LiveIndex KillIdx = vrm.getKillPoint(li.reg);
+ if (KillIdx != LiveIndex()) {
MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
assert(KillMI && "Last use disappeared?");
int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
@@ -2081,9 +2313,7 @@ addIntervalsForSpills(const LiveInterval &li,
return NewLIs;
}
- bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
- if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
- TrySplit = false;
+ bool TrySplit = !intervalIsInOneMBB(li);
if (TrySplit)
++numSplits;
bool NeedStackSlot = false;
@@ -2102,7 +2332,7 @@ addIntervalsForSpills(const LiveInterval &li,
ReMatOrigDefs[VN] = ReMatDefMI;
// Original def may be modified so we have to make a copy here.
MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
- ClonedMIs.push_back(Clone);
+ CloneMIs.push_back(Clone);
ReMatDefs[VN] = Clone;
bool CanDelete = true;
@@ -2165,7 +2395,7 @@ addIntervalsForSpills(const LiveInterval &li,
while (Id != -1) {
std::vector<SRInfo> &spills = SpillIdxes[Id];
for (unsigned i = 0, e = spills.size(); i != e; ++i) {
- int index = spills[i].index;
+ LiveIndex index = spills[i].index;
unsigned VReg = spills[i].vreg;
LiveInterval &nI = getOrCreateInterval(VReg);
bool isReMat = vrm.isReMaterialized(VReg);
@@ -2203,7 +2433,7 @@ addIntervalsForSpills(const LiveInterval &li,
if (FoundUse) {
// Also folded uses, do not issue a load.
eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
- nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
+ nI.removeRange(getLoadIndex(index), getNextSlot(getUseIndex(index)));
}
nI.removeRange(getDefIndex(index), getStoreIndex(index));
}
@@ -2228,8 +2458,8 @@ addIntervalsForSpills(const LiveInterval &li,
while (Id != -1) {
std::vector<SRInfo> &restores = RestoreIdxes[Id];
for (unsigned i = 0, e = restores.size(); i != e; ++i) {
- int index = restores[i].index;
- if (index == -1)
+ LiveIndex index = restores[i].index;
+ if (index == LiveIndex())
continue;
unsigned VReg = restores[i].vreg;
LiveInterval &nI = getOrCreateInterval(VReg);
@@ -2284,7 +2514,7 @@ addIntervalsForSpills(const LiveInterval &li,
// If folding is not possible / failed, then tell the spiller to issue a
// load / rematerialization for us.
if (Folded)
- nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
+ nI.removeRange(getLoadIndex(index), getNextSlot(getUseIndex(index)));
else
vrm.addRestorePoint(VReg, MI);
}
@@ -2300,7 +2530,7 @@ addIntervalsForSpills(const LiveInterval &li,
LI->weight /= InstrSlots::NUM * getApproximateInstructionCount(*LI);
if (!AddedKill.count(LI)) {
LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
- unsigned LastUseIdx = getBaseIndex(LR->end);
+ LiveIndex LastUseIdx = getBaseIndex(LR->end);
MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
assert(UseIdx != -1);
@@ -2351,7 +2581,7 @@ unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
E = mri_->reg_end(); I != E; ++I) {
MachineOperand &O = I.getOperand();
MachineInstr *MI = O.getParent();
- unsigned Index = getInstructionIndex(MI);
+ LiveIndex Index = getInstructionIndex(MI);
if (pli.liveAt(Index))
++NumConflicts;
}
@@ -2382,29 +2612,31 @@ bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
if (SeenMIs.count(MI))
continue;
SeenMIs.insert(MI);
- unsigned Index = getInstructionIndex(MI);
+ LiveIndex Index = getInstructionIndex(MI);
if (pli.liveAt(Index)) {
vrm.addEmergencySpill(SpillReg, MI);
- unsigned StartIdx = getLoadIndex(Index);
- unsigned EndIdx = getStoreIndex(Index)+1;
+ LiveIndex StartIdx = getLoadIndex(Index);
+ LiveIndex EndIdx = getNextSlot(getStoreIndex(Index));
if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
pli.removeRange(StartIdx, EndIdx);
Cut = true;
} else {
- cerr << "Ran out of registers during register allocation!\n";
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- cerr << "Please check your inline asm statement for invalid "
+ Msg << "\nPlease check your inline asm statement for invalid "
<< "constraints:\n";
- MI->print(cerr.stream(), tm_);
+ MI->print(Msg, tm_);
}
- exit(1);
+ llvm_report_error(Msg.str());
}
for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS) {
if (!hasInterval(*AS))
continue;
LiveInterval &spli = getInterval(*AS);
if (spli.liveAt(Index))
- spli.removeRange(getLoadIndex(Index), getStoreIndex(Index)+1);
+ spli.removeRange(getLoadIndex(Index), getNextSlot(getStoreIndex(Index)));
}
}
}
@@ -2412,16 +2644,18 @@ bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
}
LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
- MachineInstr* startInst) {
+ MachineInstr* startInst) {
LiveInterval& Interval = getOrCreateInterval(reg);
VNInfo* VN = Interval.getNextValue(
- getInstructionIndex(startInst) + InstrSlots::DEF,
- startInst, true, getVNInfoAllocator());
+ LiveIndex(getInstructionIndex(startInst), LiveIndex::DEF),
+ startInst, true, getVNInfoAllocator());
VN->setHasPHIKill(true);
- VN->kills.push_back(getMBBEndIdx(startInst->getParent()));
- LiveRange LR(getInstructionIndex(startInst) + InstrSlots::DEF,
- getMBBEndIdx(startInst->getParent()) + 1, VN);
+ VN->kills.push_back(terminatorGaps[startInst->getParent()]);
+ LiveRange LR(
+ LiveIndex(getInstructionIndex(startInst), LiveIndex::DEF),
+ getNextSlot(getMBBEndIdx(startInst->getParent())), VN);
Interval.addRange(LR);
return LR;
}
+
diff --git a/lib/CodeGen/LiveStackAnalysis.cpp b/lib/CodeGen/LiveStackAnalysis.cpp
index 86f7ea2..a7bea1f 100644
--- a/lib/CodeGen/LiveStackAnalysis.cpp
+++ b/lib/CodeGen/LiveStackAnalysis.cpp
@@ -19,6 +19,7 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include <limits>
using namespace llvm;
@@ -52,15 +53,16 @@ bool LiveStacks::runOnMachineFunction(MachineFunction &) {
}
/// print - Implement the dump method.
-void LiveStacks::print(std::ostream &O, const Module*) const {
- O << "********** INTERVALS **********\n";
+void LiveStacks::print(raw_ostream &OS, const Module*) const {
+
+ OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
- I->second.print(O);
+ I->second.print(OS);
int Slot = I->first;
const TargetRegisterClass *RC = getIntervalRegClass(Slot);
if (RC)
- O << " [" << RC->getName() << "]\n";
+ OS << " [" << RC->getName() << "]\n";
else
- O << " [Unknown]\n";
+ OS << " [Unknown]\n";
}
}
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp
index bd84508..139e029 100644
--- a/lib/CodeGen/LiveVariables.cpp
+++ b/lib/CodeGen/LiveVariables.cpp
@@ -37,7 +37,6 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Config/alloca.h"
#include <algorithm>
using namespace llvm;
@@ -48,20 +47,21 @@ static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(UnreachableMachineBlockElimID);
AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveVariables::VarInfo::dump() const {
- cerr << " Alive in blocks: ";
+ errs() << " Alive in blocks: ";
for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
E = AliveBlocks.end(); I != E; ++I)
- cerr << *I << ", ";
- cerr << "\n Killed by:";
+ errs() << *I << ", ";
+ errs() << "\n Killed by:";
if (Kills.empty())
- cerr << " No instructions.\n";
+ errs() << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
- cerr << "\n #" << i << ": " << *Kills[i];
- cerr << "\n";
+ errs() << "\n #" << i << ": " << *Kills[i];
+ errs() << "\n";
}
}
@@ -180,9 +180,9 @@ void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
}
/// FindLastPartialDef - Return the last partial def of the specified register.
-/// Also returns the sub-register that's defined.
+/// Also returns the sub-registers that're defined by the instruction.
MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
- unsigned &PartDefReg) {
+ SmallSet<unsigned,4> &PartDefRegs) {
unsigned LastDefReg = 0;
unsigned LastDefDist = 0;
MachineInstr *LastDef = NULL;
@@ -198,7 +198,23 @@ MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
LastDefDist = Dist;
}
}
- PartDefReg = LastDefReg;
+
+ if (!LastDef)
+ return 0;
+
+ PartDefRegs.insert(LastDefReg);
+ for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = LastDef->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
+ continue;
+ unsigned DefReg = MO.getReg();
+ if (TRI->isSubRegister(Reg, DefReg)) {
+ PartDefRegs.insert(DefReg);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
+ unsigned SubReg = *SubRegs; ++SubRegs)
+ PartDefRegs.insert(SubReg);
+ }
+ }
return LastDef;
}
@@ -216,8 +232,8 @@ void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
// ...
// = EAX
// All of the sub-registers must have been defined before the use of Reg!
- unsigned PartDefReg = 0;
- MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
+ SmallSet<unsigned, 4> PartDefRegs;
+ MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
// If LastPartialDef is NULL, it must be using a livein register.
if (LastPartialDef) {
LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
@@ -228,7 +244,7 @@ void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
unsigned SubReg = *SubRegs; ++SubRegs) {
if (Processed.count(SubReg))
continue;
- if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
+ if (PartDefRegs.count(SubReg))
continue;
// This part of Reg was defined before the last partial def. It's killed
// here.
@@ -249,78 +265,13 @@ void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
PhysRegUse[SubReg] = MI;
}
-/// hasRegisterUseBelow - Return true if the specified register is used after
-/// the current instruction and before it's next definition.
-bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
- MachineBasicBlock::iterator I,
- MachineBasicBlock *MBB) {
- if (I == MBB->end())
- return false;
-
- // First find out if there are any uses / defs below.
- bool hasDistInfo = true;
- unsigned CurDist = DistanceMap[I];
- SmallVector<MachineInstr*, 4> Uses;
- SmallVector<MachineInstr*, 4> Defs;
- for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
- RE = MRI->reg_end(); RI != RE; ++RI) {
- MachineOperand &UDO = RI.getOperand();
- MachineInstr *UDMI = &*RI;
- if (UDMI->getParent() != MBB)
- continue;
- DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
- bool isBelow = false;
- if (DI == DistanceMap.end()) {
- // Must be below if it hasn't been assigned a distance yet.
- isBelow = true;
- hasDistInfo = false;
- } else if (DI->second > CurDist)
- isBelow = true;
- if (isBelow) {
- if (UDO.isUse())
- Uses.push_back(UDMI);
- if (UDO.isDef())
- Defs.push_back(UDMI);
- }
- }
-
- if (Uses.empty())
- // No uses below.
- return false;
- else if (!Uses.empty() && Defs.empty())
- // There are uses below but no defs below.
- return true;
- // There are both uses and defs below. We need to know which comes first.
- if (!hasDistInfo) {
- // Complete DistanceMap for this MBB. This information is computed only
- // once per MBB.
- ++I;
- ++CurDist;
- for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
- DistanceMap.insert(std::make_pair(I, CurDist));
- }
-
- unsigned EarliestUse = DistanceMap[Uses[0]];
- for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
- unsigned Dist = DistanceMap[Uses[i]];
- if (Dist < EarliestUse)
- EarliestUse = Dist;
- }
- for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
- unsigned Dist = DistanceMap[Defs[i]];
- if (Dist < EarliestUse)
- // The register is defined before its first use below.
- return false;
- }
- return true;
-}
-
bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
- if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
+ MachineInstr *LastDef = PhysRegDef[Reg];
+ MachineInstr *LastUse = PhysRegUse[Reg];
+ if (!LastDef && !LastUse)
return false;
- MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
- ? PhysRegUse[Reg] : PhysRegDef[Reg];
+ MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
// The whole register is used.
// AL =
@@ -339,9 +290,22 @@ bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
// AX<dead> = AL<imp-def>
// = AL<kill>
// AX =
+ MachineInstr *LastPartDef = 0;
+ unsigned LastPartDefDist = 0;
SmallSet<unsigned, 8> PartUses;
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
+ MachineInstr *Def = PhysRegDef[SubReg];
+ if (Def && Def != LastDef) {
+ // There was a def of this sub-register in between. This is a partial
+ // def, keep track of the last one.
+ unsigned Dist = DistanceMap[Def];
+ if (Dist > LastPartDefDist) {
+ LastPartDefDist = Dist;
+ LastPartDef = Def;
+ }
+ continue;
+ }
if (MachineInstr *Use = PhysRegUse[SubReg]) {
PartUses.insert(SubReg);
for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
@@ -354,35 +318,47 @@ bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
}
}
- if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI)
- // If the last reference is the last def, then it's not used at all.
- // That is, unless we are currently processing the last reference itself.
- LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
-
- // Partial uses. Mark register def dead and add implicit def of
- // sub-registers which are used.
- // EAX<dead> = op AL<imp-def>
- // That is, EAX def is dead but AL def extends pass it.
- // Enable this after live interval analysis is fixed to improve codegen!
- else if (!PhysRegUse[Reg]) {
+ if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
+ if (LastPartDef)
+ // The last partial def kills the register.
+ LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
+ true/*IsImp*/, true/*IsKill*/));
+ else
+ // If the last reference is the last def, then it's not used at all.
+ // That is, unless we are currently processing the last reference itself.
+ LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
+ } else if (!PhysRegUse[Reg]) {
+ // Partial uses. Mark register def dead and add implicit def of
+ // sub-registers which are used.
+ // EAX<dead> = op AL<imp-def>
+ // That is, EAX def is dead but AL def extends pass it.
PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
unsigned SubReg = *SubRegs; ++SubRegs) {
- if (PartUses.count(SubReg)) {
- PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
- true, true));
- LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
- for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
- PartUses.erase(*SS);
+ if (!PartUses.count(SubReg))
+ continue;
+ bool NeedDef = true;
+ if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
+ MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
+ if (MO) {
+ NeedDef = false;
+ assert(!MO->isDead());
+ }
}
+ if (NeedDef)
+ PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
+ true/*IsDef*/, true/*IsImp*/));
+ LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
+ for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
+ PartUses.erase(*SS);
}
- }
- else
+ } else
LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
return true;
}
-void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
+void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
+ SmallVector<unsigned, 4> &Defs) {
// What parts of the register are previously defined?
SmallSet<unsigned, 32> Live;
if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
@@ -398,6 +374,8 @@ void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
// AL =
// AH =
// = AX
+ if (Live.count(SubReg))
+ continue;
if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
Live.insert(SubReg);
for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
@@ -408,68 +386,25 @@ void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
// Start from the largest piece, find the last time any part of the register
// is referenced.
- if (!HandlePhysRegKill(Reg, MI)) {
- // Only some of the sub-registers are used.
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- unsigned SubReg = *SubRegs; ++SubRegs) {
- if (!Live.count(SubReg))
- // Skip if this sub-register isn't defined.
- continue;
- if (HandlePhysRegKill(SubReg, MI)) {
- Live.erase(SubReg);
- for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
- Live.erase(*SS);
- }
- }
- assert(Live.empty() && "Not all defined registers are killed / dead?");
+ HandlePhysRegKill(Reg, MI);
+ // Only some of the sub-registers are used.
+ for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (!Live.count(SubReg))
+ // Skip if this sub-register isn't defined.
+ continue;
+ HandlePhysRegKill(SubReg, MI);
}
- if (MI) {
- // Does this extend the live range of a super-register?
- SmallSet<unsigned, 8> Processed;
- for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
- unsigned SuperReg = *SuperRegs; ++SuperRegs) {
- if (Processed.count(SuperReg))
- continue;
- MachineInstr *LastRef = PhysRegUse[SuperReg]
- ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
- if (LastRef && LastRef != MI) {
- // The larger register is previously defined. Now a smaller part is
- // being re-defined. Treat it as read/mod/write if there are uses
- // below.
- // EAX =
- // AX = EAX<imp-use,kill>, EAX<imp-def>
- // ...
- /// = EAX
- if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
- MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
- true/*IsImp*/,true/*IsKill*/));
- MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
- true/*IsImp*/));
- PhysRegDef[SuperReg] = MI;
- PhysRegUse[SuperReg] = NULL;
- Processed.insert(SuperReg);
- for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
- PhysRegDef[*SS] = MI;
- PhysRegUse[*SS] = NULL;
- Processed.insert(*SS);
- }
- } else {
- // Otherwise, the super register is killed.
- if (HandlePhysRegKill(SuperReg, MI)) {
- PhysRegDef[SuperReg] = NULL;
- PhysRegUse[SuperReg] = NULL;
- for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
- PhysRegDef[*SS] = NULL;
- PhysRegUse[*SS] = NULL;
- Processed.insert(*SS);
- }
- }
- }
- }
- }
+ if (MI)
+ Defs.push_back(Reg); // Remember this def.
+}
- // Remember this def.
+void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
+ SmallVector<unsigned, 4> &Defs) {
+ while (!Defs.empty()) {
+ unsigned Reg = Defs.back();
+ Defs.pop_back();
PhysRegDef[Reg] = MI;
PhysRegUse[Reg] = NULL;
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
@@ -480,6 +415,21 @@ void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
}
}
+namespace {
+ struct RegSorter {
+ const TargetRegisterInfo *TRI;
+
+ RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { }
+ bool operator()(unsigned A, unsigned B) {
+ if (TRI->isSubRegister(A, B))
+ return true;
+ else if (TRI->isSubRegister(B, A))
+ return false;
+ return A < B;
+ }
+ };
+}
+
bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
MRI = &mf.getRegInfo();
@@ -512,11 +462,12 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MachineBasicBlock *MBB = *DFI;
// Mark live-in registers as live-in.
+ SmallVector<unsigned, 4> Defs;
for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
EE = MBB->livein_end(); II != EE; ++II) {
assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
"Cannot have a live-in virtual register!");
- HandlePhysRegDef(*II, 0);
+ HandlePhysRegDef(*II, 0, Defs);
}
// Loop over all of the instructions, processing them.
@@ -563,8 +514,9 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
if (TargetRegisterInfo::isVirtualRegister(MOReg))
HandleVirtRegDef(MOReg, MI);
else if (!ReservedRegisters[MOReg])
- HandlePhysRegDef(MOReg, MI);
+ HandlePhysRegDef(MOReg, MI, Defs);
}
+ UpdatePhysRegDefs(MI, Defs);
}
// Handle any virtual assignments from PHI nodes which might be at the
@@ -603,7 +555,7 @@ bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
// available at the end of the basic block.
for (unsigned i = 0; i != NumRegs; ++i)
if (PhysRegDef[i] || PhysRegUse[i])
- HandlePhysRegDef(i, 0);
+ HandlePhysRegDef(i, 0, Defs);
std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0);
std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0);
diff --git a/lib/CodeGen/LowerSubregs.cpp b/lib/CodeGen/LowerSubregs.cpp
index 14acb71..8486bb0 100644
--- a/lib/CodeGen/LowerSubregs.cpp
+++ b/lib/CodeGen/LowerSubregs.cpp
@@ -19,12 +19,14 @@
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
@@ -38,6 +40,7 @@ namespace {
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
@@ -53,7 +56,8 @@ namespace {
void TransferDeadFlag(MachineInstr *MI, unsigned DstReg,
const TargetRegisterInfo &TRI);
void TransferKillFlag(MachineInstr *MI, unsigned SrcReg,
- const TargetRegisterInfo &TRI);
+ const TargetRegisterInfo &TRI,
+ bool AddIfNotFound = false);
};
char LowerSubregsInstructionPass::ID = 0;
@@ -85,10 +89,11 @@ LowerSubregsInstructionPass::TransferDeadFlag(MachineInstr *MI,
void
LowerSubregsInstructionPass::TransferKillFlag(MachineInstr *MI,
unsigned SrcReg,
- const TargetRegisterInfo &TRI) {
+ const TargetRegisterInfo &TRI,
+ bool AddIfNotFound) {
for (MachineBasicBlock::iterator MII =
prior(MachineBasicBlock::iterator(MI)); ; --MII) {
- if (MII->addRegisterKilled(SrcReg, &TRI))
+ if (MII->addRegisterKilled(SrcReg, &TRI, AddIfNotFound))
break;
assert(MII != MI->getParent()->begin() &&
"copyRegToReg output doesn't reference source register!");
@@ -100,7 +105,7 @@ bool LowerSubregsInstructionPass::LowerExtract(MachineInstr *MI) {
MachineFunction &MF = *MBB->getParent();
const TargetRegisterInfo &TRI = *MF.getTarget().getRegisterInfo();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
-
+
assert(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
MI->getOperand(1).isReg() && MI->getOperand(1).isUse() &&
MI->getOperand(2).isImm() && "Malformed extract_subreg");
@@ -114,41 +119,41 @@ bool LowerSubregsInstructionPass::LowerExtract(MachineInstr *MI) {
"Extract supperg source must be a physical register");
assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
"Extract destination must be in a physical register");
-
- DOUT << "subreg: CONVERTING: " << *MI;
+ assert(SrcReg && "invalid subregister index for register");
+
+ DEBUG(errs() << "subreg: CONVERTING: " << *MI);
if (SrcReg == DstReg) {
- // No need to insert an identify copy instruction.
- DOUT << "subreg: eliminated!";
- // Find the kill of the destination register's live range, and insert
- // a kill of the source register at that point.
- if (MI->getOperand(1).isKill() && !MI->getOperand(0).isDead())
- for (MachineBasicBlock::iterator MII =
- next(MachineBasicBlock::iterator(MI));
- MII != MBB->end(); ++MII)
- if (MII->killsRegister(DstReg, &TRI)) {
- MII->addRegisterKilled(SuperReg, &TRI, /*AddIfNotFound=*/true);
- break;
- }
+ // No need to insert an identity copy instruction.
+ if (MI->getOperand(1).isKill()) {
+ // We must make sure the super-register gets killed. Replace the
+ // instruction with KILL.
+ MI->setDesc(TII.get(TargetInstrInfo::KILL));
+ MI->RemoveOperand(2); // SubIdx
+ DEBUG(errs() << "subreg: replace by: " << *MI);
+ return true;
+ }
+
+ DEBUG(errs() << "subreg: eliminated!");
} else {
// Insert copy
- const TargetRegisterClass *TRC = TRI.getPhysicalRegisterRegClass(DstReg);
- assert(TRC == TRI.getPhysicalRegisterRegClass(SrcReg) &&
- "Extract subreg and Dst must be of same register class");
- TII.copyRegToReg(*MBB, MI, DstReg, SrcReg, TRC, TRC);
+ const TargetRegisterClass *TRCS = TRI.getPhysicalRegisterRegClass(DstReg);
+ const TargetRegisterClass *TRCD = TRI.getPhysicalRegisterRegClass(SrcReg);
+ bool Emitted = TII.copyRegToReg(*MBB, MI, DstReg, SrcReg, TRCD, TRCS);
+ (void)Emitted;
+ assert(Emitted && "Subreg and Dst must be of compatible register class");
// Transfer the kill/dead flags, if needed.
if (MI->getOperand(0).isDead())
TransferDeadFlag(MI, DstReg, TRI);
if (MI->getOperand(1).isKill())
- TransferKillFlag(MI, SrcReg, TRI);
-
-#ifndef NDEBUG
- MachineBasicBlock::iterator dMI = MI;
- DOUT << "subreg: " << *(--dMI);
-#endif
+ TransferKillFlag(MI, SuperReg, TRI, true);
+ DEBUG({
+ MachineBasicBlock::iterator dMI = MI;
+ errs() << "subreg: " << *(--dMI);
+ });
}
- DOUT << "\n";
+ DEBUG(errs() << '\n');
MBB->erase(MI);
return true;
}
@@ -176,7 +181,7 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
assert(TargetRegisterInfo::isPhysicalRegister(InsReg) &&
"Inserted value must be in a physical register");
- DOUT << "subreg: CONVERTING: " << *MI;
+ DEBUG(errs() << "subreg: CONVERTING: " << *MI);
if (DstSubReg == InsReg && InsSIdx == 0) {
// No need to insert an identify copy instruction.
@@ -185,7 +190,7 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
// %RAX<def> = SUBREG_TO_REG 0, %EAX:3<kill>, 3
// The first def is defining RAX, not EAX so the top bits were not
// zero extended.
- DOUT << "subreg: eliminated!";
+ DEBUG(errs() << "subreg: eliminated!");
} else {
// Insert sub-register copy
const TargetRegisterClass *TRC0= TRI.getPhysicalRegisterRegClass(DstSubReg);
@@ -196,14 +201,13 @@ bool LowerSubregsInstructionPass::LowerSubregToReg(MachineInstr *MI) {
TransferDeadFlag(MI, DstSubReg, TRI);
if (MI->getOperand(2).isKill())
TransferKillFlag(MI, InsReg, TRI);
-
-#ifndef NDEBUG
- MachineBasicBlock::iterator dMI = MI;
- DOUT << "subreg: " << *(--dMI);
-#endif
+ DEBUG({
+ MachineBasicBlock::iterator dMI = MI;
+ errs() << "subreg: " << *(--dMI);
+ });
}
- DOUT << "\n";
+ DEBUG(errs() << '\n');
MBB->erase(MI);
return true;
}
@@ -228,49 +232,79 @@ bool LowerSubregsInstructionPass::LowerInsert(MachineInstr *MI) {
assert(DstReg == SrcReg && "insert_subreg not a two-address instruction?");
assert(SubIdx != 0 && "Invalid index for insert_subreg");
unsigned DstSubReg = TRI.getSubReg(DstReg, SubIdx);
-
+ assert(DstSubReg && "invalid subregister index for register");
assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
"Insert superreg source must be in a physical register");
assert(TargetRegisterInfo::isPhysicalRegister(InsReg) &&
"Inserted value must be in a physical register");
- DOUT << "subreg: CONVERTING: " << *MI;
+ DEBUG(errs() << "subreg: CONVERTING: " << *MI);
if (DstSubReg == InsReg) {
- // No need to insert an identify copy instruction.
- DOUT << "subreg: eliminated!";
+ // No need to insert an identity copy instruction. If the SrcReg was
+ // <undef>, we need to make sure it is alive by inserting a KILL
+ if (MI->getOperand(1).isUndef() && !MI->getOperand(0).isDead()) {
+ MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
+ TII.get(TargetInstrInfo::KILL), DstReg);
+ if (MI->getOperand(2).isUndef())
+ MIB.addReg(InsReg, RegState::Undef);
+ else
+ MIB.addReg(InsReg, RegState::Kill);
+ } else {
+ DEBUG(errs() << "subreg: eliminated!\n");
+ MBB->erase(MI);
+ return true;
+ }
} else {
// Insert sub-register copy
const TargetRegisterClass *TRC0= TRI.getPhysicalRegisterRegClass(DstSubReg);
const TargetRegisterClass *TRC1= TRI.getPhysicalRegisterRegClass(InsReg);
- TII.copyRegToReg(*MBB, MI, DstSubReg, InsReg, TRC0, TRC1);
+ if (MI->getOperand(2).isUndef())
+ // If the source register being inserted is undef, then this becomes a
+ // KILL.
+ BuildMI(*MBB, MI, MI->getDebugLoc(),
+ TII.get(TargetInstrInfo::KILL), DstSubReg);
+ else
+ TII.copyRegToReg(*MBB, MI, DstSubReg, InsReg, TRC0, TRC1);
+ MachineBasicBlock::iterator CopyMI = MI;
+ --CopyMI;
+
+ // INSERT_SUBREG is a two-address instruction so it implicitly kills SrcReg.
+ if (!MI->getOperand(1).isUndef())
+ CopyMI->addOperand(MachineOperand::CreateReg(DstReg, false, true, true));
+
// Transfer the kill/dead flags, if needed.
- if (MI->getOperand(0).isDead())
+ if (MI->getOperand(0).isDead()) {
TransferDeadFlag(MI, DstSubReg, TRI);
- if (MI->getOperand(1).isKill())
- TransferKillFlag(MI, InsReg, TRI);
+ } else {
+ // Make sure the full DstReg is live after this replacement.
+ CopyMI->addOperand(MachineOperand::CreateReg(DstReg, true, true));
+ }
-#ifndef NDEBUG
- MachineBasicBlock::iterator dMI = MI;
- DOUT << "subreg: " << *(--dMI);
-#endif
+ // Make sure the inserted register gets killed
+ if (MI->getOperand(2).isKill() && !MI->getOperand(2).isUndef())
+ TransferKillFlag(MI, InsReg, TRI);
}
- DOUT << "\n";
+ DEBUG({
+ MachineBasicBlock::iterator dMI = MI;
+ errs() << "subreg: " << *(--dMI) << "\n";
+ });
+
MBB->erase(MI);
- return true;
+ return true;
}
/// runOnMachineFunction - Reduce subregister inserts and extracts to register
/// copies.
///
bool LowerSubregsInstructionPass::runOnMachineFunction(MachineFunction &MF) {
- DOUT << "Machine Function\n";
-
- bool MadeChange = false;
+ DEBUG(errs() << "Machine Function\n"
+ << "********** LOWERING SUBREG INSTRS **********\n"
+ << "********** Function: "
+ << MF.getFunction()->getName() << '\n');
- DOUT << "********** LOWERING SUBREG INSTRS **********\n";
- DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+ bool MadeChange = false;
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
diff --git a/lib/CodeGen/MachO.h b/lib/CodeGen/MachO.h
index bd9bd61..f2b40fe 100644
--- a/lib/CodeGen/MachO.h
+++ b/lib/CodeGen/MachO.h
@@ -14,17 +14,15 @@
#ifndef MACHO_H
#define MACHO_H
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/CodeGen/MachineRelocation.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/CodeGen/BinaryObject.h"
#include <string>
#include <vector>
namespace llvm {
-typedef std::vector<unsigned char> DataBuffer;
-
+class GlobalValue;
+class MCAsmInfo;
+
/// MachOSym - This struct contains information about each symbol that is
/// added to logical symbol table for the module. This is eventually
/// turned into a real symbol table in the file.
@@ -70,7 +68,7 @@ struct MachOSym {
};
MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
- const TargetAsmInfo *TAI);
+ const MCAsmInfo *MAI);
struct SymCmp {
// FIXME: this does not appear to be sorting 'f' after 'F'
@@ -110,7 +108,7 @@ struct MachOHeader {
/// HeaderData - The actual data for the header which we are building
/// up for emission to the file.
- DataBuffer HeaderData;
+ std::vector<unsigned char> HeaderData;
// Constants for the filetype field
// see <mach-o/loader.h> for additional info on the various types
@@ -180,8 +178,8 @@ struct MachOHeader {
};
MachOHeader() : magic(0), filetype(0), ncmds(0), sizeofcmds(0), flags(0),
- reserved(0) { }
-
+ reserved(0) {}
+
/// cmdSize - This routine returns the size of the MachOSection as written
/// to disk, depending on whether the destination is a 64 bit Mach-O file.
unsigned cmdSize(bool is64Bit) const {
@@ -203,7 +201,7 @@ struct MachOHeader {
}
}; // end struct MachOHeader
-
+
/// MachOSegment - This struct contains the necessary information to
/// emit the load commands for each section in the file.
struct MachOSegment {
@@ -245,13 +243,13 @@ struct MachOSegment {
SEG_VM_PROT_EXECUTE = VM_PROT_EXECUTE,
SEG_VM_PROT_ALL = VM_PROT_ALL
};
-
+
// Constants for the cmd field
// see <mach-o/loader.h>
enum { LC_SEGMENT = 0x01, // segment of this file to be mapped
LC_SEGMENT_64 = 0x19 // 64-bit segment of this file to be mapped
};
-
+
/// cmdSize - This routine returns the size of the MachOSection as written
/// to disk, depending on whether the destination is a 64 bit Mach-O file.
unsigned cmdSize(bool is64Bit) const {
@@ -272,11 +270,10 @@ struct MachOSegment {
/// turned into the SectionCommand in the load command for a particlar
/// segment.
-struct MachOSection {
+struct MachOSection : public BinaryObject {
std::string sectname; // name of this section,
std::string segname; // segment this section goes in
uint64_t addr; // memory address of this section
- uint64_t size; // size in bytes of this section
uint32_t offset; // file offset of this section
uint32_t align; // section alignment (power of 2)
uint32_t reloff; // file offset of relocation entries
@@ -285,24 +282,15 @@ struct MachOSection {
uint32_t reserved1; // reserved (for offset or index)
uint32_t reserved2; // reserved (for count or sizeof)
uint32_t reserved3; // reserved (64 bit only)
-
+
/// A unique number for this section, which will be used to match symbols
/// to the correct section.
uint32_t Index;
-
- /// SectionData - The actual data for this section which we are building
- /// up for emission to the file.
- DataBuffer SectionData;
/// RelocBuffer - A buffer to hold the mach-o relocations before we write
/// them out at the appropriate location in the file.
- DataBuffer RelocBuffer;
-
- /// Relocations - The relocations that we have encountered so far in this
- /// section that we will need to convert to MachORelocation entries when
- /// the file is written.
- std::vector<MachineRelocation> Relocations;
-
+ std::vector<unsigned char> RelocBuffer;
+
// Constants for the section types (low 8 bits of flags field)
// see <mach-o/loader.h>
enum { S_REGULAR = 0,
@@ -374,48 +362,49 @@ struct MachOSection {
}
MachOSection(const std::string &seg, const std::string &sect)
- : sectname(sect), segname(seg), addr(0), size(0), offset(0), align(2),
- reloff(0), nreloc(0), flags(0), reserved1(0), reserved2(0),
+ : BinaryObject(), sectname(sect), segname(seg), addr(0), offset(0),
+ align(2), reloff(0), nreloc(0), flags(0), reserved1(0), reserved2(0),
reserved3(0) { }
}; // end struct MachOSection
- /// MachOSymTab - This struct contains information about the offsets and
- /// size of symbol table information.
- /// segment.
- struct MachODySymTab {
- uint32_t cmd; // LC_DYSYMTAB
- uint32_t cmdsize; // sizeof( MachODySymTab )
- uint32_t ilocalsym; // index to local symbols
- uint32_t nlocalsym; // number of local symbols
- uint32_t iextdefsym; // index to externally defined symbols
- uint32_t nextdefsym; // number of externally defined symbols
- uint32_t iundefsym; // index to undefined symbols
- uint32_t nundefsym; // number of undefined symbols
- uint32_t tocoff; // file offset to table of contents
- uint32_t ntoc; // number of entries in table of contents
- uint32_t modtaboff; // file offset to module table
- uint32_t nmodtab; // number of module table entries
- uint32_t extrefsymoff; // offset to referenced symbol table
- uint32_t nextrefsyms; // number of referenced symbol table entries
- uint32_t indirectsymoff; // file offset to the indirect symbol table
- uint32_t nindirectsyms; // number of indirect symbol table entries
- uint32_t extreloff; // offset to external relocation entries
- uint32_t nextrel; // number of external relocation entries
- uint32_t locreloff; // offset to local relocation entries
- uint32_t nlocrel; // number of local relocation entries
-
- // Constants for the cmd field
- // see <mach-o/loader.h>
- enum { LC_DYSYMTAB = 0x0B // dynamic link-edit symbol table info
- };
-
- MachODySymTab() : cmd(LC_DYSYMTAB), cmdsize(20 * sizeof(uint32_t)),
- ilocalsym(0), nlocalsym(0), iextdefsym(0), nextdefsym(0),
- iundefsym(0), nundefsym(0), tocoff(0), ntoc(0), modtaboff(0),
- nmodtab(0), extrefsymoff(0), nextrefsyms(0), indirectsymoff(0),
- nindirectsyms(0), extreloff(0), nextrel(0), locreloff(0), nlocrel(0) { }
- };
+/// MachOSymTab - This struct contains information about the offsets and
+/// size of symbol table information.
+/// segment.
+struct MachODySymTab {
+ uint32_t cmd; // LC_DYSYMTAB
+ uint32_t cmdsize; // sizeof(MachODySymTab)
+ uint32_t ilocalsym; // index to local symbols
+ uint32_t nlocalsym; // number of local symbols
+ uint32_t iextdefsym; // index to externally defined symbols
+ uint32_t nextdefsym; // number of externally defined symbols
+ uint32_t iundefsym; // index to undefined symbols
+ uint32_t nundefsym; // number of undefined symbols
+ uint32_t tocoff; // file offset to table of contents
+ uint32_t ntoc; // number of entries in table of contents
+ uint32_t modtaboff; // file offset to module table
+ uint32_t nmodtab; // number of module table entries
+ uint32_t extrefsymoff; // offset to referenced symbol table
+ uint32_t nextrefsyms; // number of referenced symbol table entries
+ uint32_t indirectsymoff; // file offset to the indirect symbol table
+ uint32_t nindirectsyms; // number of indirect symbol table entries
+ uint32_t extreloff; // offset to external relocation entries
+ uint32_t nextrel; // number of external relocation entries
+ uint32_t locreloff; // offset to local relocation entries
+ uint32_t nlocrel; // number of local relocation entries
+
+ // Constants for the cmd field
+ // see <mach-o/loader.h>
+ enum { LC_DYSYMTAB = 0x0B // dynamic link-edit symbol table info
+ };
+
+ MachODySymTab() : cmd(LC_DYSYMTAB), cmdsize(20 * sizeof(uint32_t)),
+ ilocalsym(0), nlocalsym(0), iextdefsym(0), nextdefsym(0),
+ iundefsym(0), nundefsym(0), tocoff(0), ntoc(0), modtaboff(0),
+ nmodtab(0), extrefsymoff(0), nextrefsyms(0), indirectsymoff(0),
+ nindirectsyms(0), extreloff(0), nextrel(0), locreloff(0), nlocrel(0) {}
+
+}; // end struct MachODySymTab
} // end namespace llvm
diff --git a/lib/CodeGen/MachOCodeEmitter.cpp b/lib/CodeGen/MachOCodeEmitter.cpp
index 02b02de..1318477 100644
--- a/lib/CodeGen/MachOCodeEmitter.cpp
+++ b/lib/CodeGen/MachOCodeEmitter.cpp
@@ -7,22 +7,37 @@
//
//===----------------------------------------------------------------------===//
+#include "MachO.h"
+#include "MachOWriter.h"
#include "MachOCodeEmitter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/CodeGen/MachineRelocation.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/OutputBuffer.h"
+#include <vector>
//===----------------------------------------------------------------------===//
// MachOCodeEmitter Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
-
+
+MachOCodeEmitter::MachOCodeEmitter(MachOWriter &mow, MachOSection &mos) :
+ ObjectCodeEmitter(&mos), MOW(mow), TM(MOW.TM) {
+ is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
+ isLittleEndian = TM.getTargetData()->isLittleEndian();
+ MAI = TM.getMCAsmInfo();
+}
+
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
@@ -39,28 +54,18 @@ void MachOCodeEmitter::startFunction(MachineFunction &MF) {
// Get the Mach-O Section that this function belongs in.
MachOSection *MOS = MOW.getTextSection();
- // FIXME: better memory management
- MOS->SectionData.reserve(4096);
- BufferBegin = &MOS->SectionData[0];
- BufferEnd = BufferBegin + MOS->SectionData.capacity();
-
// Upgrade the section alignment if required.
if (MOS->align < Align) MOS->align = Align;
- // Round the size up to the correct alignment for starting the new function.
- if ((MOS->size & ((1 << Align) - 1)) != 0) {
- MOS->size += (1 << Align);
- MOS->size &= ~((1 << Align) - 1);
- }
+ MOS->emitAlignment(Align);
+
+ // Create symbol for function entry
+ const GlobalValue *FuncV = MF.getFunction();
+ MachOSym FnSym(FuncV, MOW.Mang->getMangledName(FuncV), MOS->Index, MAI);
+ FnSym.n_value = getCurrentPCOffset();
- // FIXME: Using MOS->size directly here instead of calculating it from the
- // output buffer size (impossible because the code emitter deals only in raw
- // bytes) forces us to manually synchronize size and write padding zero bytes
- // to the output buffer for all non-text sections. For text sections, we do
- // not synchonize the output buffer, and we just blow up if anyone tries to
- // write non-code to it. An assert should probably be added to
- // AddSymbolToSection to prevent calling it on the text section.
- CurBufferPtr = BufferBegin + MOS->size;
+ // add it to the symtab.
+ MOW.SymbolTable.push_back(FnSym);
}
/// finishFunction - This callback is invoked after the function is completely
@@ -71,15 +76,6 @@ bool MachOCodeEmitter::finishFunction(MachineFunction &MF) {
// Get the Mach-O Section that this function belongs in.
MachOSection *MOS = MOW.getTextSection();
- // Get a symbol for the function to add to the symbol table
- // FIXME: it seems like we should call something like AddSymbolToSection
- // in startFunction rather than changing the section size and symbol n_value
- // here.
- const GlobalValue *FuncV = MF.getFunction();
- MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, TAI);
- FnSym.n_value = MOS->size;
- MOS->size = CurBufferPtr - BufferBegin;
-
// Emit constant pool to appropriate section(s)
emitConstantPool(MF.getConstantPool());
@@ -110,14 +106,11 @@ bool MachOCodeEmitter::finishFunction(MachineFunction &MF) {
// FIXME: This should be a set or something that uniques
MOW.PendingGlobals.push_back(MR.getGlobalValue());
} else {
- assert(0 && "Unhandled relocation type");
+ llvm_unreachable("Unhandled relocation type");
}
- MOS->Relocations.push_back(MR);
+ MOS->addRelocation(MR);
}
Relocations.clear();
-
- // Finally, add it to the symtab.
- MOW.SymbolTable.push_back(FnSym);
// Clear per-function data structures.
CPLocations.clear();
@@ -151,13 +144,10 @@ void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal);
- OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
+ OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian);
- CPLocations.push_back(Sec->SectionData.size());
+ CPLocations.push_back(Sec->size());
CPSections.push_back(Sec->Index);
-
- // FIXME: remove when we have unified size + output buffer
- Sec->size += Size;
// Allocate space in the section for the global.
// FIXME: need alignment?
@@ -165,14 +155,13 @@ void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
for (unsigned j = 0; j < Size; ++j)
SecDataOut.outbyte(0);
- MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i],
- TM.getTargetData(), Sec->Relocations);
+ MachOWriter::InitMem(CP[i].Val.ConstVal, CPLocations[i],
+ TM.getTargetData(), Sec);
}
}
/// emitJumpTables - Emit all the jump tables for a given jump table info
/// record to the appropriate section.
-
void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
@@ -183,24 +172,21 @@ void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
MachOSection *Sec = MOW.getJumpTableSection();
unsigned TextSecIndex = MOW.getTextSection()->Index;
- OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
+ OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian);
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
// For each jump table, record its offset from the start of the section,
// reserve space for the relocations to the MBBs, and add the relocations.
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
- JTLocations.push_back(Sec->SectionData.size());
+ JTLocations.push_back(Sec->size());
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
- MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(),
- MBBs[mi]));
+ MachineRelocation MR(MOW.GetJTRelocation(Sec->size(), MBBs[mi]));
MR.setResultPointer((void *)JTLocations[i]);
MR.setConstantVal(TextSecIndex);
- Sec->Relocations.push_back(MR);
+ Sec->addRelocation(MR);
SecDataOut.outaddr(0);
}
}
- // FIXME: remove when we have unified size + output buffer
- Sec->size = Sec->SectionData.size();
}
} // end namespace llvm
diff --git a/lib/CodeGen/MachOCodeEmitter.h b/lib/CodeGen/MachOCodeEmitter.h
index 0a6e4e4..4752446 100644
--- a/lib/CodeGen/MachOCodeEmitter.h
+++ b/lib/CodeGen/MachOCodeEmitter.h
@@ -10,16 +10,17 @@
#ifndef MACHOCODEEMITTER_H
#define MACHOCODEEMITTER_H
-#include "MachOWriter.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-#include <vector>
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
+#include <map>
namespace llvm {
+class MachOWriter;
+
/// MachOCodeEmitter - This class is used by the MachOWriter to emit the code
/// for functions to the Mach-O file.
-class MachOCodeEmitter : public MachineCodeEmitter {
+class MachOCodeEmitter : public ObjectCodeEmitter {
MachOWriter &MOW;
/// Target machine description.
@@ -29,36 +30,16 @@ class MachOCodeEmitter : public MachineCodeEmitter {
/// machine directly, indicating what header values and flags to set.
bool is64Bit, isLittleEndian;
- const TargetAsmInfo *TAI;
+ const MCAsmInfo *MAI;
/// Relocations - These are the relocations that the function needs, as
/// emitted.
std::vector<MachineRelocation> Relocations;
-
- /// CPLocations - This is a map of constant pool indices to offsets from the
- /// start of the section for that constant pool index.
- std::vector<uintptr_t> CPLocations;
-
- /// CPSections - This is a map of constant pool indices to the MachOSection
- /// containing the constant pool entry for that index.
- std::vector<unsigned> CPSections;
-
- /// JTLocations - This is a map of jump table indices to offsets from the
- /// start of the section for that jump table index.
- std::vector<uintptr_t> JTLocations;
-
- /// MBBLocations - This vector is a mapping from MBB ID's to their address.
- /// It is filled in by the StartMachineBasicBlock callback and queried by
- /// the getMachineBasicBlockAddress callback.
- std::vector<uintptr_t> MBBLocations;
-
+
+ std::map<uint64_t, uintptr_t> Labels;
+
public:
- MachOCodeEmitter(MachOWriter &mow) : MOW(mow), TM(MOW.TM)
- {
- is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
- isLittleEndian = TM.getTargetData()->isLittleEndian();
- TAI = TM.getTargetAsmInfo();
- }
+ MachOCodeEmitter(MachOWriter &mow, MachOSection &mos);
virtual void startFunction(MachineFunction &MF);
virtual bool finishFunction(MachineFunction &MF);
@@ -66,61 +47,20 @@ public:
virtual void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
-
+
void emitConstantPool(MachineConstantPool *MCP);
void emitJumpTables(MachineJumpTableInfo *MJTI);
-
- virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const {
- assert(CPLocations.size() > Index && "CP not emitted!");
- return CPLocations[Index];
- }
- virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const {
- assert(JTLocations.size() > Index && "JT not emitted!");
- return JTLocations[Index];
- }
-
- virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
- if (MBBLocations.size() <= (unsigned)MBB->getNumber())
- MBBLocations.resize((MBB->getNumber()+1)*2);
- MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
- }
- virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
- assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
- MBBLocations[MBB->getNumber()] && "MBB not emitted!");
- return MBBLocations[MBB->getNumber()];
+ virtual void emitLabel(uint64_t LabelID) {
+ Labels[LabelID] = getCurrentPCOffset();
}
virtual uintptr_t getLabelAddress(uint64_t Label) const {
- assert(0 && "get Label not implemented");
- abort();
- return 0;
- }
-
- virtual void emitLabel(uint64_t LabelID) {
- assert(0 && "emit Label not implemented");
- abort();
+ return Labels.find(Label)->second;
}
virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) { }
- /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
- virtual void startGVStub(const GlobalValue* F, unsigned StubSize,
- unsigned Alignment = 1) {
- assert(0 && "JIT specific function called!");
- abort();
- }
- virtual void startGVStub(const GlobalValue* F, void *Buffer,
- unsigned StubSize) {
- assert(0 && "JIT specific function called!");
- abort();
- }
- virtual void *finishGVStub(const GlobalValue* F) {
- assert(0 && "JIT specific function called!");
- abort();
- return 0;
- }
-
}; // end class MachOCodeEmitter
} // end namespace llvm
diff --git a/lib/CodeGen/MachOWriter.cpp b/lib/CodeGen/MachOWriter.cpp
index 163df69..73b15ed 100644
--- a/lib/CodeGen/MachOWriter.cpp
+++ b/lib/CodeGen/MachOWriter.cpp
@@ -22,36 +22,32 @@
//
//===----------------------------------------------------------------------===//
+#include "MachO.h"
#include "MachOWriter.h"
#include "MachOCodeEmitter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/CodeGen/FileWriters.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetMachOWriterInfo.h"
#include "llvm/Support/Mangler.h"
-#include "llvm/Support/MathExtras.h"
#include "llvm/Support/OutputBuffer.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstring>
namespace llvm {
/// AddMachOWriter - Concrete function to add the Mach-O writer to the function
/// pass manager.
-MachineCodeEmitter *AddMachOWriter(PassManagerBase &PM,
+ObjectCodeEmitter *AddMachOWriter(PassManagerBase &PM,
raw_ostream &O,
TargetMachine &TM) {
MachOWriter *MOW = new MachOWriter(O, TM);
PM.add(MOW);
- return &MOW->getMachineCodeEmitter();
+ return MOW->getObjectCodeEmitter();
}
//===----------------------------------------------------------------------===//
@@ -65,15 +61,14 @@ MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm)
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
- TAI = TM.getTargetAsmInfo();
+ MAI = TM.getMCAsmInfo();
// Create the machine code emitter object for this target.
-
- MCE = new MachOCodeEmitter(*this);
+ MachOCE = new MachOCodeEmitter(*this, *getTextSection(true));
}
MachOWriter::~MachOWriter() {
- delete MCE;
+ delete MachOCE;
}
bool MachOWriter::doInitialization(Module &M) {
@@ -97,9 +92,9 @@ bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
/// the Mach-O file to 'O'.
bool MachOWriter::doFinalization(Module &M) {
// FIXME: we don't handle debug info yet, we should probably do that.
-
// Okay, the.text section has been completed, build the .data, .bss, and
// "common" sections next.
+
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
@@ -125,6 +120,89 @@ bool MachOWriter::doFinalization(Module &M) {
return false;
}
+// getConstSection - Get constant section for Constant 'C'
+MachOSection *MachOWriter::getConstSection(Constant *C) {
+ const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
+ if (CVA && CVA->isCString())
+ return getSection("__TEXT", "__cstring",
+ MachOSection::S_CSTRING_LITERALS);
+
+ const Type *Ty = C->getType();
+ if (Ty->isPrimitiveType() || Ty->isInteger()) {
+ unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
+ switch(Size) {
+ default: break; // Fall through to __TEXT,__const
+ case 4:
+ return getSection("__TEXT", "__literal4",
+ MachOSection::S_4BYTE_LITERALS);
+ case 8:
+ return getSection("__TEXT", "__literal8",
+ MachOSection::S_8BYTE_LITERALS);
+ case 16:
+ return getSection("__TEXT", "__literal16",
+ MachOSection::S_16BYTE_LITERALS);
+ }
+ }
+ return getSection("__TEXT", "__const");
+}
+
+// getJumpTableSection - Select the Jump Table section
+MachOSection *MachOWriter::getJumpTableSection() {
+ if (TM.getRelocationModel() == Reloc::PIC_)
+ return getTextSection(false);
+ else
+ return getSection("__TEXT", "__const");
+}
+
+// getSection - Return the section with the specified name, creating a new
+// section if one does not already exist.
+MachOSection *MachOWriter::getSection(const std::string &seg,
+ const std::string &sect,
+ unsigned Flags /* = 0 */ ) {
+ MachOSection *MOS = SectionLookup[seg+sect];
+ if (MOS) return MOS;
+
+ MOS = new MachOSection(seg, sect);
+ SectionList.push_back(MOS);
+ MOS->Index = SectionList.size();
+ MOS->flags = MachOSection::S_REGULAR | Flags;
+ SectionLookup[seg+sect] = MOS;
+ return MOS;
+}
+
+// getTextSection - Return text section with different flags for code/data
+MachOSection *MachOWriter::getTextSection(bool isCode /* = true */ ) {
+ if (isCode)
+ return getSection("__TEXT", "__text",
+ MachOSection::S_ATTR_PURE_INSTRUCTIONS |
+ MachOSection::S_ATTR_SOME_INSTRUCTIONS);
+ else
+ return getSection("__TEXT", "__text");
+}
+
+MachOSection *MachOWriter::getBSSSection() {
+ return getSection("__DATA", "__bss", MachOSection::S_ZEROFILL);
+}
+
+// GetJTRelocation - Get a relocation a new BB relocation based
+// on target information.
+MachineRelocation MachOWriter::GetJTRelocation(unsigned Offset,
+ MachineBasicBlock *MBB) const {
+ return TM.getMachOWriterInfo()->GetJTRelocation(Offset, MBB);
+}
+
+// GetTargetRelocation - Returns the number of relocations.
+unsigned MachOWriter::GetTargetRelocation(MachineRelocation &MR,
+ unsigned FromIdx, unsigned ToAddr,
+ unsigned ToIndex, OutputBuffer &RelocOut,
+ OutputBuffer &SecOut, bool Scattered,
+ bool Extern) {
+ return TM.getMachOWriterInfo()->GetTargetRelocation(MR, FromIdx, ToAddr,
+ ToIndex, RelocOut,
+ SecOut, Scattered,
+ Extern);
+}
+
void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
const Type *Ty = GV->getType()->getElementType();
unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
@@ -133,37 +211,31 @@ void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
// Reserve space in the .bss section for this symbol while maintaining the
// desired section alignment, which must be at least as much as required by
// this symbol.
- OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
+ OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian);
if (Align) {
- uint64_t OrigSize = Sec->size;
Align = Log2_32(Align);
Sec->align = std::max(unsigned(Sec->align), Align);
- Sec->size = (Sec->size + Align - 1) & ~(Align-1);
- // Add alignment padding to buffer as well.
- // FIXME: remove when we have unified size + output buffer
- unsigned AlignedSize = Sec->size - OrigSize;
- for (unsigned i = 0; i < AlignedSize; ++i)
- SecDataOut.outbyte(0);
+ Sec->emitAlignment(Sec->align);
}
// Globals without external linkage apparently do not go in the symbol table.
if (!GV->hasLocalLinkage()) {
- MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TAI);
- Sym.n_value = Sec->size;
+ MachOSym Sym(GV, Mang->getMangledName(GV), Sec->Index, MAI);
+ Sym.n_value = Sec->size();
SymbolTable.push_back(Sym);
}
// Record the offset of the symbol, and then allocate space for it.
// FIXME: remove when we have unified size + output buffer
- Sec->size += Size;
// Now that we know what section the GlovalVariable is going to be emitted
// into, update our mappings.
// FIXME: We may also need to update this when outputting non-GlobalVariable
// GlobalValues such as functions.
+
GVSection[GV] = Sec;
- GVOffset[GV] = Sec->SectionData.size();
+ GVOffset[GV] = Sec->size();
// Allocate space in the section for the global.
for (unsigned i = 0; i < Size; ++i)
@@ -183,8 +255,8 @@ void MachOWriter::EmitGlobal(GlobalVariable *GV) {
// merged with other symbols.
if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
GV->hasCommonLinkage()) {
- MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV),
- MachOSym::NO_SECT, TAI);
+ MachOSym ExtOrCommonSym(GV, Mang->getMangledName(GV),
+ MachOSym::NO_SECT, MAI);
// For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
// bytes of the symbol.
ExtOrCommonSym.n_value = Size;
@@ -205,8 +277,7 @@ void MachOWriter::EmitGlobal(GlobalVariable *GV) {
MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :
getDataSection();
AddSymbolToSection(Sec, GV);
- InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV],
- TM.getTargetData(), Sec->Relocations);
+ InitMem(GV->getInitializer(), GVOffset[GV], TM.getTargetData(), Sec);
}
@@ -214,6 +285,7 @@ void MachOWriter::EmitGlobal(GlobalVariable *GV) {
void MachOWriter::EmitHeaderAndLoadCommands() {
// Step #0: Fill in the segment load command size, since we need it to figure
// out the rest of the header fields
+
MachOSegment SEG("", is64Bit);
SEG.nsects = SectionList.size();
SEG.cmdsize = SEG.cmdSize(is64Bit) +
@@ -231,7 +303,7 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
// Step #3: write the header to the file
// Local alias to shortenify coming code.
- DataBuffer &FH = Header.HeaderData;
+ std::vector<unsigned char> &FH = Header.HeaderData;
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
FHOut.outword(Header.magic);
@@ -247,7 +319,7 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
// Step #4: Finish filling in the segment load command and write it out
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I)
- SEG.filesize += (*I)->size;
+ SEG.filesize += (*I)->size();
SEG.vmsize = SEG.filesize;
SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
@@ -271,9 +343,8 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
MachOSection *MOS = *I;
MOS->addr = currentAddr;
MOS->offset = currentAddr + SEG.fileoff;
-
// FIXME: do we need to do something with alignment here?
- currentAddr += MOS->size;
+ currentAddr += MOS->size();
}
// Step #6: Emit the symbol table to temporary buffers, so that we know the
@@ -288,6 +359,7 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
MachOSection *MOS = *I;
+
// Convert the relocations to target-specific relocations, and fill in the
// relocation offset for this section.
CalculateRelocations(*MOS);
@@ -298,7 +370,7 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
FHOut.outstring(MOS->sectname, 16);
FHOut.outstring(MOS->segname, 16);
FHOut.outaddr(MOS->addr);
- FHOut.outaddr(MOS->size);
+ FHOut.outaddr(MOS->size());
FHOut.outword(MOS->offset);
FHOut.outword(MOS->align);
FHOut.outword(MOS->reloff);
@@ -351,24 +423,26 @@ void MachOWriter::EmitHeaderAndLoadCommands() {
/// EmitSections - Now that we have constructed the file header and load
/// commands, emit the data for each section to the file.
-
void MachOWriter::EmitSections() {
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I)
// Emit the contents of each section
- O.write((char*)&(*I)->SectionData[0], (*I)->size);
+ if ((*I)->size())
+ O.write((char*)&(*I)->getData()[0], (*I)->size());
}
+
+/// EmitRelocations - emit relocation data from buffer.
void MachOWriter::EmitRelocations() {
for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I)
// Emit the relocation entry data for each section.
- O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
+ if ((*I)->RelocBuffer.size())
+ O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
}
/// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
/// each a string table index so that they appear in the correct order in the
/// output file.
-
void MachOWriter::BufferSymbolAndStringTable() {
// The order of the symbol table is:
// 1. local symbols
@@ -377,11 +451,10 @@ void MachOWriter::BufferSymbolAndStringTable() {
// Before sorting the symbols, check the PendingGlobals for any undefined
// globals that need to be put in the symbol table.
-
for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
E = PendingGlobals.end(); I != E; ++I) {
if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
- MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TAI);
+ MachOSym UndfSym(*I, Mang->getMangledName(*I), MachOSym::NO_SECT, MAI);
SymbolTable.push_back(UndfSym);
GVOffset[*I] = -1;
}
@@ -389,19 +462,16 @@ void MachOWriter::BufferSymbolAndStringTable() {
// Sort the symbols by name, so that when we partition the symbols by scope
// of definition, we won't have to sort by name within each partition.
-
std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSym::SymCmp());
// Parition the symbol table entries so that all local symbols come before
// all symbols with external linkage. { 1 | 2 3 }
-
std::partition(SymbolTable.begin(), SymbolTable.end(),
MachOSym::PartitionByLocal);
// Advance iterator to beginning of external symbols and partition so that
// all external symbols defined in this module come before all external
// symbols defined elsewhere. { 1 | 2 | 3 }
-
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
E = SymbolTable.end(); I != E; ++I) {
if (!MachOSym::PartitionByLocal(*I)) {
@@ -413,7 +483,6 @@ void MachOWriter::BufferSymbolAndStringTable() {
// Calculate the starting index for each of the local, extern defined, and
// undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
// load command.
-
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
E = SymbolTable.end(); I != E; ++I) {
if (MachOSym::PartitionByLocal(*I)) {
@@ -430,7 +499,6 @@ void MachOWriter::BufferSymbolAndStringTable() {
// Write out a leading zero byte when emitting string table, for n_strx == 0
// which means an empty string.
-
OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
StrTOut.outbyte(0);
@@ -439,7 +507,6 @@ void MachOWriter::BufferSymbolAndStringTable() {
// 2. strings for local symbols
// Since this is the opposite order from the symbol table, which we have just
// sorted, we can walk the symbol table backwards to output the string table.
-
for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
E = SymbolTable.rend(); I != E; ++I) {
if (I->GVName == "") {
@@ -478,24 +545,22 @@ void MachOWriter::BufferSymbolAndStringTable() {
/// and the offset into that section. From this information, create the
/// appropriate target-specific MachORelocation type and add buffer it to be
/// written out after we are finished writing out sections.
-
void MachOWriter::CalculateRelocations(MachOSection &MOS) {
- for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) {
- MachineRelocation &MR = MOS.Relocations[i];
+ std::vector<MachineRelocation> Relocations = MOS.getRelocations();
+ for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
+ MachineRelocation &MR = Relocations[i];
unsigned TargetSection = MR.getConstantVal();
unsigned TargetAddr = 0;
unsigned TargetIndex = 0;
// This is a scattered relocation entry if it points to a global value with
// a non-zero offset.
-
bool Scattered = false;
bool Extern = false;
// Since we may not have seen the GlobalValue we were interested in yet at
// the time we emitted the relocation for it, fix it up now so that it
// points to the offset into the correct section.
-
if (MR.isGlobalValue()) {
GlobalValue *GV = MR.getGlobalValue();
MachOSection *MOSPtr = GVSection[GV];
@@ -503,7 +568,6 @@ void MachOWriter::CalculateRelocations(MachOSection &MOS) {
// If we have never seen the global before, it must be to a symbol
// defined in another module (N_UNDF).
-
if (!MOSPtr) {
// FIXME: need to append stub suffix
Extern = true;
@@ -518,7 +582,6 @@ void MachOWriter::CalculateRelocations(MachOSection &MOS) {
// If the symbol is locally defined, pass in the address of the section and
// the section index to the code which will generate the target relocation.
-
if (!Extern) {
MachOSection &To = *SectionList[TargetSection - 1];
TargetAddr = To.addr;
@@ -526,7 +589,7 @@ void MachOWriter::CalculateRelocations(MachOSection &MOS) {
}
OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
- OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian);
+ OutputBuffer SecOut(MOS.getData(), is64Bit, isLittleEndian);
MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
RelocOut, SecOut, Scattered, Extern);
@@ -535,12 +598,11 @@ void MachOWriter::CalculateRelocations(MachOSection &MOS) {
// InitMem - Write the value of a Constant to the specified memory location,
// converting it into bytes and relocations.
-
-void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
- const TargetData *TD,
- std::vector<MachineRelocation> &MRs) {
+void MachOWriter::InitMem(const Constant *C, uintptr_t Offset,
+ const TargetData *TD, MachOSection* mos) {
typedef std::pair<const Constant*, intptr_t> CPair;
std::vector<CPair> WorkList;
+ uint8_t *Addr = &mos->getData()[0];
WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
@@ -572,9 +634,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
}
case Instruction::Add:
default:
- cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
- abort();
- break;
+ errs() << "ConstantExpr not handled as global var init: " << *CE <<"\n";
+ llvm_unreachable(0);
}
} else if (PC->getType()->isSingleValueType()) {
unsigned char *ptr = (unsigned char *)PA;
@@ -608,7 +669,7 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
ptr[6] = val >> 48;
ptr[7] = val >> 56;
} else {
- assert(0 && "Not implemented: bit widths > 64");
+ llvm_unreachable("Not implemented: bit widths > 64");
}
break;
}
@@ -643,17 +704,19 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
memset(ptr, 0, TD->getPointerSize());
else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
// FIXME: what about function stubs?
- MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr,
+ mos->addRelocation(MachineRelocation::getGV(PA-(intptr_t)Addr,
MachineRelocation::VANILLA,
const_cast<GlobalValue*>(GV),
ScatteredOffset));
ScatteredOffset = 0;
} else
- assert(0 && "Unknown constant pointer type!");
+ llvm_unreachable("Unknown constant pointer type!");
break;
default:
- cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "ERROR: Constant unimp for type: " << *PC->getType();
+ llvm_report_error(Msg.str());
}
} else if (isa<ConstantAggregateZero>(PC)) {
memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType()));
@@ -669,8 +732,8 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
WorkList.push_back(CPair(CPS->getOperand(i),
PA+SL->getElementOffset(i)));
} else {
- cerr << "Bad Type: " << *PC->getType() << "\n";
- assert(0 && "Unknown constant type to initialize memory with!");
+ errs() << "Bad Type: " << *PC->getType() << "\n";
+ llvm_unreachable("Unknown constant type to initialize memory with!");
}
}
}
@@ -680,13 +743,14 @@ void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
//===----------------------------------------------------------------------===//
MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
- const TargetAsmInfo *TAI) :
+ const MCAsmInfo *MAI) :
GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
n_desc(0), n_value(0) {
+ // FIXME: This is completely broken, it should use the mangler interface.
switch (GV->getLinkage()) {
default:
- assert(0 && "Unexpected linkage type!");
+ llvm_unreachable("Unexpected linkage type!");
break;
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
@@ -695,17 +759,19 @@ MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
case GlobalValue::CommonLinkage:
assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
case GlobalValue::ExternalLinkage:
- GVName = TAI->getGlobalPrefix() + name;
+ GVName = MAI->getGlobalPrefix() + name;
n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
break;
case GlobalValue::PrivateLinkage:
- GVName = TAI->getPrivateGlobalPrefix() + name;
+ GVName = MAI->getPrivateGlobalPrefix() + name;
+ break;
+ case GlobalValue::LinkerPrivateLinkage:
+ GVName = MAI->getLinkerPrivateGlobalPrefix() + name;
break;
case GlobalValue::InternalLinkage:
- GVName = TAI->getGlobalPrefix() + name;
+ GVName = MAI->getGlobalPrefix() + name;
break;
}
}
} // end namespace llvm
-
diff --git a/lib/CodeGen/MachOWriter.h b/lib/CodeGen/MachOWriter.h
index 3af2b0a..9273f38 100644
--- a/lib/CodeGen/MachOWriter.h
+++ b/lib/CodeGen/MachOWriter.h
@@ -14,22 +14,28 @@
#ifndef MACHOWRITER_H
#define MACHOWRITER_H
-#include "MachO.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetMachOWriterInfo.h"
+#include <vector>
#include <map>
namespace llvm {
+ class Constant;
class GlobalVariable;
class Mangler;
- class MachineCodeEmitter;
+ class MachineBasicBlock;
+ class MachineRelocation;
class MachOCodeEmitter;
+ struct MachODySymTab;
+ struct MachOHeader;
+ struct MachOSection;
+ struct MachOSym;
+ class TargetData;
+ class TargetMachine;
+ class MCAsmInfo;
+ class ObjectCodeEmitter;
class OutputBuffer;
class raw_ostream;
-
/// MachOWriter - This class implements the common target-independent code for
/// writing Mach-O files. Targets should derive a class from this to
/// parameterize the output format.
@@ -38,8 +44,9 @@ namespace llvm {
friend class MachOCodeEmitter;
public:
static char ID;
- MachineCodeEmitter &getMachineCodeEmitter() const {
- return *(MachineCodeEmitter*)MCE;
+
+ ObjectCodeEmitter *getObjectCodeEmitter() {
+ return reinterpret_cast<ObjectCodeEmitter*>(MachOCE);
}
MachOWriter(raw_ostream &O, TargetMachine &TM);
@@ -61,36 +68,30 @@ namespace llvm {
/// Mang - The object used to perform name mangling for this module.
///
Mangler *Mang;
-
- /// MCE - The MachineCodeEmitter object that we are exposing to emit machine
- /// code for functions to the .o file.
- MachOCodeEmitter *MCE;
+ /// MachOCE - The MachineCodeEmitter object that we are exposing to emit
+ /// machine code for functions to the .o file.
+ MachOCodeEmitter *MachOCE;
/// is64Bit/isLittleEndian - This information is inferred from the target
/// machine directly, indicating what header values and flags to set.
-
bool is64Bit, isLittleEndian;
// Target Asm Info
-
- const TargetAsmInfo *TAI;
+ const MCAsmInfo *MAI;
/// Header - An instance of MachOHeader that we will update while we build
/// the file, and then emit during finalization.
-
MachOHeader Header;
/// doInitialization - Emit the file header and all of the global variables
/// for the module to the Mach-O file.
-
bool doInitialization(Module &M);
bool runOnMachineFunction(MachineFunction &MF);
/// doFinalization - Now that the module has been completely processed, emit
/// the Mach-O file to 'O'.
-
bool doFinalization(Module &M);
private:
@@ -98,85 +99,37 @@ namespace llvm {
/// SectionList - This is the list of sections that we have emitted to the
/// file. Once the file has been completely built, the segment load command
/// SectionCommands are constructed from this info.
-
std::vector<MachOSection*> SectionList;
/// SectionLookup - This is a mapping from section name to SectionList entry
-
std::map<std::string, MachOSection*> SectionLookup;
-
+
/// GVSection - This is a mapping from a GlobalValue to a MachOSection,
/// to aid in emitting relocations.
-
std::map<GlobalValue*, MachOSection*> GVSection;
- /// GVOffset - This is a mapping from a GlobalValue to an offset from the
+ /// GVOffset - This is a mapping from a GlobalValue to an offset from the
/// start of the section in which the GV resides, to aid in emitting
/// relocations.
-
std::map<GlobalValue*, intptr_t> GVOffset;
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
-
MachOSection *getSection(const std::string &seg, const std::string &sect,
- unsigned Flags = 0) {
- MachOSection *MOS = SectionLookup[seg+sect];
- if (MOS) return MOS;
-
- MOS = new MachOSection(seg, sect);
- SectionList.push_back(MOS);
- MOS->Index = SectionList.size();
- MOS->flags = MachOSection::S_REGULAR | Flags;
- SectionLookup[seg+sect] = MOS;
- return MOS;
- }
- MachOSection *getTextSection(bool isCode = true) {
- if (isCode)
- return getSection("__TEXT", "__text",
- MachOSection::S_ATTR_PURE_INSTRUCTIONS |
- MachOSection::S_ATTR_SOME_INSTRUCTIONS);
- else
- return getSection("__TEXT", "__text");
- }
- MachOSection *getBSSSection() {
- return getSection("__DATA", "__bss", MachOSection::S_ZEROFILL);
- }
+ unsigned Flags = 0);
+
+ /// getTextSection - Return text section with different flags for code/data
+ MachOSection *getTextSection(bool isCode = true);
+
MachOSection *getDataSection() {
return getSection("__DATA", "__data");
}
- MachOSection *getConstSection(Constant *C) {
- const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
- if (CVA && CVA->isCString())
- return getSection("__TEXT", "__cstring",
- MachOSection::S_CSTRING_LITERALS);
-
- const Type *Ty = C->getType();
- if (Ty->isPrimitiveType() || Ty->isInteger()) {
- unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
- switch(Size) {
- default: break; // Fall through to __TEXT,__const
- case 4:
- return getSection("__TEXT", "__literal4",
- MachOSection::S_4BYTE_LITERALS);
- case 8:
- return getSection("__TEXT", "__literal8",
- MachOSection::S_8BYTE_LITERALS);
- case 16:
- return getSection("__TEXT", "__literal16",
- MachOSection::S_16BYTE_LITERALS);
- }
- }
- return getSection("__TEXT", "__const");
- }
- MachOSection *getJumpTableSection() {
- if (TM.getRelocationModel() == Reloc::PIC_)
- return getTextSection(false);
- else
- return getSection("__TEXT", "__const");
- }
-
- /// MachOSymTab - This struct contains information about the offsets and
+
+ MachOSection *getBSSSection();
+ MachOSection *getConstSection(Constant *C);
+ MachOSection *getJumpTableSection();
+
+ /// MachOSymTab - This struct contains information about the offsets and
/// size of symbol table information.
/// segment.
struct MachOSymTab {
@@ -191,43 +144,42 @@ namespace llvm {
// see <mach-o/loader.h>
enum { LC_SYMTAB = 0x02 // link-edit stab symbol table info
};
-
+
MachOSymTab() : cmd(LC_SYMTAB), cmdsize(6 * sizeof(uint32_t)), symoff(0),
nsyms(0), stroff(0), strsize(0) { }
};
-
+
/// SymTab - The "stab" style symbol table information
- MachOSymTab SymTab;
+ MachOSymTab SymTab;
/// DySymTab - symbol table info for the dynamic link editor
MachODySymTab DySymTab;
protected:
-
+
/// SymbolTable - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
std::vector<MachOSym> SymbolTable;
-
+
/// SymT - A buffer to hold the symbol table before we write it out at the
/// appropriate location in the file.
- DataBuffer SymT;
-
+ std::vector<unsigned char> SymT;
+
/// StrT - A buffer to hold the string table before we write it out at the
/// appropriate location in the file.
- DataBuffer StrT;
-
+ std::vector<unsigned char> StrT;
+
/// PendingSyms - This is a list of externally defined symbols that we have
/// been asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolTable.
std::vector<GlobalValue*> PendingGlobals;
-
+
/// DynamicSymbolTable - This is just a vector of indices into
/// SymbolTable to aid in emitting the DYSYMTAB load command.
std::vector<unsigned> DynamicSymbolTable;
-
- static void InitMem(const Constant *C, void *Addr, intptr_t Offset,
- const TargetData *TD,
- std::vector<MachineRelocation> &MRs);
+
+ static void InitMem(const Constant *C, uintptr_t Offset,
+ const TargetData *TD, MachOSection* mos);
private:
void AddSymbolToSection(MachOSection *MOS, GlobalVariable *GV);
@@ -238,25 +190,16 @@ namespace llvm {
void BufferSymbolAndStringTable();
void CalculateRelocations(MachOSection &MOS);
+ // GetJTRelocation - Get a relocation a new BB relocation based
+ // on target information.
MachineRelocation GetJTRelocation(unsigned Offset,
- MachineBasicBlock *MBB) const {
- return TM.getMachOWriterInfo()->GetJTRelocation(Offset, MBB);
- }
+ MachineBasicBlock *MBB) const;
/// GetTargetRelocation - Returns the number of relocations.
- unsigned GetTargetRelocation(MachineRelocation &MR,
- unsigned FromIdx,
- unsigned ToAddr,
- unsigned ToIndex,
- OutputBuffer &RelocOut,
- OutputBuffer &SecOut,
- bool Scattered,
- bool Extern) {
- return TM.getMachOWriterInfo()->GetTargetRelocation(MR, FromIdx, ToAddr,
- ToIndex, RelocOut,
- SecOut, Scattered,
- Extern);
- }
+ unsigned GetTargetRelocation(MachineRelocation &MR, unsigned FromIdx,
+ unsigned ToAddr, unsigned ToIndex,
+ OutputBuffer &RelocOut, OutputBuffer &SecOut,
+ bool Scattered, bool Extern);
};
}
diff --git a/lib/CodeGen/MachineBasicBlock.cpp b/lib/CodeGen/MachineBasicBlock.cpp
index 71e6b3e..b3eb2da 100644
--- a/lib/CodeGen/MachineBasicBlock.cpp
+++ b/lib/CodeGen/MachineBasicBlock.cpp
@@ -19,6 +19,7 @@
#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/LeakDetector.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
@@ -31,7 +32,7 @@ MachineBasicBlock::~MachineBasicBlock() {
LeakDetector::removeGarbageObject(this);
}
-std::ostream& llvm::operator<<(std::ostream &OS, const MachineBasicBlock &MBB) {
+raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
MBB.print(OS);
return OS;
}
@@ -43,7 +44,7 @@ std::ostream& llvm::operator<<(std::ostream &OS, const MachineBasicBlock &MBB) {
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
-void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock* N) {
+void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
MachineFunction &MF = *N->getParent();
N->Number = MF.addToMBBNumbering(N);
@@ -55,7 +56,7 @@ void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock* N) {
LeakDetector::removeGarbageObject(N);
}
-void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock* N) {
+void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
LeakDetector::addGarbageObject(N);
@@ -65,7 +66,7 @@ void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock* N) {
/// addNodeToList (MI) - When we add an instruction to a basic block
/// list, we update its parent pointer and add its operands from reg use/def
/// lists if appropriate.
-void ilist_traits<MachineInstr>::addNodeToList(MachineInstr* N) {
+void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
assert(N->getParent() == 0 && "machine instruction already in a basic block");
N->setParent(Parent);
@@ -80,7 +81,7 @@ void ilist_traits<MachineInstr>::addNodeToList(MachineInstr* N) {
/// removeNodeFromList (MI) - When we remove an instruction from a basic block
/// list, we update its parent pointer and remove its operands from reg use/def
/// lists if appropriate.
-void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr* N) {
+void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
assert(N->getParent() != 0 && "machine instruction not in a basic block");
// Remove from the use/def lists.
@@ -94,10 +95,10 @@ void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr* N) {
/// transferNodesFromList (MI) - When moving a range of instructions from one
/// MBB list to another, we need to update the parent pointers and the use/def
/// lists.
-void ilist_traits<MachineInstr>::transferNodesFromList(
- ilist_traits<MachineInstr>& fromList,
- MachineBasicBlock::iterator first,
- MachineBasicBlock::iterator last) {
+void ilist_traits<MachineInstr>::
+transferNodesFromList(ilist_traits<MachineInstr> &fromList,
+ MachineBasicBlock::iterator first,
+ MachineBasicBlock::iterator last) {
assert(Parent->getParent() == fromList.Parent->getParent() &&
"MachineInstr parent mismatch!");
@@ -123,21 +124,41 @@ MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
return I;
}
-bool
-MachineBasicBlock::isOnlyReachableByFallthrough() const {
- return !isLandingPad() &&
- !pred_empty() &&
- next(pred_begin()) == pred_end() &&
- (*pred_begin())->isLayoutSuccessor(this) &&
- ((*pred_begin())->empty() ||
- !(*pred_begin())->back().getDesc().isBarrier());
+/// isOnlyReachableViaFallthough - Return true if this basic block has
+/// exactly one predecessor and the control transfer mechanism between
+/// the predecessor and this block is a fall-through.
+bool MachineBasicBlock::isOnlyReachableByFallthrough() const {
+ // If this is a landing pad, it isn't a fall through. If it has no preds,
+ // then nothing falls through to it.
+ if (isLandingPad() || pred_empty())
+ return false;
+
+ // If there isn't exactly one predecessor, it can't be a fall through.
+ const_pred_iterator PI = pred_begin(), PI2 = PI;
+ ++PI2;
+ if (PI2 != pred_end())
+ return false;
+
+ // The predecessor has to be immediately before this block.
+ const MachineBasicBlock *Pred = *PI;
+
+ if (!Pred->isLayoutSuccessor(this))
+ return false;
+
+ // If the block is completely empty, then it definitely does fall through.
+ if (Pred->empty())
+ return true;
+
+ // Otherwise, check the last instruction.
+ const MachineInstr &LastInst = Pred->back();
+ return !LastInst.getDesc().isBarrier();
}
void MachineBasicBlock::dump() const {
- print(*cerr.stream());
+ print(errs());
}
-static inline void OutputReg(std::ostream &os, unsigned RegNo,
+static inline void OutputReg(raw_ostream &os, unsigned RegNo,
const TargetRegisterInfo *TRI = 0) {
if (!RegNo || TargetRegisterInfo::isPhysicalRegister(RegNo)) {
if (TRI)
@@ -148,16 +169,16 @@ static inline void OutputReg(std::ostream &os, unsigned RegNo,
os << " %reg" << RegNo;
}
-void MachineBasicBlock::print(std::ostream &OS) const {
+void MachineBasicBlock::print(raw_ostream &OS) const {
const MachineFunction *MF = getParent();
- if(!MF) {
+ if (!MF) {
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
<< " is null\n";
return;
}
const BasicBlock *LBB = getBasicBlock();
- OS << "\n";
+ OS << '\n';
if (LBB) OS << LBB->getName() << ": ";
OS << (const void*)this
<< ", LLVM BB @" << (const void*) LBB << ", ID#" << getNumber();
@@ -170,18 +191,18 @@ void MachineBasicBlock::print(std::ostream &OS) const {
OS << "Live Ins:";
for (const_livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
OutputReg(OS, *I, TRI);
- OS << "\n";
+ OS << '\n';
}
// Print the preds of this block according to the CFG.
if (!pred_empty()) {
OS << " Predecessors according to CFG:";
for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
- OS << " " << *PI << " (#" << (*PI)->getNumber() << ")";
- OS << "\n";
+ OS << ' ' << *PI << " (#" << (*PI)->getNumber() << ')';
+ OS << '\n';
}
for (const_iterator I = begin(); I != end(); ++I) {
- OS << "\t";
+ OS << '\t';
I->print(OS, &getParent()->getTarget());
}
@@ -189,8 +210,8 @@ void MachineBasicBlock::print(std::ostream &OS) const {
if (!succ_empty()) {
OS << " Successors according to CFG:";
for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI)
- OS << " " << *SI << " (#" << (*SI)->getNumber() << ")";
- OS << "\n";
+ OS << ' ' << *SI << " (#" << (*SI)->getNumber() << ')';
+ OS << '\n';
}
}
@@ -245,16 +266,15 @@ void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
Predecessors.erase(I);
}
-void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB)
-{
+void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
if (this == fromMBB)
return;
- for(MachineBasicBlock::succ_iterator iter = fromMBB->succ_begin(),
- end = fromMBB->succ_end(); iter != end; ++iter) {
- addSuccessor(*iter);
- }
- while(!fromMBB->succ_empty())
+ for (MachineBasicBlock::succ_iterator I = fromMBB->succ_begin(),
+ E = fromMBB->succ_end(); I != E; ++I)
+ addSuccessor(*I);
+
+ while (!fromMBB->succ_empty())
fromMBB->removeSuccessor(fromMBB->succ_begin());
}
diff --git a/lib/CodeGen/MachineDominators.cpp b/lib/CodeGen/MachineDominators.cpp
index 37c8601..0f796f3 100644
--- a/lib/CodeGen/MachineDominators.cpp
+++ b/lib/CodeGen/MachineDominators.cpp
@@ -51,3 +51,7 @@ MachineDominatorTree::~MachineDominatorTree() {
void MachineDominatorTree::releaseMemory() {
DT->releaseMemory();
}
+
+void MachineDominatorTree::print(raw_ostream &OS, const Module*) const {
+ DT->print(OS);
+}
diff --git a/lib/CodeGen/MachineFunction.cpp b/lib/CodeGen/MachineFunction.cpp
index 599efb8..b0ec809 100644
--- a/lib/CodeGen/MachineFunction.cpp
+++ b/lib/CodeGen/MachineFunction.cpp
@@ -19,6 +19,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
@@ -32,89 +33,56 @@
#include "llvm/Support/Compiler.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
-#include <fstream>
-#include <sstream>
using namespace llvm;
-bool MachineFunctionPass::runOnFunction(Function &F) {
- // Do not codegen any 'available_externally' functions at all, they have
- // definitions outside the translation unit.
- if (F.hasAvailableExternallyLinkage())
- return false;
-
- return runOnMachineFunction(MachineFunction::get(&F));
-}
-
namespace {
struct VISIBILITY_HIDDEN Printer : public MachineFunctionPass {
static char ID;
- std::ostream *OS;
+ raw_ostream &OS;
const std::string Banner;
- Printer (std::ostream *os, const std::string &banner)
+ Printer(raw_ostream &os, const std::string &banner)
: MachineFunctionPass(&ID), OS(os), Banner(banner) {}
const char *getPassName() const { return "MachineFunction Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) {
- (*OS) << Banner;
- MF.print (*OS);
+ OS << Banner;
+ MF.print(OS);
return false;
}
};
char Printer::ID = 0;
}
-/// Returns a newly-created MachineFunction Printer pass. The default output
-/// stream is std::cerr; the default banner is empty.
+/// Returns a newly-created MachineFunction Printer pass. The default banner is
+/// empty.
///
-FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS,
+FunctionPass *llvm::createMachineFunctionPrinterPass(raw_ostream &OS,
const std::string &Banner){
return new Printer(OS, Banner);
}
-namespace {
- struct VISIBILITY_HIDDEN Deleter : public MachineFunctionPass {
- static char ID;
- Deleter() : MachineFunctionPass(&ID) {}
-
- const char *getPassName() const { return "Machine Code Deleter"; }
-
- bool runOnMachineFunction(MachineFunction &MF) {
- // Delete the annotation from the function now.
- MachineFunction::destruct(MF.getFunction());
- return true;
- }
- };
- char Deleter::ID = 0;
-}
-
-/// MachineCodeDeletion Pass - This pass deletes all of the machine code for
-/// the current function, which should happen after the function has been
-/// emitted to a .s file or to memory.
-FunctionPass *llvm::createMachineCodeDeleter() {
- return new Deleter();
-}
-
-
-
//===---------------------------------------------------------------------===//
// MachineFunction implementation
//===---------------------------------------------------------------------===//
+// Out of line virtual method.
+MachineFunctionInfo::~MachineFunctionInfo() {}
+
void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
-MachineFunction::MachineFunction(const Function *F,
+MachineFunction::MachineFunction(Function *F,
const TargetMachine &TM)
- : Annotation(AnnotationManager::getID("CodeGen::MachineCodeForFunction")),
- Fn(F), Target(TM) {
+ : Fn(F), Target(TM) {
if (TM.getRegisterInfo())
RegInfo = new (Allocator.Allocate<MachineRegisterInfo>())
MachineRegisterInfo(*TM.getRegisterInfo());
@@ -131,7 +99,8 @@ MachineFunction::MachineFunction(const Function *F,
const TargetData &TD = *TM.getTargetData();
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
- unsigned TyAlignment = IsPic ? TD.getABITypeAlignment(Type::Int32Ty)
+ unsigned TyAlignment = IsPic ?
+ TD.getABITypeAlignment(Type::getInt32Ty(F->getContext()))
: TD.getPointerABIAlignment();
JumpTableInfo = new (Allocator.Allocate<MachineJumpTableInfo>())
MachineJumpTableInfo(EntrySize, TyAlignment);
@@ -221,11 +190,6 @@ MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
///
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
- // Clear the instructions memoperands. This must be done manually because
- // the instruction's parent pointer is now null, so it can't properly
- // deallocate them on its own.
- MI->clearMemOperands(*this);
-
MI->~MachineInstr();
InstructionRecycler.Deallocate(Allocator, MI);
}
@@ -248,12 +212,99 @@ MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
+MachineMemOperand *
+MachineFunction::getMachineMemOperand(const Value *v, unsigned f,
+ int64_t o, uint64_t s,
+ unsigned base_alignment) {
+ return new (Allocator.Allocate<MachineMemOperand>())
+ MachineMemOperand(v, f, o, s, base_alignment);
+}
+
+MachineMemOperand *
+MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
+ int64_t Offset, uint64_t Size) {
+ return new (Allocator.Allocate<MachineMemOperand>())
+ MachineMemOperand(MMO->getValue(), MMO->getFlags(),
+ int64_t(uint64_t(MMO->getOffset()) +
+ uint64_t(Offset)),
+ Size, MMO->getBaseAlignment());
+}
+
+MachineInstr::mmo_iterator
+MachineFunction::allocateMemRefsArray(unsigned long Num) {
+ return Allocator.Allocate<MachineMemOperand *>(Num);
+}
+
+std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
+MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
+ MachineInstr::mmo_iterator End) {
+ // Count the number of load mem refs.
+ unsigned Num = 0;
+ for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
+ if ((*I)->isLoad())
+ ++Num;
+
+ // Allocate a new array and populate it with the load information.
+ MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
+ unsigned Index = 0;
+ for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
+ if ((*I)->isLoad()) {
+ if (!(*I)->isStore())
+ // Reuse the MMO.
+ Result[Index] = *I;
+ else {
+ // Clone the MMO and unset the store flag.
+ MachineMemOperand *JustLoad =
+ getMachineMemOperand((*I)->getValue(),
+ (*I)->getFlags() & ~MachineMemOperand::MOStore,
+ (*I)->getOffset(), (*I)->getSize(),
+ (*I)->getBaseAlignment());
+ Result[Index] = JustLoad;
+ }
+ ++Index;
+ }
+ }
+ return std::make_pair(Result, Result + Num);
+}
+
+std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
+MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
+ MachineInstr::mmo_iterator End) {
+ // Count the number of load mem refs.
+ unsigned Num = 0;
+ for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
+ if ((*I)->isStore())
+ ++Num;
+
+ // Allocate a new array and populate it with the store information.
+ MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
+ unsigned Index = 0;
+ for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
+ if ((*I)->isStore()) {
+ if (!(*I)->isLoad())
+ // Reuse the MMO.
+ Result[Index] = *I;
+ else {
+ // Clone the MMO and unset the load flag.
+ MachineMemOperand *JustStore =
+ getMachineMemOperand((*I)->getValue(),
+ (*I)->getFlags() & ~MachineMemOperand::MOLoad,
+ (*I)->getOffset(), (*I)->getSize(),
+ (*I)->getBaseAlignment());
+ Result[Index] = JustStore;
+ }
+ ++Index;
+ }
+ }
+ return std::make_pair(Result, Result + Num);
+}
+
void MachineFunction::dump() const {
- print(*cerr.stream());
+ print(errs());
}
-void MachineFunction::print(std::ostream &OS) const {
- OS << "# Machine code for " << Fn->getName () << "():\n";
+void MachineFunction::print(raw_ostream &OS) const {
+ OS << "# Machine code for " << Fn->getName() << "():\n";
// Print Frame Information
FrameInfo->print(*this, OS);
@@ -262,10 +313,7 @@ void MachineFunction::print(std::ostream &OS) const {
JumpTableInfo->print(OS);
// Print Constant Pool
- {
- raw_os_ostream OSS(OS);
- ConstantPool->print(OSS);
- }
+ ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
@@ -279,32 +327,32 @@ void MachineFunction::print(std::ostream &OS) const {
OS << " Reg #" << I->first;
if (I->second)
- OS << " in VR#" << I->second << " ";
+ OS << " in VR#" << I->second << ' ';
}
- OS << "\n";
+ OS << '\n';
}
if (RegInfo && !RegInfo->liveout_empty()) {
OS << "Live Outs:";
for (MachineRegisterInfo::liveout_iterator
I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I)
if (TRI)
- OS << " " << TRI->getName(*I);
+ OS << ' ' << TRI->getName(*I);
else
OS << " Reg #" << *I;
- OS << "\n";
+ OS << '\n';
}
- for (const_iterator BB = begin(); BB != end(); ++BB)
+ for (const_iterator BB = begin(), E = end(); BB != E; ++BB)
BB->print(OS);
- OS << "\n# End machine code for " << Fn->getName () << "().\n\n";
+ OS << "\n# End machine code for " << Fn->getName() << "().\n\n";
}
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
static std::string getGraphName(const MachineFunction *F) {
- return "CFG for '" + F->getFunction()->getName() + "' function";
+ return "CFG for '" + F->getFunction()->getNameStr() + "' function";
}
static std::string getNodeLabel(const MachineBasicBlock *Node,
@@ -312,17 +360,18 @@ namespace llvm {
bool ShortNames) {
if (ShortNames && Node->getBasicBlock() &&
!Node->getBasicBlock()->getName().empty())
- return Node->getBasicBlock()->getName() + ":";
-
- std::ostringstream Out;
- if (ShortNames) {
- Out << Node->getNumber() << ':';
- return Out.str();
+ return Node->getBasicBlock()->getNameStr() + ":";
+
+ std::string OutStr;
+ {
+ raw_string_ostream OSS(OutStr);
+
+ if (ShortNames)
+ OSS << Node->getNumber() << ':';
+ else
+ Node->print(OSS);
}
- Node->print(Out);
-
- std::string OutStr = Out.str();
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
@@ -339,59 +388,23 @@ namespace llvm {
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
- ViewGraph(this, "mf" + getFunction()->getName());
+ ViewGraph(this, "mf" + getFunction()->getNameStr());
#else
- cerr << "SelectionDAG::viewGraph is only available in debug builds on "
- << "systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
- ViewGraph(this, "mf" + getFunction()->getName(), true);
+ ViewGraph(this, "mf" + getFunction()->getNameStr(), true);
#else
- cerr << "SelectionDAG::viewGraph is only available in debug builds on "
- << "systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
-// The next two methods are used to construct and to retrieve
-// the MachineCodeForFunction object for the given function.
-// construct() -- Allocates and initializes for a given function and target
-// get() -- Returns a handle to the object.
-// This should not be called before "construct()"
-// for a given Function.
-//
-MachineFunction&
-MachineFunction::construct(const Function *Fn, const TargetMachine &Tar)
-{
- AnnotationID MF_AID =
- AnnotationManager::getID("CodeGen::MachineCodeForFunction");
- assert(Fn->getAnnotation(MF_AID) == 0 &&
- "Object already exists for this function!");
- MachineFunction* mcInfo = new MachineFunction(Fn, Tar);
- Fn->addAnnotation(mcInfo);
- return *mcInfo;
-}
-
-void MachineFunction::destruct(const Function *Fn) {
- AnnotationID MF_AID =
- AnnotationManager::getID("CodeGen::MachineCodeForFunction");
- bool Deleted = Fn->deleteAnnotation(MF_AID);
- assert(Deleted && "Machine code did not exist for function!");
- Deleted = Deleted; // silence warning when no assertions.
-}
-
-MachineFunction& MachineFunction::get(const Function *F)
-{
- AnnotationID MF_AID =
- AnnotationManager::getID("CodeGen::MachineCodeForFunction");
- MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID);
- assert(mc && "Call construct() method first to allocate the object");
- return *mc;
-}
-
/// addLiveIn - Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
unsigned MachineFunction::addLiveIn(unsigned PReg,
@@ -402,23 +415,6 @@ unsigned MachineFunction::addLiveIn(unsigned PReg,
return VReg;
}
-/// getOrCreateDebugLocID - Look up the DebugLocTuple index with the given
-/// source file, line, and column. If none currently exists, create a new
-/// DebugLocTuple, and insert it into the DebugIdMap.
-unsigned MachineFunction::getOrCreateDebugLocID(GlobalVariable *CompileUnit,
- unsigned Line, unsigned Col) {
- DebugLocTuple Tuple(CompileUnit, Line, Col);
- DenseMap<DebugLocTuple, unsigned>::iterator II
- = DebugLocInfo.DebugIdMap.find(Tuple);
- if (II != DebugLocInfo.DebugIdMap.end())
- return II->second;
- // Add a new tuple.
- unsigned Id = DebugLocInfo.DebugLocations.size();
- DebugLocInfo.DebugLocations.push_back(Tuple);
- DebugLocInfo.DebugIdMap[Tuple] = Id;
- return Id;
-}
-
/// getDebugLocTuple - Get the DebugLocTuple for a given DebugLoc object.
DebugLocTuple MachineFunction::getDebugLocTuple(DebugLoc DL) const {
unsigned Idx = DL.getIndex();
@@ -444,7 +440,38 @@ int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
}
-void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
+BitVector
+MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
+ assert(MBB && "MBB must be valid");
+ const MachineFunction *MF = MBB->getParent();
+ assert(MF && "MBB must be part of a MachineFunction");
+ const TargetMachine &TM = MF->getTarget();
+ const TargetRegisterInfo *TRI = TM.getRegisterInfo();
+ BitVector BV(TRI->getNumRegs());
+
+ // Before CSI is calculated, no registers are considered pristine. They can be
+ // freely used and PEI will make sure they are saved.
+ if (!isCalleeSavedInfoValid())
+ return BV;
+
+ for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR)
+ BV.set(*CSR);
+
+ // The entry MBB always has all CSRs pristine.
+ if (MBB == &MF->front())
+ return BV;
+
+ // On other MBBs the saved CSRs are not pristine.
+ const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo();
+ for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
+ E = CSI.end(); I != E; ++I)
+ BV.reset(I->getReg());
+
+ return BV;
+}
+
+
+void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
const TargetFrameInfo *FI = MF.getTarget().getFrameInfo();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
@@ -481,10 +508,9 @@ void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
}
void MachineFrameInfo::dump(const MachineFunction &MF) const {
- print(MF, *cerr.stream());
+ print(MF, errs());
}
-
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
@@ -521,7 +547,7 @@ MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
return MadeChange;
}
-void MachineJumpTableInfo::print(std::ostream &OS) const {
+void MachineJumpTableInfo::print(raw_ostream &OS) const {
// FIXME: this is lame, maybe we could print out the MBB numbers or something
// like {1, 2, 4, 5, 3, 0}
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
@@ -530,7 +556,7 @@ void MachineJumpTableInfo::print(std::ostream &OS) const {
}
}
-void MachineJumpTableInfo::dump() const { print(*cerr.stream()); }
+void MachineJumpTableInfo::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
@@ -539,10 +565,17 @@ void MachineJumpTableInfo::dump() const { print(*cerr.stream()); }
const Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
+ return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
+
+unsigned MachineConstantPoolEntry::getRelocationInfo() const {
+ if (isMachineConstantPoolEntry())
+ return Val.MachineCPVal->getRelocationInfo();
+ return Val.ConstVal->getRelocationInfo();
+}
+
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
diff --git a/lib/CodeGen/MachineFunctionAnalysis.cpp b/lib/CodeGen/MachineFunctionAnalysis.cpp
new file mode 100644
index 0000000..56294d9
--- /dev/null
+++ b/lib/CodeGen/MachineFunctionAnalysis.cpp
@@ -0,0 +1,50 @@
+//===-- MachineFunctionAnalysis.cpp ---------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the definitions of the MachineFunctionAnalysis members.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineFunction.h"
+using namespace llvm;
+
+// Register this pass with PassInfo directly to avoid having to define
+// a default constructor.
+static PassInfo
+X("Machine Function Analysis", "machine-function-analysis",
+ intptr_t(&MachineFunctionAnalysis::ID), 0,
+ /*CFGOnly=*/false, /*is_analysis=*/true);
+
+char MachineFunctionAnalysis::ID = 0;
+
+MachineFunctionAnalysis::MachineFunctionAnalysis(TargetMachine &tm,
+ CodeGenOpt::Level OL) :
+ FunctionPass(&ID), TM(tm), OptLevel(OL), MF(0) {
+}
+
+MachineFunctionAnalysis::~MachineFunctionAnalysis() {
+ releaseMemory();
+ assert(!MF && "MachineFunctionAnalysis left initialized!");
+}
+
+bool MachineFunctionAnalysis::runOnFunction(Function &F) {
+ assert(!MF && "MachineFunctionAnalysis already initialized!");
+ MF = new MachineFunction(&F, TM);
+ return false;
+}
+
+void MachineFunctionAnalysis::releaseMemory() {
+ delete MF;
+ MF = 0;
+}
+
+void MachineFunctionAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+}
diff --git a/lib/CodeGen/MachineFunctionPass.cpp b/lib/CodeGen/MachineFunctionPass.cpp
new file mode 100644
index 0000000..2f8d4c9
--- /dev/null
+++ b/lib/CodeGen/MachineFunctionPass.cpp
@@ -0,0 +1,50 @@
+//===-- MachineFunctionPass.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the definitions of the MachineFunctionPass members.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Function.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+using namespace llvm;
+
+bool MachineFunctionPass::runOnFunction(Function &F) {
+ // Do not codegen any 'available_externally' functions at all, they have
+ // definitions outside the translation unit.
+ if (F.hasAvailableExternallyLinkage())
+ return false;
+
+ MachineFunction &MF = getAnalysis<MachineFunctionAnalysis>().getMF();
+ return runOnMachineFunction(MF);
+}
+
+void MachineFunctionPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineFunctionAnalysis>();
+ AU.addPreserved<MachineFunctionAnalysis>();
+
+ // MachineFunctionPass preserves all LLVM IR passes, but there's no
+ // high-level way to express this. Instead, just list a bunch of
+ // passes explicitly. This does not include setPreservesCFG,
+ // because CodeGen overloads that to mean preserving the MachineBasicBlock
+ // CFG in addition to the LLVM IR CFG.
+ AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved("scalar-evolution");
+ AU.addPreserved("iv-users");
+ AU.addPreserved("memdep");
+ AU.addPreserved("live-values");
+ AU.addPreserved("domtree");
+ AU.addPreserved("domfrontier");
+ AU.addPreserved("loops");
+ AU.addPreserved("lda");
+
+ FunctionPass::getAnalysisUsage(AU);
+}
diff --git a/lib/CodeGen/MachineInstr.cpp b/lib/CodeGen/MachineInstr.cpp
index d44305f..cbe5c7c 100644
--- a/lib/CodeGen/MachineInstr.cpp
+++ b/lib/CodeGen/MachineInstr.cpp
@@ -15,17 +15,20 @@
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
#include "llvm/Value.h"
+#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/FoldingSet.h"
using namespace llvm;
@@ -156,7 +159,7 @@ bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
return false;
switch (getType()) {
- default: assert(0 && "Unrecognized operand type");
+ default: llvm_unreachable("Unrecognized operand type");
case MachineOperand::MO_Register:
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
getSubReg() == Other.getSubReg();
@@ -182,11 +185,6 @@ bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
/// print - Print the specified machine operand.
///
-void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const {
- raw_os_ostream RawOS(OS);
- print(RawOS, TM);
-}
-
void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
switch (getType()) {
case MachineOperand::MO_Register:
@@ -242,7 +240,7 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
OS << getImm();
break;
case MachineOperand::MO_FPImmediate:
- if (getFPImm()->getType() == Type::FloatTy)
+ if (getFPImm()->getType()->isFloatTy())
OS << getFPImm()->getValueAPF().convertToFloat();
else
OS << getFPImm()->getValueAPF().convertToDouble();
@@ -274,7 +272,7 @@ void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
OS << '>';
break;
default:
- assert(0 && "Unrecognized operand type");
+ llvm_unreachable("Unrecognized operand type");
}
if (unsigned TF = getTargetFlags())
@@ -289,7 +287,7 @@ MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
int64_t o, uint64_t s, unsigned int a)
: Offset(o), Size(s), V(v),
Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
- assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
+ assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
assert((isLoad() || isStore()) && "Not a load/store!");
}
@@ -302,6 +300,66 @@ void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(Flags);
}
+void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
+ // The Value and Offset may differ due to CSE. But the flags and size
+ // should be the same.
+ assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
+ assert(MMO->getSize() == getSize() && "Size mismatch!");
+
+ if (MMO->getBaseAlignment() >= getBaseAlignment()) {
+ // Update the alignment value.
+ Flags = (Flags & 7) | ((Log2_32(MMO->getBaseAlignment()) + 1) << 3);
+ // Also update the base and offset, because the new alignment may
+ // not be applicable with the old ones.
+ V = MMO->getValue();
+ Offset = MMO->getOffset();
+ }
+}
+
+/// getAlignment - Return the minimum known alignment in bytes of the
+/// actual memory reference.
+uint64_t MachineMemOperand::getAlignment() const {
+ return MinAlign(getBaseAlignment(), getOffset());
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
+ assert((MMO.isLoad() || MMO.isStore()) &&
+ "SV has to be a load, store or both.");
+
+ if (MMO.isVolatile())
+ OS << "Volatile ";
+
+ if (MMO.isLoad())
+ OS << "LD";
+ if (MMO.isStore())
+ OS << "ST";
+ OS << MMO.getSize();
+
+ // Print the address information.
+ OS << "[";
+ if (!MMO.getValue())
+ OS << "<unknown>";
+ else
+ WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
+
+ // If the alignment of the memory reference itself differs from the alignment
+ // of the base pointer, print the base alignment explicitly, next to the base
+ // pointer.
+ if (MMO.getBaseAlignment() != MMO.getAlignment())
+ OS << "(align=" << MMO.getBaseAlignment() << ")";
+
+ if (MMO.getOffset() != 0)
+ OS << "+" << MMO.getOffset();
+ OS << "]";
+
+ // Print the alignment of the reference.
+ if (MMO.getBaseAlignment() != MMO.getAlignment() ||
+ MMO.getBaseAlignment() != MMO.getSize())
+ OS << "(align=" << MMO.getAlignment() << ")";
+
+ return OS;
+}
+
//===----------------------------------------------------------------------===//
// MachineInstr Implementation
//===----------------------------------------------------------------------===//
@@ -309,7 +367,8 @@ void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
/// TID NULL and no operands.
MachineInstr::MachineInstr()
- : TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
+ : TID(0), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
+ Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
// Make sure that we get added to a machine basicblock
LeakDetector::addGarbageObject(this);
}
@@ -328,7 +387,7 @@ void MachineInstr::addImplicitDefUseOperands() {
/// TargetInstrDesc or the numOperands if it is not zero. (for
/// instructions with variable number of operands).
MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
- : TID(&tid), NumImplicitOps(0), Parent(0),
+ : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
debugLoc(DebugLoc::getUnknownLoc()) {
if (!NoImp && TID->getImplicitDefs())
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
@@ -346,7 +405,8 @@ MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
/// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
bool NoImp)
- : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
+ : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
+ Parent(0), debugLoc(dl) {
if (!NoImp && TID->getImplicitDefs())
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
NumImplicitOps++;
@@ -365,7 +425,7 @@ MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
/// basic block.
///
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
- : TID(&tid), NumImplicitOps(0), Parent(0),
+ : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0), Parent(0),
debugLoc(DebugLoc::getUnknownLoc()) {
assert(MBB && "Cannot use inserting ctor with null basic block!");
if (TID->ImplicitDefs)
@@ -385,7 +445,8 @@ MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
///
MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
const TargetInstrDesc &tid)
- : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
+ : TID(&tid), NumImplicitOps(0), MemRefs(0), MemRefsEnd(0),
+ Parent(0), debugLoc(dl) {
assert(MBB && "Cannot use inserting ctor with null basic block!");
if (TID->ImplicitDefs)
for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
@@ -403,8 +464,9 @@ MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
/// MachineInstr ctor - Copies MachineInstr arg exactly
///
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
- : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
- debugLoc(MI.getDebugLoc()) {
+ : TID(&MI.getDesc()), NumImplicitOps(0),
+ MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
+ Parent(0), debugLoc(MI.getDebugLoc()) {
Operands.reserve(MI.getNumOperands());
// Add operands
@@ -412,11 +474,6 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
addOperand(MI.getOperand(i));
NumImplicitOps = MI.NumImplicitOps;
- // Add memory operands.
- for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
- j = MI.memoperands_end(); i != j; ++i)
- addMemOperand(MF, *i);
-
// Set parent to null.
Parent = 0;
@@ -425,8 +482,6 @@ MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
MachineInstr::~MachineInstr() {
LeakDetector::removeGarbageObject(this);
- assert(MemOperands.empty() &&
- "MachineInstr being deleted with live memoperands!");
#ifndef NDEBUG
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
@@ -587,18 +642,24 @@ void MachineInstr::RemoveOperand(unsigned OpNo) {
}
}
-/// addMemOperand - Add a MachineMemOperand to the machine instruction,
-/// referencing arbitrary storage.
+/// addMemOperand - Add a MachineMemOperand to the machine instruction.
+/// This function should be used only occasionally. The setMemRefs function
+/// is the primary method for setting up a MachineInstr's MemRefs list.
void MachineInstr::addMemOperand(MachineFunction &MF,
- const MachineMemOperand &MO) {
- MemOperands.push_back(MO);
-}
+ MachineMemOperand *MO) {
+ mmo_iterator OldMemRefs = MemRefs;
+ mmo_iterator OldMemRefsEnd = MemRefsEnd;
-/// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
-void MachineInstr::clearMemOperands(MachineFunction &MF) {
- MemOperands.clear();
-}
+ size_t NewNum = (MemRefsEnd - MemRefs) + 1;
+ mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
+ mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
+
+ std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
+ NewMemRefs[NewNum - 1] = MO;
+ MemRefs = NewMemRefs;
+ MemRefsEnd = NewMemRefsEnd;
+}
/// removeFromParent - This method unlinks 'this' from the containing basic
/// block, and returns it, but does not delete it.
@@ -657,7 +718,7 @@ bool MachineInstr::isDebugLabel() const {
}
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
-/// the specific register or -1 if it is not found. It further tightening
+/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
const TargetRegisterInfo *TRI) const {
@@ -731,7 +792,9 @@ isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
unsigned DefPart = 0;
for (unsigned i = 1, e = getNumOperands(); i < e; ) {
const MachineOperand &FMO = getOperand(i);
- assert(FMO.isImm());
+ // After the normal asm operands there may be additional imp-def regs.
+ if (!FMO.isImm())
+ return false;
// Skip over this def.
unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
unsigned PrevDef = i + 1;
@@ -782,16 +845,22 @@ isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
const MachineOperand &MO = getOperand(UseOpIdx);
if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
return false;
- int FlagIdx = UseOpIdx - 1;
- if (FlagIdx < 1)
- return false;
- while (!getOperand(FlagIdx).isImm()) {
- if (--FlagIdx == 0)
+
+ // Find the flag operand corresponding to UseOpIdx
+ unsigned FlagIdx, NumOps=0;
+ for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
+ const MachineOperand &UFMO = getOperand(FlagIdx);
+ // After the normal asm operands there may be additional imp-def regs.
+ if (!UFMO.isImm())
return false;
+ NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
+ assert(NumOps < getNumOperands() && "Invalid inline asm flag");
+ if (UseOpIdx < FlagIdx+NumOps+1)
+ break;
}
- const MachineOperand &UFMO = getOperand(FlagIdx);
- if (FlagIdx + InlineAsm::getNumOperandRegisters(UFMO.getImm()) < UseOpIdx)
+ if (FlagIdx >= UseOpIdx)
return false;
+ const MachineOperand &UFMO = getOperand(FlagIdx);
unsigned DefNo;
if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
if (!DefOpIdx)
@@ -864,7 +933,8 @@ void MachineInstr::copyPredicates(const MachineInstr *MI) {
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
- bool &SawStore) const {
+ bool &SawStore,
+ AliasAnalysis *AA) const {
// Ignore stuff that we obviously can't move.
if (TID->mayStore() || TID->isCall()) {
SawStore = true;
@@ -878,9 +948,9 @@ bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
// destination. The check for isInvariantLoad gives the targe the chance to
// classify the load as always returning a constant, e.g. a constant pool
// load.
- if (TID->mayLoad() && !TII->isInvariantLoad(this))
+ if (TID->mayLoad() && !isInvariantLoad(AA))
// Otherwise, this is a real load. If there is a store between the load and
- // end of block, or if the laod is volatile, we can't move it.
+ // end of block, or if the load is volatile, we can't move it.
return !SawStore && !hasVolatileMemoryRef();
return true;
@@ -889,11 +959,11 @@ bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
/// isSafeToReMat - Return true if it's safe to rematerialize the specified
/// instruction which defined the specified register instead of copying it.
bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
- unsigned DstReg) const {
+ unsigned DstReg,
+ AliasAnalysis *AA) const {
bool SawStore = false;
- if (!getDesc().isRematerializable() ||
- !TII->isTriviallyReMaterializable(this) ||
- !isSafeToMove(TII, SawStore))
+ if (!TII->isTriviallyReMaterializable(this, AA) ||
+ !isSafeToMove(TII, SawStore, AA))
return false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
@@ -930,21 +1000,55 @@ bool MachineInstr::hasVolatileMemoryRef() const {
return true;
// Check the memory reference information for volatile references.
- for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
- E = memoperands_end(); I != E; ++I)
- if (I->isVolatile())
+ for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
+ if ((*I)->isVolatile())
return true;
return false;
}
-void MachineInstr::dump() const {
- cerr << " " << *this;
+/// isInvariantLoad - Return true if this instruction is loading from a
+/// location whose value is invariant across the function. For example,
+/// loading a value from the constant pool or from from the argument area
+/// of a function if it does not change. This should only return true of
+/// *all* loads the instruction does are invariant (if it does multiple loads).
+bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
+ // If the instruction doesn't load at all, it isn't an invariant load.
+ if (!TID->mayLoad())
+ return false;
+
+ // If the instruction has lost its memoperands, conservatively assume that
+ // it may not be an invariant load.
+ if (memoperands_empty())
+ return false;
+
+ const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
+
+ for (mmo_iterator I = memoperands_begin(),
+ E = memoperands_end(); I != E; ++I) {
+ if ((*I)->isVolatile()) return false;
+ if ((*I)->isStore()) return false;
+
+ if (const Value *V = (*I)->getValue()) {
+ // A load from a constant PseudoSourceValue is invariant.
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
+ if (PSV->isConstant(MFI))
+ continue;
+ // If we have an AliasAnalysis, ask it whether the memory is constant.
+ if (AA && AA->pointsToConstantMemory(V))
+ continue;
+ }
+
+ // Otherwise assume conservatively.
+ return false;
+ }
+
+ // Everything checks out.
+ return true;
}
-void MachineInstr::print(std::ostream &OS, const TargetMachine *TM) const {
- raw_os_ostream RawOS(OS);
- print(RawOS, TM);
+void MachineInstr::dump() const {
+ errs() << " " << *this;
}
void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
@@ -967,46 +1071,23 @@ void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
if (!memoperands_empty()) {
OS << ", Mem:";
- for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
- e = memoperands_end(); i != e; ++i) {
- const MachineMemOperand &MRO = *i;
- const Value *V = MRO.getValue();
-
- assert((MRO.isLoad() || MRO.isStore()) &&
- "SV has to be a load, store or both.");
-
- if (MRO.isVolatile())
- OS << "Volatile ";
-
- if (MRO.isLoad())
- OS << "LD";
- if (MRO.isStore())
- OS << "ST";
-
- OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
-
- if (!V)
- OS << "<unknown>";
- else if (!V->getName().empty())
- OS << V->getName();
- else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
- PSV->print(OS);
- } else
- OS << V;
-
- OS << " + " << MRO.getOffset() << "]";
+ for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
+ i != e; ++i) {
+ OS << **i;
+ if (next(i) != e)
+ OS << " ";
}
}
if (!debugLoc.isUnknown()) {
const MachineFunction *MF = getParent()->getParent();
DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
- DICompileUnit CU(DLT.CompileUnit);
- std::string Dir, Fn;
- OS << " [dbg: "
- << CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
- << DLT.Line << ","
- << DLT.Col << "]";
+ DICompileUnit CU(DLT.Scope);
+ if (!CU.isNull())
+ OS << " [dbg: "
+ << CU.getDirectory() << '/' << CU.getFilename() << ","
+ << DLT.Line << ","
+ << DLT.Col << "]";
}
OS << "\n";
@@ -1021,7 +1102,7 @@ bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
- if (!MO.isReg() || !MO.isUse())
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
@@ -1032,6 +1113,9 @@ bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
if (MO.isKill())
// The register is already marked kill.
return true;
+ if (isPhysReg && isRegTiedToDefOperand(i))
+ // Two-address uses of physregs must not be marked kill.
+ return true;
MO.setIsKill();
Found = true;
}
diff --git a/lib/CodeGen/MachineLICM.cpp b/lib/CodeGen/MachineLICM.cpp
index aaa4de4..f92ddb2 100644
--- a/lib/CodeGen/MachineLICM.cpp
+++ b/lib/CodeGen/MachineLICM.cpp
@@ -28,11 +28,12 @@
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -43,8 +44,11 @@ namespace {
class VISIBILITY_HIDDEN MachineLICM : public MachineFunctionPass {
const TargetMachine *TM;
const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ BitVector AllocatableSet;
// Various analyses that we use...
+ AliasAnalysis *AA; // Alias analysis info.
MachineLoopInfo *LI; // Current MachineLoopInfo
MachineDominatorTree *DT; // Machine dominator tree for the cur loop
MachineRegisterInfo *RegInfo; // Machine register information
@@ -70,6 +74,7 @@ namespace {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<AliasAnalysis>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
@@ -126,20 +131,19 @@ static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
/// loop.
///
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
- const Function *F = MF.getFunction();
- if (F->hasFnAttr(Attribute::OptimizeForSize))
- return false;
-
- DOUT << "******** Machine LICM ********\n";
+ DEBUG(errs() << "******** Machine LICM ********\n");
Changed = false;
TM = &MF.getTarget();
TII = TM->getInstrInfo();
+ TRI = TM->getRegisterInfo();
RegInfo = &MF.getRegInfo();
+ AllocatableSet = TRI->getAllocatableSet(MF);
// Get our Loop information...
LI = &getAnalysis<MachineLoopInfo>();
DT = &getAnalysis<MachineDominatorTree>();
+ AA = &getAnalysis<AliasAnalysis>();
for (MachineLoopInfo::iterator
I = LI->begin(), E = LI->end(); I != E; ++I) {
@@ -210,7 +214,7 @@ bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
- if (!TII->isInvariantLoad(&I))
+ if (!I.isInvariantLoad(AA))
// FIXME: we should be able to sink loads with no other side effects if
// there is nothing that can change memory from here until the end of
// block. This is a trivial form of alias analysis.
@@ -218,28 +222,28 @@ bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
}
DEBUG({
- DOUT << "--- Checking if we can hoist " << I;
+ errs() << "--- Checking if we can hoist " << I;
if (I.getDesc().getImplicitUses()) {
- DOUT << " * Instruction has implicit uses:\n";
+ errs() << " * Instruction has implicit uses:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
*ImpUses; ++ImpUses)
- DOUT << " -> " << TRI->getName(*ImpUses) << "\n";
+ errs() << " -> " << TRI->getName(*ImpUses) << "\n";
}
if (I.getDesc().getImplicitDefs()) {
- DOUT << " * Instruction has implicit defines:\n";
+ errs() << " * Instruction has implicit defines:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
*ImpDefs; ++ImpDefs)
- DOUT << " -> " << TRI->getName(*ImpDefs) << "\n";
+ errs() << " -> " << TRI->getName(*ImpDefs) << "\n";
}
});
if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
- DOUT << "Cannot hoist with implicit defines or uses\n";
+ DEBUG(errs() << "Cannot hoist with implicit defines or uses\n");
return false;
}
@@ -254,8 +258,30 @@ bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
if (Reg == 0) continue;
// Don't hoist an instruction that uses or defines a physical register.
- if (TargetRegisterInfo::isPhysicalRegister(Reg))
- return false;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!RegInfo->def_empty(Reg))
+ return false;
+ if (AllocatableSet.test(Reg))
+ return false;
+ // Check for a def among the register's aliases too.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (!RegInfo->def_empty(AliasReg))
+ return false;
+ if (AllocatableSet.test(AliasReg))
+ return false;
+ }
+ // Otherwise it's safe to move.
+ continue;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return false;
+ }
+ }
if (!MO.isUse())
continue;
@@ -291,13 +317,10 @@ bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
return false;
- const TargetInstrDesc &TID = MI.getDesc();
-
// FIXME: For now, only hoist re-materilizable instructions. LICM will
// increase register pressure. We want to make sure it doesn't increase
// spilling.
- if (!TID.mayLoad() && (!TID.isRematerializable() ||
- !TII->isTriviallyReMaterializable(&MI)))
+ if (!TII->isTriviallyReMaterializable(&MI, AA))
return false;
// If result(s) of this instruction is used by PHIs, then don't hoist it.
@@ -355,14 +378,14 @@ void MachineLICM::Hoist(MachineInstr &MI) {
// Now move the instructions to the predecessor, inserting it before any
// terminator instructions.
DEBUG({
- DOUT << "Hoisting " << MI;
+ errs() << "Hoisting " << MI;
if (CurPreheader->getBasicBlock())
- DOUT << " to MachineBasicBlock "
- << CurPreheader->getBasicBlock()->getName();
+ errs() << " to MachineBasicBlock "
+ << CurPreheader->getBasicBlock()->getName();
if (MI.getParent()->getBasicBlock())
- DOUT << " from MachineBasicBlock "
- << MI.getParent()->getBasicBlock()->getName();
- DOUT << "\n";
+ errs() << " from MachineBasicBlock "
+ << MI.getParent()->getBasicBlock()->getName();
+ errs() << "\n";
});
// Look for opportunity to CSE the hoisted instruction.
@@ -374,8 +397,7 @@ void MachineLICM::Hoist(MachineInstr &MI) {
if (CI != CSEMap.end()) {
const MachineInstr *Dup = LookForDuplicate(&MI, CI->second, RegInfo);
if (Dup) {
- DOUT << "CSEing " << MI;
- DOUT << " with " << *Dup;
+ DEBUG(errs() << "CSEing " << MI << " with " << *Dup);
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isDef())
diff --git a/lib/CodeGen/MachineLoopInfo.cpp b/lib/CodeGen/MachineLoopInfo.cpp
index ff56f4d..2da8e37 100644
--- a/lib/CodeGen/MachineLoopInfo.cpp
+++ b/lib/CodeGen/MachineLoopInfo.cpp
@@ -19,8 +19,12 @@
#include "llvm/CodeGen/Passes.h"
using namespace llvm;
-TEMPLATE_INSTANTIATION(class LoopBase<MachineBasicBlock>);
-TEMPLATE_INSTANTIATION(class LoopInfoBase<MachineBasicBlock>);
+#define MLB class LoopBase<MachineBasicBlock, MachineLoop>
+TEMPLATE_INSTANTIATION(MLB);
+#undef MLB
+#define MLIB class LoopInfoBase<MachineBasicBlock, MachineLoop>
+TEMPLATE_INSTANTIATION(MLIB);
+#undef MLIB
char MachineLoopInfo::ID = 0;
static RegisterPass<MachineLoopInfo>
@@ -37,4 +41,5 @@ bool MachineLoopInfo::runOnMachineFunction(MachineFunction &) {
void MachineLoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
}
diff --git a/lib/CodeGen/MachineModuleInfo.cpp b/lib/CodeGen/MachineModuleInfo.cpp
index 1d8109e..b62803f 100644
--- a/lib/CodeGen/MachineModuleInfo.cpp
+++ b/lib/CodeGen/MachineModuleInfo.cpp
@@ -23,7 +23,7 @@
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Support/Dwarf.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
using namespace llvm::dwarf;
@@ -32,23 +32,23 @@ static RegisterPass<MachineModuleInfo>
X("machinemoduleinfo", "Module Information");
char MachineModuleInfo::ID = 0;
+// Out of line virtual method.
+MachineModuleInfoImpl::~MachineModuleInfoImpl() {}
+
//===----------------------------------------------------------------------===//
-
+
MachineModuleInfo::MachineModuleInfo()
: ImmutablePass(&ID)
-, LabelIDList()
-, FrameMoves()
-, LandingPads()
-, Personalities()
+, ObjFileMMI(0)
, CallsEHReturn(0)
, CallsUnwindInit(0)
-, DbgInfoAvailable(false)
-{
- // Always emit "no personality" info
+, DbgInfoAvailable(false) {
+ // Always emit some info, by default "no personality" info.
Personalities.push_back(NULL);
}
-MachineModuleInfo::~MachineModuleInfo() {
+MachineModuleInfo::~MachineModuleInfo() {
+ delete ObjFileMMI;
}
/// doInitialization - Initialize the state for a new module.
@@ -63,18 +63,12 @@ bool MachineModuleInfo::doFinalization() {
return false;
}
-/// BeginFunction - Begin gathering function meta information.
-///
-void MachineModuleInfo::BeginFunction(MachineFunction *MF) {
- // Coming soon.
-}
-
/// EndFunction - Discard function meta information.
///
void MachineModuleInfo::EndFunction() {
// Clean up frame info.
FrameMoves.clear();
-
+
// Clean up exception info.
LandingPads.clear();
TypeInfos.clear();
@@ -82,12 +76,16 @@ void MachineModuleInfo::EndFunction() {
FilterEnds.clear();
CallsEHReturn = 0;
CallsUnwindInit = 0;
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ VariableDbgInfo.clear();
+#endif
}
/// AnalyzeModule - Scan the module for global debug information.
///
void MachineModuleInfo::AnalyzeModule(Module &M) {
- // Insert functions in the llvm.used array into UsedFunctions.
+ // Insert functions in the llvm.used array (but not llvm.compiler.used) into
+ // UsedFunctions.
GlobalVariable *GV = M.getGlobalVariable("llvm.used");
if (!GV || !GV->hasInitializer()) return;
@@ -95,12 +93,10 @@ void MachineModuleInfo::AnalyzeModule(Module &M) {
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (InitList == 0) return;
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InitList->getOperand(i)))
- if (CE->getOpcode() == Instruction::BitCast)
- if (Function *F = dyn_cast<Function>(CE->getOperand(0)))
- UsedFunctions.insert(F);
- }
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
+ if (Function *F =
+ dyn_cast<Function>(InitList->getOperand(i)->stripPointerCasts()))
+ UsedFunctions.insert(F);
}
//===-EH-------------------------------------------------------------------===//
@@ -115,7 +111,7 @@ LandingPadInfo &MachineModuleInfo::getOrCreateLandingPadInfo
if (LP.LandingPadBlock == LandingPad)
return LP;
}
-
+
LandingPads.push_back(LandingPadInfo(LandingPad));
return LandingPads[N];
}
@@ -134,7 +130,7 @@ void MachineModuleInfo::addInvoke(MachineBasicBlock *LandingPad,
unsigned MachineModuleInfo::addLandingPad(MachineBasicBlock *LandingPad) {
unsigned LandingPadLabel = NextLabelID();
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
- LP.LandingPadLabel = LandingPadLabel;
+ LP.LandingPadLabel = LandingPadLabel;
return LandingPadLabel;
}
@@ -148,8 +144,13 @@ void MachineModuleInfo::addPersonality(MachineBasicBlock *LandingPad,
for (unsigned i = 0; i < Personalities.size(); ++i)
if (Personalities[i] == Personality)
return;
-
- Personalities.push_back(Personality);
+
+ // If this is the first personality we're adding go
+ // ahead and add it at the beginning.
+ if (Personalities[0] == NULL)
+ Personalities[0] = Personality;
+ else
+ Personalities.push_back(Personality);
}
/// addCatchTypeInfo - Provide the catch typeinfo for a landing pad.
@@ -224,7 +225,7 @@ void MachineModuleInfo::TidyLandingPads() {
}
}
-/// getTypeIDFor - Return the type id for the specified typeinfo. This is
+/// getTypeIDFor - Return the type id for the specified typeinfo. This is
/// function wide.
unsigned MachineModuleInfo::getTypeIDFor(GlobalVariable *TI) {
for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
@@ -273,24 +274,24 @@ Function *MachineModuleInfo::getPersonality() const {
}
/// getPersonalityIndex - Return unique index for current personality
-/// function. NULL personality function should always get zero index.
+/// function. NULL/first personality function should always get zero index.
unsigned MachineModuleInfo::getPersonalityIndex() const {
const Function* Personality = NULL;
-
+
// Scan landing pads. If there is at least one non-NULL personality - use it.
for (unsigned i = 0; i != LandingPads.size(); ++i)
if (LandingPads[i].Personality) {
Personality = LandingPads[i].Personality;
break;
}
-
+
for (unsigned i = 0; i < Personalities.size(); ++i) {
if (Personalities[i] == Personality)
return i;
}
- // This should never happen
- assert(0 && "Personality function should be set!");
+ // This will happen if the current personality function is
+ // in the zero index.
return 0;
}
@@ -306,6 +307,7 @@ struct DebugLabelFolder : public MachineFunctionPass {
DebugLabelFolder() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
@@ -321,12 +323,12 @@ bool DebugLabelFolder::runOnMachineFunction(MachineFunction &MF) {
// Get machine module info.
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
if (!MMI) return false;
-
+
// Track if change is made.
bool MadeChange = false;
// No prior label to begin.
unsigned PriorLabel = 0;
-
+
// Iterate through basic blocks.
for (MachineFunction::iterator BB = MF.begin(), E = MF.end();
BB != E; ++BB) {
@@ -336,7 +338,7 @@ bool DebugLabelFolder::runOnMachineFunction(MachineFunction &MF) {
if (I->isDebugLabel() && !MMI->isDbgLabelUsed(I->getOperand(0).getImm())){
// The label ID # is always operand #0, an immediate.
unsigned NextLabel = I->getOperand(0).getImm();
-
+
// If there was an immediate prior label.
if (PriorLabel) {
// Remap the current label to prior label.
@@ -354,15 +356,14 @@ bool DebugLabelFolder::runOnMachineFunction(MachineFunction &MF) {
// No consecutive labels.
PriorLabel = 0;
}
-
+
++I;
}
}
-
+
return MadeChange;
}
FunctionPass *createDebugLabelFoldingPass() { return new DebugLabelFolder(); }
}
-
diff --git a/lib/CodeGen/MachineModuleInfoImpls.cpp b/lib/CodeGen/MachineModuleInfoImpls.cpp
new file mode 100644
index 0000000..7a62929
--- /dev/null
+++ b/lib/CodeGen/MachineModuleInfoImpls.cpp
@@ -0,0 +1,45 @@
+//===-- llvm/CodeGen/MachineModuleInfoImpls.cpp ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements object-file format specific implementations of
+// MachineModuleInfoImpl.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/MC/MCSymbol.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// MachineModuleInfoMachO
+//===----------------------------------------------------------------------===//
+
+// Out of line virtual method.
+void MachineModuleInfoMachO::Anchor() {}
+
+
+static int SortSymbolPair(const void *LHS, const void *RHS) {
+ const MCSymbol *LHSS =
+ ((const std::pair<const MCSymbol*, const MCSymbol*>*)LHS)->first;
+ const MCSymbol *RHSS =
+ ((const std::pair<const MCSymbol*, const MCSymbol*>*)RHS)->first;
+ return LHSS->getName().compare(RHSS->getName());
+}
+
+/// GetSortedStubs - Return the entries from a DenseMap in a deterministic
+/// sorted orer.
+MachineModuleInfoMachO::SymbolListTy
+MachineModuleInfoMachO::GetSortedStubs(const DenseMap<const MCSymbol*,
+ const MCSymbol*> &Map) {
+ MachineModuleInfoMachO::SymbolListTy List(Map.begin(), Map.end());
+ if (!List.empty())
+ qsort(&List[0], List.size(), sizeof(List[0]), SortSymbolPair);
+ return List;
+}
+
diff --git a/lib/CodeGen/MachineRegisterInfo.cpp b/lib/CodeGen/MachineRegisterInfo.cpp
index 544d83a..b31973e 100644
--- a/lib/CodeGen/MachineRegisterInfo.cpp
+++ b/lib/CodeGen/MachineRegisterInfo.cpp
@@ -110,11 +110,9 @@ void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
assert(Reg-TargetRegisterInfo::FirstVirtualRegister < VRegInfo.size() &&
"Invalid vreg!");
- for (reg_iterator I = reg_begin(Reg), E = reg_end(); I != E; ++I) {
- // Since we are in SSA form, we can stop at the first definition.
- if (I.getOperand().isDef())
- return &*I;
- }
+ // Since we are in SSA form, we can use the first definition.
+ if (!def_empty(Reg))
+ return &*def_begin(Reg);
return 0;
}
diff --git a/lib/CodeGen/MachineSink.cpp b/lib/CodeGen/MachineSink.cpp
index 0e18fa7..0f3b33f 100644
--- a/lib/CodeGen/MachineSink.cpp
+++ b/lib/CodeGen/MachineSink.cpp
@@ -7,7 +7,12 @@
//
//===----------------------------------------------------------------------===//
//
-// This pass
+// This pass moves instructions into successor blocks, when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
@@ -15,12 +20,14 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumSunk, "Number of machine instructions sunk");
@@ -29,9 +36,12 @@ namespace {
class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
const TargetMachine *TM;
const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
MachineFunction *CurMF; // Current MachineFunction
MachineRegisterInfo *RegInfo; // Machine register information
- MachineDominatorTree *DT; // Machine dominator tree for the current Loop
+ MachineDominatorTree *DT; // Machine dominator tree
+ AliasAnalysis *AA;
+ BitVector AllocatableSet; // Which physregs are allocatable?
public:
static char ID; // Pass identification
@@ -40,7 +50,9 @@ namespace {
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
@@ -63,10 +75,8 @@ bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Only makes sense for vregs");
- for (MachineRegisterInfo::reg_iterator I = RegInfo->reg_begin(Reg),
- E = RegInfo->reg_end(); I != E; ++I) {
- if (I.getOperand().isDef()) continue; // ignore def.
-
+ for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
+ E = RegInfo->use_end(); I != E; ++I) {
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
@@ -85,13 +95,16 @@ bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
- DOUT << "******** Machine Sinking ********\n";
+ DEBUG(errs() << "******** Machine Sinking ********\n");
CurMF = &MF;
TM = &CurMF->getTarget();
TII = TM->getInstrInfo();
+ TRI = TM->getRegisterInfo();
RegInfo = &CurMF->getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
+ AA = &getAnalysis<AliasAnalysis>();
+ AllocatableSet = TRI->getAllocatableSet(*CurMF);
bool EverMadeChange = false;
@@ -142,7 +155,7 @@ bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// Check if it's safe to move the instruction.
- if (!MI->isSafeToMove(TII, SawStore))
+ if (!MI->isSafeToMove(TII, SawStore, AA))
return false;
// FIXME: This should include support for sinking instructions within the
@@ -151,7 +164,7 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
- // and z only the shrink the live range of x.
+ // and z and only shrink the live range of x.
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
@@ -169,10 +182,26 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
if (Reg == 0) continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- // If this is a physical register use, we can't move it. If it is a def,
- // we can move it, but only if the def is dead.
- if (MO.isUse() || !MO.isDead())
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!RegInfo->def_empty(Reg))
+ return false;
+ if (AllocatableSet.test(Reg))
+ return false;
+ // Check for a def among the register's aliases too.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (!RegInfo->def_empty(AliasReg))
+ return false;
+ if (AllocatableSet.test(AliasReg))
+ return false;
+ }
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
return false;
+ }
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
@@ -232,15 +261,15 @@ bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
if (MI->getParent() == SuccToSinkTo)
return false;
- DEBUG(cerr << "Sink instr " << *MI);
- DEBUG(cerr << "to block " << *SuccToSinkTo);
+ DEBUG(errs() << "Sink instr " << *MI);
+ DEBUG(errs() << "to block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
// FIXME: Split critical edges if not backedges.
if (SuccToSinkTo->pred_size() > 1) {
- DEBUG(cerr << " *** PUNTING: Critical edge found\n");
+ DEBUG(errs() << " *** PUNTING: Critical edge found\n");
return false;
}
diff --git a/lib/CodeGen/MachineVerifier.cpp b/lib/CodeGen/MachineVerifier.cpp
index be1396c..18a3ead 100644
--- a/lib/CodeGen/MachineVerifier.cpp
+++ b/lib/CodeGen/MachineVerifier.cpp
@@ -23,21 +23,23 @@
// the verifier errors.
//===----------------------------------------------------------------------===//
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SmallVector.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
-#include <fstream>
-
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
@@ -53,6 +55,7 @@ namespace {
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF);
@@ -61,7 +64,7 @@ namespace {
const bool allowPhysDoubleDefs;
const char *const OutFileName;
- std::ostream *OS;
+ raw_ostream *OS;
const MachineFunction *MF;
const TargetMachine *TM;
const TargetRegisterInfo *TRI;
@@ -75,7 +78,8 @@ namespace {
BitVector regsReserved;
RegSet regsLive;
- RegVector regsDefined, regsImpDefined, regsDead, regsKilled;
+ RegVector regsDefined, regsDead, regsKilled;
+ RegSet regsLiveInButUnused;
// Add Reg and any sub-registers to RV
void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
@@ -85,14 +89,6 @@ namespace {
RV.push_back(*R);
}
- // Does RS contain any super-registers of Reg?
- bool anySuperRegisters(const RegSet &RS, unsigned Reg) {
- for (const unsigned *R = TRI->getSuperRegisters(Reg); *R; R++)
- if (RS.count(*R))
- return true;
- return false;
- }
-
struct BBInfo {
// Is this MBB reachable from the MF entry point?
bool reachable;
@@ -148,7 +144,7 @@ namespace {
DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
bool isReserved(unsigned Reg) {
- return Reg < regsReserved.size() && regsReserved[Reg];
+ return Reg < regsReserved.size() && regsReserved.test(Reg);
}
void visitMachineFunctionBefore();
@@ -176,21 +172,24 @@ static RegisterPass<MachineVerifier>
MachineVer("machineverifier", "Verify generated machine code");
static const PassInfo *const MachineVerifyID = &MachineVer;
-FunctionPass *
-llvm::createMachineVerifierPass(bool allowPhysDoubleDefs)
-{
+FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
return new MachineVerifier(allowPhysDoubleDefs);
}
-bool
-MachineVerifier::runOnMachineFunction(MachineFunction &MF)
-{
- std::ofstream OutFile;
+bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
+ raw_ostream *OutFile = 0;
if (OutFileName) {
- OutFile.open(OutFileName, std::ios::out | std::ios::app);
- OS = &OutFile;
+ std::string ErrorInfo;
+ OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
+ raw_fd_ostream::F_Append);
+ if (!ErrorInfo.empty()) {
+ errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
+ exit(1);
+ }
+
+ OS = OutFile;
} else {
- OS = cerr.stream();
+ OS = &errs();
}
foundErrors = 0;
@@ -215,51 +214,48 @@ MachineVerifier::runOnMachineFunction(MachineFunction &MF)
}
visitMachineFunctionAfter();
- if (OutFileName)
- OutFile.close();
+ if (OutFile)
+ delete OutFile;
+ else if (foundErrors)
+ llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
- if (foundErrors) {
- cerr << "\nStopping with " << foundErrors << " machine code errors.\n";
- exit(1);
- }
+ // Clean up.
+ regsLive.clear();
+ regsDefined.clear();
+ regsDead.clear();
+ regsKilled.clear();
+ regsLiveInButUnused.clear();
+ MBBInfoMap.clear();
return false; // no changes
}
-void
-MachineVerifier::report(const char *msg, const MachineFunction *MF)
-{
+void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
assert(MF);
- *OS << "\n";
+ *OS << '\n';
if (!foundErrors++)
- MF->print(OS);
+ MF->print(*OS);
*OS << "*** Bad machine code: " << msg << " ***\n"
- << "- function: " << MF->getFunction()->getName() << "\n";
+ << "- function: " << MF->getFunction()->getNameStr() << "\n";
}
-void
-MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB)
-{
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
assert(MBB);
report(msg, MBB->getParent());
- *OS << "- basic block: " << MBB->getBasicBlock()->getName()
+ *OS << "- basic block: " << MBB->getBasicBlock()->getNameStr()
<< " " << (void*)MBB
<< " (#" << MBB->getNumber() << ")\n";
}
-void
-MachineVerifier::report(const char *msg, const MachineInstr *MI)
-{
+void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
assert(MI);
report(msg, MI->getParent());
*OS << "- instruction: ";
- MI->print(OS, TM);
+ MI->print(*OS, TM);
}
-void
-MachineVerifier::report(const char *msg,
- const MachineOperand *MO, unsigned MONum)
-{
+void MachineVerifier::report(const char *msg,
+ const MachineOperand *MO, unsigned MONum) {
assert(MO);
report(msg, MO->getParent());
*OS << "- operand " << MONum << ": ";
@@ -267,9 +263,7 @@ MachineVerifier::report(const char *msg,
*OS << "\n";
}
-void
-MachineVerifier::markReachable(const MachineBasicBlock *MBB)
-{
+void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
BBInfo &MInfo = MBBInfoMap[MBB];
if (!MInfo.reachable) {
MInfo.reachable = true;
@@ -279,16 +273,158 @@ MachineVerifier::markReachable(const MachineBasicBlock *MBB)
}
}
-void
-MachineVerifier::visitMachineFunctionBefore()
-{
+void MachineVerifier::visitMachineFunctionBefore() {
regsReserved = TRI->getReservedRegs(*MF);
+
+ // A sub-register of a reserved register is also reserved
+ for (int Reg = regsReserved.find_first(); Reg>=0;
+ Reg = regsReserved.find_next(Reg)) {
+ for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
+ // FIXME: This should probably be:
+ // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
+ regsReserved.set(*Sub);
+ }
+ }
markReachable(&MF->front());
}
-void
-MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB)
-{
+void MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+
+ // Start with minimal CFG sanity checks.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI != MF->end()) {
+ // Block is not last in function.
+ if (!MBB->isSuccessor(MBBI)) {
+ // Block does not fall through.
+ if (MBB->empty()) {
+ report("MBB doesn't fall through but is empty!", MBB);
+ }
+ }
+ if (TII->BlockHasNoFallThrough(*MBB)) {
+ if (MBB->empty()) {
+ report("TargetInstrInfo says the block has no fall through, but the "
+ "block is empty!", MBB);
+ } else if (!MBB->back().getDesc().isBarrier()) {
+ report("TargetInstrInfo says the block has no fall through, but the "
+ "block does not end in a barrier!", MBB);
+ }
+ }
+ } else {
+ // Block is last in function.
+ if (MBB->empty()) {
+ report("MBB is last in function but is empty!", MBB);
+ }
+ }
+
+ // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
+ TBB, FBB, Cond)) {
+ // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
+ // check whether its answers match up with reality.
+ if (!TBB && !FBB) {
+ // Block falls through to its successor.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actually fall
+ // out the bottom of the function.
+ } else if (MBB->succ_empty()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actuall fall
+ // out of the block.
+ } else if (MBB->succ_size() != 1) {
+ report("MBB exits via unconditional fall-through but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (MBB->succ_begin()[0] != MBBI) {
+ report("MBB exits via unconditional fall-through but its successor "
+ "differs from its CFG successor!", MBB);
+ }
+ if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
+ report("MBB exits via unconditional fall-through but ends with a "
+ "barrier instruction!", MBB);
+ }
+ if (!Cond.empty()) {
+ report("MBB exits via unconditional fall-through but has a condition!",
+ MBB);
+ }
+ } else if (TBB && !FBB && Cond.empty()) {
+ // Block unconditionally branches somewhere.
+ if (MBB->succ_size() != 1) {
+ report("MBB exits via unconditional branch but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (MBB->succ_begin()[0] != TBB) {
+ report("MBB exits via unconditional branch but the CFG "
+ "successor doesn't match the actual successor!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via unconditional branch but doesn't contain "
+ "any instructions!", MBB);
+ } else if (!MBB->back().getDesc().isBarrier()) {
+ report("MBB exits via unconditional branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().getDesc().isTerminator()) {
+ report("MBB exits via unconditional branch but the branch isn't a "
+ "terminator instruction!", MBB);
+ }
+ } else if (TBB && !FBB && !Cond.empty()) {
+ // Block conditionally branches somewhere, otherwise falls through.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ report("MBB conditionally falls through out of function!", MBB);
+ } if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/fall-through but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == MBBI) ||
+ (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == MBBI)) {
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/fall-through but doesn't "
+ "contain any instructions!", MBB);
+ } else if (MBB->back().getDesc().isBarrier()) {
+ report("MBB exits via conditional branch/fall-through but ends with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().getDesc().isTerminator()) {
+ report("MBB exits via conditional branch/fall-through but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ } else if (TBB && FBB) {
+ // Block conditionally branches somewhere, otherwise branches
+ // somewhere else.
+ if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/branch but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == FBB) ||
+ (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == FBB)) {
+ report("MBB exits via conditional branch/branch but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/branch but doesn't "
+ "contain any instructions!", MBB);
+ } else if (!MBB->back().getDesc().isBarrier()) {
+ report("MBB exits via conditional branch/branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().getDesc().isTerminator()) {
+ report("MBB exits via conditional branch/branch but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ if (Cond.empty()) {
+ report("MBB exits via conditinal branch/branch but there's no "
+ "condition!", MBB);
+ }
+ } else {
+ report("AnalyzeBranch returned invalid data!", MBB);
+ }
+ }
+
regsLive.clear();
for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I) {
@@ -300,32 +436,41 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB)
for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
regsLive.insert(*R);
}
+ regsLiveInButUnused = regsLive;
+
+ const MachineFrameInfo *MFI = MF->getFrameInfo();
+ assert(MFI && "Function has no frame info");
+ BitVector PR = MFI->getPristineRegs(MBB);
+ for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
+ regsLive.insert(I);
+ for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
+ regsLive.insert(*R);
+ }
+
regsKilled.clear();
regsDefined.clear();
- regsImpDefined.clear();
}
-void
-MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI)
-{
+void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
const TargetInstrDesc &TI = MI->getDesc();
- if (MI->getNumExplicitOperands() < TI.getNumOperands()) {
+ if (MI->getNumOperands() < TI.getNumOperands()) {
report("Too few operands", MI);
*OS << TI.getNumOperands() << " operands expected, but "
<< MI->getNumExplicitOperands() << " given.\n";
}
- if (!TI.isVariadic()) {
- if (MI->getNumExplicitOperands() > TI.getNumOperands()) {
- report("Too many operands", MI);
- *OS << TI.getNumOperands() << " operands expected, but "
- << MI->getNumExplicitOperands() << " given.\n";
- }
+
+ // Check the MachineMemOperands for basic consistency.
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I) {
+ if ((*I)->isLoad() && !TI.mayLoad())
+ report("Missing mayLoad flag", MI);
+ if ((*I)->isStore() && !TI.mayStore())
+ report("Missing mayStore flag", MI);
}
}
void
-MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
-{
+MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
const MachineInstr *MI = MO->getParent();
const TargetInstrDesc &TI = MI->getDesc();
@@ -337,6 +482,16 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
report("Explicit definition marked as use", MO, MONum);
else if (MO->isImplicit())
report("Explicit definition marked as implicit", MO, MONum);
+ } else if (MONum < TI.getNumOperands()) {
+ if (MO->isReg()) {
+ if (MO->isDef())
+ report("Explicit operand marked as def", MO, MONum);
+ if (MO->isImplicit())
+ report("Explicit operand marked as implicit", MO, MONum);
+ }
+ } else {
+ if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic())
+ report("Extra explicit operand on non-variadic instruction", MO, MONum);
}
switch (MO->getType()) {
@@ -346,18 +501,26 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
return;
// Check Live Variables.
- if (MO->isUse()) {
+ if (MO->isUndef()) {
+ // An <undef> doesn't refer to any register, so just skip it.
+ } else if (MO->isUse()) {
+ regsLiveInButUnused.erase(Reg);
+
if (MO->isKill()) {
addRegWithSubRegs(regsKilled, Reg);
+ // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
+ if (MI->isRegTiedToDefOperand(MONum))
+ report("Illegal kill flag on two-address instruction operand",
+ MO, MONum);
} else {
- // TwoAddress instr modyfying a reg is treated as kill+def.
+ // TwoAddress instr modifying a reg is treated as kill+def.
unsigned defIdx;
if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
MI->getOperand(defIdx).getReg() == Reg)
addRegWithSubRegs(regsKilled, Reg);
}
- // Explicit use of a dead register.
- if (!MO->isImplicit() && !regsLive.count(Reg)) {
+ // Use of a dead register.
+ if (!regsLive.count(Reg)) {
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// Reserved registers may be used even when 'dead'.
if (!isReserved(Reg))
@@ -374,15 +537,13 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
}
}
} else {
+ assert(MO->isDef());
// Register defined.
// TODO: verify that earlyclobber ops are not used.
- if (MO->isImplicit())
- addRegWithSubRegs(regsImpDefined, Reg);
- else
- addRegWithSubRegs(regsDefined, Reg);
-
if (MO->isDead())
addRegWithSubRegs(regsDead, Reg);
+ else
+ addRegWithSubRegs(regsDefined, Reg);
}
// Check register classes.
@@ -401,8 +562,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
}
sr = s;
}
- if (TOI.RegClass) {
- const TargetRegisterClass *DRC = TRI->getRegClass(TOI.RegClass);
+ if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
if (!DRC->contains(sr)) {
report("Illegal physical register for instruction", MO, MONum);
*OS << TRI->getName(sr) << " is not a "
@@ -419,8 +579,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
}
RC = *(RC->subregclasses_begin()+SubIdx);
}
- if (TOI.RegClass) {
- const TargetRegisterClass *DRC = TRI->getRegClass(TOI.RegClass);
+ if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
if (RC != DRC && !RC->hasSuperClass(DRC)) {
report("Illegal virtual register for instruction", MO, MONum);
*OS << "Expected a " << DRC->getName() << " register, but got a "
@@ -431,34 +590,35 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
}
break;
}
- // Can PHI instrs refer to MBBs not in the CFG? X86 and ARM do.
- // case MachineOperand::MO_MachineBasicBlock:
- // if (MI->getOpcode() == TargetInstrInfo::PHI) {
- // if (!MO->getMBB()->isSuccessor(MI->getParent()))
- // report("PHI operand is not in the CFG", MO, MONum);
- // }
- // break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ if (MI->getOpcode() == TargetInstrInfo::PHI) {
+ if (!MO->getMBB()->isSuccessor(MI->getParent()))
+ report("PHI operand is not in the CFG", MO, MONum);
+ }
+ break;
+
default:
break;
}
}
-void
-MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI)
-{
+void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
BBInfo &MInfo = MBBInfoMap[MI->getParent()];
set_union(MInfo.regsKilled, regsKilled);
set_subtract(regsLive, regsKilled);
regsKilled.clear();
- for (RegVector::const_iterator I = regsDefined.begin(),
- E = regsDefined.end(); I != E; ++I) {
+ // Verify that both <def> and <def,dead> operands refer to dead registers.
+ RegVector defs(regsDefined);
+ defs.append(regsDead.begin(), regsDead.end());
+
+ for (RegVector::const_iterator I = defs.begin(), E = defs.end();
+ I != E; ++I) {
if (regsLive.count(*I)) {
if (TargetRegisterInfo::isPhysicalRegister(*I)) {
- // We allow double defines to physical registers with live
- // super-registers.
if (!allowPhysDoubleDefs && !isReserved(*I) &&
- !anySuperRegisters(regsLive, *I)) {
+ !regsLiveInButUnused.count(*I)) {
report("Redefining a live physical register", MI);
*OS << "Register " << TRI->getName(*I)
<< " was defined but already live.\n";
@@ -478,14 +638,12 @@ MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI)
}
}
- set_union(regsLive, regsDefined); regsDefined.clear();
- set_union(regsLive, regsImpDefined); regsImpDefined.clear();
set_subtract(regsLive, regsDead); regsDead.clear();
+ set_union(regsLive, regsDefined); regsDefined.clear();
}
void
-MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB)
-{
+MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
MBBInfoMap[MBB].regsLiveOut = regsLive;
regsLive.clear();
}
@@ -493,9 +651,7 @@ MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB)
// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
-void
-MachineVerifier::calcMaxRegsPassed()
-{
+void MachineVerifier::calcMaxRegsPassed() {
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
// have any vregsPassed.
DenseSet<const MachineBasicBlock*> todo;
@@ -533,9 +689,7 @@ MachineVerifier::calcMaxRegsPassed()
// Calculate the minimum vregsPassed set. These are the registers that always
// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
// been called earlier.
-void
-MachineVerifier::calcMinRegsPassed()
-{
+void MachineVerifier::calcMinRegsPassed() {
DenseSet<const MachineBasicBlock*> todo;
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
MFI != MFE; ++MFI)
@@ -570,9 +724,7 @@ MachineVerifier::calcMinRegsPassed()
// Check PHI instructions at the beginning of MBB. It is assumed that
// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
-void
-MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB)
-{
+void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
DenseSet<const MachineBasicBlock*> seen;
@@ -601,9 +753,7 @@ MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB)
}
}
-void
-MachineVerifier::visitMachineFunctionAfter()
-{
+void MachineVerifier::visitMachineFunctionAfter() {
calcMaxRegsPassed();
// With the maximal set of vregsPassed we can verify dead-in registers.
diff --git a/lib/CodeGen/ObjectCodeEmitter.cpp b/lib/CodeGen/ObjectCodeEmitter.cpp
new file mode 100644
index 0000000..cf05275
--- /dev/null
+++ b/lib/CodeGen/ObjectCodeEmitter.cpp
@@ -0,0 +1,141 @@
+//===-- llvm/CodeGen/ObjectCodeEmitter.cpp -------------------- -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/BinaryObject.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineRelocation.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
+
+//===----------------------------------------------------------------------===//
+// ObjectCodeEmitter Implementation
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+
+ObjectCodeEmitter::ObjectCodeEmitter() : BO(0) {}
+ObjectCodeEmitter::ObjectCodeEmitter(BinaryObject *bo) : BO(bo) {}
+ObjectCodeEmitter::~ObjectCodeEmitter() {}
+
+/// setBinaryObject - set the BinaryObject we are writting to
+void ObjectCodeEmitter::setBinaryObject(BinaryObject *bo) { BO = bo; }
+
+/// emitByte - This callback is invoked when a byte needs to be
+/// written to the data stream, without buffer overflow testing.
+void ObjectCodeEmitter::emitByte(uint8_t B) {
+ BO->emitByte(B);
+}
+
+/// emitWordLE - This callback is invoked when a 32-bit word needs to be
+/// written to the data stream in little-endian format.
+void ObjectCodeEmitter::emitWordLE(uint32_t W) {
+ BO->emitWordLE(W);
+}
+
+/// emitWordBE - This callback is invoked when a 32-bit word needs to be
+/// written to the data stream in big-endian format.
+void ObjectCodeEmitter::emitWordBE(uint32_t W) {
+ BO->emitWordBE(W);
+}
+
+/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
+/// written to the data stream in little-endian format.
+void ObjectCodeEmitter::emitDWordLE(uint64_t W) {
+ BO->emitDWordLE(W);
+}
+
+/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
+/// written to the data stream in big-endian format.
+void ObjectCodeEmitter::emitDWordBE(uint64_t W) {
+ BO->emitDWordBE(W);
+}
+
+/// emitAlignment - Align 'BO' to the necessary alignment boundary.
+void ObjectCodeEmitter::emitAlignment(unsigned Alignment /* 0 */,
+ uint8_t fill /* 0 */) {
+ BO->emitAlignment(Alignment, fill);
+}
+
+/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
+/// written to the data stream.
+void ObjectCodeEmitter::emitULEB128Bytes(uint64_t Value) {
+ BO->emitULEB128Bytes(Value);
+}
+
+/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
+/// written to the data stream.
+void ObjectCodeEmitter::emitSLEB128Bytes(uint64_t Value) {
+ BO->emitSLEB128Bytes(Value);
+}
+
+/// emitString - This callback is invoked when a String needs to be
+/// written to the data stream.
+void ObjectCodeEmitter::emitString(const std::string &String) {
+ BO->emitString(String);
+}
+
+/// getCurrentPCValue - This returns the address that the next emitted byte
+/// will be output to.
+uintptr_t ObjectCodeEmitter::getCurrentPCValue() const {
+ return BO->getCurrentPCOffset();
+}
+
+/// getCurrentPCOffset - Return the offset from the start of the emitted
+/// buffer that we are currently writing to.
+uintptr_t ObjectCodeEmitter::getCurrentPCOffset() const {
+ return BO->getCurrentPCOffset();
+}
+
+/// addRelocation - Whenever a relocatable address is needed, it should be
+/// noted with this interface.
+void ObjectCodeEmitter::addRelocation(const MachineRelocation& relocation) {
+ BO->addRelocation(relocation);
+}
+
+/// StartMachineBasicBlock - This should be called by the target when a new
+/// basic block is about to be emitted. This way the MCE knows where the
+/// start of the block is, and can implement getMachineBasicBlockAddress.
+void ObjectCodeEmitter::StartMachineBasicBlock(MachineBasicBlock *MBB) {
+ if (MBBLocations.size() <= (unsigned)MBB->getNumber())
+ MBBLocations.resize((MBB->getNumber()+1)*2);
+ MBBLocations[MBB->getNumber()] = getCurrentPCOffset();
+}
+
+/// getMachineBasicBlockAddress - Return the address of the specified
+/// MachineBasicBlock, only usable after the label for the MBB has been
+/// emitted.
+uintptr_t
+ObjectCodeEmitter::getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
+ assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
+ MBBLocations[MBB->getNumber()] && "MBB not emitted!");
+ return MBBLocations[MBB->getNumber()];
+}
+
+/// getJumpTableEntryAddress - Return the address of the jump table with index
+/// 'Index' in the function that last called initJumpTableInfo.
+uintptr_t ObjectCodeEmitter::getJumpTableEntryAddress(unsigned Index) const {
+ assert(JTLocations.size() > Index && "JT not emitted!");
+ return JTLocations[Index];
+}
+
+/// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
+/// the constant pool that was last emitted with the emitConstantPool method.
+uintptr_t ObjectCodeEmitter::getConstantPoolEntryAddress(unsigned Index) const {
+ assert(CPLocations.size() > Index && "CP not emitted!");
+ return CPLocations[Index];
+}
+
+/// getConstantPoolEntrySection - Return the section of the 'Index' entry in
+/// the constant pool that was last emitted with the emitConstantPool method.
+uintptr_t ObjectCodeEmitter::getConstantPoolEntrySection(unsigned Index) const {
+ assert(CPSections.size() > Index && "CP not emitted!");
+ return CPSections[Index];
+}
+
+} // end namespace llvm
+
diff --git a/lib/CodeGen/PBQP/AnnotatedGraph.h b/lib/CodeGen/PBQP/AnnotatedGraph.h
new file mode 100644
index 0000000..904061c
--- /dev/null
+++ b/lib/CodeGen/PBQP/AnnotatedGraph.h
@@ -0,0 +1,184 @@
+//===-- AnnotatedGraph.h - Annotated PBQP Graph ----------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Annotated PBQP Graph class. This class is used internally by the PBQP solver
+// to cache information to speed up reduction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
+#define LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
+
+#include "GraphBase.h"
+
+namespace PBQP {
+
+
+template <typename NodeData, typename EdgeData> class AnnotatedEdge;
+
+template <typename NodeData, typename EdgeData>
+class AnnotatedNode : public NodeBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> > {
+private:
+
+ NodeData nodeData;
+
+public:
+
+ AnnotatedNode(const Vector &costs, const NodeData &nodeData) :
+ NodeBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> >(costs),
+ nodeData(nodeData) {}
+
+ NodeData& getNodeData() { return nodeData; }
+ const NodeData& getNodeData() const { return nodeData; }
+
+};
+
+template <typename NodeData, typename EdgeData>
+class AnnotatedEdge : public EdgeBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> > {
+private:
+
+ typedef typename GraphBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> >::NodeIterator
+ NodeIterator;
+
+ EdgeData edgeData;
+
+public:
+
+
+ AnnotatedEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
+ const Matrix &costs, const EdgeData &edgeData) :
+ EdgeBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> >(node1Itr, node2Itr, costs),
+ edgeData(edgeData) {}
+
+ EdgeData& getEdgeData() { return edgeData; }
+ const EdgeData& getEdgeData() const { return edgeData; }
+
+};
+
+template <typename NodeData, typename EdgeData>
+class AnnotatedGraph : public GraphBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> > {
+private:
+
+ typedef GraphBase<AnnotatedNode<NodeData, EdgeData>,
+ AnnotatedEdge<NodeData, EdgeData> > PGraph;
+
+ typedef AnnotatedNode<NodeData, EdgeData> NodeEntry;
+ typedef AnnotatedEdge<NodeData, EdgeData> EdgeEntry;
+
+
+ void copyFrom(const AnnotatedGraph &other) {
+ if (!other.areNodeIDsValid()) {
+ other.assignNodeIDs();
+ }
+ std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
+
+ for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
+ nItr != nEnd; ++nItr) {
+ newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
+ }
+
+ for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
+ eItr != eEnd; ++eItr) {
+
+ unsigned node1ID = other.getNodeID(other.getEdgeNode1(eItr)),
+ node2ID = other.getNodeID(other.getEdgeNode2(eItr));
+
+ addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
+ other.getEdgeCosts(eItr), other.getEdgeData(eItr));
+ }
+
+ }
+
+public:
+
+ typedef typename PGraph::NodeIterator NodeIterator;
+ typedef typename PGraph::ConstNodeIterator ConstNodeIterator;
+ typedef typename PGraph::EdgeIterator EdgeIterator;
+ typedef typename PGraph::ConstEdgeIterator ConstEdgeIterator;
+
+ AnnotatedGraph() {}
+
+ AnnotatedGraph(const AnnotatedGraph &other) {
+ copyFrom(other);
+ }
+
+ AnnotatedGraph& operator=(const AnnotatedGraph &other) {
+ PGraph::clear();
+ copyFrom(other);
+ return *this;
+ }
+
+ NodeIterator addNode(const Vector &costs, const NodeData &data) {
+ return PGraph::addConstructedNode(NodeEntry(costs, data));
+ }
+
+ EdgeIterator addEdge(const NodeIterator &node1Itr,
+ const NodeIterator &node2Itr,
+ const Matrix &costs, const EdgeData &data) {
+ return PGraph::addConstructedEdge(EdgeEntry(node1Itr, node2Itr,
+ costs, data));
+ }
+
+ NodeData& getNodeData(const NodeIterator &nodeItr) {
+ return getNodeEntry(nodeItr).getNodeData();
+ }
+
+ const NodeData& getNodeData(const NodeIterator &nodeItr) const {
+ return getNodeEntry(nodeItr).getNodeData();
+ }
+
+ EdgeData& getEdgeData(const EdgeIterator &edgeItr) {
+ return getEdgeEntry(edgeItr).getEdgeData();
+ }
+
+ const EdgeEntry& getEdgeData(const EdgeIterator &edgeItr) const {
+ return getEdgeEntry(edgeItr).getEdgeData();
+ }
+
+ SimpleGraph toSimpleGraph() const {
+ SimpleGraph g;
+
+ if (!PGraph::areNodeIDsValid()) {
+ PGraph::assignNodeIDs();
+ }
+ std::vector<SimpleGraph::NodeIterator> newNodeItrs(PGraph::getNumNodes());
+
+ for (ConstNodeIterator nItr = PGraph::nodesBegin(),
+ nEnd = PGraph::nodesEnd();
+ nItr != nEnd; ++nItr) {
+
+ newNodeItrs[getNodeID(nItr)] = g.addNode(getNodeCosts(nItr));
+ }
+
+ for (ConstEdgeIterator
+ eItr = PGraph::edgesBegin(), eEnd = PGraph::edgesEnd();
+ eItr != eEnd; ++eItr) {
+
+ unsigned node1ID = getNodeID(getEdgeNode1(eItr)),
+ node2ID = getNodeID(getEdgeNode2(eItr));
+
+ g.addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
+ getEdgeCosts(eItr));
+ }
+
+ return g;
+ }
+
+};
+
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
diff --git a/lib/CodeGen/PBQP/ExhaustiveSolver.h b/lib/CodeGen/PBQP/ExhaustiveSolver.h
new file mode 100644
index 0000000..b2f2e6f
--- /dev/null
+++ b/lib/CodeGen/PBQP/ExhaustiveSolver.h
@@ -0,0 +1,110 @@
+//===-- ExhaustiveSolver.h - Brute Force PBQP Solver -----------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Uses a trivial brute force algorithm to solve a PBQP problem.
+// PBQP is NP-HARD - This solver should only be used for debugging small
+// problems.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
+#define LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
+
+#include "Solver.h"
+
+namespace PBQP {
+
+/// A brute force PBQP solver. This solver takes exponential time. It should
+/// only be used for debugging purposes.
+class ExhaustiveSolverImpl {
+private:
+
+ const SimpleGraph &g;
+
+ PBQPNum getSolutionCost(const Solution &solution) const {
+ PBQPNum cost = 0.0;
+
+ for (SimpleGraph::ConstNodeIterator
+ nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+
+ unsigned nodeId = g.getNodeID(nodeItr);
+
+ cost += g.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
+ }
+
+ for (SimpleGraph::ConstEdgeIterator
+ edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+
+ SimpleGraph::ConstNodeIterator n1 = g.getEdgeNode1Itr(edgeItr),
+ n2 = g.getEdgeNode2Itr(edgeItr);
+ unsigned sol1 = solution.getSelection(g.getNodeID(n1)),
+ sol2 = solution.getSelection(g.getNodeID(n2));
+
+ cost += g.getEdgeCosts(edgeItr)[sol1][sol2];
+ }
+
+ return cost;
+ }
+
+public:
+
+ ExhaustiveSolverImpl(const SimpleGraph &g) : g(g) {}
+
+ Solution solve() const {
+ Solution current(g.getNumNodes(), true), optimal(current);
+
+ PBQPNum bestCost = std::numeric_limits<PBQPNum>::infinity();
+ bool finished = false;
+
+ while (!finished) {
+ PBQPNum currentCost = getSolutionCost(current);
+
+ if (currentCost < bestCost) {
+ optimal = current;
+ bestCost = currentCost;
+ }
+
+ // assume we're done.
+ finished = true;
+
+ for (unsigned i = 0; i < g.getNumNodes(); ++i) {
+ if (current.getSelection(i) ==
+ (g.getNodeCosts(g.getNodeItr(i)).getLength() - 1)) {
+ current.setSelection(i, 0);
+ }
+ else {
+ current.setSelection(i, current.getSelection(i) + 1);
+ finished = false;
+ break;
+ }
+ }
+
+ }
+
+ optimal.setSolutionCost(bestCost);
+
+ return optimal;
+ }
+
+};
+
+class ExhaustiveSolver : public Solver {
+public:
+ ~ExhaustiveSolver() {}
+ Solution solve(const SimpleGraph &g) const {
+ ExhaustiveSolverImpl solver(g);
+ return solver.solve();
+ }
+};
+
+}
+
+#endif // LLVM_CODGEN_PBQP_EXHAUSTIVESOLVER_HPP
diff --git a/lib/CodeGen/PBQP/GraphBase.h b/lib/CodeGen/PBQP/GraphBase.h
new file mode 100644
index 0000000..cc3e017
--- /dev/null
+++ b/lib/CodeGen/PBQP/GraphBase.h
@@ -0,0 +1,582 @@
+//===-- GraphBase.h - Abstract Base PBQP Graph -----------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Base class for PBQP Graphs.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_CODEGEN_PBQP_GRAPHBASE_H
+#define LLVM_CODEGEN_PBQP_GRAPHBASE_H
+
+#include "PBQPMath.h"
+
+#include <list>
+#include <vector>
+
+namespace PBQP {
+
+// UGLY, but I'm not sure there's a good way around this: We need to be able to
+// look up a Node's "adjacent edge list" structure type before the Node type is
+// fully constructed. We can enable this by pushing the choice of data type
+// out into this traits class.
+template <typename Graph>
+class NodeBaseTraits {
+ public:
+ typedef std::list<typename Graph::EdgeIterator> AdjEdgeList;
+ typedef typename AdjEdgeList::iterator AdjEdgeIterator;
+ typedef typename AdjEdgeList::const_iterator ConstAdjEdgeIterator;
+};
+
+/// \brief Base for concrete graph classes. Provides a basic set of graph
+/// operations which are useful for PBQP solvers.
+template <typename NodeEntry, typename EdgeEntry>
+class GraphBase {
+private:
+
+ typedef GraphBase<NodeEntry, EdgeEntry> ThisGraphT;
+
+ typedef std::list<NodeEntry> NodeList;
+ typedef std::list<EdgeEntry> EdgeList;
+
+ NodeList nodeList;
+ unsigned nodeListSize;
+
+ EdgeList edgeList;
+ unsigned edgeListSize;
+
+ GraphBase(const ThisGraphT &other) { abort(); }
+ void operator=(const ThisGraphT &other) { abort(); }
+
+public:
+
+ /// \brief Iterates over the nodes of a graph.
+ typedef typename NodeList::iterator NodeIterator;
+ /// \brief Iterates over the nodes of a const graph.
+ typedef typename NodeList::const_iterator ConstNodeIterator;
+ /// \brief Iterates over the edges of a graph.
+ typedef typename EdgeList::iterator EdgeIterator;
+ /// \brief Iterates over the edges of a const graph.
+ typedef typename EdgeList::const_iterator ConstEdgeIterator;
+
+ /// \brief Iterates over the edges attached to a node.
+ typedef typename NodeBaseTraits<ThisGraphT>::AdjEdgeIterator
+ AdjEdgeIterator;
+
+ /// \brief Iterates over the edges attached to a node in a const graph.
+ typedef typename NodeBaseTraits<ThisGraphT>::ConstAdjEdgeIterator
+ ConstAdjEdgeIterator;
+
+private:
+
+ typedef std::vector<NodeIterator> IDToNodeMap;
+
+ IDToNodeMap idToNodeMap;
+ bool nodeIDsValid;
+
+ void invalidateNodeIDs() {
+ if (nodeIDsValid) {
+ idToNodeMap.clear();
+ nodeIDsValid = false;
+ }
+ }
+
+ template <typename ItrT>
+ bool iteratorInRange(ItrT itr, const ItrT &begin, const ItrT &end) {
+ for (ItrT t = begin; t != end; ++t) {
+ if (itr == t)
+ return true;
+ }
+
+ return false;
+ }
+
+protected:
+
+ GraphBase() : nodeListSize(0), edgeListSize(0), nodeIDsValid(false) {}
+
+ NodeEntry& getNodeEntry(const NodeIterator &nodeItr) { return *nodeItr; }
+ const NodeEntry& getNodeEntry(const ConstNodeIterator &nodeItr) const {
+ return *nodeItr;
+ }
+
+ EdgeEntry& getEdgeEntry(const EdgeIterator &edgeItr) { return *edgeItr; }
+ const EdgeEntry& getEdgeEntry(const ConstEdgeIterator &edgeItr) const {
+ return *edgeItr;
+ }
+
+ NodeIterator addConstructedNode(const NodeEntry &nodeEntry) {
+ ++nodeListSize;
+
+ invalidateNodeIDs();
+
+ NodeIterator newNodeItr = nodeList.insert(nodeList.end(), nodeEntry);
+
+ return newNodeItr;
+ }
+
+ EdgeIterator addConstructedEdge(const EdgeEntry &edgeEntry) {
+
+ assert((findEdge(edgeEntry.getNode1Itr(), edgeEntry.getNode2Itr())
+ == edgeList.end()) && "Attempt to add duplicate edge.");
+
+ ++edgeListSize;
+
+ // Add the edge to the graph.
+ EdgeIterator edgeItr = edgeList.insert(edgeList.end(), edgeEntry);
+
+ // Get a reference to the version in the graph.
+ EdgeEntry &newEdgeEntry = getEdgeEntry(edgeItr);
+
+ // Node entries:
+ NodeEntry &node1Entry = getNodeEntry(newEdgeEntry.getNode1Itr()),
+ &node2Entry = getNodeEntry(newEdgeEntry.getNode2Itr());
+
+ // Sanity check on matrix dimensions.
+ assert((node1Entry.getCosts().getLength() ==
+ newEdgeEntry.getCosts().getRows()) &&
+ (node2Entry.getCosts().getLength() ==
+ newEdgeEntry.getCosts().getCols()) &&
+ "Matrix dimensions do not match cost vector dimensions.");
+
+ // Create links between nodes and edges.
+ newEdgeEntry.setNode1ThisEdgeItr(
+ node1Entry.addAdjEdge(edgeItr));
+ newEdgeEntry.setNode2ThisEdgeItr(
+ node2Entry.addAdjEdge(edgeItr));
+
+ return edgeItr;
+ }
+
+public:
+
+ /// \brief Returns the number of nodes in this graph.
+ unsigned getNumNodes() const { return nodeListSize; }
+
+ /// \brief Returns the number of edges in this graph.
+ unsigned getNumEdges() const { return edgeListSize; }
+
+ /// \brief Return the cost vector for the given node.
+ Vector& getNodeCosts(const NodeIterator &nodeItr) {
+ return getNodeEntry(nodeItr).getCosts();
+ }
+
+ /// \brief Return the cost vector for the give node.
+ const Vector& getNodeCosts(const ConstNodeIterator &nodeItr) const {
+ return getNodeEntry(nodeItr).getCosts();
+ }
+
+ /// \brief Return the degree of the given node.
+ unsigned getNodeDegree(const NodeIterator &nodeItr) const {
+ return getNodeEntry(nodeItr).getDegree();
+ }
+
+ /// \brief Assigns sequential IDs to the nodes, starting at 0, which
+ /// remain valid until the next addition or removal of a node.
+ void assignNodeIDs() {
+ unsigned curID = 0;
+ idToNodeMap.resize(getNumNodes());
+ for (NodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr, ++curID) {
+ getNodeEntry(nodeItr).setID(curID);
+ idToNodeMap[curID] = nodeItr;
+ }
+ nodeIDsValid = true;
+ }
+
+ /// \brief Assigns sequential IDs to the nodes using the ordering of the
+ /// given vector.
+ void assignNodeIDs(const std::vector<NodeIterator> &nodeOrdering) {
+ assert((getNumNodes() == nodeOrdering.size()) &&
+ "Wrong number of nodes in node ordering.");
+ idToNodeMap = nodeOrdering;
+ for (unsigned nodeID = 0; nodeID < idToNodeMap.size(); ++nodeID) {
+ getNodeEntry(idToNodeMap[nodeID]).setID(nodeID);
+ }
+ nodeIDsValid = true;
+ }
+
+ /// \brief Returns true if valid node IDs are assigned, false otherwise.
+ bool areNodeIDsValid() const { return nodeIDsValid; }
+
+ /// \brief Return the numeric ID of the given node.
+ ///
+ /// Calls to this method will result in an assertion failure if there have
+ /// been any node additions or removals since the last call to
+ /// assignNodeIDs().
+ unsigned getNodeID(const ConstNodeIterator &nodeItr) const {
+ assert(nodeIDsValid && "Attempt to retrieve invalid ID.");
+ return getNodeEntry(nodeItr).getID();
+ }
+
+ /// \brief Returns the iterator associated with the given node ID.
+ NodeIterator getNodeItr(unsigned nodeID) {
+ assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
+ return idToNodeMap[nodeID];
+ }
+
+ /// \brief Returns the iterator associated with the given node ID.
+ ConstNodeIterator getNodeItr(unsigned nodeID) const {
+ assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
+ return idToNodeMap[nodeID];
+ }
+
+ /// \brief Removes the given node (and all attached edges) from the graph.
+ void removeNode(const NodeIterator &nodeItr) {
+ assert(iteratorInRange(nodeItr, nodeList.begin(), nodeList.end()) &&
+ "Iterator does not belong to this graph!");
+
+ invalidateNodeIDs();
+
+ NodeEntry &nodeEntry = getNodeEntry(nodeItr);
+
+ // We need to copy this out because it will be destroyed as the edges are
+ // removed.
+ typedef std::vector<EdgeIterator> AdjEdgeList;
+ typedef typename AdjEdgeList::iterator AdjEdgeListItr;
+
+ AdjEdgeList adjEdges;
+ adjEdges.reserve(nodeEntry.getDegree());
+ std::copy(nodeEntry.adjEdgesBegin(), nodeEntry.adjEdgesEnd(),
+ std::back_inserter(adjEdges));
+
+ // Iterate over the copied out edges and remove them from the graph.
+ for (AdjEdgeListItr itr = adjEdges.begin(), end = adjEdges.end();
+ itr != end; ++itr) {
+ removeEdge(*itr);
+ }
+
+ // Erase the node from the nodelist.
+ nodeList.erase(nodeItr);
+ --nodeListSize;
+ }
+
+ NodeIterator nodesBegin() { return nodeList.begin(); }
+ ConstNodeIterator nodesBegin() const { return nodeList.begin(); }
+ NodeIterator nodesEnd() { return nodeList.end(); }
+ ConstNodeIterator nodesEnd() const { return nodeList.end(); }
+
+ AdjEdgeIterator adjEdgesBegin(const NodeIterator &nodeItr) {
+ return getNodeEntry(nodeItr).adjEdgesBegin();
+ }
+
+ ConstAdjEdgeIterator adjEdgesBegin(const ConstNodeIterator &nodeItr) const {
+ return getNodeEntry(nodeItr).adjEdgesBegin();
+ }
+
+ AdjEdgeIterator adjEdgesEnd(const NodeIterator &nodeItr) {
+ return getNodeEntry(nodeItr).adjEdgesEnd();
+ }
+
+ ConstAdjEdgeIterator adjEdgesEnd(const ConstNodeIterator &nodeItr) const {
+ getNodeEntry(nodeItr).adjEdgesEnd();
+ }
+
+ EdgeIterator findEdge(const NodeIterator &node1Itr,
+ const NodeIterator &node2Itr) {
+
+ for (AdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
+ adjEdgeEnd = adjEdgesEnd(node1Itr);
+ adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
+ if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
+ (getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
+ return *adjEdgeItr;
+ }
+ }
+
+ return edgeList.end();
+ }
+
+ ConstEdgeIterator findEdge(const ConstNodeIterator &node1Itr,
+ const ConstNodeIterator &node2Itr) const {
+
+ for (ConstAdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
+ adjEdgeEnd = adjEdgesEnd(node1Itr);
+ adjEdgeItr != adjEdgesEnd; ++adjEdgeItr) {
+ if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
+ (getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
+ return *adjEdgeItr;
+ }
+ }
+
+ return edgeList.end();
+ }
+
+ Matrix& getEdgeCosts(const EdgeIterator &edgeItr) {
+ return getEdgeEntry(edgeItr).getCosts();
+ }
+
+ const Matrix& getEdgeCosts(const ConstEdgeIterator &edgeItr) const {
+ return getEdgeEntry(edgeItr).getCosts();
+ }
+
+ NodeIterator getEdgeNode1Itr(const EdgeIterator &edgeItr) {
+ return getEdgeEntry(edgeItr).getNode1Itr();
+ }
+
+ ConstNodeIterator getEdgeNode1Itr(const ConstEdgeIterator &edgeItr) const {
+ return getEdgeEntry(edgeItr).getNode1Itr();
+ }
+
+ NodeIterator getEdgeNode2Itr(const EdgeIterator &edgeItr) {
+ return getEdgeEntry(edgeItr).getNode2Itr();
+ }
+
+ ConstNodeIterator getEdgeNode2Itr(const ConstEdgeIterator &edgeItr) const {
+ return getEdgeEntry(edgeItr).getNode2Itr();
+ }
+
+ NodeIterator getEdgeOtherNode(const EdgeIterator &edgeItr,
+ const NodeIterator &nodeItr) {
+
+ EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
+ if (nodeItr == edgeEntry.getNode1Itr()) {
+ return edgeEntry.getNode2Itr();
+ }
+ //else
+ return edgeEntry.getNode1Itr();
+ }
+
+ ConstNodeIterator getEdgeOtherNode(const ConstEdgeIterator &edgeItr,
+ const ConstNodeIterator &nodeItr) const {
+
+ const EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
+ if (nodeItr == edgeEntry.getNode1Itr()) {
+ return edgeEntry.getNode2Itr();
+ }
+ //else
+ return edgeEntry.getNode1Itr();
+ }
+
+ void removeEdge(const EdgeIterator &edgeItr) {
+ assert(iteratorInRange(edgeItr, edgeList.begin(), edgeList.end()) &&
+ "Iterator does not belong to this graph!");
+
+ --edgeListSize;
+
+ // Get the edge entry.
+ EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
+
+ // Get the nodes entry.
+ NodeEntry &node1Entry(getNodeEntry(edgeEntry.getNode1Itr())),
+ &node2Entry(getNodeEntry(edgeEntry.getNode2Itr()));
+
+ // Disconnect the edge from the nodes.
+ node1Entry.removeAdjEdge(edgeEntry.getNode1ThisEdgeItr());
+ node2Entry.removeAdjEdge(edgeEntry.getNode2ThisEdgeItr());
+
+ // Remove the edge from the graph.
+ edgeList.erase(edgeItr);
+ }
+
+ EdgeIterator edgesBegin() { return edgeList.begin(); }
+ ConstEdgeIterator edgesBegin() const { return edgeList.begin(); }
+ EdgeIterator edgesEnd() { return edgeList.end(); }
+ ConstEdgeIterator edgesEnd() const { return edgeList.end(); }
+
+ void clear() {
+ nodeList.clear();
+ nodeListSize = 0;
+ edgeList.clear();
+ edgeListSize = 0;
+ idToNodeMap.clear();
+ }
+
+ template <typename OStream>
+ void printDot(OStream &os) const {
+
+ assert(areNodeIDsValid() &&
+ "Cannot print a .dot of a graph unless IDs have been assigned.");
+
+ os << "graph {\n";
+
+ for (ConstNodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+
+ os << " node" << getNodeID(nodeItr) << " [ label=\""
+ << getNodeID(nodeItr) << ": " << getNodeCosts(nodeItr) << "\" ]\n";
+ }
+
+ os << " edge [ len=" << getNumNodes() << " ]\n";
+
+ for (ConstEdgeIterator edgeItr = edgesBegin(), edgeEnd = edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+
+ os << " node" << getNodeID(getEdgeNode1Itr(edgeItr))
+ << " -- node" << getNodeID(getEdgeNode2Itr(edgeItr))
+ << " [ label=\"";
+
+ const Matrix &edgeCosts = getEdgeCosts(edgeItr);
+
+ for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
+ os << edgeCosts.getRowAsVector(i) << "\\n";
+ }
+
+ os << "\" ]\n";
+ }
+
+ os << "}\n";
+ }
+
+ template <typename OStream>
+ void printDot(OStream &os) {
+ if (!areNodeIDsValid()) {
+ assignNodeIDs();
+ }
+
+ const_cast<const ThisGraphT*>(this)->printDot(os);
+ }
+
+ template <typename OStream>
+ void dumpTo(OStream &os) const {
+ typedef ConstNodeIterator ConstNodeID;
+
+ assert(areNodeIDsValid() &&
+ "Cannot dump a graph unless IDs have been assigned.");
+
+ for (ConstNodeIterator nItr = nodesBegin(), nEnd = nodesEnd();
+ nItr != nEnd; ++nItr) {
+ os << getNodeID(nItr) << "\n";
+ }
+
+ unsigned edgeNumber = 1;
+ for (ConstEdgeIterator eItr = edgesBegin(), eEnd = edgesEnd();
+ eItr != eEnd; ++eItr) {
+
+ os << edgeNumber++ << ": { "
+ << getNodeID(getEdgeNode1Itr(eItr)) << ", "
+ << getNodeID(getEdgeNode2Itr(eItr)) << " }\n";
+ }
+
+ }
+
+ template <typename OStream>
+ void dumpTo(OStream &os) {
+ if (!areNodeIDsValid()) {
+ assignNodeIDs();
+ }
+
+ const_cast<const ThisGraphT*>(this)->dumpTo(os);
+ }
+
+};
+
+/// \brief Provides a base from which to derive nodes for GraphBase.
+template <typename NodeImpl, typename EdgeImpl>
+class NodeBase {
+private:
+
+ typedef GraphBase<NodeImpl, EdgeImpl> GraphBaseT;
+ typedef NodeBaseTraits<GraphBaseT> ThisNodeBaseTraits;
+
+public:
+ typedef typename GraphBaseT::EdgeIterator EdgeIterator;
+
+private:
+ typedef typename ThisNodeBaseTraits::AdjEdgeList AdjEdgeList;
+
+ unsigned degree, id;
+ Vector costs;
+ AdjEdgeList adjEdges;
+
+ void operator=(const NodeBase& other) {
+ assert(false && "Can't assign NodeEntrys.");
+ }
+
+public:
+
+ typedef typename ThisNodeBaseTraits::AdjEdgeIterator AdjEdgeIterator;
+ typedef typename ThisNodeBaseTraits::ConstAdjEdgeIterator
+ ConstAdjEdgeIterator;
+
+ NodeBase(const Vector &costs) : degree(0), costs(costs) {
+ assert((costs.getLength() > 0) && "Can't have zero-length cost vector.");
+ }
+
+ Vector& getCosts() { return costs; }
+ const Vector& getCosts() const { return costs; }
+
+ unsigned getDegree() const { return degree; }
+
+ void setID(unsigned id) { this->id = id; }
+ unsigned getID() const { return id; }
+
+ AdjEdgeIterator addAdjEdge(const EdgeIterator &edgeItr) {
+ ++degree;
+ return adjEdges.insert(adjEdges.end(), edgeItr);
+ }
+
+ void removeAdjEdge(const AdjEdgeIterator &adjEdgeItr) {
+ --degree;
+ adjEdges.erase(adjEdgeItr);
+ }
+
+ AdjEdgeIterator adjEdgesBegin() { return adjEdges.begin(); }
+ ConstAdjEdgeIterator adjEdgesBegin() const { return adjEdges.begin(); }
+ AdjEdgeIterator adjEdgesEnd() { return adjEdges.end(); }
+ ConstAdjEdgeIterator adjEdgesEnd() const { return adjEdges.end(); }
+
+};
+
+template <typename NodeImpl, typename EdgeImpl>
+class EdgeBase {
+public:
+ typedef typename GraphBase<NodeImpl, EdgeImpl>::NodeIterator NodeIterator;
+ typedef typename GraphBase<NodeImpl, EdgeImpl>::EdgeIterator EdgeIterator;
+
+ typedef typename NodeImpl::AdjEdgeIterator NodeAdjEdgeIterator;
+
+private:
+
+ NodeIterator node1Itr, node2Itr;
+ NodeAdjEdgeIterator node1ThisEdgeItr, node2ThisEdgeItr;
+ Matrix costs;
+
+ void operator=(const EdgeBase &other) {
+ assert(false && "Can't assign EdgeEntrys.");
+ }
+
+public:
+
+ EdgeBase(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
+ const Matrix &costs) :
+ node1Itr(node1Itr), node2Itr(node2Itr), costs(costs) {
+
+ assert((costs.getRows() > 0) && (costs.getCols() > 0) &&
+ "Can't have zero-dimensioned cost matrices");
+ }
+
+ Matrix& getCosts() { return costs; }
+ const Matrix& getCosts() const { return costs; }
+
+ const NodeIterator& getNode1Itr() const { return node1Itr; }
+ const NodeIterator& getNode2Itr() const { return node2Itr; }
+
+ void setNode1ThisEdgeItr(const NodeAdjEdgeIterator &node1ThisEdgeItr) {
+ this->node1ThisEdgeItr = node1ThisEdgeItr;
+ }
+
+ const NodeAdjEdgeIterator& getNode1ThisEdgeItr() const {
+ return node1ThisEdgeItr;
+ }
+
+ void setNode2ThisEdgeItr(const NodeAdjEdgeIterator &node2ThisEdgeItr) {
+ this->node2ThisEdgeItr = node2ThisEdgeItr;
+ }
+
+ const NodeAdjEdgeIterator& getNode2ThisEdgeItr() const {
+ return node2ThisEdgeItr;
+ }
+
+};
+
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_GRAPHBASE_HPP
diff --git a/lib/CodeGen/PBQP/HeuristicSolver.h b/lib/CodeGen/PBQP/HeuristicSolver.h
new file mode 100644
index 0000000..e786246
--- /dev/null
+++ b/lib/CodeGen/PBQP/HeuristicSolver.h
@@ -0,0 +1,789 @@
+//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Heuristic PBQP solver. This solver is able to perform optimal reductions for
+// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
+// used to to select a node for reduction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
+#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
+
+#include "Solver.h"
+#include "AnnotatedGraph.h"
+#include "llvm/Support/raw_ostream.h"
+#include <limits>
+
+namespace PBQP {
+
+/// \brief Important types for the HeuristicSolverImpl.
+///
+/// Declared seperately to allow access to heuristic classes before the solver
+/// is fully constructed.
+template <typename HeuristicNodeData, typename HeuristicEdgeData>
+class HSITypes {
+public:
+
+ class NodeData;
+ class EdgeData;
+
+ typedef AnnotatedGraph<NodeData, EdgeData> SolverGraph;
+ typedef typename SolverGraph::NodeIterator GraphNodeIterator;
+ typedef typename SolverGraph::EdgeIterator GraphEdgeIterator;
+ typedef typename SolverGraph::AdjEdgeIterator GraphAdjEdgeIterator;
+
+ typedef std::list<GraphNodeIterator> NodeList;
+ typedef typename NodeList::iterator NodeListIterator;
+
+ typedef std::vector<GraphNodeIterator> NodeStack;
+ typedef typename NodeStack::iterator NodeStackIterator;
+
+ class NodeData {
+ friend class EdgeData;
+
+ private:
+
+ typedef std::list<GraphEdgeIterator> LinksList;
+
+ unsigned numLinks;
+ LinksList links, solvedLinks;
+ NodeListIterator bucketItr;
+ HeuristicNodeData heuristicData;
+
+ public:
+
+ typedef typename LinksList::iterator AdjLinkIterator;
+
+ private:
+
+ AdjLinkIterator addLink(const GraphEdgeIterator &edgeItr) {
+ ++numLinks;
+ return links.insert(links.end(), edgeItr);
+ }
+
+ void delLink(const AdjLinkIterator &adjLinkItr) {
+ --numLinks;
+ links.erase(adjLinkItr);
+ }
+
+ public:
+
+ NodeData() : numLinks(0) {}
+
+ unsigned getLinkDegree() const { return numLinks; }
+
+ HeuristicNodeData& getHeuristicData() { return heuristicData; }
+ const HeuristicNodeData& getHeuristicData() const {
+ return heuristicData;
+ }
+
+ void setBucketItr(const NodeListIterator &bucketItr) {
+ this->bucketItr = bucketItr;
+ }
+
+ const NodeListIterator& getBucketItr() const {
+ return bucketItr;
+ }
+
+ AdjLinkIterator adjLinksBegin() {
+ return links.begin();
+ }
+
+ AdjLinkIterator adjLinksEnd() {
+ return links.end();
+ }
+
+ void addSolvedLink(const GraphEdgeIterator &solvedLinkItr) {
+ solvedLinks.push_back(solvedLinkItr);
+ }
+
+ AdjLinkIterator solvedLinksBegin() {
+ return solvedLinks.begin();
+ }
+
+ AdjLinkIterator solvedLinksEnd() {
+ return solvedLinks.end();
+ }
+
+ };
+
+ class EdgeData {
+ private:
+
+ SolverGraph &g;
+ GraphNodeIterator node1Itr, node2Itr;
+ HeuristicEdgeData heuristicData;
+ typename NodeData::AdjLinkIterator node1ThisEdgeItr, node2ThisEdgeItr;
+
+ public:
+
+ EdgeData(SolverGraph &g) : g(g) {}
+
+ HeuristicEdgeData& getHeuristicData() { return heuristicData; }
+ const HeuristicEdgeData& getHeuristicData() const {
+ return heuristicData;
+ }
+
+ void setup(const GraphEdgeIterator &thisEdgeItr) {
+ node1Itr = g.getEdgeNode1Itr(thisEdgeItr);
+ node2Itr = g.getEdgeNode2Itr(thisEdgeItr);
+
+ node1ThisEdgeItr = g.getNodeData(node1Itr).addLink(thisEdgeItr);
+ node2ThisEdgeItr = g.getNodeData(node2Itr).addLink(thisEdgeItr);
+ }
+
+ void unlink() {
+ g.getNodeData(node1Itr).delLink(node1ThisEdgeItr);
+ g.getNodeData(node2Itr).delLink(node2ThisEdgeItr);
+ }
+
+ };
+
+};
+
+template <typename Heuristic>
+class HeuristicSolverImpl {
+public:
+ // Typedefs to make life easier:
+ typedef HSITypes<typename Heuristic::NodeData,
+ typename Heuristic::EdgeData> HSIT;
+ typedef typename HSIT::SolverGraph SolverGraph;
+ typedef typename HSIT::NodeData NodeData;
+ typedef typename HSIT::EdgeData EdgeData;
+ typedef typename HSIT::GraphNodeIterator GraphNodeIterator;
+ typedef typename HSIT::GraphEdgeIterator GraphEdgeIterator;
+ typedef typename HSIT::GraphAdjEdgeIterator GraphAdjEdgeIterator;
+
+ typedef typename HSIT::NodeList NodeList;
+ typedef typename HSIT::NodeListIterator NodeListIterator;
+
+ typedef std::vector<GraphNodeIterator> NodeStack;
+ typedef typename NodeStack::iterator NodeStackIterator;
+
+ /// \brief Constructor, which performs all the actual solver work.
+ HeuristicSolverImpl(const SimpleGraph &orig) :
+ solution(orig.getNumNodes(), true)
+ {
+ copyGraph(orig);
+ simplify();
+ setup();
+ computeSolution();
+ computeSolutionCost(orig);
+ }
+
+ /// \brief Returns the graph for this solver.
+ SolverGraph& getGraph() { return g; }
+
+ /// \brief Return the solution found by this solver.
+ const Solution& getSolution() const { return solution; }
+
+private:
+
+ /// \brief Add the given node to the appropriate bucket for its link
+ /// degree.
+ void addToBucket(const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g.getNodeData(nodeItr);
+
+ switch (nodeData.getLinkDegree()) {
+ case 0: nodeData.setBucketItr(
+ r0Bucket.insert(r0Bucket.end(), nodeItr));
+ break;
+ case 1: nodeData.setBucketItr(
+ r1Bucket.insert(r1Bucket.end(), nodeItr));
+ break;
+ case 2: nodeData.setBucketItr(
+ r2Bucket.insert(r2Bucket.end(), nodeItr));
+ break;
+ default: heuristic.addToRNBucket(nodeItr);
+ break;
+ }
+ }
+
+ /// \brief Remove the given node from the appropriate bucket for its link
+ /// degree.
+ void removeFromBucket(const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g.getNodeData(nodeItr);
+
+ switch (nodeData.getLinkDegree()) {
+ case 0: r0Bucket.erase(nodeData.getBucketItr()); break;
+ case 1: r1Bucket.erase(nodeData.getBucketItr()); break;
+ case 2: r2Bucket.erase(nodeData.getBucketItr()); break;
+ default: heuristic.removeFromRNBucket(nodeItr); break;
+ }
+ }
+
+public:
+
+ /// \brief Add a link.
+ void addLink(const GraphEdgeIterator &edgeItr) {
+ g.getEdgeData(edgeItr).setup(edgeItr);
+
+ if ((g.getNodeData(g.getEdgeNode1Itr(edgeItr)).getLinkDegree() > 2) ||
+ (g.getNodeData(g.getEdgeNode2Itr(edgeItr)).getLinkDegree() > 2)) {
+ heuristic.handleAddLink(edgeItr);
+ }
+ }
+
+ /// \brief Remove link, update info for node.
+ ///
+ /// Only updates information for the given node, since usually the other
+ /// is about to be removed.
+ void removeLink(const GraphEdgeIterator &edgeItr,
+ const GraphNodeIterator &nodeItr) {
+
+ if (g.getNodeData(nodeItr).getLinkDegree() > 2) {
+ heuristic.handleRemoveLink(edgeItr, nodeItr);
+ }
+ g.getEdgeData(edgeItr).unlink();
+ }
+
+ /// \brief Remove link, update info for both nodes. Useful for R2 only.
+ void removeLinkR2(const GraphEdgeIterator &edgeItr) {
+ GraphNodeIterator node1Itr = g.getEdgeNode1Itr(edgeItr);
+
+ if (g.getNodeData(node1Itr).getLinkDegree() > 2) {
+ heuristic.handleRemoveLink(edgeItr, node1Itr);
+ }
+ removeLink(edgeItr, g.getEdgeNode2Itr(edgeItr));
+ }
+
+ /// \brief Removes all links connected to the given node.
+ void unlinkNode(const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g.getNodeData(nodeItr);
+
+ typedef std::vector<GraphEdgeIterator> TempEdgeList;
+
+ TempEdgeList edgesToUnlink;
+ edgesToUnlink.reserve(nodeData.getLinkDegree());
+
+ // Copy adj edges into a temp vector. We want to destroy them during
+ // the unlink, and we can't do that while we're iterating over them.
+ std::copy(nodeData.adjLinksBegin(), nodeData.adjLinksEnd(),
+ std::back_inserter(edgesToUnlink));
+
+ for (typename TempEdgeList::iterator
+ edgeItr = edgesToUnlink.begin(), edgeEnd = edgesToUnlink.end();
+ edgeItr != edgeEnd; ++edgeItr) {
+
+ GraphNodeIterator otherNode = g.getEdgeOtherNode(*edgeItr, nodeItr);
+
+ removeFromBucket(otherNode);
+ removeLink(*edgeItr, otherNode);
+ addToBucket(otherNode);
+ }
+ }
+
+ /// \brief Push the given node onto the stack to be solved with
+ /// backpropagation.
+ void pushStack(const GraphNodeIterator &nodeItr) {
+ stack.push_back(nodeItr);
+ }
+
+ /// \brief Set the solution of the given node.
+ void setSolution(const GraphNodeIterator &nodeItr, unsigned solIndex) {
+ solution.setSelection(g.getNodeID(nodeItr), solIndex);
+
+ for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
+ adjEdgeEnd = g.adjEdgesEnd(nodeItr);
+ adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
+ GraphEdgeIterator edgeItr(*adjEdgeItr);
+ GraphNodeIterator adjNodeItr(g.getEdgeOtherNode(edgeItr, nodeItr));
+ g.getNodeData(adjNodeItr).addSolvedLink(edgeItr);
+ }
+ }
+
+private:
+
+ SolverGraph g;
+ Heuristic heuristic;
+ Solution solution;
+
+ NodeList r0Bucket,
+ r1Bucket,
+ r2Bucket;
+
+ NodeStack stack;
+
+ // Copy the SimpleGraph into an annotated graph which we can use for reduction.
+ void copyGraph(const SimpleGraph &orig) {
+
+ assert((g.getNumEdges() == 0) && (g.getNumNodes() == 0) &&
+ "Graph should be empty prior to solver setup.");
+
+ assert(orig.areNodeIDsValid() &&
+ "Cannot copy from a graph with invalid node IDs.");
+
+ std::vector<GraphNodeIterator> newNodeItrs;
+
+ for (unsigned nodeID = 0; nodeID < orig.getNumNodes(); ++nodeID) {
+ newNodeItrs.push_back(
+ g.addNode(orig.getNodeCosts(orig.getNodeItr(nodeID)), NodeData()));
+ }
+
+ for (SimpleGraph::ConstEdgeIterator
+ origEdgeItr = orig.edgesBegin(), origEdgeEnd = orig.edgesEnd();
+ origEdgeItr != origEdgeEnd; ++origEdgeItr) {
+
+ unsigned id1 = orig.getNodeID(orig.getEdgeNode1Itr(origEdgeItr)),
+ id2 = orig.getNodeID(orig.getEdgeNode2Itr(origEdgeItr));
+
+ g.addEdge(newNodeItrs[id1], newNodeItrs[id2],
+ orig.getEdgeCosts(origEdgeItr), EdgeData(g));
+ }
+
+ // Assign IDs to the new nodes using the ordering from the old graph,
+ // this will lead to nodes in the new graph getting the same ID as the
+ // corresponding node in the old graph.
+ g.assignNodeIDs(newNodeItrs);
+ }
+
+ // Simplify the annotated graph by eliminating independent edges and trivial
+ // nodes.
+ void simplify() {
+ disconnectTrivialNodes();
+ eliminateIndependentEdges();
+ }
+
+ // Eliminate trivial nodes.
+ void disconnectTrivialNodes() {
+ for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+
+ if (g.getNodeCosts(nodeItr).getLength() == 1) {
+
+ std::vector<GraphEdgeIterator> edgesToRemove;
+
+ for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
+ adjEdgeEnd = g.adjEdgesEnd(nodeItr);
+ adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
+
+ GraphEdgeIterator edgeItr = *adjEdgeItr;
+
+ if (g.getEdgeNode1Itr(edgeItr) == nodeItr) {
+ GraphNodeIterator otherNodeItr = g.getEdgeNode2Itr(edgeItr);
+ g.getNodeCosts(otherNodeItr) +=
+ g.getEdgeCosts(edgeItr).getRowAsVector(0);
+ }
+ else {
+ GraphNodeIterator otherNodeItr = g.getEdgeNode1Itr(edgeItr);
+ g.getNodeCosts(otherNodeItr) +=
+ g.getEdgeCosts(edgeItr).getColAsVector(0);
+ }
+
+ edgesToRemove.push_back(edgeItr);
+ }
+
+ while (!edgesToRemove.empty()) {
+ g.removeEdge(edgesToRemove.back());
+ edgesToRemove.pop_back();
+ }
+ }
+ }
+ }
+
+ void eliminateIndependentEdges() {
+ std::vector<GraphEdgeIterator> edgesToProcess;
+
+ for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+ edgesToProcess.push_back(edgeItr);
+ }
+
+ while (!edgesToProcess.empty()) {
+ tryToEliminateEdge(edgesToProcess.back());
+ edgesToProcess.pop_back();
+ }
+ }
+
+ void tryToEliminateEdge(const GraphEdgeIterator &edgeItr) {
+ if (tryNormaliseEdgeMatrix(edgeItr)) {
+ g.removeEdge(edgeItr);
+ }
+ }
+
+ bool tryNormaliseEdgeMatrix(const GraphEdgeIterator &edgeItr) {
+
+ Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
+ Vector &uCosts = g.getNodeCosts(g.getEdgeNode1Itr(edgeItr)),
+ &vCosts = g.getNodeCosts(g.getEdgeNode2Itr(edgeItr));
+
+ for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
+ PBQPNum rowMin = edgeCosts.getRowMin(r);
+ uCosts[r] += rowMin;
+ if (rowMin != std::numeric_limits<PBQPNum>::infinity()) {
+ edgeCosts.subFromRow(r, rowMin);
+ }
+ else {
+ edgeCosts.setRow(r, 0);
+ }
+ }
+
+ for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
+ PBQPNum colMin = edgeCosts.getColMin(c);
+ vCosts[c] += colMin;
+ if (colMin != std::numeric_limits<PBQPNum>::infinity()) {
+ edgeCosts.subFromCol(c, colMin);
+ }
+ else {
+ edgeCosts.setCol(c, 0);
+ }
+ }
+
+ return edgeCosts.isZero();
+ }
+
+ void setup() {
+ setupLinks();
+ heuristic.initialise(*this);
+ setupBuckets();
+ }
+
+ void setupLinks() {
+ for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+ g.getEdgeData(edgeItr).setup(edgeItr);
+ }
+ }
+
+ void setupBuckets() {
+ for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+ addToBucket(nodeItr);
+ }
+ }
+
+ void computeSolution() {
+ assert(g.areNodeIDsValid() &&
+ "Nodes cannot be added/removed during reduction.");
+
+ reduce();
+ computeTrivialSolutions();
+ backpropagate();
+ }
+
+ void printNode(const GraphNodeIterator &nodeItr) {
+ llvm::errs() << "Node " << g.getNodeID(nodeItr) << " (" << &*nodeItr << "):\n"
+ << " costs = " << g.getNodeCosts(nodeItr) << "\n"
+ << " link degree = " << g.getNodeData(nodeItr).getLinkDegree() << "\n"
+ << " links = [ ";
+
+ for (typename HSIT::NodeData::AdjLinkIterator
+ aeItr = g.getNodeData(nodeItr).adjLinksBegin(),
+ aeEnd = g.getNodeData(nodeItr).adjLinksEnd();
+ aeItr != aeEnd; ++aeItr) {
+ llvm::errs() << "(" << g.getNodeID(g.getEdgeNode1Itr(*aeItr))
+ << ", " << g.getNodeID(g.getEdgeNode2Itr(*aeItr))
+ << ") ";
+ }
+ llvm::errs() << "]\n";
+ }
+
+ void dumpState() {
+ llvm::errs() << "\n";
+
+ for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+ printNode(nodeItr);
+ }
+
+ NodeList* buckets[] = { &r0Bucket, &r1Bucket, &r2Bucket };
+
+ for (unsigned b = 0; b < 3; ++b) {
+ NodeList &bucket = *buckets[b];
+
+ llvm::errs() << "Bucket " << b << ": [ ";
+
+ for (NodeListIterator nItr = bucket.begin(), nEnd = bucket.end();
+ nItr != nEnd; ++nItr) {
+ llvm::errs() << g.getNodeID(*nItr) << " ";
+ }
+
+ llvm::errs() << "]\n";
+ }
+
+ llvm::errs() << "Stack: [ ";
+ for (NodeStackIterator nsItr = stack.begin(), nsEnd = stack.end();
+ nsItr != nsEnd; ++nsItr) {
+ llvm::errs() << g.getNodeID(*nsItr) << " ";
+ }
+ llvm::errs() << "]\n";
+ }
+
+ void reduce() {
+ bool reductionFinished = r1Bucket.empty() && r2Bucket.empty() &&
+ heuristic.rNBucketEmpty();
+
+ while (!reductionFinished) {
+
+ if (!r1Bucket.empty()) {
+ processR1();
+ }
+ else if (!r2Bucket.empty()) {
+ processR2();
+ }
+ else if (!heuristic.rNBucketEmpty()) {
+ solution.setProvedOptimal(false);
+ solution.incRNReductions();
+ heuristic.processRN();
+ }
+ else reductionFinished = true;
+ }
+
+ };
+
+ void processR1() {
+
+ // Remove the first node in the R0 bucket:
+ GraphNodeIterator xNodeItr = r1Bucket.front();
+ r1Bucket.pop_front();
+
+ solution.incR1Reductions();
+
+ //llvm::errs() << "Applying R1 to " << g.getNodeID(xNodeItr) << "\n";
+
+ assert((g.getNodeData(xNodeItr).getLinkDegree() == 1) &&
+ "Node in R1 bucket has degree != 1");
+
+ GraphEdgeIterator edgeItr = *g.getNodeData(xNodeItr).adjLinksBegin();
+
+ const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
+
+ const Vector &xCosts = g.getNodeCosts(xNodeItr);
+ unsigned xLen = xCosts.getLength();
+
+ // Duplicate a little code to avoid transposing matrices:
+ if (xNodeItr == g.getEdgeNode1Itr(edgeItr)) {
+ GraphNodeIterator yNodeItr = g.getEdgeNode2Itr(edgeItr);
+ Vector &yCosts = g.getNodeCosts(yNodeItr);
+ unsigned yLen = yCosts.getLength();
+
+ for (unsigned j = 0; j < yLen; ++j) {
+ PBQPNum min = edgeCosts[0][j] + xCosts[0];
+ for (unsigned i = 1; i < xLen; ++i) {
+ PBQPNum c = edgeCosts[i][j] + xCosts[i];
+ if (c < min)
+ min = c;
+ }
+ yCosts[j] += min;
+ }
+ }
+ else {
+ GraphNodeIterator yNodeItr = g.getEdgeNode1Itr(edgeItr);
+ Vector &yCosts = g.getNodeCosts(yNodeItr);
+ unsigned yLen = yCosts.getLength();
+
+ for (unsigned i = 0; i < yLen; ++i) {
+ PBQPNum min = edgeCosts[i][0] + xCosts[0];
+
+ for (unsigned j = 1; j < xLen; ++j) {
+ PBQPNum c = edgeCosts[i][j] + xCosts[j];
+ if (c < min)
+ min = c;
+ }
+ yCosts[i] += min;
+ }
+ }
+
+ unlinkNode(xNodeItr);
+ pushStack(xNodeItr);
+ }
+
+ void processR2() {
+
+ GraphNodeIterator xNodeItr = r2Bucket.front();
+ r2Bucket.pop_front();
+
+ solution.incR2Reductions();
+
+ // Unlink is unsafe here. At some point it may optimistically more a node
+ // to a lower-degree list when its degree will later rise, or vice versa,
+ // violating the assumption that node degrees monotonically decrease
+ // during the reduction phase. Instead we'll bucket shuffle manually.
+ pushStack(xNodeItr);
+
+ assert((g.getNodeData(xNodeItr).getLinkDegree() == 2) &&
+ "Node in R2 bucket has degree != 2");
+
+ const Vector &xCosts = g.getNodeCosts(xNodeItr);
+
+ typename NodeData::AdjLinkIterator tempItr =
+ g.getNodeData(xNodeItr).adjLinksBegin();
+
+ GraphEdgeIterator yxEdgeItr = *tempItr,
+ zxEdgeItr = *(++tempItr);
+
+ GraphNodeIterator yNodeItr = g.getEdgeOtherNode(yxEdgeItr, xNodeItr),
+ zNodeItr = g.getEdgeOtherNode(zxEdgeItr, xNodeItr);
+
+ removeFromBucket(yNodeItr);
+ removeFromBucket(zNodeItr);
+
+ removeLink(yxEdgeItr, yNodeItr);
+ removeLink(zxEdgeItr, zNodeItr);
+
+ // Graph some of the costs:
+ bool flipEdge1 = (g.getEdgeNode1Itr(yxEdgeItr) == xNodeItr),
+ flipEdge2 = (g.getEdgeNode1Itr(zxEdgeItr) == xNodeItr);
+
+ const Matrix *yxCosts = flipEdge1 ?
+ new Matrix(g.getEdgeCosts(yxEdgeItr).transpose()) :
+ &g.getEdgeCosts(yxEdgeItr),
+ *zxCosts = flipEdge2 ?
+ new Matrix(g.getEdgeCosts(zxEdgeItr).transpose()) :
+ &g.getEdgeCosts(zxEdgeItr);
+
+ unsigned xLen = xCosts.getLength(),
+ yLen = yxCosts->getRows(),
+ zLen = zxCosts->getRows();
+
+ // Compute delta:
+ Matrix delta(yLen, zLen);
+
+ for (unsigned i = 0; i < yLen; ++i) {
+ for (unsigned j = 0; j < zLen; ++j) {
+ PBQPNum min = (*yxCosts)[i][0] + (*zxCosts)[j][0] + xCosts[0];
+ for (unsigned k = 1; k < xLen; ++k) {
+ PBQPNum c = (*yxCosts)[i][k] + (*zxCosts)[j][k] + xCosts[k];
+ if (c < min) {
+ min = c;
+ }
+ }
+ delta[i][j] = min;
+ }
+ }
+
+ if (flipEdge1)
+ delete yxCosts;
+
+ if (flipEdge2)
+ delete zxCosts;
+
+ // Deal with the potentially induced yz edge.
+ GraphEdgeIterator yzEdgeItr = g.findEdge(yNodeItr, zNodeItr);
+ if (yzEdgeItr == g.edgesEnd()) {
+ yzEdgeItr = g.addEdge(yNodeItr, zNodeItr, delta, EdgeData(g));
+ }
+ else {
+ // There was an edge, but we're going to screw with it. Delete the old
+ // link, update the costs. We'll re-link it later.
+ removeLinkR2(yzEdgeItr);
+ g.getEdgeCosts(yzEdgeItr) +=
+ (yNodeItr == g.getEdgeNode1Itr(yzEdgeItr)) ?
+ delta : delta.transpose();
+ }
+
+ bool nullCostEdge = tryNormaliseEdgeMatrix(yzEdgeItr);
+
+ // Nulled the edge, remove it entirely.
+ if (nullCostEdge) {
+ g.removeEdge(yzEdgeItr);
+ }
+ else {
+ // Edge remains - re-link it.
+ addLink(yzEdgeItr);
+ }
+
+ addToBucket(yNodeItr);
+ addToBucket(zNodeItr);
+ }
+
+ void computeTrivialSolutions() {
+
+ for (NodeListIterator r0Itr = r0Bucket.begin(), r0End = r0Bucket.end();
+ r0Itr != r0End; ++r0Itr) {
+ GraphNodeIterator nodeItr = *r0Itr;
+
+ solution.incR0Reductions();
+ setSolution(nodeItr, g.getNodeCosts(nodeItr).minIndex());
+ }
+
+ }
+
+ void backpropagate() {
+ while (!stack.empty()) {
+ computeSolution(stack.back());
+ stack.pop_back();
+ }
+ }
+
+ void computeSolution(const GraphNodeIterator &nodeItr) {
+
+ NodeData &nodeData = g.getNodeData(nodeItr);
+
+ Vector v(g.getNodeCosts(nodeItr));
+
+ // Solve based on existing links.
+ for (typename NodeData::AdjLinkIterator
+ solvedLinkItr = nodeData.solvedLinksBegin(),
+ solvedLinkEnd = nodeData.solvedLinksEnd();
+ solvedLinkItr != solvedLinkEnd; ++solvedLinkItr) {
+
+ GraphEdgeIterator solvedEdgeItr(*solvedLinkItr);
+ Matrix &edgeCosts = g.getEdgeCosts(solvedEdgeItr);
+
+ if (nodeItr == g.getEdgeNode1Itr(solvedEdgeItr)) {
+ GraphNodeIterator adjNode(g.getEdgeNode2Itr(solvedEdgeItr));
+ unsigned adjSolution =
+ solution.getSelection(g.getNodeID(adjNode));
+ v += edgeCosts.getColAsVector(adjSolution);
+ }
+ else {
+ GraphNodeIterator adjNode(g.getEdgeNode1Itr(solvedEdgeItr));
+ unsigned adjSolution =
+ solution.getSelection(g.getNodeID(adjNode));
+ v += edgeCosts.getRowAsVector(adjSolution);
+ }
+
+ }
+
+ setSolution(nodeItr, v.minIndex());
+ }
+
+ void computeSolutionCost(const SimpleGraph &orig) {
+ PBQPNum cost = 0.0;
+
+ for (SimpleGraph::ConstNodeIterator
+ nodeItr = orig.nodesBegin(), nodeEnd = orig.nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+
+ unsigned nodeId = orig.getNodeID(nodeItr);
+
+ cost += orig.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
+ }
+
+ for (SimpleGraph::ConstEdgeIterator
+ edgeItr = orig.edgesBegin(), edgeEnd = orig.edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+
+ SimpleGraph::ConstNodeIterator n1 = orig.getEdgeNode1Itr(edgeItr),
+ n2 = orig.getEdgeNode2Itr(edgeItr);
+ unsigned sol1 = solution.getSelection(orig.getNodeID(n1)),
+ sol2 = solution.getSelection(orig.getNodeID(n2));
+
+ cost += orig.getEdgeCosts(edgeItr)[sol1][sol2];
+ }
+
+ solution.setSolutionCost(cost);
+ }
+
+};
+
+template <typename Heuristic>
+class HeuristicSolver : public Solver {
+public:
+ Solution solve(const SimpleGraph &g) const {
+ HeuristicSolverImpl<Heuristic> solverImpl(g);
+ return solverImpl.getSolution();
+ }
+};
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
diff --git a/lib/CodeGen/PBQP/Heuristics/Briggs.h b/lib/CodeGen/PBQP/Heuristics/Briggs.h
new file mode 100644
index 0000000..3ac9e70
--- /dev/null
+++ b/lib/CodeGen/PBQP/Heuristics/Briggs.h
@@ -0,0 +1,383 @@
+//===-- Briggs.h --- Briggs Heuristic for PBQP -----------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements the Briggs test for "allocability" of nodes in a
+// PBQP graph representing a register allocation problem. Nodes which can be
+// proven allocable (by a safe and relatively accurate test) are removed from
+// the PBQP graph first. If no provably allocable node is present in the graph
+// then the node with the minimal spill-cost to degree ratio is removed.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
+#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
+
+#include "../HeuristicSolver.h"
+
+#include <set>
+
+namespace PBQP {
+namespace Heuristics {
+
+class Briggs {
+ public:
+
+ class NodeData;
+ class EdgeData;
+
+ private:
+
+ typedef HeuristicSolverImpl<Briggs> Solver;
+ typedef HSITypes<NodeData, EdgeData> HSIT;
+ typedef HSIT::SolverGraph SolverGraph;
+ typedef HSIT::GraphNodeIterator GraphNodeIterator;
+ typedef HSIT::GraphEdgeIterator GraphEdgeIterator;
+
+ class LinkDegreeComparator {
+ public:
+ LinkDegreeComparator() : g(0) {}
+ LinkDegreeComparator(SolverGraph *g) : g(g) {}
+
+ bool operator()(const GraphNodeIterator &node1Itr,
+ const GraphNodeIterator &node2Itr) const {
+ assert((g != 0) && "Graph object not set, cannot access node data.");
+ unsigned n1Degree = g->getNodeData(node1Itr).getLinkDegree(),
+ n2Degree = g->getNodeData(node2Itr).getLinkDegree();
+ if (n1Degree > n2Degree) {
+ return true;
+ }
+ else if (n1Degree < n2Degree) {
+ return false;
+ }
+ // else they're "equal" by degree, differentiate based on ID.
+ return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
+ }
+
+ private:
+ SolverGraph *g;
+ };
+
+ class SpillPriorityComparator {
+ public:
+ SpillPriorityComparator() : g(0) {}
+ SpillPriorityComparator(SolverGraph *g) : g(g) {}
+
+ bool operator()(const GraphNodeIterator &node1Itr,
+ const GraphNodeIterator &node2Itr) const {
+ assert((g != 0) && "Graph object not set, cannot access node data.");
+ PBQPNum cost1 =
+ g->getNodeCosts(node1Itr)[0] /
+ g->getNodeData(node1Itr).getLinkDegree(),
+ cost2 =
+ g->getNodeCosts(node2Itr)[0] /
+ g->getNodeData(node2Itr).getLinkDegree();
+
+ if (cost1 < cost2) {
+ return true;
+ }
+ else if (cost1 > cost2) {
+ return false;
+ }
+ // else they'er "equal" again, differentiate based on address again.
+ return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
+ }
+
+ private:
+ SolverGraph *g;
+ };
+
+ typedef std::set<GraphNodeIterator, LinkDegreeComparator>
+ RNAllocableNodeList;
+ typedef RNAllocableNodeList::iterator RNAllocableNodeListIterator;
+
+ typedef std::set<GraphNodeIterator, SpillPriorityComparator>
+ RNUnallocableNodeList;
+ typedef RNUnallocableNodeList::iterator RNUnallocableNodeListIterator;
+
+ public:
+
+ class NodeData {
+ private:
+ RNAllocableNodeListIterator rNAllocableNodeListItr;
+ RNUnallocableNodeListIterator rNUnallocableNodeListItr;
+ unsigned numRegOptions, numDenied, numSafe;
+ std::vector<unsigned> unsafeDegrees;
+ bool allocable;
+
+ void addRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
+ const GraphEdgeIterator &edgeItr, bool add) {
+
+ //assume we're adding...
+ unsigned udTarget = 0, dir = 1;
+
+ if (!add) {
+ udTarget = 1;
+ dir = ~0;
+ }
+
+ EdgeData &linkEdgeData = g.getEdgeData(edgeItr).getHeuristicData();
+
+ EdgeData::ConstUnsafeIterator edgeUnsafeBegin, edgeUnsafeEnd;
+
+ if (nodeItr == g.getEdgeNode1Itr(edgeItr)) {
+ numDenied += (dir * linkEdgeData.getWorstDegree());
+ edgeUnsafeBegin = linkEdgeData.unsafeBegin();
+ edgeUnsafeEnd = linkEdgeData.unsafeEnd();
+ }
+ else {
+ numDenied += (dir * linkEdgeData.getReverseWorstDegree());
+ edgeUnsafeBegin = linkEdgeData.reverseUnsafeBegin();
+ edgeUnsafeEnd = linkEdgeData.reverseUnsafeEnd();
+ }
+
+ assert((unsafeDegrees.size() ==
+ static_cast<unsigned>(
+ std::distance(edgeUnsafeBegin, edgeUnsafeEnd)))
+ && "Unsafe array size mismatch.");
+
+ std::vector<unsigned>::iterator unsafeDegreesItr =
+ unsafeDegrees.begin();
+
+ for (EdgeData::ConstUnsafeIterator edgeUnsafeItr = edgeUnsafeBegin;
+ edgeUnsafeItr != edgeUnsafeEnd;
+ ++edgeUnsafeItr, ++unsafeDegreesItr) {
+
+ if ((*edgeUnsafeItr == 1) && (*unsafeDegreesItr == udTarget)) {
+ numSafe -= dir;
+ }
+ *unsafeDegreesItr += (dir * (*edgeUnsafeItr));
+ }
+
+ allocable = (numDenied < numRegOptions) || (numSafe > 0);
+ }
+
+ public:
+
+ void setup(SolverGraph &g, const GraphNodeIterator &nodeItr) {
+
+ numRegOptions = g.getNodeCosts(nodeItr).getLength() - 1;
+
+ numSafe = numRegOptions; // Optimistic, correct below.
+ numDenied = 0; // Also optimistic.
+ unsafeDegrees.resize(numRegOptions, 0);
+
+ HSIT::NodeData &nodeData = g.getNodeData(nodeItr);
+
+ for (HSIT::NodeData::AdjLinkIterator
+ adjLinkItr = nodeData.adjLinksBegin(),
+ adjLinkEnd = nodeData.adjLinksEnd();
+ adjLinkItr != adjLinkEnd; ++adjLinkItr) {
+
+ addRemoveLink(g, nodeItr, *adjLinkItr, true);
+ }
+ }
+
+ bool isAllocable() const { return allocable; }
+
+ void handleAddLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
+ const GraphEdgeIterator &adjEdge) {
+ addRemoveLink(g, nodeItr, adjEdge, true);
+ }
+
+ void handleRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
+ const GraphEdgeIterator &adjEdge) {
+ addRemoveLink(g, nodeItr, adjEdge, false);
+ }
+
+ void setRNAllocableNodeListItr(
+ const RNAllocableNodeListIterator &rNAllocableNodeListItr) {
+
+ this->rNAllocableNodeListItr = rNAllocableNodeListItr;
+ }
+
+ RNAllocableNodeListIterator getRNAllocableNodeListItr() const {
+ return rNAllocableNodeListItr;
+ }
+
+ void setRNUnallocableNodeListItr(
+ const RNUnallocableNodeListIterator &rNUnallocableNodeListItr) {
+
+ this->rNUnallocableNodeListItr = rNUnallocableNodeListItr;
+ }
+
+ RNUnallocableNodeListIterator getRNUnallocableNodeListItr() const {
+ return rNUnallocableNodeListItr;
+ }
+
+
+ };
+
+ class EdgeData {
+ private:
+
+ typedef std::vector<unsigned> UnsafeArray;
+
+ unsigned worstDegree,
+ reverseWorstDegree;
+ UnsafeArray unsafe, reverseUnsafe;
+
+ public:
+
+ EdgeData() : worstDegree(0), reverseWorstDegree(0) {}
+
+ typedef UnsafeArray::const_iterator ConstUnsafeIterator;
+
+ void setup(SolverGraph &g, const GraphEdgeIterator &edgeItr) {
+ const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
+ unsigned numRegs = edgeCosts.getRows() - 1,
+ numReverseRegs = edgeCosts.getCols() - 1;
+
+ unsafe.resize(numRegs, 0);
+ reverseUnsafe.resize(numReverseRegs, 0);
+
+ std::vector<unsigned> rowInfCounts(numRegs, 0),
+ colInfCounts(numReverseRegs, 0);
+
+ for (unsigned i = 0; i < numRegs; ++i) {
+ for (unsigned j = 0; j < numReverseRegs; ++j) {
+ if (edgeCosts[i + 1][j + 1] ==
+ std::numeric_limits<PBQPNum>::infinity()) {
+ unsafe[i] = 1;
+ reverseUnsafe[j] = 1;
+ ++rowInfCounts[i];
+ ++colInfCounts[j];
+
+ if (colInfCounts[j] > worstDegree) {
+ worstDegree = colInfCounts[j];
+ }
+
+ if (rowInfCounts[i] > reverseWorstDegree) {
+ reverseWorstDegree = rowInfCounts[i];
+ }
+ }
+ }
+ }
+ }
+
+ unsigned getWorstDegree() const { return worstDegree; }
+ unsigned getReverseWorstDegree() const { return reverseWorstDegree; }
+ ConstUnsafeIterator unsafeBegin() const { return unsafe.begin(); }
+ ConstUnsafeIterator unsafeEnd() const { return unsafe.end(); }
+ ConstUnsafeIterator reverseUnsafeBegin() const {
+ return reverseUnsafe.begin();
+ }
+ ConstUnsafeIterator reverseUnsafeEnd() const {
+ return reverseUnsafe.end();
+ }
+ };
+
+ void initialise(Solver &solver) {
+ this->s = &solver;
+ g = &s->getGraph();
+ rNAllocableBucket = RNAllocableNodeList(LinkDegreeComparator(g));
+ rNUnallocableBucket =
+ RNUnallocableNodeList(SpillPriorityComparator(g));
+
+ for (GraphEdgeIterator
+ edgeItr = g->edgesBegin(), edgeEnd = g->edgesEnd();
+ edgeItr != edgeEnd; ++edgeItr) {
+
+ g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
+ }
+
+ for (GraphNodeIterator
+ nodeItr = g->nodesBegin(), nodeEnd = g->nodesEnd();
+ nodeItr != nodeEnd; ++nodeItr) {
+
+ g->getNodeData(nodeItr).getHeuristicData().setup(*g, nodeItr);
+ }
+ }
+
+ void addToRNBucket(const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
+
+ if (nodeData.isAllocable()) {
+ nodeData.setRNAllocableNodeListItr(
+ rNAllocableBucket.insert(rNAllocableBucket.begin(), nodeItr));
+ }
+ else {
+ nodeData.setRNUnallocableNodeListItr(
+ rNUnallocableBucket.insert(rNUnallocableBucket.begin(), nodeItr));
+ }
+ }
+
+ void removeFromRNBucket(const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
+
+ if (nodeData.isAllocable()) {
+ rNAllocableBucket.erase(nodeData.getRNAllocableNodeListItr());
+ }
+ else {
+ rNUnallocableBucket.erase(nodeData.getRNUnallocableNodeListItr());
+ }
+ }
+
+ void handleAddLink(const GraphEdgeIterator &edgeItr) {
+ // We assume that if we got here this edge is attached to at least
+ // one high degree node.
+ g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
+
+ GraphNodeIterator n1Itr = g->getEdgeNode1Itr(edgeItr),
+ n2Itr = g->getEdgeNode2Itr(edgeItr);
+
+ HSIT::NodeData &n1Data = g->getNodeData(n1Itr),
+ &n2Data = g->getNodeData(n2Itr);
+
+ if (n1Data.getLinkDegree() > 2) {
+ n1Data.getHeuristicData().handleAddLink(*g, n1Itr, edgeItr);
+ }
+ if (n2Data.getLinkDegree() > 2) {
+ n2Data.getHeuristicData().handleAddLink(*g, n2Itr, edgeItr);
+ }
+ }
+
+ void handleRemoveLink(const GraphEdgeIterator &edgeItr,
+ const GraphNodeIterator &nodeItr) {
+ NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
+ nodeData.handleRemoveLink(*g, nodeItr, edgeItr);
+ }
+
+ void processRN() {
+
+ if (!rNAllocableBucket.empty()) {
+ GraphNodeIterator selectedNodeItr = *rNAllocableBucket.begin();
+ //std::cerr << "RN safely pushing " << g->getNodeID(selectedNodeItr) << "\n";
+ rNAllocableBucket.erase(rNAllocableBucket.begin());
+ s->pushStack(selectedNodeItr);
+ s->unlinkNode(selectedNodeItr);
+ }
+ else {
+ GraphNodeIterator selectedNodeItr = *rNUnallocableBucket.begin();
+ //std::cerr << "RN optimistically pushing " << g->getNodeID(selectedNodeItr) << "\n";
+ rNUnallocableBucket.erase(rNUnallocableBucket.begin());
+ s->pushStack(selectedNodeItr);
+ s->unlinkNode(selectedNodeItr);
+ }
+
+ }
+
+ bool rNBucketEmpty() const {
+ return (rNAllocableBucket.empty() && rNUnallocableBucket.empty());
+ }
+
+private:
+
+ Solver *s;
+ SolverGraph *g;
+ RNAllocableNodeList rNAllocableBucket;
+ RNUnallocableNodeList rNUnallocableBucket;
+};
+
+
+
+}
+}
+
+
+#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
diff --git a/lib/CodeGen/PBQP/PBQPMath.h b/lib/CodeGen/PBQP/PBQPMath.h
new file mode 100644
index 0000000..11f4b4b
--- /dev/null
+++ b/lib/CodeGen/PBQP/PBQPMath.h
@@ -0,0 +1,288 @@
+//===-- PBQPMath.h - PBQP Vector and Matrix classes ------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H
+#define LLVM_CODEGEN_PBQP_PBQPMATH_H
+
+#include <cassert>
+#include <algorithm>
+#include <functional>
+
+namespace PBQP {
+
+typedef double PBQPNum;
+
+/// \brief PBQP Vector class.
+class Vector {
+ public:
+
+ /// \brief Construct a PBQP vector of the given size.
+ explicit Vector(unsigned length) :
+ length(length), data(new PBQPNum[length]) {
+ }
+
+ /// \brief Construct a PBQP vector with initializer.
+ Vector(unsigned length, PBQPNum initVal) :
+ length(length), data(new PBQPNum[length]) {
+ std::fill(data, data + length, initVal);
+ }
+
+ /// \brief Copy construct a PBQP vector.
+ Vector(const Vector &v) :
+ length(v.length), data(new PBQPNum[length]) {
+ std::copy(v.data, v.data + length, data);
+ }
+
+ /// \brief Destroy this vector, return its memory.
+ ~Vector() { delete[] data; }
+
+ /// \brief Assignment operator.
+ Vector& operator=(const Vector &v) {
+ delete[] data;
+ length = v.length;
+ data = new PBQPNum[length];
+ std::copy(v.data, v.data + length, data);
+ return *this;
+ }
+
+ /// \brief Return the length of the vector
+ unsigned getLength() const {
+ return length;
+ }
+
+ /// \brief Element access.
+ PBQPNum& operator[](unsigned index) {
+ assert(index < length && "Vector element access out of bounds.");
+ return data[index];
+ }
+
+ /// \brief Const element access.
+ const PBQPNum& operator[](unsigned index) const {
+ assert(index < length && "Vector element access out of bounds.");
+ return data[index];
+ }
+
+ /// \brief Add another vector to this one.
+ Vector& operator+=(const Vector &v) {
+ assert(length == v.length && "Vector length mismatch.");
+ std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Subtract another vector from this one.
+ Vector& operator-=(const Vector &v) {
+ assert(length == v.length && "Vector length mismatch.");
+ std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Returns the index of the minimum value in this vector
+ unsigned minIndex() const {
+ return std::min_element(data, data + length) - data;
+ }
+
+ private:
+ unsigned length;
+ PBQPNum *data;
+};
+
+/// \brief Output a textual representation of the given vector on the given
+/// output stream.
+template <typename OStream>
+OStream& operator<<(OStream &os, const Vector &v) {
+ assert((v.getLength() != 0) && "Zero-length vector badness.");
+
+ os << "[ " << v[0];
+ for (unsigned i = 1; i < v.getLength(); ++i) {
+ os << ", " << v[i];
+ }
+ os << " ]";
+
+ return os;
+}
+
+
+/// \brief PBQP Matrix class
+class Matrix {
+ public:
+
+ /// \brief Construct a PBQP Matrix with the given dimensions.
+ Matrix(unsigned rows, unsigned cols) :
+ rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
+ }
+
+ /// \brief Construct a PBQP Matrix with the given dimensions and initial
+ /// value.
+ Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
+ rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
+ std::fill(data, data + (rows * cols), initVal);
+ }
+
+ /// \brief Copy construct a PBQP matrix.
+ Matrix(const Matrix &m) :
+ rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
+ std::copy(m.data, m.data + (rows * cols), data);
+ }
+
+ /// \brief Destroy this matrix, return its memory.
+ ~Matrix() { delete[] data; }
+
+ /// \brief Assignment operator.
+ Matrix& operator=(const Matrix &m) {
+ delete[] data;
+ rows = m.rows; cols = m.cols;
+ data = new PBQPNum[rows * cols];
+ std::copy(m.data, m.data + (rows * cols), data);
+ return *this;
+ }
+
+ /// \brief Return the number of rows in this matrix.
+ unsigned getRows() const { return rows; }
+
+ /// \brief Return the number of cols in this matrix.
+ unsigned getCols() const { return cols; }
+
+ /// \brief Matrix element access.
+ PBQPNum* operator[](unsigned r) {
+ assert(r < rows && "Row out of bounds.");
+ return data + (r * cols);
+ }
+
+ /// \brief Matrix element access.
+ const PBQPNum* operator[](unsigned r) const {
+ assert(r < rows && "Row out of bounds.");
+ return data + (r * cols);
+ }
+
+ /// \brief Returns the given row as a vector.
+ Vector getRowAsVector(unsigned r) const {
+ Vector v(cols);
+ for (unsigned c = 0; c < cols; ++c)
+ v[c] = (*this)[r][c];
+ return v;
+ }
+
+ /// \brief Returns the given column as a vector.
+ Vector getColAsVector(unsigned c) const {
+ Vector v(rows);
+ for (unsigned r = 0; r < rows; ++r)
+ v[r] = (*this)[r][c];
+ return v;
+ }
+
+ /// \brief Reset the matrix to the given value.
+ Matrix& reset(PBQPNum val = 0) {
+ std::fill(data, data + (rows * cols), val);
+ return *this;
+ }
+
+ /// \brief Set a single row of this matrix to the given value.
+ Matrix& setRow(unsigned r, PBQPNum val) {
+ assert(r < rows && "Row out of bounds.");
+ std::fill(data + (r * cols), data + ((r + 1) * cols), val);
+ return *this;
+ }
+
+ /// \brief Set a single column of this matrix to the given value.
+ Matrix& setCol(unsigned c, PBQPNum val) {
+ assert(c < cols && "Column out of bounds.");
+ for (unsigned r = 0; r < rows; ++r)
+ (*this)[r][c] = val;
+ return *this;
+ }
+
+ /// \brief Matrix transpose.
+ Matrix transpose() const {
+ Matrix m(cols, rows);
+ for (unsigned r = 0; r < rows; ++r)
+ for (unsigned c = 0; c < cols; ++c)
+ m[c][r] = (*this)[r][c];
+ return m;
+ }
+
+ /// \brief Returns the diagonal of the matrix as a vector.
+ ///
+ /// Matrix must be square.
+ Vector diagonalize() const {
+ assert(rows == cols && "Attempt to diagonalize non-square matrix.");
+
+ Vector v(rows);
+ for (unsigned r = 0; r < rows; ++r)
+ v[r] = (*this)[r][r];
+ return v;
+ }
+
+ /// \brief Add the given matrix to this one.
+ Matrix& operator+=(const Matrix &m) {
+ assert(rows == m.rows && cols == m.cols &&
+ "Matrix dimensions mismatch.");
+ std::transform(data, data + (rows * cols), m.data, data,
+ std::plus<PBQPNum>());
+ return *this;
+ }
+
+ /// \brief Returns the minimum of the given row
+ PBQPNum getRowMin(unsigned r) const {
+ assert(r < rows && "Row out of bounds");
+ return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
+ }
+
+ /// \brief Returns the minimum of the given column
+ PBQPNum getColMin(unsigned c) const {
+ PBQPNum minElem = (*this)[0][c];
+ for (unsigned r = 1; r < rows; ++r)
+ if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
+ return minElem;
+ }
+
+ /// \brief Subtracts the given scalar from the elements of the given row.
+ Matrix& subFromRow(unsigned r, PBQPNum val) {
+ assert(r < rows && "Row out of bounds");
+ std::transform(data + (r * cols), data + ((r + 1) * cols),
+ data + (r * cols),
+ std::bind2nd(std::minus<PBQPNum>(), val));
+ return *this;
+ }
+
+ /// \brief Subtracts the given scalar from the elements of the given column.
+ Matrix& subFromCol(unsigned c, PBQPNum val) {
+ for (unsigned r = 0; r < rows; ++r)
+ (*this)[r][c] -= val;
+ return *this;
+ }
+
+ /// \brief Returns true if this is a zero matrix.
+ bool isZero() const {
+ return find_if(data, data + (rows * cols),
+ std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
+ data + (rows * cols);
+ }
+
+ private:
+ unsigned rows, cols;
+ PBQPNum *data;
+};
+
+/// \brief Output a textual representation of the given matrix on the given
+/// output stream.
+template <typename OStream>
+OStream& operator<<(OStream &os, const Matrix &m) {
+
+ assert((m.getRows() != 0) && "Zero-row matrix badness.");
+
+ for (unsigned i = 0; i < m.getRows(); ++i) {
+ os << m.getRowAsVector(i);
+ }
+
+ return os;
+}
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP
diff --git a/lib/CodeGen/PBQP/SimpleGraph.h b/lib/CodeGen/PBQP/SimpleGraph.h
new file mode 100644
index 0000000..1ca9cae
--- /dev/null
+++ b/lib/CodeGen/PBQP/SimpleGraph.h
@@ -0,0 +1,100 @@
+//===-- SimpleGraph.h - Simple PBQP Graph ----------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Simple PBQP graph class representing a PBQP problem. Graphs of this type
+// can be passed to a PBQPSolver instance to solve the PBQP problem.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
+#define LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
+
+#include "GraphBase.h"
+
+namespace PBQP {
+
+class SimpleEdge;
+
+class SimpleNode : public NodeBase<SimpleNode, SimpleEdge> {
+public:
+ SimpleNode(const Vector &costs) :
+ NodeBase<SimpleNode, SimpleEdge>(costs) {}
+};
+
+class SimpleEdge : public EdgeBase<SimpleNode, SimpleEdge> {
+public:
+ SimpleEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
+ const Matrix &costs) :
+ EdgeBase<SimpleNode, SimpleEdge>(node1Itr, node2Itr, costs) {}
+};
+
+class SimpleGraph : public GraphBase<SimpleNode, SimpleEdge> {
+private:
+
+ typedef GraphBase<SimpleNode, SimpleEdge> PGraph;
+
+ void copyFrom(const SimpleGraph &other) {
+ assert(other.areNodeIDsValid() &&
+ "Cannot copy from another graph unless IDs have been assigned.");
+
+ std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
+
+ for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
+ nItr != nEnd; ++nItr) {
+ newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
+ }
+
+ for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
+ eItr != eEnd; ++eItr) {
+
+ unsigned node1ID = other.getNodeID(other.getEdgeNode1Itr(eItr)),
+ node2ID = other.getNodeID(other.getEdgeNode2Itr(eItr));
+
+ addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
+ other.getEdgeCosts(eItr));
+ }
+ }
+
+ void copyFrom(SimpleGraph &other) {
+ if (!other.areNodeIDsValid()) {
+ other.assignNodeIDs();
+ }
+ copyFrom(const_cast<const SimpleGraph&>(other));
+ }
+
+public:
+
+ SimpleGraph() {}
+
+
+ SimpleGraph(const SimpleGraph &other) : PGraph() {
+ copyFrom(other);
+ }
+
+ SimpleGraph& operator=(const SimpleGraph &other) {
+ clear();
+ copyFrom(other);
+ return *this;
+ }
+
+ NodeIterator addNode(const Vector &costs) {
+ return PGraph::addConstructedNode(SimpleNode(costs));
+ }
+
+ EdgeIterator addEdge(const NodeIterator &node1Itr,
+ const NodeIterator &node2Itr,
+ const Matrix &costs) {
+ return PGraph::addConstructedEdge(SimpleEdge(node1Itr, node2Itr, costs));
+ }
+
+};
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
diff --git a/lib/CodeGen/PBQP/Solution.h b/lib/CodeGen/PBQP/Solution.h
new file mode 100644
index 0000000..c91e2fa
--- /dev/null
+++ b/lib/CodeGen/PBQP/Solution.h
@@ -0,0 +1,88 @@
+//===-- Solution.h ------- PBQP Solution -----------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Annotated PBQP Graph class. This class is used internally by the PBQP solver
+// to cache information to speed up reduction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
+#define LLVM_CODEGEN_PBQP_SOLUTION_H
+
+#include "PBQPMath.h"
+
+namespace PBQP {
+
+class Solution {
+
+ friend class SolverImplementation;
+
+private:
+
+ std::vector<unsigned> selections;
+ PBQPNum solutionCost;
+ bool provedOptimal;
+ unsigned r0Reductions, r1Reductions,
+ r2Reductions, rNReductions;
+
+public:
+
+ Solution() :
+ solutionCost(0.0), provedOptimal(false),
+ r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
+
+ Solution(unsigned length, bool assumeOptimal) :
+ selections(length), solutionCost(0.0), provedOptimal(assumeOptimal),
+ r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
+
+ void setProvedOptimal(bool provedOptimal) {
+ this->provedOptimal = provedOptimal;
+ }
+
+ void setSelection(unsigned nodeID, unsigned selection) {
+ selections[nodeID] = selection;
+ }
+
+ void setSolutionCost(PBQPNum solutionCost) {
+ this->solutionCost = solutionCost;
+ }
+
+ void incR0Reductions() { ++r0Reductions; }
+ void incR1Reductions() { ++r1Reductions; }
+ void incR2Reductions() { ++r2Reductions; }
+ void incRNReductions() { ++rNReductions; }
+
+ unsigned numNodes() const { return selections.size(); }
+
+ unsigned getSelection(unsigned nodeID) const {
+ return selections[nodeID];
+ }
+
+ PBQPNum getCost() const { return solutionCost; }
+
+ bool isProvedOptimal() const { return provedOptimal; }
+
+ unsigned getR0Reductions() const { return r0Reductions; }
+ unsigned getR1Reductions() const { return r1Reductions; }
+ unsigned getR2Reductions() const { return r2Reductions; }
+ unsigned getRNReductions() const { return rNReductions; }
+
+ bool operator==(const Solution &other) const {
+ return (selections == other.selections);
+ }
+
+ bool operator!=(const Solution &other) const {
+ return !(*this == other);
+ }
+
+};
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_SOLUTION_H
diff --git a/lib/CodeGen/PBQP/Solver.h b/lib/CodeGen/PBQP/Solver.h
new file mode 100644
index 0000000..a9c5f83
--- /dev/null
+++ b/lib/CodeGen/PBQP/Solver.h
@@ -0,0 +1,31 @@
+//===-- Solver.h ------- PBQP solver interface -----------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_CODEGEN_PBQP_SOLVER_H
+#define LLVM_CODEGEN_PBQP_SOLVER_H
+
+#include "SimpleGraph.h"
+#include "Solution.h"
+
+namespace PBQP {
+
+/// \brief Interface for solver classes.
+class Solver {
+public:
+
+ virtual ~Solver() = 0;
+ virtual Solution solve(const SimpleGraph &orig) const = 0;
+};
+
+Solver::~Solver() {}
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_SOLVER_H
diff --git a/lib/CodeGen/PHIElimination.cpp b/lib/CodeGen/PHIElimination.cpp
index c5c76fc..8071b0a 100644
--- a/lib/CodeGen/PHIElimination.cpp
+++ b/lib/CodeGen/PHIElimination.cpp
@@ -14,6 +14,7 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phielim"
+#include "PHIElimination.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instructions.h"
#include "llvm/CodeGen/LiveVariables.h"
@@ -22,7 +23,6 @@
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
@@ -34,78 +34,25 @@ using namespace llvm;
STATISTIC(NumAtomic, "Number of atomic phis lowered");
-namespace {
- class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
- MachineRegisterInfo *MRI; // Machine register information
-
- public:
- static char ID; // Pass identification, replacement for typeid
- PNE() : MachineFunctionPass(&ID) {}
-
- virtual bool runOnMachineFunction(MachineFunction &Fn);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addPreserved<LiveVariables>();
- AU.addPreservedID(MachineLoopInfoID);
- AU.addPreservedID(MachineDominatorsID);
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- private:
- /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
- /// in predecessor basic blocks.
- ///
- bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
- void LowerAtomicPHINode(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator AfterPHIsIt);
-
- /// analyzePHINodes - Gather information about the PHI nodes in
- /// here. In particular, we want to map the number of uses of a virtual
- /// register which is used in a PHI node. We map that to the BB the
- /// vreg is coming from. This is used later to determine when the vreg
- /// is killed in the BB.
- ///
- void analyzePHINodes(const MachineFunction& Fn);
-
- // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
- // SrcReg. This needs to be after any def or uses of SrcReg, but before
- // any subsequent point where control flow might jump out of the basic
- // block.
- MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
- unsigned SrcReg);
-
- // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
- // also after any exception handling labels: in landing pads execution
- // starts at the label, so any copies placed before it won't be executed!
- MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) {
- // Rather than assuming that EH labels come before other kinds of labels,
- // just skip all labels.
- while (I != MBB.end() &&
- (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
- ++I;
- return I;
- }
-
- typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
- typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
-
- VRegPHIUse VRegPHIUseCount;
-
- // Defs of PHI sources which are implicit_def.
- SmallPtrSet<MachineInstr*, 4> ImpDefs;
- };
-}
-
-char PNE::ID = 0;
-static RegisterPass<PNE>
+char PHIElimination::ID = 0;
+static RegisterPass<PHIElimination>
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
const PassInfo *const llvm::PHIEliminationID = &X;
-bool PNE::runOnMachineFunction(MachineFunction &Fn) {
+void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
MRI = &Fn.getRegInfo();
+ PHIDefs.clear();
+ PHIKills.clear();
analyzePHINodes(Fn);
bool Changed = false;
@@ -132,7 +79,8 @@ bool PNE::runOnMachineFunction(MachineFunction &Fn) {
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
-bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
+bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
+ MachineBasicBlock &MBB) {
if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
return false; // Quick exit for basic blocks without PHIs.
@@ -162,8 +110,9 @@ static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
// This needs to be after any def or uses of SrcReg, but before any subsequent
// point where control flow might jump out of the basic block.
-MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB,
- unsigned SrcReg) {
+MachineBasicBlock::iterator
+llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
+ unsigned SrcReg) {
// Handle the trivial case trivially.
if (MBB.empty())
return MBB.begin();
@@ -206,9 +155,10 @@ MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
-///
-void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator AfterPHIsIt) {
+///
+void llvm::PHIElimination::LowerAtomicPHINode(
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator AfterPHIsIt) {
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
@@ -235,6 +185,10 @@ void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
}
+ // Record PHI def.
+ assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
+ PHIDefs[DestReg] = &MBB;
+
// Update live variable information if there is any.
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
if (LV) {
@@ -276,6 +230,13 @@ void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
+ // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
+ // path the PHI.
+ MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
+
+ // Record the kill.
+ PHIKills[SrcReg].insert(&opBlock);
+
// If source is defined by an implicit def, there is no need to insert a
// copy.
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
@@ -284,10 +245,6 @@ void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
continue;
}
- // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
- // path the PHI.
- MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
-
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
@@ -420,7 +377,7 @@ void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
-void PNE::analyzePHINodes(const MachineFunction& Fn) {
+void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
diff --git a/lib/CodeGen/PHIElimination.h b/lib/CodeGen/PHIElimination.h
new file mode 100644
index 0000000..3d02dfd
--- /dev/null
+++ b/lib/CodeGen/PHIElimination.h
@@ -0,0 +1,125 @@
+//===-- lib/CodeGen/PHIElimination.h ----------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PHIELIMINATION_HPP
+#define LLVM_CODEGEN_PHIELIMINATION_HPP
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#include <map>
+
+namespace llvm {
+
+ /// Lower PHI instructions to copies.
+ class PHIElimination : public MachineFunctionPass {
+ MachineRegisterInfo *MRI; // Machine register information
+ private:
+
+ typedef SmallSet<MachineBasicBlock*, 4> PHIKillList;
+ typedef DenseMap<unsigned, PHIKillList> PHIKillMap;
+ typedef DenseMap<unsigned, MachineBasicBlock*> PHIDefMap;
+
+ public:
+
+ typedef PHIKillList::iterator phi_kill_iterator;
+ typedef PHIKillList::const_iterator const_phi_kill_iterator;
+
+ static char ID; // Pass identification, replacement for typeid
+ PHIElimination() : MachineFunctionPass(&ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &Fn);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ /// Return true if the given vreg was defined by a PHI intsr prior to
+ /// lowering.
+ bool hasPHIDef(unsigned vreg) const {
+ return PHIDefs.count(vreg);
+ }
+
+ /// Returns the block in which the PHI instruction which defined the
+ /// given vreg used to reside.
+ MachineBasicBlock* getPHIDefBlock(unsigned vreg) {
+ PHIDefMap::iterator phiDefItr = PHIDefs.find(vreg);
+ assert(phiDefItr != PHIDefs.end() && "vreg has no phi-def.");
+ return phiDefItr->second;
+ }
+
+ /// Returns true if the given vreg was killed by a PHI instr.
+ bool hasPHIKills(unsigned vreg) const {
+ return PHIKills.count(vreg);
+ }
+
+ /// Returns an iterator over the BasicBlocks which contained PHI
+ /// kills of this register prior to lowering.
+ phi_kill_iterator phiKillsBegin(unsigned vreg) {
+ PHIKillMap::iterator phiKillItr = PHIKills.find(vreg);
+ assert(phiKillItr != PHIKills.end() && "vreg has no phi-kills.");
+ return phiKillItr->second.begin();
+ }
+ phi_kill_iterator phiKillsEnd(unsigned vreg) {
+ PHIKillMap::iterator phiKillItr = PHIKills.find(vreg);
+ assert(phiKillItr != PHIKills.end() && "vreg has no phi-kills.");
+ return phiKillItr->second.end();
+ }
+
+ private:
+ /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
+ /// in predecessor basic blocks.
+ ///
+ bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
+ void LowerAtomicPHINode(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator AfterPHIsIt);
+
+ /// analyzePHINodes - Gather information about the PHI nodes in
+ /// here. In particular, we want to map the number of uses of a virtual
+ /// register which is used in a PHI node. We map that to the BB the
+ /// vreg is coming from. This is used later to determine when the vreg
+ /// is killed in the BB.
+ ///
+ void analyzePHINodes(const MachineFunction& Fn);
+
+ // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
+ // SrcReg. This needs to be after any def or uses of SrcReg, but before
+ // any subsequent point where control flow might jump out of the basic
+ // block.
+ MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
+ unsigned SrcReg);
+
+ // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
+ // also after any exception handling labels: in landing pads execution
+ // starts at the label, so any copies placed before it won't be executed!
+ MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ // Rather than assuming that EH labels come before other kinds of labels,
+ // just skip all labels.
+ while (I != MBB.end() &&
+ (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
+ ++I;
+ return I;
+ }
+
+ typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
+ typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
+
+ VRegPHIUse VRegPHIUseCount;
+ PHIDefMap PHIDefs;
+ PHIKillMap PHIKills;
+
+ // Defs of PHI sources which are implicit_def.
+ SmallPtrSet<MachineInstr*, 4> ImpDefs;
+ };
+
+}
+
+#endif /* LLVM_CODEGEN_PHIELIMINATION_HPP */
diff --git a/lib/CodeGen/PostRASchedulerList.cpp b/lib/CodeGen/PostRASchedulerList.cpp
index de774685..e52158c 100644
--- a/lib/CodeGen/PostRASchedulerList.cpp
+++ b/lib/CodeGen/PostRASchedulerList.cpp
@@ -19,45 +19,73 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "post-RA-sched"
+#include "ExactHazardRecognizer.h"
+#include "SimpleHazardRecognizer.h"
#include "ScheduleDAGInstrs.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtarget.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include <map>
+#include <set>
using namespace llvm;
STATISTIC(NumNoops, "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
+// Post-RA scheduling is enabled with
+// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
+// override the target.
+static cl::opt<bool>
+EnablePostRAScheduler("post-RA-scheduler",
+ cl::desc("Enable scheduling after register allocation"),
+ cl::init(false), cl::Hidden);
static cl::opt<bool>
EnableAntiDepBreaking("break-anti-dependencies",
cl::desc("Break post-RA scheduling anti-dependencies"),
cl::init(true), cl::Hidden);
-
static cl::opt<bool>
EnablePostRAHazardAvoidance("avoid-hazards",
- cl::desc("Enable simple hazard-avoidance"),
+ cl::desc("Enable exact hazard avoidance"),
cl::init(true), cl::Hidden);
+// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
+static cl::opt<int>
+DebugDiv("postra-sched-debugdiv",
+ cl::desc("Debug control MBBs that are scheduled"),
+ cl::init(0), cl::Hidden);
+static cl::opt<int>
+DebugMod("postra-sched-debugmod",
+ cl::desc("Debug control MBBs that are scheduled"),
+ cl::init(0), cl::Hidden);
+
namespace {
class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
+ AliasAnalysis *AA;
+
public:
static char ID;
PostRAScheduler() : MachineFunctionPass(&ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
@@ -95,6 +123,9 @@ namespace {
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
+ /// AA - AliasAnalysis for making memory reference queries.
+ AliasAnalysis *AA;
+
/// Classes - For live regs that are only used in one register class in a
/// live range, the register class. If the register is not live, the
/// corresponding value is null. If the register is live but used in
@@ -106,22 +137,27 @@ namespace {
/// RegRegs - Map registers to all their references within a live range.
std::multimap<unsigned, MachineOperand *> RegRefs;
- /// The index of the most recent kill (proceding bottom-up), or ~0u if
- /// the register is not live.
+ /// KillIndices - The index of the most recent kill (proceding bottom-up),
+ /// or ~0u if the register is not live.
unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
- /// The index of the most recent complete def (proceding bottom up), or ~0u
- /// if the register is live.
+ /// DefIndices - The index of the most recent complete def (proceding bottom
+ /// up), or ~0u if the register is live.
unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
+ /// KeepRegs - A set of registers which are live and cannot be changed to
+ /// break anti-dependencies.
+ SmallSet<unsigned, 4> KeepRegs;
+
public:
SchedulePostRATDList(MachineFunction &MF,
const MachineLoopInfo &MLI,
const MachineDominatorTree &MDT,
- ScheduleHazardRecognizer *HR)
+ ScheduleHazardRecognizer *HR,
+ AliasAnalysis *aa)
: ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
AllocatableSet(TRI->getAllocatableSet(MF)),
- HazardRec(HR) {}
+ HazardRec(HR), AA(aa) {}
~SchedulePostRATDList() {
delete HazardRec;
@@ -135,6 +171,11 @@ namespace {
/// Schedule - Schedule the instruction range using list scheduling.
///
void Schedule();
+
+ /// FixupKills - Fix register kill flags that have been made
+ /// invalid due to scheduling
+ ///
+ void FixupKills(MachineBasicBlock *MBB);
/// Observe - Update liveness information to account for the current
/// instruction, which will not be scheduled.
@@ -153,62 +194,15 @@ namespace {
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void ListScheduleTopDown();
bool BreakAntiDependencies();
- };
-
- /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
- /// a coarse classification and attempts to avoid that instructions of
- /// a given class aren't grouped too densely together.
- class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
- /// Class - A simple classification for SUnits.
- enum Class {
- Other, Load, Store
- };
-
- /// Window - The Class values of the most recently issued
- /// instructions.
- Class Window[8];
-
- /// getClass - Classify the given SUnit.
- Class getClass(const SUnit *SU) {
- const MachineInstr *MI = SU->getInstr();
- const TargetInstrDesc &TID = MI->getDesc();
- if (TID.mayLoad())
- return Load;
- if (TID.mayStore())
- return Store;
- return Other;
- }
-
- /// Step - Rotate the existing entries in Window and insert the
- /// given class value in position as the most recent.
- void Step(Class C) {
- std::copy(Window+1, array_endof(Window), Window);
- Window[array_lengthof(Window)-1] = C;
- }
-
- public:
- SimpleHazardRecognizer() : Window() {}
-
- virtual HazardType getHazardType(SUnit *SU) {
- Class C = getClass(SU);
- if (C == Other)
- return NoHazard;
- unsigned Score = 0;
- for (unsigned i = 0; i != array_lengthof(Window); ++i)
- if (Window[i] == C)
- Score += i + 1;
- if (Score > array_lengthof(Window) * 2)
- return Hazard;
- return NoHazard;
- }
-
- virtual void EmitInstruction(SUnit *SU) {
- Step(getClass(SU));
- }
-
- virtual void AdvanceCycle() {
- Step(Other);
- }
+ unsigned findSuitableFreeRegister(unsigned AntiDepReg,
+ unsigned LastNewReg,
+ const TargetRegisterClass *);
+ void StartBlockForKills(MachineBasicBlock *BB);
+
+ // ToggleKillFlag - Toggle a register operand kill flag. Other
+ // adjustments may be made to the instruction if necessary. Return
+ // true if the operand has been deleted, false if not.
+ bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
};
}
@@ -235,19 +229,44 @@ static bool isSchedulingBoundary(const MachineInstr *MI,
}
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
- DOUT << "PostRAScheduler\n";
+ AA = &getAnalysis<AliasAnalysis>();
+
+ // Check for explicit enable/disable of post-ra scheduling.
+ if (EnablePostRAScheduler.getPosition() > 0) {
+ if (!EnablePostRAScheduler)
+ return true;
+ } else {
+ // Check that post-RA scheduling is enabled for this function
+ const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
+ if (!ST.enablePostRAScheduler())
+ return true;
+ }
+
+ DEBUG(errs() << "PostRAScheduler\n");
const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+ const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
- new SimpleHazardRecognizer :
- new ScheduleHazardRecognizer();
+ (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
+ (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
- SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
+ SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, AA);
// Loop over all of the basic blocks
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
+#ifndef NDEBUG
+ // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
+ if (DebugDiv > 0) {
+ static int bbcnt = 0;
+ if (bbcnt++ % DebugDiv != DebugMod)
+ continue;
+ errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
+ ":MBB ID#" << MBB->getNumber() << " ***\n";
+ }
+#endif
+
// Initialize register live-range state for scheduling in this block.
Scheduler.StartBlock(MBB);
@@ -259,7 +278,7 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
MachineInstr *MI = prior(I);
if (isSchedulingBoundary(MI, Fn)) {
Scheduler.Run(MBB, I, Current, CurrentCount);
- Scheduler.EmitSchedule();
+ Scheduler.EmitSchedule(0);
Current = MI;
CurrentCount = Count - 1;
Scheduler.Observe(MI, CurrentCount);
@@ -271,10 +290,13 @@ bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
assert((MBB->begin() == Current || CurrentCount != 0) &&
"Instruction count mismatch!");
Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
- Scheduler.EmitSchedule();
+ Scheduler.EmitSchedule(0);
// Clean up register live-range state.
Scheduler.FinishBlock();
+
+ // Update register kills
+ Scheduler.FixupKills(MBB);
}
return true;
@@ -287,6 +309,9 @@ void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
// Call the superclass.
ScheduleDAGInstrs::StartBlock(BB);
+ // Reset the hazard recognizer.
+ HazardRec->Reset();
+
// Clear out the register class data.
std::fill(Classes, array_endof(Classes),
static_cast<const TargetRegisterClass *>(0));
@@ -295,8 +320,13 @@ void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
std::fill(KillIndices, array_endof(KillIndices), ~0u);
std::fill(DefIndices, array_endof(DefIndices), BB->size());
+ // Clear "do not change" set.
+ KeepRegs.clear();
+
+ bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
+
// Determine the live-out physregs for this block.
- if (!BB->empty() && BB->back().getDesc().isReturn())
+ if (IsReturnBlock) {
// In a return block, examine the function live-out regs.
for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
E = MRI.liveout_end(); I != E; ++I) {
@@ -312,7 +342,7 @@ void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
DefIndices[AliasReg] = ~0u;
}
}
- else
+ } else {
// In a non-return block, examine the live-in regs of all successors.
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI)
@@ -330,18 +360,16 @@ void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
DefIndices[AliasReg] = ~0u;
}
}
+ }
- // Consider callee-saved registers as live-out, since we're running after
- // prologue/epilogue insertion so there's no way to add additional
- // saved registers.
- //
- // TODO: If the callee saves and restores these, then we can potentially
- // use them between the save and the restore. To do that, we could scan
- // the exit blocks to see which of these registers are defined.
- // Alternatively, callee-saved registers that aren't saved and restored
- // could be marked live-in in every block.
+ // Mark live-out callee-saved registers. In a return block this is
+ // all callee-saved registers. In non-return this is any
+ // callee-saved register that is not saved in the prolog.
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ BitVector Pristine = MFI->getPristineRegs(BB);
for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
unsigned Reg = *I;
+ if (!IsReturnBlock && !Pristine.test(Reg)) continue;
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
KillIndices[Reg] = BB->size();
DefIndices[Reg] = ~0u;
@@ -358,10 +386,10 @@ void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
/// Schedule - Schedule the instruction range using list scheduling.
///
void SchedulePostRATDList::Schedule() {
- DOUT << "********** List Scheduling **********\n";
+ DEBUG(errs() << "********** List Scheduling **********\n");
// Build the scheduling graph.
- BuildSchedGraph();
+ BuildSchedGraph(AA);
if (EnableAntiDepBreaking) {
if (BreakAntiDependencies()) {
@@ -374,10 +402,13 @@ void SchedulePostRATDList::Schedule() {
SUnits.clear();
EntrySU = SUnit();
ExitSU = SUnit();
- BuildSchedGraph();
+ BuildSchedGraph(AA);
}
}
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this));
+
AvailableQueue.initNodes(SUnits);
ListScheduleTopDown();
@@ -448,8 +479,10 @@ void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
- const TargetRegisterClass *NewRC =
- getInstrOperandRegClass(TRI, MI->getDesc(), i);
+ const TargetRegisterClass *NewRC = 0;
+
+ if (i < MI->getDesc().getNumOperands())
+ NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
@@ -473,6 +506,16 @@ void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
// If we're still willing to consider this register, note the reference.
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
RegRefs.insert(std::make_pair(Reg, &MO));
+
+ // It's not safe to change register allocation for source operands of
+ // that have special allocation requirements.
+ if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
+ if (KeepRegs.insert(Reg)) {
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg)
+ KeepRegs.insert(*Subreg);
+ }
+ }
}
}
@@ -492,9 +535,10 @@ void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
DefIndices[Reg] = Count;
KillIndices[Reg] = ~0u;
- assert(((KillIndices[Reg] == ~0u) !=
- (DefIndices[Reg] == ~0u)) &&
- "Kill and Def maps aren't consistent for Reg!");
+ assert(((KillIndices[Reg] == ~0u) !=
+ (DefIndices[Reg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for Reg!");
+ KeepRegs.erase(Reg);
Classes[Reg] = 0;
RegRefs.erase(Reg);
// Repeat, for all subregs.
@@ -503,6 +547,7 @@ void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
unsigned SubregReg = *Subreg;
DefIndices[SubregReg] = Count;
KillIndices[SubregReg] = ~0u;
+ KeepRegs.erase(SubregReg);
Classes[SubregReg] = 0;
RegRefs.erase(SubregReg);
}
@@ -520,8 +565,9 @@ void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
if (Reg == 0) continue;
if (!MO.isUse()) continue;
- const TargetRegisterClass *NewRC =
- getInstrOperandRegClass(TRI, MI->getDesc(), i);
+ const TargetRegisterClass *NewRC = 0;
+ if (i < MI->getDesc().getNumOperands())
+ NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
// For now, only allow the register to be changed if its register
// class is consistent across all uses.
@@ -551,6 +597,36 @@ void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
}
}
+unsigned
+SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
+ unsigned LastNewReg,
+ const TargetRegisterClass *RC) {
+ for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
+ RE = RC->allocation_order_end(MF); R != RE; ++R) {
+ unsigned NewReg = *R;
+ // Don't replace a register with itself.
+ if (NewReg == AntiDepReg) continue;
+ // Don't replace a register with one that was recently used to repair
+ // an anti-dependence with this AntiDepReg, because that would
+ // re-introduce that anti-dependence.
+ if (NewReg == LastNewReg) continue;
+ // If NewReg is dead and NewReg's most recent def is not before
+ // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
+ assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for AntiDepReg!");
+ assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for NewReg!");
+ if (KillIndices[NewReg] != ~0u ||
+ Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
+ KillIndices[AntiDepReg] > DefIndices[NewReg])
+ continue;
+ return NewReg;
+ }
+
+ // No registers are free and available!
+ return 0;
+}
+
/// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
/// of the ScheduleDAG and break them by renaming registers.
///
@@ -567,8 +643,18 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
Max = SU;
}
- DOUT << "Critical path has total latency "
- << (Max->getDepth() + Max->Latency) << "\n";
+#ifndef NDEBUG
+ {
+ DEBUG(errs() << "Critical path has total latency "
+ << (Max->getDepth() + Max->Latency) << "\n");
+ DEBUG(errs() << "Available regs:");
+ for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
+ if (KillIndices[Reg] == ~0u)
+ DEBUG(errs() << " " << TRI->getName(Reg));
+ }
+ DEBUG(errs() << '\n');
+ }
+#endif
// Track progress along the critical path through the SUnit graph as we walk
// the instructions.
@@ -598,7 +684,7 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
// isn't A which is free. This re-introduces anti-dependencies
// at all but one of the original anti-dependencies that we were
// trying to break. To avoid this, keep track of the most recent
- // register that each register was replaced with, avoid avoid
+ // register that each register was replaced with, avoid
// using it to repair an anti-dependence on the same register.
// This lets us produce this:
// A = ...
@@ -627,13 +713,6 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
I != E; --Count) {
MachineInstr *MI = --I;
- // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
- // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
- // is left behind appearing to clobber the super-register, while the
- // subregister needs to remain live. So we just ignore them.
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
- continue;
-
// Check if this instruction has a dependence on the critical path that
// is an anti-dependence that we may be able to break. If it is, set
// AntiDepReg to the non-zero register associated with the anti-dependence.
@@ -656,8 +735,12 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
if (Edge->getKind() == SDep::Anti) {
AntiDepReg = Edge->getReg();
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
- // Don't break anti-dependencies on non-allocatable registers.
if (!AllocatableSet.test(AntiDepReg))
+ // Don't break anti-dependencies on non-allocatable registers.
+ AntiDepReg = 0;
+ else if (KeepRegs.count(AntiDepReg))
+ // Don't break anti-dependencies if an use down below requires
+ // this exact register.
AntiDepReg = 0;
else {
// If the SUnit has other dependencies on the SUnit that it
@@ -689,16 +772,22 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
PrescanInstruction(MI);
- // If this instruction has a use of AntiDepReg, breaking it
- // is invalid.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg()) continue;
- unsigned Reg = MO.getReg();
- if (Reg == 0) continue;
- if (MO.isUse() && AntiDepReg == Reg) {
- AntiDepReg = 0;
- break;
+ if (MI->getDesc().hasExtraDefRegAllocReq())
+ // If this instruction's defs have special allocation requirement, don't
+ // break this anti-dependency.
+ AntiDepReg = 0;
+ else if (AntiDepReg) {
+ // If this instruction has a use of AntiDepReg, breaking it
+ // is invalid.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ if (MO.isUse() && AntiDepReg == Reg) {
+ AntiDepReg = 0;
+ break;
+ }
}
}
@@ -715,60 +804,43 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
// TODO: Instead of picking the first free register, consider which might
// be the best.
if (AntiDepReg != 0) {
- for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
- RE = RC->allocation_order_end(MF); R != RE; ++R) {
- unsigned NewReg = *R;
- // Don't replace a register with itself.
- if (NewReg == AntiDepReg) continue;
- // Don't replace a register with one that was recently used to repair
- // an anti-dependence with this AntiDepReg, because that would
- // re-introduce that anti-dependence.
- if (NewReg == LastNewReg[AntiDepReg]) continue;
- // If NewReg is dead and NewReg's most recent def is not before
- // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
- assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for AntiDepReg!");
- assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for NewReg!");
- if (KillIndices[NewReg] == ~0u &&
- Classes[NewReg] != reinterpret_cast<TargetRegisterClass *>(-1) &&
- KillIndices[AntiDepReg] <= DefIndices[NewReg]) {
- DOUT << "Breaking anti-dependence edge on "
- << TRI->getName(AntiDepReg)
- << " with " << RegRefs.count(AntiDepReg) << " references"
- << " using " << TRI->getName(NewReg) << "!\n";
-
- // Update the references to the old register to refer to the new
- // register.
- std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
- std::multimap<unsigned, MachineOperand *>::iterator>
- Range = RegRefs.equal_range(AntiDepReg);
- for (std::multimap<unsigned, MachineOperand *>::iterator
- Q = Range.first, QE = Range.second; Q != QE; ++Q)
- Q->second->setReg(NewReg);
-
- // We just went back in time and modified history; the
- // liveness information for the anti-depenence reg is now
- // inconsistent. Set the state as if it were dead.
- Classes[NewReg] = Classes[AntiDepReg];
- DefIndices[NewReg] = DefIndices[AntiDepReg];
- KillIndices[NewReg] = KillIndices[AntiDepReg];
- assert(((KillIndices[NewReg] == ~0u) !=
- (DefIndices[NewReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for NewReg!");
-
- Classes[AntiDepReg] = 0;
- DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
- KillIndices[AntiDepReg] = ~0u;
- assert(((KillIndices[AntiDepReg] == ~0u) !=
- (DefIndices[AntiDepReg] == ~0u)) &&
- "Kill and Def maps aren't consistent for AntiDepReg!");
-
- RegRefs.erase(AntiDepReg);
- Changed = true;
- LastNewReg[AntiDepReg] = NewReg;
- break;
- }
+ if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
+ LastNewReg[AntiDepReg],
+ RC)) {
+ DEBUG(errs() << "Breaking anti-dependence edge on "
+ << TRI->getName(AntiDepReg)
+ << " with " << RegRefs.count(AntiDepReg) << " references"
+ << " using " << TRI->getName(NewReg) << "!\n");
+
+ // Update the references to the old register to refer to the new
+ // register.
+ std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
+ std::multimap<unsigned, MachineOperand *>::iterator>
+ Range = RegRefs.equal_range(AntiDepReg);
+ for (std::multimap<unsigned, MachineOperand *>::iterator
+ Q = Range.first, QE = Range.second; Q != QE; ++Q)
+ Q->second->setReg(NewReg);
+
+ // We just went back in time and modified history; the
+ // liveness information for the anti-depenence reg is now
+ // inconsistent. Set the state as if it were dead.
+ Classes[NewReg] = Classes[AntiDepReg];
+ DefIndices[NewReg] = DefIndices[AntiDepReg];
+ KillIndices[NewReg] = KillIndices[AntiDepReg];
+ assert(((KillIndices[NewReg] == ~0u) !=
+ (DefIndices[NewReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for NewReg!");
+
+ Classes[AntiDepReg] = 0;
+ DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
+ KillIndices[AntiDepReg] = ~0u;
+ assert(((KillIndices[AntiDepReg] == ~0u) !=
+ (DefIndices[AntiDepReg] == ~0u)) &&
+ "Kill and Def maps aren't consistent for AntiDepReg!");
+
+ RegRefs.erase(AntiDepReg);
+ Changed = true;
+ LastNewReg[AntiDepReg] = NewReg;
}
}
@@ -778,6 +850,177 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
return Changed;
}
+/// StartBlockForKills - Initialize register live-range state for updating kills
+///
+void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
+ // Initialize the indices to indicate that no registers are live.
+ std::fill(KillIndices, array_endof(KillIndices), ~0u);
+
+ // Determine the live-out physregs for this block.
+ if (!BB->empty() && BB->back().getDesc().isReturn()) {
+ // In a return block, examine the function live-out regs.
+ for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+ E = MRI.liveout_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ KillIndices[Reg] = BB->size();
+ // Repeat, for all subregs.
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ KillIndices[*Subreg] = BB->size();
+ }
+ }
+ }
+ else {
+ // In a non-return block, examine the live-in regs of all successors.
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI) {
+ for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+ E = (*SI)->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ KillIndices[Reg] = BB->size();
+ // Repeat, for all subregs.
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ KillIndices[*Subreg] = BB->size();
+ }
+ }
+ }
+ }
+}
+
+bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
+ MachineOperand &MO) {
+ // Setting kill flag...
+ if (!MO.isKill()) {
+ MO.setIsKill(true);
+ return false;
+ }
+
+ // If MO itself is live, clear the kill flag...
+ if (KillIndices[MO.getReg()] != ~0u) {
+ MO.setIsKill(false);
+ return false;
+ }
+
+ // If any subreg of MO is live, then create an imp-def for that
+ // subreg and keep MO marked as killed.
+ MO.setIsKill(false);
+ bool AllDead = true;
+ const unsigned SuperReg = MO.getReg();
+ for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
+ *Subreg; ++Subreg) {
+ if (KillIndices[*Subreg] != ~0u) {
+ MI->addOperand(MachineOperand::CreateReg(*Subreg,
+ true /*IsDef*/,
+ true /*IsImp*/,
+ false /*IsKill*/,
+ false /*IsDead*/));
+ AllDead = false;
+ }
+ }
+
+ if(AllDead)
+ MO.setIsKill(true);
+ return false;
+}
+
+/// FixupKills - Fix the register kill flags, they may have been made
+/// incorrect by instruction reordering.
+///
+void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
+ DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
+
+ std::set<unsigned> killedRegs;
+ BitVector ReservedRegs = TRI->getReservedRegs(MF);
+
+ StartBlockForKills(MBB);
+
+ // Examine block from end to start...
+ unsigned Count = MBB->size();
+ for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
+ I != E; --Count) {
+ MachineInstr *MI = --I;
+
+ // Update liveness. Registers that are defed but not used in this
+ // instruction are now dead. Mark register and all subregs as they
+ // are completely defined.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+ if (!MO.isDef()) continue;
+ // Ignore two-addr defs.
+ if (MI->isRegTiedToUseOperand(i)) continue;
+
+ KillIndices[Reg] = ~0u;
+
+ // Repeat for all subregs.
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ KillIndices[*Subreg] = ~0u;
+ }
+ }
+
+ // Examine all used registers and set/clear kill flag. When a
+ // register is used multiple times we only set the kill flag on
+ // the first use.
+ killedRegs.clear();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse()) continue;
+ unsigned Reg = MO.getReg();
+ if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
+
+ bool kill = false;
+ if (killedRegs.find(Reg) == killedRegs.end()) {
+ kill = true;
+ // A register is not killed if any subregs are live...
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ if (KillIndices[*Subreg] != ~0u) {
+ kill = false;
+ break;
+ }
+ }
+
+ // If subreg is not live, then register is killed if it became
+ // live in this instruction
+ if (kill)
+ kill = (KillIndices[Reg] == ~0u);
+ }
+
+ if (MO.isKill() != kill) {
+ bool removed = ToggleKillFlag(MI, MO);
+ if (removed) {
+ DEBUG(errs() << "Fixed <removed> in ");
+ } else {
+ DEBUG(errs() << "Fixed " << MO << " in ");
+ }
+ DEBUG(MI->dump());
+ }
+
+ killedRegs.insert(Reg);
+ }
+
+ // Mark any used register (that is not using undef) and subregs as
+ // now live...
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
+ unsigned Reg = MO.getReg();
+ if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
+
+ KillIndices[Reg] = Count;
+
+ for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+ *Subreg; ++Subreg) {
+ KillIndices[*Subreg] = Count;
+ }
+ }
+ }
+}
+
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
@@ -786,17 +1029,17 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
- --SuccSU->NumPredsLeft;
-
+
#ifndef NDEBUG
- if (SuccSU->NumPredsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
+ if (SuccSU->NumPredsLeft == 0) {
+ errs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
+ errs() << " has been released too many times!\n";
+ llvm_unreachable(0);
}
#endif
-
+ --SuccSU->NumPredsLeft;
+
// Compute how many cycles it will be before this actually becomes
// available. This is the max of the start time of all predecessors plus
// their latencies.
@@ -819,7 +1062,7 @@ void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
@@ -848,6 +1091,10 @@ void SchedulePostRATDList::ListScheduleTopDown() {
}
}
+ // In any cycle where we can't schedule any instructions, we must
+ // stall or emit a noop, depending on the target.
+ bool CycleHasInsts = false;
+
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
@@ -866,13 +1113,14 @@ void SchedulePostRATDList::ListScheduleTopDown() {
} else if (PendingQueue[i]->getDepth() < MinDepth)
MinDepth = PendingQueue[i]->getDepth();
}
-
- // If there are no instructions available, don't try to issue anything, and
- // don't advance the hazard recognizer.
- if (AvailableQueue.empty()) {
- CurCycle = MinDepth != ~0u ? MinDepth : CurCycle + 1;
- continue;
- }
+
+ DEBUG(errs() << "\n*** Examining Available\n";
+ LatencyPriorityQueue q = AvailableQueue;
+ while (!q.empty()) {
+ SUnit *su = q.pop();
+ errs() << "Height " << su->getHeight() << ": ";
+ su->dump(this);
+ });
SUnit *FoundSUnit = 0;
@@ -903,27 +1151,38 @@ void SchedulePostRATDList::ListScheduleTopDown() {
if (FoundSUnit) {
ScheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
-
- // If this is a pseudo-op node, we don't want to increment the current
- // cycle.
- if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
- ++CurCycle;
- } else if (!HasNoopHazards) {
- // Otherwise, we have a pipeline stall, but no other problem, just advance
- // the current cycle and try again.
- DOUT << "*** Advancing cycle, no work to do\n";
- HazardRec->AdvanceCycle();
- ++NumStalls;
- ++CurCycle;
+ CycleHasInsts = true;
+
+ // If we are using the target-specific hazards, then don't
+ // advance the cycle time just because we schedule a node. If
+ // the target allows it we can schedule multiple nodes in the
+ // same cycle.
+ if (!EnablePostRAHazardAvoidance) {
+ if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
+ ++CurCycle;
+ }
} else {
- // Otherwise, we have no instructions to issue and we have instructions
- // that will fault if we don't do this right. This is the case for
- // processors without pipeline interlocks and other cases.
- DOUT << "*** Emitting noop\n";
- HazardRec->EmitNoop();
- Sequence.push_back(0); // NULL here means noop
- ++NumNoops;
+ if (CycleHasInsts) {
+ DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
+ HazardRec->AdvanceCycle();
+ } else if (!HasNoopHazards) {
+ // Otherwise, we have a pipeline stall, but no other problem,
+ // just advance the current cycle and try again.
+ DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
+ HazardRec->AdvanceCycle();
+ ++NumStalls;
+ } else {
+ // Otherwise, we have no instructions to issue and we have instructions
+ // that will fault if we don't do this right. This is the case for
+ // processors without pipeline interlocks and other cases.
+ DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
+ HazardRec->EmitNoop();
+ Sequence.push_back(0); // NULL here means noop
+ ++NumNoops;
+ }
+
++CurCycle;
+ CycleHasInsts = false;
}
}
diff --git a/lib/CodeGen/PreAllocSplitting.cpp b/lib/CodeGen/PreAllocSplitting.cpp
index ae60c86..8fa07d4 100644
--- a/lib/CodeGen/PreAllocSplitting.cpp
+++ b/lib/CodeGen/PreAllocSplitting.cpp
@@ -31,6 +31,7 @@
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -67,7 +68,7 @@ namespace {
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
- unsigned BarrierIdx;
+ LiveIndex BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
@@ -82,7 +83,7 @@ namespace {
DenseMap<unsigned, int> IntervalSSMap;
// Def2SpillMap - A map from a def instruction index to spill index.
- DenseMap<unsigned, unsigned> Def2SpillMap;
+ DenseMap<LiveIndex, LiveIndex> Def2SpillMap;
public:
static char ID;
@@ -91,6 +92,7 @@ namespace {
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveStacks>();
@@ -119,33 +121,31 @@ namespace {
}
/// print - Implement the dump method.
- virtual void print(std::ostream &O, const Module* M = 0) const {
+ virtual void print(raw_ostream &O, const Module* M = 0) const {
LIs->print(O, M);
}
- void print(std::ostream *O, const Module* M = 0) const {
- if (O) print(*O, M);
- }
private:
MachineBasicBlock::iterator
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
- unsigned&);
+ LiveIndex&);
MachineBasicBlock::iterator
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
- SmallPtrSet<MachineInstr*, 4>&, unsigned&);
+ SmallPtrSet<MachineInstr*, 4>&, LiveIndex&);
MachineBasicBlock::iterator
- findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
- SmallPtrSet<MachineInstr*, 4>&, unsigned&);
+ findRestorePoint(MachineBasicBlock*, MachineInstr*, LiveIndex,
+ SmallPtrSet<MachineInstr*, 4>&, LiveIndex&);
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
- bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
- unsigned&, int&) const;
+ bool IsAvailableInStack(MachineBasicBlock*, unsigned,
+ LiveIndex, LiveIndex,
+ LiveIndex&, int&) const;
- void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
+ void UpdateSpillSlotInterval(VNInfo*, LiveIndex, LiveIndex);
bool SplitRegLiveInterval(LiveInterval*);
@@ -157,7 +157,7 @@ namespace {
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
- unsigned RestoreIdx,
+ LiveIndex RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
MachineInstr* DefMI,
@@ -209,11 +209,12 @@ const PassInfo *const llvm::PreAllocSplittingID = &X;
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
- unsigned &SpotIndex) {
+ LiveIndex &SpotIndex) {
MachineBasicBlock::iterator MII = MI;
if (++MII != MBB->end()) {
- unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
- if (Index) {
+ LiveIndex Index =
+ LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
+ if (Index != LiveIndex()) {
SpotIndex = Index;
return MII;
}
@@ -229,7 +230,7 @@ MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
MachineInstr *DefMI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
- unsigned &SpillIndex) {
+ LiveIndex &SpillIndex) {
MachineBasicBlock::iterator Pt = MBB->begin();
MachineBasicBlock::iterator MII = MI;
@@ -242,7 +243,7 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
while (MII != EndPt && !RefsInMBB.count(MII)) {
- unsigned Index = LIs->getInstructionIndex(MII);
+ LiveIndex Index = LIs->getInstructionIndex(MII);
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
@@ -275,9 +276,9 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
- unsigned LastIdx,
+ LiveIndex LastIdx,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
- unsigned &RestoreIndex) {
+ LiveIndex &RestoreIndex) {
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
// begin index accordingly.
MachineBasicBlock::iterator Pt = MBB->end();
@@ -298,10 +299,10 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
// FIXME: Limit the number of instructions to examine to reduce
// compile time?
while (MII != EndPt) {
- unsigned Index = LIs->getInstructionIndex(MII);
+ LiveIndex Index = LIs->getInstructionIndex(MII);
if (Index > LastIdx)
break;
- unsigned Gap = LIs->findGapBeforeInstr(Index);
+ LiveIndex Gap = LIs->findGapBeforeInstr(Index);
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
@@ -310,7 +311,7 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
++MII;
} while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
- } else if (Gap) {
+ } else if (Gap != LiveIndex()) {
Pt = MII;
RestoreIndex = Gap;
}
@@ -343,7 +344,8 @@ int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
- CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
+ CurrSValNo = CurrSLI->getNextValue(LiveIndex(), 0, false,
+ LSs->getVNInfoAllocator());
return SS;
}
@@ -351,8 +353,9 @@ int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
- unsigned Reg, unsigned DefIndex,
- unsigned RestoreIndex, unsigned &SpillIndex,
+ unsigned Reg, LiveIndex DefIndex,
+ LiveIndex RestoreIndex,
+ LiveIndex &SpillIndex,
int& SS) const {
if (!DefMBB)
return false;
@@ -360,7 +363,8 @@ PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I == IntervalSSMap.end())
return false;
- DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
+ DenseMap<LiveIndex, LiveIndex>::iterator
+ II = Def2SpillMap.find(DefIndex);
if (II == Def2SpillMap.end())
return false;
@@ -380,8 +384,8 @@ PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
-PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
- unsigned RestoreIndex) {
+PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, LiveIndex SpillIndex,
+ LiveIndex RestoreIndex) {
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
"Expect restore in the barrier mbb");
@@ -394,8 +398,8 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
}
SmallPtrSet<MachineBasicBlock*, 4> Processed;
- unsigned EndIdx = LIs->getMBBEndIdx(MBB);
- LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
+ LiveIndex EndIdx = LIs->getMBBEndIdx(MBB);
+ LiveRange SLR(SpillIndex, LIs->getNextSlot(EndIdx), CurrSValNo);
CurrSLI->addRange(SLR);
Processed.insert(MBB);
@@ -414,7 +418,7 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
WorkList.pop_back();
if (Processed.count(MBB))
continue;
- unsigned Idx = LIs->getMBBStartIdx(MBB);
+ LiveIndex Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
if (LR && LR->valno == ValNo) {
EndIdx = LIs->getMBBEndIdx(MBB);
@@ -424,7 +428,7 @@ PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
CurrSLI->addRange(SLR);
} else if (LR->end > EndIdx) {
// Live range extends beyond end of mbb, process successors.
- LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
+ LiveRange SLR(Idx, LIs->getNextIndex(EndIdx), CurrSValNo);
CurrSLI->addRange(SLR);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
@@ -487,12 +491,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
}
// Once we've found it, extend its VNInfo to our instruction.
- unsigned DefIndex = LIs->getInstructionIndex(Walker);
- DefIndex = LiveIntervals::getDefIndex(DefIndex);
- unsigned EndIndex = LIs->getMBBEndIdx(MBB);
+ LiveIndex DefIndex = LIs->getInstructionIndex(Walker);
+ DefIndex = LIs->getDefIndex(DefIndex);
+ LiveIndex EndIndex = LIs->getMBBEndIdx(MBB);
RetVNI = NewVNs[Walker];
- LI->addRange(LiveRange(DefIndex, EndIndex+1, RetVNI));
+ LI->addRange(LiveRange(DefIndex, LIs->getNextSlot(EndIndex), RetVNI));
} else if (!ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
@@ -524,12 +528,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
IsTopLevel, IsIntraBlock);
}
- unsigned UseIndex = LIs->getInstructionIndex(Walker);
- UseIndex = LiveIntervals::getUseIndex(UseIndex);
- unsigned EndIndex = 0;
+ LiveIndex UseIndex = LIs->getInstructionIndex(Walker);
+ UseIndex = LIs->getUseIndex(UseIndex);
+ LiveIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
- EndIndex = LiveIntervals::getUseIndex(EndIndex);
+ EndIndex = LIs->getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
@@ -538,12 +542,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
- LI->addRange(LiveRange(UseIndex, EndIndex+1, RetVNI));
+ LI->addRange(LiveRange(UseIndex, LIs->getNextSlot(EndIndex), RetVNI));
// FIXME: Need to set kills properly for inter-block stuff.
- if (LI->isKill(RetVNI, UseIndex)) LI->removeKill(RetVNI, UseIndex);
+ if (RetVNI->isKill(UseIndex)) RetVNI->removeKill(UseIndex);
if (IsIntraBlock)
- LI->addKill(RetVNI, EndIndex);
+ RetVNI->addKill(EndIndex);
} else if (ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
@@ -584,13 +588,13 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
IsTopLevel, IsIntraBlock);
}
- unsigned StartIndex = LIs->getInstructionIndex(Walker);
- StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
- LiveIntervals::getUseIndex(StartIndex);
- unsigned EndIndex = 0;
+ LiveIndex StartIndex = LIs->getInstructionIndex(Walker);
+ StartIndex = foundDef ? LIs->getDefIndex(StartIndex) :
+ LIs->getUseIndex(StartIndex);
+ LiveIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
- EndIndex = LiveIntervals::getUseIndex(EndIndex);
+ EndIndex = LIs->getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
@@ -600,12 +604,12 @@ PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
- LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
+ LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
- if (foundUse && LI->isKill(RetVNI, StartIndex))
- LI->removeKill(RetVNI, StartIndex);
+ if (foundUse && RetVNI->isKill(StartIndex))
+ RetVNI->removeKill(StartIndex);
if (IsIntraBlock) {
- LI->addKill(RetVNI, EndIndex);
+ RetVNI->addKill(EndIndex);
}
}
@@ -636,9 +640,10 @@ PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator Us
// assume that we are not intrablock here.
if (Phis.count(MBB)) return Phis[MBB];
- unsigned StartIndex = LIs->getMBBStartIdx(MBB);
+ LiveIndex StartIndex = LIs->getMBBStartIdx(MBB);
VNInfo *RetVNI = Phis[MBB] =
- LI->getNextValue(0, /*FIXME*/ 0, false, LIs->getVNInfoAllocator());
+ LI->getNextValue(LiveIndex(), /*FIXME*/ 0, false,
+ LIs->getVNInfoAllocator());
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
@@ -680,21 +685,21 @@ PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator Us
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
I->second->setHasPHIKill(true);
- unsigned KillIndex = LIs->getMBBEndIdx(I->first);
- if (!LiveInterval::isKill(I->second, KillIndex))
- LI->addKill(I->second, KillIndex);
+ LiveIndex KillIndex = LIs->getMBBEndIdx(I->first);
+ if (!I->second->isKill(KillIndex))
+ I->second->addKill(KillIndex);
}
}
- unsigned EndIndex = 0;
+ LiveIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI);
- EndIndex = LiveIntervals::getUseIndex(EndIndex);
+ EndIndex = LIs->getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
- LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
+ LI->addRange(LiveRange(StartIndex, LIs->getNextSlot(EndIndex), RetVNI));
if (IsIntraBlock)
- LI->addKill(RetVNI, EndIndex);
+ RetVNI->addKill(EndIndex);
// Memoize results so we don't have to recompute them.
if (!IsIntraBlock)
@@ -728,8 +733,8 @@ void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
DE = MRI->def_end(); DI != DE; ++DI) {
Defs[(*DI).getParent()].insert(&*DI);
- unsigned DefIdx = LIs->getInstructionIndex(&*DI);
- DefIdx = LiveIntervals::getDefIndex(DefIdx);
+ LiveIndex DefIdx = LIs->getInstructionIndex(&*DI);
+ DefIdx = LIs->getDefIndex(DefIdx);
assert(DI->getOpcode() != TargetInstrInfo::PHI &&
"Following NewVN isPHIDef flag incorrect. Fix me!");
@@ -739,7 +744,7 @@ void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
if (DstReg == LI->reg)
- NewVN->copy = &*DI;
+ NewVN->setCopy(&*DI);
NewVNs[&*DI] = NewVN;
}
@@ -764,14 +769,32 @@ void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
// Add ranges for dead defs
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
- unsigned DefIdx = LIs->getInstructionIndex(&*DI);
- DefIdx = LiveIntervals::getDefIndex(DefIdx);
+ LiveIndex DefIdx = LIs->getInstructionIndex(&*DI);
+ DefIdx = LIs->getDefIndex(DefIdx);
if (LI->liveAt(DefIdx)) continue;
VNInfo* DeadVN = NewVNs[&*DI];
- LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
- LI->addKill(DeadVN, DefIdx);
+ LI->addRange(LiveRange(DefIdx, LIs->getNextSlot(DefIdx), DeadVN));
+ DeadVN->addKill(DefIdx);
+ }
+
+ // Update kill markers.
+ for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
+ VI != VE; ++VI) {
+ VNInfo* VNI = *VI;
+ for (unsigned i = 0, e = VNI->kills.size(); i != e; ++i) {
+ LiveIndex KillIdx = VNI->kills[i];
+ if (KillIdx.isPHIIndex())
+ continue;
+ MachineInstr *KillMI = LIs->getInstructionFromIndex(KillIdx);
+ if (KillMI) {
+ MachineOperand *KillMO = KillMI->findRegisterUseOperand(CurrLI->reg);
+ if (KillMO)
+ // It could be a dead def.
+ KillMO->setIsKill();
+ }
+ }
}
}
@@ -801,14 +824,16 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
VNsToCopy.push_back(OldVN);
// Locate two-address redefinitions
- for (SmallVector<unsigned, 4>::iterator KI = OldVN->kills.begin(),
+ for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
KE = OldVN->kills.end(); KI != KE; ++KI) {
+ assert(!KI->isPHIIndex() &&
+ "VN previously reported having no PHI kills.");
MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
if (DefIdx == ~0U) continue;
if (MI->isRegTiedToUseOperand(DefIdx)) {
VNInfo* NextVN =
- CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI));
+ CurrLI->findDefinedVNInfoForRegInt(LIs->getDefIndex(*KI));
if (NextVN == OldVN) continue;
Stack.push_back(NextVN);
}
@@ -840,10 +865,10 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand& MO = I.getOperand();
- unsigned InstrIdx = LIs->getInstructionIndex(&*I);
+ LiveIndex InstrIdx = LIs->getInstructionIndex(&*I);
- if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
- (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
+ if ((MO.isUse() && NewLI.liveAt(LIs->getUseIndex(InstrIdx))) ||
+ (MO.isDef() && NewLI.liveAt(LIs->getDefIndex(InstrIdx))))
OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
}
@@ -865,15 +890,15 @@ void PreAllocSplitting::RenumberValno(VNInfo* VN) {
NumRenumbers++;
}
-bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo,
+bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
- unsigned RestoreIdx,
+ LiveIndex RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock& MBB = *RestorePt->getParent();
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
- unsigned KillIdx = 0;
+ LiveIndex KillIdx;
if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
else
@@ -882,13 +907,13 @@ bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo,
if (KillPt == DefMI->getParent()->end())
return false;
- TII->reMaterialize(MBB, RestorePt, vreg, DefMI);
+ TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI);
LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
ReconstructLiveInterval(CurrLI);
- unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
- RematIdx = LiveIntervals::getDefIndex(RematIdx);
- RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
+ LiveIndex RematIdx = LIs->getInstructionIndex(prior(RestorePt));
+ RematIdx = LIs->getDefIndex(RematIdx);
+ RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
++NumSplits;
++NumRemats;
@@ -943,7 +968,8 @@ MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
- CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
+ CurrSValNo = CurrSLI->getNextValue(LiveIndex(), 0, false,
+ LSs->getVNInfoAllocator());
}
return FMI;
@@ -1033,11 +1059,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
VNInfo *ValNo = LR->valno;
- if (ValNo->isUnused()) {
- // Defined by a dead def? How can this be?
- assert(0 && "Val# is defined by a dead def?");
- abort();
- }
+ assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
MachineInstr *DefMI = ValNo->isDefAccurate()
? LIs->getInstructionFromIndex(ValNo->def) : NULL;
@@ -1056,7 +1078,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
}
// Find a point to restore the value after the barrier.
- unsigned RestoreIndex = 0;
+ LiveIndex RestoreIndex;
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
if (RestorePt == BarrierMBB->end())
@@ -1070,7 +1092,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
// Add a spill either before the barrier or after the definition.
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
- unsigned SpillIndex = 0;
+ LiveIndex SpillIndex;
MachineInstr *SpillMI = NULL;
int SS = -1;
if (!ValNo->isDefAccurate()) {
@@ -1098,7 +1120,7 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
return false; // Def is dead. Do nothing.
if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
- BarrierMBB, SS, RefsInMBB))) {
+ BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
} else {
// Check if it's possible to insert a spill after the def MI.
@@ -1114,11 +1136,9 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
if (SpillPt == DefMBB->end())
return false; // No gap to insert spill.
}
- // Add spill. The store instruction kills the register if def is before
- // the barrier in the barrier block.
+ // Add spill.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
- TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
- DefMBB == BarrierMBB, SS, RC);
+ TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC);
SpillMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
}
@@ -1142,15 +1162,15 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
}
// Update spill stack slot live interval.
- UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
+ UpdateSpillSlotInterval(ValNo, LIs->getNextSlot(LIs->getUseIndex(SpillIndex)),
LIs->getDefIndex(RestoreIndex));
ReconstructLiveInterval(CurrLI);
-
+
if (!FoldedRestore) {
- unsigned RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
- RestoreIdx = LiveIntervals::getDefIndex(RestoreIdx);
- RenumberValno(CurrLI->findDefinedVNInfo(RestoreIdx));
+ LiveIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
+ RestoreIdx = LIs->getDefIndex(RestoreIdx);
+ RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
}
++NumSplits;
@@ -1189,8 +1209,6 @@ PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
while (!Intervals.empty()) {
if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
break;
- else if (NumSplits == 4)
- Change |= Change;
LiveInterval *LI = Intervals.back();
Intervals.pop_back();
bool result = SplitRegLiveInterval(LI);
@@ -1236,8 +1254,8 @@ bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
// reaching definition (VNInfo).
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
- unsigned index = LIs->getInstructionIndex(&*UI);
- index = LiveIntervals::getUseIndex(index);
+ LiveIndex index = LIs->getInstructionIndex(&*UI);
+ index = LIs->getUseIndex(index);
const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
VNUseCount[LR->valno].insert(&*UI);
@@ -1386,7 +1404,7 @@ bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
if (LR->valno->hasPHIKill())
return false;
- unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
+ LiveIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
if (LR->end < MBBEnd)
return false;
diff --git a/lib/CodeGen/PrologEpilogInserter.cpp b/lib/CodeGen/PrologEpilogInserter.cpp
index 9e7ad67..8793df7 100644
--- a/lib/CodeGen/PrologEpilogInserter.cpp
+++ b/lib/CodeGen/PrologEpilogInserter.cpp
@@ -31,7 +31,9 @@
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/STLExtras.h"
#include <climits>
@@ -51,22 +53,26 @@ FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); }
/// frame indexes with appropriate references.
///
bool PEI::runOnMachineFunction(MachineFunction &Fn) {
+ const Function* F = Fn.getFunction();
const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo();
RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL;
+ FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn);
// Get MachineModuleInfo so that we can track the construction of the
// frame.
if (MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>())
Fn.getFrameInfo()->setMachineModuleInfo(MMI);
+ // Calculate the MaxCallFrameSize and HasCalls variables for the function's
+ // frame information. Also eliminates call frame pseudo instructions.
+ calculateCallsInformation(Fn);
+
// Allow the target machine to make some adjustments to the function
// e.g. UsedPhysRegs before calculateCalleeSavedRegisters.
TRI->processFunctionBeforeCalleeSavedScan(Fn, RS);
- // Scan the function for modified callee saved registers and insert spill
- // code for any callee saved registers that are modified. Also calculate
- // the MaxCallFrameSize and HasCalls variables for the function's frame
- // information and eliminates call frame pseudo instructions.
+ // Scan the function for modified callee saved registers and insert spill code
+ // for any callee saved registers that are modified.
calculateCalleeSavedRegisters(Fn);
// Determine placement of CSR spill/restore code:
@@ -78,7 +84,8 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
placeCSRSpillsAndRestores(Fn);
// Add the code to save and restore the callee saved registers
- insertCSRSpillsAndRestores(Fn);
+ if (!F->hasFnAttr(Attribute::Naked))
+ insertCSRSpillsAndRestores(Fn);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
@@ -92,13 +99,20 @@ bool PEI::runOnMachineFunction(MachineFunction &Fn) {
// called functions. Because of this, calculateCalleeSavedRegisters
// must be called before this function in order to set the HasCalls
// and MaxCallFrameSize variables.
- insertPrologEpilogCode(Fn);
+ if (!F->hasFnAttr(Attribute::Naked))
+ insertPrologEpilogCode(Fn);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(Fn);
+ // If register scavenging is needed, as we've enabled doing it as a
+ // post-pass, scavenge the virtual registers that frame index elimiation
+ // inserted.
+ if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging)
+ scavengeFrameVirtualRegs(Fn);
+
delete RS;
clearAllSets();
return true;
@@ -117,35 +131,24 @@ void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
}
#endif
-/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
-/// registers. Also calculate the MaxCallFrameSize and HasCalls variables for
-/// the function's frame information and eliminates call frame pseudo
-/// instructions.
-///
-void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
+/// calculateCallsInformation - Calculate the MaxCallFrameSize and HasCalls
+/// variables for the function's frame information and eliminate call frame
+/// pseudo instructions.
+void PEI::calculateCallsInformation(MachineFunction &Fn) {
const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
- const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo();
- // Get the callee saved register list...
- const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn);
+ unsigned MaxCallFrameSize = 0;
+ bool HasCalls = false;
// Get the function call frame set-up and tear-down instruction opcode
int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode();
int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode();
- // These are used to keep track the callee-save area. Initialize them.
- MinCSFrameIndex = INT_MAX;
- MaxCSFrameIndex = 0;
-
- // Early exit for targets which have no callee saved registers and no call
- // frame setup/destroy pseudo instructions.
- if ((CSRegs == 0 || CSRegs[0] == 0) &&
- FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
+ // Early exit for targets which have no call frame setup/destroy pseudo
+ // instructions.
+ if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1)
return;
- unsigned MaxCallFrameSize = 0;
- bool HasCalls = false;
-
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
@@ -157,31 +160,57 @@ void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
HasCalls = true;
FrameSDOps.push_back(I);
+ } else if (I->getOpcode() == TargetInstrInfo::INLINEASM) {
+ // An InlineAsm might be a call; assume it is to get the stack frame
+ // aligned correctly for calls.
+ HasCalls = true;
}
MachineFrameInfo *FFI = Fn.getFrameInfo();
FFI->setHasCalls(HasCalls);
FFI->setMaxCallFrameSize(MaxCallFrameSize);
- for (unsigned i = 0, e = FrameSDOps.size(); i != e; ++i) {
- MachineBasicBlock::iterator I = FrameSDOps[i];
- // If call frames are not being included as part of the stack frame,
- // and there is no dynamic allocation (therefore referencing frame slots
- // off sp), leave the pseudo ops alone. We'll eliminate them later.
+ for (std::vector<MachineBasicBlock::iterator>::iterator
+ i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) {
+ MachineBasicBlock::iterator I = *i;
+
+ // If call frames are not being included as part of the stack frame, and
+ // there is no dynamic allocation (therefore referencing frame slots off
+ // sp), leave the pseudo ops alone. We'll eliminate them later.
if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn))
RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I);
}
+}
+
+
+/// calculateCalleeSavedRegisters - Scan the function for modified callee saved
+/// registers.
+void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
+ const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo();
+ const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo();
+ MachineFrameInfo *FFI = Fn.getFrameInfo();
+
+ // Get the callee saved register list...
+ const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn);
+
+ // These are used to keep track the callee-save area. Initialize them.
+ MinCSFrameIndex = INT_MAX;
+ MaxCSFrameIndex = 0;
+
+ // Early exit for targets which have no callee saved registers.
+ if (CSRegs == 0 || CSRegs[0] == 0)
+ return;
- // Now figure out which *callee saved* registers are modified by the current
+ // Figure out which *callee saved* registers are modified by the current
// function, thus needing to be saved and restored in the prolog/epilog.
- //
- const TargetRegisterClass* const *CSRegClasses =
+ const TargetRegisterClass * const *CSRegClasses =
RegInfo->getCalleeSavedRegClasses(&Fn);
+
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (Fn.getRegInfo().isPhysRegUsed(Reg)) {
- // If the reg is modified, save it!
+ // If the reg is modified, save it!
CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i]));
} else {
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
@@ -198,39 +227,47 @@ void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) {
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
- const std::pair<unsigned,int> *FixedSpillSlots =
+ const TargetFrameInfo::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
- for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
- unsigned Reg = CSI[i].getReg();
- const TargetRegisterClass *RC = CSI[i].getRegClass();
+ for (std::vector<CalleeSavedInfo>::iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ unsigned Reg = I->getReg();
+ const TargetRegisterClass *RC = I->getRegClass();
+
+ int FrameIdx;
+ if (RegInfo->hasReservedSpillSlot(Fn, Reg, FrameIdx)) {
+ I->setFrameIdx(FrameIdx);
+ continue;
+ }
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
- const std::pair<unsigned,int> *FixedSlot = FixedSpillSlots;
+ const TargetFrameInfo::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots &&
- FixedSlot->first != Reg)
+ FixedSlot->Reg != Reg)
++FixedSlot;
- int FrameIdx;
- if (FixedSlot == FixedSpillSlots+NumFixedSpillSlots) {
+ if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
unsigned Align = RC->getAlignment();
unsigned StackAlign = TFI->getStackAlignment();
- // We may not be able to sastify the desired alignment specification of
- // the TargetRegisterClass if the stack alignment is smaller.
- // Use the min.
+
+ // We may not be able to satisfy the desired alignment specification of
+ // the TargetRegisterClass if the stack alignment is smaller. Use the
+ // min.
Align = std::min(Align, StackAlign);
FrameIdx = FFI->CreateStackObject(RC->getSize(), Align);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
- FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->second);
+ FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset);
}
- CSI[i].setFrameIdx(FrameIdx);
+
+ I->setFrameIdx(FrameIdx);
}
FFI->setCalleeSavedInfo(CSI);
@@ -244,6 +281,8 @@ void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) {
MachineFrameInfo *FFI = Fn.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo();
+ FFI->setCalleeSavedInfoValid(true);
+
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return;
@@ -403,8 +442,7 @@ static inline void
AdjustStackOffset(MachineFrameInfo *FFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
unsigned &MaxAlign) {
- // If stack grows down, we need to add size of find the lowest address of the
- // object.
+ // If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += FFI->getObjectSize(FrameIdx);
@@ -437,16 +475,17 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo *FFI = Fn.getFrameInfo();
- unsigned MaxAlign = FFI->getMaxAlignment();
+ unsigned MaxAlign = 1;
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
- int64_t Offset = TFI.getOffsetOfLocalArea();
+ int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
- Offset = -Offset;
- assert(Offset >= 0
+ LocalAreaOffset = -LocalAreaOffset;
+ assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
+ int64_t Offset = LocalAreaOffset;
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
@@ -538,32 +577,38 @@ void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) {
AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign);
}
- // Round up the size to a multiple of the alignment, but only if there are
- // calls or alloca's in the function. This ensures that any calls to
- // subroutines have their stack frames suitable aligned.
- // Also do this if we need runtime alignment of the stack. In this case
- // offsets will be relative to SP not FP; round up the stack size so this
- // works.
- if (!RegInfo->targetHandlesStackFrameRounding() &&
- (FFI->hasCalls() || FFI->hasVarSizedObjects() ||
- (RegInfo->needsStackRealignment(Fn) &&
- FFI->getObjectIndexEnd() != 0))) {
+ if (!RegInfo->targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
- if (RegInfo->hasReservedCallFrame(Fn))
+ if (FFI->hasCalls() && RegInfo->hasReservedCallFrame(Fn))
Offset += FFI->getMaxCallFrameSize();
- unsigned AlignMask = std::max(TFI.getStackAlignment(),MaxAlign) - 1;
+ // Round up the size to a multiple of the alignment. If the function has
+ // any calls or alloca's, align to the target's StackAlignment value to
+ // ensure that the callee's frame or the alloca data is suitably aligned;
+ // otherwise, for leaf functions, align to the TransientStackAlignment
+ // value.
+ unsigned StackAlign;
+ if (FFI->hasCalls() || FFI->hasVarSizedObjects() ||
+ (RegInfo->needsStackRealignment(Fn) && FFI->getObjectIndexEnd() != 0))
+ StackAlign = TFI.getStackAlignment();
+ else
+ StackAlign = TFI.getTransientStackAlignment();
+ // If the frame pointer is eliminated, all frame offsets will be relative
+ // to SP not FP; align to MaxAlign so this works.
+ StackAlign = std::max(StackAlign, MaxAlign);
+ unsigned AlignMask = StackAlign - 1;
Offset = (Offset + AlignMask) & ~uint64_t(AlignMask);
}
// Update frame info to pretend that this is part of the stack...
- FFI->setStackSize(Offset+TFI.getOffsetOfLocalArea());
+ FFI->setStackSize(Offset - LocalAreaOffset);
// Remember the required stack alignment in case targets need it to perform
// dynamic stack alignment.
- FFI->setMaxAlignment(MaxAlign);
+ if (MaxAlign > FFI->getMaxAlignment())
+ FFI->setMaxAlignment(MaxAlign);
}
@@ -604,14 +649,9 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
for (MachineFunction::iterator BB = Fn.begin(),
E = Fn.end(); BB != E; ++BB) {
int SPAdj = 0; // SP offset due to call frame setup / destroy.
- if (RS) RS->enterBasicBlock(BB);
+ if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB);
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
- if (I->getOpcode() == TargetInstrInfo::DECLARE) {
- // Ignore it.
- ++I;
- continue;
- }
if (I->getOpcode() == FrameSetupOpcode ||
I->getOpcode() == FrameDestroyOpcode) {
@@ -654,8 +694,16 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
-
- TRI.eliminateFrameIndex(MI, SPAdj, RS);
+ int Value;
+ unsigned VReg =
+ TRI.eliminateFrameIndex(MI, SPAdj, &Value,
+ FrameIndexVirtualScavenging ? NULL : RS);
+ if (VReg) {
+ assert (FrameIndexVirtualScavenging &&
+ "Not scavenging, but virtual returned from "
+ "eliminateFrameIndex()!");
+ FrameConstantRegMap[VReg] = FrameConstantEntry(Value, SPAdj);
+ }
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
@@ -670,10 +718,170 @@ void PEI::replaceFrameIndices(MachineFunction &Fn) {
if (DoIncr && I != BB->end()) ++I;
// Update register states.
- if (RS && MI) RS->forward(MI);
+ if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI);
}
assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?");
}
}
+/// findLastUseReg - find the killing use of the specified register within
+/// the instruciton range. Return the operand number of the kill in Operand.
+static MachineBasicBlock::iterator
+findLastUseReg(MachineBasicBlock::iterator I, MachineBasicBlock::iterator ME,
+ unsigned Reg, unsigned *Operand) {
+ // Scan forward to find the last use of this virtual register
+ for (++I; I != ME; ++I) {
+ MachineInstr *MI = I;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
+ if (MI->getOperand(i).isReg()) {
+ unsigned OpReg = MI->getOperand(i).getReg();
+ if (OpReg == 0 || !TargetRegisterInfo::isVirtualRegister(OpReg))
+ continue;
+ assert (OpReg == Reg
+ && "overlapping use of scavenged index register!");
+ // If this is the killing use, we're done
+ if (MI->getOperand(i).isKill()) {
+ if (Operand)
+ *Operand = i;
+ return I;
+ }
+ }
+ }
+ // If we hit the end of the basic block, there was no kill of
+ // the virtual register, which is wrong.
+ assert (0 && "scavenged index register never killed!");
+ return ME;
+}
+
+/// scavengeFrameVirtualRegs - Replace all frame index virtual registers
+/// with physical registers. Use the register scavenger to find an
+/// appropriate register to use.
+void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) {
+ // Run through the instructions and find any virtual registers.
+ for (MachineFunction::iterator BB = Fn.begin(),
+ E = Fn.end(); BB != E; ++BB) {
+ RS->enterBasicBlock(BB);
+
+ unsigned CurrentVirtReg = 0;
+ unsigned CurrentScratchReg = 0;
+ bool havePrevValue = false;
+ unsigned PrevScratchReg = 0;
+ int PrevValue;
+ MachineInstr *PrevLastUseMI = NULL;
+ unsigned PrevLastUseOp = 0;
+ bool trackingCurrentValue = false;
+ int SPAdj = 0;
+ int Value = 0;
+
+ // The instruction stream may change in the loop, so check BB->end()
+ // directly.
+ for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ MachineInstr *MI = I;
+ // Likewise, call getNumOperands() each iteration, as the MI may change
+ // inside the loop (with 'i' updated accordingly).
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i)
+ if (MI->getOperand(i).isReg()) {
+ MachineOperand &MO = MI->getOperand(i);
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // If we have an active scavenged register, we shouldn't be
+ // seeing any references to it.
+ assert (Reg != CurrentScratchReg
+ && "overlapping use of scavenged frame index register!");
+
+ // If we have a previous scratch reg, check and see if anything
+ // here kills whatever value is in there.
+ if (Reg == PrevScratchReg) {
+ if (MO.isUse()) {
+ // Two-address operands implicitly kill
+ if (MO.isKill() || MI->isRegTiedToDefOperand(i)) {
+ havePrevValue = false;
+ PrevScratchReg = 0;
+ }
+ } else {
+ assert (MO.isDef());
+ havePrevValue = false;
+ PrevScratchReg = 0;
+ }
+ }
+ continue;
+ }
+
+ // Have we already allocated a scratch register for this virtual?
+ if (Reg != CurrentVirtReg) {
+ // When we first encounter a new virtual register, it
+ // must be a definition.
+ assert(MI->getOperand(i).isDef() &&
+ "frame index virtual missing def!");
+ // We can't have nested virtual register live ranges because
+ // there's only a guarantee of one scavenged register at a time.
+ assert (CurrentVirtReg == 0 &&
+ "overlapping frame index virtual registers!");
+
+ // If the target gave us information about what's in the register,
+ // we can use that to re-use scratch regs.
+ DenseMap<unsigned, FrameConstantEntry>::iterator Entry =
+ FrameConstantRegMap.find(Reg);
+ trackingCurrentValue = Entry != FrameConstantRegMap.end();
+ if (trackingCurrentValue) {
+ SPAdj = (*Entry).second.second;
+ Value = (*Entry).second.first;
+ } else
+ SPAdj = Value = 0;
+
+ // If the scratch register from the last allocation is still
+ // available, see if the value matches. If it does, just re-use it.
+ if (trackingCurrentValue && havePrevValue && PrevValue == Value) {
+ // FIXME: This assumes that the instructions in the live range
+ // for the virtual register are exclusively for the purpose
+ // of populating the value in the register. That's reasonable
+ // for these frame index registers, but it's still a very, very
+ // strong assumption. Perhaps this implies that the frame index
+ // elimination should be before register allocation, with
+ // conservative heuristics since we'll know less then, and
+ // the reuse calculations done directly when doing the code-gen?
+
+ // Find the last use of the new virtual register. Remove all
+ // instruction between here and there, and update the current
+ // instruction to reference the last use insn instead.
+ MachineBasicBlock::iterator LastUseMI =
+ findLastUseReg(I, BB->end(), Reg, &i);
+ // Remove all instructions up 'til the last use, since they're
+ // just calculating the value we already have.
+ BB->erase(I, LastUseMI);
+ MI = I = LastUseMI;
+
+ CurrentScratchReg = PrevScratchReg;
+ // Extend the live range of the register
+ PrevLastUseMI->getOperand(PrevLastUseOp).setIsKill(false);
+ RS->setUsed(CurrentScratchReg);
+ } else {
+ CurrentVirtReg = Reg;
+ const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg);
+ CurrentScratchReg = RS->FindUnusedReg(RC);
+ if (CurrentScratchReg == 0)
+ // No register is "free". Scavenge a register.
+ CurrentScratchReg = RS->scavengeRegister(RC, I, SPAdj);
+
+ PrevValue = Value;
+ }
+ }
+ assert (CurrentScratchReg && "Missing scratch register!");
+ MI->getOperand(i).setReg(CurrentScratchReg);
+
+ // If this is the last use of the register, stop tracking it.
+ if (MI->getOperand(i).isKill()) {
+ PrevScratchReg = CurrentScratchReg;
+ PrevLastUseMI = MI;
+ PrevLastUseOp = i;
+ CurrentScratchReg = CurrentVirtReg = 0;
+ havePrevValue = trackingCurrentValue;
+ }
+ }
+ RS->forward(MI);
+ }
+ }
+}
diff --git a/lib/CodeGen/PrologEpilogInserter.h b/lib/CodeGen/PrologEpilogInserter.h
index c158dd8..931f1eb 100644
--- a/lib/CodeGen/PrologEpilogInserter.h
+++ b/lib/CodeGen/PrologEpilogInserter.h
@@ -27,6 +27,7 @@
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/Target/TargetRegisterInfo.h"
namespace llvm {
class RegScavenger;
@@ -93,6 +94,17 @@ namespace llvm {
// functions.
bool ShrinkWrapThisFunction;
+ // Flag to control whether to use the register scavenger to resolve
+ // frame index materialization registers. Set according to
+ // TRI->requiresFrameIndexScavenging() for the curren function.
+ bool FrameIndexVirtualScavenging;
+
+ // When using the scavenger post-pass to resolve frame reference
+ // materialization registers, maintain a map of the registers to
+ // the constant value and SP adjustment associated with it.
+ typedef std::pair<int, int> FrameConstantEntry;
+ DenseMap<unsigned, FrameConstantEntry> FrameConstantRegMap;
+
#ifndef NDEBUG
// Machine function handle.
MachineFunction* MF;
@@ -118,10 +130,12 @@ namespace llvm {
CSRegBlockMap &prevRestores);
void placeSpillsAndRestores(MachineFunction &Fn);
void placeCSRSpillsAndRestores(MachineFunction &Fn);
+ void calculateCallsInformation(MachineFunction &Fn);
void calculateCalleeSavedRegisters(MachineFunction &Fn);
void insertCSRSpillsAndRestores(MachineFunction &Fn);
void calculateFrameObjectOffsets(MachineFunction &Fn);
void replaceFrameIndices(MachineFunction &Fn);
+ void scavengeFrameVirtualRegs(MachineFunction &Fn);
void insertPrologEpilogCode(MachineFunction &Fn);
// Initialize DFA sets, called before iterations.
diff --git a/lib/CodeGen/PseudoSourceValue.cpp b/lib/CodeGen/PseudoSourceValue.cpp
index b4c20e6..00c5d46 100644
--- a/lib/CodeGen/PseudoSourceValue.cpp
+++ b/lib/CodeGen/PseudoSourceValue.cpp
@@ -15,6 +15,7 @@
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
@@ -38,15 +39,16 @@ static const char *const PSVNames[] = {
"ConstantPool"
};
+// FIXME: THIS IS A HACK!!!!
+// Eventually these should be uniqued on LLVMContext rather than in a managed
+// static. For now, we can safely use the global context for the time being to
+// squeak by.
PseudoSourceValue::PseudoSourceValue() :
- Value(PointerType::getUnqual(Type::Int8Ty), PseudoSourceValueVal) {}
+ Value(Type::getInt8PtrTy(getGlobalContext()),
+ PseudoSourceValueVal) {}
-void PseudoSourceValue::dump() const {
- print(errs()); errs() << '\n';
-}
-
-void PseudoSourceValue::print(raw_ostream &OS) const {
- OS << PSVNames[this - *PSVs];
+void PseudoSourceValue::printCustom(raw_ostream &O) const {
+ O << PSVNames[this - *PSVs];
}
namespace {
@@ -61,7 +63,7 @@ namespace {
virtual bool isConstant(const MachineFrameInfo *MFI) const;
- virtual void print(raw_ostream &OS) const {
+ virtual void printCustom(raw_ostream &OS) const {
OS << "FixedStack" << FI;
}
};
@@ -83,7 +85,7 @@ bool PseudoSourceValue::isConstant(const MachineFrameInfo *) const {
this == getConstantPool() ||
this == getJumpTable())
return true;
- assert(0 && "Unknown PseudoSourceValue!");
+ llvm_unreachable("Unknown PseudoSourceValue!");
return false;
}
diff --git a/lib/CodeGen/README.txt b/lib/CodeGen/README.txt
index 64374ce..b655dda4 100644
--- a/lib/CodeGen/README.txt
+++ b/lib/CodeGen/README.txt
@@ -30,44 +30,6 @@ It also increase the likelyhood the store may become dead.
//===---------------------------------------------------------------------===//
-I think we should have a "hasSideEffects" flag (which is automatically set for
-stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
-to remat any instruction that has no side effects, if it can handle it and if
-profitable.
-
-For now, I'd suggest having the remat stuff work like this:
-
-1. I need to spill/reload this thing.
-2. Check to see if it has side effects.
-3. Check to see if it is simple enough: e.g. it only has one register
-destination and no register input.
-4. If so, clone the instruction, do the xform, etc.
-
-Advantages of this are:
-
-1. the .td file describes the behavior of the instructions, not the way the
- algorithm should work.
-2. as remat gets smarter in the future, we shouldn't have to be changing the .td
- files.
-3. it is easier to explain what the flag means in the .td file, because you
- don't have to pull in the explanation of how the current remat algo works.
-
-Some potential added complexities:
-
-1. Some instructions have to be glued to it's predecessor or successor. All of
- the PC relative instructions and condition code setting instruction. We could
- mark them as hasSideEffects, but that's not quite right. PC relative loads
- from constantpools can be remat'ed, for example. But it requires more than
- just cloning the instruction. Some instructions can be remat'ed but it
- expands to more than one instruction. But allocator will have to make a
- decision.
-
-4. As stated in 3, not as simple as cloning in some cases. The target will have
- to decide how to remat it. For example, an ARM 2-piece constant generation
- instruction is remat'ed as a load from constantpool.
-
-//===---------------------------------------------------------------------===//
-
bb27 ...
...
%reg1037 = ADDri %reg1039, 1
@@ -206,3 +168,32 @@ Stack coloring improvments:
not spill slots.
2. Reorder objects to fill in gaps between objects.
e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4
+
+//===---------------------------------------------------------------------===//
+
+The scheduler should be able to sort nearby instructions by their address. For
+example, in an expanded memset sequence it's not uncommon to see code like this:
+
+ movl $0, 4(%rdi)
+ movl $0, 8(%rdi)
+ movl $0, 12(%rdi)
+ movl $0, 0(%rdi)
+
+Each of the stores is independent, and the scheduler is currently making an
+arbitrary decision about the order.
+
+//===---------------------------------------------------------------------===//
+
+Another opportunitiy in this code is that the $0 could be moved to a register:
+
+ movl $0, 4(%rdi)
+ movl $0, 8(%rdi)
+ movl $0, 12(%rdi)
+ movl $0, 0(%rdi)
+
+This would save substantial code size, especially for longer sequences like
+this. It would be easy to have a rule telling isel to avoid matching MOV32mi
+if the immediate has more than some fixed number of uses. It's more involved
+to teach the register allocator how to do late folding to recover from
+excessive register pressure.
+
diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp
index 904b4cb..5d58ea9 100644
--- a/lib/CodeGen/RegAllocLinearScan.cpp
+++ b/lib/CodeGen/RegAllocLinearScan.cpp
@@ -33,8 +33,10 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <queue>
@@ -142,6 +144,7 @@ namespace {
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequired<LiveIntervals>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
@@ -173,11 +176,11 @@ namespace {
/// processActiveIntervals - expire old intervals and move non-overlapping
/// ones to the inactive list.
- void processActiveIntervals(unsigned CurPoint);
+ void processActiveIntervals(LiveIndex CurPoint);
/// processInactiveIntervals - expire old intervals and move overlapping
/// ones to the active list.
- void processInactiveIntervals(unsigned CurPoint);
+ void processInactiveIntervals(LiveIndex CurPoint);
/// hasNextReloadInterval - Return the next liveinterval that's being
/// defined by a reload from the same SS as the specified one.
@@ -230,12 +233,12 @@ namespace {
bool Error = false;
for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
if (regUse_[i] != 0) {
- cerr << tri_->getName(i) << " is still in use!\n";
+ errs() << tri_->getName(i) << " is still in use!\n";
Error = true;
}
}
if (Error)
- abort();
+ llvm_unreachable(0);
#endif
regUse_.clear();
regUseBackUp_.clear();
@@ -295,15 +298,20 @@ namespace {
template <typename ItTy>
void printIntervals(const char* const str, ItTy i, ItTy e) const {
- if (str) DOUT << str << " intervals:\n";
- for (; i != e; ++i) {
- DOUT << "\t" << *i->first << " -> ";
- unsigned reg = i->first->reg;
- if (TargetRegisterInfo::isVirtualRegister(reg)) {
- reg = vrm_->getPhys(reg);
- }
- DOUT << tri_->getName(reg) << '\n';
- }
+ DEBUG({
+ if (str)
+ errs() << str << " intervals:\n";
+
+ for (; i != e; ++i) {
+ errs() << "\t" << *i->first << " -> ";
+
+ unsigned reg = i->first->reg;
+ if (TargetRegisterInfo::isVirtualRegister(reg))
+ reg = vrm_->getPhys(reg);
+
+ errs() << tri_->getName(reg) << '\n';
+ }
+ });
}
};
char RALinScan::ID = 0;
@@ -358,7 +366,8 @@ unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
return Reg;
VNInfo *vni = cur.begin()->valno;
- if (!vni->def || vni->isUnused() || !vni->isDefAccurate())
+ if ((vni->def == LiveIndex()) ||
+ vni->isUnused() || !vni->isDefAccurate())
return Reg;
MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
@@ -380,18 +389,18 @@ unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
// Try to coalesce.
if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
- DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
- << '\n';
+ DEBUG(errs() << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
+ << '\n');
vrm_->clearVirt(cur.reg);
vrm_->assignVirt2Phys(cur.reg, PhysReg);
// Remove unnecessary kills since a copy does not clobber the register.
if (li_->hasInterval(SrcReg)) {
LiveInterval &SrcLI = li_->getInterval(SrcReg);
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg),
- E = mri_->reg_end(); I != E; ++I) {
+ for (MachineRegisterInfo::use_iterator I = mri_->use_begin(cur.reg),
+ E = mri_->use_end(); I != E; ++I) {
MachineOperand &O = I.getOperand();
- if (!O.isUse() || !O.isKill())
+ if (!O.isKill())
continue;
MachineInstr *MI = &*I;
if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
@@ -478,24 +487,25 @@ void RALinScan::initIntervalSets()
}
}
-void RALinScan::linearScan()
-{
+void RALinScan::linearScan() {
// linear scan algorithm
- DOUT << "********** LINEAR SCAN **********\n";
- DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
-
- DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
+ DEBUG({
+ errs() << "********** LINEAR SCAN **********\n"
+ << "********** Function: "
+ << mf_->getFunction()->getName() << '\n';
+ printIntervals("fixed", fixed_.begin(), fixed_.end());
+ });
while (!unhandled_.empty()) {
// pick the interval with the earliest start point
LiveInterval* cur = unhandled_.top();
unhandled_.pop();
++NumIters;
- DOUT << "\n*** CURRENT ***: " << *cur << '\n';
+ DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n');
if (!cur->empty()) {
- processActiveIntervals(cur->beginNumber());
- processInactiveIntervals(cur->beginNumber());
+ processActiveIntervals(cur->beginIndex());
+ processInactiveIntervals(cur->beginIndex());
assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
"Can only allocate virtual registers!");
@@ -506,15 +516,17 @@ void RALinScan::linearScan()
// assign it one.
assignRegOrStackSlotAtInterval(cur);
- DEBUG(printIntervals("active", active_.begin(), active_.end()));
- DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
+ DEBUG({
+ printIntervals("active", active_.begin(), active_.end());
+ printIntervals("inactive", inactive_.begin(), inactive_.end());
+ });
}
// Expire any remaining active intervals
while (!active_.empty()) {
IntervalPtr &IP = active_.back();
unsigned reg = IP.first->reg;
- DOUT << "\tinterval " << *IP.first << " expired\n";
+ DEBUG(errs() << "\tinterval " << *IP.first << " expired\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -523,9 +535,11 @@ void RALinScan::linearScan()
}
// Expire any remaining inactive intervals
- DEBUG(for (IntervalPtrs::reverse_iterator
- i = inactive_.rbegin(); i != inactive_.rend(); ++i)
- DOUT << "\tinterval " << *i->first << " expired\n");
+ DEBUG({
+ for (IntervalPtrs::reverse_iterator
+ i = inactive_.rbegin(); i != inactive_.rend(); ++i)
+ errs() << "\tinterval " << *i->first << " expired\n";
+ });
inactive_.clear();
// Add live-ins to every BB except for entry. Also perform trivial coalescing.
@@ -560,7 +574,7 @@ void RALinScan::linearScan()
}
}
- DOUT << *vrm_;
+ DEBUG(errs() << *vrm_);
// Look for physical registers that end up not being allocated even though
// register allocator had to spill other registers in its register class.
@@ -572,9 +586,9 @@ void RALinScan::linearScan()
/// processActiveIntervals - expire old intervals and move non-overlapping ones
/// to the inactive list.
-void RALinScan::processActiveIntervals(unsigned CurPoint)
+void RALinScan::processActiveIntervals(LiveIndex CurPoint)
{
- DOUT << "\tprocessing active intervals:\n";
+ DEBUG(errs() << "\tprocessing active intervals:\n");
for (unsigned i = 0, e = active_.size(); i != e; ++i) {
LiveInterval *Interval = active_[i].first;
@@ -584,7 +598,7 @@ void RALinScan::processActiveIntervals(unsigned CurPoint)
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
if (IntervalPos == Interval->end()) { // Remove expired intervals.
- DOUT << "\t\tinterval " << *Interval << " expired\n";
+ DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -597,7 +611,7 @@ void RALinScan::processActiveIntervals(unsigned CurPoint)
} else if (IntervalPos->start > CurPoint) {
// Move inactive intervals to inactive list.
- DOUT << "\t\tinterval " << *Interval << " inactive\n";
+ DEBUG(errs() << "\t\tinterval " << *Interval << " inactive\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -618,9 +632,9 @@ void RALinScan::processActiveIntervals(unsigned CurPoint)
/// processInactiveIntervals - expire old intervals and move overlapping
/// ones to the active list.
-void RALinScan::processInactiveIntervals(unsigned CurPoint)
+void RALinScan::processInactiveIntervals(LiveIndex CurPoint)
{
- DOUT << "\tprocessing inactive intervals:\n";
+ DEBUG(errs() << "\tprocessing inactive intervals:\n");
for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
LiveInterval *Interval = inactive_[i].first;
@@ -630,7 +644,7 @@ void RALinScan::processInactiveIntervals(unsigned CurPoint)
IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
if (IntervalPos == Interval->end()) { // remove expired intervals.
- DOUT << "\t\tinterval " << *Interval << " expired\n";
+ DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
// Pop off the end of the list.
inactive_[i] = inactive_.back();
@@ -638,7 +652,7 @@ void RALinScan::processInactiveIntervals(unsigned CurPoint)
--i; --e;
} else if (IntervalPos->start <= CurPoint) {
// move re-activated intervals in active list
- DOUT << "\t\tinterval " << *Interval << " active\n";
+ DEBUG(errs() << "\t\tinterval " << *Interval << " active\n");
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
@@ -699,7 +713,7 @@ FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
return IP.end();
}
-static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
+static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, LiveIndex Point){
for (unsigned i = 0, e = V.size(); i != e; ++i) {
RALinScan::IntervalPtr &IP = V[i];
LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
@@ -725,7 +739,8 @@ static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
if (SI.hasAtLeastOneValue())
VNI = SI.getValNumInfo(0);
else
- VNI = SI.getNextValue(0, 0, false, ls_->getVNInfoAllocator());
+ VNI = SI.getNextValue(LiveIndex(), 0, false,
+ ls_->getVNInfoAllocator());
LiveInterval &RI = li_->getInterval(cur->reg);
// FIXME: This may be overly conservative.
@@ -764,10 +779,12 @@ void RALinScan::findIntervalsToSpill(LiveInterval *cur,
float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
SmallVector<LiveInterval*, 8> SLIs[3];
- DOUT << "\tConsidering " << NumCands << " candidates: ";
- DEBUG(for (unsigned i = 0; i != NumCands; ++i)
- DOUT << tri_->getName(Candidates[i].first) << " ";
- DOUT << "\n";);
+ DEBUG({
+ errs() << "\tConsidering " << NumCands << " candidates: ";
+ for (unsigned i = 0; i != NumCands; ++i)
+ errs() << tri_->getName(Candidates[i].first) << " ";
+ errs() << "\n";
+ });
// Calculate the number of conflicts of each candidate.
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
@@ -865,16 +882,15 @@ void RALinScan::UpgradeRegister(unsigned Reg) {
namespace {
struct LISorter {
bool operator()(LiveInterval* A, LiveInterval* B) {
- return A->beginNumber() < B->beginNumber();
+ return A->beginIndex() < B->beginIndex();
}
};
}
/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
/// spill.
-void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
-{
- DOUT << "\tallocating current interval: ";
+void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
+ DEBUG(errs() << "\tallocating current interval: ");
// This is an implicitly defined live interval, just assign any register.
const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
@@ -882,7 +898,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
unsigned physReg = vrm_->getRegAllocPref(cur->reg);
if (!physReg)
physReg = *RC->allocation_order_begin(*mf_);
- DOUT << tri_->getName(physReg) << '\n';
+ DEBUG(errs() << tri_->getName(physReg) << '\n');
// Note the register is not really in use.
vrm_->assignVirt2Phys(cur->reg, physReg);
return;
@@ -891,7 +907,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
backUpRegUses();
std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
- unsigned StartPosition = cur->beginNumber();
+ LiveIndex StartPosition = cur->beginIndex();
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
// If start of this live interval is defined by a move instruction and its
@@ -901,7 +917,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
// one, e.g. X86::mov32to32_. These move instructions are not coalescable.
if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
VNInfo *vni = cur->begin()->valno;
- if (vni->def && !vni->isUnused() && vni->isDefAccurate()) {
+ if ((vni->def != LiveIndex()) && !vni->isUnused() &&
+ vni->isDefAccurate()) {
MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (CopyMI &&
@@ -963,7 +980,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
// Okay, this reg is on the fixed list. Check to see if we actually
// conflict.
LiveInterval *I = IP.first;
- if (I->endNumber() > StartPosition) {
+ if (I->endIndex() > StartPosition) {
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
IP.second = II;
if (II != I->begin() && II->start > StartPosition)
@@ -988,7 +1005,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
- I->endNumber() > StartPosition) {
+ I->endIndex() > StartPosition) {
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
IP.second = II;
if (II != I->begin() && II->start > StartPosition)
@@ -1015,7 +1032,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
// the free physical register and add this interval to the active
// list.
if (physReg) {
- DOUT << tri_->getName(physReg) << '\n';
+ DEBUG(errs() << tri_->getName(physReg) << '\n');
vrm_->assignVirt2Phys(cur->reg, physReg);
addRegUse(physReg);
active_.push_back(std::make_pair(cur, cur->begin()));
@@ -1031,7 +1048,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
}
return;
}
- DOUT << "no free registers\n";
+ DEBUG(errs() << "no free registers\n");
// Compile the spill weights into an array that is better for scanning.
std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
@@ -1049,7 +1066,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
}
- DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
+ DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n");
// Find a register to spill.
float minWeight = HUGE_VALF;
@@ -1102,8 +1119,7 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
DowngradedRegs.clear();
assignRegOrStackSlotAtInterval(cur);
} else {
- cerr << "Ran out of registers during register allocation!\n";
- exit(1);
+ llvm_report_error("Ran out of registers during register allocation!");
}
return;
}
@@ -1117,16 +1133,19 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
--LastCandidate;
}
- DOUT << "\t\tregister(s) with min weight(s): ";
- DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
- DOUT << tri_->getName(RegsWeights[i].first)
- << " (" << RegsWeights[i].second << ")\n");
+ DEBUG({
+ errs() << "\t\tregister(s) with min weight(s): ";
+
+ for (unsigned i = 0; i != LastCandidate; ++i)
+ errs() << tri_->getName(RegsWeights[i].first)
+ << " (" << RegsWeights[i].second << ")\n";
+ });
// If the current has the minimum weight, we need to spill it and
// add any added intervals back to unhandled, and restart
// linearscan.
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
- DOUT << "\t\t\tspilling(c): " << *cur << '\n';
+ DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n');
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> added;
@@ -1154,14 +1173,14 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
- unsigned ReloadIdx = ReloadLi->beginNumber();
+ LiveIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
- assert(LastReload->beginNumber() < ReloadIdx);
+ assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
@@ -1206,12 +1225,11 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
// mark our rollback point.
std::vector<LiveInterval*> added;
while (!spillIs.empty()) {
- bool epicFail = false;
LiveInterval *sli = spillIs.back();
spillIs.pop_back();
- DOUT << "\t\t\tspilling(a): " << *sli << '\n';
+ DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
earliestStartInterval =
- (earliestStartInterval->beginNumber() < sli->beginNumber()) ?
+ (earliestStartInterval->beginIndex() < sli->beginIndex()) ?
earliestStartInterval : sli;
std::vector<LiveInterval*> newIs;
@@ -1223,15 +1241,11 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
addStackInterval(sli, ls_, li_, mri_, *vrm_);
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
spilled.insert(sli->reg);
-
- if (epicFail) {
- //abort();
- }
}
- unsigned earliestStart = earliestStartInterval->beginNumber();
+ LiveIndex earliestStart = earliestStartInterval->beginIndex();
- DOUT << "\t\trolling back to: " << earliestStart << '\n';
+ DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
// Scan handled in reverse order up to the earliest start of a
// spilled live interval and undo each one, restoring the state of
@@ -1239,9 +1253,9 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
while (!handled_.empty()) {
LiveInterval* i = handled_.back();
// If this interval starts before t we are done.
- if (i->beginNumber() < earliestStart)
+ if (i->beginIndex() < earliestStart)
break;
- DOUT << "\t\t\tundo changes for: " << *i << '\n';
+ DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
handled_.pop_back();
// When undoing a live interval allocation we must know if it is active or
@@ -1290,8 +1304,8 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
LiveInterval *HI = handled_[i];
if (!HI->expiredAt(earliestStart) &&
- HI->expiredAt(cur->beginNumber())) {
- DOUT << "\t\t\tundo changes for: " << *HI << '\n';
+ HI->expiredAt(cur->beginIndex())) {
+ DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
active_.push_back(std::make_pair(HI, HI->begin()));
assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
addRegUse(vrm_->getPhys(HI->reg));
@@ -1310,14 +1324,14 @@ void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
- unsigned ReloadIdx = ReloadLi->beginNumber();
+ LiveIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
- assert(LastReload->beginNumber() < ReloadIdx);
+ assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
@@ -1420,7 +1434,7 @@ unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
// available first.
unsigned Preference = vrm_->getRegAllocPref(cur->reg);
if (Preference) {
- DOUT << "(preferred: " << tri_->getName(Preference) << ") ";
+ DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") ");
if (isRegAvail(Preference) &&
RC->contains(Preference))
return Preference;
diff --git a/lib/CodeGen/RegAllocLocal.cpp b/lib/CodeGen/RegAllocLocal.cpp
index e1cc20c..6caa2d3 100644
--- a/lib/CodeGen/RegAllocLocal.cpp
+++ b/lib/CodeGen/RegAllocLocal.cpp
@@ -25,6 +25,8 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
@@ -151,6 +153,7 @@ namespace {
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
@@ -291,11 +294,11 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
assert(VirtReg && "Spilling a physical register is illegal!"
" Must not have appropriate kill for the register or use exists beyond"
" the intended one.");
- DOUT << " Spilling register " << TRI->getName(PhysReg)
- << " containing %reg" << VirtReg;
+ DEBUG(errs() << " Spilling register " << TRI->getName(PhysReg)
+ << " containing %reg" << VirtReg);
if (!isVirtRegModified(VirtReg)) {
- DOUT << " which has not been modified, so no store necessary!";
+ DEBUG(errs() << " which has not been modified, so no store necessary!");
std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
if (LastUse.first)
LastUse.first->getOperand(LastUse.second).setIsKill();
@@ -305,7 +308,7 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
// modified.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
- DOUT << " to stack slot #" << FrameIndex;
+ DEBUG(errs() << " to stack slot #" << FrameIndex);
// If the instruction reads the register that's spilled, (e.g. this can
// happen if it is a move to a physical register), then the spill
// instruction is not a kill.
@@ -316,7 +319,7 @@ void RALocal::spillVirtReg(MachineBasicBlock &MBB,
getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
- DOUT << "\n";
+ DEBUG(errs() << '\n');
removePhysReg(PhysReg);
}
@@ -505,8 +508,8 @@ MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
- DOUT << " Reloading %reg" << VirtReg << " into "
- << TRI->getName(PhysReg) << "\n";
+ DEBUG(errs() << " Reloading %reg" << VirtReg << " into "
+ << TRI->getName(PhysReg) << "\n");
// Add move instruction(s)
TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
@@ -517,24 +520,28 @@ MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
if (!ReloadedRegs.insert(PhysReg)) {
- cerr << "Ran out of registers during register allocation!\n";
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- cerr << "Please check your inline asm statement for invalid "
+ Msg << "\nPlease check your inline asm statement for invalid "
<< "constraints:\n";
- MI->print(cerr.stream(), TM);
+ MI->print(Msg, TM);
}
- exit(1);
+ llvm_report_error(Msg.str());
}
for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
*SubRegs; ++SubRegs) {
if (!ReloadedRegs.insert(*SubRegs)) {
- cerr << "Ran out of registers during register allocation!\n";
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Ran out of registers during register allocation!";
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
- cerr << "Please check your inline asm statement for invalid "
+ Msg << "\nPlease check your inline asm statement for invalid "
<< "constraints:\n";
- MI->print(cerr.stream(), TM);
+ MI->print(Msg, TM);
}
- exit(1);
+ llvm_report_error(Msg.str());
}
}
@@ -707,8 +714,11 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator MII = MBB.begin();
- DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
- if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
+ DEBUG({
+ const BasicBlock *LBB = MBB.getBasicBlock();
+ if (LBB)
+ errs() << "\nStarting RegAlloc of BB: " << LBB->getName();
+ });
// Add live-in registers as active.
for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
@@ -733,13 +743,15 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
while (MII != MBB.end()) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
- DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
- DOUT << " Regs have values: ";
- for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
- if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
- DOUT << "[" << TRI->getName(i)
- << ",%reg" << PhysRegsUsed[i] << "] ";
- DOUT << "\n");
+ DEBUG({
+ errs() << "\nStarting RegAlloc of: " << *MI;
+ errs() << " Regs have values: ";
+ for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
+ if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+ errs() << "[" << TRI->getName(i)
+ << ",%reg" << PhysRegsUsed[i] << "] ";
+ errs() << '\n';
+ });
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
@@ -783,8 +795,8 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) =
std::make_pair((MachineInstr*)0, 0);
- DOUT << " Assigning " << TRI->getName(DestPhysReg)
- << " to %reg" << DestVirtReg << "\n";
+ DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
+ << " to %reg" << DestVirtReg << "\n");
MO.setReg(DestPhysReg); // Assign the earlyclobber register
} else {
unsigned Reg = MO.getReg();
@@ -849,15 +861,15 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
}
if (PhysReg) {
- DOUT << " Last use of " << TRI->getName(PhysReg)
- << "[%reg" << VirtReg <<"], removing it from live set\n";
+ DEBUG(errs() << " Last use of " << TRI->getName(PhysReg)
+ << "[%reg" << VirtReg <<"], removing it from live set\n");
removePhysReg(PhysReg);
for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
- DOUT << " Last use of "
- << TRI->getName(*SubRegs)
- << "[%reg" << VirtReg <<"], removing it from live set\n";
+ DEBUG(errs() << " Last use of "
+ << TRI->getName(*SubRegs) << "[%reg" << VirtReg
+ <<"], removing it from live set\n");
removePhysReg(*SubRegs);
}
}
@@ -942,8 +954,8 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
MF->getRegInfo().setPhysRegUsed(DestPhysReg);
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
- DOUT << " Assigning " << TRI->getName(DestPhysReg)
- << " to %reg" << DestVirtReg << "\n";
+ DEBUG(errs() << " Assigning " << TRI->getName(DestPhysReg)
+ << " to %reg" << DestVirtReg << "\n");
MO.setReg(DestPhysReg); // Assign the output register
}
}
@@ -965,16 +977,16 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
}
if (PhysReg) {
- DOUT << " Register " << TRI->getName(PhysReg)
- << " [%reg" << VirtReg
- << "] is never used, removing it from live set\n";
+ DEBUG(errs() << " Register " << TRI->getName(PhysReg)
+ << " [%reg" << VirtReg
+ << "] is never used, removing it from live set\n");
removePhysReg(PhysReg);
for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
- DOUT << " Register " << TRI->getName(*AliasSet)
- << " [%reg" << *AliasSet
- << "] is never used, removing it from live set\n";
+ DEBUG(errs() << " Register " << TRI->getName(*AliasSet)
+ << " [%reg" << *AliasSet
+ << "] is never used, removing it from live set\n");
removePhysReg(*AliasSet);
}
}
@@ -1022,7 +1034,7 @@ void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
/// runOnMachineFunction - Register allocate the whole function
///
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
- DOUT << "Machine Function " << "\n";
+ DEBUG(errs() << "Machine Function\n");
MF = &Fn;
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index 89e2c59..bee5d93 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -31,7 +31,9 @@
#define DEBUG_TYPE "regalloc"
-#include "PBQP.h"
+#include "PBQP/HeuristicSolver.h"
+#include "PBQP/SimpleGraph.h"
+#include "PBQP/Heuristics/Briggs.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
@@ -42,6 +44,7 @@
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
@@ -53,32 +56,38 @@
using namespace llvm;
static RegisterRegAlloc
-registerPBQPRepAlloc("pbqp", "PBQP register allocator",
- createPBQPRegisterAllocator);
+registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
+ llvm::createPBQPRegisterAllocator);
+
+static cl::opt<bool>
+pbqpCoalescing("pbqp-coalescing",
+ cl::desc("Attempt coalescing during PBQP register allocation."),
+ cl::init(false), cl::Hidden);
namespace {
- //!
- //! PBQP based allocators solve the register allocation problem by mapping
- //! register allocation problems to Partitioned Boolean Quadratic
- //! Programming problems.
+ ///
+ /// PBQP based allocators solve the register allocation problem by mapping
+ /// register allocation problems to Partitioned Boolean Quadratic
+ /// Programming problems.
class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
public:
static char ID;
- //! Construct a PBQP register allocator.
- PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
+ /// Construct a PBQP register allocator.
+ PBQPRegAlloc() : MachineFunctionPass(&ID) {}
- //! Return the pass name.
- virtual const char* getPassName() const throw() {
+ /// Return the pass name.
+ virtual const char* getPassName() const {
return "PBQP Register Allocator";
}
- //! PBQP analysis usage.
+ /// PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<LiveIntervals>();
- au.addRequiredTransitive<RegisterCoalescer>();
+ //au.addRequiredID(SplitCriticalEdgesID);
+ au.addRequired<RegisterCoalescer>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineLoopInfo>();
@@ -87,7 +96,7 @@ namespace {
MachineFunctionPass::getAnalysisUsage(au);
}
- //! Perform register allocation
+ /// Perform register allocation
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
@@ -97,7 +106,7 @@ namespace {
typedef std::vector<AllowedSet> AllowedSetMap;
typedef std::set<unsigned> RegSet;
typedef std::pair<unsigned, unsigned> RegPair;
- typedef std::map<RegPair, PBQPNum> CoalesceMap;
+ typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
typedef std::set<LiveInterval*> LiveIntervalSet;
@@ -119,60 +128,60 @@ namespace {
emptyVRegIntervals;
- //! Builds a PBQP cost vector.
+ /// Builds a PBQP cost vector.
template <typename RegContainer>
- PBQPVector* buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &cealesces,
- PBQPNum spillCost) const;
-
- //! \brief Builds a PBQP interference matrix.
- //!
- //! @return Either a pointer to a non-zero PBQP matrix representing the
- //! allocation option costs, or a null pointer for a zero matrix.
- //!
- //! Expects allowed sets for two interfering LiveIntervals. These allowed
- //! sets should contain only allocable registers from the LiveInterval's
- //! register class, with any interfering pre-colored registers removed.
+ PBQP::Vector buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &cealesces,
+ PBQP::PBQPNum spillCost) const;
+
+ /// \brief Builds a PBQP interference matrix.
+ ///
+ /// @return Either a pointer to a non-zero PBQP matrix representing the
+ /// allocation option costs, or a null pointer for a zero matrix.
+ ///
+ /// Expects allowed sets for two interfering LiveIntervals. These allowed
+ /// sets should contain only allocable registers from the LiveInterval's
+ /// register class, with any interfering pre-colored registers removed.
template <typename RegContainer>
- PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2) const;
-
- //!
- //! Expects allowed sets for two potentially coalescable LiveIntervals,
- //! and an estimated benefit due to coalescing. The allowed sets should
- //! contain only allocable registers from the LiveInterval's register
- //! classes, with any interfering pre-colored registers removed.
+ PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2) const;
+
+ ///
+ /// Expects allowed sets for two potentially coalescable LiveIntervals,
+ /// and an estimated benefit due to coalescing. The allowed sets should
+ /// contain only allocable registers from the LiveInterval's register
+ /// classes, with any interfering pre-colored registers removed.
template <typename RegContainer>
- PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2,
- PBQPNum cBenefit) const;
-
- //! \brief Finds coalescing opportunities and returns them as a map.
- //!
- //! Any entries in the map are guaranteed coalescable, even if their
- //! corresponding live intervals overlap.
+ PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2,
+ PBQP::PBQPNum cBenefit) const;
+
+ /// \brief Finds coalescing opportunities and returns them as a map.
+ ///
+ /// Any entries in the map are guaranteed coalescable, even if their
+ /// corresponding live intervals overlap.
CoalesceMap findCoalesces();
- //! \brief Finds the initial set of vreg intervals to allocate.
+ /// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc();
- //! \brief Constructs a PBQP problem representation of the register
- //! allocation problem for this function.
- //!
- //! @return a PBQP solver object for the register allocation problem.
- pbqp* constructPBQPProblem();
+ /// \brief Constructs a PBQP problem representation of the register
+ /// allocation problem for this function.
+ ///
+ /// @return a PBQP solver object for the register allocation problem.
+ PBQP::SimpleGraph constructPBQPProblem();
- //! \brief Adds a stack interval if the given live interval has been
- //! spilled. Used to support stack slot coloring.
+ /// \brief Adds a stack interval if the given live interval has been
+ /// spilled. Used to support stack slot coloring.
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
- //! \brief Given a solved PBQP problem maps this solution back to a register
- //! assignment.
- bool mapPBQPToRegAlloc(pbqp *problem);
+ /// \brief Given a solved PBQP problem maps this solution back to a register
+ /// assignment.
+ bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
- //! \brief Postprocessing before final spilling. Sets basic block "live in"
- //! variables.
+ /// \brief Postprocessing before final spilling. Sets basic block "live in"
+ /// variables.
void finalizeAlloc() const;
};
@@ -182,17 +191,17 @@ namespace {
template <typename RegContainer>
-PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &coalesces,
- PBQPNum spillCost) const {
+PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &coalesces,
+ PBQP::PBQPNum spillCost) const {
typedef typename RegContainer::const_iterator AllowedItr;
// Allocate vector. Additional element (0th) used for spill option
- PBQPVector *v = new PBQPVector(allowed.size() + 1);
+ PBQP::Vector v(allowed.size() + 1, 0);
- (*v)[0] = spillCost;
+ v[0] = spillCost;
// Iterate over the allowed registers inserting coalesce benefits if there
// are any.
@@ -210,14 +219,14 @@ PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
continue;
// We have a coalesce - insert the benefit.
- (*v)[ai + 1] = -cmItr->second;
+ v[ai + 1] = -cmItr->second;
}
return v;
}
template <typename RegContainer>
-PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
+PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
const RegContainer &allowed1, const RegContainer &allowed2) const {
typedef typename RegContainer::const_iterator RegContainerIterator;
@@ -230,7 +239,8 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
// that the spill option (element 0,0) has zero cost, since we can allocate
// both intervals to memory safely (the cost for each individual allocation
// to memory is accounted for by the cost vectors for each live interval).
- PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
+ PBQP::Matrix *m =
+ new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
// Assume this is a zero matrix until proven otherwise. Zero matrices occur
// between interfering live ranges with non-overlapping register sets (e.g.
@@ -259,8 +269,8 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
unsigned reg2 = *a2Itr;
// If the row/column regs are identical or alias insert an infinity.
- if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
- (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
+ if (tri->regsOverlap(reg1, reg2)) {
+ (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
isZeroMatrix = false;
}
@@ -282,9 +292,9 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
}
template <typename RegContainer>
-PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
+PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
const RegContainer &allowed1, const RegContainer &allowed2,
- PBQPNum cBenefit) const {
+ PBQP::PBQPNum cBenefit) const {
typedef typename RegContainer::const_iterator RegContainerIterator;
@@ -293,7 +303,8 @@ PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
// for the LiveIntervals which are (potentially) to be coalesced. The amount
// -cBenefit will be placed in any element representing the same register
// for both intervals.
- PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
+ PBQP::Matrix *m =
+ new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
// Reset costs to zero.
m->reset(0);
@@ -442,7 +453,7 @@ PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
vniItr != vniEnd; ++vniItr) {
// We want to make sure we skip the copy instruction itself.
- if ((*vniItr)->copy == instr)
+ if ((*vniItr)->getCopy() == instr)
continue;
if (srcLI->liveAt((*vniItr)->def)) {
@@ -495,10 +506,11 @@ void PBQPRegAlloc::findVRegIntervalsToAlloc() {
}
}
-pbqp* PBQPRegAlloc::constructPBQPProblem() {
+PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
typedef std::vector<const LiveInterval*> LIVector;
typedef std::vector<unsigned> RegVector;
+ typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
// This will store the physical intervals for easy reference.
LIVector physIntervals;
@@ -530,10 +542,15 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
}
// Get the set of potential coalesces.
- CoalesceMap coalesces(findCoalesces());
+ CoalesceMap coalesces;
+
+ if (pbqpCoalescing) {
+ coalesces = findCoalesces();
+ }
// Construct a PBQP solver for this problem
- pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
+ PBQP::SimpleGraph problem;
+ NodeVector problemNodes(vregIntervalsToAlloc.size());
// Resize allowedSets container appropriately.
allowedSets.resize(vregIntervalsToAlloc.size());
@@ -594,13 +611,13 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Set the spill cost to the interval weight, or epsilon if the
// interval weight is zero
- PBQPNum spillCost = (li->weight != 0.0) ?
- li->weight : std::numeric_limits<PBQPNum>::min();
+ PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
+ li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
// Build a cost vector for this interval.
- add_pbqp_nodecosts(solver, node,
- buildCostVector(li->reg, allowedSets[node], coalesces,
- spillCost));
+ problemNodes[node] =
+ problem.addNode(
+ buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
}
@@ -616,7 +633,7 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
CoalesceMap::const_iterator cmItr =
coalesces.find(RegPair(li->reg, li2->reg));
- PBQPMatrix *m = 0;
+ PBQP::Matrix *m = 0;
if (cmItr != coalesces.end()) {
m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
@@ -627,14 +644,29 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
}
if (m != 0) {
- add_pbqp_edgecosts(solver, node1, node2, m);
+ problem.addEdge(problemNodes[node1],
+ problemNodes[node2],
+ *m);
+
delete m;
}
}
}
+ problem.assignNodeIDs();
+
+ assert(problem.getNumNodes() == allowedSets.size());
+ for (unsigned i = 0; i < allowedSets.size(); ++i) {
+ assert(problem.getNodeItr(i) == problemNodes[i]);
+ }
+/*
+ std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
+ << problem.getNumEdges() << " edges.\n";
+
+ problem.printDot(std::cerr);
+*/
// We're done, PBQP problem constructed - return it.
- return solver;
+ return problem;
}
void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
@@ -651,14 +683,14 @@ void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
if (stackInterval.getNumValNums() != 0)
vni = stackInterval.getValNumInfo(0);
else
- vni = stackInterval.getNextValue(0, 0, false, lss->getVNInfoAllocator());
+ vni = stackInterval.getNextValue(
+ LiveIndex(), 0, false, lss->getVNInfoAllocator());
LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
stackInterval.MergeRangesInAsValue(rhsInterval, vni);
}
-bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
-
+bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
@@ -668,14 +700,16 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Iterate over the nodes mapping the PBQP solution to a register assignment.
for (unsigned node = 0; node < node2LI.size(); ++node) {
unsigned virtReg = node2LI[node]->reg,
- allocSelection = get_pbqp_solution(problem, node);
+ allocSelection = solution.getSelection(node);
+
// If the PBQP solution is non-zero it's a physical register...
if (allocSelection != 0) {
// Get the physical reg, subtracting 1 to account for the spill option.
unsigned physReg = allowedSets[node][allocSelection - 1];
- DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
+ DEBUG(errs() << "VREG " << virtReg << " -> "
+ << tri->getName(physReg) << "\n");
assert(physReg != 0);
@@ -697,8 +731,9 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
addStackInterval(spillInterval, mri);
- DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
- << oldSpillWeight << ", New vregs: ";
+ (void) oldSpillWeight;
+ DEBUG(errs() << "VREG " << virtReg << " -> SPILLED (Cost: "
+ << oldSpillWeight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
// allocate.
@@ -708,12 +743,12 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
assert(!(*itr)->empty() && "Empty spill range.");
- DOUT << (*itr)->reg << " ";
+ DEBUG(errs() << (*itr)->reg << " ");
vregIntervalsToAlloc.insert(*itr);
}
- DOUT << ")\n";
+ DEBUG(errs() << ")\n");
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
@@ -734,6 +769,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
LiveInterval *li = *itr;
unsigned physReg = vrm->getRegAllocPref(li->reg);
+
if (physReg == 0) {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
physReg = *liRC->allocation_order_begin(*mf);
@@ -764,8 +800,8 @@ void PBQPRegAlloc::finalizeAlloc() const {
continue;
}
- // Ignore unallocated vregs:
if (reg == 0) {
+ // Filter out zero regs - they're for intervals that were spilled.
continue;
}
@@ -804,7 +840,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
vrm = &getAnalysis<VirtRegMap>();
- DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
+ DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
// Allocator main loop:
//
@@ -829,15 +865,14 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
unsigned round = 0;
while (!pbqpAllocComplete) {
- DOUT << " PBQP Regalloc round " << round << ":\n";
-
- pbqp *problem = constructPBQPProblem();
-
- solve_pbqp(problem);
+ DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
- pbqpAllocComplete = mapPBQPToRegAlloc(problem);
+ PBQP::SimpleGraph problem = constructPBQPProblem();
+ PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
+ problem.assignNodeIDs();
+ PBQP::Solution solution = solver.solve(problem);
- free_pbqp(problem);
+ pbqpAllocComplete = mapPBQPToRegAlloc(solution);
++round;
}
@@ -852,7 +887,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
node2LI.clear();
allowedSets.clear();
- DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
+ DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
diff --git a/lib/CodeGen/RegisterScavenging.cpp b/lib/CodeGen/RegisterScavenging.cpp
index d7fe7a2..5f1c4e2 100644
--- a/lib/CodeGen/RegisterScavenging.cpp
+++ b/lib/CodeGen/RegisterScavenging.cpp
@@ -16,46 +16,21 @@
#define DEBUG_TYPE "reg-scavenging"
#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
-/// RedefinesSuperRegPart - Return true if the specified register is redefining
-/// part of a super-register.
-static bool RedefinesSuperRegPart(const MachineInstr *MI, unsigned SubReg,
- const TargetRegisterInfo *TRI) {
- bool SeenSuperUse = false;
- bool SeenSuperDef = false;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || MO.isUndef())
- continue;
- if (TRI->isSuperRegister(SubReg, MO.getReg())) {
- if (MO.isUse())
- SeenSuperUse = true;
- else if (MO.isImplicit())
- SeenSuperDef = true;
- }
- }
-
- return SeenSuperDef && SeenSuperUse;
-}
-
-static bool RedefinesSuperRegPart(const MachineInstr *MI,
- const MachineOperand &MO,
- const TargetRegisterInfo *TRI) {
- assert(MO.isReg() && MO.isDef() && "Not a register def!");
- return RedefinesSuperRegPart(MI, MO.getReg(), TRI);
-}
-
/// setUsed - Set the register and its sub-registers as being used.
void RegScavenger::setUsed(unsigned Reg) {
RegsAvailable.reset(Reg);
@@ -65,14 +40,38 @@ void RegScavenger::setUsed(unsigned Reg) {
RegsAvailable.reset(SubReg);
}
-/// setUnused - Set the register and its sub-registers as being unused.
-void RegScavenger::setUnused(unsigned Reg, const MachineInstr *MI) {
- RegsAvailable.set(Reg);
+bool RegScavenger::isAliasUsed(unsigned Reg) const {
+ if (isUsed(Reg))
+ return true;
+ for (const unsigned *R = TRI->getAliasSet(Reg); *R; ++R)
+ if (isUsed(*R))
+ return true;
+ return false;
+}
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- unsigned SubReg = *SubRegs; ++SubRegs)
- if (!RedefinesSuperRegPart(MI, Reg, TRI))
- RegsAvailable.set(SubReg);
+void RegScavenger::initRegState() {
+ ScavengedReg = 0;
+ ScavengedRC = NULL;
+ ScavengeRestore = NULL;
+
+ // All registers started out unused.
+ RegsAvailable.set();
+
+ // Reserved registers are always used.
+ RegsAvailable ^= ReservedRegs;
+
+ if (!MBB)
+ return;
+
+ // Live-in registers are in use.
+ for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
+ E = MBB->livein_end(); I != E; ++I)
+ setUsed(*I);
+
+ // Pristine CSRs are also unavailable.
+ BitVector PR = MBB->getParent()->getFrameInfo()->getPristineRegs(MBB);
+ for (int I = PR.find_first(); I>0; I = PR.find_next(I))
+ setUsed(I);
}
void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
@@ -85,6 +84,7 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
assert((NumPhysRegs == 0 || NumPhysRegs == TRI->getNumRegs()) &&
"Target changed?");
+ // Self-initialize.
if (!MBB) {
NumPhysRegs = TRI->getNumRegs();
RegsAvailable.resize(NumPhysRegs);
@@ -100,73 +100,26 @@ void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
CalleeSavedRegs.set(CSRegs[i]);
}
- MBB = mbb;
- ScavengedReg = 0;
- ScavengedRC = NULL;
- ScavengeRestore = NULL;
- CurrDist = 0;
- DistanceMap.clear();
-
- // All registers started out unused.
- RegsAvailable.set();
-
- // Reserved registers are always used.
- RegsAvailable ^= ReservedRegs;
-
- // Live-in registers are in use.
- if (!MBB->livein_empty())
- for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
- E = MBB->livein_end(); I != E; ++I)
- setUsed(*I);
+ // RS used within emit{Pro,Epi}logue()
+ if (mbb != MBB) {
+ MBB = mbb;
+ initRegState();
+ }
Tracking = false;
}
-void RegScavenger::restoreScavengedReg() {
- TII->loadRegFromStackSlot(*MBB, MBBI, ScavengedReg,
- ScavengingFrameIndex, ScavengedRC);
- MachineBasicBlock::iterator II = prior(MBBI);
- TRI->eliminateFrameIndex(II, 0, this);
- setUsed(ScavengedReg);
- ScavengedReg = 0;
- ScavengedRC = NULL;
+void RegScavenger::addRegWithSubRegs(BitVector &BV, unsigned Reg) {
+ BV.set(Reg);
+ for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
+ BV.set(*R);
}
-#ifndef NDEBUG
-/// isLiveInButUnusedBefore - Return true if register is livein the MBB not
-/// not used before it reaches the MI that defines register.
-static bool isLiveInButUnusedBefore(unsigned Reg, MachineInstr *MI,
- MachineBasicBlock *MBB,
- const TargetRegisterInfo *TRI,
- MachineRegisterInfo* MRI) {
- // First check if register is livein.
- bool isLiveIn = false;
- for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
- E = MBB->livein_end(); I != E; ++I)
- if (Reg == *I || TRI->isSuperRegister(Reg, *I)) {
- isLiveIn = true;
- break;
- }
- if (!isLiveIn)
- return false;
-
- // Is there any use of it before the specified MI?
- SmallPtrSet<MachineInstr*, 4> UsesInMBB;
- for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
- UE = MRI->use_end(); UI != UE; ++UI) {
- MachineInstr *UseMI = &*UI;
- if (UseMI->getParent() == MBB)
- UsesInMBB.insert(UseMI);
- }
- if (UsesInMBB.empty())
- return true;
-
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MI; I != E; ++I)
- if (UsesInMBB.count(&*I))
- return false;
- return true;
+void RegScavenger::addRegWithAliases(BitVector &BV, unsigned Reg) {
+ BV.set(Reg);
+ for (const unsigned *R = TRI->getAliasSet(Reg); *R; R++)
+ BV.set(*R);
}
-#endif
void RegScavenger::forward() {
// Move ptr forward.
@@ -179,7 +132,6 @@ void RegScavenger::forward() {
}
MachineInstr *MI = MBBI;
- DistanceMap.insert(std::make_pair(MI, CurrDist++));
if (MI == ScavengeRestore) {
ScavengedReg = 0;
@@ -187,153 +139,63 @@ void RegScavenger::forward() {
ScavengeRestore = NULL;
}
-#if 0
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
- return;
-#endif
-
- // Separate register operands into 3 classes: uses, defs, earlyclobbers.
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> UseMOs;
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> DefMOs;
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> EarlyClobberMOs;
+ // Find out which registers are early clobbered, killed, defined, and marked
+ // def-dead in this instruction.
+ BitVector EarlyClobberRegs(NumPhysRegs);
+ BitVector KillRegs(NumPhysRegs);
+ BitVector DefRegs(NumPhysRegs);
+ BitVector DeadRegs(NumPhysRegs);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0 || MO.isUndef())
+ if (!MO.isReg() || MO.isUndef())
continue;
- if (MO.isUse())
- UseMOs.push_back(std::make_pair(&MO,i));
- else if (MO.isEarlyClobber())
- EarlyClobberMOs.push_back(std::make_pair(&MO,i));
- else
- DefMOs.push_back(std::make_pair(&MO,i));
- }
-
- // Process uses first.
- BitVector KillRegs(NumPhysRegs);
- for (unsigned i = 0, e = UseMOs.size(); i != e; ++i) {
- const MachineOperand MO = *UseMOs[i].first;
unsigned Reg = MO.getReg();
-
- assert(isUsed(Reg) && "Using an undefined register!");
-
- if (MO.isKill() && !isReserved(Reg)) {
- KillRegs.set(Reg);
-
- // Mark sub-registers as used.
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- unsigned SubReg = *SubRegs; ++SubRegs)
- KillRegs.set(SubReg);
- }
- }
-
- // Change states of all registers after all the uses are processed to guard
- // against multiple uses.
- setUnused(KillRegs);
-
- // Process early clobber defs then process defs. We can have a early clobber
- // that is dead, it should not conflict with a def that happens one "slot"
- // (see InstrSlots in LiveIntervalAnalysis.h) later.
- unsigned NumECs = EarlyClobberMOs.size();
- unsigned NumDefs = DefMOs.size();
-
- for (unsigned i = 0, e = NumECs + NumDefs; i != e; ++i) {
- const MachineOperand &MO = (i < NumECs)
- ? *EarlyClobberMOs[i].first : *DefMOs[i-NumECs].first;
- unsigned Idx = (i < NumECs)
- ? EarlyClobberMOs[i].second : DefMOs[i-NumECs].second;
- unsigned Reg = MO.getReg();
- if (MO.isUndef())
+ if (!Reg || isReserved(Reg))
continue;
- // If it's dead upon def, then it is now free.
- if (MO.isDead()) {
- setUnused(Reg, MI);
- continue;
- }
-
- // Skip two-address destination operand.
- unsigned UseIdx;
- if (MI->isRegTiedToUseOperand(Idx, &UseIdx) &&
- !MI->getOperand(UseIdx).isUndef()) {
- assert(isUsed(Reg) && "Using an undefined register!");
- continue;
+ if (MO.isUse()) {
+ // Two-address operands implicitly kill.
+ if (MO.isKill() || MI->isRegTiedToDefOperand(i))
+ addRegWithSubRegs(KillRegs, Reg);
+ } else {
+ assert(MO.isDef());
+ if (MO.isDead())
+ addRegWithSubRegs(DeadRegs, Reg);
+ else
+ addRegWithSubRegs(DefRegs, Reg);
+ if (MO.isEarlyClobber())
+ addRegWithAliases(EarlyClobberRegs, Reg);
}
-
- // Skip if this is merely redefining part of a super-register.
- if (RedefinesSuperRegPart(MI, MO, TRI))
- continue;
-
- // Implicit def is allowed to "re-define" any register. Similarly,
- // implicitly defined registers can be clobbered.
- assert((isReserved(Reg) || isUnused(Reg) ||
- isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
- "Re-defining a live register!");
- setUsed(Reg);
}
-}
-
-void RegScavenger::backward() {
- assert(Tracking && "Not tracking states!");
- assert(MBBI != MBB->begin() && "Already at start of basic block!");
- // Move ptr backward.
- MBBI = prior(MBBI);
-
- MachineInstr *MI = MBBI;
- DistanceMap.erase(MI);
- --CurrDist;
- // Separate register operands into 3 classes: uses, defs, earlyclobbers.
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> UseMOs;
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> DefMOs;
- SmallVector<std::pair<const MachineOperand*,unsigned>, 4> EarlyClobberMOs;
+ // Verify uses and defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0 || MO.isUndef())
- continue;
- if (MO.isUse())
- UseMOs.push_back(std::make_pair(&MO,i));
- else if (MO.isEarlyClobber())
- EarlyClobberMOs.push_back(std::make_pair(&MO,i));
- else
- DefMOs.push_back(std::make_pair(&MO,i));
- }
-
-
- // Process defs first.
- unsigned NumECs = EarlyClobberMOs.size();
- unsigned NumDefs = DefMOs.size();
- for (unsigned i = 0, e = NumECs + NumDefs; i != e; ++i) {
- const MachineOperand &MO = (i < NumDefs)
- ? *DefMOs[i].first : *EarlyClobberMOs[i-NumDefs].first;
- unsigned Idx = (i < NumECs)
- ? DefMOs[i].second : EarlyClobberMOs[i-NumDefs].second;
- if (MO.isUndef())
- continue;
-
- // Skip two-address destination operand.
- if (MI->isRegTiedToUseOperand(Idx))
+ if (!MO.isReg() || MO.isUndef())
continue;
-
unsigned Reg = MO.getReg();
- assert(isUsed(Reg));
- if (!isReserved(Reg))
- setUnused(Reg, MI);
+ if (!Reg || isReserved(Reg))
+ continue;
+ if (MO.isUse()) {
+ assert(isUsed(Reg) && "Using an undefined register!");
+ assert((!EarlyClobberRegs.test(Reg) || MI->isRegTiedToDefOperand(i)) &&
+ "Using an early clobbered register!");
+ } else {
+ assert(MO.isDef());
+#if 0
+ // FIXME: Enable this once we've figured out how to correctly transfer
+ // implicit kills during codegen passes like the coalescer.
+ assert((KillRegs.test(Reg) || isUnused(Reg) ||
+ isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
+ "Re-defining a live register!");
+#endif
+ }
}
- // Process uses.
- BitVector UseRegs(NumPhysRegs);
- for (unsigned i = 0, e = UseMOs.size(); i != e; ++i) {
- const MachineOperand MO = *UseMOs[i].first;
- unsigned Reg = MO.getReg();
- assert(isUnused(Reg) || isReserved(Reg));
- UseRegs.set(Reg);
-
- // Set the sub-registers as "used".
- for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
- unsigned SubReg = *SubRegs; ++SubRegs)
- UseRegs.set(SubReg);
- }
- setUsed(UseRegs);
+ // Commit the changes.
+ setUnused(KillRegs);
+ setUnused(DeadRegs);
+ setUsed(DefRegs);
}
void RegScavenger::getRegsUsed(BitVector &used, bool includeReserved) {
@@ -351,129 +213,110 @@ static void CreateRegClassMask(const TargetRegisterClass *RC, BitVector &Mask) {
Mask.set(*I);
}
-unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RegClass,
- const BitVector &Candidates) const {
- // Mask off the registers which are not in the TargetRegisterClass.
- BitVector RegsAvailableCopy(NumPhysRegs, false);
- CreateRegClassMask(RegClass, RegsAvailableCopy);
- RegsAvailableCopy &= RegsAvailable;
-
- // Restrict the search to candidates.
- RegsAvailableCopy &= Candidates;
-
- // Returns the first unused (bit is set) register, or 0 is none is found.
- int Reg = RegsAvailableCopy.find_first();
- return (Reg == -1) ? 0 : Reg;
+unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I)
+ if (!isAliasUsed(*I))
+ return *I;
+ return 0;
}
-unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RegClass,
- bool ExCalleeSaved) const {
- // Mask off the registers which are not in the TargetRegisterClass.
- BitVector RegsAvailableCopy(NumPhysRegs, false);
- CreateRegClassMask(RegClass, RegsAvailableCopy);
- RegsAvailableCopy &= RegsAvailable;
-
- // If looking for a non-callee-saved register, mask off all the callee-saved
- // registers.
- if (ExCalleeSaved)
- RegsAvailableCopy &= ~CalleeSavedRegs;
-
- // Returns the first unused (bit is set) register, or 0 is none is found.
- int Reg = RegsAvailableCopy.find_first();
- return (Reg == -1) ? 0 : Reg;
-}
+/// findSurvivorReg - Return the candidate register that is unused for the
+/// longest after MBBI. UseMI is set to the instruction where the search
+/// stopped.
+///
+/// No more than InstrLimit instructions are inspected.
+///
+unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator MI,
+ BitVector &Candidates,
+ unsigned InstrLimit,
+ MachineBasicBlock::iterator &UseMI) {
+ int Survivor = Candidates.find_first();
+ assert(Survivor > 0 && "No candidates for scavenging");
+
+ MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
+ assert(MI != ME && "MI already at terminator");
+
+ for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
+ // Remove any candidates touched by instruction.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isUndef() || !MO.getReg() ||
+ TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ Candidates.reset(MO.getReg());
+ for (const unsigned *R = TRI->getAliasSet(MO.getReg()); *R; R++)
+ Candidates.reset(*R);
+ }
-/// findFirstUse - Calculate the distance to the first use of the
-/// specified register.
-MachineInstr*
-RegScavenger::findFirstUse(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator I, unsigned Reg,
- unsigned &Dist) {
- MachineInstr *UseMI = 0;
- Dist = ~0U;
- for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
- RE = MRI->reg_end(); RI != RE; ++RI) {
- MachineInstr *UDMI = &*RI;
- if (UDMI->getParent() != MBB)
+ // Was our survivor untouched by this instruction?
+ if (Candidates.test(Survivor))
continue;
- DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
- if (DI == DistanceMap.end()) {
- // If it's not in map, it's below current MI, let's initialize the
- // map.
- I = next(I);
- unsigned Dist = CurrDist + 1;
- while (I != MBB->end()) {
- DistanceMap.insert(std::make_pair(I, Dist++));
- I = next(I);
- }
- }
- DI = DistanceMap.find(UDMI);
- if (DI->second > CurrDist && DI->second < Dist) {
- Dist = DI->second;
- UseMI = UDMI;
- }
+
+ // All candidates gone?
+ if (Candidates.none())
+ break;
+
+ Survivor = Candidates.find_first();
}
- return UseMI;
+
+ // We ran out of candidates, so stop the search.
+ UseMI = MI;
+ return Survivor;
}
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
- assert(ScavengingFrameIndex >= 0 &&
- "Cannot scavenge a register without an emergency spill slot!");
-
// Mask off the registers which are not in the TargetRegisterClass.
BitVector Candidates(NumPhysRegs, false);
CreateRegClassMask(RC, Candidates);
- Candidates ^= ReservedRegs; // Do not include reserved registers.
+ // Do not include reserved registers.
+ Candidates ^= ReservedRegs & Candidates;
// Exclude all the registers being used by the instruction.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
MachineOperand &MO = I->getOperand(i);
- if (MO.isReg())
+ if (MO.isReg() && MO.getReg() != 0 &&
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Candidates.reset(MO.getReg());
}
// Find the register whose use is furthest away.
- unsigned SReg = 0;
- unsigned MaxDist = 0;
- MachineInstr *MaxUseMI = 0;
- int Reg = Candidates.find_first();
- while (Reg != -1) {
- unsigned Dist;
- MachineInstr *UseMI = findFirstUse(MBB, I, Reg, Dist);
- for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
- unsigned AsDist;
- MachineInstr *AsUseMI = findFirstUse(MBB, I, *AS, AsDist);
- if (AsDist < Dist) {
- Dist = AsDist;
- UseMI = AsUseMI;
- }
- }
- if (Dist >= MaxDist) {
- MaxDist = Dist;
- MaxUseMI = UseMI;
- SReg = Reg;
- }
- Reg = Candidates.find_next(Reg);
- }
+ MachineBasicBlock::iterator UseMI;
+ unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
- if (ScavengedReg != 0) {
- assert(0 && "Scavenger slot is live, unable to scavenge another register!");
- abort();
- }
+ // If we found an unused register there is no reason to spill it. We have
+ // probably found a callee-saved register that has been saved in the
+ // prologue, but happens to be unused at this point.
+ if (!isAliasUsed(SReg))
+ return SReg;
- // Spill the scavenged register before I.
- TII->storeRegToStackSlot(*MBB, I, SReg, true, ScavengingFrameIndex, RC);
- MachineBasicBlock::iterator II = prior(I);
- TRI->eliminateFrameIndex(II, SPAdj, this);
+ assert(ScavengedReg == 0 &&
+ "Scavenger slot is live, unable to scavenge another register!");
- // Restore the scavenged register before its use (or first terminator).
- II = MaxUseMI
- ? MachineBasicBlock::iterator(MaxUseMI) : MBB->getFirstTerminator();
- TII->loadRegFromStackSlot(*MBB, II, SReg, ScavengingFrameIndex, RC);
- ScavengeRestore = prior(II);
+ // Avoid infinite regress
ScavengedReg = SReg;
+
+ // If the target knows how to save/restore the register, let it do so;
+ // otherwise, use the emergency stack spill slot.
+ if (!TRI->saveScavengerRegister(*MBB, I, RC, SReg)) {
+ // Spill the scavenged register before I.
+ assert(ScavengingFrameIndex >= 0 &&
+ "Cannot scavenge register without an emergency spill slot!");
+ TII->storeRegToStackSlot(*MBB, I, SReg, true, ScavengingFrameIndex, RC);
+ MachineBasicBlock::iterator II = prior(I);
+ TRI->eliminateFrameIndex(II, SPAdj, NULL, this);
+
+ // Restore the scavenged register before its use (or first terminator).
+ TII->loadRegFromStackSlot(*MBB, UseMI, SReg, ScavengingFrameIndex, RC);
+ } else
+ TRI->restoreScavengerRegister(*MBB, UseMI, RC, SReg);
+
+ ScavengeRestore = prior(UseMI);
+
+ // Doing this here leads to infinite regress.
+ // ScavengedReg = SReg;
ScavengedRC = RC;
return SReg;
diff --git a/lib/CodeGen/ScheduleDAG.cpp b/lib/CodeGen/ScheduleDAG.cpp
index a8452df..5a59862 100644
--- a/lib/CodeGen/ScheduleDAG.cpp
+++ b/lib/CodeGen/ScheduleDAG.cpp
@@ -19,6 +19,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include <climits>
using namespace llvm;
@@ -40,7 +41,7 @@ void ScheduleDAG::dumpSchedule() const {
if (SUnit *SU = Sequence[i])
SU->dump(this);
else
- cerr << "**** NOOP ****\n";
+ errs() << "**** NOOP ****\n";
}
}
@@ -59,9 +60,11 @@ void ScheduleDAG::Run(MachineBasicBlock *bb,
Schedule();
- DOUT << "*** Final schedule ***\n";
- DEBUG(dumpSchedule());
- DOUT << "\n";
+ DEBUG({
+ errs() << "*** Final schedule ***\n";
+ dumpSchedule();
+ errs() << '\n';
+ });
}
/// addPred - This adds the specified edge as a pred of the current node if
@@ -79,13 +82,19 @@ void SUnit::addPred(const SDep &D) {
SUnit *N = D.getSUnit();
// Update the bookkeeping.
if (D.getKind() == SDep::Data) {
+ assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
+ assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
++NumPreds;
++N->NumSuccs;
}
- if (!N->isScheduled)
+ if (!N->isScheduled) {
+ assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
++NumPredsLeft;
- if (!isScheduled)
+ }
+ if (!isScheduled) {
+ assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
++N->NumSuccsLeft;
+ }
Preds.push_back(D);
N->Succs.push_back(P);
if (P.getLatency() != 0) {
@@ -118,13 +127,19 @@ void SUnit::removePred(const SDep &D) {
Preds.erase(I);
// Update the bookkeeping.
if (P.getKind() == SDep::Data) {
+ assert(NumPreds > 0 && "NumPreds will underflow!");
+ assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
--NumPreds;
--N->NumSuccs;
}
- if (!N->isScheduled)
+ if (!N->isScheduled) {
+ assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
--NumPredsLeft;
- if (!isScheduled)
+ }
+ if (!isScheduled) {
+ assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
--N->NumSuccsLeft;
+ }
if (P.getLatency() != 0) {
this->setDepthDirty();
N->setHeightDirty();
@@ -256,56 +271,58 @@ void SUnit::ComputeHeight() {
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
/// a group of nodes flagged together.
void SUnit::dump(const ScheduleDAG *G) const {
- cerr << "SU(" << NodeNum << "): ";
+ errs() << "SU(" << NodeNum << "): ";
G->dumpNode(this);
}
void SUnit::dumpAll(const ScheduleDAG *G) const {
dump(G);
- cerr << " # preds left : " << NumPredsLeft << "\n";
- cerr << " # succs left : " << NumSuccsLeft << "\n";
- cerr << " Latency : " << Latency << "\n";
- cerr << " Depth : " << Depth << "\n";
- cerr << " Height : " << Height << "\n";
+ errs() << " # preds left : " << NumPredsLeft << "\n";
+ errs() << " # succs left : " << NumSuccsLeft << "\n";
+ errs() << " Latency : " << Latency << "\n";
+ errs() << " Depth : " << Depth << "\n";
+ errs() << " Height : " << Height << "\n";
if (Preds.size() != 0) {
- cerr << " Predecessors:\n";
+ errs() << " Predecessors:\n";
for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
I != E; ++I) {
- cerr << " ";
+ errs() << " ";
switch (I->getKind()) {
- case SDep::Data: cerr << "val "; break;
- case SDep::Anti: cerr << "anti"; break;
- case SDep::Output: cerr << "out "; break;
- case SDep::Order: cerr << "ch "; break;
+ case SDep::Data: errs() << "val "; break;
+ case SDep::Anti: errs() << "anti"; break;
+ case SDep::Output: errs() << "out "; break;
+ case SDep::Order: errs() << "ch "; break;
}
- cerr << "#";
- cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
+ errs() << "#";
+ errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
if (I->isArtificial())
- cerr << " *";
- cerr << "\n";
+ errs() << " *";
+ errs() << ": Latency=" << I->getLatency();
+ errs() << "\n";
}
}
if (Succs.size() != 0) {
- cerr << " Successors:\n";
+ errs() << " Successors:\n";
for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
I != E; ++I) {
- cerr << " ";
+ errs() << " ";
switch (I->getKind()) {
- case SDep::Data: cerr << "val "; break;
- case SDep::Anti: cerr << "anti"; break;
- case SDep::Output: cerr << "out "; break;
- case SDep::Order: cerr << "ch "; break;
+ case SDep::Data: errs() << "val "; break;
+ case SDep::Anti: errs() << "anti"; break;
+ case SDep::Output: errs() << "out "; break;
+ case SDep::Order: errs() << "ch "; break;
}
- cerr << "#";
- cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
+ errs() << "#";
+ errs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
if (I->isArtificial())
- cerr << " *";
- cerr << "\n";
+ errs() << " *";
+ errs() << ": Latency=" << I->getLatency();
+ errs() << "\n";
}
}
- cerr << "\n";
+ errs() << "\n";
}
#ifndef NDEBUG
@@ -323,35 +340,35 @@ void ScheduleDAG::VerifySchedule(bool isBottomUp) {
continue;
}
if (!AnyNotSched)
- cerr << "*** Scheduling failed! ***\n";
+ errs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- cerr << "has not been scheduled!\n";
+ errs() << "has not been scheduled!\n";
AnyNotSched = true;
}
if (SUnits[i].isScheduled &&
(isBottomUp ? SUnits[i].getHeight() : SUnits[i].getHeight()) >
unsigned(INT_MAX)) {
if (!AnyNotSched)
- cerr << "*** Scheduling failed! ***\n";
+ errs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- cerr << "has an unexpected "
+ errs() << "has an unexpected "
<< (isBottomUp ? "Height" : "Depth") << " value!\n";
AnyNotSched = true;
}
if (isBottomUp) {
if (SUnits[i].NumSuccsLeft != 0) {
if (!AnyNotSched)
- cerr << "*** Scheduling failed! ***\n";
+ errs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- cerr << "has successors left!\n";
+ errs() << "has successors left!\n";
AnyNotSched = true;
}
} else {
if (SUnits[i].NumPredsLeft != 0) {
if (!AnyNotSched)
- cerr << "*** Scheduling failed! ***\n";
+ errs() << "*** Scheduling failed! ***\n";
SUnits[i].dump(this);
- cerr << "has predecessors left!\n";
+ errs() << "has predecessors left!\n";
AnyNotSched = true;
}
}
diff --git a/lib/CodeGen/ScheduleDAGEmit.cpp b/lib/CodeGen/ScheduleDAGEmit.cpp
index 770f5bb..0d15c02 100644
--- a/lib/CodeGen/ScheduleDAGEmit.cpp
+++ b/lib/CodeGen/ScheduleDAGEmit.cpp
@@ -28,10 +28,6 @@
#include "llvm/Support/MathExtras.h"
using namespace llvm;
-void ScheduleDAG::AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO) {
- MI->addMemOperand(MF, MO);
-}
-
void ScheduleDAG::EmitNoop() {
TII->insertNoop(*BB, InsertPos);
}
diff --git a/lib/CodeGen/ScheduleDAGInstrs.cpp b/lib/CodeGen/ScheduleDAGInstrs.cpp
index 8e18b3d..44e9296 100644
--- a/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -14,8 +14,10 @@
#define DEBUG_TYPE "sched-instrs"
#include "ScheduleDAGInstrs.h"
+#include "llvm/Operator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetMachine.h"
@@ -45,35 +47,24 @@ void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
ScheduleDAG::Run(bb, end);
}
-/// getOpcode - If this is an Instruction or a ConstantExpr, return the
-/// opcode value. Otherwise return UserOp1.
-static unsigned getOpcode(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getOpcode();
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode();
- // Use UserOp1 to mean there's no opcode.
- return Instruction::UserOp1;
-}
-
/// getUnderlyingObjectFromInt - This is the function that does the work of
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
- if (const User *U = dyn_cast<User>(V)) {
+ if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
- if (getOpcode(U) == Instruction::PtrToInt)
+ if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant or a multiplied value, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
- // object address is somehow being computed bt the multiply,
+ // object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifibale object.
- if (getOpcode(U) != Instruction::Add ||
+ if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
- getOpcode(U->getOperand(1)) != Instruction::Mul))
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
return V;
V = U->getOperand(0);
} else {
@@ -90,7 +81,7 @@ static const Value *getUnderlyingObject(const Value *V) {
do {
V = V->getUnderlyingObject();
// If it found an inttoptr, use special code to continue climing.
- if (getOpcode(V) != Instruction::IntToPtr)
+ if (Operator::getOpcode(V) != Instruction::IntToPtr)
break;
const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
// If that succeeded in finding a pointer, continue the search.
@@ -106,11 +97,11 @@ static const Value *getUnderlyingObject(const Value *V) {
/// object, return the Value for that object. Otherwise return null.
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
if (!MI->hasOneMemOperand() ||
- !MI->memoperands_begin()->getValue() ||
- MI->memoperands_begin()->isVolatile())
+ !(*MI->memoperands_begin())->getValue() ||
+ (*MI->memoperands_begin())->isVolatile())
return 0;
- const Value *V = MI->memoperands_begin()->getValue();
+ const Value *V = (*MI->memoperands_begin())->getValue();
if (!V)
return 0;
@@ -132,7 +123,7 @@ void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
}
}
-void ScheduleDAGInstrs::BuildSchedGraph() {
+void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
// We'll be allocating one SUnit for each instruction, plus one for
// the region exit node.
SUnits.reserve(BB->size());
@@ -155,8 +146,8 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
bool UnitLatencies = ForceUnitLatencies();
// Ask the target if address-backscheduling is desirable, and if so how much.
- unsigned SpecialAddressLatency =
- TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
+ const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
// Walk the list of instructions, from bottom moving up.
for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
@@ -184,16 +175,20 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
std::vector<SUnit *> &UseList = Uses[Reg];
std::vector<SUnit *> &DefList = Defs[Reg];
- // Optionally add output and anti dependencies.
- // TODO: Using a latency of 1 here assumes there's no cost for
- // reusing registers.
+ // Optionally add output and anti dependencies. For anti
+ // dependencies we use a latency of 0 because for a multi-issue
+ // target we want to allow the defining instruction to issue
+ // in the same cycle as the using instruction.
+ // TODO: Using a latency of 1 here for output dependencies assumes
+ // there's no cost for reusing registers.
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
+ unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
SUnit *DefSU = DefList[i];
if (DefSU != SU &&
(Kind != SDep::Output || !MO.isDead() ||
!DefSU->getInstr()->registerDefIsDead(Reg)))
- DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
+ DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
}
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
std::vector<SUnit *> &DefList = Defs[*Alias];
@@ -202,7 +197,7 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
if (DefSU != SU &&
(Kind != SDep::Output || !MO.isDead() ||
!DefSU->getInstr()->registerDefIsDead(Reg)))
- DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
+ DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
}
}
@@ -216,6 +211,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
// Optionally add in a special extra latency for nodes that
// feed addresses.
// TODO: Do this for register aliases too.
+ // TODO: Perhaps we should get rid of
+ // SpecialAddressLatency and just move this into
+ // adjustSchedDependency for the targets that care about
+ // it.
if (SpecialAddressLatency != 0 && !UnitLatencies) {
MachineInstr *UseMI = UseSU->getInstr();
const TargetInstrDesc &UseTID = UseMI->getDesc();
@@ -226,15 +225,29 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
LDataLatency += SpecialAddressLatency;
}
- UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
+ // Adjust the dependence latency using operand def/use
+ // information (if any), and then allow the target to
+ // perform its own adjustments.
+ const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
+ if (!UnitLatencies) {
+ ComputeOperandLatency(SU, UseSU, (SDep &)dep);
+ ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
+ }
+ UseSU->addPred(dep);
}
}
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
std::vector<SUnit *> &UseList = Uses[*Alias];
for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
SUnit *UseSU = UseList[i];
- if (UseSU != SU)
- UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
+ if (UseSU != SU) {
+ const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
+ if (!UnitLatencies) {
+ ComputeOperandLatency(SU, UseSU, (SDep &)dep);
+ ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
+ }
+ UseSU->addPred(dep);
+ }
}
}
@@ -323,10 +336,10 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
if (!ChainTID.isCall() &&
!ChainTID.hasUnmodeledSideEffects() &&
ChainMI->hasOneMemOperand() &&
- !ChainMI->memoperands_begin()->isVolatile() &&
- ChainMI->memoperands_begin()->getValue())
+ !(*ChainMI->memoperands_begin())->isVolatile() &&
+ (*ChainMI->memoperands_begin())->getValue())
// We know that the Chain accesses one specific memory location.
- ChainMMO = &*ChainMI->memoperands_begin();
+ ChainMMO = *ChainMI->memoperands_begin();
else
// Unknown memory accesses. Assume the worst.
ChainMMO = 0;
@@ -362,7 +375,7 @@ void ScheduleDAGInstrs::BuildSchedGraph() {
// Treat all other stores conservatively.
goto new_chain;
} else if (TID.mayLoad()) {
- if (TII->isInvariantLoad(MI)) {
+ if (MI->isInvariantLoad(AA)) {
// Invariant load, no chain dependencies needed!
} else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
// A load from a specific PseudoSourceValue. Add precise dependencies.
@@ -409,10 +422,9 @@ void ScheduleDAGInstrs::FinishBlock() {
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
- // Compute the latency for the node. We use the sum of the latencies for
- // all nodes flagged together into this SUnit.
+ // Compute the latency for the node.
SU->Latency =
- InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
+ InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
// Simplistic target-independent heuristic: assume that loads take
// extra time.
@@ -421,6 +433,50 @@ void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
SU->Latency += 2;
}
+void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
+ SDep& dep) const {
+ const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
+ if (InstrItins.isEmpty())
+ return;
+
+ // For a data dependency with a known register...
+ if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
+ return;
+
+ const unsigned Reg = dep.getReg();
+
+ // ... find the definition of the register in the defining
+ // instruction
+ MachineInstr *DefMI = Def->getInstr();
+ int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
+ if (DefIdx != -1) {
+ int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
+ if (DefCycle >= 0) {
+ MachineInstr *UseMI = Use->getInstr();
+ const unsigned UseClass = UseMI->getDesc().getSchedClass();
+
+ // For all uses of the register, calculate the maxmimum latency
+ int Latency = -1;
+ for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = UseMI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MOReg != Reg)
+ continue;
+
+ int UseCycle = InstrItins.getOperandCycle(UseClass, i);
+ if (UseCycle >= 0)
+ Latency = std::max(Latency, DefCycle - UseCycle + 1);
+ }
+
+ // If we found a latency, then replace the existing dependence latency.
+ if (Latency >= 0)
+ dep.setLatency(Latency);
+ }
+ }
+}
+
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
SU->getInstr()->dump();
}
@@ -438,7 +494,8 @@ std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
}
// EmitSchedule - Emit the machine code in scheduled order.
-MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
+MachineBasicBlock *ScheduleDAGInstrs::
+EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
// For MachineInstr-based scheduling, we're rescheduling the instructions in
// the block, so start by removing them from the block.
while (Begin != InsertPos) {
diff --git a/lib/CodeGen/ScheduleDAGInstrs.h b/lib/CodeGen/ScheduleDAGInstrs.h
index 00d6268..29e1c98 100644
--- a/lib/CodeGen/ScheduleDAGInstrs.h
+++ b/lib/CodeGen/ScheduleDAGInstrs.h
@@ -15,12 +15,13 @@
#ifndef SCHEDULEDAGINSTRS_H
#define SCHEDULEDAGINSTRS_H
-#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
#include <map>
namespace llvm {
@@ -120,7 +121,6 @@ namespace llvm {
SmallSet<unsigned, 8> LoopLiveInRegs;
public:
- MachineBasicBlock *BB; // Current basic block
MachineBasicBlock::iterator Begin; // The beginning of the range to
// be scheduled. The range extends
// to InsertPos.
@@ -154,13 +154,20 @@ namespace llvm {
/// BuildSchedGraph - Build SUnits from the MachineBasicBlock that we are
/// input.
- virtual void BuildSchedGraph();
+ virtual void BuildSchedGraph(AliasAnalysis *AA);
/// ComputeLatency - Compute node latency.
///
virtual void ComputeLatency(SUnit *SU);
- virtual MachineBasicBlock *EmitSchedule();
+ /// ComputeOperandLatency - Override dependence edge latency using
+ /// operand use/def information
+ ///
+ virtual void ComputeOperandLatency(SUnit *Def, SUnit *Use,
+ SDep& dep) const;
+
+ virtual MachineBasicBlock*
+ EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*>*);
/// StartBlock - Prepare to perform scheduling in the given block.
///
diff --git a/lib/CodeGen/ScheduleDAGPrinter.cpp b/lib/CodeGen/ScheduleDAGPrinter.cpp
index 5efd274..95ad05e 100644
--- a/lib/CodeGen/ScheduleDAGPrinter.cpp
+++ b/lib/CodeGen/ScheduleDAGPrinter.cpp
@@ -86,14 +86,14 @@ void ScheduleDAG::viewGraph() {
// This code is only for debugging!
#ifndef NDEBUG
if (BB->getBasicBlock())
- ViewGraph(this, "dag." + MF.getFunction()->getName(), false,
- "Scheduling-Units Graph for " + MF.getFunction()->getName() + ':' +
- BB->getBasicBlock()->getName());
+ ViewGraph(this, "dag." + MF.getFunction()->getNameStr(), false,
+ "Scheduling-Units Graph for " + MF.getFunction()->getNameStr() +
+ ":" + BB->getBasicBlock()->getNameStr());
else
- ViewGraph(this, "dag." + MF.getFunction()->getName(), false,
- "Scheduling-Units Graph for " + MF.getFunction()->getName());
+ ViewGraph(this, "dag." + MF.getFunction()->getNameStr(), false,
+ "Scheduling-Units Graph for " + MF.getFunction()->getNameStr());
#else
- cerr << "ScheduleDAG::viewGraph is only available in debug builds on "
- << "systems with Graphviz or gv!\n";
+ errs() << "ScheduleDAG::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
diff --git a/lib/CodeGen/SelectionDAG/CMakeLists.txt b/lib/CodeGen/SelectionDAG/CMakeLists.txt
index 4ffe88f..c766859 100644
--- a/lib/CodeGen/SelectionDAG/CMakeLists.txt
+++ b/lib/CodeGen/SelectionDAG/CMakeLists.txt
@@ -2,6 +2,7 @@ add_llvm_library(LLVMSelectionDAG
CallingConvLower.cpp
DAGCombiner.cpp
FastISel.cpp
+ InstrEmitter.cpp
LegalizeDAG.cpp
LegalizeFloatTypes.cpp
LegalizeIntegerTypes.cpp
@@ -9,13 +10,12 @@ add_llvm_library(LLVMSelectionDAG
LegalizeTypesGeneric.cpp
LegalizeVectorOps.cpp
LegalizeVectorTypes.cpp
- ScheduleDAGSDNodes.cpp
- ScheduleDAGSDNodesEmit.cpp
ScheduleDAGFast.cpp
ScheduleDAGList.cpp
ScheduleDAGRRList.cpp
- SelectionDAGBuild.cpp
+ ScheduleDAGSDNodes.cpp
SelectionDAG.cpp
+ SelectionDAGBuild.cpp
SelectionDAGISel.cpp
SelectionDAGPrinter.cpp
TargetLowering.cpp
diff --git a/lib/CodeGen/SelectionDAG/CallingConvLower.cpp b/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
index 7cd2b73..fbe40b6 100644
--- a/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
+++ b/lib/CodeGen/SelectionDAG/CallingConvLower.cpp
@@ -13,15 +13,17 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
-CCState::CCState(unsigned CC, bool isVarArg, const TargetMachine &tm,
- SmallVector<CCValAssign, 16> &locs)
+CCState::CCState(CallingConv::ID CC, bool isVarArg, const TargetMachine &tm,
+ SmallVector<CCValAssign, 16> &locs, LLVMContext &C)
: CallingConv(CC), IsVarArg(isVarArg), TM(tm),
- TRI(*TM.getRegisterInfo()), Locs(locs) {
+ TRI(*TM.getRegisterInfo()), Locs(locs), Context(C) {
// No stack is used.
StackOffset = 0;
@@ -31,8 +33,8 @@ CCState::CCState(unsigned CC, bool isVarArg, const TargetMachine &tm,
// HandleByVal - Allocate a stack slot large enough to pass an argument by
// value. The size and alignment information of the argument is encoded in its
// parameter attribute.
-void CCState::HandleByVal(unsigned ValNo, MVT ValVT,
- MVT LocVT, CCValAssign::LocInfo LocInfo,
+void CCState::HandleByVal(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
int MinSize, int MinAlign,
ISD::ArgFlagsTy ArgFlags) {
unsigned Align = ArgFlags.getByValAlign();
@@ -55,94 +57,107 @@ void CCState::MarkAllocated(unsigned Reg) {
UsedRegs[Reg/32] |= 1 << (Reg&31);
}
-/// AnalyzeFormalArguments - Analyze an ISD::FORMAL_ARGUMENTS node,
+/// AnalyzeFormalArguments - Analyze an array of argument values,
/// incorporating info about the formals into this state.
-void CCState::AnalyzeFormalArguments(SDNode *TheArgs, CCAssignFn Fn) {
- unsigned NumArgs = TheArgs->getNumValues()-1;
-
+void
+CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
+ CCAssignFn Fn) {
+ unsigned NumArgs = Ins.size();
+
for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ArgVT = TheArgs->getValueType(i);
- ISD::ArgFlagsTy ArgFlags =
- cast<ARG_FLAGSSDNode>(TheArgs->getOperand(3+i))->getArgFlags();
+ EVT ArgVT = Ins[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
- cerr << "Formal argument #" << i << " has unhandled type "
- << ArgVT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Formal argument #" << i << " has unhandled type "
+ << ArgVT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
}
-/// AnalyzeReturn - Analyze the returned values of an ISD::RET node,
+/// AnalyzeReturn - Analyze the returned values of a return,
/// incorporating info about the result values into this state.
-void CCState::AnalyzeReturn(SDNode *TheRet, CCAssignFn Fn) {
+void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ CCAssignFn Fn) {
// Determine which register each value should be copied into.
- for (unsigned i = 0, e = TheRet->getNumOperands() / 2; i != e; ++i) {
- MVT VT = TheRet->getOperand(i*2+1).getValueType();
- ISD::ArgFlagsTy ArgFlags =
- cast<ARG_FLAGSSDNode>(TheRet->getOperand(i*2+2))->getArgFlags();
- if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)){
- cerr << "Return operand #" << i << " has unhandled type "
- << VT.getMVTString() << "\n";
- abort();
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ EVT VT = Outs[i].Val.getValueType();
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) {
+#ifndef NDEBUG
+ errs() << "Return operand #" << i << " has unhandled type "
+ << VT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
}
-/// AnalyzeCallOperands - Analyze an ISD::CALL node, incorporating info
-/// about the passed values into this state.
-void CCState::AnalyzeCallOperands(CallSDNode *TheCall, CCAssignFn Fn) {
- unsigned NumOps = TheCall->getNumArgs();
+/// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
+/// incorporating info about the passed values into this state.
+void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ CCAssignFn Fn) {
+ unsigned NumOps = Outs.size();
for (unsigned i = 0; i != NumOps; ++i) {
- MVT ArgVT = TheCall->getArg(i).getValueType();
- ISD::ArgFlagsTy ArgFlags = TheCall->getArgFlags(i);
+ EVT ArgVT = Outs[i].Val.getValueType();
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
- cerr << "Call operand #" << i << " has unhandled type "
- << ArgVT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
}
/// AnalyzeCallOperands - Same as above except it takes vectors of types
/// and argument flags.
-void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
+void CCState::AnalyzeCallOperands(SmallVectorImpl<EVT> &ArgVTs,
SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
CCAssignFn Fn) {
unsigned NumOps = ArgVTs.size();
for (unsigned i = 0; i != NumOps; ++i) {
- MVT ArgVT = ArgVTs[i];
+ EVT ArgVT = ArgVTs[i];
ISD::ArgFlagsTy ArgFlags = Flags[i];
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
- cerr << "Call operand #" << i << " has unhandled type "
- << ArgVT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
}
-/// AnalyzeCallResult - Analyze the return values of an ISD::CALL node,
+/// AnalyzeCallResult - Analyze the return values of a call,
/// incorporating info about the passed values into this state.
-void CCState::AnalyzeCallResult(CallSDNode *TheCall, CCAssignFn Fn) {
- for (unsigned i = 0, e = TheCall->getNumRetVals(); i != e; ++i) {
- MVT VT = TheCall->getRetValType(i);
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (TheCall->isInreg())
- Flags.setInReg();
+void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
+ CCAssignFn Fn) {
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ EVT VT = Ins[i].VT;
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
- cerr << "Call result #" << i << " has unhandled type "
- << VT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Call result #" << i << " has unhandled type "
+ << VT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
}
/// AnalyzeCallResult - Same as above except it's specialized for calls which
/// produce a single value.
-void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
+void CCState::AnalyzeCallResult(EVT VT, CCAssignFn Fn) {
if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
- cerr << "Call result has unhandled type "
- << VT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Call result has unhandled type "
+ << VT.getEVTString();
+#endif
+ llvm_unreachable(0);
}
}
diff --git a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
index 609ec82..1ed3082 100644
--- a/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
+++ b/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -19,6 +19,7 @@
#define DEBUG_TYPE "dagcombine"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
@@ -33,7 +34,9 @@
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
using namespace llvm;
@@ -213,12 +216,12 @@ namespace {
SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
SDValue N3, ISD::CondCode CC,
bool NotExtCompare = false);
- SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
+ SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
DebugLoc DL, bool foldBooleans = true);
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
unsigned HiOp);
- SDValue CombineConsecutiveLoads(SDNode *N, MVT VT);
- SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT);
+ SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
+ SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, EVT);
SDValue BuildSDIV(SDNode *N);
SDValue BuildUDIV(SDNode *N);
SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
@@ -236,14 +239,17 @@ namespace {
/// overlap.
bool isAlias(SDValue Ptr1, int64_t Size1,
const Value *SrcValue1, int SrcValueOffset1,
+ unsigned SrcValueAlign1,
SDValue Ptr2, int64_t Size2,
- const Value *SrcValue2, int SrcValueOffset2) const;
+ const Value *SrcValue2, int SrcValueOffset2,
+ unsigned SrcValueAlign2) const;
/// FindAliasInfo - Extracts the relevant alias information from the memory
/// node. Returns true if the operand was a load.
bool FindAliasInfo(SDNode *N,
SDValue &Ptr, int64_t &Size,
- const Value *&SrcValue, int &SrcValueOffset) const;
+ const Value *&SrcValue, int &SrcValueOffset,
+ unsigned &SrcValueAlignment) const;
/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
/// looking for a better chain (aliasing node.)
@@ -251,7 +257,7 @@ namespace {
/// getShiftAmountTy - Returns a type large enough to hold any valid
/// shift amount - before type legalization these can be huge.
- MVT getShiftAmountTy() {
+ EVT getShiftAmountTy() {
return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
}
@@ -392,7 +398,7 @@ static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
switch (Op.getOpcode()) {
- default: assert(0 && "Unknown code");
+ default: llvm_unreachable("Unknown code");
case ISD::ConstantFP: {
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
V.changeSign();
@@ -495,7 +501,7 @@ static bool isOneUseSetCC(SDValue N) {
SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
SDValue N0, SDValue N1) {
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
if (isa<ConstantSDNode>(N1)) {
// reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
@@ -537,10 +543,12 @@ SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo) {
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
++NodesCombined;
- DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG));
- DOUT << " and " << NumTo-1 << " other values\n";
- DEBUG(for (unsigned i = 0, e = NumTo; i != e; ++i)
+ DEBUG(errs() << "\nReplacing.1 ";
+ N->dump(&DAG);
+ errs() << "\nWith: ";
+ To[0].getNode()->dump(&DAG);
+ errs() << " and " << NumTo-1 << " other values\n";
+ for (unsigned i = 0, e = NumTo; i != e; ++i)
assert(N->getValueType(i) == To[i].getValueType() &&
"Cannot combine value to value of different type!"));
WorkListRemover DeadNodes(*this);
@@ -612,9 +620,11 @@ bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
// Replace the old value with the new one.
++NodesCombined;
- DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG));
- DOUT << '\n';
+ DEBUG(errs() << "\nReplacing.2 ";
+ TLO.Old.getNode()->dump(&DAG);
+ errs() << "\nWith: ";
+ TLO.New.getNode()->dump(&DAG);
+ errs() << '\n');
CommitTargetLoweringOpt(TLO);
return true;
@@ -680,9 +690,11 @@ void DAGCombiner::Run(CombineLevel AtLevel) {
RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
"Node was deleted but visit returned new node!");
- DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG));
- DOUT << '\n';
+ DEBUG(errs() << "\nReplacing.3 ";
+ N->dump(&DAG);
+ errs() << "\nWith: ";
+ RV.getNode()->dump(&DAG);
+ errs() << '\n');
WorkListRemover DeadNodes(*this);
if (N->getNumValues() == RV.getNode()->getNumValues())
DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
@@ -800,7 +812,7 @@ SDValue DAGCombiner::combine(SDNode *N) {
// Expose the DAG combiner to the target combiner impls.
TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level == Unrestricted, false, this);
+ DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
}
@@ -877,7 +889,7 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
break;
case ISD::TokenFactor:
- if ((CombinerAA || Op.hasOneUse()) &&
+ if (Op.hasOneUse() &&
std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
// Queue up for processing.
TFs.push_back(Op.getNode());
@@ -898,7 +910,7 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
}
}
}
-
+
SDValue Result;
// If we've change things around then replace token factor.
@@ -922,9 +934,14 @@ SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
/// MERGE_VALUES can always be eliminated.
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
WorkListRemover DeadNodes(*this);
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
- &DeadNodes);
+ // Replacing results may cause a different MERGE_VALUES to suddenly
+ // be CSE'd with N, and carry its uses with it. Iterate until no
+ // uses remain, to ensure that the node can be safely deleted.
+ do {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
+ &DeadNodes);
+ } while (!N->use_empty());
removeFromWorkList(N);
DAG.DeleteNode(N);
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -933,7 +950,7 @@ SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
static
SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
SelectionDAG &DAG) {
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
@@ -957,7 +974,7 @@ SDValue DAGCombiner::visitADD(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
@@ -1080,7 +1097,7 @@ SDValue DAGCombiner::visitADDC(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// If the flag result is dead, turn this into an ADD.
if (N->hasNUsesOfValue(0, 1))
@@ -1142,7 +1159,7 @@ SDValue DAGCombiner::visitSUB(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
@@ -1215,7 +1232,7 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
@@ -1308,7 +1325,7 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -1395,7 +1412,7 @@ SDValue DAGCombiner::visitUDIV(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -1415,7 +1432,7 @@ SDValue DAGCombiner::visitUDIV(SDNode *N) {
if (N1.getOpcode() == ISD::SHL) {
if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
if (SHC->getAPIntValue().isPowerOf2()) {
- MVT ADDVT = N1.getOperand(1).getValueType();
+ EVT ADDVT = N1.getOperand(1).getValueType();
SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
N1.getOperand(1),
DAG.getConstant(SHC->getAPIntValue()
@@ -1447,7 +1464,7 @@ SDValue DAGCombiner::visitSREM(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (srem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
@@ -1489,7 +1506,7 @@ SDValue DAGCombiner::visitUREM(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (urem c1, c2) -> c1%c2
if (N0C && N1C && !N1C->isNullValue())
@@ -1541,7 +1558,7 @@ SDValue DAGCombiner::visitMULHS(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (mulhs x, 0) -> 0
if (N1C && N1C->isNullValue())
@@ -1562,7 +1579,7 @@ SDValue DAGCombiner::visitMULHU(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (mulhu x, 0) -> 0
if (N1C && N1C->isNullValue())
@@ -1665,7 +1682,7 @@ SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
/// two operands of the same opcode, try to simplify it.
SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
// For each of OP in AND/OR/XOR:
@@ -1677,7 +1694,9 @@ SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
N0.getOpcode() == ISD::SIGN_EXTEND ||
(N0.getOpcode() == ISD::TRUNCATE &&
!TLI.isTruncateFree(N0.getOperand(0).getValueType(), VT))) &&
- N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
+ N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
+ (!LegalOperations ||
+ TLI.isOperationLegal(N->getOpcode(), N0.getOperand(0).getValueType()))) {
SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
N0.getOperand(0).getValueType(),
N0.getOperand(0), N1.getOperand(0));
@@ -1709,7 +1728,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N1.getValueType();
+ EVT VT = N1.getValueType();
unsigned BitWidth = VT.getSizeInBits();
// fold vector ops
@@ -1820,18 +1839,18 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
// fold (zext_inreg (extload x)) -> (zextload x)
if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT EVT = LN0->getMemoryVT();
+ EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - EVT.getSizeInBits())) &&
+ BitWidth - MemVT.getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
LN0->getChain(), LN0->getBasePtr(),
LN0->getSrcValue(),
- LN0->getSrcValueOffset(), EVT,
+ LN0->getSrcValueOffset(), MemVT,
LN0->isVolatile(), LN0->getAlignment());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
@@ -1842,18 +1861,18 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT EVT = LN0->getMemoryVT();
+ EVT MemVT = LN0->getMemoryVT();
// If we zero all the possible extended bits, then we can turn this into
// a zextload if we are running before legalize or the operation is legal.
unsigned BitWidth = N1.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
- BitWidth - EVT.getSizeInBits())) &&
+ BitWidth - MemVT.getSizeInBits())) &&
((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
- LN0->getSrcValueOffset(), EVT,
+ LN0->getSrcValueOffset(), MemVT,
LN0->isVolatile(), LN0->getAlignment());
AddToWorkList(N);
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
@@ -1869,24 +1888,24 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
LN0->isUnindexed() && N0.hasOneUse() &&
// Do not change the width of a volatile load.
!LN0->isVolatile()) {
- MVT EVT = MVT::Other;
+ EVT ExtVT = MVT::Other;
uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
- EVT = MVT::getIntegerVT(ActiveBits);
+ ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
- MVT LoadedVT = LN0->getMemoryVT();
+ EVT LoadedVT = LN0->getMemoryVT();
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
- if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() &&
- (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
- MVT PtrType = N0.getOperand(1).getValueType();
+ if (ExtVT != MVT::Other && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
+ EVT PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to add an offset to the pointer to
// load the correct bytes. For little endian systems, we merely need to
// read fewer bytes from the same pointer.
- unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8;
- unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8;
+ unsigned LVTStoreBytes = LoadedVT.getStoreSize();
+ unsigned EVTStoreBytes = ExtVT.getStoreSize();
unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
unsigned Alignment = LN0->getAlignment();
SDValue NewPtr = LN0->getBasePtr();
@@ -1901,7 +1920,7 @@ SDValue DAGCombiner::visitAND(SDNode *N) {
SDValue Load =
DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
- EVT, LN0->isVolatile(), Alignment);
+ ExtVT, LN0->isVolatile(), Alignment);
AddToWorkList(N);
CombineTo(N0.getNode(), Load, Load.getValue(1));
return SDValue(N, 0); // Return N so it doesn't get rechecked!
@@ -1918,7 +1937,7 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
SDValue LL, LR, RL, RR, CC0, CC1;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N1.getValueType();
+ EVT VT = N1.getValueType();
// fold vector ops
if (VT.isVector()) {
@@ -1928,7 +1947,7 @@ SDValue DAGCombiner::visitOR(SDNode *N) {
// fold (or x, undef) -> -1
if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
- return DAG.getConstant(~0ULL, VT);
+ return DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
// fold (or c1, c2) -> c1|c2
if (N0C && N1C)
return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
@@ -2058,7 +2077,7 @@ static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
// a rot[lr].
SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
- MVT VT = LHS.getValueType();
+ EVT VT = LHS.getValueType();
if (!TLI.isTypeLegal(VT)) return 0;
// The target must have at least one rotate flavor.
@@ -2219,7 +2238,7 @@ SDValue DAGCombiner::visitXOR(SDNode *N) {
SDValue LHS, RHS, CC;
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// fold vector ops
if (VT.isVector()) {
@@ -2258,8 +2277,7 @@ SDValue DAGCombiner::visitXOR(SDNode *N) {
if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
switch (N0.getOpcode()) {
default:
- assert(0 && "Unhandled SetCC Equivalent!");
- abort();
+ llvm_unreachable("Unhandled SetCC Equivalent!");
case ISD::SETCC:
return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
case ISD::SELECT_CC:
@@ -2388,7 +2406,7 @@ SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
!isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
return SDValue();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// If this is a signed shift right, and the high bit is modified by the
// logical operation, do not perform the transformation. The highBitSet
@@ -2418,7 +2436,7 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getSizeInBits();
// fold (shl c1, c2) -> c1<<c2
@@ -2443,7 +2461,7 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
- MVT TruncVT = N1.getValueType();
+ EVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
@@ -2474,20 +2492,33 @@ SDValue DAGCombiner::visitSHL(SDNode *N) {
if (N1C && N0.getOpcode() == ISD::SRL &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
- uint64_t c2 = N1C->getZExtValue();
- SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, N0.getOperand(0),
- DAG.getConstant(~0ULL << c1, VT));
- if (c2 > c1)
- return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
- DAG.getConstant(c2-c1, N1.getValueType()));
- else
- return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
- DAG.getConstant(c1-c2, N1.getValueType()));
+ if (c1 < VT.getSizeInBits()) {
+ uint64_t c2 = N1C->getZExtValue();
+ SDValue HiBitsMask =
+ DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() - c1),
+ VT);
+ SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT,
+ N0.getOperand(0),
+ HiBitsMask);
+ if (c2 > c1)
+ return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
+ DAG.getConstant(c2-c1, N1.getValueType()));
+ else
+ return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
+ DAG.getConstant(c1-c2, N1.getValueType()));
+ }
}
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
- if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
+ if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
+ SDValue HiBitsMask =
+ DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
+ VT.getSizeInBits() -
+ N1C->getZExtValue()),
+ VT);
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
- DAG.getConstant(~0ULL << N1C->getZExtValue(), VT));
+ HiBitsMask);
+ }
return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
}
@@ -2497,7 +2528,7 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
// fold (sra c1, c2) -> (sra c1, c2)
if (N0C && N1C)
@@ -2518,7 +2549,7 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
// sext_inreg.
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getZExtValue();
- MVT EVT = MVT::getIntegerVT(LowBits);
+ EVT EVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
N0.getOperand(0), DAG.getValueType(EVT));
@@ -2545,8 +2576,8 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
if (N01C && N1C) {
// Determine what the truncate's result bitsize and type would be.
unsigned VTValSize = VT.getSizeInBits();
- MVT TruncVT =
- MVT::getIntegerVT(VTValSize - N1C->getZExtValue());
+ EVT TruncVT =
+ EVT::getIntegerVT(*DAG.getContext(), VTValSize - N1C->getZExtValue());
// Determine the residual right-shift amount.
signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
@@ -2576,7 +2607,7 @@ SDValue DAGCombiner::visitSRA(SDNode *N) {
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
- MVT TruncVT = N1.getValueType();
+ EVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
@@ -2607,7 +2638,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
- MVT VT = N0.getValueType();
+ EVT VT = N0.getValueType();
unsigned OpSizeInBits = VT.getSizeInBits();
// fold (srl c1, c2) -> c1 >>u c2
@@ -2641,7 +2672,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
// fold (srl (anyextend x), c) -> (anyextend (srl x, c))
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
// Shifting in all undef bits?
- MVT SmallVT = N0.getOperand(0).getValueType();
+ EVT SmallVT = N0.getOperand(0).getValueType();
if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
return DAG.getUNDEF(VT);
@@ -2700,7 +2731,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
SDValue N101 = N1.getOperand(0).getOperand(1);
if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
- MVT TruncVT = N1.getValueType();
+ EVT TruncVT = N1.getValueType();
SDValue N100 = N1.getOperand(0).getOperand(0);
APInt TruncC = N101C->getAPIntValue();
TruncC.trunc(TruncVT.getSizeInBits());
@@ -2724,7 +2755,7 @@ SDValue DAGCombiner::visitSRL(SDNode *N) {
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (ctlz c1) -> c2
if (isa<ConstantSDNode>(N0))
@@ -2734,7 +2765,7 @@ SDValue DAGCombiner::visitCTLZ(SDNode *N) {
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (cttz c1) -> c2
if (isa<ConstantSDNode>(N0))
@@ -2744,7 +2775,7 @@ SDValue DAGCombiner::visitCTTZ(SDNode *N) {
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (ctpop c1) -> c2
if (isa<ConstantSDNode>(N0))
@@ -2759,8 +2790,8 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
- MVT VT = N->getValueType(0);
- MVT VT0 = N0.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT VT0 = N0.getValueType();
// fold (select C, X, X) -> X
if (N1 == N2)
@@ -2825,7 +2856,8 @@ SDValue DAGCombiner::visitSELECT(SDNode *N) {
// Check against MVT::Other for SELECT_CC, which is a workaround for targets
// having to say they don't support SELECT_CC on every type the DAG knows
// about, since there is no way to mark an opcode illegal at all value types
- if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other))
+ if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
+ TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
N0.getOperand(0), N0.getOperand(1),
N1, N2, N0.getOperand(2));
@@ -2945,7 +2977,7 @@ static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (sext c1) -> c1
if (isa<ConstantSDNode>(N0))
@@ -3054,13 +3086,13 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT EVT = LN0->getMemoryVT();
+ EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT)) {
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
- LN0->getSrcValueOffset(), EVT,
+ LN0->getSrcValueOffset(), MemVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
@@ -3071,14 +3103,34 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
}
}
- // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
if (N0.getOpcode() == ISD::SETCC) {
+ // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
+ if (VT.isVector() &&
+ // We know that the # elements of the results is the same as the
+ // # elements of the compare (and the # elements of the compare result
+ // for that matter). Check to see that they are the same size. If so,
+ // we know that the element size of the sext'd result matches the
+ // element size of the compare operands.
+ VT.getSizeInBits() == N0.getOperand(0).getValueType().getSizeInBits() &&
+
+ // Only do this before legalize for now.
+ !LegalOperations) {
+ return DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ }
+
+ // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
+ SDValue NegOne =
+ DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
SDValue SCC =
SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
- DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
+ NegOne, DAG.getConstant(0, VT),
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
if (SCC.getNode()) return SCC;
}
+
+
// fold (sext x) -> (zext x) if the sign bit is known zero.
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
@@ -3090,7 +3142,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (zext c1) -> c1
if (isa<ConstantSDNode>(N0))
@@ -3194,13 +3246,13 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT EVT = LN0->getMemoryVT();
+ EVT MemVT = LN0->getMemoryVT();
if ((!LegalOperations && !LN0->isVolatile()) ||
- TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT)) {
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
LN0->getChain(),
LN0->getBasePtr(), LN0->getSrcValue(),
- LN0->getSrcValueOffset(), EVT,
+ LN0->getSrcValueOffset(), MemVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
@@ -3225,7 +3277,7 @@ SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (aext c1) -> c1
if (isa<ConstantSDNode>(N0))
@@ -3330,11 +3382,11 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
!ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
N0.hasOneUse()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT EVT = LN0->getMemoryVT();
+ EVT MemVT = LN0->getMemoryVT();
SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
VT, LN0->getChain(), LN0->getBasePtr(),
LN0->getSrcValue(),
- LN0->getSrcValueOffset(), EVT,
+ LN0->getSrcValueOffset(), MemVT,
LN0->isVolatile(), LN0->getAlignment());
CombineTo(N, ExtLoad);
CombineTo(N0.getNode(),
@@ -3400,8 +3452,8 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
unsigned Opc = N->getOpcode();
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
- MVT EVT = VT;
+ EVT VT = N->getValueType(0);
+ EVT ExtVT = VT;
// This transformation isn't valid for vector loads.
if (VT.isVector())
@@ -3411,20 +3463,21 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
// extended to VT.
if (Opc == ISD::SIGN_EXTEND_INREG) {
ExtType = ISD::SEXTLOAD;
- EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
- if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))
+ ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, ExtVT))
return SDValue();
}
- unsigned EVTBits = EVT.getSizeInBits();
+ unsigned EVTBits = ExtVT.getSizeInBits();
unsigned ShAmt = 0;
- if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
+ if (N0.getOpcode() == ISD::SRL && N0.hasOneUse() && ExtVT.isRound()) {
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
ShAmt = N01->getZExtValue();
// Is the shift amount a multiple of size of VT?
if ((ShAmt & (EVTBits-1)) == 0) {
N0 = N0.getOperand(0);
- if (N0.getValueType().getSizeInBits() <= EVTBits)
+ // Is the load width a multiple of size of VT?
+ if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
return SDValue();
}
}
@@ -3432,18 +3485,18 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
// Do not generate loads of non-round integer types since these can
// be expensive (and would be wrong if the type is not byte sized).
- if (isa<LoadSDNode>(N0) && N0.hasOneUse() && EVT.isRound() &&
+ if (isa<LoadSDNode>(N0) && N0.hasOneUse() && ExtVT.isRound() &&
cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile()) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
- MVT PtrType = N0.getOperand(1).getValueType();
+ EVT PtrType = N0.getOperand(1).getValueType();
// For big endian targets, we need to adjust the offset to the pointer to
// load the correct bytes.
if (TLI.isBigEndian()) {
unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
- unsigned EVTStoreBits = EVT.getStoreSizeInBits();
+ unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
}
@@ -3460,7 +3513,7 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
LN0->isVolatile(), NewAlign)
: DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
- EVT, LN0->isVolatile(), NewAlign);
+ ExtVT, LN0->isVolatile(), NewAlign);
// Replace the old load's chain with the new load's chain.
WorkListRemover DeadNodes(*this);
@@ -3477,8 +3530,8 @@ SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- MVT VT = N->getValueType(0);
- MVT EVT = cast<VTSDNode>(N1)->getVT();
+ EVT VT = N->getValueType(0);
+ EVT EVT = cast<VTSDNode>(N1)->getVT();
unsigned VTBits = VT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
@@ -3573,7 +3626,7 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// noop truncate
if (N0.getValueType() == N->getValueType(0))
@@ -3623,14 +3676,14 @@ static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
/// CombineConsecutiveLoads - build_pair (load, load) -> load
/// if load locations are consecutive.
-SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
+SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
assert(N->getOpcode() == ISD::BUILD_PAIR);
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
return SDValue();
- MVT LD1VT = LD1->getValueType(0);
+ EVT LD1VT = LD1->getValueType(0);
const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (ISD::isNON_EXTLoad(LD2) &&
@@ -3642,7 +3695,7 @@ SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
unsigned Align = LD1->getAlignment();
unsigned NewAlign = TLI.getTargetData()->
- getABITypeAlignment(VT.getTypeForMVT());
+ getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign <= Align &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
@@ -3656,7 +3709,7 @@ SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
// Only do this before legalize, since afterward the target may be depending
@@ -3674,7 +3727,7 @@ SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
break;
}
- MVT DestEltVT = N->getValueType(0).getVectorElementType();
+ EVT DestEltVT = N->getValueType(0).getVectorElementType();
assert(!DestEltVT.isVector() &&
"Element type of vector ValueType must not be vector!");
if (isSimple)
@@ -3684,7 +3737,18 @@ SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
// If the input is a constant, let getNode fold it.
if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
- if (Res.getNode() != N) return Res;
+ if (Res.getNode() != N) {
+ if (!LegalOperations ||
+ TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
+ return Res;
+
+ // Folding it resulted in an illegal node, and it's too late to
+ // do that. Clean up the old node and forego the transformation.
+ // Ideally this won't happen very often, because instcombine
+ // and the earlier dagcombine runs (where illegal nodes are
+ // permitted) should have folded most of them already.
+ DAG.DeleteNode(Res.getNode());
+ }
}
// (conv (conv x, t1), t2) -> (conv x, t2)
@@ -3700,7 +3764,7 @@ SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
unsigned Align = TLI.getTargetData()->
- getABITypeAlignment(VT.getTypeForMVT());
+ getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
unsigned OrigAlign = LN0->getAlignment();
if (Align <= OrigAlign) {
@@ -3743,7 +3807,7 @@ SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
VT.isInteger() && !VT.isVector()) {
unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
- MVT IntXVT = MVT::getIntegerVT(OrigXWidth);
+ EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
IntXVT, N0.getOperand(1));
@@ -3791,7 +3855,7 @@ SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
}
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
return CombineConsecutiveLoads(N, VT);
}
@@ -3799,8 +3863,8 @@ SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
/// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
/// destination element value type.
SDValue DAGCombiner::
-ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
- MVT SrcEltVT = BV->getValueType(0).getVectorElementType();
+ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
+ EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
// If this is already the right type, we're done.
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
@@ -3822,7 +3886,7 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
DstEltVT, Op));
AddToWorkList(Ops.back().getNode());
}
- MVT VT = MVT::getVectorVT(DstEltVT,
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
BV->getValueType(0).getVectorNumElements());
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
&Ops[0], Ops.size());
@@ -3835,7 +3899,7 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
// Convert the input float vector to a int vector where the elements are the
// same sizes.
assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
- MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits());
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
SrcEltVT = IntVT;
}
@@ -3844,7 +3908,7 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
// convert to integer first, then to FP of the right size.
if (DstEltVT.isFloatingPoint()) {
assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
- MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits());
+ EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
// Next, convert to FP elements of the same size.
@@ -3880,7 +3944,7 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
}
- MVT VT = MVT::getVectorVT(DstEltVT, Ops.size());
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
@@ -3889,7 +3953,8 @@ ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
// turns into multiple outputs.
bool isS2V = ISD::isScalarToVector(BV);
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
- MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands());
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
+ NumOutputsPerInput*BV->getNumOperands());
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
@@ -3926,7 +3991,7 @@ SDValue DAGCombiner::visitFADD(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -3967,7 +4032,7 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -4001,7 +4066,7 @@ SDValue DAGCombiner::visitFMUL(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -4024,7 +4089,7 @@ SDValue DAGCombiner::visitFMUL(SDNode *N) {
// fold (fmul X, 2.0) -> (fadd X, X)
if (N1CFP && N1CFP->isExactlyValue(+2.0))
return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
- // fold (fmul X, (fneg 1.0)) -> (fneg X)
+ // fold (fmul X, -1.0) -> (fneg X)
if (N1CFP && N1CFP->isExactlyValue(-1.0))
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
@@ -4056,7 +4121,7 @@ SDValue DAGCombiner::visitFDIV(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold vector ops
if (VT.isVector()) {
@@ -4089,7 +4154,7 @@ SDValue DAGCombiner::visitFREM(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (frem c1, c2) -> fmod(c1,c2)
if (N0CFP && N1CFP && VT != MVT::ppcf128)
@@ -4103,7 +4168,7 @@ SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
@@ -4151,8 +4216,8 @@ SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- MVT VT = N->getValueType(0);
- MVT OpVT = N0.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT OpVT = N0.getValueType();
// fold (sint_to_fp c1) -> c1fp
if (N0C && OpVT != MVT::ppcf128)
@@ -4173,8 +4238,8 @@ SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
- MVT VT = N->getValueType(0);
- MVT OpVT = N0.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT OpVT = N0.getValueType();
// fold (uint_to_fp c1) -> c1fp
if (N0C && OpVT != MVT::ppcf128)
@@ -4195,7 +4260,7 @@ SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (fp_to_sint c1fp) -> c1
if (N0CFP)
@@ -4207,7 +4272,7 @@ SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (fp_to_uint c1fp) -> c1
if (N0CFP && VT != MVT::ppcf128)
@@ -4220,7 +4285,7 @@ SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (fp_round c1fp) -> c1fp
if (N0CFP && N0.getValueType() != MVT::ppcf128)
@@ -4253,8 +4318,8 @@ SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDValue N0 = N->getOperand(0);
- MVT VT = N->getValueType(0);
- MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ EVT VT = N->getValueType(0);
+ EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
// fold (fp_round_inreg c1fp) -> c1fp
@@ -4269,7 +4334,7 @@ SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
if (N->hasOneUse() &&
@@ -4326,7 +4391,7 @@ SDValue DAGCombiner::visitFNEG(SDNode *N) {
N0.getOperand(0).getValueType().isInteger() &&
!N0.getOperand(0).getValueType().isVector()) {
SDValue Int = N0.getOperand(0);
- MVT IntVT = Int.getValueType();
+ EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
@@ -4342,7 +4407,7 @@ SDValue DAGCombiner::visitFNEG(SDNode *N) {
SDValue DAGCombiner::visitFABS(SDNode *N) {
SDValue N0 = N->getOperand(0);
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// fold (fabs c1) -> fabs(c1)
if (N0CFP && VT != MVT::ppcf128)
@@ -4361,7 +4426,7 @@ SDValue DAGCombiner::visitFABS(SDNode *N) {
N0.getOperand(0).getValueType().isInteger() &&
!N0.getOperand(0).getValueType().isVector()) {
SDValue Int = N0.getOperand(0);
- MVT IntVT = Int.getValueType();
+ EVT IntVT = Int.getValueType();
if (IntVT.isInteger() && !IntVT.isVector()) {
Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
@@ -4419,7 +4484,6 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) {
if (Op0.getOpcode() == ISD::AND &&
Op0.hasOneUse() &&
Op1.getOpcode() == ISD::Constant) {
- SDValue AndOp0 = Op0.getOperand(0);
SDValue AndOp1 = Op0.getOperand(1);
if (AndOp1.getOpcode() == ISD::Constant) {
@@ -4491,7 +4555,7 @@ bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
bool isLoad = true;
SDValue Ptr;
- MVT VT;
+ EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
@@ -4579,9 +4643,11 @@ bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
BasePtr, Offset, AM);
++PreIndexedNodes;
++NodesCombined;
- DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
- DOUT << '\n';
+ DEBUG(errs() << "\nReplacing.4 ";
+ N->dump(&DAG);
+ errs() << "\nWith: ";
+ Result.getNode()->dump(&DAG);
+ errs() << '\n');
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
@@ -4616,7 +4682,7 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
bool isLoad = true;
SDValue Ptr;
- MVT VT;
+ EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
if (LD->isIndexed())
return false;
@@ -4652,7 +4718,7 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
SDValue Offset;
ISD::MemIndexedMode AM = ISD::UNINDEXED;
if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
- if (Ptr == Offset)
+ if (Ptr == Offset && Op->getOpcode() == ISD::ADD)
std::swap(BasePtr, Offset);
if (Ptr != BasePtr)
continue;
@@ -4711,9 +4777,11 @@ bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
BasePtr, Offset, AM);
++PostIndexedNodes;
++NodesCombined;
- DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
- DOUT << '\n';
+ DEBUG(errs() << "\nReplacing.5 ";
+ N->dump(&DAG);
+ errs() << "\nWith: ";
+ Result.getNode()->dump(&DAG);
+ errs() << '\n');
WorkListRemover DeadNodes(*this);
if (isLoad) {
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
@@ -4815,9 +4883,11 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
// v3 = add v2, c
// Now we replace use of chain2 with chain1. This makes the second load
// isomorphic to the one we are deleting, and thus makes this load live.
- DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG));
- DOUT << "\n";
+ DEBUG(errs() << "\nReplacing.6 ";
+ N->dump(&DAG);
+ errs() << "\nWith chain: ";
+ Chain.getNode()->dump(&DAG);
+ errs() << "\n");
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
@@ -4833,9 +4903,11 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
- DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
- DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG));
- DOUT << " and 2 other values\n";
+ DEBUG(errs() << "\nReplacing.6 ";
+ N->dump(&DAG);
+ errs() << "\nWith: ";
+ Undef.getNode()->dump(&DAG);
+ errs() << " and 2 other values\n");
WorkListRemover DeadNodes(*this);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
@@ -4890,7 +4962,10 @@ SDValue DAGCombiner::visitLOAD(SDNode *N) {
// Create token factor to keep old chain connected.
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
MVT::Other, Chain, ReplLoad.getValue(1));
-
+
+ // Make sure the new and old chains are cleaned up.
+ AddToWorkList(Token.getNode());
+
// Replace uses with load result and token factor. Don't add users
// to work list.
return CombineTo(N, ReplLoad.getValue(0), Token, false);
@@ -4917,7 +4992,7 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
SDValue Chain = ST->getChain();
SDValue Value = ST->getValue();
SDValue Ptr = ST->getBasePtr();
- MVT VT = Value.getValueType();
+ EVT VT = Value.getValueType();
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
return SDValue();
@@ -4944,12 +5019,12 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
unsigned ShAmt = Imm.countTrailingZeros();
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
- MVT NewVT = MVT::getIntegerVT(NewBW);
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
while (NewBW < BitWidth &&
!(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
TLI.isNarrowingProfitable(VT, NewVT))) {
NewBW = NextPowerOf2(NewBW);
- NewVT = MVT::getIntegerVT(NewBW);
+ NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
}
if (NewBW >= BitWidth)
return SDValue();
@@ -4971,7 +5046,7 @@ SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
if (NewAlign <
- TLI.getTargetData()->getABITypeAlignment(NewVT.getTypeForMVT()))
+ TLI.getTargetData()->getABITypeAlignment(NewVT.getTypeForEVT(*DAG.getContext())))
return SDValue();
SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
@@ -5024,9 +5099,9 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
ST->isUnindexed()) {
unsigned OrigAlign = ST->getAlignment();
- MVT SVT = Value.getOperand(0).getValueType();
+ EVT SVT = Value.getOperand(0).getValueType();
unsigned Align = TLI.getTargetData()->
- getABITypeAlignment(SVT.getTypeForMVT());
+ getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
if (Align <= OrigAlign &&
((!LegalOperations && !ST->isVolatile()) ||
TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
@@ -5043,8 +5118,8 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// transform should not be done in this case.
if (Value.getOpcode() != ISD::TargetConstantFP) {
SDValue Tmp;
- switch (CFP->getValueType(0).getSimpleVT()) {
- default: assert(0 && "Unknown FP type");
+ switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unknown FP type");
case MVT::f80: // We don't do this for these yet.
case MVT::f128:
case MVT::ppcf128:
@@ -5111,8 +5186,9 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
// If there is a better chain.
if (Chain != BetterChain) {
- // Replace the chain to avoid dependency.
SDValue ReplStore;
+
+ // Replace the chain to avoid dependency.
if (ST->isTruncatingStore()) {
ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
ST->getSrcValue(),ST->getSrcValueOffset(),
@@ -5128,6 +5204,9 @@ SDValue DAGCombiner::visitSTORE(SDNode *N) {
SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
MVT::Other, Chain, ReplStore);
+ // Make sure the new and old chains are cleaned up.
+ AddToWorkList(Token.getNode());
+
// Don't add users to work list.
return CombineTo(N, Token, false);
}
@@ -5211,10 +5290,10 @@ SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
// BUILD_VECTOR with undef elements and the inserted element.
if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&
isa<ConstantSDNode>(EltNo)) {
- MVT VT = InVec.getValueType();
- MVT EVT = VT.getVectorElementType();
+ EVT VT = InVec.getValueType();
+ EVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
- SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EVT));
+ SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EltVT));
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
if (Elt < Ops.size())
@@ -5232,7 +5311,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
- MVT EltVT = InVec.getValueType().getVectorElementType();
+ EVT EltVT = InVec.getValueType().getVectorElementType();
SDValue InOp = InVec.getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, InVec.getDebugLoc(), EltVT, InOp);
@@ -5252,18 +5331,18 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
bool NewLoad = false;
bool BCNumEltsChanged = false;
- MVT VT = InVec.getValueType();
- MVT EVT = VT.getVectorElementType();
- MVT LVT = EVT;
+ EVT VT = InVec.getValueType();
+ EVT ExtVT = VT.getVectorElementType();
+ EVT LVT = ExtVT;
if (InVec.getOpcode() == ISD::BIT_CONVERT) {
- MVT BCVT = InVec.getOperand(0).getValueType();
- if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType()))
+ EVT BCVT = InVec.getOperand(0).getValueType();
+ if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
return SDValue();
if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
BCNumEltsChanged = true;
InVec = InVec.getOperand(0);
- EVT = BCVT.getVectorElementType();
+ ExtVT = BCVT.getVectorElementType();
NewLoad = true;
}
@@ -5272,7 +5351,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
if (ISD::isNormalLoad(InVec.getNode())) {
LN0 = cast<LoadSDNode>(InVec);
} else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- InVec.getOperand(0).getValueType() == EVT &&
+ InVec.getOperand(0).getValueType() == ExtVT &&
ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
LN0 = cast<LoadSDNode>(InVec.getOperand(0));
} else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
@@ -5306,7 +5385,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
// Check the resultant load doesn't need a higher alignment than the
// original load.
unsigned NewAlign =
- TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForMVT());
+ TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
return SDValue();
@@ -5317,7 +5396,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
SDValue NewPtr = LN0->getBasePtr();
if (Elt) {
unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
- MVT PtrType = NewPtr.getValueType();
+ EVT PtrType = NewPtr.getValueType();
if (TLI.isBigEndian())
PtrOff = VT.getSizeInBits() / 8 - PtrOff;
NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
@@ -5334,8 +5413,7 @@ SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
unsigned NumInScalars = N->getNumOperands();
- MVT VT = N->getValueType(0);
- MVT EltType = VT.getVectorElementType();
+ EVT VT = N->getValueType(0);
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
// operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
@@ -5432,11 +5510,10 @@ SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
return SDValue();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
assert(N0.getValueType().getVectorNumElements() == NumElts &&
"Vector shuffle must be normalized in DAG");
@@ -5494,7 +5571,7 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
/// vector_shuffle V, Zero, <0, 4, 2, 4>
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
@@ -5517,14 +5594,14 @@ SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
}
// Let's see if the target supports this vector_shuffle.
- MVT RVT = RHS.getValueType();
+ EVT RVT = RHS.getValueType();
if (!TLI.isVectorClearMaskLegal(Indices, RVT))
return SDValue();
// Return the new VECTOR_SHUFFLE node.
- MVT EVT = RVT.getVectorElementType();
+ EVT EltVT = RVT.getVectorElementType();
SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
- DAG.getConstant(0, EVT));
+ DAG.getConstant(0, EltVT));
SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
RVT, &ZeroOps[0], ZeroOps.size());
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
@@ -5543,10 +5620,10 @@ SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
// things. Simplifying them may result in a loss of legality.
if (LegalOperations) return SDValue();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
- MVT EltType = VT.getVectorElementType();
+ EVT EltType = VT.getVectorElementType();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue Shuffle = XformToShuffleWithZero(N);
@@ -5589,7 +5666,7 @@ SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
}
if (Ops.size() == LHS.getNumOperands()) {
- MVT VT = LHS.getValueType();
+ EVT VT = LHS.getValueType();
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
&Ops[0], Ops.size());
}
@@ -5728,7 +5805,7 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
// (x ? y : y) -> y.
if (N2 == N3) return N2;
- MVT VT = N2.getValueType();
+ EVT VT = N2.getValueType();
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
@@ -5820,8 +5897,8 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
N2.getValueType().isInteger() &&
(N1C->isNullValue() || // (a < 0) ? b : 0
(N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
- MVT XType = N0.getValueType();
- MVT AType = N2.getValueType();
+ EVT XType = N0.getValueType();
+ EVT AType = N2.getValueType();
if (XType.bitsGE(AType)) {
// and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
// single-bit constant.
@@ -5900,7 +5977,7 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
// FIXME: Turn all of these into setcc if setcc if setcc is legal
// otherwise, go ahead with the folds.
if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
- MVT XType = N0.getValueType();
+ EVT XType = N0.getValueType();
if (!LegalOperations ||
TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
@@ -5942,7 +6019,7 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
- MVT XType = N0.getValueType();
+ EVT XType = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
DAG.getConstant(XType.getSizeInBits()-1,
getShiftAmountTy()));
@@ -5957,7 +6034,7 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
- MVT XType = N0.getValueType();
+ EVT XType = N0.getValueType();
if (SubC->isNullValue() && XType.isInteger()) {
SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
N0,
@@ -5976,11 +6053,11 @@ SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
}
/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
-SDValue DAGCombiner::SimplifySetCC(MVT VT, SDValue N0,
+SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
DebugLoc DL, bool foldBooleans) {
TargetLowering::DAGCombinerInfo
- DagCombineInfo(DAG, Level == Unrestricted, false, this);
+ DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
}
@@ -6012,11 +6089,12 @@ SDValue DAGCombiner::BuildUDIV(SDNode *N) {
return S;
}
-/// FindBaseOffset - Return true if base is known not to alias with anything
-/// but itself. Provides base object and offset as results.
-static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
+/// FindBaseOffset - Return true if base is a frame index, which is known not
+// to alias with anything but itself. Provides base object and offset as results.
+static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
+ GlobalValue *&GV, void *&CV) {
// Assume it is a primitive operation.
- Base = Ptr; Offset = 0;
+ Base = Ptr; Offset = 0; GV = 0; CV = 0;
// If it's an adding a simple constant then integrate the offset.
if (Base.getOpcode() == ISD::ADD) {
@@ -6025,36 +6103,73 @@ static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
Offset += C->getZExtValue();
}
}
+
+ // Return the underlying GlobalValue, and update the Offset. Return false
+ // for GlobalAddressSDNode since the same GlobalAddress may be represented
+ // by multiple nodes with different offsets.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
+ GV = G->getGlobal();
+ Offset += G->getOffset();
+ return false;
+ }
+ // Return the underlying Constant value, and update the Offset. Return false
+ // for ConstantSDNodes since the same constant pool entry may be represented
+ // by multiple nodes with different offsets.
+ if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
+ CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal()
+ : (void *)C->getConstVal();
+ Offset += C->getOffset();
+ return false;
+ }
// If it's any of the following then it can't alias with anything but itself.
- return isa<FrameIndexSDNode>(Base) ||
- isa<ConstantPoolSDNode>(Base) ||
- isa<GlobalAddressSDNode>(Base);
+ return isa<FrameIndexSDNode>(Base);
}
/// isAlias - Return true if there is any possibility that the two addresses
/// overlap.
bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
const Value *SrcValue1, int SrcValueOffset1,
+ unsigned SrcValueAlign1,
SDValue Ptr2, int64_t Size2,
- const Value *SrcValue2, int SrcValueOffset2) const {
+ const Value *SrcValue2, int SrcValueOffset2,
+ unsigned SrcValueAlign2) const {
// If they are the same then they must be aliases.
if (Ptr1 == Ptr2) return true;
// Gather base node and offset information.
SDValue Base1, Base2;
int64_t Offset1, Offset2;
- bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
- bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
+ GlobalValue *GV1, *GV2;
+ void *CV1, *CV2;
+ bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
+ bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
- // If they have a same base address then...
- if (Base1 == Base2)
- // Check to see if the addresses overlap.
+ // If they have a same base address then check to see if they overlap.
+ if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
- // If we know both bases then they can't alias.
- if (KnownBase1 && KnownBase2) return false;
+ // If we know what the bases are, and they aren't identical, then we know they
+ // cannot alias.
+ if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
+ return false;
+ // If we know required SrcValue1 and SrcValue2 have relatively large alignment
+ // compared to the size and offset of the access, we may be able to prove they
+ // do not alias. This check is conservative for now to catch cases created by
+ // splitting vector types.
+ if ((SrcValueAlign1 == SrcValueAlign2) &&
+ (SrcValueOffset1 != SrcValueOffset2) &&
+ (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
+ int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
+ int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
+
+ // There is no overlap between these relatively aligned accesses of similar
+ // size, return no alias.
+ if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
+ return false;
+ }
+
if (CombinerGlobalAA) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
@@ -6074,20 +6189,24 @@ bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
/// node. Returns true if the operand was a load.
bool DAGCombiner::FindAliasInfo(SDNode *N,
SDValue &Ptr, int64_t &Size,
- const Value *&SrcValue, int &SrcValueOffset) const {
+ const Value *&SrcValue,
+ int &SrcValueOffset,
+ unsigned &SrcValueAlign) const {
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
Size = LD->getMemoryVT().getSizeInBits() >> 3;
SrcValue = LD->getSrcValue();
SrcValueOffset = LD->getSrcValueOffset();
+ SrcValueAlign = LD->getOriginalAlignment();
return true;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
Size = ST->getMemoryVT().getSizeInBits() >> 3;
SrcValue = ST->getSrcValue();
SrcValueOffset = ST->getSrcValueOffset();
+ SrcValueAlign = ST->getOriginalAlignment();
} else {
- assert(0 && "FindAliasInfo expected a memory operand");
+ llvm_unreachable("FindAliasInfo expected a memory operand");
}
return false;
@@ -6098,28 +6217,45 @@ bool DAGCombiner::FindAliasInfo(SDNode *N,
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
SmallVector<SDValue, 8> &Aliases) {
SmallVector<SDValue, 8> Chains; // List of chains to visit.
- std::set<SDNode *> Visited; // Visited node set.
+ SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
// Get alias information for node.
SDValue Ptr;
- int64_t Size = 0;
- const Value *SrcValue = 0;
- int SrcValueOffset = 0;
- bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
+ int64_t Size;
+ const Value *SrcValue;
+ int SrcValueOffset;
+ unsigned SrcValueAlign;
+ bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
+ SrcValueAlign);
// Starting off.
Chains.push_back(OriginalChain);
-
+ unsigned Depth = 0;
+
// Look at each chain and determine if it is an alias. If so, add it to the
// aliases list. If not, then continue up the chain looking for the next
// candidate.
while (!Chains.empty()) {
SDValue Chain = Chains.back();
Chains.pop_back();
+
+ // For TokenFactor nodes, look at each operand and only continue up the
+ // chain until we find two aliases. If we've seen two aliases, assume we'll
+ // find more and revert to original chain since the xform is unlikely to be
+ // profitable.
+ //
+ // FIXME: The depth check could be made to return the last non-aliasing
+ // chain we found before we hit a tokenfactor rather than the original
+ // chain.
+ if (Depth > 6 || Aliases.size() == 2) {
+ Aliases.clear();
+ Aliases.push_back(OriginalChain);
+ break;
+ }
- // Don't bother if we've been before.
- if (Visited.find(Chain.getNode()) != Visited.end()) continue;
- Visited.insert(Chain.getNode());
+ // Don't bother if we've been before.
+ if (!Visited.insert(Chain.getNode()))
+ continue;
switch (Chain.getOpcode()) {
case ISD::EntryToken:
@@ -6130,35 +6266,40 @@ void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
case ISD::STORE: {
// Get alias information for Chain.
SDValue OpPtr;
- int64_t OpSize = 0;
- const Value *OpSrcValue = 0;
- int OpSrcValueOffset = 0;
+ int64_t OpSize;
+ const Value *OpSrcValue;
+ int OpSrcValueOffset;
+ unsigned OpSrcValueAlign;
bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
- OpSrcValue, OpSrcValueOffset);
+ OpSrcValue, OpSrcValueOffset,
+ OpSrcValueAlign);
// If chain is alias then stop here.
if (!(IsLoad && IsOpLoad) &&
- isAlias(Ptr, Size, SrcValue, SrcValueOffset,
- OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
+ isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
+ OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
+ OpSrcValueAlign)) {
Aliases.push_back(Chain);
} else {
// Look further up the chain.
Chains.push_back(Chain.getOperand(0));
- // Clean up old chain.
- AddToWorkList(Chain.getNode());
+ ++Depth;
}
break;
}
case ISD::TokenFactor:
- // We have to check each of the operands of the token factor, so we queue
- // then up. Adding the operands to the queue (stack) in reverse order
- // maintains the original order and increases the likelihood that getNode
- // will find a matching token factor (CSE.)
+ // We have to check each of the operands of the token factor for "small"
+ // token factors, so we queue them up. Adding the operands to the queue
+ // (stack) in reverse order maintains the original order and increases the
+ // likelihood that getNode will find a matching token factor (CSE.)
+ if (Chain.getNumOperands() > 16) {
+ Aliases.push_back(Chain);
+ break;
+ }
for (unsigned n = Chain.getNumOperands(); n;)
Chains.push_back(Chain.getOperand(--n));
- // Eliminate the token factor if we can.
- AddToWorkList(Chain.getNode());
+ ++Depth;
break;
default:
@@ -6184,15 +6325,10 @@ SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
// If a single operand then chain to it. We don't need to revisit it.
return Aliases[0];
}
-
+
// Construct a custom tailored token factor.
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
- &Aliases[0], Aliases.size());
-
- // Make sure the old chain gets cleaned up.
- if (NewChain != OldChain) AddToWorkList(OldChain.getNode());
-
- return NewChain;
+ return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
+ &Aliases[0], Aliases.size());
}
// SelectionDAG::Combine - This is the entry point for the file.
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index cd2d5ac..8e955af 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -57,7 +57,7 @@
using namespace llvm;
unsigned FastISel::getRegForValue(Value *V) {
- MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
+ EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
// Don't handle non-simple values in FastISel.
if (!RealVT.isSimple())
return 0;
@@ -65,11 +65,11 @@ unsigned FastISel::getRegForValue(Value *V) {
// Ignore illegal types. We must do this before looking up the value
// in ValueMap because Arguments are given virtual registers regardless
// of whether FastISel can handle them.
- MVT::SimpleValueType VT = RealVT.getSimpleVT();
+ MVT VT = RealVT.getSimpleVT();
if (!TLI.isTypeLegal(VT)) {
// Promote MVT::i1 to a legal type though, because it's common and easy.
if (VT == MVT::i1)
- VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
+ VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
else
return 0;
}
@@ -92,13 +92,14 @@ unsigned FastISel::getRegForValue(Value *V) {
} else if (isa<ConstantPointerNull>(V)) {
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
- Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
+ Reg =
+ getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
if (!Reg) {
const APFloat &Flt = CF->getValueAPF();
- MVT IntVT = TLI.getPointerTy();
+ EVT IntVT = TLI.getPointerTy();
uint64_t x[2];
uint32_t IntBitWidth = IntVT.getSizeInBits();
@@ -108,7 +109,8 @@ unsigned FastISel::getRegForValue(Value *V) {
if (isExact) {
APInt IntVal(IntBitWidth, 2, x);
- unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
+ unsigned IntegerReg =
+ getRegForValue(ConstantInt::get(V->getContext(), IntVal));
if (IntegerReg != 0)
Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
}
@@ -174,13 +176,11 @@ unsigned FastISel::getRegForGEPIndex(Value *Idx) {
// If the index is smaller or larger than intptr_t, truncate or extend it.
MVT PtrVT = TLI.getPointerTy();
- MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
+ EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT))
- IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
- ISD::SIGN_EXTEND, IdxN);
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
else if (IdxVT.bitsGT(PtrVT))
- IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
- ISD::TRUNCATE, IdxN);
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
return IdxN;
}
@@ -188,7 +188,7 @@ unsigned FastISel::getRegForGEPIndex(Value *Idx) {
/// which has an opcode which directly corresponds to the given ISD opcode.
///
bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
- MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
+ EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
@@ -203,7 +203,7 @@ bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
if (VT == MVT::i1 &&
(ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
ISDOpcode == ISD::XOR))
- VT = TLI.getTypeToTransformTo(VT);
+ VT = TLI.getTypeToTransformTo(I->getContext(), VT);
else
return false;
}
@@ -260,7 +260,7 @@ bool FastISel::SelectGetElementPtr(User *I) {
return false;
const Type *Ty = I->getOperand(0)->getType();
- MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
+ MVT VT = TLI.getPointerTy();
for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
OI != E; ++OI) {
Value *Idx = *OI;
@@ -335,7 +335,7 @@ bool FastISel::SelectCall(User *I) {
if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
&& DW->ShouldEmitDwarfDebug()) {
unsigned ID =
- DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
+ DW->RecordRegionStart(RSI->getContext());
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
BuildMI(MBB, DL, II).addImm(ID);
}
@@ -346,7 +346,7 @@ bool FastISel::SelectCall(User *I) {
if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
&& DW->ShouldEmitDwarfDebug()) {
unsigned ID = 0;
- DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
+ DISubprogram Subprogram(REI->getContext());
if (isInlinedFnEnd(*REI, MF.getFunction())) {
// This is end of an inlined function.
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
@@ -359,7 +359,7 @@ bool FastISel::SelectCall(User *I) {
BuildMI(MBB, DL, II).addImm(ID);
} else {
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
- ID = DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
+ ID = DW->RecordRegionEnd(REI->getContext());
BuildMI(MBB, DL, II).addImm(ID);
}
}
@@ -384,11 +384,10 @@ bool FastISel::SelectCall(User *I) {
setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
- DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
- unsigned LabelID = DW->RecordInlinedFnStart(SP,
- DICompileUnit(PrevLocTpl.CompileUnit),
- PrevLocTpl.Line,
- PrevLocTpl.Col);
+ DISubprogram SP(FSI->getSubprogram());
+ unsigned LabelID =
+ DW->RecordInlinedFnStart(SP,DICompileUnit(PrevLocTpl.Scope),
+ PrevLocTpl.Line, PrevLocTpl.Col);
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
BuildMI(MBB, DL, II).addImm(LabelID);
return true;
@@ -398,7 +397,7 @@ bool FastISel::SelectCall(User *I) {
MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
// llvm.dbg.func_start also defines beginning of function scope.
- DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
+ DW->RecordRegionStart(FSI->getSubprogram());
return true;
}
case Intrinsic::dbg_declare: {
@@ -407,7 +406,6 @@ bool FastISel::SelectCall(User *I) {
|| !DW->ShouldEmitDwarfDebug())
return true;
- Value *Variable = DI->getVariable();
Value *Address = DI->getAddress();
if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
Address = BCI->getOperand(0);
@@ -418,20 +416,15 @@ bool FastISel::SelectCall(User *I) {
StaticAllocaMap.find(AI);
if (SI == StaticAllocaMap.end()) break; // VLAs.
int FI = SI->second;
-
- // Determine the debug globalvariable.
- GlobalValue *GV = cast<GlobalVariable>(Variable);
-
- // Build the DECLARE instruction.
- const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
- MachineInstr *DeclareMI
- = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
- DIVariable DV(cast<GlobalVariable>(GV));
- DW->RecordVariableScope(DV, DeclareMI);
+ if (MMI)
+ MMI->setVariableDbgInfo(DI->getVariable(), FI);
+#ifndef ATTACH_DEBUG_INFO_TO_AN_INSN
+ DW->RecordVariable(DI->getVariable(), FI);
+#endif
return true;
}
case Intrinsic::eh_exception: {
- MVT VT = TLI.getValueType(I->getType());
+ EVT VT = TLI.getValueType(I->getType());
switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
default: break;
case TargetLowering::Expand: {
@@ -449,15 +442,11 @@ bool FastISel::SelectCall(User *I) {
}
break;
}
- case Intrinsic::eh_selector_i32:
- case Intrinsic::eh_selector_i64: {
- MVT VT = TLI.getValueType(I->getType());
+ case Intrinsic::eh_selector: {
+ EVT VT = TLI.getValueType(I->getType());
switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
default: break;
case TargetLowering::Expand: {
- MVT VT = (IID == Intrinsic::eh_selector_i32 ?
- MVT::i32 : MVT::i64);
-
if (MMI) {
if (MBB->isLandingPad())
AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
@@ -471,12 +460,25 @@ bool FastISel::SelectCall(User *I) {
}
unsigned Reg = TLI.getExceptionSelectorRegister();
- const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ EVT SrcVT = TLI.getPointerTy();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
unsigned ResultReg = createResultReg(RC);
- bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
- Reg, RC, RC);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
+ RC, RC);
assert(InsertedCopy && "Can't copy address registers!");
InsertedCopy = InsertedCopy;
+
+ // Cast the register to the type of the selector.
+ if (SrcVT.bitsGT(MVT::i32))
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
+ ResultReg);
+ else if (SrcVT.bitsLT(MVT::i32))
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
+ ISD::SIGN_EXTEND, ResultReg);
+ if (ResultReg == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
UpdateValueMap(I, ResultReg);
} else {
unsigned ResultReg =
@@ -493,8 +495,8 @@ bool FastISel::SelectCall(User *I) {
}
bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
DstVT == MVT::Other || !DstVT.isSimple())
@@ -524,14 +526,14 @@ bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
// If the operand is i1, arrange for the high bits in the register to be zero.
if (SrcVT == MVT::i1) {
- SrcVT = TLI.getTypeToTransformTo(SrcVT);
+ SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
if (!InputReg)
return false;
}
// If the result is i1, truncate to the target's type for i1 first.
if (DstVT == MVT::i1)
- DstVT = TLI.getTypeToTransformTo(DstVT);
+ DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
DstVT.getSimpleVT(),
@@ -555,8 +557,8 @@ bool FastISel::SelectBitCast(User *I) {
}
// Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
DstVT == MVT::Other || !DstVT.isSimple() ||
@@ -616,6 +618,49 @@ FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
MBB->addSuccessor(MSucc);
}
+/// SelectFNeg - Emit an FNeg operation.
+///
+bool
+FastISel::SelectFNeg(User *I) {
+ unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
+ if (OpReg == 0) return false;
+
+ // If the target has ISD::FNEG, use it.
+ EVT VT = TLI.getValueType(I->getType());
+ unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISD::FNEG, OpReg);
+ if (ResultReg != 0) {
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+
+ // Bitcast the value to integer, twiddle the sign bit with xor,
+ // and then bitcast it back to floating-point.
+ if (VT.getSizeInBits() > 64) return false;
+ EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
+ if (!TLI.isTypeLegal(IntVT))
+ return false;
+
+ unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
+ ISD::BIT_CONVERT, OpReg);
+ if (IntReg == 0)
+ return false;
+
+ unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
+ UINT64_C(1) << (VT.getSizeInBits()-1),
+ IntVT.getSimpleVT());
+ if (IntResultReg == 0)
+ return false;
+
+ ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
+ ISD::BIT_CONVERT, IntResultReg);
+ if (ResultReg == 0)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
bool
FastISel::SelectOperator(User *I, unsigned Opcode) {
switch (Opcode) {
@@ -626,6 +671,9 @@ FastISel::SelectOperator(User *I, unsigned Opcode) {
case Instruction::Sub:
return SelectBinaryOp(I, ISD::SUB);
case Instruction::FSub:
+ // FNeg is currently represented in LLVM IR as a special case of FSub.
+ if (BinaryOperator::isFNeg(I))
+ return SelectFNeg(I);
return SelectBinaryOp(I, ISD::FSUB);
case Instruction::Mul:
return SelectBinaryOp(I, ISD::MUL);
@@ -709,8 +757,8 @@ FastISel::SelectOperator(User *I, unsigned Opcode) {
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
if (DstVT.bitsGT(SrcVT))
return SelectCast(I, ISD::ZERO_EXTEND);
if (DstVT.bitsLT(SrcVT))
@@ -758,45 +806,44 @@ FastISel::FastISel(MachineFunction &mf,
FastISel::~FastISel() {}
-unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_(MVT, MVT,
ISD::NodeType) {
return 0;
}
-unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_r(MVT, MVT,
ISD::NodeType, unsigned /*Op0*/) {
return 0;
}
-unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_rr(MVT, MVT,
ISD::NodeType, unsigned /*Op0*/,
unsigned /*Op0*/) {
return 0;
}
-unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
- ISD::NodeType, uint64_t /*Imm*/) {
+unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
return 0;
}
-unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_f(MVT, MVT,
ISD::NodeType, ConstantFP * /*FPImm*/) {
return 0;
}
-unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_ri(MVT, MVT,
ISD::NodeType, unsigned /*Op0*/,
uint64_t /*Imm*/) {
return 0;
}
-unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_rf(MVT, MVT,
ISD::NodeType, unsigned /*Op0*/,
ConstantFP * /*FPImm*/) {
return 0;
}
-unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
+unsigned FastISel::FastEmit_rri(MVT, MVT,
ISD::NodeType,
unsigned /*Op0*/, unsigned /*Op1*/,
uint64_t /*Imm*/) {
@@ -807,9 +854,9 @@ unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
/// to emit an instruction with an immediate operand using FastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// FastEmit_rr instead.
-unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
+unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
unsigned Op0, uint64_t Imm,
- MVT::SimpleValueType ImmType) {
+ MVT ImmType) {
// First check if immediate type is legal. If not, we can't use the ri form.
unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
if (ResultReg != 0)
@@ -824,9 +871,9 @@ unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
/// to emit an instruction with a floating-point immediate operand using
/// FastEmit_rf. If that fails, it materializes the immediate into a register
/// and try FastEmit_rr instead.
-unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
+unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
unsigned Op0, ConstantFP *FPImm,
- MVT::SimpleValueType ImmType) {
+ MVT ImmType) {
// First check if immediate type is legal. If not, we can't use the rf form.
unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
if (ResultReg != 0)
@@ -842,7 +889,7 @@ unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
// be replaced by code that creates a load from a constant-pool entry,
// which will require some target-specific work.
const APFloat &Flt = FPImm->getValueAPF();
- MVT IntVT = TLI.getPointerTy();
+ EVT IntVT = TLI.getPointerTy();
uint64_t x[2];
uint32_t IntBitWidth = IntVT.getSizeInBits();
@@ -987,7 +1034,7 @@ unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
return ResultReg;
}
-unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
+unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, uint32_t Idx) {
const TargetRegisterClass* RC = MRI.getRegClass(Op0);
@@ -1008,6 +1055,6 @@ unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
/// with all but the least significant bit set to zero.
-unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
+unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
}
diff --git a/lib/CodeGen/SelectionDAG/InstrEmitter.cpp b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
new file mode 100644
index 0000000..d3ffb2a
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
@@ -0,0 +1,693 @@
+//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the Emit routines for the SelectionDAG class, which creates
+// MachineInstrs based on the decisions of the SelectionDAG instruction
+// selection.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "instr-emitter"
+#include "InstrEmitter.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+/// CountResults - The results of target nodes have register or immediate
+/// operands first, then an optional chain, and optional flag operands (which do
+/// not go into the resulting MachineInstr).
+unsigned InstrEmitter::CountResults(SDNode *Node) {
+ unsigned N = Node->getNumValues();
+ while (N && Node->getValueType(N - 1) == MVT::Flag)
+ --N;
+ if (N && Node->getValueType(N - 1) == MVT::Other)
+ --N; // Skip over chain result.
+ return N;
+}
+
+/// CountOperands - The inputs to target nodes have any actual inputs first,
+/// followed by an optional chain operand, then an optional flag operand.
+/// Compute the number of actual operands that will go into the resulting
+/// MachineInstr.
+unsigned InstrEmitter::CountOperands(SDNode *Node) {
+ unsigned N = Node->getNumOperands();
+ while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
+ --N;
+ if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
+ --N; // Ignore chain if it exists.
+ return N;
+}
+
+/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
+/// implicit physical register output.
+void InstrEmitter::
+EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
+ unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
+ unsigned VRBase = 0;
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ // Just use the input register directly!
+ SDValue Op(Node, ResNo);
+ if (IsClone)
+ VRBaseMap.erase(Op);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
+ isNew = isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+ return;
+ }
+
+ // If the node is only used by a CopyToReg and the dest reg is a vreg, use
+ // the CopyToReg'd destination register instead of creating a new vreg.
+ bool MatchReg = true;
+ const TargetRegisterClass *UseRC = NULL;
+ if (!IsClone && !IsCloned)
+ for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
+ UI != E; ++UI) {
+ SDNode *User = *UI;
+ bool Match = true;
+ if (User->getOpcode() == ISD::CopyToReg &&
+ User->getOperand(2).getNode() == Node &&
+ User->getOperand(2).getResNo() == ResNo) {
+ unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
+ VRBase = DestReg;
+ Match = false;
+ } else if (DestReg != SrcReg)
+ Match = false;
+ } else {
+ for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
+ SDValue Op = User->getOperand(i);
+ if (Op.getNode() != Node || Op.getResNo() != ResNo)
+ continue;
+ EVT VT = Node->getValueType(Op.getResNo());
+ if (VT == MVT::Other || VT == MVT::Flag)
+ continue;
+ Match = false;
+ if (User->isMachineOpcode()) {
+ const TargetInstrDesc &II = TII->get(User->getMachineOpcode());
+ const TargetRegisterClass *RC = 0;
+ if (i+II.getNumDefs() < II.getNumOperands())
+ RC = II.OpInfo[i+II.getNumDefs()].getRegClass(TRI);
+ if (!UseRC)
+ UseRC = RC;
+ else if (RC) {
+ const TargetRegisterClass *ComRC = getCommonSubClass(UseRC, RC);
+ // If multiple uses expect disjoint register classes, we emit
+ // copies in AddRegisterOperand.
+ if (ComRC)
+ UseRC = ComRC;
+ }
+ }
+ }
+ }
+ MatchReg &= Match;
+ if (VRBase)
+ break;
+ }
+
+ EVT VT = Node->getValueType(ResNo);
+ const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
+ SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, VT);
+
+ // Figure out the register class to create for the destreg.
+ if (VRBase) {
+ DstRC = MRI->getRegClass(VRBase);
+ } else if (UseRC) {
+ assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
+ DstRC = UseRC;
+ } else {
+ DstRC = TLI->getRegClassFor(VT);
+ }
+
+ // If all uses are reading from the src physical register and copying the
+ // register is either impossible or very expensive, then don't create a copy.
+ if (MatchReg && SrcRC->getCopyCost() < 0) {
+ VRBase = SrcReg;
+ } else {
+ // Create the reg, emit the copy.
+ VRBase = MRI->createVirtualRegister(DstRC);
+ bool Emitted = TII->copyRegToReg(*MBB, InsertPos, VRBase, SrcReg,
+ DstRC, SrcRC);
+
+ assert(Emitted && "Unable to issue a copy instruction!\n");
+ (void) Emitted;
+ }
+
+ SDValue Op(Node, ResNo);
+ if (IsClone)
+ VRBaseMap.erase(Op);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
+ isNew = isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+}
+
+/// getDstOfCopyToRegUse - If the only use of the specified result number of
+/// node is a CopyToReg, return its destination register. Return 0 otherwise.
+unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
+ unsigned ResNo) const {
+ if (!Node->hasOneUse())
+ return 0;
+
+ SDNode *User = *Node->use_begin();
+ if (User->getOpcode() == ISD::CopyToReg &&
+ User->getOperand(2).getNode() == Node &&
+ User->getOperand(2).getResNo() == ResNo) {
+ unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ return Reg;
+ }
+ return 0;
+}
+
+void InstrEmitter::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
+ const TargetInstrDesc &II,
+ bool IsClone, bool IsCloned,
+ DenseMap<SDValue, unsigned> &VRBaseMap) {
+ assert(Node->getMachineOpcode() != TargetInstrInfo::IMPLICIT_DEF &&
+ "IMPLICIT_DEF should have been handled as a special case elsewhere!");
+
+ for (unsigned i = 0; i < II.getNumDefs(); ++i) {
+ // If the specific node value is only used by a CopyToReg and the dest reg
+ // is a vreg in the same register class, use the CopyToReg'd destination
+ // register instead of creating a new vreg.
+ unsigned VRBase = 0;
+ const TargetRegisterClass *RC = II.OpInfo[i].getRegClass(TRI);
+ if (II.OpInfo[i].isOptionalDef()) {
+ // Optional def must be a physical register.
+ unsigned NumResults = CountResults(Node);
+ VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
+ MI->addOperand(MachineOperand::CreateReg(VRBase, true));
+ }
+
+ if (!VRBase && !IsClone && !IsCloned)
+ for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
+ UI != E; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() == ISD::CopyToReg &&
+ User->getOperand(2).getNode() == Node &&
+ User->getOperand(2).getResNo() == i) {
+ unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
+ if (RegRC == RC) {
+ VRBase = Reg;
+ MI->addOperand(MachineOperand::CreateReg(Reg, true));
+ break;
+ }
+ }
+ }
+ }
+
+ // Create the result registers for this node and add the result regs to
+ // the machine instruction.
+ if (VRBase == 0) {
+ assert(RC && "Isn't a register operand!");
+ VRBase = MRI->createVirtualRegister(RC);
+ MI->addOperand(MachineOperand::CreateReg(VRBase, true));
+ }
+
+ SDValue Op(Node, i);
+ if (IsClone)
+ VRBaseMap.erase(Op);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
+ isNew = isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+ }
+}
+
+/// getVR - Return the virtual register corresponding to the specified result
+/// of the specified node.
+unsigned InstrEmitter::getVR(SDValue Op,
+ DenseMap<SDValue, unsigned> &VRBaseMap) {
+ if (Op.isMachineOpcode() &&
+ Op.getMachineOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
+ // Add an IMPLICIT_DEF instruction before every use.
+ unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
+ // IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
+ // does not include operand register class info.
+ if (!VReg) {
+ const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
+ VReg = MRI->createVirtualRegister(RC);
+ }
+ BuildMI(MBB, Op.getDebugLoc(),
+ TII->get(TargetInstrInfo::IMPLICIT_DEF), VReg);
+ return VReg;
+ }
+
+ DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
+ assert(I != VRBaseMap.end() && "Node emitted out of order - late");
+ return I->second;
+}
+
+
+/// AddRegisterOperand - Add the specified register as an operand to the
+/// specified machine instr. Insert register copies if the register is
+/// not in the required register class.
+void
+InstrEmitter::AddRegisterOperand(MachineInstr *MI, SDValue Op,
+ unsigned IIOpNum,
+ const TargetInstrDesc *II,
+ DenseMap<SDValue, unsigned> &VRBaseMap) {
+ assert(Op.getValueType() != MVT::Other &&
+ Op.getValueType() != MVT::Flag &&
+ "Chain and flag operands should occur at end of operand list!");
+ // Get/emit the operand.
+ unsigned VReg = getVR(Op, VRBaseMap);
+ assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
+
+ const TargetInstrDesc &TID = MI->getDesc();
+ bool isOptDef = IIOpNum < TID.getNumOperands() &&
+ TID.OpInfo[IIOpNum].isOptionalDef();
+
+ // If the instruction requires a register in a different class, create
+ // a new virtual register and copy the value into it.
+ if (II) {
+ const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg);
+ const TargetRegisterClass *DstRC = 0;
+ if (IIOpNum < II->getNumOperands())
+ DstRC = II->OpInfo[IIOpNum].getRegClass(TRI);
+ assert((DstRC || (TID.isVariadic() && IIOpNum >= TID.getNumOperands())) &&
+ "Don't have operand info for this instruction!");
+ if (DstRC && SrcRC != DstRC && !SrcRC->hasSuperClass(DstRC)) {
+ unsigned NewVReg = MRI->createVirtualRegister(DstRC);
+ bool Emitted = TII->copyRegToReg(*MBB, InsertPos, NewVReg, VReg,
+ DstRC, SrcRC);
+ assert(Emitted && "Unable to issue a copy instruction!\n");
+ (void) Emitted;
+ VReg = NewVReg;
+ }
+ }
+
+ MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
+}
+
+/// AddOperand - Add the specified operand to the specified machine instr. II
+/// specifies the instruction information for the node, and IIOpNum is the
+/// operand number (in the II) that we are adding. IIOpNum and II are used for
+/// assertions only.
+void InstrEmitter::AddOperand(MachineInstr *MI, SDValue Op,
+ unsigned IIOpNum,
+ const TargetInstrDesc *II,
+ DenseMap<SDValue, unsigned> &VRBaseMap) {
+ if (Op.isMachineOpcode()) {
+ AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap);
+ } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateImm(C->getSExtValue()));
+ } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
+ const ConstantFP *CFP = F->getConstantFPValue();
+ MI->addOperand(MachineOperand::CreateFPImm(CFP));
+ } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
+ } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(), TGA->getOffset(),
+ TGA->getTargetFlags()));
+ } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateMBB(BBNode->getBasicBlock()));
+ } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
+ } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateJTI(JT->getIndex(),
+ JT->getTargetFlags()));
+ } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
+ int Offset = CP->getOffset();
+ unsigned Align = CP->getAlignment();
+ const Type *Type = CP->getType();
+ // MachineConstantPool wants an explicit alignment.
+ if (Align == 0) {
+ Align = TM->getTargetData()->getPrefTypeAlignment(Type);
+ if (Align == 0) {
+ // Alignment of vector types. FIXME!
+ Align = TM->getTargetData()->getTypeAllocSize(Type);
+ }
+ }
+
+ unsigned Idx;
+ MachineConstantPool *MCP = MF->getConstantPool();
+ if (CP->isMachineConstantPoolEntry())
+ Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
+ else
+ Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
+ MI->addOperand(MachineOperand::CreateCPI(Idx, Offset,
+ CP->getTargetFlags()));
+ } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
+ MI->addOperand(MachineOperand::CreateES(ES->getSymbol(),
+ ES->getTargetFlags()));
+ } else {
+ assert(Op.getValueType() != MVT::Other &&
+ Op.getValueType() != MVT::Flag &&
+ "Chain and flag operands should occur at end of operand list!");
+ AddRegisterOperand(MI, Op, IIOpNum, II, VRBaseMap);
+ }
+}
+
+/// getSuperRegisterRegClass - Returns the register class of a superreg A whose
+/// "SubIdx"'th sub-register class is the specified register class and whose
+/// type matches the specified type.
+static const TargetRegisterClass*
+getSuperRegisterRegClass(const TargetRegisterClass *TRC,
+ unsigned SubIdx, EVT VT) {
+ // Pick the register class of the superegister for this type
+ for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
+ E = TRC->superregclasses_end(); I != E; ++I)
+ if ((*I)->hasType(VT) && (*I)->getSubRegisterRegClass(SubIdx) == TRC)
+ return *I;
+ assert(false && "Couldn't find the register class");
+ return 0;
+}
+
+/// EmitSubregNode - Generate machine code for subreg nodes.
+///
+void InstrEmitter::EmitSubregNode(SDNode *Node,
+ DenseMap<SDValue, unsigned> &VRBaseMap){
+ unsigned VRBase = 0;
+ unsigned Opc = Node->getMachineOpcode();
+
+ // If the node is only used by a CopyToReg and the dest reg is a vreg, use
+ // the CopyToReg'd destination register instead of creating a new vreg.
+ for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
+ UI != E; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() == ISD::CopyToReg &&
+ User->getOperand(2).getNode() == Node) {
+ unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
+ VRBase = DestReg;
+ break;
+ }
+ }
+ }
+
+ if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
+ unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+
+ // Create the extract_subreg machine instruction.
+ MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
+ TII->get(TargetInstrInfo::EXTRACT_SUBREG));
+
+ // Figure out the register class to create for the destreg.
+ unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
+ const TargetRegisterClass *TRC = MRI->getRegClass(VReg);
+ const TargetRegisterClass *SRC = TRC->getSubRegisterRegClass(SubIdx);
+ assert(SRC && "Invalid subregister index in EXTRACT_SUBREG");
+
+ // Figure out the register class to create for the destreg.
+ // Note that if we're going to directly use an existing register,
+ // it must be precisely the required class, and not a subclass
+ // thereof.
+ if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) {
+ // Create the reg
+ assert(SRC && "Couldn't find source register class");
+ VRBase = MRI->createVirtualRegister(SRC);
+ }
+
+ // Add def, source, and subreg index
+ MI->addOperand(MachineOperand::CreateReg(VRBase, true));
+ AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
+ MI->addOperand(MachineOperand::CreateImm(SubIdx));
+ MBB->insert(InsertPos, MI);
+ } else if (Opc == TargetInstrInfo::INSERT_SUBREG ||
+ Opc == TargetInstrInfo::SUBREG_TO_REG) {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+ SDValue N2 = Node->getOperand(2);
+ unsigned SubReg = getVR(N1, VRBaseMap);
+ unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
+ const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
+ const TargetRegisterClass *SRC =
+ getSuperRegisterRegClass(TRC, SubIdx,
+ Node->getValueType(0));
+
+ // Figure out the register class to create for the destreg.
+ // Note that if we're going to directly use an existing register,
+ // it must be precisely the required class, and not a subclass
+ // thereof.
+ if (VRBase == 0 || SRC != MRI->getRegClass(VRBase)) {
+ // Create the reg
+ assert(SRC && "Couldn't find source register class");
+ VRBase = MRI->createVirtualRegister(SRC);
+ }
+
+ // Create the insert_subreg or subreg_to_reg machine instruction.
+ MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc));
+ MI->addOperand(MachineOperand::CreateReg(VRBase, true));
+
+ // If creating a subreg_to_reg, then the first input operand
+ // is an implicit value immediate, otherwise it's a register
+ if (Opc == TargetInstrInfo::SUBREG_TO_REG) {
+ const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
+ MI->addOperand(MachineOperand::CreateImm(SD->getZExtValue()));
+ } else
+ AddOperand(MI, N0, 0, 0, VRBaseMap);
+ // Add the subregster being inserted
+ AddOperand(MI, N1, 0, 0, VRBaseMap);
+ MI->addOperand(MachineOperand::CreateImm(SubIdx));
+ MBB->insert(InsertPos, MI);
+ } else
+ llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
+
+ SDValue Op(Node, 0);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
+ isNew = isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+}
+
+/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
+/// COPY_TO_REGCLASS is just a normal copy, except that the destination
+/// register is constrained to be in a particular register class.
+///
+void
+InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
+ DenseMap<SDValue, unsigned> &VRBaseMap) {
+ unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
+ const TargetRegisterClass *SrcRC = MRI->getRegClass(VReg);
+
+ unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ const TargetRegisterClass *DstRC = TRI->getRegClass(DstRCIdx);
+
+ // Create the new VReg in the destination class and emit a copy.
+ unsigned NewVReg = MRI->createVirtualRegister(DstRC);
+ bool Emitted = TII->copyRegToReg(*MBB, InsertPos, NewVReg, VReg,
+ DstRC, SrcRC);
+ assert(Emitted &&
+ "Unable to issue a copy instruction for a COPY_TO_REGCLASS node!\n");
+ (void) Emitted;
+
+ SDValue Op(Node, 0);
+ bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
+ isNew = isNew; // Silence compiler warning.
+ assert(isNew && "Node emitted out of order - early");
+}
+
+/// EmitNode - Generate machine code for an node and needed dependencies.
+///
+void InstrEmitter::EmitNode(SDNode *Node, bool IsClone, bool IsCloned,
+ DenseMap<SDValue, unsigned> &VRBaseMap,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
+ // If machine instruction
+ if (Node->isMachineOpcode()) {
+ unsigned Opc = Node->getMachineOpcode();
+
+ // Handle subreg insert/extract specially
+ if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
+ Opc == TargetInstrInfo::INSERT_SUBREG ||
+ Opc == TargetInstrInfo::SUBREG_TO_REG) {
+ EmitSubregNode(Node, VRBaseMap);
+ return;
+ }
+
+ // Handle COPY_TO_REGCLASS specially.
+ if (Opc == TargetInstrInfo::COPY_TO_REGCLASS) {
+ EmitCopyToRegClassNode(Node, VRBaseMap);
+ return;
+ }
+
+ if (Opc == TargetInstrInfo::IMPLICIT_DEF)
+ // We want a unique VR for each IMPLICIT_DEF use.
+ return;
+
+ const TargetInstrDesc &II = TII->get(Opc);
+ unsigned NumResults = CountResults(Node);
+ unsigned NodeOperands = CountOperands(Node);
+ bool HasPhysRegOuts = (NumResults > II.getNumDefs()) &&
+ II.getImplicitDefs() != 0;
+#ifndef NDEBUG
+ unsigned NumMIOperands = NodeOperands + NumResults;
+ assert((II.getNumOperands() == NumMIOperands ||
+ HasPhysRegOuts || II.isVariadic()) &&
+ "#operands for dag node doesn't match .td file!");
+#endif
+
+ // Create the new machine instruction.
+ MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(), II);
+
+ // Add result register values for things that are defined by this
+ // instruction.
+ if (NumResults)
+ CreateVirtualRegisters(Node, MI, II, IsClone, IsCloned, VRBaseMap);
+
+ // Emit all of the actual operands of this instruction, adding them to the
+ // instruction as appropriate.
+ bool HasOptPRefs = II.getNumDefs() > NumResults;
+ assert((!HasOptPRefs || !HasPhysRegOuts) &&
+ "Unable to cope with optional defs and phys regs defs!");
+ unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0;
+ for (unsigned i = NumSkip; i != NodeOperands; ++i)
+ AddOperand(MI, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II,
+ VRBaseMap);
+
+ // Transfer all of the memory reference descriptions of this instruction.
+ MI->setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
+ cast<MachineSDNode>(Node)->memoperands_end());
+
+ if (II.usesCustomDAGSchedInsertionHook()) {
+ // Insert this instruction into the basic block using a target
+ // specific inserter which may returns a new basic block.
+ MBB = TLI->EmitInstrWithCustomInserter(MI, MBB, EM);
+ InsertPos = MBB->end();
+ } else {
+ MBB->insert(InsertPos, MI);
+ }
+
+ // Additional results must be an physical register def.
+ if (HasPhysRegOuts) {
+ for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
+ unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
+ if (Node->hasAnyUseOfValue(i))
+ EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
+ }
+ }
+ return;
+ }
+
+ switch (Node->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ Node->dump();
+#endif
+ llvm_unreachable("This target-independent node should have been selected!");
+ break;
+ case ISD::EntryToken:
+ llvm_unreachable("EntryToken should have been excluded from the schedule!");
+ break;
+ case ISD::MERGE_VALUES:
+ case ISD::TokenFactor: // fall thru
+ break;
+ case ISD::CopyToReg: {
+ unsigned SrcReg;
+ SDValue SrcVal = Node->getOperand(2);
+ if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
+ SrcReg = R->getReg();
+ else
+ SrcReg = getVR(SrcVal, VRBaseMap);
+
+ unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
+ if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
+ break;
+
+ const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0;
+ // Get the register classes of the src/dst.
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg))
+ SrcTRC = MRI->getRegClass(SrcReg);
+ else
+ SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType());
+
+ if (TargetRegisterInfo::isVirtualRegister(DestReg))
+ DstTRC = MRI->getRegClass(DestReg);
+ else
+ DstTRC = TRI->getPhysicalRegisterRegClass(DestReg,
+ Node->getOperand(1).getValueType());
+
+ bool Emitted = TII->copyRegToReg(*MBB, InsertPos, DestReg, SrcReg,
+ DstTRC, SrcTRC);
+ assert(Emitted && "Unable to issue a copy instruction!\n");
+ (void) Emitted;
+ break;
+ }
+ case ISD::CopyFromReg: {
+ unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
+ EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
+ break;
+ }
+ case ISD::INLINEASM: {
+ unsigned NumOps = Node->getNumOperands();
+ if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
+ --NumOps; // Ignore the flag operand.
+
+ // Create the inline asm machine instruction.
+ MachineInstr *MI = BuildMI(*MF, Node->getDebugLoc(),
+ TII->get(TargetInstrInfo::INLINEASM));
+
+ // Add the asm string as an external symbol operand.
+ const char *AsmStr =
+ cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
+ MI->addOperand(MachineOperand::CreateES(AsmStr));
+
+ // Add all of the operand registers to the instruction.
+ for (unsigned i = 2; i != NumOps;) {
+ unsigned Flags =
+ cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+
+ MI->addOperand(MachineOperand::CreateImm(Flags));
+ ++i; // Skip the ID value.
+
+ switch (Flags & 7) {
+ default: llvm_unreachable("Bad flags!");
+ case 2: // Def of register.
+ for (; NumVals; --NumVals, ++i) {
+ unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
+ MI->addOperand(MachineOperand::CreateReg(Reg, true));
+ }
+ break;
+ case 6: // Def of earlyclobber register.
+ for (; NumVals; --NumVals, ++i) {
+ unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
+ MI->addOperand(MachineOperand::CreateReg(Reg, true, false, false,
+ false, false, true));
+ }
+ break;
+ case 1: // Use of register.
+ case 3: // Immediate.
+ case 4: // Addressing mode.
+ // The addressing mode has been selected, just add all of the
+ // operands to the machine instruction.
+ for (; NumVals; --NumVals, ++i)
+ AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
+ break;
+ }
+ }
+ MBB->insert(InsertPos, MI);
+ break;
+ }
+ }
+}
+
+/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
+/// at the given position in the given block.
+InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
+ MachineBasicBlock::iterator insertpos)
+ : MF(mbb->getParent()),
+ MRI(&MF->getRegInfo()),
+ TM(&MF->getTarget()),
+ TII(TM->getInstrInfo()),
+ TRI(TM->getRegisterInfo()),
+ TLI(TM->getTargetLowering()),
+ MBB(mbb), InsertPos(insertpos) {
+}
diff --git a/lib/CodeGen/SelectionDAG/InstrEmitter.h b/lib/CodeGen/SelectionDAG/InstrEmitter.h
new file mode 100644
index 0000000..bb4634d
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/InstrEmitter.h
@@ -0,0 +1,119 @@
+//===---- InstrEmitter.h - Emit MachineInstrs for the SelectionDAG class ---==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This declares the Emit routines for the SelectionDAG class, which creates
+// MachineInstrs based on the decisions of the SelectionDAG instruction
+// selection.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INSTREMITTER_H
+#define INSTREMITTER_H
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/ADT/DenseMap.h"
+
+namespace llvm {
+
+class TargetInstrDesc;
+
+class InstrEmitter {
+ MachineFunction *MF;
+ MachineRegisterInfo *MRI;
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const TargetLowering *TLI;
+
+ MachineBasicBlock *MBB;
+ MachineBasicBlock::iterator InsertPos;
+
+ /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
+ /// implicit physical register output.
+ void EmitCopyFromReg(SDNode *Node, unsigned ResNo,
+ bool IsClone, bool IsCloned,
+ unsigned SrcReg,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// getDstOfCopyToRegUse - If the only use of the specified result number of
+ /// node is a CopyToReg, return its destination register. Return 0 otherwise.
+ unsigned getDstOfOnlyCopyToRegUse(SDNode *Node,
+ unsigned ResNo) const;
+
+ void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
+ const TargetInstrDesc &II,
+ bool IsClone, bool IsCloned,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// getVR - Return the virtual register corresponding to the specified result
+ /// of the specified node.
+ unsigned getVR(SDValue Op,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// AddRegisterOperand - Add the specified register as an operand to the
+ /// specified machine instr. Insert register copies if the register is
+ /// not in the required register class.
+ void AddRegisterOperand(MachineInstr *MI, SDValue Op,
+ unsigned IIOpNum,
+ const TargetInstrDesc *II,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// AddOperand - Add the specified operand to the specified machine instr. II
+ /// specifies the instruction information for the node, and IIOpNum is the
+ /// operand number (in the II) that we are adding. IIOpNum and II are used for
+ /// assertions only.
+ void AddOperand(MachineInstr *MI, SDValue Op,
+ unsigned IIOpNum,
+ const TargetInstrDesc *II,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// EmitSubregNode - Generate machine code for subreg nodes.
+ ///
+ void EmitSubregNode(SDNode *Node, DenseMap<SDValue, unsigned> &VRBaseMap);
+
+ /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
+ /// COPY_TO_REGCLASS is just a normal copy, except that the destination
+ /// register is constrained to be in a particular register class.
+ ///
+ void EmitCopyToRegClassNode(SDNode *Node,
+ DenseMap<SDValue, unsigned> &VRBaseMap);
+
+public:
+ /// CountResults - The results of target nodes have register or immediate
+ /// operands first, then an optional chain, and optional flag operands
+ /// (which do not go into the machine instrs.)
+ static unsigned CountResults(SDNode *Node);
+
+ /// CountOperands - The inputs to target nodes have any actual inputs first,
+ /// followed by an optional chain operand, then flag operands. Compute
+ /// the number of actual operands that will go into the resulting
+ /// MachineInstr.
+ static unsigned CountOperands(SDNode *Node);
+
+ /// EmitNode - Generate machine code for an node and needed dependencies.
+ ///
+ void EmitNode(SDNode *Node, bool IsClone, bool IsCloned,
+ DenseMap<SDValue, unsigned> &VRBaseMap,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM);
+
+ /// getBlock - Return the current basic block.
+ MachineBasicBlock *getBlock() { return MBB; }
+
+ /// getInsertPos - Return the current insertion position.
+ MachineBasicBlock::iterator getInsertPos() { return InsertPos; }
+
+ /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
+ /// at the given position in the given block.
+ InstrEmitter(MachineBasicBlock *mbb, MachineBasicBlock::iterator insertpos);
+};
+
+}
+
+#endif
diff --git a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
index 1413d95..fc01b07 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
@@ -30,9 +30,12 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -98,13 +101,14 @@ public:
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal or we need to expand it into multiple registers of
/// smaller integer type, or we need to promote it to a larger type.
- LegalizeAction getTypeAction(MVT VT) const {
- return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
+ LegalizeAction getTypeAction(EVT VT) const {
+ return
+ (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
}
/// isTypeLegal - Return true if this type is legal on this target.
///
- bool isTypeLegal(MVT VT) const {
+ bool isTypeLegal(EVT VT) const {
return getTypeAction(VT) == Legal;
}
@@ -131,14 +135,14 @@ private:
/// performs the same shuffe in terms of order or result bytes, but on a type
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
- SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
+ SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
SDValue N1, SDValue N2,
SmallVectorImpl<int> &Mask) const;
bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
- void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
+ void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
DebugLoc dl);
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
@@ -149,18 +153,18 @@ private:
RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128);
- SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
+ SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
SDValue ExpandBUILD_VECTOR(SDNode *Node);
SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
SDValue ExpandDBG_STOPPOINT(SDNode *Node);
void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
SmallVectorImpl<SDValue> &Results);
SDValue ExpandFCOPYSIGN(SDNode *Node);
- SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
+ SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
DebugLoc dl);
- SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
+ SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
DebugLoc dl);
- SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
+ SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
DebugLoc dl);
SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
@@ -179,10 +183,10 @@ private:
/// whose vector element type is narrower than the original shuffle type.
/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
SDValue
-SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
+SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
SDValue N1, SDValue N2,
SmallVectorImpl<int> &Mask) const {
- MVT EltVT = NVT.getVectorElementType();
+ EVT EltVT = NVT.getVectorElementType();
unsigned NumMaskElts = VT.getVectorNumElements();
unsigned NumDestElts = NVT.getVectorNumElements();
unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
@@ -342,7 +346,7 @@ static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
// double. This shrinks FP constants and canonicalizes them for targets where
// an FP extending load is the same cost as a normal load (such as on the x87
// fp stack or PPC FP unit).
- MVT VT = CFP->getValueType(0);
+ EVT VT = CFP->getValueType(0);
ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
if (!UseCP) {
assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
@@ -350,16 +354,16 @@ static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
}
- MVT OrigVT = VT;
- MVT SVT = VT;
+ EVT OrigVT = VT;
+ EVT SVT = VT;
while (SVT != MVT::f32) {
- SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
+ SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
// Only do this if the target has a native EXTLOAD instruction from
// smaller type.
TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
TLI.ShouldShrinkFPConstant(OrigVT)) {
- const Type *SType = SVT.getTypeForMVT();
+ const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
VT = SVT;
Extend = true;
@@ -384,13 +388,13 @@ SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDValue Val = ST->getValue();
- MVT VT = Val.getValueType();
+ EVT VT = Val.getValueType();
int Alignment = ST->getAlignment();
int SVOffset = ST->getSrcValueOffset();
DebugLoc dl = ST->getDebugLoc();
if (ST->getMemoryVT().isFloatingPoint() ||
ST->getMemoryVT().isVector()) {
- MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
if (TLI.isTypeLegal(intVT)) {
// Expand to a bitconvert of the value to the integer type of the
// same size, then a (misaligned) int store.
@@ -401,9 +405,9 @@ SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
} else {
// Do a (aligned) store to a stack slot, then copy from the stack slot
// to the final destination using (unaligned) integer loads and stores.
- MVT StoredVT = ST->getMemoryVT();
- MVT RegVT =
- TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
+ EVT StoredVT = ST->getMemoryVT();
+ EVT RegVT =
+ TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
@@ -437,7 +441,7 @@ SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
// The last store may be partial. Do a truncating store. On big-endian
// machines this requires an extending load from the stack slot to ensure
// that the bits are in the right place.
- MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
// Load from the stack slot.
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
@@ -456,8 +460,8 @@ SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
!ST->getMemoryVT().isVector() &&
"Unaligned store of unknown type.");
// Get the half-size VT
- MVT NewStoredVT =
- (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
+ EVT NewStoredVT =
+ (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT().SimpleTy - 1);
int NumBits = NewStoredVT.getSizeInBits();
int IncrementSize = NumBits / 8;
@@ -488,11 +492,11 @@ SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
int SVOffset = LD->getSrcValueOffset();
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
- MVT VT = LD->getValueType(0);
- MVT LoadedVT = LD->getMemoryVT();
+ EVT VT = LD->getValueType(0);
+ EVT LoadedVT = LD->getMemoryVT();
DebugLoc dl = LD->getDebugLoc();
if (VT.isFloatingPoint() || VT.isVector()) {
- MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
if (TLI.isTypeLegal(intVT)) {
// Expand to a (misaligned) integer load of the same size,
// then bitconvert to floating point or vector.
@@ -508,7 +512,7 @@ SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
} else {
// Copy the value to a (aligned) stack slot using (unaligned) integer
// loads and stores, then do a (aligned) load from the stack slot.
- MVT RegVT = TLI.getRegisterType(intVT);
+ EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
unsigned RegBytes = RegVT.getSizeInBits() / 8;
unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
@@ -538,7 +542,7 @@ SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
}
// The last copy may be partial. Do an extending load.
- MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
LD->getSrcValue(), SVOffset + Offset,
MemVT, LD->isVolatile(),
@@ -568,8 +572,8 @@ SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
// Compute the new VT that is half the size of the old one. This is an
// integer MVT.
unsigned NumBits = LoadedVT.getSizeInBits();
- MVT NewLoadedVT;
- NewLoadedVT = MVT::getIntegerVT(NumBits/2);
+ EVT NewLoadedVT;
+ NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
NumBits >>= 1;
unsigned Alignment = LD->getAlignment();
@@ -629,10 +633,10 @@ PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
// with a "move to register" or "extload into register" instruction, then
// permute it into place, if the idx is a constant and if the idx is
// supported by the target.
- MVT VT = Tmp1.getValueType();
- MVT EltVT = VT.getVectorElementType();
- MVT IdxVT = Tmp3.getValueType();
- MVT PtrVT = TLI.getPointerTy();
+ EVT VT = Tmp1.getValueType();
+ EVT EltVT = VT.getVectorElementType();
+ EVT IdxVT = Tmp3.getValueType();
+ EVT PtrVT = TLI.getPointerTy();
SDValue StackPtr = DAG.CreateStackTemporary(VT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
@@ -663,7 +667,7 @@ ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
// SCALAR_TO_VECTOR requires that the type of the value being inserted
// match the element type of the vector being created, except for
// integers in which case the inserted value can be over width.
- MVT EltVT = Vec.getValueType().getVectorElementType();
+ EVT EltVT = Vec.getValueType().getVectorElementType();
if (Val.getValueType() == EltVT ||
(EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
@@ -785,7 +789,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
break;
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG: {
- MVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
break;
}
@@ -795,7 +799,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
Node->getOpcode() == ISD::SETCC ? 2 : 1;
unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
- MVT OpVT = Node->getOperand(CompareOperand).getValueType();
+ EVT OpVT = Node->getOperand(CompareOperand).getValueType();
ISD::CondCode CCCode =
cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
Action = TLI.getCondCodeAction(CCCode, OpVT);
@@ -821,11 +825,6 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
// special case should be done as part of making LegalizeDAG non-recursive.
SimpleFinishLegalizing = false;
break;
- case ISD::CALL:
- // FIXME: Legalization for calls requires custom-lowering the call before
- // legalizing the operands! (I haven't looked into precisely why.)
- SimpleFinishLegalizing = false;
- break;
case ISD::EXTRACT_ELEMENT:
case ISD::FLT_ROUNDS_:
case ISD::SADDO:
@@ -847,7 +846,6 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
case ISD::TRAMPOLINE:
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
- case ISD::FORMAL_ARGUMENTS:
// These operations lie about being legal: when they claim to be legal,
// they should actually be custom-lowered.
Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
@@ -885,7 +883,6 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
case ISD::BR_JT:
case ISD::BR_CC:
case ISD::BRCOND:
- case ISD::RET:
// Branches tweak the chain to include LastCALLSEQ_END
Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
LastCALLSEQ_END);
@@ -902,6 +899,14 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
if (!Ops[1].getValueType().isVector())
Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
break;
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS:
+ case ISD::SHL_PARTS:
+ // Legalizing shifts/rotates requires adjusting the shift amount
+ // to the appropriate width.
+ if (!Ops[2].getValueType().isVector())
+ Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
+ break;
}
Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
@@ -946,44 +951,15 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
+ errs() << "NODE: ";
+ Node->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to legalize this operator!");
- abort();
- case ISD::CALL:
- // The only option for this is to custom lower it.
- Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
- assert(Tmp3.getNode() && "Target didn't custom lower this node!");
- // A call within a calling sequence must be legalized to something
- // other than the normal CALLSEQ_END. Violating this gets Legalize
- // into an infinite loop.
- assert ((!IsLegalizingCall ||
- Node->getOpcode() != ISD::CALL ||
- Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
- "Nested CALLSEQ_START..CALLSEQ_END not supported.");
-
- // The number of incoming and outgoing values should match; unless the final
- // outgoing value is a flag.
- assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
- (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
- Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
- MVT::Flag)) &&
- "Lowering call/formal_arguments produced unexpected # results!");
-
- // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
- // remember that we legalized all of them, so it doesn't get relegalized.
- for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
- if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
- continue;
- Tmp1 = LegalizeOp(Tmp3.getValue(i));
- if (Op.getResNo() == i)
- Tmp2 = Tmp1;
- AddLegalizedOperand(SDValue(Node, i), Tmp1);
- }
- return Tmp2;
+ llvm_unreachable("Do not know how to legalize this operator!");
+
case ISD::BUILD_VECTOR:
switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
- default: assert(0 && "This action is not supported yet!");
+ default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
@@ -1094,22 +1070,22 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
Tmp3 = Result.getValue(0);
Tmp4 = Result.getValue(1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
- default: assert(0 && "This action is not supported yet!");
+ default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned load and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses()) {
- unsigned ABIAlignment = TLI.getTargetData()->
- getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
+ if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
+ const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
if (LD->getAlignment() < ABIAlignment){
- Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
- TLI);
+ Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
+ DAG, TLI);
Tmp3 = Result.getOperand(0);
Tmp4 = Result.getOperand(1);
Tmp3 = LegalizeOp(Tmp3);
@@ -1128,7 +1104,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
// Only promote a load of vector type to another.
assert(VT.isVector() && "Cannot promote this load!");
// Change base type to a different vector type.
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
+ EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset(),
@@ -1144,7 +1120,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
AddLegalizedOperand(SDValue(Node, 1), Tmp4);
return Op.getResNo() ? Tmp4 : Tmp3;
} else {
- MVT SrcVT = LD->getMemoryVT();
+ EVT SrcVT = LD->getMemoryVT();
unsigned SrcWidth = SrcVT.getSizeInBits();
int SVOffset = LD->getSrcValueOffset();
unsigned Alignment = LD->getAlignment();
@@ -1163,7 +1139,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
unsigned NewWidth = SrcVT.getStoreSizeInBits();
- MVT NVT = MVT::getIntegerVT(NewWidth);
+ EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
SDValue Ch;
// The extra bits are guaranteed to be zero, since we stored them that
@@ -1201,8 +1177,8 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Load size not an integral number of bytes!");
- MVT RoundVT = MVT::getIntegerVT(RoundWidth);
- MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
+ EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
+ EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi, Ch;
unsigned IncrementSize;
@@ -1269,7 +1245,7 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
Tmp2 = LegalizeOp(Ch);
} else {
switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
- default: assert(0 && "This action is not supported yet!");
+ default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
@@ -1287,12 +1263,12 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
} else {
// If this is an unaligned load and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses()) {
- unsigned ABIAlignment = TLI.getTargetData()->
- getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
+ if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
+ const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
if (LD->getAlignment() < ABIAlignment){
- Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
- TLI);
+ Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
+ DAG, TLI);
Tmp1 = Result.getOperand(0);
Tmp2 = Result.getOperand(1);
Tmp1 = LegalizeOp(Tmp1);
@@ -1303,10 +1279,13 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
break;
case TargetLowering::Expand:
// f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
- if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
+ // f128 = EXTLOAD {f32,f64} too
+ if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
+ Node->getValueType(0) == MVT::f128)) ||
+ (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
- LD->getSrcValueOffset(),
- LD->isVolatile(), LD->getAlignment());
+ LD->getSrcValueOffset(),
+ LD->isVolatile(), LD->getAlignment());
Result = DAG.getNode(ISD::FP_EXTEND, dl,
Node->getValueType(0), Load);
Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
@@ -1359,18 +1338,18 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
ST->getOffset());
- MVT VT = Tmp3.getValueType();
+ EVT VT = Tmp3.getValueType();
switch (TLI.getOperationAction(ISD::STORE, VT)) {
- default: assert(0 && "This action is not supported yet!");
+ default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned store and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses()) {
- unsigned ABIAlignment = TLI.getTargetData()->
- getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
+ if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
+ const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
if (ST->getAlignment() < ABIAlignment)
- Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
- TLI);
+ Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
+ DAG, TLI);
}
break;
case TargetLowering::Custom:
@@ -1391,14 +1370,14 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
} else {
Tmp3 = LegalizeOp(ST->getValue());
- MVT StVT = ST->getMemoryVT();
+ EVT StVT = ST->getMemoryVT();
unsigned StWidth = StVT.getSizeInBits();
if (StWidth != StVT.getStoreSizeInBits()) {
// Promote to a byte-sized store with upper bits zero if not
// storing an integral number of bytes. For example, promote
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
- MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
+ EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, NVT, isVolatile, Alignment);
@@ -1412,8 +1391,8 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Store size not an integral number of bytes!");
- MVT RoundVT = MVT::getIntegerVT(RoundWidth);
- MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
+ EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
+ EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
SDValue Lo, Hi;
unsigned IncrementSize;
@@ -1460,16 +1439,16 @@ SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
ST->getOffset());
switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
- default: assert(0 && "This action is not supported yet!");
+ default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned store and the target doesn't support it,
// expand it.
- if (!TLI.allowsUnalignedMemoryAccesses()) {
- unsigned ABIAlignment = TLI.getTargetData()->
- getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
+ if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
+ const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
if (ST->getAlignment() < ABIAlignment)
- Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
- TLI);
+ Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
+ DAG, TLI);
}
break;
case TargetLowering::Custom:
@@ -1522,7 +1501,11 @@ SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
- return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
+ if (Op.getValueType().isVector())
+ return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
+ else
+ return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
+ NULL, 0, Vec.getValueType().getVectorElementType());
}
SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
@@ -1530,8 +1513,8 @@ SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
// aligned object on the stack, store each element into it, then load
// the result as a vector.
// Create the stack frame object.
- MVT VT = Node->getValueType(0);
- MVT OpVT = Node->getOperand(0).getValueType();
+ EVT VT = Node->getValueType(0);
+ EVT OpVT = Node->getOperand(0).getValueType();
DebugLoc dl = Node->getDebugLoc();
SDValue FIPtr = DAG.CreateStackTemporary(VT);
int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
@@ -1574,7 +1557,7 @@ SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
"Ugly special-cased code!");
// Get the sign bit of the RHS.
SDValue SignBit;
- MVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
+ EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
if (isTypeLegal(IVT)) {
SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
} else {
@@ -1613,9 +1596,8 @@ SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
- GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
- if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
- DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
+ MDNode *CU_Node = DSP->getCompileUnit();
+ if (DW && (useDEBUG_LOC || useLABEL)) {
unsigned Line = DSP->getLine();
unsigned Col = DSP->getColumn();
@@ -1627,9 +1609,9 @@ SDValue SelectionDAGLegalize::ExpandDBG_STOPPOINT(SDNode* Node) {
return DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Node->getOperand(0),
DAG.getConstant(Line, MVT::i32),
DAG.getConstant(Col, MVT::i32),
- DAG.getSrcValue(CU.getGV()));
+ DAG.getSrcValue(CU_Node));
} else {
- unsigned ID = DW->RecordSourceLine(Line, Col, CU);
+ unsigned ID = DW->RecordSourceLine(Line, Col, CU_Node);
return DAG.getLabel(ISD::DBG_LABEL, dl, Node->getOperand(0), ID);
}
}
@@ -1643,7 +1625,7 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
DebugLoc dl = Node->getDebugLoc();
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDValue Tmp1 = SDValue(Node, 0);
SDValue Tmp2 = SDValue(Node, 1);
SDValue Tmp3 = Node->getOperand(2);
@@ -1676,14 +1658,14 @@ void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
/// condition code CC on the current target. This routine assumes LHS and rHS
/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
/// illegal condition code into AND / OR of multiple SETCC values.
-void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
+void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
SDValue &LHS, SDValue &RHS,
SDValue &CC,
DebugLoc dl) {
- MVT OpVT = LHS.getValueType();
+ EVT OpVT = LHS.getValueType();
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
switch (TLI.getCondCodeAction(CCCode, OpVT)) {
- default: assert(0 && "Unknown condition code action!");
+ default: llvm_unreachable("Unknown condition code action!");
case TargetLowering::Legal:
// Nothing to do.
break;
@@ -1691,7 +1673,7 @@ void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
unsigned Opc = 0;
switch (CCCode) {
- default: assert(0 && "Don't know how to expand this condition!"); abort();
+ default: llvm_unreachable("Don't know how to expand this condition!");
case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
@@ -1722,13 +1704,13 @@ void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
- MVT SlotVT,
- MVT DestVT,
+ EVT SlotVT,
+ EVT DestVT,
DebugLoc dl) {
// Create the stack frame object.
unsigned SrcAlign =
TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
- getTypeForMVT());
+ getTypeForEVT(*DAG.getContext()));
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
@@ -1739,7 +1721,7 @@ SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
unsigned DestAlign =
- TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
+ TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
// Emit a store to the stack slot. Use a truncstore if the input value is
// later than DestVT.
@@ -1787,9 +1769,9 @@ SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
unsigned NumElems = Node->getNumOperands();
SDValue Value1, Value2;
DebugLoc dl = Node->getDebugLoc();
- MVT VT = Node->getValueType(0);
- MVT OpVT = Node->getOperand(0).getValueType();
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = Node->getValueType(0);
+ EVT OpVT = Node->getOperand(0).getValueType();
+ EVT EltVT = VT.getVectorElementType();
// If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
@@ -1833,7 +1815,7 @@ SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
} else {
assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
- const Type *OpNTy = OpVT.getTypeForMVT();
+ const Type *OpNTy = OpVT.getTypeForEVT(*DAG.getContext());
CV.push_back(UndefValue::get(OpNTy));
}
}
@@ -1886,8 +1868,8 @@ SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
- MVT ArgVT = Node->getOperand(i).getValueType();
- const Type *ArgTy = ArgVT.getTypeForMVT();
+ EVT ArgVT = Node->getOperand(i).getValueType();
+ const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
@@ -1897,10 +1879,12 @@ SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
TLI.getPointerTy());
// Splice the libcall in wherever FindInputOutputChains tells us to.
- const Type *RetTy = Node->getValueType(0).getTypeForMVT();
+ const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
std::pair<SDValue, SDValue> CallInfo =
TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
- 0, CallingConv::C, false, Callee, Args, DAG,
+ 0, TLI.getLibcallCallingConv(LC), false,
+ /*isReturnValueUsed=*/true,
+ Callee, Args, DAG,
Node->getDebugLoc());
// Legalize the call sequence, starting with the chain. This will advance
@@ -1916,8 +1900,8 @@ SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_PPCF128) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT()) {
- default: assert(0 && "Unexpected request for libcall!");
+ switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected request for libcall!");
case MVT::f32: LC = Call_F32; break;
case MVT::f64: LC = Call_F64; break;
case MVT::f80: LC = Call_F80; break;
@@ -1932,8 +1916,8 @@ SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
RTLIB::Libcall Call_I64,
RTLIB::Libcall Call_I128) {
RTLIB::Libcall LC;
- switch (Node->getValueType(0).getSimpleVT()) {
- default: assert(0 && "Unexpected request for libcall!");
+ switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i16: LC = Call_I16; break;
case MVT::i32: LC = Call_I32; break;
case MVT::i64: LC = Call_I64; break;
@@ -1948,7 +1932,7 @@ SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
/// legal for the target.
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue Op0,
- MVT DestVT,
+ EVT DestVT,
DebugLoc dl) {
if (Op0.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
@@ -2018,15 +2002,16 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
- switch (Op0.getValueType().getSimpleVT()) {
- default: assert(0 && "Unsupported integer type!");
+ switch (Op0.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
- Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
+ Constant *FudgeFactor = ConstantInt::get(
+ Type::getInt64Ty(*DAG.getContext()), FF);
SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
@@ -2054,17 +2039,17 @@ SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
- MVT DestVT,
+ EVT DestVT,
bool isSigned,
DebugLoc dl) {
// First step, figure out the appropriate *INT_TO_FP operation to use.
- MVT NewInTy = LegalOp.getValueType();
+ EVT NewInTy = LegalOp.getValueType();
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
- NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
+ NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
assert(NewInTy.isInteger() && "Ran out of possibilities!");
// If the target supports SINT_TO_FP of this type, use it.
@@ -2096,17 +2081,17 @@ SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
- MVT DestVT,
+ EVT DestVT,
bool isSigned,
DebugLoc dl) {
// First step, figure out the appropriate FP_TO*INT operation to use.
- MVT NewOutTy = DestVT;
+ EVT NewOutTy = DestVT;
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
- NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
+ NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
@@ -2134,11 +2119,11 @@ SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
///
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
- MVT VT = Op.getValueType();
- MVT SHVT = TLI.getShiftAmountTy();
+ EVT VT = Op.getValueType();
+ EVT SHVT = TLI.getShiftAmountTy();
SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
- switch (VT.getSimpleVT()) {
- default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled Expand type in BSWAP!");
case MVT::i16:
Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
@@ -2183,15 +2168,15 @@ SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
DebugLoc dl) {
switch (Opc) {
- default: assert(0 && "Cannot expand this yet!");
+ default: llvm_unreachable("Cannot expand this yet!");
case ISD::CTPOP: {
static const uint64_t mask[6] = {
0x5555555555555555ULL, 0x3333333333333333ULL,
0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
};
- MVT VT = Op.getValueType();
- MVT ShVT = TLI.getShiftAmountTy();
+ EVT VT = Op.getValueType();
+ EVT ShVT = TLI.getShiftAmountTy();
unsigned len = VT.getSizeInBits();
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
//x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
@@ -2217,8 +2202,8 @@ SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
// return popcount(~x);
//
// but see also: http://www.hackersdelight.org/HDcode/nlz.cc
- MVT VT = Op.getValueType();
- MVT ShVT = TLI.getShiftAmountTy();
+ EVT VT = Op.getValueType();
+ EVT ShVT = TLI.getShiftAmountTy();
unsigned len = VT.getSizeInBits();
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
@@ -2233,7 +2218,7 @@ SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// see also http://www.hackersdelight.org/HDcode/ntz.cc
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNOT(dl, Op, VT),
DAG.getNode(ISD::SUB, dl, VT, Op,
@@ -2272,7 +2257,6 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
break;
case ISD::EH_RETURN:
- case ISD::DECLARE:
case ISD::DBG_LABEL:
case ISD::EH_LABEL:
case ISD::PREFETCH:
@@ -2291,21 +2275,22 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
Results.push_back(Node->getOperand(i));
break;
case ISD::UNDEF: {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
if (VT.isInteger())
Results.push_back(DAG.getConstant(0, VT));
else if (VT.isFloatingPoint())
Results.push_back(DAG.getConstantFP(0, VT));
else
- assert(0 && "Unknown value type!");
+ llvm_unreachable("Unknown value type!");
break;
}
case ISD::TRAP: {
// If this operation is not supported, lower it to 'abort()' call
TargetLowering::ArgListTy Args;
std::pair<SDValue, SDValue> CallResult =
- TLI.LowerCallTo(Node->getOperand(0), Type::VoidTy,
+ TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
false, false, false, false, 0, CallingConv::C, false,
+ /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("abort", TLI.getPointerTy()),
Args, DAG, dl);
Results.push_back(CallResult.second);
@@ -2326,7 +2311,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
case ISD::SIGN_EXTEND_INREG: {
// NOTE: we could fall back on load/store here too for targets without
// SAR. However, it is doubtful that any exist.
- MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
ExtraVT.getSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
@@ -2343,7 +2328,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
// NOTE: there is a choice here between constantly creating new stack
// slots and always reusing the same one. We currently always create
// new ones, as reuse may inhibit scheduling.
- MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
Node->getValueType(0), dl);
Results.push_back(Tmp1);
@@ -2357,8 +2342,8 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
case ISD::FP_TO_UINT: {
SDValue True, False;
- MVT VT = Node->getOperand(0).getValueType();
- MVT NVT = Node->getValueType(0);
+ EVT VT = Node->getOperand(0).getValueType();
+ EVT NVT = Node->getValueType(0);
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
APInt x = APInt::getSignBit(NVT.getSizeInBits());
@@ -2379,14 +2364,14 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
}
case ISD::VAARG: {
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
DAG.getConstant(TLI.getTargetData()->
- getTypeAllocSize(VT.getTypeForMVT()),
+ getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
@@ -2434,8 +2419,8 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
SmallVector<int, 8> Mask;
cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
- MVT VT = Node->getValueType(0);
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = Node->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
unsigned NumElems = VT.getVectorNumElements();
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i != NumElems; ++i) {
@@ -2458,7 +2443,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
}
case ISD::EXTRACT_ELEMENT: {
- MVT OpTy = Node->getOperand(0).getValueType();
+ EVT OpTy = Node->getOperand(0).getValueType();
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
// 1 -> Hi
Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
@@ -2507,7 +2492,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
case ISD::FABS: {
// Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
Tmp1 = Node->getOperand(0);
Tmp2 = DAG.getConstantFP(0.0, VT);
Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
@@ -2622,7 +2607,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
}
case ISD::SUB: {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
"Don't know how to expand this subtraction!");
@@ -2634,7 +2619,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
}
case ISD::UREM:
case ISD::SREM: {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
bool isSigned = Node->getOpcode() == ISD::SREM;
unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
@@ -2662,7 +2647,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
case ISD::SDIV: {
bool isSigned = Node->getOpcode() == ISD::SDIV;
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
@@ -2680,7 +2665,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
case ISD::MULHS: {
unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
ISD::SMUL_LOHI;
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
"If this wasn't legal, it shouldn't have been created!");
@@ -2690,7 +2675,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
}
case ISD::MUL: {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, VT);
// See if multiply or divide can be lowered using two-result operations.
// We just need the low half of the multiply; try both the signed
@@ -2729,7 +2714,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
LHS, RHS);
Results.push_back(Sum);
- MVT OType = Node->getValueType(1);
+ EVT OType = Node->getValueType(1);
SDValue Zero = DAG.getConstant(0, LHS.getValueType());
@@ -2770,7 +2755,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
}
case ISD::UMULO:
case ISD::SMULO: {
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
SDValue BottomHalf;
@@ -2786,8 +2771,8 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
RHS);
TopHalf = BottomHalf.getValue(1);
- } else if (TLI.isTypeLegal(MVT::getIntegerVT(VT.getSizeInBits() * 2))) {
- MVT WideVT = MVT::getIntegerVT(VT.getSizeInBits() * 2);
+ } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
@@ -2800,7 +2785,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
// type in some cases cases.
// Also, we can fall back to a division in some cases, but that's a big
// performance hit in the general case.
- assert(0 && "Don't know how to expand this operation yet!");
+ llvm_unreachable("Don't know how to expand this operation yet!");
}
if (isSigned) {
Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
@@ -2816,7 +2801,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
break;
}
case ISD::BUILD_PAIR: {
- MVT PairTy = Node->getValueType(0);
+ EVT PairTy = Node->getValueType(0);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
@@ -2845,14 +2830,14 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
SDValue Table = Node->getOperand(1);
SDValue Index = Node->getOperand(2);
- MVT PTy = TLI.getPointerTy();
+ EVT PTy = TLI.getPointerTy();
MachineFunction &MF = DAG.getMachineFunction();
unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
Index= DAG.getNode(ISD::MUL, dl, PTy,
Index, DAG.getConstant(EntrySize, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
- MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
PseudoSourceValue::getJumpTable(), 0, MemVT);
Addr = LD;
@@ -2899,7 +2884,7 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
// Otherwise, SETCC for the given comparison type must be completely
// illegal; expand it into a SELECT_CC.
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
Results.push_back(Tmp1);
@@ -2958,12 +2943,13 @@ void SelectionDAGLegalize::ExpandNode(SDNode *Node,
}
void SelectionDAGLegalize::PromoteNode(SDNode *Node,
SmallVectorImpl<SDValue> &Results) {
- MVT OVT = Node->getValueType(0);
+ EVT OVT = Node->getValueType(0);
if (Node->getOpcode() == ISD::UINT_TO_FP ||
- Node->getOpcode() == ISD::SINT_TO_FP) {
+ Node->getOpcode() == ISD::SINT_TO_FP ||
+ Node->getOpcode() == ISD::SETCC) {
OVT = Node->getOperand(0).getValueType();
}
- MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
+ EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
DebugLoc dl = Node->getDebugLoc();
SDValue Tmp1, Tmp2, Tmp3;
switch (Node->getOpcode()) {
@@ -2973,10 +2959,10 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node,
// Zero extend the argument.
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
// Perform the larger operation.
- Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
+ Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
if (Node->getOpcode() == ISD::CTTZ) {
//if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
- Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
+ Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
ISD::SETEQ);
Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
@@ -2987,7 +2973,7 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node,
DAG.getConstant(NVT.getSizeInBits() -
OVT.getSizeInBits(), NVT));
}
- Results.push_back(Tmp1);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
break;
case ISD::BSWAP: {
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
@@ -3012,16 +2998,26 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node,
break;
case ISD::AND:
case ISD::OR:
- case ISD::XOR:
- assert(OVT.isVector() && "Don't know how to promote scalar logic ops");
- // Bit convert each of the values to the new type.
- Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
- Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
+ case ISD::XOR: {
+ unsigned ExtOp, TruncOp;
+ if (OVT.isVector()) {
+ ExtOp = ISD::BIT_CONVERT;
+ TruncOp = ISD::BIT_CONVERT;
+ } else if (OVT.isInteger()) {
+ ExtOp = ISD::ANY_EXTEND;
+ TruncOp = ISD::TRUNCATE;
+ } else {
+ llvm_report_error("Cannot promote logic operation");
+ }
+ // Promote each of the values to the new type.
+ Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
+ // Perform the larger operation, then convert back
Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
- // Bit convert the result back the original type.
- Results.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1));
+ Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
break;
- case ISD::SELECT:
+ }
+ case ISD::SELECT: {
unsigned ExtOp, TruncOp;
if (Node->getValueType(0).isVector()) {
ExtOp = ISD::BIT_CONVERT;
@@ -3046,6 +3042,7 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node,
DAG.getIntPtrConstant(0));
Results.push_back(Tmp1);
break;
+ }
case ISD::VECTOR_SHUFFLE: {
SmallVector<int, 8> Mask;
cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
@@ -3061,31 +3058,14 @@ void SelectionDAGLegalize::PromoteNode(SDNode *Node,
break;
}
case ISD::SETCC: {
- // First step, figure out the appropriate operation to use.
- // Allow SETCC to not be supported for all legal data types
- // Mostly this targets FP
- MVT NewInTy = Node->getOperand(0).getValueType();
- MVT OldVT = NewInTy; OldVT = OldVT;
-
- // Scan for the appropriate larger type to use.
- while (1) {
- NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
-
- assert(NewInTy.isInteger() == OldVT.isInteger() &&
- "Fell off of the edge of the integer world");
- assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
- "Fell off of the edge of the floating point world");
-
- // If the target supports SETCC of this type, use it.
- if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
- break;
- }
- if (NewInTy.isInteger())
- assert(0 && "Cannot promote Legal Integer SETCC yet");
- else {
- Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
- Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
+ unsigned ExtOp = ISD::FP_EXTEND;
+ if (NVT.isInteger()) {
+ ISD::CondCode CCCode =
+ cast<CondCodeSDNode>(Node->getOperand(2))->get();
+ ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
}
+ Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
+ Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
Tmp1, Tmp2, Node->getOperand(2)));
break;
diff --git a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
index c3c1bea..84e39b4 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeFloatTypes.cpp
@@ -20,10 +20,12 @@
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// GetFPLibCall - Return the right libcall for the given floating point type.
-static RTLIB::Libcall GetFPLibCall(MVT VT,
+static RTLIB::Libcall GetFPLibCall(EVT VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
@@ -41,18 +43,17 @@ static RTLIB::Libcall GetFPLibCall(MVT VT,
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::SoftenFloatResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Soften float result " << ResNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Soften float result " << ResNo << ": "; N->dump(&DAG);
+ errs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "SoftenFloatResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "SoftenFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to soften the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to soften the result of this operator!");
case ISD::BIT_CONVERT: R = SoftenFloatRes_BIT_CONVERT(N); break;
case ISD::BUILD_PAIR: R = SoftenFloatRes_BUILD_PAIR(N); break;
@@ -107,14 +108,14 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_BIT_CONVERT(SDNode *N) {
SDValue DAGTypeLegalizer::SoftenFloatRes_BUILD_PAIR(SDNode *N) {
// Convert the inputs to integers, and build a new pair out of them.
return DAG.getNode(ISD::BUILD_PAIR, N->getDebugLoc(),
- TLI.getTypeToTransformTo(N->getValueType(0)),
+ TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
BitConvertToInteger(N->getOperand(0)),
BitConvertToInteger(N->getOperand(1)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_ConstantFP(ConstantFPSDNode *N) {
return DAG.getConstant(N->getValueAPF().bitcastToAPInt(),
- TLI.getTypeToTransformTo(N->getValueType(0)));
+ TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N) {
@@ -125,7 +126,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned Size = NVT.getSizeInBits();
// Mask = ~(1 << (Size-1))
@@ -136,7 +137,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FABS(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -148,7 +149,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FADD(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCEIL(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::CEIL_F32,
@@ -163,8 +164,8 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) {
SDValue RHS = BitConvertToInteger(N->getOperand(1));
DebugLoc dl = N->getDebugLoc();
- MVT LVT = LHS.getValueType();
- MVT RVT = RHS.getValueType();
+ EVT LVT = LHS.getValueType();
+ EVT RVT = RHS.getValueType();
unsigned LSize = LVT.getSizeInBits();
unsigned RSize = RVT.getSizeInBits();
@@ -199,7 +200,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::COS_F32,
@@ -210,7 +211,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FCOS(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -222,7 +223,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FDIV(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::EXP_F32,
@@ -233,7 +234,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::EXP2_F32,
@@ -244,7 +245,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FEXP2(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::FLOOR_F32,
@@ -255,7 +256,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FFLOOR(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG_F32,
@@ -266,7 +267,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG2_F32,
@@ -277,7 +278,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG2(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::LOG10_F32,
@@ -288,7 +289,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FLOG10(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -300,7 +301,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FMUL(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::NEARBYINT_F32,
@@ -311,7 +312,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FNEARBYINT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
SDValue Ops[2] = { DAG.getConstantFP(-0.0, N->getValueType(0)),
GetSoftenedFloat(N->getOperand(0)) };
@@ -324,7 +325,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FNEG(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPEXT(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
@@ -332,7 +333,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP_EXTEND(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), N->getValueType(0));
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
@@ -340,7 +341,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FP_ROUND(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -354,7 +355,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FPOW(SDNode *N) {
SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
assert(N->getOperand(1).getValueType() == MVT::i32 &&
"Unsupported power type!");
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)), N->getOperand(1) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::POWI_F32,
@@ -365,7 +366,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FPOWI(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -377,7 +378,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FREM(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::RINT_F32,
@@ -388,7 +389,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FRINT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SIN_F32,
@@ -399,7 +400,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSIN(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::SQRT_F32,
@@ -410,7 +411,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSQRT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Ops[2] = { GetSoftenedFloat(N->getOperand(0)),
GetSoftenedFloat(N->getOperand(1)) };
return MakeLibCall(GetFPLibCall(N->getValueType(0),
@@ -422,7 +423,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FSUB(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Op = GetSoftenedFloat(N->getOperand(0));
return MakeLibCall(GetFPLibCall(N->getValueType(0),
RTLIB::TRUNC_F32,
@@ -434,8 +435,8 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_FTRUNC(SDNode *N) {
SDValue DAGTypeLegalizer::SoftenFloatRes_LOAD(SDNode *N) {
LoadSDNode *L = cast<LoadSDNode>(N);
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
DebugLoc dl = N->getDebugLoc();
SDValue NewL;
@@ -479,19 +480,19 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_SELECT_CC(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatRes_UNDEF(SDNode *N) {
- return DAG.getUNDEF(TLI.getTypeToTransformTo(N->getValueType(0)));
+ return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)));
}
SDValue DAGTypeLegalizer::SoftenFloatRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
DebugLoc dl = N->getDebugLoc();
SDValue NewVAARG;
NewVAARG = DAG.getVAArg(NVT, dl, Chain, Ptr, N->getOperand(2));
-
+
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), NewVAARG.getValue(1));
@@ -500,9 +501,9 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_VAARG(SDNode *N) {
SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
- MVT SVT = N->getOperand(0).getValueType();
- MVT RVT = N->getValueType(0);
- MVT NVT = MVT();
+ EVT SVT = N->getOperand(0).getValueType();
+ EVT RVT = N->getValueType(0);
+ EVT NVT = EVT();
DebugLoc dl = N->getDebugLoc();
// If the input is not legal, eg: i1 -> fp, then it needs to be promoted to
@@ -521,7 +522,7 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
// Sign/zero extend the argument if the libcall takes a larger type.
SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
NVT, N->getOperand(0));
- return MakeLibCall(LC, TLI.getTypeToTransformTo(RVT), &Op, 1, false, dl);
+ return MakeLibCall(LC, TLI.getTypeToTransformTo(*DAG.getContext(), RVT), &Op, 1, false, dl);
}
@@ -530,18 +531,17 @@ SDValue DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP(SDNode *N) {
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::SoftenFloatOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Soften float operand " << OpNo << ": "; N->dump(&DAG);
+ errs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "SoftenFloatOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "SoftenFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to soften this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to soften this operator's operand!");
case ISD::BIT_CONVERT: Res = SoftenFloatOp_BIT_CONVERT(N); break;
case ISD::BR_CC: Res = SoftenFloatOp_BR_CC(N); break;
@@ -574,7 +574,7 @@ void DAGTypeLegalizer::SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, DebugLoc dl) {
SDValue LHSInt = GetSoftenedFloat(NewLHS);
SDValue RHSInt = GetSoftenedFloat(NewRHS);
- MVT VT = NewLHS.getValueType();
+ EVT VT = NewLHS.getValueType();
assert((VT == MVT::f32 || VT == MVT::f64) && "Unsupported setcc type!");
@@ -637,7 +637,7 @@ void DAGTypeLegalizer::SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
}
}
- MVT RetVT = MVT::i32; // FIXME: is this the correct return type?
+ EVT RetVT = MVT::i32; // FIXME: is this the correct return type?
SDValue Ops[2] = { LHSInt, RHSInt };
NewLHS = MakeLibCall(LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
NewRHS = DAG.getConstant(0, RetVT);
@@ -659,8 +659,8 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_BIT_CONVERT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_ROUND(SDNode *N) {
- MVT SVT = N->getOperand(0).getValueType();
- MVT RVT = N->getValueType(0);
+ EVT SVT = N->getOperand(0).getValueType();
+ EVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND libcall");
@@ -688,7 +688,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_BR_CC(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) {
- MVT RVT = N->getValueType(0);
+ EVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPTOSINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_SINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
@@ -696,7 +696,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_SINT(SDNode *N) {
}
SDValue DAGTypeLegalizer::SoftenFloatOp_FP_TO_UINT(SDNode *N) {
- MVT RVT = N->getValueType(0);
+ EVT RVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getFPTOUINT(N->getOperand(0).getValueType(), RVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_TO_UINT!");
SDValue Op = GetSoftenedFloat(N->getOperand(0));
@@ -767,7 +767,7 @@ SDValue DAGTypeLegalizer::SoftenFloatOp_STORE(SDNode *N, unsigned OpNo) {
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Expand float result: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Expand float result: "; N->dump(&DAG); errs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
@@ -778,11 +778,10 @@ void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ExpandFloatResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ExpandFloatResult #" << ResNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to expand the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to expand the result of this operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
@@ -830,7 +829,7 @@ void DAGTypeLegalizer::ExpandFloatResult(SDNode *N, unsigned ResNo) {
void DAGTypeLegalizer::ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
assert(NVT.getSizeInBits() == integerPartWidth &&
"Do not know how to expand this float constant!");
APInt C = cast<ConstantFPSDNode>(N)->getValueAPF().bitcastToAPInt();
@@ -982,7 +981,7 @@ void DAGTypeLegalizer::ExpandFloatRes_FNEG(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::ExpandFloatRes_FP_EXTEND(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
Hi = DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), NVT, N->getOperand(0));
Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
}
@@ -1067,7 +1066,7 @@ void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo,
SDValue Ptr = LD->getBasePtr();
DebugLoc dl = N->getDebugLoc();
- MVT NVT = TLI.getTypeToTransformTo(LD->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(LD->getMemoryVT().bitsLE(NVT) && "Float type not round?");
@@ -1090,10 +1089,10 @@ void DAGTypeLegalizer::ExpandFloatRes_LOAD(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(N->getValueType(0) == MVT::ppcf128 && "Unsupported XINT_TO_FP!");
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Src = N->getOperand(0);
- MVT SrcVT = Src.getValueType();
+ EVT SrcVT = Src.getValueType();
bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
DebugLoc dl = N->getDebugLoc();
@@ -1135,7 +1134,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
static const uint64_t TwoE128[] = { 0x47f0000000000000LL, 0 };
const uint64_t *Parts = 0;
- switch (SrcVT.getSimpleVT()) {
+ switch (SrcVT.getSimpleVT().SimpleTy) {
default:
assert(false && "Unsupported UINT_TO_FP!");
case MVT::i32:
@@ -1167,7 +1166,7 @@ void DAGTypeLegalizer::ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo,
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Expand float operand: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Expand float operand: "; N->dump(&DAG); errs() << "\n");
SDValue Res = SDValue();
if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
@@ -1178,11 +1177,10 @@ bool DAGTypeLegalizer::ExpandFloatOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ExpandFloatOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ExpandFloatOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to expand this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to expand this operator's operand!");
case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break;
case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
@@ -1224,7 +1222,7 @@ void DAGTypeLegalizer::FloatExpandSetCCOperands(SDValue &NewLHS,
GetExpandedFloat(NewLHS, LHSLo, LHSHi);
GetExpandedFloat(NewRHS, RHSLo, RHSHi);
- MVT VT = NewLHS.getValueType();
+ EVT VT = NewLHS.getValueType();
assert(VT == MVT::ppcf128 && "Unsupported setcc type!");
// FIXME: This generated code sucks. We want to generate
@@ -1276,7 +1274,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_ROUND(SDNode *N) {
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) {
- MVT RVT = N->getValueType(0);
+ EVT RVT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
@@ -1297,7 +1295,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_SINT(SDNode *N) {
}
SDValue DAGTypeLegalizer::ExpandFloatOp_FP_TO_UINT(SDNode *N) {
- MVT RVT = N->getValueType(0);
+ EVT RVT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
@@ -1374,7 +1372,7 @@ SDValue DAGTypeLegalizer::ExpandFloatOp_STORE(SDNode *N, unsigned OpNo) {
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
- MVT NVT = TLI.getTypeToTransformTo(ST->getValue().getValueType());
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ST->getValue().getValueType());
assert(NVT.isByteSized() && "Expanded type not byte sized!");
assert(ST->getMemoryVT().bitsLE(NVT) && "Float type not round?");
diff --git a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
index 0c826f6..8ac8063 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp
@@ -20,6 +20,8 @@
#include "LegalizeTypes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -31,7 +33,7 @@ using namespace llvm;
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Promote integer result: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Promote integer result: "; N->dump(&DAG); errs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
@@ -41,11 +43,10 @@ void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "PromoteIntegerResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "PromoteIntegerResult #" << ResNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to promote this operator!");
- abort();
+ llvm_unreachable("Do not know how to promote this operator!");
case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
case ISD::BIT_CONVERT: Res = PromoteIntRes_BIT_CONVERT(N); break;
@@ -161,10 +162,10 @@ SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) {
SDValue InOp = N->getOperand(0);
- MVT InVT = InOp.getValueType();
- MVT NInVT = TLI.getTypeToTransformTo(InVT);
- MVT OutVT = N->getValueType(0);
- MVT NOutVT = TLI.getTypeToTransformTo(OutVT);
+ EVT InVT = InOp.getValueType();
+ EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
+ EVT OutVT = N->getValueType(0);
+ EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
DebugLoc dl = N->getDebugLoc();
switch (getTypeAction(InVT)) {
@@ -201,7 +202,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) {
std::swap(Lo, Hi);
InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
- MVT::getIntegerVT(NOutVT.getSizeInBits()),
+ EVT::getIntegerVT(*DAG.getContext(), NOutVT.getSizeInBits()),
JoinIntegers(Lo, Hi));
return DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, InOp);
}
@@ -211,24 +212,14 @@ SDValue DAGTypeLegalizer::PromoteIntRes_BIT_CONVERT(SDNode *N) {
return DAG.getNode(ISD::BIT_CONVERT, dl, OutVT, GetWidenedVector(InOp));
}
- // Otherwise, lower the bit-convert to a store/load from the stack.
- // Create the stack frame object. Make sure it is aligned for both
- // the source and destination types.
- SDValue FIPtr = DAG.CreateStackTemporary(InVT, OutVT);
- int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
- const Value *SV = PseudoSourceValue::getFixedStack(FI);
-
- // Emit a store to the stack slot.
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
-
- // Result is an extending load from the stack slot.
- return DAG.getExtLoad(ISD::EXTLOAD, dl, NOutVT, Store, FIPtr, SV, 0, OutVT);
+ return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
+ CreateStackStoreLoad(InOp, OutVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
- MVT OVT = N->getValueType(0);
- MVT NVT = Op.getValueType();
+ EVT OVT = N->getValueType(0);
+ EVT NVT = Op.getValueType();
DebugLoc dl = N->getDebugLoc();
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
@@ -240,18 +231,18 @@ SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
// The pair element type may be legal, or may not promote to the same type as
// the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
- TLI.getTypeToTransformTo(N->getValueType(0)),
+ TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
JoinIntegers(N->getOperand(0), N->getOperand(1)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// FIXME there is no actual debug info here
DebugLoc dl = N->getDebugLoc();
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
- SDValue Result = DAG.getNode(Opc, dl, TLI.getTypeToTransformTo(VT),
+ SDValue Result = DAG.getNode(Opc, dl, TLI.getTypeToTransformTo(*DAG.getContext(), VT),
SDValue(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
@@ -263,7 +254,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
"can only promote integers");
- MVT OutVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
N->getOperand(1), N->getOperand(2),
N->getOperand(3), N->getOperand(4), CvtCode);
@@ -273,8 +264,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
DebugLoc dl = N->getDebugLoc();
- MVT OVT = N->getValueType(0);
- MVT NVT = Op.getValueType();
+ EVT OVT = N->getValueType(0);
+ EVT NVT = Op.getValueType();
Op = DAG.getNode(ISD::CTLZ, dl, NVT, Op);
// Subtract off the extra leading bits in the bigger type.
return DAG.getNode(ISD::SUB, dl, NVT, Op,
@@ -290,8 +281,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
- MVT OVT = N->getValueType(0);
- MVT NVT = Op.getValueType();
+ EVT OVT = N->getValueType(0);
+ EVT NVT = Op.getValueType();
DebugLoc dl = N->getDebugLoc();
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
@@ -303,63 +294,21 @@ SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
- MVT OldVT = N->getValueType(0);
- SDValue OldVec = N->getOperand(0);
- if (getTypeAction(OldVec.getValueType()) == WidenVector)
- OldVec = GetWidenedVector(N->getOperand(0));
- unsigned OldElts = OldVec.getValueType().getVectorNumElements();
DebugLoc dl = N->getDebugLoc();
-
- if (OldElts == 1) {
- assert(!isTypeLegal(OldVec.getValueType()) &&
- "Legal one-element vector of a type needing promotion!");
- // It is tempting to follow GetScalarizedVector by a call to
- // GetPromotedInteger, but this would be wrong because the
- // scalarized value may not yet have been processed.
- return DAG.getNode(ISD::ANY_EXTEND, dl, TLI.getTypeToTransformTo(OldVT),
- GetScalarizedVector(OldVec));
- }
-
- // Convert to a vector half as long with an element type of twice the width,
- // for example <4 x i16> -> <2 x i32>.
- assert(!(OldElts & 1) && "Odd length vectors not supported!");
- MVT NewVT = MVT::getIntegerVT(2 * OldVT.getSizeInBits());
- assert(OldVT.isSimple() && NewVT.isSimple());
-
- SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::getVectorVT(NewVT, OldElts / 2),
- OldVec);
-
- // Extract the element at OldIdx / 2 from the new vector.
- SDValue OldIdx = N->getOperand(1);
- SDValue NewIdx = DAG.getNode(ISD::SRL, dl, OldIdx.getValueType(), OldIdx,
- DAG.getConstant(1, TLI.getPointerTy()));
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, NewVec, NewIdx);
-
- // Select the appropriate half of the element: Lo if OldIdx was even,
- // Hi if it was odd.
- SDValue Lo = Elt;
- SDValue Hi = DAG.getNode(ISD::SRL, dl, NewVT, Elt,
- DAG.getConstant(OldVT.getSizeInBits(),
- TLI.getPointerTy()));
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
-
- // Extend to the promoted type.
- SDValue Odd = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, OldIdx);
- SDValue Res = DAG.getNode(ISD::SELECT, dl, NewVT, Odd, Hi, Lo);
- return DAG.getNode(ISD::ANY_EXTEND, dl, TLI.getTypeToTransformTo(OldVT), Res);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
+ N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NewOpc = N->getOpcode();
DebugLoc dl = N->getDebugLoc();
// If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
// not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
// and SINT conversions are Custom, there is no way to tell which is preferable.
- // We choose SINT because that's the right thing on PPC.)
+ // We choose SINT because that's the right thing on PPC.)
if (N->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
@@ -376,7 +325,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
}
SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
if (getTypeAction(N->getOperand(0).getValueType()) == PromoteInteger) {
@@ -403,7 +352,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
DebugLoc dl = N->getDebugLoc();
@@ -421,8 +370,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
/// Promote the overflow flag of an overflowing arithmetic node.
SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
// Simply change the return type of the boolean result.
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(1));
- MVT ValueVTs[] = { N->getValueType(0), NVT };
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
+ EVT ValueVTs[] = { N->getValueType(0), NVT };
SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
DAG.getVTList(ValueVTs, 2), Ops, 2);
@@ -442,8 +391,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
// sign extension of its truncation to the original type.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
- MVT OVT = N->getOperand(0).getValueType();
- MVT NVT = LHS.getValueType();
+ EVT OVT = N->getOperand(0).getValueType();
+ EVT NVT = LHS.getValueType();
DebugLoc dl = N->getDebugLoc();
// Do the arithmetic in the larger type.
@@ -487,7 +436,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
}
SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
- MVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
+ EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
assert(isTypeLegal(SVT) && "Illegal SetCC type!");
DebugLoc dl = N->getDebugLoc();
@@ -496,14 +445,14 @@ SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
N->getOperand(1), N->getOperand(2));
// Convert to the expected type.
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
return DAG.getNode(ISD::SHL, N->getDebugLoc(),
- TLI.getTypeToTransformTo(N->getValueType(0)),
+ TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
}
@@ -532,18 +481,18 @@ SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
// The input value must be properly zero extended.
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Res = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res;
switch (getTypeAction(N->getOperand(0).getValueType())) {
- default: assert(0 && "Unknown type action!");
+ default: llvm_unreachable("Unknown type action!");
case Legal:
case ExpandInteger:
Res = N->getOperand(0);
@@ -565,8 +514,8 @@ SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
// zero extension of its truncation to the original type.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
- MVT OVT = N->getOperand(0).getValueType();
- MVT NVT = LHS.getValueType();
+ EVT OVT = N->getOperand(0).getValueType();
+ EVT NVT = LHS.getValueType();
DebugLoc dl = N->getDebugLoc();
// Do the arithmetic in the larger type.
@@ -594,17 +543,17 @@ SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
}
SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
- return DAG.getUNDEF(TLI.getTypeToTransformTo(N->getValueType(0)));
+ return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
- MVT RegVT = TLI.getRegisterType(VT);
- unsigned NumRegs = TLI.getNumRegisters(VT);
+ EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
// The argument is passed as NumRegs registers of type RegVT.
SmallVector<SDValue, 8> Parts(NumRegs);
@@ -618,7 +567,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
std::reverse(Parts.begin(), Parts.end());
// Assemble the parts in the promoted type.
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
for (unsigned i = 1; i < NumRegs; ++i) {
SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
@@ -650,7 +599,7 @@ SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Promote integer operand: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Promote integer operand: "; N->dump(&DAG); errs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
@@ -659,11 +608,10 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "PromoteIntegerOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to promote this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to promote this operator's operand!");
case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
case ISD::BIT_CONVERT: Res = PromoteIntOp_BIT_CONVERT(N); break;
@@ -719,7 +667,7 @@ void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
// insert sign extends for ALL conditions, but zero extend is cheaper on
// many machines (an AND instead of two shifts), so prefer it.
switch (CCCode) {
- default: assert(0 && "Unknown integer comparison!");
+ default: llvm_unreachable("Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGE:
@@ -770,7 +718,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
// Promote all the way up to the canonical SetCC type.
- MVT SVT = TLI.getSetCCResultType(MVT::Other);
+ EVT SVT = TLI.getSetCCResultType(MVT::Other);
SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
@@ -780,7 +728,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
// Since the result type is legal, the operands must promote to it.
- MVT OVT = N->getOperand(0).getValueType();
+ EVT OVT = N->getOperand(0).getValueType();
SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
SDValue Hi = GetPromotedInteger(N->getOperand(1));
assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
@@ -795,7 +743,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type is not. This implies
// that the vector is a power-of-two in length and that the element
// type does not have a strange size (eg: it is not i1).
- MVT VecVT = N->getValueType(0);
+ EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!(NumElts & 1) && "Legal vector of one illegal element?");
@@ -871,7 +819,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Only know how to promote condition");
// Promote all the way up to the canonical SetCC type.
- MVT SVT = TLI.getSetCCResultType(N->getOperand(1).getValueType());
+ EVT SVT = TLI.getSetCCResultType(N->getOperand(1).getValueType());
SDValue Cond = PromoteTargetBoolean(N->getOperand(0), SVT);
return DAG.UpdateNodeOperands(SDValue(N, 0), Cond,
@@ -962,7 +910,7 @@ SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Expand integer result: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Expand integer result: "; N->dump(&DAG); errs() << "\n");
SDValue Lo, Hi;
Lo = Hi = SDValue();
@@ -973,11 +921,10 @@ void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ExpandIntegerResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ExpandIntegerResult #" << ResNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to expand the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to expand the result of this operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
@@ -1043,10 +990,10 @@ void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDValue InL, InH;
GetExpandedInteger(N->getOperand(0), InL, InH);
- MVT NVT = InL.getValueType();
+ EVT NVT = InL.getValueType();
unsigned VTBits = N->getValueType(0).getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
- MVT ShTy = N->getOperand(1).getValueType();
+ EVT ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt > VTBits) {
@@ -1060,7 +1007,7 @@ void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
Hi = InL;
} else if (Amt == 1 &&
TLI.isOperationLegalOrCustom(ISD::ADDC,
- TLI.getTypeToExpandTo(NVT))) {
+ TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
// Emit this X << 1 as X+X.
SDVTList VTList = DAG.getVTList(NVT, MVT::Flag);
SDValue LoOps[2] = { InL, InL };
@@ -1130,8 +1077,8 @@ void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
- MVT ShTy = Amt.getValueType();
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ EVT ShTy = Amt.getValueType();
unsigned ShBits = ShTy.getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
@@ -1158,7 +1105,7 @@ ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
DAG.getConstant(~HighBitMask, ShTy));
switch (N->getOpcode()) {
- default: assert(0 && "Unknown shift");
+ default: llvm_unreachable("Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
@@ -1186,7 +1133,7 @@ ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
Amt);
unsigned Op1, Op2;
switch (N->getOpcode()) {
- default: assert(0 && "Unknown shift");
+ default: llvm_unreachable("Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
@@ -1208,8 +1155,8 @@ ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Amt = N->getOperand(1);
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
- MVT ShTy = Amt.getValueType();
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ EVT ShTy = Amt.getValueType();
unsigned NVTBits = NVT.getSizeInBits();
assert(isPowerOf2_32(NVTBits) &&
"Expanded integer type size not a power of two!");
@@ -1226,7 +1173,7 @@ ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue Lo1, Hi1, Lo2, Hi2;
switch (N->getOpcode()) {
- default: assert(0 && "Unknown shift");
+ default: llvm_unreachable("Unknown shift");
case ISD::SHL:
// ShAmt < NVTBits
Lo1 = DAG.getConstant(0, NVT); // Low part is zero.
@@ -1283,7 +1230,7 @@ void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
- MVT NVT = LHSL.getValueType();
+ EVT NVT = LHSL.getValueType();
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
@@ -1295,7 +1242,7 @@ void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
bool hasCarry =
TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
ISD::ADDC : ISD::SUBC,
- TLI.getTypeToExpandTo(NVT));
+ TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
if (hasCarry) {
SDVTList VTList = DAG.getVTList(NVT, MVT::Flag);
@@ -1384,7 +1331,7 @@ void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
@@ -1408,14 +1355,14 @@ void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
SDValue &Lo, SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT NVT = Lo.getValueType();
- MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ EVT NVT = Lo.getValueType();
+ EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
unsigned NVTBits = NVT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
if (NVTBits < EVTBits) {
Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
- DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits)));
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), EVTBits - NVTBits)));
} else {
Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
// The high part replicates the sign bit of Lo, make it explicit.
@@ -1428,14 +1375,14 @@ void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
SDValue &Lo, SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT NVT = Lo.getValueType();
- MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ EVT NVT = Lo.getValueType();
+ EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
unsigned NVTBits = NVT.getSizeInBits();
unsigned EVTBits = EVT.getSizeInBits();
if (NVTBits < EVTBits) {
Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
- DAG.getValueType(MVT::getIntegerVT(EVTBits - NVTBits)));
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), EVTBits - NVTBits)));
} else {
Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
// The high part must be zero, make it explicit.
@@ -1453,7 +1400,7 @@ void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NBitWidth = NVT.getSizeInBits();
const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
Lo = DAG.getConstant(APInt(Cst).trunc(NBitWidth), NVT);
@@ -1465,7 +1412,7 @@ void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
DebugLoc dl = N->getDebugLoc();
// ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT NVT = Lo.getValueType();
+ EVT NVT = Lo.getValueType();
SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
DAG.getConstant(0, NVT), ISD::SETNE);
@@ -1484,7 +1431,7 @@ void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
DebugLoc dl = N->getDebugLoc();
// ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT NVT = Lo.getValueType();
+ EVT NVT = Lo.getValueType();
Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
Hi = DAG.getConstant(0, NVT);
@@ -1495,7 +1442,7 @@ void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
DebugLoc dl = N->getDebugLoc();
// cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT NVT = Lo.getValueType();
+ EVT NVT = Lo.getValueType();
SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
DAG.getConstant(0, NVT), ISD::SETNE);
@@ -1512,7 +1459,7 @@ void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
@@ -1522,7 +1469,7 @@ void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
@@ -1538,8 +1485,8 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
ISD::LoadExtType ExtType = N->getExtensionType();
@@ -1551,10 +1498,10 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
assert(NVT.isByteSized() && "Expanded type not byte sized!");
if (N->getMemoryVT().bitsLE(NVT)) {
- MVT EVT = N->getMemoryVT();
+ EVT MemVT = N->getMemoryVT();
Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
- EVT, isVolatile, Alignment);
+ MemVT, isVolatile, Alignment);
// Remember the chain.
Ch = Lo.getValue(1);
@@ -1580,7 +1527,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
- MVT NEVT = MVT::getIntegerVT(ExcessBits);
+ EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
@@ -1597,14 +1544,15 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
} else {
// Big-endian - high bits are at low addresses. Favor aligned loads at
// the cost of some bit-fiddling.
- MVT EVT = N->getMemoryVT();
- unsigned EBytes = EVT.getStoreSizeInBits()/8;
+ EVT MemVT = N->getMemoryVT();
+ unsigned EBytes = MemVT.getStoreSize();
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
// Load both the high bits and maybe some of the low bits.
Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
- MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits),
+ EVT::getIntegerVT(*DAG.getContext(),
+ MemVT.getSizeInBits() - ExcessBits),
isVolatile, Alignment);
// Increment the pointer to the other half.
@@ -1613,7 +1561,7 @@ void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
// Load the rest of the low bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset+IncrementSize,
- MVT::getIntegerVT(ExcessBits),
+ EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
@@ -1652,8 +1600,8 @@ void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
DebugLoc dl = N->getDebugLoc();
bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
@@ -1742,7 +1690,7 @@ void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
@@ -1762,7 +1710,7 @@ void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// If we can emit an efficient shift operation, do so now. Check to see if
@@ -1788,7 +1736,7 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
// Next check to see if the target supports this SHL_PARTS operation or if it
// will custom expand it.
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
@@ -1797,7 +1745,7 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
- MVT VT = LHSL.getValueType();
+ EVT VT = LHSL.getValueType();
Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
Hi = Lo.getValue(1);
return;
@@ -1838,7 +1786,7 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
else if (VT == MVT::i128)
LC = RTLIB::SRA_I128;
}
-
+
if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
@@ -1846,12 +1794,12 @@ void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
}
if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
- assert(0 && "Unsupported shift!");
+ llvm_unreachable("Unsupported shift!");
}
void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
@@ -1874,7 +1822,7 @@ void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
unsigned ExcessBits =
Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
- DAG.getValueType(MVT::getIntegerVT(ExcessBits)));
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), ExcessBits)));
}
}
@@ -1882,7 +1830,7 @@ void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
GetExpandedInteger(N->getOperand(0), Lo, Hi);
- MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
if (EVT.bitsLE(Lo.getValueType())) {
// sext_inreg the low part if needed.
@@ -1900,13 +1848,13 @@ ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
unsigned ExcessBits =
EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
- DAG.getValueType(MVT::getIntegerVT(ExcessBits)));
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), ExcessBits)));
}
}
void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
@@ -1926,7 +1874,7 @@ void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
Hi = DAG.getNode(ISD::SRL, dl,
@@ -1937,7 +1885,7 @@ void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
@@ -1957,7 +1905,7 @@ void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
@@ -1977,7 +1925,7 @@ void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
SDValue Op = N->getOperand(0);
if (Op.getValueType().bitsLE(NVT)) {
@@ -1996,7 +1944,7 @@ void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
SplitInteger(Res, Lo, Hi);
unsigned ExcessBits =
Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
- Hi = DAG.getZeroExtendInReg(Hi, dl, MVT::getIntegerVT(ExcessBits));
+ Hi = DAG.getZeroExtendInReg(Hi, dl, EVT::getIntegerVT(*DAG.getContext(), ExcessBits));
}
}
@@ -2010,7 +1958,7 @@ void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Expand integer operand: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Expand integer operand: "; N->dump(&DAG); errs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
@@ -2019,11 +1967,10 @@ bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ExpandIntegerOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
+ N->dump(&DAG); errs() << "\n";
#endif
- assert(0 && "Do not know how to expand this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to expand this operator's operand!");
case ISD::BIT_CONVERT: Res = ExpandOp_BIT_CONVERT(N); break;
case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
@@ -2070,7 +2017,7 @@ void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
GetExpandedInteger(NewLHS, LHSLo, LHSHi);
GetExpandedInteger(NewRHS, RHSLo, RHSHi);
- MVT VT = NewLHS.getValueType();
+ EVT VT = NewLHS.getValueType();
if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
if (RHSLo == RHSHi) {
@@ -2105,7 +2052,7 @@ void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
- default: assert(0 && "Unknown integer setcc!");
+ default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
@@ -2122,7 +2069,7 @@ void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
- TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
+ TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
SDValue Tmp1, Tmp2;
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
@@ -2228,7 +2175,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
SDValue Op = N->getOperand(0);
- MVT DstVT = N->getValueType(0);
+ EVT DstVT = N->getValueType(0);
RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
"Don't know how to expand this SINT_TO_FP!");
@@ -2242,8 +2189,8 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
assert(OpNo == 1 && "Can only expand the stored value so far");
- MVT VT = N->getOperand(1).getValueType();
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getOperand(1).getValueType();
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
@@ -2267,7 +2214,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
unsigned ExcessBits =
N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
- MVT NEVT = MVT::getIntegerVT(ExcessBits);
+ EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits()/8;
@@ -2282,11 +2229,11 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
// the cost of some bit-fiddling.
GetExpandedInteger(N->getValue(), Lo, Hi);
- MVT EVT = N->getMemoryVT();
- unsigned EBytes = EVT.getStoreSizeInBits()/8;
+ EVT ExtVT = N->getMemoryVT();
+ unsigned EBytes = ExtVT.getStoreSize();
unsigned IncrementSize = NVT.getSizeInBits()/8;
unsigned ExcessBits = (EBytes - IncrementSize)*8;
- MVT HiVT = MVT::getIntegerVT(EVT.getSizeInBits() - ExcessBits);
+ EVT HiVT = EVT::getIntegerVT(*DAG.getContext(), ExtVT.getSizeInBits() - ExcessBits);
if (ExcessBits < NVT.getSizeInBits()) {
// Transfer high bits from the top of Lo to the bottom of Hi.
@@ -2309,7 +2256,7 @@ SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
// Store the lowest ExcessBits bits in the second half.
Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getSrcValue(),
SVOffset+IncrementSize,
- MVT::getIntegerVT(ExcessBits),
+ EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
isVolatile, MinAlign(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -2324,8 +2271,8 @@ SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
SDValue Op = N->getOperand(0);
- MVT SrcVT = Op.getValueType();
- MVT DstVT = N->getValueType(0);
+ EVT SrcVT = Op.getValueType();
+ EVT DstVT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
if (TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
@@ -2360,7 +2307,8 @@ SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
ISD::SETLT);
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
- SDValue FudgePtr = DAG.getConstantPool(ConstantInt::get(FF.zext(64)),
+ SDValue FudgePtr = DAG.getConstantPool(
+ ConstantInt::get(*DAG.getContext(), FF.zext(64)),
TLI.getPointerTy());
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
index 3135a44..5992f5d 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
@@ -15,9 +15,11 @@
#include "LegalizeTypes.h"
#include "llvm/CallingConv.h"
+#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
@@ -113,43 +115,43 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
if (I->getNodeId() != Processed) {
if (Mapped != 0) {
- cerr << "Unprocessed value in a map!";
+ errs() << "Unprocessed value in a map!";
Failed = true;
}
} else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
if (Mapped > 1) {
- cerr << "Value with legal type was transformed!";
+ errs() << "Value with legal type was transformed!";
Failed = true;
}
} else {
if (Mapped == 0) {
- cerr << "Processed value not in any map!";
+ errs() << "Processed value not in any map!";
Failed = true;
} else if (Mapped & (Mapped - 1)) {
- cerr << "Value in multiple maps!";
+ errs() << "Value in multiple maps!";
Failed = true;
}
}
if (Failed) {
if (Mapped & 1)
- cerr << " ReplacedValues";
+ errs() << " ReplacedValues";
if (Mapped & 2)
- cerr << " PromotedIntegers";
+ errs() << " PromotedIntegers";
if (Mapped & 4)
- cerr << " SoftenedFloats";
+ errs() << " SoftenedFloats";
if (Mapped & 8)
- cerr << " ScalarizedVectors";
+ errs() << " ScalarizedVectors";
if (Mapped & 16)
- cerr << " ExpandedIntegers";
+ errs() << " ExpandedIntegers";
if (Mapped & 32)
- cerr << " ExpandedFloats";
+ errs() << " ExpandedFloats";
if (Mapped & 64)
- cerr << " SplitVectors";
+ errs() << " SplitVectors";
if (Mapped & 128)
- cerr << " WidenedVectors";
- cerr << "\n";
- abort();
+ errs() << " WidenedVectors";
+ errs() << "\n";
+ llvm_unreachable(0);
}
}
}
@@ -210,7 +212,7 @@ bool DAGTypeLegalizer::run() {
// Scan the values produced by the node, checking to see if any result
// types are illegal.
for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
- MVT ResultVT = N->getValueType(i);
+ EVT ResultVT = N->getValueType(i);
switch (getTypeAction(ResultVT)) {
default:
assert(false && "Unknown action!");
@@ -263,7 +265,7 @@ ScanOperands:
if (IgnoreNodeResults(N->getOperand(i).getNode()))
continue;
- MVT OpVT = N->getOperand(i).getValueType();
+ EVT OpVT = N->getOperand(i).getValueType();
switch (getTypeAction(OpVT)) {
default:
assert(false && "Unknown action!");
@@ -336,7 +338,7 @@ ScanOperands:
}
if (i == NumOperands) {
- DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Legally typed node: "; N->dump(&DAG); errs() << "\n");
}
}
NodeDone:
@@ -405,7 +407,7 @@ NodeDone:
if (!IgnoreNodeResults(I))
for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
if (!isTypeLegal(I->getValueType(i))) {
- cerr << "Result type " << i << " illegal!\n";
+ errs() << "Result type " << i << " illegal!\n";
Failed = true;
}
@@ -413,25 +415,25 @@ NodeDone:
for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
!isTypeLegal(I->getOperand(i).getValueType())) {
- cerr << "Operand type " << i << " illegal!\n";
+ errs() << "Operand type " << i << " illegal!\n";
Failed = true;
}
if (I->getNodeId() != Processed) {
if (I->getNodeId() == NewNode)
- cerr << "New node not analyzed?\n";
+ errs() << "New node not analyzed?\n";
else if (I->getNodeId() == Unanalyzed)
- cerr << "Unanalyzed node not noticed?\n";
+ errs() << "Unanalyzed node not noticed?\n";
else if (I->getNodeId() > 0)
- cerr << "Operand not processed?\n";
+ errs() << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
- cerr << "Not added to worklist?\n";
+ errs() << "Not added to worklist?\n";
Failed = true;
}
if (Failed) {
- I->dump(&DAG); cerr << "\n";
- abort();
+ I->dump(&DAG); errs() << "\n";
+ llvm_unreachable(0);
}
}
#endif
@@ -479,8 +481,7 @@ SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
NewOps.push_back(Op);
} else if (Op != OrigOp) {
// This is the first operand to change - add all operands so far.
- for (unsigned j = 0; j < i; ++j)
- NewOps.push_back(N->getOperand(j));
+ NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
NewOps.push_back(Op);
}
}
@@ -732,6 +733,8 @@ void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
}
void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
+ assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
+ "Invalid type for promoted integer");
AnalyzeNewValue(Result);
SDValue &OpEntry = PromotedIntegers[Op];
@@ -740,6 +743,8 @@ void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
}
void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
+ assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
+ "Invalid type for softened float");
AnalyzeNewValue(Result);
SDValue &OpEntry = SoftenedFloats[Op];
@@ -748,6 +753,8 @@ void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
}
void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
+ assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
+ "Invalid type for scalarized vector");
AnalyzeNewValue(Result);
SDValue &OpEntry = ScalarizedVectors[Op];
@@ -767,6 +774,9 @@ void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
SDValue Hi) {
+ assert(Lo.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
+ Hi.getValueType() == Lo.getValueType() &&
+ "Invalid type for expanded integer");
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewValue(Lo);
AnalyzeNewValue(Hi);
@@ -790,6 +800,9 @@ void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
SDValue Hi) {
+ assert(Lo.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
+ Hi.getValueType() == Lo.getValueType() &&
+ "Invalid type for expanded float");
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewValue(Lo);
AnalyzeNewValue(Hi);
@@ -813,6 +826,12 @@ void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
SDValue Hi) {
+ assert(Lo.getValueType().getVectorElementType() ==
+ Op.getValueType().getVectorElementType() &&
+ 2*Lo.getValueType().getVectorNumElements() ==
+ Op.getValueType().getVectorNumElements() &&
+ Hi.getValueType() == Lo.getValueType() &&
+ "Invalid type for split vector");
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewValue(Lo);
AnalyzeNewValue(Hi);
@@ -825,6 +844,8 @@ void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
}
void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
+ assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
+ "Invalid type for widened vector");
AnalyzeNewValue(Result);
SDValue &OpEntry = WidenedVectors[Op];
@@ -841,7 +862,7 @@ void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
unsigned BitWidth = Op.getValueType().getSizeInBits();
return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
- MVT::getIntegerVT(BitWidth), Op);
+ EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
}
/// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
@@ -849,14 +870,14 @@ SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
assert(Op.getValueType().isVector() && "Only applies to vectors!");
unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
- MVT EltNVT = MVT::getIntegerVT(EltWidth);
+ EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
unsigned NumElts = Op.getValueType().getVectorNumElements();
return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
- MVT::getVectorVT(EltNVT, NumElts), Op);
+ EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
}
SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
- MVT DestVT) {
+ EVT DestVT) {
DebugLoc dl = Op.getDebugLoc();
// Create the stack frame object. Make sure it is aligned for both
// the source and destination types.
@@ -875,7 +896,7 @@ SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
/// The last parameter being TRUE means we are dealing with a
/// node with illegal result types. The second parameter denotes the type of
/// illegal ResNo in that case.
-bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, MVT VT, bool LegalizeResult) {
+bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
// See if the target wants to custom lower this node.
if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
return false;
@@ -900,21 +921,14 @@ bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, MVT VT, bool LegalizeResult) {
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split into two not necessarily identical pieces.
-void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
+void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
+ // Currently all types are split in half.
if (!InVT.isVector()) {
- LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
+ LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
} else {
- MVT NewEltVT = InVT.getVectorElementType();
unsigned NumElements = InVT.getVectorNumElements();
- if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector.
- NumElements >>= 1;
- LoVT = HiVT = MVT::getVectorVT(NewEltVT, NumElements);
- } else { // Non-power-of-two vectors.
- unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
- unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
- LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
- HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
- }
+ assert(!(NumElements & 1) && "Splitting vector, but not in half!");
+ LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), NumElements/2);
}
}
@@ -923,14 +937,14 @@ void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
void DAGTypeLegalizer::GetPairElements(SDValue Pair,
SDValue &Lo, SDValue &Hi) {
DebugLoc dl = Pair.getDebugLoc();
- MVT NVT = TLI.getTypeToTransformTo(Pair.getValueType());
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
DAG.getIntPtrConstant(0));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
DAG.getIntPtrConstant(1));
}
-SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
+SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
SDValue Index) {
DebugLoc dl = Index.getDebugLoc();
// Make sure the index type is big enough to compute in.
@@ -952,9 +966,9 @@ SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
// Arbitrarily use dlHi for result DebugLoc
DebugLoc dlHi = Hi.getDebugLoc();
DebugLoc dlLo = Lo.getDebugLoc();
- MVT LVT = Lo.getValueType();
- MVT HVT = Hi.getValueType();
- MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
+ EVT LVT = Lo.getValueType();
+ EVT HVT = Hi.getValueType();
+ EVT NVT = EVT::getIntegerVT(*DAG.getContext(), LVT.getSizeInBits() + HVT.getSizeInBits());
Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
@@ -986,7 +1000,7 @@ SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
/// MakeLibCall - Generate a libcall taking the given operands as arguments and
/// returning a result of type RetVT.
-SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
+SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps,
bool isSigned, DebugLoc dl) {
TargetLowering::ArgListTy Args;
@@ -995,7 +1009,7 @@ SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
- Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
+ Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
@@ -1003,17 +1017,19 @@ SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
- const Type *RetTy = RetVT.getTypeForMVT();
+ const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
std::pair<SDValue,SDValue> CallInfo =
TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
- false, 0, CallingConv::C, false, Callee, Args, DAG, dl);
+ false, 0, TLI.getLibcallCallingConv(LC), false,
+ /*isReturnValueUsed=*/true,
+ Callee, Args, DAG, dl);
return CallInfo.first;
}
/// PromoteTargetBoolean - Promote the given target boolean to a target boolean
/// of the given type. A target boolean is an integer value, not necessarily of
/// type i1, the bits of which conform to getBooleanContents.
-SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) {
+SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
DebugLoc dl = Bool.getDebugLoc();
ISD::NodeType ExtendCode;
switch (TLI.getBooleanContents()) {
@@ -1039,7 +1055,7 @@ SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, MVT VT) {
/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
/// bits in Hi.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
- MVT LoVT, MVT HiVT,
+ EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi) {
DebugLoc dl = Op.getDebugLoc();
assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
@@ -1054,7 +1070,7 @@ void DAGTypeLegalizer::SplitInteger(SDValue Op,
/// type half the size of Op's.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
SDValue &Lo, SDValue &Hi) {
- MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
+ EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Op.getValueType().getSizeInBits()/2);
SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
index 02b0732..859c656 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypes.h
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypes.h
@@ -64,7 +64,7 @@ private:
SoftenFloat, // Convert this float type to a same size integer type.
ExpandFloat, // Split this float type into two of half the size.
ScalarizeVector, // Replace this one-element vector with its element type.
- SplitVector, // This vector type should be split into smaller vectors.
+ SplitVector, // Split this vector type into two of half the size.
WidenVector // This vector type should be widened into a larger vector.
};
@@ -74,8 +74,8 @@ private:
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// getTypeAction - Return how we should legalize values of this type.
- LegalizeAction getTypeAction(MVT VT) const {
- switch (ValueTypeActions.getTypeAction(VT)) {
+ LegalizeAction getTypeAction(EVT VT) const {
+ switch (ValueTypeActions.getTypeAction(*DAG.getContext(), VT)) {
default:
assert(false && "Unknown legalize action!");
case TargetLowering::Legal:
@@ -96,7 +96,7 @@ private:
if (VT.isInteger())
return ExpandInteger;
else if (VT.getSizeInBits() ==
- TLI.getTypeToTransformTo(VT).getSizeInBits())
+ TLI.getTypeToTransformTo(*DAG.getContext(), VT).getSizeInBits())
return SoftenFloat;
else
return ExpandFloat;
@@ -109,8 +109,9 @@ private:
}
/// isTypeLegal - Return true if this type is legal on this target.
- bool isTypeLegal(MVT VT) const {
- return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
+ bool isTypeLegal(EVT VT) const {
+ return (ValueTypeActions.getTypeAction(*DAG.getContext(), VT) ==
+ TargetLowering::Legal);
}
/// IgnoreNodeResults - Pretend all of this node's results are legal.
@@ -185,19 +186,19 @@ private:
// Common routines.
SDValue BitConvertToInteger(SDValue Op);
SDValue BitConvertVectorToIntegerVector(SDValue Op);
- SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
- bool CustomLowerNode(SDNode *N, MVT VT, bool LegalizeResult);
- SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
+ SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
+ bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
+ SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
- SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
+ SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps, bool isSigned,
DebugLoc dl);
- SDValue PromoteTargetBoolean(SDValue Bool, MVT VT);
+ SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
void ReplaceValueWith(SDValue From, SDValue To);
void ReplaceValueWithHelper(SDValue From, SDValue To);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
- void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
+ void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
@@ -224,7 +225,7 @@ private:
/// SExtPromotedInteger - Get a promoted operand and sign extend it to the
/// final size.
SDValue SExtPromotedInteger(SDValue Op) {
- MVT OldVT = Op.getValueType();
+ EVT OldVT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
Op = GetPromotedInteger(Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
@@ -234,7 +235,7 @@ private:
/// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
/// final size.
SDValue ZExtPromotedInteger(SDValue Op) {
- MVT OldVT = Op.getValueType();
+ EVT OldVT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, dl, OldVT);
@@ -506,7 +507,6 @@ private:
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
- SDValue ScalarizeVecRes_ShiftOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
@@ -518,6 +518,7 @@ private:
SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
+ SDValue ScalarizeVecRes_SETCC(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_VSETCC(SDNode *N);
@@ -533,8 +534,8 @@ private:
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
- /// GetSplitVector - Given a processed vector Op which was split into smaller
- /// vectors, this method returns the smaller vectors. The first elements of
+ /// GetSplitVector - Given a processed vector Op which was split into vectors
+ /// of half the size, this method returns the halves. The first elements of
/// Op coincide with the elements of Lo; the remaining elements of Op coincide
/// with the elements of Hi: Op is what you would get by concatenating Lo and
/// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
@@ -558,10 +559,10 @@ private:
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
+ void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
- void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
+ void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
SDValue &Hi);
- void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
@@ -641,7 +642,7 @@ private:
SDValue BasePtr, const Value *SV,
int SVOffset, unsigned Alignment,
bool isVolatile, unsigned LdWidth,
- MVT ResType, DebugLoc dl);
+ EVT ResType, DebugLoc dl);
/// Helper genWidenVectorStores - Helper function to generate a set of
/// stores to store a widen vector into non widen memory
@@ -664,7 +665,7 @@ private:
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
- SDValue ModifyToType(SDValue InOp, MVT WidenVT);
+ SDValue ModifyToType(SDValue InOp, EVT WidenVT);
//===--------------------------------------------------------------------===//
@@ -686,7 +687,7 @@ private:
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
- void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
+ void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
/// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
/// high parts of the given value.
diff --git a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
index 6e5adee..0eafe62 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeTypesGeneric.cpp
@@ -11,9 +11,11 @@
// The routines here perform legalization when the details of the type (such as
// whether it is an integer or a float) do not matter.
// Expansion is the act of changing a computation in an illegal type to be a
-// computation in two identical registers of a smaller type.
+// computation in two identical registers of a smaller type. The Lo/Hi part
+// is required to be stored first in memory on little/big-endian machines.
// Splitting is the act of changing a computation in an illegal type to be a
// computation in two not necessarily identical registers of a smaller type.
+// There are no requirements on how the type is represented in memory.
//
//===----------------------------------------------------------------------===//
@@ -32,10 +34,10 @@ using namespace llvm;
void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT OutVT = N->getValueType(0);
- MVT NOutVT = TLI.getTypeToTransformTo(OutVT);
+ EVT OutVT = N->getValueType(0);
+ EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
SDValue InOp = N->getOperand(0);
- MVT InVT = InOp.getValueType();
+ EVT InVT = InOp.getValueType();
DebugLoc dl = N->getDebugLoc();
// Handle some special cases efficiently.
@@ -59,16 +61,12 @@ void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
return;
case SplitVector:
- // Convert the split parts of the input if it was split in two.
GetSplitVector(InOp, Lo, Hi);
- if (Lo.getValueType() == Hi.getValueType()) {
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
- Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
- return;
- }
- break;
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Lo);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NOutVT, Hi);
+ return;
case ScalarizeVector:
// Convert the element instead.
SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi);
@@ -78,7 +76,7 @@ void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
case WidenVector: {
assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BIT_CONVERT");
InOp = GetWidenedVector(InOp);
- MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
InVT.getVectorNumElements()/2);
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(0));
@@ -95,7 +93,7 @@ void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
if (InVT.isVector() && OutVT.isInteger()) {
// Handle cases like i64 = BIT_CONVERT v1i64 on x86, where the operand
// is legal but the result is not.
- MVT NVT = MVT::getVectorVT(NOutVT, 2);
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), NOutVT, 2);
if (isTypeLegal(NVT)) {
SDValue CastInOp = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, InOp);
@@ -106,7 +104,7 @@ void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
if (TLI.isBigEndian())
std::swap(Lo, Hi);
-
+
return;
}
}
@@ -117,7 +115,7 @@ void DAGTypeLegalizer::ExpandRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
// Create the stack frame object. Make sure it is aligned for both
// the source and expanded destination types.
unsigned Alignment =
- TLI.getTargetData()->getPrefTypeAlignment(NOutVT.getTypeForMVT());
+ TLI.getTargetData()->getPrefTypeAlignment(NOutVT.getTypeForEVT(*DAG.getContext()));
SDValue StackPtr = DAG.CreateStackTemporary(InVT, Alignment);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
@@ -169,11 +167,11 @@ void DAGTypeLegalizer::ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo,
// Convert to a vector of the expanded element type, for example
// <3 x i64> -> <6 x i32>.
- MVT OldVT = N->getValueType(0);
- MVT NewVT = TLI.getTypeToTransformTo(OldVT);
+ EVT OldVT = N->getValueType(0);
+ EVT NewVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldVT);
SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::getVectorVT(NewVT, 2*OldElts),
+ EVT::getVectorVT(*DAG.getContext(), NewVT, 2*OldElts),
OldVec);
// Extract the elements at 2 * Idx and 2 * Idx + 1 from the new vector.
@@ -200,7 +198,7 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
DebugLoc dl = N->getDebugLoc();
LoadSDNode *LD = cast<LoadSDNode>(N);
- MVT NVT = TLI.getTypeToTransformTo(LD->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
int SVOffset = LD->getSrcValueOffset();
@@ -235,7 +233,7 @@ void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
}
void DAGTypeLegalizer::ExpandRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
- MVT NVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Chain = N->getOperand(0);
SDValue Ptr = N->getOperand(1);
DebugLoc dl = N->getDebugLoc();
@@ -265,8 +263,8 @@ SDValue DAGTypeLegalizer::ExpandOp_BIT_CONVERT(SDNode *N) {
// instead, but only if the new vector type is legal (otherwise there
// is no point, and it might create expansion loops). For example, on
// x86 this turns v1i64 = BIT_CONVERT i64 into v1i64 = BIT_CONVERT v2i32.
- MVT OVT = N->getOperand(0).getValueType();
- MVT NVT = MVT::getVectorVT(TLI.getTypeToTransformTo(OVT), 2);
+ EVT OVT = N->getOperand(0).getValueType();
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), TLI.getTypeToTransformTo(*DAG.getContext(), OVT), 2);
if (isTypeLegal(NVT)) {
SDValue Parts[2];
@@ -286,10 +284,10 @@ SDValue DAGTypeLegalizer::ExpandOp_BIT_CONVERT(SDNode *N) {
SDValue DAGTypeLegalizer::ExpandOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type needs expansion.
- MVT VecVT = N->getValueType(0);
+ EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
- MVT OldVT = N->getOperand(0).getValueType();
- MVT NewVT = TLI.getTypeToTransformTo(OldVT);
+ EVT OldVT = N->getOperand(0).getValueType();
+ EVT NewVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldVT);
DebugLoc dl = N->getDebugLoc();
assert(OldVT == VecVT.getVectorElementType() &&
@@ -310,7 +308,7 @@ SDValue DAGTypeLegalizer::ExpandOp_BUILD_VECTOR(SDNode *N) {
}
SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
- MVT::getVectorVT(NewVT, NewElts.size()),
+ EVT::getVectorVT(*DAG.getContext(), NewVT, NewElts.size()),
&NewElts[0], NewElts.size());
// Convert the new vector to the old vector type.
@@ -325,20 +323,20 @@ SDValue DAGTypeLegalizer::ExpandOp_EXTRACT_ELEMENT(SDNode *N) {
SDValue DAGTypeLegalizer::ExpandOp_INSERT_VECTOR_ELT(SDNode *N) {
// The vector type is legal but the element type needs expansion.
- MVT VecVT = N->getValueType(0);
+ EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
DebugLoc dl = N->getDebugLoc();
SDValue Val = N->getOperand(1);
- MVT OldEVT = Val.getValueType();
- MVT NewEVT = TLI.getTypeToTransformTo(OldEVT);
+ EVT OldEVT = Val.getValueType();
+ EVT NewEVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldEVT);
assert(OldEVT == VecVT.getVectorElementType() &&
"Inserted element type doesn't match vector element type!");
// Bitconvert to a vector of twice the length with elements of the expanded
// type, insert the expanded vector elements, and then convert back.
- MVT NewVecVT = MVT::getVectorVT(NewEVT, NumElts*2);
+ EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEVT, NumElts*2);
SDValue NewVec = DAG.getNode(ISD::BIT_CONVERT, dl,
NewVecVT, N->getOperand(0));
@@ -360,7 +358,7 @@ SDValue DAGTypeLegalizer::ExpandOp_INSERT_VECTOR_ELT(SDNode *N) {
SDValue DAGTypeLegalizer::ExpandOp_SCALAR_TO_VECTOR(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
assert(VT.getVectorElementType() == N->getOperand(0).getValueType() &&
"SCALAR_TO_VECTOR operand type doesn't match vector element type!");
unsigned NumElts = VT.getVectorNumElements();
@@ -378,7 +376,7 @@ SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
DebugLoc dl = N->getDebugLoc();
StoreSDNode *St = cast<StoreSDNode>(N);
- MVT NVT = TLI.getTypeToTransformTo(St->getValue().getValueType());
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), St->getValue().getValueType());
SDValue Chain = St->getChain();
SDValue Ptr = St->getBasePtr();
int SVOffset = St->getSrcValueOffset();
@@ -464,7 +462,7 @@ void DAGTypeLegalizer::SplitRes_SELECT_CC(SDNode *N, SDValue &Lo,
}
void DAGTypeLegalizer::SplitRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi) {
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getUNDEF(LoVT);
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
index 335c73c..ca19430 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -20,8 +20,8 @@
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
-// or operations that happen to take a vector which are custom-lowered like
-// ISD::CALL; the legalization for such operations never produces nodes
+// or operations that happen to take a vector which are custom-lowered;
+// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
@@ -129,7 +129,7 @@ SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
if (!HasVectorValue)
return TranslateLegalizeResults(Op, Result);
- MVT QueryType;
+ EVT QueryType;
switch (Op.getOpcode()) {
default:
return TranslateLegalizeResults(Op, Result);
@@ -231,10 +231,10 @@ SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
// Vector "promotion" is basically just bitcasting and doing the operation
// in a different type. For example, x86 promotes ISD::AND on v2i32 to
// v1i64.
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
- MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
+ EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
@@ -260,11 +260,11 @@ SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
}
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
- MVT TmpEltVT = LHS.getValueType().getVectorElementType();
+ EVT TmpEltVT = LHS.getValueType().getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
@@ -287,11 +287,11 @@ SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
/// the operation be expanded. "Unroll" the vector, splitting out the scalars
/// and operating on each element individually.
SDValue VectorLegalizer::UnrollVectorOp(SDValue Op) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
unsigned NE = VT.getVectorNumElements();
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 8> Scalars;
@@ -299,10 +299,10 @@ SDValue VectorLegalizer::UnrollVectorOp(SDValue Op) {
for (unsigned i = 0; i != NE; ++i) {
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
SDValue Operand = Op.getOperand(j);
- MVT OperandVT = Operand.getValueType();
+ EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
- MVT OperandEltVT = OperandVT.getVectorElementType();
+ EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
OperandEltVT,
Operand,
diff --git a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
index 68967cc..a03f825 100644
--- a/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
+++ b/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp
@@ -15,14 +15,16 @@
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
-// be a computation in multiple vectors of a smaller type. For example,
-// implementing <128 x f32> operations in terms of two <64 x f32> operations.
+// be a computation in two vectors of half the size. For example, implementing
+// <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -30,18 +32,19 @@ using namespace llvm;
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Scalarize node result " << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ScalarizeVectorResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ScalarizeVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to scalarize the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to scalarize the result of this operator!");
case ISD::BIT_CONVERT: R = ScalarizeVecRes_BIT_CONVERT(N); break;
case ISD::BUILD_VECTOR: R = N->getOperand(0); break;
@@ -53,6 +56,7 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
+ case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
case ISD::VSETCC: R = ScalarizeVecRes_VSETCC(N); break;
@@ -72,9 +76,14 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
+ case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
- case ISD::UINT_TO_FP: R = ScalarizeVecRes_UnaryOp(N); break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ R = ScalarizeVecRes_UnaryOp(N);
+ break;
case ISD::ADD:
case ISD::AND:
@@ -91,11 +100,12 @@ void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
case ISD::SUB:
case ISD::UDIV:
case ISD::UREM:
- case ISD::XOR: R = ScalarizeVecRes_BinOp(N); break;
-
+ case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
- case ISD::SRL: R = ScalarizeVecRes_ShiftOp(N); break;
+ case ISD::SRL:
+ R = ScalarizeVecRes_BinOp(N);
+ break;
}
// If R is null, the sub-method took care of registering the result.
@@ -110,21 +120,14 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
LHS.getValueType(), LHS, RHS);
}
-SDValue DAGTypeLegalizer::ScalarizeVecRes_ShiftOp(SDNode *N) {
- SDValue LHS = GetScalarizedVector(N->getOperand(0));
- SDValue ShiftAmt = GetScalarizedVector(N->getOperand(1));
- return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
- LHS.getValueType(), LHS, ShiftAmt);
-}
-
SDValue DAGTypeLegalizer::ScalarizeVecRes_BIT_CONVERT(SDNode *N) {
- MVT NewVT = N->getValueType(0).getVectorElementType();
+ EVT NewVT = N->getValueType(0).getVectorElementType();
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
NewVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
- MVT NewVT = N->getValueType(0).getVectorElementType();
+ EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
Op0, DAG.getValueType(NewVT),
@@ -150,7 +153,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
// The value to insert may have a wider type than the vector element type,
// so be sure to truncate it to the element type if necessary.
SDValue Op = N->getOperand(1);
- MVT EltVT = N->getValueType(0).getVectorElementType();
+ EVT EltVT = N->getValueType(0).getVectorElementType();
if (Op.getValueType() != EltVT)
// FIXME: Can this happen for floating point types?
Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
@@ -167,7 +170,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
DAG.getUNDEF(N->getBasePtr().getValueType()),
N->getSrcValue(), N->getSrcValueOffset(),
N->getMemoryVT().getVectorElementType(),
- N->isVolatile(), N->getAlignment());
+ N->isVolatile(), N->getOriginalAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
@@ -177,7 +180,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
- MVT DestVT = N->getValueType(0).getVectorElementType();
+ EVT DestVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
}
@@ -185,7 +188,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
- MVT EltVT = N->getValueType(0).getVectorElementType();
+ EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
@@ -207,6 +210,15 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
N->getOperand(4));
}
+SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
+ SDValue LHS = GetScalarizedVector(N->getOperand(0));
+ SDValue RHS = GetScalarizedVector(N->getOperand(1));
+ DebugLoc DL = N->getDebugLoc();
+
+ // Turn it into a scalar SETCC.
+ return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
+}
+
SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
}
@@ -223,12 +235,12 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
- MVT NVT = N->getValueType(0).getVectorElementType();
- MVT SVT = TLI.getSetCCResultType(LHS.getValueType());
- DebugLoc dl = N->getDebugLoc();
+ EVT NVT = N->getValueType(0).getVectorElementType();
+ EVT SVT = TLI.getSetCCResultType(LHS.getValueType());
+ DebugLoc DL = N->getDebugLoc();
// Turn it into a scalar SETCC.
- SDValue Res = DAG.getNode(ISD::SETCC, dl, SVT, LHS, RHS, N->getOperand(2));
+ SDValue Res = DAG.getNode(ISD::SETCC, DL, SVT, LHS, RHS, N->getOperand(2));
// VSETCC always returns a sign-extended value, while SETCC may not. The
// SETCC result type may not match the vector element type. Correct these.
@@ -237,19 +249,19 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
// Ensure the SETCC result is sign-extended.
if (TLI.getBooleanContents() !=
TargetLowering::ZeroOrNegativeOneBooleanContent)
- Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, SVT, Res,
+ Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, SVT, Res,
DAG.getValueType(MVT::i1));
// Truncate to the final type.
- return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
- } else {
- // The SETCC result type is smaller than the vector element type.
- // If the SetCC result is not sign-extended, chop it down to MVT::i1.
- if (TLI.getBooleanContents() !=
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- Res = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Res);
- // Sign extend to the final type.
- return DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Res);
+ return DAG.getNode(ISD::TRUNCATE, DL, NVT, Res);
}
+
+ // The SETCC result type is smaller than the vector element type.
+ // If the SetCC result is not sign-extended, chop it down to MVT::i1.
+ if (TLI.getBooleanContents() !=
+ TargetLowering::ZeroOrNegativeOneBooleanContent)
+ Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Res);
+ // Sign extend to the final type.
+ return DAG.getNode(ISD::SIGN_EXTEND, DL, NVT, Res);
}
@@ -258,31 +270,32 @@ SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Scalarize node operand " << OpNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "ScalarizeVectorOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to scalarize this operator's operand!");
- abort();
-
+ llvm_unreachable("Do not know how to scalarize this operator's operand!");
case ISD::BIT_CONVERT:
- Res = ScalarizeVecOp_BIT_CONVERT(N); break;
-
+ Res = ScalarizeVecOp_BIT_CONVERT(N);
+ break;
case ISD::CONCAT_VECTORS:
- Res = ScalarizeVecOp_CONCAT_VECTORS(N); break;
-
+ Res = ScalarizeVecOp_CONCAT_VECTORS(N);
+ break;
case ISD::EXTRACT_VECTOR_ELT:
- Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); break;
-
+ Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
+ break;
case ISD::STORE:
- Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); break;
+ Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
+ break;
}
}
@@ -323,7 +336,11 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
- return GetScalarizedVector(N->getOperand(0));
+ SDValue Res = GetScalarizedVector(N->getOperand(0));
+ if (Res.getValueType() != N->getValueType(0))
+ Res = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0),
+ Res);
+ return Res;
}
/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
@@ -343,7 +360,7 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getSrcValue(), N->getSrcValueOffset(),
- N->isVolatile(), N->getAlignment());
+ N->isVolatile(), N->getOriginalAlignment());
}
@@ -357,17 +374,19 @@ SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Split node result: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Split node result: ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue Lo, Hi;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "SplitVectorResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "SplitVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to split the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to split the result of this operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
@@ -382,10 +401,16 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
- case ISD::LOAD: SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);break;
+ case ISD::LOAD:
+ SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
+ break;
+ case ISD::SETCC:
+ case ISD::VSETCC:
+ SplitVecRes_SETCC(N, Lo, Hi);
+ break;
case ISD::VECTOR_SHUFFLE:
- SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi); break;
- case ISD::VSETCC: SplitVecRes_VSETCC(N, Lo, Hi); break;
+ SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
+ break;
case ISD::CTTZ:
case ISD::CTLZ:
@@ -403,8 +428,13 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
- case ISD::UINT_TO_FP: SplitVecRes_UnaryOp(N, Lo, Hi); break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ SplitVecRes_UnaryOp(N, Lo, Hi);
+ break;
case ISD::ADD:
case ISD::SUB:
@@ -424,7 +454,9 @@ void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
case ISD::SRL:
case ISD::UREM:
case ISD::SREM:
- case ISD::FREM: SplitVecRes_BinOp(N, Lo, Hi); break;
+ case ISD::FREM:
+ SplitVecRes_BinOp(N, Lo, Hi);
+ break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
@@ -448,12 +480,12 @@ void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
DebugLoc dl = N->getDebugLoc();
SDValue InOp = N->getOperand(0);
- MVT InVT = InOp.getValueType();
+ EVT InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
@@ -488,8 +520,8 @@ void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
}
// In the general case, convert the input to an integer and split it by hand.
- MVT LoIntVT = MVT::getIntegerVT(LoVT.getSizeInBits());
- MVT HiIntVT = MVT::getIntegerVT(HiVT.getSizeInBits());
+ EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
+ EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
if (TLI.isBigEndian())
std::swap(LoIntVT, HiIntVT);
@@ -503,7 +535,7 @@ void DAGTypeLegalizer::SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
unsigned LoNumElts = LoVT.getVectorNumElements();
@@ -525,7 +557,7 @@ void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
return;
}
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
@@ -537,7 +569,7 @@ void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
@@ -550,12 +582,11 @@ void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
// Split the input.
SDValue VLo, VHi;
- MVT InVT = N->getOperand(0).getValueType();
+ EVT InVT = N->getOperand(0).getValueType();
switch (getTypeAction(InVT)) {
- default: assert(0 && "Unexpected type action!");
+ default: llvm_unreachable("Unexpected type action!");
case Legal: {
- assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
- MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(0));
@@ -570,9 +601,8 @@ void DAGTypeLegalizer::SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo,
// If the result needs to be split and the input needs to be widened,
// the two types must have different lengths. Use the widened result
// and extract from it to do the split.
- assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
SDValue InOp = GetWidenedVector(N->getOperand(0));
- MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
VLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(0));
@@ -595,14 +625,11 @@ void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
- MVT IdxVT = Idx.getValueType();
+ EVT IdxVT = Idx.getValueType();
DebugLoc dl = N->getDebugLoc();
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
- // The indices are not guaranteed to be a multiple of the new vector
- // size unless the original vector type was split in two.
- assert(LoVT == HiVT && "Non power-of-two vectors not supported!");
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
@@ -639,8 +666,8 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
}
// Spill the vector to the stack.
- MVT VecVT = Vec.getValueType();
- MVT EltVT = VecVT.getVectorElementType();
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
@@ -648,7 +675,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
// so use a truncating store.
SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
unsigned Alignment =
- TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForMVT());
+ TLI.getTargetData()->getPrefTypeAlignment(VecVT.getTypeForEVT(*DAG.getContext()));
Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, NULL, 0, EltVT);
// Load the Lo part from the stack slot.
@@ -666,7 +693,7 @@ void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
@@ -676,7 +703,7 @@ void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = LD->getDebugLoc();
GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
@@ -686,11 +713,11 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
- MVT MemoryVT = LD->getMemoryVT();
- unsigned Alignment = LD->getAlignment();
+ EVT MemoryVT = LD->getMemoryVT();
+ unsigned Alignment = LD->getOriginalAlignment();
bool isVolatile = LD->isVolatile();
- MVT LoMemVT, HiMemVT;
+ EVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, LoVT, Ch, Ptr, Offset,
@@ -700,7 +727,6 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
SVOffset += IncrementSize;
- Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType, HiVT, Ch, Ptr, Offset,
SV, SVOffset, HiMemVT, isVolatile, Alignment);
@@ -714,20 +740,43 @@ void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
ReplaceValueWith(SDValue(LD, 1), Ch);
}
+void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
+ EVT LoVT, HiVT;
+ DebugLoc DL = N->getDebugLoc();
+ GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
+
+ // Split the input.
+ EVT InVT = N->getOperand(0).getValueType();
+ SDValue LL, LH, RL, RH;
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
+ LoVT.getVectorNumElements());
+ LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
+ DAG.getIntPtrConstant(0));
+ LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
+ DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
+
+ RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
+ DAG.getIntPtrConstant(0));
+ RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
+ DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
+}
+
void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Get the dest types - they may not match the input types, e.g. int_to_fp.
- MVT LoVT, HiVT;
+ EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
// Split the input.
- MVT InVT = N->getOperand(0).getValueType();
+ EVT InVT = N->getOperand(0).getValueType();
switch (getTypeAction(InVT)) {
- default: assert(0 && "Unexpected type action!");
+ default: llvm_unreachable("Unexpected type action!");
case Legal: {
- assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
- MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(0));
@@ -742,9 +791,8 @@ void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
// If the result needs to be split and the input needs to be widened,
// the two types must have different lengths. Use the widened result
// and extract from it to do the split.
- assert(LoVT == HiVT && "Legal non-power-of-two vector type?");
SDValue InOp = GetWidenedVector(N->getOperand(0));
- MVT InNVT = MVT::getVectorVT(InVT.getVectorElementType(),
+ EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(0));
@@ -765,10 +813,8 @@ void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
DebugLoc dl = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
- MVT NewVT = Inputs[0].getValueType();
+ EVT NewVT = Inputs[0].getValueType();
unsigned NewElts = NewVT.getVectorNumElements();
- assert(NewVT == Inputs[1].getValueType() &&
- "Non power-of-two vectors not supported!");
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
@@ -825,7 +871,7 @@ void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
}
if (useBuildVector) {
- MVT EltVT = NewVT.getVectorElementType();
+ EVT EltVT = NewVT.getVectorElementType();
SmallVector<SDValue, 16> SVOps;
// Extract the input elements by hand.
@@ -868,20 +914,6 @@ void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
}
}
-void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
- SDValue &Hi) {
- MVT LoVT, HiVT;
- DebugLoc dl = N->getDebugLoc();
- GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
-
- SDValue LL, LH, RL, RH;
- GetSplitVector(N->getOperand(0), LL, LH);
- GetSplitVector(N->getOperand(1), RL, RH);
-
- Lo = DAG.getNode(ISD::VSETCC, dl, LoVT, LL, RL, N->getOperand(2));
- Hi = DAG.getNode(ISD::VSETCC, dl, HiVT, LH, RH, N->getOperand(2));
-}
-
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
@@ -892,24 +924,27 @@ void DAGTypeLegalizer::SplitVecRes_VSETCC(SDNode *N, SDValue &Lo,
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "Split node operand: "; N->dump(&DAG); cerr << "\n");
+ DEBUG(errs() << "Split node operand: ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "SplitVectorOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "SplitVectorOperand Op #" << OpNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to split this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to split this operator's operand!");
case ISD::BIT_CONVERT: Res = SplitVecOp_BIT_CONVERT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
- case ISD::STORE: Res = SplitVecOp_STORE(cast<StoreSDNode>(N),
- OpNo); break;
+ case ISD::STORE:
+ Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
+ break;
case ISD::CTTZ:
case ISD::CTLZ:
@@ -917,8 +952,13 @@ bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
- case ISD::UINT_TO_FP: Res = SplitVecOp_UnaryOp(N); break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Res = SplitVecOp_UnaryOp(N);
+ break;
}
}
@@ -939,15 +979,13 @@ bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
- MVT ResVT = N->getValueType(0);
+ EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
DebugLoc dl = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Lo, Hi);
- assert(Lo.getValueType() == Hi.getValueType() &&
- "Returns legal non-power-of-two vector type?");
- MVT InVT = Lo.getValueType();
+ EVT InVT = Lo.getValueType();
- MVT OutVT = MVT::getVectorVT(ResVT.getVectorElementType(),
+ EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
@@ -975,7 +1013,7 @@ SDValue DAGTypeLegalizer::SplitVecOp_BIT_CONVERT(SDNode *N) {
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal. For now, assume the index
// is a constant.
- MVT SubVT = N->getValueType(0);
+ EVT SubVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
DebugLoc dl = N->getDebugLoc();
SDValue Lo, Hi;
@@ -997,7 +1035,7 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
- MVT VecVT = Vec.getValueType();
+ EVT VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
@@ -1010,14 +1048,13 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
if (IdxVal < LoElts)
return DAG.UpdateNodeOperands(SDValue(N, 0), Lo, Idx);
- else
- return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
- DAG.getConstant(IdxVal - LoElts,
- Idx.getValueType()));
+ return DAG.UpdateNodeOperands(SDValue(N, 0), Hi,
+ DAG.getConstant(IdxVal - LoElts,
+ Idx.getValueType()));
}
// Store the vector to the stack.
- MVT EltVT = VecVT.getVectorElementType();
+ EVT EltVT = VecVT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
@@ -1026,7 +1063,8 @@ SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
// Load back the required element.
StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
- return DAG.getLoad(EltVT, dl, Store, StackPtr, SV, 0);
+ return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
+ SV, 0, EltVT);
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
@@ -1038,13 +1076,13 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
- MVT MemoryVT = N->getMemoryVT();
- unsigned Alignment = N->getAlignment();
+ EVT MemoryVT = N->getMemoryVT();
+ unsigned Alignment = N->getOriginalAlignment();
bool isVol = N->isVolatile();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
- MVT LoMemVT, HiMemVT;
+ EVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
@@ -1059,15 +1097,14 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
+ SVOffset += IncrementSize;
if (isTruncating)
- Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
- N->getSrcValue(), SVOffset+IncrementSize,
- HiMemVT,
- isVol, MinAlign(Alignment, IncrementSize));
+ Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset,
+ HiMemVT, isVol, Alignment);
else
- Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
- isVol, MinAlign(Alignment, IncrementSize));
+ Hi = DAG.getStore(Ch, dl, Hi, Ptr, N->getSrcValue(), SVOffset,
+ isVol, Alignment);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
@@ -1078,18 +1115,19 @@ SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Widen node result " << ResNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Widen node result " << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "WidenVectorResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "WidenVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to widen the result of this operator!");
- abort();
+ llvm_unreachable("Do not know how to widen the result of this operator!");
case ISD::BIT_CONVERT: Res = WidenVecRes_BIT_CONVERT(N); break;
case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
@@ -1102,9 +1140,12 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
- case ISD::VECTOR_SHUFFLE:
- Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N)); break;
- case ISD::VSETCC: Res = WidenVecRes_VSETCC(N); break;
+ case ISD::VECTOR_SHUFFLE:
+ Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
+ break;
+ case ISD::VSETCC:
+ Res = WidenVecRes_VSETCC(N);
+ break;
case ISD::ADD:
case ISD::AND:
@@ -1126,21 +1167,27 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::UDIV:
case ISD::UREM:
case ISD::SUB:
- case ISD::XOR: Res = WidenVecRes_Binary(N); break;
+ case ISD::XOR:
+ Res = WidenVecRes_Binary(N);
+ break;
case ISD::SHL:
case ISD::SRA:
- case ISD::SRL: Res = WidenVecRes_Shift(N); break;
+ case ISD::SRL:
+ Res = WidenVecRes_Shift(N);
+ break;
- case ISD::ANY_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
- case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
+ case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
- case ISD::UINT_TO_FP: Res = WidenVecRes_Convert(N); break;
+ case ISD::ANY_EXTEND:
+ Res = WidenVecRes_Convert(N);
+ break;
case ISD::CTLZ:
case ISD::CTPOP:
@@ -1149,7 +1196,9 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
case ISD::FCOS:
case ISD::FNEG:
case ISD::FSIN:
- case ISD::FSQRT: Res = WidenVecRes_Unary(N); break;
+ case ISD::FSQRT:
+ Res = WidenVecRes_Unary(N);
+ break;
}
// If Res is null, the sub-method took care of registering the result.
@@ -1159,7 +1208,7 @@ void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
// Binary op widening.
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp1, InOp2);
@@ -1169,12 +1218,12 @@ SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
SDValue InOp = N->getOperand(0);
DebugLoc dl = N->getDebugLoc();
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
- MVT InVT = InOp.getValueType();
- MVT InEltVT = InVT.getVectorElementType();
- MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
+ EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
unsigned Opcode = N->getOpcode();
unsigned InVTNumElts = InVT.getVectorNumElements();
@@ -1216,7 +1265,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
// Otherwise unroll into some nasty scalar code and rebuild the vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
- MVT EltVT = WidenVT.getVectorElementType();
+ EVT EltVT = WidenVT.getVectorElementType();
unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
unsigned i;
for (i=0; i < MinElts; ++i)
@@ -1232,16 +1281,16 @@ SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
- MVT ShVT = ShOp.getValueType();
+ EVT ShVT = ShOp.getValueType();
if (getTypeAction(ShVT) == WidenVector) {
ShOp = GetWidenedVector(ShOp);
ShVT = ShOp.getValueType();
}
- MVT ShWidenVT = MVT::getVectorVT(ShVT.getVectorElementType(),
+ EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(), ShVT.getVectorElementType(),
WidenVT.getVectorNumElements());
if (ShVT != ShWidenVT)
ShOp = ModifyToType(ShOp, ShWidenVT);
@@ -1251,16 +1300,16 @@ SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
// Unary op widening.
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
SDValue InOp = N->getOperand(0);
- MVT InVT = InOp.getValueType();
- MVT VT = N->getValueType(0);
- MVT WidenVT = TLI.getTypeToTransformTo(VT);
+ EVT InVT = InOp.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
DebugLoc dl = N->getDebugLoc();
switch (getTypeAction(InVT)) {
@@ -1300,13 +1349,13 @@ SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
// Determine new input vector type. The new input vector type will use
// the same element type (if its a vector) or use the input type as a
// vector. It is the same size as the type to widen to.
- MVT NewInVT;
+ EVT NewInVT;
unsigned NewNumElts = WidenSize / InSize;
if (InVT.isVector()) {
- MVT InEltVT = InVT.getVectorElementType();
- NewInVT= MVT::getVectorVT(InEltVT, WidenSize / InEltVT.getSizeInBits());
+ EVT InEltVT = InVT.getVectorElementType();
+ NewInVT= EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenSize / InEltVT.getSizeInBits());
} else {
- NewInVT = MVT::getVectorVT(InVT, NewNumElts);
+ NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
}
if (TLI.isTypeLegal(NewInVT)) {
@@ -1332,28 +1381,17 @@ SDValue DAGTypeLegalizer::WidenVecRes_BIT_CONVERT(SDNode *N) {
}
}
- // This should occur rarely. Lower the bit-convert to a store/load
- // from the stack. Create the stack frame object. Make sure it is aligned
- // for both the source and destination types.
- SDValue FIPtr = DAG.CreateStackTemporary(InVT, WidenVT);
- int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
- const Value *SV = PseudoSourceValue::getFixedStack(FI);
-
- // Emit a store to the stack slot.
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
-
- // Result is a load from the stack slot.
- return DAG.getLoad(WidenVT, dl, Store, FIPtr, SV, 0);
+ return CreateStackStoreLoad(InOp, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
// Build a vector with undefined for the new nodes.
- MVT VT = N->getValueType(0);
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
- MVT WidenVT = TLI.getTypeToTransformTo(VT);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
@@ -1365,8 +1403,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
- MVT InVT = N->getOperand(0).getValueType();
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT InVT = N->getOperand(0).getValueType();
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
unsigned NumOperands = N->getNumOperands();
@@ -1387,7 +1425,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
}
} else {
InputWidened = true;
- if (WidenVT == TLI.getTypeToTransformTo(InVT)) {
+ if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
// The inputs and the result are widen to the same value.
unsigned i;
for (i=1; i < NumOperands; ++i)
@@ -1406,7 +1444,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
MaskOps[i] = i;
MaskOps[i+WidenNumElts/2] = i+WidenNumElts;
}
- return DAG.getVectorShuffle(WidenVT, dl,
+ return DAG.getVectorShuffle(WidenVT, dl,
GetWidenedVector(N->getOperand(0)),
GetWidenedVector(N->getOperand(1)),
&MaskOps[0]);
@@ -1415,7 +1453,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
}
// Fall back to use extracts and build vector.
- MVT EltVT = WidenVT.getVectorElementType();
+ EVT EltVT = WidenVT.getVectorElementType();
unsigned NumInElts = InVT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(WidenNumElts);
unsigned Idx = 0;
@@ -1439,12 +1477,12 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
SDValue RndOp = N->getOperand(3);
SDValue SatOp = N->getOperand(4);
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
- MVT InVT = InOp.getValueType();
- MVT InEltVT = InVT.getVectorElementType();
- MVT InWidenVT = MVT::getVectorVT(InEltVT, WidenNumElts);
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
+ EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
SDValue DTyOp = DAG.getValueType(WidenVT);
SDValue STyOp = DAG.getValueType(InWidenVT);
@@ -1491,7 +1529,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
// Otherwise unroll into some nasty scalar code and rebuild the vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
- MVT EltVT = WidenVT.getVectorElementType();
+ EVT EltVT = WidenVT.getVectorElementType();
DTyOp = DAG.getValueType(EltVT);
STyOp = DAG.getValueType(InEltVT);
@@ -1512,8 +1550,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
- MVT VT = N->getValueType(0);
- MVT WidenVT = TLI.getTypeToTransformTo(VT);
+ EVT VT = N->getValueType(0);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp = N->getOperand(0);
SDValue Idx = N->getOperand(1);
@@ -1522,7 +1560,7 @@ SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
if (getTypeAction(InOp.getValueType()) == WidenVector)
InOp = GetWidenedVector(InOp);
- MVT InVT = InOp.getValueType();
+ EVT InVT = InOp.getValueType();
ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
if (CIdx) {
@@ -1540,8 +1578,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
// We could try widening the input to the right length but for now, extract
// the original elements, fill the rest with undefs and build a vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
- MVT EltVT = VT.getVectorElementType();
- MVT IdxVT = Idx.getValueType();
+ EVT EltVT = VT.getVectorElementType();
+ EVT IdxVT = Idx.getValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned i;
if (CIdx) {
@@ -1573,8 +1611,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
- MVT WidenVT = TLI.getTypeToTransformTo(LD->getValueType(0));
- MVT LdVT = LD->getMemoryVT();
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), LD->getValueType(0));
+ EVT LdVT = LD->getMemoryVT();
DebugLoc dl = N->getDebugLoc();
assert(LdVT.isVector() && WidenVT.isVector());
@@ -1593,8 +1631,8 @@ SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
// For extension loads, we can not play the tricks of chopping legal
// vector types and bit cast it to the right type. Instead, we unroll
// the load and build a vector.
- MVT EltVT = WidenVT.getVectorElementType();
- MVT LdEltVT = LdVT.getVectorElementType();
+ EVT EltVT = WidenVT.getVectorElementType();
+ EVT LdEltVT = LdVT.getVectorElementType();
unsigned NumElts = LdVT.getVectorNumElements();
// Load each element and widen
@@ -1638,26 +1676,26 @@ SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
// Modified the chain - switch anything that used the old chain to use
// the new one.
- ReplaceValueWith(SDValue(N, 1), Chain);
+ ReplaceValueWith(SDValue(N, 1), NewChain);
return Result;
}
SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
WidenVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue Cond1 = N->getOperand(0);
- MVT CondVT = Cond1.getValueType();
+ EVT CondVT = Cond1.getValueType();
if (CondVT.isVector()) {
- MVT CondEltVT = CondVT.getVectorElementType();
- MVT CondWidenVT = MVT::getVectorVT(CondEltVT, WidenNumElts);
+ EVT CondEltVT = CondVT.getVectorElementType();
+ EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(), CondEltVT, WidenNumElts);
if (getTypeAction(CondVT) == WidenVector)
Cond1 = GetWidenedVector(Cond1);
@@ -1681,15 +1719,15 @@ SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getUNDEF(WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
- MVT WidenVT = TLI.getTypeToTransformTo(VT);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned NumElts = VT.getVectorNumElements();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
@@ -1711,13 +1749,13 @@ SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
- MVT WidenVT = TLI.getTypeToTransformTo(N->getValueType(0));
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp1 = N->getOperand(0);
- MVT InVT = InOp1.getValueType();
+ EVT InVT = InOp1.getValueType();
assert(InVT.isVector() && "can not widen non vector type");
- MVT WidenInVT = MVT::getVectorVT(InVT.getVectorElementType(), WidenNumElts);
+ EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), WidenNumElts);
InOp1 = GetWidenedVector(InOp1);
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
@@ -1735,18 +1773,19 @@ SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
// Widen Vector Operand
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "Widen node operand " << ResNo << ": "; N->dump(&DAG);
- cerr << "\n");
+ DEBUG(errs() << "Widen node operand " << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
- cerr << "WidenVectorOperand op #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
+ errs() << "WidenVectorOperand op #" << ResNo << ": ";
+ N->dump(&DAG);
+ errs() << "\n";
#endif
- assert(0 && "Do not know how to widen this operator's operand!");
- abort();
+ llvm_unreachable("Do not know how to widen this operator's operand!");
case ISD::BIT_CONVERT: Res = WidenVecOp_BIT_CONVERT(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
@@ -1757,8 +1796,13 @@ bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
- case ISD::UINT_TO_FP: Res = WidenVecOp_Convert(N); break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Res = WidenVecOp_Convert(N);
+ break;
}
// If Res is null, the sub-method took care of registering the result.
@@ -1781,15 +1825,15 @@ SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
// Since the result is legal and the input is illegal, it is unlikely
// that we can fix the input to a legal type so unroll the convert
// into some scalar code and create a nasty build vector.
- MVT VT = N->getValueType(0);
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
unsigned NumElts = VT.getVectorNumElements();
SDValue InOp = N->getOperand(0);
if (getTypeAction(InOp.getValueType()) == WidenVector)
InOp = GetWidenedVector(InOp);
- MVT InVT = InOp.getValueType();
- MVT InEltVT = InVT.getVectorElementType();
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
unsigned Opcode = N->getOpcode();
SmallVector<SDValue, 16> Ops(NumElts);
@@ -1802,9 +1846,9 @@ SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
}
SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
SDValue InOp = GetWidenedVector(N->getOperand(0));
- MVT InWidenVT = InOp.getValueType();
+ EVT InWidenVT = InOp.getValueType();
DebugLoc dl = N->getDebugLoc();
// Check if we can convert between two legal vector types and extract.
@@ -1812,7 +1856,7 @@ SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
unsigned Size = VT.getSizeInBits();
if (InWidenSize % Size == 0 && !VT.isVector()) {
unsigned NewNumElts = InWidenSize / Size;
- MVT NewVT = MVT::getVectorVT(VT, NewNumElts);
+ EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
if (TLI.isTypeLegal(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, InOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
@@ -1820,31 +1864,20 @@ SDValue DAGTypeLegalizer::WidenVecOp_BIT_CONVERT(SDNode *N) {
}
}
- // Lower the bit-convert to a store/load from the stack. Create the stack
- // frame object. Make sure it is aligned for both the source and destination
- // types.
- SDValue FIPtr = DAG.CreateStackTemporary(InWidenVT, VT);
- int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
- const Value *SV = PseudoSourceValue::getFixedStack(FI);
-
- // Emit a store to the stack slot.
- SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, FIPtr, SV, 0);
-
- // Result is a load from the stack slot.
- return DAG.getLoad(VT, dl, Store, FIPtr, SV, 0);
+ return CreateStackStoreLoad(InOp, VT);
}
SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
// If the input vector is not legal, it is likely that we will not find a
// legal vector of the same size. Replace the concatenate vector with a
// nasty build vector.
- MVT VT = N->getValueType(0);
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(NumElts);
- MVT InVT = N->getOperand(0).getValueType();
+ EVT InVT = N->getOperand(0).getValueType();
unsigned NumInElts = InVT.getVectorNumElements();
unsigned Idx = 0;
@@ -1862,9 +1895,8 @@ SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
- MVT EltVT = InOp.getValueType().getVectorElementType();
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
- EltVT, InOp, N->getOperand(1));
+ N->getValueType(0), InOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
@@ -1880,8 +1912,8 @@ SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
SDValue ValOp = GetWidenedVector(ST->getValue());
DebugLoc dl = N->getDebugLoc();
- MVT StVT = ST->getMemoryVT();
- MVT ValVT = ValOp.getValueType();
+ EVT StVT = ST->getMemoryVT();
+ EVT ValVT = ValOp.getValueType();
// It must be true that we the widen vector type is bigger than where
// we need to store.
assert(StVT.isVector() && ValOp.getValueType().isVector());
@@ -1892,8 +1924,8 @@ SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
// For truncating stores, we can not play the tricks of chopping legal
// vector types and bit cast it to the right type. Instead, we unroll
// the store.
- MVT StEltVT = StVT.getVectorElementType();
- MVT ValEltVT = ValVT.getVectorElementType();
+ EVT StEltVT = StVT.getVectorElementType();
+ EVT ValEltVT = ValVT.getVectorElementType();
unsigned Increment = ValEltVT.getSizeInBits() / 8;
unsigned NumElts = StVT.getVectorNumElements();
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
@@ -1938,9 +1970,10 @@ SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
// VecVT: Vector value type whose size we must match.
// Returns NewVecVT and NewEltVT - the vector type and its associated
// element type.
-static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
- MVT VecVT,
- MVT& NewEltVT, MVT& NewVecVT) {
+static void FindAssocWidenVecType(SelectionDAG& DAG,
+ const TargetLowering &TLI, unsigned Width,
+ EVT VecVT,
+ EVT& NewEltVT, EVT& NewVecVT) {
unsigned EltWidth = Width + 1;
if (TLI.isTypeLegal(VecVT)) {
// We start with the preferred with, making it a power of 2 and find a
@@ -1950,9 +1983,9 @@ static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
do {
assert(EltWidth > 0);
EltWidth = 1 << Log2_32(EltWidth - 1);
- NewEltVT = MVT::getIntegerVT(EltWidth);
+ NewEltVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
- NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
+ NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, NumElts);
} while (!TLI.isTypeLegal(NewVecVT) ||
VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
} else {
@@ -1965,9 +1998,9 @@ static void FindAssocWidenVecType(const TargetLowering &TLI, unsigned Width,
do {
assert(EltWidth > 0);
EltWidth = 1 << Log2_32(EltWidth - 1);
- NewEltVT = MVT::getIntegerVT(EltWidth);
+ NewEltVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
unsigned NumElts = VecVT.getSizeInBits() / EltWidth;
- NewVecVT = MVT::getVectorVT(NewEltVT, NumElts);
+ NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, NumElts);
} while (!TLI.isTypeLegal(NewEltVT) ||
VecVT.getSizeInBits() != NewVecVT.getSizeInBits());
}
@@ -1981,7 +2014,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
unsigned Alignment,
bool isVolatile,
unsigned LdWidth,
- MVT ResType,
+ EVT ResType,
DebugLoc dl) {
// The strategy assumes that we can efficiently load powers of two widths.
// The routines chops the vector into the largest power of 2 load and
@@ -1992,9 +2025,9 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
// the load is nonvolatile, we an use a wider load for the value.
// Find the vector type that can load from.
- MVT NewEltVT, NewVecVT;
+ EVT NewEltVT, NewVecVT;
unsigned NewEltVTWidth;
- FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
+ FindAssocWidenVecType(DAG, TLI, LdWidth, ResType, NewEltVT, NewVecVT);
NewEltVTWidth = NewEltVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(NewEltVT, dl, Chain, BasePtr, SV, SVOffset,
@@ -2021,7 +2054,7 @@ SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
// Our current type we are using is too large, use a smaller size by
// using a smaller power of 2
unsigned oNewEltVTWidth = NewEltVTWidth;
- FindAssocWidenVecType(TLI, LdWidth, ResType, NewEltVT, NewVecVT);
+ FindAssocWidenVecType(DAG, TLI, LdWidth, ResType, NewEltVT, NewVecVT);
NewEltVTWidth = NewEltVT.getSizeInBits();
// Readjust position and vector position based on new load type
Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
@@ -2056,10 +2089,10 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
// want to store. This avoids requiring a stack convert.
// Find a width of the element type we can store with
- MVT WidenVT = ValOp.getValueType();
- MVT NewEltVT, NewVecVT;
+ EVT WidenVT = ValOp.getValueType();
+ EVT NewEltVT, NewVecVT;
- FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
+ FindAssocWidenVecType(DAG, TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
unsigned NewEltVTWidth = NewEltVT.getSizeInBits();
SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, NewVecVT, ValOp);
@@ -2088,7 +2121,7 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
// Our current type we are using is too large, use a smaller size by
// using a smaller power of 2
unsigned oNewEltVTWidth = NewEltVTWidth;
- FindAssocWidenVecType(TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
+ FindAssocWidenVecType(DAG, TLI, StWidth, WidenVT, NewEltVT, NewVecVT);
NewEltVTWidth = NewEltVT.getSizeInBits();
// Readjust position and vector position based on new load type
Idx = Idx * (oNewEltVTWidth/NewEltVTWidth);
@@ -2106,10 +2139,10 @@ void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
-SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
+SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
// Note that InOp might have been widened so it might already have
// the right width or it might need be narrowed.
- MVT InVT = InOp.getValueType();
+ EVT InVT = InOp.getValueType();
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
DebugLoc dl = InOp.getDebugLoc();
@@ -2137,7 +2170,7 @@ SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, MVT NVT) {
// Fall back to extract and build.
SmallVector<SDValue, 16> Ops(WidenNumElts);
- MVT EltVT = NVT.getVectorElementType();
+ EVT EltVT = NVT.getVectorElementType();
unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
unsigned Idx;
for (Idx = 0; Idx < MinNumElts; ++Idx)
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
index af73b28..e0f93d8 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
@@ -24,6 +24,8 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumUnfolds, "Number of nodes unfolded");
@@ -108,14 +110,14 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
- DOUT << "********** List Scheduling **********\n";
+ DEBUG(errs() << "********** List Scheduling **********\n");
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build the scheduling graph.
- BuildSchedGraph();
+ BuildSchedGraph(NULL);
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
@@ -132,17 +134,17 @@ void ScheduleDAGFast::Schedule() {
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
- --PredSU->NumSuccsLeft;
-
+
#ifndef NDEBUG
- if (PredSU->NumSuccsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
+ if (PredSU->NumSuccsLeft == 0) {
+ errs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
+ errs() << " has been released too many times!\n";
+ llvm_unreachable(0);
}
#endif
-
+ --PredSU->NumSuccsLeft;
+
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
@@ -174,7 +176,7 @@ void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
@@ -214,7 +216,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- MVT VT = N->getValueType(i);
+ EVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
@@ -222,7 +224,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
- MVT VT = Op.getNode()->getValueType(Op.getResNo());
+ EVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
@@ -232,7 +234,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
- DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
+ DEBUG(errs() << "Unfolding SU # " << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
@@ -342,7 +344,7 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
SU = NewSU;
}
- DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
+ DEBUG(errs() << "Duplicating SU # " << SU->NodeNum << "\n");
NewSU = Clone(SU);
// New SUnit has the exact same predecessors.
@@ -419,7 +421,7 @@ void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
-static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
+static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
@@ -533,7 +535,7 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
- MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
+ EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
@@ -549,16 +551,16 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
- DOUT << "Adding an edge from SU # " << TrySU->NodeNum
- << " to SU #" << Copies.front()->NodeNum << "\n";
+ DEBUG(errs() << "Adding an edge from SU # " << TrySU->NodeNum
+ << " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false, /*isArtificial=*/true));
NewDef = Copies.back();
}
- DOUT << "Adding an edge from SU # " << NewDef->NodeNum
- << " to SU #" << TrySU->NodeNum << "\n";
+ DEBUG(errs() << "Adding an edge from SU # " << NewDef->NodeNum
+ << " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
@@ -568,8 +570,7 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
}
if (!CurSU) {
- assert(false && "Unable to resolve live physical register dependencies!");
- abort();
+ llvm_unreachable("Unable to resolve live physical register dependencies!");
}
}
@@ -587,41 +588,11 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
++CurCycle;
}
- // Reverse the order if it is bottom up.
+ // Reverse the order since it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
-
-
+
#ifndef NDEBUG
- // Verify that all SUnits were scheduled.
- bool AnyNotSched = false;
- unsigned DeadNodes = 0;
- unsigned Noops = 0;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- if (!SUnits[i].isScheduled) {
- if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
- ++DeadNodes;
- continue;
- }
- if (!AnyNotSched)
- cerr << "*** List scheduling failed! ***\n";
- SUnits[i].dump(this);
- cerr << "has not been scheduled!\n";
- AnyNotSched = true;
- }
- if (SUnits[i].NumSuccsLeft != 0) {
- if (!AnyNotSched)
- cerr << "*** List scheduling failed! ***\n";
- SUnits[i].dump(this);
- cerr << "has successors left!\n";
- AnyNotSched = true;
- }
- }
- for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
- if (!Sequence[i])
- ++Noops;
- assert(!AnyNotSched);
- assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
- "The number of nodes scheduled doesn't match the expected number!");
+ VerifySchedule(/*isBottomUp=*/true);
#endif
}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
index c432534..c8d2158 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
@@ -29,6 +29,8 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/Statistic.h"
#include <climits>
@@ -86,10 +88,10 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGList::Schedule() {
- DOUT << "********** List Scheduling **********\n";
+ DEBUG(errs() << "********** List Scheduling **********\n");
// Build the scheduling graph.
- BuildSchedGraph();
+ BuildSchedGraph(NULL);
AvailableQueue->initNodes(SUnits);
@@ -106,17 +108,17 @@ void ScheduleDAGList::Schedule() {
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
SUnit *SuccSU = D.getSUnit();
- --SuccSU->NumPredsLeft;
-
+
#ifndef NDEBUG
- if (SuccSU->NumPredsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
+ if (SuccSU->NumPredsLeft == 0) {
+ errs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
+ errs() << " has been released too many times!\n";
+ llvm_unreachable(0);
}
#endif
-
+ --SuccSU->NumPredsLeft;
+
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
// If all the node's predecessors are scheduled, this node is ready
@@ -140,7 +142,7 @@ void ScheduleDAGList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
@@ -232,7 +234,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
- DOUT << "*** Advancing cycle, no work to do\n";
+ DEBUG(errs() << "*** Advancing cycle, no work to do\n");
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
@@ -240,7 +242,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
- DOUT << "*** Emitting noop\n";
+ DEBUG(errs() << "*** Emitting noop\n");
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
index c97e2a8..cec24e6 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
@@ -25,10 +25,12 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include <climits>
using namespace llvm;
@@ -163,14 +165,14 @@ private:
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
- DOUT << "********** List Scheduling **********\n";
+ DEBUG(errs() << "********** List Scheduling **********\n");
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build the scheduling graph.
- BuildSchedGraph();
+ BuildSchedGraph(NULL);
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
@@ -195,17 +197,17 @@ void ScheduleDAGRRList::Schedule() {
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
SUnit *PredSU = PredEdge->getSUnit();
- --PredSU->NumSuccsLeft;
-
+
#ifndef NDEBUG
- if (PredSU->NumSuccsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
+ if (PredSU->NumSuccsLeft == 0) {
+ errs() << "*** Scheduling failed! ***\n";
PredSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
+ errs() << " has been released too many times!\n";
+ llvm_unreachable(0);
}
#endif
-
+ --PredSU->NumSuccsLeft;
+
// If all the node's successors are scheduled, this node is ready
// to be scheduled. Ignore the special EntrySU node.
if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
@@ -237,7 +239,7 @@ void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
@@ -276,13 +278,14 @@ void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
AvailableQueue->remove(PredSU);
}
+ assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
++PredSU->NumSuccsLeft;
}
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
- DOUT << "*** Unscheduling [" << SU->getHeight() << "]: ";
+ DEBUG(errs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
DEBUG(SU->dump(this));
AvailableQueue->UnscheduledNode(SU);
@@ -351,7 +354,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- MVT VT = N->getValueType(i);
+ EVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
@@ -359,7 +362,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
- MVT VT = Op.getNode()->getValueType(Op.getResNo());
+ EVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
@@ -369,7 +372,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
return NULL;
- DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
+ DEBUG(errs() << "Unfolding SU # " << SU->NodeNum << "\n");
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
@@ -488,7 +491,7 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
SU = NewSU;
}
- DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
+ DEBUG(errs() << "Duplicating SU # " << SU->NodeNum << "\n");
NewSU = CreateClone(SU);
// New SUnit has the exact same predecessors.
@@ -570,7 +573,7 @@ void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
-static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
+static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
@@ -753,7 +756,7 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
- MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
+ EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
@@ -769,8 +772,8 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
// Issue copies, these can be expensive cross register class copies.
SmallVector<SUnit*, 2> Copies;
InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
- DOUT << "Adding an edge from SU #" << TrySU->NodeNum
- << " to SU #" << Copies.front()->NodeNum << "\n";
+ DEBUG(errs() << "Adding an edge from SU #" << TrySU->NodeNum
+ << " to SU #" << Copies.front()->NodeNum << "\n");
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
@@ -778,8 +781,8 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
NewDef = Copies.back();
}
- DOUT << "Adding an edge from SU #" << NewDef->NodeNum
- << " to SU #" << TrySU->NodeNum << "\n";
+ DEBUG(errs() << "Adding an edge from SU #" << NewDef->NodeNum
+ << " to SU #" << TrySU->NodeNum << "\n");
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
/*Reg=*/0, /*isNormalMemory=*/false,
@@ -822,17 +825,17 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
- --SuccSU->NumPredsLeft;
-
+
#ifndef NDEBUG
- if (SuccSU->NumPredsLeft < 0) {
- cerr << "*** Scheduling failed! ***\n";
+ if (SuccSU->NumPredsLeft == 0) {
+ errs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
- cerr << " has been released too many times!\n";
- assert(0);
+ errs() << " has been released too many times!\n";
+ llvm_unreachable(0);
}
#endif
-
+ --SuccSU->NumPredsLeft;
+
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
@@ -856,7 +859,7 @@ void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
+ DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
@@ -1215,7 +1218,7 @@ static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
if (!SUImpDefs)
return false;
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
- MVT VT = N->getValueType(i);
+ EVT VT = N->getValueType(i);
if (VT == MVT::Flag || VT == MVT::Other)
continue;
if (!N->hasAnyUseOfValue(i))
@@ -1328,9 +1331,9 @@ void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
// Ok, the transformation is safe and the heuristics suggest it is
// profitable. Update the graph.
- DOUT << "Prescheduling SU # " << SU->NodeNum
- << " next to PredSU # " << PredSU->NodeNum
- << " to guide scheduling in the presence of multiple uses\n";
+ DEBUG(errs() << "Prescheduling SU # " << SU->NodeNum
+ << " next to PredSU # " << PredSU->NodeNum
+ << " to guide scheduling in the presence of multiple uses\n");
for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
SDep Edge = PredSU->Succs[i];
assert(!Edge.isAssignedRegDep());
@@ -1418,8 +1421,8 @@ void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
(!SU->isCommutable && SuccSU->isCommutable)) &&
!scheduleDAG->IsReachable(SuccSU, SU)) {
- DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
- << " to SU #" << SuccSU->NodeNum << "\n";
+ DEBUG(errs() << "Adding a pseudo-two-addr edge from SU # "
+ << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
index 7aa15bc..d53de34 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
@@ -14,10 +14,12 @@
#define DEBUG_TYPE "pre-RA-sched"
#include "ScheduleDAGSDNodes.h"
+#include "InstrEmitter.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtarget.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -152,6 +154,11 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
}
void ScheduleDAGSDNodes::AddSchedEdges() {
+ const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
+
+ // Check to see if the scheduler cares about latencies.
+ bool UnitLatencies = ForceUnitLatencies();
+
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
@@ -175,7 +182,7 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
if (N->isMachineOpcode() &&
TII->get(N->getMachineOpcode()).getImplicitDefs()) {
SU->hasPhysRegClobbers = true;
- unsigned NumUsed = CountResults(N);
+ unsigned NumUsed = InstrEmitter::CountResults(N);
while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
--NumUsed; // Skip over unused values at the end.
if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
@@ -189,7 +196,7 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
assert(OpSU && "Node has no SUnit!");
if (OpSU == SU) continue; // In the same group.
- MVT OpVT = N->getOperand(i).getValueType();
+ EVT OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
bool isChain = OpVT == MVT::Other;
@@ -206,8 +213,15 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
// dependency. This may change in the future though.
if (Cost >= 0)
PhysReg = 0;
- SU->addPred(SDep(OpSU, isChain ? SDep::Order : SDep::Data,
- OpSU->Latency, PhysReg));
+
+ const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
+ OpSU->Latency, PhysReg);
+ if (!isChain && !UnitLatencies) {
+ ComputeOperandLatency(OpSU, SU, (SDep &)dep);
+ ST.adjustSchedDependency(OpSU, SU, (SDep &)dep);
+ }
+
+ SU->addPred(dep);
}
}
}
@@ -217,7 +231,7 @@ void ScheduleDAGSDNodes::AddSchedEdges() {
/// are input. This SUnit graph is similar to the SelectionDAG, but
/// excludes nodes that aren't interesting to scheduling, and represents
/// flagged together nodes with a single SUnit.
-void ScheduleDAGSDNodes::BuildSchedGraph() {
+void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
// Populate the SUnits array.
BuildSchedUnits();
// Compute all the scheduling dependencies between nodes.
@@ -230,65 +244,68 @@ void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
// Compute the latency for the node. We use the sum of the latencies for
// all nodes flagged together into this SUnit.
SU->Latency = 0;
- bool SawMachineOpcode = false;
for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode())
if (N->isMachineOpcode()) {
- SawMachineOpcode = true;
- SU->Latency +=
- InstrItins.getLatency(TII->get(N->getMachineOpcode()).getSchedClass());
+ SU->Latency += InstrItins.
+ getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass());
}
}
-/// CountResults - The results of target nodes have register or immediate
-/// operands first, then an optional chain, and optional flag operands (which do
-/// not go into the resulting MachineInstr).
-unsigned ScheduleDAGSDNodes::CountResults(SDNode *Node) {
- unsigned N = Node->getNumValues();
- while (N && Node->getValueType(N - 1) == MVT::Flag)
- --N;
- if (N && Node->getValueType(N - 1) == MVT::Other)
- --N; // Skip over chain result.
- return N;
-}
-
-/// CountOperands - The inputs to target nodes have any actual inputs first,
-/// followed by special operands that describe memory references, then an
-/// optional chain operand, then an optional flag operand. Compute the number
-/// of actual operands that will go into the resulting MachineInstr.
-unsigned ScheduleDAGSDNodes::CountOperands(SDNode *Node) {
- unsigned N = ComputeMemOperandsEnd(Node);
- while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode()))
- --N; // Ignore MEMOPERAND nodes
- return N;
-}
-
-/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
-/// operand
-unsigned ScheduleDAGSDNodes::ComputeMemOperandsEnd(SDNode *Node) {
- unsigned N = Node->getNumOperands();
- while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
- --N;
- if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
- --N; // Ignore chain if it exists.
- return N;
-}
-
-
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
if (!SU->getNode()) {
- cerr << "PHYS REG COPY\n";
+ errs() << "PHYS REG COPY\n";
return;
}
SU->getNode()->dump(DAG);
- cerr << "\n";
+ errs() << "\n";
SmallVector<SDNode *, 4> FlaggedNodes;
for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode())
FlaggedNodes.push_back(N);
while (!FlaggedNodes.empty()) {
- cerr << " ";
+ errs() << " ";
FlaggedNodes.back()->dump(DAG);
- cerr << "\n";
+ errs() << "\n";
FlaggedNodes.pop_back();
}
}
+
+/// EmitSchedule - Emit the machine code in scheduled order.
+MachineBasicBlock *ScheduleDAGSDNodes::
+EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
+ InstrEmitter Emitter(BB, InsertPos);
+ DenseMap<SDValue, unsigned> VRBaseMap;
+ DenseMap<SUnit*, unsigned> CopyVRBaseMap;
+ for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+ SUnit *SU = Sequence[i];
+ if (!SU) {
+ // Null SUnit* is a noop.
+ EmitNoop();
+ continue;
+ }
+
+ // For pre-regalloc scheduling, create instructions corresponding to the
+ // SDNode and any flagged SDNodes and append them to the block.
+ if (!SU->getNode()) {
+ // Emit a copy.
+ EmitPhysRegCopy(SU, CopyVRBaseMap);
+ continue;
+ }
+
+ SmallVector<SDNode *, 4> FlaggedNodes;
+ for (SDNode *N = SU->getNode()->getFlaggedNode(); N;
+ N = N->getFlaggedNode())
+ FlaggedNodes.push_back(N);
+ while (!FlaggedNodes.empty()) {
+ Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned,
+ VRBaseMap, EM);
+ FlaggedNodes.pop_back();
+ }
+ Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
+ VRBaseMap, EM);
+ }
+
+ BB = Emitter.getBlock();
+ InsertPos = Emitter.getInsertPos();
+ return BB;
+}
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
index 2a278b7..c9c36f7 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.h
@@ -58,7 +58,6 @@ namespace llvm {
if (isa<ConstantPoolSDNode>(Node)) return true;
if (isa<JumpTableSDNode>(Node)) return true;
if (isa<ExternalSymbolSDNode>(Node)) return true;
- if (isa<MemOperandSDNode>(Node)) return true;
if (Node->getOpcode() == ISD::EntryToken) return true;
return false;
}
@@ -87,35 +86,14 @@ namespace llvm {
/// are input. This SUnit graph is similar to the SelectionDAG, but
/// excludes nodes that aren't interesting to scheduling, and represents
/// flagged together nodes with a single SUnit.
- virtual void BuildSchedGraph();
+ virtual void BuildSchedGraph(AliasAnalysis *AA);
/// ComputeLatency - Compute node latency.
///
virtual void ComputeLatency(SUnit *SU);
- /// CountResults - The results of target nodes have register or immediate
- /// operands first, then an optional chain, and optional flag operands
- /// (which do not go into the machine instrs.)
- static unsigned CountResults(SDNode *Node);
-
- /// CountOperands - The inputs to target nodes have any actual inputs first,
- /// followed by special operands that describe memory references, then an
- /// optional chain operand, then flag operands. Compute the number of
- /// actual operands that will go into the resulting MachineInstr.
- static unsigned CountOperands(SDNode *Node);
-
- /// ComputeMemOperandsEnd - Find the index one past the last
- /// MemOperandSDNode operand
- static unsigned ComputeMemOperandsEnd(SDNode *Node);
-
- /// EmitNode - Generate machine code for an node and needed dependencies.
- /// VRBaseMap contains, for each already emitted node, the first virtual
- /// register number for the results of the node.
- ///
- void EmitNode(SDNode *Node, bool IsClone, bool HasClone,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- virtual MachineBasicBlock *EmitSchedule();
+ virtual MachineBasicBlock *
+ EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM);
/// Schedule - Order nodes according to selected style, filling
/// in the Sequence member.
@@ -129,47 +107,6 @@ namespace llvm {
virtual void getCustomGraphFeatures(GraphWriter<ScheduleDAG*> &GW) const;
private:
- /// EmitSubregNode - Generate machine code for subreg nodes.
- ///
- void EmitSubregNode(SDNode *Node,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS
- /// nodes.
- ///
- void EmitCopyToRegClassNode(SDNode *Node,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- /// getVR - Return the virtual register corresponding to the specified result
- /// of the specified node.
- unsigned getVR(SDValue Op, DenseMap<SDValue, unsigned> &VRBaseMap);
-
- /// getDstOfCopyToRegUse - If the only use of the specified result number of
- /// node is a CopyToReg, return its destination register. Return 0 otherwise.
- unsigned getDstOfOnlyCopyToRegUse(SDNode *Node, unsigned ResNo) const;
-
- void AddOperand(MachineInstr *MI, SDValue Op, unsigned IIOpNum,
- const TargetInstrDesc *II,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- /// AddRegisterOperand - Add the specified register as an operand to the
- /// specified machine instr. Insert register copies if the register is
- /// not in the required register class.
- void AddRegisterOperand(MachineInstr *MI, SDValue Op,
- unsigned IIOpNum, const TargetInstrDesc *II,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
- /// implicit physical register output.
- void EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
- bool IsCloned, unsigned SrcReg,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
- void CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
- const TargetInstrDesc &II, bool IsClone,
- bool IsCloned,
- DenseMap<SDValue, unsigned> &VRBaseMap);
-
/// BuildSchedUnits, AddSchedEdges - Helper functions for BuildSchedGraph.
void BuildSchedUnits();
void AddSchedEdges();
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index c8f4b52..542bf64 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -13,6 +13,7 @@
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Function.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
@@ -31,6 +32,7 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
@@ -46,14 +48,14 @@ using namespace llvm;
/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
-static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
+static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
-static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
- switch (VT.getSimpleVT()) {
- default: assert(0 && "Unknown FP format");
+static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unknown FP format");
case MVT::f32: return &APFloat::IEEEsingle;
case MVT::f64: return &APFloat::IEEEdouble;
case MVT::f80: return &APFloat::x87DoubleExtended;
@@ -76,7 +78,7 @@ bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return getValueAPF().bitwiseIsEqual(V);
}
-bool ConstantFPSDNode::isValueValidForType(MVT VT,
+bool ConstantFPSDNode::isValueValidForType(EVT VT,
const APFloat& Val) {
assert(VT.isFloatingPoint() && "Can only convert between FP types");
@@ -88,7 +90,7 @@ bool ConstantFPSDNode::isValueValidForType(MVT VT,
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
- (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
+ (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
@@ -243,7 +245,7 @@ ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
- default: assert(0 && "Illegal integer setcc operation!");
+ default: llvm_unreachable("Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
@@ -363,11 +365,8 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
switch (N->getOpcode()) {
case ISD::TargetExternalSymbol:
case ISD::ExternalSymbol:
- assert(0 && "Should only be used on nodes with operands");
+ llvm_unreachable("Should only be used on nodes with operands");
default: break; // Normal nodes don't need extra info.
- case ISD::ARG_FLAGS:
- ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
- break;
case ISD::TargetConstant:
case ISD::Constant:
ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
@@ -403,11 +402,6 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
case ISD::SRCVALUE:
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
break;
- case ISD::MEMOPERAND: {
- const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
- MO.Profile(ID);
- break;
- }
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
@@ -429,12 +423,6 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
ID.AddInteger(CP->getTargetFlags());
break;
}
- case ISD::CALL: {
- const CallSDNode *Call = cast<CallSDNode>(N);
- ID.AddInteger(Call->getCallingConv());
- ID.AddInteger(Call->isVarArg());
- break;
- }
case ISD::LOAD: {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getMemoryVT().getRawBits());
@@ -466,7 +454,7 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
}
case ISD::VECTOR_SHUFFLE: {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
i != e; ++i)
ID.AddInteger(SVN->getMaskElt(i));
break;
@@ -488,20 +476,18 @@ static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
}
/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
-/// the CSE map that carries alignment, volatility, indexing mode, and
+/// the CSE map that carries volatility, indexing mode, and
/// extension/truncation information.
///
static inline unsigned
-encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
- bool isVolatile, unsigned Alignment) {
+encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
assert((ConvType & 3) == ConvType &&
"ConvType may not require more than 2 bits!");
assert((AM & 7) == AM &&
"AM may not require more than 3 bits!");
return ConvType |
(AM << 2) |
- (isVolatile << 5) |
- ((Log2_32(Alignment) + 1) << 6);
+ (isVolatile << 5);
}
//===----------------------------------------------------------------------===//
@@ -519,7 +505,6 @@ static bool doNotCSE(SDNode *N) {
case ISD::DBG_LABEL:
case ISD::DBG_STOPPOINT:
case ISD::EH_LABEL:
- case ISD::DECLARE:
return true; // Never CSE these nodes.
}
@@ -626,7 +611,7 @@ bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::EntryToken:
- assert(0 && "EntryToken should not be in CSEMaps!");
+ llvm_unreachable("EntryToken should not be in CSEMaps!");
return false;
case ISD::HANDLENODE: return false; // noop.
case ISD::CONDCODE:
@@ -646,12 +631,12 @@ bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
break;
}
case ISD::VALUETYPE: {
- MVT VT = cast<VTSDNode>(N)->getVT();
+ EVT VT = cast<VTSDNode>(N)->getVT();
if (VT.isExtended()) {
Erased = ExtendedValueTypeNodes.erase(VT);
} else {
- Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
- ValueTypeNodes[VT.getSimpleVT()] = 0;
+ Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
+ ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
}
break;
}
@@ -667,8 +652,8 @@ bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
- cerr << "\n";
- assert(0 && "Node is not in map!");
+ errs() << "\n";
+ llvm_unreachable("Node is not in map!");
}
#endif
return Erased;
@@ -762,7 +747,7 @@ void SelectionDAG::VerifyNode(SDNode *N) {
default:
break;
case ISD::BUILD_PAIR: {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
assert(N->getNumValues() == 1 && "Too many results!");
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
"Wrong return type!");
@@ -780,7 +765,7 @@ void SelectionDAG::VerifyNode(SDNode *N) {
assert(N->getValueType(0).isVector() && "Wrong return type!");
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
"Wrong number of operands!");
- MVT EltVT = N->getValueType(0).getVectorElementType();
+ EVT EltVT = N->getValueType(0).getVectorElementType();
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
assert((I->getValueType() == EltVT ||
(EltVT.isInteger() && I->getValueType().isInteger() &&
@@ -791,13 +776,13 @@ void SelectionDAG::VerifyNode(SDNode *N) {
}
}
-/// getMVTAlignment - Compute the default alignment value for the
+/// getEVTAlignment - Compute the default alignment value for the
/// given type.
///
-unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
+unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
const Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::Int8Ty, 0) :
- VT.getTypeForMVT();
+ PointerType::get(Type::getInt8Ty(*getContext()), 0) :
+ VT.getTypeForEVT(*getContext());
return TLI.getTargetData()->getABITypeAlignment(Ty);
}
@@ -815,6 +800,7 @@ void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
MF = &mf;
MMI = mmi;
DW = dw;
+ Context = &mf.getFunction()->getContext();
}
SelectionDAG::~SelectionDAG() {
@@ -846,7 +832,19 @@ void SelectionDAG::clear() {
Root = getEntryNode();
}
-SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
+SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
if (Op.getValueType() == VT) return Op;
APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
VT.getSizeInBits());
@@ -856,29 +854,29 @@ SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
///
-SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
- MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
+ EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
SDValue NegOne =
getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
return getNode(ISD::XOR, DL, VT, Val, NegOne);
}
-SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
- MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
+ EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
assert((EltVT.getSizeInBits() >= 64 ||
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
"getConstant with a uint64_t value that doesn't fit in the type!");
return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
}
-SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
- return getConstant(*ConstantInt::get(Val), VT, isT);
+SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
+ return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
}
-SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
+SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
assert(VT.isInteger() && "Cannot create FP integer constant!");
- MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+ EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
@@ -913,14 +911,14 @@ SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
}
-SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
- return getConstantFP(*ConstantFP::get(V), VT, isTarget);
+SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
+ return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
}
-SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
+SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- MVT EltVT =
+ EVT EltVT =
VT.isVector() ? VT.getVectorElementType() : VT;
// Do the map lookup using the actual bit pattern for the floating point
@@ -953,8 +951,8 @@ SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
return Result;
}
-SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
- MVT EltVT =
+SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
+ EVT EltVT =
VT.isVector() ? VT.getVectorElementType() : VT;
if (EltVT==MVT::f32)
return getConstantFP(APFloat((float)Val), VT, isTarget);
@@ -963,14 +961,15 @@ SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
}
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
- MVT VT, int64_t Offset,
+ EVT VT, int64_t Offset,
bool isTargetGA,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
-
+
// Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
+ EVT PTy = TLI.getPointerTy();
+ unsigned BitWidth = PTy.getSizeInBits();
if (BitWidth < 64)
Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
@@ -1002,7 +1001,7 @@ SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
+SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
@@ -1017,7 +1016,7 @@ SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
return SDValue(N, 0);
}
-SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
+SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent jump tables");
@@ -1036,9 +1035,9 @@ SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
+SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
unsigned Alignment, int Offset,
- bool isTarget,
+ bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
@@ -1062,7 +1061,7 @@ SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
}
-SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
+SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
@@ -1101,26 +1100,13 @@ SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
return SDValue(N, 0);
}
-SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
- ID.AddInteger(Flags.getRawBits());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
- new (N) ARG_FLAGSSDNode(Flags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
-}
-
-SDValue SelectionDAG::getValueType(MVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT()+1);
+SDValue SelectionDAG::getValueType(EVT VT) {
+ if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
+ ValueTypeNodes.size())
+ ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
+ ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
if (N) return SDValue(N, 0);
N = NodeAllocator.Allocate<VTSDNode>();
@@ -1129,7 +1115,7 @@ SDValue SelectionDAG::getValueType(MVT VT) {
return SDValue(N, 0);
}
-SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
+SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
@@ -1138,7 +1124,7 @@ SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
return SDValue(N, 0);
}
-SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
+SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags) {
SDNode *&N =
TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
@@ -1177,19 +1163,19 @@ static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
}
}
-SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
+SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
SDValue N2, const int *Mask) {
assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
- assert(VT.isVector() && N1.getValueType().isVector() &&
+ assert(VT.isVector() && N1.getValueType().isVector() &&
"Vector Shuffle VTs must be a vectors");
assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
&& "Vector Shuffle VTs must have same element type");
// Canonicalize shuffle undef, undef -> undef
if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
- return N1;
+ return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
+ // Validate that all indices in Mask are within the range of the elements
// input to the shuffle.
unsigned NElts = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
@@ -1197,18 +1183,18 @@ SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
MaskVec.push_back(Mask[i]);
}
-
+
// Canonicalize shuffle v, v -> v, undef
if (N1 == N2) {
N2 = getUNDEF(VT);
for (unsigned i = 0; i != NElts; ++i)
if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
}
-
+
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N1.getOpcode() == ISD::UNDEF)
commuteShuffle(N1, N2, MaskVec);
-
+
// Canonicalize all index into lhs, -> shuffle lhs, undef
// Canonicalize all index into rhs, -> shuffle rhs, undef
bool AllLHS = true, AllRHS = true;
@@ -1231,7 +1217,7 @@ SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
N1 = getUNDEF(VT);
commuteShuffle(N1, N2, MaskVec);
}
-
+
// If Identity shuffle, or all shuffle in to undef, return that node.
bool AllUndef = true;
bool Identity = true;
@@ -1239,7 +1225,7 @@ SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
if (MaskVec[i] >= 0) AllUndef = false;
}
- if (Identity)
+ if (Identity && NElts == N1.getValueType().getVectorNumElements())
return N1;
if (AllUndef)
return getUNDEF(VT);
@@ -1249,17 +1235,17 @@ SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
for (unsigned i = 0; i != NElts; ++i)
ID.AddInteger(MaskVec[i]);
-
+
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
-
+
// Allocate the mask array for the node out of the BumpPtrAllocator, since
// SDNode doesn't have access to it. This memory will be "leaked" when
// the node is deallocated, but recovered when the NodeAllocator is released.
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
-
+
ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
CSEMap.InsertNode(N, IP);
@@ -1267,7 +1253,7 @@ SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
+SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
SDValue Val, SDValue DTy,
SDValue STy, SDValue Rnd, SDValue Sat,
ISD::CvtCode Code) {
@@ -1289,7 +1275,7 @@ SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
+SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
ID.AddInteger(RegNo);
@@ -1305,7 +1291,7 @@ SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
unsigned Line, unsigned Col,
- Value *CU) {
+ MDNode *CU) {
SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
new (N) DbgStopPointSDNode(Root, Line, Col, CU);
N->setDebugLoc(DL);
@@ -1349,32 +1335,10 @@ SDValue SelectionDAG::getSrcValue(const Value *V) {
return SDValue(N, 0);
}
-SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
-#ifndef NDEBUG
- const Value *v = MO.getValue();
- assert((!v || isa<PointerType>(v->getType())) &&
- "SrcValue is not a pointer?");
-#endif
-
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
- MO.Profile(ID);
-
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
-
- SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
- new (N) MemOperandSDNode(MO);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
-}
-
/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
- MVT OpTy = Op.getValueType();
+ EVT OpTy = Op.getValueType();
MVT ShTy = TLI.getShiftAmountTy();
if (OpTy == ShTy || OpTy.isVector()) return Op;
@@ -1384,10 +1348,10 @@ SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
-SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
+SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- unsigned ByteSize = VT.getStoreSizeInBits()/8;
- const Type *Ty = VT.getTypeForMVT();
+ unsigned ByteSize = VT.getStoreSize();
+ const Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
@@ -1397,11 +1361,11 @@ SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
/// CreateStackTemporary - Create a stack temporary suitable for holding
/// either of the specified value types.
-SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
+SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
VT2.getStoreSizeInBits())/8;
- const Type *Ty1 = VT1.getTypeForMVT();
- const Type *Ty2 = VT2.getTypeForMVT();
+ const Type *Ty1 = VT1.getTypeForEVT(*getContext());
+ const Type *Ty2 = VT2.getTypeForEVT(*getContext());
const TargetData *TD = TLI.getTargetData();
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
TD->getPrefTypeAlignment(Ty2));
@@ -1411,7 +1375,7 @@ SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
return getFrameIndex(FrameIdx, TLI.getPointerTy());
}
-SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
+SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
// These setcc operations always fold.
switch (Cond) {
@@ -1441,7 +1405,7 @@ SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
const APInt &C1 = N1C->getAPIntValue();
switch (Cond) {
- default: assert(0 && "Unknown integer setcc!");
+ default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1.ult(C2), VT);
@@ -1516,6 +1480,10 @@ SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
+ // This predicate is not safe for vector operations.
+ if (Op.getValueType().isVector())
+ return false;
+
unsigned BitWidth = Op.getValueSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}
@@ -1743,7 +1711,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
}
return;
case ISD::SIGN_EXTEND_INREG: {
- MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned EBits = EVT.getSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
@@ -1788,14 +1756,14 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
case ISD::LOAD: {
if (ISD::isZEXTLoad(Op.getNode())) {
LoadSDNode *LD = cast<LoadSDNode>(Op);
- MVT VT = LD->getMemoryVT();
+ EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
}
return;
}
case ISD::ZERO_EXTEND: {
- MVT InVT = Op.getOperand(0).getValueType();
+ EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getSizeInBits();
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
APInt InMask = Mask;
@@ -1809,7 +1777,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
return;
}
case ISD::SIGN_EXTEND: {
- MVT InVT = Op.getOperand(0).getValueType();
+ EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getSizeInBits();
APInt InSignBit = APInt::getSignBit(InBits);
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
@@ -1850,7 +1818,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
return;
}
case ISD::ANY_EXTEND: {
- MVT InVT = Op.getOperand(0).getValueType();
+ EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getSizeInBits();
APInt InMask = Mask;
InMask.trunc(InBits);
@@ -1862,7 +1830,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
return;
}
case ISD::TRUNCATE: {
- MVT InVT = Op.getOperand(0).getValueType();
+ EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getSizeInBits();
APInt InMask = Mask;
InMask.zext(InBits);
@@ -1875,7 +1843,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
break;
}
case ISD::AssertZext: {
- MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
KnownOne, Depth+1);
@@ -1981,7 +1949,8 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
- TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
+ TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
+ Depth);
}
return;
}
@@ -1993,7 +1962,7 @@ void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
assert(VT.isInteger() && "Invalid VT!");
unsigned VTBits = VT.getSizeInBits();
unsigned Tmp, Tmp2;
@@ -2212,6 +2181,19 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
}
+bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
+ // If we're told that NaNs won't happen, assume they won't.
+ if (FiniteOnlyFPMath())
+ return true;
+
+ // If the value is a constant, we can obviously see if it is a NaN or not.
+ if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+ return !C->getValueAPF().isNaN();
+
+ // TODO: Recognize more cases here.
+
+ return false;
+}
bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
@@ -2228,7 +2210,7 @@ bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
/// element of the result of the vector shuffle.
SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
unsigned i) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
if (N->getMaskElt(i) < 0)
return getUNDEF(VT.getVectorElementType());
@@ -2239,7 +2221,7 @@ SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
if (V.getOpcode() == ISD::BIT_CONVERT) {
V = V.getOperand(0);
- MVT VVT = V.getValueType();
+ EVT VVT = V.getValueType();
if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
return SDValue();
}
@@ -2256,7 +2238,7 @@ SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
/// getNode - Gets or creates the specified node.
///
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
void *IP = 0;
@@ -2274,7 +2256,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- MVT VT, SDValue Operand) {
+ EVT VT, SDValue Operand) {
// Constant fold unary operations with an integer constant operand.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
const APInt &Val = C->getAPIntValue();
@@ -2332,7 +2314,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
- (void)V.convert(*MVTToAPFloatSemantics(VT),
+ (void)V.convert(*EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
@@ -2366,7 +2348,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
case ISD::MERGE_VALUES:
case ISD::CONCAT_VECTORS:
return Operand; // Factor, merge or concat of one node? No need.
- case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
+ case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
case ISD::FP_EXTEND:
assert(VT.isFloatingPoint() &&
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
@@ -2487,7 +2469,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
- MVT VT,
+ EVT VT,
ConstantSDNode *Cst1,
ConstantSDNode *Cst2) {
const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
@@ -2522,7 +2504,7 @@ SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
return SDValue();
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2) {
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
@@ -2624,7 +2606,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
return N1;
break;
case ISD::FP_ROUND_INREG: {
- MVT EVT = cast<VTSDNode>(N2)->getVT();
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
"Cannot FP_ROUND_INREG integer types");
@@ -2641,7 +2623,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
break;
case ISD::AssertSext:
case ISD::AssertZext: {
- MVT EVT = cast<VTSDNode>(N2)->getVT();
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
@@ -2650,7 +2632,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
break;
}
case ISD::SIGN_EXTEND_INREG: {
- MVT EVT = cast<VTSDNode>(N2)->getVT();
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
@@ -2688,13 +2670,16 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
// expanding large vector constants.
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
SDValue Elt = N1.getOperand(N2C->getZExtValue());
- if (Elt.getValueType() != VT) {
+ EVT VEltTy = N1.getValueType().getVectorElementType();
+ if (Elt.getValueType() != VEltTy) {
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated. Make that explicit here.
- assert(VT.isInteger() && Elt.getValueType().isInteger() &&
- VT.bitsLE(Elt.getValueType()) &&
- "Bad type for BUILD_VECTOR operand");
- Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
+ Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
+ }
+ if (VT != VEltTy) {
+ // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
+ // result is implicitly extended.
+ Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
}
return Elt;
}
@@ -2895,7 +2880,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
@@ -2938,7 +2923,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
}
break;
case ISD::VECTOR_SHUFFLE:
- assert(0 && "should use getVectorShuffle constructor!");
+ llvm_unreachable("should use getVectorShuffle constructor!");
break;
case ISD::BIT_CONVERT:
// Fold bit_convert nodes from a type to themselves.
@@ -2971,23 +2956,46 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
return SDValue(N, 0);
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VT, Ops, 4);
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4, SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VT, Ops, 5);
}
+/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
+/// the incoming stack arguments to be loaded from the stack.
+SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
+ SmallVector<SDValue, 8> ArgChains;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument.
+ for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
+ UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0)
+ ArgChains.push_back(SDValue(L, 1));
+
+ // Build a tokenfactor for all the chains.
+ return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
+ &ArgChains[0], ArgChains.size());
+}
+
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
-static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
+static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
DebugLoc dl) {
unsigned NumBits = VT.isVector() ?
VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
@@ -3021,9 +3029,9 @@ static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
-static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
- const TargetLowering &TLI,
- std::string &Str, unsigned Offset) {
+static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
+ const TargetLowering &TLI,
+ std::string &Str, unsigned Offset) {
// Handle vector with all elements zero.
if (Str.empty()) {
if (VT.isInteger())
@@ -3031,7 +3039,8 @@ static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
unsigned NumElts = VT.getVectorNumElements();
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
- DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
+ DAG.getConstant(0,
+ EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
}
assert(!VT.isVector() && "Can't handle vector type here!");
@@ -3051,7 +3060,7 @@ static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
///
static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
SelectionDAG &DAG) {
- MVT VT = Base.getValueType();
+ EVT VT = Base.getValueType();
return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
VT, Base, DAG.getConstant(Offset, VT));
}
@@ -3083,7 +3092,7 @@ static bool isMemSrcFromString(SDValue Src, std::string &Str) {
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static
-bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
+bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
SDValue Dst, SDValue Src,
unsigned Limit, uint64_t Size, unsigned &Align,
std::string &Str, bool &isSrcStr,
@@ -3091,11 +3100,11 @@ bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
const TargetLowering &TLI) {
isSrcStr = isMemSrcFromString(Src, Str);
bool isSrcConst = isa<ConstantSDNode>(Src);
- bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
- MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
+ EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
+ bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
if (VT != MVT::iAny) {
- unsigned NewAlign = (unsigned)
- TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
+ const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+ unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
// If source is a string constant, this will require an unaligned load.
if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
if (Dst.getOpcode() != ISD::FrameIndex) {
@@ -3120,7 +3129,7 @@ bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
}
if (VT == MVT::iAny) {
- if (AllowUnalign) {
+ if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
VT = MVT::i64;
} else {
switch (Align & 7) {
@@ -3133,7 +3142,7 @@ bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
MVT LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
+ LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
assert(LVT.isInteger());
if (VT.bitsGT(LVT))
@@ -3148,12 +3157,12 @@ bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
if (VT.isVector()) {
VT = MVT::i64;
while (!TLI.isTypeLegal(VT))
- VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
VTSize = VT.getSizeInBits() / 8;
} else {
// This can result in a type that is not legal on the target, e.g.
// 1 or 2 bytes on PPC.
- VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
VTSize >>= 1;
}
}
@@ -3177,7 +3186,7 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
// Expand memcpy to a series of load and store ops if the size operand falls
// below a certain threshold.
- std::vector<MVT> MemOps;
+ std::vector<EVT> MemOps;
uint64_t Limit = -1ULL;
if (!AlwaysInline)
Limit = TLI.getMaxStoresPerMemcpy();
@@ -3193,8 +3202,8 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i < NumMemOps; i++) {
- MVT VT = MemOps[i];
+ for (unsigned i = 0; i != NumMemOps; ++i) {
+ EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
@@ -3214,7 +3223,7 @@ static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
// thing to do is generate a LoadExt/StoreTrunc pair. These simplify
// to Load/Store if NVT==VT.
// FIXME does the case above also need this?
- MVT NVT = TLI.getTypeToTransformTo(VT);
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
assert(NVT.bitsGE(VT));
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
getMemBasePlusOffset(Src, SrcOff, DAG),
@@ -3242,7 +3251,7 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
// Expand memmove to a series of load and store ops if the size operand falls
// below a certain threshold.
- std::vector<MVT> MemOps;
+ std::vector<EVT> MemOps;
uint64_t Limit = -1ULL;
if (!AlwaysInline)
Limit = TLI.getMaxStoresPerMemmove();
@@ -3260,7 +3269,7 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
- MVT VT = MemOps[i];
+ EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
@@ -3275,7 +3284,7 @@ static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
&LoadChains[0], LoadChains.size());
OutChains.clear();
for (unsigned i = 0; i < NumMemOps; i++) {
- MVT VT = MemOps[i];
+ EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
@@ -3299,7 +3308,7 @@ static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
// Expand memset to a series of load/store ops if the size operand
// falls below a certain threshold.
- std::vector<MVT> MemOps;
+ std::vector<EVT> MemOps;
std::string Str;
bool CopyFromStr;
if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
@@ -3311,7 +3320,7 @@ static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
- MVT VT = MemOps[i];
+ EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value = getMemsetValue(Src, VT, DAG, dl);
SDValue Store = DAG.getStore(Chain, dl, Value,
@@ -3368,15 +3377,18 @@ SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in DebugLoc
std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::VoidTy,
- false, false, false, false, 0, CallingConv::C, false,
- getExternalSymbol("memcpy", TLI.getPointerTy()),
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
+ TLI.getPointerTy()),
Args, *this, dl);
return CallResult.second;
}
@@ -3414,15 +3426,18 @@ SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in DebugLoc
std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::VoidTy,
- false, false, false, false, 0, CallingConv::C, false,
- getExternalSymbol("memmove", TLI.getPointerTy()),
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
+ TLI.getPointerTy()),
Args, *this, dl);
return CallResult.second;
}
@@ -3456,7 +3471,7 @@ SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
return Result;
// Emit a library call.
- const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
+ const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
@@ -3466,31 +3481,61 @@ SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
else
Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
- Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
+ Entry.Node = Src;
+ Entry.Ty = Type::getInt32Ty(*getContext());
+ Entry.isSExt = true;
Args.push_back(Entry);
- Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
+ Entry.Node = Size;
+ Entry.Ty = IntPtrTy;
+ Entry.isSExt = false;
Args.push_back(Entry);
// FIXME: pass in DebugLoc
std::pair<SDValue,SDValue> CallResult =
- TLI.LowerCallTo(Chain, Type::VoidTy,
- false, false, false, false, 0, CallingConv::C, false,
- getExternalSymbol("memset", TLI.getPointerTy()),
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
+ TLI.getPointerTy()),
Args, *this, dl);
return CallResult.second;
}
-SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Cmp,
SDValue Swp, const Value* PtrVal,
unsigned Alignment) {
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(MemVT);
+
+ // Check if the memory reference references a frame index
+ if (!PtrVal)
+ if (const FrameIndexSDNode *FI =
+ dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+ PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ // For now, atomics are considered to be volatile always.
+ Flags |= MachineMemOperand::MOVolatile;
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrVal, Flags, 0,
+ MemVT.getStoreSize(), Alignment);
+
+ return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain,
+ SDValue Ptr, SDValue Cmp,
+ SDValue Swp, MachineMemOperand *MMO) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- MVT VT = Cmp.getValueType();
-
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getMVTAlignment(MemVT);
+ EVT VT = Cmp.getValueType();
SDVTList VTs = getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
@@ -3498,21 +3543,48 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
- new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
- Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
+ new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
-SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Val,
const Value* PtrVal,
unsigned Alignment) {
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(MemVT);
+
+ // Check if the memory reference references a frame index
+ if (!PtrVal)
+ if (const FrameIndexSDNode *FI =
+ dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+ PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ // For now, atomics are considered to be volatile always.
+ Flags |= MachineMemOperand::MOVolatile;
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrVal, Flags, 0,
+ MemVT.getStoreSize(), Alignment);
+
+ return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain,
+ SDValue Ptr, SDValue Val,
+ MachineMemOperand *MMO) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
@@ -3526,10 +3598,7 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
Opcode == ISD::ATOMIC_SWAP) &&
"Invalid Atomic Op");
- MVT VT = Val.getValueType();
-
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getMVTAlignment(MemVT);
+ EVT VT = Val.getValueType();
SDVTList VTs = getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
@@ -3537,11 +3606,12 @@ SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
SDValue Ops[] = {Chain, Ptr, Val};
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
- new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
- Chain, Ptr, Val, PtrVal, Alignment);
+ new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -3554,7 +3624,7 @@ SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
if (NumOps == 1)
return Ops[0];
- SmallVector<MVT, 4> VTs;
+ SmallVector<EVT, 4> VTs;
VTs.reserve(NumOps);
for (unsigned i = 0; i < NumOps; ++i)
VTs.push_back(Ops[i].getValueType());
@@ -3564,9 +3634,9 @@ SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
- const MVT *VTs, unsigned NumVTs,
+ const EVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps,
- MVT MemVT, const Value *srcValue, int SVOff,
+ EVT MemVT, const Value *srcValue, int SVOff,
unsigned Align, bool Vol,
bool ReadMem, bool WriteMem) {
return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
@@ -3577,81 +3647,104 @@ SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
const SDValue *Ops, unsigned NumOps,
- MVT MemVT, const Value *srcValue, int SVOff,
+ EVT MemVT, const Value *srcValue, int SVOff,
unsigned Align, bool Vol,
bool ReadMem, bool WriteMem) {
+ if (Align == 0) // Ensure that codegen never sees alignment 0
+ Align = getEVTAlignment(MemVT);
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = 0;
+ if (WriteMem)
+ Flags |= MachineMemOperand::MOStore;
+ if (ReadMem)
+ Flags |= MachineMemOperand::MOLoad;
+ if (Vol)
+ Flags |= MachineMemOperand::MOVolatile;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(srcValue, Flags, SVOff,
+ MemVT.getStoreSize(), Align);
+
+ return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps,
+ EVT MemVT, MachineMemOperand *MMO) {
+ assert((Opcode == ISD::INTRINSIC_VOID ||
+ Opcode == ISD::INTRINSIC_W_CHAIN ||
+ (Opcode <= INT_MAX &&
+ (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
+ "Opcode is not a memory-accessing opcode!");
+
// Memoize the node unless it returns a flag.
MemIntrinsicSDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
- new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
- srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
+ new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
CSEMap.InsertNode(N, IP);
} else {
N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
- new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
- srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
- }
- AllNodes.push_back(N);
- return SDValue(N, 0);
-}
-
-SDValue
-SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
- bool IsTailCall, bool IsInreg, SDVTList VTs,
- const SDValue *Operands, unsigned NumOperands,
- unsigned NumFixedArgs) {
- // Do not include isTailCall in the folding set profile.
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
- ID.AddInteger(CallingConv);
- ID.AddInteger(IsVarArgs);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- // Instead of including isTailCall in the folding set, we just
- // set the flag of the existing node.
- if (!IsTailCall)
- cast<CallSDNode>(E)->setNotTailCall();
- return SDValue(E, 0);
+ new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
}
- SDNode *N = NodeAllocator.Allocate<CallSDNode>();
- new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
- VTs, Operands, NumOperands, NumFixedArgs);
- CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
- ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
+ ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
SDValue Ptr, SDValue Offset,
- const Value *SV, int SVOffset, MVT EVT,
+ const Value *SV, int SVOffset, EVT MemVT,
bool isVolatile, unsigned Alignment) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getMVTAlignment(VT);
+ Alignment = getEVTAlignment(VT);
+
+ // Check if the memory reference references a frame index
+ if (!SV)
+ if (const FrameIndexSDNode *FI =
+ dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+ SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOLoad;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(SV, Flags, SVOffset,
+ MemVT.getStoreSize(), Alignment);
+ return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
+}
- if (VT == EVT) {
+SDValue
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
+ ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
+ SDValue Ptr, SDValue Offset, EVT MemVT,
+ MachineMemOperand *MMO) {
+ if (VT == MemVT) {
ExtType = ISD::NON_EXTLOAD;
} else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == EVT && "Non-extending load from different memory type!");
+ assert(VT == MemVT && "Non-extending load from different memory type!");
} else {
// Extending load.
if (VT.isVector())
- assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
+ assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
"Invalid vector extload!");
else
- assert(EVT.bitsLT(VT) &&
+ assert(MemVT.bitsLT(VT) &&
"Should only be an extending load, not truncating!");
assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
"Cannot sign/zero extend a FP/Vector load!");
- assert(VT.isInteger() == EVT.isInteger() &&
+ assert(VT.isInteger() == MemVT.isInteger() &&
"Cannot convert from FP to Int or Int -> FP!");
}
@@ -3664,20 +3757,21 @@ SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
SDValue Ops[] = { Chain, Ptr, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
- ID.AddInteger(EVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
+ ID.AddInteger(MemVT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
- new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
- Alignment, isVolatile);
+ new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
-SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
+SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
SDValue Chain, SDValue Ptr,
const Value *SV, int SVOffset,
bool isVolatile, unsigned Alignment) {
@@ -3686,14 +3780,14 @@ SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
SV, SVOffset, VT, isVolatile, Alignment);
}
-SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
SDValue Chain, SDValue Ptr,
const Value *SV,
- int SVOffset, MVT EVT,
+ int SVOffset, EVT MemVT,
bool isVolatile, unsigned Alignment) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
- SV, SVOffset, EVT, isVolatile, Alignment);
+ SV, SVOffset, MemVT, isVolatile, Alignment);
}
SDValue
@@ -3711,25 +3805,43 @@ SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, const Value *SV, int SVOffset,
bool isVolatile, unsigned Alignment) {
- MVT VT = Val.getValueType();
-
if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getMVTAlignment(VT);
+ Alignment = getEVTAlignment(Val.getValueType());
+ // Check if the memory reference references a frame index
+ if (!SV)
+ if (const FrameIndexSDNode *FI =
+ dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+ SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOStore;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(SV, Flags, SVOffset,
+ Val.getValueType().getStoreSize(), Alignment);
+
+ return getStore(Chain, dl, Val, Ptr, MMO);
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, MachineMemOperand *MMO) {
+ EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
- isVolatile, Alignment));
+ ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
- new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
- VT, SV, SVOffset, Alignment, isVolatile);
+ new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -3737,19 +3849,39 @@ SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, const Value *SV,
- int SVOffset, MVT SVT,
+ int SVOffset, EVT SVT,
bool isVolatile, unsigned Alignment) {
- MVT VT = Val.getValueType();
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(SVT);
+
+ // Check if the memory reference references a frame index
+ if (!SV)
+ if (const FrameIndexSDNode *FI =
+ dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
+ SV = PseudoSourceValue::getFixedStack(FI->getIndex());
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOStore;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
+
+ return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, EVT SVT,
+ MachineMemOperand *MMO) {
+ EVT VT = Val.getValueType();
if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
+ return getStore(Chain, dl, Val, Ptr, MMO);
assert(VT.bitsGT(SVT) && "Not a truncation?");
assert(VT.isInteger() == SVT.isInteger() &&
"Can't do FP-INT conversion!");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getMVTAlignment(VT);
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
@@ -3757,14 +3889,14 @@ SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
- isVolatile, Alignment));
+ ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
+ }
SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
- new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
- SVT, SV, SVOffset, Alignment, isVolatile);
+ new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
@@ -3788,21 +3920,20 @@ SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
new (N) StoreSDNode(Ops, dl, VTs, AM,
ST->isTruncatingStore(), ST->getMemoryVT(),
- ST->getSrcValue(), ST->getSrcValueOffset(),
- ST->getAlignment(), ST->isVolatile());
+ ST->getMemOperand());
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
-SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
+SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
SDValue Chain, SDValue Ptr,
SDValue SV) {
SDValue Ops[] = { Chain, Ptr, SV };
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
const SDUse *Ops, unsigned NumOps) {
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
@@ -3818,7 +3949,7 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
}
-SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
const SDValue *Ops, unsigned NumOps) {
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
@@ -3876,14 +4007,14 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const std::vector<MVT> &ResultTys,
+ const std::vector<EVT> &ResultTys,
const SDValue *Ops, unsigned NumOps) {
return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
Ops, NumOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const MVT *VTs, unsigned NumVTs,
+ const EVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps) {
if (NumVTs == 1)
return getNode(Opcode, DL, VTs[0], Ops, NumOps);
@@ -3895,11 +4026,11 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
if (VTList.NumVTs == 1)
return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
+#if 0
switch (Opcode) {
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
-#if 0
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
@@ -3915,8 +4046,8 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
break;
-#endif
}
+#endif
// Memoize the node unless it returns a flag.
SDNode *N;
@@ -3998,17 +4129,17 @@ SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
return getNode(Opcode, DL, VTList, Ops, 5);
}
-SDVTList SelectionDAG::getVTList(MVT VT) {
+SDVTList SelectionDAG::getVTList(EVT VT) {
return makeVTList(SDNode::getValueTypeList(VT), 1);
}
-SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
return *I;
- MVT *Array = Allocator.Allocate<MVT>(2);
+ EVT *Array = Allocator.Allocate<EVT>(2);
Array[0] = VT1;
Array[1] = VT2;
SDVTList Result = makeVTList(Array, 2);
@@ -4016,14 +4147,14 @@ SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
return Result;
}
-SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
I->VTs[2] == VT3)
return *I;
- MVT *Array = Allocator.Allocate<MVT>(3);
+ EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
@@ -4032,14 +4163,14 @@ SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
return Result;
}
-SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
I->VTs[2] == VT3 && I->VTs[3] == VT4)
return *I;
- MVT *Array = Allocator.Allocate<MVT>(3);
+ EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
@@ -4049,9 +4180,9 @@ SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
return Result;
}
-SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
+SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
switch (NumVTs) {
- case 0: assert(0 && "Cannot have nodes without results!");
+ case 0: llvm_unreachable("Cannot have nodes without results!");
case 1: return getVTList(VTs[0]);
case 2: return getVTList(VTs[0], VTs[1]);
case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
@@ -4073,7 +4204,7 @@ SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
return *I;
}
- MVT *Array = Allocator.Allocate<MVT>(NumVTs);
+ EVT *Array = Allocator.Allocate<EVT>(NumVTs);
std::copy(VTs, VTs+NumVTs, Array);
SDVTList Result = makeVTList(Array, NumVTs);
VTList.push_back(Result);
@@ -4215,20 +4346,20 @@ void SDNode::DropOperands() {
/// machine opcode.
///
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT) {
+ EVT VT) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT, SDValue Op1) {
+ EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT, SDValue Op1,
+ EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
@@ -4236,7 +4367,7 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT, SDValue Op1,
+ EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
@@ -4244,41 +4375,41 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT, const SDValue *Ops,
+ EVT VT, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2, const SDValue *Ops,
+ EVT VT1, EVT VT2, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2) {
+ EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2, MVT VT3,
+ EVT VT1, EVT VT2, EVT VT3,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2, MVT VT3, MVT VT4,
+ EVT VT1, EVT VT2, EVT VT3, EVT VT4,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
@@ -4286,7 +4417,7 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
@@ -4294,7 +4425,7 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
@@ -4303,7 +4434,7 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- MVT VT1, MVT VT2, MVT VT3,
+ EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
@@ -4318,20 +4449,20 @@ SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT) {
+ EVT VT) {
SDVTList VTs = getVTList(VT);
return MorphNodeTo(N, Opc, VTs, 0, 0);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT, SDValue Op1) {
+ EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return MorphNodeTo(N, Opc, VTs, Ops, 1);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT, SDValue Op1,
+ EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
@@ -4339,7 +4470,7 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT, SDValue Op1,
+ EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
@@ -4347,34 +4478,34 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT, const SDValue *Ops,
+ EVT VT, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT);
return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2, const SDValue *Ops,
+ EVT VT1, EVT VT2, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2);
return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2) {
+ EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2, MVT VT3,
+ EVT VT1, EVT VT2, EVT VT3,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
@@ -4382,7 +4513,7 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
@@ -4390,7 +4521,7 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
}
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- MVT VT1, MVT VT2,
+ EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
@@ -4441,29 +4572,35 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
DeadNodeSet.insert(Used);
}
- // If NumOps is larger than the # of operands we currently have, reallocate
- // the operand list.
- if (NumOps > N->NumOperands) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
-
- if (N->isMachineOpcode()) {
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
- N->OperandsNeedDelete = false;
- } else {
- N->OperandList = new SDUse[NumOps];
+ if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
+ // Initialize the memory references information.
+ MN->setMemRefs(0, 0);
+ // If NumOps is larger than the # of operands we can have in a
+ // MachineSDNode, reallocate the operand list.
+ if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
+ if (MN->OperandsNeedDelete)
+ delete[] MN->OperandList;
+ if (NumOps > array_lengthof(MN->LocalOperands))
+ // We're creating a final node that will live unmorphed for the
+ // remainder of the current SelectionDAG iteration, so we can allocate
+ // the operands directly out of a pool with no recycling metadata.
+ MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+ Ops, NumOps);
+ else
+ MN->InitOperands(MN->LocalOperands, Ops, NumOps);
+ MN->OperandsNeedDelete = false;
+ } else
+ MN->InitOperands(MN->OperandList, Ops, NumOps);
+ } else {
+ // If NumOps is larger than the # of operands we currently have, reallocate
+ // the operand list.
+ if (NumOps > N->NumOperands) {
+ if (N->OperandsNeedDelete)
+ delete[] N->OperandList;
+ N->InitOperands(new SDUse[NumOps], Ops, NumOps);
N->OperandsNeedDelete = true;
- }
- }
-
- // Assign the new operands.
- N->NumOperands = NumOps;
- for (unsigned i = 0, e = NumOps; i != e; ++i) {
- N->OperandList[i].setUser(N);
- N->OperandList[i].setInitial(Ops[i]);
+ } else
+ MN->InitOperands(MN->OperandList, Ops, NumOps);
}
// Delete any nodes that are still dead after adding the uses for the
@@ -4481,108 +4618,189 @@ SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
}
-/// getTargetNode - These are used for target selectors to create a new node
-/// with specified return type(s), target opcode, and operands.
+/// getMachineNode - These are used for target selectors to create a new node
+/// with specified return type(s), MachineInstr opcode, and operands.
///
-/// Note that getTargetNode returns the resultant node. If there is already a
+/// Note that getMachineNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
- return getNode(~Opcode, dl, VT).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, 0, 0);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
- SDValue Op1) {
- return getNode(~Opcode, dl, VT, Op1).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
- SDValue Op1, SDValue Op2) {
- return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ SDValue Op1, SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- MVT VT1, MVT VT2) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
- SDValue Op;
- return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
+ return getMachineNode(Opcode, dl, VTs, 0, 0);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
- MVT VT2, SDValue Op1) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
- return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
+ SDValue Ops[] = { Op1 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
- MVT VT2, SDValue Op1,
- SDValue Op2) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
- return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
- MVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1,
+ SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
- return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- MVT VT1, MVT VT2,
- const SDValue *Ops, unsigned NumOps) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2,
+ const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- MVT VT1, MVT VT2, MVT VT3,
- SDValue Op1, SDValue Op2) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2 };
- return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- MVT VT1, MVT VT2, MVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
- return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- MVT VT1, MVT VT2, MVT VT3,
- const SDValue *Ops, unsigned NumOps) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
- MVT VT2, MVT VT3, MVT VT4,
- const SDValue *Ops, unsigned NumOps) {
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
+ EVT VT2, EVT VT3, EVT VT4,
+ const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
-SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
- const std::vector<MVT> &ResultTys,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ const std::vector<EVT> &ResultTys,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
+ const SDValue *Ops, unsigned NumOps) {
+ bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
+ MachineSDNode *N;
+ void *IP;
+
+ if (DoCSE) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
+ IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return cast<MachineSDNode>(E);
+ }
+
+ // Allocate a new MachineSDNode.
+ N = NodeAllocator.Allocate<MachineSDNode>();
+ new (N) MachineSDNode(~Opcode, DL, VTs);
+
+ // Initialize the operands list.
+ if (NumOps > array_lengthof(N->LocalOperands))
+ // We're creating a final node that will live unmorphed for the
+ // remainder of the current SelectionDAG iteration, so we can allocate
+ // the operands directly out of a pool with no recycling metadata.
+ N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+ Ops, NumOps);
+ else
+ N->InitOperands(N->LocalOperands, Ops, NumOps);
+ N->OperandsNeedDelete = false;
+
+ if (DoCSE)
+ CSEMap.InsertNode(N, IP);
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifyNode(N);
+#endif
+ return N;
+}
+
+/// getTargetExtractSubreg - A convenience function for creating
+/// TargetInstrInfo::EXTRACT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
+ SDValue Operand) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+ SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
+ VT, Operand, SRIdxVal);
+ return SDValue(Subreg, 0);
+}
+
+/// getTargetInsertSubreg - A convenience function for creating
+/// TargetInstrInfo::INSERT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
+ SDValue Operand, SDValue Subreg) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+ SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
+ VT, Operand, Subreg, SRIdxVal);
+ return SDValue(Result, 0);
}
/// getNodeIfExists - Get the specified node if it's already available, or
@@ -4937,64 +5155,28 @@ HandleSDNode::~HandleSDNode() {
}
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
- MVT VT, int64_t o, unsigned char TF)
+ EVT VT, int64_t o, unsigned char TF)
: SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
Offset(o), TargetFlags(TF) {
TheGlobal = const_cast<GlobalValue*>(GA);
}
-MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
- const Value *srcValue, int SVO,
- unsigned alignment, bool vol)
- : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
- assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
- assert(getAlignment() == alignment && "Alignment representation error!");
- assert(isVolatile() == vol && "Volatile representation error!");
+MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
+ MachineMemOperand *mmo)
+ : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
+ SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
+ assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+ assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
}
MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
- const SDValue *Ops,
- unsigned NumOps, MVT memvt, const Value *srcValue,
- int SVO, unsigned alignment, bool vol)
+ const SDValue *Ops, unsigned NumOps, EVT memvt,
+ MachineMemOperand *mmo)
: SDNode(Opc, dl, VTs, Ops, NumOps),
- MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
- assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
- assert(getAlignment() == alignment && "Alignment representation error!");
- assert(isVolatile() == vol && "Volatile representation error!");
-}
-
-/// getMemOperand - Return a MachineMemOperand object describing the memory
-/// reference performed by this memory reference.
-MachineMemOperand MemSDNode::getMemOperand() const {
- int Flags = 0;
- if (isa<LoadSDNode>(this))
- Flags = MachineMemOperand::MOLoad;
- else if (isa<StoreSDNode>(this))
- Flags = MachineMemOperand::MOStore;
- else if (isa<AtomicSDNode>(this)) {
- Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
- }
- else {
- const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
- assert(MemIntrinNode && "Unknown MemSDNode opcode!");
- if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
- if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
- }
-
- int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
- if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
-
- // Check if the memory reference references a frame index
- const FrameIndexSDNode *FI =
- dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
- if (!getSrcValue() && FI)
- return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
- Flags, 0, Size, getAlignment());
- else
- return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
- Size, getAlignment());
+ MemoryVT(memvt), MMO(mmo) {
+ SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
+ assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+ assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
}
/// Profile - Gather unique data for the node.
@@ -5003,19 +5185,30 @@ void SDNode::Profile(FoldingSetNodeID &ID) const {
AddNodeIDNode(ID, this);
}
-static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
-static MVT VTs[MVT::LAST_VALUETYPE];
+namespace {
+ struct EVTArray {
+ std::vector<EVT> VTs;
+
+ EVTArray() {
+ VTs.reserve(MVT::LAST_VALUETYPE);
+ for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
+ VTs.push_back(MVT((MVT::SimpleValueType)i));
+ }
+ };
+}
+
+static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
+static ManagedStatic<EVTArray> SimpleVTArray;
static ManagedStatic<sys::SmartMutex<true> > VTMutex;
/// getValueTypeList - Return a pointer to the specified value type.
///
-const MVT *SDNode::getValueTypeList(MVT VT) {
- sys::SmartScopedLock<true> Lock(&*VTMutex);
+const EVT *SDNode::getValueTypeList(EVT VT) {
if (VT.isExtended()) {
+ sys::SmartScopedLock<true> Lock(*VTMutex);
return &(*EVTs->insert(VT).first);
} else {
- VTs[VT.getSimpleVT()] = VT;
- return &VTs[VT.getSimpleVT()];
+ return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
}
}
@@ -5186,14 +5379,12 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::PCMARKER: return "PCMarker";
case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
case ISD::SRCVALUE: return "SrcValue";
- case ISD::MEMOPERAND: return "MemOperand";
case ISD::EntryToken: return "EntryToken";
case ISD::TokenFactor: return "TokenFactor";
case ISD::AssertSext: return "AssertSext";
case ISD::AssertZext: return "AssertZext";
case ISD::BasicBlock: return "BasicBlock";
- case ISD::ARG_FLAGS: return "ArgFlags";
case ISD::VALUETYPE: return "ValueType";
case ISD::Register: return "Register";
@@ -5208,6 +5399,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::FRAMEADDR: return "FRAMEADDR";
case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
+ case ISD::LSDAADDR: return "LSDAADDR";
case ISD::EHSELECTION: return "EHSELECTION";
case ISD::EH_RETURN: return "EH_RETURN";
case ISD::ConstantPool: return "ConstantPool";
@@ -5239,10 +5431,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::INLINEASM: return "inlineasm";
case ISD::DBG_LABEL: return "dbg_label";
case ISD::EH_LABEL: return "eh_label";
- case ISD::DECLARE: return "declare";
case ISD::HANDLENODE: return "handlenode";
- case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
- case ISD::CALL: return "call";
// Unary operators
case ISD::FABS: return "fabs";
@@ -5332,7 +5521,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::CONVERT_RNDSAT: {
switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
- default: assert(0 && "Unknown cvt code!");
+ default: llvm_unreachable("Unknown cvt code!");
case ISD::CVT_FF: return "cvt_ff";
case ISD::CVT_FS: return "cvt_fs";
case ISD::CVT_FU: return "cvt_fu";
@@ -5351,7 +5540,6 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::BR_JT: return "br_jt";
case ISD::BRCOND: return "brcond";
case ISD::BR_CC: return "br_cc";
- case ISD::RET: return "ret";
case ISD::CALLSEQ_START: return "callseq_start";
case ISD::CALLSEQ_END: return "callseq_end";
@@ -5384,7 +5572,7 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
case ISD::CONDCODE:
switch (cast<CondCodeSDNode>(this)->get()) {
- default: assert(0 && "Unknown setcc condition!");
+ default: llvm_unreachable("Unknown setcc condition!");
case ISD::SETOEQ: return "setoeq";
case ISD::SETOGT: return "setogt";
case ISD::SETOGE: return "setoge";
@@ -5463,14 +5651,26 @@ void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
if (getValueType(i) == MVT::Other)
OS << "ch";
else
- OS << getValueType(i).getMVTString();
+ OS << getValueType(i).getEVTString();
}
OS << " = " << getOperationName(G);
}
void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
- if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
+ if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
+ if (!MN->memoperands_empty()) {
+ OS << "<";
+ OS << "Mem:";
+ for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
+ e = MN->memoperands_end(); i != e; ++i) {
+ OS << **i;
+ if (next(i) != e)
+ OS << " ";
+ }
+ OS << ">";
+ }
+ } else if (const ShuffleVectorSDNode *SVN =
+ dyn_cast<ShuffleVectorSDNode>(this)) {
OS << "<";
for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
int Idx = SVN->getMaskElt(i);
@@ -5481,9 +5681,7 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
OS << Idx;
}
OS << ">";
- }
-
- if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
+ } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
OS << '<' << CSDN->getAPIntValue() << '>';
} else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
@@ -5505,13 +5703,13 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
OS << " + " << offset;
else
OS << " " << offset;
- if (unsigned char TF = GADN->getTargetFlags())
+ if (unsigned int TF = GADN->getTargetFlags())
OS << " [TF=" << TF << ']';
} else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
OS << "<" << FIDN->getIndex() << ">";
} else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
OS << "<" << JTDN->getIndex() << ">";
- if (unsigned char TF = JTDN->getTargetFlags())
+ if (unsigned int TF = JTDN->getTargetFlags())
OS << " [TF=" << TF << ']';
} else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
int offset = CP->getOffset();
@@ -5523,7 +5721,7 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
OS << " + " << offset;
else
OS << " " << offset;
- if (unsigned char TF = CP->getTargetFlags())
+ if (unsigned int TF = CP->getTargetFlags())
OS << " [TF=" << TF << ']';
} else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
OS << "<";
@@ -5541,80 +5739,47 @@ void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
} else if (const ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(this)) {
OS << "'" << ES->getSymbol() << "'";
- if (unsigned char TF = ES->getTargetFlags())
+ if (unsigned int TF = ES->getTargetFlags())
OS << " [TF=" << TF << ']';
} else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
if (M->getValue())
OS << "<" << M->getValue() << ">";
else
OS << "<null>";
- } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
- if (M->MO.getValue())
- OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
- else
- OS << "<null:" << M->MO.getOffset() << ">";
- } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
- OS << N->getArgFlags().getArgFlagsString();
} else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
- OS << ":" << N->getVT().getMVTString();
+ OS << ":" << N->getVT().getEVTString();
}
else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
- const Value *SrcValue = LD->getSrcValue();
- int SrcOffset = LD->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
+ OS << " <" << *LD->getMemOperand();
bool doExt = true;
switch (LD->getExtensionType()) {
default: doExt = false; break;
- case ISD::EXTLOAD: OS << " <anyext "; break;
- case ISD::SEXTLOAD: OS << " <sext "; break;
- case ISD::ZEXTLOAD: OS << " <zext "; break;
+ case ISD::EXTLOAD: OS << ", anyext"; break;
+ case ISD::SEXTLOAD: OS << ", sext"; break;
+ case ISD::ZEXTLOAD: OS << ", zext"; break;
}
if (doExt)
- OS << LD->getMemoryVT().getMVTString() << ">";
+ OS << " from " << LD->getMemoryVT().getEVTString();
const char *AM = getIndexedModeName(LD->getAddressingMode());
if (*AM)
- OS << " " << AM;
- if (LD->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << LD->getAlignment();
+ OS << ", " << AM;
+
+ OS << ">";
} else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
- const Value *SrcValue = ST->getSrcValue();
- int SrcOffset = ST->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
+ OS << " <" << *ST->getMemOperand();
if (ST->isTruncatingStore())
- OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
+ OS << ", trunc to " << ST->getMemoryVT().getEVTString();
const char *AM = getIndexedModeName(ST->getAddressingMode());
if (*AM)
- OS << " " << AM;
- if (ST->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << ST->getAlignment();
- } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
- const Value *SrcValue = AT->getSrcValue();
- int SrcOffset = AT->getSrcValueOffset();
- OS << " <";
- if (SrcValue)
- OS << SrcValue;
- else
- OS << "null";
- OS << ":" << SrcOffset << ">";
- if (AT->isVolatile())
- OS << " <volatile>";
- OS << " alignment=" << AT->getAlignment();
+ OS << ", " << AM;
+
+ OS << ">";
+ } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
+ OS << " <" << *M->getMemOperand() << ">";
}
}
@@ -5635,16 +5800,17 @@ static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
if (N->getOperand(i).getNode()->hasOneUse())
DumpNodes(N->getOperand(i).getNode(), indent+2, G);
else
- cerr << "\n" << std::string(indent+2, ' ')
- << (void*)N->getOperand(i).getNode() << ": <multiple use>";
+ errs() << "\n" << std::string(indent+2, ' ')
+ << (void*)N->getOperand(i).getNode() << ": <multiple use>";
- cerr << "\n" << std::string(indent, ' ');
+ errs() << "\n";
+ errs().indent(indent);
N->dump(G);
}
void SelectionDAG::dump() const {
- cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
+ errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
I != E; ++I) {
@@ -5655,7 +5821,7 @@ void SelectionDAG::dump() const {
if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
- cerr << "\n\n";
+ errs() << "\n\n";
}
void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
@@ -5699,6 +5865,11 @@ void SDNode::dumpr() const {
DumpNodesr(errs(), this, 0, 0, once);
}
+void SDNode::dumpr(const SelectionDAG *G) const {
+ VisitedSDNodeSet once;
+ DumpNodesr(errs(), this, 0, G, once);
+}
+
// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
@@ -5717,7 +5888,7 @@ bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
unsigned &SplatBitSize,
bool &HasAnyUndefs,
unsigned MinSplatBits) {
- MVT VT = getValueType(0);
+ EVT VT = getValueType(0);
assert(VT.isVector() && "Expected a vector type");
unsigned sz = VT.getSizeInBits();
if (MinSplatBits > sz)
@@ -5767,7 +5938,7 @@ bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
SplatValue = HighValue | LowValue;
SplatUndef = HighUndef & LowUndef;
-
+
sz = HalfSize;
}
@@ -5775,14 +5946,14 @@ bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
return true;
}
-bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
+bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
// Find the first non-undef value in the shuffle mask.
unsigned i, e;
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
/* search */;
assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
-
+
// Make sure all remaining elements are either undef or the same as the first
// non-undef value.
for (int Idx = Mask[i]; i != e; ++i)
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
index 260911e..9017e43 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
@@ -17,6 +17,7 @@
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Constants.h"
+#include "llvm/Constants.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
@@ -49,6 +50,7 @@
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
@@ -104,14 +106,14 @@ static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
}
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
-/// MVTs that represent all the individual underlying
+/// EVTs that represent all the individual underlying
/// non-aggregate types that comprise it.
///
/// If Offsets is non-null, it points to a vector to be filled in
/// with the in-memory offsets of each of the individual values.
///
static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<MVT> &ValueVTs,
+ SmallVectorImpl<EVT> &ValueVTs,
SmallVectorImpl<uint64_t> *Offsets = 0,
uint64_t StartingOffset = 0) {
// Given a struct type, recursively traverse the elements.
@@ -135,9 +137,9 @@ static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
return;
}
// Interpret void as zero return values.
- if (Ty == Type::VoidTy)
+ if (Ty == Type::getVoidTy(Ty->getContext()))
return;
- // Base case: we can get an MVT for this LLVM IR type.
+ // Base case: we can get an EVT for this LLVM IR type.
ValueVTs.push_back(TLI.getValueType(Ty));
if (Offsets)
Offsets->push_back(StartingOffset);
@@ -161,7 +163,7 @@ namespace llvm {
/// ValueVTs - The value types of the values, which may not be legal, and
/// may need be promoted or synthesized from one or more registers.
///
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
/// RegVTs - The value types of the registers. This is the same size as
/// ValueVTs and it records, for each value, what the type of the assigned
@@ -172,7 +174,7 @@ namespace llvm {
/// getRegisterType member function, however when with physical registers
/// it is necessary to have a separate record of the types.
///
- SmallVector<MVT, 4> RegVTs;
+ SmallVector<EVT, 4> RegVTs;
/// Regs - This list holds the registers assigned to the values.
/// Each legal or promoted value requires one register, and each
@@ -184,21 +186,21 @@ namespace llvm {
RegsForValue(const TargetLowering &tli,
const SmallVector<unsigned, 4> &regs,
- MVT regvt, MVT valuevt)
+ EVT regvt, EVT valuevt)
: TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
RegsForValue(const TargetLowering &tli,
const SmallVector<unsigned, 4> &regs,
- const SmallVector<MVT, 4> &regvts,
- const SmallVector<MVT, 4> &valuevts)
+ const SmallVector<EVT, 4> &regvts,
+ const SmallVector<EVT, 4> &valuevts)
: TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
- RegsForValue(const TargetLowering &tli,
+ RegsForValue(LLVMContext &Context, const TargetLowering &tli,
unsigned Reg, const Type *Ty) : TLI(&tli) {
ComputeValueVTs(tli, Ty, ValueVTs);
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = TLI->getRegisterType(ValueVT);
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
+ EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
for (unsigned i = 0; i != NumRegs; ++i)
Regs.push_back(Reg + i);
RegVTs.push_back(RegisterVT);
@@ -352,11 +354,11 @@ void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
unsigned PHIReg = ValueMap[PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- MVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(VT);
+ EVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
@@ -366,7 +368,7 @@ void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
}
}
-unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
+unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
@@ -378,15 +380,15 @@ unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, V->getType(), ValueVTs);
unsigned FirstReg = 0;
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- MVT RegisterVT = TLI.getRegisterType(ValueVT);
+ EVT ValueVT = ValueVTs[Value];
+ EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
- unsigned NumRegs = TLI.getNumRegisters(ValueVT);
+ unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
for (unsigned i = 0; i != NumRegs; ++i) {
unsigned R = MakeReg(RegisterVT);
if (!FirstReg) FirstReg = R;
@@ -402,7 +404,7 @@ unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
/// (ISD::AssertSext).
static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
const SDValue *Parts,
- unsigned NumParts, MVT PartVT, MVT ValueVT,
+ unsigned NumParts, EVT PartVT, EVT ValueVT,
ISD::NodeType AssertOp = ISD::DELETED_NODE) {
assert(NumParts > 0 && "No parts to assemble!");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
@@ -418,11 +420,11 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
unsigned RoundParts = NumParts & (NumParts - 1) ?
1 << Log2_32(NumParts) : NumParts;
unsigned RoundBits = PartBits * RoundParts;
- MVT RoundVT = RoundBits == ValueBits ?
- ValueVT : MVT::getIntegerVT(RoundBits);
+ EVT RoundVT = RoundBits == ValueBits ?
+ ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
SDValue Lo, Hi;
- MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
+ EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
if (RoundParts > 2) {
Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
@@ -439,7 +441,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
if (RoundParts < NumParts) {
// Assemble the trailing non-power-of-2 part.
unsigned OddParts = NumParts - RoundParts;
- MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
+ EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
Hi = getCopyFromParts(DAG, dl,
Parts+RoundParts, OddParts, PartVT, OddVT);
@@ -447,7 +449,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
Lo = Val;
if (TLI.isBigEndian())
std::swap(Lo, Hi);
- MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
+ EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
DAG.getConstant(Lo.getValueType().getSizeInBits(),
@@ -457,11 +459,11 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
}
} else if (ValueVT.isVector()) {
// Handle a multi-element vector.
- MVT IntermediateVT, RegisterVT;
+ EVT IntermediateVT, RegisterVT;
unsigned NumIntermediates;
unsigned NumRegs =
- TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
- RegisterVT);
+ TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
+ NumIntermediates, RegisterVT);
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
NumParts = NumRegs; // Silence a compiler warning.
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
@@ -494,11 +496,11 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
ValueVT, &Ops[0], NumIntermediates);
} else if (PartVT.isFloatingPoint()) {
// FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == MVT(MVT::ppcf128) && PartVT == MVT(MVT::f64) &&
+ assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
"Unexpected split");
SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT(MVT::f64), Parts[1]);
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
@@ -506,7 +508,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
// FP split into integer parts (soft fp)
assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split");
- MVT IntVT = MVT::getIntegerVT(ValueVT.getSizeInBits());
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
}
}
@@ -555,7 +557,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
- assert(0 && "Unknown mismatch!");
+ llvm_unreachable("Unknown mismatch!");
return SDValue();
}
@@ -563,11 +565,11 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
/// split into legal parts. If the parts contain more bits than Val, then, for
/// integers, ExtendKind can be used to specify how to generate the extra bits.
static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
- SDValue *Parts, unsigned NumParts, MVT PartVT,
+ SDValue *Parts, unsigned NumParts, EVT PartVT,
ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MVT PtrVT = TLI.getPointerTy();
- MVT ValueVT = Val.getValueType();
+ EVT PtrVT = TLI.getPointerTy();
+ EVT ValueVT = Val.getValueType();
unsigned PartBits = PartVT.getSizeInBits();
unsigned OrigNumParts = NumParts;
assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
@@ -588,10 +590,10 @@ static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
assert(NumParts == 1 && "Do not know what to promote to!");
Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
} else if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
} else {
- assert(0 && "Unknown mismatch!");
+ llvm_unreachable("Unknown mismatch!");
}
} else if (PartBits == ValueVT.getSizeInBits()) {
// Different types of the same size.
@@ -600,10 +602,10 @@ static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
} else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
// If the parts cover less bits than value has, truncate the value.
if (PartVT.isInteger() && ValueVT.isInteger()) {
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
} else {
- assert(0 && "Unknown mismatch!");
+ llvm_unreachable("Unknown mismatch!");
}
}
@@ -634,19 +636,19 @@ static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
// The odd parts were reversed by getCopyToParts - unreverse them.
std::reverse(Parts + RoundParts, Parts + NumParts);
NumParts = RoundParts;
- ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
}
// The number of parts is a power of 2. Repeatedly bisect the value using
// EXTRACT_ELEMENT.
Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
- MVT::getIntegerVT(ValueVT.getSizeInBits()),
+ EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
Val);
for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
for (unsigned i = 0; i < NumParts; i += StepSize) {
unsigned ThisBits = StepSize * PartBits / 2;
- MVT ThisVT = MVT::getIntegerVT (ThisBits);
+ EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
SDValue &Part0 = Parts[i];
SDValue &Part1 = Parts[i+StepSize/2];
@@ -692,11 +694,10 @@ static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
}
// Handle a multi-element vector.
- MVT IntermediateVT, RegisterVT;
+ EVT IntermediateVT, RegisterVT;
unsigned NumIntermediates;
- unsigned NumRegs = TLI
- .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
- RegisterVT);
+ unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
+ IntermediateVT, NumIntermediates, RegisterVT);
unsigned NumElements = ValueVT.getVectorNumElements();
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
@@ -750,8 +751,10 @@ void SelectionDAGLowering::clear() {
NodeMap.clear();
PendingLoads.clear();
PendingExports.clear();
+ EdgeMapping.clear();
DAG.clear();
CurDebugLoc = DebugLoc::getUnknownLoc();
+ HasTailCall = false;
}
/// getRoot - Return the current virtual root of the Selection DAG,
@@ -817,8 +820,7 @@ void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
// Note: this doesn't use InstVisitor, because it has to work with
// ConstantExpr's in addition to instructions.
switch (Opcode) {
- default: assert(0 && "Unknown instruction type encountered!");
- abort();
+ default: llvm_unreachable("Unknown instruction type encountered!");
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
@@ -831,7 +833,7 @@ SDValue SelectionDAGLowering::getValue(const Value *V) {
if (N.getNode()) return N;
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
- MVT VT = TLI.getValueType(V->getType(), true);
+ EVT VT = TLI.getValueType(V->getType(), true);
if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
return N = DAG.getConstant(*CI, VT);
@@ -860,6 +862,10 @@ SDValue SelectionDAGLowering::getValue(const Value *V) {
for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
OI != OE; ++OI) {
SDNode *Val = getValue(*OI).getNode();
+ // If the operand is an empty aggregate, there are no values.
+ if (!Val) continue;
+ // Add each leaf value from the operand to the Constants list
+ // to form a flattened list of all the values.
for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
Constants.push_back(SDValue(Val, i));
}
@@ -871,14 +877,14 @@ SDValue SelectionDAGLowering::getValue(const Value *V) {
assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
"Unknown struct or array constant!");
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, C->getType(), ValueVTs);
unsigned NumElts = ValueVTs.size();
if (NumElts == 0)
return SDValue(); // empty struct
SmallVector<SDValue, 4> Constants(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
- MVT EltVT = ValueVTs[i];
+ EVT EltVT = ValueVTs[i];
if (isa<UndefValue>(C))
Constants[i] = DAG.getUNDEF(EltVT);
else if (EltVT.isFloatingPoint())
@@ -900,7 +906,7 @@ SDValue SelectionDAGLowering::getValue(const Value *V) {
Ops.push_back(getValue(CP->getOperand(i)));
} else {
assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- MVT EltVT = TLI.getValueType(VecTy->getElementType());
+ EVT EltVT = TLI.getValueType(VecTy->getElementType());
SDValue Op;
if (EltVT.isFloatingPoint())
@@ -927,30 +933,24 @@ SDValue SelectionDAGLowering::getValue(const Value *V) {
unsigned InReg = FuncInfo.ValueMap[V];
assert(InReg && "Value not in map!");
- RegsForValue RFV(TLI, InReg, V->getType());
+ RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
SDValue Chain = DAG.getEntryNode();
return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
}
void SelectionDAGLowering::visitRet(ReturnInst &I) {
- if (I.getNumOperands() == 0) {
- DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(),
- MVT::Other, getControlRoot()));
- return;
- }
-
- SmallVector<SDValue, 8> NewValues;
- NewValues.push_back(getControlRoot());
+ SDValue Chain = getControlRoot();
+ SmallVector<ISD::OutputArg, 8> Outs;
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) continue;
SDValue RetOp = getValue(I.getOperand(i));
for (unsigned j = 0, f = NumValues; j != f; ++j) {
- MVT VT = ValueVTs[j];
+ EVT VT = ValueVTs[j];
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
@@ -965,13 +965,13 @@ void SelectionDAGLowering::visitRet(ReturnInst &I) {
// conventions. The frontend should mark functions whose return values
// require promoting with signext or zeroext attributes.
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- MVT MinVT = TLI.getRegisterType(MVT::i32);
+ EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
if (VT.bitsLT(MinVT))
VT = MinVT;
}
- unsigned NumParts = TLI.getNumRegisters(VT);
- MVT PartVT = TLI.getRegisterType(VT);
+ unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
+ EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
SmallVector<SDValue, 4> Parts(NumParts);
getCopyToParts(DAG, getCurDebugLoc(),
SDValue(RetOp.getNode(), RetOp.getResNo() + j),
@@ -981,14 +981,30 @@ void SelectionDAGLowering::visitRet(ReturnInst &I) {
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
if (F->paramHasAttr(0, Attribute::InReg))
Flags.setInReg();
- for (unsigned i = 0; i < NumParts; ++i) {
- NewValues.push_back(Parts[i]);
- NewValues.push_back(DAG.getArgFlags(Flags));
- }
+
+ // Propagate extension type if any
+ if (F->paramHasAttr(0, Attribute::SExt))
+ Flags.setSExt();
+ else if (F->paramHasAttr(0, Attribute::ZExt))
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i)
+ Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
}
}
- DAG.setRoot(DAG.getNode(ISD::RET, getCurDebugLoc(), MVT::Other,
- &NewValues[0], NewValues.size()));
+
+ bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+ CallingConv::ID CallConv =
+ DAG.getMachineFunction().getFunction()->getCallingConv();
+ Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
+ Outs, getCurDebugLoc(), DAG);
+
+ // Verify that the target's LowerReturn behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerReturn didn't return a valid chain!");
+
+ // Update the DAG with the new chain value resulting from return lowering.
+ DAG.setRoot(Chain);
}
/// CopyToExportRegsIfNeeded - If the given value has virtual registers
@@ -1073,7 +1089,7 @@ static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
default:
- assert(0 && "Invalid FCmp predicate opcode!");
+ llvm_unreachable("Invalid FCmp predicate opcode!");
FOC = FPC = ISD::SETFALSE;
break;
}
@@ -1099,7 +1115,7 @@ static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
case ICmpInst::ICMP_SGT: return ISD::SETGT;
case ICmpInst::ICMP_UGT: return ISD::SETUGT;
default:
- assert(0 && "Invalid ICmp predicate opcode!");
+ llvm_unreachable("Invalid ICmp predicate opcode!");
return ISD::SETNE;
}
}
@@ -1131,7 +1147,7 @@ SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
Condition = getFCmpCondCode(FC->getPredicate());
} else {
Condition = ISD::SETEQ; // silence warning.
- assert(0 && "Unknown compare instruction");
+ llvm_unreachable("Unknown compare instruction");
}
CaseBlock CB(Condition, BOp->getOperand(0),
@@ -1142,7 +1158,7 @@ SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
}
// Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
+ CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
NULL, TBB, FBB, CurBB);
SwitchCases.push_back(CB);
}
@@ -1229,7 +1245,7 @@ void SelectionDAGLowering::visitBr(BranchInst &I) {
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
if (I.isUnconditional()) {
@@ -1290,14 +1306,14 @@ void SelectionDAGLowering::visitBr(BranchInst &I) {
// Okay, we decided not to do this, remove any inserted MBB's and clear
// SwitchCases.
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
+ FuncInfo.MF->erase(SwitchCases[i].ThisBB);
SwitchCases.clear();
}
}
// Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
+ CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
NULL, Succ0MBB, Succ1MBB, CurMBB);
// Use visitSwitchCase to actually insert the fast branch sequence for this
// cond branch.
@@ -1315,9 +1331,11 @@ void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
if (CB.CmpMHS == NULL) {
// Fold "(X == true)" to X and "(X == false)" to !X to
// handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
+ if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ)
Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
+ else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ) {
SDValue True = DAG.getConstant(1, CondLHS.getValueType());
Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
} else
@@ -1329,7 +1347,7 @@ void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
SDValue CmpOp = getValue(CB.CmpMHS);
- MVT VT = CmpOp.getValueType();
+ EVT VT = CmpOp.getValueType();
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
@@ -1350,7 +1368,7 @@ void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
// If the lhs block is the next block, invert the condition so that we can
@@ -1385,7 +1403,7 @@ void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
// Emit the code for the jump table
assert(JT.Reg != -1U && "Should lower JT Header first!");
- MVT PTy = TLI.getPointerTy();
+ EVT PTy = TLI.getPointerTy();
SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
JT.Reg, PTy);
SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
@@ -1402,7 +1420,7 @@ void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
// conditional branch to default mbb if the result is greater than the
// difference between smallest and largest cases.
SDValue SwitchOp = getValue(JTH.SValue);
- MVT VT = SwitchOp.getValueType();
+ EVT VT = SwitchOp.getValueType();
SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
DAG.getConstant(JTH.First, VT));
@@ -1411,12 +1429,7 @@ void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
// can be used as an index into the jump table in a subsequent basic block.
// This value may be smaller or larger than the target's pointer type, and
// therefore require extension or truncating.
- if (VT.bitsGT(TLI.getPointerTy()))
- SwitchOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- else
- SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
+ SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
@@ -1435,7 +1448,7 @@ void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
@@ -1454,7 +1467,7 @@ void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
// Subtract the minimum value
SDValue SwitchOp = getValue(B.SValue);
- MVT VT = SwitchOp.getValueType();
+ EVT VT = SwitchOp.getValueType();
SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
DAG.getConstant(B.First, VT));
@@ -1464,13 +1477,7 @@ void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
SUB, DAG.getConstant(B.Range, VT),
ISD::SETUGT);
- SDValue ShiftOp;
- if (VT.bitsGT(TLI.getPointerTy()))
- ShiftOp = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
- else
- ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(), SUB);
+ SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
@@ -1480,7 +1487,7 @@ void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
MachineBasicBlock* MBB = B.Cases[0].ThisBB;
@@ -1531,7 +1538,7 @@ void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
if (NextMBB == NextBlock)
@@ -1584,13 +1591,13 @@ bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
+ MachineFunction *CurMF = FuncInfo.MF;
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != CurMBB->getParent()->end())
+ if (++BBI != FuncInfo.MF->end())
NextBlock = BBI;
// TODO: If any two of the cases has the same destination, and if one value
@@ -1698,14 +1705,11 @@ bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
+ MachineFunction *CurMF = FuncInfo.MF;
// Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
-
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
+ ++BBI;
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
@@ -1771,14 +1775,11 @@ bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
MachineBasicBlock* Default) {
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
+ MachineFunction *CurMF = FuncInfo.MF;
// Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
-
- if (++BBI != CurMBB->getParent()->end())
- NextBlock = BBI;
+ ++BBI;
Case& FrontCase = *CR.Range.first;
Case& BackCase = *(CR.Range.second-1);
@@ -1898,14 +1899,15 @@ bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default){
- unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
+ EVT PTy = TLI.getPointerTy();
+ unsigned IntPtrBits = PTy.getSizeInBits();
Case& FrontCase = *CR.Range.first;
Case& BackCase = *(CR.Range.second-1);
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = CurMBB->getParent();
+ MachineFunction *CurMF = FuncInfo.MF;
// If target does not have legal shift left, do not emit bit tests at all.
if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
@@ -2069,7 +2071,6 @@ size_t SelectionDAGLowering::Clusterify(CaseVector& Cases,
void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CurMBB;
MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
@@ -2174,24 +2175,26 @@ void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
if (!isa<VectorType>(I.getType()) &&
Op2.getValueType() != TLI.getShiftAmountTy()) {
// If the operand is smaller than the shift count type, promote it.
- if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
+ EVT PTy = TLI.getPointerTy();
+ EVT STy = TLI.getShiftAmountTy();
+ if (STy.bitsGT(Op2.getValueType()))
Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
TLI.getShiftAmountTy(), Op2);
// If the operand is larger than the shift count type but the shift
// count type has enough bits to represent any shift value, truncate
// it now. This is a common case and it exposes the truncate to
// optimization early.
- else if (TLI.getShiftAmountTy().getSizeInBits() >=
+ else if (STy.getSizeInBits() >=
Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
TLI.getShiftAmountTy(), Op2);
// Otherwise we'll need to temporarily settle for some other
// convenient type; type legalization will make adjustments as
// needed.
- else if (TLI.getPointerTy().bitsLT(Op2.getValueType()))
+ else if (PTy.bitsLT(Op2.getValueType()))
Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
TLI.getPointerTy(), Op2);
- else if (TLI.getPointerTy().bitsGT(Op2.getValueType()))
+ else if (PTy.bitsGT(Op2.getValueType()))
Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
TLI.getPointerTy(), Op2);
}
@@ -2209,7 +2212,9 @@ void SelectionDAGLowering::visitICmp(User &I) {
SDValue Op1 = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1));
ISD::CondCode Opcode = getICmpCondCode(predicate);
- setValue(&I, DAG.getSetCC(getCurDebugLoc(),MVT::i1, Op1, Op2, Opcode));
+
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
}
void SelectionDAGLowering::visitFCmp(User &I) {
@@ -2221,38 +2226,12 @@ void SelectionDAGLowering::visitFCmp(User &I) {
SDValue Op1 = getValue(I.getOperand(0));
SDValue Op2 = getValue(I.getOperand(1));
ISD::CondCode Condition = getFCmpCondCode(predicate);
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), MVT::i1, Op1, Op2, Condition));
-}
-
-void SelectionDAGLowering::visitVICmp(User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- setValue(&I, DAG.getVSetCC(getCurDebugLoc(), Op1.getValueType(),
- Op1, Op2, Opcode));
-}
-
-void SelectionDAGLowering::visitVFCmp(User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- MVT DestVT = TLI.getValueType(I.getType());
-
- setValue(&I, DAG.getVSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
}
void SelectionDAGLowering::visitSelect(User &I) {
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, I.getType(), ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues != 0) {
@@ -2277,7 +2256,7 @@ void SelectionDAGLowering::visitSelect(User &I) {
void SelectionDAGLowering::visitTrunc(User &I) {
// TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
}
@@ -2285,7 +2264,7 @@ void SelectionDAGLowering::visitZExt(User &I) {
// ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// ZExt also can't be a cast to bool for same reason. So, nothing much to do
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
}
@@ -2293,14 +2272,14 @@ void SelectionDAGLowering::visitSExt(User &I) {
// SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// SExt also can't be a cast to bool for same reason. So, nothing much to do
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
}
void SelectionDAGLowering::visitFPTrunc(User &I) {
// FPTrunc is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
DestVT, N, DAG.getIntPtrConstant(0)));
}
@@ -2308,35 +2287,35 @@ void SelectionDAGLowering::visitFPTrunc(User &I) {
void SelectionDAGLowering::visitFPExt(User &I){
// FPTrunc is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
}
void SelectionDAGLowering::visitFPToUI(User &I) {
// FPToUI is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
}
void SelectionDAGLowering::visitFPToSI(User &I) {
// FPToSI is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
}
void SelectionDAGLowering::visitUIToFP(User &I) {
// UIToFP is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
}
void SelectionDAGLowering::visitSIToFP(User &I){
// SIToFP is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
}
@@ -2344,14 +2323,9 @@ void SelectionDAGLowering::visitPtrToInt(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDValue N = getValue(I.getOperand(0));
- MVT SrcVT = N.getValueType();
- MVT DestVT = TLI.getValueType(I.getType());
- SDValue Result;
- if (DestVT.bitsLT(SrcVT))
- Result = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
- else
- // Note: ZERO_EXTEND can handle cases where the sizes are equal too
- Result = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
+ EVT SrcVT = N.getValueType();
+ EVT DestVT = TLI.getValueType(I.getType());
+ SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
setValue(&I, Result);
}
@@ -2359,19 +2333,14 @@ void SelectionDAGLowering::visitIntToPtr(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDValue N = getValue(I.getOperand(0));
- MVT SrcVT = N.getValueType();
- MVT DestVT = TLI.getValueType(I.getType());
- if (DestVT.bitsLT(SrcVT))
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
- else
- // Note: ZERO_EXTEND can handle cases where the sizes are equal too
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- DestVT, N));
+ EVT SrcVT = N.getValueType();
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
}
void SelectionDAGLowering::visitBitCast(User &I) {
SDValue N = getValue(I.getOperand(0));
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
// BitCast assures us that source and destination are the same size so this
// is either a BIT_CONVERT or a no-op.
@@ -2422,7 +2391,8 @@ void SelectionDAGLowering::visitShuffleVector(User &I) {
// Convert the ConstantVector mask operand into an array of ints, with -1
// representing undef values.
SmallVector<Constant*, 8> MaskElts;
- cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
+ cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
+ MaskElts);
unsigned MaskNumElts = MaskElts.size();
for (unsigned i = 0; i != MaskNumElts; ++i) {
if (isa<UndefValue>(MaskElts[i]))
@@ -2431,8 +2401,8 @@ void SelectionDAGLowering::visitShuffleVector(User &I) {
Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
}
- MVT VT = TLI.getValueType(I.getType());
- MVT SrcVT = Src1.getValueType();
+ EVT VT = TLI.getValueType(I.getType());
+ EVT SrcVT = Src1.getValueType();
unsigned SrcNumElts = SrcVT.getVectorNumElements();
if (SrcNumElts == MaskNumElts) {
@@ -2531,7 +2501,7 @@ void SelectionDAGLowering::visitShuffleVector(User &I) {
}
}
- if (RangeUse[0] == 0 && RangeUse[0] == 0) {
+ if (RangeUse[0] == 0 && RangeUse[1] == 0) {
setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
return;
}
@@ -2566,8 +2536,8 @@ void SelectionDAGLowering::visitShuffleVector(User &I) {
// We can't use either concat vectors or extract subvectors so fall back to
// replacing the shuffle with extract and build vector.
// to insert and build vector.
- MVT EltVT = VT.getVectorElementType();
- MVT PtrVT = TLI.getPointerTy();
+ EVT EltVT = VT.getVectorElementType();
+ EVT PtrVT = TLI.getPointerTy();
SmallVector<SDValue,8> Ops;
for (unsigned i = 0; i != MaskNumElts; ++i) {
if (Mask[i] < 0) {
@@ -2598,9 +2568,9 @@ void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
I.idx_begin(), I.idx_end());
- SmallVector<MVT, 4> AggValueVTs;
+ SmallVector<EVT, 4> AggValueVTs;
ComputeValueVTs(TLI, AggTy, AggValueVTs);
- SmallVector<MVT, 4> ValValueVTs;
+ SmallVector<EVT, 4> ValValueVTs;
ComputeValueVTs(TLI, ValTy, ValValueVTs);
unsigned NumAggValues = AggValueVTs.size();
@@ -2637,7 +2607,7 @@ void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
I.idx_begin(), I.idx_end());
- SmallVector<MVT, 4> ValValueVTs;
+ SmallVector<EVT, 4> ValValueVTs;
ComputeValueVTs(TLI, ValTy, ValValueVTs);
unsigned NumValValues = ValValueVTs.size();
@@ -2682,7 +2652,8 @@ void SelectionDAGLowering::visitGetElementPtr(User &I) {
uint64_t Offs =
TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
SDValue OffsVal;
- unsigned PtrBits = TLI.getPointerTy().getSizeInBits();
+ EVT PTy = TLI.getPointerTy();
+ unsigned PtrBits = PTy.getSizeInBits();
if (PtrBits < 64) {
OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
TLI.getPointerTy(),
@@ -2700,12 +2671,7 @@ void SelectionDAGLowering::visitGetElementPtr(User &I) {
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
- if (IdxN.getValueType().bitsLT(N.getValueType()))
- IdxN = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(),
- N.getValueType(), IdxN);
- else if (IdxN.getValueType().bitsGT(N.getValueType()))
- IdxN = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- N.getValueType(), IdxN);
+ IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
// If this is a multiply by a power of two, turn it into a shl
// immediately. This is a very common case.
@@ -2749,13 +2715,8 @@ void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
- MVT IntPtr = TLI.getPointerTy();
- if (IntPtr.bitsLT(AllocSize.getValueType()))
- AllocSize = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- IntPtr, AllocSize);
- else if (IntPtr.bitsGT(AllocSize.getValueType()))
- AllocSize = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- IntPtr, AllocSize);
+ EVT IntPtr = TLI.getPointerTy();
+ AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
// Handle alignment. If the requested alignment is less than or equal to
// the stack alignment, ignore it. If the size is greater than or equal to
@@ -2784,7 +2745,7 @@ void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
// Inform the Frame Information that we have just allocated a variable-sized
// object.
- CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
+ FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
}
void SelectionDAGLowering::visitLoad(LoadInst &I) {
@@ -2795,7 +2756,7 @@ void SelectionDAGLowering::visitLoad(LoadInst &I) {
bool isVolatile = I.isVolatile();
unsigned Alignment = I.getAlignment();
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
unsigned NumValues = ValueVTs.size();
@@ -2818,14 +2779,13 @@ void SelectionDAGLowering::visitLoad(LoadInst &I) {
SmallVector<SDValue, 4> Values(NumValues);
SmallVector<SDValue, 4> Chains(NumValues);
- MVT PtrVT = Ptr.getValueType();
+ EVT PtrVT = Ptr.getValueType();
for (unsigned i = 0; i != NumValues; ++i) {
SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
- DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT)),
- SV, Offsets[i],
- isVolatile, Alignment);
+ DAG.getNode(ISD::ADD, getCurDebugLoc(),
+ PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT)),
+ SV, Offsets[i], isVolatile, Alignment);
Values[i] = L;
Chains[i] = L.getValue(1);
}
@@ -2850,7 +2810,7 @@ void SelectionDAGLowering::visitStore(StoreInst &I) {
Value *SrcV = I.getOperand(0);
Value *PtrV = I.getOperand(1);
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
SmallVector<uint64_t, 4> Offsets;
ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
unsigned NumValues = ValueVTs.size();
@@ -2865,7 +2825,7 @@ void SelectionDAGLowering::visitStore(StoreInst &I) {
SDValue Root = getRoot();
SmallVector<SDValue, 4> Chains(NumValues);
- MVT PtrVT = Ptr.getValueType();
+ EVT PtrVT = Ptr.getValueType();
bool isVolatile = I.isVolatile();
unsigned Alignment = I.getAlignment();
for (unsigned i = 0; i != NumValues; ++i)
@@ -2874,8 +2834,7 @@ void SelectionDAGLowering::visitStore(StoreInst &I) {
DAG.getNode(ISD::ADD, getCurDebugLoc(),
PtrVT, Ptr,
DAG.getConstant(Offsets[i], PtrVT)),
- PtrV, Offsets[i],
- isVolatile, Alignment);
+ PtrV, Offsets[i], isVolatile, Alignment);
DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
MVT::Other, &Chains[0], NumValues));
@@ -2915,24 +2874,18 @@ void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
Ops.push_back(Op);
}
- std::vector<MVT> VTArray;
- if (I.getType() != Type::VoidTy) {
- MVT VT = TLI.getValueType(I.getType());
- if (VT.isVector()) {
- const VectorType *DestTy = cast<VectorType>(I.getType());
- MVT EltVT = TLI.getValueType(DestTy->getElementType());
-
- VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
- assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
- }
-
- assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
- VTArray.push_back(VT);
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getType(), ValueVTs);
+#ifndef NDEBUG
+ for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
+ assert(TLI.isTypeLegal(ValueVTs[Val]) &&
+ "Intrinsic uses a non-legal type?");
}
+#endif // NDEBUG
if (HasChain)
- VTArray.push_back(MVT::Other);
+ ValueVTs.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(&VTArray[0], VTArray.size());
+ SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
// Create the node.
SDValue Result;
@@ -2947,7 +2900,7 @@ void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
else if (!HasChain)
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
VTs, &Ops[0], Ops.size());
- else if (I.getType() != Type::VoidTy)
+ else if (I.getType() != Type::getVoidTy(*DAG.getContext()))
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
VTs, &Ops[0], Ops.size());
else
@@ -2961,9 +2914,9 @@ void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
else
DAG.setRoot(Chain);
}
- if (I.getType() != Type::VoidTy) {
+ if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- MVT VT = TLI.getValueType(PTy);
+ EVT VT = TLI.getValueType(PTy);
Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
}
setValue(&I, Result);
@@ -3890,7 +3843,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
if (isValidDebugInfoIntrinsic(RSI, OptLevel) && DW
&& DW->ShouldEmitDwarfDebug()) {
unsigned LabelID =
- DW->RecordRegionStart(cast<GlobalVariable>(RSI.getContext()));
+ DW->RecordRegionStart(RSI.getContext());
DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
getRoot(), LabelID));
}
@@ -3905,7 +3858,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
return 0;
MachineFunction &MF = DAG.getMachineFunction();
- DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext()));
+ DISubprogram Subprogram(REI.getContext());
if (isInlinedFnEnd(REI, MF.getFunction())) {
// This is end of inlined function. Debugging information for inlined
@@ -3924,7 +3877,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
}
unsigned LabelID =
- DW->RecordRegionEnd(cast<GlobalVariable>(REI.getContext()));
+ DW->RecordRegionEnd(REI.getContext());
DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getCurDebugLoc(),
getRoot(), LabelID));
return 0;
@@ -3932,8 +3885,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
case Intrinsic::dbg_func_start: {
DwarfWriter *DW = DAG.getDwarfWriter();
DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
- if (!isValidDebugInfoIntrinsic(FSI, CodeGenOpt::None) || !DW
- || !DW->ShouldEmitDwarfDebug())
+ if (!isValidDebugInfoIntrinsic(FSI, CodeGenOpt::None))
return 0;
MachineFunction &MF = DAG.getMachineFunction();
@@ -3954,9 +3906,11 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
// Record the source line.
setCurDebugLoc(ExtractDebugLocation(FSI, MF.getDebugLocInfo()));
+ if (!DW || !DW->ShouldEmitDwarfDebug())
+ return 0;
DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
- DISubprogram SP(cast<GlobalVariable>(FSI.getSubprogram()));
- DICompileUnit CU(PrevLocTpl.CompileUnit);
+ DISubprogram SP(FSI.getSubprogram());
+ DICompileUnit CU(PrevLocTpl.Scope);
unsigned LabelID = DW->RecordInlinedFnStart(SP, CU,
PrevLocTpl.Line,
PrevLocTpl.Col);
@@ -3967,23 +3921,44 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
// This is a beginning of a new function.
MF.setDefaultDebugLoc(ExtractDebugLocation(FSI, MF.getDebugLocInfo()));
-
+
+ if (!DW || !DW->ShouldEmitDwarfDebug())
+ return 0;
// llvm.dbg.func_start also defines beginning of function scope.
- DW->RecordRegionStart(cast<GlobalVariable>(FSI.getSubprogram()));
+ DW->RecordRegionStart(FSI.getSubprogram());
return 0;
}
case Intrinsic::dbg_declare: {
if (OptLevel != CodeGenOpt::None)
// FIXME: Variable debug info is not supported here.
return 0;
-
+ DwarfWriter *DW = DAG.getDwarfWriter();
+ if (!DW)
+ return 0;
DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
return 0;
- Value *Variable = DI.getVariable();
- DAG.setRoot(DAG.getNode(ISD::DECLARE, dl, MVT::Other, getRoot(),
- getValue(DI.getAddress()), getValue(Variable)));
+ MDNode *Variable = DI.getVariable();
+ Value *Address = DI.getAddress();
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
+ Address = BCI->getOperand(0);
+ AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+ // Don't handle byval struct arguments or VLAs, for example.
+ if (!AI)
+ return 0;
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI == FuncInfo.StaticAllocaMap.end())
+ return 0; // VLAs.
+ int FI = SI->second;
+#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ if (MMI)
+ MMI->setVariableDbgInfo(Variable, FI);
+#else
+ DW->RecordVariable(Variable, FI);
+#endif
return 0;
}
case Intrinsic::eh_exception: {
@@ -3998,54 +3973,45 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
return 0;
}
- case Intrinsic::eh_selector_i32:
- case Intrinsic::eh_selector_i64: {
+ case Intrinsic::eh_selector: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
- MVT::i32 : MVT::i64);
- if (MMI) {
- if (CurMBB->isLandingPad())
- AddCatchInfo(I, MMI, CurMBB);
- else {
+ if (CurMBB->isLandingPad())
+ AddCatchInfo(I, MMI, CurMBB);
+ else {
#ifndef NDEBUG
- FuncInfo.CatchInfoLost.insert(&I);
+ FuncInfo.CatchInfoLost.insert(&I);
#endif
- // FIXME: Mark exception selector register as live in. Hack for PR1508.
- unsigned Reg = TLI.getExceptionSelectorRegister();
- if (Reg) CurMBB->addLiveIn(Reg);
- }
-
- // Insert the EHSELECTION instruction.
- SDVTList VTs = DAG.getVTList(VT, MVT::Other);
- SDValue Ops[2];
- Ops[0] = getValue(I.getOperand(1));
- Ops[1] = getRoot();
- SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
- setValue(&I, Op);
- DAG.setRoot(Op.getValue(1));
- } else {
- setValue(&I, DAG.getConstant(0, VT));
+ // FIXME: Mark exception selector register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) CurMBB->addLiveIn(Reg);
}
+ // Insert the EHSELECTION instruction.
+ SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+ SDValue Ops[2];
+ Ops[0] = getValue(I.getOperand(1));
+ Ops[1] = getRoot();
+ SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
+
+ DAG.setRoot(Op.getValue(1));
+
+ setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
return 0;
}
- case Intrinsic::eh_typeid_for_i32:
- case Intrinsic::eh_typeid_for_i64: {
+ case Intrinsic::eh_typeid_for: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
- MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
- MVT::i32 : MVT::i64);
if (MMI) {
// Find the type id for the given typeinfo.
GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
unsigned TypeID = MMI->getTypeIDFor(GV);
- setValue(&I, DAG.getConstant(TypeID, VT));
+ setValue(&I, DAG.getConstant(TypeID, MVT::i32));
} else {
// Return something different to eh_selector.
- setValue(&I, DAG.getConstant(1, VT));
+ setValue(&I, DAG.getConstant(1, MVT::i32));
}
return 0;
@@ -4073,14 +4039,9 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
return 0;
case Intrinsic::eh_dwarf_cfa: {
- MVT VT = getValue(I.getOperand(1)).getValueType();
- SDValue CfaArg;
- if (VT.bitsGT(TLI.getPointerTy()))
- CfaArg = DAG.getNode(ISD::TRUNCATE, dl,
- TLI.getPointerTy(), getValue(I.getOperand(1)));
- else
- CfaArg = DAG.getNode(ISD::SIGN_EXTEND, dl,
- TLI.getPointerTy(), getValue(I.getOperand(1)));
+ EVT VT = getValue(I.getOperand(1)).getValueType();
+ SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
+ TLI.getPointerTy());
SDValue Offset = DAG.getNode(ISD::ADD, dl,
TLI.getPointerTy(),
@@ -4096,7 +4057,6 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
Offset));
return 0;
}
-
case Intrinsic::convertff:
case Intrinsic::convertfsi:
case Intrinsic::convertfui:
@@ -4118,7 +4078,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
case Intrinsic::convertus: Code = ISD::CVT_US; break;
case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
}
- MVT DestVT = TLI.getValueType(I.getType());
+ EVT DestVT = TLI.getValueType(I.getType());
Value* Op1 = I.getOperand(1);
setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
DAG.getValueType(DestVT),
@@ -4182,16 +4142,6 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
DAG.setRoot(Tmp.getValue(1));
return 0;
}
- case Intrinsic::part_select: {
- // Currently not implemented: just abort
- assert(0 && "part_select intrinsic not implemented");
- abort();
- }
- case Intrinsic::part_set: {
- // Currently not implemented: just abort
- assert(0 && "part_set intrinsic not implemented");
- abort();
- }
case Intrinsic::bswap:
setValue(&I, DAG.getNode(ISD::BSWAP, dl,
getValue(I.getOperand(1)).getValueType(),
@@ -4199,21 +4149,21 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
return 0;
case Intrinsic::cttz: {
SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
+ EVT Ty = Arg.getValueType();
SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
setValue(&I, result);
return 0;
}
case Intrinsic::ctlz: {
SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
+ EVT Ty = Arg.getValueType();
SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
setValue(&I, result);
return 0;
}
case Intrinsic::ctpop: {
SDValue Arg = getValue(I.getOperand(1));
- MVT Ty = Arg.getValueType();
+ EVT Ty = Arg.getValueType();
SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
setValue(&I, result);
return 0;
@@ -4235,7 +4185,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
// Emit code into the DAG to store the stack guard onto the stack.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- MVT PtrTy = TLI.getPointerTy();
+ EVT PtrTy = TLI.getPointerTy();
SDValue Src = getValue(I.getOperand(1)); // The guard's value.
AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
@@ -4289,7 +4239,7 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
case Intrinsic::gcread:
case Intrinsic::gcwrite:
- assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
+ llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
return 0;
case Intrinsic::flt_rounds: {
@@ -4373,9 +4323,76 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
}
}
+/// Test if the given instruction is in a position to be optimized
+/// with a tail-call. This roughly means that it's in a block with
+/// a return and there's nothing that needs to be scheduled
+/// between it and the return.
+///
+/// This function only tests target-independent requirements.
+/// For target-dependent requirements, a target should override
+/// TargetLowering::IsEligibleForTailCallOptimization.
+///
+static bool
+isInTailCallPosition(const Instruction *I, Attributes RetAttr,
+ const TargetLowering &TLI) {
+ const BasicBlock *ExitBB = I->getParent();
+ const TerminatorInst *Term = ExitBB->getTerminator();
+ const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
+ const Function *F = ExitBB->getParent();
+
+ // The block must end in a return statement or an unreachable.
+ if (!Ret && !isa<UnreachableInst>(Term)) return false;
+
+ // If I will have a chain, make sure no other instruction that will have a
+ // chain interposes between I and the return.
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
+ !I->isSafeToSpeculativelyExecute())
+ for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
+ --BBI) {
+ if (&*BBI == I)
+ break;
+ if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
+ !BBI->isSafeToSpeculativelyExecute())
+ return false;
+ }
+
+ // If the block ends with a void return or unreachable, it doesn't matter
+ // what the call's return type is.
+ if (!Ret || Ret->getNumOperands() == 0) return true;
+
+ // Conservatively require the attributes of the call to match those of
+ // the return.
+ if (F->getAttributes().getRetAttributes() != RetAttr)
+ return false;
+
+ // Otherwise, make sure the unmodified return value of I is the return value.
+ for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
+ U = dyn_cast<Instruction>(U->getOperand(0))) {
+ if (!U)
+ return false;
+ if (!U->hasOneUse())
+ return false;
+ if (U == I)
+ break;
+ // Check for a truly no-op truncate.
+ if (isa<TruncInst>(U) &&
+ TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
+ continue;
+ // Check for a truly no-op bitcast.
+ if (isa<BitCastInst>(U) &&
+ (U->getOperand(0)->getType() == U->getType() ||
+ (isa<PointerType>(U->getOperand(0)->getType()) &&
+ isa<PointerType>(U->getType()))))
+ continue;
+ // Otherwise it's not a true no-op.
+ return false;
+ }
+
+ return true;
+}
void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
- bool IsTailCall,
+ bool isTailCall,
MachineBasicBlock *LandingPad) {
const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
@@ -4385,8 +4402,9 @@ void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Args.reserve(CS.arg_size());
+ unsigned j = 1;
for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
+ i != e; ++i, ++j) {
SDValue ArgNode = getValue(*i);
Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
@@ -4405,6 +4423,7 @@ void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
// Insert a label before the invoke call to mark the try range. This can be
// used to detect deletion of the invoke via the MachineModuleInfo.
BeginLabel = MMI->NextLabelID();
+
// Both PendingLoads and PendingExports must be flushed here;
// this call might not return.
(void)getRoot();
@@ -4412,17 +4431,35 @@ void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
getControlRoot(), BeginLabel));
}
+ // Check if target-independent constraints permit a tail call here.
+ // Target-dependent constraints are checked within TLI.LowerCallTo.
+ if (isTailCall &&
+ !isInTailCallPosition(CS.getInstruction(),
+ CS.getAttributes().getRetAttributes(),
+ TLI))
+ isTailCall = false;
+
std::pair<SDValue,SDValue> Result =
TLI.LowerCallTo(getRoot(), CS.getType(),
CS.paramHasAttr(0, Attribute::SExt),
CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
CS.getCallingConv(),
- IsTailCall && PerformTailCallOpt,
+ isTailCall,
+ !CS.getInstruction()->use_empty(),
Callee, Args, DAG, getCurDebugLoc());
- if (CS.getType() != Type::VoidTy)
+ assert((isTailCall || Result.second.getNode()) &&
+ "Non-null chain expected with non-tail call!");
+ assert((Result.second.getNode() || !Result.first.getNode()) &&
+ "Null value expected with tail call!");
+ if (Result.first.getNode())
setValue(CS.getInstruction(), Result.first);
- DAG.setRoot(Result.second);
+ // As a special case, a null chain means that a tail call has
+ // been emitted and the DAG root is already updated.
+ if (Result.second.getNode())
+ DAG.setRoot(Result.second);
+ else
+ HasTailCall = true;
if (LandingPad && MMI) {
// Insert a label at the end of the invoke call to mark the try range. This
@@ -4458,12 +4495,9 @@ void SelectionDAGLowering::visitCall(CallInst &I) {
// Check for well-known libc/libm calls. If the function is internal, it
// can't be a library call.
- unsigned NameLen = F->getNameLen();
- if (!F->hasLocalLinkage() && NameLen) {
- const char *NameStr = F->getNameStart();
- if (NameStr[0] == 'c' &&
- ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
- (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
+ if (!F->hasLocalLinkage() && F->hasName()) {
+ StringRef Name = F->getName();
+ if (Name == "copysign" || Name == "copysignf") {
if (I.getNumOperands() == 3 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType() &&
@@ -4474,10 +4508,7 @@ void SelectionDAGLowering::visitCall(CallInst &I) {
LHS.getValueType(), LHS, RHS));
return;
}
- } else if (NameStr[0] == 'f' &&
- ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
- (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
- (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
+ } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
@@ -4486,30 +4517,36 @@ void SelectionDAGLowering::visitCall(CallInst &I) {
Tmp.getValueType(), Tmp));
return;
}
- } else if (NameStr[0] == 's' &&
- ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
- (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
- (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
+ } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
SDValue Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
Tmp.getValueType(), Tmp));
return;
}
- } else if (NameStr[0] == 'c' &&
- ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
- (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
- (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
+ } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
- I.getType() == I.getOperand(1)->getType()) {
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
SDValue Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
Tmp.getValueType(), Tmp));
return;
}
+ } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPoint() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
+ Tmp.getValueType(), Tmp));
+ return;
+ }
}
}
} else if (isa<InlineAsm>(I.getOperand(0))) {
@@ -4523,7 +4560,12 @@ void SelectionDAGLowering::visitCall(CallInst &I) {
else
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
- LowerCallTo(&I, Callee, I.isTailCall());
+ // Check if we can potentially perform a tail call. More detailed
+ // checking is be done within LowerCallTo, after more information
+ // about the call is known.
+ bool isTailCall = PerformTailCallOpt && I.isTailCall();
+
+ LowerCallTo(&I, Callee, isTailCall);
}
@@ -4539,9 +4581,9 @@ SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
SmallVector<SDValue, 8> Parts;
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
// Copy the legal parts from the registers.
- MVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = RegVTs[Value];
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+ EVT RegisterVT = RegVTs[Value];
Parts.resize(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i) {
@@ -4570,7 +4612,7 @@ SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
// FIXME: We capture more information than the dag can represent. For
// now, just use the tightest assertzext/assertsext possible.
bool isSExt = true;
- MVT FromVT(MVT::Other);
+ EVT FromVT(MVT::Other);
if (NumSignBits == RegSize)
isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
else if (NumZeroBits >= RegSize-1)
@@ -4620,9 +4662,9 @@ void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
unsigned NumRegs = Regs.size();
SmallVector<SDValue, 8> Parts(NumRegs);
for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- MVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI->getNumRegisters(ValueVT);
- MVT RegisterVT = RegVTs[Value];
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+ EVT RegisterVT = RegVTs[Value];
getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
&Parts[Part], NumParts, RegisterVT);
@@ -4665,15 +4707,15 @@ void RegsForValue::AddInlineAsmOperands(unsigned Code,
bool HasMatching,unsigned MatchingIdx,
SelectionDAG &DAG,
std::vector<SDValue> &Ops) const {
- MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
unsigned Flag = Code | (Regs.size() << 3);
if (HasMatching)
Flag |= 0x80000000 | (MatchingIdx << 16);
Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
- MVT RegisterVT = RegVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
+ EVT RegisterVT = RegVTs[Value];
for (unsigned i = 0; i != NumRegs; ++i) {
assert(Reg < Regs.size() && "Mismatch in # registers expected");
Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
@@ -4688,11 +4730,11 @@ static const TargetRegisterClass *
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
const TargetLowering &TLI,
const TargetRegisterInfo *TRI) {
- MVT FoundVT = MVT::Other;
+ EVT FoundVT = MVT::Other;
const TargetRegisterClass *FoundRC = 0;
for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
E = TRI->regclass_end(); RCI != E; ++RCI) {
- MVT ThisVT = MVT::Other;
+ EVT ThisVT = MVT::Other;
const TargetRegisterClass *RC = *RCI;
// If none of the the value types for this register class are valid, we
@@ -4765,10 +4807,11 @@ public:
}
}
- /// getCallOperandValMVT - Return the MVT of the Value* that this operand
+ /// getCallOperandValEVT - Return the EVT of the Value* that this operand
/// corresponds to. If there is no Value* for this operand, it returns
/// MVT::Other.
- MVT getCallOperandValMVT(const TargetLowering &TLI,
+ EVT getCallOperandValEVT(LLVMContext &Context,
+ const TargetLowering &TLI,
const TargetData *TD) const {
if (CallOperandVal == 0) return MVT::Other;
@@ -4794,7 +4837,7 @@ public:
case 32:
case 64:
case 128:
- OpTy = IntegerType::get(BitSize);
+ OpTy = IntegerType::get(Context, BitSize);
break;
}
}
@@ -4830,6 +4873,8 @@ void SelectionDAGLowering::
GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) {
+ LLVMContext &Context = FuncInfo.Fn->getContext();
+
// Compute whether this value requires an input register, an output register,
// or both.
bool isOutReg = false;
@@ -4869,10 +4914,10 @@ GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
// value disagrees with the register class we plan to stick this in.
if (OpInfo.Type == InlineAsm::isInput &&
PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first MVT that the reg class contains. If the
+ // Try to convert to the first EVT that the reg class contains. If the
// types are identical size, use a bitcast to convert (e.g. two differing
// vector types).
- MVT RegVT = *PhysReg.second->vt_begin();
+ EVT RegVT = *PhysReg.second->vt_begin();
if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
RegVT, OpInfo.CallOperand);
@@ -4882,18 +4927,19 @@ GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
// bitcast to the corresponding integer type. This turns an f64 value
// into i64, which can be passed with two i32 values on a 32-bit
// machine.
- RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
+ RegVT = EVT::getIntegerVT(Context,
+ OpInfo.ConstraintVT.getSizeInBits());
OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
RegVT, OpInfo.CallOperand);
OpInfo.ConstraintVT = RegVT;
}
}
- NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
+ NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
}
- MVT RegVT;
- MVT ValueVT = OpInfo.ConstraintVT;
+ EVT RegVT;
+ EVT ValueVT = OpInfo.ConstraintVT;
// If this is a constraint for a specific physical register, like {r17},
// assign it now.
@@ -5047,7 +5093,7 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- MVT OpVT = MVT::Other;
+ EVT OpVT = MVT::Other;
// Compute the value type for each operand.
switch (OpInfo.Type) {
@@ -5060,7 +5106,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// The return value of the call is this value. As such, there is no
// corresponding argument.
- assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
+ assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
+ "Bad inline asm!");
if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
OpVT = TLI.getValueType(STy->getElementType(ResNo));
} else {
@@ -5080,13 +5127,16 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// If this is an input or an indirect output, process the call argument.
// BasicBlocks are labels, currently appearing only in asm's.
if (OpInfo.CallOperandVal) {
+ // Strip bitcasts, if any. This mostly comes up for functions.
+ OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
+
if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
} else {
OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
}
- OpVT = OpInfo.getCallOperandValMVT(TLI, TD);
+ OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
}
OpInfo.ConstraintVT = OpVT;
@@ -5108,9 +5158,9 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
- cerr << "llvm: error: Unsupported asm: input constraint with a "
- << "matching output constraint of incompatible type!\n";
- exit(1);
+ llvm_report_error("Unsupported asm: input constraint"
+ " with a matching output constraint of incompatible"
+ " type!");
}
Input.ConstraintVT = OpInfo.ConstraintVT;
}
@@ -5213,9 +5263,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// Copy the output from the appropriate register. Find a register that
// we can use.
if (OpInfo.AssignedRegs.Regs.empty()) {
- cerr << "llvm: error: Couldn't allocate output reg for constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
+ llvm_report_error("Couldn't allocate output reg for"
+ " constraint '" + OpInfo.ConstraintCode + "'!");
}
// If this is an indirect operand, store through the pointer after the
@@ -5225,7 +5274,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
OpInfo.CallOperandVal));
} else {
// This is the result value of the call.
- assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
+ assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
+ "Bad inline asm!");
// Concatenate this output onto the outputs list.
RetValRegs.append(OpInfo.AssignedRegs);
}
@@ -5268,15 +5318,13 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
|| (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
// Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
if (OpInfo.isIndirect) {
- cerr << "llvm: error: "
- "Don't know how to handle tied indirect "
- "register inputs yet!\n";
- exit(1);
+ llvm_report_error("Don't know how to handle tied indirect "
+ "register inputs yet!");
}
RegsForValue MatchedRegs;
MatchedRegs.TLI = &TLI;
MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- MVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
+ EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
MatchedRegs.RegVTs.push_back(RegVT);
MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
@@ -5313,9 +5361,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
hasMemory, Ops, DAG);
if (Ops.empty()) {
- cerr << "llvm: error: Invalid operand for inline asm constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
+ llvm_report_error("Invalid operand for inline asm"
+ " constraint '" + OpInfo.ConstraintCode + "'!");
}
// Add information to the INLINEASM node to know about this input.
@@ -5345,9 +5392,8 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// Copy the input into the appropriate registers.
if (OpInfo.AssignedRegs.Regs.empty()) {
- cerr << "llvm: error: Couldn't allocate output reg for constraint '"
- << OpInfo.ConstraintCode << "'!\n";
- exit(1);
+ llvm_report_error("Couldn't allocate input reg for"
+ " constraint '"+ OpInfo.ConstraintCode +"'!");
}
OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
@@ -5385,7 +5431,7 @@ void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
// FIXME: Why don't we do this for inline asms with MRVs?
if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- MVT ResultType = TLI.getValueType(CS.getType());
+ EVT ResultType = TLI.getValueType(CS.getType());
// If any of the results of the inline asm is a vector, it may have the
// wrong width/num elts. This can happen for register classes that can
@@ -5449,45 +5495,56 @@ void SelectionDAGLowering::visitMalloc(MallocInst &I) {
// multiply on 64-bit targets.
// FIXME: Malloc inst should go away: PR715.
uint64_t ElementSize = TD->getTypeAllocSize(I.getType()->getElementType());
- if (ElementSize != 1)
+ if (ElementSize != 1) {
+ // Src is always 32-bits, make sure the constant fits.
+ assert(Src.getValueType() == MVT::i32);
+ ElementSize = (uint32_t)ElementSize;
Src = DAG.getNode(ISD::MUL, getCurDebugLoc(), Src.getValueType(),
Src, DAG.getConstant(ElementSize, Src.getValueType()));
+ }
- MVT IntPtr = TLI.getPointerTy();
+ EVT IntPtr = TLI.getPointerTy();
- if (IntPtr.bitsLT(Src.getValueType()))
- Src = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), IntPtr, Src);
- else if (IntPtr.bitsGT(Src.getValueType()))
- Src = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), IntPtr, Src);
+ Src = DAG.getZExtOrTrunc(Src, getCurDebugLoc(), IntPtr);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Src;
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*DAG.getContext());
Args.push_back(Entry);
+ bool isTailCall = PerformTailCallOpt &&
+ isInTailCallPosition(&I, Attribute::None, TLI);
std::pair<SDValue,SDValue> Result =
TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false,
- 0, CallingConv::C, PerformTailCallOpt,
+ 0, CallingConv::C, isTailCall,
+ /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("malloc", IntPtr),
Args, DAG, getCurDebugLoc());
- setValue(&I, Result.first); // Pointers always fit in registers
- DAG.setRoot(Result.second);
+ if (Result.first.getNode())
+ setValue(&I, Result.first); // Pointers always fit in registers
+ if (Result.second.getNode())
+ DAG.setRoot(Result.second);
}
void SelectionDAGLowering::visitFree(FreeInst &I) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = getValue(I.getOperand(0));
- Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*DAG.getContext());
Args.push_back(Entry);
- MVT IntPtr = TLI.getPointerTy();
+ EVT IntPtr = TLI.getPointerTy();
+ bool isTailCall = PerformTailCallOpt &&
+ isInTailCallPosition(&I, Attribute::None, TLI);
std::pair<SDValue,SDValue> Result =
- TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false,
- 0, CallingConv::C, PerformTailCallOpt,
+ TLI.LowerCallTo(getRoot(), Type::getVoidTy(*DAG.getContext()),
+ false, false, false, false,
+ 0, CallingConv::C, isTailCall,
+ /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("free", IntPtr), Args, DAG,
getCurDebugLoc());
- DAG.setRoot(Result.second);
+ if (Result.second.getNode())
+ DAG.setRoot(Result.second);
}
void SelectionDAGLowering::visitVAStart(CallInst &I) {
@@ -5521,161 +5578,31 @@ void SelectionDAGLowering::visitVACopy(CallInst &I) {
DAG.getSrcValue(I.getOperand(2))));
}
-/// TargetLowering::LowerArguments - This is the default LowerArguments
-/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
-/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
-/// integrated into SDISel.
-void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &ArgValues,
- DebugLoc dl) {
- // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
- SmallVector<SDValue, 3+16> Ops;
- Ops.push_back(DAG.getRoot());
- Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
- Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
-
- // Add one result value for each formal argument.
- SmallVector<MVT, 16> RetVals;
- unsigned j = 1;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++j) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(*this, I->getType(), ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForMVT();
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getTargetData()->getABITypeAlignment(ArgTy);
-
- if (F.paramHasAttr(j, Attribute::ZExt))
- Flags.setZExt();
- if (F.paramHasAttr(j, Attribute::SExt))
- Flags.setSExt();
- if (F.paramHasAttr(j, Attribute::InReg))
- Flags.setInReg();
- if (F.paramHasAttr(j, Attribute::StructRet))
- Flags.setSRet();
- if (F.paramHasAttr(j, Attribute::ByVal)) {
- Flags.setByVal();
- const PointerType *Ty = cast<PointerType>(I->getType());
- const Type *ElementTy = Ty->getElementType();
- unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- if (F.getParamAlignment(j))
- FrameAlign = F.getParamAlignment(j);
- Flags.setByValAlign(FrameAlign);
- Flags.setByValSize(FrameSize);
- }
- if (F.paramHasAttr(j, Attribute::Nest))
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
-
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- RetVals.push_back(RegisterVT);
- ISD::ArgFlagsTy MyFlags = Flags;
- if (NumRegs > 1 && i == 0)
- MyFlags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.setOrigAlign(1);
- Ops.push_back(DAG.getArgFlags(MyFlags));
- }
- }
- }
-
- RetVals.push_back(MVT::Other);
-
- // Create the node.
- SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, dl,
- DAG.getVTList(&RetVals[0], RetVals.size()),
- &Ops[0], Ops.size()).getNode();
-
- // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
- // allows exposing the loads that may be part of the argument access to the
- // first DAGCombiner pass.
- SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
-
- // The number of results should match up, except that the lowered one may have
- // an extra flag result.
- assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
- (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
- TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
- && "Lowering produced unexpected number of results!");
-
- // The FORMAL_ARGUMENTS node itself is likely no longer needed.
- if (Result != TmpRes.getNode() && Result->use_empty()) {
- HandleSDNode Dummy(DAG.getRoot());
- DAG.RemoveDeadNode(Result);
- }
-
- Result = TmpRes.getNode();
-
- unsigned NumArgRegs = Result->getNumValues() - 1;
- DAG.setRoot(SDValue(Result, NumArgRegs));
-
- // Set up the return result vector.
- unsigned i = 0;
- unsigned Idx = 1;
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(*this, I->getType(), ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- MVT PartVT = getRegisterType(VT);
-
- unsigned NumParts = getNumRegisters(VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- for (unsigned j = 0; j != NumParts; ++j)
- Parts[j] = SDValue(Result, i++);
-
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.paramHasAttr(Idx, Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.paramHasAttr(Idx, Attribute::ZExt))
- AssertOp = ISD::AssertZext;
-
- ArgValues.push_back(getCopyFromParts(DAG, dl, &Parts[0], NumParts,
- PartVT, VT, AssertOp));
- }
- }
- assert(i == NumArgRegs && "Argument register count mismatch!");
-}
-
-
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
-/// implementation, which just inserts an ISD::CALL node, which is later custom
-/// lowered by the target to something concrete. FIXME: When all targets are
-/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
+/// implementation, which just calls LowerCall.
+/// FIXME: When all targets are
+/// migrated to using LowerCall, this hook should be integrated into SDISel.
std::pair<SDValue, SDValue>
TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
bool RetSExt, bool RetZExt, bool isVarArg,
bool isInreg, unsigned NumFixedArgs,
- unsigned CallingConv, bool isTailCall,
+ CallingConv::ID CallConv, bool isTailCall,
+ bool isReturnValueUsed,
SDValue Callee,
ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
+
assert((!isTailCall || PerformTailCallOpt) &&
"isTailCall set when tail-call optimizations are disabled!");
- SmallVector<SDValue, 32> Ops;
- Ops.push_back(Chain); // Op#0 - Chain
- Ops.push_back(Callee);
-
// Handle all of the outgoing arguments.
+ SmallVector<ISD::OutputArg, 32> Outs;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
for (unsigned Value = 0, NumValues = ValueVTs.size();
Value != NumValues; ++Value) {
- MVT VT = ValueVTs[Value];
- const Type *ArgTy = VT.getTypeForMVT();
+ EVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
SDValue Op = SDValue(Args[i].Node.getNode(),
Args[i].Node.getResNo() + Value);
ISD::ArgFlagsTy Flags;
@@ -5707,8 +5634,8 @@ TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
Flags.setNest();
Flags.setOrigAlign(OriginalAlignment);
- MVT PartVT = getRegisterType(VT);
- unsigned NumParts = getNumRegisters(VT);
+ EVT PartVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
SmallVector<SDValue, 4> Parts(NumParts);
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
@@ -5719,75 +5646,105 @@ TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
- for (unsigned i = 0; i != NumParts; ++i) {
+ for (unsigned j = 0; j != NumParts; ++j) {
// if it isn't first piece, alignment must be 1
- ISD::ArgFlagsTy MyFlags = Flags;
- if (NumParts > 1 && i == 0)
- MyFlags.setSplit();
- else if (i != 0)
- MyFlags.setOrigAlign(1);
-
- Ops.push_back(Parts[i]);
- Ops.push_back(DAG.getArgFlags(MyFlags));
+ ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
+ if (NumParts > 1 && j == 0)
+ MyFlags.Flags.setSplit();
+ else if (j != 0)
+ MyFlags.Flags.setOrigAlign(1);
+
+ Outs.push_back(MyFlags);
}
}
}
- // Figure out the result value types. We start by making a list of
- // the potentially illegal return value types.
- SmallVector<MVT, 4> LoweredRetTys;
- SmallVector<MVT, 4> RetTys;
+ // Handle the incoming return values from the call.
+ SmallVector<ISD::InputArg, 32> Ins;
+ SmallVector<EVT, 4> RetTys;
ComputeValueVTs(*this, RetTy, RetTys);
-
- // Then we translate that to a list of legal types.
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- MVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- for (unsigned i = 0; i != NumRegs; ++i)
- LoweredRetTys.push_back(RegisterVT);
- }
-
- LoweredRetTys.push_back(MVT::Other); // Always has a chain.
-
- // Create the CALL node.
- SDValue Res = DAG.getCall(CallingConv, dl,
- isVarArg, isTailCall, isInreg,
- DAG.getVTList(&LoweredRetTys[0],
- LoweredRetTys.size()),
- &Ops[0], Ops.size(), NumFixedArgs
- );
- Chain = Res.getValue(LoweredRetTys.size() - 1);
-
- // Gather up the call result into a single value.
- if (RetTy != Type::VoidTy && !RetTys.empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
-
- if (RetSExt)
- AssertOp = ISD::AssertSext;
- else if (RetZExt)
- AssertOp = ISD::AssertZext;
-
- SmallVector<SDValue, 4> ReturnValues;
- unsigned RegNo = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- MVT VT = RetTys[I];
- MVT RegisterVT = getRegisterType(VT);
- unsigned NumRegs = getNumRegisters(VT);
- unsigned RegNoEnd = NumRegs + RegNo;
- SmallVector<SDValue, 4> Results;
- for (; RegNo != RegNoEnd; ++RegNo)
- Results.push_back(Res.getValue(RegNo));
- SDValue ReturnValue =
- getCopyFromParts(DAG, dl, &Results[0], NumRegs, RegisterVT, VT,
- AssertOp);
- ReturnValues.push_back(ReturnValue);
+ EVT VT = RetTys[I];
+ EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT;
+ MyFlags.Used = isReturnValueUsed;
+ if (RetSExt)
+ MyFlags.Flags.setSExt();
+ if (RetZExt)
+ MyFlags.Flags.setZExt();
+ if (isInreg)
+ MyFlags.Flags.setInReg();
+ Ins.push_back(MyFlags);
}
- Res = DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&RetTys[0], RetTys.size()),
- &ReturnValues[0], ReturnValues.size());
}
+ // Check if target-dependent constraints permit a tail call here.
+ // Target-independent constraints should be checked by the caller.
+ if (isTailCall &&
+ !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
+ isTailCall = false;
+
+ SmallVector<SDValue, 4> InVals;
+ Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, Ins, dl, DAG, InVals);
+
+ // Verify that the target's LowerCall behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerCall didn't return a valid chain!");
+ assert((!isTailCall || InVals.empty()) &&
+ "LowerCall emitted a return value for a tail call!");
+ assert((isTailCall || InVals.size() == Ins.size()) &&
+ "LowerCall didn't emit the correct number of values!");
+ DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerCall emitted a null value!");
+ assert(Ins[i].VT == InVals[i].getValueType() &&
+ "LowerCall emitted a value with the wrong type!");
+ });
+
+ // For a tail call, the return value is merely live-out and there aren't
+ // any nodes in the DAG representing it. Return a special value to
+ // indicate that a tail call has been emitted and no more Instructions
+ // should be processed in the current block.
+ if (isTailCall) {
+ DAG.setRoot(Chain);
+ return std::make_pair(SDValue(), SDValue());
+ }
+
+ // Collect the legal value parts into potentially illegal values
+ // that correspond to the original function's return values.
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (RetSExt)
+ AssertOp = ISD::AssertSext;
+ else if (RetZExt)
+ AssertOp = ISD::AssertZext;
+ SmallVector<SDValue, 4> ReturnValues;
+ unsigned CurReg = 0;
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+
+ SDValue ReturnValue =
+ getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
+ AssertOp);
+ ReturnValues.push_back(ReturnValue);
+ CurReg += NumRegs;
+ }
+
+ // For a function returning void, there is no return value. We can't create
+ // such a node, so we just return a null return value in that case. In
+ // that case, nothing will actualy look at the value.
+ if (ReturnValues.empty())
+ return std::make_pair(SDValue(), Chain);
+
+ SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
+ DAG.getVTList(&RetTys[0], RetTys.size()),
+ &ReturnValues[0], ReturnValues.size());
+
return std::make_pair(Res, Chain);
}
@@ -5800,8 +5757,7 @@ void TargetLowering::LowerOperationWrapper(SDNode *N,
}
SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
- assert(0 && "LowerOperation not implemented for this target!");
- abort();
+ llvm_unreachable("LowerOperation not implemented for this target!");
return SDValue();
}
@@ -5813,7 +5769,7 @@ void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
"Copy from a reg to the same reg!");
assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- RegsForValue RFV(TLI, Reg, V->getType());
+ RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
SDValue Chain = DAG.getEntryNode();
RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
PendingExports.push_back(Chain);
@@ -5825,25 +5781,122 @@ void SelectionDAGISel::
LowerArguments(BasicBlock *LLVMBB) {
// If this is the entry block, emit arguments.
Function &F = *LLVMBB->getParent();
- SDValue OldRoot = SDL->DAG.getRoot();
- SmallVector<SDValue, 16> Args;
- TLI.LowerArguments(F, SDL->DAG, Args, SDL->getCurDebugLoc());
-
- unsigned a = 0;
- for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
- AI != E; ++AI) {
- SmallVector<MVT, 4> ValueVTs;
- ComputeValueVTs(TLI, AI->getType(), ValueVTs);
+ SelectionDAG &DAG = SDL->DAG;
+ SDValue OldRoot = DAG.getRoot();
+ DebugLoc dl = SDL->getCurDebugLoc();
+ const TargetData *TD = TLI.getTargetData();
+
+ // Set up the incoming argument description vector.
+ SmallVector<ISD::InputArg, 16> Ins;
+ unsigned Idx = 1;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++Idx) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I->getType(), ValueVTs);
+ bool isArgValueUsed = !I->use_empty();
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ TD->getABITypeAlignment(ArgTy);
+
+ if (F.paramHasAttr(Idx, Attribute::ZExt))
+ Flags.setZExt();
+ if (F.paramHasAttr(Idx, Attribute::SExt))
+ Flags.setSExt();
+ if (F.paramHasAttr(Idx, Attribute::InReg))
+ Flags.setInReg();
+ if (F.paramHasAttr(Idx, Attribute::StructRet))
+ Flags.setSRet();
+ if (F.paramHasAttr(Idx, Attribute::ByVal)) {
+ Flags.setByVal();
+ const PointerType *Ty = cast<PointerType>(I->getType());
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+ unsigned FrameSize = TD->getTypeAllocSize(ElementTy);
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ if (F.getParamAlignment(Idx))
+ FrameAlign = F.getParamAlignment(Idx);
+ Flags.setByValAlign(FrameAlign);
+ Flags.setByValSize(FrameSize);
+ }
+ if (F.paramHasAttr(Idx, Attribute::Nest))
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
+ if (NumRegs > 1 && i == 0)
+ MyFlags.Flags.setSplit();
+ // if it isn't first piece, alignment must be 1
+ else if (i > 0)
+ MyFlags.Flags.setOrigAlign(1);
+ Ins.push_back(MyFlags);
+ }
+ }
+ }
+
+ // Call the target to set up the argument values.
+ SmallVector<SDValue, 8> InVals;
+ SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
+ F.isVarArg(), Ins,
+ dl, DAG, InVals);
+
+ // Verify that the target's LowerFormalArguments behaved as expected.
+ assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
+ "LowerFormalArguments didn't return a valid chain!");
+ assert(InVals.size() == Ins.size() &&
+ "LowerFormalArguments didn't emit the correct number of values!");
+ DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerFormalArguments emitted a null value!");
+ assert(Ins[i].VT == InVals[i].getValueType() &&
+ "LowerFormalArguments emitted a value with the wrong type!");
+ });
+
+ // Update the DAG with the new chain value resulting from argument lowering.
+ DAG.setRoot(NewRoot);
+
+ // Set up the argument values.
+ unsigned i = 0;
+ Idx = 1;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+ ++I, ++Idx) {
+ SmallVector<SDValue, 4> ArgValues;
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I->getType(), ValueVTs);
unsigned NumValues = ValueVTs.size();
- if (!AI->use_empty()) {
- SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues,
- SDL->getCurDebugLoc()));
+ for (unsigned Value = 0; Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+
+ if (!I->use_empty()) {
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (F.paramHasAttr(Idx, Attribute::SExt))
+ AssertOp = ISD::AssertSext;
+ else if (F.paramHasAttr(Idx, Attribute::ZExt))
+ AssertOp = ISD::AssertZext;
+
+ ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
+ PartVT, VT, AssertOp));
+ }
+ i += NumParts;
+ }
+ if (!I->use_empty()) {
+ SDL->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
+ SDL->getCurDebugLoc()));
// If this argument is live outside of the entry block, insert a copy from
// whereever we got it to the vreg that other BB's will reference it as.
- SDL->CopyToExportRegsIfNeeded(AI);
+ SDL->CopyToExportRegsIfNeeded(I);
}
- a += NumValues;
}
+ assert(i == InVals.size() && "Argument register count mismatch!");
// Finally, if the target has anything special to do, allow it to do so.
// FIXME: this should insert code into the DAG!
@@ -5908,11 +5961,11 @@ SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
// Remember that this register needs to added to the machine PHI node as
// the input for this MBB.
- SmallVector<MVT, 4> ValueVTs;
+ SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- MVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(VT);
+ EVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
Reg += NumRegisters;
@@ -5962,11 +6015,11 @@ SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
// own moves. Second, this check is necessary becuase FastISel doesn't
// use CreateRegForValue to create registers, so it always creates
// exactly one register for each non-void instruction.
- MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
+ EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
// Promote MVT::i1.
if (VT == MVT::i1)
- VT = TLI.getTypeToTransformTo(VT);
+ VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
else {
SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
return false;
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
index 057c841..06acc8a 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
@@ -15,6 +15,7 @@
#define SELECTIONDAGBUILD_H
#include "llvm/Constants.h"
+#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#ifndef NDEBUG
@@ -23,6 +24,7 @@
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <vector>
#include <set>
@@ -75,8 +77,6 @@ class TruncInst;
class UIToFPInst;
class UnreachableInst;
class UnwindInst;
-class VICmpInst;
-class VFCmpInst;
class VAArgInst;
class ZExtInst;
@@ -117,7 +117,7 @@ public:
SmallSet<Instruction*, 8> CatchInfoFound;
#endif
- unsigned MakeReg(MVT VT);
+ unsigned MakeReg(EVT VT);
/// isExportedInst - Return true if the specified value is an instruction
/// exported from its block.
@@ -345,9 +345,15 @@ public:
/// BitTestCases - Vector of BitTestBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<BitTestBlock> BitTestCases;
-
+
+ /// PHINodesToUpdate - A list of phi instructions whose operand list will
+ /// be updated after processing the current basic block.
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
+ /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
+ /// scheduler custom lowering), track the change here.
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
+
// Emit PHI-node-operand constants only once even if used by multiple
// PHI nodes.
DenseMap<Constant*, unsigned> ConstantsOut;
@@ -363,11 +369,21 @@ public:
/// GFI - Garbage collection metadata for the function.
GCFunctionInfo *GFI;
+ /// HasTailCall - This is set to true if a call in the current
+ /// block has been translated as a tail call. In this case,
+ /// no subsequent DAG nodes should be created.
+ ///
+ bool HasTailCall;
+
+ LLVMContext *Context;
+
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
FunctionLoweringInfo &funcinfo,
CodeGenOpt::Level ol)
: CurDebugLoc(DebugLoc::getUnknownLoc()),
- TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol) {
+ TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
+ HasTailCall(false),
+ Context(dag.getContext()) {
}
void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
@@ -489,8 +505,6 @@ private:
void visitAShr(User &I) { visitShift(I, ISD::SRA); }
void visitICmp(User &I);
void visitFCmp(User &I);
- void visitVICmp(User &I);
- void visitVFCmp(User &I);
// Visit the conversion instructions
void visitTrunc(User &I);
void visitZExt(User &I);
@@ -539,12 +553,10 @@ private:
void visitVACopy(CallInst &I);
void visitUserOp1(Instruction &I) {
- assert(0 && "UserOp1 should not exist at instruction selection time!");
- abort();
+ llvm_unreachable("UserOp1 should not exist at instruction selection time!");
}
void visitUserOp2(Instruction &I) {
- assert(0 && "UserOp2 should not exist at instruction selection time!");
- abort();
+ llvm_unreachable("UserOp2 should not exist at instruction selection time!");
}
const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 9d72a12..ae98da5 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -16,6 +16,7 @@
#include "SelectionDAGBuild.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
@@ -29,6 +30,7 @@
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
@@ -47,8 +49,10 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
@@ -150,12 +154,15 @@ namespace llvm {
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and the scheduler passes ownership of it to this method.
MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const {
- cerr << "If a target marks an instruction with "
- << "'usesCustomDAGSchedInserter', it must implement "
- << "TargetLowering::EmitInstrWithCustomInserter!\n";
- abort();
- return 0;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
+#ifndef NDEBUG
+ errs() << "If a target marks an instruction with "
+ "'usesCustomDAGSchedInserter', it must implement "
+ "TargetLowering::EmitInstrWithCustomInserter!";
+#endif
+ llvm_unreachable(0);
+ return 0;
}
/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
@@ -215,8 +222,11 @@ static void EmitLiveInCopy(MachineBasicBlock *MBB,
--Pos;
}
- TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
- CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
+ bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
+ assert(Emitted && "Unable to issue a live-in copy instruction!\n");
+ (void) Emitted;
+
+CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
if (Coalesced) {
if (&*InsertPos == UseMI) ++InsertPos;
MBB->erase(UseMI);
@@ -247,8 +257,10 @@ static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
E = MRI.livein_end(); LI != E; ++LI)
if (LI->second) {
const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
- TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
- LI->second, LI->first, RC, RC);
+ bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
+ LI->second, LI->first, RC, RC);
+ assert(Emitted && "Unable to issue a live-in copy instruction!\n");
+ (void) Emitted;
}
}
}
@@ -258,7 +270,7 @@ static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
//===----------------------------------------------------------------------===//
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
- FunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
+ MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
FuncInfo(new FunctionLoweringInfo(TLI)),
CurDAG(new SelectionDAG(TLI, *FuncInfo)),
SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
@@ -273,44 +285,42 @@ SelectionDAGISel::~SelectionDAGISel() {
delete FuncInfo;
}
-unsigned SelectionDAGISel::MakeReg(MVT VT) {
+unsigned SelectionDAGISel::MakeReg(EVT VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
AU.addRequired<GCModuleInfo>();
+ AU.addPreserved<GCModuleInfo>();
AU.addRequired<DwarfWriter>();
- AU.setPreservesAll();
+ AU.addPreserved<DwarfWriter>();
+ MachineFunctionPass::getAnalysisUsage(AU);
}
-bool SelectionDAGISel::runOnFunction(Function &Fn) {
+bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
+ Function &Fn = *mf.getFunction();
+
// Do some sanity-checking on the command-line options.
assert((!EnableFastISelVerbose || EnableFastISel) &&
"-fast-isel-verbose requires -fast-isel");
assert((!EnableFastISelAbort || EnableFastISel) &&
"-fast-isel-abort requires -fast-isel");
- // Do not codegen any 'available_externally' functions at all, they have
- // definitions outside the translation unit.
- if (Fn.hasAvailableExternallyLinkage())
- return false;
-
-
// Get alias analysis for load/store combining.
AA = &getAnalysis<AliasAnalysis>();
- TargetMachine &TM = TLI.getTargetMachine();
- MF = &MachineFunction::construct(&Fn, TM);
+ MF = &mf;
const TargetInstrInfo &TII = *TM.getInstrInfo();
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
- if (MF->getFunction()->hasGC())
- GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF->getFunction());
+ if (Fn.hasGC())
+ GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
else
GFI = 0;
RegInfo = &MF->getRegInfo();
- DOUT << "\n\n\n=== " << Fn.getName() << "\n";
+ DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
@@ -358,140 +368,50 @@ static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
}
}
-/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
-/// whether object offset >= 0.
-static bool
-IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
- if (!isa<FrameIndexSDNode>(Op)) return false;
-
- FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
- int FrameIdx = FrameIdxNode->getIndex();
- return MFI->isFixedObjectIndex(FrameIdx) &&
- MFI->getObjectOffset(FrameIdx) >= 0;
-}
-
-/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
-/// possibly be overwritten when lowering the outgoing arguments in a tail
-/// call. Currently the implementation of this call is very conservative and
-/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
-/// virtual registers would be overwritten by direct lowering.
-static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
- MachineFrameInfo *MFI) {
- RegisterSDNode * OpReg = NULL;
- if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
- (Op.getOpcode()== ISD::CopyFromReg &&
- (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
- (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
- (Op.getOpcode() == ISD::LOAD &&
- IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
- (Op.getOpcode() == ISD::MERGE_VALUES &&
- Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
- IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
- getOperand(1))))
- return true;
- return false;
-}
-
-/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
-/// DAG and fixes their tailcall attribute operand.
-static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
- const TargetLowering& TLI) {
- SDNode * Ret = NULL;
- SDValue Terminator = DAG.getRoot();
-
- // Find RET node.
- if (Terminator.getOpcode() == ISD::RET) {
- Ret = Terminator.getNode();
- }
-
- // Fix tail call attribute of CALL nodes.
- for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
- BI = DAG.allnodes_end(); BI != BE; ) {
- --BI;
- if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
- SDValue OpRet(Ret, 0);
- SDValue OpCall(BI, 0);
- bool isMarkedTailCall = TheCall->isTailCall();
- // If CALL node has tail call attribute set to true and the call is not
- // eligible (no RET or the target rejects) the attribute is fixed to
- // false. The TargetLowering::IsEligibleForTailCallOptimization function
- // must correctly identify tail call optimizable calls.
- if (!isMarkedTailCall) continue;
- if (Ret==NULL ||
- !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
- // Not eligible. Mark CALL node as non tail call. Note that we
- // can modify the call node in place since calls are not CSE'd.
- TheCall->setNotTailCall();
- } else {
- // Look for tail call clobbered arguments. Emit a series of
- // copyto/copyfrom virtual register nodes to protect them.
- SmallVector<SDValue, 32> Ops;
- SDValue Chain = TheCall->getChain(), InFlag;
- Ops.push_back(Chain);
- Ops.push_back(TheCall->getCallee());
- for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
- SDValue Arg = TheCall->getArg(i);
- bool isByVal = TheCall->getArgFlags(i).isByVal();
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- if (!isByVal &&
- IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
- MVT VT = Arg.getValueType();
- unsigned VReg = MF.getRegInfo().
- createVirtualRegister(TLI.getRegClassFor(VT));
- Chain = DAG.getCopyToReg(Chain, Arg.getDebugLoc(),
- VReg, Arg, InFlag);
- InFlag = Chain.getValue(1);
- Arg = DAG.getCopyFromReg(Chain, Arg.getDebugLoc(),
- VReg, VT, InFlag);
- Chain = Arg.getValue(1);
- InFlag = Arg.getValue(2);
- }
- Ops.push_back(Arg);
- Ops.push_back(TheCall->getArgFlagsVal(i));
- }
- // Link in chain of CopyTo/CopyFromReg.
- Ops[0] = Chain;
- DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
- }
- }
- }
-}
-
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
BasicBlock::iterator Begin,
BasicBlock::iterator End) {
SDL->setCurrentBasicBlock(BB);
-
- // Lower all of the non-terminator instructions.
- for (BasicBlock::iterator I = Begin; I != End; ++I)
+ MetadataContext &TheMetadata = LLVMBB->getParent()->getContext().getMetadata();
+ unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
+
+ // Lower all of the non-terminator instructions. If a call is emitted
+ // as a tail call, cease emitting nodes for this block.
+ for (BasicBlock::iterator I = Begin; I != End && !SDL->HasTailCall; ++I) {
+ if (MDDbgKind) {
+ // Update DebugLoc if debug information is attached with this
+ // instruction.
+ if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, I)) {
+ DILocation DILoc(Dbg);
+ DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
+ SDL->setCurDebugLoc(Loc);
+ if (MF->getDefaultDebugLoc().isUnknown())
+ MF->setDefaultDebugLoc(Loc);
+ }
+ }
if (!isa<TerminatorInst>(I))
SDL->visit(*I);
+ }
- // Ensure that all instructions which are used outside of their defining
- // blocks are available as virtual registers. Invoke is handled elsewhere.
- for (BasicBlock::iterator I = Begin; I != End; ++I)
- if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
- SDL->CopyToExportRegsIfNeeded(I);
+ if (!SDL->HasTailCall) {
+ // Ensure that all instructions which are used outside of their defining
+ // blocks are available as virtual registers. Invoke is handled elsewhere.
+ for (BasicBlock::iterator I = Begin; I != End; ++I)
+ if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
+ SDL->CopyToExportRegsIfNeeded(I);
- // Handle PHI nodes in successor blocks.
- if (End == LLVMBB->end()) {
- HandlePHINodesInSuccessorBlocks(LLVMBB);
+ // Handle PHI nodes in successor blocks.
+ if (End == LLVMBB->end()) {
+ HandlePHINodesInSuccessorBlocks(LLVMBB);
- // Lower the terminator after the copies are emitted.
- SDL->visit(*LLVMBB->getTerminator());
+ // Lower the terminator after the copies are emitted.
+ SDL->visit(*LLVMBB->getTerminator());
+ }
}
-
+
// Make sure the root of the DAG is up-to-date.
CurDAG->setRoot(SDL->getControlRoot());
- // Check whether calls in this block are real tail calls. Fix up CALL nodes
- // with correct tailcall attribute so that the target can rely on the tailcall
- // attribute indicating whether the call is really eligible for tail call
- // optimization.
- if (PerformTailCallOpt)
- CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
-
// Final step, emit the lowered DAG as machine code.
CodeGenAndEmitDAG();
SDL->clear();
@@ -500,51 +420,51 @@ void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
SmallPtrSet<SDNode*, 128> VisitedNodes;
SmallVector<SDNode*, 128> Worklist;
-
+
Worklist.push_back(CurDAG->getRoot().getNode());
-
+
APInt Mask;
APInt KnownZero;
APInt KnownOne;
-
+
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
-
+
// If we've already seen this node, ignore it.
if (!VisitedNodes.insert(N))
continue;
-
+
// Otherwise, add all chain operands to the worklist.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i).getValueType() == MVT::Other)
Worklist.push_back(N->getOperand(i).getNode());
-
+
// If this is a CopyToReg with a vreg dest, process it.
if (N->getOpcode() != ISD::CopyToReg)
continue;
-
+
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
continue;
-
+
// Ignore non-scalar or non-integer values.
SDValue Src = N->getOperand(2);
- MVT SrcVT = Src.getValueType();
+ EVT SrcVT = Src.getValueType();
if (!SrcVT.isInteger() || SrcVT.isVector())
continue;
-
+
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
-
+
// Only install this information if it tells us something.
if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
DestReg -= TargetRegisterInfo::FirstVirtualRegister;
- FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
- if (DestReg >= FLI.LiveOutRegInfo.size())
- FLI.LiveOutRegInfo.resize(DestReg+1);
- FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
+ if (DestReg >= FuncInfo->LiveOutRegInfo.size())
+ FuncInfo->LiveOutRegInfo.resize(DestReg+1);
+ FunctionLoweringInfo::LiveOutInfo &LOI =
+ FuncInfo->LiveOutRegInfo[DestReg];
LOI.NumSignBits = NumSignBits;
LOI.KnownOne = KnownOne;
LOI.KnownZero = KnownZero;
@@ -560,10 +480,10 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
ViewSUnitDAGs)
- BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
- BB->getBasicBlock()->getName();
+ BlockName = MF->getFunction()->getNameStr() + ":" +
+ BB->getBasicBlock()->getNameStr();
- DOUT << "Initial selection DAG:\n";
+ DEBUG(errs() << "Initial selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
@@ -575,10 +495,10 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
} else {
CurDAG->Combine(Unrestricted, *AA, OptLevel);
}
-
- DOUT << "Optimized lowered selection DAG:\n";
+
+ DEBUG(errs() << "Optimized lowered selection DAG:\n");
DEBUG(CurDAG->dump());
-
+
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
if (!DisableLegalizeTypes) {
@@ -593,7 +513,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
Changed = CurDAG->LegalizeTypes();
}
- DOUT << "Type-legalized selection DAG:\n";
+ DEBUG(errs() << "Type-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
if (Changed) {
@@ -608,7 +528,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
}
- DOUT << "Optimized type-legalized selection DAG:\n";
+ DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
}
@@ -638,11 +558,11 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
}
- DOUT << "Optimized vector-legalized selection DAG:\n";
+ DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
DEBUG(CurDAG->dump());
}
}
-
+
if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
if (TimePassesIsEnabled) {
@@ -651,10 +571,10 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
} else {
CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
}
-
- DOUT << "Legalized selection DAG:\n";
+
+ DEBUG(errs() << "Legalized selection DAG:\n");
DEBUG(CurDAG->dump());
-
+
if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
// Run the DAG combiner in post-legalize mode.
@@ -664,12 +584,12 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
} else {
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
}
-
- DOUT << "Optimized legalized selection DAG:\n";
+
+ DEBUG(errs() << "Optimized legalized selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
-
+
if (OptLevel != CodeGenOpt::None)
ComputeLiveOutVRegInfo();
@@ -682,7 +602,7 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
InstructionSelect();
}
- DOUT << "Selected selection DAG:\n";
+ DEBUG(errs() << "Selected selection DAG:\n");
DEBUG(CurDAG->dump());
if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
@@ -698,13 +618,13 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
if (ViewSUnitDAGs) Scheduler->viewGraph();
- // Emit machine code to BB. This can change 'BB' to the last block being
+ // Emit machine code to BB. This can change 'BB' to the last block being
// inserted into.
if (TimePassesIsEnabled) {
NamedRegionTimer T("Instruction Creation", GroupName);
- BB = Scheduler->EmitSchedule();
+ BB = Scheduler->EmitSchedule(&SDL->EdgeMapping);
} else {
- BB = Scheduler->EmitSchedule();
+ BB = Scheduler->EmitSchedule(&SDL->EdgeMapping);
}
// Free the scheduler state.
@@ -715,9 +635,9 @@ void SelectionDAGISel::CodeGenAndEmitDAG() {
delete Scheduler;
}
- DOUT << "Selected machine code:\n";
+ DEBUG(errs() << "Selected machine code:\n");
DEBUG(BB->dump());
-}
+}
void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
MachineFunction &MF,
@@ -736,6 +656,9 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
#endif
);
+ MetadataContext &TheMetadata = Fn.getContext().getMetadata();
+ unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
+
// Iterate over all basic blocks in the function.
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
BasicBlock *LLVMBB = &*I;
@@ -758,7 +681,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
I != E; ++I, ++j)
if (Fn.paramHasAttr(j, Attribute::ByVal)) {
if (EnableFastISelVerbose || EnableFastISelAbort)
- cerr << "FastISel skips entry block due to byval argument\n";
+ errs() << "FastISel skips entry block due to byval argument\n";
SuppressFastISel = true;
break;
}
@@ -818,16 +741,29 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
FastIS->startNewBlock(BB);
// Do FastISel on as many instructions as possible.
for (; BI != End; ++BI) {
+ if (MDDbgKind) {
+ // Update DebugLoc if debug information is attached with this
+ // instruction.
+ if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, BI)) {
+ DILocation DILoc(Dbg);
+ DebugLoc Loc = ExtractDebugLocation(DILoc,
+ MF.getDebugLocInfo());
+ FastIS->setCurDebugLoc(Loc);
+ if (MF.getDefaultDebugLoc().isUnknown())
+ MF.setDefaultDebugLoc(Loc);
+ }
+ }
+
// Just before the terminator instruction, insert instructions to
// feed PHI nodes in successor blocks.
if (isa<TerminatorInst>(BI))
if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
- cerr << "FastISel miss: ";
+ errs() << "FastISel miss: ";
BI->dump();
}
- if (EnableFastISelAbort)
- assert(0 && "FastISel didn't handle a PHI in a successor");
+ assert(!EnableFastISelAbort &&
+ "FastISel didn't handle a PHI in a successor");
break;
}
@@ -842,11 +778,11 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
// Then handle certain instructions as single-LLVM-Instruction blocks.
if (isa<CallInst>(BI)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
- cerr << "FastISel missed call: ";
+ errs() << "FastISel missed call: ";
BI->dump();
}
- if (BI->getType() != Type::VoidTy) {
+ if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
unsigned &R = FuncInfo->ValueMap[BI];
if (!R)
R = FuncInfo->CreateRegForValue(BI);
@@ -864,13 +800,13 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
// For now, be a little lenient about non-branch terminators.
if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
if (EnableFastISelVerbose || EnableFastISelAbort) {
- cerr << "FastISel miss: ";
+ errs() << "FastISel miss: ";
BI->dump();
}
if (EnableFastISelAbort)
// The "fast" selector couldn't handle something and bailed.
// For the purpose of debugging, just abort.
- assert(0 && "FastISel didn't select the entire block");
+ llvm_unreachable("FastISel didn't select the entire block");
}
break;
}
@@ -895,15 +831,16 @@ void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
void
SelectionDAGISel::FinishBasicBlock() {
- DOUT << "Target-post-processed machine code:\n";
+ DEBUG(errs() << "Target-post-processed machine code:\n");
DEBUG(BB->dump());
- DOUT << "Total amount of phi nodes to update: "
- << SDL->PHINodesToUpdate.size() << "\n";
+ DEBUG(errs() << "Total amount of phi nodes to update: "
+ << SDL->PHINodesToUpdate.size() << "\n");
DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
- DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
- << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
-
+ errs() << "Node " << i << " : ("
+ << SDL->PHINodesToUpdate[i].first
+ << ", " << SDL->PHINodesToUpdate[i].second << ")\n");
+
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
if (SDL->SwitchCases.empty() &&
@@ -932,7 +869,7 @@ SelectionDAGISel::FinishBasicBlock() {
CurDAG->setRoot(SDL->getRoot());
CodeGenAndEmitDAG();
SDL->clear();
- }
+ }
for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
// Set the current basic block to the mbb we wish to insert the code into
@@ -947,8 +884,8 @@ SelectionDAGISel::FinishBasicBlock() {
SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
SDL->BitTestCases[i].Reg,
SDL->BitTestCases[i].Cases[j]);
-
-
+
+
CurDAG->setRoot(SDL->getRoot());
CodeGenAndEmitDAG();
SDL->clear();
@@ -1001,7 +938,7 @@ SelectionDAGISel::FinishBasicBlock() {
CodeGenAndEmitDAG();
SDL->clear();
}
-
+
// Set the current basic block to the mbb we wish to insert the code into
BB = SDL->JTCases[i].second.MBB;
SDL->setCurrentBasicBlock(BB);
@@ -1010,7 +947,7 @@ SelectionDAGISel::FinishBasicBlock() {
CurDAG->setRoot(SDL->getRoot());
CodeGenAndEmitDAG();
SDL->clear();
-
+
// Update PHI Nodes
for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
@@ -1019,20 +956,21 @@ SelectionDAGISel::FinishBasicBlock() {
"This is not a machine PHI node that we are updating!");
// "default" BB. We can go there only from header BB.
if (PHIBB == SDL->JTCases[i].second.Default) {
- PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
- false));
- PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
+ PHI->addOperand
+ (MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, false));
+ PHI->addOperand
+ (MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
}
// JT BB. Just iterate over successors here
if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
- PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
- false));
+ PHI->addOperand
+ (MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second, false));
PHI->addOperand(MachineOperand::CreateMBB(BB));
}
}
}
SDL->JTCases.clear();
-
+
// If the switch block involved a branch to one of the actual successors, we
// need to update PHI nodes in that block.
for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
@@ -1045,25 +983,31 @@ SelectionDAGISel::FinishBasicBlock() {
PHI->addOperand(MachineOperand::CreateMBB(BB));
}
}
-
+
// If we generated any switch lowering information, build and codegen any
// additional DAGs necessary.
for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
// Set the current basic block to the mbb we wish to insert the code into
- BB = SDL->SwitchCases[i].ThisBB;
+ MachineBasicBlock *ThisBB = BB = SDL->SwitchCases[i].ThisBB;
SDL->setCurrentBasicBlock(BB);
-
+
// Emit the code
SDL->visitSwitchCase(SDL->SwitchCases[i]);
CurDAG->setRoot(SDL->getRoot());
CodeGenAndEmitDAG();
- SDL->clear();
-
+
// Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times.
while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
+ // If new BB's are created during scheduling, the edges may have been
+ // updated. That is, the edge from ThisBB to BB may have been split and
+ // BB's predecessor is now another block.
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
+ SDL->EdgeMapping.find(BB);
+ if (EI != SDL->EdgeMapping.end())
+ ThisBB = EI->second;
for (MachineBasicBlock::iterator Phi = BB->begin();
Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
// This value for this PHI node is recorded in PHINodesToUpdate, get it.
@@ -1073,21 +1017,22 @@ SelectionDAGISel::FinishBasicBlock() {
if (SDL->PHINodesToUpdate[pn].first == Phi) {
Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
second, false));
- Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
+ Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
break;
}
}
}
-
+
// Don't process RHS if same block as LHS.
if (BB == SDL->SwitchCases[i].FalseBB)
SDL->SwitchCases[i].FalseBB = 0;
-
+
// If we haven't handled the RHS, do so now. Otherwise, we're done.
SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
SDL->SwitchCases[i].FalseBB = 0;
}
assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
+ SDL->clear();
}
SDL->SwitchCases.clear();
@@ -1101,12 +1046,12 @@ SelectionDAGISel::FinishBasicBlock() {
///
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
-
+
if (!Ctor) {
Ctor = ISHeuristic;
RegisterScheduler::setDefault(Ctor);
}
-
+
return Ctor(this, OptLevel);
}
@@ -1123,25 +1068,25 @@ ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
-bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
+bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
-
+
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
-
+
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask.intersects(~DesiredMask))
return false;
-
+
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
return true;
-
+
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
@@ -1152,32 +1097,32 @@ bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
-bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
+bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
-
+
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
-
+
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask.intersects(~DesiredMask))
return false;
-
+
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
-
+
APInt KnownZero, KnownOne;
CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
-
+
// If all the missing bits in the or are already known to be set, match!
if ((NeededMask & KnownOne) == NeededMask)
return true;
-
+
// TODO: check to see if missing bits are just not demanded.
-
+
// Otherwise, this pattern doesn't match.
return false;
}
@@ -1196,7 +1141,7 @@ SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
unsigned i = 2, e = InOps.size();
if (InOps[e-1].getValueType() == MVT::Flag)
--e; // Don't process a flag operand if it is here.
-
+
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
if ((Flags & 7) != 4 /*MEM*/) {
@@ -1210,25 +1155,25 @@ SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
// Otherwise, this is a memory operand. Ask the target to select it.
std::vector<SDValue> SelOps;
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
- cerr << "Could not match memory address. Inline asm failure!\n";
- exit(1);
+ llvm_report_error("Could not match memory address. Inline asm"
+ " failure!");
}
-
+
// Add this to the output node.
- MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
+ EVT IntPtrTy = TLI.getPointerTy();
Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
IntPtrTy));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;
}
}
-
+
// Add the flag input back if present.
if (e != InOps.size())
Ops.push_back(InOps.back());
}
-/// findFlagUse - Return use of MVT::Flag value produced by the specified
+/// findFlagUse - Return use of EVT::Flag value produced by the specified
/// SDNode.
///
static SDNode *findFlagUse(SDNode *N) {
@@ -1331,7 +1276,7 @@ bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
// Fold. But since Fold and FU are flagged together, this will create
// a cycle in the scheduling graph.
- MVT VT = Root->getValueType(Root->getNumValues()-1);
+ EVT VT = Root->getValueType(Root->getNumValues()-1);
while (VT == MVT::Flag) {
SDNode *FU = findFlagUse(Root);
if (FU == NULL)
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
index 6fd5df2..ccc5e3c 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGPrinter.cpp
@@ -44,7 +44,7 @@ namespace llvm {
}
static std::string getEdgeDestLabel(const void *Node, unsigned i) {
- return ((const SDNode *) Node)->getValueType(i).getMVTString();
+ return ((const SDNode *) Node)->getValueType(i).getEVTString();
}
/// edgeTargetsEdgeSource - This method returns true if this outgoing edge
@@ -84,7 +84,7 @@ namespace llvm {
template<typename EdgeIter>
static std::string getEdgeAttributes(const void *Node, EdgeIter EI) {
SDValue Op = EI.getNode()->getOperand(EI.getOperand());
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
if (VT == MVT::Flag)
return "color=red,style=bold";
else if (VT == MVT::Other)
@@ -138,11 +138,11 @@ std::string DOTGraphTraits<SelectionDAG*>::getNodeLabel(const SDNode *Node,
void SelectionDAG::viewGraph(const std::string &Title) {
// This code is only for debugging!
#ifndef NDEBUG
- ViewGraph(this, "dag." + getMachineFunction().getFunction()->getName(), false,
- Title);
+ ViewGraph(this, "dag." + getMachineFunction().getFunction()->getNameStr(),
+ false, Title);
#else
- cerr << "SelectionDAG::viewGraph is only available in debug builds on "
- << "systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
@@ -158,8 +158,8 @@ void SelectionDAG::clearGraphAttrs() {
#ifndef NDEBUG
NodeGraphAttrs.clear();
#else
- cerr << "SelectionDAG::clearGraphAttrs is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::clearGraphAttrs is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
#endif
}
@@ -170,8 +170,8 @@ void SelectionDAG::setGraphAttrs(const SDNode *N, const char *Attrs) {
#ifndef NDEBUG
NodeGraphAttrs[N] = Attrs;
#else
- cerr << "SelectionDAG::setGraphAttrs is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::setGraphAttrs is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
#endif
}
@@ -188,8 +188,8 @@ const std::string SelectionDAG::getGraphAttrs(const SDNode *N) const {
else
return "";
#else
- cerr << "SelectionDAG::getGraphAttrs is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::getGraphAttrs is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
return std::string("");
#endif
}
@@ -200,8 +200,8 @@ void SelectionDAG::setGraphColor(const SDNode *N, const char *Color) {
#ifndef NDEBUG
NodeGraphAttrs[N] = std::string("color=") + Color;
#else
- cerr << "SelectionDAG::setGraphColor is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::setGraphColor is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
#endif
}
@@ -216,7 +216,7 @@ bool SelectionDAG::setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet
if (level >= 20) {
if (!printed) {
printed = true;
- DOUT << "setSubgraphColor hit max level\n";
+ DEBUG(errs() << "setSubgraphColor hit max level\n");
}
return true;
}
@@ -232,8 +232,8 @@ bool SelectionDAG::setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet
}
}
#else
- cerr << "SelectionDAG::setSubgraphColor is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::setSubgraphColor is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
#endif
return hit_limit;
}
@@ -255,8 +255,8 @@ void SelectionDAG::setSubgraphColor(SDNode *N, const char *Color) {
}
#else
- cerr << "SelectionDAG::setSubgraphColor is only available in debug builds"
- << " on systems with Graphviz or gv!\n";
+ errs() << "SelectionDAG::setSubgraphColor is only available in debug builds"
+ << " on systems with Graphviz or gv!\n";
#endif
}
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index 83357e0..a2baee4 100644
--- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -11,18 +11,20 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetSubtarget.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtarget.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
@@ -239,12 +241,23 @@ static void InitLibcallNames(const char **Names) {
Names[RTLIB::UO_F64] = "__unorddf2";
Names[RTLIB::O_F32] = "__unordsf2";
Names[RTLIB::O_F64] = "__unorddf2";
+ Names[RTLIB::MEMCPY] = "memcpy";
+ Names[RTLIB::MEMMOVE] = "memmove";
+ Names[RTLIB::MEMSET] = "memset";
Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
}
+/// InitLibcallCallingConvs - Set default libcall CallingConvs.
+///
+static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ CCs[i] = CallingConv::C;
+ }
+}
+
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::f64)
return FPEXT_F32_F64;
@@ -254,7 +267,7 @@ RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
/// getFPROUND - Return the FPROUND_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
if (RetVT == MVT::f32) {
if (OpVT == MVT::f64)
return FPROUND_F64_F32;
@@ -273,7 +286,7 @@ RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i8)
return FPTOSINT_F32_I8;
@@ -312,7 +325,7 @@ RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i8)
return FPTOUINT_F32_I8;
@@ -351,7 +364,7 @@ RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return SINTTOFP_I32_F32;
@@ -385,7 +398,7 @@ RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
-RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
+RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return UINTTOFP_I32_F32;
@@ -439,8 +452,9 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
CCs[RTLIB::O_F64] = ISD::SETEQ;
}
-TargetLowering::TargetLowering(TargetMachine &tm)
- : TM(tm), TD(TM.getTargetData()) {
+/// NOTE: The constructor takes ownership of TLOF.
+TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
+ : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
memset(LoadExtActions, 0, sizeof(LoadExtActions));
@@ -490,12 +504,10 @@ TargetLowering::TargetLowering(TargetMachine &tm)
IsLittleEndian = TD->isLittleEndian();
UsesGlobalOffsetTable = false;
- ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
- ShiftAmtHandling = Undefined;
+ ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
- allowUnalignedMemoryAccesses = false;
benefitFromCodePlacementOpt = false;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
@@ -515,14 +527,62 @@ TargetLowering::TargetLowering(TargetMachine &tm)
InitLibcallNames(LibcallRoutineNames);
InitCmpLibcallCCs(CmpLibcallCCs);
+ InitLibcallCallingConvs(LibcallCallingConvs);
// Tell Legalize whether the assembler supports DEBUG_LOC.
- const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
+ const MCAsmInfo *TASM = TM.getMCAsmInfo();
if (!TASM || !TASM->hasDotLocAndDotFile())
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
}
-TargetLowering::~TargetLowering() {}
+TargetLowering::~TargetLowering() {
+ delete &TLOF;
+}
+
+static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ EVT &RegisterVT,
+ TargetLowering* TLI) {
+ // Figure out the right, legal destination reg to copy into.
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
+ if (!TLI->isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ EVT DestVT = TLI->getRegisterType(NewVT);
+ RegisterVT = DestVT;
+ if (EVT(DestVT).bitsLT(NewVT)) {
+ // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
+ } else {
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+ }
+
+ return 1;
+}
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
@@ -546,13 +606,13 @@ void TargetLowering::computeRegisterProperties() {
// Every integer value type larger than this largest register takes twice as
// many registers to represent as the previous ValueType.
for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
- MVT EVT = (MVT::SimpleValueType)ExpandedReg;
- if (!EVT.isInteger())
+ EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
+ if (!ExpandedVT.isInteger())
break;
NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction(EVT, Expand);
+ ValueTypeActions.setTypeAction(ExpandedVT, Expand);
}
// Inspect all of the ValueType's smaller than the largest integer
@@ -560,7 +620,7 @@ void TargetLowering::computeRegisterProperties() {
unsigned LegalIntReg = LargestIntReg;
for (unsigned IntReg = LargestIntReg - 1;
IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
+ EVT IVT = (MVT::SimpleValueType)IntReg;
if (isTypeLegal(IVT)) {
LegalIntReg = IntReg;
} else {
@@ -608,20 +668,20 @@ void TargetLowering::computeRegisterProperties() {
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT VT = (MVT::SimpleValueType)i;
if (!isTypeLegal(VT)) {
- MVT IntermediateVT, RegisterVT;
+ MVT IntermediateVT;
+ EVT RegisterVT;
unsigned NumIntermediates;
NumRegistersForVT[i] =
- getVectorTypeBreakdown(VT,
- IntermediateVT, NumIntermediates,
- RegisterVT);
+ getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
+ RegisterVT, this);
RegisterTypeForVT[i] = RegisterVT;
// Determine if there is a legal wider type.
bool IsLegalWiderType = false;
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
+ EVT SVT = (MVT::SimpleValueType)nVT;
if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
SVT.getVectorNumElements() > NElts) {
TransformToType[i] = SVT;
@@ -631,7 +691,7 @@ void TargetLowering::computeRegisterProperties() {
}
}
if (!IsLegalWiderType) {
- MVT NVT = VT.getPow2VectorType();
+ EVT NVT = VT.getPow2VectorType();
if (NVT == VT) {
// Type is already a power of 2. The default action is to split.
TransformToType[i] = MVT::Other;
@@ -650,11 +710,10 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
}
-MVT TargetLowering::getSetCCResultType(MVT VT) const {
- return getValueType(TD->getIntPtrType());
+MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
+ return PointerTy.SimpleTy;
}
-
/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
@@ -664,13 +723,13 @@ MVT TargetLowering::getSetCCResultType(MVT VT) const {
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
-unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
- MVT &IntermediateVT,
+unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
+ EVT &IntermediateVT,
unsigned &NumIntermediates,
- MVT &RegisterVT) const {
+ EVT &RegisterVT) const {
// Figure out the right, legal destination reg to copy into.
unsigned NumElts = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType();
+ EVT EltTy = VT.getVectorElementType();
unsigned NumVectorRegs = 1;
@@ -683,19 +742,20 @@ unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
+ while (NumElts > 1 && !isTypeLegal(
+ EVT::getVectorVT(Context, EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
NumIntermediates = NumVectorRegs;
- MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
+ EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
if (!isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
- MVT DestVT = getRegisterType(NewVT);
+ EVT DestVT = getRegisterType(Context, NewVT);
RegisterVT = DestVT;
if (DestVT.bitsLT(NewVT)) {
// Value is expanded, e.g. i64 -> i16.
@@ -714,7 +774,7 @@ unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
/// If there is no vector type that we want to widen to, returns MVT::Other
/// When and where to widen is target dependent based on the cost of
/// scalarizing vs using the wider vector type.
-MVT TargetLowering::getWidenVectorType(MVT VT) const {
+EVT TargetLowering::getWidenVectorType(EVT VT) const {
assert(VT.isVector());
if (isTypeLegal(VT))
return VT;
@@ -781,7 +841,7 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
// if we can expand it to have all bits set, do it
if (C->getAPIntValue().intersects(~Demanded)) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
DAG.getConstant(Demanded &
C->getAPIntValue(),
@@ -822,7 +882,7 @@ TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
if (!isPowerOf2_32(SmallVTBits))
SmallVTBits = NextPowerOf2(SmallVTBits);
for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
TLI.isZExtFree(SmallVT, Op.getValueType())) {
// We found a type with free casts.
@@ -1008,7 +1068,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
if ((KnownOne & KnownOne2) == KnownOne) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
Op.getOperand(0), ANDC));
@@ -1023,7 +1083,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// if we can expand it to have all bits set, do it
if (Expanded.isAllOnesValue()) {
if (Expanded != C->getAPIntValue()) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
TLO.DAG.getConstant(Expanded, VT));
return TLO.CombineTo(Op, New);
@@ -1099,7 +1159,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
SDValue NewSA =
TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
InOp.getOperand(0), NewSA));
}
@@ -1116,7 +1176,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
case ISD::SRL:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned ShAmt = SA->getZExtValue();
unsigned VTSize = VT.getSizeInBits();
SDValue InOp = Op.getOperand(0);
@@ -1168,7 +1228,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
Op.getOperand(0), Op.getOperand(1)));
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
@@ -1205,7 +1265,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
}
break;
case ISD::SIGN_EXTEND_INREG: {
- MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
@@ -1272,7 +1332,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::SIGN_EXTEND: {
- MVT InVT = Op.getOperand(0).getValueType();
+ EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getSizeInBits();
APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
@@ -1371,7 +1431,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
}
case ISD::AssertZext: {
- MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
@@ -1385,7 +1445,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
#if 0
// If this is an FP->Int bitcast and if the sign bit is the only thing that
// is demanded, turn this into a FGETSIGN.
- if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
+ if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
!MVT::isVector(Op.getOperand(0).getValueType())) {
// Only do this xform if FGETSIGN is valid or if before legalize.
@@ -1492,7 +1552,7 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
// to handle some common cases.
// Fall back to ComputeMaskedBits to catch other known cases.
- MVT OpVT = Val.getValueType();
+ EVT OpVT = Val.getValueType();
unsigned BitWidth = OpVT.getSizeInBits();
APInt Mask = APInt::getAllOnesValue(BitWidth);
APInt KnownZero, KnownOne;
@@ -1504,10 +1564,11 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
/// SimplifySetCC - Try to simplify a setcc built with the specified operands
/// and cc. If it is unable to simplify it, return a null SDValue.
SDValue
-TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
+TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, bool foldBooleans,
DAGCombinerInfo &DCI, DebugLoc dl) const {
SelectionDAG &DAG = DCI.DAG;
+ LLVMContext &Context = *DAG.getContext();
// These setcc operations always fold.
switch (Cond) {
@@ -1518,316 +1579,321 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
case ISD::SETTRUE2: return DAG.getConstant(1, VT);
}
+ if (isa<ConstantSDNode>(N0.getNode())) {
+ // Ensure that the constant occurs on the RHS, and fold constant
+ // comparisons.
+ return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
+ }
+
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
- if (isa<ConstantSDNode>(N0.getNode())) {
- return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
- } else {
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- N0.getOperand(1).getOpcode() == ISD::Constant) {
- unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
- Zero, Cond);
+
+ // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+ // equality comparison, then we're just comparing whether X itself is
+ // zero.
+ if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
+ N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
+ if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+ // (srl (ctlz x), 5) == 0 -> X != 0
+ // (srl (ctlz x), 5) != 1 -> X != 0
+ Cond = ISD::SETNE;
+ } else {
+ // (srl (ctlz x), 5) != 0 -> X == 0
+ // (srl (ctlz x), 5) == 1 -> X == 0
+ Cond = ISD::SETEQ;
}
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
+ Zero, Cond);
}
+ }
- // If the LHS is '(and load, const)', the RHS is 0,
- // the test is for equality or unsigned, and all 1 bits of the const are
- // in the same partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- uint64_t bestMask = 0;
- unsigned bestWidth = 0, bestOffset = 0;
- if (!Lod->isVolatile() && Lod->isUnindexed() &&
- // FIXME: This uses getZExtValue() below so it only works on i64 and
- // below.
- N0.getValueType().getSizeInBits() <= 64) {
- unsigned origWidth = N0.getValueType().getSizeInBits();
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- uint64_t newMask = (1ULL << width) - 1;
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if ((newMask & Mask) == Mask) {
- if (!TD->isLittleEndian())
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- else
- bestOffset = (uint64_t)offset * (width/8);
- bestMask = Mask >> (offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask = newMask << width;
+ // If the LHS is '(and load, const)', the RHS is 0,
+ // the test is for equality or unsigned, and all 1 bits of the const are
+ // in the same partial word, see if we can shorten the load.
+ if (DCI.isBeforeLegalize() &&
+ N0.getOpcode() == ISD::AND && C1 == 0 &&
+ N0.getNode()->hasOneUse() &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(0).getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
+ uint64_t bestMask = 0;
+ unsigned bestWidth = 0, bestOffset = 0;
+ if (!Lod->isVolatile() && Lod->isUnindexed() &&
+ // FIXME: This uses getZExtValue() below so it only works on i64 and
+ // below.
+ N0.getValueType().getSizeInBits() <= 64) {
+ unsigned origWidth = N0.getValueType().getSizeInBits();
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // 8 bits, but have to be careful...
+ if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+ origWidth = Lod->getMemoryVT().getSizeInBits();
+ uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+ for (unsigned width = origWidth / 2; width>=8; width /= 2) {
+ uint64_t newMask = (1ULL << width) - 1;
+ for (unsigned offset=0; offset<origWidth/width; offset++) {
+ if ((newMask & Mask) == Mask) {
+ if (!TD->isLittleEndian())
+ bestOffset = (origWidth/width - offset - 1) * (width/8);
+ else
+ bestOffset = (uint64_t)offset * (width/8);
+ bestMask = Mask >> (offset * (width/8) * 8);
+ bestWidth = width;
+ break;
}
+ newMask = newMask << width;
}
}
- if (bestWidth) {
- MVT newVT = MVT::getIntegerVT(bestWidth);
- if (newVT.isRound()) {
- MVT PtrType = Lod->getOperand(1).getValueType();
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
- DAG.getConstant(bestOffset, PtrType));
- unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
- SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
- Lod->getSrcValue(),
- Lod->getSrcValueOffset() + bestOffset,
- false, NewAlign);
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask, newVT)),
- DAG.getConstant(0LL, newVT), Cond);
- }
+ }
+ if (bestWidth) {
+ EVT newVT = EVT::getIntegerVT(Context, bestWidth);
+ if (newVT.isRound()) {
+ EVT PtrType = Lod->getOperand(1).getValueType();
+ SDValue Ptr = Lod->getBasePtr();
+ if (bestOffset != 0)
+ Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
+ DAG.getConstant(bestOffset, PtrType));
+ unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
+ SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
+ Lod->getSrcValue(),
+ Lod->getSrcValueOffset() + bestOffset,
+ false, NewAlign);
+ return DAG.getSetCC(dl, VT,
+ DAG.getNode(ISD::AND, dl, newVT, NewLoad,
+ DAG.getConstant(bestMask, newVT)),
+ DAG.getConstant(0LL, newVT), Cond);
}
}
+ }
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
-
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ: return DAG.getConstant(0, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE: return DAG.getConstant(1, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), VT);
- default:
- break;
- }
- }
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
- // Otherwise, we can perform the comparison with the low bits.
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
+ C1.getBitWidth() - InSize))) {
switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
+ case ISD::SETEQ: return DAG.getConstant(0, VT);
case ISD::SETULT:
case ISD::SETULE:
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(APInt(C1).trunc(InSize),
- N0.getOperand(0).getValueType()),
- Cond);
+ case ISD::SETNE: return DAG.getConstant(1, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C1 is set.
+ return DAG.getConstant(C1.isNegative(), VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C1 isn't set.
+ return DAG.getConstant(C1.isNonNegative(), VT);
default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- MVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
-
- // If the extended part has any inconsistent bits, it cannot ever
- // compare equal. In other words, they have to be all ones or all
- // zeros.
- APInt ExtBits =
- APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
- if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
- return DAG.getConstant(Cond == ISD::SETNE, VT);
-
- SDValue ZextOp;
- MVT Op0Ty = N0.getOperand(0).getValueType();
- if (Op0Ty == ExtSrcTy) {
- ZextOp = N0.getOperand(0);
- } else {
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
- DAG.getConstant(Imm, Op0Ty));
- }
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & APInt::getLowBitsSet(
- ExtDstTyBits,
- ExtSrcTyBits),
- ExtDstTy),
- Cond);
- } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
-
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
- if (TrueWhenTrue)
- return N0;
-
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
- N0.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
-
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR)
- Val = N0.getOperand(0);
- else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
+ break;
}
}
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ EVT newVT = N0.getOperand(0).getValueType();
+ if (DCI.isBeforeLegalizeOps() ||
+ (isOperationLegal(ISD::SETCC, newVT) &&
+ getCondCodeAction(Cond, newVT)==Legal))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(APInt(C1).trunc(InSize), newVT),
+ Cond);
+ break;
+ }
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
+ EVT ExtDstTy = N0.getValueType();
+ unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
+
+ // If the extended part has any inconsistent bits, it cannot ever
+ // compare equal. In other words, they have to be all ones or all
+ // zeros.
+ APInt ExtBits =
+ APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
+ if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
+ return DAG.getConstant(Cond == ISD::SETNE, VT);
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ SDValue ZextOp;
+ EVT Op0Ty = N0.getOperand(0).getValueType();
+ if (Op0Ty == ExtSrcTy) {
+ ZextOp = N0.getOperand(0);
} else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
+ APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
+ ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
+ DAG.getConstant(Imm, Op0Ty));
}
-
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
- // X >= C0 --> X > (C0-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1-1, N1.getValueType()),
- (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(ZextOp.getNode());
+ // Otherwise, make this a use of a zext.
+ return DAG.getSetCC(dl, VT, ZextOp,
+ DAG.getConstant(C1 & APInt::getLowBitsSet(
+ ExtDstTyBits,
+ ExtSrcTyBits),
+ ExtDstTy),
+ Cond);
+ } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+
+ // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
+ if (N0.getOpcode() == ISD::SETCC) {
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
+ if (TrueWhenTrue)
+ return N0;
+
+ // Invert the condition.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ CC = ISD::getSetCCInverse(CC,
+ N0.getOperand(0).getValueType().isInteger());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
}
-
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
- // X <= C0 --> X < (C0+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1+1, N1.getValueType()),
- (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+
+ if ((N0.getOpcode() == ISD::XOR ||
+ (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR &&
+ N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
+ // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
+ // can only do this if the top bits are known zero.
+ unsigned BitWidth = N0.getValueSizeInBits();
+ if (DAG.MaskedValueIsZero(N0,
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth-1))) {
+ // Okay, get the un-inverted input value.
+ SDValue Val;
+ if (N0.getOpcode() == ISD::XOR)
+ Val = N0.getOperand(0);
+ else {
+ assert(N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR);
+ // ((X^1)&1)^1 -> X & 1
+ Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
+ N0.getOperand(0).getOperand(0),
+ N0.getOperand(1));
+ }
+ return DAG.getSetCC(dl, VT, Val, N1,
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
}
+ }
+
+ APInt MinVal, MaxVal;
+ unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = APInt::getSignedMinValue(OperandBitSize);
+ MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ } else {
+ MinVal = APInt::getMinValue(OperandBitSize);
+ MaxVal = APInt::getMaxValue(OperandBitSize);
+ }
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
- return DAG.getConstant(0, VT); // X < MIN --> false
- if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
- return DAG.getConstant(1, VT); // X >= MIN --> true
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
- return DAG.getConstant(0, VT); // X > MAX --> false
- if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
- return DAG.getConstant(1, VT); // X <= MAX --> true
-
- // Canonicalize setgt X, Min --> setne X, Min
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // Canonicalize setlt X, Max --> setne X, Max
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
-
- // If we have setult X, 1, turn it into seteq X, 0
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, N0.getValueType()),
- ISD::SETEQ);
- // If we have setugt X, Max-1, turn it into seteq X, Max
- else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, N0.getValueType()),
- ISD::SETEQ);
-
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
-
- // SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
- C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, N1.getValueType()),
- ISD::SETLT);
-
- // SETULT X, SINTMIN -> SETGT X, -1
- if (Cond == ISD::SETULT &&
- C1 == APInt::getSignedMinValue(OperandBitSize)) {
- SDValue ConstMinusOne =
- DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
- N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
- }
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
+ // X >= C0 --> X > (C0-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1-1, N1.getValueType()),
+ (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+ }
- // Fold bit comparisons when we can.
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS =
- dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- MVT ShiftTy = DCI.isBeforeLegalize() ?
- getPointerTy() : getShiftAmountTy();
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- if (isPowerOf2_64(AndRHS->getZExtValue())) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
- ShiftTy));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::SRL, dl, VT, N0,
- DAG.getConstant(C1.logBase2(), ShiftTy));
- }
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
+ // X <= C0 --> X < (C0+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1+1, N1.getValueType()),
+ (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+ }
+
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
+ return DAG.getConstant(0, VT); // X < MIN --> false
+ if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
+ return DAG.getConstant(1, VT); // X >= MIN --> true
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
+ return DAG.getConstant(0, VT); // X > MAX --> false
+ if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
+ return DAG.getConstant(1, VT); // X <= MAX --> true
+
+ // Canonicalize setgt X, Min --> setne X, Min
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+ // Canonicalize setlt X, Max --> setne X, Max
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, N0.getValueType()),
+ ISD::SETEQ);
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MaxVal, N0.getValueType()),
+ ISD::SETEQ);
+
+ // If we have "setcc X, C0", check to see if we can shrink the immediate
+ // by changing cc.
+
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ if (Cond == ISD::SETUGT &&
+ C1 == APInt::getSignedMaxValue(OperandBitSize))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(0, N1.getValueType()),
+ ISD::SETLT);
+
+ // SETULT X, SINTMIN -> SETGT X, -1
+ if (Cond == ISD::SETULT &&
+ C1 == APInt::getSignedMinValue(OperandBitSize)) {
+ SDValue ConstMinusOne =
+ DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
+ N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
+ }
+
+ // Fold bit comparisons when we can.
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS =
+ dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ EVT ShiftTy = DCI.isBeforeLegalize() ?
+ getPointerTy() : getShiftAmountTy();
+ if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ if (isPowerOf2_64(AndRHS->getZExtValue())) {
+ return DAG.getNode(ISD::SRL, dl, VT, N0,
+ DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
+ ShiftTy));
+ }
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C1 is a single bit.
+ if (C1.isPowerOf2()) {
+ return DAG.getNode(ISD::SRL, dl, VT, N0,
+ DAG.getConstant(C1.logBase2(), ShiftTy));
}
}
- }
- } else if (isa<ConstantSDNode>(N0.getNode())) {
- // Ensure that the constant occurs on the RHS.
- return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
+ }
}
if (isa<ConstantFPSDNode>(N0.getNode())) {
@@ -1840,7 +1906,7 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
if (CFP->getValueAPF().isNaN()) {
// If an operand is known to be a nan, we can fold it.
switch (ISD::getUnorderedFlavor(Cond)) {
- default: assert(0 && "Unknown flavor!");
+ default: llvm_unreachable("Unknown flavor!");
case 0: // Known false.
return DAG.getConstant(0, VT);
case 1: // Known true.
@@ -1856,6 +1922,43 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
// materialize 0.0.
if (Cond == ISD::SETO || Cond == ISD::SETUO)
return DAG.getSetCC(dl, VT, N0, N0, Cond);
+
+ // If the condition is not legal, see if we can find an equivalent one
+ // which is legal.
+ if (!isCondCodeLegal(Cond, N0.getValueType())) {
+ // If the comparison was an awkward floating-point == or != and one of
+ // the comparison operands is infinity or negative infinity, convert the
+ // condition to a less-awkward <= or >=.
+ if (CFP->getValueAPF().isInfinity()) {
+ if (CFP->getValueAPF().isNegative()) {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
+ } else {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETULT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETULT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
+ }
+ }
+ }
}
if (N0 == N1) {
@@ -2000,7 +2103,7 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
SDValue Temp;
if (N0.getValueType() == MVT::i1 && foldBooleans) {
switch (Cond) {
- default: assert(0 && "Unknown integer setcc!");
+ default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: // X == Y -> ~(X^Y)
Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
N0 = DAG.getNOT(dl, Temp, MVT::i1);
@@ -2090,7 +2193,7 @@ bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
const MachineFrameInfo *MFI) const {
if (LD->getChain() != Base->getChain())
return false;
- MVT VT = LD->getValueType(0);
+ EVT VT = LD->getValueType(0);
if (VT.getSizeInBits() / 8 != Bytes)
return false;
@@ -2171,7 +2274,7 @@ TargetLowering::getConstraintType(const std::string &Constraint) const {
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
-const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
+const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
if (ConstraintVT.isInteger())
return "r";
if (ConstraintVT.isFloatingPoint())
@@ -2244,14 +2347,14 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::vector<unsigned> TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
return std::vector<unsigned>();
}
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint[0] != '{')
return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
@@ -2280,7 +2383,7 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
- if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
+ if (StringsEqualNoCase(RegName, RI->getName(*I)))
return std::make_pair(*I, RC);
}
}
@@ -2310,7 +2413,7 @@ unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
/// is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
- default: assert(0 && "Unknown constraint type!");
+ default: llvm_unreachable("Unknown constraint type!");
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
@@ -2406,10 +2509,13 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
- // that matches labels).
- if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
- isa<ConstantInt>(OpInfo.CallOperandVal))
+ // that matches labels). For Functions, the type here is the type of
+ // the result, which is not what we want to look at; leave them alone.
+ Value *v = OpInfo.CallOperandVal;
+ if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
+ OpInfo.CallOperandVal = v;
return;
+ }
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
@@ -2464,7 +2570,7 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
std::vector<SDNode*>* Created) const {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl= N->getDebugLoc();
// Check to see if we can do this.
@@ -2521,7 +2627,7 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
std::vector<SDNode*>* Created) const {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// Check to see if we can do this.
@@ -2569,45 +2675,3 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
DAG.getConstant(magics.s-1, getShiftAmountTy()));
}
}
-
-/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
-/// node that don't prevent tail call optimization.
-static SDValue IgnoreHarmlessInstructions(SDValue node) {
- // Found call return.
- if (node.getOpcode() == ISD::CALL) return node;
- // Ignore MERGE_VALUES. Will have at least one operand.
- if (node.getOpcode() == ISD::MERGE_VALUES)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- // Ignore ANY_EXTEND node.
- if (node.getOpcode() == ISD::ANY_EXTEND)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- if (node.getOpcode() == ISD::TRUNCATE)
- return IgnoreHarmlessInstructions(node.getOperand(0));
- // Any other node type.
- return node;
-}
-
-bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
- SDValue Ret) {
- unsigned NumOps = Ret.getNumOperands();
- // ISD::CALL results:(value0, ..., valuen, chain)
- // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
- // Value return:
- // Check that operand of the RET node sources from the CALL node. The RET node
- // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
- // value.
- // Also we need to check that there is no code in between the call and the
- // return. Hence we also check that the incomming chain to the return sources
- // from the outgoing chain of the call.
- if (NumOps > 1 &&
- IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
- Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
- return true;
- // void return: The RET node has the chain result value of the CALL node as
- // input.
- if (NumOps == 1 &&
- Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
- return true;
-
- return false;
-}
diff --git a/lib/CodeGen/ShadowStackGC.cpp b/lib/CodeGen/ShadowStackGC.cpp
index 2402f81..25a499b88 100644
--- a/lib/CodeGen/ShadowStackGC.cpp
+++ b/lib/CodeGen/ShadowStackGC.cpp
@@ -62,9 +62,11 @@ namespace {
Constant *GetFrameMap(Function &F);
const Type* GetConcreteStackEntryType(Function &F);
void CollectRoots(Function &F);
- static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr,
+ static GetElementPtrInst *CreateGEP(LLVMContext &Context,
+ IRBuilder<> &B, Value *BasePtr,
int Idx1, const char *Name);
- static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr,
+ static GetElementPtrInst *CreateGEP(LLVMContext &Context,
+ IRBuilder<> &B, Value *BasePtr,
int Idx1, int Idx2, const char *Name);
};
@@ -93,7 +95,7 @@ namespace {
public:
EscapeEnumerator(Function &F, const char *N = "cleanup")
- : F(F), CleanupBBName(N), State(0) {}
+ : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
IRBuilder<> *Next() {
switch (State) {
@@ -136,8 +138,9 @@ namespace {
return 0;
// Create a cleanup block.
- BasicBlock *CleanupBB = BasicBlock::Create(CleanupBBName, &F);
- UnwindInst *UI = new UnwindInst(CleanupBB);
+ BasicBlock *CleanupBB = BasicBlock::Create(F.getContext(),
+ CleanupBBName, &F);
+ UnwindInst *UI = new UnwindInst(F.getContext(), CleanupBB);
// Transform the 'call' instructions into 'invoke's branching to the
// cleanup block. Go in reverse order to make prettier BB names.
@@ -186,8 +189,7 @@ ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
Constant *ShadowStackGC::GetFrameMap(Function &F) {
// doInitialization creates the abstract type of this value.
-
- Type *VoidPtr = PointerType::getUnqual(Type::Int8Ty);
+ const Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
// Truncate the ShadowStackDescriptor if some metadata is null.
unsigned NumMeta = 0;
@@ -200,17 +202,18 @@ Constant *ShadowStackGC::GetFrameMap(Function &F) {
}
Constant *BaseElts[] = {
- ConstantInt::get(Type::Int32Ty, Roots.size(), false),
- ConstantInt::get(Type::Int32Ty, NumMeta, false),
+ ConstantInt::get(Type::getInt32Ty(F.getContext()), Roots.size(), false),
+ ConstantInt::get(Type::getInt32Ty(F.getContext()), NumMeta, false),
};
Constant *DescriptorElts[] = {
- ConstantStruct::get(BaseElts, 2),
+ ConstantStruct::get(F.getContext(), BaseElts, 2, false),
ConstantArray::get(ArrayType::get(VoidPtr, NumMeta),
Metadata.begin(), NumMeta)
};
- Constant *FrameMap = ConstantStruct::get(DescriptorElts, 2);
+ Constant *FrameMap = ConstantStruct::get(F.getContext(), DescriptorElts, 2,
+ false);
std::string TypeName("gc_map.");
TypeName += utostr(NumMeta);
@@ -229,13 +232,14 @@ Constant *ShadowStackGC::GetFrameMap(Function &F) {
// to be a ModulePass (which means it cannot be in the 'llc' pipeline
// (which uses a FunctionPassManager (which segfaults (not asserts) if
// provided a ModulePass))).
- Constant *GV = new GlobalVariable(FrameMap->getType(), true,
+ Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
GlobalVariable::InternalLinkage,
- FrameMap, "__gc_" + F.getName(),
- F.getParent());
+ FrameMap, "__gc_" + F.getName());
- Constant *GEPIndices[2] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, 0) };
+ Constant *GEPIndices[2] = {
+ ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
+ ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
+ };
return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2);
}
@@ -245,7 +249,7 @@ const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
EltTys.push_back(StackEntryTy);
for (size_t I = 0; I != Roots.size(); I++)
EltTys.push_back(Roots[I].second->getAllocatedType());
- Type *Ty = StructType::get(EltTys);
+ Type *Ty = StructType::get(F.getContext(), EltTys);
std::string TypeName("gc_stackentry.");
TypeName += F.getName();
@@ -263,9 +267,11 @@ bool ShadowStackGC::initializeCustomLowering(Module &M) {
// void *Meta[]; // May be absent for roots without metadata.
// };
std::vector<const Type*> EltTys;
- EltTys.push_back(Type::Int32Ty); // 32 bits is ok up to a 32GB stack frame. :)
- EltTys.push_back(Type::Int32Ty); // Specifies length of variable length array.
- StructType *FrameMapTy = StructType::get(EltTys);
+ // 32 bits is ok up to a 32GB stack frame. :)
+ EltTys.push_back(Type::getInt32Ty(M.getContext()));
+ // Specifies length of variable length array.
+ EltTys.push_back(Type::getInt32Ty(M.getContext()));
+ StructType *FrameMapTy = StructType::get(M.getContext(), EltTys);
M.addTypeName("gc_map", FrameMapTy);
PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
@@ -274,12 +280,12 @@ bool ShadowStackGC::initializeCustomLowering(Module &M) {
// FrameMap *Map; // Pointer to constant FrameMap.
// void *Roots[]; // Stack roots (in-place array, so we pretend).
// };
- OpaqueType *RecursiveTy = OpaqueType::get();
+ OpaqueType *RecursiveTy = OpaqueType::get(M.getContext());
EltTys.clear();
EltTys.push_back(PointerType::getUnqual(RecursiveTy));
EltTys.push_back(FrameMapPtrTy);
- PATypeHolder LinkTyH = StructType::get(EltTys);
+ PATypeHolder LinkTyH = StructType::get(M.getContext(), EltTys);
RecursiveTy->refineAbstractTypeTo(LinkTyH.get());
StackEntryTy = cast<StructType>(LinkTyH.get());
@@ -292,10 +298,10 @@ bool ShadowStackGC::initializeCustomLowering(Module &M) {
if (!Head) {
// If the root chain does not exist, insert a new one with linkonce
// linkage!
- Head = new GlobalVariable(StackEntryPtrTy, false,
+ Head = new GlobalVariable(M, StackEntryPtrTy, false,
GlobalValue::LinkOnceAnyLinkage,
Constant::getNullValue(StackEntryPtrTy),
- "llvm_gc_root_chain", &M);
+ "llvm_gc_root_chain");
} else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
@@ -338,11 +344,11 @@ void ShadowStackGC::CollectRoots(Function &F) {
}
GetElementPtrInst *
-ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr,
+ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
int Idx, int Idx2, const char *Name) {
- Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, Idx),
- ConstantInt::get(Type::Int32Ty, Idx2) };
+ Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
+ ConstantInt::get(Type::getInt32Ty(Context), Idx),
+ ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
@@ -351,10 +357,10 @@ ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr,
}
GetElementPtrInst *
-ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr,
+ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
int Idx, const char *Name) {
- Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, Idx) };
+ Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
+ ConstantInt::get(Type::getInt32Ty(Context), Idx) };
Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
@@ -364,6 +370,8 @@ ShadowStackGC::CreateGEP(IRBuilder<> &B, Value *BasePtr,
/// runOnFunction - Insert code to maintain the shadow stack.
bool ShadowStackGC::performCustomLowering(Function &F) {
+ LLVMContext &Context = F.getContext();
+
// Find calls to llvm.gcroot.
CollectRoots(F);
@@ -388,13 +396,14 @@ bool ShadowStackGC::performCustomLowering(Function &F) {
// Initialize the map pointer and load the current head of the shadow stack.
Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
- Instruction *EntryMapPtr = CreateGEP(AtEntry, StackEntry,0,1,"gc_frame.map");
+ Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry,
+ 0,1,"gc_frame.map");
AtEntry.CreateStore(FrameMap, EntryMapPtr);
// After all the allocas...
for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
// For each root, find the corresponding slot in the aggregate...
- Value *SlotPtr = CreateGEP(AtEntry, StackEntry, 1 + I, "gc_root");
+ Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
// And use it in lieu of the alloca.
AllocaInst *OriginalAlloca = Roots[I].second;
@@ -410,17 +419,19 @@ bool ShadowStackGC::performCustomLowering(Function &F) {
AtEntry.SetInsertPoint(IP->getParent(), IP);
// Push the entry onto the shadow stack.
- Instruction *EntryNextPtr = CreateGEP(AtEntry,StackEntry,0,0,"gc_frame.next");
- Instruction *NewHeadVal = CreateGEP(AtEntry,StackEntry, 0, "gc_newhead");
- AtEntry.CreateStore(CurrentHead, EntryNextPtr);
- AtEntry.CreateStore(NewHeadVal, Head);
+ Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
+ StackEntry,0,0,"gc_frame.next");
+ Instruction *NewHeadVal = CreateGEP(Context, AtEntry,
+ StackEntry, 0, "gc_newhead");
+ AtEntry.CreateStore(CurrentHead, EntryNextPtr);
+ AtEntry.CreateStore(NewHeadVal, Head);
// For each instruction that escapes...
EscapeEnumerator EE(F, "gc_cleanup");
while (IRBuilder<> *AtExit = EE.Next()) {
// Pop the entry from the shadow stack. Don't reuse CurrentHead from
// AtEntry, since that would make the value live for the entire function.
- Instruction *EntryNextPtr2 = CreateGEP(*AtExit, StackEntry, 0, 0,
+ Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
"gc_frame.next");
Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
AtExit->CreateStore(SavedHead, Head);
diff --git a/lib/CodeGen/ShrinkWrapping.cpp b/lib/CodeGen/ShrinkWrapping.cpp
index e44a138..8070570 100644
--- a/lib/CodeGen/ShrinkWrapping.cpp
+++ b/lib/CodeGen/ShrinkWrapping.cpp
@@ -158,7 +158,7 @@ void PEI::initShrinkWrappingInfo() {
// via --shrink-wrap-func=<funcname>.
#ifndef NDEBUG
if (ShrinkWrapFunc != "") {
- std::string MFName = MF->getFunction()->getName();
+ std::string MFName = MF->getFunction()->getNameStr();
ShrinkWrapThisFunction = (MFName == ShrinkWrapFunc);
}
#endif
@@ -185,8 +185,8 @@ void PEI::placeCSRSpillsAndRestores(MachineFunction &Fn) {
initShrinkWrappingInfo();
DEBUG(if (ShrinkWrapThisFunction) {
- DOUT << "Place CSR spills/restores for "
- << MF->getFunction()->getName() << "\n";
+ errs() << "Place CSR spills/restores for "
+ << MF->getFunction()->getName() << "\n";
});
if (calculateSets(Fn))
@@ -297,20 +297,26 @@ void PEI::calculateAnticAvail(MachineFunction &Fn) {
}
}
- DEBUG(if (ShrinkWrapDebugging >= Details) {
- DOUT << "-----------------------------------------------------------\n";
- DOUT << " Antic/Avail Sets:\n";
- DOUT << "-----------------------------------------------------------\n";
- DOUT << "iterations = " << iterations << "\n";
- DOUT << "-----------------------------------------------------------\n";
- DOUT << "MBB | USED | ANTIC_IN | ANTIC_OUT | AVAIL_IN | AVAIL_OUT\n";
- DOUT << "-----------------------------------------------------------\n";
- for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
- MBBI != MBBE; ++MBBI) {
- MachineBasicBlock* MBB = MBBI;
- dumpSets(MBB);
+ DEBUG({
+ if (ShrinkWrapDebugging >= Details) {
+ errs()
+ << "-----------------------------------------------------------\n"
+ << " Antic/Avail Sets:\n"
+ << "-----------------------------------------------------------\n"
+ << "iterations = " << iterations << "\n"
+ << "-----------------------------------------------------------\n"
+ << "MBB | USED | ANTIC_IN | ANTIC_OUT | AVAIL_IN | AVAIL_OUT\n"
+ << "-----------------------------------------------------------\n";
+
+ for (MachineFunction::iterator MBBI = Fn.begin(), MBBE = Fn.end();
+ MBBI != MBBE; ++MBBI) {
+ MachineBasicBlock* MBB = MBBI;
+ dumpSets(MBB);
+ }
+
+ errs()
+ << "-----------------------------------------------------------\n";
}
- DOUT << "-----------------------------------------------------------\n";
});
}
@@ -357,8 +363,8 @@ bool PEI::calculateSets(MachineFunction &Fn) {
// If no CSRs used, we are done.
if (CSI.empty()) {
DEBUG(if (ShrinkWrapThisFunction)
- DOUT << "DISABLED: " << Fn.getFunction()->getName()
- << ": uses no callee-saved registers\n");
+ errs() << "DISABLED: " << Fn.getFunction()->getName()
+ << ": uses no callee-saved registers\n");
return false;
}
@@ -377,8 +383,8 @@ bool PEI::calculateSets(MachineFunction &Fn) {
// implementation to functions with <= 500 MBBs.
if (Fn.size() > 500) {
DEBUG(if (ShrinkWrapThisFunction)
- DOUT << "DISABLED: " << Fn.getFunction()->getName()
- << ": too large (" << Fn.size() << " MBBs)\n");
+ errs() << "DISABLED: " << Fn.getFunction()->getName()
+ << ": too large (" << Fn.size() << " MBBs)\n");
ShrinkWrapThisFunction = false;
}
@@ -459,8 +465,8 @@ bool PEI::calculateSets(MachineFunction &Fn) {
}
if (allCSRUsesInEntryBlock) {
- DEBUG(DOUT << "DISABLED: " << Fn.getFunction()->getName()
- << ": all CSRs used in EntryBlock\n");
+ DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ << ": all CSRs used in EntryBlock\n");
ShrinkWrapThisFunction = false;
} else {
bool allCSRsUsedInEntryFanout = true;
@@ -471,8 +477,8 @@ bool PEI::calculateSets(MachineFunction &Fn) {
allCSRsUsedInEntryFanout = false;
}
if (allCSRsUsedInEntryFanout) {
- DEBUG(DOUT << "DISABLED: " << Fn.getFunction()->getName()
- << ": all CSRs used in imm successors of EntryBlock\n");
+ DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ << ": all CSRs used in imm successors of EntryBlock\n");
ShrinkWrapThisFunction = false;
}
}
@@ -498,9 +504,9 @@ bool PEI::calculateSets(MachineFunction &Fn) {
if (dominatesExitNodes) {
CSRUsedInChokePoints |= CSRUsed[MBB];
if (CSRUsedInChokePoints == UsedCSRegs) {
- DEBUG(DOUT << "DISABLED: " << Fn.getFunction()->getName()
- << ": all CSRs used in choke point(s) at "
- << getBasicBlockName(MBB) << "\n");
+ DEBUG(errs() << "DISABLED: " << Fn.getFunction()->getName()
+ << ": all CSRs used in choke point(s) at "
+ << getBasicBlockName(MBB) << "\n");
ShrinkWrapThisFunction = false;
break;
}
@@ -514,16 +520,16 @@ bool PEI::calculateSets(MachineFunction &Fn) {
return false;
DEBUG({
- DOUT << "ENABLED: " << Fn.getFunction()->getName();
+ errs() << "ENABLED: " << Fn.getFunction()->getName();
if (HasFastExitPath)
- DOUT << " (fast exit path)";
- DOUT << "\n";
+ errs() << " (fast exit path)";
+ errs() << "\n";
if (ShrinkWrapDebugging >= BasicInfo) {
- DOUT << "------------------------------"
+ errs() << "------------------------------"
<< "-----------------------------\n";
- DOUT << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
+ errs() << "UsedCSRegs = " << stringifyCSRegSet(UsedCSRegs) << "\n";
if (ShrinkWrapDebugging >= Details) {
- DOUT << "------------------------------"
+ errs() << "------------------------------"
<< "-----------------------------\n";
dumpAllUsed();
}
@@ -596,7 +602,7 @@ bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
addedUses = true;
blks.push_back(SUCC);
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- DOUT << getBasicBlockName(MBB)
+ errs() << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(prop) << ")->"
<< "successor " << getBasicBlockName(SUCC) << "\n");
}
@@ -612,7 +618,7 @@ bool PEI::addUsesForMEMERegion(MachineBasicBlock* MBB,
addedUses = true;
blks.push_back(PRED);
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- DOUT << getBasicBlockName(MBB)
+ errs() << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(prop) << ")->"
<< "predecessor " << getBasicBlockName(PRED) << "\n");
}
@@ -650,7 +656,7 @@ bool PEI::addUsesForTopLevelLoops(SmallVector<MachineBasicBlock*, 4>& blks) {
CSRUsed[EXB] |= loopSpills;
addedUses = true;
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- DOUT << "LOOP " << getBasicBlockName(MBB)
+ errs() << "LOOP " << getBasicBlockName(MBB)
<< "(" << stringifyCSRegSet(loopSpills) << ")->"
<< getBasicBlockName(EXB) << "\n");
if (EXB->succ_size() > 1 || EXB->pred_size() > 1)
@@ -717,7 +723,7 @@ bool PEI::calcSpillPlacements(MachineBasicBlock* MBB,
blks.push_back(MBB);
DEBUG(if (! CSRSave[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRSave[MBB]) << "\n");
return placedSpills;
@@ -778,7 +784,7 @@ bool PEI::calcRestorePlacements(MachineBasicBlock* MBB,
blks.push_back(MBB);
DEBUG(if (! CSRRestore[MBB].empty() && ShrinkWrapDebugging >= Iterations)
- DOUT << "RESTORE[" << getBasicBlockName(MBB) << "] = "
+ errs() << "RESTORE[" << getBasicBlockName(MBB) << "] = "
<< stringifyCSRegSet(CSRRestore[MBB]) << "\n");
return placedRestores;
@@ -802,7 +808,7 @@ void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
++iterations;
DEBUG(if (ShrinkWrapDebugging >= Iterations)
- DOUT << "iter " << iterations
+ errs() << "iter " << iterations
<< " --------------------------------------------------\n");
// Calculate CSR{Save,Restore} sets using Antic, Avail on the MCFG,
@@ -852,15 +858,15 @@ void PEI::placeSpillsAndRestores(MachineFunction &Fn) {
unsigned numSRReducedThisFunc = notSpilledInEntryBlock.count();
numSRReduced += numSRReducedThisFunc;
DEBUG(if (ShrinkWrapDebugging >= BasicInfo) {
- DOUT << "-----------------------------------------------------------\n";
- DOUT << "total iterations = " << iterations << " ( "
+ errs() << "-----------------------------------------------------------\n";
+ errs() << "total iterations = " << iterations << " ( "
<< Fn.getFunction()->getName()
<< " " << numSRReducedThisFunc
<< " " << Fn.size()
<< " )\n";
- DOUT << "-----------------------------------------------------------\n";
+ errs() << "-----------------------------------------------------------\n";
dumpSRSets();
- DOUT << "-----------------------------------------------------------\n";
+ errs() << "-----------------------------------------------------------\n";
if (numSRReducedThisFunc)
verifySpillRestorePlacement();
});
@@ -893,7 +899,7 @@ void PEI::findFastExitPath() {
// Check the immediate successors.
if (isReturnBlock(SUCC)) {
if (ShrinkWrapDebugging >= BasicInfo)
- DOUT << "Fast exit path: " << getBasicBlockName(EntryBlock)
+ errs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
<< "->" << getBasicBlockName(SUCC) << "\n";
break;
}
@@ -911,7 +917,7 @@ void PEI::findFastExitPath() {
}
if (HasFastExitPath) {
if (ShrinkWrapDebugging >= BasicInfo)
- DOUT << "Fast exit path: " << getBasicBlockName(EntryBlock)
+ errs() << "Fast exit path: " << getBasicBlockName(EntryBlock)
<< "->" << exitPath << "\n";
break;
}
@@ -945,10 +951,10 @@ void PEI::verifySpillRestorePlacement() {
if (spilled.empty())
continue;
- DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(spilled)
- << " RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
+ DEBUG(errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(spilled)
+ << " RESTORE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(CSRRestore[MBB]) << "\n");
if (CSRRestore[MBB].intersects(spilled)) {
restored |= (CSRRestore[MBB] & spilled);
@@ -977,11 +983,11 @@ void PEI::verifySpillRestorePlacement() {
if (isReturnBlock(SBB) || SBB->succ_size() == 0) {
if (restored != spilled) {
CSRegSet notRestored = (spilled - restored);
- DOUT << MF->getFunction()->getName() << ": "
- << stringifyCSRegSet(notRestored)
- << " spilled at " << getBasicBlockName(MBB)
- << " are never restored on path to return "
- << getBasicBlockName(SBB) << "\n";
+ DEBUG(errs() << MF->getFunction()->getName() << ": "
+ << stringifyCSRegSet(notRestored)
+ << " spilled at " << getBasicBlockName(MBB)
+ << " are never restored on path to return "
+ << getBasicBlockName(SBB) << "\n");
}
restored.clear();
}
@@ -998,10 +1004,10 @@ void PEI::verifySpillRestorePlacement() {
if (restored.empty())
continue;
- DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRSave[MBB])
- << " RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(restored) << "\n";
+ DEBUG(errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(CSRSave[MBB])
+ << " RESTORE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(restored) << "\n");
if (CSRSave[MBB].intersects(restored)) {
spilled |= (CSRSave[MBB] & restored);
@@ -1025,23 +1031,24 @@ void PEI::verifySpillRestorePlacement() {
}
if (spilled != restored) {
CSRegSet notSpilled = (restored - spilled);
- DOUT << MF->getFunction()->getName() << ": "
- << stringifyCSRegSet(notSpilled)
- << " restored at " << getBasicBlockName(MBB)
- << " are never spilled\n";
+ DEBUG(errs() << MF->getFunction()->getName() << ": "
+ << stringifyCSRegSet(notSpilled)
+ << " restored at " << getBasicBlockName(MBB)
+ << " are never spilled\n");
}
}
}
// Debugging print methods.
std::string PEI::getBasicBlockName(const MachineBasicBlock* MBB) {
+ if (!MBB)
+ return "";
+
+ if (MBB->getBasicBlock())
+ return MBB->getBasicBlock()->getNameStr();
+
std::ostringstream name;
- if (MBB) {
- if (MBB->getBasicBlock())
- name << MBB->getBasicBlock()->getName();
- else
- name << "_MBB_" << MBB->getNumber();
- }
+ name << "_MBB_" << MBB->getNumber();
return name.str();
}
@@ -1071,14 +1078,15 @@ std::string PEI::stringifyCSRegSet(const CSRegSet& s) {
}
void PEI::dumpSet(const CSRegSet& s) {
- DOUT << stringifyCSRegSet(s) << "\n";
+ DEBUG(errs() << stringifyCSRegSet(s) << "\n");
}
void PEI::dumpUsed(MachineBasicBlock* MBB) {
- if (MBB) {
- DOUT << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRUsed[MBB]) << "\n";
- }
+ DEBUG({
+ if (MBB)
+ errs() << "CSRUsed[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(CSRUsed[MBB]) << "\n";
+ });
}
void PEI::dumpAllUsed() {
@@ -1090,27 +1098,29 @@ void PEI::dumpAllUsed() {
}
void PEI::dumpSets(MachineBasicBlock* MBB) {
- if (MBB) {
- DOUT << getBasicBlockName(MBB) << " | "
- << stringifyCSRegSet(CSRUsed[MBB]) << " | "
- << stringifyCSRegSet(AnticIn[MBB]) << " | "
- << stringifyCSRegSet(AnticOut[MBB]) << " | "
- << stringifyCSRegSet(AvailIn[MBB]) << " | "
- << stringifyCSRegSet(AvailOut[MBB]) << "\n";
- }
+ DEBUG({
+ if (MBB)
+ errs() << getBasicBlockName(MBB) << " | "
+ << stringifyCSRegSet(CSRUsed[MBB]) << " | "
+ << stringifyCSRegSet(AnticIn[MBB]) << " | "
+ << stringifyCSRegSet(AnticOut[MBB]) << " | "
+ << stringifyCSRegSet(AvailIn[MBB]) << " | "
+ << stringifyCSRegSet(AvailOut[MBB]) << "\n";
+ });
}
void PEI::dumpSets1(MachineBasicBlock* MBB) {
- if (MBB) {
- DOUT << getBasicBlockName(MBB) << " | "
- << stringifyCSRegSet(CSRUsed[MBB]) << " | "
- << stringifyCSRegSet(AnticIn[MBB]) << " | "
- << stringifyCSRegSet(AnticOut[MBB]) << " | "
- << stringifyCSRegSet(AvailIn[MBB]) << " | "
- << stringifyCSRegSet(AvailOut[MBB]) << " | "
- << stringifyCSRegSet(CSRSave[MBB]) << " | "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
- }
+ DEBUG({
+ if (MBB)
+ errs() << getBasicBlockName(MBB) << " | "
+ << stringifyCSRegSet(CSRUsed[MBB]) << " | "
+ << stringifyCSRegSet(AnticIn[MBB]) << " | "
+ << stringifyCSRegSet(AnticOut[MBB]) << " | "
+ << stringifyCSRegSet(AvailIn[MBB]) << " | "
+ << stringifyCSRegSet(AvailOut[MBB]) << " | "
+ << stringifyCSRegSet(CSRSave[MBB]) << " | "
+ << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
+ });
}
void PEI::dumpAllSets() {
@@ -1122,20 +1132,21 @@ void PEI::dumpAllSets() {
}
void PEI::dumpSRSets() {
- for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
- MBB != E; ++MBB) {
- if (! CSRSave[MBB].empty()) {
- DOUT << "SAVE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRSave[MBB]);
- if (CSRRestore[MBB].empty())
- DOUT << "\n";
- }
- if (! CSRRestore[MBB].empty()) {
- if (! CSRSave[MBB].empty())
- DOUT << " ";
- DOUT << "RESTORE[" << getBasicBlockName(MBB) << "] = "
- << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
- }
- }
+ DEBUG({
+ for (MachineFunction::iterator MBB = MF->begin(), E = MF->end();
+ MBB != E; ++MBB) {
+ if (!CSRSave[MBB].empty()) {
+ errs() << "SAVE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(CSRSave[MBB]);
+ if (CSRRestore[MBB].empty())
+ errs() << '\n';
+ }
+
+ if (!CSRRestore[MBB].empty() && !CSRSave[MBB].empty())
+ errs() << " "
+ << "RESTORE[" << getBasicBlockName(MBB) << "] = "
+ << stringifyCSRegSet(CSRRestore[MBB]) << "\n";
+ }
+ });
}
#endif
diff --git a/lib/CodeGen/SimpleHazardRecognizer.h b/lib/CodeGen/SimpleHazardRecognizer.h
new file mode 100644
index 0000000..f69feaf
--- /dev/null
+++ b/lib/CodeGen/SimpleHazardRecognizer.h
@@ -0,0 +1,89 @@
+//=- llvm/CodeGen/SimpleHazardRecognizer.h - Scheduling Support -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SimpleHazardRecognizer class, which
+// implements hazard-avoidance heuristics for scheduling, based on the
+// scheduling itineraries specified for the target.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_SIMPLEHAZARDRECOGNIZER_H
+#define LLVM_CODEGEN_SIMPLEHAZARDRECOGNIZER_H
+
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+namespace llvm {
+ /// SimpleHazardRecognizer - A *very* simple hazard recognizer. It uses
+ /// a coarse classification and attempts to avoid that instructions of
+ /// a given class aren't grouped too densely together.
+ class SimpleHazardRecognizer : public ScheduleHazardRecognizer {
+ /// Class - A simple classification for SUnits.
+ enum Class {
+ Other, Load, Store
+ };
+
+ /// Window - The Class values of the most recently issued
+ /// instructions.
+ Class Window[8];
+
+ /// getClass - Classify the given SUnit.
+ Class getClass(const SUnit *SU) {
+ const MachineInstr *MI = SU->getInstr();
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (TID.mayLoad())
+ return Load;
+ if (TID.mayStore())
+ return Store;
+ return Other;
+ }
+
+ /// Step - Rotate the existing entries in Window and insert the
+ /// given class value in position as the most recent.
+ void Step(Class C) {
+ std::copy(Window+1, array_endof(Window), Window);
+ Window[array_lengthof(Window)-1] = C;
+ }
+
+ public:
+ SimpleHazardRecognizer() : Window() {
+ Reset();
+ }
+
+ virtual HazardType getHazardType(SUnit *SU) {
+ Class C = getClass(SU);
+ if (C == Other)
+ return NoHazard;
+ unsigned Score = 0;
+ for (unsigned i = 0; i != array_lengthof(Window); ++i)
+ if (Window[i] == C)
+ Score += i + 1;
+ if (Score > array_lengthof(Window) * 2)
+ return Hazard;
+ return NoHazard;
+ }
+
+ virtual void Reset() {
+ for (unsigned i = 0; i != array_lengthof(Window); ++i)
+ Window[i] = Other;
+ }
+
+ virtual void EmitInstruction(SUnit *SU) {
+ Step(getClass(SU));
+ }
+
+ virtual void AdvanceCycle() {
+ Step(Other);
+ }
+ };
+}
+
+#endif
diff --git a/lib/CodeGen/SimpleRegisterCoalescing.cpp b/lib/CodeGen/SimpleRegisterCoalescing.cpp
index 7e7d6b8..9c283b0 100644
--- a/lib/CodeGen/SimpleRegisterCoalescing.cpp
+++ b/lib/CodeGen/SimpleRegisterCoalescing.cpp
@@ -17,6 +17,7 @@
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
@@ -28,6 +29,8 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
@@ -51,13 +54,8 @@ EnableJoining("join-liveintervals",
cl::init(true));
static cl::opt<bool>
-NewHeuristic("new-coalescer-heuristic",
- cl::desc("Use new coalescer heuristic"),
- cl::init(false), cl::Hidden);
-
-static cl::opt<bool>
-CrossClassJoin("join-cross-class-copies",
- cl::desc("Coalesce cross register class copies"),
+DisableCrossClassJoin("disable-cross-class-join",
+ cl::desc("Avoid coalescing cross register class copies"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
@@ -65,7 +63,7 @@ PhysJoinTweak("tweak-phys-join-heuristics",
cl::desc("Tweak heuristics for joining phys reg with vr"),
cl::init(false), cl::Hidden);
-static RegisterPass<SimpleRegisterCoalescing>
+static RegisterPass<SimpleRegisterCoalescing>
X("simple-register-coalescing", "Simple Register Coalescing");
// Declare that we implement the RegisterCoalescer interface
@@ -74,6 +72,8 @@ static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<MachineLoopInfo>();
@@ -105,22 +105,23 @@ void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
LiveInterval &IntB,
MachineInstr *CopyMI) {
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
+ LiveIndex CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
assert(BLR != IntB.end() && "Live range not found!");
VNInfo *BValNo = BLR->valno;
-
+
// Get the location that B is defined at. Two options: either this value has
- // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
- if (!BValNo->copy) return false;
+ if (!BValNo->getCopy()) return false;
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
-
+
// AValNo is the value number in A that defines the copy, A3 in the example.
- LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
+ LiveIndex CopyUseIdx = li_->getUseIndex(CopyIdx);
+ LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
assert(ALR != IntA.end() && "Live range not found!");
VNInfo *AValNo = ALR->valno;
// If it's re-defined by an early clobber somewhere in the live range, then
@@ -143,26 +144,28 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
// The coalescer has no idea there was a def in the middle of [174,230].
if (AValNo->hasRedefByEC())
return false;
-
- // If AValNo is defined as a copy from IntB, we can potentially process this.
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
// Get the instruction that defines this value number.
unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
if (!SrcReg) return false; // Not defined by a copy.
-
+
// If the value number is not defined by a copy instruction, ignore it.
// If the source register comes from an interval other than IntB, we can't
// handle this.
if (SrcReg != IntB.reg) return false;
-
+
// Get the LiveRange in IntB that this value number starts with.
- LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
+ LiveInterval::iterator ValLR =
+ IntB.FindLiveRangeContaining(li_->getPrevSlot(AValNo->def));
assert(ValLR != IntB.end() && "Live range not found!");
-
+
// Make sure that the end of the live range is inside the same block as
// CopyMI.
- MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
- if (!ValLREndInst ||
+ MachineInstr *ValLREndInst =
+ li_->getInstructionFromIndex(li_->getPrevSlot(ValLR->end));
+ if (!ValLREndInst ||
ValLREndInst->getParent() != CopyMI->getParent()) return false;
// Okay, we now know that ValLR ends in the same block that the CopyMI
@@ -177,28 +180,33 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
*tri_->getSubRegisters(IntB.reg)) {
for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
- DOUT << "Interfere with sub-register ";
- DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(errs(), tri_);
+ });
return false;
}
}
-
- DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
-
- unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
+
+ DEBUG({
+ errs() << "\nExtending: ";
+ IntB.print(errs(), tri_);
+ });
+
+ LiveIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'. Update the the valnum with the new defining
// instruction #.
BValNo->def = FillerStart;
- BValNo->copy = NULL;
-
+ BValNo->setCopy(0);
+
// Okay, we can merge them. We need to insert a new liverange:
// [ValLR.end, BLR.begin) of either value number, then we merge the
// two value numbers.
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
// If the IntB live range is assigned to a physical register, and if that
- // physreg has sub-registers, update their live intervals as well.
+ // physreg has sub-registers, update their live intervals as well.
if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
LiveInterval &SRLI = li_->getInterval(*SR);
@@ -213,17 +221,26 @@ bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
IntB.addKills(ValLR->valno, BValNo->kills);
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
}
- DOUT << " result = "; IntB.print(DOUT, tri_);
- DOUT << "\n";
+ DEBUG({
+ errs() << " result = ";
+ IntB.print(errs(), tri_);
+ errs() << "\n";
+ });
// If the source instruction was killing the source register before the
// merge, unset the isKill marker given the live range has been extended.
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
if (UIdx != -1) {
ValLREndInst->getOperand(UIdx).setIsKill(false);
- IntB.removeKill(ValLR->valno, FillerStart);
+ ValLR->valno->removeKill(FillerStart);
}
+ // If the copy instruction was killing the destination register before the
+ // merge, find the last use and trim the live range. That will also add the
+ // isKill marker.
+ if (CopyMI->killsRegister(IntA.reg))
+ TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
+
++numExtends;
return true;
}
@@ -253,6 +270,16 @@ bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
return false;
}
+static void
+TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
+ for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ }
+}
+
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB. If the source value number (in IntA) is defined by a commutable
@@ -279,7 +306,8 @@ bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
LiveInterval &IntB,
MachineInstr *CopyMI) {
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
+ LiveIndex CopyIdx =
+ li_->getDefIndex(li_->getInstructionIndex(CopyMI));
// FIXME: For now, only eliminate the copy by commuting its def when the
// source register is a virtual register. We want to guard against cases
@@ -293,15 +321,17 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
assert(BLR != IntB.end() && "Live range not found!");
VNInfo *BValNo = BLR->valno;
-
+
// Get the location that B is defined at. Two options: either this value has
- // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
- if (!BValNo->copy) return false;
+ if (!BValNo->getCopy()) return false;
assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
-
+
// AValNo is the value number in A that defines the copy, A3 in the example.
- LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
+ LiveInterval::iterator ALR =
+ IntA.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
+
assert(ALR != IntA.end() && "Live range not found!");
VNInfo *AValNo = ALR->valno;
// If other defs can reach uses of this def, then it's not safe to perform
@@ -312,9 +342,23 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
return false;
MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
const TargetInstrDesc &TID = DefMI->getDesc();
- unsigned NewDstIdx;
- if (!TID.isCommutable() ||
- !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
+ if (!TID.isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+ unsigned Op1, Op2, NewDstIdx;
+ if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
+ return false;
+ if (Op1 == UseOpIdx)
+ NewDstIdx = Op2;
+ else if (Op2 == UseOpIdx)
+ NewDstIdx = Op1;
+ else
return false;
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
@@ -332,7 +376,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
UE = mri_->use_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
- unsigned UseIdx = li_->getInstructionIndex(UseMI);
+ LiveIndex UseIdx = li_->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end())
continue;
@@ -356,8 +400,8 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
bool BHasPHIKill = BValNo->hasPHIKill();
SmallVector<VNInfo*, 4> BDeadValNos;
- SmallVector<unsigned, 4> BKills;
- std::map<unsigned, unsigned> BExtend;
+ VNInfo::KillSet BKills;
+ std::map<LiveIndex, LiveIndex> BExtend;
// If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
// A = or A, B
@@ -384,7 +428,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
++UI;
if (JoinedCopies.count(UseMI))
continue;
- unsigned UseIdx = li_->getInstructionIndex(UseMI);
+ LiveIndex UseIdx= li_->getUseIndex(li_->getInstructionIndex(UseMI));
LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
if (ULR == IntA.end() || ULR->valno != AValNo)
continue;
@@ -395,7 +439,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
if (Extended)
UseMO.setIsKill(false);
else
- BKills.push_back(li_->getUseIndex(UseIdx)+1);
+ BKills.push_back(li_->getNextSlot(UseIdx));
}
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
@@ -404,7 +448,7 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
// This copy will become a noop. If it's defining a new val#,
// remove that val# as well. However this live range is being
// extended to the end of the existing live range defined by the copy.
- unsigned DefIdx = li_->getDefIndex(UseIdx);
+ LiveIndex DefIdx = li_->getDefIndex(UseIdx);
const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
BHasPHIKill |= DLR->valno->hasPHIKill();
assert(DLR->valno->def == DefIdx);
@@ -420,7 +464,10 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
// We need to insert a new liverange: [ALR.start, LastUse). It may be we can
// simply extend BLR if CopyMI doesn't end the range.
- DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
+ DEBUG({
+ errs() << "\nExtending: ";
+ IntB.print(errs(), tri_);
+ });
// Remove val#'s defined by copies that will be coalesced away.
for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
@@ -439,24 +486,24 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
// is updated. Kills are also updated.
VNInfo *ValNo = BValNo;
ValNo->def = AValNo->def;
- ValNo->copy = NULL;
+ ValNo->setCopy(0);
for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
- unsigned Kill = ValNo->kills[j];
- if (Kill != BLR->end)
- BKills.push_back(Kill);
+ if (ValNo->kills[j] != BLR->end)
+ BKills.push_back(ValNo->kills[j]);
}
ValNo->kills.clear();
for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
AI != AE; ++AI) {
if (AI->valno != AValNo) continue;
- unsigned End = AI->end;
- std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
+ LiveIndex End = AI->end;
+ std::map<LiveIndex, LiveIndex>::iterator
+ EI = BExtend.find(End);
if (EI != BExtend.end())
End = EI->second;
IntB.addRange(LiveRange(AI->start, End, ValNo));
// If the IntB live range is assigned to a physical register, and if that
- // physreg has sub-registers, update their live intervals as well.
+ // physreg has sub-registers, update their live intervals as well.
if (BHasSubRegs) {
for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
LiveInterval &SRLI = li_->getInterval(*SR);
@@ -467,13 +514,21 @@ bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
IntB.addKills(ValNo, BKills);
ValNo->setHasPHIKill(BHasPHIKill);
- DOUT << " result = "; IntB.print(DOUT, tri_);
- DOUT << "\n";
+ DEBUG({
+ errs() << " result = ";
+ IntB.print(errs(), tri_);
+ errs() << '\n';
+ errs() << "\nShortening: ";
+ IntA.print(errs(), tri_);
+ });
- DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
IntA.removeValNo(AValNo);
- DOUT << " result = "; IntA.print(DOUT, tri_);
- DOUT << "\n";
+
+ DEBUG({
+ errs() << " result = ";
+ IntA.print(errs(), tri_);
+ errs() << '\n';
+ });
++numCommutes;
return true;
@@ -495,7 +550,8 @@ static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
/// from a physical register live interval as well as from the live intervals
/// of its sub-registers.
-static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
+static void removeRange(LiveInterval &li,
+ LiveIndex Start, LiveIndex End,
LiveIntervals *li_, const TargetRegisterInfo *tri_) {
li.removeRange(Start, End, true);
if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
@@ -503,14 +559,15 @@ static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
if (!li_->hasInterval(*SR))
continue;
LiveInterval &sli = li_->getInterval(*SR);
- unsigned RemoveEnd = Start;
+ LiveIndex RemoveStart = Start;
+ LiveIndex RemoveEnd = Start;
while (RemoveEnd != End) {
- LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
+ LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
if (LR == sli.end())
break;
RemoveEnd = (LR->end < End) ? LR->end : End;
- sli.removeRange(Start, RemoveEnd, true);
- Start = RemoveEnd;
+ sli.removeRange(RemoveStart, RemoveEnd, true);
+ RemoveStart = RemoveEnd;
}
}
}
@@ -520,14 +577,14 @@ static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
/// as the copy instruction, trim the live interval to the last use and return
/// true.
bool
-SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
+SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(LiveIndex CopyIdx,
MachineBasicBlock *CopyMBB,
LiveInterval &li,
const LiveRange *LR) {
- unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
- unsigned LastUseIdx;
- MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
- LastUseIdx);
+ LiveIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
+ LiveIndex LastUseIdx;
+ MachineOperand *LastUse =
+ lastRegisterUse(LR->start, li_->getPrevSlot(CopyIdx), li.reg, LastUseIdx);
if (LastUse) {
MachineInstr *LastUseMI = LastUse->getParent();
if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
@@ -547,7 +604,7 @@ SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
// of last use.
LastUse->setIsKill();
removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
- li.addKill(LR->valno, LastUseIdx+1);
+ LR->valno->addKill(li_->getNextSlot(LastUseIdx));
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
DstReg == li.reg) {
@@ -560,7 +617,7 @@ SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
// Is it livein?
if (LR->start <= MBBStart && LR->end > MBBStart) {
- if (LR->start == 0) {
+ if (LR->start == LiveIndex()) {
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
// Live-in to the function but dead. Remove it from entry live-in set.
mf_->begin()->removeLiveIn(li.reg);
@@ -575,8 +632,9 @@ SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
/// computation, replace the copy by rematerialize the definition.
bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
unsigned DstReg,
+ unsigned DstSubIdx,
MachineInstr *CopyMI) {
- unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
+ LiveIndex CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
assert(SrcLR != SrcInt.end() && "Live range not found!");
VNInfo *ValNo = SrcLR->valno;
@@ -590,24 +648,52 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
const TargetInstrDesc &TID = DefMI->getDesc();
if (!TID.isAsCheapAsAMove())
return false;
- if (!DefMI->getDesc().isRematerializable() ||
- !tii_->isTriviallyReMaterializable(DefMI))
+ if (!tii_->isTriviallyReMaterializable(DefMI, AA))
return false;
bool SawStore = false;
- if (!DefMI->isSafeToMove(tii_, SawStore))
+ if (!DefMI->isSafeToMove(tii_, SawStore, AA))
+ return false;
+ if (TID.getNumDefs() != 1)
return false;
+ if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
+ // Make sure the copy destination register class fits the instruction
+ // definition register class. The mismatch can happen as a result of earlier
+ // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+ const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ if (mri_->getRegClass(DstReg) != RC)
+ return false;
+ } else if (!RC->contains(DstReg))
+ return false;
+ }
- unsigned DefIdx = li_->getDefIndex(CopyIdx);
+ // If destination register has a sub-register index on it, make sure it mtches
+ // the instruction register class.
+ if (DstSubIdx) {
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (TID.getNumDefs() != 1)
+ return false;
+ const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
+ const TargetRegisterClass *DstSubRC =
+ DstRC->getSubRegisterRegClass(DstSubIdx);
+ const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
+ if (DefRC == DstRC)
+ DstSubIdx = 0;
+ else if (DefRC != DstSubRC)
+ return false;
+ }
+
+ LiveIndex DefIdx = li_->getDefIndex(CopyIdx);
const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
- DLR->valno->copy = NULL;
+ DLR->valno->setCopy(0);
// Don't forget to update sub-register intervals.
if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
if (!li_->hasInterval(*SR))
continue;
DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
- if (DLR && DLR->valno->copy == CopyMI)
- DLR->valno->copy = NULL;
+ if (DLR && DLR->valno->getCopy() == CopyMI)
+ DLR->valno->setCopy(0);
}
}
@@ -621,7 +707,7 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
}
MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
- tii_->reMaterialize(*MBB, MII, DstReg, DefMI);
+ tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
MachineInstr *NewMI = prior(MII);
if (checkForDeadDef) {
@@ -630,7 +716,7 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
// should mark it dead:
if (DefMI->getParent() == MBB) {
DefMI->addRegisterDead(SrcInt.reg, tri_);
- SrcLR->end = SrcLR->start + 1;
+ SrcLR->end = li_->getNextSlot(SrcLR->start);
}
}
@@ -644,11 +730,12 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
if (MO.isDef() && li_->hasInterval(MO.getReg())) {
unsigned Reg = MO.getReg();
DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
- if (DLR && DLR->valno->copy == CopyMI)
- DLR->valno->copy = NULL;
+ if (DLR && DLR->valno->getCopy() == CopyMI)
+ DLR->valno->setCopy(0);
}
}
+ TransferImplicitOps(CopyMI, NewMI);
li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
CopyMI->eraseFromParent();
ReMatCopies.insert(CopyMI);
@@ -657,30 +744,6 @@ bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
return true;
}
-/// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
-///
-bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
- unsigned DstReg) const {
- MachineBasicBlock *MBB = CopyMI->getParent();
- const MachineLoop *L = loopInfo->getLoopFor(MBB);
- if (!L)
- return false;
- if (MBB != L->getLoopLatch())
- return false;
-
- LiveInterval &LI = li_->getInterval(DstReg);
- unsigned DefIdx = li_->getInstructionIndex(CopyMI);
- LiveInterval::const_iterator DstLR =
- LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
- if (DstLR == LI.end())
- return false;
- unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1;
- if (DstLR->valno->kills.size() == 1 &&
- DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill())
- return true;
- return false;
-}
-
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
@@ -714,7 +777,8 @@ SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
// If the use is a copy and it won't be coalesced away, and its source
// is defined by a trivial computation, try to rematerialize it instead.
- if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI))
+ if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
+ CopyDstSubIdx, UseMI))
continue;
}
@@ -751,44 +815,16 @@ SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
(TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
allocatableRegs_[CopyDstReg])) {
LiveInterval &LI = li_->getInterval(CopyDstReg);
- unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
+ LiveIndex DefIdx =
+ li_->getDefIndex(li_->getInstructionIndex(UseMI));
if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
if (DLR->valno->def == DefIdx)
- DLR->valno->copy = UseMI;
+ DLR->valno->setCopy(UseMI);
}
}
}
}
-/// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
-/// registers due to insert_subreg coalescing. e.g.
-/// r1024 = op
-/// r1025 = implicit_def
-/// r1025 = insert_subreg r1025, r1024
-/// = op r1025
-/// =>
-/// r1025 = op
-/// r1025 = implicit_def
-/// r1025 = insert_subreg r1025, r1025
-/// = op r1025
-void
-SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
- for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
- E = mri_->reg_end(); I != E; ) {
- MachineOperand &O = I.getOperand();
- MachineInstr *DefMI = &*I;
- ++I;
- if (!O.isDef())
- continue;
- if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
- continue;
- if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
- continue;
- li_->RemoveMachineInstrFromMaps(DefMI);
- DefMI->eraseFromParent();
- }
-}
-
/// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
/// due to live range lengthening as the result of coalescing.
void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
@@ -796,12 +832,27 @@ void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
UE = mri_->use_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
- if (UseMO.isKill()) {
- MachineInstr *UseMI = UseMO.getParent();
- unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
- const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
- if (!UI || !LI.isKill(UI->valno, UseIdx+1))
- UseMO.setIsKill(false);
+ if (!UseMO.isKill())
+ continue;
+ MachineInstr *UseMI = UseMO.getParent();
+ LiveIndex UseIdx =
+ li_->getUseIndex(li_->getInstructionIndex(UseMI));
+ const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
+ if (!LR ||
+ (!LR->valno->isKill(li_->getNextSlot(UseIdx)) &&
+ LR->valno->def != li_->getNextSlot(UseIdx))) {
+ // Interesting problem. After coalescing reg1027's def and kill are both
+ // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
+ //
+ // bb5:
+ // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
+ // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
+ // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
+ // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
+ // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
+ //
+ // Do not remove the kill marker on t2LDRi12.
+ UseMO.setIsKill(false);
}
}
}
@@ -830,15 +881,16 @@ static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
/// Return true if live interval is removed.
bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
- unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
+ LiveIndex CopyIdx = li_->getInstructionIndex(CopyMI);
LiveInterval::iterator MLR =
li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
if (MLR == li.end())
return false; // Already removed by ShortenDeadCopySrcLiveRange.
- unsigned RemoveStart = MLR->start;
- unsigned RemoveEnd = MLR->end;
+ LiveIndex RemoveStart = MLR->start;
+ LiveIndex RemoveEnd = MLR->end;
+ LiveIndex DefIdx = li_->getDefIndex(CopyIdx);
// Remove the liverange that's defined by this.
- if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
+ if (RemoveStart == DefIdx && RemoveEnd == li_->getNextSlot(DefIdx)) {
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
return removeIntervalIfEmpty(li, li_, tri_);
}
@@ -849,7 +901,7 @@ bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
/// the val# it defines. If the live interval becomes empty, remove it as well.
bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
MachineInstr *DefMI) {
- unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
+ LiveIndex DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
if (DefIdx != MLR->valno->def)
return false;
@@ -860,17 +912,18 @@ bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
/// PropagateDeadness - Propagate the dead marker to the instruction which
/// defines the val#.
static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
- unsigned &LRStart, LiveIntervals *li_,
+ LiveIndex &LRStart, LiveIntervals *li_,
const TargetRegisterInfo* tri_) {
MachineInstr *DefMI =
li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
if (DefMI && DefMI != CopyMI) {
- int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
- if (DeadIdx != -1) {
+ int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
+ if (DeadIdx != -1)
DefMI->getOperand(DeadIdx).setIsDead();
- // A dead def should have a single cycle interval.
- ++LRStart;
- }
+ else
+ DefMI->addOperand(MachineOperand::CreateReg(li.reg,
+ true, true, false, true));
+ LRStart = li_->getNextSlot(LRStart);
}
}
@@ -881,8 +934,8 @@ static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
bool
SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
MachineInstr *CopyMI) {
- unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
- if (CopyIdx == 0) {
+ LiveIndex CopyIdx = li_->getInstructionIndex(CopyMI);
+ if (CopyIdx == LiveIndex()) {
// FIXME: special case: function live in. It can be a general case if the
// first instruction index starts at > 0 value.
assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
@@ -894,13 +947,14 @@ SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
return removeIntervalIfEmpty(li, li_, tri_);
}
- LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
+ LiveInterval::iterator LR =
+ li.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
if (LR == li.end())
// Livein but defined by a phi.
return false;
- unsigned RemoveStart = LR->start;
- unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
+ LiveIndex RemoveStart = LR->start;
+ LiveIndex RemoveEnd = li_->getNextSlot(li_->getDefIndex(CopyIdx));
if (LR->end > RemoveEnd)
// More uses past this copy? Nothing to do.
return false;
@@ -911,22 +965,25 @@ SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
return false;
+ // There are other kills of the val#. Nothing to do.
+ if (!li.isOnlyLROfValNo(LR))
+ return false;
+
MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
// If the live range starts in another mbb and the copy mbb is not a fall
// through mbb, then we can only cut the range from the beginning of the
// copy mbb.
- RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
+ RemoveStart = li_->getNextSlot(li_->getMBBStartIdx(CopyMBB));
if (LR->valno->def == RemoveStart) {
// If the def MI defines the val# and this copy is the only kill of the
// val#, then propagate the dead marker.
- if (li.isOnlyLROfValNo(LR)) {
- PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
- ++numDeadValNo;
- }
- if (li.isKill(LR->valno, RemoveEnd))
- li.removeKill(LR->valno, RemoveEnd);
+ PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
+ ++numDeadValNo;
+
+ if (LR->valno->isKill(RemoveEnd))
+ LR->valno->removeKill(RemoveEnd);
}
removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
@@ -940,97 +997,19 @@ bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
LiveInterval &ImpLi) const{
if (!CopyMI->killsRegister(ImpLi.reg))
return false;
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
- LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
- if (LR == li.end())
- return false;
- if (LR->valno->hasPHIKill())
- return false;
- if (LR->valno->def != CopyIdx)
- return false;
- // Make sure all of val# uses are copies.
- for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
+ // Make sure this is the only use.
+ for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
UE = mri_->use_end(); UI != UE;) {
MachineInstr *UseMI = &*UI;
++UI;
- if (JoinedCopies.count(UseMI))
- continue;
- unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
- LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
- if (ULR == li.end() || ULR->valno != LR->valno)
+ if (CopyMI == UseMI || JoinedCopies.count(UseMI))
continue;
- // If the use is not a use, then it's not safe to coalesce the move.
- unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
- if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
- if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
- UseMI->getOperand(1).getReg() == li.reg)
- continue;
- return false;
- }
+ return false;
}
return true;
}
-/// TurnCopiesFromValNoToImpDefs - The specified value# is defined by an
-/// implicit_def and it is being removed. Turn all copies from this value#
-/// into implicit_defs.
-void SimpleRegisterCoalescing::TurnCopiesFromValNoToImpDefs(LiveInterval &li,
- VNInfo *VNI) {
- SmallVector<MachineInstr*, 4> ImpDefs;
- MachineOperand *LastUse = NULL;
- unsigned LastUseIdx = li_->getUseIndex(VNI->def);
- for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
- RE = mri_->reg_end(); RI != RE;) {
- MachineOperand *MO = &RI.getOperand();
- MachineInstr *MI = &*RI;
- ++RI;
- if (MO->isDef()) {
- if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
- ImpDefs.push_back(MI);
- continue;
- }
- if (JoinedCopies.count(MI))
- continue;
- unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
- LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
- if (ULR == li.end() || ULR->valno != VNI)
- continue;
- // If the use is a copy, turn it into an identity copy.
- unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
- if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
- SrcReg == li.reg) {
- // Change it to an implicit_def.
- MI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
- for (int i = MI->getNumOperands() - 1, e = 0; i > e; --i)
- MI->RemoveOperand(i);
- // It's no longer a copy, update the valno it defines.
- unsigned DefIdx = li_->getDefIndex(UseIdx);
- LiveInterval &DstInt = li_->getInterval(DstReg);
- LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(DefIdx);
- assert(DLR != DstInt.end() && "Live range not found!");
- assert(DLR->valno->copy == MI);
- DLR->valno->copy = NULL;
- ReMatCopies.insert(MI);
- } else if (UseIdx > LastUseIdx) {
- LastUseIdx = UseIdx;
- LastUse = MO;
- }
- }
- if (LastUse) {
- LastUse->setIsKill();
- li.addKill(VNI, LastUseIdx+1);
- } else {
- // Remove dead implicit_def's.
- while (!ImpDefs.empty()) {
- MachineInstr *ImpDef = ImpDefs.back();
- ImpDefs.pop_back();
- li_->RemoveMachineInstrFromMaps(ImpDef);
- ImpDef->eraseFromParent();
- }
- }
-}
-
/// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
/// a virtual destination register with physical source register.
bool
@@ -1051,13 +1030,14 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
// If the virtual register live interval extends into a loop, turn down
// aggressiveness.
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
+ LiveIndex CopyIdx =
+ li_->getDefIndex(li_->getInstructionIndex(CopyMI));
const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
if (!L) {
// Let's see if the virtual register live interval extends into the loop.
LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
assert(DLR != DstInt.end() && "Live range not found!");
- DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
+ DLR = DstInt.FindLiveRangeContaining(li_->getNextSlot(DLR->end));
if (DLR != DstInt.end()) {
CopyMBB = li_->getMBBFromIndex(DLR->start);
L = loopInfo->getLoopFor(CopyMBB);
@@ -1067,7 +1047,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
if (!L || Length <= Threshold)
return true;
- unsigned UseIdx = li_->getUseIndex(CopyIdx);
+ LiveIndex UseIdx = li_->getUseIndex(CopyIdx);
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
if (loopInfo->getLoopFor(SMBB) != L) {
@@ -1080,7 +1060,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
if (SuccMBB == CopyMBB)
continue;
if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
- li_->getMBBEndIdx(SuccMBB)+1))
+ li_->getNextSlot(li_->getMBBEndIdx(SuccMBB))))
return false;
}
}
@@ -1111,11 +1091,12 @@ SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
// If the virtual register live interval is defined or cross a loop, turn
// down aggressiveness.
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
- unsigned UseIdx = li_->getUseIndex(CopyIdx);
+ LiveIndex CopyIdx =
+ li_->getDefIndex(li_->getInstructionIndex(CopyMI));
+ LiveIndex UseIdx = li_->getUseIndex(CopyIdx);
LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
assert(SLR != SrcInt.end() && "Live range not found!");
- SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
+ SLR = SrcInt.FindLiveRangeContaining(li_->getPrevSlot(SLR->start));
if (SLR == SrcInt.end())
return true;
MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
@@ -1135,7 +1116,7 @@ SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
if (PredMBB == SMBB)
continue;
if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
- li_->getMBBEndIdx(PredMBB)+1))
+ li_->getNextSlot(li_->getMBBEndIdx(PredMBB))))
return false;
}
}
@@ -1236,14 +1217,18 @@ SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
LiveInterval &RHS = li_->getInterval(SrcReg);
if (li_->hasInterval(RealDstReg) &&
RHS.overlaps(li_->getInterval(RealDstReg))) {
- DOUT << "Interfere with register ";
- DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with register ";
+ li_->getInterval(RealDstReg).print(errs(), tri_);
+ });
return false; // Not coalescable
}
for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
- DOUT << "Interfere with sub-register ";
- DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(errs(), tri_);
+ });
return false; // Not coalescable
}
return true;
@@ -1263,14 +1248,18 @@ SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
LiveInterval &RHS = li_->getInterval(DstReg);
if (li_->hasInterval(RealSrcReg) &&
RHS.overlaps(li_->getInterval(RealSrcReg))) {
- DOUT << "Interfere with register ";
- DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with register ";
+ li_->getInterval(RealSrcReg).print(errs(), tri_);
+ });
return false; // Not coalescable
}
for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
- DOUT << "Interfere with sub-register ";
- DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(errs(), tri_);
+ });
return false; // Not coalescable
}
return true;
@@ -1299,7 +1288,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
return false; // Already done.
- DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
+ DEBUG(errs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
@@ -1312,41 +1301,43 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
SrcReg = CopyMI->getOperand(1).getReg();
SrcSubIdx = CopyMI->getOperand(2).getImm();
} else if (isInsSubReg || isSubRegToReg) {
- if (CopyMI->getOperand(2).getSubReg()) {
- DOUT << "\tSource of insert_subreg is already coalesced "
- << "to another register.\n";
- return false; // Not coalescable.
- }
DstReg = CopyMI->getOperand(0).getReg();
DstSubIdx = CopyMI->getOperand(3).getImm();
SrcReg = CopyMI->getOperand(2).getReg();
+ SrcSubIdx = CopyMI->getOperand(2).getSubReg();
+ if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
+ // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
+ // coalesced to a larger register so the subreg indices cancel out.
+ DEBUG(errs() << "\tSource of insert_subreg or subreg_to_reg is already "
+ "coalesced to another register.\n");
+ return false; // Not coalescable.
+ }
} else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
- assert(0 && "Unrecognized copy instruction!");
- return false;
+ llvm_unreachable("Unrecognized copy instruction!");
}
// If they are already joined we continue.
if (SrcReg == DstReg) {
- DOUT << "\tCopy already coalesced.\n";
+ DEBUG(errs() << "\tCopy already coalesced.\n");
return false; // Not coalescable.
}
-
+
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
// If they are both physical registers, we cannot join them.
if (SrcIsPhys && DstIsPhys) {
- DOUT << "\tCan not coalesce physregs.\n";
+ DEBUG(errs() << "\tCan not coalesce physregs.\n");
return false; // Not coalescable.
}
-
+
// We only join virtual registers with allocatable physical registers.
if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
- DOUT << "\tSrc reg is unallocatable physreg.\n";
+ DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
return false; // Not coalescable.
}
if (DstIsPhys && !allocatableRegs_[DstReg]) {
- DOUT << "\tDst reg is unallocatable physreg.\n";
+ DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
return false; // Not coalescable.
}
@@ -1360,9 +1351,9 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
assert(DstSubRC && "Illegal subregister index");
if (!DstSubRC->contains(SrcSubReg)) {
- DOUT << "\tIncompatible destination regclass: "
- << tri_->getName(SrcSubReg) << " not in " << DstSubRC->getName()
- << ".\n";
+ DEBUG(errs() << "\tIncompatible destination regclass: "
+ << tri_->getName(SrcSubReg) << " not in "
+ << DstSubRC->getName() << ".\n");
return false; // Not coalescable.
}
}
@@ -1377,15 +1368,18 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
assert(SrcSubRC && "Illegal subregister index");
if (!SrcSubRC->contains(DstReg)) {
- DOUT << "\tIncompatible source regclass: "
- << tri_->getName(DstSubReg) << " not in " << SrcSubRC->getName()
- << ".\n";
+ DEBUG(errs() << "\tIncompatible source regclass: "
+ << tri_->getName(DstSubReg) << " not in "
+ << SrcSubRC->getName() << ".\n");
+ (void)DstSubReg;
return false; // Not coalescable.
}
}
// Should be non-null only when coalescing to a sub-register class.
bool CrossRC = false;
+ const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
+ const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
const TargetRegisterClass *NewRC = NULL;
MachineBasicBlock *CopyMBB = CopyMI->getParent();
unsigned RealDstReg = 0;
@@ -1400,7 +1394,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
// coalesced to a larger register so the subreg indices cancel out.
if (DstSubIdx != SubIdx) {
- DOUT << "\t Sub-register indices mismatch.\n";
+ DEBUG(errs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
} else
@@ -1413,7 +1407,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
// coalesced to a larger register so the subreg indices cancel out.
if (SrcSubIdx != SubIdx) {
- DOUT << "\t Sub-register indices mismatch.\n";
+ DEBUG(errs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
} else
@@ -1422,8 +1416,8 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
} else if ((DstIsPhys && isExtSubReg) ||
(SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
- DOUT << "\tSrc of extract_subreg already coalesced with reg"
- << " of a super-class.\n";
+ DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
+ << " of a super-class.\n");
return false; // Not coalescable.
}
@@ -1446,11 +1440,22 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// class as the would be resulting register.
SubIdx = 0;
else {
- DOUT << "\t Sub-register indices mismatch.\n";
+ DEBUG(errs() << "\t Sub-register indices mismatch.\n");
return false; // Not coalescable.
}
}
if (SubIdx) {
+ if (!DstIsPhys && !SrcIsPhys) {
+ if (isInsSubReg || isSubRegToReg) {
+ NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
+ } else // extract_subreg {
+ NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
+ }
+ if (!NewRC) {
+ DEBUG(errs() << "\t Conflicting sub-register indices.\n");
+ return false; // Not coalescable
+ }
+
unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
@@ -1461,7 +1466,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
}
}
} else if (differingRegisterClasses(SrcReg, DstReg)) {
- if (!CrossClassJoin)
+ if (DisableCrossClassJoin)
return false;
CrossRC = true;
@@ -1502,11 +1507,8 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
}
}
- const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
- const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
unsigned LargeReg = SrcReg;
unsigned SmallReg = DstReg;
- unsigned Limit = 0;
// Now determine the register class of the joined register.
if (isExtSubReg) {
@@ -1517,13 +1519,14 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
Again = true;
return false;
}
- Limit = allocatableRCRegs_[DstRC].count();
+ if (!DstIsPhys && !SrcIsPhys)
+ NewRC = SrcRC;
} else if (!SrcIsPhys && !DstIsPhys) {
NewRC = getCommonSubClass(SrcRC, DstRC);
if (!NewRC) {
- DOUT << "\tDisjoint regclasses: "
- << SrcRC->getName() << ", "
- << DstRC->getName() << ".\n";
+ DEBUG(errs() << "\tDisjoint regclasses: "
+ << SrcRC->getName() << ", "
+ << DstRC->getName() << ".\n");
return false; // Not coalescable.
}
if (DstRC->getSize() > SrcRC->getSize())
@@ -1537,7 +1540,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
(isExtSubReg || DstRC->isASubClass()) &&
!isWinToJoinCrossClass(LargeReg, SmallReg,
allocatableRCRegs_[NewRC].count())) {
- DOUT << "\tSrc/Dest are different register classes.\n";
+ DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
// Allow the coalescer to try again in case either side gets coalesced to
// a physical register that's compatible with the other side. e.g.
// r1024 = MOV32to32_ r1025
@@ -1552,15 +1555,17 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
return false;
if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
return false;
-
+
LiveInterval &SrcInt = li_->getInterval(SrcReg);
LiveInterval &DstInt = li_->getInterval(DstReg);
assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
"Register mapping is horribly broken!");
- DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
- DOUT << " and "; DstInt.print(DOUT, tri_);
- DOUT << ": ";
+ DEBUG({
+ errs() << "\t\tInspecting "; SrcInt.print(errs(), tri_);
+ errs() << " and "; DstInt.print(errs(), tri_);
+ errs() << ": ";
+ });
// Save a copy of the virtual register live interval. We'll manually
// merge this into the "real" physical register live interval this is
@@ -1590,7 +1595,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
++numAborts;
- DOUT << "\tMay tie down a physical register, abort!\n";
+ DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1598,7 +1603,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
++numAborts;
- DOUT << "\tMay tie down a physical register, abort!\n";
+ DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1612,9 +1617,6 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
- if (TheCopy.isBackEdge)
- Threshold *= 2; // Favors back edge copies.
-
unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
float Ratio = 1.0 / Threshold;
if (Length > Threshold &&
@@ -1622,7 +1624,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
mri_->use_end()) / Length) < Ratio)) {
mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
++numAborts;
- DOUT << "\tMay tie down a physical register, abort!\n";
+ DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1641,7 +1643,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// Only coalesce an empty interval (defined by implicit_def) with
// another interval which has a valno defined by the CopyMI and the CopyMI
// is a kill of the implicit def.
- DOUT << "Not profitable!\n";
+ DEBUG(errs() << "Not profitable!\n");
return false;
}
@@ -1651,9 +1653,9 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// If definition of source is defined by trivial computation, try
// rematerializing it.
if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
- ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI))
+ ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
return true;
-
+
// If we can eliminate the copy without merging the live ranges, do so now.
if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
(AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
@@ -1661,9 +1663,9 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
JoinedCopies.insert(CopyMI);
return true;
}
-
+
// Otherwise, we are unable to join the intervals.
- DOUT << "Interference!\n";
+ DEBUG(errs() << "Interference!\n");
Again = true; // May be possible to coalesce later.
return false;
}
@@ -1676,7 +1678,7 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
}
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"LiveInterval::join didn't work right!");
-
+
// If we're about to merge live ranges into a physical register live interval,
// we have to update any aliased register's live ranges to indicate that they
// have clobbered values for this range.
@@ -1690,14 +1692,14 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
E = SavedLI->vni_end(); I != E; ++I) {
const VNInfo *ValNo = *I;
- VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->copy,
+ VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
false, // updated at *
li_->getVNInfoAllocator());
NewValNo->setFlags(ValNo->getFlags()); // * updated here.
RealInt.addKills(NewValNo, ValNo->kills);
RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
}
- RealInt.weight += SavedLI->weight;
+ RealInt.weight += SavedLI->weight;
DstReg = RealDstReg ? RealDstReg : RealSrcReg;
}
@@ -1721,32 +1723,15 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
// Coalescing to a virtual register that is of a sub-register class of the
// other. Make sure the resulting register is set to the right register class.
- if (CrossRC) {
- ++numCrossRCs;
- if (NewRC)
- mri_->setRegClass(DstReg, NewRC);
- }
-
- if (NewHeuristic) {
- // Add all copies that define val# in the source interval into the queue.
- for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
- e = ResSrcInt->vni_end(); i != e; ++i) {
- const VNInfo *vni = *i;
- // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
- if (!vni->def || vni->isUnused() || vni->isPHIDef() || !vni->isDefAccurate())
- continue;
- MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
- unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
- if (CopyMI &&
- JoinedCopies.count(CopyMI) == 0 &&
- tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
- NewSrcSubIdx, NewDstSubIdx)) {
- unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
- JoinQueue->push(CopyRec(CopyMI, LoopDepth,
- isBackEdgeCopy(CopyMI, DstReg)));
- }
- }
- }
+ if (CrossRC)
+ ++numCrossRCs;
+
+ // This may happen even if it's cross-rc coalescing. e.g.
+ // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
+ // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
+ // be allocate a register from GR64_ABCD.
+ if (NewRC)
+ mri_->setRegClass(DstReg, NewRC);
// Remember to delete the copy instruction.
JoinedCopies.insert(CopyMI);
@@ -1757,13 +1742,6 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
if (TargetRegisterInfo::isVirtualRegister(DstReg))
RemoveUnnecessaryKills(DstReg, *ResDstInt);
- if (isInsSubReg)
- // Avoid:
- // r1024 = op
- // r1024 = implicit_def
- // ...
- // = r1024
- RemoveDeadImpDef(DstReg, *ResDstInt);
UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
// SrcReg is guarateed to be the register whose live interval that is
@@ -1779,29 +1757,6 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
delete SavedLI;
}
- if (isEmpty) {
- // Now the copy is being coalesced away, the val# previously defined
- // by the copy is being defined by an IMPLICIT_DEF which defines a zero
- // length interval. Remove the val#.
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
- const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
- VNInfo *ImpVal = LR->valno;
- assert(ImpVal->def == CopyIdx);
- unsigned NextDef = LR->end;
- TurnCopiesFromValNoToImpDefs(*ResDstInt, ImpVal);
- ResDstInt->removeValNo(ImpVal);
- LR = ResDstInt->FindLiveRangeContaining(NextDef);
- if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
- // Special case: vr1024 = implicit_def
- // vr1024 = insert_subreg vr1024, vr1025, c
- // The insert_subreg becomes a "copy" that defines a val# which can itself
- // be coalesced away.
- MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
- if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
- LR->valno->copy = DefMI;
- }
- }
-
// If resulting interval has a preference that no longer fits because of subreg
// coalescing, just clear the preference.
unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
@@ -1812,8 +1767,11 @@ bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
}
- DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
- DOUT << "\n";
+ DEBUG({
+ errs() << "\n\t\tJoined. Result = ";
+ ResDstInt->print(errs(), tri_);
+ errs() << "\n";
+ });
++numJoins;
return true;
@@ -1860,7 +1818,7 @@ static unsigned ComputeUltimateVN(VNInfo *VNI,
// been computed, return it.
if (OtherValNoAssignments[OtherValNo->id] >= 0)
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
-
+
// Mark this value number as currently being computed, then ask what the
// ultimate value # of the other value is.
ThisValNoAssignments[VN] = -2;
@@ -1896,7 +1854,7 @@ bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
DstReg == li.reg && SrcReg == Reg) {
// Cache computed info.
LR->valno->def = LR->start;
- LR->valno->copy = DefMI;
+ LR->valno->setCopy(DefMI);
return true;
}
}
@@ -1910,16 +1868,16 @@ bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
/// joins them and returns true.
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
assert(RHS.containsOneValue());
-
+
// Some number (potentially more than one) value numbers in the current
// interval may be defined as copies from the RHS. Scan the overlapping
// portions of the LHS and RHS, keeping track of this and looking for
// overlapping live ranges that are NOT defined as copies. If these exist, we
// cannot coalesce.
-
+
LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
-
+
if (LHSIt->start < RHSIt->start) {
LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
if (LHSIt != LHS.begin()) --LHSIt;
@@ -1927,9 +1885,9 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
if (RHSIt != RHS.begin()) --RHSIt;
}
-
+
SmallVector<VNInfo*, 8> EliminatedLHSVals;
-
+
while (1) {
// Determine if these live intervals overlap.
bool Overlaps = false;
@@ -1937,7 +1895,7 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
Overlaps = LHSIt->end > RHSIt->start;
else
Overlaps = RHSIt->end > LHSIt->start;
-
+
// If the live intervals overlap, there are two interesting cases: if the
// LHS interval is defined by a copy from the RHS, it's ok and we record
// that the LHS value # is the same as the RHS. If it's not, then we cannot
@@ -1955,7 +1913,7 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
// vr1025 = copy vr1024
// ..
// BB2:
- // vr1024 = op
+ // vr1024 = op
// = vr1025
// Even though vr1025 is copied from vr1024, it's not safe to
// coalesce them since the live range of vr1025 intersects the
@@ -1964,12 +1922,12 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
return false;
EliminatedLHSVals.push_back(LHSIt->valno);
}
-
+
// We know this entire LHS live range is okay, so skip it now.
if (++LHSIt == LHSEnd) break;
continue;
}
-
+
if (LHSIt->end < RHSIt->end) {
if (++LHSIt == LHSEnd) break;
} else {
@@ -1993,7 +1951,7 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
// vr1025 = copy vr1024
// ..
// BB2:
- // vr1024 = op
+ // vr1024 = op
// = vr1025
// Even though vr1025 is copied from vr1024, it's not safe to
// coalesced them since live range of vr1025 intersects the
@@ -2007,11 +1965,11 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
}
}
}
-
+
if (++RHSIt == RHSEnd) break;
}
}
-
+
// If we got here, we know that the coalescing will be successful and that
// the value numbers in EliminatedLHSVals will all be merged together. Since
// the most common case is that EliminatedLHSVals has a single number, we
@@ -2039,28 +1997,29 @@ bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
*tri_->getSuperRegisters(LHS.reg))
// Imprecise sub-register information. Can't handle it.
return false;
- assert(0 && "No copies from the RHS?");
+ llvm_unreachable("No copies from the RHS?");
} else {
LHSValNo = EliminatedLHSVals[0];
}
-
+
// Okay, now that there is a single LHS value number that we're merging the
// RHS into, update the value number info for the LHS to indicate that the
// value number is defined where the RHS value number was.
const VNInfo *VNI = RHS.getValNumInfo(0);
LHSValNo->def = VNI->def;
- LHSValNo->copy = VNI->copy;
-
+ LHSValNo->setCopy(VNI->getCopy());
+
// Okay, the final step is to loop over the RHS live intervals, adding them to
// the LHS.
if (VNI->hasPHIKill())
LHSValNo->setHasPHIKill(true);
LHS.addKills(LHSValNo, VNI->kills);
LHS.MergeRangesInAsValue(RHS, LHSValNo);
- LHS.weight += RHS.weight;
+
+ LHS.ComputeJoinedWeight(RHS);
// Update regalloc hint if both are virtual registers.
- if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
+ if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
@@ -2122,8 +2081,10 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
} else {
for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
- DOUT << "Interfere with sub-register ";
- DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(errs(), tri_);
+ });
return false;
}
}
@@ -2137,19 +2098,21 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
} else {
for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
- DOUT << "Interfere with sub-register ";
- DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
+ DEBUG({
+ errs() << "Interfere with sub-register ";
+ li_->getInterval(*SR).print(errs(), tri_);
+ });
return false;
}
}
}
-
+
// Compute ultimate value numbers for the LHS and RHS values.
if (RHS.containsOneValue()) {
// Copies from a liveinterval with a single value are simple to handle and
// very common, handle the special case here. This is important, because
// often RHS is small and LHS is large (e.g. a physreg).
-
+
// Find out if the RHS is defined as a copy from some value in the LHS.
int RHSVal0DefinedFromLHS = -1;
int RHSValID = -1;
@@ -2167,15 +2130,16 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
}
} else {
// It was defined as a copy from the LHS, find out what value # it is.
- RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
+ RHSValNoInfo =
+ LHS.getLiveRangeContaining(li_->getPrevSlot(RHSValNoInfo0->def))->valno;
RHSValID = RHSValNoInfo->id;
RHSVal0DefinedFromLHS = RHSValID;
}
-
+
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
NewVNInfo.resize(LHS.getNumValNums(), NULL);
-
+
// Okay, *all* of the values in LHS that are defined as a copy from RHS
// should now get updated.
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
@@ -2207,7 +2171,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
LHSValNoAssignments[VN] = VN;
}
}
-
+
assert(RHSValID != -1 && "Didn't find value #?");
RHSValNoAssignments[0] = RHSValID;
if (RHSVal0DefinedFromLHS != -1) {
@@ -2221,44 +2185,46 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
- if (VNI->isUnused() || VNI->copy == 0) // Src not defined by a copy?
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
continue;
-
+
// DstReg is known to be a register in the LHS interval. If the src is
// from the RHS interval, we can use its value #.
if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
continue;
-
+
// Figure out the value # from the RHS.
- LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
+ LHSValsDefinedFromRHS[VNI]=
+ RHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
}
-
+
// Loop over the value numbers of the RHS, seeing if any are defined from
// the LHS.
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
- if (VNI->isUnused() || VNI->copy == 0) // Src not defined by a copy?
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
continue;
-
+
// DstReg is known to be a register in the RHS interval. If the src is
// from the LHS interval, we can use its value #.
if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
continue;
-
+
// Figure out the value # from the LHS.
- RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
+ RHSValsDefinedFromLHS[VNI]=
+ LHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
}
-
+
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
-
+
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
i != e; ++i) {
VNInfo *VNI = *i;
unsigned VN = VNI->id;
- if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
continue;
ComputeUltimateVN(VNI, NewVNInfo,
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
@@ -2276,20 +2242,20 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
continue;
}
-
+
ComputeUltimateVN(VNI, NewVNInfo,
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
RHSValNoAssignments, LHSValNoAssignments);
}
}
-
+
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
// interval lists to see if these intervals are coalescable.
LiveInterval::const_iterator I = LHS.begin();
LiveInterval::const_iterator IE = LHS.end();
LiveInterval::const_iterator J = RHS.begin();
LiveInterval::const_iterator JE = RHS.end();
-
+
// Skip ahead until the first place of potential sharing.
if (I->start < J->start) {
I = std::upper_bound(I, IE, J->start);
@@ -2298,7 +2264,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
J = std::upper_bound(J, JE, I->start);
if (J != RHS.begin()) --J;
}
-
+
while (1) {
// Determine if these two live ranges overlap.
bool Overlaps;
@@ -2316,7 +2282,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
RHSValNoAssignments[J->valno->id])
return false;
}
-
+
if (I->end < J->end) {
++I;
if (I == IE) break;
@@ -2331,7 +2297,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned LHSValID = LHSValNoAssignments[VNI->id];
- LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
+ NewVNInfo[LHSValID]->removeKill(VNI->def);
if (VNI->hasPHIKill())
NewVNInfo[LHSValID]->setHasPHIKill(true);
RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
@@ -2342,7 +2308,7 @@ SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
VNInfo *VNI = I->first;
unsigned RHSValID = RHSValNoAssignments[VNI->id];
- LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
+ NewVNInfo[RHSValID]->removeKill(VNI->def);
if (VNI->hasPHIKill())
NewVNInfo[RHSValID]->setHasPHIKill(true);
LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
@@ -2377,37 +2343,17 @@ namespace {
};
}
-/// getRepIntervalSize - Returns the size of the interval that represents the
-/// specified register.
-template<class SF>
-unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
- return Rc->getRepIntervalSize(Reg);
-}
-
-/// CopyRecSort::operator - Join priority queue sorting function.
-///
-bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
- // Inner loops first.
- if (left.LoopDepth > right.LoopDepth)
- return false;
- else if (left.LoopDepth == right.LoopDepth)
- if (left.isBackEdge && !right.isBackEdge)
- return false;
- return true;
-}
-
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
std::vector<CopyRec> &TryAgain) {
- DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
+ DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
std::vector<CopyRec> VirtCopies;
std::vector<CopyRec> PhysCopies;
std::vector<CopyRec> ImpDefCopies;
- unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
MII != E;) {
MachineInstr *Inst = MII++;
-
+
// If this isn't a copy nor a extract_subreg, we can't join intervals.
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
@@ -2422,21 +2368,14 @@ void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
- if (NewHeuristic) {
- JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
- } else {
- if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
- ImpDefCopies.push_back(CopyRec(Inst, 0, false));
- else if (SrcIsPhys || DstIsPhys)
- PhysCopies.push_back(CopyRec(Inst, 0, false));
- else
- VirtCopies.push_back(CopyRec(Inst, 0, false));
- }
+ if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
+ ImpDefCopies.push_back(CopyRec(Inst, 0));
+ else if (SrcIsPhys || DstIsPhys)
+ PhysCopies.push_back(CopyRec(Inst, 0));
+ else
+ VirtCopies.push_back(CopyRec(Inst, 0));
}
- if (NewHeuristic)
- return;
-
// Try coalescing implicit copies first, followed by copies to / from
// physical registers, then finally copies from virtual registers to
// virtual registers.
@@ -2464,10 +2403,7 @@ void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
}
void SimpleRegisterCoalescing::joinIntervals() {
- DOUT << "********** JOINING INTERVALS ***********\n";
-
- if (NewHeuristic)
- JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
+ DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
std::vector<CopyRec> TryAgainList;
if (loopInfo->empty()) {
@@ -2495,52 +2431,26 @@ void SimpleRegisterCoalescing::joinIntervals() {
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
}
-
+
// Joining intervals can allow other intervals to be joined. Iteratively join
// until we make no progress.
- if (NewHeuristic) {
- SmallVector<CopyRec, 16> TryAgain;
- bool ProgressMade = true;
- while (ProgressMade) {
- ProgressMade = false;
- while (!JoinQueue->empty()) {
- CopyRec R = JoinQueue->pop();
- bool Again = false;
- bool Success = JoinCopy(R, Again);
- if (Success)
- ProgressMade = true;
- else if (Again)
- TryAgain.push_back(R);
- }
+ bool ProgressMade = true;
+ while (ProgressMade) {
+ ProgressMade = false;
- if (ProgressMade) {
- while (!TryAgain.empty()) {
- JoinQueue->push(TryAgain.back());
- TryAgain.pop_back();
- }
- }
- }
- } else {
- bool ProgressMade = true;
- while (ProgressMade) {
- ProgressMade = false;
-
- for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
- CopyRec &TheCopy = TryAgainList[i];
- if (TheCopy.MI) {
- bool Again = false;
- bool Success = JoinCopy(TheCopy, Again);
- if (Success || !Again) {
- TheCopy.MI = 0; // Mark this one as done.
- ProgressMade = true;
- }
- }
+ for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
+ CopyRec &TheCopy = TryAgainList[i];
+ if (!TheCopy.MI)
+ continue;
+
+ bool Again = false;
+ bool Success = JoinCopy(TheCopy, Again);
+ if (Success || !Again) {
+ TheCopy.MI = 0; // Mark this one as done.
+ ProgressMade = true;
}
}
}
-
- if (NewHeuristic)
- delete JoinQueue;
}
/// Return true if the two specified registers belong to different register
@@ -2567,9 +2477,11 @@ SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End or NULL if there are no uses.
MachineOperand *
-SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
- unsigned Reg, unsigned &UseIdx) const{
- UseIdx = 0;
+SimpleRegisterCoalescing::lastRegisterUse(LiveIndex Start,
+ LiveIndex End,
+ unsigned Reg,
+ LiveIndex &UseIdx) const{
+ UseIdx = LiveIndex();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
MachineOperand *LastUse = NULL;
for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
@@ -2581,7 +2493,7 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
SrcReg == DstReg)
// Ignore identity copies.
continue;
- unsigned Idx = li_->getInstructionIndex(UseMI);
+ LiveIndex Idx = li_->getInstructionIndex(UseMI);
if (Idx >= Start && Idx < End && Idx >= UseIdx) {
LastUse = &Use;
UseIdx = li_->getUseIndex(Idx);
@@ -2590,13 +2502,13 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
return LastUse;
}
- int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
- int s = Start;
+ LiveIndex s = Start;
+ LiveIndex e = li_->getBaseIndex(li_->getPrevSlot(End));
while (e >= s) {
// Skip deleted instructions
MachineInstr *MI = li_->getInstructionFromIndex(e);
- while ((e - InstrSlots::NUM) >= s && !MI) {
- e -= InstrSlots::NUM;
+ while (e != LiveIndex() && li_->getPrevIndex(e) >= s && !MI) {
+ e = li_->getPrevIndex(e);
MI = li_->getInstructionFromIndex(e);
}
if (e < s || MI == NULL)
@@ -2615,7 +2527,7 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
}
}
- e -= InstrSlots::NUM;
+ e = li_->getPrevIndex(e);
}
return NULL;
@@ -2624,9 +2536,9 @@ SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
if (TargetRegisterInfo::isPhysicalRegister(reg))
- cerr << tri_->getName(reg);
+ errs() << tri_->getName(reg);
else
- cerr << "%reg" << reg;
+ errs() << "%reg" << reg;
}
void SimpleRegisterCoalescing::releaseMemory() {
@@ -2635,64 +2547,106 @@ void SimpleRegisterCoalescing::releaseMemory() {
ReMatDefs.clear();
}
-static bool isZeroLengthInterval(LiveInterval *li) {
+/// Returns true if the given live interval is zero length.
+static bool isZeroLengthInterval(LiveInterval *li, LiveIntervals *li_) {
for (LiveInterval::Ranges::const_iterator
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
- if (i->end - i->start > LiveInterval::InstrSlots::NUM)
+ if (li_->getPrevIndex(i->end) > i->start)
return false;
return true;
}
-/// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
-/// turn the copy into an implicit def.
-bool
-SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
- MachineBasicBlock *MBB,
- unsigned DstReg, unsigned SrcReg) {
- MachineInstr *CopyMI = &*I;
- unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
- if (!li_->hasInterval(SrcReg))
- return false;
- LiveInterval &SrcInt = li_->getInterval(SrcReg);
- if (!SrcInt.empty())
- return false;
- if (!li_->hasInterval(DstReg))
- return false;
- LiveInterval &DstInt = li_->getInterval(DstReg);
- const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
- // If the valno extends beyond this basic block, then it's not safe to delete
- // the val# or else livein information won't be correct.
- MachineBasicBlock *EndMBB = li_->getMBBFromIndex(DstLR->end);
- if (EndMBB != MBB)
- return false;
- DstInt.removeValNo(DstLR->valno);
- CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
- for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
- CopyMI->RemoveOperand(i);
- CopyMI->getOperand(0).setIsUndef();
- bool NoUse = mri_->use_empty(SrcReg);
- if (NoUse) {
- for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(SrcReg),
- RE = mri_->reg_end(); RI != RE; ) {
- assert(RI.getOperand().isDef());
- MachineInstr *DefMI = &*RI;
- ++RI;
- // The implicit_def source has no other uses, delete it.
- assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
- li_->RemoveMachineInstrFromMaps(DefMI);
- DefMI->eraseFromParent();
+void SimpleRegisterCoalescing::CalculateSpillWeights() {
+ SmallSet<unsigned, 4> Processed;
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* MBB = mbbi;
+ LiveIndex MBBEnd = li_->getMBBEndIdx(MBB);
+ MachineLoop* loop = loopInfo->getLoopFor(MBB);
+ unsigned loopDepth = loop ? loop->getLoopDepth() : 0;
+ bool isExit = loop ? loop->isLoopExit(MBB) : false;
+
+ for (MachineBasicBlock::iterator mii = MBB->begin(), mie = MBB->end();
+ mii != mie; ++mii) {
+ MachineInstr *MI = mii;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &mopi = MI->getOperand(i);
+ if (!mopi.isReg() || mopi.getReg() == 0)
+ continue;
+ unsigned Reg = mopi.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(mopi.getReg()))
+ continue;
+ // Multiple uses of reg by the same instruction. It should not
+ // contribute to spill weight again.
+ if (!Processed.insert(Reg))
+ continue;
+
+ bool HasDef = mopi.isDef();
+ bool HasUse = !HasDef;
+ for (unsigned j = i+1; j != e; ++j) {
+ const MachineOperand &mopj = MI->getOperand(j);
+ if (!mopj.isReg() || mopj.getReg() != Reg)
+ continue;
+ HasDef |= mopj.isDef();
+ HasUse |= mopj.isUse();
+ if (HasDef && HasUse)
+ break;
+ }
+
+ LiveInterval &RegInt = li_->getInterval(Reg);
+ float Weight = li_->getSpillWeight(HasDef, HasUse, loopDepth);
+ if (HasDef && isExit) {
+ // Looks like this is a loop count variable update.
+ LiveIndex DefIdx =
+ li_->getDefIndex(li_->getInstructionIndex(MI));
+ const LiveRange *DLR =
+ li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
+ if (DLR->end > MBBEnd)
+ Weight *= 3.0F;
+ }
+ RegInt.weight += Weight;
+ }
+ Processed.clear();
}
}
- // Mark uses of implicit_def isUndef.
- for (MachineRegisterInfo::use_iterator RI = mri_->use_begin(DstReg),
- RE = mri_->use_end(); RI != RE; ++RI) {
- assert((*RI).getParent() == MBB);
- RI.getOperand().setIsUndef();
- }
+ for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
+ LiveInterval &LI = *I->second;
+ if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
+ // If the live interval length is essentially zero, i.e. in every live
+ // range the use follows def immediately, it doesn't make sense to spill
+ // it and hope it will be easier to allocate for this li.
+ if (isZeroLengthInterval(&LI, li_)) {
+ LI.weight = HUGE_VALF;
+ continue;
+ }
- ++I;
- return true;
+ bool isLoad = false;
+ SmallVector<LiveInterval*, 4> SpillIs;
+ if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
+ // If all of the definitions of the interval are re-materializable,
+ // it is a preferred candidate for spilling. If non of the defs are
+ // loads, then it's potentially very cheap to re-materialize.
+ // FIXME: this gets much more complicated once we support non-trivial
+ // re-materialization.
+ if (isLoad)
+ LI.weight *= 0.9F;
+ else
+ LI.weight *= 0.5F;
+ }
+
+ // Slightly prefer live interval that has been assigned a preferred reg.
+ std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
+ if (Hint.first || Hint.second)
+ LI.weight *= 1.01F;
+
+ // Divide the weight of the interval by its size. This encourages
+ // spilling of intervals that are large and have few uses, and
+ // discourages spilling of small intervals with many uses.
+ LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
+ }
+ }
}
@@ -2703,11 +2657,12 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
li_ = &getAnalysis<LiveIntervals>();
+ AA = &getAnalysis<AliasAnalysis>();
loopInfo = &getAnalysis<MachineLoopInfo>();
- DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
- << "********** Function: "
- << ((Value*)mf_->getFunction())->getName() << '\n';
+ DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
allocatableRegs_ = tri_->getAllocatableSet(fn);
for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
@@ -2719,10 +2674,10 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
if (EnableJoining) {
joinIntervals();
DEBUG({
- DOUT << "********** INTERVALS POST JOINING **********\n";
+ errs() << "********** INTERVALS POST JOINING **********\n";
for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
- I->second->print(DOUT, tri_);
- DOUT << "\n";
+ I->second->print(errs(), tri_);
+ errs() << "\n";
}
});
}
@@ -2733,29 +2688,40 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
- unsigned loopDepth = loopInfo->getLoopDepth(mbb);
-
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
MachineInstr *MI = mii;
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (JoinedCopies.count(MI)) {
// Delete all coalesced copies.
+ bool DoDelete = true;
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
"Unrecognized copy instruction");
DstReg = MI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ // Do not delete extract_subreg, insert_subreg of physical
+ // registers unless the definition is dead. e.g.
+ // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
+ // or else the scavenger may complain. LowerSubregs will
+ // change this to an IMPLICIT_DEF later.
+ DoDelete = false;
}
if (MI->registerDefIsDead(DstReg)) {
LiveInterval &li = li_->getInterval(DstReg);
if (!ShortenDeadCopySrcLiveRange(li, MI))
ShortenDeadCopyLiveRange(li, MI);
+ DoDelete = true;
+ }
+ if (!DoDelete)
+ mii = next(mii);
+ else {
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
}
- li_->RemoveMachineInstrFromMaps(MI);
- mii = mbbi->erase(mii);
- ++numPeep;
continue;
}
@@ -2807,70 +2773,20 @@ bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
li_->RemoveMachineInstrFromMaps(MI);
mii = mbbi->erase(mii);
++numPeep;
- } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
- SmallSet<unsigned, 4> UniqueUses;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &mop = MI->getOperand(i);
- if (mop.isReg() && mop.getReg() &&
- TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
- unsigned reg = mop.getReg();
- // Multiple uses of reg by the same instruction. It should not
- // contribute to spill weight again.
- if (UniqueUses.count(reg) != 0)
- continue;
- LiveInterval &RegInt = li_->getInterval(reg);
- RegInt.weight +=
- li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
- UniqueUses.insert(reg);
- }
- }
+ } else {
++mii;
}
}
}
- for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
- LiveInterval &LI = *I->second;
- if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
- // If the live interval length is essentially zero, i.e. in every live
- // range the use follows def immediately, it doesn't make sense to spill
- // it and hope it will be easier to allocate for this li.
- if (isZeroLengthInterval(&LI))
- LI.weight = HUGE_VALF;
- else {
- bool isLoad = false;
- SmallVector<LiveInterval*, 4> SpillIs;
- if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
- // If all of the definitions of the interval are re-materializable,
- // it is a preferred candidate for spilling. If non of the defs are
- // loads, then it's potentially very cheap to re-materialize.
- // FIXME: this gets much more complicated once we support non-trivial
- // re-materialization.
- if (isLoad)
- LI.weight *= 0.9F;
- else
- LI.weight *= 0.5F;
- }
- }
-
- // Slightly prefer live interval that has been assigned a preferred reg.
- std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
- if (Hint.first || Hint.second)
- LI.weight *= 1.01F;
-
- // Divide the weight of the interval by its size. This encourages
- // spilling of intervals that are large and have few uses, and
- // discourages spilling of small intervals with many uses.
- LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
- }
- }
+ CalculateSpillWeights();
DEBUG(dump());
return true;
}
/// print - Implement the dump method.
-void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
+void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
li_->print(O, m);
}
diff --git a/lib/CodeGen/SimpleRegisterCoalescing.h b/lib/CodeGen/SimpleRegisterCoalescing.h
index d2c5581..3ebe3a1 100644
--- a/lib/CodeGen/SimpleRegisterCoalescing.h
+++ b/lib/CodeGen/SimpleRegisterCoalescing.h
@@ -18,7 +18,6 @@
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/ADT/BitVector.h"
-#include <queue>
namespace llvm {
class SimpleRegisterCoalescing;
@@ -33,44 +32,8 @@ namespace llvm {
struct CopyRec {
MachineInstr *MI;
unsigned LoopDepth;
- bool isBackEdge;
- CopyRec(MachineInstr *mi, unsigned depth, bool be)
- : MI(mi), LoopDepth(depth), isBackEdge(be) {};
- };
-
- template<class SF> class JoinPriorityQueue;
-
- /// CopyRecSort - Sorting function for coalescer queue.
- ///
- struct CopyRecSort : public std::binary_function<CopyRec,CopyRec,bool> {
- JoinPriorityQueue<CopyRecSort> *JPQ;
- explicit CopyRecSort(JoinPriorityQueue<CopyRecSort> *jpq) : JPQ(jpq) {}
- CopyRecSort(const CopyRecSort &RHS) : JPQ(RHS.JPQ) {}
- bool operator()(CopyRec left, CopyRec right) const;
- };
-
- /// JoinQueue - A priority queue of copy instructions the coalescer is
- /// going to process.
- template<class SF>
- class JoinPriorityQueue {
- SimpleRegisterCoalescing *Rc;
- std::priority_queue<CopyRec, std::vector<CopyRec>, SF> Queue;
-
- public:
- explicit JoinPriorityQueue(SimpleRegisterCoalescing *rc)
- : Rc(rc), Queue(SF(this)) {}
-
- bool empty() const { return Queue.empty(); }
- void push(CopyRec R) { Queue.push(R); }
- CopyRec pop() {
- if (empty()) return CopyRec(0, 0, false);
- CopyRec R = Queue.top();
- Queue.pop();
- return R;
- }
-
- // Callbacks to SimpleRegisterCoalescing.
- unsigned getRepIntervalSize(unsigned Reg);
+ CopyRec(MachineInstr *mi, unsigned depth)
+ : MI(mi), LoopDepth(depth) {};
};
class SimpleRegisterCoalescing : public MachineFunctionPass,
@@ -82,14 +45,11 @@ namespace llvm {
const TargetInstrInfo* tii_;
LiveIntervals *li_;
const MachineLoopInfo* loopInfo;
+ AliasAnalysis *AA;
BitVector allocatableRegs_;
DenseMap<const TargetRegisterClass*, BitVector> allocatableRCRegs_;
- /// JoinQueue - A priority queue of copy instructions the coalescer is
- /// going to process.
- JoinPriorityQueue<CopyRecSort> *JoinQueue;
-
/// JoinedCopies - Keep track of copies eliminated due to coalescing.
///
SmallPtrSet<MachineInstr*, 32> JoinedCopies;
@@ -127,20 +87,8 @@ namespace llvm {
return false;
};
- /// getRepIntervalSize - Called from join priority queue sorting function.
- /// It returns the size of the interval that represent the given register.
- unsigned getRepIntervalSize(unsigned Reg) {
- if (!li_->hasInterval(Reg))
- return 0;
- return li_->getApproximateInstructionCount(li_->getInterval(Reg)) *
- LiveInterval::InstrSlots::NUM;
- }
-
/// print - Implement the dump method.
- virtual void print(std::ostream &O, const Module* = 0) const;
- void print(std::ostream *O, const Module* M = 0) const {
- if (O) print(*O, M);
- }
+ virtual void print(raw_ostream &O, const Module* = 0) const;
private:
/// joinIntervals - join compatible live intervals
@@ -176,7 +124,6 @@ namespace llvm {
/// classes. The registers may be either phys or virt regs.
bool differingRegisterClasses(unsigned RegA, unsigned RegB) const;
-
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
/// the source value number is defined by a copy from the destination reg
/// see if we can merge these two destination reg valno# into a single
@@ -199,20 +146,14 @@ namespace llvm {
/// TrimLiveIntervalToLastUse - If there is a last use in the same basic
/// block as the copy instruction, trim the ive interval to the last use
/// and return true.
- bool TrimLiveIntervalToLastUse(unsigned CopyIdx,
+ bool TrimLiveIntervalToLastUse(LiveIndex CopyIdx,
MachineBasicBlock *CopyMBB,
LiveInterval &li, const LiveRange *LR);
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
/// computation, replace the copy by rematerialize the definition.
bool ReMaterializeTrivialDef(LiveInterval &SrcInt, unsigned DstReg,
- MachineInstr *CopyMI);
-
- /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
- /// turn the copy into an implicit def.
- bool TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
- MachineBasicBlock *MBB,
- unsigned DstReg, unsigned SrcReg);
+ unsigned DstSubIdx, MachineInstr *CopyMI);
/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
/// from an implicit def to another register can be coalesced away.
@@ -266,10 +207,6 @@ namespace llvm {
bool RangeIsDefinedByCopyFromReg(LiveInterval &li, LiveRange *LR,
unsigned Reg);
- /// isBackEdgeCopy - Return true if CopyMI is a back edge copy.
- ///
- bool isBackEdgeCopy(MachineInstr *CopyMI, unsigned DstReg) const;
-
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
/// update the subregister number if it is not zero. If DstReg is a
/// physical register and the existing subregister number of the def / use
@@ -277,10 +214,6 @@ namespace llvm {
/// subregister.
void UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
- /// RemoveDeadImpDef - Remove implicit_def instructions which are
- /// "re-defining" registers due to insert_subreg coalescing. e.g.
- void RemoveDeadImpDef(unsigned Reg, LiveInterval &LI);
-
/// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
/// due to live range lengthening as the result of coalescing.
void RemoveUnnecessaryKills(unsigned Reg, LiveInterval &LI);
@@ -302,8 +235,13 @@ namespace llvm {
/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End or NULL if there are no uses.
- MachineOperand *lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
- unsigned &LastUseIdx) const;
+ MachineOperand *lastRegisterUse(LiveIndex Start,
+ LiveIndex End, unsigned Reg,
+ LiveIndex &LastUseIdx) const;
+
+ /// CalculateSpillWeights - Compute spill weights for all virtual register
+ /// live intervals.
+ void CalculateSpillWeights();
void printRegName(unsigned reg) const;
};
diff --git a/lib/CodeGen/SjLjEHPrepare.cpp b/lib/CodeGen/SjLjEHPrepare.cpp
new file mode 100644
index 0000000..e987fa2
--- /dev/null
+++ b/lib/CodeGen/SjLjEHPrepare.cpp
@@ -0,0 +1,520 @@
+//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation is designed for use by code generators which use SjLj
+// based exception handling.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sjljehprepare"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+STATISTIC(NumInvokes, "Number of invokes replaced");
+STATISTIC(NumUnwinds, "Number of unwinds replaced");
+STATISTIC(NumSpilled, "Number of registers live across unwind edges");
+
+namespace {
+ class VISIBILITY_HIDDEN SjLjEHPass : public FunctionPass {
+
+ const TargetLowering *TLI;
+
+ const Type *FunctionContextTy;
+ Constant *RegisterFn;
+ Constant *UnregisterFn;
+ Constant *ResumeFn;
+ Constant *BuiltinSetjmpFn;
+ Constant *FrameAddrFn;
+ Constant *LSDAAddrFn;
+ Value *PersonalityFn;
+ Constant *SelectorFn;
+ Constant *ExceptionFn;
+
+ Value *CallSite;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit SjLjEHPass(const TargetLowering *tli = NULL)
+ : FunctionPass(&ID), TLI(tli) { }
+ bool doInitialization(Module &M);
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const { }
+ const char *getPassName() const {
+ return "SJLJ Exception Handling preparation";
+ }
+
+ private:
+ void markInvokeCallSite(InvokeInst *II, unsigned InvokeNo,
+ Value *CallSite,
+ SwitchInst *CatchSwitch);
+ void splitLiveRangesLiveAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
+ bool insertSjLjEHSupport(Function &F);
+ };
+} // end anonymous namespace
+
+char SjLjEHPass::ID = 0;
+
+// Public Interface To the SjLjEHPass pass.
+FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
+ return new SjLjEHPass(TLI);
+}
+// doInitialization - Set up decalarations and types needed to process
+// exceptions.
+bool SjLjEHPass::doInitialization(Module &M) {
+ // Build the function context structure.
+ // builtin_setjmp uses a five word jbuf
+ const Type *VoidPtrTy =
+ Type::getInt8PtrTy(M.getContext());
+ const Type *Int32Ty = Type::getInt32Ty(M.getContext());
+ FunctionContextTy =
+ StructType::get(M.getContext(),
+ VoidPtrTy, // __prev
+ Int32Ty, // call_site
+ ArrayType::get(Int32Ty, 4), // __data
+ VoidPtrTy, // __personality
+ VoidPtrTy, // __lsda
+ ArrayType::get(VoidPtrTy, 5), // __jbuf
+ NULL);
+ RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
+ Type::getVoidTy(M.getContext()),
+ PointerType::getUnqual(FunctionContextTy),
+ (Type *)0);
+ UnregisterFn =
+ M.getOrInsertFunction("_Unwind_SjLj_Unregister",
+ Type::getVoidTy(M.getContext()),
+ PointerType::getUnqual(FunctionContextTy),
+ (Type *)0);
+ ResumeFn =
+ M.getOrInsertFunction("_Unwind_SjLj_Resume",
+ Type::getVoidTy(M.getContext()),
+ VoidPtrTy,
+ (Type *)0);
+ FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
+ BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
+ LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
+ SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
+ ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
+ PersonalityFn = 0;
+
+ return true;
+}
+
+/// markInvokeCallSite - Insert code to mark the call_site for this invoke
+void SjLjEHPass::markInvokeCallSite(InvokeInst *II, unsigned InvokeNo,
+ Value *CallSite,
+ SwitchInst *CatchSwitch) {
+ ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ InvokeNo);
+ // The runtime comes back to the dispatcher with the call_site - 1 in
+ // the context. Odd, but there it is.
+ ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ InvokeNo - 1);
+
+ // If the unwind edge has phi nodes, split the edge.
+ if (isa<PHINode>(II->getUnwindDest()->begin())) {
+ SplitCriticalEdge(II, 1, this);
+
+ // If there are any phi nodes left, they must have a single predecessor.
+ while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ PN->eraseFromParent();
+ }
+ }
+
+ // Insert a store of the invoke num before the invoke and store zero into the
+ // location afterward.
+ new StoreInst(CallSiteNoC, CallSite, true, II); // volatile
+
+ // Add a switch case to our unwind block.
+ CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
+ // We still want this to look like an invoke so we emit the LSDA properly
+ // FIXME: ??? Or will this cause strangeness with mis-matched IDs like
+ // when it was in the front end?
+}
+
+/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
+/// we reach blocks we've already seen.
+static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
+ if (!LiveBBs.insert(BB).second) return; // already been here.
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ MarkBlocksLiveIn(*PI, LiveBBs);
+}
+
+/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
+/// we spill into a stack location, guaranteeing that there is nothing live
+/// across the unwind edge. This process also splits all critical edges
+/// coming out of invoke's.
+void SjLjEHPass::
+splitLiveRangesLiveAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
+ // First step, split all critical edges from invoke instructions.
+ for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
+ InvokeInst *II = Invokes[i];
+ SplitCriticalEdge(II, 0, this);
+ SplitCriticalEdge(II, 1, this);
+ assert(!isa<PHINode>(II->getNormalDest()) &&
+ !isa<PHINode>(II->getUnwindDest()) &&
+ "critical edge splitting left single entry phi nodes?");
+ }
+
+ Function *F = Invokes.back()->getParent()->getParent();
+
+ // To avoid having to handle incoming arguments specially, we lower each arg
+ // to a copy instruction in the entry block. This ensures that the argument
+ // value itself cannot be live across the entry block.
+ BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
+ while (isa<AllocaInst>(AfterAllocaInsertPt) &&
+ isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
+ ++AfterAllocaInsertPt;
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI) {
+ // This is always a no-op cast because we're casting AI to AI->getType() so
+ // src and destination types are identical. BitCast is the only possibility.
+ CastInst *NC = new BitCastInst(
+ AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
+ AI->replaceAllUsesWith(NC);
+ // Normally its is forbidden to replace a CastInst's operand because it
+ // could cause the opcode to reflect an illegal conversion. However, we're
+ // replacing it here with the same value it was constructed with to simply
+ // make NC its user.
+ NC->setOperand(0, AI);
+ }
+
+ // Finally, scan the code looking for instructions with bad live ranges.
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+ // Ignore obvious cases we don't have to handle. In particular, most
+ // instructions either have no uses or only have a single use inside the
+ // current block. Ignore them quickly.
+ Instruction *Inst = II;
+ if (Inst->use_empty()) continue;
+ if (Inst->hasOneUse() &&
+ cast<Instruction>(Inst->use_back())->getParent() == BB &&
+ !isa<PHINode>(Inst->use_back())) continue;
+
+ // If this is an alloca in the entry block, it's not a real register
+ // value.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
+ if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
+ continue;
+
+ // Avoid iterator invalidation by copying users to a temporary vector.
+ SmallVector<Instruction*,16> Users;
+ for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (User->getParent() != BB || isa<PHINode>(User))
+ Users.push_back(User);
+ }
+
+ // Find all of the blocks that this value is live in.
+ std::set<BasicBlock*> LiveBBs;
+ LiveBBs.insert(Inst->getParent());
+ while (!Users.empty()) {
+ Instruction *U = Users.back();
+ Users.pop_back();
+
+ if (!isa<PHINode>(U)) {
+ MarkBlocksLiveIn(U->getParent(), LiveBBs);
+ } else {
+ // Uses for a PHI node occur in their predecessor block.
+ PHINode *PN = cast<PHINode>(U);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == Inst)
+ MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
+ }
+ }
+
+ // Now that we know all of the blocks that this thing is live in, see if
+ // it includes any of the unwind locations.
+ bool NeedsSpill = false;
+ for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
+ BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
+ if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
+ NeedsSpill = true;
+ }
+ }
+
+ // If we decided we need a spill, do it.
+ if (NeedsSpill) {
+ ++NumSpilled;
+ DemoteRegToStack(*Inst, true);
+ }
+ }
+}
+
+bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
+ SmallVector<ReturnInst*,16> Returns;
+ SmallVector<UnwindInst*,16> Unwinds;
+ SmallVector<InvokeInst*,16> Invokes;
+
+ // Look through the terminators of the basic blocks to find invokes, returns
+ // and unwinds
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ // Remember all return instructions in case we insert an invoke into this
+ // function.
+ Returns.push_back(RI);
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
+ Invokes.push_back(II);
+ } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
+ Unwinds.push_back(UI);
+ }
+ // If we don't have any invokes or unwinds, there's nothing to do.
+ if (Unwinds.empty() && Invokes.empty()) return false;
+
+ // Find the eh.selector.* and eh.exception calls. We'll use the first
+ // eh.selector to determine the right personality function to use. For
+ // SJLJ, we always use the same personality for the whole function,
+ // not on a per-selector basis.
+ // FIXME: That's a bit ugly. Better way?
+ SmallVector<CallInst*,16> EH_Selectors;
+ SmallVector<CallInst*,16> EH_Exceptions;
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ if (CI->getCalledFunction() == SelectorFn) {
+ if (!PersonalityFn) PersonalityFn = CI->getOperand(2);
+ EH_Selectors.push_back(CI);
+ } else if (CI->getCalledFunction() == ExceptionFn) {
+ EH_Exceptions.push_back(CI);
+ }
+ }
+ }
+ }
+ // If we don't have any eh.selector calls, we can't determine the personality
+ // function. Without a personality function, we can't process exceptions.
+ if (!PersonalityFn) return false;
+
+ NumInvokes += Invokes.size();
+ NumUnwinds += Unwinds.size();
+
+ if (!Invokes.empty()) {
+ // We have invokes, so we need to add register/unregister calls to get
+ // this function onto the global unwind stack.
+ //
+ // First thing we need to do is scan the whole function for values that are
+ // live across unwind edges. Each value that is live across an unwind edge
+ // we spill into a stack location, guaranteeing that there is nothing live
+ // across the unwind edge. This process also splits all critical edges
+ // coming out of invoke's.
+ splitLiveRangesLiveAcrossInvokes(Invokes);
+
+ BasicBlock *EntryBB = F.begin();
+ // Create an alloca for the incoming jump buffer ptr and the new jump buffer
+ // that needs to be restored on all exits from the function. This is an
+ // alloca because the value needs to be added to the global context list.
+ unsigned Align = 4; // FIXME: Should be a TLI check?
+ AllocaInst *FunctionContext =
+ new AllocaInst(FunctionContextTy, 0, Align,
+ "fcn_context", F.begin()->begin());
+
+ Value *Idxs[2];
+ const Type *Int32Ty = Type::getInt32Ty(F.getContext());
+ Value *Zero = ConstantInt::get(Int32Ty, 0);
+ // We need to also keep around a reference to the call_site field
+ Idxs[0] = Zero;
+ Idxs[1] = ConstantInt::get(Int32Ty, 1);
+ CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
+ "call_site",
+ EntryBB->getTerminator());
+
+ // The exception selector comes back in context->data[1]
+ Idxs[1] = ConstantInt::get(Int32Ty, 2);
+ Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
+ "fc_data",
+ EntryBB->getTerminator());
+ Idxs[1] = ConstantInt::get(Int32Ty, 1);
+ Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2,
+ "exc_selector_gep",
+ EntryBB->getTerminator());
+ // The exception value comes back in context->data[0]
+ Idxs[1] = Zero;
+ Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2,
+ "exception_gep",
+ EntryBB->getTerminator());
+
+ // The result of the eh.selector call will be replaced with a
+ // a reference to the selector value returned in the function
+ // context. We leave the selector itself so the EH analysis later
+ // can use it.
+ for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
+ CallInst *I = EH_Selectors[i];
+ Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
+ I->replaceAllUsesWith(SelectorVal);
+ }
+ // eh.exception calls are replaced with references to the proper
+ // location in the context. Unlike eh.selector, the eh.exception
+ // calls are removed entirely.
+ for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
+ CallInst *I = EH_Exceptions[i];
+ // Possible for there to be duplicates, so check to make sure
+ // the instruction hasn't already been removed.
+ if (!I->getParent()) continue;
+ Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
+ const Type *Ty = Type::getInt8PtrTy(F.getContext());
+ Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
+
+ I->replaceAllUsesWith(Val);
+ I->eraseFromParent();
+ }
+
+
+
+
+ // The entry block changes to have the eh.sjlj.setjmp, with a conditional
+ // branch to a dispatch block for non-zero returns. If we return normally,
+ // we're not handling an exception and just register the function context
+ // and continue.
+
+ // Create the dispatch block. The dispatch block is basically a big switch
+ // statement that goes to all of the invoke landing pads.
+ BasicBlock *DispatchBlock =
+ BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
+
+ // Insert a load in the Catch block, and a switch on its value. By default,
+ // we go to a block that just does an unwind (which is the correct action
+ // for a standard call).
+ BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwindbb", &F);
+ Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBlock));
+
+ Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
+ DispatchBlock);
+ SwitchInst *DispatchSwitch =
+ SwitchInst::Create(DispatchLoad, UnwindBlock, Invokes.size(), DispatchBlock);
+ // Split the entry block to insert the conditional branch for the setjmp.
+ BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
+ "eh.sjlj.setjmp.cont");
+
+ // Populate the Function Context
+ // 1. LSDA address
+ // 2. Personality function address
+ // 3. jmpbuf (save FP and call eh.sjlj.setjmp)
+
+ // LSDA address
+ Idxs[0] = Zero;
+ Idxs[1] = ConstantInt::get(Int32Ty, 4);
+ Value *LSDAFieldPtr =
+ GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
+ "lsda_gep",
+ EntryBB->getTerminator());
+ Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
+ EntryBB->getTerminator());
+ new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
+
+ Idxs[1] = ConstantInt::get(Int32Ty, 3);
+ Value *PersonalityFieldPtr =
+ GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
+ "lsda_gep",
+ EntryBB->getTerminator());
+ new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
+ EntryBB->getTerminator());
+
+ // Save the frame pointer.
+ Idxs[1] = ConstantInt::get(Int32Ty, 5);
+ Value *FieldPtr
+ = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
+ "jbuf_gep",
+ EntryBB->getTerminator());
+ Idxs[1] = ConstantInt::get(Int32Ty, 0);
+ Value *ElemPtr =
+ GetElementPtrInst::Create(FieldPtr, Idxs, Idxs+2, "jbuf_fp_gep",
+ EntryBB->getTerminator());
+
+ Value *Val = CallInst::Create(FrameAddrFn,
+ ConstantInt::get(Int32Ty, 0),
+ "fp",
+ EntryBB->getTerminator());
+ new StoreInst(Val, ElemPtr, true, EntryBB->getTerminator());
+ // Call the setjmp instrinsic. It fills in the rest of the jmpbuf
+ Value *SetjmpArg =
+ CastInst::Create(Instruction::BitCast, FieldPtr,
+ Type::getInt8PtrTy(F.getContext()), "",
+ EntryBB->getTerminator());
+ Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
+ "dispatch",
+ EntryBB->getTerminator());
+ // check the return value of the setjmp. non-zero goes to dispatcher
+ Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
+ ICmpInst::ICMP_EQ, DispatchVal, Zero,
+ "notunwind");
+ // Nuke the uncond branch.
+ EntryBB->getTerminator()->eraseFromParent();
+
+ // Put in a new condbranch in its place.
+ BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
+
+ // Register the function context and make sure it's known to not throw
+ CallInst *Register =
+ CallInst::Create(RegisterFn, FunctionContext, "",
+ ContBlock->getTerminator());
+ Register->setDoesNotThrow();
+
+ // At this point, we are all set up, update the invoke instructions
+ // to mark their call_site values, and fill in the dispatch switch
+ // accordingly.
+ for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
+ markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
+
+ // The front end has likely added calls to _Unwind_Resume. We need
+ // to find those calls and mark the call_site as -1 immediately prior.
+ // resume is a noreturn function, so any block that has a call to it
+ // should end in an 'unreachable' instruction with the call immediately
+ // prior. That's how we'll search.
+ // ??? There's got to be a better way. this is fugly.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if ((dyn_cast<UnreachableInst>(BB->getTerminator()))) {
+ BasicBlock::iterator I = BB->getTerminator();
+ // Check the previous instruction and see if it's a resume call
+ if (I == BB->begin()) continue;
+ if (CallInst *CI = dyn_cast<CallInst>(--I)) {
+ if (CI->getCalledFunction() == ResumeFn) {
+ Value *NegativeOne = Constant::getAllOnesValue(Int32Ty);
+ new StoreInst(NegativeOne, CallSite, true, I); // volatile
+ }
+ }
+ }
+
+ // Replace all unwinds with a branch to the unwind handler.
+ // ??? Should this ever happen with sjlj exceptions?
+ for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
+ BranchInst::Create(UnwindBlock, Unwinds[i]);
+ Unwinds[i]->eraseFromParent();
+ }
+
+ // Finally, for any returns from this function, if this function contains an
+ // invoke, add a call to unregister the function context.
+ for (unsigned i = 0, e = Returns.size(); i != e; ++i)
+ CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
+ }
+
+ return true;
+}
+
+bool SjLjEHPass::runOnFunction(Function &F) {
+ bool Res = insertSjLjEHSupport(F);
+ return Res;
+}
diff --git a/lib/CodeGen/Spiller.cpp b/lib/CodeGen/Spiller.cpp
index 405cd80..0277d64 100644
--- a/lib/CodeGen/Spiller.cpp
+++ b/lib/CodeGen/Spiller.cpp
@@ -13,12 +13,13 @@
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -50,13 +51,13 @@ protected:
/// Ensures there is space before the given machine instruction, returns the
/// instruction's new number.
- unsigned makeSpaceBefore(MachineInstr *mi) {
+ LiveIndex makeSpaceBefore(MachineInstr *mi) {
if (!lis->hasGapBeforeInstr(lis->getInstructionIndex(mi))) {
lis->scaleNumbering(2);
ls->scaleNumbering(2);
}
- unsigned miIdx = lis->getInstructionIndex(mi);
+ LiveIndex miIdx = lis->getInstructionIndex(mi);
assert(lis->hasGapBeforeInstr(miIdx));
@@ -65,13 +66,13 @@ protected:
/// Ensure there is space after the given machine instruction, returns the
/// instruction's new number.
- unsigned makeSpaceAfter(MachineInstr *mi) {
+ LiveIndex makeSpaceAfter(MachineInstr *mi) {
if (!lis->hasGapAfterInstr(lis->getInstructionIndex(mi))) {
lis->scaleNumbering(2);
ls->scaleNumbering(2);
}
- unsigned miIdx = lis->getInstructionIndex(mi);
+ LiveIndex miIdx = lis->getInstructionIndex(mi);
assert(lis->hasGapAfterInstr(miIdx));
@@ -82,19 +83,19 @@ protected:
/// after the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsible for adding an appropriate
/// LiveInterval to the LiveIntervals analysis.
- unsigned insertStoreAfter(MachineInstr *mi, unsigned ss,
- unsigned vreg,
- const TargetRegisterClass *trc) {
+ LiveIndex insertStoreAfter(MachineInstr *mi, unsigned ss,
+ unsigned vreg,
+ const TargetRegisterClass *trc) {
MachineBasicBlock::iterator nextInstItr(next(mi));
- unsigned miIdx = makeSpaceAfter(mi);
+ LiveIndex miIdx = makeSpaceAfter(mi);
tii->storeRegToStackSlot(*mi->getParent(), nextInstItr, vreg,
true, ss, trc);
MachineBasicBlock::iterator storeInstItr(next(mi));
MachineInstr *storeInst = &*storeInstItr;
- unsigned storeInstIdx = miIdx + LiveInterval::InstrSlots::NUM;
+ LiveIndex storeInstIdx = lis->getNextIndex(miIdx);
assert(lis->getInstructionFromIndex(storeInstIdx) == 0 &&
"Store inst index already in use.");
@@ -107,15 +108,15 @@ protected:
/// Insert a store of the given vreg to the given stack slot immediately
/// before the given instructnion. Returns the base index of the inserted
/// Instruction.
- unsigned insertStoreBefore(MachineInstr *mi, unsigned ss,
- unsigned vreg,
- const TargetRegisterClass *trc) {
- unsigned miIdx = makeSpaceBefore(mi);
+ LiveIndex insertStoreBefore(MachineInstr *mi, unsigned ss,
+ unsigned vreg,
+ const TargetRegisterClass *trc) {
+ LiveIndex miIdx = makeSpaceBefore(mi);
tii->storeRegToStackSlot(*mi->getParent(), mi, vreg, true, ss, trc);
MachineBasicBlock::iterator storeInstItr(prior(mi));
MachineInstr *storeInst = &*storeInstItr;
- unsigned storeInstIdx = miIdx - LiveInterval::InstrSlots::NUM;
+ LiveIndex storeInstIdx = lis->getPrevIndex(miIdx);
assert(lis->getInstructionFromIndex(storeInstIdx) == 0 &&
"Store inst index already in use.");
@@ -130,14 +131,15 @@ protected:
unsigned vreg,
const TargetRegisterClass *trc) {
- unsigned storeInstIdx = insertStoreAfter(mi, ss, vreg, trc);
- unsigned start = lis->getDefIndex(lis->getInstructionIndex(mi)),
- end = lis->getUseIndex(storeInstIdx);
+ LiveIndex storeInstIdx = insertStoreAfter(mi, ss, vreg, trc);
+ LiveIndex start = lis->getDefIndex(lis->getInstructionIndex(mi)),
+ end = lis->getUseIndex(storeInstIdx);
VNInfo *vni =
li->getNextValue(storeInstIdx, 0, true, lis->getVNInfoAllocator());
- vni->kills.push_back(storeInstIdx);
- DOUT << " Inserting store range: [" << start << ", " << end << ")\n";
+ vni->addKill(storeInstIdx);
+ DEBUG(errs() << " Inserting store range: [" << start
+ << ", " << end << ")\n");
LiveRange lr(start, end, vni);
li->addRange(lr);
@@ -147,18 +149,18 @@ protected:
/// after the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsibel for adding/removing an appropriate
/// range vreg's LiveInterval.
- unsigned insertLoadAfter(MachineInstr *mi, unsigned ss,
- unsigned vreg,
- const TargetRegisterClass *trc) {
+ LiveIndex insertLoadAfter(MachineInstr *mi, unsigned ss,
+ unsigned vreg,
+ const TargetRegisterClass *trc) {
MachineBasicBlock::iterator nextInstItr(next(mi));
- unsigned miIdx = makeSpaceAfter(mi);
+ LiveIndex miIdx = makeSpaceAfter(mi);
tii->loadRegFromStackSlot(*mi->getParent(), nextInstItr, vreg, ss, trc);
MachineBasicBlock::iterator loadInstItr(next(mi));
MachineInstr *loadInst = &*loadInstItr;
- unsigned loadInstIdx = miIdx + LiveInterval::InstrSlots::NUM;
+ LiveIndex loadInstIdx = lis->getNextIndex(miIdx);
assert(lis->getInstructionFromIndex(loadInstIdx) == 0 &&
"Store inst index already in use.");
@@ -172,15 +174,15 @@ protected:
/// before the given instruction. Returns the base index of the inserted
/// instruction. The caller is responsible for adding an appropriate
/// LiveInterval to the LiveIntervals analysis.
- unsigned insertLoadBefore(MachineInstr *mi, unsigned ss,
- unsigned vreg,
- const TargetRegisterClass *trc) {
- unsigned miIdx = makeSpaceBefore(mi);
+ LiveIndex insertLoadBefore(MachineInstr *mi, unsigned ss,
+ unsigned vreg,
+ const TargetRegisterClass *trc) {
+ LiveIndex miIdx = makeSpaceBefore(mi);
tii->loadRegFromStackSlot(*mi->getParent(), mi, vreg, ss, trc);
MachineBasicBlock::iterator loadInstItr(prior(mi));
MachineInstr *loadInst = &*loadInstItr;
- unsigned loadInstIdx = miIdx - LiveInterval::InstrSlots::NUM;
+ LiveIndex loadInstIdx = lis->getPrevIndex(miIdx);
assert(lis->getInstructionFromIndex(loadInstIdx) == 0 &&
"Load inst index already in use.");
@@ -195,14 +197,15 @@ protected:
unsigned vreg,
const TargetRegisterClass *trc) {
- unsigned loadInstIdx = insertLoadBefore(mi, ss, vreg, trc);
- unsigned start = lis->getDefIndex(loadInstIdx),
- end = lis->getUseIndex(lis->getInstructionIndex(mi));
+ LiveIndex loadInstIdx = insertLoadBefore(mi, ss, vreg, trc);
+ LiveIndex start = lis->getDefIndex(loadInstIdx),
+ end = lis->getUseIndex(lis->getInstructionIndex(mi));
VNInfo *vni =
li->getNextValue(loadInstIdx, 0, true, lis->getVNInfoAllocator());
- vni->kills.push_back(lis->getInstructionIndex(mi));
- DOUT << " Intserting load range: [" << start << ", " << end << ")\n";
+ vni->addKill(lis->getInstructionIndex(mi));
+ DEBUG(errs() << " Intserting load range: [" << start
+ << ", " << end << ")\n");
LiveRange lr(start, end, vni);
li->addRange(lr);
@@ -214,7 +217,7 @@ protected:
/// immediately before each use, and stores after each def. No folding is
/// attempted.
std::vector<LiveInterval*> trivialSpillEverywhere(LiveInterval *li) {
- DOUT << "Spilling everywhere " << *li << "\n";
+ DEBUG(errs() << "Spilling everywhere " << *li << "\n");
assert(li->weight != HUGE_VALF &&
"Attempting to spill already spilled value.");
@@ -222,7 +225,7 @@ protected:
assert(!li->isStackSlot() &&
"Trying to spill a stack slot.");
- DOUT << "Trivial spill everywhere of reg" << li->reg << "\n";
+ DEBUG(errs() << "Trivial spill everywhere of reg" << li->reg << "\n");
std::vector<LiveInterval*> added;
@@ -234,7 +237,7 @@ protected:
MachineInstr *mi = &*regItr;
- DOUT << " Processing " << *mi;
+ DEBUG(errs() << " Processing " << *mi);
do {
++regItr;
@@ -318,23 +321,21 @@ public:
vrm->assignVirt2StackSlot(li->reg, ss);
MachineInstr *mi = 0;
- unsigned storeIdx = 0;
+ LiveIndex storeIdx = LiveIndex();
if (valno->isDefAccurate()) {
// If we have an accurate def we can just grab an iterator to the instr
// after the def.
mi = lis->getInstructionFromIndex(valno->def);
- storeIdx = insertStoreAfter(mi, ss, li->reg, trc) +
- LiveInterval::InstrSlots::DEF;
+ storeIdx = lis->getDefIndex(insertStoreAfter(mi, ss, li->reg, trc));
} else {
// if we get here we have a PHI def.
mi = &lis->getMBBFromIndex(valno->def)->front();
- storeIdx = insertStoreBefore(mi, ss, li->reg, trc) +
- LiveInterval::InstrSlots::DEF;
+ storeIdx = lis->getDefIndex(insertStoreBefore(mi, ss, li->reg, trc));
}
MachineBasicBlock *defBlock = mi->getParent();
- unsigned loadIdx = 0;
+ LiveIndex loadIdx = LiveIndex();
// Now we need to find the load...
MachineBasicBlock::iterator useItr(mi);
@@ -342,13 +343,11 @@ public:
if (useItr != defBlock->end()) {
MachineInstr *loadInst = useItr;
- loadIdx = insertLoadBefore(loadInst, ss, li->reg, trc) +
- LiveInterval::InstrSlots::USE;
+ loadIdx = lis->getUseIndex(insertLoadBefore(loadInst, ss, li->reg, trc));
}
else {
MachineInstr *loadInst = &defBlock->back();
- loadIdx = insertLoadAfter(loadInst, ss, li->reg, trc) +
- LiveInterval::InstrSlots::USE;
+ loadIdx = lis->getUseIndex(insertLoadAfter(loadInst, ss, li->reg, trc));
}
li->removeRange(storeIdx, loadIdx, true);
diff --git a/lib/CodeGen/StackProtector.cpp b/lib/CodeGen/StackProtector.cpp
index c179f1e..350bc6e 100644
--- a/lib/CodeGen/StackProtector.cpp
+++ b/lib/CodeGen/StackProtector.cpp
@@ -148,7 +148,8 @@ bool StackProtector::InsertStackProtectors() {
// StackGuard = load __stack_chk_guard
// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
//
- PointerType *PtrTy = PointerType::getUnqual(Type::Int8Ty);
+ PointerType *PtrTy = PointerType::getUnqual(
+ Type::getInt8Ty(RI->getContext()));
StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
BasicBlock &Entry = F->getEntryBlock();
@@ -201,7 +202,7 @@ bool StackProtector::InsertStackProtectors() {
// Generate the stack protector instructions in the old basic block.
LoadInst *LI1 = new LoadInst(StackGuardVar, "", false, BB);
LoadInst *LI2 = new LoadInst(AI, "", true, BB);
- ICmpInst *Cmp = new ICmpInst(CmpInst::ICMP_EQ, LI1, LI2, "", BB);
+ ICmpInst *Cmp = new ICmpInst(*BB, CmpInst::ICMP_EQ, LI1, LI2, "");
BranchInst::Create(NewBB, FailBB, Cmp, BB);
}
@@ -215,10 +216,12 @@ bool StackProtector::InsertStackProtectors() {
/// CreateFailBB - Create a basic block to jump to when the stack protector
/// check fails.
BasicBlock *StackProtector::CreateFailBB() {
- BasicBlock *FailBB = BasicBlock::Create("CallStackCheckFailBlk", F);
+ BasicBlock *FailBB = BasicBlock::Create(F->getContext(),
+ "CallStackCheckFailBlk", F);
Constant *StackChkFail =
- M->getOrInsertFunction("__stack_chk_fail", Type::VoidTy, NULL);
+ M->getOrInsertFunction("__stack_chk_fail",
+ Type::getVoidTy(F->getContext()), NULL);
CallInst::Create(StackChkFail, "", FailBB);
- new UnreachableInst(FailBB);
+ new UnreachableInst(F->getContext(), FailBB);
return FailBB;
}
diff --git a/lib/CodeGen/StackSlotColoring.cpp b/lib/CodeGen/StackSlotColoring.cpp
index 5824644..fad0808 100644
--- a/lib/CodeGen/StackSlotColoring.cpp
+++ b/lib/CodeGen/StackSlotColoring.cpp
@@ -18,6 +18,7 @@
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/CommandLine.h"
@@ -97,6 +98,7 @@ namespace {
MachineFunctionPass(&ID), ColorWithRegs(RegColor), NextColor(-1) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequired<LiveStacks>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
@@ -197,7 +199,7 @@ void StackSlotColoring::InitializeSlots() {
Assignments.resize(LastFI);
// Gather all spill slots into a list.
- DOUT << "Spill slot intervals:\n";
+ DEBUG(errs() << "Spill slot intervals:\n");
for (LiveStacks::iterator i = LS->begin(), e = LS->end(); i != e; ++i) {
LiveInterval &li = i->second;
DEBUG(li.dump());
@@ -209,7 +211,7 @@ void StackSlotColoring::InitializeSlots() {
OrigSizes[FI] = MFI->getObjectSize(FI);
AllColors.set(FI);
}
- DOUT << '\n';
+ DEBUG(errs() << '\n');
// Sort them by weight.
std::stable_sort(SSIntervals.begin(), SSIntervals.end(), IntervalSorter());
@@ -241,7 +243,7 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
return false;
bool Changed = false;
- DOUT << "Assigning unused registers to spill slots:\n";
+ DEBUG(errs() << "Assigning unused registers to spill slots:\n");
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
int SS = li->getStackSlotIndex();
@@ -271,7 +273,8 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
AllColored = false;
continue;
} else {
- DOUT << "Assigning fi#" << RSS << " to " << TRI->getName(Reg) << '\n';
+ DEBUG(errs() << "Assigning fi#" << RSS << " to "
+ << TRI->getName(Reg) << '\n');
ColoredRegs.push_back(Reg);
SlotMapping[RSS] = Reg;
SlotIsReg.set(RSS);
@@ -298,7 +301,7 @@ StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector<int, 16> &SlotMapping,
++NumEliminated;
}
}
- DOUT << '\n';
+ DEBUG(errs() << '\n');
return Changed;
}
@@ -333,7 +336,7 @@ int StackSlotColoring::ColorSlot(LiveInterval *li) {
// Record the assignment.
Assignments[Color].push_back(li);
int FI = li->getStackSlotIndex();
- DOUT << "Assigning fi#" << FI << " to fi#" << Color << "\n";
+ DEBUG(errs() << "Assigning fi#" << FI << " to fi#" << Color << "\n");
// Change size and alignment of the allocated slot. If there are multiple
// objects sharing the same slot, then make sure the size and alignment
@@ -357,7 +360,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
BitVector SlotIsReg(NumObjs);
BitVector UsedColors(NumObjs);
- DOUT << "Color spill slot intervals:\n";
+ DEBUG(errs() << "Color spill slot intervals:\n");
bool Changed = false;
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
@@ -371,7 +374,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
Changed |= (SS != NewSS);
}
- DOUT << "\nSpill slots after coloring:\n";
+ DEBUG(errs() << "\nSpill slots after coloring:\n");
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) {
LiveInterval *li = SSIntervals[i];
int SS = li->getStackSlotIndex();
@@ -383,7 +386,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
#ifndef NDEBUG
for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i)
DEBUG(SSIntervals[i]->dump());
- DOUT << '\n';
+ DEBUG(errs() << '\n');
#endif
// Can we "color" a stack slot with a unused register?
@@ -415,7 +418,7 @@ bool StackSlotColoring::ColorSlots(MachineFunction &MF) {
// Delete unused stack slots.
while (NextColor != -1) {
- DOUT << "Removing unused stack object fi#" << NextColor << "\n";
+ DEBUG(errs() << "Removing unused stack object fi#" << NextColor << "\n");
MFI->RemoveStackObject(NextColor);
NextColor = AllColors.find_next(NextColor);
}
@@ -449,6 +452,7 @@ bool StackSlotColoring::AllMemRefsCanBeUnfolded(int SS) {
/// to old frame index with new one.
void StackSlotColoring::RewriteInstruction(MachineInstr *MI, int OldFI,
int NewFI, MachineFunction &MF) {
+ // Update the operands.
for (unsigned i = 0, ee = MI->getNumOperands(); i != ee; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isFI())
@@ -459,22 +463,15 @@ void StackSlotColoring::RewriteInstruction(MachineInstr *MI, int OldFI,
MO.setIndex(NewFI);
}
- // Update the MachineMemOperand for the new memory location.
- // FIXME: We need a better method of managing these too.
- SmallVector<MachineMemOperand, 2> MMOs(MI->memoperands_begin(),
- MI->memoperands_end());
- MI->clearMemOperands(MF);
+ // Update the memory references. This changes the MachineMemOperands
+ // directly. They may be in use by multiple instructions, however all
+ // instructions using OldFI are being rewritten to use NewFI.
const Value *OldSV = PseudoSourceValue::getFixedStack(OldFI);
- for (unsigned i = 0, ee = MMOs.size(); i != ee; ++i) {
- if (MMOs[i].getValue() != OldSV)
- MI->addMemOperand(MF, MMOs[i]);
- else {
- MachineMemOperand MMO(PseudoSourceValue::getFixedStack(NewFI),
- MMOs[i].getFlags(), MMOs[i].getOffset(),
- MMOs[i].getSize(), MMOs[i].getAlignment());
- MI->addMemOperand(MF, MMO);
- }
- }
+ const Value *NewSV = PseudoSourceValue::getFixedStack(NewFI);
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I)
+ if ((*I)->getValue() == OldSV)
+ (*I)->setValue(NewSV);
}
/// PropagateBackward - Traverse backward and look for the definition of
@@ -503,7 +500,16 @@ bool StackSlotColoring::PropagateBackward(MachineBasicBlock::iterator MII,
if (Reg == OldReg) {
if (MO.isImplicit())
return false;
- const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TID, i);
+
+ // Abort the use is actually a sub-register def. We don't have enough
+ // information to figure out if it is really legal.
+ if (MO.getSubReg() ||
+ TID.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
+ TID.getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
+ TID.getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
+ return false;
+
+ const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI);
if (RC && !RC->contains(NewReg))
return false;
@@ -547,7 +553,6 @@ bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII,
SmallVector<MachineOperand*, 4> Uses;
while (++MII != MBB->end()) {
- bool FoundUse = false;
bool FoundKill = false;
const TargetInstrDesc &TID = MII->getDesc();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
@@ -561,12 +566,18 @@ bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII,
if (MO.isDef() || MO.isImplicit())
return false;
- const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TID, i);
+ // Abort the use is actually a sub-register use. We don't have enough
+ // information to figure out if it is really legal.
+ if (MO.getSubReg() ||
+ TID.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
+ return false;
+
+ const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI);
if (RC && !RC->contains(NewReg))
return false;
- FoundUse = true;
if (MO.isKill())
FoundKill = true;
+
Uses.push_back(&MO);
} else if (TRI->regsOverlap(Reg, NewReg) ||
TRI->regsOverlap(Reg, OldReg))
@@ -593,7 +604,7 @@ StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
MachineBasicBlock *MBB = MI->getParent();
if (unsigned DstReg = TII->isLoadFromStackSlot(MI, OldFI)) {
if (PropagateForward(MI, MBB, DstReg, Reg)) {
- DOUT << "Eliminated load: ";
+ DEBUG(errs() << "Eliminated load: ");
DEBUG(MI->dump());
++NumLoadElim;
} else {
@@ -609,7 +620,7 @@ StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI,
}
} else if (unsigned SrcReg = TII->isStoreToStackSlot(MI, OldFI)) {
if (MI->killsRegister(SrcReg) && PropagateBackward(MI, MBB, SrcReg, Reg)) {
- DOUT << "Eliminated store: ";
+ DEBUG(errs() << "Eliminated store: ");
DEBUG(MI->dump());
++NumStoreElim;
} else {
@@ -687,7 +698,7 @@ bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) {
bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) {
- DOUT << "********** Stack Slot Coloring **********\n";
+ DEBUG(errs() << "********** Stack Slot Coloring **********\n");
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
diff --git a/lib/CodeGen/StrongPHIElimination.cpp b/lib/CodeGen/StrongPHIElimination.cpp
index ca99528..48d6dc1 100644
--- a/lib/CodeGen/StrongPHIElimination.cpp
+++ b/lib/CodeGen/StrongPHIElimination.cpp
@@ -71,6 +71,7 @@ namespace {
bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveIntervals>();
@@ -294,7 +295,7 @@ StrongPHIElimination::computeDomForest(
static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
LiveIntervals& LI) {
LiveInterval& I = LI.getOrCreateInterval(r);
- unsigned idx = LI.getMBBStartIdx(MBB);
+ LiveIndex idx = LI.getMBBStartIdx(MBB);
return I.liveAt(idx);
}
@@ -427,7 +428,7 @@ void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
}
LiveInterval& PI = LI.getOrCreateInterval(DestReg);
- unsigned pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
+ LiveIndex pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
@@ -553,8 +554,8 @@ void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
// Add the renaming set for this PHI node to our overall renaming information
for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
QE = PHIUnion.end(); QI != QE; ++QI) {
- DOUT << "Adding Renaming: " << QI->first << " -> "
- << P->getOperand(0).getReg() << "\n";
+ DEBUG(errs() << "Adding Renaming: " << QI->first << " -> "
+ << P->getOperand(0).getReg() << "\n");
}
RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
@@ -696,7 +697,8 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
TII->copyRegToReg(*PI->getParent(), PI, t,
curr.second, RC, RC);
- DOUT << "Inserted copy from " << curr.second << " to " << t << "\n";
+ DEBUG(errs() << "Inserted copy from " << curr.second << " to " << t
+ << "\n");
// Push temporary on Stacks
Stacks[curr.second].push_back(t);
@@ -712,8 +714,8 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
map[curr.first], RC, RC);
map[curr.first] = curr.second;
- DOUT << "Inserted copy from " << curr.first << " to "
- << curr.second << "\n";
+ DEBUG(errs() << "Inserted copy from " << curr.first << " to "
+ << curr.second << "\n");
// Push this copy onto InsertedPHICopies so we can
// update LiveIntervals with it.
@@ -746,7 +748,7 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
LiveInterval& I = LI.getInterval(curr.second);
MachineBasicBlock::iterator term = MBB->getFirstTerminator();
- unsigned endIdx = 0;
+ LiveIndex endIdx = LiveIndex();
if (term != MBB->end())
endIdx = LI.getInstructionIndex(term);
else
@@ -782,16 +784,15 @@ void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
if (RegHandled.insert(I->first).second) {
LiveInterval& Int = LI.getOrCreateInterval(I->first);
- unsigned instrIdx = LI.getInstructionIndex(I->second);
- if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
- Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
- LI.getMBBEndIdx(I->second->getParent())+1,
+ LiveIndex instrIdx = LI.getInstructionIndex(I->second);
+ if (Int.liveAt(LI.getDefIndex(instrIdx)))
+ Int.removeRange(LI.getDefIndex(instrIdx),
+ LI.getNextSlot(LI.getMBBEndIdx(I->second->getParent())),
true);
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
- R.valno->copy = I->second;
- R.valno->def =
- LiveIntervals::getDefIndex(LI.getInstructionIndex(I->second));
+ R.valno->setCopy(I->second);
+ R.valno->def = LI.getDefIndex(LI.getInstructionIndex(I->second));
}
}
}
@@ -817,7 +818,7 @@ void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
// Remove the live range for the old vreg.
LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
LiveInterval::iterator OldLR = OldInt.FindLiveRangeContaining(
- LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
+ LI.getUseIndex(LI.getInstructionIndex(I)));
if (OldLR != OldInt.end())
OldInt.removeRange(*OldLR, true);
@@ -829,11 +830,11 @@ void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
VNInfo* FirstVN = *Int.vni_begin();
FirstVN->setHasPHIKill(false);
if (I->getOperand(i).isKill())
- FirstVN->kills.push_back(
- LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
+ FirstVN->addKill(
+ LI.getUseIndex(LI.getInstructionIndex(I)));
LiveRange LR (LI.getMBBStartIdx(I->getParent()),
- LiveIntervals::getUseIndex(LI.getInstructionIndex(I))+1,
+ LI.getNextSlot(LI.getUseIndex(LI.getInstructionIndex(I))),
FirstVN);
Int.addRange(LR);
@@ -868,8 +869,8 @@ bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
LiveRange R = *I;
- unsigned Start = R.start;
- unsigned End = R.end;
+ LiveIndex Start = R.start;
+ LiveIndex End = R.end;
if (LHS.getLiveRangeContaining(Start))
return false;
@@ -927,7 +928,8 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
unsigned reg = OI->first;
++OI;
I->second.erase(reg);
- DOUT << "Removing Renaming: " << reg << " -> " << I->first << "\n";
+ DEBUG(errs() << "Removing Renaming: " << reg << " -> " << I->first
+ << "\n");
}
}
}
@@ -944,7 +946,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
while (I->second.size()) {
std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
- DOUT << "Renaming: " << SI->first << " -> " << I->first << "\n";
+ DEBUG(errs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
if (SI->first != I->first) {
if (mergeLiveIntervals(I->first, SI->first)) {
@@ -965,19 +967,19 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
LI.computeNumbering();
LiveInterval& Int = LI.getOrCreateInterval(I->first);
- unsigned instrIdx =
+ LiveIndex instrIdx =
LI.getInstructionIndex(--SI->second->getFirstTerminator());
- if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
- Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
- LI.getMBBEndIdx(SI->second)+1, true);
+ if (Int.liveAt(LI.getDefIndex(instrIdx)))
+ Int.removeRange(LI.getDefIndex(instrIdx),
+ LI.getNextSlot(LI.getMBBEndIdx(SI->second)), true);
LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
--SI->second->getFirstTerminator());
- R.valno->copy = --SI->second->getFirstTerminator();
- R.valno->def = LiveIntervals::getDefIndex(instrIdx);
+ R.valno->setCopy(--SI->second->getFirstTerminator());
+ R.valno->def = LI.getDefIndex(instrIdx);
- DOUT << "Renaming failed: " << SI->first << " -> "
- << I->first << "\n";
+ DEBUG(errs() << "Renaming failed: " << SI->first << " -> "
+ << I->first << "\n");
}
}
@@ -1009,7 +1011,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
if (PI.containsOneValue()) {
LI.removeInterval(DestReg);
} else {
- unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
+ LiveIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
PI.removeRange(*PI.getLiveRangeContaining(idx), true);
}
} else {
@@ -1023,8 +1025,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
LiveInterval& InputI = LI.getInterval(reg);
if (MBB != PInstr->getParent() &&
InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
- InputI.expiredAt(LI.getInstructionIndex(PInstr) +
- LiveInterval::InstrSlots::NUM))
+ InputI.expiredAt(LI.getNextIndex(LI.getInstructionIndex(PInstr))))
InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
LI.getInstructionIndex(PInstr),
true);
@@ -1032,7 +1033,7 @@ bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
// If the PHI is not dead, then the valno defined by the PHI
// now has an unknown def.
- unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
+ LiveIndex idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
const LiveRange* PLR = PI.getLiveRangeContaining(idx);
PLR->valno->setIsPHIDef(true);
LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
diff --git a/lib/CodeGen/TargetInstrInfoImpl.cpp b/lib/CodeGen/TargetInstrInfoImpl.cpp
index b759599..c646869 100644
--- a/lib/CodeGen/TargetInstrInfoImpl.cpp
+++ b/lib/CodeGen/TargetInstrInfoImpl.cpp
@@ -13,21 +13,35 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// commuteInstruction - The default implementation of this method just exchanges
-// operand 1 and 2.
+// the two operands returned by findCommutedOpIndices.
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
const TargetInstrDesc &TID = MI->getDesc();
bool HasDef = TID.getNumDefs();
- unsigned Idx1 = HasDef ? 1 : 0;
- unsigned Idx2 = HasDef ? 2 : 1;
+ if (HasDef && !MI->getOperand(0).isReg())
+ // No idea how to commute this instruction. Target should implement its own.
+ return 0;
+ unsigned Idx1, Idx2;
+ if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Don't know how to commute: " << *MI;
+ llvm_report_error(Msg.str());
+ }
assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
"This only knows how to commute register operands so far");
@@ -70,26 +84,24 @@ MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
return MI;
}
-/// CommuteChangesDestination - Return true if commuting the specified
-/// instruction will also changes the destination operand. Also return the
-/// current operand index of the would be new destination register by
-/// reference. This can happen when the commutable instruction is also a
-/// two-address instruction.
-bool TargetInstrInfoImpl::CommuteChangesDestination(MachineInstr *MI,
- unsigned &OpIdx) const{
+/// findCommutedOpIndices - If specified MI is commutable, return the two
+/// operand indices that would swap value. Return true if the instruction
+/// is not in a form which this routine understands.
+bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.getNumDefs())
+ if (!TID.isCommutable())
return false;
- assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
- "This only knows how to commute register operands so far");
- if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
- // Must be two address instruction!
- assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
- "Expecting a two-address instruction!");
- OpIdx = 2;
- return true;
- }
- return false;
+ // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
+ // is not true, then the target must implement this.
+ SrcOpIdx1 = TID.getNumDefs();
+ SrcOpIdx2 = SrcOpIdx1 + 1;
+ if (!MI->getOperand(SrcOpIdx1).isReg() ||
+ !MI->getOperand(SrcOpIdx2).isReg())
+ // No idea.
+ return false;
+ return true;
}
@@ -122,9 +134,12 @@ bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
+ unsigned SubIdx,
const MachineInstr *Orig) const {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
- MI->getOperand(0).setReg(DestReg);
+ MachineOperand &MO = MI->getOperand(0);
+ MO.setReg(DestReg);
+ MO.setSubReg(SubIdx);
MBB.insert(I, MI);
}
@@ -171,11 +186,11 @@ TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
"Folded a use to a non-load!");
const MachineFrameInfo &MFI = *MF.getFrameInfo();
assert(MFI.getObjectOffset(FrameIndex) != -1);
- MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex),
- Flags,
- MFI.getObjectOffset(FrameIndex),
- MFI.getObjectSize(FrameIndex),
- MFI.getObjectAlignment(FrameIndex));
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex),
+ Flags, /*Offset=*/0,
+ MFI.getObjectSize(FrameIndex),
+ MFI.getObjectAlignment(FrameIndex));
NewMI->addMemOperand(MF, MMO);
return NewMI;
@@ -200,9 +215,93 @@ TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
if (!NewMI) return 0;
// Copy the memoperands from the load to the folded instruction.
- for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(),
- E = LoadMI->memoperands_end(); I != E; ++I)
- NewMI->addMemOperand(MF, *I);
+ NewMI->setMemRefs(LoadMI->memoperands_begin(),
+ LoadMI->memoperands_end());
return NewMI;
}
+
+bool
+TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(const MachineInstr *
+ MI,
+ AliasAnalysis *
+ AA) const {
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetMachine &TM = MF.getTarget();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+
+ // A load from a fixed stack slot can be rematerialized. This may be
+ // redundant with subsequent checks, but it's target-independent,
+ // simple, and a common case.
+ int FrameIdx = 0;
+ if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
+ MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
+ return true;
+
+ const TargetInstrDesc &TID = MI->getDesc();
+
+ // Avoid instructions obviously unsafe for remat.
+ if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
+ TID.mayStore())
+ return false;
+
+ // Avoid instructions which load from potentially varying memory.
+ if (TID.mayLoad() && !MI->isInvariantLoad(AA))
+ return false;
+
+ // If any of the registers accessed are non-constant, conservatively assume
+ // the instruction is not rematerializable.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // Check for a well-behaved physical register.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI.def_empty(Reg))
+ return false;
+ BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
+ if (AllocatableRegs.test(Reg))
+ return false;
+ // Check for a def among the register's aliases too.
+ for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (!MRI.def_empty(AliasReg))
+ return false;
+ if (AllocatableRegs.test(AliasReg))
+ return false;
+ }
+ } else {
+ // A physreg def. We can't remat it.
+ return false;
+ }
+ continue;
+ }
+
+ // Only allow one virtual-register def, and that in the first operand.
+ if (MO.isDef() != (i == 0))
+ return false;
+
+ // For the def, it should be the only def of that register.
+ if (MO.isDef() && (next(MRI.def_begin(Reg)) != MRI.def_end() ||
+ MRI.isLiveIn(Reg)))
+ return false;
+
+ // Don't allow any virtual-register uses. Rematting an instruction with
+ // virtual register uses would length the live ranges of the uses, which
+ // is not necessarily a good idea, certainly not "trivial".
+ if (MO.isUse())
+ return false;
+ }
+
+ // Everything checked out.
+ return true;
+}
diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp
index 3c40404..a5a0f5b 100644
--- a/lib/CodeGen/TwoAddressInstructionPass.cpp
+++ b/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -34,6 +34,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
@@ -62,6 +63,7 @@ namespace {
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
LiveVariables *LV;
+ AliasAnalysis *AA;
// DistanceMap - Keep track the distance of a MI from the start of the
// current basic block.
@@ -106,13 +108,31 @@ namespace {
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned Dist);
+ typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
+ bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
+ SmallVector<NewKill, 4> &NewKills,
+ MachineBasicBlock *MBB, unsigned Dist);
+ bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned regB, unsigned regBIdx, unsigned Dist);
+
+ bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned SrcIdx, unsigned DstIdx,
+ unsigned Dist);
+
void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
SmallPtrSet<MachineInstr*, 8> &Processed);
+
public:
static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
@@ -143,7 +163,7 @@ bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
MachineBasicBlock::iterator OldPos) {
// Check if it's safe to move this instruction.
bool SeenStore = true; // Be conservative.
- if (!MI->isSafeToMove(TII, SeenStore))
+ if (!MI->isSafeToMove(TII, SeenStore, AA))
return false;
unsigned DefReg = 0;
@@ -556,15 +576,15 @@ TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
MachineFunction::iterator &mbbi,
unsigned RegB, unsigned RegC, unsigned Dist) {
MachineInstr *MI = mi;
- DOUT << "2addr: COMMUTING : " << *MI;
+ DEBUG(errs() << "2addr: COMMUTING : " << *MI);
MachineInstr *NewMI = TII->commuteInstruction(MI);
if (NewMI == 0) {
- DOUT << "2addr: COMMUTING FAILED!\n";
+ DEBUG(errs() << "2addr: COMMUTING FAILED!\n");
return false;
}
- DOUT << "2addr: COMMUTED TO: " << *NewMI;
+ DEBUG(errs() << "2addr: COMMUTED TO: " << *NewMI);
// If the instruction changed to commute it, update livevar.
if (NewMI != MI) {
if (LV)
@@ -611,8 +631,8 @@ TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
unsigned RegB, unsigned Dist) {
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
if (NewMI) {
- DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
- DOUT << "2addr: TO 3-ADDR: " << *NewMI;
+ DEBUG(errs() << "2addr: CONVERTING 2-ADDR: " << *mi);
+ DEBUG(errs() << "2addr: TO 3-ADDR: " << *NewMI);
bool Sunk = false;
if (NewMI->findRegisterUseOperand(RegB, false, TRI))
@@ -734,25 +754,174 @@ static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
return true;
}
+/// canUpdateDeletedKills - Check if all the registers listed in Kills are
+/// killed by instructions in MBB preceding the current instruction at
+/// position Dist. If so, return true and record information about the
+/// preceding kills in NewKills.
+bool TwoAddressInstructionPass::
+canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
+ SmallVector<NewKill, 4> &NewKills,
+ MachineBasicBlock *MBB, unsigned Dist) {
+ while (!Kills.empty()) {
+ unsigned Kill = Kills.back();
+ Kills.pop_back();
+ if (TargetRegisterInfo::isPhysicalRegister(Kill))
+ return false;
+
+ MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
+ if (!LastKill)
+ return false;
+
+ bool isModRef = LastKill->modifiesRegister(Kill);
+ NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
+ LastKill));
+ }
+ return true;
+}
+
+/// DeleteUnusedInstr - If an instruction with a tied register operand can
+/// be safely deleted, just delete it.
+bool
+TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned regB, unsigned regBIdx,
+ unsigned Dist) {
+ // Check if the instruction has no side effects and if all its defs are dead.
+ SmallVector<unsigned, 4> Kills;
+ if (!isSafeToDelete(mi, regB, TII, Kills))
+ return false;
+
+ // If this instruction kills some virtual registers, we need to
+ // update the kill information. If it's not possible to do so,
+ // then bail out.
+ SmallVector<NewKill, 4> NewKills;
+ if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
+ return false;
+
+ if (LV) {
+ while (!NewKills.empty()) {
+ MachineInstr *NewKill = NewKills.back().second;
+ unsigned Kill = NewKills.back().first.first;
+ bool isDead = NewKills.back().first.second;
+ NewKills.pop_back();
+ if (LV->removeVirtualRegisterKilled(Kill, mi)) {
+ if (isDead)
+ LV->addVirtualRegisterDead(Kill, NewKill);
+ else
+ LV->addVirtualRegisterKilled(Kill, NewKill);
+ }
+ }
+
+ // If regB was marked as a kill, update its Kills list.
+ if (mi->getOperand(regBIdx).isKill())
+ LV->removeVirtualRegisterKilled(regB, mi);
+ }
+
+ mbbi->erase(mi); // Nuke the old inst.
+ mi = nmi;
+ return true;
+}
+
+/// TryInstructionTransform - For the case where an instruction has a single
+/// pair of tied register operands, attempt some transformations that may
+/// either eliminate the tied operands or improve the opportunities for
+/// coalescing away the register copy. Returns true if the tied operands
+/// are eliminated altogether.
+bool TwoAddressInstructionPass::
+TryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
+ const TargetInstrDesc &TID = mi->getDesc();
+ unsigned regA = mi->getOperand(DstIdx).getReg();
+ unsigned regB = mi->getOperand(SrcIdx).getReg();
+
+ assert(TargetRegisterInfo::isVirtualRegister(regB) &&
+ "cannot make instruction into two-address form");
+
+ // If regA is dead and the instruction can be deleted, just delete
+ // it so it doesn't clobber regB.
+ bool regBKilled = isKilled(*mi, regB, MRI, TII);
+ if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
+ DeleteUnusedInstr(mi, nmi, mbbi, regB, SrcIdx, Dist)) {
+ ++NumDeletes;
+ return true; // Done with this instruction.
+ }
+
+ // Check if it is profitable to commute the operands.
+ unsigned SrcOp1, SrcOp2;
+ unsigned regC = 0;
+ unsigned regCIdx = ~0U;
+ bool TryCommute = false;
+ bool AggressiveCommute = false;
+ if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
+ TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
+ if (SrcIdx == SrcOp1)
+ regCIdx = SrcOp2;
+ else if (SrcIdx == SrcOp2)
+ regCIdx = SrcOp1;
+
+ if (regCIdx != ~0U) {
+ regC = mi->getOperand(regCIdx).getReg();
+ if (!regBKilled && isKilled(*mi, regC, MRI, TII))
+ // If C dies but B does not, swap the B and C operands.
+ // This makes the live ranges of A and C joinable.
+ TryCommute = true;
+ else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
+ TryCommute = true;
+ AggressiveCommute = true;
+ }
+ }
+ }
+
+ // If it's profitable to commute, try to do so.
+ if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
+ ++NumCommuted;
+ if (AggressiveCommute)
+ ++NumAggrCommuted;
+ return false;
+ }
+
+ if (TID.isConvertibleTo3Addr()) {
+ // This instruction is potentially convertible to a true
+ // three-address instruction. Check if it is profitable.
+ if (!regBKilled || isProfitableToConv3Addr(regA)) {
+ // Try to convert it.
+ if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
+ ++NumConvertedTo3Addr;
+ return true; // Done with this instruction.
+ }
+ }
+ }
+ return false;
+}
+
/// runOnMachineFunction - Reduce two-address instructions to two operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
- DOUT << "Machine Function\n";
+ DEBUG(errs() << "Machine Function\n");
const TargetMachine &TM = MF.getTarget();
MRI = &MF.getRegInfo();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
LV = getAnalysisIfAvailable<LiveVariables>();
+ AA = &getAnalysis<AliasAnalysis>();
bool MadeChange = false;
- DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
- DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+ DEBUG(errs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
+ DEBUG(errs() << "********** Function: "
+ << MF.getFunction()->getName() << '\n');
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
BitVector ReMatRegs;
ReMatRegs.resize(MRI->getLastVirtReg()+1);
+ typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
+ TiedOperandMap;
+ TiedOperandMap TiedOperands(4);
+
SmallPtrSet<MachineInstr*, 8> Processed;
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
@@ -771,175 +940,102 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
ProcessCopy(&*mi, &*mbbi, Processed);
+ // First scan through all the tied register uses in this instruction
+ // and record a list of pairs of tied operands for each register.
unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
? mi->getNumOperands() : TID.getNumOperands();
- for (unsigned si = 0; si < NumOps; ++si) {
- unsigned ti = 0;
- if (!mi->isRegTiedToDefOperand(si, &ti))
+ for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
+ unsigned DstIdx = 0;
+ if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
continue;
if (FirstTied) {
+ FirstTied = false;
++NumTwoAddressInstrs;
- DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
+ DEBUG(errs() << '\t' << *mi);
}
- FirstTied = false;
+ assert(mi->getOperand(SrcIdx).isReg() &&
+ mi->getOperand(SrcIdx).getReg() &&
+ mi->getOperand(SrcIdx).isUse() &&
+ "two address instruction invalid");
- assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
- mi->getOperand(si).isUse() && "two address instruction invalid");
+ unsigned regB = mi->getOperand(SrcIdx).getReg();
+ TiedOperandMap::iterator OI = TiedOperands.find(regB);
+ if (OI == TiedOperands.end()) {
+ SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
+ OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
+ }
+ OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
+ }
- // If the two operands are the same we just remove the use
- // and mark the def as def&use, otherwise we have to insert a copy.
- if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
- // Rewrite:
- // a = b op c
- // to:
- // a = b
- // a = a op c
- unsigned regA = mi->getOperand(ti).getReg();
- unsigned regB = mi->getOperand(si).getReg();
+ // Now iterate over the information collected above.
+ for (TiedOperandMap::iterator OI = TiedOperands.begin(),
+ OE = TiedOperands.end(); OI != OE; ++OI) {
+ SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
+
+ // If the instruction has a single pair of tied operands, try some
+ // transformations that may either eliminate the tied operands or
+ // improve the opportunities for coalescing away the register copy.
+ if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
+ unsigned SrcIdx = TiedPairs[0].first;
+ unsigned DstIdx = TiedPairs[0].second;
+
+ // If the registers are already equal, nothing needs to be done.
+ if (mi->getOperand(SrcIdx).getReg() ==
+ mi->getOperand(DstIdx).getReg())
+ break; // Done with this instruction.
+
+ if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
+ break; // The tied operands have been eliminated.
+ }
+
+ bool RemovedKillFlag = false;
+ bool AllUsesCopied = true;
+ unsigned LastCopiedReg = 0;
+ unsigned regB = OI->first;
+ for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
+ unsigned SrcIdx = TiedPairs[tpi].first;
+ unsigned DstIdx = TiedPairs[tpi].second;
+ unsigned regA = mi->getOperand(DstIdx).getReg();
+ // Grab regB from the instruction because it may have changed if the
+ // instruction was commuted.
+ regB = mi->getOperand(SrcIdx).getReg();
+
+ if (regA == regB) {
+ // The register is tied to multiple destinations (or else we would
+ // not have continued this far), but this use of the register
+ // already matches the tied destination. Leave it.
+ AllUsesCopied = false;
+ continue;
+ }
+ LastCopiedReg = regA;
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
- "cannot update physical register live information");
+ "cannot make instruction into two-address form");
#ifndef NDEBUG
- // First, verify that we don't have a use of a in the instruction (a =
- // b + a for example) because our transformation will not work. This
- // should never occur because we are in SSA form.
+ // First, verify that we don't have a use of "a" in the instruction
+ // (a = b + a for example) because our transformation will not
+ // work. This should never occur because we are in SSA form.
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
- assert(i == ti ||
+ assert(i == DstIdx ||
!mi->getOperand(i).isReg() ||
mi->getOperand(i).getReg() != regA);
#endif
- // If this instruction is not the killing user of B, see if we can
- // rearrange the code to make it so. Making it the killing user will
- // allow us to coalesce A and B together, eliminating the copy we are
- // about to insert.
- if (!isKilled(*mi, regB, MRI, TII)) {
- // If regA is dead and the instruction can be deleted, just delete
- // it so it doesn't clobber regB.
- SmallVector<unsigned, 4> Kills;
- if (mi->getOperand(ti).isDead() &&
- isSafeToDelete(mi, regB, TII, Kills)) {
- SmallVector<std::pair<std::pair<unsigned, bool>
- ,MachineInstr*>, 4> NewKills;
- bool ReallySafe = true;
- // If this instruction kills some virtual registers, we need
- // update the kill information. If it's not possible to do so,
- // then bail out.
- while (!Kills.empty()) {
- unsigned Kill = Kills.back();
- Kills.pop_back();
- if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
- ReallySafe = false;
- break;
- }
- MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
- if (LastKill) {
- bool isModRef = LastKill->modifiesRegister(Kill);
- NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
- LastKill));
- } else {
- ReallySafe = false;
- break;
- }
- }
-
- if (ReallySafe) {
- if (LV) {
- while (!NewKills.empty()) {
- MachineInstr *NewKill = NewKills.back().second;
- unsigned Kill = NewKills.back().first.first;
- bool isDead = NewKills.back().first.second;
- NewKills.pop_back();
- if (LV->removeVirtualRegisterKilled(Kill, mi)) {
- if (isDead)
- LV->addVirtualRegisterDead(Kill, NewKill);
- else
- LV->addVirtualRegisterKilled(Kill, NewKill);
- }
- }
- }
-
- // We're really going to nuke the old inst. If regB was marked
- // as a kill we need to update its Kills list.
- if (mi->getOperand(si).isKill())
- LV->removeVirtualRegisterKilled(regB, mi);
-
- mbbi->erase(mi); // Nuke the old inst.
- mi = nmi;
- ++NumDeletes;
- break; // Done with this instruction.
- }
- }
-
- // If this instruction is commutative, check to see if C dies. If
- // so, swap the B and C operands. This makes the live ranges of A
- // and C joinable.
- // FIXME: This code also works for A := B op C instructions.
- if (TID.isCommutable() && mi->getNumOperands() >= 3) {
- assert(mi->getOperand(3-si).isReg() &&
- "Not a proper commutative instruction!");
- unsigned regC = mi->getOperand(3-si).getReg();
- if (isKilled(*mi, regC, MRI, TII)) {
- if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
- ++NumCommuted;
- regB = regC;
- goto InstructionRearranged;
- }
- }
- }
-
- // If this instruction is potentially convertible to a true
- // three-address instruction,
- if (TID.isConvertibleTo3Addr()) {
- // FIXME: This assumes there are no more operands which are tied
- // to another register.
-#ifndef NDEBUG
- for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
- assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
-#endif
-
- if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
- ++NumConvertedTo3Addr;
- break; // Done with this instruction.
- }
- }
- }
-
- // If it's profitable to commute the instruction, do so.
- if (TID.isCommutable() && mi->getNumOperands() >= 3) {
- unsigned regC = mi->getOperand(3-si).getReg();
- if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
- if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
- ++NumAggrCommuted;
- ++NumCommuted;
- regB = regC;
- goto InstructionRearranged;
- }
- }
-
- // If it's profitable to convert the 2-address instruction to a
- // 3-address one, do so.
- if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
- if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
- ++NumConvertedTo3Addr;
- break; // Done with this instruction.
- }
- }
-
- InstructionRearranged:
- const TargetRegisterClass* rc = MRI->getRegClass(regB);
+ // Emit a copy or rematerialize the definition.
+ const TargetRegisterClass *rc = MRI->getRegClass(regB);
MachineInstr *DefMI = MRI->getVRegDef(regB);
// If it's safe and profitable, remat the definition instead of
// copying it.
if (DefMI &&
DefMI->getDesc().isAsCheapAsAMove() &&
- DefMI->isSafeToReMat(TII, regB) &&
+ DefMI->isSafeToReMat(TII, regB, AA) &&
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
- DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
- TII->reMaterialize(*mbbi, mi, regA, DefMI);
+ DEBUG(errs() << "2addr: REMATTING : " << *DefMI << "\n");
+ unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
+ TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI);
ReMatRegs.set(regB);
++NumReMats;
} else {
@@ -953,32 +1049,57 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DistanceMap.insert(std::make_pair(prevMI, Dist));
DistanceMap[mi] = ++Dist;
- // Update live variables for regB.
- if (LV) {
- if (LV->removeVirtualRegisterKilled(regB, mi))
- LV->addVirtualRegisterKilled(regB, prevMI);
+ DEBUG(errs() << "\t\tprepend:\t" << *prevMI);
- if (LV->removeVirtualRegisterDead(regB, mi))
- LV->addVirtualRegisterDead(regB, prevMI);
+ MachineOperand &MO = mi->getOperand(SrcIdx);
+ assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
+ "inconsistent operand info for 2-reg pass");
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
}
+ MO.setReg(regA);
+ }
- DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
-
- // Replace all occurences of regB with regA.
+ if (AllUsesCopied) {
+ // Replace other (un-tied) uses of regB with LastCopiedReg.
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
- if (mi->getOperand(i).isReg() &&
- mi->getOperand(i).getReg() == regB)
- mi->getOperand(i).setReg(regA);
+ MachineOperand &MO = mi->getOperand(i);
+ if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
+ }
+ MO.setReg(LastCopiedReg);
+ }
}
- }
- assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
- mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
+ // Update live variables for regB.
+ if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
+ LV->addVirtualRegisterKilled(regB, prior(mi));
+
+ } else if (RemovedKillFlag) {
+ // Some tied uses of regB matched their destination registers, so
+ // regB is still used in this instruction, but a kill flag was
+ // removed from a different tied use of regB, so now we need to add
+ // a kill flag to one of the remaining uses of regB.
+ for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = mi->getOperand(i);
+ if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
+ MO.setIsKill(true);
+ break;
+ }
+ }
+ }
+
MadeChange = true;
- DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
+ DEBUG(errs() << "\t\trewrite to:\t" << *mi);
}
+ // Clear TiedOperands here instead of at the top of the loop
+ // since most instructions do not have tied operands.
+ TiedOperands.clear();
mi = nmi;
}
}
diff --git a/lib/CodeGen/UnreachableBlockElim.cpp b/lib/CodeGen/UnreachableBlockElim.cpp
index c3b213c..e7c3412 100644
--- a/lib/CodeGen/UnreachableBlockElim.cpp
+++ b/lib/CodeGen/UnreachableBlockElim.cpp
@@ -26,8 +26,11 @@
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
@@ -42,6 +45,10 @@ namespace {
public:
static char ID; // Pass identification, replacement for typeid
UnreachableBlockElim() : FunctionPass(&ID) {}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<ProfileInfo>();
+ }
};
}
char UnreachableBlockElim::ID = 0;
@@ -77,8 +84,11 @@ bool UnreachableBlockElim::runOnFunction(Function &F) {
}
// Actually remove the blocks now.
- for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i)
+ ProfileInfo *PI = getAnalysisIfAvailable<ProfileInfo>();
+ for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) {
+ if (PI) PI->removeBlock(DeadBlocks[i]);
DeadBlocks[i]->eraseFromParent();
+ }
return DeadBlocks.size();
}
@@ -88,6 +98,7 @@ namespace {
class VISIBILITY_HIDDEN UnreachableMachineBlockElim :
public MachineFunctionPass {
virtual bool runOnMachineFunction(MachineFunction &F);
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
MachineModuleInfo *MMI;
public:
static char ID; // Pass identification, replacement for typeid
@@ -102,10 +113,18 @@ Y("unreachable-mbb-elimination",
const PassInfo *const llvm::UnreachableMachineBlockElimID = &Y;
+void UnreachableMachineBlockElim::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
SmallPtrSet<MachineBasicBlock*, 8> Reachable;
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
+ MachineDominatorTree *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
+ MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
// Mark all reachable blocks.
for (df_ext_iterator<MachineFunction*, SmallPtrSet<MachineBasicBlock*, 8> >
@@ -123,6 +142,10 @@ bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
if (!Reachable.count(BB)) {
DeadBlocks.push_back(BB);
+ // Update dominator and loop info.
+ if (MLI) MLI->removeBlock(BB);
+ if (MDT && MDT->getNode(BB)) MDT->eraseNode(BB);
+
while (BB->succ_begin() != BB->succ_end()) {
MachineBasicBlock* succ = *BB->succ_begin();
diff --git a/lib/CodeGen/VirtRegMap.cpp b/lib/CodeGen/VirtRegMap.cpp
index 4d3417f..c78f35b 100644
--- a/lib/CodeGen/VirtRegMap.cpp
+++ b/lib/CodeGen/VirtRegMap.cpp
@@ -30,6 +30,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
@@ -258,7 +259,7 @@ bool VirtRegMap::FindUnusedRegisters(LiveIntervals* LIs) {
return AnyUnused;
}
-void VirtRegMap::print(std::ostream &OS, const Module* M) const {
+void VirtRegMap::print(raw_ostream &OS, const Module* M) const {
const TargetRegisterInfo* TRI = MF->getTarget().getRegisterInfo();
OS << "********** REGISTER MAP **********\n";
@@ -277,5 +278,5 @@ void VirtRegMap::print(std::ostream &OS, const Module* M) const {
}
void VirtRegMap::dump() const {
- print(cerr);
+ print(errs());
}
diff --git a/lib/CodeGen/VirtRegMap.h b/lib/CodeGen/VirtRegMap.h
index fe767b7..bdc2d1f 100644
--- a/lib/CodeGen/VirtRegMap.h
+++ b/lib/CodeGen/VirtRegMap.h
@@ -18,13 +18,13 @@
#define LLVM_CODEGEN_VIRTREGMAP_H
#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/Streams.h"
#include <map>
namespace llvm {
@@ -34,6 +34,7 @@ namespace llvm {
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetRegisterInfo;
+ class raw_ostream;
class VirtRegMap : public MachineFunctionPass {
public:
@@ -79,7 +80,7 @@ namespace llvm {
/// Virt2SplitKillMap - This is splitted virtual register to its last use
/// (kill) index mapping.
- IndexedMap<unsigned> Virt2SplitKillMap;
+ IndexedMap<LiveIndex> Virt2SplitKillMap;
/// ReMatMap - This is virtual register to re-materialized instruction
/// mapping. Each virtual register whose definition is going to be
@@ -141,7 +142,7 @@ namespace llvm {
VirtRegMap() : MachineFunctionPass(&ID), Virt2PhysMap(NO_PHYS_REG),
Virt2StackSlotMap(NO_STACK_SLOT),
Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
- Virt2SplitKillMap(0), ReMatMap(NULL),
+ Virt2SplitKillMap(LiveIndex()), ReMatMap(NULL),
ReMatId(MAX_STACK_SLOT+1),
LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
@@ -265,17 +266,17 @@ namespace llvm {
}
/// @brief record the last use (kill) of a split virtual register.
- void addKillPoint(unsigned virtReg, unsigned index) {
+ void addKillPoint(unsigned virtReg, LiveIndex index) {
Virt2SplitKillMap[virtReg] = index;
}
- unsigned getKillPoint(unsigned virtReg) const {
+ LiveIndex getKillPoint(unsigned virtReg) const {
return Virt2SplitKillMap[virtReg];
}
/// @brief remove the last use (kill) of a split virtual register.
void removeKillPoint(unsigned virtReg) {
- Virt2SplitKillMap[virtReg] = 0;
+ Virt2SplitKillMap[virtReg] = LiveIndex();
}
/// @brief returns true if the specified MachineInstr is a spill point.
@@ -481,16 +482,11 @@ namespace llvm {
return 0;
}
- void print(std::ostream &OS, const Module* M = 0) const;
- void print(std::ostream *OS) const { if (OS) print(*OS); }
+ void print(raw_ostream &OS, const Module* M = 0) const;
void dump() const;
};
- inline std::ostream *operator<<(std::ostream *OS, const VirtRegMap &VRM) {
- VRM.print(OS);
- return OS;
- }
- inline std::ostream &operator<<(std::ostream &OS, const VirtRegMap &VRM) {
+ inline raw_ostream &operator<<(raw_ostream &OS, const VirtRegMap &VRM) {
VRM.print(OS);
return OS;
}
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
index be0b016..401bcb6 100644
--- a/lib/CodeGen/VirtRegRewriter.cpp
+++ b/lib/CodeGen/VirtRegRewriter.cpp
@@ -9,10 +9,19 @@
#define DEBUG_TYPE "virtregrewriter"
#include "VirtRegRewriter.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
@@ -45,10 +54,15 @@ RewriterOpt("rewriter",
clEnumValEnd),
cl::init(local));
+static cl::opt<bool>
+ScheduleSpills("schedule-spills",
+ cl::desc("Schedule spill code"),
+ cl::init(false));
+
VirtRegRewriter::~VirtRegRewriter() {}
+namespace {
-
/// This class is intended for use with the new spilling framework only. It
/// rewrites vreg def/uses to use the assigned preg, but does not insert any
/// spill code.
@@ -56,8 +70,13 @@ struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
LiveIntervals* LIs) {
- DOUT << "********** REWRITE MACHINE CODE **********\n";
- DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+ DEBUG(errs() << "********** REWRITE MACHINE CODE **********\n");
+ DEBUG(errs() << "********** Function: "
+ << MF.getFunction()->getName() << '\n');
+ DEBUG(errs() << "**** Machine Instrs"
+ << "(NOTE! Does not include spills and reloads!) ****\n");
+ DEBUG(MF.dump());
+
MachineRegisterInfo *mri = &MF.getRegInfo();
bool changed = false;
@@ -79,14 +98,22 @@ struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
}
}
}
+
+
+ DEBUG(errs() << "**** Post Machine Instrs ****\n");
+ DEBUG(MF.dump());
return changed;
}
};
+}
+
// ************************************************************************ //
+namespace {
+
/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
/// from top down, keep track of which spill slots or remat are available in
/// each register.
@@ -154,10 +181,11 @@ public:
(unsigned)CanClobber;
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
+ DEBUG(errs() << "Remembering RM#"
+ << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
else
- DOUT << "Remembering SS#" << SlotOrReMat;
- DOUT << " in physreg " << TRI->getName(Reg) << "\n";
+ DEBUG(errs() << "Remembering SS#" << SlotOrReMat);
+ DEBUG(errs() << " in physreg " << TRI->getName(Reg) << "\n");
}
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
@@ -209,8 +237,82 @@ public:
std::vector<MachineOperand*> &KillOps);
};
+}
+
// ************************************************************************ //
+// Given a location where a reload of a spilled register or a remat of
+// a constant is to be inserted, attempt to find a safe location to
+// insert the load at an earlier point in the basic-block, to hide
+// latency of the load and to avoid address-generation interlock
+// issues.
+static MachineBasicBlock::iterator
+ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
+ MachineBasicBlock::iterator const Begin,
+ unsigned PhysReg,
+ const TargetRegisterInfo *TRI,
+ bool DoReMat,
+ int SSorRMId,
+ const TargetInstrInfo *TII,
+ const MachineFunction &MF)
+{
+ if (!ScheduleSpills)
+ return InsertLoc;
+
+ // Spill backscheduling is of primary interest to addresses, so
+ // don't do anything if the register isn't in the register class
+ // used for pointers.
+
+ const TargetLowering *TL = MF.getTarget().getTargetLowering();
+
+ if (!TL->isTypeLegal(TL->getPointerTy()))
+ // Believe it or not, this is true on PIC16.
+ return InsertLoc;
+
+ const TargetRegisterClass *ptrRegClass =
+ TL->getRegClassFor(TL->getPointerTy());
+ if (!ptrRegClass->contains(PhysReg))
+ return InsertLoc;
+
+ // Scan upwards through the preceding instructions. If an instruction doesn't
+ // reference the stack slot or the register we're loading, we can
+ // backschedule the reload up past it.
+ MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
+ while (NewInsertLoc != Begin) {
+ MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
+ for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
+ MachineOperand &Op = Prev->getOperand(i);
+ if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
+ goto stop;
+ }
+ if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
+ Prev->findRegisterDefOperand(PhysReg))
+ goto stop;
+ for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
+ if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
+ Prev->findRegisterDefOperand(*Alias))
+ goto stop;
+ NewInsertLoc = Prev;
+ }
+stop:;
+
+ // If we made it to the beginning of the block, turn around and move back
+ // down just past any existing reloads. They're likely to be reloads/remats
+ // for instructions earlier than what our current reload/remat is for, so
+ // they should be scheduled earlier.
+ if (NewInsertLoc == Begin) {
+ int FrameIdx;
+ while (InsertLoc != NewInsertLoc &&
+ (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
+ TII->isTriviallyReMaterializable(NewInsertLoc)))
+ ++NewInsertLoc;
+ }
+
+ return NewInsertLoc;
+}
+
+namespace {
+
// ReusedOp - For each reused operand, we keep track of a bit of information,
// in case we need to rollback upon processing a new operand. See comments
// below.
@@ -276,7 +378,8 @@ public:
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
- unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+ unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
+ MachineFunction &MF, MachineInstr *MI,
AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
SmallSet<unsigned, 8> &Rejected,
@@ -295,18 +398,21 @@ public:
/// sees r1 is taken by t2, tries t2's reload register r0
/// sees r0 is taken by t3, tries t3's reload register r1
/// sees r1 is taken by t2, tries t2's reload register r0 ...
- unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+ unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM) {
SmallSet<unsigned, 8> Rejected;
- return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
- RegKills, KillOps, VRM);
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
+ return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
+ Rejected, RegKills, KillOps, VRM);
}
};
+}
// ****************** //
// Utility Functions //
@@ -489,7 +595,14 @@ static void ReMaterialize(MachineBasicBlock &MBB,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI,
VirtRegMap &VRM) {
- TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
+ MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
+#ifndef NDEBUG
+ const TargetInstrDesc &TID = ReMatDefMI->getDesc();
+ assert(TID.getNumDefs() == 1 &&
+ "Don't know how to remat instructions that define > 1 values!");
+#endif
+ TII->reMaterialize(MBB, MII, DestReg,
+ ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
MachineInstr *NewMI = prior(MII);
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
@@ -538,8 +651,8 @@ void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
- DOUT << "PhysReg " << TRI->getName(PhysReg)
- << " copied, it is available for use but can no longer be modified\n";
+ DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
+ << " copied, it is available for use but can no longer be modified\n");
}
}
@@ -563,12 +676,12 @@ void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
- DOUT << "PhysReg " << TRI->getName(PhysReg)
- << " clobbered, invalidating ";
+ DEBUG(errs() << "PhysReg " << TRI->getName(PhysReg)
+ << " clobbered, invalidating ");
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
- DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
+ DEBUG(errs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
else
- DOUT << "SS#" << SlotOrReMat << "\n";
+ DEBUG(errs() << "SS#" << SlotOrReMat << "\n");
}
}
@@ -650,15 +763,17 @@ void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
-unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
- AvailableSpills &Spills,
+unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
+ unsigned PhysReg,
+ MachineFunction &MF,
+ MachineInstr *MI, AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
SmallSet<unsigned, 8> &Rejected,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM) {
- const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
- .getInstrInfo();
+ const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
+ const TargetRegisterInfo *TRI = Spills.getRegInfo();
if (Reuses.empty()) return PhysReg; // This is most often empty.
@@ -670,19 +785,19 @@ unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
// considered and subsequently rejected because it has also been reused
// by another operand.
if (Op.PhysRegReused == PhysReg &&
- Rejected.count(Op.AssignedPhysReg) == 0) {
+ Rejected.count(Op.AssignedPhysReg) == 0 &&
+ RC->contains(Op.AssignedPhysReg)) {
// Yup, use the reload register that we didn't use before.
unsigned NewReg = Op.AssignedPhysReg;
Rejected.insert(PhysReg);
- return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
+ return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
RegKills, KillOps, VRM);
} else {
// Otherwise, we might also have a problem if a previously reused
- // value aliases the new register. If so, codegen the previous reload
+ // value aliases the new register. If so, codegen the previous reload
// and use this one.
unsigned PRRU = Op.PhysRegReused;
- const TargetRegisterInfo *TRI = Spills.getRegInfo();
- if (TRI->areAliases(PRRU, PhysReg)) {
+ if (TRI->regsOverlap(PRRU, PhysReg)) {
// Okay, we found out that an alias of a reused register
// was used. This isn't good because it means we have
// to undo a previous reuse.
@@ -695,21 +810,45 @@ unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
ReusedOp NewOp = Op;
Reuses.erase(Reuses.begin()+ro);
+ // MI may be using only a sub-register of PhysRegUsed.
+ unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
+ unsigned SubIdx = 0;
+ assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
+ "A reuse cannot be a virtual register");
+ if (PRRU != RealPhysRegUsed) {
+ // What was the sub-register index?
+ unsigned SubReg;
+ for (SubIdx = 1; (SubReg = TRI->getSubReg(PRRU, SubIdx)); SubIdx++)
+ if (SubReg == RealPhysRegUsed)
+ break;
+ assert(SubReg == RealPhysRegUsed &&
+ "Operand physreg is not a sub-register of PhysRegUsed");
+ }
+
// Ok, we're going to try to reload the assigned physreg into the
// slot that we were supposed to in the first place. However, that
// register could hold a reuse. Check to see if it conflicts or
// would prefer us to use a different register.
- unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
- MI, Spills, MaybeDeadStores,
- Rejected, RegKills, KillOps, VRM);
-
- MachineBasicBlock::iterator MII = MI;
- if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
- ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
- } else {
- TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
+ unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
+ MF, MI, Spills, MaybeDeadStores,
+ Rejected, RegKills, KillOps, VRM);
+
+ bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
+ int SSorRMId = DoReMat
+ ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
+ DoReMat, SSorRMId, TII, MF);
+
+ if (DoReMat) {
+ ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
+ TRI, VRM);
+ } else {
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
NewOp.StackSlotOrReMat, AliasRC);
- MachineInstr *LoadMI = prior(MII);
+ MachineInstr *LoadMI = prior(InsertLoc);
VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
// Any stores to this stack slot are not dead anymore.
MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
@@ -718,17 +857,15 @@ unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
Spills.ClobberPhysReg(NewPhysReg);
Spills.ClobberPhysReg(NewOp.PhysRegReused);
- unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
MI->getOperand(NewOp.Operand).setReg(RReg);
MI->getOperand(NewOp.Operand).setSubReg(0);
Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
- --MII;
- UpdateKills(*MII, TRI, RegKills, KillOps);
- DOUT << '\t' << *MII;
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(errs() << '\t' << *prior(InsertLoc));
- DOUT << "Reuse undone!\n";
+ DEBUG(errs() << "Reuse undone!\n");
--NumReused;
// Finally, PhysReg is now available, go ahead and use it.
@@ -856,6 +993,8 @@ namespace {
// Local Spiller Implementation //
// ***************************** //
+namespace {
+
class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
MachineRegisterInfo *RegInfo;
const TargetRegisterInfo *TRI;
@@ -870,10 +1009,10 @@ public:
TRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
AllocatableRegs = TRI->getAllocatableSet(MF);
- DOUT << "\n**** Local spiller rewriting function '"
- << MF.getFunction()->getName() << "':\n";
- DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
- " ****\n";
+ DEBUG(errs() << "\n**** Local spiller rewriting function '"
+ << MF.getFunction()->getName() << "':\n");
+ DEBUG(errs() << "**** Machine Instrs (NOTE! Does not include spills and"
+ " reloads!) ****\n");
DEBUG(MF.dump());
// Spills - Keep track of which spilled values are available in physregs
@@ -924,7 +1063,7 @@ public:
Spills.clear();
}
- DOUT << "**** Post Machine Instrs ****\n";
+ DEBUG(errs() << "**** Post Machine Instrs ****\n");
DEBUG(MF.dump());
// Mark unused spill slots.
@@ -988,6 +1127,9 @@ private:
if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
return false;
+ // Back-schedule reloads and remats.
+ ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
+
// Load from SS to the spare physical register.
TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
// This invalidates Phys.
@@ -999,7 +1141,7 @@ private:
// Unfold current MI.
SmallVector<MachineInstr*, 4> NewMIs;
if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
- assert(0 && "Unable unfold the load / store folding instruction!");
+ llvm_unreachable("Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
VRM.transferRestorePts(&MI, NewMIs[0]);
@@ -1015,7 +1157,7 @@ private:
NextMII = next(NextMII);
NewMIs.clear();
if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
- assert(0 && "Unable unfold the load / store folding instruction!");
+ llvm_unreachable("Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
VRM.transferRestorePts(&NextMI, NewMIs[0]);
@@ -1157,6 +1299,32 @@ private:
return false;
}
+ /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
+ /// where SrcReg is r1 and it is tied to r0. Return true if after
+ /// commuting this instruction it will be r0 = op r2, r1.
+ static bool CommuteChangesDestination(MachineInstr *DefMI,
+ const TargetInstrDesc &TID,
+ unsigned SrcReg,
+ const TargetInstrInfo *TII,
+ unsigned &DstIdx) {
+ if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
+ return false;
+ if (!DefMI->getOperand(1).isReg() ||
+ DefMI->getOperand(1).getReg() != SrcReg)
+ return false;
+ unsigned DefIdx;
+ if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
+ return false;
+ unsigned SrcIdx1, SrcIdx2;
+ if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
+ return false;
+ if (SrcIdx1 == 1 && SrcIdx2 == 2) {
+ DstIdx = 2;
+ return true;
+ }
+ return false;
+ }
+
/// CommuteToFoldReload -
/// Look for
/// r1 = load fi#1
@@ -1185,7 +1353,7 @@ private:
unsigned NewDstIdx;
if (DefMII != MBB.begin() &&
TID.isCommutable() &&
- TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
+ CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
unsigned NewReg = NewDstMO.getReg();
if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
@@ -1266,11 +1434,11 @@ private:
TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
MachineInstr *StoreMI = next(MII);
VRM.addSpillSlotUse(StackSlot, StoreMI);
- DOUT << "Store:\t" << *StoreMI;
+ DEBUG(errs() << "Store:\t" << *StoreMI);
// If there is a dead store to this stack slot, nuke it now.
if (LastStore) {
- DOUT << "Removed dead store:\t" << *LastStore;
+ DEBUG(errs() << "Removed dead store:\t" << *LastStore);
++NumDSE;
SmallVector<unsigned, 2> KillRegs;
InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
@@ -1310,6 +1478,29 @@ private:
++NumStores;
}
+ /// isSafeToDelete - Return true if this instruction doesn't produce any side
+ /// effect and all of its defs are dead.
+ static bool isSafeToDelete(MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+ TID.isCall() || TID.isBarrier() || TID.isReturn() ||
+ TID.hasUnmodeledSideEffects())
+ return false;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && !MO.isDead())
+ return false;
+ if (MO.isUse() && MO.isKill())
+ // FIXME: We can't remove kill markers or else the scavenger will assert.
+ // An alternative is to add a ADD pseudo instruction to replace kill
+ // markers.
+ return false;
+ }
+ return true;
+ }
+
/// TransferDeadness - A identity copy definition is dead and it's being
/// removed. Find the last def or use and mark it as dead / kill.
void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
@@ -1351,9 +1542,7 @@ private:
if (LastUD->isDef()) {
// If the instruction has no side effect, delete it and propagate
// backward further. Otherwise, mark is dead and we are done.
- const TargetInstrDesc &TID = LastUDMI->getDesc();
- if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
- TID.hasUnmodeledSideEffects()) {
+ if (!isSafeToDelete(*LastUDMI)) {
LastUD->setIsDead();
break;
}
@@ -1375,8 +1564,8 @@ private:
AvailableSpills &Spills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps) {
- DOUT << "\n**** Local spiller rewriting MBB '"
- << MBB.getBasicBlock()->getName() << "':\n";
+ DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
+ << MBB.getBasicBlock()->getName() << "':\n");
MachineFunction &MF = *MBB.getParent();
@@ -1425,15 +1614,23 @@ private:
assert(RC && "Unable to determine register class!");
int SS = VRM.getEmergencySpillSlot(RC);
if (UsedSS.count(SS))
- assert(0 && "Need to spill more than one physical registers!");
+ llvm_unreachable("Need to spill more than one physical registers!");
UsedSS.insert(SS);
TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
MachineInstr *StoreMI = prior(MII);
VRM.addSpillSlotUse(SS, StoreMI);
- TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
- MachineInstr *LoadMI = next(MII);
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
+ SS, TII, MF);
+
+ TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
+
+ MachineInstr *LoadMI = prior(InsertLoc);
VRM.addSpillSlotUse(SS, LoadMI);
++NumPSpills;
+ DistanceMap.insert(std::make_pair(LoadMI, Dist++));
}
NextMII = next(MII);
}
@@ -1467,28 +1664,36 @@ private:
// If the value is already available in the expected register, save
// a reload / remat.
if (SSorRMId)
- DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+ DEBUG(errs() << "Reusing RM#"
+ << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
else
- DOUT << "Reusing SS#" << SSorRMId;
- DOUT << " from physreg "
- << TRI->getName(InReg) << " for vreg"
- << VirtReg <<" instead of reloading into physreg "
- << TRI->getName(Phys) << "\n";
+ DEBUG(errs() << "Reusing SS#" << SSorRMId);
+ DEBUG(errs() << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(Phys) << '\n');
++NumOmitted;
continue;
} else if (InReg && InReg != Phys) {
if (SSorRMId)
- DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+ DEBUG(errs() << "Reusing RM#"
+ << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
else
- DOUT << "Reusing SS#" << SSorRMId;
- DOUT << " from physreg "
- << TRI->getName(InReg) << " for vreg"
- << VirtReg <<" by copying it into physreg "
- << TRI->getName(Phys) << "\n";
+ DEBUG(errs() << "Reusing SS#" << SSorRMId);
+ DEBUG(errs() << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" by copying it into physreg "
+ << TRI->getName(Phys) << '\n');
// If the reloaded / remat value is available in another register,
// copy it to the desired register.
- TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
+ TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
// This invalidates Phys.
Spills.ClobberPhysReg(Phys);
@@ -1496,24 +1701,30 @@ private:
Spills.addAvailable(SSorRMId, Phys);
// Mark is killed.
- MachineInstr *CopyMI = prior(MII);
+ MachineInstr *CopyMI = prior(InsertLoc);
MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
KillOpnd->setIsKill();
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
- DOUT << '\t' << *CopyMI;
+ DEBUG(errs() << '\t' << *CopyMI);
++NumCopified;
continue;
}
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
if (VRM.isReMaterialized(VirtReg)) {
- ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
+ ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
} else {
const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
- TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
- MachineInstr *LoadMI = prior(MII);
+ TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
+ MachineInstr *LoadMI = prior(InsertLoc);
VRM.addSpillSlotUse(SSorRMId, LoadMI);
++NumLoads;
+ DistanceMap.insert(std::make_pair(LoadMI, Dist++));
}
// This invalidates Phys.
@@ -1521,8 +1732,8 @@ private:
// Remember it's available.
Spills.addAvailable(SSorRMId, Phys);
- UpdateKills(*prior(MII), TRI, RegKills, KillOps);
- DOUT << '\t' << *prior(MII);
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(errs() << '\t' << *prior(MII));
}
}
@@ -1541,7 +1752,7 @@ private:
TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
MachineInstr *StoreMI = next(MII);
VRM.addSpillSlotUse(StackSlot, StoreMI);
- DOUT << "Store:\t" << *StoreMI;
+ DEBUG(errs() << "Store:\t" << *StoreMI);
VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
}
NextMII = next(MII);
@@ -1660,13 +1871,14 @@ private:
if (CanReuse) {
// If this stack slot value is already available, reuse it!
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+ DEBUG(errs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
else
- DOUT << "Reusing SS#" << ReuseSlot;
- DOUT << " from physreg "
- << TRI->getName(PhysReg) << " for vreg"
- << VirtReg <<" instead of reloading into physreg "
- << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
+ DEBUG(errs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(errs() << " from physreg "
+ << TRI->getName(PhysReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(VRM.getPhys(VirtReg)) << '\n');
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
MI.getOperand(i).setReg(RReg);
MI.getOperand(i).setSubReg(0);
@@ -1733,20 +1945,22 @@ private:
// available. If this occurs, use the register indicated by the
// reuser.
if (ReusedOperands.hasReuses())
- DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+ DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
+ DesignatedReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
// If the mapped designated register is actually the physreg we have
// incoming, we don't need to inserted a dead copy.
if (DesignatedReg == PhysReg) {
// If this stack slot value is already available, reuse it!
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+ DEBUG(errs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
else
- DOUT << "Reusing SS#" << ReuseSlot;
- DOUT << " from physreg " << TRI->getName(PhysReg)
- << " for vreg" << VirtReg
- << " instead of reloading into same physreg.\n";
+ DEBUG(errs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(errs() << " from physreg " << TRI->getName(PhysReg)
+ << " for vreg" << VirtReg
+ << " instead of reloading into same physreg.\n");
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
MI.getOperand(i).setReg(RReg);
MI.getOperand(i).setSubReg(0);
@@ -1758,9 +1972,15 @@ private:
const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
RegInfo->setPhysRegUsed(DesignatedReg);
ReusedOperands.markClobbered(DesignatedReg);
- TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
- MachineInstr *CopyMI = prior(MII);
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
+ TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
+
+ MachineInstr *CopyMI = prior(InsertLoc);
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
// This invalidates DesignatedReg.
@@ -1771,7 +1991,7 @@ private:
SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
MI.getOperand(i).setReg(RReg);
MI.getOperand(i).setSubReg(0);
- DOUT << '\t' << *prior(MII);
+ DEBUG(errs() << '\t' << *prior(MII));
++NumReused;
continue;
} // if (PhysReg)
@@ -1785,22 +2005,28 @@ private:
// available. If this occurs, use the register indicated by the
// reuser.
if (ReusedOperands.hasReuses())
- PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+ PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
RegInfo->setPhysRegUsed(PhysReg);
ReusedOperands.markClobbered(PhysReg);
if (AvoidReload)
++NumAvoided;
else {
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
if (DoReMat) {
- ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
+ ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
} else {
const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
- TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
- MachineInstr *LoadMI = prior(MII);
+ TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
+ MachineInstr *LoadMI = prior(InsertLoc);
VRM.addSpillSlotUse(SSorRMId, LoadMI);
++NumLoads;
+ DistanceMap.insert(std::make_pair(LoadMI, Dist++));
}
// This invalidates PhysReg.
Spills.ClobberPhysReg(PhysReg);
@@ -1817,8 +2043,8 @@ private:
KilledMIRegs.insert(VirtReg);
}
- UpdateKills(*prior(MII), TRI, RegKills, KillOps);
- DOUT << '\t' << *prior(MII);
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(errs() << '\t' << *prior(InsertLoc));
}
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
MI.getOperand(i).setReg(RReg);
@@ -1832,7 +2058,7 @@ private:
int PDSSlot = PotentialDeadStoreSlots[j];
MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
if (DeadStore) {
- DOUT << "Removed dead store:\t" << *DeadStore;
+ DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(DeadStore);
MBB.erase(DeadStore);
@@ -1842,7 +2068,7 @@ private:
}
- DOUT << '\t' << MI;
+ DEBUG(errs() << '\t' << MI);
// If we have folded references to memory operands, make sure we clear all
@@ -1852,7 +2078,7 @@ private:
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
unsigned VirtReg = I->second.first;
VirtRegMap::ModRef MR = I->second.second;
- DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
+ DEBUG(errs() << "Folded vreg: " << VirtReg << " MR: " << MR);
// MI2VirtMap be can updated which invalidate the iterator.
// Increment the iterator first.
@@ -1861,7 +2087,7 @@ private:
if (SS == VirtRegMap::NO_STACK_SLOT)
continue;
FoldedSS.insert(SS);
- DOUT << " - StackSlot: " << SS << "\n";
+ DEBUG(errs() << " - StackSlot: " << SS << "\n");
// If this folded instruction is just a use, check to see if it's a
// straight load from the virt reg slot.
@@ -1872,7 +2098,7 @@ private:
// If this spill slot is available, turn it into a copy (or nothing)
// instead of leaving it as a load!
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
- DOUT << "Promoted Load To Copy: " << MI;
+ DEBUG(errs() << "Promoted Load To Copy: " << MI);
if (DestReg != InReg) {
const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
@@ -1895,7 +2121,7 @@ private:
BackTracked = true;
} else {
- DOUT << "Removing now-noop copy: " << MI;
+ DEBUG(errs() << "Removing now-noop copy: " << MI);
// Unset last kill since it's being reused.
InvalidateKill(InReg, TRI, RegKills, KillOps);
Spills.disallowClobberPhysReg(InReg);
@@ -1965,7 +2191,7 @@ private:
if (isDead) { // Previous store is dead.
// If we get here, the store is dead, nuke it now.
- DOUT << "Removed dead store:\t" << *DeadStore;
+ DEBUG(errs() << "Removed dead store:\t" << *DeadStore);
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(DeadStore);
MBB.erase(DeadStore);
@@ -2036,7 +2262,7 @@ private:
if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
!MI.findRegisterUseOperand(Src)->isUndef()) {
++NumDCE;
- DOUT << "Removing now-noop copy: " << MI;
+ DEBUG(errs() << "Removing now-noop copy: " << MI);
SmallVector<unsigned, 2> KillRegs;
InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
if (MO.isDead() && !KillRegs.empty()) {
@@ -2100,8 +2326,8 @@ private:
if (ReusedOperands.isClobbered(PhysReg)) {
// Another def has taken the assigned physreg. It must have been a
// use&def which got it due to reuse. Undo the reuse!
- PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+ PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
}
}
@@ -2124,7 +2350,7 @@ private:
unsigned Src, Dst, SrcSR, DstSR;
if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
++NumDCE;
- DOUT << "Removing now-noop copy: " << MI;
+ DEBUG(errs() << "Removing now-noop copy: " << MI);
InvalidateKills(MI, TRI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(&MI);
MBB.erase(&MI);
@@ -2136,7 +2362,15 @@ private:
}
}
ProcessNextInst:
- DistanceMap.insert(std::make_pair(&MI, Dist++));
+ // Delete dead instructions without side effects.
+ if (!Erased && !BackTracked && isSafeToDelete(MI)) {
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ }
+ if (!Erased)
+ DistanceMap.insert(std::make_pair(&MI, Dist++));
if (!Erased && !BackTracked) {
for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
UpdateKills(*II, TRI, RegKills, KillOps);
@@ -2148,9 +2382,11 @@ private:
};
+}
+
llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
switch (RewriterOpt) {
- default: assert(0 && "Unreachable!");
+ default: llvm_unreachable("Unreachable!");
case local:
return new LocalRewriter();
case trivial:
diff --git a/lib/CodeGen/VirtRegRewriter.h b/lib/CodeGen/VirtRegRewriter.h
index f9d7fbb..44f9df6 100644
--- a/lib/CodeGen/VirtRegRewriter.h
+++ b/lib/CodeGen/VirtRegRewriter.h
@@ -10,27 +10,9 @@
#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H
#define LLVM_CODEGEN_VIRTREGREWRITER_H
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/IndexedMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallSet.h"
#include "VirtRegMap.h"
-#include <map>
namespace llvm {
diff --git a/lib/CompilerDriver/BuiltinOptions.cpp b/lib/CompilerDriver/BuiltinOptions.cpp
index a3364e8..d90c50d 100644
--- a/lib/CompilerDriver/BuiltinOptions.cpp
+++ b/lib/CompilerDriver/BuiltinOptions.cpp
@@ -25,6 +25,8 @@ cl::list<std::string> InputFilenames(cl::Positional, cl::desc("<input file>"),
cl::ZeroOrMore);
cl::opt<std::string> OutputFilename("o", cl::desc("Output file name"),
cl::value_desc("file"), cl::Prefix);
+cl::opt<std::string> TempDirname("temp-dir", cl::desc("Temp dir name"),
+ cl::value_desc("<directory>"), cl::Prefix);
cl::list<std::string> Languages("x",
cl::desc("Specify the language of the following input files"),
cl::ZeroOrMore);
diff --git a/lib/CompilerDriver/CompilationGraph.cpp b/lib/CompilerDriver/CompilationGraph.cpp
index f303943..bb0eb7b 100644
--- a/lib/CompilerDriver/CompilationGraph.cpp
+++ b/lib/CompilerDriver/CompilationGraph.cpp
@@ -514,13 +514,13 @@ namespace llvm {
}
void CompilationGraph::writeGraph(const std::string& OutputFilename) {
- std::ofstream O(OutputFilename.c_str());
+ std::string ErrorInfo;
+ raw_fd_ostream O(OutputFilename.c_str(), ErrorInfo);
- if (O.good()) {
+ if (ErrorInfo.empty()) {
errs() << "Writing '"<< OutputFilename << "' file...";
llvm::WriteGraph(O, this);
errs() << "done.\n";
- O.close();
}
else {
throw std::runtime_error("Error opening file '" + OutputFilename
diff --git a/lib/CompilerDriver/Main.cpp b/lib/CompilerDriver/Main.cpp
index c9c0413..3e1fc9f 100644
--- a/lib/CompilerDriver/Main.cpp
+++ b/lib/CompilerDriver/Main.cpp
@@ -31,20 +31,29 @@ namespace {
sys::Path getTempDir() {
sys::Path tempDir;
+ // The --temp-dir option.
+ if (!TempDirname.empty()) {
+ tempDir = TempDirname;
+ }
// GCC 4.5-style -save-temps handling.
- if (SaveTemps == SaveTempsEnum::Unset) {
+ else if (SaveTemps == SaveTempsEnum::Unset) {
tempDir = sys::Path::GetTemporaryDirectory();
+ return tempDir;
}
else if (SaveTemps == SaveTempsEnum::Obj && !OutputFilename.empty()) {
tempDir = OutputFilename;
+ tempDir = tempDir.getDirname();
+ }
+ else {
+ // SaveTemps == Cwd --> use current dir (leave tempDir empty).
+ return tempDir;
+ }
- if (!tempDir.exists()) {
- std::string ErrMsg;
- if (tempDir.createDirectoryOnDisk(true, &ErrMsg))
- throw std::runtime_error(ErrMsg);
- }
+ if (!tempDir.exists()) {
+ std::string ErrMsg;
+ if (tempDir.createDirectoryOnDisk(true, &ErrMsg))
+ throw std::runtime_error(ErrMsg);
}
- // else if (SaveTemps == Cwd) -> use current dir (leave tempDir empty)
return tempDir;
}
@@ -53,17 +62,18 @@ namespace {
int BuildTargets(CompilationGraph& graph, const LanguageMap& langMap) {
int ret;
const sys::Path& tempDir = getTempDir();
+ bool toDelete = (SaveTemps == SaveTempsEnum::Unset);
try {
ret = graph.Build(tempDir, langMap);
}
catch(...) {
- if (SaveTemps == SaveTempsEnum::Unset)
+ if (toDelete)
tempDir.eraseFromDisk(true);
throw;
}
- if (SaveTemps == SaveTempsEnum::Unset)
+ if (toDelete)
tempDir.eraseFromDisk(true);
return ret;
}
diff --git a/lib/CompilerDriver/Plugin.cpp b/lib/CompilerDriver/Plugin.cpp
index cb3c7be..7310d12 100644
--- a/lib/CompilerDriver/Plugin.cpp
+++ b/lib/CompilerDriver/Plugin.cpp
@@ -42,7 +42,7 @@ namespace {
namespace llvmc {
PluginLoader::PluginLoader() {
- llvm::sys::SmartScopedLock<true> Lock(&*PluginMutex);
+ llvm::sys::SmartScopedLock<true> Lock(*PluginMutex);
if (!pluginListInitialized) {
for (PluginRegistry::iterator B = PluginRegistry::begin(),
E = PluginRegistry::end(); B != E; ++B)
@@ -53,7 +53,7 @@ namespace llvmc {
}
PluginLoader::~PluginLoader() {
- llvm::sys::SmartScopedLock<true> Lock(&*PluginMutex);
+ llvm::sys::SmartScopedLock<true> Lock(*PluginMutex);
if (pluginListInitialized) {
for (PluginList::iterator B = Plugins.begin(), E = Plugins.end();
B != E; ++B)
@@ -63,14 +63,14 @@ namespace llvmc {
}
void PluginLoader::PopulateLanguageMap(LanguageMap& langMap) {
- llvm::sys::SmartScopedLock<true> Lock(&*PluginMutex);
+ llvm::sys::SmartScopedLock<true> Lock(*PluginMutex);
for (PluginList::iterator B = Plugins.begin(), E = Plugins.end();
B != E; ++B)
(*B)->PopulateLanguageMap(langMap);
}
void PluginLoader::PopulateCompilationGraph(CompilationGraph& graph) {
- llvm::sys::SmartScopedLock<true> Lock(&*PluginMutex);
+ llvm::sys::SmartScopedLock<true> Lock(*PluginMutex);
for (PluginList::iterator B = Plugins.begin(), E = Plugins.end();
B != E; ++B)
(*B)->PopulateCompilationGraph(graph);
diff --git a/lib/CompilerDriver/Tool.cpp b/lib/CompilerDriver/Tool.cpp
index 7953dd2..5a32fd3 100644
--- a/lib/CompilerDriver/Tool.cpp
+++ b/lib/CompilerDriver/Tool.cpp
@@ -56,7 +56,7 @@ sys::Path Tool::OutFilename(const sys::Path& In,
sys::Path Out;
if (StopCompilation) {
- if (!OutputFilename.empty() && SaveTemps != SaveTempsEnum::Obj ) {
+ if (!OutputFilename.empty()) {
Out.set(OutputFilename);
}
else if (IsJoin()) {
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp
index a80513f..053d960 100644
--- a/lib/ExecutionEngine/ExecutionEngine.cpp
+++ b/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -13,16 +13,19 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Config/alloca.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Host.h"
#include "llvm/Target/TargetData.h"
@@ -33,12 +36,19 @@ using namespace llvm;
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals , "Number of global vars initialized");
-ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
-ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
+ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) = 0;
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
+ std::string *ErrorStr) = 0;
ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
-ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
+ExecutionEngine::ExecutionEngine(ModuleProvider *P)
+ : EEState(*this),
+ LazyFunctionCreator(0) {
LazyCompilationDisabled = false;
GVCompilationDisabled = false;
SymbolSearchingDisabled = false;
@@ -105,6 +115,22 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
}
+void *ExecutionEngineState::RemoveMapping(
+ const MutexGuard &, const GlobalValue *ToUnmap) {
+ std::map<MapUpdatingCVH, void *>::iterator I =
+ GlobalAddressMap.find(getVH(ToUnmap));
+ void *OldVal;
+ if (I == GlobalAddressMap.end())
+ OldVal = 0;
+ else {
+ OldVal = I->second;
+ GlobalAddressMap.erase(I);
+ }
+
+ GlobalAddressReverseMap.erase(OldVal);
+ return OldVal;
+}
+
/// addGlobalMapping - Tell the execution engine that the specified global is
/// at the specified location. This is used internally as functions are JIT'd
/// and as global variables are laid out in memory. It can and should also be
@@ -113,14 +139,16 @@ Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
- DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n";
- void *&CurVal = state.getGlobalAddressMap(locked)[GV];
+ DEBUG(errs() << "JIT: Map \'" << GV->getName()
+ << "\' to [" << Addr << "]\n";);
+ void *&CurVal = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
CurVal = Addr;
// If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
@@ -131,8 +159,8 @@ void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
void ExecutionEngine::clearAllGlobalMappings() {
MutexGuard locked(lock);
- state.getGlobalAddressMap(locked).clear();
- state.getGlobalAddressReverseMap(locked).clear();
+ EEState.getGlobalAddressMap(locked).clear();
+ EEState.getGlobalAddressReverseMap(locked).clear();
}
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
@@ -141,13 +169,11 @@ void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
MutexGuard locked(lock);
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
- state.getGlobalAddressMap(locked).erase(FI);
- state.getGlobalAddressReverseMap(locked).erase(FI);
+ EEState.RemoveMapping(locked, FI);
}
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI) {
- state.getGlobalAddressMap(locked).erase(GI);
- state.getGlobalAddressReverseMap(locked).erase(GI);
+ EEState.RemoveMapping(locked, GI);
}
}
@@ -157,34 +183,25 @@ void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
- std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
+ std::map<ExecutionEngineState::MapUpdatingCVH, void *> &Map =
+ EEState.getGlobalAddressMap(locked);
// Deleting from the mapping?
if (Addr == 0) {
- std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
- void *OldVal;
- if (I == Map.end())
- OldVal = 0;
- else {
- OldVal = I->second;
- Map.erase(I);
- }
-
- if (!state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(Addr);
- return OldVal;
+ return EEState.RemoveMapping(locked, GV);
}
- void *&CurVal = Map[GV];
+ void *&CurVal = Map[EEState.getVH(GV)];
void *OldVal = CurVal;
- if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(CurVal);
+ if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
+ EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
CurVal = Addr;
// If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
@@ -197,9 +214,9 @@ void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
MutexGuard locked(lock);
- std::map<const GlobalValue*, void*>::iterator I =
- state.getGlobalAddressMap(locked).find(GV);
- return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
+ std::map<ExecutionEngineState::MapUpdatingCVH, void*>::iterator I =
+ EEState.getGlobalAddressMap(locked).find(EEState.getVH(GV));
+ return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
}
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
@@ -209,34 +226,34 @@ const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
MutexGuard locked(lock);
// If we haven't computed the reverse mapping yet, do so first.
- if (state.getGlobalAddressReverseMap(locked).empty()) {
- for (std::map<const GlobalValue*, void *>::iterator
- I = state.getGlobalAddressMap(locked).begin(),
- E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
- state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
+ if (EEState.getGlobalAddressReverseMap(locked).empty()) {
+ for (std::map<ExecutionEngineState::MapUpdatingCVH, void *>::iterator
+ I = EEState.getGlobalAddressMap(locked).begin(),
+ E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
+ EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
I->first));
}
- std::map<void *, const GlobalValue*>::iterator I =
- state.getGlobalAddressReverseMap(locked).find(Addr);
- return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+ std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
+ EEState.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
}
// CreateArgv - Turn a vector of strings into a nice argv style array of
// pointers to null terminated strings.
//
-static void *CreateArgv(ExecutionEngine *EE,
+static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
unsigned PtrSize = EE->getTargetData()->getPointerSize();
char *Result = new char[(InputArgv.size()+1)*PtrSize];
- DOUT << "JIT: ARGV = " << (void*)Result << "\n";
- const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
+ DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n");
+ const Type *SBytePtr = Type::getInt8PtrTy(C);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
- DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
+ DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
@@ -257,7 +274,8 @@ static void *CreateArgv(ExecutionEngine *EE,
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
-void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
+void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
+ bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
// Execute global ctors/dtors for each module in the program.
@@ -327,49 +345,47 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
const FunctionType *FTy = Fn->getFunctionType();
const Type* PPInt8Ty =
- PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
+ PointerType::getUnqual(PointerType::getUnqual(
+ Type::getInt8Ty(Fn->getContext())));
switch (NumArgs) {
case 3:
if (FTy->getParamType(2) != PPInt8Ty) {
- cerr << "Invalid type for third argument of main() supplied\n";
- abort();
+ llvm_report_error("Invalid type for third argument of main() supplied");
}
// FALLS THROUGH
case 2:
if (FTy->getParamType(1) != PPInt8Ty) {
- cerr << "Invalid type for second argument of main() supplied\n";
- abort();
+ llvm_report_error("Invalid type for second argument of main() supplied");
}
// FALLS THROUGH
case 1:
- if (FTy->getParamType(0) != Type::Int32Ty) {
- cerr << "Invalid type for first argument of main() supplied\n";
- abort();
+ if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
+ llvm_report_error("Invalid type for first argument of main() supplied");
}
// FALLS THROUGH
case 0:
if (!isa<IntegerType>(FTy->getReturnType()) &&
- FTy->getReturnType() != Type::VoidTy) {
- cerr << "Invalid return type of main() supplied\n";
- abort();
+ FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
+ llvm_report_error("Invalid return type of main() supplied");
}
break;
default:
- cerr << "Invalid number of arguments of main() supplied\n";
- abort();
+ llvm_report_error("Invalid number of arguments of main() supplied");
}
if (NumArgs) {
GVArgs.push_back(GVArgc); // Arg #0 = argc.
if (NumArgs > 1) {
- GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
+ // Arg #1 = argv.
+ GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
"argv[0] was null after CreateArgv");
if (NumArgs > 2) {
std::vector<std::string> EnvVars;
for (unsigned i = 0; envp[i]; ++i)
EnvVars.push_back(envp[i]);
- GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
+ // Arg #2 = envp.
+ GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
}
}
}
@@ -383,27 +399,73 @@ int ExecutionEngine::runFunctionAsMain(Function *Fn,
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
bool ForceInterpreter,
std::string *ErrorStr,
- CodeGenOpt::Level OptLevel) {
- ExecutionEngine *EE = 0;
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) {
+ return EngineBuilder(MP)
+ .setEngineKind(ForceInterpreter
+ ? EngineKind::Interpreter
+ : EngineKind::JIT)
+ .setErrorStr(ErrorStr)
+ .setOptLevel(OptLevel)
+ .setAllocateGVsWithCode(GVsWithCode)
+ .create();
+}
+ExecutionEngine *ExecutionEngine::create(Module *M) {
+ return EngineBuilder(M).create();
+}
+
+/// EngineBuilder - Overloaded constructor that automatically creates an
+/// ExistingModuleProvider for an existing module.
+EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
+ InitEngine();
+}
+
+ExecutionEngine *EngineBuilder::create() {
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
return 0;
- // Unless the interpreter was explicitly selected, try making a JIT.
- if (!ForceInterpreter && JITCtor)
- EE = JITCtor(MP, ErrorStr, OptLevel);
+ // If the user specified a memory manager but didn't specify which engine to
+ // create, we assume they only want the JIT, and we fail if they only want
+ // the interpreter.
+ if (JMM) {
+ if (WhichEngine & EngineKind::JIT)
+ WhichEngine = EngineKind::JIT;
+ else {
+ if (ErrorStr)
+ *ErrorStr = "Cannot create an interpreter with a memory manager.";
+ return 0;
+ }
+ }
- // If we can't make a JIT, make an interpreter instead.
- if (EE == 0 && InterpCtor)
- EE = InterpCtor(MP, ErrorStr, OptLevel);
+ // Unless the interpreter was explicitly selected or the JIT is not linked,
+ // try making a JIT.
+ if (WhichEngine & EngineKind::JIT) {
+ if (ExecutionEngine::JITCtor) {
+ ExecutionEngine *EE =
+ ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
+ AllocateGVsWithCode);
+ if (EE) return EE;
+ }
+ }
- return EE;
-}
+ // If we can't make a JIT and we didn't request one specifically, try making
+ // an interpreter instead.
+ if (WhichEngine & EngineKind::Interpreter) {
+ if (ExecutionEngine::InterpCtor)
+ return ExecutionEngine::InterpCtor(MP, ErrorStr);
+ if (ErrorStr)
+ *ErrorStr = "Interpreter has not been linked in.";
+ return 0;
+ }
-ExecutionEngine *ExecutionEngine::create(Module *M) {
- return create(new ExistingModuleProvider(M));
+ if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ }
+ return 0;
}
/// getPointerToGlobal - This returns the address of the specified global
@@ -414,7 +476,7 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
return getPointerToFunction(F);
MutexGuard locked(lock);
- void *p = state.getGlobalAddressMap(locked)[GV];
+ void *p = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
if (p)
return p;
@@ -423,8 +485,8 @@ void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
EmitGlobalVariable(GVar);
else
- assert(0 && "Global hasn't had an address allocated yet!");
- return state.getGlobalAddressMap(locked)[GV];
+ llvm_unreachable("Global hasn't had an address allocated yet!");
+ return EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
}
/// This function converts a Constant* into a GenericValue. The interesting
@@ -482,11 +544,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
}
case Instruction::UIToFP: {
GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::FloatTy)
+ if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.roundToDouble());
- else if (CE->getType() == Type::DoubleTy)
+ else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.roundToDouble();
- else if (CE->getType() == Type::X86_FP80Ty) {
+ else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
@@ -498,11 +560,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
}
case Instruction::SIToFP: {
GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::FloatTy)
+ if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
- else if (CE->getType() == Type::DoubleTy)
+ else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
- else if (CE->getType() == Type::X86_FP80Ty) {
+ else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = { 0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
@@ -516,11 +578,11 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
case Instruction::FPToSI: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- if (Op0->getType() == Type::FloatTy)
+ if (Op0->getType()->isFloatTy())
GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
- else if (Op0->getType() == Type::DoubleTy)
+ else if (Op0->getType()->isDoubleTy())
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
- else if (Op0->getType() == Type::X86_FP80Ty) {
+ else if (Op0->getType()->isX86_FP80Ty()) {
APFloat apf = APFloat(GV.IntVal);
uint64_t v;
bool ignored;
@@ -550,20 +612,22 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue GV = getConstantValue(Op0);
const Type* DestTy = CE->getType();
switch (Op0->getType()->getTypeID()) {
- default: assert(0 && "Invalid bitcast operand");
+ default: llvm_unreachable("Invalid bitcast operand");
case Type::IntegerTyID:
assert(DestTy->isFloatingPoint() && "invalid bitcast");
- if (DestTy == Type::FloatTy)
+ if (DestTy->isFloatTy())
GV.FloatVal = GV.IntVal.bitsToFloat();
- else if (DestTy == Type::DoubleTy)
+ else if (DestTy->isDoubleTy())
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
case Type::FloatTyID:
- assert(DestTy == Type::Int32Ty && "Invalid bitcast");
+ assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
+ "Invalid bitcast");
GV.IntVal.floatToBits(GV.FloatVal);
break;
case Type::DoubleTyID:
- assert(DestTy == Type::Int64Ty && "Invalid bitcast");
+ assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
+ "Invalid bitcast");
GV.IntVal.doubleToBits(GV.DoubleVal);
break;
case Type::PointerTyID:
@@ -589,10 +653,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
GenericValue RHS = getConstantValue(CE->getOperand(1));
GenericValue GV;
switch (CE->getOperand(0)->getType()->getTypeID()) {
- default: assert(0 && "Bad add type!"); abort();
+ default: llvm_unreachable("Bad add type!");
case Type::IntegerTyID:
switch (CE->getOpcode()) {
- default: assert(0 && "Invalid integer opcode");
+ default: llvm_unreachable("Invalid integer opcode");
case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
@@ -607,7 +671,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
break;
case Type::FloatTyID:
switch (CE->getOpcode()) {
- default: assert(0 && "Invalid float opcode"); abort();
+ default: llvm_unreachable("Invalid float opcode");
case Instruction::FAdd:
GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
case Instruction::FSub:
@@ -622,7 +686,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
break;
case Type::DoubleTyID:
switch (CE->getOpcode()) {
- default: assert(0 && "Invalid double opcode"); abort();
+ default: llvm_unreachable("Invalid double opcode");
case Instruction::FAdd:
GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
case Instruction::FSub:
@@ -640,7 +704,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
case Type::FP128TyID: {
APFloat apfLHS = APFloat(LHS.IntVal);
switch (CE->getOpcode()) {
- default: assert(0 && "Invalid long double opcode"); abort();
+ default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
case Instruction::FAdd:
apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
@@ -670,8 +734,10 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
default:
break;
}
- cerr << "ConstantExpr not handled: " << *CE << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "ConstantExpr not handled: " << *CE;
+ llvm_report_error(Msg.str());
}
GenericValue Result;
@@ -698,11 +764,13 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
else
- assert(0 && "Unknown constant pointer type!");
+ llvm_unreachable("Unknown constant pointer type!");
break;
default:
- cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
+ llvm_report_error(Msg.str());
}
return Result;
}
@@ -762,7 +830,7 @@ void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
*((PointerTy*)Ptr) = Val.PointerVal;
break;
default:
- cerr << "Cannot store value of type " << *Ty << "!\n";
+ errs() << "Cannot store value of type " << *Ty << "!\n";
}
if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
@@ -803,15 +871,6 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
const Type *Ty) {
const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
- if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
- // Host and target are different endian - reverse copy the stored
- // bytes into a buffer, and load from that.
- uint8_t *Src = (uint8_t*)Ptr;
- uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
- std::reverse_copy(Src, Src + LoadBytes, Buf);
- Ptr = (GenericValue*)Buf;
- }
-
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
// An APInt with all words initially zero.
@@ -836,8 +895,10 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
break;
}
default:
- cerr << "Cannot load value of type " << *Ty << "!\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Cannot load value of type " << *Ty << "!";
+ llvm_report_error(Msg.str());
}
}
@@ -845,7 +906,7 @@ void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
- DOUT << "JIT: Initializing " << Addr << " ";
+ DEBUG(errs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
if (isa<UndefValue>(Init)) {
return;
@@ -876,8 +937,8 @@ void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
return;
}
- cerr << "Bad Type: " << *Init->getType() << "\n";
- assert(0 && "Unknown constant type to initialize memory with!");
+ errs() << "Bad Type: " << *Init->getType() << "\n";
+ llvm_unreachable("Unknown constant type to initialize memory with!");
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
@@ -950,12 +1011,11 @@ void ExecutionEngine::emitGlobals() {
// External variable reference. Try to use the dynamic loader to
// get a pointer to it.
if (void *SymAddr =
- sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
+ sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
addGlobalMapping(I, SymAddr);
else {
- cerr << "Could not resolve external global address: "
- << I->getName() << "\n";
- abort();
+ llvm_report_error("Could not resolve external global address: "
+ +I->getName());
}
}
}
@@ -1011,3 +1071,18 @@ void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
NumInitBytes += (unsigned)GVSize;
++NumGlobals;
}
+
+ExecutionEngineState::MapUpdatingCVH::MapUpdatingCVH(
+ ExecutionEngineState &EES, const GlobalValue *GV)
+ : CallbackVH(const_cast<GlobalValue*>(GV)), EES(EES) {}
+
+void ExecutionEngineState::MapUpdatingCVH::deleted() {
+ MutexGuard locked(EES.EE.lock);
+ EES.RemoveMapping(locked, *this); // Destroys *this.
+}
+
+void ExecutionEngineState::MapUpdatingCVH::allUsesReplacedWith(
+ Value *new_value) {
+ assert(false && "The ExecutionEngine doesn't know how to handle a"
+ " RAUW on a value it has a global mapping for.");
+}
diff --git a/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
index 401a226..5901cd7 100644
--- a/lib/ExecutionEngine/ExecutionEngineBindings.cpp
+++ b/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -15,6 +15,7 @@
#include "llvm-c/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cstring>
using namespace llvm;
@@ -45,8 +46,7 @@ LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) {
GenVal->DoubleVal = N;
break;
default:
- assert(0 && "LLVMGenericValueToFloat supports only float and double.");
- break;
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
}
return wrap(GenVal);
}
@@ -75,7 +75,7 @@ double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) {
case Type::DoubleTyID:
return unwrap(GenVal)->DoubleVal;
default:
- assert(0 && "LLVMGenericValueToFloat supports only float and double.");
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
break;
}
return 0; // Not reached
@@ -91,7 +91,10 @@ int LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
LLVMModuleProviderRef MP,
char **OutError) {
std::string Error;
- if (ExecutionEngine *EE = ExecutionEngine::create(unwrap(MP), false, &Error)){
+ EngineBuilder builder(unwrap(MP));
+ builder.setEngineKind(EngineKind::Either)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *EE = builder.create()){
*OutEE = wrap(EE);
return 0;
}
@@ -103,8 +106,10 @@ int LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
LLVMModuleProviderRef MP,
char **OutError) {
std::string Error;
- if (ExecutionEngine *Interp =
- ExecutionEngine::create(unwrap(MP), true, &Error)) {
+ EngineBuilder builder(unwrap(MP));
+ builder.setEngineKind(EngineKind::Interpreter)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *Interp = builder.create()) {
*OutInterp = wrap(Interp);
return 0;
}
@@ -117,9 +122,11 @@ int LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
unsigned OptLevel,
char **OutError) {
std::string Error;
- if (ExecutionEngine *JIT =
- ExecutionEngine::create(unwrap(MP), false, &Error,
- (CodeGenOpt::Level)OptLevel)) {
+ EngineBuilder builder(unwrap(MP));
+ builder.setEngineKind(EngineKind::JIT)
+ .setErrorStr(&Error)
+ .setOptLevel((CodeGenOpt::Level)OptLevel);
+ if (ExecutionEngine *JIT = builder.create()) {
*OutJIT = wrap(JIT);
return 0;
}
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
index bb3f64e..f8c775e 100644
--- a/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -22,10 +22,10 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cmath>
-#include <cstring>
using namespace llvm;
STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
@@ -37,15 +37,6 @@ static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
// Various Helper Functions
//===----------------------------------------------------------------------===//
-static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
- // Determine if the value is signed or not
- bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
- // If its signed, extend the sign bits
- if (isSigned)
- Val |= ~ITy->getBitMask();
- return Val;
-}
-
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
SF.Values[V] = Val;
}
@@ -65,8 +56,8 @@ static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
- cerr << "Unhandled type for FAdd instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
}
@@ -76,8 +67,8 @@ static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
- cerr << "Unhandled type for FSub instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
}
@@ -87,8 +78,8 @@ static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
- cerr << "Unhandled type for FMul instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
}
@@ -98,8 +89,8 @@ static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
- cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
}
@@ -113,8 +104,8 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
- cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
}
@@ -140,8 +131,8 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
- cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -153,8 +144,8 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
- cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -166,8 +157,8 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
- cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -179,8 +170,8 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
- cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -192,8 +183,8 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
- cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -205,8 +196,8 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
- cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -218,8 +209,8 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
- cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -231,8 +222,8 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
- cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -244,8 +235,8 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
- cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -257,8 +248,8 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
- cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -282,8 +273,8 @@ void Interpreter::visitICmpInst(ICmpInst &I) {
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
default:
- cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
- abort();
+ errs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
+ llvm_unreachable(0);
}
SetValue(&I, R, SF);
@@ -301,8 +292,8 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
default:
- cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -315,8 +306,8 @@ static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(!=, Double);
default:
- cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -328,8 +319,8 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
default:
- cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -341,8 +332,8 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
default:
- cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -354,8 +345,8 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
default:
- cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
@@ -367,14 +358,14 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
default:
- cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
return Dest;
}
#define IMPLEMENT_UNORDERED(TY, X,Y) \
- if (TY == Type::FloatTy) { \
+ if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
@@ -430,7 +421,7 @@ static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
- if (Ty == Type::FloatTy)
+ if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
else
@@ -442,7 +433,7 @@ static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
- if (Ty == Type::FloatTy)
+ if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
else
@@ -476,8 +467,8 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
default:
- cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
- abort();
+ errs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ llvm_unreachable(0);
}
SetValue(&I, R, SF);
@@ -522,8 +513,8 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
return Result;
}
default:
- cerr << "Unhandled Cmp predicate\n";
- abort();
+ errs() << "Unhandled Cmp predicate\n";
+ llvm_unreachable(0);
}
}
@@ -551,8 +542,8 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
default:
- cerr << "Don't know how to handle this binary operator!\n-->" << I;
- abort();
+ errs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(0);
}
SetValue(&I, R, SF);
@@ -610,7 +601,8 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
// fill in the return value...
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
- if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
+ // Save result...
+ if (CallingSF.Caller.getType() != Type::getVoidTy(RetTy->getContext()))
SetValue(I, Result, CallingSF);
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
@@ -621,7 +613,7 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
void Interpreter::visitReturnInst(ReturnInst &I) {
ExecutionContext &SF = ECStack.back();
- const Type *RetTy = Type::VoidTy;
+ const Type *RetTy = Type::getVoidTy(I.getContext());
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
@@ -639,7 +631,7 @@ void Interpreter::visitUnwindInst(UnwindInst &I) {
do {
ECStack.pop_back ();
if (ECStack.empty ())
- abort ();
+ llvm_report_error("Empty stack during unwind!");
Inst = ECStack.back ().Caller.getInstruction ();
} while (!(Inst && isa<InvokeInst> (Inst)));
@@ -652,8 +644,7 @@ void Interpreter::visitUnwindInst(UnwindInst &I) {
}
void Interpreter::visitUnreachableInst(UnreachableInst &I) {
- cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
- abort();
+ llvm_report_error("Program executed an 'unreachable' instruction!");
}
void Interpreter::visitBranchInst(BranchInst &I) {
@@ -746,9 +737,9 @@ void Interpreter::visitAllocationInst(AllocationInst &I) {
// Allocate enough memory to hold the type...
void *Memory = malloc(MemToAlloc);
- DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
- << NumElements << " (Total: " << MemToAlloc << ") at "
- << uintptr_t(Memory) << '\n';
+ DEBUG(errs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
+ << NumElements << " (Total: " << MemToAlloc << ") at "
+ << uintptr_t(Memory) << '\n');
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
@@ -804,7 +795,7 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
GenericValue Result;
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
- DOUT << "GEP Index " << Total << " bytes.\n";
+ DEBUG(errs() << "GEP Index " << Total << " bytes.\n");
return Result;
}
@@ -822,7 +813,7 @@ void Interpreter::visitLoadInst(LoadInst &I) {
LoadValueFromMemory(Result, Ptr, I.getType());
SetValue(&I, Result, SF);
if (I.isVolatile() && PrintVolatile)
- cerr << "Volatile load " << I;
+ errs() << "Volatile load " << I;
}
void Interpreter::visitStoreInst(StoreInst &I) {
@@ -832,7 +823,7 @@ void Interpreter::visitStoreInst(StoreInst &I) {
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
if (I.isVolatile() && PrintVolatile)
- cerr << "Volatile store: " << I;
+ errs() << "Volatile store: " << I;
}
//===----------------------------------------------------------------------===//
@@ -979,7 +970,7 @@ GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType() == Type::DoubleTy && DstTy == Type::FloatTy &&
+ assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
"Invalid FPTrunc instruction");
Dest.FloatVal = (float) Src.DoubleVal;
return Dest;
@@ -988,7 +979,7 @@ GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
- assert(SrcVal->getType() == Type::FloatTy && DstTy == Type::DoubleTy &&
+ assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
"Invalid FPTrunc instruction");
Dest.DoubleVal = (double) Src.FloatVal;
return Dest;
@@ -1079,28 +1070,28 @@ GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
Dest.PointerVal = Src.PointerVal;
} else if (DstTy->isInteger()) {
- if (SrcTy == Type::FloatTy) {
+ if (SrcTy->isFloatTy()) {
Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT);
Dest.IntVal.floatToBits(Src.FloatVal);
- } else if (SrcTy == Type::DoubleTy) {
+ } else if (SrcTy->isDoubleTy()) {
Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT);
Dest.IntVal.doubleToBits(Src.DoubleVal);
} else if (SrcTy->isInteger()) {
Dest.IntVal = Src.IntVal;
} else
- assert(0 && "Invalid BitCast");
- } else if (DstTy == Type::FloatTy) {
+ llvm_unreachable("Invalid BitCast");
+ } else if (DstTy->isFloatTy()) {
if (SrcTy->isInteger())
Dest.FloatVal = Src.IntVal.bitsToFloat();
else
Dest.FloatVal = Src.FloatVal;
- } else if (DstTy == Type::DoubleTy) {
+ } else if (DstTy->isDoubleTy()) {
if (SrcTy->isInteger())
Dest.DoubleVal = Src.IntVal.bitsToDouble();
else
Dest.DoubleVal = Src.DoubleVal;
} else
- assert(0 && "Invalid Bitcast");
+ llvm_unreachable("Invalid Bitcast");
return Dest;
}
@@ -1184,8 +1175,8 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
IMPLEMENT_VAARG(Float);
IMPLEMENT_VAARG(Double);
default:
- cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
- abort();
+ errs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
}
// Set the Value of this Instruction.
@@ -1271,8 +1262,8 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
break;
default:
- cerr << "Unhandled ConstantExpr: " << *CE << "\n";
- abort();
+ errs() << "Unhandled ConstantExpr: " << *CE << "\n";
+ llvm_unreachable(0);
return GenericValue();
}
return Dest;
@@ -1344,30 +1335,29 @@ void Interpreter::run() {
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
- DOUT << "About to interpret: " << I;
+ DEBUG(errs() << "About to interpret: " << I);
visit(I); // Dispatch to one of the visit* methods...
#if 0
// This is not safe, as visiting the instruction could lower it and free I.
-#ifndef NDEBUG
+DEBUG(
if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
I.getType() != Type::VoidTy) {
- DOUT << " --> ";
+ errs() << " --> ";
const GenericValue &Val = SF.Values[&I];
switch (I.getType()->getTypeID()) {
- default: assert(0 && "Invalid GenericValue Type");
- case Type::VoidTyID: DOUT << "void"; break;
- case Type::FloatTyID: DOUT << "float " << Val.FloatVal; break;
- case Type::DoubleTyID: DOUT << "double " << Val.DoubleVal; break;
- case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal);
+ default: llvm_unreachable("Invalid GenericValue Type");
+ case Type::VoidTyID: errs() << "void"; break;
+ case Type::FloatTyID: errs() << "float " << Val.FloatVal; break;
+ case Type::DoubleTyID: errs() << "double " << Val.DoubleVal; break;
+ case Type::PointerTyID: errs() << "void* " << intptr_t(Val.PointerVal);
break;
case Type::IntegerTyID:
- DOUT << "i" << Val.IntVal.getBitWidth() << " "
- << Val.IntVal.toStringUnsigned(10)
- << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
+ errs() << "i" << Val.IntVal.getBitWidth() << " "
+ << Val.IntVal.toStringUnsigned(10)
+ << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
break;
}
- }
-#endif
+ });
#endif
}
}
diff --git a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
index b8525a3..8c45a36 100644
--- a/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
+++ b/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -23,7 +23,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Config/config.h" // Detect libffi
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/ManagedStatic.h"
@@ -54,7 +54,7 @@ static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
static std::map<std::string, ExFunc> FuncNames;
#ifdef USE_LIBFFI
-typedef void (*RawFunc)(void);
+typedef void (*RawFunc)();
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
#endif
@@ -95,15 +95,15 @@ static ExFunc lookupFunction(const Function *F) {
const FunctionType *FT = F->getFunctionType();
for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
ExtName += getTypeID(FT->getContainedType(i));
- ExtName += "_" + F->getName();
+ ExtName + "_" + F->getNameStr();
- sys::ScopedLock Writer(&*FunctionsLock);
+ sys::ScopedLock Writer(*FunctionsLock);
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
- FnPtr = FuncNames["lle_X_"+F->getName()];
+ FnPtr = FuncNames["lle_X_" + F->getNameStr()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
- FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
- ("lle_X_"+F->getName()).c_str());
+ FnPtr = (ExFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr());
if (FnPtr != 0)
ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
return FnPtr;
@@ -126,8 +126,7 @@ static ffi_type *ffiTypeFor(const Type *Ty) {
default: break;
}
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- cerr << "Type could not be mapped for use with libffi.\n";
- abort();
+ llvm_report_error("Type could not be mapped for use with libffi.");
return NULL;
}
@@ -175,8 +174,7 @@ static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
default: break;
}
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
- cerr << "Type value could not be mapped for use with libffi.\n";
- abort();
+ llvm_report_error("Type value could not be mapped for use with libffi.");
return NULL;
}
@@ -190,9 +188,8 @@ static bool ffiInvoke(RawFunc Fn, Function *F,
// TODO: We don't have type information about the remaining arguments, because
// this information is never passed into ExecutionEngine::runFunction().
if (ArgVals.size() > NumArgs && F->isVarArg()) {
- cerr << "Calling external var arg function '" << F->getName()
- << "' is not supported by the Interpreter.\n";
- abort();
+ llvm_report_error("Calling external var arg function '" + F->getName()
+ + "' is not supported by the Interpreter.");
}
unsigned ArgBytes = 0;
@@ -206,9 +203,10 @@ static bool ffiInvoke(RawFunc Fn, Function *F,
ArgBytes += TD->getTypeStoreSize(ArgTy);
}
- uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
- uint8_t *ArgDataPtr = ArgData;
- std::vector<void*> values(NumArgs);
+ SmallVector<uint8_t, 128> ArgData;
+ ArgData.resize(ArgBytes);
+ uint8_t *ArgDataPtr = ArgData.data();
+ SmallVector<void*, 16> values(NumArgs);
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
const unsigned ArgNo = A->getArgNo();
@@ -221,22 +219,22 @@ static bool ffiInvoke(RawFunc Fn, Function *F,
ffi_type *rtype = ffiTypeFor(RetTy);
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
- void *ret = NULL;
+ SmallVector<uint8_t, 128> ret;
if (RetTy->getTypeID() != Type::VoidTyID)
- ret = alloca(TD->getTypeStoreSize(RetTy));
- ffi_call(&cif, Fn, ret, &values[0]);
+ ret.resize(TD->getTypeStoreSize(RetTy));
+ ffi_call(&cif, Fn, ret.data(), values.data());
switch (RetTy->getTypeID()) {
case Type::IntegerTyID:
switch (cast<IntegerType>(RetTy)->getBitWidth()) {
- case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
- case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
- case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
- case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
+ case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
+ case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
+ case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
+ case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
}
break;
- case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
- case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
- case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
+ case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
+ case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
+ case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
default: break;
}
return true;
@@ -272,7 +270,7 @@ GenericValue Interpreter::callExternalFunction(Function *F,
} else {
RawFn = RF->second;
}
-
+
FunctionsLock->release();
GenericValue Result;
@@ -280,10 +278,12 @@ GenericValue Interpreter::callExternalFunction(Function *F,
return Result;
#endif // USE_LIBFFI
- cerr << "Tried to execute an unknown external function: "
- << F->getType()->getDescription() << " " << F->getName() << "\n";
- if (F->getName() != "__main")
- abort();
+ if (F->getName() == "__main")
+ errs() << "Tried to execute an unknown external function: "
+ << F->getType()->getDescription() << " __main\n";
+ else
+ llvm_report_error("Tried to execute an unknown external function: " +
+ F->getType()->getDescription() + " " +F->getName());
return GenericValue();
}
@@ -291,6 +291,12 @@ GenericValue Interpreter::callExternalFunction(Function *F,
//===----------------------------------------------------------------------===//
// Functions "exported" to the running application...
//
+
+// Visual Studio warns about returning GenericValue in extern "C" linkage
+#ifdef _MSC_VER
+ #pragma warning(disable : 4190)
+#endif
+
extern "C" { // Don't add C++ manglings to llvm mangling :)
// void atexit(Function*)
@@ -313,6 +319,8 @@ GenericValue lle_X_exit(const FunctionType *FT,
// void abort(void)
GenericValue lle_X_abort(const FunctionType *FT,
const std::vector<GenericValue> &Args) {
+ //FIXME: should we report or raise here?
+ //llvm_report_error("Interpreted program raised SIGABRT");
raise (SIGABRT);
return GenericValue();
}
@@ -327,7 +335,7 @@ GenericValue lle_X_sprintf(const FunctionType *FT,
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
- GenericValue GV;
+ GenericValue GV;
GV.IntVal = APInt(32, strlen(FmtStr));
while (1) {
switch (*FmtStr) {
@@ -385,7 +393,8 @@ GenericValue lle_X_sprintf(const FunctionType *FT,
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
case 's':
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
- default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
+ default:
+ errs() << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
strcpy(OutputBuffer, Buffer);
@@ -406,11 +415,12 @@ GenericValue lle_X_printf(const FunctionType *FT,
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
- cout << Buffer;
+ outs() << Buffer;
return GV;
}
-static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
+static void ByteswapSCANFResults(LLVMContext &C,
+ const char *Fmt, void *Arg0, void *Arg1,
void *Arg2, void *Arg3, void *Arg4, void *Arg5,
void *Arg6, void *Arg7, void *Arg8) {
void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
@@ -450,26 +460,26 @@ static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
case 'd':
if (Long || LongLong) {
- Size = 8; Ty = Type::Int64Ty;
+ Size = 8; Ty = Type::getInt64Ty(C);
} else if (Half) {
- Size = 4; Ty = Type::Int16Ty;
+ Size = 4; Ty = Type::getInt16Ty(C);
} else {
- Size = 4; Ty = Type::Int32Ty;
+ Size = 4; Ty = Type::getInt32Ty(C);
}
break;
case 'e': case 'g': case 'E':
case 'f':
if (Long || LongLong) {
- Size = 8; Ty = Type::DoubleTy;
+ Size = 8; Ty = Type::getDoubleTy(C);
} else {
- Size = 4; Ty = Type::FloatTy;
+ Size = 4; Ty = Type::getFloatTy(C);
}
break;
case 's': case 'c': case '[': // No byteswap needed
Size = 1;
- Ty = Type::Int8Ty;
+ Ty = Type::getInt8Ty(C);
break;
default: break;
@@ -498,7 +508,8 @@ GenericValue lle_X_sscanf(const FunctionType *FT,
GenericValue GV;
GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
- ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
+ ByteswapSCANFResults(FT->getContext(),
+ Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9], 0);
return GV;
}
@@ -515,7 +526,8 @@ GenericValue lle_X_scanf(const FunctionType *FT,
GenericValue GV;
GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
- ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
+ ByteswapSCANFResults(FT->getContext(),
+ Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
return GV;
}
@@ -537,9 +549,14 @@ GenericValue lle_X_fprintf(const FunctionType *FT,
} // End extern "C"
+// Done with externals; turn the warning back on
+#ifdef _MSC_VER
+ #pragma warning(default: 4190)
+#endif
+
void Interpreter::initializeExternalFunctions() {
- sys::ScopedLock Writer(&*FunctionsLock);
+ sys::ScopedLock Writer(*FunctionsLock);
FuncNames["lle_X_atexit"] = lle_X_atexit;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
@@ -550,4 +567,3 @@ void Interpreter::initializeExternalFunctions() {
FuncNames["lle_X_scanf"] = lle_X_scanf;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
}
-
diff --git a/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/lib/ExecutionEngine/Interpreter/Interpreter.cpp
index d7f38ef5..9be6a92 100644
--- a/lib/ExecutionEngine/Interpreter/Interpreter.cpp
+++ b/lib/ExecutionEngine/Interpreter/Interpreter.cpp
@@ -33,8 +33,7 @@ extern "C" void LLVMLinkInInterpreter() { }
/// create - Create a new interpreter object. This can never fail.
///
-ExecutionEngine *Interpreter::create(ModuleProvider *MP, std::string* ErrStr,
- CodeGenOpt::Level OptLevel /*unused*/) {
+ExecutionEngine *Interpreter::create(ModuleProvider *MP, std::string* ErrStr) {
// Tell this ModuleProvide to materialize and release the module
if (!MP->materializeModule(ErrStr))
// We got an error, just return 0
@@ -98,4 +97,3 @@ Interpreter::runFunction(Function *F,
return ExitValue;
}
-
diff --git a/lib/ExecutionEngine/Interpreter/Interpreter.h b/lib/ExecutionEngine/Interpreter/Interpreter.h
index 6b13c90..e026287 100644
--- a/lib/ExecutionEngine/Interpreter/Interpreter.h
+++ b/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -17,11 +17,12 @@
#include "llvm/Function.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/DataTypes.h"
-
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/raw_ostream.h"
namespace llvm {
class IntrinsicLowering;
@@ -107,8 +108,7 @@ public:
/// create - Create an interpreter ExecutionEngine. This can never fail.
///
- static ExecutionEngine *create(ModuleProvider *M, std::string *ErrorStr = 0,
- CodeGenOpt::Level = CodeGenOpt::Default);
+ static ExecutionEngine *create(ModuleProvider *M, std::string *ErrorStr = 0);
/// run - Start execution with the specified function and arguments.
///
@@ -144,7 +144,9 @@ public:
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitPHINode(PHINode &PN) { assert(0 && "PHI nodes already handled!"); }
+ void visitPHINode(PHINode &PN) {
+ llvm_unreachable("PHI nodes already handled!");
+ }
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
@@ -172,8 +174,8 @@ public:
void visitVAArgInst(VAArgInst &I);
void visitInstruction(Instruction &I) {
- cerr << I;
- assert(0 && "Instruction not interpretable yet!");
+ errs() << I;
+ llvm_unreachable("Instruction not interpretable yet!");
}
GenericValue callExternalFunction(Function *F,
diff --git a/lib/ExecutionEngine/JIT/CMakeLists.txt b/lib/ExecutionEngine/JIT/CMakeLists.txt
index bf915f7..41b3b4e 100644
--- a/lib/ExecutionEngine/JIT/CMakeLists.txt
+++ b/lib/ExecutionEngine/JIT/CMakeLists.txt
@@ -4,9 +4,11 @@ add_definitions(-DENABLE_X86_JIT)
add_llvm_library(LLVMJIT
Intercept.cpp
JIT.cpp
+ JITDebugRegisterer.cpp
JITDwarfEmitter.cpp
JITEmitter.cpp
JITMemoryManager.cpp
MacOSJITEventListener.cpp
+ OProfileJITEventListener.cpp
TargetSelect.cpp
)
diff --git a/lib/ExecutionEngine/JIT/Intercept.cpp b/lib/ExecutionEngine/JIT/Intercept.cpp
index 3dcc462..c00b60a 100644
--- a/lib/ExecutionEngine/JIT/Intercept.cpp
+++ b/lib/ExecutionEngine/JIT/Intercept.cpp
@@ -16,7 +16,7 @@
//===----------------------------------------------------------------------===//
#include "JIT.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Config/config.h"
using namespace llvm;
@@ -56,6 +56,7 @@ static void runAtExitHandlers() {
* linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
* available as an exported symbol, so we have to add it explicitly.
*/
+namespace {
class StatSymbols {
public:
StatSymbols() {
@@ -72,6 +73,7 @@ public:
sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
}
};
+}
static StatSymbols initStatSymbols;
#endif // __linux__
@@ -82,7 +84,7 @@ static void jit_exit(int Status) {
}
// jit_atexit - Used to intercept the "atexit" library call.
-static int jit_atexit(void (*Fn)(void)) {
+static int jit_atexit(void (*Fn)()) {
AtExitHandlers.push_back(Fn); // Take note of atexit handler...
return 0; // Always successful
}
@@ -140,9 +142,8 @@ void *JIT::getPointerToNamedFunction(const std::string &Name,
return RP;
if (AbortOnFailure) {
- cerr << "ERROR: Program used external function '" << Name
- << "' which could not be resolved!\n";
- abort();
+ llvm_report_error("Program used external function '"+Name+
+ "' which could not be resolved!");
}
return 0;
}
diff --git a/lib/ExecutionEngine/JIT/JIT.cpp b/lib/ExecutionEngine/JIT/JIT.cpp
index 1d8312f..b2a268b 100644
--- a/lib/ExecutionEngine/JIT/JIT.cpp
+++ b/lib/ExecutionEngine/JIT/JIT.cpp
@@ -27,6 +27,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Config/config.h"
@@ -196,25 +197,44 @@ void DarwinRegisterFrame(void* FrameBegin) {
ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
std::string *ErrorStr,
JITMemoryManager *JMM,
- CodeGenOpt::Level OptLevel) {
- ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, OptLevel);
- if (!EE) return 0;
-
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) {
+ return JIT::createJIT(MP, ErrorStr, JMM, OptLevel, GVsWithCode);
+}
+
+ExecutionEngine *JIT::createJIT(ModuleProvider *MP,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) {
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
- sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
- return EE;
+ if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
+ return 0;
+
+ // Pick a target either via -march or by guessing the native arch.
+ TargetMachine *TM = JIT::selectTarget(MP, ErrorStr);
+ if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
+
+ // If the target supports JIT code generation, create a the JIT.
+ if (TargetJITInfo *TJ = TM->getJITInfo()) {
+ return new JIT(MP, *TM, *TJ, JMM, OptLevel, GVsWithCode);
+ } else {
+ if (ErrorStr)
+ *ErrorStr = "target does not support JIT code generation";
+ return 0;
+ }
}
JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
- JITMemoryManager *JMM, CodeGenOpt::Level OptLevel)
- : ExecutionEngine(MP), TM(tm), TJI(tji) {
+ JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
+ : ExecutionEngine(MP), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode) {
setTargetData(TM.getTargetData());
jitstate = new JITState(MP);
// Initialize JCE
- JCE = createEmitter(*this, JMM);
+ JCE = createEmitter(*this, JMM, TM);
// Add target data
MutexGuard locked(lock);
@@ -224,8 +244,7 @@ JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
- cerr << "Target does not support machine code emission!\n";
- abort();
+ llvm_report_error("Target does not support machine code emission!");
}
// Register routine for informing unwinding runtime about new EH frames
@@ -273,8 +292,7 @@ void JIT::addModuleProvider(ModuleProvider *MP) {
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
- cerr << "Target does not support machine code emission!\n";
- abort();
+ llvm_report_error("Target does not support machine code emission!");
}
// Initialize passes.
@@ -306,8 +324,7 @@ Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
- cerr << "Target does not support machine code emission!\n";
- abort();
+ llvm_report_error("Target does not support machine code emission!");
}
// Initialize passes.
@@ -338,8 +355,7 @@ void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
- cerr << "Target does not support machine code emission!\n";
- abort();
+ llvm_report_error("Target does not support machine code emission!");
}
// Initialize passes.
@@ -366,10 +382,11 @@ GenericValue JIT::runFunction(Function *F,
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
- if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
+ if (RetTy == Type::getInt32Ty(F->getContext()) ||
+ RetTy == Type::getVoidTy(F->getContext())) {
switch (ArgValues.size()) {
case 3:
- if (FTy->getParamType(0) == Type::Int32Ty &&
+ if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
isa<PointerType>(FTy->getParamType(1)) &&
isa<PointerType>(FTy->getParamType(2))) {
int (*PF)(int, char **, const char **) =
@@ -384,7 +401,7 @@ GenericValue JIT::runFunction(Function *F,
}
break;
case 2:
- if (FTy->getParamType(0) == Type::Int32Ty &&
+ if (FTy->getParamType(0) == Type::getInt32Ty(F->getContext()) &&
isa<PointerType>(FTy->getParamType(1))) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
@@ -397,7 +414,7 @@ GenericValue JIT::runFunction(Function *F,
break;
case 1:
if (FTy->getNumParams() == 1 &&
- FTy->getParamType(0) == Type::Int32Ty) {
+ FTy->getParamType(0) == Type::getInt32Ty(F->getContext())) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
@@ -411,7 +428,7 @@ GenericValue JIT::runFunction(Function *F,
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
- default: assert(0 && "Unknown return type for function call!");
+ default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
@@ -425,7 +442,7 @@ GenericValue JIT::runFunction(Function *F,
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
- assert(0 && "Integer types > 64 bits not supported");
+ llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
@@ -440,7 +457,7 @@ GenericValue JIT::runFunction(Function *F,
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
- assert(0 && "long double not supported yet");
+ llvm_unreachable("long double not supported yet");
return rv;
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
@@ -458,7 +475,7 @@ GenericValue JIT::runFunction(Function *F,
F->getParent());
// Insert a basic block.
- BasicBlock *StubBB = BasicBlock::Create("", Stub);
+ BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
// Convert all of the GenericValue arguments over to constants. Note that we
// currently don't support varargs.
@@ -468,28 +485,31 @@ GenericValue JIT::runFunction(Function *F,
const Type *ArgTy = FTy->getParamType(i);
const GenericValue &AV = ArgValues[i];
switch (ArgTy->getTypeID()) {
- default: assert(0 && "Unknown argument type for function call!");
+ default: llvm_unreachable("Unknown argument type for function call!");
case Type::IntegerTyID:
- C = ConstantInt::get(AV.IntVal);
+ C = ConstantInt::get(F->getContext(), AV.IntVal);
break;
case Type::FloatTyID:
- C = ConstantFP::get(APFloat(AV.FloatVal));
+ C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
break;
case Type::DoubleTyID:
- C = ConstantFP::get(APFloat(AV.DoubleVal));
+ C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
break;
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
- C = ConstantFP::get(APFloat(AV.IntVal));
+ C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (sizeof(void*) == 4)
- C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
+ C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
+ (int)(intptr_t)ArgPtr);
else
- C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
- C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
+ C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
+ (intptr_t)ArgPtr);
+ // Cast the integer to pointer
+ C = ConstantExpr::getIntToPtr(C, ArgTy);
break;
}
Args.push_back(C);
@@ -499,10 +519,11 @@ GenericValue JIT::runFunction(Function *F,
"", StubBB);
TheCall->setCallingConv(F->getCallingConv());
TheCall->setTailCall();
- if (TheCall->getType() != Type::VoidTy)
- ReturnInst::Create(TheCall, StubBB); // Return result of the call.
+ if (TheCall->getType() != Type::getVoidTy(F->getContext()))
+ // Return result of the call.
+ ReturnInst::Create(F->getContext(), TheCall, StubBB);
else
- ReturnInst::Create(StubBB); // Just return void.
+ ReturnInst::Create(F->getContext(), StubBB); // Just return void.
// Finally, return the value returned by our nullary stub function.
return runFunction(Stub, std::vector<GenericValue>());
@@ -629,9 +650,8 @@ void *JIT::getPointerToFunction(Function *F) {
std::string ErrorMsg;
if (MP->materializeFunction(F, &ErrorMsg)) {
- cerr << "Error reading function '" << F->getName()
- << "' from bitcode file: " << ErrorMsg << "\n";
- abort();
+ llvm_report_error("Error reading function '" + F->getName()+
+ "' from bitcode file: " + ErrorMsg);
}
// Now retry to get the address.
@@ -669,45 +689,18 @@ void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
if (GV->getName() == "__dso_handle")
return (void*)&__dso_handle;
#endif
- Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
if (Ptr == 0 && !areDlsymStubsEnabled()) {
- cerr << "Could not resolve external global address: "
- << GV->getName() << "\n";
- abort();
+ llvm_report_error("Could not resolve external global address: "
+ +GV->getName());
}
addGlobalMapping(GV, Ptr);
} else {
- // GlobalVariable's which are not "constant" will cause trouble in a server
- // situation. It's returned in the same block of memory as code which may
- // not be writable.
- if (isGVCompilationDisabled() && !GV->isConstant()) {
- cerr << "Compilation of non-internal GlobalValue is disabled!\n";
- abort();
- }
// If the global hasn't been emitted to memory yet, allocate space and
- // emit it into memory. It goes in the same array as the generated
- // code, jump tables, etc.
- const Type *GlobalType = GV->getType()->getElementType();
- size_t S = getTargetData()->getTypeAllocSize(GlobalType);
- size_t A = getTargetData()->getPreferredAlignment(GV);
- if (GV->isThreadLocal()) {
- MutexGuard locked(lock);
- Ptr = TJI.allocateThreadLocalMemory(S);
- } else if (TJI.allocateSeparateGVMemory()) {
- if (A <= 8) {
- Ptr = malloc(S);
- } else {
- // Allocate S+A bytes of memory, then use an aligned pointer within that
- // space.
- Ptr = malloc(S+A);
- unsigned MisAligned = ((intptr_t)Ptr & (A-1));
- Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
- }
- } else {
- Ptr = JCE->allocateSpace(S, A);
- }
+ // emit it into memory.
+ Ptr = getMemoryForGV(GV);
addGlobalMapping(GV, Ptr);
- EmitGlobalVariable(GV);
+ EmitGlobalVariable(GV); // Initialize the variable.
}
return Ptr;
}
@@ -742,14 +735,41 @@ void *JIT::recompileAndRelinkFunction(Function *F) {
/// on the target.
///
char* JIT::getMemoryForGV(const GlobalVariable* GV) {
- const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
+ char *Ptr;
+
+ // GlobalVariable's which are not "constant" will cause trouble in a server
+ // situation. It's returned in the same block of memory as code which may
+ // not be writable.
+ if (isGVCompilationDisabled() && !GV->isConstant()) {
+ llvm_report_error("Compilation of non-internal GlobalValue is disabled!");
+ }
+
+ // Some applications require globals and code to live together, so they may
+ // be allocated into the same buffer, but in general globals are allocated
+ // through the memory manager which puts them near the code but not in the
+ // same buffer.
+ const Type *GlobalType = GV->getType()->getElementType();
+ size_t S = getTargetData()->getTypeAllocSize(GlobalType);
+ size_t A = getTargetData()->getPreferredAlignment(GV);
if (GV->isThreadLocal()) {
MutexGuard locked(lock);
- return TJI.allocateThreadLocalMemory(GVSize);
+ Ptr = TJI.allocateThreadLocalMemory(S);
+ } else if (TJI.allocateSeparateGVMemory()) {
+ if (A <= 8) {
+ Ptr = (char*)malloc(S);
+ } else {
+ // Allocate S+A bytes of memory, then use an aligned pointer within that
+ // space.
+ Ptr = (char*)malloc(S+A);
+ unsigned MisAligned = ((intptr_t)Ptr & (A-1));
+ Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
+ }
+ } else if (AllocateGVsWithCode) {
+ Ptr = (char*)JCE->allocateSpace(S, A);
} else {
- return new char[GVSize];
+ Ptr = (char*)JCE->allocateGlobal(S, A);
}
+ return Ptr;
}
void JIT::addPendingFunction(Function *F) {
diff --git a/lib/ExecutionEngine/JIT/JIT.h b/lib/ExecutionEngine/JIT/JIT.h
index 66417a7..525cc84 100644
--- a/lib/ExecutionEngine/JIT/JIT.h
+++ b/lib/ExecutionEngine/JIT/JIT.h
@@ -16,11 +16,12 @@
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/PassManager.h"
+#include "llvm/Support/ValueHandle.h"
namespace llvm {
class Function;
-class JITEvent_EmittedFunctionDetails;
+struct JITEvent_EmittedFunctionDetails;
class MachineCodeEmitter;
class MachineCodeInfo;
class TargetJITInfo;
@@ -33,7 +34,7 @@ private:
/// PendingFunctions - Functions which have not been code generated yet, but
/// were called from a function being code generated.
- std::vector<Function*> PendingFunctions;
+ std::vector<AssertingVH<Function> > PendingFunctions;
public:
explicit JITState(ModuleProvider *MP) : PM(MP), MP(MP) {}
@@ -43,7 +44,7 @@ public:
}
ModuleProvider *getMP() const { return MP; }
- std::vector<Function*> &getPendingFunctions(const MutexGuard &L) {
+ std::vector<AssertingVH<Function> > &getPendingFunctions(const MutexGuard &L){
return PendingFunctions;
}
};
@@ -55,10 +56,16 @@ class JIT : public ExecutionEngine {
JITCodeEmitter *JCE; // JCE object
std::vector<JITEventListener*> EventListeners;
+ /// AllocateGVsWithCode - Some applications require that global variables and
+ /// code be allocated into the same region of memory, in which case this flag
+ /// should be set to true. Doing so breaks freeMachineCodeForFunction.
+ bool AllocateGVsWithCode;
+
JITState *jitstate;
- JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
- JITMemoryManager *JMM, CodeGenOpt::Level OptLevel);
+ JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *JMM, CodeGenOpt::Level OptLevel,
+ bool AllocateGVsWithCode);
public:
~JIT();
@@ -73,10 +80,13 @@ public:
/// create - Create an return a new JIT compiler if there is one available
/// for the current target. Otherwise, return null.
///
- static ExecutionEngine *create(ModuleProvider *MP, std::string *Err,
+ static ExecutionEngine *create(ModuleProvider *MP,
+ std::string *Err,
+ JITMemoryManager *JMM,
CodeGenOpt::Level OptLevel =
- CodeGenOpt::Default) {
- return createJIT(MP, Err, 0, OptLevel);
+ CodeGenOpt::Default,
+ bool GVsWithCode = true) {
+ return ExecutionEngine::createJIT(MP, Err, JMM, OptLevel, GVsWithCode);
}
virtual void addModuleProvider(ModuleProvider *MP);
@@ -145,16 +155,22 @@ public:
/// addPendingFunction - while jitting non-lazily, a called but non-codegen'd
/// function was encountered. Add it to a pending list to be processed after
/// the current function.
- ///
+ ///
void addPendingFunction(Function *F);
-
+
/// getCodeEmitter - Return the code emitter this JIT is emitting into.
+ ///
JITCodeEmitter *getCodeEmitter() const { return JCE; }
-
- static ExecutionEngine *createJIT(ModuleProvider *MP, std::string *Err,
- JITMemoryManager *JMM,
- CodeGenOpt::Level OptLevel);
+ /// selectTarget - Pick a target either via -march or by guessing the native
+ /// arch. Add any CPU features specified via -mcpu or -mattr.
+ static TargetMachine *selectTarget(ModuleProvider *MP, std::string *Err);
+
+ static ExecutionEngine *createJIT(ModuleProvider *MP,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode);
// Run the JIT on F and return information about the generated code
void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0);
@@ -170,7 +186,8 @@ public:
void NotifyFreeingMachineCode(const Function &F, void *OldPtr);
private:
- static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM);
+ static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM,
+ TargetMachine &tm);
void runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked);
void updateFunctionStub(Function *F);
void updateDlsymStubTable();
diff --git a/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp b/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp
new file mode 100644
index 0000000..fa64010
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp
@@ -0,0 +1,208 @@
+//===-- JITDebugRegisterer.cpp - Register debug symbols for JIT -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITDebugRegisterer object that is used by the JIT to
+// register debug info with debuggers like GDB.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JITDebugRegisterer.h"
+#include "../../CodeGen/ELF.h"
+#include "../../CodeGen/ELFWriter.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Function.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Mutex.h"
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+// This must be kept in sync with gdb/gdb/jit.h .
+extern "C" {
+
+ // Debuggers puts a breakpoint in this function.
+ void DISABLE_INLINE __jit_debug_register_code() { }
+
+ // We put information about the JITed function in this global, which the
+ // debugger reads. Make sure to specify the version statically, because the
+ // debugger checks the version before we can set it during runtime.
+ struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
+
+}
+
+namespace {
+
+ /// JITDebugLock - Used to serialize all code registration events, since they
+ /// modify global variables.
+ sys::Mutex JITDebugLock;
+
+}
+
+JITDebugRegisterer::JITDebugRegisterer(TargetMachine &tm) : TM(tm), FnMap() { }
+
+JITDebugRegisterer::~JITDebugRegisterer() {
+ // Free all ELF memory.
+ for (RegisteredFunctionsMap::iterator I = FnMap.begin(), E = FnMap.end();
+ I != E; ++I) {
+ // Call the private method that doesn't update the map so our iterator
+ // doesn't break.
+ UnregisterFunctionInternal(I);
+ }
+ FnMap.clear();
+}
+
+std::string JITDebugRegisterer::MakeELF(const Function *F, DebugInfo &I) {
+ // Stack allocate an empty module with an empty LLVMContext for the ELFWriter
+ // API. We don't use the real module because then the ELFWriter would write
+ // out unnecessary GlobalValues during finalization.
+ LLVMContext Context;
+ Module M("", Context);
+
+ // Make a buffer for the ELF in memory.
+ std::string Buffer;
+ raw_string_ostream O(Buffer);
+ ELFWriter EW(O, TM);
+ EW.doInitialization(M);
+
+ // Copy the binary into the .text section. This isn't necessary, but it's
+ // useful to be able to disassemble the ELF by hand.
+ ELFSection &Text = EW.getTextSection((Function *)F);
+ Text.Addr = (uint64_t)I.FnStart;
+ // TODO: We could eliminate this copy if we somehow used a pointer/size pair
+ // instead of a vector.
+ Text.getData().assign(I.FnStart, I.FnEnd);
+
+ // Copy the exception handling call frame information into the .eh_frame
+ // section. This allows GDB to get a good stack trace, particularly on
+ // linux x86_64. Mark this as a PROGBITS section that needs to be loaded
+ // into memory at runtime.
+ ELFSection &EH = EW.getSection(".eh_frame", ELFSection::SHT_PROGBITS,
+ ELFSection::SHF_ALLOC);
+ // Pointers in the DWARF EH info are all relative to the EH frame start,
+ // which is stored here.
+ EH.Addr = (uint64_t)I.EhStart;
+ // TODO: We could eliminate this copy if we somehow used a pointer/size pair
+ // instead of a vector.
+ EH.getData().assign(I.EhStart, I.EhEnd);
+
+ // Add this single function to the symbol table, so the debugger prints the
+ // name instead of '???'. We give the symbol default global visibility.
+ ELFSym *FnSym = ELFSym::getGV(F,
+ ELFSym::STB_GLOBAL,
+ ELFSym::STT_FUNC,
+ ELFSym::STV_DEFAULT);
+ FnSym->SectionIdx = Text.SectionIdx;
+ FnSym->Size = I.FnEnd - I.FnStart;
+ FnSym->Value = 0; // Offset from start of section.
+ EW.SymbolList.push_back(FnSym);
+
+ EW.doFinalization(M);
+ O.flush();
+
+ // When trying to debug why GDB isn't getting the debug info right, it's
+ // awfully helpful to write the object file to disk so that it can be
+ // inspected with readelf and objdump.
+ if (JITEmitDebugInfoToDisk) {
+ std::string Filename;
+ raw_string_ostream O2(Filename);
+ O2 << "/tmp/llvm_function_" << I.FnStart << "_" << F->getNameStr() << ".o";
+ O2.flush();
+ std::string Errors;
+ raw_fd_ostream O3(Filename.c_str(), Errors);
+ O3 << Buffer;
+ O3.close();
+ }
+
+ return Buffer;
+}
+
+void JITDebugRegisterer::RegisterFunction(const Function *F, DebugInfo &I) {
+ // TODO: Support non-ELF platforms.
+ if (!TM.getELFWriterInfo())
+ return;
+
+ std::string Buffer = MakeELF(F, I);
+
+ jit_code_entry *JITCodeEntry = new jit_code_entry();
+ JITCodeEntry->symfile_addr = Buffer.c_str();
+ JITCodeEntry->symfile_size = Buffer.size();
+
+ // Add a mapping from F to the entry and buffer, so we can delete this
+ // info later.
+ FnMap[F] = std::make_pair<std::string, jit_code_entry*>(Buffer, JITCodeEntry);
+
+ // Acquire the lock and do the registration.
+ {
+ MutexGuard locked(JITDebugLock);
+ __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
+
+ // Insert this entry at the head of the list.
+ JITCodeEntry->prev_entry = NULL;
+ jit_code_entry *NextEntry = __jit_debug_descriptor.first_entry;
+ JITCodeEntry->next_entry = NextEntry;
+ if (NextEntry != NULL) {
+ NextEntry->prev_entry = JITCodeEntry;
+ }
+ __jit_debug_descriptor.first_entry = JITCodeEntry;
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+ }
+}
+
+void JITDebugRegisterer::UnregisterFunctionInternal(
+ RegisteredFunctionsMap::iterator I) {
+ jit_code_entry *JITCodeEntry = I->second.second;
+
+ // Acquire the lock and do the unregistration.
+ {
+ MutexGuard locked(JITDebugLock);
+ __jit_debug_descriptor.action_flag = JIT_UNREGISTER_FN;
+
+ // Remove the jit_code_entry from the linked list.
+ jit_code_entry *PrevEntry = JITCodeEntry->prev_entry;
+ jit_code_entry *NextEntry = JITCodeEntry->next_entry;
+ if (NextEntry) {
+ NextEntry->prev_entry = PrevEntry;
+ }
+ if (PrevEntry) {
+ PrevEntry->next_entry = NextEntry;
+ } else {
+ assert(__jit_debug_descriptor.first_entry == JITCodeEntry);
+ __jit_debug_descriptor.first_entry = NextEntry;
+ }
+
+ // Tell GDB which entry we removed, and unregister the code.
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+ }
+
+ // Free the ELF file in memory.
+ std::string &Buffer = I->second.first;
+ Buffer.clear();
+}
+
+void JITDebugRegisterer::UnregisterFunction(const Function *F) {
+ // TODO: Support non-ELF platforms.
+ if (!TM.getELFWriterInfo())
+ return;
+
+ RegisteredFunctionsMap::iterator I = FnMap.find(F);
+ if (I == FnMap.end()) return;
+ UnregisterFunctionInternal(I);
+ FnMap.erase(I);
+}
+
+} // end namespace llvm
diff --git a/lib/ExecutionEngine/JIT/JITDebugRegisterer.h b/lib/ExecutionEngine/JIT/JITDebugRegisterer.h
new file mode 100644
index 0000000..dce506b
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/JITDebugRegisterer.h
@@ -0,0 +1,116 @@
+//===-- JITDebugRegisterer.h - Register debug symbols for JIT -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITDebugRegisterer object that is used by the JIT to
+// register debug info with debuggers like GDB.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H
+#define LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/DataTypes.h"
+#include <string>
+
+// This must be kept in sync with gdb/gdb/jit.h .
+extern "C" {
+
+ typedef enum {
+ JIT_NOACTION = 0,
+ JIT_REGISTER_FN,
+ JIT_UNREGISTER_FN
+ } jit_actions_t;
+
+ struct jit_code_entry {
+ struct jit_code_entry *next_entry;
+ struct jit_code_entry *prev_entry;
+ const char *symfile_addr;
+ uint64_t symfile_size;
+ };
+
+ struct jit_descriptor {
+ uint32_t version;
+ // This should be jit_actions_t, but we want to be specific about the
+ // bit-width.
+ uint32_t action_flag;
+ struct jit_code_entry *relevant_entry;
+ struct jit_code_entry *first_entry;
+ };
+
+}
+
+namespace llvm {
+
+class ELFSection;
+class Function;
+class TargetMachine;
+
+
+/// This class encapsulates information we want to send to the debugger.
+///
+struct DebugInfo {
+ uint8_t *FnStart;
+ uint8_t *FnEnd;
+ uint8_t *EhStart;
+ uint8_t *EhEnd;
+
+ DebugInfo() : FnStart(0), FnEnd(0), EhStart(0), EhEnd(0) {}
+};
+
+typedef DenseMap< const Function*, std::pair<std::string, jit_code_entry*> >
+ RegisteredFunctionsMap;
+
+/// This class registers debug info for JITed code with an attached debugger.
+/// Without proper debug info, GDB can't do things like source level debugging
+/// or even produce a proper stack trace on linux-x86_64. To use this class,
+/// whenever a function is JITed, create a DebugInfo struct and pass it to the
+/// RegisterFunction method. The method will then do whatever is necessary to
+/// inform the debugger about the JITed function.
+class JITDebugRegisterer {
+
+ TargetMachine &TM;
+
+ /// FnMap - A map of functions that have been registered to the associated
+ /// temporary files. Used for cleanup.
+ RegisteredFunctionsMap FnMap;
+
+ /// MakeELF - Builds the ELF file in memory and returns a std::string that
+ /// contains the ELF.
+ std::string MakeELF(const Function *F, DebugInfo &I);
+
+public:
+ JITDebugRegisterer(TargetMachine &tm);
+
+ /// ~JITDebugRegisterer - Unregisters all code and frees symbol files.
+ ///
+ ~JITDebugRegisterer();
+
+ /// RegisterFunction - Register debug info for the given function with an
+ /// attached debugger. Clients must call UnregisterFunction on all
+ /// registered functions before deleting them to free the associated symbol
+ /// file and unregister it from the debugger.
+ void RegisterFunction(const Function *F, DebugInfo &I);
+
+ /// UnregisterFunction - Unregister the debug info for the given function
+ /// from the debugger and free associated memory.
+ void UnregisterFunction(const Function *F);
+
+private:
+ /// UnregisterFunctionInternal - Unregister the debug info for the given
+ /// function from the debugger and delete any temporary files. The private
+ /// version of this method does not remove the function from FnMap so that it
+ /// can be called while iterating over FnMap.
+ void UnregisterFunctionInternal(RegisteredFunctionsMap::iterator I);
+
+};
+
+} // end namespace llvm
+
+#endif // LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H
diff --git a/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
index e101ef3..f2b28ad 100644
--- a/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
+++ b/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
@@ -21,25 +21,27 @@
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
-
using namespace llvm;
-JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
+JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
JITCodeEmitter& jce,
unsigned char* StartFunction,
- unsigned char* EndFunction) {
+ unsigned char* EndFunction,
+ unsigned char* &EHFramePtr) {
+ assert(MMI && "MachineModuleInfo not registered!");
+
const TargetMachine& TM = F.getTarget();
TD = TM.getTargetData();
- needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
RI = TM.getRegisterInfo();
JCE = &jce;
@@ -48,14 +50,13 @@ unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
EndFunction);
unsigned char* Result = 0;
- unsigned char* EHFramePtr = 0;
const std::vector<Function *> Personalities = MMI->getPersonalities();
EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
StartFunction, EndFunction, ExceptionTable);
-
+
return Result;
}
@@ -106,11 +107,9 @@ JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
}
- int Offset = -Src.getOffset();
-
- JCE->emitULEB128Bytes(Offset);
+ JCE->emitULEB128Bytes(-Src.getOffset());
} else {
- assert(0 && "Machine move no supported yet.");
+ llvm_unreachable("Machine move not supported yet.");
}
} else if (Src.isReg() &&
Src.getReg() == MachineLocation::VirtualFP) {
@@ -118,7 +117,7 @@ JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
} else {
- assert(0 && "Machine move no supported yet.");
+ llvm_unreachable("Machine move not supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
@@ -209,6 +208,8 @@ struct CallSiteEntry {
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
unsigned char* StartFunction,
unsigned char* EndFunction) const {
+ assert(MMI && "MachineModuleInfo not registered!");
+
// Map all labels and get rid of any dead landing pads.
MMI->TidyLandingPads();
@@ -241,7 +242,7 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
- Offset -= TargetAsmInfo::getULEB128Size(*I);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
}
// Compute the actions table and gather the first action index for each
@@ -266,10 +267,10 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
- SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
- TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
- SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
@@ -280,10 +281,10 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
- unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
- SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
@@ -386,29 +387,19 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
sizeof(int32_t) + // Site length.
sizeof(int32_t)); // Landing pad.
for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
- SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
unsigned TypeOffset = sizeof(int8_t) + // Call site format
// Call-site table length
- TargetAsmInfo::getULEB128Size(SizeSites) +
+ MCAsmInfo::getULEB128Size(SizeSites) +
SizeSites + SizeActions + SizeTypes;
- unsigned TotalSize = sizeof(int8_t) + // LPStart format
- sizeof(int8_t) + // TType format
- TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
- TypeOffset;
-
- unsigned SizeAlign = (4 - TotalSize) & 3;
-
// Begin the exception table.
- JCE->emitAlignment(4);
- for (unsigned i = 0; i != SizeAlign; ++i) {
- JCE->emitByte(0);
- // Asm->EOL("Padding");
- }
-
+ JCE->emitAlignmentWithFill(4, 0);
+ // Asm->EOL("Padding");
+
unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
// Emit the header.
@@ -475,11 +466,10 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
GlobalVariable *GV = TypeInfos[M - 1];
if (GV) {
- if (TD->getPointerSize() == sizeof(int32_t)) {
+ if (TD->getPointerSize() == sizeof(int32_t))
JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
- } else {
+ else
JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
- }
} else {
if (TD->getPointerSize() == sizeof(int32_t))
JCE->emitInt32(0);
@@ -495,8 +485,8 @@ unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
JCE->emitULEB128Bytes(TypeID);
//Asm->EOL("Filter TypeInfo index");
}
-
- JCE->emitAlignment(4);
+
+ JCE->emitAlignmentWithFill(4, 0);
return DwarfExceptionTable;
}
@@ -517,7 +507,7 @@ JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
JCE->emitULEB128Bytes(1);
JCE->emitSLEB128Bytes(stackGrowth);
JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
-
+
if (Personality) {
// Augmentation Size: 3 small ULEBs of one byte each, and the personality
// function which size is PointerSize.
@@ -533,10 +523,9 @@ JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
JCE->emitByte(dwarf::DW_EH_PE_sdata8);
JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
}
-
+
JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
-
} else {
JCE->emitULEB128Bytes(1);
JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
@@ -545,11 +534,12 @@ JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(0, Moves);
- JCE->emitAlignment(PointerSize);
-
- JCE->emitInt32At((uintptr_t*)StartCommonPtr,
- (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
- FrameCommonBeginPtr));
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
+ JCE->emitInt32At((uintptr_t*)StartCommonPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ FrameCommonBeginPtr));
return StartCommonPtr;
}
@@ -574,13 +564,19 @@ JITDwarfEmitter::EmitEHFrame(const Function* Personality,
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
- if (MMI->getPersonalityIndex()) {
- JCE->emitULEB128Bytes(4);
+ if (Personality) {
+ JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
- if (!MMI->getLandingPads().empty()) {
- JCE->emitInt32(ExceptionTable - (unsigned char*)JCE->getCurrentPCValue());
+ if (PointerSize == 4) {
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt32((int)0);
} else {
- JCE->emitInt32((int)0);
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt64((int)0);
}
} else {
JCE->emitULEB128Bytes(0);
@@ -589,14 +585,14 @@ JITDwarfEmitter::EmitEHFrame(const Function* Personality,
// Indicate locations of function specific callee saved registers in
// frame.
EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
-
- JCE->emitAlignment(PointerSize);
-
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
// Indicate the size of the table
- JCE->emitInt32At((uintptr_t*)StartEHPtr,
- (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
- StartEHPtr));
-
+ JCE->emitInt32At((uintptr_t*)StartEHPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ StartEHPtr));
+
// Double zeroes for the unwind runtime
if (PointerSize == 8) {
JCE->emitInt64(0);
@@ -605,7 +601,6 @@ JITDwarfEmitter::EmitEHFrame(const Function* Personality,
JCE->emitInt32(0);
JCE->emitInt32(0);
}
-
return StartEHPtr;
}
@@ -616,7 +611,6 @@ unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
unsigned char* EndFunction) {
const TargetMachine& TM = F.getTarget();
TD = TM.getTargetData();
- needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
RI = TM.getRegisterInfo();
JCE = &jce;
@@ -630,7 +624,7 @@ unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
StartFunction);
-
+
return FinalSize;
}
@@ -653,11 +647,11 @@ JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
FinalSize += 3 * PointerSize;
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
- if (MMI->getPersonalityIndex()) {
- FinalSize += TargetAsmInfo::getULEB128Size(4);
+ if (Personality) {
+ FinalSize += MCAsmInfo::getULEB128Size(4);
FinalSize += PointerSize;
} else {
- FinalSize += TargetAsmInfo::getULEB128Size(0);
+ FinalSize += MCAsmInfo::getULEB128Size(0);
}
// Indicate locations of function specific callee saved registers in
@@ -685,24 +679,24 @@ unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personalit
FinalSize += 4;
FinalSize += 1;
FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
- FinalSize += TargetAsmInfo::getULEB128Size(1);
- FinalSize += TargetAsmInfo::getSLEB128Size(stackGrowth);
+ FinalSize += MCAsmInfo::getULEB128Size(1);
+ FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth);
FinalSize += 1;
if (Personality) {
- FinalSize += TargetAsmInfo::getULEB128Size(7);
+ FinalSize += MCAsmInfo::getULEB128Size(7);
// Encoding
FinalSize+= 1;
//Personality
FinalSize += PointerSize;
- FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
- FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
} else {
- FinalSize += TargetAsmInfo::getULEB128Size(1);
- FinalSize += TargetAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+ FinalSize += MCAsmInfo::getULEB128Size(1);
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
}
std::vector<MachineMove> Moves;
@@ -754,23 +748,23 @@ JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
} else {
++FinalSize;
unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
- FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
+ FinalSize += MCAsmInfo::getULEB128Size(RegNum);
}
int Offset = -Src.getOffset();
- FinalSize += TargetAsmInfo::getULEB128Size(Offset);
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
} else {
- assert(0 && "Machine move no supported yet.");
+ llvm_unreachable("Machine move no supported yet.");
}
} else if (Src.isReg() &&
Src.getReg() == MachineLocation::VirtualFP) {
if (Dst.isReg()) {
++FinalSize;
unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
- FinalSize += TargetAsmInfo::getULEB128Size(RegNum);
+ FinalSize += MCAsmInfo::getULEB128Size(RegNum);
} else {
- assert(0 && "Machine move no supported yet.");
+ llvm_unreachable("Machine move no supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
@@ -778,15 +772,15 @@ JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
if (Offset < 0) {
++FinalSize;
- FinalSize += TargetAsmInfo::getULEB128Size(Reg);
- FinalSize += TargetAsmInfo::getSLEB128Size(Offset);
+ FinalSize += MCAsmInfo::getULEB128Size(Reg);
+ FinalSize += MCAsmInfo::getSLEB128Size(Offset);
} else if (Reg < 64) {
++FinalSize;
- FinalSize += TargetAsmInfo::getULEB128Size(Offset);
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
} else {
++FinalSize;
- FinalSize += TargetAsmInfo::getULEB128Size(Reg);
- FinalSize += TargetAsmInfo::getULEB128Size(Offset);
+ FinalSize += MCAsmInfo::getULEB128Size(Reg);
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
}
}
}
@@ -829,7 +823,7 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
- Offset -= TargetAsmInfo::getULEB128Size(*I);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
}
// Compute the actions table and gather the first action index for each
@@ -854,10 +848,10 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
- SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
- TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
- SizeAction -= TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
@@ -868,10 +862,10 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
- unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
- SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
@@ -974,18 +968,18 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
sizeof(int32_t) + // Site length.
sizeof(int32_t)); // Landing pad.
for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
- SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
unsigned TypeOffset = sizeof(int8_t) + // Call site format
// Call-site table length
- TargetAsmInfo::getULEB128Size(SizeSites) +
+ MCAsmInfo::getULEB128Size(SizeSites) +
SizeSites + SizeActions + SizeTypes;
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
- TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
+ MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
TypeOffset;
unsigned SizeAlign = (4 - TotalSize) & 3;
@@ -1023,7 +1017,7 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
// Asm->EOL("Landing pad");
FinalSize += PointerSize;
- FinalSize += TargetAsmInfo::getULEB128Size(S.Action);
+ FinalSize += MCAsmInfo::getULEB128Size(S.Action);
// Asm->EOL("Action");
}
@@ -1032,9 +1026,9 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
ActionEntry &Action = Actions[I];
//Asm->EOL("TypeInfo index");
- FinalSize += TargetAsmInfo::getSLEB128Size(Action.ValueForTypeID);
+ FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID);
//Asm->EOL("Next action");
- FinalSize += TargetAsmInfo::getSLEB128Size(Action.NextAction);
+ FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction);
}
// Emit the type ids.
@@ -1046,7 +1040,7 @@ JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
// Emit the filter typeids.
for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
unsigned TypeID = FilterIds[j];
- FinalSize += TargetAsmInfo::getULEB128Size(TypeID);
+ FinalSize += MCAsmInfo::getULEB128Size(TypeID);
//Asm->EOL("Filter TypeInfo index");
}
diff --git a/lib/ExecutionEngine/JIT/JITDwarfEmitter.h b/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
index 9120ed4..e627550 100644
--- a/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
+++ b/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
@@ -32,7 +32,6 @@ class JITDwarfEmitter {
const TargetRegisterInfo* RI;
MachineModuleInfo* MMI;
JIT& Jit;
- bool needsIndirectEncoding;
bool stackGrowthDirection;
unsigned char* EmitExceptionTable(MachineFunction* MF,
@@ -68,7 +67,8 @@ public:
unsigned char* EmitDwarfTable(MachineFunction& F,
JITCodeEmitter& JCE,
unsigned char* StartFunction,
- unsigned char* EndFunction);
+ unsigned char* EndFunction,
+ unsigned char* &EHFramePtr);
unsigned GetDwarfTableSizeInBytes(MachineFunction& F,
diff --git a/lib/ExecutionEngine/JIT/JITEmitter.cpp b/lib/ExecutionEngine/JIT/JITEmitter.cpp
index 8fe7ab8..eacd9f9 100644
--- a/lib/ExecutionEngine/JIT/JITEmitter.cpp
+++ b/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -14,7 +14,9 @@
#define DEBUG_TYPE "jit"
#include "JIT.h"
+#include "JITDebugRegisterer.h"
#include "JITDwarfEmitter.h"
+#include "llvm/ADT/OwningPtr.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
@@ -33,8 +35,10 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Disassembler.h"
#include "llvm/System/Memory.h"
#include "llvm/Target/TargetInstrInfo.h"
@@ -49,6 +53,7 @@ using namespace llvm;
STATISTIC(NumBytes, "Number of bytes of machine code compiled");
STATISTIC(NumRelos, "Number of relocations applied");
+STATISTIC(NumRetries, "Number of retries with more memory");
static JIT *TheJIT = 0;
@@ -59,7 +64,7 @@ namespace {
class JITResolverState {
public:
typedef std::map<AssertingVH<Function>, void*> FunctionToStubMapTy;
- typedef std::map<void*, Function*> StubToFunctionMapTy;
+ typedef std::map<void*, AssertingVH<Function> > StubToFunctionMapTy;
typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
private:
/// FunctionToStubMap - Keep track of the stub created for a particular
@@ -193,9 +198,9 @@ void *JITResolver::getFunctionStub(Function *F) {
// Call the lazy resolver function unless we are JIT'ing non-lazily, in which
// case we must resolve the symbol now.
- void *Actual = TheJIT->isLazyCompilationDisabled()
+ void *Actual = TheJIT->isLazyCompilationDisabled()
? (void *)0 : (void *)(intptr_t)LazyResolverFn;
-
+
// If this is an external declaration, attempt to resolve the address now
// to place in the stub.
if (F->isDeclaration() && !F->hasNotBeenReadFromBitcode()) {
@@ -220,20 +225,20 @@ void *JITResolver::getFunctionStub(Function *F) {
TheJIT->updateGlobalMapping(F, Stub);
}
- DOUT << "JIT: Stub emitted at [" << Stub << "] for function '"
- << F->getName() << "'\n";
+ DEBUG(errs() << "JIT: Stub emitted at [" << Stub << "] for function '"
+ << F->getName() << "'\n");
// Finally, keep track of the stub-to-Function mapping so that the
// JITCompilerFn knows which function to compile!
state.getStubToFunctionMap(locked)[Stub] = F;
-
+
// If we are JIT'ing non-lazily but need to call a function that does not
// exist yet, add it to the JIT's work list so that we can fill in the stub
// address later.
if (!Actual && TheJIT->isLazyCompilationDisabled())
if (!F->isDeclaration() || F->hasNotBeenReadFromBitcode())
TheJIT->addPendingFunction(F);
-
+
return Stub;
}
@@ -250,8 +255,8 @@ void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
*TheJIT->getCodeEmitter());
- DOUT << "JIT: Indirect symbol emitted at [" << IndirectSym << "] for GV '"
- << GV->getName() << "'\n";
+ DEBUG(errs() << "JIT: Indirect symbol emitted at [" << IndirectSym
+ << "] for GV '" << GV->getName() << "'\n");
return IndirectSym;
}
@@ -266,8 +271,8 @@ void *JITResolver::getExternalFunctionStub(void *FnAddr) {
Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr,
*TheJIT->getCodeEmitter());
- DOUT << "JIT: Stub emitted at [" << Stub
- << "] for external function at '" << FnAddr << "'\n";
+ DEBUG(errs() << "JIT: Stub emitted at [" << Stub
+ << "] for external function at '" << FnAddr << "'\n");
return Stub;
}
@@ -276,7 +281,8 @@ unsigned JITResolver::getGOTIndexForAddr(void* addr) {
if (!idx) {
idx = ++nextGOTIndex;
revGOTMap[addr] = idx;
- DOUT << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n";
+ DEBUG(errs() << "JIT: Adding GOT entry " << idx << " for addr ["
+ << addr << "]\n");
}
return idx;
}
@@ -373,9 +379,8 @@ void *JITResolver::JITCompilerFn(void *Stub) {
// If lazy compilation is disabled, emit a useful error message and abort.
if (TheJIT->isLazyCompilationDisabled()) {
- cerr << "LLVM JIT requested to do lazy compilation of function '"
- << F->getName() << "' when lazy compiles are disabled!\n";
- abort();
+ llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
+ + F->getName() + "' when lazy compiles are disabled!");
}
// We might like to remove the stub from the StubToFunction map.
@@ -385,9 +390,9 @@ void *JITResolver::JITCompilerFn(void *Stub) {
// it needs to call.
//JR.state.getStubToFunctionMap(locked).erase(I);
- DOUT << "JIT: Lazily resolving function '" << F->getName()
- << "' In stub ptr = " << Stub << " actual ptr = "
- << ActualPtr << "\n";
+ DEBUG(errs() << "JIT: Lazily resolving function '" << F->getName()
+ << "' In stub ptr = " << Stub << " actual ptr = "
+ << ActualPtr << "\n");
Result = TheJIT->getPointerToFunction(F);
}
@@ -424,6 +429,12 @@ namespace {
// save BufferBegin/BufferEnd/CurBufferPtr here.
uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
+ // When reattempting to JIT a function after running out of space, we store
+ // the estimated size of the function we're trying to JIT here, so we can
+ // ask the memory manager for at least this much space. When we
+ // successfully emit the function, we reset this back to zero.
+ uintptr_t SizeEstimate;
+
/// Relocations - These are the relocations that the function needs, as
/// emitted.
std::vector<MachineRelocation> Relocations;
@@ -455,9 +466,12 @@ namespace {
/// Resolver - This contains info about the currently resolved functions.
JITResolver Resolver;
-
+
/// DE - The dwarf emitter for the jit.
- JITDwarfEmitter *DE;
+ OwningPtr<JITDwarfEmitter> DE;
+
+ /// DR - The debug registerer for the jit.
+ OwningPtr<JITDebugRegisterer> DR;
/// LabelLocations - This vector is a mapping from Label ID's to their
/// address.
@@ -472,7 +486,12 @@ namespace {
// CurFn - The llvm function being emitted. Only valid during
// finishFunction().
const Function *CurFn;
-
+
+ /// Information about emitted code, which is passed to the
+ /// JITEventListeners. This is reset in startFunction and used in
+ /// finishFunction.
+ JITEvent_EmittedFunctionDetails EmissionDetails;
+
// CurFnStubUses - For a given Function, a vector of stubs that it
// references. This facilitates the JIT detecting that a stub is no
// longer used, so that it may be deallocated.
@@ -487,19 +506,26 @@ namespace {
// in the JITResolver's ExternalFnToStubMap.
StringMap<void *> ExtFnStubs;
+ DebugLocTuple PrevDLT;
+
public:
- JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit), CurFn(0) {
+ JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
+ : SizeEstimate(0), Resolver(jit), MMI(0), CurFn(0) {
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
if (jit.getJITInfo().needsGOT()) {
MemMgr->AllocateGOT();
- DOUT << "JIT is managing a GOT\n";
+ DEBUG(errs() << "JIT is managing a GOT\n");
}
- if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
+ if (DwarfExceptionHandling || JITEmitDebugInfo) {
+ DE.reset(new JITDwarfEmitter(jit));
+ }
+ if (JITEmitDebugInfo) {
+ DR.reset(new JITDebugRegisterer(TM));
+ }
}
~JITEmitter() {
delete MemMgr;
- if (ExceptionHandling) delete DE;
}
/// classof - Methods for support type inquiry through isa, cast, and
@@ -527,6 +553,11 @@ namespace {
/// allocate a new one of the given size.
virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
+ /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
+ /// this method does not allocate memory in the current output buffer,
+ /// because a global may live longer than the current function.
+ virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
+
virtual void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
@@ -535,8 +566,8 @@ namespace {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
- DOUT << "JIT: Emitting BB" << MBB->getNumber() << " at ["
- << (void*) getCurrentPCValue() << "]\n";
+ DEBUG(errs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
+ << (void*) getCurrentPCValue() << "]\n");
}
virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
@@ -548,9 +579,14 @@ namespace {
return MBBLocations[MBB->getNumber()];
}
+ /// retryWithMoreMemory - Log a retry and deallocate all memory for the
+ /// given function. Increase the minimum allocation size so that we get
+ /// more memory next time.
+ void retryWithMoreMemory(MachineFunction &F);
+
/// deallocateMemForFunction - Deallocate all memory for the specified
/// function body.
- void deallocateMemForFunction(Function *F);
+ void deallocateMemForFunction(const Function *F);
/// AddStubToCurrentFunction - Mark the current function being JIT'd as
/// using the stub at the specified address. Allows
@@ -561,6 +597,8 @@ namespace {
/// MachineRelocations that reference external functions by name.
const StringMap<void*> &getExternalFnStubs() const { return ExtFnStubs; }
+ virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
+
virtual void emitLabel(uint64_t LabelID) {
if (LabelLocations.size() <= LabelID)
LabelLocations.resize((LabelID+1)*2);
@@ -575,14 +613,14 @@ namespace {
virtual void setModuleInfo(MachineModuleInfo* Info) {
MMI = Info;
- if (ExceptionHandling) DE->setModuleInfo(Info);
+ if (DE.get()) DE->setModuleInfo(Info);
}
- void setMemoryExecutable(void) {
+ void setMemoryExecutable() {
MemMgr->setMemoryExecutable();
}
- JITMemoryManager *getMemMgr(void) const { return MemMgr; }
+ JITMemoryManager *getMemMgr() const { return MemMgr; }
private:
void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
@@ -606,7 +644,7 @@ void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
// If we have already compiled the function, return a pointer to its body.
Function *F = cast<Function>(V);
void *ResultPtr;
- if (!DoesntNeedStub && !TheJIT->isLazyCompilationDisabled()) {
+ if (!DoesntNeedStub) {
// Return the function stub if it's already created.
ResultPtr = Resolver.getFunctionStubIfAvailable(F);
if (ResultPtr)
@@ -658,11 +696,8 @@ void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference,
}
void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
- if (!TheJIT->areDlsymStubsEnabled())
- return;
-
assert(CurFn && "Stub added to current function, but current function is 0!");
-
+
SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn];
StubsUsed.push_back(StubAddr);
@@ -670,6 +705,23 @@ void JITEmitter::AddStubToCurrentFunction(void *StubAddr) {
FnRefs.insert(CurFn);
}
+void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
+ if (!DL.isUnknown()) {
+ DebugLocTuple CurDLT = EmissionDetails.MF->getDebugLocTuple(DL);
+
+ if (BeforePrintingInsn) {
+ if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
+ JITEvent_EmittedFunctionDetails::LineStart NextLine;
+ NextLine.Address = getCurrentPCValue();
+ NextLine.Loc = DL;
+ EmissionDetails.LineStarts.push_back(NextLine);
+ }
+
+ PrevDLT = CurDLT;
+ }
+ }
+}
+
static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
const TargetData *TD) {
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
@@ -713,7 +765,7 @@ unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
size_t GVAlign =
(size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
- DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
+ DEBUG(errs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
DEBUG(GV->dump());
// Assume code section ends with worst possible alignment, so first
// variable needs maximal padding.
@@ -772,8 +824,10 @@ unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C,
break;
}
default: {
- cerr << "ConstantExpr not handled: " << *CE << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "ConstantExpr not handled: " << *CE;
+ llvm_report_error(Msg.str());
}
}
}
@@ -839,7 +893,7 @@ unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
}
}
}
- DOUT << "JIT: About to look through initializers\n";
+ DEBUG(errs() << "JIT: About to look through initializers\n");
// Look for more globals that are referenced only from initializers.
// GVSet.end is computed each time because the set can grow as we go.
for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin();
@@ -853,14 +907,14 @@ unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
}
void JITEmitter::startFunction(MachineFunction &F) {
- DOUT << "JIT: Starting CodeGen of Function "
- << F.getFunction()->getName() << "\n";
+ DEBUG(errs() << "JIT: Starting CodeGen of Function "
+ << F.getFunction()->getName() << "\n");
uintptr_t ActualSize = 0;
// Set the memory writable, if it's not already
MemMgr->setMemoryWritable();
if (MemMgr->NeedsExactSize()) {
- DOUT << "JIT: ExactSize\n";
+ DEBUG(errs() << "JIT: ExactSize\n");
const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
MachineJumpTableInfo *MJTI = F.getJumpTableInfo();
MachineConstantPool *MCP = F.getConstantPool();
@@ -887,12 +941,15 @@ void JITEmitter::startFunction(MachineFunction &F) {
// Add the function size
ActualSize += TII->GetFunctionSizeInBytes(F);
- DOUT << "JIT: ActualSize before globals " << ActualSize << "\n";
+ DEBUG(errs() << "JIT: ActualSize before globals " << ActualSize << "\n");
// Add the size of the globals that will be allocated after this function.
// These are all the ones referenced from this function that were not
// previously allocated.
ActualSize += GetSizeOfGlobalsInBytes(F);
- DOUT << "JIT: ActualSize after globals " << ActualSize << "\n";
+ DEBUG(errs() << "JIT: ActualSize after globals " << ActualSize << "\n");
+ } else if (SizeEstimate > 0) {
+ // SizeEstimate will be non-zero on reallocation attempts.
+ ActualSize = SizeEstimate;
}
BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
@@ -910,17 +967,22 @@ void JITEmitter::startFunction(MachineFunction &F) {
TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
MBBLocations.clear();
+
+ EmissionDetails.MF = &F;
+ EmissionDetails.LineStarts.clear();
}
bool JITEmitter::finishFunction(MachineFunction &F) {
if (CurBufferPtr == BufferEnd) {
- // FIXME: Allocate more space, then try again.
- cerr << "JIT: Ran out of space for generated machine code!\n";
- abort();
+ // We must call endFunctionBody before retrying, because
+ // deallocateMemForFunction requires it.
+ MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
+ retryWithMoreMemory(F);
+ return true;
}
-
+
emitJumpTableInfo(F.getJumpTableInfo());
-
+
// FnStart is the start of the text, not the start of the constant pool and
// other per-function data.
uint8_t *FnStart =
@@ -941,8 +1003,8 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
if (MR.isExternalSymbol()) {
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
false);
- DOUT << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
- << ResultPtr << "]\n";
+ DEBUG(errs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
+ << ResultPtr << "]\n");
// If the target REALLY wants a stub for this function, emit it now.
if (!MR.doesntNeedStub()) {
@@ -983,9 +1045,9 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
MR.setGOTIndex(idx);
if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
- DOUT << "JIT: GOT was out of date for " << ResultPtr
- << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
- << "\n";
+ DEBUG(errs() << "JIT: GOT was out of date for " << ResultPtr
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
}
}
@@ -1000,8 +1062,9 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
if (MemMgr->isManagingGOT()) {
unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
- DOUT << "JIT: GOT was out of date for " << (void*)BufferBegin
- << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n";
+ DEBUG(errs() << "JIT: GOT was out of date for " << (void*)BufferBegin
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
}
}
@@ -1011,9 +1074,12 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
if (CurBufferPtr == BufferEnd) {
- // FIXME: Allocate more space, then try again.
- cerr << "JIT: Ran out of space for generated machine code!\n";
- abort();
+ retryWithMoreMemory(F);
+ return true;
+ } else {
+ // Now that we've succeeded in emitting the function, reset the
+ // SizeEstimate back down to zero.
+ SizeEstimate = 0;
}
BufferBegin = CurBufferPtr = 0;
@@ -1022,14 +1088,13 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
// Invalidate the icache if necessary.
sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
- JITEvent_EmittedFunctionDetails Details;
TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
- Details);
+ EmissionDetails);
- DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart
- << "] Function: " << F.getFunction()->getName()
- << ": " << (FnEnd-FnStart) << " bytes of text, "
- << Relocations.size() << " relocations\n";
+ DEBUG(errs() << "JIT: Finished CodeGen of [" << (void*)FnStart
+ << "] Function: " << F.getFunction()->getName()
+ << ": " << (FnEnd-FnStart) << " bytes of text, "
+ << Relocations.size() << " relocations\n");
Relocations.clear();
ConstPoolAddresses.clear();
@@ -1037,45 +1102,42 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
// Mark code region readable and executable if it's not so already.
MemMgr->setMemoryExecutable();
-#ifndef NDEBUG
- {
+ DEBUG(
if (sys::hasDisassembler()) {
- DOUT << "JIT: Disassembled code:\n";
- DOUT << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
+ errs() << "JIT: Disassembled code:\n";
+ errs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
+ (uintptr_t)FnStart);
} else {
- DOUT << "JIT: Binary code:\n";
- DOUT << std::hex;
+ errs() << "JIT: Binary code:\n";
uint8_t* q = FnStart;
for (int i = 0; q < FnEnd; q += 4, ++i) {
if (i == 4)
i = 0;
if (i == 0)
- DOUT << "JIT: " << std::setw(8) << std::setfill('0')
- << (long)(q - FnStart) << ": ";
+ errs() << "JIT: " << (long)(q - FnStart) << ": ";
bool Done = false;
for (int j = 3; j >= 0; --j) {
if (q + j >= FnEnd)
Done = true;
else
- DOUT << std::setw(2) << std::setfill('0') << (unsigned short)q[j];
+ errs() << (unsigned short)q[j];
}
if (Done)
break;
- DOUT << ' ';
+ errs() << ' ';
if (i == 3)
- DOUT << '\n';
+ errs() << '\n';
}
- DOUT << std::dec;
- DOUT<< '\n';
+ errs()<< '\n';
}
- }
-#endif
- if (ExceptionHandling) {
+ );
+
+ if (DwarfExceptionHandling || JITEmitDebugInfo) {
uintptr_t ActualSize = 0;
SavedBufferBegin = BufferBegin;
SavedBufferEnd = BufferEnd;
SavedCurBufferPtr = CurBufferPtr;
-
+
if (MemMgr->NeedsExactSize()) {
ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
}
@@ -1083,14 +1145,28 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
ActualSize);
BufferEnd = BufferBegin+ActualSize;
- uint8_t* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
+ uint8_t *EhStart;
+ uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
+ EhStart);
MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
FrameRegister);
+ uint8_t *EhEnd = CurBufferPtr;
BufferBegin = SavedBufferBegin;
BufferEnd = SavedBufferEnd;
CurBufferPtr = SavedCurBufferPtr;
- TheJIT->RegisterTable(FrameRegister);
+ if (DwarfExceptionHandling) {
+ TheJIT->RegisterTable(FrameRegister);
+ }
+
+ if (JITEmitDebugInfo) {
+ DebugInfo I;
+ I.FnStart = FnStart;
+ I.FnEnd = FnEnd;
+ I.EhStart = EhStart;
+ I.EhEnd = EhEnd;
+ DR->RegisterFunction(F.getFunction(), I);
+ }
}
if (MMI)
@@ -1099,11 +1175,28 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
return false;
}
+void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
+ DEBUG(errs() << "JIT: Ran out of space for native code. Reattempting.\n");
+ Relocations.clear(); // Clear the old relocations or we'll reapply them.
+ ConstPoolAddresses.clear();
+ ++NumRetries;
+ deallocateMemForFunction(F.getFunction());
+ // Try again with at least twice as much free space.
+ SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
+}
+
/// deallocateMemForFunction - Deallocate all memory for the specified
/// function body. Also drop any references the function has to stubs.
-void JITEmitter::deallocateMemForFunction(Function *F) {
+void JITEmitter::deallocateMemForFunction(const Function *F) {
MemMgr->deallocateMemForFunction(F);
+ // TODO: Do we need to unregister exception handling information from libgcc
+ // here?
+
+ if (JITEmitDebugInfo) {
+ DR->UnregisterFunction(F);
+ }
+
// If the function did not reference any stubs, return.
if (CurFnStubUses.find(F) == CurFnStubUses.end())
return;
@@ -1125,7 +1218,7 @@ void JITEmitter::deallocateMemForFunction(Function *F) {
// in the JITResolver. Were there a memory manager deallocateStub routine,
// we could call that at this point too.
if (FnRefs.empty()) {
- DOUT << "\nJIT: Invalidated Stub at [" << Stub << "]\n";
+ DEBUG(errs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n");
StubFnRefs.erase(Stub);
// Invalidate the stub. If it is a GV stub, update the JIT's global
@@ -1161,6 +1254,11 @@ void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
return CurBufferPtr;
}
+void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
+ // Delegate this call through the memory manager.
+ return MemMgr->allocateGlobal(Size, Alignment);
+}
+
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
if (TheJIT->getJITInfo().hasCustomConstantPool())
return;
@@ -1175,8 +1273,8 @@ void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
if (ConstantPoolBase == 0) return; // Buffer overflow.
- DOUT << "JIT: Emitted constant pool at [" << ConstantPoolBase
- << "] (size: " << Size << ", alignment: " << Align << ")\n";
+ DEBUG(errs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
+ << "] (size: " << Size << ", alignment: " << Align << ")\n");
// Initialize the memory for all of the constant pool entries.
unsigned Offset = 0;
@@ -1189,13 +1287,12 @@ void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
ConstPoolAddresses.push_back(CAddr);
if (CPE.isMachineConstantPoolEntry()) {
// FIXME: add support to lower machine constant pool values into bytes!
- cerr << "Initialize memory with machine specific constant pool entry"
- << " has not been implemented!\n";
- abort();
+ llvm_report_error("Initialize memory with machine specific constant pool"
+ "entry has not been implemented!");
}
TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
- DOUT << "JIT: CP" << i << " at [0x"
- << std::hex << CAddr << std::dec << "]\n";
+ DEBUG(errs() << "JIT: CP" << i << " at [0x";
+ errs().write_hex(CAddr) << "]\n");
const Type *Ty = CPE.Val.ConstVal->getType();
Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
@@ -1322,8 +1419,9 @@ uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
// Public interface to this file
//===----------------------------------------------------------------------===//
-JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM) {
- return new JITEmitter(jit, JMM);
+JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
+ TargetMachine &tm) {
+ return new JITEmitter(jit, JMM, tm);
}
// getPointerToNamedFunction - This function is used as a global wrapper to
@@ -1396,7 +1494,7 @@ void JIT::updateDlsymStubTable() {
SmallVector<unsigned, 8> Offsets;
for (unsigned i = 0; i != GVs.size(); ++i) {
Offsets.push_back(offset);
- offset += GVs[i]->getName().length() + 1;
+ offset += GVs[i]->getName().size() + 1;
}
for (StringMapConstIterator<void*> i = ExtFns.begin(), e = ExtFns.end();
i != e; ++i) {
diff --git a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
index 70ccdcc..474843f 100644
--- a/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
+++ b/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
@@ -11,9 +11,16 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/GlobalValue.h"
+#define DEBUG_TYPE "jit"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Memory.h"
#include <map>
#include <vector>
@@ -24,6 +31,7 @@
#include <cstring>
using namespace llvm;
+STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
JITMemoryManager::~JITMemoryManager() {}
@@ -140,7 +148,7 @@ FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
/// FreeRangeHeader to allocate from.
FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
MemoryRangeHeader *FollowingBlock = &getBlockAfter();
- assert(ThisAllocated && "This block is already allocated!");
+ assert(ThisAllocated && "This block is already free!");
assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
FreeRangeHeader *FreeListToReturn = FreeList;
@@ -243,67 +251,160 @@ TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
// Memory Block Implementation.
//===----------------------------------------------------------------------===//
-namespace {
+namespace {
+
+ class DefaultJITMemoryManager;
+
+ class JITSlabAllocator : public SlabAllocator {
+ DefaultJITMemoryManager &JMM;
+ public:
+ JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
+ virtual ~JITSlabAllocator() { }
+ virtual MemSlab *Allocate(size_t Size);
+ virtual void Deallocate(MemSlab *Slab);
+ };
+
/// DefaultJITMemoryManager - Manage memory for the JIT code generation.
/// This splits a large block of MAP_NORESERVE'd memory into two
/// sections, one for function stubs, one for the functions themselves. We
/// have to do this because we may need to emit a function stub while in the
/// middle of emitting a function, and we don't know how large the function we
/// are emitting is.
- class VISIBILITY_HIDDEN DefaultJITMemoryManager : public JITMemoryManager {
- std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
- FreeRangeHeader *FreeMemoryList; // Circular list of free blocks.
-
+ class DefaultJITMemoryManager : public JITMemoryManager {
+
+ // Whether to poison freed memory.
+ bool PoisonMemory;
+
+ /// LastSlab - This points to the last slab allocated and is used as the
+ /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
+ /// stubs, data, and code contiguously in memory. In general, however, this
+ /// is not possible because the NearBlock parameter is ignored on Windows
+ /// platforms and even on Unix it works on a best-effort pasis.
+ sys::MemoryBlock LastSlab;
+
+ // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
+ // confuse them with the blocks of memory descibed above.
+ std::vector<sys::MemoryBlock> CodeSlabs;
+ JITSlabAllocator BumpSlabAllocator;
+ BumpPtrAllocator StubAllocator;
+ BumpPtrAllocator DataAllocator;
+
+ // Circular list of free blocks.
+ FreeRangeHeader *FreeMemoryList;
+
// When emitting code into a memory block, this is the block.
MemoryRangeHeader *CurBlock;
-
- uint8_t *CurStubPtr, *StubBase;
+
uint8_t *GOTBase; // Target Specific reserved memory
void *DlsymTable; // Stub external symbol information
- // Centralize memory block allocation.
- sys::MemoryBlock getNewMemoryBlock(unsigned size);
-
std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
std::map<const Function*, MemoryRangeHeader*> TableBlocks;
public:
DefaultJITMemoryManager();
~DefaultJITMemoryManager();
+ /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
+ /// last slab it allocated, so that subsequent allocations follow it.
+ sys::MemoryBlock allocateNewSlab(size_t size);
+
+ /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
+ /// least this much unless more is requested.
+ static const size_t DefaultCodeSlabSize;
+
+ /// DefaultSlabSize - Allocate data into slabs of this size unless we get
+ /// an allocation above SizeThreshold.
+ static const size_t DefaultSlabSize;
+
+ /// DefaultSizeThreshold - For any allocation larger than this threshold, we
+ /// should allocate a separate slab.
+ static const size_t DefaultSizeThreshold;
+
void AllocateGOT();
void SetDlsymTable(void *);
-
- uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
- unsigned Alignment);
-
+
+ // Testing methods.
+ virtual bool CheckInvariants(std::string &ErrorStr);
+ size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
+ size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
+ size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
+ unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
+ unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
+ unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
+
/// startFunctionBody - When a function starts, allocate a block of free
/// executable memory, returning a pointer to it and its actual size.
uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
-
+
FreeRangeHeader* candidateBlock = FreeMemoryList;
FreeRangeHeader* head = FreeMemoryList;
FreeRangeHeader* iter = head->Next;
uintptr_t largest = candidateBlock->BlockSize;
-
+
// Search for the largest free block
while (iter != head) {
- if (iter->BlockSize > largest) {
- largest = iter->BlockSize;
- candidateBlock = iter;
- }
- iter = iter->Next;
+ if (iter->BlockSize > largest) {
+ largest = iter->BlockSize;
+ candidateBlock = iter;
+ }
+ iter = iter->Next;
}
+
+ largest = largest - sizeof(MemoryRangeHeader);
+ // If this block isn't big enough for the allocation desired, allocate
+ // another block of memory and add it to the free list.
+ if (largest < ActualSize ||
+ largest <= FreeRangeHeader::getMinBlockSize()) {
+ DEBUG(errs() << "JIT: Allocating another slab of memory for function.");
+ candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
+ }
+
// Select this candidate block for allocation
CurBlock = candidateBlock;
// Allocate the entire memory block.
FreeMemoryList = candidateBlock->AllocateBlock();
- ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader);
- return (uint8_t *)(CurBlock+1);
+ ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
+ return (uint8_t *)(CurBlock + 1);
}
-
+
+ /// allocateNewCodeSlab - Helper method to allocate a new slab of code
+ /// memory from the OS and add it to the free list. Returns the new
+ /// FreeRangeHeader at the base of the slab.
+ FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
+ // If the user needs at least MinSize free memory, then we account for
+ // two MemoryRangeHeaders: the one in the user's block, and the one at the
+ // end of the slab.
+ size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
+ size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
+ sys::MemoryBlock B = allocateNewSlab(SlabSize);
+ CodeSlabs.push_back(B);
+ char *MemBase = (char*)(B.base());
+
+ // Put a tiny allocated block at the end of the memory chunk, so when
+ // FreeBlock calls getBlockAfter it doesn't fall off the end.
+ MemoryRangeHeader *EndBlock =
+ (MemoryRangeHeader*)(MemBase + B.size()) - 1;
+ EndBlock->ThisAllocated = 1;
+ EndBlock->PrevAllocated = 0;
+ EndBlock->BlockSize = sizeof(MemoryRangeHeader);
+
+ // Start out with a vast new block of free memory.
+ FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
+ NewBlock->ThisAllocated = 0;
+ // Make sure getFreeBlockBefore doesn't look into unmapped memory.
+ NewBlock->PrevAllocated = 1;
+ NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
+ NewBlock->SetEndOfBlockSizeMarker();
+ NewBlock->AddToFreeList(FreeMemoryList);
+
+ assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
+ "The block was too small!");
+ return NewBlock;
+ }
+
/// endFunctionBody - The function F is now allocated, and takes the memory
/// in the range [FunctionStart,FunctionEnd).
void endFunctionBody(const Function *F, uint8_t *FunctionStart,
@@ -319,12 +420,13 @@ namespace {
FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
}
- /// allocateSpace - Allocate a memory block of the given size.
+ /// allocateSpace - Allocate a memory block of the given size. This method
+ /// cannot be called between calls to startFunctionBody and endFunctionBody.
uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
CurBlock = FreeMemoryList;
FreeMemoryList = FreeMemoryList->AllocateBlock();
- uint8_t *result = (uint8_t *)CurBlock+1;
+ uint8_t *result = (uint8_t *)(CurBlock + 1);
if (Alignment == 0) Alignment = 1;
result = (uint8_t*)(((intptr_t)result+Alignment-1) &
@@ -336,6 +438,17 @@ namespace {
return result;
}
+ /// allocateStub - Allocate memory for a function stub.
+ uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
+ unsigned Alignment) {
+ return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
+ }
+
+ /// allocateGlobal - Allocate memory for a global.
+ uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
+ return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
+ }
+
/// startExceptionTable - Use startFunctionBody to allocate memory for the
/// function's exception table.
uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
@@ -375,12 +488,12 @@ namespace {
// Find the block that is allocated for this function.
MemoryRangeHeader *MemRange = I->second;
assert(MemRange->ThisAllocated && "Block isn't allocated!");
-
+
// Fill the buffer with garbage!
-#ifndef NDEBUG
- memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
-#endif
-
+ if (PoisonMemory) {
+ memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
+ }
+
// Free the memory.
FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
@@ -393,12 +506,12 @@ namespace {
// Find the block that is allocated for this function.
MemRange = I->second;
assert(MemRange->ThisAllocated && "Block isn't allocated!");
-
+
// Fill the buffer with garbage!
-#ifndef NDEBUG
- memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
-#endif
-
+ if (PoisonMemory) {
+ memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
+ }
+
// Free the memory.
FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
@@ -408,36 +521,57 @@ namespace {
/// setMemoryWritable - When code generation is in progress,
/// the code pages may need permissions changed.
- void setMemoryWritable(void)
+ void setMemoryWritable()
{
- for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
- sys::Memory::setWritable(Blocks[i]);
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::setWritable(CodeSlabs[i]);
}
/// setMemoryExecutable - When code generation is done and we're ready to
/// start execution, the code pages may need permissions changed.
- void setMemoryExecutable(void)
+ void setMemoryExecutable()
{
- for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
- sys::Memory::setExecutable(Blocks[i]);
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::setExecutable(CodeSlabs[i]);
+ }
+
+ /// setPoisonMemory - Controls whether we write garbage over freed memory.
+ ///
+ void setPoisonMemory(bool poison) {
+ PoisonMemory = poison;
}
};
}
-DefaultJITMemoryManager::DefaultJITMemoryManager() {
- // Allocate a 16M block of memory for functions.
-#if defined(__APPLE__) && defined(__arm__)
- sys::MemoryBlock MemBlock = getNewMemoryBlock(4 << 20);
+MemSlab *JITSlabAllocator::Allocate(size_t Size) {
+ sys::MemoryBlock B = JMM.allocateNewSlab(Size);
+ MemSlab *Slab = (MemSlab*)B.base();
+ Slab->Size = B.size();
+ Slab->NextPtr = 0;
+ return Slab;
+}
+
+void JITSlabAllocator::Deallocate(MemSlab *Slab) {
+ sys::MemoryBlock B(Slab, Slab->Size);
+ sys::Memory::ReleaseRWX(B);
+}
+
+DefaultJITMemoryManager::DefaultJITMemoryManager()
+ :
+#ifdef NDEBUG
+ PoisonMemory(false),
#else
- sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20);
+ PoisonMemory(true),
#endif
+ LastSlab(0, 0),
+ BumpSlabAllocator(*this),
+ StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
+ DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
- uint8_t *MemBase = static_cast<uint8_t*>(MemBlock.base());
+ // Allocate space for code.
+ sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
+ CodeSlabs.push_back(MemBlock);
+ uint8_t *MemBase = (uint8_t*)MemBlock.base();
- // Allocate stubs backwards from the base, allocate functions forward
- // from the base.
- StubBase = MemBase;
- CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards.
-
// We set up the memory chunk with 4 mem regions, like this:
// [ START
// [ Free #0 ] -> Large space to allocate functions from.
@@ -453,7 +587,7 @@ DefaultJITMemoryManager::DefaultJITMemoryManager() {
MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
Mem3->ThisAllocated = 1;
Mem3->PrevAllocated = 0;
- Mem3->BlockSize = 0;
+ Mem3->BlockSize = sizeof(MemoryRangeHeader);
/// Add a tiny free region so that the free list always has one entry.
FreeRangeHeader *Mem2 =
@@ -469,12 +603,12 @@ DefaultJITMemoryManager::DefaultJITMemoryManager() {
MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
Mem1->ThisAllocated = 1;
Mem1->PrevAllocated = 0;
- Mem1->BlockSize = (char*)Mem2 - (char*)Mem1;
+ Mem1->BlockSize = sizeof(MemoryRangeHeader);
// Add a FreeRangeHeader to the start of the function body region, indicating
// that the space is free. Mark the previous block allocated so we never look
// at it.
- FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr;
+ FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
Mem0->ThisAllocated = 0;
Mem0->PrevAllocated = 1;
Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
@@ -499,43 +633,128 @@ void DefaultJITMemoryManager::SetDlsymTable(void *ptr) {
}
DefaultJITMemoryManager::~DefaultJITMemoryManager() {
- for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
- sys::Memory::ReleaseRWX(Blocks[i]);
-
- delete[] GOTBase;
- Blocks.clear();
-}
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::ReleaseRWX(CodeSlabs[i]);
-uint8_t *DefaultJITMemoryManager::allocateStub(const GlobalValue* F,
- unsigned StubSize,
- unsigned Alignment) {
- CurStubPtr -= StubSize;
- CurStubPtr = (uint8_t*)(((intptr_t)CurStubPtr) &
- ~(intptr_t)(Alignment-1));
- if (CurStubPtr < StubBase) {
- // FIXME: allocate a new block
- fprintf(stderr, "JIT ran out of memory for function stubs!\n");
- abort();
- }
- return CurStubPtr;
+ delete[] GOTBase;
}
-sys::MemoryBlock DefaultJITMemoryManager::getNewMemoryBlock(unsigned size) {
+sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
// Allocate a new block close to the last one.
- const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
std::string ErrMsg;
- sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg);
+ sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
+ sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
if (B.base() == 0) {
- fprintf(stderr,
- "Allocation failed when allocating new memory in the JIT\n%s\n",
- ErrMsg.c_str());
- abort();
+ llvm_report_error("Allocation failed when allocating new memory in the"
+ " JIT\n" + ErrMsg);
+ }
+ LastSlab = B;
+ ++NumSlabs;
+ // Initialize the slab to garbage when debugging.
+ if (PoisonMemory) {
+ memset(B.base(), 0xCD, B.size());
}
- Blocks.push_back(B);
return B;
}
+/// CheckInvariants - For testing only. Return "" if all internal invariants
+/// are preserved, and a helpful error message otherwise. For free and
+/// allocated blocks, make sure that adding BlockSize gives a valid block.
+/// For free blocks, make sure they're in the free list and that their end of
+/// block size marker is correct. This function should return an error before
+/// accessing bad memory. This function is defined here instead of in
+/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
+/// implementation details of DefaultJITMemoryManager.
+bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
+ raw_string_ostream Err(ErrorStr);
+
+ // Construct a the set of FreeRangeHeader pointers so we can query it
+ // efficiently.
+ llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
+ FreeRangeHeader* FreeHead = FreeMemoryList;
+ FreeRangeHeader* FreeRange = FreeHead;
+
+ do {
+ // Check that the free range pointer is in the blocks we've allocated.
+ bool Found = false;
+ for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
+ E = CodeSlabs.end(); I != E && !Found; ++I) {
+ char *Start = (char*)I->base();
+ char *End = Start + I->size();
+ Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
+ }
+ if (!Found) {
+ Err << "Corrupt free list; points to " << FreeRange;
+ return false;
+ }
+
+ if (FreeRange->Next->Prev != FreeRange) {
+ Err << "Next and Prev pointers do not match.";
+ return false;
+ }
+
+ // Otherwise, add it to the set.
+ FreeHdrSet.insert(FreeRange);
+ FreeRange = FreeRange->Next;
+ } while (FreeRange != FreeHead);
+
+ // Go over each block, and look at each MemoryRangeHeader.
+ for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
+ E = CodeSlabs.end(); I != E; ++I) {
+ char *Start = (char*)I->base();
+ char *End = Start + I->size();
+
+ // Check each memory range.
+ for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
+ Start <= (char*)Hdr && (char*)Hdr < End;
+ Hdr = &Hdr->getBlockAfter()) {
+ if (Hdr->ThisAllocated == 0) {
+ // Check that this range is in the free list.
+ if (!FreeHdrSet.count(Hdr)) {
+ Err << "Found free header at " << Hdr << " that is not in free list.";
+ return false;
+ }
+
+ // Now make sure the size marker at the end of the block is correct.
+ uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
+ if (!(Start <= (char*)Marker && (char*)Marker < End)) {
+ Err << "Block size in header points out of current MemoryBlock.";
+ return false;
+ }
+ if (Hdr->BlockSize != *Marker) {
+ Err << "End of block size marker (" << *Marker << ") "
+ << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
+ return false;
+ }
+ }
+
+ if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
+ Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
+ << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
+ return false;
+ } else if (!LastHdr && !Hdr->PrevAllocated) {
+ Err << "The first header should have PrevAllocated true.";
+ return false;
+ }
+
+ // Remember the last header.
+ LastHdr = Hdr;
+ }
+ }
+
+ // All invariants are preserved.
+ return true;
+}
JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
return new DefaultJITMemoryManager();
}
+
+// Allocate memory for code in 512K slabs.
+const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
+
+// Allocate globals and stubs in slabs of 64K. (probably 16 pages)
+const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
+
+// Waste at most 16K at the end of each bump slab. (probably 4 pages)
+const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
diff --git a/lib/ExecutionEngine/JIT/MacOSJITEventListener.cpp b/lib/ExecutionEngine/JIT/MacOSJITEventListener.cpp
index 3b8b84c..53585b8 100644
--- a/lib/ExecutionEngine/JIT/MacOSJITEventListener.cpp
+++ b/lib/ExecutionEngine/JIT/MacOSJITEventListener.cpp
@@ -84,8 +84,7 @@ JITEventListener *createMacOSJITEventListener() {
void MacOSJITEventListener::NotifyFunctionEmitted(
const Function &F, void *FnStart, size_t FnSize,
const EmittedFunctionDetails &) {
- const char *const FnName = F.getNameStart();
- assert(FnName != 0 && FnStart != 0 && "Bad symbol to add");
+ assert(F.hasName() && FnStart != 0 && "Bad symbol to add");
JITSymbolTable **SymTabPtrPtr = 0;
SymTabPtrPtr = &__jitSymbolTable;
@@ -120,7 +119,7 @@ void MacOSJITEventListener::NotifyFunctionEmitted(
// Otherwise, we have enough space, just tack it onto the end of the array.
JITSymbolEntry &Entry = SymTabPtr->Symbols[SymTabPtr->NumSymbols];
- Entry.FnName = strdup(FnName);
+ Entry.FnName = strdup(F.getName().data());
Entry.FnStart = FnStart;
Entry.FnSize = FnSize;
++SymTabPtr->NumSymbols;
diff --git a/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp b/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp
new file mode 100644
index 0000000..69398be
--- /dev/null
+++ b/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp
@@ -0,0 +1,178 @@
+//===-- OProfileJITEventListener.cpp - Tell OProfile about JITted code ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITEventListener object that calls into OProfile to tell
+// it about JITted functions. For now, we only record function names and sizes,
+// but eventually we'll also record line number information.
+//
+// See http://oprofile.sourceforge.net/doc/devel/jit-interface.html for the
+// definition of the interface we're using.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "oprofile-jit-event-listener"
+#include "llvm/Function.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Errno.h"
+#include "llvm/Config/config.h"
+#include <stddef.h>
+using namespace llvm;
+
+#if USE_OPROFILE
+
+#include <opagent.h>
+
+namespace {
+
+class OProfileJITEventListener : public JITEventListener {
+ op_agent_t Agent;
+public:
+ OProfileJITEventListener();
+ ~OProfileJITEventListener();
+
+ virtual void NotifyFunctionEmitted(const Function &F,
+ void *FnStart, size_t FnSize,
+ const EmittedFunctionDetails &Details);
+ virtual void NotifyFreeingMachineCode(const Function &F, void *OldPtr);
+};
+
+OProfileJITEventListener::OProfileJITEventListener()
+ : Agent(op_open_agent()) {
+ if (Agent == NULL) {
+ const std::string err_str = sys::StrError();
+ DEBUG(errs() << "Failed to connect to OProfile agent: " << err_str << "\n");
+ } else {
+ DEBUG(errs() << "Connected to OProfile agent.\n");
+ }
+}
+
+OProfileJITEventListener::~OProfileJITEventListener() {
+ if (Agent != NULL) {
+ if (op_close_agent(Agent) == -1) {
+ const std::string err_str = sys::StrError();
+ DEBUG(errs() << "Failed to disconnect from OProfile agent: "
+ << err_str << "\n");
+ } else {
+ DEBUG(errs() << "Disconnected from OProfile agent.\n");
+ }
+ }
+}
+
+class FilenameCache {
+ // Holds the filename of each CompileUnit, so that we can pass the
+ // pointer into oprofile. These char*s are freed in the destructor.
+ DenseMap<MDNode*, char*> Filenames;
+
+ public:
+ const char *getFilename(MDNode *CompileUnit) {
+ char *&Filename = Filenames[CompileUnit];
+ if (Filename == NULL) {
+ DICompileUnit CU(CompileUnit);
+ Filename = strdup(CU.getFilename());
+ }
+ return Filename;
+ }
+ ~FilenameCache() {
+ for (DenseMap<MDNode*, char*>::iterator
+ I = Filenames.begin(), E = Filenames.end(); I != E; ++I) {
+ free(I->second);
+ }
+ }
+};
+
+static debug_line_info LineStartToOProfileFormat(
+ const MachineFunction &MF, FilenameCache &Filenames,
+ uintptr_t Address, DebugLoc Loc) {
+ debug_line_info Result;
+ Result.vma = Address;
+ const DebugLocTuple &tuple = MF.getDebugLocTuple(Loc);
+ Result.lineno = tuple.Line;
+ Result.filename = Filenames.getFilename(tuple.CompileUnit);
+ DEBUG(errs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to "
+ << Result.filename << ":" << Result.lineno << "\n");
+ return Result;
+}
+
+// Adds the just-emitted function to the symbol table.
+void OProfileJITEventListener::NotifyFunctionEmitted(
+ const Function &F, void *FnStart, size_t FnSize,
+ const EmittedFunctionDetails &Details) {
+ assert(F.hasName() && FnStart != 0 && "Bad symbol to add");
+ if (op_write_native_code(Agent, F.getName().data(),
+ reinterpret_cast<uint64_t>(FnStart),
+ FnStart, FnSize) == -1) {
+ DEBUG(errs() << "Failed to tell OProfile about native function "
+ << F.getName() << " at ["
+ << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
+ return;
+ }
+
+ // Now we convert the line number information from the address/DebugLoc format
+ // in Details to the address/filename/lineno format that OProfile expects.
+ // OProfile 0.9.4 (and maybe later versions) has a bug that causes it to
+ // ignore line numbers for addresses above 4G.
+ FilenameCache Filenames;
+ std::vector<debug_line_info> LineInfo;
+ LineInfo.reserve(1 + Details.LineStarts.size());
+ if (!Details.MF->getDefaultDebugLoc().isUnknown()) {
+ LineInfo.push_back(LineStartToOProfileFormat(
+ *Details.MF, Filenames,
+ reinterpret_cast<uintptr_t>(FnStart),
+ Details.MF->getDefaultDebugLoc()));
+ }
+ for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator
+ I = Details.LineStarts.begin(), E = Details.LineStarts.end();
+ I != E; ++I) {
+ LineInfo.push_back(LineStartToOProfileFormat(
+ *Details.MF, Filenames, I->Address, I->Loc));
+ }
+ if (!LineInfo.empty()) {
+ if (op_write_debug_line_info(Agent, FnStart,
+ LineInfo.size(), &*LineInfo.begin()) == -1) {
+ DEBUG(errs()
+ << "Failed to tell OProfile about line numbers for native function "
+ << F.getName() << " at ["
+ << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
+ }
+ }
+}
+
+// Removes the to-be-deleted function from the symbol table.
+void OProfileJITEventListener::NotifyFreeingMachineCode(
+ const Function &F, void *FnStart) {
+ assert(FnStart && "Invalid function pointer");
+ if (op_unload_native_code(Agent, reinterpret_cast<uint64_t>(FnStart)) == -1) {
+ DEBUG(errs() << "Failed to tell OProfile about unload of native function "
+ << F.getName() << " at " << FnStart << "\n");
+ }
+}
+
+} // anonymous namespace.
+
+namespace llvm {
+JITEventListener *createOProfileJITEventListener() {
+ return new OProfileJITEventListener;
+}
+}
+
+#else // USE_OPROFILE
+
+namespace llvm {
+// By defining this to return NULL, we can let clients call it unconditionally,
+// even if they haven't configured with the OProfile libraries.
+JITEventListener *createOProfileJITEventListener() {
+ return NULL;
+}
+} // namespace llvm
+
+#endif // USE_OPROFILE
diff --git a/lib/ExecutionEngine/JIT/TargetSelect.cpp b/lib/ExecutionEngine/JIT/TargetSelect.cpp
index 0f20819..8bed33b 100644
--- a/lib/ExecutionEngine/JIT/TargetSelect.cpp
+++ b/lib/ExecutionEngine/JIT/TargetSelect.cpp
@@ -7,24 +7,27 @@
//
//===----------------------------------------------------------------------===//
//
-// This just asks the TargetMachineRegistry for the appropriate JIT to use, and
-// allows the user to specify a specific one on the commandline with -march=x.
+// This just asks the TargetRegistry for the appropriate JIT to use, and allows
+// the user to specify a specific one on the commandline with -march=x. Clients
+// should initialize targets prior to calling createJIT.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
-#include "llvm/Support/RegistryParser.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Host.h"
#include "llvm/Target/SubtargetFeature.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-static cl::opt<const TargetMachineRegistry::entry*, false,
- RegistryParser<TargetMachine> >
-MArch("march", cl::desc("Architecture to generate assembly for:"));
+static cl::opt<std::string>
+MArch("march",
+ cl::desc("Architecture to generate assembly for (see --version)"));
static cl::opt<std::string>
MCPU("mcpu",
@@ -38,25 +41,51 @@ MAttrs("mattr",
cl::desc("Target specific attributes (-mattr=help for details)"),
cl::value_desc("a1,+a2,-a3,..."));
-/// createInternal - Create an return a new JIT compiler if there is one
-/// available for the current target. Otherwise, return null.
-///
-ExecutionEngine *JIT::createJIT(ModuleProvider *MP, std::string *ErrorStr,
- JITMemoryManager *JMM,
- CodeGenOpt::Level OptLevel) {
- const TargetMachineRegistry::entry *TheArch = MArch;
- if (TheArch == 0) {
+/// selectTarget - Pick a target either via -march or by guessing the native
+/// arch. Add any CPU features specified via -mcpu or -mattr.
+TargetMachine *JIT::selectTarget(ModuleProvider *MP, std::string *ErrorStr) {
+ Module &Mod = *MP->getModule();
+
+ Triple TheTriple(Mod.getTargetTriple());
+ if (TheTriple.getTriple().empty())
+ TheTriple.setTriple(sys::getHostTriple());
+
+ // Adjust the triple to match what the user requested.
+ const Target *TheTarget = 0;
+ if (!MArch.empty()) {
+ for (TargetRegistry::iterator it = TargetRegistry::begin(),
+ ie = TargetRegistry::end(); it != ie; ++it) {
+ if (MArch == it->getName()) {
+ TheTarget = &*it;
+ break;
+ }
+ }
+
+ if (!TheTarget) {
+ *ErrorStr = "No available targets are compatible with this -march, "
+ "see -version for the available targets.\n";
+ return 0;
+ }
+
+ // Adjust the triple to match (if known), otherwise stick with the
+ // module/host triple.
+ Triple::ArchType Type = Triple::getArchTypeForLLVMName(MArch);
+ if (Type != Triple::UnknownArch)
+ TheTriple.setArch(Type);
+ } else {
std::string Error;
- TheArch = TargetMachineRegistry::getClosestTargetForJIT(Error);
- if (TheArch == 0) {
+ TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Error);
+ if (TheTarget == 0) {
if (ErrorStr)
*ErrorStr = Error;
return 0;
}
- } else if (TheArch->JITMatchQualityFn() == 0) {
- cerr << "WARNING: This target JIT is not designed for the host you are"
- << " running. If bad things happen, please choose a different "
- << "-march switch.\n";
+ }
+
+ if (!TheTarget->hasJIT()) {
+ errs() << "WARNING: This target JIT is not designed for the host you are"
+ << " running. If bad things happen, please choose a different "
+ << "-march switch.\n";
}
// Package up features to be passed to target/subtarget
@@ -70,14 +99,8 @@ ExecutionEngine *JIT::createJIT(ModuleProvider *MP, std::string *ErrorStr,
}
// Allocate a target...
- TargetMachine *Target = TheArch->CtorFn(*MP->getModule(), FeaturesStr);
+ TargetMachine *Target =
+ TheTarget->createTargetMachine(TheTriple.getTriple(), FeaturesStr);
assert(Target && "Could not allocate target machine!");
-
- // If the target supports JIT code generation, return a new JIT now.
- if (TargetJITInfo *TJ = Target->getJITInfo())
- return new JIT(MP, *Target, *TJ, JMM, OptLevel);
-
- if (ErrorStr)
- *ErrorStr = "target does not support JIT code generation";
- return 0;
+ return Target;
}
diff --git a/lib/Linker/LinkArchives.cpp b/lib/Linker/LinkArchives.cpp
index faf01af..76d81c2 100644
--- a/lib/Linker/LinkArchives.cpp
+++ b/lib/Linker/LinkArchives.cpp
@@ -96,10 +96,10 @@ bool
Linker::LinkInArchive(const sys::Path &Filename, bool &is_native) {
// Make sure this is an archive file we're dealing with
if (!Filename.isArchive())
- return error("File '" + Filename.toString() + "' is not an archive.");
+ return error("File '" + Filename.str() + "' is not an archive.");
// Open the archive file
- verbose("Linking archive file '" + Filename.toString() + "'");
+ verbose("Linking archive file '" + Filename.str() + "'");
// Find all of the symbols currently undefined in the bitcode program.
// If all the symbols are defined, the program is complete, and there is
@@ -108,8 +108,7 @@ Linker::LinkInArchive(const sys::Path &Filename, bool &is_native) {
GetAllUndefinedSymbols(Composite, UndefinedSymbols);
if (UndefinedSymbols.empty()) {
- verbose("No symbols undefined, skipping library '" +
- Filename.toString() + "'");
+ verbose("No symbols undefined, skipping library '" + Filename.str() + "'");
return false; // No need to link anything in!
}
@@ -120,7 +119,7 @@ Linker::LinkInArchive(const sys::Path &Filename, bool &is_native) {
Archive* arch = AutoArch.get();
if (!arch)
- return error("Cannot read archive '" + Filename.toString() +
+ return error("Cannot read archive '" + Filename.str() +
"': " + ErrMsg);
if (!arch->isBitcodeArchive()) {
is_native = true;
@@ -143,7 +142,7 @@ Linker::LinkInArchive(const sys::Path &Filename, bool &is_native) {
// Find the modules we need to link into the target module
std::set<ModuleProvider*> Modules;
if (!arch->findModulesDefiningSymbols(UndefinedSymbols, Modules, &ErrMsg))
- return error("Cannot find symbols in '" + Filename.toString() +
+ return error("Cannot find symbols in '" + Filename.str() +
"': " + ErrMsg);
// If we didn't find any more modules to link this time, we are done
diff --git a/lib/Linker/LinkItems.cpp b/lib/Linker/LinkItems.cpp
index dc0f7c1..61f3c26 100644
--- a/lib/Linker/LinkItems.cpp
+++ b/lib/Linker/LinkItems.cpp
@@ -14,9 +14,10 @@
#include "llvm/Linker.h"
#include "llvm/Module.h"
-#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Bitcode/ReaderWriter.h"
-
+#include "llvm/System/Path.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
// LinkItems - This function is the main entry point into linking. It takes a
@@ -69,20 +70,20 @@ Linker::LinkInItems(const ItemList& Items, ItemList& NativeItems) {
/// LinkInLibrary - links one library into the HeadModule.
///
-bool Linker::LinkInLibrary(const std::string& Lib, bool& is_native) {
+bool Linker::LinkInLibrary(const StringRef &Lib, bool& is_native) {
is_native = false;
// Determine where this library lives.
sys::Path Pathname = FindLib(Lib);
if (Pathname.isEmpty())
- return error("Cannot find library '" + Lib + "'");
+ return error("Cannot find library '" + Lib.str() + "'");
// If its an archive, try to link it in
std::string Magic;
Pathname.getMagicNumber(Magic, 64);
switch (sys::IdentifyFileType(Magic.c_str(), 64)) {
- default: assert(0 && "Bad file type identification");
+ default: llvm_unreachable("Bad file type identification");
case sys::Unknown_FileType:
- return warning("Supposed library '" + Lib + "' isn't a library.");
+ return warning("Supposed library '" + Lib.str() + "' isn't a library.");
case sys::Bitcode_FileType:
// LLVM ".so" file.
@@ -92,7 +93,7 @@ bool Linker::LinkInLibrary(const std::string& Lib, bool& is_native) {
case sys::Archive_FileType:
if (LinkInArchive(Pathname, is_native))
- return error("Cannot link archive '" + Pathname.toString() + "'");
+ return error("Cannot link archive '" + Pathname.str() + "'");
break;
case sys::ELF_Relocatable_FileType:
@@ -157,7 +158,7 @@ bool Linker::LinkInFile(const sys::Path &File, bool &is_native) {
is_native = false;
// Check for a file of name "-", which means "read standard input"
- if (File.toString() == "-") {
+ if (File.str() == "-") {
std::auto_ptr<Module> M;
if (MemoryBuffer *Buffer = MemoryBuffer::getSTDIN()) {
M.reset(ParseBitcodeFile(Buffer, Context, &Error));
@@ -172,34 +173,34 @@ bool Linker::LinkInFile(const sys::Path &File, bool &is_native) {
// Make sure we can at least read the file
if (!File.canRead())
- return error("Cannot find linker input '" + File.toString() + "'");
+ return error("Cannot find linker input '" + File.str() + "'");
// If its an archive, try to link it in
std::string Magic;
File.getMagicNumber(Magic, 64);
switch (sys::IdentifyFileType(Magic.c_str(), 64)) {
- default: assert(0 && "Bad file type identification");
+ default: llvm_unreachable("Bad file type identification");
case sys::Unknown_FileType:
- return warning("Ignoring file '" + File.toString() +
+ return warning("Ignoring file '" + File.str() +
"' because does not contain bitcode.");
case sys::Archive_FileType:
// A user may specify an ar archive without -l, perhaps because it
// is not installed as a library. Detect that and link the archive.
- verbose("Linking archive file '" + File.toString() + "'");
+ verbose("Linking archive file '" + File.str() + "'");
if (LinkInArchive(File, is_native))
return true;
break;
case sys::Bitcode_FileType: {
- verbose("Linking bitcode file '" + File.toString() + "'");
+ verbose("Linking bitcode file '" + File.str() + "'");
std::auto_ptr<Module> M(LoadObject(File));
if (M.get() == 0)
- return error("Cannot load file '" + File.toString() + "': " + Error);
+ return error("Cannot load file '" + File.str() + "': " + Error);
if (LinkInModule(M.get(), &Error))
- return error("Cannot link file '" + File.toString() + "': " + Error);
+ return error("Cannot link file '" + File.str() + "': " + Error);
- verbose("Linked in file '" + File.toString() + "'");
+ verbose("Linked in file '" + File.str() + "'");
break;
}
diff --git a/lib/Linker/LinkModules.cpp b/lib/Linker/LinkModules.cpp
index 4a15d88..e64c200 100644
--- a/lib/Linker/LinkModules.cpp
+++ b/lib/Linker/LinkModules.cpp
@@ -19,21 +19,22 @@
#include "llvm/Linker.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Instructions.h"
#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Path.h"
#include "llvm/ADT/DenseMap.h"
-#include <sstream>
using namespace llvm;
// Error - Simple wrapper function to conditionally assign to E and return true.
// This just makes error return conditions a little bit simpler...
-static inline bool Error(std::string *E, const std::string &Message) {
- if (E) *E = Message;
+static inline bool Error(std::string *E, const Twine &Message) {
+ if (E) *E = Message.str();
return true;
}
@@ -143,7 +144,7 @@ protected:
// for debugging...
virtual void dump() const {
- cerr << "AbstractTypeSet!\n";
+ errs() << "AbstractTypeSet!\n";
}
};
}
@@ -336,11 +337,11 @@ static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
static void PrintMap(const std::map<const Value*, Value*> &M) {
for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
I != E; ++I) {
- cerr << " Fr: " << (void*)I->first << " ";
+ errs() << " Fr: " << (void*)I->first << " ";
I->first->dump();
- cerr << " To: " << (void*)I->second << " ";
+ errs() << " To: " << (void*)I->second << " ";
I->second->dump();
- cerr << "\n";
+ errs() << "\n";
}
}
#endif
@@ -348,7 +349,8 @@ static void PrintMap(const std::map<const Value*, Value*> &M) {
// RemapOperand - Use ValueMap to convert constants from one module to another.
static Value *RemapOperand(const Value *In,
- std::map<const Value*, Value*> &ValueMap) {
+ std::map<const Value*, Value*> &ValueMap,
+ LLVMContext &Context) {
std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
if (I != ValueMap.end())
return I->second;
@@ -363,29 +365,37 @@ static Value *RemapOperand(const Value *In,
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
std::vector<Constant*> Operands(CPA->getNumOperands());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
- Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
- Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
+ Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap,
+ Context));
+ Result =
+ ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
std::vector<Constant*> Operands(CPS->getNumOperands());
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
- Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
- Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
+ Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap,
+ Context));
+ Result =
+ ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
} else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
Result = const_cast<Constant*>(CPV);
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
std::vector<Constant*> Operands(CP->getNumOperands());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
- Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
+ Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap,
+ Context));
Result = ConstantVector::get(Operands);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
std::vector<Constant*> Ops;
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
- Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
+ Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap,
+ Context)));
Result = CE->getWithOperands(Ops);
} else {
assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
- assert(0 && "Unknown type of derived type constant value!");
+ llvm_unreachable("Unknown type of derived type constant value!");
}
+ } else if (isa<MetadataBase>(In)) {
+ Result = const_cast<Value*>(In);
} else if (isa<InlineAsm>(In)) {
Result = const_cast<Value*>(In);
}
@@ -397,11 +407,11 @@ static Value *RemapOperand(const Value *In,
}
#ifndef NDEBUG
- cerr << "LinkModules ValueMap: \n";
+ errs() << "LinkModules ValueMap: \n";
PrintMap(ValueMap);
- cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
- assert(0 && "Couldn't remap value!");
+ errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
+ llvm_unreachable("Couldn't remap value!");
#endif
return 0;
}
@@ -521,6 +531,22 @@ static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
return false;
}
+// Insert all of the named mdnoes in Src into the Dest module.
+static void LinkNamedMDNodes(Module *Dest, Module *Src) {
+ for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
+ E = Src->named_metadata_end(); I != E; ++I) {
+ const NamedMDNode *SrcNMD = I;
+ NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
+ if (!DestNMD)
+ NamedMDNode::Create(SrcNMD, Dest);
+ else {
+ // Add Src elements into Dest node.
+ for (unsigned i = 0, e = SrcNMD->getNumElements(); i != e; ++i)
+ DestNMD->addElement(SrcNMD->getElement(i));
+ }
+ }
+}
+
// LinkGlobals - Loop through the global variables in the src module and merge
// them into the dest module.
static bool LinkGlobals(Module *Dest, const Module *Src,
@@ -538,8 +564,7 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
// Check to see if may have to link the global with the global, alias or
// function.
if (SGV->hasName() && !SGV->hasLocalLinkage())
- DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getNameStart(),
- SGV->getNameEnd()));
+ DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
@@ -564,9 +589,9 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
// symbol over in the dest module... the initializer will be filled in
// later by LinkGlobalInits.
GlobalVariable *NewDGV =
- new GlobalVariable(SGV->getType()->getElementType(),
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
- SGV->getName(), Dest, false,
+ SGV->getName(), 0, false,
SGV->getType()->getAddressSpace());
// Propagate alignment, visibility and section info.
CopyGVAttributes(NewDGV, SGV);
@@ -597,9 +622,9 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
// AppendingVars map. The name is cleared out so that no linkage is
// performed.
GlobalVariable *NewDGV =
- new GlobalVariable(SGV->getType()->getElementType(),
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
SGV->isConstant(), SGV->getLinkage(), /*init*/0,
- "", Dest, false,
+ "", 0, false,
SGV->getType()->getAddressSpace());
// Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
@@ -625,13 +650,15 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
// we are replacing may be a function (if a prototype, weak, etc) or a
// global variable.
GlobalVariable *NewDGV =
- new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(),
- NewLinkage, /*init*/0, DGV->getName(), Dest, false,
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
+ SGV->isConstant(), NewLinkage, /*init*/0,
+ DGV->getName(), 0, false,
SGV->getType()->getAddressSpace());
// Propagate alignment, section, and visibility info.
CopyGVAttributes(NewDGV, SGV);
- DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
+ DGV->getType()));
// DGV will conflict with NewDGV because they both had the same
// name. We must erase this now so ForceRenaming doesn't assert
@@ -697,6 +724,9 @@ CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
else if (SL == GlobalValue::InternalLinkage &&
DL == GlobalValue::InternalLinkage)
return GlobalValue::InternalLinkage;
+ else if (SL == GlobalValue::LinkerPrivateLinkage &&
+ DL == GlobalValue::LinkerPrivateLinkage)
+ return GlobalValue::LinkerPrivateLinkage;
else {
assert (SL == GlobalValue::PrivateLinkage &&
DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
@@ -866,7 +896,8 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src,
if (SGV->hasInitializer()) { // Only process initialized GV's
// Figure out what the initializer looks like in the dest module...
Constant *SInit =
- cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
+ cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap,
+ Dest->getContext()));
// Grab destination global variable or alias.
GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
@@ -885,9 +916,9 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src,
// Nothing is required, mapped values will take the new global
// automatically.
} else if (DGVar->hasAppendingLinkage()) {
- assert(0 && "Appending linkage unimplemented!");
+ llvm_unreachable("Appending linkage unimplemented!");
} else {
- assert(0 && "Unknown linkage!");
+ llvm_unreachable("Unknown linkage!");
}
} else {
// Copy the initializer over now...
@@ -923,8 +954,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
// Check to see if may have to link the function with the global, alias or
// function.
if (SF->hasName() && !SF->hasLocalLinkage())
- DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getNameStart(),
- SF->getNameEnd()));
+ DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
@@ -979,7 +1009,8 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
CopyGVAttributes(NewDF, SF);
// Any uses of DF need to change to NewDF, with cast
- DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
+ DGV->getType()));
// DF will conflict with NewDF because they both had the same. We must
// erase this now so ForceRenaming doesn't assert because DF might
@@ -1053,7 +1084,7 @@ static bool LinkFunctionBody(Function *Dest, Function *Src,
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
OI != OE; ++OI)
if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
- *OI = RemapOperand(*OI, ValueMap);
+ *OI = RemapOperand(*OI, ValueMap, Dest->getContext());
// There is no need to map the arguments anymore.
for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
@@ -1132,14 +1163,15 @@ static bool LinkAppendingVars(Module *M,
"Appending variables with different section name need to be linked!");
unsigned NewSize = T1->getNumElements() + T2->getNumElements();
- ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
+ ArrayType *NewType = ArrayType::get(T1->getElementType(),
+ NewSize);
G1->setName(""); // Clear G1's name in case of a conflict!
// Create the new global variable...
GlobalVariable *NG =
- new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
- /*init*/0, First->first, M, G1->isThreadLocal(),
+ new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
+ /*init*/0, First->first, 0, G1->isThreadLocal(),
G1->getType()->getAddressSpace());
// Propagate alignment, visibility and section info.
@@ -1173,8 +1205,10 @@ static bool LinkAppendingVars(Module *M,
// FIXME: This should rewrite simple/straight-forward uses such as
// getelementptr instructions to not use the Cast!
- G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType()));
- G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType()));
+ G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
+ G1->getType()));
+ G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
+ G2->getType()));
// Remove the two globals from the module now...
M->getGlobalList().erase(G1);
@@ -1239,10 +1273,10 @@ Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
Src->getDataLayout() != Dest->getDataLayout())
- cerr << "WARNING: Linking two modules of different data layouts!\n";
+ errs() << "WARNING: Linking two modules of different data layouts!\n";
if (!Src->getTargetTriple().empty() &&
Dest->getTargetTriple() != Src->getTargetTriple())
- cerr << "WARNING: Linking two modules of different target triples!\n";
+ errs() << "WARNING: Linking two modules of different target triples!\n";
// Append the module inline asm string.
if (!Src->getModuleInlineAsm().empty()) {
@@ -1282,6 +1316,9 @@ Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
AppendingVars.insert(std::make_pair(I->getName(), I));
}
+ // Insert all of the named mdnoes in Src into the Dest module.
+ LinkNamedMDNodes(Dest, Src);
+
// Insert all of the globals in src into the Dest module... without linking
// initializers (which could refer to functions not yet mapped over).
if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
diff --git a/lib/Linker/Linker.cpp b/lib/Linker/Linker.cpp
index 6e0b760..aef79d0 100644
--- a/lib/Linker/Linker.cpp
+++ b/lib/Linker/Linker.cpp
@@ -14,12 +14,13 @@
#include "llvm/Linker.h"
#include "llvm/Module.h"
#include "llvm/Bitcode/ReaderWriter.h"
-#include "llvm/Config/config.h"
+#include "llvm/System/Path.h"
#include "llvm/Support/MemoryBuffer.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Config/config.h"
using namespace llvm;
-Linker::Linker(const std::string& progname, const std::string& modname,
+Linker::Linker(const StringRef &progname, const StringRef &modname,
LLVMContext& C, unsigned flags):
Context(C),
Composite(new Module(modname, C)),
@@ -28,7 +29,7 @@ Linker::Linker(const std::string& progname, const std::string& modname,
Error(),
ProgramName(progname) { }
-Linker::Linker(const std::string& progname, Module* aModule, unsigned flags) :
+Linker::Linker(const StringRef &progname, Module* aModule, unsigned flags) :
Context(aModule->getContext()),
Composite(aModule),
LibPaths(),
@@ -41,25 +42,25 @@ Linker::~Linker() {
}
bool
-Linker::error(const std::string& message) {
+Linker::error(const StringRef &message) {
Error = message;
if (!(Flags&QuietErrors))
- cerr << ProgramName << ": error: " << message << "\n";
+ errs() << ProgramName << ": error: " << message << "\n";
return true;
}
bool
-Linker::warning(const std::string& message) {
+Linker::warning(const StringRef &message) {
Error = message;
if (!(Flags&QuietWarnings))
- cerr << ProgramName << ": warning: " << message << "\n";
+ errs() << ProgramName << ": warning: " << message << "\n";
return false;
}
void
-Linker::verbose(const std::string& message) {
+Linker::verbose(const StringRef &message) {
if (Flags&Verbose)
- cerr << " " << message << "\n";
+ errs() << " " << message << "\n";
}
void
@@ -69,11 +70,8 @@ Linker::addPath(const sys::Path& path) {
void
Linker::addPaths(const std::vector<std::string>& paths) {
- for (unsigned i = 0; i != paths.size(); ++i) {
- sys::Path aPath;
- aPath.set(paths[i]);
- LibPaths.push_back(aPath);
- }
+ for (unsigned i = 0, e = paths.size(); i != e; ++i)
+ LibPaths.push_back(sys::Path(paths[i]));
}
void
@@ -100,16 +98,15 @@ Linker::LoadObject(const sys::Path &FN) {
std::string ParseErrorMessage;
Module *Result = 0;
- const std::string &FNS = FN.toString();
- std::auto_ptr<MemoryBuffer> Buffer(MemoryBuffer::getFileOrSTDIN(FNS.c_str()));
+ std::auto_ptr<MemoryBuffer> Buffer(MemoryBuffer::getFileOrSTDIN(FN.c_str()));
if (Buffer.get())
Result = ParseBitcodeFile(Buffer.get(), Context, &ParseErrorMessage);
else
- ParseErrorMessage = "Error reading file '" + FNS + "'";
+ ParseErrorMessage = "Error reading file '" + FN.str() + "'";
if (Result)
return std::auto_ptr<Module>(Result);
- Error = "Bitcode file '" + FN.toString() + "' could not be loaded";
+ Error = "Bitcode file '" + FN.str() + "' could not be loaded";
if (ParseErrorMessage.size())
Error += ": " + ParseErrorMessage;
return std::auto_ptr<Module>();
@@ -117,13 +114,13 @@ Linker::LoadObject(const sys::Path &FN) {
// IsLibrary - Determine if "Name" is a library in "Directory". Return
// a non-empty sys::Path if its found, an empty one otherwise.
-static inline sys::Path IsLibrary(const std::string& Name,
- const sys::Path& Directory) {
+static inline sys::Path IsLibrary(const StringRef &Name,
+ const sys::Path &Directory) {
sys::Path FullPath(Directory);
// Try the libX.a form
- FullPath.appendComponent("lib" + Name);
+ FullPath.appendComponent(("lib" + Name).str());
FullPath.appendSuffix("a");
if (FullPath.isArchive())
return FullPath;
@@ -156,7 +153,7 @@ static inline sys::Path IsLibrary(const std::string& Name,
/// Path if no matching file can be found.
///
sys::Path
-Linker::FindLib(const std::string &Filename) {
+Linker::FindLib(const StringRef &Filename) {
// Determine if the pathname can be found as it stands.
sys::Path FilePath(Filename);
if (FilePath.canRead() &&
@@ -167,7 +164,7 @@ Linker::FindLib(const std::string &Filename) {
// there.
for (unsigned Index = 0; Index != LibPaths.size(); ++Index) {
sys::Path Directory(LibPaths[Index]);
- sys::Path FullPath = IsLibrary(Filename,Directory);
+ sys::Path FullPath = IsLibrary(Filename, Directory);
if (!FullPath.isEmpty())
return FullPath;
}
diff --git a/lib/MC/CMakeLists.txt b/lib/MC/CMakeLists.txt
index 6307ffe..8a1a058 100644
--- a/lib/MC/CMakeLists.txt
+++ b/lib/MC/CMakeLists.txt
@@ -1,5 +1,24 @@
add_llvm_library(LLVMMC
+ MCAsmInfo.cpp
+ MCAsmInfoCOFF.cpp
+ MCAsmInfoDarwin.cpp
+ MCAsmLexer.cpp
+ MCAsmParser.cpp
MCAsmStreamer.cpp
+ MCAssembler.cpp
+ MCCodeEmitter.cpp
MCContext.cpp
+ MCDisassembler.cpp
+ MCExpr.cpp
+ MCInst.cpp
+ MCInstPrinter.cpp
+ MCMachOStreamer.cpp
+ MCNullStreamer.cpp
+ MCSection.cpp
+ MCSectionELF.cpp
+ MCSectionMachO.cpp
MCStreamer.cpp
+ MCSymbol.cpp
+ MCValue.cpp
+ TargetAsmParser.cpp
)
diff --git a/lib/MC/MCAsmInfo.cpp b/lib/MC/MCAsmInfo.cpp
new file mode 100644
index 0000000..74fb930
--- /dev/null
+++ b/lib/MC/MCAsmInfo.cpp
@@ -0,0 +1,107 @@
+//===-- MCAsmInfo.cpp - Asm Info -------------------------------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines target asm properties related what form asm statements
+// should take.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/DataTypes.h"
+#include <cctype>
+#include <cstring>
+using namespace llvm;
+
+MCAsmInfo::MCAsmInfo() {
+ ZeroFillDirective = 0;
+ NonexecutableStackDirective = 0;
+ NeedsSet = false;
+ MaxInstLength = 4;
+ PCSymbol = "$";
+ SeparatorChar = ';';
+ CommentColumn = 60;
+ CommentString = "#";
+ GlobalPrefix = "";
+ PrivateGlobalPrefix = ".";
+ LinkerPrivateGlobalPrefix = "";
+ InlineAsmStart = "APP";
+ InlineAsmEnd = "NO_APP";
+ AssemblerDialect = 0;
+ AllowQuotesInName = false;
+ AllowNameToStartWithDigit = false;
+ ZeroDirective = "\t.zero\t";
+ ZeroDirectiveSuffix = 0;
+ AsciiDirective = "\t.ascii\t";
+ AscizDirective = "\t.asciz\t";
+ Data8bitsDirective = "\t.byte\t";
+ Data16bitsDirective = "\t.short\t";
+ Data32bitsDirective = "\t.long\t";
+ Data64bitsDirective = "\t.quad\t";
+ SunStyleELFSectionSwitchSyntax = false;
+ UsesELFSectionDirectiveForBSS = false;
+ AlignDirective = "\t.align\t";
+ AlignmentIsInBytes = true;
+ TextAlignFillValue = 0;
+ JumpTableDirective = 0;
+ PICJumpTableDirective = 0;
+ GlobalDirective = "\t.globl\t";
+ SetDirective = 0;
+ LCOMMDirective = 0;
+ COMMDirective = "\t.comm\t";
+ COMMDirectiveTakesAlignment = true;
+ HasDotTypeDotSizeDirective = true;
+ HasSingleParameterDotFile = true;
+ UsedDirective = 0;
+ WeakRefDirective = 0;
+ WeakDefDirective = 0;
+ // FIXME: These are ELFish - move to ELFMAI.
+ HiddenDirective = "\t.hidden\t";
+ ProtectedDirective = "\t.protected\t";
+ AbsoluteDebugSectionOffsets = false;
+ AbsoluteEHSectionOffsets = false;
+ HasLEB128 = false;
+ HasDotLocAndDotFile = false;
+ SupportsDebugInformation = false;
+ ExceptionsType = ExceptionHandling::None;
+ DwarfRequiresFrameSection = true;
+ DwarfUsesInlineInfoSection = false;
+ Is_EHSymbolPrivate = true;
+ GlobalEHDirective = 0;
+ SupportsWeakOmittedEHFrame = true;
+ DwarfSectionOffsetDirective = 0;
+
+ AsmTransCBE = 0;
+}
+
+MCAsmInfo::~MCAsmInfo() {
+}
+
+
+unsigned MCAsmInfo::getULEB128Size(unsigned Value) {
+ unsigned Size = 0;
+ do {
+ Value >>= 7;
+ Size += sizeof(int8_t);
+ } while (Value);
+ return Size;
+}
+
+unsigned MCAsmInfo::getSLEB128Size(int Value) {
+ unsigned Size = 0;
+ int Sign = Value >> (8 * sizeof(Value) - 1);
+ bool IsMore;
+
+ do {
+ unsigned Byte = Value & 0x7f;
+ Value >>= 7;
+ IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
+ Size += sizeof(int8_t);
+ } while (IsMore);
+ return Size;
+}
diff --git a/lib/MC/MCAsmInfoCOFF.cpp b/lib/MC/MCAsmInfoCOFF.cpp
new file mode 100644
index 0000000..23b0dd7
--- /dev/null
+++ b/lib/MC/MCAsmInfoCOFF.cpp
@@ -0,0 +1,37 @@
+//===-- MCAsmInfoCOFF.cpp - COFF asm properties -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines target asm properties related what form asm statements
+// should take in general on COFF-based targets
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmInfoCOFF.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace llvm;
+
+MCAsmInfoCOFF::MCAsmInfoCOFF() {
+ GlobalPrefix = "_";
+ LCOMMDirective = "\t.lcomm\t";
+ COMMDirectiveTakesAlignment = false;
+ HasDotTypeDotSizeDirective = false;
+ HasSingleParameterDotFile = false;
+ HiddenDirective = NULL;
+ PrivateGlobalPrefix = "L"; // Prefix for private global symbols
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+
+ // Set up DWARF directives
+ HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
+ AbsoluteDebugSectionOffsets = true;
+ AbsoluteEHSectionOffsets = false;
+ SupportsDebugInformation = true;
+ DwarfSectionOffsetDirective = "\t.secrel32\t";
+}
+
diff --git a/lib/MC/MCAsmInfoDarwin.cpp b/lib/MC/MCAsmInfoDarwin.cpp
new file mode 100644
index 0000000..d99120d
--- /dev/null
+++ b/lib/MC/MCAsmInfoDarwin.cpp
@@ -0,0 +1,52 @@
+//===-- MCAsmInfoDarwin.cpp - Darwin asm properties -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines target asm properties related what form asm statements
+// should take in general on Darwin-based targets
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmInfoDarwin.h"
+using namespace llvm;
+
+MCAsmInfoDarwin::MCAsmInfoDarwin() {
+ // Common settings for all Darwin targets.
+ // Syntax:
+ GlobalPrefix = "_";
+ PrivateGlobalPrefix = "L";
+ LinkerPrivateGlobalPrefix = "l";
+ NeedsSet = true;
+ AllowQuotesInName = true;
+ HasSingleParameterDotFile = false;
+
+ AlignmentIsInBytes = false;
+ InlineAsmStart = " InlineAsm Start";
+ InlineAsmEnd = " InlineAsm End";
+
+ // Directives:
+ WeakDefDirective = "\t.weak_definition ";
+ WeakRefDirective = "\t.weak_reference ";
+ HiddenDirective = "\t.private_extern ";
+ LCOMMDirective = "\t.lcomm\t";
+ ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
+ ZeroFillDirective = "\t.zerofill\t"; // Uses .zerofill
+ SetDirective = "\t.set";
+ ProtectedDirective = "\t.globl\t";
+ HasDotTypeDotSizeDirective = false;
+ UsedDirective = "\t.no_dead_strip\t";
+
+ // _foo.eh symbols are currently always exported so that the linker knows
+ // about them. This is not necessary on 10.6 and later, but it
+ // doesn't hurt anything.
+ // FIXME: I need to get this from Triple.
+ Is_EHSymbolPrivate = false;
+ GlobalEHDirective = "\t.globl\t";
+ SupportsWeakOmittedEHFrame = false;
+}
+
diff --git a/lib/MC/MCAsmLexer.cpp b/lib/MC/MCAsmLexer.cpp
new file mode 100644
index 0000000..1e34ed6
--- /dev/null
+++ b/lib/MC/MCAsmLexer.cpp
@@ -0,0 +1,23 @@
+//===-- MCAsmLexer.cpp - Abstract Asm Lexer Interface ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmLexer.h"
+#include "llvm/Support/SourceMgr.h"
+
+using namespace llvm;
+
+MCAsmLexer::MCAsmLexer() : CurTok(AsmToken::Error, StringRef()) {
+}
+
+MCAsmLexer::~MCAsmLexer() {
+}
+
+SMLoc AsmToken::getLoc() const {
+ return SMLoc::getFromPointer(Str.data());
+}
diff --git a/lib/MC/MCAsmParser.cpp b/lib/MC/MCAsmParser.cpp
new file mode 100644
index 0000000..2287e89
--- /dev/null
+++ b/lib/MC/MCAsmParser.cpp
@@ -0,0 +1,18 @@
+//===-- MCAsmParser.cpp - Abstract Asm Parser Interface -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCAsmParser.h"
+
+using namespace llvm;
+
+MCAsmParser::MCAsmParser() {
+}
+
+MCAsmParser::~MCAsmParser() {
+}
diff --git a/lib/MC/MCAsmStreamer.cpp b/lib/MC/MCAsmStreamer.cpp
index 7d94464..e56e968 100644
--- a/lib/MC/MCAsmStreamer.cpp
+++ b/lib/MC/MCAsmStreamer.cpp
@@ -8,118 +8,121 @@
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCStreamer.h"
-
+#include "llvm/ADT/SmallString.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSymbol.h"
-#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
- class MCAsmStreamer : public MCStreamer {
- raw_ostream &OS;
+class MCAsmStreamer : public MCStreamer {
+ raw_ostream &OS;
+ const MCAsmInfo &MAI;
+ MCInstPrinter *InstPrinter;
+ MCCodeEmitter *Emitter;
+public:
+ MCAsmStreamer(MCContext &Context, raw_ostream &_OS, const MCAsmInfo &tai,
+ MCInstPrinter *_Printer, MCCodeEmitter *_Emitter)
+ : MCStreamer(Context), OS(_OS), MAI(tai), InstPrinter(_Printer),
+ Emitter(_Emitter) {}
+ ~MCAsmStreamer() {}
- MCSection *CurSection;
+ /// @name MCStreamer Interface
+ /// @{
- public:
- MCAsmStreamer(MCContext &Context, raw_ostream &_OS)
- : MCStreamer(Context), OS(_OS), CurSection(0) {}
- ~MCAsmStreamer() {}
+ virtual void SwitchSection(const MCSection *Section);
- /// @name MCStreamer Interface
- /// @{
+ virtual void EmitLabel(MCSymbol *Symbol);
- virtual void SwitchSection(MCSection *Section);
+ virtual void EmitAssemblerFlag(AssemblerFlag Flag);
- virtual void EmitLabel(MCSymbol *Symbol);
+ virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value);
- virtual void EmitAssignment(MCSymbol *Symbol, const MCValue &Value,
- bool MakeAbsolute = false);
+ virtual void EmitSymbolAttribute(MCSymbol *Symbol, SymbolAttr Attribute);
- virtual void EmitSymbolAttribute(MCSymbol *Symbol, SymbolAttr Attribute);
+ virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue);
- virtual void EmitBytes(const char *Data, unsigned Length);
+ virtual void EmitCommonSymbol(MCSymbol *Symbol, unsigned Size,
+ unsigned ByteAlignment);
- virtual void EmitValue(const MCValue &Value, unsigned Size);
+ virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
+ unsigned Size = 0, unsigned ByteAlignment = 0);
- virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
- unsigned ValueSize = 1,
- unsigned MaxBytesToEmit = 0);
+ virtual void EmitBytes(const StringRef &Data);
- virtual void EmitValueToOffset(const MCValue &Offset,
- unsigned char Value = 0);
-
- virtual void EmitInstruction(const MCInst &Inst);
+ virtual void EmitValue(const MCExpr *Value, unsigned Size);
- virtual void Finish();
-
- /// @}
- };
-
-}
-
-/// Allow printing values directly to a raw_ostream.
-static inline raw_ostream &operator<<(raw_ostream &os, const MCValue &Value) {
- if (Value.getSymA()) {
- os << Value.getSymA()->getName();
- if (Value.getSymB())
- os << " - " << Value.getSymB()->getName();
- if (Value.getConstant())
- os << " + " << Value.getConstant();
- } else {
- assert(!Value.getSymB() && "Invalid machine code value!");
- os << Value.getConstant();
- }
+ virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
+ unsigned ValueSize = 1,
+ unsigned MaxBytesToEmit = 0);
- return os;
-}
+ virtual void EmitValueToOffset(const MCExpr *Offset,
+ unsigned char Value = 0);
+
+ virtual void EmitInstruction(const MCInst &Inst);
+
+ virtual void Finish();
+
+ /// @}
+};
+
+} // end anonymous namespace.
static inline int64_t truncateToSize(int64_t Value, unsigned Bytes) {
assert(Bytes && "Invalid size!");
return Value & ((uint64_t) (int64_t) -1 >> (64 - Bytes * 8));
}
-static inline MCValue truncateToSize(const MCValue &Value, unsigned Bytes) {
- return MCValue::get(Value.getSymA(), Value.getSymB(),
- truncateToSize(Value.getConstant(), Bytes));
+static inline const MCExpr *truncateToSize(const MCExpr *Value,
+ unsigned Bytes) {
+ // FIXME: Do we really need this routine?
+ return Value;
}
-void MCAsmStreamer::SwitchSection(MCSection *Section) {
+void MCAsmStreamer::SwitchSection(const MCSection *Section) {
+ assert(Section && "Cannot switch to a null section!");
if (Section != CurSection) {
CurSection = Section;
-
- // FIXME: Really we would like the segment, flags, etc. to be separate
- // values instead of embedded in the name. Not all assemblers understand all
- // this stuff though.
- OS << ".section " << Section->getName() << "\n";
+ Section->PrintSwitchToSection(MAI, OS);
}
}
void MCAsmStreamer::EmitLabel(MCSymbol *Symbol) {
- assert(Symbol->getSection() == 0 && "Cannot emit a symbol twice!");
+ assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
assert(CurSection && "Cannot emit before setting section!");
- assert(!getContext().GetSymbolValue(Symbol) &&
- "Cannot emit symbol which was directly assigned to!");
- OS << Symbol->getName() << ":\n";
- Symbol->setSection(CurSection);
- Symbol->setExternal(false);
+ Symbol->print(OS, &MAI);
+ OS << ":\n";
+ Symbol->setSection(*CurSection);
}
-void MCAsmStreamer::EmitAssignment(MCSymbol *Symbol, const MCValue &Value,
- bool MakeAbsolute) {
- assert(!Symbol->getSection() && "Cannot assign to a label!");
-
- if (MakeAbsolute) {
- OS << ".set " << Symbol->getName() << ", " << Value << '\n';
- } else {
- OS << Symbol->getName() << " = " << Value << '\n';
+void MCAsmStreamer::EmitAssemblerFlag(AssemblerFlag Flag) {
+ switch (Flag) {
+ default: assert(0 && "Invalid flag!");
+ case SubsectionsViaSymbols: OS << ".subsections_via_symbols"; break;
}
+ OS << '\n';
+}
- getContext().SetSymbolValue(Symbol, Value);
+void MCAsmStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
+ // Only absolute symbols can be redefined.
+ assert((Symbol->isUndefined() || Symbol->isAbsolute()) &&
+ "Cannot define a symbol twice!");
+
+ Symbol->print(OS, &MAI);
+ OS << " = ";
+ Value->print(OS, &MAI);
+ OS << '\n';
}
void MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
@@ -139,93 +142,165 @@ void MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
case WeakReference: OS << ".weak_reference"; break;
}
- OS << ' ' << Symbol->getName() << '\n';
+ OS << ' ';
+ Symbol->print(OS, &MAI);
+ OS << '\n';
+}
+
+void MCAsmStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
+ OS << ".desc" << ' ';
+ Symbol->print(OS, &MAI);
+ OS << ',' << DescValue << '\n';
+}
+
+void MCAsmStreamer::EmitCommonSymbol(MCSymbol *Symbol, unsigned Size,
+ unsigned ByteAlignment) {
+ OS << ".comm ";
+ Symbol->print(OS, &MAI);
+ OS << ',' << Size;
+ if (ByteAlignment != 0)
+ OS << ',' << Log2_32(ByteAlignment);
+ OS << '\n';
}
-void MCAsmStreamer::EmitBytes(const char *Data, unsigned Length) {
+void MCAsmStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol,
+ unsigned Size, unsigned ByteAlignment) {
+ // Note: a .zerofill directive does not switch sections.
+ OS << ".zerofill ";
+
+ // This is a mach-o specific directive.
+ const MCSectionMachO *MOSection = ((const MCSectionMachO*)Section);
+ OS << MOSection->getSegmentName() << "," << MOSection->getSectionName();
+
+ if (Symbol != NULL) {
+ OS << ',';
+ Symbol->print(OS, &MAI);
+ OS << ',' << Size;
+ if (ByteAlignment != 0)
+ OS << ',' << Log2_32(ByteAlignment);
+ }
+ OS << '\n';
+}
+
+void MCAsmStreamer::EmitBytes(const StringRef &Data) {
assert(CurSection && "Cannot emit contents before setting section!");
- for (unsigned i = 0; i != Length; ++i)
- OS << ".byte " << (unsigned) Data[i] << '\n';
+ for (unsigned i = 0, e = Data.size(); i != e; ++i)
+ OS << ".byte " << (unsigned) (unsigned char) Data[i] << '\n';
}
-void MCAsmStreamer::EmitValue(const MCValue &Value, unsigned Size) {
+void MCAsmStreamer::EmitValue(const MCExpr *Value, unsigned Size) {
assert(CurSection && "Cannot emit contents before setting section!");
// Need target hooks to know how to print this.
switch (Size) {
default:
- assert(0 && "Invalid size for machine code value!");
+ llvm_unreachable("Invalid size for machine code value!");
case 1: OS << ".byte"; break;
case 2: OS << ".short"; break;
case 4: OS << ".long"; break;
case 8: OS << ".quad"; break;
}
- OS << ' ' << truncateToSize(Value, Size) << '\n';
+ OS << ' ';
+ truncateToSize(Value, Size)->print(OS, &MAI);
+ OS << '\n';
}
void MCAsmStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value,
unsigned ValueSize,
unsigned MaxBytesToEmit) {
- // Some assemblers don't support .balign, so we always emit as .p2align if
- // this is a power of two. Otherwise we assume the client knows the target
- // supports .balign and use that.
- unsigned Pow2 = Log2_32(ByteAlignment);
- bool IsPow2 = (1U << Pow2) == ByteAlignment;
-
+ // Some assemblers don't support non-power of two alignments, so we always
+ // emit alignments as a power of two if possible.
+ if (isPowerOf2_32(ByteAlignment)) {
+ switch (ValueSize) {
+ default: llvm_unreachable("Invalid size for machine code value!");
+ case 1: OS << MAI.getAlignDirective(); break;
+ // FIXME: use MAI for this!
+ case 2: OS << ".p2alignw "; break;
+ case 4: OS << ".p2alignl "; break;
+ case 8: llvm_unreachable("Unsupported alignment size!");
+ }
+
+ if (MAI.getAlignmentIsInBytes())
+ OS << ByteAlignment;
+ else
+ OS << Log2_32(ByteAlignment);
+
+ if (Value || MaxBytesToEmit) {
+ OS << ", 0x";
+ OS.write_hex(truncateToSize(Value, ValueSize));
+
+ if (MaxBytesToEmit)
+ OS << ", " << MaxBytesToEmit;
+ }
+ OS << '\n';
+ return;
+ }
+
+ // Non-power of two alignment. This is not widely supported by assemblers.
+ // FIXME: Parameterize this based on MAI.
switch (ValueSize) {
- default:
- assert(0 && "Invalid size for machine code value!");
- case 8:
- assert(0 && "Unsupported alignment size!");
- case 1: OS << (IsPow2 ? ".p2align" : ".balign"); break;
- case 2: OS << (IsPow2 ? ".p2alignw" : ".balignw"); break;
- case 4: OS << (IsPow2 ? ".p2alignl" : ".balignl"); break;
+ default: llvm_unreachable("Invalid size for machine code value!");
+ case 1: OS << ".balign"; break;
+ case 2: OS << ".balignw"; break;
+ case 4: OS << ".balignl"; break;
+ case 8: llvm_unreachable("Unsupported alignment size!");
}
- OS << ' ' << (IsPow2 ? Pow2 : ByteAlignment);
-
+ OS << ' ' << ByteAlignment;
OS << ", " << truncateToSize(Value, ValueSize);
if (MaxBytesToEmit)
OS << ", " << MaxBytesToEmit;
OS << '\n';
}
-void MCAsmStreamer::EmitValueToOffset(const MCValue &Offset,
+void MCAsmStreamer::EmitValueToOffset(const MCExpr *Offset,
unsigned char Value) {
// FIXME: Verify that Offset is associated with the current section.
- OS << ".org " << Offset << ", " << (unsigned) Value << '\n';
-}
-
-static raw_ostream &operator<<(raw_ostream &OS, const MCOperand &Op) {
- if (Op.isReg())
- return OS << "reg:" << Op.getReg();
- if (Op.isImm())
- return OS << "imm:" << Op.getImm();
- if (Op.isMBBLabel())
- return OS << "mbblabel:("
- << Op.getMBBLabelFunction() << ", " << Op.getMBBLabelBlock();
- assert(Op.isMCValue() && "Invalid operand!");
- return OS << "val:" << Op.getMCValue();
+ OS << ".org ";
+ Offset->print(OS, &MAI);
+ OS << ", " << (unsigned) Value << '\n';
}
void MCAsmStreamer::EmitInstruction(const MCInst &Inst) {
assert(CurSection && "Cannot emit contents before setting section!");
- // FIXME: Implement proper printing.
- OS << "MCInst("
- << "opcode=" << Inst.getOpcode() << ", "
- << "operands=[";
- for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
- if (i)
- OS << ", ";
- OS << Inst.getOperand(i);
+
+ // If we have an AsmPrinter, use that to print.
+ if (InstPrinter) {
+ InstPrinter->printInst(&Inst);
+ OS << '\n';
+
+ // Show the encoding if we have a code emitter.
+ if (Emitter) {
+ SmallString<256> Code;
+ raw_svector_ostream VecOS(Code);
+ Emitter->EncodeInstruction(Inst, VecOS);
+ VecOS.flush();
+
+ OS.indent(20);
+ OS << " # encoding: [";
+ for (unsigned i = 0, e = Code.size(); i != e; ++i) {
+ if (i)
+ OS << ',';
+ OS << format("%#04x", uint8_t(Code[i]));
+ }
+ OS << "]\n";
+ }
+
+ return;
}
- OS << "])\n";
+
+ // Otherwise fall back to a structural printing for now. Eventually we should
+ // always have access to the target specific printer.
+ Inst.print(OS, &MAI);
+ OS << '\n';
}
void MCAsmStreamer::Finish() {
OS.flush();
}
-MCStreamer *llvm::createAsmStreamer(MCContext &Context, raw_ostream &OS) {
- return new MCAsmStreamer(Context, OS);
+MCStreamer *llvm::createAsmStreamer(MCContext &Context, raw_ostream &OS,
+ const MCAsmInfo &MAI, MCInstPrinter *IP,
+ MCCodeEmitter *CE) {
+ return new MCAsmStreamer(Context, OS, MAI, IP, CE);
}
diff --git a/lib/MC/MCAssembler.cpp b/lib/MC/MCAssembler.cpp
new file mode 100644
index 0000000..0afdf98
--- /dev/null
+++ b/lib/MC/MCAssembler.cpp
@@ -0,0 +1,1190 @@
+//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "assembler"
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Target/TargetMachOWriterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <vector>
+using namespace llvm;
+
+class MachObjectWriter;
+
+STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
+
+// FIXME FIXME FIXME: There are number of places in this file where we convert
+// what is a 64-bit assembler value used for computation into a value in the
+// object file, which may truncate it. We should detect that truncation where
+// invalid and report errors back.
+
+static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
+ MachObjectWriter &MOW);
+
+/// isVirtualSection - Check if this is a section which does not actually exist
+/// in the object file.
+static bool isVirtualSection(const MCSection &Section) {
+ // FIXME: Lame.
+ const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
+ unsigned Type = SMO.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
+ return (Type == MCSectionMachO::S_ZEROFILL);
+}
+
+class MachObjectWriter {
+ // See <mach-o/loader.h>.
+ enum {
+ Header_Magic32 = 0xFEEDFACE,
+ Header_Magic64 = 0xFEEDFACF
+ };
+
+ static const unsigned Header32Size = 28;
+ static const unsigned Header64Size = 32;
+ static const unsigned SegmentLoadCommand32Size = 56;
+ static const unsigned Section32Size = 68;
+ static const unsigned SymtabLoadCommandSize = 24;
+ static const unsigned DysymtabLoadCommandSize = 80;
+ static const unsigned Nlist32Size = 12;
+ static const unsigned RelocationInfoSize = 8;
+
+ enum HeaderFileType {
+ HFT_Object = 0x1
+ };
+
+ enum HeaderFlags {
+ HF_SubsectionsViaSymbols = 0x2000
+ };
+
+ enum LoadCommandType {
+ LCT_Segment = 0x1,
+ LCT_Symtab = 0x2,
+ LCT_Dysymtab = 0xb
+ };
+
+ // See <mach-o/nlist.h>.
+ enum SymbolTypeType {
+ STT_Undefined = 0x00,
+ STT_Absolute = 0x02,
+ STT_Section = 0x0e
+ };
+
+ enum SymbolTypeFlags {
+ // If any of these bits are set, then the entry is a stab entry number (see
+ // <mach-o/stab.h>. Otherwise the other masks apply.
+ STF_StabsEntryMask = 0xe0,
+
+ STF_TypeMask = 0x0e,
+ STF_External = 0x01,
+ STF_PrivateExtern = 0x10
+ };
+
+ /// IndirectSymbolFlags - Flags for encoding special values in the indirect
+ /// symbol entry.
+ enum IndirectSymbolFlags {
+ ISF_Local = 0x80000000,
+ ISF_Absolute = 0x40000000
+ };
+
+ /// RelocationFlags - Special flags for addresses.
+ enum RelocationFlags {
+ RF_Scattered = 0x80000000
+ };
+
+ enum RelocationInfoType {
+ RIT_Vanilla = 0,
+ RIT_Pair = 1,
+ RIT_Difference = 2,
+ RIT_PreboundLazyPointer = 3,
+ RIT_LocalDifference = 4
+ };
+
+ /// MachSymbolData - Helper struct for containing some precomputed information
+ /// on symbols.
+ struct MachSymbolData {
+ MCSymbolData *SymbolData;
+ uint64_t StringIndex;
+ uint8_t SectionIndex;
+
+ // Support lexicographic sorting.
+ bool operator<(const MachSymbolData &RHS) const {
+ const std::string &Name = SymbolData->getSymbol().getName();
+ return Name < RHS.SymbolData->getSymbol().getName();
+ }
+ };
+
+ raw_ostream &OS;
+ bool IsLSB;
+
+public:
+ MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true)
+ : OS(_OS), IsLSB(_IsLSB) {
+ }
+
+ /// @name Helper Methods
+ /// @{
+
+ void Write8(uint8_t Value) {
+ OS << char(Value);
+ }
+
+ void Write16(uint16_t Value) {
+ if (IsLSB) {
+ Write8(uint8_t(Value >> 0));
+ Write8(uint8_t(Value >> 8));
+ } else {
+ Write8(uint8_t(Value >> 8));
+ Write8(uint8_t(Value >> 0));
+ }
+ }
+
+ void Write32(uint32_t Value) {
+ if (IsLSB) {
+ Write16(uint16_t(Value >> 0));
+ Write16(uint16_t(Value >> 16));
+ } else {
+ Write16(uint16_t(Value >> 16));
+ Write16(uint16_t(Value >> 0));
+ }
+ }
+
+ void Write64(uint64_t Value) {
+ if (IsLSB) {
+ Write32(uint32_t(Value >> 0));
+ Write32(uint32_t(Value >> 32));
+ } else {
+ Write32(uint32_t(Value >> 32));
+ Write32(uint32_t(Value >> 0));
+ }
+ }
+
+ void WriteZeros(unsigned N) {
+ const char Zeros[16] = { 0 };
+
+ for (unsigned i = 0, e = N / 16; i != e; ++i)
+ OS << StringRef(Zeros, 16);
+
+ OS << StringRef(Zeros, N % 16);
+ }
+
+ void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) {
+ OS << Str;
+ if (ZeroFillSize)
+ WriteZeros(ZeroFillSize - Str.size());
+ }
+
+ /// @}
+
+ void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize,
+ bool SubsectionsViaSymbols) {
+ uint32_t Flags = 0;
+
+ if (SubsectionsViaSymbols)
+ Flags |= HF_SubsectionsViaSymbols;
+
+ // struct mach_header (28 bytes)
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ Write32(Header_Magic32);
+
+ // FIXME: Support cputype.
+ Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386);
+ // FIXME: Support cpusubtype.
+ Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL);
+ Write32(HFT_Object);
+ Write32(NumLoadCommands); // Object files have a single load command, the
+ // segment.
+ Write32(LoadCommandsSize);
+ Write32(Flags);
+
+ assert(OS.tell() - Start == Header32Size);
+ }
+
+ /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command.
+ ///
+ /// \arg NumSections - The number of sections in this segment.
+ /// \arg SectionDataSize - The total size of the sections.
+ void WriteSegmentLoadCommand32(unsigned NumSections,
+ uint64_t VMSize,
+ uint64_t SectionDataStartOffset,
+ uint64_t SectionDataSize) {
+ // struct segment_command (56 bytes)
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ Write32(LCT_Segment);
+ Write32(SegmentLoadCommand32Size + NumSections * Section32Size);
+
+ WriteString("", 16);
+ Write32(0); // vmaddr
+ Write32(VMSize); // vmsize
+ Write32(SectionDataStartOffset); // file offset
+ Write32(SectionDataSize); // file size
+ Write32(0x7); // maxprot
+ Write32(0x7); // initprot
+ Write32(NumSections);
+ Write32(0); // flags
+
+ assert(OS.tell() - Start == SegmentLoadCommand32Size);
+ }
+
+ void WriteSection32(const MCSectionData &SD, uint64_t FileOffset,
+ uint64_t RelocationsStart, unsigned NumRelocations) {
+ // The offset is unused for virtual sections.
+ if (isVirtualSection(SD.getSection())) {
+ assert(SD.getFileSize() == 0 && "Invalid file size!");
+ FileOffset = 0;
+ }
+
+ // struct section (68 bytes)
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ // FIXME: cast<> support!
+ const MCSectionMachO &Section =
+ static_cast<const MCSectionMachO&>(SD.getSection());
+ WriteString(Section.getSectionName(), 16);
+ WriteString(Section.getSegmentName(), 16);
+ Write32(SD.getAddress()); // address
+ Write32(SD.getSize()); // size
+ Write32(FileOffset);
+
+ assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
+ Write32(Log2_32(SD.getAlignment()));
+ Write32(NumRelocations ? RelocationsStart : 0);
+ Write32(NumRelocations);
+ Write32(Section.getTypeAndAttributes());
+ Write32(0); // reserved1
+ Write32(Section.getStubSize()); // reserved2
+
+ assert(OS.tell() - Start == Section32Size);
+ }
+
+ void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
+ uint32_t StringTableOffset,
+ uint32_t StringTableSize) {
+ // struct symtab_command (24 bytes)
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ Write32(LCT_Symtab);
+ Write32(SymtabLoadCommandSize);
+ Write32(SymbolOffset);
+ Write32(NumSymbols);
+ Write32(StringTableOffset);
+ Write32(StringTableSize);
+
+ assert(OS.tell() - Start == SymtabLoadCommandSize);
+ }
+
+ void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
+ uint32_t NumLocalSymbols,
+ uint32_t FirstExternalSymbol,
+ uint32_t NumExternalSymbols,
+ uint32_t FirstUndefinedSymbol,
+ uint32_t NumUndefinedSymbols,
+ uint32_t IndirectSymbolOffset,
+ uint32_t NumIndirectSymbols) {
+ // struct dysymtab_command (80 bytes)
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ Write32(LCT_Dysymtab);
+ Write32(DysymtabLoadCommandSize);
+ Write32(FirstLocalSymbol);
+ Write32(NumLocalSymbols);
+ Write32(FirstExternalSymbol);
+ Write32(NumExternalSymbols);
+ Write32(FirstUndefinedSymbol);
+ Write32(NumUndefinedSymbols);
+ Write32(0); // tocoff
+ Write32(0); // ntoc
+ Write32(0); // modtaboff
+ Write32(0); // nmodtab
+ Write32(0); // extrefsymoff
+ Write32(0); // nextrefsyms
+ Write32(IndirectSymbolOffset);
+ Write32(NumIndirectSymbols);
+ Write32(0); // extreloff
+ Write32(0); // nextrel
+ Write32(0); // locreloff
+ Write32(0); // nlocrel
+
+ assert(OS.tell() - Start == DysymtabLoadCommandSize);
+ }
+
+ void WriteNlist32(MachSymbolData &MSD) {
+ MCSymbolData &Data = *MSD.SymbolData;
+ const MCSymbol &Symbol = Data.getSymbol();
+ uint8_t Type = 0;
+ uint16_t Flags = Data.getFlags();
+ uint32_t Address = 0;
+
+ // Set the N_TYPE bits. See <mach-o/nlist.h>.
+ //
+ // FIXME: Are the prebound or indirect fields possible here?
+ if (Symbol.isUndefined())
+ Type = STT_Undefined;
+ else if (Symbol.isAbsolute())
+ Type = STT_Absolute;
+ else
+ Type = STT_Section;
+
+ // FIXME: Set STAB bits.
+
+ if (Data.isPrivateExtern())
+ Type |= STF_PrivateExtern;
+
+ // Set external bit.
+ if (Data.isExternal() || Symbol.isUndefined())
+ Type |= STF_External;
+
+ // Compute the symbol address.
+ if (Symbol.isDefined()) {
+ if (Symbol.isAbsolute()) {
+ llvm_unreachable("FIXME: Not yet implemented!");
+ } else {
+ Address = Data.getFragment()->getAddress() + Data.getOffset();
+ }
+ } else if (Data.isCommon()) {
+ // Common symbols are encoded with the size in the address
+ // field, and their alignment in the flags.
+ Address = Data.getCommonSize();
+
+ // Common alignment is packed into the 'desc' bits.
+ if (unsigned Align = Data.getCommonAlignment()) {
+ unsigned Log2Size = Log2_32(Align);
+ assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
+ if (Log2Size > 15)
+ llvm_report_error("invalid 'common' alignment '" +
+ Twine(Align) + "'");
+ // FIXME: Keep this mask with the SymbolFlags enumeration.
+ Flags = (Flags & 0xF0FF) | (Log2Size << 8);
+ }
+ }
+
+ // struct nlist (12 bytes)
+
+ Write32(MSD.StringIndex);
+ Write8(Type);
+ Write8(MSD.SectionIndex);
+
+ // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
+ // value.
+ Write16(Flags);
+ Write32(Address);
+ }
+
+ struct MachRelocationEntry {
+ uint32_t Word0;
+ uint32_t Word1;
+ };
+ void ComputeScatteredRelocationInfo(MCAssembler &Asm,
+ MCSectionData::Fixup &Fixup,
+ DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
+ std::vector<MachRelocationEntry> &Relocs) {
+ uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
+ unsigned IsPCRel = 0;
+ unsigned Type = RIT_Vanilla;
+
+ // See <reloc.h>.
+
+ const MCSymbol *A = Fixup.Value.getSymA();
+ MCSymbolData *SD = SymbolMap.lookup(A);
+ uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset();
+ uint32_t Value2 = 0;
+
+ if (const MCSymbol *B = Fixup.Value.getSymB()) {
+ Type = RIT_LocalDifference;
+
+ MCSymbolData *SD = SymbolMap.lookup(B);
+ Value2 = SD->getFragment()->getAddress() + SD->getOffset();
+ }
+
+ unsigned Log2Size = Log2_32(Fixup.Size);
+ assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");
+
+ // The value which goes in the fixup is current value of the expression.
+ Fixup.FixedValue = Value - Value2 + Fixup.Value.getConstant();
+
+ MachRelocationEntry MRE;
+ MRE.Word0 = ((Address << 0) |
+ (Type << 24) |
+ (Log2Size << 28) |
+ (IsPCRel << 30) |
+ RF_Scattered);
+ MRE.Word1 = Value;
+ Relocs.push_back(MRE);
+
+ if (Type == RIT_LocalDifference) {
+ Type = RIT_Pair;
+
+ MachRelocationEntry MRE;
+ MRE.Word0 = ((0 << 0) |
+ (Type << 24) |
+ (Log2Size << 28) |
+ (0 << 30) |
+ RF_Scattered);
+ MRE.Word1 = Value2;
+ Relocs.push_back(MRE);
+ }
+ }
+
+ void ComputeRelocationInfo(MCAssembler &Asm,
+ MCSectionData::Fixup &Fixup,
+ DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
+ std::vector<MachRelocationEntry> &Relocs) {
+ // If this is a local symbol plus an offset or a difference, then we need a
+ // scattered relocation entry.
+ if (Fixup.Value.getSymB()) // a - b
+ return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs);
+ if (Fixup.Value.getSymA() && Fixup.Value.getConstant())
+ if (!Fixup.Value.getSymA()->isUndefined())
+ return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs);
+
+ // See <reloc.h>.
+ uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
+ uint32_t Value = 0;
+ unsigned Index = 0;
+ unsigned IsPCRel = 0;
+ unsigned IsExtern = 0;
+ unsigned Type = 0;
+
+ if (Fixup.Value.isAbsolute()) { // constant
+ // SymbolNum of 0 indicates the absolute section.
+ Type = RIT_Vanilla;
+ Value = 0;
+ llvm_unreachable("FIXME: Not yet implemented!");
+ } else {
+ const MCSymbol *Symbol = Fixup.Value.getSymA();
+ MCSymbolData *SD = SymbolMap.lookup(Symbol);
+
+ if (Symbol->isUndefined()) {
+ IsExtern = 1;
+ Index = SD->getIndex();
+ Value = 0;
+ } else {
+ // The index is the section ordinal.
+ //
+ // FIXME: O(N)
+ Index = 1;
+ for (MCAssembler::iterator it = Asm.begin(),
+ ie = Asm.end(); it != ie; ++it, ++Index)
+ if (&*it == SD->getFragment()->getParent())
+ break;
+ Value = SD->getFragment()->getAddress() + SD->getOffset();
+ }
+
+ Type = RIT_Vanilla;
+ }
+
+ // The value which goes in the fixup is current value of the expression.
+ Fixup.FixedValue = Value + Fixup.Value.getConstant();
+
+ unsigned Log2Size = Log2_32(Fixup.Size);
+ assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");
+
+ // struct relocation_info (8 bytes)
+ MachRelocationEntry MRE;
+ MRE.Word0 = Address;
+ MRE.Word1 = ((Index << 0) |
+ (IsPCRel << 24) |
+ (Log2Size << 25) |
+ (IsExtern << 27) |
+ (Type << 28));
+ Relocs.push_back(MRE);
+ }
+
+ void BindIndirectSymbols(MCAssembler &Asm,
+ DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap) {
+ // This is the point where 'as' creates actual symbols for indirect symbols
+ // (in the following two passes). It would be easier for us to do this
+ // sooner when we see the attribute, but that makes getting the order in the
+ // symbol table much more complicated than it is worth.
+ //
+ // FIXME: Revisit this when the dust settles.
+
+ // Bind non lazy symbol pointers first.
+ for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
+ ie = Asm.indirect_symbol_end(); it != ie; ++it) {
+ // FIXME: cast<> support!
+ const MCSectionMachO &Section =
+ static_cast<const MCSectionMachO&>(it->SectionData->getSection());
+
+ unsigned Type =
+ Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
+ if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
+ continue;
+
+ MCSymbolData *&Entry = SymbolMap[it->Symbol];
+ if (!Entry)
+ Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);
+ }
+
+ // Then lazy symbol pointers and symbol stubs.
+ for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
+ ie = Asm.indirect_symbol_end(); it != ie; ++it) {
+ // FIXME: cast<> support!
+ const MCSectionMachO &Section =
+ static_cast<const MCSectionMachO&>(it->SectionData->getSection());
+
+ unsigned Type =
+ Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
+ if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
+ Type != MCSectionMachO::S_SYMBOL_STUBS)
+ continue;
+
+ MCSymbolData *&Entry = SymbolMap[it->Symbol];
+ if (!Entry) {
+ Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);
+
+ // Set the symbol type to undefined lazy, but only on construction.
+ //
+ // FIXME: Do not hardcode.
+ Entry->setFlags(Entry->getFlags() | 0x0001);
+ }
+ }
+ }
+
+ /// ComputeSymbolTable - Compute the symbol table data
+ ///
+ /// \param StringTable [out] - The string table data.
+ /// \param StringIndexMap [out] - Map from symbol names to offsets in the
+ /// string table.
+ void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
+ std::vector<MachSymbolData> &LocalSymbolData,
+ std::vector<MachSymbolData> &ExternalSymbolData,
+ std::vector<MachSymbolData> &UndefinedSymbolData) {
+ // Build section lookup table.
+ DenseMap<const MCSection*, uint8_t> SectionIndexMap;
+ unsigned Index = 1;
+ for (MCAssembler::iterator it = Asm.begin(),
+ ie = Asm.end(); it != ie; ++it, ++Index)
+ SectionIndexMap[&it->getSection()] = Index;
+ assert(Index <= 256 && "Too many sections!");
+
+ // Index 0 is always the empty string.
+ StringMap<uint64_t> StringIndexMap;
+ StringTable += '\x00';
+
+ // Build the symbol arrays and the string table, but only for non-local
+ // symbols.
+ //
+ // The particular order that we collect the symbols and create the string
+ // table, then sort the symbols is chosen to match 'as'. Even though it
+ // doesn't matter for correctness, this is important for letting us diff .o
+ // files.
+ for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
+ ie = Asm.symbol_end(); it != ie; ++it) {
+ const MCSymbol &Symbol = it->getSymbol();
+
+ // Ignore assembler temporaries.
+ if (it->getSymbol().isTemporary())
+ continue;
+
+ if (!it->isExternal() && !Symbol.isUndefined())
+ continue;
+
+ uint64_t &Entry = StringIndexMap[Symbol.getName()];
+ if (!Entry) {
+ Entry = StringTable.size();
+ StringTable += Symbol.getName();
+ StringTable += '\x00';
+ }
+
+ MachSymbolData MSD;
+ MSD.SymbolData = it;
+ MSD.StringIndex = Entry;
+
+ if (Symbol.isUndefined()) {
+ MSD.SectionIndex = 0;
+ UndefinedSymbolData.push_back(MSD);
+ } else if (Symbol.isAbsolute()) {
+ MSD.SectionIndex = 0;
+ ExternalSymbolData.push_back(MSD);
+ } else {
+ MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
+ assert(MSD.SectionIndex && "Invalid section index!");
+ ExternalSymbolData.push_back(MSD);
+ }
+ }
+
+ // Now add the data for local symbols.
+ for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
+ ie = Asm.symbol_end(); it != ie; ++it) {
+ const MCSymbol &Symbol = it->getSymbol();
+
+ // Ignore assembler temporaries.
+ if (it->getSymbol().isTemporary())
+ continue;
+
+ if (it->isExternal() || Symbol.isUndefined())
+ continue;
+
+ uint64_t &Entry = StringIndexMap[Symbol.getName()];
+ if (!Entry) {
+ Entry = StringTable.size();
+ StringTable += Symbol.getName();
+ StringTable += '\x00';
+ }
+
+ MachSymbolData MSD;
+ MSD.SymbolData = it;
+ MSD.StringIndex = Entry;
+
+ if (Symbol.isAbsolute()) {
+ MSD.SectionIndex = 0;
+ LocalSymbolData.push_back(MSD);
+ } else {
+ MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
+ assert(MSD.SectionIndex && "Invalid section index!");
+ LocalSymbolData.push_back(MSD);
+ }
+ }
+
+ // External and undefined symbols are required to be in lexicographic order.
+ std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
+ std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
+
+ // Set the symbol indices.
+ Index = 0;
+ for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
+ LocalSymbolData[i].SymbolData->setIndex(Index++);
+ for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
+ ExternalSymbolData[i].SymbolData->setIndex(Index++);
+ for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
+ UndefinedSymbolData[i].SymbolData->setIndex(Index++);
+
+ // The string table is padded to a multiple of 4.
+ //
+ // FIXME: Check to see if this varies per arch.
+ while (StringTable.size() % 4)
+ StringTable += '\x00';
+ }
+
+ void WriteObject(MCAssembler &Asm) {
+ unsigned NumSections = Asm.size();
+
+ // Compute the symbol -> symbol data map.
+ //
+ // FIXME: This should not be here.
+ DenseMap<const MCSymbol*, MCSymbolData *> SymbolMap;
+ for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
+ ie = Asm.symbol_end(); it != ie; ++it)
+ SymbolMap[&it->getSymbol()] = it;
+
+ // Create symbol data for any indirect symbols.
+ BindIndirectSymbols(Asm, SymbolMap);
+
+ // Compute symbol table information.
+ SmallString<256> StringTable;
+ std::vector<MachSymbolData> LocalSymbolData;
+ std::vector<MachSymbolData> ExternalSymbolData;
+ std::vector<MachSymbolData> UndefinedSymbolData;
+ unsigned NumSymbols = Asm.symbol_size();
+
+ // No symbol table command is written if there are no symbols.
+ if (NumSymbols)
+ ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
+ UndefinedSymbolData);
+
+ // The section data starts after the header, the segment load command (and
+ // section headers) and the symbol table.
+ unsigned NumLoadCommands = 1;
+ uint64_t LoadCommandsSize =
+ SegmentLoadCommand32Size + NumSections * Section32Size;
+
+ // Add the symbol table load command sizes, if used.
+ if (NumSymbols) {
+ NumLoadCommands += 2;
+ LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
+ }
+
+ // Compute the total size of the section data, as well as its file size and
+ // vm size.
+ uint64_t SectionDataStart = Header32Size + LoadCommandsSize;
+ uint64_t SectionDataSize = 0;
+ uint64_t SectionDataFileSize = 0;
+ uint64_t VMSize = 0;
+ for (MCAssembler::iterator it = Asm.begin(),
+ ie = Asm.end(); it != ie; ++it) {
+ MCSectionData &SD = *it;
+
+ VMSize = std::max(VMSize, SD.getAddress() + SD.getSize());
+
+ if (isVirtualSection(SD.getSection()))
+ continue;
+
+ SectionDataSize = std::max(SectionDataSize,
+ SD.getAddress() + SD.getSize());
+ SectionDataFileSize = std::max(SectionDataFileSize,
+ SD.getAddress() + SD.getFileSize());
+ }
+
+ // The section data is passed to 4 bytes.
+ //
+ // FIXME: Is this machine dependent?
+ unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
+ SectionDataFileSize += SectionDataPadding;
+
+ // Write the prolog, starting with the header and load command...
+ WriteHeader32(NumLoadCommands, LoadCommandsSize,
+ Asm.getSubsectionsViaSymbols());
+ WriteSegmentLoadCommand32(NumSections, VMSize,
+ SectionDataStart, SectionDataSize);
+
+ // ... and then the section headers.
+ //
+ // We also compute the section relocations while we do this. Note that
+ // compute relocation info will also update the fixup to have the correct
+ // value; this will be overwrite the appropriate data in the fragment when
+ // it is written.
+ std::vector<MachRelocationEntry> RelocInfos;
+ uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
+ for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie;
+ ++it) {
+ MCSectionData &SD = *it;
+
+ // The assembler writes relocations in the reverse order they were seen.
+ //
+ // FIXME: It is probably more complicated than this.
+ unsigned NumRelocsStart = RelocInfos.size();
+ for (unsigned i = 0, e = SD.fixup_size(); i != e; ++i)
+ ComputeRelocationInfo(Asm, SD.getFixups()[e - i - 1], SymbolMap,
+ RelocInfos);
+
+ unsigned NumRelocs = RelocInfos.size() - NumRelocsStart;
+ uint64_t SectionStart = SectionDataStart + SD.getAddress();
+ WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs);
+ RelocTableEnd += NumRelocs * RelocationInfoSize;
+ }
+
+ // Write the symbol table load command, if used.
+ if (NumSymbols) {
+ unsigned FirstLocalSymbol = 0;
+ unsigned NumLocalSymbols = LocalSymbolData.size();
+ unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
+ unsigned NumExternalSymbols = ExternalSymbolData.size();
+ unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
+ unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
+ unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
+ unsigned NumSymTabSymbols =
+ NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
+ uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
+ uint64_t IndirectSymbolOffset = 0;
+
+ // If used, the indirect symbols are written after the section data.
+ if (NumIndirectSymbols)
+ IndirectSymbolOffset = RelocTableEnd;
+
+ // The symbol table is written after the indirect symbol data.
+ uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
+
+ // The string table is written after symbol table.
+ uint64_t StringTableOffset =
+ SymbolTableOffset + NumSymTabSymbols * Nlist32Size;
+ WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
+ StringTableOffset, StringTable.size());
+
+ WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
+ FirstExternalSymbol, NumExternalSymbols,
+ FirstUndefinedSymbol, NumUndefinedSymbols,
+ IndirectSymbolOffset, NumIndirectSymbols);
+ }
+
+ // Write the actual section data.
+ for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
+ WriteFileData(OS, *it, *this);
+
+ // Write the extra padding.
+ WriteZeros(SectionDataPadding);
+
+ // Write the relocation entries.
+ for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) {
+ Write32(RelocInfos[i].Word0);
+ Write32(RelocInfos[i].Word1);
+ }
+
+ // Write the symbol table data, if used.
+ if (NumSymbols) {
+ // Write the indirect symbol entries.
+ for (MCAssembler::indirect_symbol_iterator
+ it = Asm.indirect_symbol_begin(),
+ ie = Asm.indirect_symbol_end(); it != ie; ++it) {
+ // Indirect symbols in the non lazy symbol pointer section have some
+ // special handling.
+ const MCSectionMachO &Section =
+ static_cast<const MCSectionMachO&>(it->SectionData->getSection());
+ unsigned Type =
+ Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
+ if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
+ // If this symbol is defined and internal, mark it as such.
+ if (it->Symbol->isDefined() &&
+ !SymbolMap.lookup(it->Symbol)->isExternal()) {
+ uint32_t Flags = ISF_Local;
+ if (it->Symbol->isAbsolute())
+ Flags |= ISF_Absolute;
+ Write32(Flags);
+ continue;
+ }
+ }
+
+ Write32(SymbolMap[it->Symbol]->getIndex());
+ }
+
+ // FIXME: Check that offsets match computed ones.
+
+ // Write the symbol table entries.
+ for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
+ WriteNlist32(LocalSymbolData[i]);
+ for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
+ WriteNlist32(ExternalSymbolData[i]);
+ for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
+ WriteNlist32(UndefinedSymbolData[i]);
+
+ // Write the string table.
+ OS << StringTable.str();
+ }
+ }
+};
+
+/* *** */
+
+MCFragment::MCFragment() : Kind(FragmentType(~0)) {
+}
+
+MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
+ : Kind(_Kind),
+ Parent(_Parent),
+ FileSize(~UINT64_C(0))
+{
+ if (Parent)
+ Parent->getFragmentList().push_back(this);
+}
+
+MCFragment::~MCFragment() {
+}
+
+uint64_t MCFragment::getAddress() const {
+ assert(getParent() && "Missing Section!");
+ return getParent()->getAddress() + Offset;
+}
+
+/* *** */
+
+MCSectionData::MCSectionData() : Section(0) {}
+
+MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
+ : Section(&_Section),
+ Alignment(1),
+ Address(~UINT64_C(0)),
+ Size(~UINT64_C(0)),
+ FileSize(~UINT64_C(0)),
+ LastFixupLookup(~0)
+{
+ if (A)
+ A->getSectionList().push_back(this);
+}
+
+const MCSectionData::Fixup *
+MCSectionData::LookupFixup(const MCFragment *Fragment, uint64_t Offset) const {
+ // Use a one level cache to turn the common case of accessing the fixups in
+ // order into O(1) instead of O(N).
+ unsigned i = LastFixupLookup, Count = Fixups.size(), End = Fixups.size();
+ if (i >= End)
+ i = 0;
+ while (Count--) {
+ const Fixup &F = Fixups[i];
+ if (F.Fragment == Fragment && F.Offset == Offset) {
+ LastFixupLookup = i;
+ return &F;
+ }
+
+ ++i;
+ if (i == End)
+ i = 0;
+ }
+
+ return 0;
+}
+
+/* *** */
+
+MCSymbolData::MCSymbolData() : Symbol(0) {}
+
+MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
+ uint64_t _Offset, MCAssembler *A)
+ : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
+ IsExternal(false), IsPrivateExtern(false),
+ CommonSize(0), CommonAlign(0), Flags(0), Index(0)
+{
+ if (A)
+ A->getSymbolList().push_back(this);
+}
+
+/* *** */
+
+MCAssembler::MCAssembler(MCContext &_Context, raw_ostream &_OS)
+ : Context(_Context), OS(_OS), SubsectionsViaSymbols(false)
+{
+}
+
+MCAssembler::~MCAssembler() {
+}
+
+void MCAssembler::LayoutSection(MCSectionData &SD) {
+ uint64_t Address = SD.getAddress();
+
+ for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
+ MCFragment &F = *it;
+
+ F.setOffset(Address - SD.getAddress());
+
+ // Evaluate fragment size.
+ switch (F.getKind()) {
+ case MCFragment::FT_Align: {
+ MCAlignFragment &AF = cast<MCAlignFragment>(F);
+
+ uint64_t Size = OffsetToAlignment(Address, AF.getAlignment());
+ if (Size > AF.getMaxBytesToEmit())
+ AF.setFileSize(0);
+ else
+ AF.setFileSize(Size);
+ break;
+ }
+
+ case MCFragment::FT_Data:
+ F.setFileSize(F.getMaxFileSize());
+ break;
+
+ case MCFragment::FT_Fill: {
+ MCFillFragment &FF = cast<MCFillFragment>(F);
+
+ F.setFileSize(F.getMaxFileSize());
+
+ // If the fill value is constant, thats it.
+ if (FF.getValue().isAbsolute())
+ break;
+
+ // Otherwise, add fixups for the values.
+ for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
+ MCSectionData::Fixup Fix(F, i * FF.getValueSize(),
+ FF.getValue(),FF.getValueSize());
+ SD.getFixups().push_back(Fix);
+ }
+ break;
+ }
+
+ case MCFragment::FT_Org: {
+ MCOrgFragment &OF = cast<MCOrgFragment>(F);
+
+ if (!OF.getOffset().isAbsolute())
+ llvm_unreachable("FIXME: Not yet implemented!");
+ uint64_t OrgOffset = OF.getOffset().getConstant();
+ uint64_t Offset = Address - SD.getAddress();
+
+ // FIXME: We need a way to communicate this error.
+ if (OrgOffset < Offset)
+ llvm_report_error("invalid .org offset '" + Twine(OrgOffset) +
+ "' (at offset '" + Twine(Offset) + "'");
+
+ F.setFileSize(OrgOffset - Offset);
+ break;
+ }
+
+ case MCFragment::FT_ZeroFill: {
+ MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);
+
+ // Align the fragment offset; it is safe to adjust the offset freely since
+ // this is only in virtual sections.
+ uint64_t Aligned = RoundUpToAlignment(Address, ZFF.getAlignment());
+ F.setOffset(Aligned - SD.getAddress());
+
+ // FIXME: This is misnamed.
+ F.setFileSize(ZFF.getSize());
+ break;
+ }
+ }
+
+ Address += F.getFileSize();
+ }
+
+ // Set the section sizes.
+ SD.setSize(Address - SD.getAddress());
+ if (isVirtualSection(SD.getSection()))
+ SD.setFileSize(0);
+ else
+ SD.setFileSize(Address - SD.getAddress());
+}
+
+/// WriteFileData - Write the \arg F data to the output file.
+static void WriteFileData(raw_ostream &OS, const MCFragment &F,
+ MachObjectWriter &MOW) {
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ ++EmittedFragments;
+
+ // FIXME: Embed in fragments instead?
+ switch (F.getKind()) {
+ case MCFragment::FT_Align: {
+ MCAlignFragment &AF = cast<MCAlignFragment>(F);
+ uint64_t Count = AF.getFileSize() / AF.getValueSize();
+
+ // FIXME: This error shouldn't actually occur (the front end should emit
+ // multiple .align directives to enforce the semantics it wants), but is
+ // severe enough that we want to report it. How to handle this?
+ if (Count * AF.getValueSize() != AF.getFileSize())
+ llvm_report_error("undefined .align directive, value size '" +
+ Twine(AF.getValueSize()) +
+ "' is not a divisor of padding size '" +
+ Twine(AF.getFileSize()) + "'");
+
+ for (uint64_t i = 0; i != Count; ++i) {
+ switch (AF.getValueSize()) {
+ default:
+ assert(0 && "Invalid size!");
+ case 1: MOW.Write8 (uint8_t (AF.getValue())); break;
+ case 2: MOW.Write16(uint16_t(AF.getValue())); break;
+ case 4: MOW.Write32(uint32_t(AF.getValue())); break;
+ case 8: MOW.Write64(uint64_t(AF.getValue())); break;
+ }
+ }
+ break;
+ }
+
+ case MCFragment::FT_Data:
+ OS << cast<MCDataFragment>(F).getContents().str();
+ break;
+
+ case MCFragment::FT_Fill: {
+ MCFillFragment &FF = cast<MCFillFragment>(F);
+
+ int64_t Value = 0;
+ if (FF.getValue().isAbsolute())
+ Value = FF.getValue().getConstant();
+ for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
+ if (!FF.getValue().isAbsolute()) {
+ // Find the fixup.
+ //
+ // FIXME: Find a better way to write in the fixes.
+ const MCSectionData::Fixup *Fixup =
+ F.getParent()->LookupFixup(&F, i * FF.getValueSize());
+ assert(Fixup && "Missing fixup for fill value!");
+ Value = Fixup->FixedValue;
+ }
+
+ switch (FF.getValueSize()) {
+ default:
+ assert(0 && "Invalid size!");
+ case 1: MOW.Write8 (uint8_t (Value)); break;
+ case 2: MOW.Write16(uint16_t(Value)); break;
+ case 4: MOW.Write32(uint32_t(Value)); break;
+ case 8: MOW.Write64(uint64_t(Value)); break;
+ }
+ }
+ break;
+ }
+
+ case MCFragment::FT_Org: {
+ MCOrgFragment &OF = cast<MCOrgFragment>(F);
+
+ for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i)
+ MOW.Write8(uint8_t(OF.getValue()));
+
+ break;
+ }
+
+ case MCFragment::FT_ZeroFill: {
+ assert(0 && "Invalid zero fill fragment in concrete section!");
+ break;
+ }
+ }
+
+ assert(OS.tell() - Start == F.getFileSize());
+}
+
+/// WriteFileData - Write the \arg SD data to the output file.
+static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
+ MachObjectWriter &MOW) {
+ // Ignore virtual sections.
+ if (isVirtualSection(SD.getSection())) {
+ assert(SD.getFileSize() == 0);
+ return;
+ }
+
+ uint64_t Start = OS.tell();
+ (void) Start;
+
+ for (MCSectionData::const_iterator it = SD.begin(),
+ ie = SD.end(); it != ie; ++it)
+ WriteFileData(OS, *it, MOW);
+
+ // Add section padding.
+ assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!");
+ MOW.WriteZeros(SD.getFileSize() - SD.getSize());
+
+ assert(OS.tell() - Start == SD.getFileSize());
+}
+
+void MCAssembler::Finish() {
+ // Layout the concrete sections and fragments.
+ uint64_t Address = 0;
+ MCSectionData *Prev = 0;
+ for (iterator it = begin(), ie = end(); it != ie; ++it) {
+ MCSectionData &SD = *it;
+
+ // Skip virtual sections.
+ if (isVirtualSection(SD.getSection()))
+ continue;
+
+ // Align this section if necessary by adding padding bytes to the previous
+ // section.
+ if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) {
+ assert(Prev && "Missing prev section!");
+ Prev->setFileSize(Prev->getFileSize() + Pad);
+ Address += Pad;
+ }
+
+ // Layout the section fragments and its size.
+ SD.setAddress(Address);
+ LayoutSection(SD);
+ Address += SD.getFileSize();
+
+ Prev = &SD;
+ }
+
+ // Layout the virtual sections.
+ for (iterator it = begin(), ie = end(); it != ie; ++it) {
+ MCSectionData &SD = *it;
+
+ if (!isVirtualSection(SD.getSection()))
+ continue;
+
+ SD.setAddress(Address);
+ LayoutSection(SD);
+ Address += SD.getSize();
+ }
+
+ // Write the object file.
+ MachObjectWriter MOW(OS);
+ MOW.WriteObject(*this);
+
+ OS.flush();
+}
diff --git a/lib/MC/MCCodeEmitter.cpp b/lib/MC/MCCodeEmitter.cpp
new file mode 100644
index 0000000..c122763
--- /dev/null
+++ b/lib/MC/MCCodeEmitter.cpp
@@ -0,0 +1,18 @@
+//===-- MCCodeEmitter.cpp - Instruction Encoding --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCCodeEmitter.h"
+
+using namespace llvm;
+
+MCCodeEmitter::MCCodeEmitter() {
+}
+
+MCCodeEmitter::~MCCodeEmitter() {
+}
diff --git a/lib/MC/MCContext.cpp b/lib/MC/MCContext.cpp
index 6c6019c..f36564a 100644
--- a/lib/MC/MCContext.cpp
+++ b/lib/MC/MCContext.cpp
@@ -14,23 +14,15 @@
#include "llvm/MC/MCValue.h"
using namespace llvm;
-MCContext::MCContext()
-{
+MCContext::MCContext() {
}
MCContext::~MCContext() {
+ // NOTE: The sections are all allocated out of a bump pointer allocator,
+ // we don't need to free them here.
}
-MCSection *MCContext::GetSection(const char *Name) {
- MCSection *&Entry = Sections[Name];
-
- if (!Entry)
- Entry = new (*this) MCSection(Name);
-
- return Entry;
-}
-
-MCSymbol *MCContext::CreateSymbol(const char *Name) {
+MCSymbol *MCContext::CreateSymbol(const StringRef &Name) {
assert(Name[0] != '\0' && "Normal symbols cannot be unnamed!");
// Create and bind the symbol, and ensure that names are unique.
@@ -39,17 +31,16 @@ MCSymbol *MCContext::CreateSymbol(const char *Name) {
return Entry = new (*this) MCSymbol(Name, false);
}
-MCSymbol *MCContext::GetOrCreateSymbol(const char *Name) {
+MCSymbol *MCContext::GetOrCreateSymbol(const StringRef &Name) {
MCSymbol *&Entry = Symbols[Name];
if (Entry) return Entry;
return Entry = new (*this) MCSymbol(Name, false);
}
-
-MCSymbol *MCContext::CreateTemporarySymbol(const char *Name) {
+MCSymbol *MCContext::CreateTemporarySymbol(const StringRef &Name) {
// If unnamed, just create a symbol.
- if (Name[0] == '\0')
+ if (Name.empty())
new (*this) MCSymbol("", true);
// Otherwise create as usual.
@@ -58,20 +49,20 @@ MCSymbol *MCContext::CreateTemporarySymbol(const char *Name) {
return Entry = new (*this) MCSymbol(Name, true);
}
-MCSymbol *MCContext::LookupSymbol(const char *Name) const {
+MCSymbol *MCContext::LookupSymbol(const StringRef &Name) const {
return Symbols.lookup(Name);
}
-void MCContext::ClearSymbolValue(MCSymbol *Sym) {
+void MCContext::ClearSymbolValue(const MCSymbol *Sym) {
SymbolValues.erase(Sym);
}
-void MCContext::SetSymbolValue(MCSymbol *Sym, const MCValue &Value) {
+void MCContext::SetSymbolValue(const MCSymbol *Sym, const MCValue &Value) {
SymbolValues[Sym] = Value;
}
-const MCValue *MCContext::GetSymbolValue(MCSymbol *Sym) const {
- DenseMap<MCSymbol*, MCValue>::iterator it = SymbolValues.find(Sym);
+const MCValue *MCContext::GetSymbolValue(const MCSymbol *Sym) const {
+ DenseMap<const MCSymbol*, MCValue>::iterator it = SymbolValues.find(Sym);
if (it == SymbolValues.end())
return 0;
diff --git a/lib/MC/MCDisassembler.cpp b/lib/MC/MCDisassembler.cpp
new file mode 100644
index 0000000..0809690
--- /dev/null
+++ b/lib/MC/MCDisassembler.cpp
@@ -0,0 +1,14 @@
+//===-- lib/MC/MCDisassembler.cpp - Disassembler interface ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCDisassembler.h"
+using namespace llvm;
+
+MCDisassembler::~MCDisassembler() {
+}
diff --git a/lib/MC/MCExpr.cpp b/lib/MC/MCExpr.cpp
new file mode 100644
index 0000000..0f3e053
--- /dev/null
+++ b/lib/MC/MCExpr.cpp
@@ -0,0 +1,286 @@
+//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
+ switch (getKind()) {
+ case MCExpr::Constant:
+ OS << cast<MCConstantExpr>(*this).getValue();
+ return;
+
+ case MCExpr::SymbolRef: {
+ const MCSymbol &Sym = cast<MCSymbolRefExpr>(*this).getSymbol();
+
+ // Parenthesize names that start with $ so that they don't look like
+ // absolute names.
+ if (Sym.getName()[0] == '$') {
+ OS << '(';
+ Sym.print(OS, MAI);
+ OS << ')';
+ } else {
+ Sym.print(OS, MAI);
+ }
+ return;
+ }
+
+ case MCExpr::Unary: {
+ const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
+ switch (UE.getOpcode()) {
+ default: assert(0 && "Invalid opcode!");
+ case MCUnaryExpr::LNot: OS << '!'; break;
+ case MCUnaryExpr::Minus: OS << '-'; break;
+ case MCUnaryExpr::Not: OS << '~'; break;
+ case MCUnaryExpr::Plus: OS << '+'; break;
+ }
+ UE.getSubExpr()->print(OS, MAI);
+ return;
+ }
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
+
+ // Only print parens around the LHS if it is non-trivial.
+ if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
+ BE.getLHS()->print(OS, MAI);
+ } else {
+ OS << '(';
+ BE.getLHS()->print(OS, MAI);
+ OS << ')';
+ }
+
+ switch (BE.getOpcode()) {
+ default: assert(0 && "Invalid opcode!");
+ case MCBinaryExpr::Add:
+ // Print "X-42" instead of "X+-42".
+ if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
+ if (RHSC->getValue() < 0) {
+ OS << RHSC->getValue();
+ return;
+ }
+ }
+
+ OS << '+';
+ break;
+ case MCBinaryExpr::And: OS << '&'; break;
+ case MCBinaryExpr::Div: OS << '/'; break;
+ case MCBinaryExpr::EQ: OS << "=="; break;
+ case MCBinaryExpr::GT: OS << '>'; break;
+ case MCBinaryExpr::GTE: OS << ">="; break;
+ case MCBinaryExpr::LAnd: OS << "&&"; break;
+ case MCBinaryExpr::LOr: OS << "||"; break;
+ case MCBinaryExpr::LT: OS << '<'; break;
+ case MCBinaryExpr::LTE: OS << "<="; break;
+ case MCBinaryExpr::Mod: OS << '%'; break;
+ case MCBinaryExpr::Mul: OS << '*'; break;
+ case MCBinaryExpr::NE: OS << "!="; break;
+ case MCBinaryExpr::Or: OS << '|'; break;
+ case MCBinaryExpr::Shl: OS << "<<"; break;
+ case MCBinaryExpr::Shr: OS << ">>"; break;
+ case MCBinaryExpr::Sub: OS << '-'; break;
+ case MCBinaryExpr::Xor: OS << '^'; break;
+ }
+
+ // Only print parens around the LHS if it is non-trivial.
+ if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
+ BE.getRHS()->print(OS, MAI);
+ } else {
+ OS << '(';
+ BE.getRHS()->print(OS, MAI);
+ OS << ')';
+ }
+ return;
+ }
+ }
+
+ assert(0 && "Invalid expression kind!");
+}
+
+void MCExpr::dump() const {
+ print(errs(), 0);
+ errs() << '\n';
+}
+
+/* *** */
+
+const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
+ const MCExpr *RHS, MCContext &Ctx) {
+ return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
+}
+
+const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
+ MCContext &Ctx) {
+ return new (Ctx) MCUnaryExpr(Opc, Expr);
+}
+
+const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
+ return new (Ctx) MCConstantExpr(Value);
+}
+
+const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
+ MCContext &Ctx) {
+ return new (Ctx) MCSymbolRefExpr(Sym);
+}
+
+const MCSymbolRefExpr *MCSymbolRefExpr::Create(const StringRef &Name,
+ MCContext &Ctx) {
+ return Create(Ctx.GetOrCreateSymbol(Name), Ctx);
+}
+
+
+/* *** */
+
+bool MCExpr::EvaluateAsAbsolute(MCContext &Ctx, int64_t &Res) const {
+ MCValue Value;
+
+ if (!EvaluateAsRelocatable(Ctx, Value) || !Value.isAbsolute())
+ return false;
+
+ Res = Value.getConstant();
+ return true;
+}
+
+static bool EvaluateSymbolicAdd(const MCValue &LHS, const MCSymbol *RHS_A,
+ const MCSymbol *RHS_B, int64_t RHS_Cst,
+ MCValue &Res) {
+ // We can't add or subtract two symbols.
+ if ((LHS.getSymA() && RHS_A) ||
+ (LHS.getSymB() && RHS_B))
+ return false;
+
+ const MCSymbol *A = LHS.getSymA() ? LHS.getSymA() : RHS_A;
+ const MCSymbol *B = LHS.getSymB() ? LHS.getSymB() : RHS_B;
+ if (B) {
+ // If we have a negated symbol, then we must have also have a non-negated
+ // symbol in order to encode the expression. We can do this check later to
+ // permit expressions which eventually fold to a representable form -- such
+ // as (a + (0 - b)) -- if necessary.
+ if (!A)
+ return false;
+ }
+ Res = MCValue::get(A, B, LHS.getConstant() + RHS_Cst);
+ return true;
+}
+
+bool MCExpr::EvaluateAsRelocatable(MCContext &Ctx, MCValue &Res) const {
+ switch (getKind()) {
+ case Constant:
+ Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
+ return true;
+
+ case SymbolRef: {
+ const MCSymbol &Sym = cast<MCSymbolRefExpr>(this)->getSymbol();
+ if (const MCValue *Value = Ctx.GetSymbolValue(&Sym))
+ Res = *Value;
+ else
+ Res = MCValue::get(&Sym, 0, 0);
+ return true;
+ }
+
+ case Unary: {
+ const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
+ MCValue Value;
+
+ if (!AUE->getSubExpr()->EvaluateAsRelocatable(Ctx, Value))
+ return false;
+
+ switch (AUE->getOpcode()) {
+ case MCUnaryExpr::LNot:
+ if (!Value.isAbsolute())
+ return false;
+ Res = MCValue::get(!Value.getConstant());
+ break;
+ case MCUnaryExpr::Minus:
+ /// -(a - b + const) ==> (b - a - const)
+ if (Value.getSymA() && !Value.getSymB())
+ return false;
+ Res = MCValue::get(Value.getSymB(), Value.getSymA(),
+ -Value.getConstant());
+ break;
+ case MCUnaryExpr::Not:
+ if (!Value.isAbsolute())
+ return false;
+ Res = MCValue::get(~Value.getConstant());
+ break;
+ case MCUnaryExpr::Plus:
+ Res = Value;
+ break;
+ }
+
+ return true;
+ }
+
+ case Binary: {
+ const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
+ MCValue LHSValue, RHSValue;
+
+ if (!ABE->getLHS()->EvaluateAsRelocatable(Ctx, LHSValue) ||
+ !ABE->getRHS()->EvaluateAsRelocatable(Ctx, RHSValue))
+ return false;
+
+ // We only support a few operations on non-constant expressions, handle
+ // those first.
+ if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
+ switch (ABE->getOpcode()) {
+ default:
+ return false;
+ case MCBinaryExpr::Sub:
+ // Negate RHS and add.
+ return EvaluateSymbolicAdd(LHSValue,
+ RHSValue.getSymB(), RHSValue.getSymA(),
+ -RHSValue.getConstant(),
+ Res);
+
+ case MCBinaryExpr::Add:
+ return EvaluateSymbolicAdd(LHSValue,
+ RHSValue.getSymA(), RHSValue.getSymB(),
+ RHSValue.getConstant(),
+ Res);
+ }
+ }
+
+ // FIXME: We need target hooks for the evaluation. It may be limited in
+ // width, and gas defines the result of comparisons differently from Apple
+ // as (the result is sign extended).
+ int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
+ int64_t Result = 0;
+ switch (ABE->getOpcode()) {
+ case MCBinaryExpr::Add: Result = LHS + RHS; break;
+ case MCBinaryExpr::And: Result = LHS & RHS; break;
+ case MCBinaryExpr::Div: Result = LHS / RHS; break;
+ case MCBinaryExpr::EQ: Result = LHS == RHS; break;
+ case MCBinaryExpr::GT: Result = LHS > RHS; break;
+ case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
+ case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
+ case MCBinaryExpr::LOr: Result = LHS || RHS; break;
+ case MCBinaryExpr::LT: Result = LHS < RHS; break;
+ case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
+ case MCBinaryExpr::Mod: Result = LHS % RHS; break;
+ case MCBinaryExpr::Mul: Result = LHS * RHS; break;
+ case MCBinaryExpr::NE: Result = LHS != RHS; break;
+ case MCBinaryExpr::Or: Result = LHS | RHS; break;
+ case MCBinaryExpr::Shl: Result = LHS << RHS; break;
+ case MCBinaryExpr::Shr: Result = LHS >> RHS; break;
+ case MCBinaryExpr::Sub: Result = LHS - RHS; break;
+ case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
+ }
+
+ Res = MCValue::get(Result);
+ return true;
+ }
+ }
+
+ assert(0 && "Invalid assembly expression kind!");
+ return false;
+}
diff --git a/lib/MC/MCInst.cpp b/lib/MC/MCInst.cpp
new file mode 100644
index 0000000..d050318
--- /dev/null
+++ b/lib/MC/MCInst.cpp
@@ -0,0 +1,50 @@
+//===- lib/MC/MCInst.cpp - MCInst implementation --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+void MCOperand::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
+ OS << "<MCOperand ";
+ if (!isValid())
+ OS << "INVALID";
+ else if (isReg())
+ OS << "Reg:" << getReg();
+ else if (isImm())
+ OS << "Imm:" << getImm();
+ else if (isExpr()) {
+ OS << "Expr:(";
+ getExpr()->print(OS, MAI);
+ OS << ")";
+ } else
+ OS << "UNDEFINED";
+ OS << ">";
+}
+
+void MCOperand::dump() const {
+ print(errs(), 0);
+ errs() << "\n";
+}
+
+void MCInst::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
+ OS << "<MCInst " << getOpcode();
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ OS << " ";
+ getOperand(i).print(OS, MAI);
+ }
+ OS << ">";
+}
+
+void MCInst::dump() const {
+ print(errs(), 0);
+ errs() << "\n";
+}
diff --git a/lib/MC/MCInstPrinter.cpp b/lib/MC/MCInstPrinter.cpp
new file mode 100644
index 0000000..e90c03c
--- /dev/null
+++ b/lib/MC/MCInstPrinter.cpp
@@ -0,0 +1,14 @@
+//===-- MCInstPrinter.cpp - Convert an MCInst to target assembly syntax ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCInstPrinter.h"
+using namespace llvm;
+
+MCInstPrinter::~MCInstPrinter() {
+}
diff --git a/lib/MC/MCMachOStreamer.cpp b/lib/MC/MCMachOStreamer.cpp
new file mode 100644
index 0000000..e04bd1f
--- /dev/null
+++ b/lib/MC/MCMachOStreamer.cpp
@@ -0,0 +1,379 @@
+//===- lib/MC/MCMachOStreamer.cpp - Mach-O Object Output ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCStreamer.h"
+
+#include "llvm/MC/MCAssembler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+namespace {
+
+class MCMachOStreamer : public MCStreamer {
+ /// SymbolFlags - We store the value for the 'desc' symbol field in the lowest
+ /// 16 bits of the implementation defined flags.
+ enum SymbolFlags { // See <mach-o/nlist.h>.
+ SF_DescFlagsMask = 0xFFFF,
+
+ // Reference type flags.
+ SF_ReferenceTypeMask = 0x0007,
+ SF_ReferenceTypeUndefinedNonLazy = 0x0000,
+ SF_ReferenceTypeUndefinedLazy = 0x0001,
+ SF_ReferenceTypeDefined = 0x0002,
+ SF_ReferenceTypePrivateDefined = 0x0003,
+ SF_ReferenceTypePrivateUndefinedNonLazy = 0x0004,
+ SF_ReferenceTypePrivateUndefinedLazy = 0x0005,
+
+ // Other 'desc' flags.
+ SF_NoDeadStrip = 0x0020,
+ SF_WeakReference = 0x0040,
+ SF_WeakDefinition = 0x0080
+ };
+
+private:
+ MCAssembler Assembler;
+
+ MCCodeEmitter *Emitter;
+
+ MCSectionData *CurSectionData;
+
+ DenseMap<const MCSection*, MCSectionData*> SectionMap;
+
+ DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
+
+private:
+ MCFragment *getCurrentFragment() const {
+ assert(CurSectionData && "No current section!");
+
+ if (!CurSectionData->empty())
+ return &CurSectionData->getFragmentList().back();
+
+ return 0;
+ }
+
+ MCSectionData &getSectionData(const MCSection &Section) {
+ MCSectionData *&Entry = SectionMap[&Section];
+
+ if (!Entry)
+ Entry = new MCSectionData(Section, &Assembler);
+
+ return *Entry;
+ }
+
+ MCSymbolData &getSymbolData(const MCSymbol &Symbol) {
+ MCSymbolData *&Entry = SymbolMap[&Symbol];
+
+ if (!Entry)
+ Entry = new MCSymbolData(Symbol, 0, 0, &Assembler);
+
+ return *Entry;
+ }
+
+public:
+ MCMachOStreamer(MCContext &Context, raw_ostream &_OS, MCCodeEmitter *_Emitter)
+ : MCStreamer(Context), Assembler(Context, _OS), Emitter(_Emitter),
+ CurSectionData(0) {}
+ ~MCMachOStreamer() {}
+
+ const MCExpr *AddValueSymbols(const MCExpr *Value) {
+ switch (Value->getKind()) {
+ case MCExpr::Constant:
+ break;
+
+ case MCExpr::Binary: {
+ const MCBinaryExpr *BE = cast<MCBinaryExpr>(Value);
+ AddValueSymbols(BE->getLHS());
+ AddValueSymbols(BE->getRHS());
+ break;
+ }
+
+ case MCExpr::SymbolRef:
+ getSymbolData(cast<MCSymbolRefExpr>(Value)->getSymbol());
+ break;
+
+ case MCExpr::Unary:
+ AddValueSymbols(cast<MCUnaryExpr>(Value)->getSubExpr());
+ break;
+ }
+
+ return Value;
+ }
+
+ /// @name MCStreamer Interface
+ /// @{
+
+ virtual void SwitchSection(const MCSection *Section);
+
+ virtual void EmitLabel(MCSymbol *Symbol);
+
+ virtual void EmitAssemblerFlag(AssemblerFlag Flag);
+
+ virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value);
+
+ virtual void EmitSymbolAttribute(MCSymbol *Symbol, SymbolAttr Attribute);
+
+ virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue);
+
+ virtual void EmitCommonSymbol(MCSymbol *Symbol, unsigned Size,
+ unsigned ByteAlignment);
+
+ virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
+ unsigned Size = 0, unsigned ByteAlignment = 0);
+
+ virtual void EmitBytes(const StringRef &Data);
+
+ virtual void EmitValue(const MCExpr *Value, unsigned Size);
+
+ virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
+ unsigned ValueSize = 1,
+ unsigned MaxBytesToEmit = 0);
+
+ virtual void EmitValueToOffset(const MCExpr *Offset,
+ unsigned char Value = 0);
+
+ virtual void EmitInstruction(const MCInst &Inst);
+
+ virtual void Finish();
+
+ /// @}
+};
+
+} // end anonymous namespace.
+
+void MCMachOStreamer::SwitchSection(const MCSection *Section) {
+ assert(Section && "Cannot switch to a null section!");
+
+ // If already in this section, then this is a noop.
+ if (Section == CurSection) return;
+
+ CurSection = Section;
+ CurSectionData = &getSectionData(*Section);
+}
+
+void MCMachOStreamer::EmitLabel(MCSymbol *Symbol) {
+ assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
+
+ // FIXME: We should also use offsets into Fill fragments.
+ MCDataFragment *F = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
+ if (!F)
+ F = new MCDataFragment(CurSectionData);
+
+ MCSymbolData &SD = getSymbolData(*Symbol);
+ assert(!SD.getFragment() && "Unexpected fragment on symbol data!");
+ SD.setFragment(F);
+ SD.setOffset(F->getContents().size());
+
+ // This causes the reference type and weak reference flags to be cleared.
+ SD.setFlags(SD.getFlags() & ~(SF_WeakReference | SF_ReferenceTypeMask));
+
+ Symbol->setSection(*CurSection);
+}
+
+void MCMachOStreamer::EmitAssemblerFlag(AssemblerFlag Flag) {
+ switch (Flag) {
+ case SubsectionsViaSymbols:
+ Assembler.setSubsectionsViaSymbols(true);
+ return;
+ }
+
+ assert(0 && "invalid assembler flag!");
+}
+
+void MCMachOStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
+ // Only absolute symbols can be redefined.
+ assert((Symbol->isUndefined() || Symbol->isAbsolute()) &&
+ "Cannot define a symbol twice!");
+
+ llvm_unreachable("FIXME: Not yet implemented!");
+}
+
+void MCMachOStreamer::EmitSymbolAttribute(MCSymbol *Symbol,
+ SymbolAttr Attribute) {
+ // Indirect symbols are handled differently, to match how 'as' handles
+ // them. This makes writing matching .o files easier.
+ if (Attribute == MCStreamer::IndirectSymbol) {
+ // Note that we intentionally cannot use the symbol data here; this is
+ // important for matching the string table that 'as' generates.
+ IndirectSymbolData ISD;
+ ISD.Symbol = Symbol;
+ ISD.SectionData = CurSectionData;
+ Assembler.getIndirectSymbols().push_back(ISD);
+ return;
+ }
+
+ // Adding a symbol attribute always introduces the symbol, note that an
+ // important side effect of calling getSymbolData here is to register the
+ // symbol with the assembler.
+ MCSymbolData &SD = getSymbolData(*Symbol);
+
+ // The implementation of symbol attributes is designed to match 'as', but it
+ // leaves much to desired. It doesn't really make sense to arbitrarily add and
+ // remove flags, but 'as' allows this (in particular, see .desc).
+ //
+ // In the future it might be worth trying to make these operations more well
+ // defined.
+ switch (Attribute) {
+ case MCStreamer::IndirectSymbol:
+ case MCStreamer::Hidden:
+ case MCStreamer::Internal:
+ case MCStreamer::Protected:
+ case MCStreamer::Weak:
+ assert(0 && "Invalid symbol attribute for Mach-O!");
+ break;
+
+ case MCStreamer::Global:
+ SD.setExternal(true);
+ break;
+
+ case MCStreamer::LazyReference:
+ // FIXME: This requires -dynamic.
+ SD.setFlags(SD.getFlags() | SF_NoDeadStrip);
+ if (Symbol->isUndefined())
+ SD.setFlags(SD.getFlags() | SF_ReferenceTypeUndefinedLazy);
+ break;
+
+ // Since .reference sets the no dead strip bit, it is equivalent to
+ // .no_dead_strip in practice.
+ case MCStreamer::Reference:
+ case MCStreamer::NoDeadStrip:
+ SD.setFlags(SD.getFlags() | SF_NoDeadStrip);
+ break;
+
+ case MCStreamer::PrivateExtern:
+ SD.setExternal(true);
+ SD.setPrivateExtern(true);
+ break;
+
+ case MCStreamer::WeakReference:
+ // FIXME: This requires -dynamic.
+ if (Symbol->isUndefined())
+ SD.setFlags(SD.getFlags() | SF_WeakReference);
+ break;
+
+ case MCStreamer::WeakDefinition:
+ // FIXME: 'as' enforces that this is defined and global. The manual claims
+ // it has to be in a coalesced section, but this isn't enforced.
+ SD.setFlags(SD.getFlags() | SF_WeakDefinition);
+ break;
+ }
+}
+
+void MCMachOStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
+ // Encode the 'desc' value into the lowest implementation defined bits.
+ assert(DescValue == (DescValue & SF_DescFlagsMask) &&
+ "Invalid .desc value!");
+ getSymbolData(*Symbol).setFlags(DescValue & SF_DescFlagsMask);
+}
+
+void MCMachOStreamer::EmitCommonSymbol(MCSymbol *Symbol, unsigned Size,
+ unsigned ByteAlignment) {
+ // FIXME: Darwin 'as' does appear to allow redef of a .comm by itself.
+ assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
+
+ MCSymbolData &SD = getSymbolData(*Symbol);
+ SD.setExternal(true);
+ SD.setCommon(Size, ByteAlignment);
+}
+
+void MCMachOStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol,
+ unsigned Size, unsigned ByteAlignment) {
+ MCSectionData &SectData = getSectionData(*Section);
+
+ // The symbol may not be present, which only creates the section.
+ if (!Symbol)
+ return;
+
+ // FIXME: Assert that this section has the zerofill type.
+
+ assert(Symbol->isUndefined() && "Cannot define a symbol twice!");
+
+ MCSymbolData &SD = getSymbolData(*Symbol);
+
+ MCFragment *F = new MCZeroFillFragment(Size, ByteAlignment, &SectData);
+ SD.setFragment(F);
+
+ Symbol->setSection(*Section);
+
+ // Update the maximum alignment on the zero fill section if necessary.
+ if (ByteAlignment > SectData.getAlignment())
+ SectData.setAlignment(ByteAlignment);
+}
+
+void MCMachOStreamer::EmitBytes(const StringRef &Data) {
+ MCDataFragment *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment());
+ if (!DF)
+ DF = new MCDataFragment(CurSectionData);
+ DF->getContents().append(Data.begin(), Data.end());
+}
+
+void MCMachOStreamer::EmitValue(const MCExpr *Value, unsigned Size) {
+ MCValue RelocValue;
+
+ if (!AddValueSymbols(Value)->EvaluateAsRelocatable(getContext(), RelocValue))
+ return llvm_report_error("expected relocatable expression");
+
+ new MCFillFragment(RelocValue, Size, 1, CurSectionData);
+}
+
+void MCMachOStreamer::EmitValueToAlignment(unsigned ByteAlignment,
+ int64_t Value, unsigned ValueSize,
+ unsigned MaxBytesToEmit) {
+ if (MaxBytesToEmit == 0)
+ MaxBytesToEmit = ByteAlignment;
+ new MCAlignFragment(ByteAlignment, Value, ValueSize, MaxBytesToEmit,
+ CurSectionData);
+
+ // Update the maximum alignment on the current section if necessary.
+ if (ByteAlignment > CurSectionData->getAlignment())
+ CurSectionData->setAlignment(ByteAlignment);
+}
+
+void MCMachOStreamer::EmitValueToOffset(const MCExpr *Offset,
+ unsigned char Value) {
+ MCValue RelocOffset;
+
+ if (!AddValueSymbols(Offset)->EvaluateAsRelocatable(getContext(),
+ RelocOffset))
+ return llvm_report_error("expected relocatable expression");
+
+ new MCOrgFragment(RelocOffset, Value, CurSectionData);
+}
+
+void MCMachOStreamer::EmitInstruction(const MCInst &Inst) {
+ // Scan for values.
+ for (unsigned i = 0; i != Inst.getNumOperands(); ++i)
+ if (Inst.getOperand(i).isExpr())
+ AddValueSymbols(Inst.getOperand(i).getExpr());
+
+ if (!Emitter)
+ llvm_unreachable("no code emitter available!");
+
+ // FIXME: Relocations!
+ SmallString<256> Code;
+ raw_svector_ostream VecOS(Code);
+ Emitter->EncodeInstruction(Inst, VecOS);
+ EmitBytes(VecOS.str());
+}
+
+void MCMachOStreamer::Finish() {
+ Assembler.Finish();
+}
+
+MCStreamer *llvm::createMachOStreamer(MCContext &Context, raw_ostream &OS,
+ MCCodeEmitter *CE) {
+ return new MCMachOStreamer(Context, OS, CE);
+}
diff --git a/lib/MC/MCNullStreamer.cpp b/lib/MC/MCNullStreamer.cpp
new file mode 100644
index 0000000..3cd22ca
--- /dev/null
+++ b/lib/MC/MCNullStreamer.cpp
@@ -0,0 +1,70 @@
+//===- lib/MC/MCNullStreamer.cpp - Dummy Streamer Implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCStreamer.h"
+
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCSymbol.h"
+
+using namespace llvm;
+
+namespace {
+
+ class MCNullStreamer : public MCStreamer {
+ public:
+ MCNullStreamer(MCContext &Context) : MCStreamer(Context) {}
+
+ /// @name MCStreamer Interface
+ /// @{
+
+ virtual void SwitchSection(const MCSection *Section) {
+ CurSection = Section;
+ }
+
+ virtual void EmitLabel(MCSymbol *Symbol) {}
+
+ virtual void EmitAssemblerFlag(AssemblerFlag Flag) {}
+
+ virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) {}
+
+ virtual void EmitSymbolAttribute(MCSymbol *Symbol, SymbolAttr Attribute) {}
+
+ virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {}
+
+ virtual void EmitCommonSymbol(MCSymbol *Symbol, unsigned Size,
+ unsigned ByteAlignment) {}
+
+ virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0,
+ unsigned Size = 0, unsigned ByteAlignment = 0) {}
+
+ virtual void EmitBytes(const StringRef &Data) {}
+
+ virtual void EmitValue(const MCExpr *Value, unsigned Size) {}
+
+ virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0,
+ unsigned ValueSize = 1,
+ unsigned MaxBytesToEmit = 0) {}
+
+ virtual void EmitValueToOffset(const MCExpr *Offset,
+ unsigned char Value = 0) {}
+
+ virtual void EmitInstruction(const MCInst &Inst) {}
+
+ virtual void Finish() {}
+
+ /// @}
+ };
+
+}
+
+MCStreamer *llvm::createNullStreamer(MCContext &Context) {
+ return new MCNullStreamer(Context);
+}
diff --git a/lib/MC/MCSection.cpp b/lib/MC/MCSection.cpp
new file mode 100644
index 0000000..333a471
--- /dev/null
+++ b/lib/MC/MCSection.cpp
@@ -0,0 +1,45 @@
+//===- lib/MC/MCSection.cpp - Machine Code Section Representation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// MCSection
+//===----------------------------------------------------------------------===//
+
+MCSection::~MCSection() {
+}
+
+//===----------------------------------------------------------------------===//
+// MCSectionCOFF
+//===----------------------------------------------------------------------===//
+
+MCSectionCOFF *MCSectionCOFF::
+Create(const StringRef &Name, bool IsDirective, SectionKind K, MCContext &Ctx) {
+ return new (Ctx) MCSectionCOFF(Name, IsDirective, K);
+}
+
+void MCSectionCOFF::PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS) const {
+
+ if (isDirective()) {
+ OS << getName() << '\n';
+ return;
+ }
+ OS << "\t.section\t" << getName() << ",\"";
+ if (getKind().isText())
+ OS << 'x';
+ if (getKind().isWriteable())
+ OS << 'w';
+ OS << "\"\n";
+}
diff --git a/lib/MC/MCSectionELF.cpp b/lib/MC/MCSectionELF.cpp
new file mode 100644
index 0000000..660a8c9
--- /dev/null
+++ b/lib/MC/MCSectionELF.cpp
@@ -0,0 +1,138 @@
+//===- lib/MC/MCSectionELF.cpp - ELF Code Section Representation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/MC/MCAsmInfo.h"
+
+using namespace llvm;
+
+MCSectionELF *MCSectionELF::
+Create(const StringRef &Section, unsigned Type, unsigned Flags,
+ SectionKind K, bool isExplicit, MCContext &Ctx) {
+ return new (Ctx) MCSectionELF(Section, Type, Flags, K, isExplicit);
+}
+
+// ShouldOmitSectionDirective - Decides whether a '.section' directive
+// should be printed before the section name
+bool MCSectionELF::ShouldOmitSectionDirective(const char *Name,
+ const MCAsmInfo &MAI) const {
+
+ // FIXME: Does .section .bss/.data/.text work everywhere??
+ if (strcmp(Name, ".text") == 0 ||
+ strcmp(Name, ".data") == 0 ||
+ (strcmp(Name, ".bss") == 0 &&
+ !MAI.usesELFSectionDirectiveForBSS()))
+ return true;
+
+ return false;
+}
+
+// ShouldPrintSectionType - Only prints the section type if supported
+bool MCSectionELF::ShouldPrintSectionType(unsigned Ty) const {
+
+ if (IsExplicit && !(Ty == SHT_NOBITS || Ty == SHT_PROGBITS))
+ return false;
+
+ return true;
+}
+
+void MCSectionELF::PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS) const {
+
+ if (ShouldOmitSectionDirective(SectionName.c_str(), MAI)) {
+ OS << '\t' << getSectionName() << '\n';
+ return;
+ }
+
+ OS << "\t.section\t" << getSectionName();
+
+ // Handle the weird solaris syntax if desired.
+ if (MAI.usesSunStyleELFSectionSwitchSyntax() &&
+ !(Flags & MCSectionELF::SHF_MERGE)) {
+ if (Flags & MCSectionELF::SHF_ALLOC)
+ OS << ",#alloc";
+ if (Flags & MCSectionELF::SHF_EXECINSTR)
+ OS << ",#execinstr";
+ if (Flags & MCSectionELF::SHF_WRITE)
+ OS << ",#write";
+ if (Flags & MCSectionELF::SHF_TLS)
+ OS << ",#tls";
+ } else {
+ OS << ",\"";
+ if (Flags & MCSectionELF::SHF_ALLOC)
+ OS << 'a';
+ if (Flags & MCSectionELF::SHF_EXECINSTR)
+ OS << 'x';
+ if (Flags & MCSectionELF::SHF_WRITE)
+ OS << 'w';
+ if (Flags & MCSectionELF::SHF_MERGE)
+ OS << 'M';
+ if (Flags & MCSectionELF::SHF_STRINGS)
+ OS << 'S';
+ if (Flags & MCSectionELF::SHF_TLS)
+ OS << 'T';
+
+ // If there are target-specific flags, print them.
+ if (Flags & ~MCSectionELF::TARGET_INDEP_SHF)
+ PrintTargetSpecificSectionFlags(MAI, OS);
+
+ OS << '"';
+
+ if (ShouldPrintSectionType(Type)) {
+ OS << ',';
+
+ // If comment string is '@', e.g. as on ARM - use '%' instead
+ if (MAI.getCommentString()[0] == '@')
+ OS << '%';
+ else
+ OS << '@';
+
+ if (Type == MCSectionELF::SHT_INIT_ARRAY)
+ OS << "init_array";
+ else if (Type == MCSectionELF::SHT_FINI_ARRAY)
+ OS << "fini_array";
+ else if (Type == MCSectionELF::SHT_PREINIT_ARRAY)
+ OS << "preinit_array";
+ else if (Type == MCSectionELF::SHT_NOBITS)
+ OS << "nobits";
+ else if (Type == MCSectionELF::SHT_PROGBITS)
+ OS << "progbits";
+
+ if (getKind().isMergeable1ByteCString()) {
+ OS << ",1";
+ } else if (getKind().isMergeable2ByteCString()) {
+ OS << ",2";
+ } else if (getKind().isMergeable4ByteCString() ||
+ getKind().isMergeableConst4()) {
+ OS << ",4";
+ } else if (getKind().isMergeableConst8()) {
+ OS << ",8";
+ } else if (getKind().isMergeableConst16()) {
+ OS << ",16";
+ }
+ }
+ }
+
+ OS << '\n';
+}
+
+// HasCommonSymbols - True if this section holds common symbols, this is
+// indicated on the ELF object file by a symbol with SHN_COMMON section
+// header index.
+bool MCSectionELF::HasCommonSymbols() const {
+
+ if (strncmp(SectionName.c_str(), ".gnu.linkonce.", 14) == 0)
+ return true;
+
+ return false;
+}
+
+
diff --git a/lib/MC/MCSectionMachO.cpp b/lib/MC/MCSectionMachO.cpp
new file mode 100644
index 0000000..b3aeb9c
--- /dev/null
+++ b/lib/MC/MCSectionMachO.cpp
@@ -0,0 +1,271 @@
+//===- lib/MC/MCSectionMachO.cpp - MachO Code Section Representation ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// SectionTypeDescriptors - These are strings that describe the various section
+/// types. This *must* be kept in order with and stay synchronized with the
+/// section type list.
+static const struct {
+ const char *AssemblerName, *EnumName;
+} SectionTypeDescriptors[MCSectionMachO::LAST_KNOWN_SECTION_TYPE+1] = {
+ { "regular", "S_REGULAR" }, // 0x00
+ { 0, "S_ZEROFILL" }, // 0x01
+ { "cstring_literals", "S_CSTRING_LITERALS" }, // 0x02
+ { "4byte_literals", "S_4BYTE_LITERALS" }, // 0x03
+ { "8byte_literals", "S_8BYTE_LITERALS" }, // 0x04
+ { "literal_pointers", "S_LITERAL_POINTERS" }, // 0x05
+ { "non_lazy_symbol_pointers", "S_NON_LAZY_SYMBOL_POINTERS" }, // 0x06
+ { "lazy_symbol_pointers", "S_LAZY_SYMBOL_POINTERS" }, // 0x07
+ { "symbol_stubs", "S_SYMBOL_STUBS" }, // 0x08
+ { "mod_init_funcs", "S_MOD_INIT_FUNC_POINTERS" }, // 0x09
+ { "mod_term_funcs", "S_MOD_TERM_FUNC_POINTERS" }, // 0x0A
+ { "coalesced", "S_COALESCED" }, // 0x0B
+ { 0, /*FIXME??*/ "S_GB_ZEROFILL" }, // 0x0C
+ { "interposing", "S_INTERPOSING" }, // 0x0D
+ { "16byte_literals", "S_16BYTE_LITERALS" }, // 0x0E
+ { 0, /*FIXME??*/ "S_DTRACE_DOF" }, // 0x0F
+ { 0, /*FIXME??*/ "S_LAZY_DYLIB_SYMBOL_POINTERS" } // 0x10
+};
+
+
+/// SectionAttrDescriptors - This is an array of descriptors for section
+/// attributes. Unlike the SectionTypeDescriptors, this is not directly indexed
+/// by attribute, instead it is searched. The last entry has an AttrFlagEnd
+/// AttrFlag value.
+static const struct {
+ unsigned AttrFlag;
+ const char *AssemblerName, *EnumName;
+} SectionAttrDescriptors[] = {
+#define ENTRY(ASMNAME, ENUM) \
+ { MCSectionMachO::ENUM, ASMNAME, #ENUM },
+ENTRY("pure_instructions", S_ATTR_PURE_INSTRUCTIONS)
+ENTRY("no_toc", S_ATTR_NO_TOC)
+ENTRY("strip_static_syms", S_ATTR_STRIP_STATIC_SYMS)
+ENTRY("no_dead_strip", S_ATTR_NO_DEAD_STRIP)
+ENTRY("live_support", S_ATTR_LIVE_SUPPORT)
+ENTRY("self_modifying_code", S_ATTR_SELF_MODIFYING_CODE)
+ENTRY("debug", S_ATTR_DEBUG)
+ENTRY(0 /*FIXME*/, S_ATTR_SOME_INSTRUCTIONS)
+ENTRY(0 /*FIXME*/, S_ATTR_EXT_RELOC)
+ENTRY(0 /*FIXME*/, S_ATTR_LOC_RELOC)
+#undef ENTRY
+ { 0, "none", 0 }, // used if section has no attributes but has a stub size
+#define AttrFlagEnd 0xffffffff // non legal value, multiple attribute bits set
+ { AttrFlagEnd, 0, 0 }
+};
+
+
+MCSectionMachO *MCSectionMachO::
+Create(const StringRef &Segment, const StringRef &Section,
+ unsigned TypeAndAttributes, unsigned Reserved2,
+ SectionKind K, MCContext &Ctx) {
+ // S_SYMBOL_STUBS must be set for Reserved2 to be non-zero.
+ return new (Ctx) MCSectionMachO(Segment, Section, TypeAndAttributes,
+ Reserved2, K);
+}
+
+void MCSectionMachO::PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS) const {
+ OS << "\t.section\t" << getSegmentName() << ',' << getSectionName();
+
+ // Get the section type and attributes.
+ unsigned TAA = getTypeAndAttributes();
+ if (TAA == 0) {
+ OS << '\n';
+ return;
+ }
+
+ OS << ',';
+
+ unsigned SectionType = TAA & MCSectionMachO::SECTION_TYPE;
+ assert(SectionType <= MCSectionMachO::LAST_KNOWN_SECTION_TYPE &&
+ "Invalid SectionType specified!");
+
+ if (SectionTypeDescriptors[SectionType].AssemblerName)
+ OS << SectionTypeDescriptors[SectionType].AssemblerName;
+ else
+ OS << "<<" << SectionTypeDescriptors[SectionType].EnumName << ">>";
+
+ // If we don't have any attributes, we're done.
+ unsigned SectionAttrs = TAA & MCSectionMachO::SECTION_ATTRIBUTES;
+ if (SectionAttrs == 0) {
+ // If we have a S_SYMBOL_STUBS size specified, print it along with 'none' as
+ // the attribute specifier.
+ if (Reserved2 != 0)
+ OS << ",none," << Reserved2;
+ OS << '\n';
+ return;
+ }
+
+ // Check each attribute to see if we have it.
+ char Separator = ',';
+ for (unsigned i = 0; SectionAttrDescriptors[i].AttrFlag; ++i) {
+ // Check to see if we have this attribute.
+ if ((SectionAttrDescriptors[i].AttrFlag & SectionAttrs) == 0)
+ continue;
+
+ // Yep, clear it and print it.
+ SectionAttrs &= ~SectionAttrDescriptors[i].AttrFlag;
+
+ OS << Separator;
+ if (SectionAttrDescriptors[i].AssemblerName)
+ OS << SectionAttrDescriptors[i].AssemblerName;
+ else
+ OS << "<<" << SectionAttrDescriptors[i].EnumName << ">>";
+ Separator = '+';
+ }
+
+ assert(SectionAttrs == 0 && "Unknown section attributes!");
+
+ // If we have a S_SYMBOL_STUBS size specified, print it.
+ if (Reserved2 != 0)
+ OS << ',' << Reserved2;
+ OS << '\n';
+}
+
+/// StripSpaces - This removes leading and trailing spaces from the StringRef.
+static void StripSpaces(StringRef &Str) {
+ while (!Str.empty() && isspace(Str[0]))
+ Str = Str.substr(1);
+ while (!Str.empty() && isspace(Str.back()))
+ Str = Str.substr(0, Str.size()-1);
+}
+
+/// ParseSectionSpecifier - Parse the section specifier indicated by "Spec".
+/// This is a string that can appear after a .section directive in a mach-o
+/// flavored .s file. If successful, this fills in the specified Out
+/// parameters and returns an empty string. When an invalid section
+/// specifier is present, this returns a string indicating the problem.
+std::string MCSectionMachO::ParseSectionSpecifier(StringRef Spec, // In.
+ StringRef &Segment, // Out.
+ StringRef &Section, // Out.
+ unsigned &TAA, // Out.
+ unsigned &StubSize) { // Out.
+ // Find the first comma.
+ std::pair<StringRef, StringRef> Comma = Spec.split(',');
+
+ // If there is no comma, we fail.
+ if (Comma.second.empty())
+ return "mach-o section specifier requires a segment and section "
+ "separated by a comma";
+
+ // Capture segment, remove leading and trailing whitespace.
+ Segment = Comma.first;
+ StripSpaces(Segment);
+
+ // Verify that the segment is present and not too long.
+ if (Segment.empty() || Segment.size() > 16)
+ return "mach-o section specifier requires a segment whose length is "
+ "between 1 and 16 characters";
+
+ // Split the section name off from any attributes if present.
+ Comma = Comma.second.split(',');
+
+ // Capture section, remove leading and trailing whitespace.
+ Section = Comma.first;
+ StripSpaces(Section);
+
+ // Verify that the section is present and not too long.
+ if (Section.empty() || Section.size() > 16)
+ return "mach-o section specifier requires a section whose length is "
+ "between 1 and 16 characters";
+
+ // If there is no comma after the section, we're done.
+ TAA = 0;
+ StubSize = 0;
+ if (Comma.second.empty())
+ return "";
+
+ // Otherwise, we need to parse the section type and attributes.
+ Comma = Comma.second.split(',');
+
+ // Get the section type.
+ StringRef SectionType = Comma.first;
+ StripSpaces(SectionType);
+
+ // Figure out which section type it is.
+ unsigned TypeID;
+ for (TypeID = 0; TypeID !=MCSectionMachO::LAST_KNOWN_SECTION_TYPE+1; ++TypeID)
+ if (SectionTypeDescriptors[TypeID].AssemblerName &&
+ SectionType == SectionTypeDescriptors[TypeID].AssemblerName)
+ break;
+
+ // If we didn't find the section type, reject it.
+ if (TypeID > MCSectionMachO::LAST_KNOWN_SECTION_TYPE)
+ return "mach-o section specifier uses an unknown section type";
+
+ // Remember the TypeID.
+ TAA = TypeID;
+
+ // If we have no comma after the section type, there are no attributes.
+ if (Comma.second.empty()) {
+ // S_SYMBOL_STUBS always require a symbol stub size specifier.
+ if (TAA == MCSectionMachO::S_SYMBOL_STUBS)
+ return "mach-o section specifier of type 'symbol_stubs' requires a size "
+ "specifier";
+ return "";
+ }
+
+ // Otherwise, we do have some attributes. Split off the size specifier if
+ // present.
+ Comma = Comma.second.split(',');
+ StringRef Attrs = Comma.first;
+
+ // The attribute list is a '+' separated list of attributes.
+ std::pair<StringRef, StringRef> Plus = Attrs.split('+');
+
+ while (1) {
+ StringRef Attr = Plus.first;
+ StripSpaces(Attr);
+
+ // Look up the attribute.
+ for (unsigned i = 0; ; ++i) {
+ if (SectionAttrDescriptors[i].AttrFlag == AttrFlagEnd)
+ return "mach-o section specifier has invalid attribute";
+
+ if (SectionAttrDescriptors[i].AssemblerName &&
+ Attr == SectionAttrDescriptors[i].AssemblerName) {
+ TAA |= SectionAttrDescriptors[i].AttrFlag;
+ break;
+ }
+ }
+
+ if (Plus.second.empty()) break;
+ Plus = Plus.second.split('+');
+ };
+
+ // Okay, we've parsed the section attributes, see if we have a stub size spec.
+ if (Comma.second.empty()) {
+ // S_SYMBOL_STUBS always require a symbol stub size specifier.
+ if (TAA == MCSectionMachO::S_SYMBOL_STUBS)
+ return "mach-o section specifier of type 'symbol_stubs' requires a size "
+ "specifier";
+ return "";
+ }
+
+ // If we have a stub size spec, we must have a sectiontype of S_SYMBOL_STUBS.
+ if ((TAA & MCSectionMachO::SECTION_TYPE) != MCSectionMachO::S_SYMBOL_STUBS)
+ return "mach-o section specifier cannot have a stub size specified because "
+ "it does not have type 'symbol_stubs'";
+
+ // Okay, if we do, it must be a number.
+ StringRef StubSizeStr = Comma.second;
+ StripSpaces(StubSizeStr);
+
+ // Convert the stub size from a string to an integer.
+ if (StubSizeStr.getAsInteger(0, StubSize))
+ return "mach-o section specifier has a malformed stub size";
+
+ return "";
+}
+
diff --git a/lib/MC/MCStreamer.cpp b/lib/MC/MCStreamer.cpp
index a634f33..8a6dcda 100644
--- a/lib/MC/MCStreamer.cpp
+++ b/lib/MC/MCStreamer.cpp
@@ -11,7 +11,7 @@
using namespace llvm;
-MCStreamer::MCStreamer(MCContext &_Context) : Context(_Context) {
+MCStreamer::MCStreamer(MCContext &_Context) : Context(_Context), CurSection(0) {
}
MCStreamer::~MCStreamer() {
diff --git a/lib/MC/MCSymbol.cpp b/lib/MC/MCSymbol.cpp
new file mode 100644
index 0000000..86ff3f3
--- /dev/null
+++ b/lib/MC/MCSymbol.cpp
@@ -0,0 +1,110 @@
+//===- lib/MC/MCSymbol.cpp - MCSymbol implementation ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+// Sentinel value for the absolute pseudo section.
+const MCSection *MCSymbol::AbsolutePseudoSection =
+ reinterpret_cast<const MCSection *>(1);
+
+static bool isAcceptableChar(char C) {
+ if ((C < 'a' || C > 'z') &&
+ (C < 'A' || C > 'Z') &&
+ (C < '0' || C > '9') &&
+ C != '_' && C != '$' && C != '.' && C != '@')
+ return false;
+ return true;
+}
+
+static char HexDigit(int V) {
+ return V < 10 ? V+'0' : V+'A'-10;
+}
+
+static void MangleLetter(raw_ostream &OS, unsigned char C) {
+ OS << '_' << HexDigit(C >> 4) << HexDigit(C & 15) << '_';
+}
+
+/// NameNeedsEscaping - Return true if the identifier \arg Str needs quotes
+/// for this assembler.
+static bool NameNeedsEscaping(const StringRef &Str, const MCAsmInfo &MAI) {
+ assert(!Str.empty() && "Cannot create an empty MCSymbol");
+
+ // If the first character is a number and the target does not allow this, we
+ // need quotes.
+ if (!MAI.doesAllowNameToStartWithDigit() && Str[0] >= '0' && Str[0] <= '9')
+ return true;
+
+ // If any of the characters in the string is an unacceptable character, force
+ // quotes.
+ for (unsigned i = 0, e = Str.size(); i != e; ++i)
+ if (!isAcceptableChar(Str[i]))
+ return true;
+ return false;
+}
+
+static void PrintMangledName(raw_ostream &OS, StringRef Str,
+ const MCAsmInfo &MAI) {
+ // The first character is not allowed to be a number unless the target
+ // explicitly allows it.
+ if (!MAI.doesAllowNameToStartWithDigit() && Str[0] >= '0' && Str[0] <= '9') {
+ MangleLetter(OS, Str[0]);
+ Str = Str.substr(1);
+ }
+
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ if (!isAcceptableChar(Str[i]))
+ MangleLetter(OS, Str[i]);
+ else
+ OS << Str[i];
+ }
+}
+
+/// PrintMangledQuotedName - On systems that support quoted symbols, we still
+/// have to escape some (obscure) characters like " and \n which would break the
+/// assembler's lexing.
+static void PrintMangledQuotedName(raw_ostream &OS, StringRef Str) {
+ OS << '"';
+
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ if (Str[i] == '"')
+ OS << "_QQ_";
+ else if (Str[i] == '\n')
+ OS << "_NL_";
+ else
+ OS << Str[i];
+ }
+ OS << '"';
+}
+
+
+void MCSymbol::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
+ if (MAI == 0 || !NameNeedsEscaping(getName(), *MAI)) {
+ OS << getName();
+ return;
+ }
+
+ // On systems that do not allow quoted names, print with mangling.
+ if (!MAI->doesAllowQuotesInName())
+ return PrintMangledName(OS, getName(), *MAI);
+
+ // If the string contains a double quote or newline, we still have to mangle
+ // it.
+ if (getName().find('"') != std::string::npos ||
+ getName().find('\n') != std::string::npos)
+ return PrintMangledQuotedName(OS, getName());
+
+ OS << '"' << getName() << '"';
+}
+
+void MCSymbol::dump() const {
+ print(errs(), 0);
+}
diff --git a/lib/MC/MCValue.cpp b/lib/MC/MCValue.cpp
new file mode 100644
index 0000000..69bd10c
--- /dev/null
+++ b/lib/MC/MCValue.cpp
@@ -0,0 +1,34 @@
+//===- lib/MC/MCValue.cpp - MCValue implementation ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/MC/MCValue.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+void MCValue::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
+ if (isAbsolute()) {
+ OS << getConstant();
+ return;
+ }
+
+ getSymA()->print(OS, MAI);
+
+ if (getSymB()) {
+ OS << " - ";
+ getSymB()->print(OS, MAI);
+ }
+
+ if (getConstant())
+ OS << " + " << getConstant();
+}
+
+void MCValue::dump() const {
+ print(errs(), 0);
+}
diff --git a/lib/MC/TargetAsmParser.cpp b/lib/MC/TargetAsmParser.cpp
new file mode 100644
index 0000000..05760c9
--- /dev/null
+++ b/lib/MC/TargetAsmParser.cpp
@@ -0,0 +1,19 @@
+//===-- TargetAsmParser.cpp - Target Assembly Parser -----------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetAsmParser.h"
+using namespace llvm;
+
+TargetAsmParser::TargetAsmParser(const Target &T)
+ : TheTarget(T)
+{
+}
+
+TargetAsmParser::~TargetAsmParser() {
+}
diff --git a/lib/Makefile b/lib/Makefile
index 1e87d9e..3807f31 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -11,7 +11,7 @@ LEVEL = ..
include $(LEVEL)/Makefile.config
PARALLEL_DIRS := VMCore AsmParser Bitcode Archive Analysis Transforms CodeGen \
- Target ExecutionEngine Debugger Linker MC CompilerDriver
+ Target ExecutionEngine Linker MC CompilerDriver
include $(LEVEL)/Makefile.common
diff --git a/lib/Support/APFloat.cpp b/lib/Support/APFloat.cpp
index 3b03c54..e431d27 100644
--- a/lib/Support/APFloat.cpp
+++ b/lib/Support/APFloat.cpp
@@ -13,7 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
@@ -122,27 +124,30 @@ assertArithmeticOK(const llvm::fltSemantics &semantics) {
If the exponent overflows, returns a large exponent with the
appropriate sign. */
static int
-readExponent(const char *p)
+readExponent(StringRef::iterator begin, StringRef::iterator end)
{
bool isNegative;
unsigned int absExponent;
const unsigned int overlargeExponent = 24000; /* FIXME. */
+ StringRef::iterator p = begin;
+
+ assert(p != end && "Exponent has no digits");
isNegative = (*p == '-');
- if (*p == '-' || *p == '+')
+ if (*p == '-' || *p == '+') {
p++;
+ assert(p != end && "Exponent has no digits");
+ }
absExponent = decDigitValue(*p++);
- assert (absExponent < 10U);
+ assert(absExponent < 10U && "Invalid character in exponent");
- for (;;) {
+ for (; p != end; ++p) {
unsigned int value;
value = decDigitValue(*p);
- if (value >= 10U)
- break;
+ assert(value < 10U && "Invalid character in exponent");
- p++;
value += absExponent * 10;
if (absExponent >= overlargeExponent) {
absExponent = overlargeExponent;
@@ -151,6 +156,8 @@ readExponent(const char *p)
absExponent = value;
}
+ assert(p == end && "Invalid exponent in exponent");
+
if (isNegative)
return -(int) absExponent;
else
@@ -160,28 +167,29 @@ readExponent(const char *p)
/* This is ugly and needs cleaning up, but I don't immediately see
how whilst remaining safe. */
static int
-totalExponent(const char *p, int exponentAdjustment)
+totalExponent(StringRef::iterator p, StringRef::iterator end,
+ int exponentAdjustment)
{
int unsignedExponent;
bool negative, overflow;
int exponent;
- /* Move past the exponent letter and sign to the digits. */
- p++;
+ assert(p != end && "Exponent has no digits");
+
negative = *p == '-';
- if(*p == '-' || *p == '+')
+ if(*p == '-' || *p == '+') {
p++;
+ assert(p != end && "Exponent has no digits");
+ }
unsignedExponent = 0;
overflow = false;
- for(;;) {
+ for(; p != end; ++p) {
unsigned int value;
value = decDigitValue(*p);
- if(value >= 10U)
- break;
+ assert(value < 10U && "Invalid character in exponent");
- p++;
unsignedExponent = unsignedExponent * 10 + value;
if(unsignedExponent > 65535)
overflow = true;
@@ -205,16 +213,21 @@ totalExponent(const char *p, int exponentAdjustment)
return exponent;
}
-static const char *
-skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
+static StringRef::iterator
+skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
+ StringRef::iterator *dot)
{
- *dot = 0;
- while(*p == '0')
+ StringRef::iterator p = begin;
+ *dot = end;
+ while(*p == '0' && p != end)
p++;
if(*p == '.') {
*dot = p++;
- while(*p == '0')
+
+ assert(end - begin != 1 && "Significand has no digits");
+
+ while(*p == '0' && p != end)
p++;
}
@@ -242,41 +255,50 @@ struct decimalInfo {
};
static void
-interpretDecimal(const char *p, decimalInfo *D)
+interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
+ decimalInfo *D)
{
- const char *dot;
-
- p = skipLeadingZeroesAndAnyDot (p, &dot);
+ StringRef::iterator dot = end;
+ StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
D->firstSigDigit = p;
D->exponent = 0;
D->normalizedExponent = 0;
- for (;;) {
+ for (; p != end; ++p) {
if (*p == '.') {
- assert(dot == 0);
+ assert(dot == end && "String contains multiple dots");
dot = p++;
+ if (p == end)
+ break;
}
if (decDigitValue(*p) >= 10U)
break;
- p++;
}
- /* If number is all zerooes accept any exponent. */
- if (p != D->firstSigDigit) {
- if (*p == 'e' || *p == 'E')
- D->exponent = readExponent(p + 1);
+ if (p != end) {
+ assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
+ assert(p != begin && "Significand has no digits");
+ assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+ /* p points to the first non-digit in the string */
+ D->exponent = readExponent(p + 1, end);
/* Implied decimal point? */
- if (!dot)
+ if (dot == end)
dot = p;
+ }
+ /* If number is all zeroes accept any exponent. */
+ if (p != D->firstSigDigit) {
/* Drop insignificant trailing zeroes. */
- do
+ if (p != begin) {
do
- p--;
- while (*p == '0');
- while (*p == '.');
+ do
+ p--;
+ while (p != begin && *p == '0');
+ while (p != begin && *p == '.');
+ }
/* Adjust the exponents for any decimal point. */
D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
@@ -292,7 +314,8 @@ interpretDecimal(const char *p, decimalInfo *D)
DIGITVALUE is the first hex digit of the fraction, P points to
the next digit. */
static lostFraction
-trailingHexadecimalFraction(const char *p, unsigned int digitValue)
+trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
+ unsigned int digitValue)
{
unsigned int hexDigit;
@@ -307,6 +330,8 @@ trailingHexadecimalFraction(const char *p, unsigned int digitValue)
while(*p == '0')
p++;
+ assert(p != end && "Invalid trailing hexadecimal fraction!");
+
hexDigit = hexDigitValue(*p);
/* If we ran off the end it is exactly zero or one-half, otherwise
@@ -667,6 +692,14 @@ APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
normalize(rmNearestTiesToEven, lfExactlyZero);
}
+APFloat::APFloat(const fltSemantics &ourSemantics) {
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ category = fcZero;
+ sign = false;
+}
+
+
APFloat::APFloat(const fltSemantics &ourSemantics,
fltCategory ourCategory, bool negative, unsigned type)
{
@@ -680,7 +713,7 @@ APFloat::APFloat(const fltSemantics &ourSemantics,
makeNaN(type);
}
-APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
+APFloat::APFloat(const fltSemantics &ourSemantics, const StringRef& text)
{
assertArithmeticOK(ourSemantics);
initialize(&ourSemantics);
@@ -1068,7 +1101,7 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode,
switch (rounding_mode) {
default:
- assert(0);
+ llvm_unreachable(0);
case rmNearestTiesToAway:
return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
@@ -1207,7 +1240,7 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
{
switch (convolve(category, rhs.category)) {
default:
- assert(0);
+ llvm_unreachable(0);
case convolve(fcNaN, fcZero):
case convolve(fcNaN, fcNormal):
@@ -1331,7 +1364,7 @@ APFloat::multiplySpecials(const APFloat &rhs)
{
switch (convolve(category, rhs.category)) {
default:
- assert(0);
+ llvm_unreachable(0);
case convolve(fcNaN, fcZero):
case convolve(fcNaN, fcNormal):
@@ -1373,7 +1406,7 @@ APFloat::divideSpecials(const APFloat &rhs)
{
switch (convolve(category, rhs.category)) {
default:
- assert(0);
+ llvm_unreachable(0);
case convolve(fcNaN, fcZero):
case convolve(fcNaN, fcNormal):
@@ -1415,7 +1448,7 @@ APFloat::modSpecials(const APFloat &rhs)
{
switch (convolve(category, rhs.category)) {
default:
- assert(0);
+ llvm_unreachable(0);
case convolve(fcNaN, fcZero):
case convolve(fcNaN, fcNormal):
@@ -1692,7 +1725,7 @@ APFloat::compare(const APFloat &rhs) const
switch (convolve(category, rhs.category)) {
default:
- assert(0);
+ llvm_unreachable(0);
case convolve(fcNaN, fcZero):
case convolve(fcNaN, fcNormal):
@@ -2106,13 +2139,13 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
}
APFloat::opStatus
-APFloat::convertFromHexadecimalString(const char *p,
+APFloat::convertFromHexadecimalString(const StringRef &s,
roundingMode rounding_mode)
{
- lostFraction lost_fraction;
+ lostFraction lost_fraction = lfExactlyZero;
integerPart *significand;
unsigned int bitPos, partsCount;
- const char *dot, *firstSignificantDigit;
+ StringRef::iterator dot, firstSignificantDigit;
zeroSignificand();
exponent = 0;
@@ -2123,47 +2156,58 @@ APFloat::convertFromHexadecimalString(const char *p,
bitPos = partsCount * integerPartWidth;
/* Skip leading zeroes and any (hexa)decimal point. */
- p = skipLeadingZeroesAndAnyDot(p, &dot);
+ StringRef::iterator begin = s.begin();
+ StringRef::iterator end = s.end();
+ StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
firstSignificantDigit = p;
- for(;;) {
+ for(; p != end;) {
integerPart hex_value;
if(*p == '.') {
- assert(dot == 0);
+ assert(dot == end && "String contains multiple dots");
dot = p++;
+ if (p == end) {
+ break;
+ }
}
hex_value = hexDigitValue(*p);
if(hex_value == -1U) {
- lost_fraction = lfExactlyZero;
break;
}
p++;
- /* Store the number whilst 4-bit nibbles remain. */
- if(bitPos) {
- bitPos -= 4;
- hex_value <<= bitPos % integerPartWidth;
- significand[bitPos / integerPartWidth] |= hex_value;
- } else {
- lost_fraction = trailingHexadecimalFraction(p, hex_value);
- while(hexDigitValue(*p) != -1U)
- p++;
+ if (p == end) {
break;
+ } else {
+ /* Store the number whilst 4-bit nibbles remain. */
+ if(bitPos) {
+ bitPos -= 4;
+ hex_value <<= bitPos % integerPartWidth;
+ significand[bitPos / integerPartWidth] |= hex_value;
+ } else {
+ lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
+ while(p != end && hexDigitValue(*p) != -1U)
+ p++;
+ break;
+ }
}
}
/* Hex floats require an exponent but not a hexadecimal point. */
- assert(*p == 'p' || *p == 'P');
+ assert(p != end && "Hex strings require an exponent");
+ assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
+ assert(p != begin && "Significand has no digits");
+ assert((dot == end || p - begin != 1) && "Significand has no digits");
/* Ignore the exponent if we are zero. */
if(p != firstSignificantDigit) {
int expAdjustment;
/* Implicit hexadecimal point? */
- if(!dot)
+ if (dot == end)
dot = p;
/* Calculate the exponent adjustment implicit in the number of
@@ -2179,7 +2223,7 @@ APFloat::convertFromHexadecimalString(const char *p,
expAdjustment -= partsCount * integerPartWidth;
/* Adjust for the given exponent. */
- exponent = totalExponent(p, expAdjustment);
+ exponent = totalExponent(p + 1, end, expAdjustment);
}
return normalize(rounding_mode, lost_fraction);
@@ -2271,13 +2315,14 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
}
APFloat::opStatus
-APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
+APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mode)
{
decimalInfo D;
opStatus fs;
/* Scan the text. */
- interpretDecimal(p, &D);
+ StringRef::iterator p = str.begin();
+ interpretDecimal(p, str.end(), &D);
/* Handle the quick cases. First the case of no significant digits,
i.e. zero, and then exponents that are obviously too large or too
@@ -2332,10 +2377,14 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
multiplier = 1;
do {
- if (*p == '.')
+ if (*p == '.') {
p++;
-
+ if (p == str.end()) {
+ break;
+ }
+ }
decValue = decDigitValue(*p++);
+ assert(decValue < 10U && "Invalid character in significand");
multiplier *= 10;
val = val * 10 + decValue;
/* The maximum number that can be multiplied by ten with any
@@ -2363,20 +2412,28 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
}
APFloat::opStatus
-APFloat::convertFromString(const char *p, roundingMode rounding_mode)
+APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode)
{
assertArithmeticOK(*semantics);
+ assert(!str.empty() && "Invalid string length");
/* Handle a leading minus sign. */
- if(*p == '-')
- sign = 1, p++;
- else
- sign = 0;
+ StringRef::iterator p = str.begin();
+ size_t slen = str.size();
+ sign = *p == '-' ? 1 : 0;
+ if(*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String has no digits");
+ }
- if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
- return convertFromHexadecimalString(p + 2, rounding_mode);
+ if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+ assert(slen - 2 && "Invalid string");
+ return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
+ rounding_mode);
+ }
- return convertFromDecimalString(p, rounding_mode);
+ return convertFromDecimalString(StringRef(p, slen), rounding_mode);
}
/* Write out a hexadecimal representation of the floating point value
@@ -2661,6 +2718,42 @@ APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
}
APInt
+APFloat::convertQuadrupleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+ assert (partCount()==2);
+
+ uint64_t myexponent, mysignificand, mysignificand2;
+
+ if (category==fcNormal) {
+ myexponent = exponent+16383; //bias
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = mysignificand2 = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7fff;
+ mysignificand = mysignificand2 = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0x7fff;
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ }
+
+ uint64_t words[2];
+ words[0] = mysignificand;
+ words[1] = ((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7fff) << 48) |
+ (mysignificand2 & 0xffffffffffffLL);
+
+ return APInt(128, 2, words);
+}
+
+APInt
APFloat::convertDoubleAPFloatToAPInt() const
{
assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
@@ -2728,10 +2821,13 @@ APFloat::bitcastToAPInt() const
{
if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
return convertFloatAPFloatToAPInt();
-
+
if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
return convertDoubleAPFloatToAPInt();
+ if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+ return convertQuadrupleAPFloatToAPInt();
+
if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
return convertPPCDoubleDoubleAPFloatToAPInt();
@@ -2743,7 +2839,8 @@ APFloat::bitcastToAPInt() const
float
APFloat::convertToFloat() const
{
- assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+ assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+ "Float semantics are not IEEEsingle");
APInt api = bitcastToAPInt();
return api.bitsToFloat();
}
@@ -2751,7 +2848,8 @@ APFloat::convertToFloat() const
double
APFloat::convertToDouble() const
{
- assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+ assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+ "Float semantics are not IEEEdouble");
APInt api = bitcastToAPInt();
return api.bitsToDouble();
}
@@ -2848,6 +2946,46 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
}
void
+APFloat::initFromQuadrupleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==128);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i2 >> 48) & 0x7fff;
+ uint64_t mysignificand = i1;
+ uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
+
+ initialize(&APFloat::IEEEquad);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i2>>63);
+ if (myexponent==0 &&
+ (mysignificand==0 && mysignificand2==0)) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7fff &&
+ (mysignificand==0 && mysignificand2==0)) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7fff &&
+ (mysignificand!=0 || mysignificand2 !=0)) {
+ // exponent meaningless
+ category = fcNaN;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 16383;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ if (myexponent==0) // denormal
+ exponent = -16382;
+ else
+ significandParts()[1] |= 0x1000000000000LL; // integer bit
+ }
+}
+
+void
APFloat::initFromDoubleAPInt(const APInt &api)
{
assert(api.getBitWidth()==64);
@@ -2926,10 +3064,11 @@ APFloat::initFromAPInt(const APInt& api, bool isIEEE)
return initFromDoubleAPInt(api);
else if (api.getBitWidth()==80)
return initFromF80LongDoubleAPInt(api);
- else if (api.getBitWidth()==128 && !isIEEE)
- return initFromPPCDoubleDoubleAPInt(api);
+ else if (api.getBitWidth()==128)
+ return (isIEEE ?
+ initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
else
- assert(0);
+ llvm_unreachable(0);
}
APFloat::APFloat(const APInt& api, bool isIEEE)
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index 30dc352..56d4773 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -14,9 +14,11 @@
#define DEBUG_TYPE "apint"
#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cmath>
@@ -34,7 +36,7 @@ inline static uint64_t* getClearedMemory(unsigned numWords) {
return result;
}
-/// A utility function for allocating memory and checking for allocation
+/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
inline static uint64_t* getMemory(unsigned numWords) {
uint64_t * result = new uint64_t[numWords];
@@ -42,10 +44,36 @@ inline static uint64_t* getMemory(unsigned numWords) {
return result;
}
+/// A utility function that converts a character to a digit.
+inline static unsigned getDigit(char cdigit, uint8_t radix) {
+ unsigned r;
+
+ if (radix == 16) {
+ r = cdigit - '0';
+ if (r <= 9)
+ return r;
+
+ r = cdigit - 'A';
+ if (r <= 5)
+ return r + 10;
+
+ r = cdigit - 'a';
+ if (r <= 5)
+ return r + 10;
+ }
+
+ r = cdigit - '0';
+ if (r < radix)
+ return r;
+
+ return -1U;
+}
+
+
void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
- if (isSigned && int64_t(val) < 0)
+ if (isSigned && int64_t(val) < 0)
for (unsigned i = 1; i < getNumWords(); ++i)
pVal[i] = -1ULL;
}
@@ -58,7 +86,7 @@ void APInt::initSlowCase(const APInt& that) {
APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
: BitWidth(numBits), VAL(0) {
- assert(BitWidth && "bitwidth too small");
+ assert(BitWidth && "Bitwidth too small");
assert(bigVal && "Null pointer detected!");
if (isSingleWord())
VAL = bigVal[0];
@@ -74,11 +102,10 @@ APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
clearUnusedBits();
}
-APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
- uint8_t radix)
+APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
: BitWidth(numbits), VAL(0) {
- assert(BitWidth && "bitwidth too small");
- fromString(numbits, StrStart, slen, radix);
+ assert(BitWidth && "Bitwidth too small");
+ fromString(numbits, Str, radix);
}
APInt& APInt::AssignSlowCase(const APInt& RHS) {
@@ -99,7 +126,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
VAL = 0;
pVal = getMemory(RHS.getNumWords());
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
- } else if (getNumWords() == RHS.getNumWords())
+ } else if (getNumWords() == RHS.getNumWords())
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
else if (RHS.isSingleWord()) {
delete [] pVal;
@@ -114,7 +141,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
}
APInt& APInt::operator=(uint64_t RHS) {
- if (isSingleWord())
+ if (isSingleWord())
VAL = RHS;
else {
pVal[0] = RHS;
@@ -126,7 +153,7 @@ APInt& APInt::operator=(uint64_t RHS) {
/// Profile - This method 'profiles' an APInt for use with FoldingSet.
void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(BitWidth);
-
+
if (isSingleWord()) {
ID.AddInteger(VAL);
return;
@@ -137,7 +164,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(pVal[i]);
}
-/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
@@ -156,15 +183,15 @@ static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
- if (isSingleWord())
+ if (isSingleWord())
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
return clearUnusedBits();
}
-/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
-/// the multi-digit integer array, x[], propagating the borrowed 1 value until
+/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
@@ -173,7 +200,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
- if (y > X)
+ if (y > X)
y = 1; // We have to "borrow 1" from next "digit"
else {
y = 0; // No need to borrow
@@ -185,7 +212,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
- if (isSingleWord())
+ if (isSingleWord())
--VAL;
else
sub_1(pVal, getNumWords(), 1);
@@ -193,10 +220,10 @@ APInt& APInt::operator--() {
}
/// add - This function adds the integer array x to the integer array Y and
-/// places the result in dest.
+/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
-static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool carry = false;
for (unsigned i = 0; i< len; ++i) {
@@ -209,10 +236,10 @@ static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Adds the RHS APint to this APInt.
/// @returns this, after addition of RHS.
-/// @brief Addition assignment operator.
+/// @brief Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
+ if (isSingleWord())
VAL += RHS.VAL;
else {
add(pVal, pVal, RHS.pVal, getNumWords());
@@ -220,10 +247,10 @@ APInt& APInt::operator+=(const APInt& RHS) {
return clearUnusedBits();
}
-/// Subtracts the integer array y from the integer array x
+/// Subtracts the integer array y from the integer array x
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
-static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
+static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool borrow = false;
for (unsigned i = 0; i < len; ++i) {
@@ -236,10 +263,10 @@ static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
-/// @brief Subtraction assignment operator.
+/// @brief Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
- if (isSingleWord())
+ if (isSingleWord())
VAL -= RHS.VAL;
else
sub(pVal, pVal, RHS.pVal, getNumWords());
@@ -247,7 +274,7 @@ APInt& APInt::operator-=(const APInt& RHS) {
}
/// Multiplies an integer array, x by a a uint64_t integer and places the result
-/// into dest.
+/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
@@ -269,19 +296,19 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
- // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
+ // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
- carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
+ carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
-/// Multiplies integer array x by integer array y and stores the result into
+/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
@@ -307,7 +334,7 @@ static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
- (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
+ (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
@@ -325,7 +352,7 @@ APInt& APInt::operator*=(const APInt& RHS) {
// Get some bit facts about LHS and check for zero
unsigned lhsBits = getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
- if (!lhsWords)
+ if (!lhsWords)
// 0 * X ===> 0
return *this;
@@ -385,7 +412,7 @@ APInt& APInt::operator^=(const APInt& RHS) {
VAL ^= RHS.VAL;
this->clearUnusedBits();
return *this;
- }
+ }
unsigned numWords = getNumWords();
for (unsigned i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
@@ -423,7 +450,7 @@ bool APInt::operator !() const {
return !VAL;
for (unsigned i = 0; i < getNumWords(); ++i)
- if (pVal[i])
+ if (pVal[i])
return false;
return true;
}
@@ -456,7 +483,7 @@ APInt APInt::operator-(const APInt& RHS) const {
}
bool APInt::operator[](unsigned bitPosition) const {
- return (maskBit(bitPosition) &
+ return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
@@ -466,7 +493,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
unsigned n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
- if (n1 != n2)
+ if (n1 != n2)
return false;
// If the number of bits fits in a word, we only need to compare the low word.
@@ -475,7 +502,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
// Otherwise, compare everything
for (int i = whichWord(n1 - 1); i >= 0; --i)
- if (pVal[i] != RHS.pVal[i])
+ if (pVal[i] != RHS.pVal[i])
return false;
return true;
}
@@ -512,9 +539,9 @@ bool APInt::ult(const APInt& RHS) const {
// Otherwise, compare all words
unsigned topWord = whichWord(std::max(n1,n2)-1);
for (int i = topWord; i >= 0; --i) {
- if (pVal[i] > RHS.pVal[i])
+ if (pVal[i] > RHS.pVal[i])
return false;
- if (pVal[i] < RHS.pVal[i])
+ if (pVal[i] < RHS.pVal[i])
return true;
}
return false;
@@ -552,14 +579,14 @@ bool APInt::slt(const APInt& RHS) const {
return true;
else if (rhsNeg)
return false;
- else
+ else
return lhs.ult(rhs);
}
APInt& APInt::set(unsigned bitPosition) {
- if (isSingleWord())
+ if (isSingleWord())
VAL |= maskBit(bitPosition);
- else
+ else
pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
@@ -567,16 +594,16 @@ APInt& APInt::set(unsigned bitPosition) {
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
- if (isSingleWord())
+ if (isSingleWord())
VAL &= ~maskBit(bitPosition);
- else
+ else
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Toggle every bit to its opposite value.
-/// Toggle a given bit to its opposite value whose position is given
+/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
@@ -586,16 +613,22 @@ APInt& APInt::flip(unsigned bitPosition) {
return *this;
}
-unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
- assert(str != 0 && "Invalid value string");
- assert(slen > 0 && "Invalid string length");
+unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
+ assert(!str.empty() && "Invalid string length");
+ assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
+ "Radix should be 2, 8, 10, or 16!");
+
+ size_t slen = str.size();
- // Each computation below needs to know if its negative
- unsigned isNegative = str[0] == '-';
- if (isNegative) {
+ // Each computation below needs to know if it's negative.
+ StringRef::iterator p = str.begin();
+ unsigned isNegative = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
slen--;
- str++;
+ assert(slen && "String is only a sign, needs a value.");
}
+
// For radixes of power-of-two values, the bits required is accurately and
// easily computed
if (radix == 2)
@@ -605,22 +638,27 @@ unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
if (radix == 16)
return slen * 4 + isNegative;
- // Otherwise it must be radix == 10, the hard case
- assert(radix == 10 && "Invalid radix");
-
// This is grossly inefficient but accurate. We could probably do something
// with a computation of roughly slen*64/20 and then adjust by the value of
// the first few digits. But, I'm not sure how accurate that could be.
// Compute a sufficient number of bits that is always large enough but might
- // be too large. This avoids the assertion in the constructor.
- unsigned sufficient = slen*64/18;
+ // be too large. This avoids the assertion in the constructor. This
+ // calculation doesn't work appropriately for the numbers 0-9, so just use 4
+ // bits in that case.
+ unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
// Convert to the actual binary value.
- APInt tmp(sufficient, str, slen, radix);
+ APInt tmp(sufficient, StringRef(p, slen), radix);
- // Compute how many bits are required.
- return isNegative + tmp.logBase2() + 1;
+ // Compute how many bits are required. If the log is infinite, assume we need
+ // just bit.
+ unsigned log = tmp.logBase2();
+ if (log == (unsigned)-1) {
+ return isNegative + 1;
+ } else {
+ return isNegative + log + 1;
+ }
}
// From http://www.burtleburtle.net, byBob Jenkins.
@@ -720,7 +758,7 @@ APInt APInt::getHiBits(unsigned numBits) const {
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
- return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
+ return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
@@ -837,7 +875,7 @@ APInt APInt::byteSwap() const {
}
}
-APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
+APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
@@ -870,7 +908,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
// If the exponent doesn't shift all bits out of the mantissa
if (exp < 52)
- return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
+ return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
APInt(width, mantissa >> (52 - exp));
// If the client didn't provide enough bits for us to shift the mantissa into
@@ -884,22 +922,23 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
return isNeg ? -Tmp : Tmp;
}
-/// RoundToDouble - This function convert this APInt to a double.
+/// RoundToDouble - This function converts this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
/// --------------------------------------
/// | Sign Exponent Fraction Bias |
/// |-------------------------------------- |
/// | 1[63] 11[62-52] 52[51-00] 1023 |
-/// --------------------------------------
+/// --------------------------------------
double APInt::roundToDouble(bool isSigned) const {
// Handle the simple case where the value is contained in one uint64_t.
+ // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
if (isSigned) {
- int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
+ int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
return double(sext);
} else
- return double(VAL);
+ return double(getWord(0));
}
// Determine if the value is negative.
@@ -920,7 +959,7 @@ double APInt::roundToDouble(bool isSigned) const {
if (exp > 1023) {
if (!isSigned || !isNeg)
return std::numeric_limits<double>::infinity();
- else
+ else
return -std::numeric_limits<double>::infinity();
}
exp += 1023; // Increment for 1023 bias
@@ -1030,7 +1069,7 @@ APInt &APInt::zext(unsigned width) {
uint64_t *newVal = getClearedMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL;
- else
+ else
for (unsigned i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
if (wordsBefore != 1)
@@ -1076,7 +1115,7 @@ APInt APInt::ashr(unsigned shiftAmt) const {
return APInt(BitWidth, 0); // undefined
else {
unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
- return APInt(BitWidth,
+ return APInt(BitWidth,
(((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
}
}
@@ -1113,11 +1152,11 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (bitsInWord < APINT_BITS_PER_WORD)
val[breakWord] |= ~0ULL << bitsInWord; // set high bits
} else {
- // Shift the low order words
+ // Shift the low order words
for (unsigned i = 0; i < breakWord; ++i) {
// This combines the shifted corresponding word with the low bits from
// the next word (shifted into this word's high bits).
- val[i] = (pVal[i+offset] >> wordShift) |
+ val[i] = (pVal[i+offset] >> wordShift) |
(pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
}
@@ -1130,10 +1169,10 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (isNegative()) {
if (wordShift > bitsInWord) {
if (breakWord > 0)
- val[breakWord-1] |=
+ val[breakWord-1] |=
~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
val[breakWord] |= ~0ULL;
- } else
+ } else
val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
}
}
@@ -1157,7 +1196,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
- else
+ else
return APInt(BitWidth, this->VAL >> shiftAmt);
}
@@ -1168,7 +1207,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(BitWidth, 0);
// If none of the bits are shifted out, the result is *this. This avoids
- // issues with shifting by the size of the integer type, which produces
+ // issues with shifting by the size of the integer type, which produces
// undefined results in the code below. This is also an optimization.
if (shiftAmt == 0)
return *this;
@@ -1199,7 +1238,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(val,BitWidth).clearUnusedBits();
}
- // Shift the low order words
+ // Shift the low order words
unsigned breakWord = getNumWords() - offset -1;
for (unsigned i = 0; i < breakWord; ++i)
val[i] = (pVal[i+offset] >> wordShift) |
@@ -1306,7 +1345,7 @@ APInt APInt::rotr(unsigned rotateAmt) const {
// values using less than 52 bits, the value is converted to double and then
// the libc sqrt function is called. The result is rounded and then converted
// back to a uint64_t which is then used to construct the result. Finally,
-// the Babylonian method for computing square roots is used.
+// the Babylonian method for computing square roots is used.
APInt APInt::sqrt() const {
// Determine the magnitude of the value.
@@ -1318,7 +1357,7 @@ APInt APInt::sqrt() const {
static const uint8_t results[32] = {
/* 0 */ 0,
/* 1- 2 */ 1, 1,
- /* 3- 6 */ 2, 2, 2, 2,
+ /* 3- 6 */ 2, 2, 2, 2,
/* 7-12 */ 3, 3, 3, 3, 3, 3,
/* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
/* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
@@ -1334,10 +1373,10 @@ APInt APInt::sqrt() const {
if (magnitude < 52) {
#ifdef _MSC_VER
// Amazingly, VC++ doesn't have round().
- return APInt(BitWidth,
+ return APInt(BitWidth,
uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
#else
- return APInt(BitWidth,
+ return APInt(BitWidth,
uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
#endif
}
@@ -1346,7 +1385,7 @@ APInt APInt::sqrt() const {
// is a classical Babylonian method for computing the square root. This code
// was adapted to APINt from a wikipedia article on such computations.
// See http://www.wikipedia.org/ and go to the page named
- // Calculate_an_integer_square_root.
+ // Calculate_an_integer_square_root.
unsigned nbits = BitWidth, i = 4;
APInt testy(BitWidth, 16);
APInt x_old(BitWidth, 1);
@@ -1354,13 +1393,13 @@ APInt APInt::sqrt() const {
APInt two(BitWidth, 2);
// Select a good starting value using binary logarithms.
- for (;; i += 2, testy = testy.shl(2))
+ for (;; i += 2, testy = testy.shl(2))
if (i >= nbits || this->ule(testy)) {
x_old = x_old.shl(i / 2);
break;
}
- // Use the Babylonian method to arrive at the integer square root:
+ // Use the Babylonian method to arrive at the integer square root:
for (;;) {
x_new = (this->udiv(x_old) + x_old).udiv(two);
if (x_old.ule(x_new))
@@ -1369,9 +1408,9 @@ APInt APInt::sqrt() const {
}
// Make sure we return the closest approximation
- // NOTE: The rounding calculation below is correct. It will produce an
+ // NOTE: The rounding calculation below is correct. It will produce an
// off-by-one discrepancy with results from pari/gp. That discrepancy has been
- // determined to be a rounding issue with pari/gp as it begins to use a
+ // determined to be a rounding issue with pari/gp as it begins to use a
// floating point representation after 192 bits. There are no discrepancies
// between this algorithm and pari/gp for bit widths < 192 bits.
APInt square(x_old * x_old);
@@ -1386,7 +1425,7 @@ APInt APInt::sqrt() const {
else
return x_old + 1;
} else
- assert(0 && "Error in APInt::sqrt computation");
+ llvm_unreachable("Error in APInt::sqrt computation");
return x_old + 1;
}
@@ -1409,7 +1448,7 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
APInt r[2] = { modulo, *this };
APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
APInt q(BitWidth, 0);
-
+
unsigned i;
for (i = 0; r[i^1] != 0; i ^= 1) {
// An overview of the math without the confusing bit-flipping:
@@ -1442,11 +1481,9 @@ APInt::ms APInt::magic() const {
const APInt& d = *this;
unsigned p;
APInt ad, anc, delta, q1, r1, q2, r2, t;
- APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
- APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
struct ms mag;
-
+
ad = d.abs();
t = signedMin + (d.lshr(d.getBitWidth() - 1));
anc = t - 1 - t.urem(ad); // absolute value of nc
@@ -1471,7 +1508,7 @@ APInt::ms APInt::magic() const {
}
delta = ad - r2;
} while (q1.ule(delta) || (q1 == delta && r1 == 0));
-
+
mag.m = q2 + 1;
if (d.isNegative()) mag.m = -mag.m; // resulting magic number
mag.s = p - d.getBitWidth(); // resulting shift
@@ -1543,17 +1580,17 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
uint64_t b = uint64_t(1) << 32;
#if 0
- DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
- DEBUG(cerr << "KnuthDiv: original:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
+ DEBUG(errs() << "KnuthDiv: original:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << " by");
+ DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
+ DEBUG(errs() << '\n');
#endif
- // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
- // u and v by d. Note that we have taken Knuth's advice here to use a power
- // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
- // 2 allows us to shift instead of multiply and it is easy to determine the
+ // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
+ // u and v by d. Note that we have taken Knuth's advice here to use a power
+ // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
+ // 2 allows us to shift instead of multiply and it is easy to determine the
// shift amount from the leading zeros. We are basically normalizing the u
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
@@ -1575,27 +1612,27 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[m+n] = u_carry;
#if 0
- DEBUG(cerr << "KnuthDiv: normal:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
- DEBUG(cerr << " by");
- DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: normal:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << " by");
+ DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
+ DEBUG(errs() << '\n');
#endif
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
do {
- DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
- // D3. [Calculate q'.].
+ DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
+ // D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
// qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
// on v[n-2] determines at high speed most of the cases in which the trial
- // value qp is one too large, and it eliminates all cases where qp is two
- // too large.
+ // value qp is one too large, and it eliminates all cases where qp is two
+ // too large.
uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
- DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
+ DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
uint64_t qp = dividend / v[n-1];
uint64_t rp = dividend % v[n-1];
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
@@ -1604,20 +1641,20 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
qp--;
}
- DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
+ DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
- // a subtraction.
+ // a subtraction.
bool isNeg = false;
for (unsigned i = 0; i < n; ++i) {
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
- DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
- << ", subtrahend == " << subtrahend
- << ", borrow = " << borrow << '\n');
+ DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
+ << ", subtrahend == " << subtrahend
+ << ", borrow = " << borrow << '\n');
uint64_t result = u_tmp - subtrahend;
unsigned k = j + i;
@@ -1629,14 +1666,14 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
k++;
}
isNeg |= borrow;
- DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
- u[j+i+1] << '\n');
+ DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
+ u[j+i+1] << '\n');
}
- DEBUG(cerr << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
- // The digits (u[j+n]...u[j]) should be kept positive; if the result of
- // this step is actually negative, (u[j+n]...u[j]) should be left as the
+ DEBUG(errs() << "KnuthDiv: after subtraction:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << '\n');
+ // The digits (u[j+n]...u[j]) should be kept positive; if the result of
+ // this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
//
@@ -1647,20 +1684,20 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
carry = carry && u[i] == 0;
}
}
- DEBUG(cerr << "KnuthDiv: after complement:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: after complement:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
+ DEBUG(errs() << '\n');
- // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
+ // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = (unsigned)qp;
if (isNeg) {
- // D6. [Add back]. The probability that this step is necessary is very
+ // D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
- // this possibility. Decrease q[j] by 1
+ // this possibility. Decrease q[j] by 1
q[j]--;
- // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
- // A carry will occur to the left of u[j+n], and it should be ignored
+ // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
+ // A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
for (unsigned i = 0; i < n; i++) {
@@ -1670,16 +1707,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
u[j+n] += carry;
}
- DEBUG(cerr << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
- DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
+ DEBUG(errs() << "KnuthDiv: after correction:");
+ DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
+ DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
} while (--j >= 0);
- DEBUG(cerr << "KnuthDiv: quotient:");
- DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
- DEBUG(cerr << '\n');
+ DEBUG(errs() << "KnuthDiv: quotient:");
+ DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
+ DEBUG(errs() << '\n');
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
// remainder may be obtained by dividing u[...] by d. If r is non-null we
@@ -1690,22 +1727,22 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// shift right here. In order to mak
if (shift) {
unsigned carry = 0;
- DEBUG(cerr << "KnuthDiv: remainder:");
+ DEBUG(errs() << "KnuthDiv: remainder:");
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
carry = u[i] << (32 - shift);
- DEBUG(cerr << " " << r[i]);
+ DEBUG(errs() << " " << r[i]);
}
} else {
for (int i = n-1; i >= 0; i--) {
r[i] = u[i];
- DEBUG(cerr << " " << r[i]);
+ DEBUG(errs() << " " << r[i]);
}
}
- DEBUG(cerr << '\n');
+ DEBUG(errs() << '\n');
}
#if 0
- DEBUG(cerr << std::setbase(10) << '\n');
+ DEBUG(errs() << '\n');
#endif
}
@@ -1715,12 +1752,12 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
{
assert(lhsWords >= rhsWords && "Fractional result");
- // First, compose the values into an array of 32-bit words instead of
+ // First, compose the values into an array of 32-bit words instead of
// 64-bit words. This is a necessity of both the "short division" algorithm
- // and the the Knuth "classical algorithm" which requires there to be native
- // operations for +, -, and * on an m bit value with an m*2 bit result. We
- // can't use 64-bit operands here because we don't have native results of
- // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
+ // and the the Knuth "classical algorithm" which requires there to be native
+ // operations for +, -, and * on an m bit value with an m*2 bit result. We
+ // can't use 64-bit operands here because we don't have native results of
+ // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
unsigned n = rhsWords * 2;
@@ -1769,9 +1806,9 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
if (Remainder)
memset(R, 0, n * sizeof(unsigned));
- // Now, adjust m and n for the Knuth division. n is the number of words in
+ // Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
- // divisor (i.e. m+n is the length of the dividend). These sizes must not
+ // divisor (i.e. m+n is the length of the dividend). These sizes must not
// contain any zero words or the Knuth algorithm fails.
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
n--;
@@ -1828,10 +1865,10 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else
Quotient->clear();
- // The quotient is in Q. Reconstitute the quotient into Quotient's low
+ // The quotient is in Q. Reconstitute the quotient into Quotient's low
// order words.
if (lhsWords == 1) {
- uint64_t tmp =
+ uint64_t tmp =
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
if (Quotient->isSingleWord())
Quotient->VAL = tmp;
@@ -1840,7 +1877,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
for (unsigned i = 0; i < lhsWords; ++i)
- Quotient->pVal[i] =
+ Quotient->pVal[i] =
uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@@ -1862,7 +1899,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
// The remainder is in R. Reconstitute the remainder into Remainder's low
// order words.
if (rhsWords == 1) {
- uint64_t tmp =
+ uint64_t tmp =
uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
if (Remainder->isSingleWord())
Remainder->VAL = tmp;
@@ -1871,7 +1908,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
for (unsigned i = 0; i < rhsWords; ++i)
- Remainder->pVal[i] =
+ Remainder->pVal[i] =
uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@@ -1902,9 +1939,9 @@ APInt APInt::udiv(const APInt& RHS) const {
unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
- if (!lhsWords)
+ if (!lhsWords)
// 0 / X ===> 0
- return APInt(BitWidth, 0);
+ return APInt(BitWidth, 0);
else if (lhsWords < rhsWords || this->ult(RHS)) {
// X / Y ===> 0, iff X < Y
return APInt(BitWidth, 0);
@@ -1959,7 +1996,7 @@ APInt APInt::urem(const APInt& RHS) const {
return Remainder;
}
-void APInt::udivrem(const APInt &LHS, const APInt &RHS,
+void APInt::udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder) {
// Get some size facts about the dividend and divisor
unsigned lhsBits = LHS.getActiveBits();
@@ -1968,24 +2005,24 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
// Check the degenerate cases
- if (lhsWords == 0) {
+ if (lhsWords == 0) {
Quotient = 0; // 0 / Y ===> 0
Remainder = 0; // 0 % Y ===> 0
return;
- }
-
- if (lhsWords < rhsWords || LHS.ult(RHS)) {
+ }
+
+ if (lhsWords < rhsWords || LHS.ult(RHS)) {
Quotient = 0; // X / Y ===> 0, iff X < Y
Remainder = LHS; // X % Y ===> X, iff X < Y
return;
- }
-
+ }
+
if (LHS == RHS) {
Quotient = 1; // X / X ===> 1
Remainder = 0; // X % X ===> 0;
return;
- }
-
+ }
+
if (lhsWords == 1 && rhsWords == 1) {
// There is only one word to consider so use the native versions.
uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
@@ -1999,19 +2036,25 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
}
-void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
- uint8_t radix) {
+void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
// Check our assumptions here
+ assert(!str.empty() && "Invalid string length");
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
- assert(str && "String is null?");
- bool isNeg = str[0] == '-';
- if (isNeg)
- str++, slen--;
+
+ StringRef::iterator p = str.begin();
+ size_t slen = str.size();
+ bool isNeg = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String is only a sign, needs a value.");
+ }
assert((slen <= numbits || radix != 2) && "Insufficient bit width");
assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
- assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
+ assert((((slen-1)*64)/22 <= numbits || radix != 10)
+ && "Insufficient bit width");
// Allocate memory
if (!isSingleWord())
@@ -2026,30 +2069,9 @@ void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
APInt apradix(getBitWidth(), radix);
// Enter digit traversal loop
- for (unsigned i = 0; i < slen; i++) {
- // Get a digit
- unsigned digit = 0;
- char cdigit = str[i];
- if (radix == 16) {
- if (!isxdigit(cdigit))
- assert(0 && "Invalid hex digit in string");
- if (isdigit(cdigit))
- digit = cdigit - '0';
- else if (cdigit >= 'a')
- digit = cdigit - 'a' + 10;
- else if (cdigit >= 'A')
- digit = cdigit - 'A' + 10;
- else
- assert(0 && "huh? we shouldn't get here");
- } else if (isdigit(cdigit)) {
- digit = cdigit - '0';
- assert((radix == 10 ||
- (radix == 8 && digit != 8 && digit != 9) ||
- (radix == 2 && (digit == 0 || digit == 1))) &&
- "Invalid digit in string for given radix");
- } else {
- assert(0 && "Invalid character in digit string");
- }
+ for (StringRef::iterator e = str.end(); p != e; ++p) {
+ unsigned digit = getDigit(*p, radix);
+ assert(digit < radix && "Invalid character in digit string");
// Shift or multiply the value by the radix
if (slen > 1) {
@@ -2077,19 +2099,19 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
bool Signed) const {
assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
-
+
// First, check for a zero value and just short circuit the logic below.
if (*this == 0) {
Str.push_back('0');
return;
}
-
+
static const char Digits[] = "0123456789ABCDEF";
-
+
if (isSingleWord()) {
char Buffer[65];
char *BufPtr = Buffer+65;
-
+
uint64_t N;
if (Signed) {
int64_t I = getSExtValue();
@@ -2101,7 +2123,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
} else {
N = getZExtValue();
}
-
+
while (N) {
*--BufPtr = Digits[N % Radix];
N /= Radix;
@@ -2111,7 +2133,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
}
APInt Tmp(*this);
-
+
if (Signed && isNegative()) {
// They want to print the signed version and it is a negative value
// Flip the bits and add one to turn it into the equivalent positive
@@ -2120,18 +2142,18 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp++;
Str.push_back('-');
}
-
+
// We insert the digits backward, then reverse them to get the right order.
unsigned StartDig = Str.size();
-
- // For the 2, 8 and 16 bit cases, we can just shift instead of divide
- // because the number of bits per digit (1, 3 and 4 respectively) divides
+
+ // For the 2, 8 and 16 bit cases, we can just shift instead of divide
+ // because the number of bits per digit (1, 3 and 4 respectively) divides
// equaly. We just shift until the value is zero.
if (Radix != 10) {
// Just shift tmp right for each digit width until it becomes zero
unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
unsigned MaskAmt = Radix - 1;
-
+
while (Tmp != 0) {
unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
Str.push_back(Digits[Digit]);
@@ -2142,7 +2164,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
while (Tmp != 0) {
APInt APdigit(1, 0);
APInt tmp2(Tmp.getBitWidth(), 0);
- divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
+ divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
unsigned Digit = (unsigned)APdigit.getZExtValue();
assert(Digit < Radix && "divide failed");
@@ -2150,7 +2172,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp = tmp2;
}
}
-
+
// Reverse the digits before returning.
std::reverse(Str.begin()+StartDig, Str.end());
}
@@ -2161,7 +2183,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
SmallString<40> S;
toString(S, Radix, Signed);
- return S.c_str();
+ return S.str();
}
@@ -2169,26 +2191,21 @@ void APInt::dump() const {
SmallString<40> S, U;
this->toStringUnsigned(U);
this->toStringSigned(S);
- fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
+ errs() << "APInt(" << BitWidth << "b, "
+ << U.str() << "u " << S.str() << "s)";
}
void APInt::print(raw_ostream &OS, bool isSigned) const {
SmallString<40> S;
this->toString(S, 10, isSigned);
- OS << S.c_str();
-}
-
-std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
- raw_os_ostream OS(o);
- OS << I;
- return o;
+ OS << S.str();
}
// This implements a variety of operations on a representation of
// arbitrary precision, two's-complement, bignum integer values.
-/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
- and unrestricting assumption. */
+// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
+// and unrestricting assumption.
#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
diff --git a/lib/Support/Allocator.cpp b/lib/Support/Allocator.cpp
index db0d8f3..7a3fd87 100644
--- a/lib/Support/Allocator.cpp
+++ b/lib/Support/Allocator.cpp
@@ -12,130 +12,160 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Recycler.h"
#include "llvm/Support/DataTypes.h"
-#include "llvm/Support/Streams.h"
-#include <ostream>
-using namespace llvm;
+#include "llvm/Support/Recycler.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Memory.h"
+#include <cstring>
-//===----------------------------------------------------------------------===//
-// MemRegion class implementation
-//===----------------------------------------------------------------------===//
+namespace llvm {
-namespace {
-/// MemRegion - This is one chunk of the BumpPtrAllocator.
-class MemRegion {
- unsigned RegionSize;
- MemRegion *Next;
- char *NextPtr;
-public:
- void Init(unsigned size, unsigned Alignment, MemRegion *next) {
- RegionSize = size;
- Next = next;
- NextPtr = (char*)(this+1);
-
- // Align NextPtr.
- NextPtr = (char*)((intptr_t)(NextPtr+Alignment-1) &
- ~(intptr_t)(Alignment-1));
- }
-
- const MemRegion *getNext() const { return Next; }
- unsigned getNumBytesAllocated() const {
- return NextPtr-(const char*)this;
- }
-
- /// Allocate - Allocate and return at least the specified number of bytes.
- ///
- void *Allocate(size_t AllocSize, size_t Alignment, MemRegion **RegPtr) {
-
- char* Result = (char*) (((uintptr_t) (NextPtr+Alignment-1))
- & ~((uintptr_t) Alignment-1));
-
- // Speculate the new value of NextPtr.
- char* NextPtrTmp = Result + AllocSize;
-
- // If we are still within the current region, return Result.
- if (unsigned (NextPtrTmp - (char*) this) <= RegionSize) {
- NextPtr = NextPtrTmp;
- return Result;
- }
-
- // Otherwise, we have to allocate a new chunk. Create one twice as big as
- // this one.
- MemRegion *NewRegion = (MemRegion *)malloc(RegionSize*2);
- NewRegion->Init(RegionSize*2, Alignment, this);
-
- // Update the current "first region" pointer to point to the new region.
- *RegPtr = NewRegion;
-
- // Try allocating from it now.
- return NewRegion->Allocate(AllocSize, Alignment, RegPtr);
- }
-
- /// Deallocate - Recursively release all memory for this and its next regions
- /// to the system.
- void Deallocate() {
- MemRegion *next = Next;
- free(this);
- if (next)
- next->Deallocate();
- }
+BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
+ SlabAllocator &allocator)
+ : SlabSize(size), SizeThreshold(threshold), Allocator(allocator),
+ CurSlab(0), BytesAllocated(0) {
+ StartNewSlab();
+}
- /// DeallocateAllButLast - Recursively release all memory for this and its
- /// next regions to the system stopping at the last region in the list.
- /// Returns the pointer to the last region.
- MemRegion *DeallocateAllButLast() {
- MemRegion *next = Next;
- if (!next)
- return this;
- free(this);
- return next->DeallocateAllButLast();
- }
-};
+BumpPtrAllocator::~BumpPtrAllocator() {
+ DeallocateSlabs(CurSlab);
}
-//===----------------------------------------------------------------------===//
-// BumpPtrAllocator class implementation
-//===----------------------------------------------------------------------===//
+/// AlignPtr - Align Ptr to Alignment bytes, rounding up. Alignment should
+/// be a power of two. This method rounds up, so AlignPtr(7, 4) == 8 and
+/// AlignPtr(8, 4) == 8.
+char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
+ assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
+ "Alignment is not a power of two!");
-BumpPtrAllocator::BumpPtrAllocator() {
- TheMemory = malloc(4096);
- ((MemRegion*)TheMemory)->Init(4096, 1, 0);
+ // Do the alignment.
+ return (char*)(((uintptr_t)Ptr + Alignment - 1) &
+ ~(uintptr_t)(Alignment - 1));
}
-BumpPtrAllocator::~BumpPtrAllocator() {
- ((MemRegion*)TheMemory)->Deallocate();
+/// StartNewSlab - Allocate a new slab and move the bump pointers over into
+/// the new slab. Modifies CurPtr and End.
+void BumpPtrAllocator::StartNewSlab() {
+ MemSlab *NewSlab = Allocator.Allocate(SlabSize);
+ NewSlab->NextPtr = CurSlab;
+ CurSlab = NewSlab;
+ CurPtr = (char*)(CurSlab + 1);
+ End = ((char*)CurSlab) + CurSlab->Size;
+}
+
+/// DeallocateSlabs - Deallocate all memory slabs after and including this
+/// one.
+void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
+ while (Slab) {
+ MemSlab *NextSlab = Slab->NextPtr;
+#ifndef NDEBUG
+ // Poison the memory so stale pointers crash sooner. Note we must
+ // preserve the Size and NextPtr fields at the beginning.
+ sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
+ memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
+#endif
+ Allocator.Deallocate(Slab);
+ Slab = NextSlab;
+ }
}
+/// Reset - Deallocate all but the current slab and reset the current pointer
+/// to the beginning of it, freeing all memory allocated so far.
void BumpPtrAllocator::Reset() {
- MemRegion *MRP = (MemRegion*)TheMemory;
- MRP = MRP->DeallocateAllButLast();
- MRP->Init(4096, 1, 0);
- TheMemory = MRP;
+ DeallocateSlabs(CurSlab->NextPtr);
+ CurSlab->NextPtr = 0;
+ CurPtr = (char*)(CurSlab + 1);
+ End = ((char*)CurSlab) + CurSlab->Size;
}
-void *BumpPtrAllocator::Allocate(size_t Size, size_t Align) {
- MemRegion *MRP = (MemRegion*)TheMemory;
- void *Ptr = MRP->Allocate(Size, Align, &MRP);
- TheMemory = MRP;
+/// Allocate - Allocate space at the specified alignment.
+///
+void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
+ // Keep track of how many bytes we've allocated.
+ BytesAllocated += Size;
+
+ // 0-byte alignment means 1-byte alignment.
+ if (Alignment == 0) Alignment = 1;
+
+ // Allocate the aligned space, going forwards from CurPtr.
+ char *Ptr = AlignPtr(CurPtr, Alignment);
+
+ // Check if we can hold it.
+ if (Ptr + Size <= End) {
+ CurPtr = Ptr + Size;
+ return Ptr;
+ }
+
+ // If Size is really big, allocate a separate slab for it.
+ size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
+ if (PaddedSize > SizeThreshold) {
+ MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
+
+ // Put the new slab after the current slab, since we are not allocating
+ // into it.
+ NewSlab->NextPtr = CurSlab->NextPtr;
+ CurSlab->NextPtr = NewSlab;
+
+ Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
+ assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
+ return Ptr;
+ }
+
+ // Otherwise, start a new slab and try again.
+ StartNewSlab();
+ Ptr = AlignPtr(CurPtr, Alignment);
+ CurPtr = Ptr + Size;
+ assert(CurPtr <= End && "Unable to allocate memory!");
return Ptr;
}
+unsigned BumpPtrAllocator::GetNumSlabs() const {
+ unsigned NumSlabs = 0;
+ for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
+ ++NumSlabs;
+ }
+ return NumSlabs;
+}
+
void BumpPtrAllocator::PrintStats() const {
- unsigned BytesUsed = 0;
- unsigned NumRegions = 0;
- const MemRegion *R = (MemRegion*)TheMemory;
- for (; R; R = R->getNext(), ++NumRegions)
- BytesUsed += R->getNumBytesAllocated();
-
- cerr << "\nNumber of memory regions: " << NumRegions << "\n";
- cerr << "Bytes allocated: " << BytesUsed << "\n";
+ unsigned NumSlabs = 0;
+ size_t TotalMemory = 0;
+ for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
+ TotalMemory += Slab->Size;
+ ++NumSlabs;
+ }
+
+ errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
+ << "Bytes used: " << BytesAllocated << '\n'
+ << "Bytes allocated: " << TotalMemory << '\n'
+ << "Bytes wasted: " << (TotalMemory - BytesAllocated)
+ << " (includes alignment, etc)\n";
+}
+
+MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
+ MallocSlabAllocator();
+
+SlabAllocator::~SlabAllocator() { }
+
+MallocSlabAllocator::~MallocSlabAllocator() { }
+
+MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
+ MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
+ Slab->Size = Size;
+ Slab->NextPtr = 0;
+ return Slab;
+}
+
+void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
+ Allocator.Deallocate(Slab);
+}
+
+void PrintRecyclerStats(size_t Size,
+ size_t Align,
+ size_t FreeListSize) {
+ errs() << "Recycler element size: " << Size << '\n'
+ << "Recycler element alignment: " << Align << '\n'
+ << "Number of elements free for recycling: " << FreeListSize << '\n';
}
-void llvm::PrintRecyclerStats(size_t Size,
- size_t Align,
- size_t FreeListSize) {
- cerr << "Recycler element size: " << Size << '\n';
- cerr << "Recycler element alignment: " << Align << '\n';
- cerr << "Number of elements free for recycling: " << FreeListSize << '\n';
}
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
index f26c2c0..cd355ff 100644
--- a/lib/Support/CMakeLists.txt
+++ b/lib/Support/CMakeLists.txt
@@ -3,32 +3,43 @@ add_llvm_library(LLVMSupport
APInt.cpp
APSInt.cpp
Allocator.cpp
- Annotation.cpp
CommandLine.cpp
ConstantRange.cpp
Debug.cpp
Dwarf.cpp
+ ErrorHandling.cpp
FileUtilities.cpp
FoldingSet.cpp
+ FormattedStream.cpp
GraphWriter.cpp
IsInf.cpp
IsNAN.cpp
ManagedStatic.cpp
MemoryBuffer.cpp
+ MemoryObject.cpp
PluginLoader.cpp
PrettyStackTrace.cpp
+ Regex.cpp
SlowOperationInformer.cpp
SmallPtrSet.cpp
SourceMgr.cpp
Statistic.cpp
- Streams.cpp
StringExtras.cpp
StringMap.cpp
StringPool.cpp
+ StringRef.cpp
SystemUtils.cpp
+ TargetRegistry.cpp
Timer.cpp
Triple.cpp
+ Twine.cpp
+ raw_os_ostream.cpp
raw_ostream.cpp
+ regcomp.c
+ regerror.c
+ regexec.c
+ regfree.c
+ regstrlcpy.c
)
target_link_libraries (LLVMSupport LLVMSystem)
diff --git a/lib/Support/COPYRIGHT.regex b/lib/Support/COPYRIGHT.regex
new file mode 100644
index 0000000..a6392fd
--- /dev/null
+++ b/lib/Support/COPYRIGHT.regex
@@ -0,0 +1,54 @@
+$OpenBSD: COPYRIGHT,v 1.3 2003/06/02 20:18:36 millert Exp $
+
+Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
+This software is not subject to any license of the American Telephone
+and Telegraph Company or of the Regents of the University of California.
+
+Permission is granted to anyone to use this software for any purpose on
+any computer system, and to alter it and redistribute it, subject
+to the following restrictions:
+
+1. The author is not responsible for the consequences of use of this
+ software, no matter how awful, even if they arise from flaws in it.
+
+2. The origin of this software must not be misrepresented, either by
+ explicit claim or by omission. Since few users ever read sources,
+ credits must appear in the documentation.
+
+3. Altered versions must be plainly marked as such, and must not be
+ misrepresented as being the original software. Since few users
+ ever read sources, credits must appear in the documentation.
+
+4. This notice may not be removed or altered.
+
+=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
+/*-
+ * Copyright (c) 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)COPYRIGHT 8.1 (Berkeley) 3/16/94
+ */
diff --git a/lib/Support/CommandLine.cpp b/lib/Support/CommandLine.cpp
index 4922560..626daa2 100644
--- a/lib/Support/CommandLine.cpp
+++ b/lib/Support/CommandLine.cpp
@@ -16,22 +16,22 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Config/config.h"
-#include "llvm/ADT/OwningPtr.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/System/Host.h"
#include "llvm/System/Path.h"
-#include <algorithm>
-#include <functional>
-#include <map>
-#include <ostream>
-#include <set>
-#include <cstdlib>
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Config/config.h"
#include <cerrno>
-#include <cstring>
-#include <climits>
+#include <cstdlib>
using namespace llvm;
using namespace cl;
@@ -105,10 +105,10 @@ void Option::addArgument() {
/// GetOptionInfo - Scan the list of registered options, turning them into data
/// structures that are easier to handle.
-static void GetOptionInfo(std::vector<Option*> &PositionalOpts,
- std::vector<Option*> &SinkOpts,
- std::map<std::string, Option*> &OptionsMap) {
- std::vector<const char*> OptionNames;
+static void GetOptionInfo(SmallVectorImpl<Option*> &PositionalOpts,
+ SmallVectorImpl<Option*> &SinkOpts,
+ StringMap<Option*> &OptionsMap) {
+ SmallVector<const char*, 16> OptionNames;
Option *CAOpt = 0; // The ConsumeAfter option if it exists.
for (Option *O = RegisteredOptionList; O; O = O->getNextRegisteredOption()) {
// If this option wants to handle multiple option names, get the full set.
@@ -120,9 +120,8 @@ static void GetOptionInfo(std::vector<Option*> &PositionalOpts,
// Handle named options.
for (size_t i = 0, e = OptionNames.size(); i != e; ++i) {
// Add argument to the argument map!
- if (!OptionsMap.insert(std::pair<std::string,Option*>(OptionNames[i],
- O)).second) {
- cerr << ProgramName << ": CommandLine Error: Argument '"
+ if (OptionsMap.GetOrCreateValue(OptionNames[i], O).second != O) {
+ errs() << ProgramName << ": CommandLine Error: Argument '"
<< OptionNames[i] << "' defined more than once!\n";
}
}
@@ -151,29 +150,39 @@ static void GetOptionInfo(std::vector<Option*> &PositionalOpts,
/// LookupOption - Lookup the option specified by the specified option on the
/// command line. If there is a value specified (after an equal sign) return
-/// that as well.
-static Option *LookupOption(const char *&Arg, const char *&Value,
- std::map<std::string, Option*> &OptionsMap) {
- while (*Arg == '-') ++Arg; // Eat leading dashes
-
- const char *ArgEnd = Arg;
- while (*ArgEnd && *ArgEnd != '=')
- ++ArgEnd; // Scan till end of argument name.
+/// that as well. This assumes that leading dashes have already been stripped.
+static Option *LookupOption(StringRef &Arg, StringRef &Value,
+ const StringMap<Option*> &OptionsMap) {
+ // Reject all dashes.
+ if (Arg.empty()) return 0;
+
+ size_t EqualPos = Arg.find('=');
+
+ // If we have an equals sign, remember the value.
+ if (EqualPos == StringRef::npos) {
+ // Look up the option.
+ StringMap<Option*>::const_iterator I = OptionsMap.find(Arg);
+ return I != OptionsMap.end() ? I->second : 0;
+ }
- if (*ArgEnd == '=') // If we have an equals sign...
- Value = ArgEnd+1; // Get the value, not the equals
+ // If the argument before the = is a valid option name, we match. If not,
+ // return Arg unmolested.
+ StringMap<Option*>::const_iterator I =
+ OptionsMap.find(Arg.substr(0, EqualPos));
+ if (I == OptionsMap.end()) return 0;
+
+ Value = Arg.substr(EqualPos+1);
+ Arg = Arg.substr(0, EqualPos);
+ return I->second;
+}
- if (*Arg == 0) return 0;
- // Look up the option.
- std::map<std::string, Option*>::iterator I =
- OptionsMap.find(std::string(Arg, ArgEnd));
- return I != OptionsMap.end() ? I->second : 0;
-}
-
-static inline bool ProvideOption(Option *Handler, const char *ArgName,
- const char *Value, int argc, char **argv,
+/// ProvideOption - For Value, this differentiates between an empty value ("")
+/// and a null value (StringRef()). The later is accepted for arguments that
+/// don't allow a value (-foo) the former is rejected (-foo=).
+static inline bool ProvideOption(Option *Handler, StringRef ArgName,
+ StringRef Value, int argc, char **argv,
int &i) {
// Is this a multi-argument option?
unsigned NumAdditionalVals = Handler->getNumAdditionalVals();
@@ -181,68 +190,62 @@ static inline bool ProvideOption(Option *Handler, const char *ArgName,
// Enforce value requirements
switch (Handler->getValueExpectedFlag()) {
case ValueRequired:
- if (Value == 0) { // No value specified?
- if (i+1 < argc) { // Steal the next argument, like for '-o filename'
- Value = argv[++i];
- } else {
- return Handler->error(" requires a value!");
- }
+ if (Value.data() == 0) { // No value specified?
+ if (i+1 >= argc)
+ return Handler->error("requires a value!");
+ // Steal the next argument, like for '-o filename'
+ Value = argv[++i];
}
break;
case ValueDisallowed:
if (NumAdditionalVals > 0)
- return Handler->error(": multi-valued option specified"
- " with ValueDisallowed modifier!");
+ return Handler->error("multi-valued option specified"
+ " with ValueDisallowed modifier!");
- if (Value)
- return Handler->error(" does not allow a value! '" +
- std::string(Value) + "' specified.");
+ if (Value.data())
+ return Handler->error("does not allow a value! '" +
+ Twine(Value) + "' specified.");
break;
case ValueOptional:
break;
+
default:
- cerr << ProgramName
+ errs() << ProgramName
<< ": Bad ValueMask flag! CommandLine usage error:"
<< Handler->getValueExpectedFlag() << "\n";
- abort();
- break;
+ llvm_unreachable(0);
}
// If this isn't a multi-arg option, just run the handler.
- if (NumAdditionalVals == 0) {
- return Handler->addOccurrence(i, ArgName, Value ? Value : "");
- }
+ if (NumAdditionalVals == 0)
+ return Handler->addOccurrence(i, ArgName, Value);
+
// If it is, run the handle several times.
- else {
- bool MultiArg = false;
-
- if (Value) {
- if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
- return true;
- --NumAdditionalVals;
- MultiArg = true;
- }
+ bool MultiArg = false;
- while (NumAdditionalVals > 0) {
+ if (Value.data()) {
+ if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
+ return true;
+ --NumAdditionalVals;
+ MultiArg = true;
+ }
- if (i+1 < argc) {
- Value = argv[++i];
- } else {
- return Handler->error(": not enough values!");
- }
- if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
- return true;
- MultiArg = true;
- --NumAdditionalVals;
- }
- return false;
+ while (NumAdditionalVals > 0) {
+ if (i+1 >= argc)
+ return Handler->error("not enough values!");
+ Value = argv[++i];
+
+ if (Handler->addOccurrence(i, ArgName, Value, MultiArg))
+ return true;
+ MultiArg = true;
+ --NumAdditionalVals;
}
+ return false;
}
-static bool ProvidePositionalOption(Option *Handler, const std::string &Arg,
- int i) {
+static bool ProvidePositionalOption(Option *Handler, StringRef Arg, int i) {
int Dummy = i;
- return ProvideOption(Handler, Handler->ArgStr, Arg.c_str(), 0, 0, Dummy);
+ return ProvideOption(Handler, Handler->ArgStr, Arg, 0, 0, Dummy);
}
@@ -260,33 +263,78 @@ static inline bool isPrefixedOrGrouping(const Option *O) {
// see if there options that satisfy the predicate. If we find one, return it,
// otherwise return null.
//
-static Option *getOptionPred(std::string Name, size_t &Length,
+static Option *getOptionPred(StringRef Name, size_t &Length,
bool (*Pred)(const Option*),
- std::map<std::string, Option*> &OptionsMap) {
+ const StringMap<Option*> &OptionsMap) {
- std::map<std::string, Option*>::iterator OMI = OptionsMap.find(Name);
- if (OMI != OptionsMap.end() && Pred(OMI->second)) {
- Length = Name.length();
- return OMI->second;
- }
+ StringMap<Option*>::const_iterator OMI = OptionsMap.find(Name);
- if (Name.size() == 1) return 0;
- do {
- Name.erase(Name.end()-1, Name.end()); // Chop off the last character...
+ // Loop while we haven't found an option and Name still has at least two
+ // characters in it (so that the next iteration will not be the empty
+ // string.
+ while (OMI == OptionsMap.end() && Name.size() > 1) {
+ Name = Name.substr(0, Name.size()-1); // Chop off the last character.
OMI = OptionsMap.find(Name);
-
- // Loop while we haven't found an option and Name still has at least two
- // characters in it (so that the next iteration will not be the empty
- // string...
- } while ((OMI == OptionsMap.end() || !Pred(OMI->second)) && Name.size() > 1);
+ }
if (OMI != OptionsMap.end() && Pred(OMI->second)) {
- Length = Name.length();
+ Length = Name.size();
return OMI->second; // Found one!
}
return 0; // No option found!
}
+/// HandlePrefixedOrGroupedOption - The specified argument string (which started
+/// with at least one '-') does not fully match an available option. Check to
+/// see if this is a prefix or grouped option. If so, split arg into output an
+/// Arg/Value pair and return the Option to parse it with.
+static Option *HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value,
+ bool &ErrorParsing,
+ const StringMap<Option*> &OptionsMap) {
+ if (Arg.size() == 1) return 0;
+
+ // Do the lookup!
+ size_t Length = 0;
+ Option *PGOpt = getOptionPred(Arg, Length, isPrefixedOrGrouping, OptionsMap);
+ if (PGOpt == 0) return 0;
+
+ // If the option is a prefixed option, then the value is simply the
+ // rest of the name... so fall through to later processing, by
+ // setting up the argument name flags and value fields.
+ if (PGOpt->getFormattingFlag() == cl::Prefix) {
+ Value = Arg.substr(Length);
+ Arg = Arg.substr(0, Length);
+ assert(OptionsMap.count(Arg) && OptionsMap.find(Arg)->second == PGOpt);
+ return PGOpt;
+ }
+
+ // This must be a grouped option... handle them now. Grouping options can't
+ // have values.
+ assert(isGrouping(PGOpt) && "Broken getOptionPred!");
+
+ do {
+ // Move current arg name out of Arg into OneArgName.
+ StringRef OneArgName = Arg.substr(0, Length);
+ Arg = Arg.substr(Length);
+
+ // Because ValueRequired is an invalid flag for grouped arguments,
+ // we don't need to pass argc/argv in.
+ assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
+ "Option can not be cl::Grouping AND cl::ValueRequired!");
+ int Dummy;
+ ErrorParsing |= ProvideOption(PGOpt, OneArgName,
+ StringRef(), 0, 0, Dummy);
+
+ // Get the next grouping option.
+ PGOpt = getOptionPred(Arg, Length, isGrouping, OptionsMap);
+ } while (PGOpt && Length != Arg.size());
+
+ // Return the last option with Arg cut down to just the last one.
+ return PGOpt;
+}
+
+
+
static bool RequiresValue(const Option *O) {
return O->getNumOccurrencesFlag() == cl::Required ||
O->getNumOccurrencesFlag() == cl::OneOrMore;
@@ -300,45 +348,35 @@ static bool EatsUnboundedNumberOfValues(const Option *O) {
/// ParseCStringVector - Break INPUT up wherever one or more
/// whitespace characters are found, and store the resulting tokens in
/// OUTPUT. The tokens stored in OUTPUT are dynamically allocated
-/// using strdup (), so it is the caller's responsibility to free ()
+/// using strdup(), so it is the caller's responsibility to free()
/// them later.
///
-static void ParseCStringVector(std::vector<char *> &output,
- const char *input) {
+static void ParseCStringVector(std::vector<char *> &OutputVector,
+ const char *Input) {
// Characters which will be treated as token separators:
- static const char *const delims = " \v\f\t\r\n";
-
- std::string work (input);
- // Skip past any delims at head of input string.
- size_t pos = work.find_first_not_of (delims);
- // If the string consists entirely of delims, then exit early.
- if (pos == std::string::npos) return;
- // Otherwise, jump forward to beginning of first word.
- work = work.substr (pos);
- // Find position of first delimiter.
- pos = work.find_first_of (delims);
-
- while (!work.empty() && pos != std::string::npos) {
- // Everything from 0 to POS is the next word to copy.
- output.push_back (strdup (work.substr (0,pos).c_str ()));
- // Is there another word in the string?
- size_t nextpos = work.find_first_not_of (delims, pos + 1);
- if (nextpos != std::string::npos) {
- // Yes? Then remove delims from beginning ...
- work = work.substr (work.find_first_not_of (delims, pos + 1));
- // and find the end of the word.
- pos = work.find_first_of (delims);
- } else {
- // No? (Remainder of string is delims.) End the loop.
- work = "";
- pos = std::string::npos;
+ StringRef Delims = " \v\f\t\r\n";
+
+ StringRef WorkStr(Input);
+ while (!WorkStr.empty()) {
+ // If the first character is a delimiter, strip them off.
+ if (Delims.find(WorkStr[0]) != StringRef::npos) {
+ size_t Pos = WorkStr.find_first_not_of(Delims);
+ if (Pos == StringRef::npos) Pos = WorkStr.size();
+ WorkStr = WorkStr.substr(Pos);
+ continue;
}
- }
-
- // If `input' ended with non-delim char, then we'll get here with
- // the last word of `input' in `work'; copy it now.
- if (!work.empty ()) {
- output.push_back (strdup (work.c_str ()));
+
+ // Find position of first delimiter.
+ size_t Pos = WorkStr.find_first_of(Delims);
+ if (Pos == StringRef::npos) Pos = WorkStr.size();
+
+ // Everything from 0 to Pos is the next word to copy.
+ char *NewStr = (char*)malloc(Pos+1);
+ memcpy(NewStr, WorkStr.data(), Pos);
+ NewStr[Pos] = 0;
+ OutputVector.push_back(NewStr);
+
+ WorkStr = WorkStr.substr(Pos);
}
}
@@ -372,20 +410,19 @@ void cl::ParseEnvironmentOptions(const char *progName, const char *envVar,
// Free all the strdup()ed strings.
for (std::vector<char*>::iterator i = newArgv.begin(), e = newArgv.end();
i != e; ++i)
- free (*i);
+ free(*i);
}
/// ExpandResponseFiles - Copy the contents of argv into newArgv,
/// substituting the contents of the response files for the arguments
/// of type @file.
-static void ExpandResponseFiles(int argc, char** argv,
+static void ExpandResponseFiles(unsigned argc, char** argv,
std::vector<char*>& newArgv) {
- for (int i = 1; i != argc; ++i) {
- char* arg = argv[i];
+ for (unsigned i = 1; i != argc; ++i) {
+ char *arg = argv[i];
if (arg[0] == '@') {
-
sys::PathWithStatus respFile(++arg);
// Check that the response file is not empty (mmap'ing empty
@@ -418,9 +455,9 @@ static void ExpandResponseFiles(int argc, char** argv,
void cl::ParseCommandLineOptions(int argc, char **argv,
const char *Overview, bool ReadResponseFiles) {
// Process all registered options.
- std::vector<Option*> PositionalOpts;
- std::vector<Option*> SinkOpts;
- std::map<std::string, Option*> Opts;
+ SmallVector<Option*, 4> PositionalOpts;
+ SmallVector<Option*, 4> SinkOpts;
+ StringMap<Option*> Opts;
GetOptionInfo(PositionalOpts, SinkOpts, Opts);
assert((!Opts.empty() || !PositionalOpts.empty()) &&
@@ -469,7 +506,7 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// unless there is only one positional argument...
if (PositionalOpts.size() > 2)
ErrorParsing |=
- Opt->error(" error - this positional option will never be matched, "
+ Opt->error("error - this positional option will never be matched, "
"because it does not Require a value, and a "
"cl::ConsumeAfter option is active!");
} else if (UnboundedFound && !Opt->ArgStr[0]) {
@@ -477,7 +514,7 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// not specified after an option that eats all extra arguments, or this
// one will never get any!
//
- ErrorParsing |= Opt->error(" error - option can never match, because "
+ ErrorParsing |= Opt->error("error - option can never match, because "
"another positional argument will match an "
"unbounded number of values, and this option"
" does not require a value!");
@@ -488,9 +525,9 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
}
// PositionalVals - A vector of "positional" arguments we accumulate into
- // the process at the end...
+ // the process at the end.
//
- std::vector<std::pair<std::string,unsigned> > PositionalVals;
+ SmallVector<std::pair<StringRef,unsigned>, 4> PositionalVals;
// If the program has named positional arguments, and the name has been run
// across, keep track of which positional argument was named. Otherwise put
@@ -501,8 +538,8 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
bool DashDashFound = false; // Have we read '--'?
for (int i = 1; i < argc; ++i) {
Option *Handler = 0;
- const char *Value = 0;
- const char *ArgName = "";
+ StringRef Value;
+ StringRef ArgName = "";
// If the option list changed, this means that some command line
// option has just been registered or deregistered. This can occur in
@@ -524,7 +561,9 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
if (ActivePositionalArg) {
ProvidePositionalOption(ActivePositionalArg, argv[i], i);
continue; // We are done!
- } else if (!PositionalOpts.empty()) {
+ }
+
+ if (!PositionalOpts.empty()) {
PositionalVals.push_back(std::make_pair(argv[i],i));
// All of the positional arguments have been fulfulled, give the rest to
@@ -550,69 +589,37 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// option is another positional argument. If so, treat it as an argument,
// otherwise feed it to the eating positional.
ArgName = argv[i]+1;
+ // Eat leading dashes.
+ while (!ArgName.empty() && ArgName[0] == '-')
+ ArgName = ArgName.substr(1);
+
Handler = LookupOption(ArgName, Value, Opts);
if (!Handler || Handler->getFormattingFlag() != cl::Positional) {
ProvidePositionalOption(ActivePositionalArg, argv[i], i);
continue; // We are done!
}
- } else { // We start with a '-', must be an argument...
+ } else { // We start with a '-', must be an argument.
ArgName = argv[i]+1;
+ // Eat leading dashes.
+ while (!ArgName.empty() && ArgName[0] == '-')
+ ArgName = ArgName.substr(1);
+
Handler = LookupOption(ArgName, Value, Opts);
// Check to see if this "option" is really a prefixed or grouped argument.
- if (Handler == 0) {
- std::string RealName(ArgName);
- if (RealName.size() > 1) {
- size_t Length = 0;
- Option *PGOpt = getOptionPred(RealName, Length, isPrefixedOrGrouping,
- Opts);
-
- // If the option is a prefixed option, then the value is simply the
- // rest of the name... so fall through to later processing, by
- // setting up the argument name flags and value fields.
- //
- if (PGOpt && PGOpt->getFormattingFlag() == cl::Prefix) {
- Value = ArgName+Length;
- assert(Opts.find(std::string(ArgName, Value)) != Opts.end() &&
- Opts.find(std::string(ArgName, Value))->second == PGOpt);
- Handler = PGOpt;
- } else if (PGOpt) {
- // This must be a grouped option... handle them now.
- assert(isGrouping(PGOpt) && "Broken getOptionPred!");
-
- do {
- // Move current arg name out of RealName into RealArgName...
- std::string RealArgName(RealName.begin(),
- RealName.begin() + Length);
- RealName.erase(RealName.begin(), RealName.begin() + Length);
-
- // Because ValueRequired is an invalid flag for grouped arguments,
- // we don't need to pass argc/argv in...
- //
- assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired &&
- "Option can not be cl::Grouping AND cl::ValueRequired!");
- int Dummy;
- ErrorParsing |= ProvideOption(PGOpt, RealArgName.c_str(),
- 0, 0, 0, Dummy);
-
- // Get the next grouping option...
- PGOpt = getOptionPred(RealName, Length, isGrouping, Opts);
- } while (PGOpt && Length != RealName.size());
-
- Handler = PGOpt; // Ate all of the options.
- }
- }
- }
+ if (Handler == 0)
+ Handler = HandlePrefixedOrGroupedOption(ArgName, Value,
+ ErrorParsing, Opts);
}
if (Handler == 0) {
if (SinkOpts.empty()) {
- cerr << ProgramName << ": Unknown command line argument '"
+ errs() << ProgramName << ": Unknown command line argument '"
<< argv[i] << "'. Try: '" << argv[0] << " --help'\n";
ErrorParsing = true;
} else {
- for (std::vector<Option*>::iterator I = SinkOpts.begin(),
+ for (SmallVectorImpl<Option*>::iterator I = SinkOpts.begin(),
E = SinkOpts.end(); I != E ; ++I)
(*I)->addOccurrence(i, "", argv[i]);
}
@@ -620,24 +627,23 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
}
// Check to see if this option accepts a comma separated list of values. If
- // it does, we have to split up the value into multiple values...
- if (Value && Handler->getMiscFlags() & CommaSeparated) {
- std::string Val(Value);
- std::string::size_type Pos = Val.find(',');
-
- while (Pos != std::string::npos) {
- // Process the portion before the comma...
- ErrorParsing |= ProvideOption(Handler, ArgName,
- std::string(Val.begin(),
- Val.begin()+Pos).c_str(),
+ // it does, we have to split up the value into multiple values.
+ if (Handler->getMiscFlags() & CommaSeparated) {
+ StringRef Val(Value);
+ StringRef::size_type Pos = Val.find(',');
+
+ while (Pos != StringRef::npos) {
+ // Process the portion before the comma.
+ ErrorParsing |= ProvideOption(Handler, ArgName, Val.substr(0, Pos),
argc, argv, i);
- // Erase the portion before the comma, AND the comma...
- Val.erase(Val.begin(), Val.begin()+Pos+1);
- Value += Pos+1; // Increment the original value pointer as well...
+ // Erase the portion before the comma, AND the comma.
+ Val = Val.substr(Pos+1);
+ Value.substr(Pos+1); // Increment the original value pointer as well.
- // Check for another comma...
+ // Check for another comma.
Pos = Val.find(',');
}
+ Value = Val;
}
// If this is a named positional argument, just remember that it is the
@@ -650,7 +656,7 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// Check and handle positional arguments now...
if (NumPositionalRequired > PositionalVals.size()) {
- cerr << ProgramName
+ errs() << ProgramName
<< ": Not enough positional command line arguments specified!\n"
<< "Must specify at least " << NumPositionalRequired
<< " positional arguments: See: " << argv[0] << " --help\n";
@@ -658,14 +664,14 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
ErrorParsing = true;
} else if (!HasUnlimitedPositionals
&& PositionalVals.size() > PositionalOpts.size()) {
- cerr << ProgramName
+ errs() << ProgramName
<< ": Too many positional arguments specified!\n"
<< "Can specify at most " << PositionalOpts.size()
<< " positional arguments: See: " << argv[0] << " --help\n";
ErrorParsing = true;
} else if (ConsumeAfterOpt == 0) {
- // Positional args have already been handled if ConsumeAfter is specified...
+ // Positional args have already been handled if ConsumeAfter is specified.
unsigned ValNo = 0, NumVals = static_cast<unsigned>(PositionalVals.size());
for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) {
if (RequiresValue(PositionalOpts[i])) {
@@ -693,7 +699,7 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
ValNo++;
break;
default:
- assert(0 && "Internal error, unexpected NumOccurrences flag in "
+ llvm_unreachable("Internal error, unexpected NumOccurrences flag in "
"positional argument processing!");
}
}
@@ -730,13 +736,13 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
}
// Loop over args and make sure all required args are specified!
- for (std::map<std::string, Option*>::iterator I = Opts.begin(),
+ for (StringMap<Option*>::iterator I = Opts.begin(),
E = Opts.end(); I != E; ++I) {
switch (I->second->getNumOccurrencesFlag()) {
case Required:
case OneOrMore:
if (I->second->getNumOccurrences() == 0) {
- I->second->error(" must be specified at least once!");
+ I->second->error("must be specified at least once!");
ErrorParsing = true;
}
// Fall through
@@ -756,7 +762,7 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// Free all the strdup()ed strings.
for (std::vector<char*>::iterator i = newArgv.begin(), e = newArgv.end();
i != e; ++i)
- free (*i);
+ free(*i);
}
// If we had an error processing our arguments, don't let the program execute
@@ -767,36 +773,35 @@ void cl::ParseCommandLineOptions(int argc, char **argv,
// Option Base class implementation
//
-bool Option::error(std::string Message, const char *ArgName) {
- if (ArgName == 0) ArgName = ArgStr;
- if (ArgName[0] == 0)
- cerr << HelpStr; // Be nice for positional arguments
+bool Option::error(const Twine &Message, StringRef ArgName) {
+ if (ArgName.data() == 0) ArgName = ArgStr;
+ if (ArgName.empty())
+ errs() << HelpStr; // Be nice for positional arguments
else
- cerr << ProgramName << ": for the -" << ArgName;
+ errs() << ProgramName << ": for the -" << ArgName;
- cerr << " option: " << Message << "\n";
+ errs() << " option: " << Message << "\n";
return true;
}
-bool Option::addOccurrence(unsigned pos, const char *ArgName,
- const std::string &Value,
- bool MultiArg) {
+bool Option::addOccurrence(unsigned pos, StringRef ArgName,
+ StringRef Value, bool MultiArg) {
if (!MultiArg)
NumOccurrences++; // Increment the number of times we have been seen
switch (getNumOccurrencesFlag()) {
case Optional:
if (NumOccurrences > 1)
- return error(": may only occur zero or one times!", ArgName);
+ return error("may only occur zero or one times!", ArgName);
break;
case Required:
if (NumOccurrences > 1)
- return error(": must occur exactly one time!", ArgName);
+ return error("must occur exactly one time!", ArgName);
// Fall through
case OneOrMore:
case ZeroOrMore:
case ConsumeAfter: break;
- default: return error(": bad num occurrences flag value!");
+ default: return error("bad num occurrences flag value!");
}
return handleOccurrence(pos, ArgName, Value);
@@ -823,8 +828,8 @@ size_t alias::getOptionWidth() const {
// Print out the option for the alias.
void alias::printOptionInfo(size_t GlobalWidth) const {
size_t L = std::strlen(ArgStr);
- cout << " -" << ArgStr << std::string(GlobalWidth-L-6, ' ') << " - "
- << HelpStr << "\n";
+ errs() << " -" << ArgStr;
+ errs().indent(GlobalWidth-L-6) << " - " << HelpStr << "\n";
}
@@ -850,13 +855,12 @@ size_t basic_parser_impl::getOptionWidth(const Option &O) const {
//
void basic_parser_impl::printOptionInfo(const Option &O,
size_t GlobalWidth) const {
- cout << " -" << O.ArgStr;
+ outs() << " -" << O.ArgStr;
if (const char *ValName = getValueName())
- cout << "=<" << getValueStr(O, ValName) << ">";
+ outs() << "=<" << getValueStr(O, ValName) << '>';
- cout << std::string(GlobalWidth-getOptionWidth(O), ' ') << " - "
- << O.HelpStr << "\n";
+ outs().indent(GlobalWidth-getOptionWidth(O)) << " - " << O.HelpStr << '\n';
}
@@ -864,81 +868,78 @@ void basic_parser_impl::printOptionInfo(const Option &O,
// parser<bool> implementation
//
-bool parser<bool>::parse(Option &O, const char *ArgName,
- const std::string &Arg, bool &Value) {
+bool parser<bool>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, bool &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = true;
- } else if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
+ return false;
+ }
+
+ if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
Value = false;
- } else {
- return O.error(": '" + Arg +
- "' is invalid value for boolean argument! Try 0 or 1");
+ return false;
}
- return false;
+ return O.error("'" + Arg +
+ "' is invalid value for boolean argument! Try 0 or 1");
}
// parser<boolOrDefault> implementation
//
-bool parser<boolOrDefault>::parse(Option &O, const char *ArgName,
- const std::string &Arg, boolOrDefault &Value) {
+bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, boolOrDefault &Value) {
if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" ||
Arg == "1") {
Value = BOU_TRUE;
- } else if (Arg == "false" || Arg == "FALSE"
- || Arg == "False" || Arg == "0") {
+ return false;
+ }
+ if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") {
Value = BOU_FALSE;
- } else {
- return O.error(": '" + Arg +
- "' is invalid value for boolean argument! Try 0 or 1");
+ return false;
}
- return false;
+
+ return O.error("'" + Arg +
+ "' is invalid value for boolean argument! Try 0 or 1");
}
// parser<int> implementation
//
-bool parser<int>::parse(Option &O, const char *ArgName,
- const std::string &Arg, int &Value) {
- char *End;
- Value = (int)strtol(Arg.c_str(), &End, 0);
- if (*End != 0)
- return O.error(": '" + Arg + "' value invalid for integer argument!");
+bool parser<int>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, int &Value) {
+ if (Arg.getAsInteger(0, Value))
+ return O.error("'" + Arg + "' value invalid for integer argument!");
return false;
}
// parser<unsigned> implementation
//
-bool parser<unsigned>::parse(Option &O, const char *ArgName,
- const std::string &Arg, unsigned &Value) {
- char *End;
- errno = 0;
- unsigned long V = strtoul(Arg.c_str(), &End, 0);
- Value = (unsigned)V;
- if (((V == ULONG_MAX) && (errno == ERANGE))
- || (*End != 0)
- || (Value != V))
- return O.error(": '" + Arg + "' value invalid for uint argument!");
+bool parser<unsigned>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, unsigned &Value) {
+
+ if (Arg.getAsInteger(0, Value))
+ return O.error("'" + Arg + "' value invalid for uint argument!");
return false;
}
// parser<double>/parser<float> implementation
//
-static bool parseDouble(Option &O, const std::string &Arg, double &Value) {
- const char *ArgStart = Arg.c_str();
+static bool parseDouble(Option &O, StringRef Arg, double &Value) {
+ SmallString<32> TmpStr(Arg.begin(), Arg.end());
+ const char *ArgStart = TmpStr.c_str();
char *End;
Value = strtod(ArgStart, &End);
if (*End != 0)
- return O.error(": '" +Arg+ "' value invalid for floating point argument!");
+ return O.error("'" + Arg + "' value invalid for floating point argument!");
return false;
}
-bool parser<double>::parse(Option &O, const char *AN,
- const std::string &Arg, double &Val) {
+bool parser<double>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, double &Val) {
return parseDouble(O, Arg, Val);
}
-bool parser<float>::parse(Option &O, const char *AN,
- const std::string &Arg, float &Val) {
+bool parser<float>::parse(Option &O, StringRef ArgName,
+ StringRef Arg, float &Val) {
double dVal;
if (parseDouble(O, Arg, dVal))
return true;
@@ -955,14 +956,12 @@ bool parser<float>::parse(Option &O, const char *AN,
// argument string. If the option is not found, getNumOptions() is returned.
//
unsigned generic_parser_base::findOption(const char *Name) {
- unsigned i = 0, e = getNumOptions();
- std::string N(Name);
+ unsigned e = getNumOptions();
- while (i != e)
- if (getOption(i) == N)
+ for (unsigned i = 0; i != e; ++i) {
+ if (strcmp(getOption(i), Name) == 0)
return i;
- else
- ++i;
+ }
return e;
}
@@ -989,21 +988,21 @@ void generic_parser_base::printOptionInfo(const Option &O,
size_t GlobalWidth) const {
if (O.hasArgStr()) {
size_t L = std::strlen(O.ArgStr);
- cout << " -" << O.ArgStr << std::string(GlobalWidth-L-6, ' ')
- << " - " << O.HelpStr << "\n";
+ outs() << " -" << O.ArgStr;
+ outs().indent(GlobalWidth-L-6) << " - " << O.HelpStr << '\n';
for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
size_t NumSpaces = GlobalWidth-strlen(getOption(i))-8;
- cout << " =" << getOption(i) << std::string(NumSpaces, ' ')
- << " - " << getDescription(i) << "\n";
+ outs() << " =" << getOption(i);
+ outs().indent(NumSpaces) << " - " << getDescription(i) << '\n';
}
} else {
if (O.HelpStr[0])
- cout << " " << O.HelpStr << "\n";
+ outs() << " " << O.HelpStr << '\n';
for (unsigned i = 0, e = getNumOptions(); i != e; ++i) {
size_t L = std::strlen(getOption(i));
- cout << " -" << getOption(i) << std::string(GlobalWidth-L-8, ' ')
- << " - " << getDescription(i) << "\n";
+ outs() << " -" << getOption(i);
+ outs().indent(GlobalWidth-L-8) << " - " << getDescription(i) << '\n';
}
}
}
@@ -1013,6 +1012,12 @@ void generic_parser_base::printOptionInfo(const Option &O,
// --help and --help-hidden option implementation
//
+static int OptNameCompare(const void *LHS, const void *RHS) {
+ typedef std::pair<const char *, Option*> pair_ty;
+
+ return strcmp(((pair_ty*)LHS)->first, ((pair_ty*)RHS)->first);
+}
+
namespace {
class HelpPrinter {
@@ -1020,14 +1025,6 @@ class HelpPrinter {
const Option *EmptyArg;
const bool ShowHidden;
- // isHidden/isReallyHidden - Predicates to be used to filter down arg lists.
- inline static bool isHidden(std::pair<std::string, Option *> &OptPair) {
- return OptPair.second->getOptionHiddenFlag() >= Hidden;
- }
- inline static bool isReallyHidden(std::pair<std::string, Option *> &OptPair) {
- return OptPair.second->getOptionHiddenFlag() == ReallyHidden;
- }
-
public:
explicit HelpPrinter(bool showHidden) : ShowHidden(showHidden) {
EmptyArg = 0;
@@ -1037,34 +1034,40 @@ public:
if (Value == false) return;
// Get all the options.
- std::vector<Option*> PositionalOpts;
- std::vector<Option*> SinkOpts;
- std::map<std::string, Option*> OptMap;
+ SmallVector<Option*, 4> PositionalOpts;
+ SmallVector<Option*, 4> SinkOpts;
+ StringMap<Option*> OptMap;
GetOptionInfo(PositionalOpts, SinkOpts, OptMap);
- // Copy Options into a vector so we can sort them as we like...
- std::vector<std::pair<std::string, Option*> > Opts;
- copy(OptMap.begin(), OptMap.end(), std::back_inserter(Opts));
-
- // Eliminate Hidden or ReallyHidden arguments, depending on ShowHidden
- Opts.erase(std::remove_if(Opts.begin(), Opts.end(),
- std::ptr_fun(ShowHidden ? isReallyHidden : isHidden)),
- Opts.end());
-
- // Eliminate duplicate entries in table (from enum flags options, f.e.)
- { // Give OptionSet a scope
- std::set<Option*> OptionSet;
- for (unsigned i = 0; i != Opts.size(); ++i)
- if (OptionSet.count(Opts[i].second) == 0)
- OptionSet.insert(Opts[i].second); // Add new entry to set
- else
- Opts.erase(Opts.begin()+i--); // Erase duplicate
+ // Copy Options into a vector so we can sort them as we like.
+ SmallVector<std::pair<const char *, Option*>, 128> Opts;
+ SmallPtrSet<Option*, 128> OptionSet; // Duplicate option detection.
+
+ for (StringMap<Option*>::iterator I = OptMap.begin(), E = OptMap.end();
+ I != E; ++I) {
+ // Ignore really-hidden options.
+ if (I->second->getOptionHiddenFlag() == ReallyHidden)
+ continue;
+
+ // Unless showhidden is set, ignore hidden flags.
+ if (I->second->getOptionHiddenFlag() == Hidden && !ShowHidden)
+ continue;
+
+ // If we've already seen this option, don't add it to the list again.
+ if (!OptionSet.insert(I->second))
+ continue;
+
+ Opts.push_back(std::pair<const char *, Option*>(I->getKey().data(),
+ I->second));
}
+
+ // Sort the options list alphabetically.
+ qsort(Opts.data(), Opts.size(), sizeof(Opts[0]), OptNameCompare);
if (ProgramOverview)
- cout << "OVERVIEW: " << ProgramOverview << "\n";
+ outs() << "OVERVIEW: " << ProgramOverview << "\n";
- cout << "USAGE: " << ProgramName << " [options]";
+ outs() << "USAGE: " << ProgramName << " [options]";
// Print out the positional options.
Option *CAOpt = 0; // The cl::ConsumeAfter option, if it exists...
@@ -1074,28 +1077,28 @@ public:
for (size_t i = CAOpt != 0, e = PositionalOpts.size(); i != e; ++i) {
if (PositionalOpts[i]->ArgStr[0])
- cout << " --" << PositionalOpts[i]->ArgStr;
- cout << " " << PositionalOpts[i]->HelpStr;
+ outs() << " --" << PositionalOpts[i]->ArgStr;
+ outs() << " " << PositionalOpts[i]->HelpStr;
}
// Print the consume after option info if it exists...
- if (CAOpt) cout << " " << CAOpt->HelpStr;
+ if (CAOpt) outs() << " " << CAOpt->HelpStr;
- cout << "\n\n";
+ outs() << "\n\n";
// Compute the maximum argument length...
MaxArgLen = 0;
for (size_t i = 0, e = Opts.size(); i != e; ++i)
MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth());
- cout << "OPTIONS:\n";
+ outs() << "OPTIONS:\n";
for (size_t i = 0, e = Opts.size(); i != e; ++i)
Opts[i].second->printOptionInfo(MaxArgLen);
// Print any extra help the user has declared.
for (std::vector<const char *>::iterator I = MoreHelp->begin(),
E = MoreHelp->end(); I != E; ++I)
- cout << *I;
+ outs() << *I;
MoreHelp->clear();
// Halt the program since help information was printed
@@ -1120,37 +1123,64 @@ HHOp("help-hidden", cl::desc("Display all available options"),
static void (*OverrideVersionPrinter)() = 0;
+static int TargetArraySortFn(const void *LHS, const void *RHS) {
+ typedef std::pair<const char *, const Target*> pair_ty;
+ return strcmp(((const pair_ty*)LHS)->first, ((const pair_ty*)RHS)->first);
+}
+
namespace {
class VersionPrinter {
public:
void print() {
- cout << "Low Level Virtual Machine (http://llvm.org/):\n";
- cout << " " << PACKAGE_NAME << " version " << PACKAGE_VERSION;
+ raw_ostream &OS = outs();
+ OS << "Low Level Virtual Machine (http://llvm.org/):\n"
+ << " " << PACKAGE_NAME << " version " << PACKAGE_VERSION;
#ifdef LLVM_VERSION_INFO
- cout << LLVM_VERSION_INFO;
+ OS << LLVM_VERSION_INFO;
#endif
- cout << "\n ";
+ OS << "\n ";
#ifndef __OPTIMIZE__
- cout << "DEBUG build";
+ OS << "DEBUG build";
#else
- cout << "Optimized build";
+ OS << "Optimized build";
#endif
#ifndef NDEBUG
- cout << " with assertions";
+ OS << " with assertions";
#endif
- cout << ".\n";
- cout << " Built " << __DATE__ << "(" << __TIME__ << ").\n";
+ OS << ".\n"
+ << " Built " << __DATE__ << " (" << __TIME__ << ").\n"
+ << " Host: " << sys::getHostTriple() << '\n'
+ << '\n'
+ << " Registered Targets:\n";
+
+ std::vector<std::pair<const char *, const Target*> > Targets;
+ size_t Width = 0;
+ for (TargetRegistry::iterator it = TargetRegistry::begin(),
+ ie = TargetRegistry::end(); it != ie; ++it) {
+ Targets.push_back(std::make_pair(it->getName(), &*it));
+ Width = std::max(Width, strlen(Targets.back().first));
+ }
+ if (!Targets.empty())
+ qsort(&Targets[0], Targets.size(), sizeof(Targets[0]),
+ TargetArraySortFn);
+
+ for (unsigned i = 0, e = Targets.size(); i != e; ++i) {
+ OS << " " << Targets[i].first;
+ OS.indent(Width - strlen(Targets[i].first)) << " - "
+ << Targets[i].second->getShortDescription() << '\n';
+ }
+ if (Targets.empty())
+ OS << " (none)\n";
}
void operator=(bool OptionWasSpecified) {
- if (OptionWasSpecified) {
- if (OverrideVersionPrinter == 0) {
- print();
- exit(1);
- } else {
- (*OverrideVersionPrinter)();
- exit(1);
- }
+ if (!OptionWasSpecified) return;
+
+ if (OverrideVersionPrinter == 0) {
+ print();
+ exit(1);
}
+ (*OverrideVersionPrinter)();
+ exit(1);
}
};
} // End anonymous namespace
diff --git a/lib/Support/ConstantRange.cpp b/lib/Support/ConstantRange.cpp
index cb8c4b0..423e90d 100644
--- a/lib/Support/ConstantRange.cpp
+++ b/lib/Support/ConstantRange.cpp
@@ -23,12 +23,12 @@
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Instructions.h"
using namespace llvm;
/// Initialize a full (the default) or empty set for the specified type.
///
-ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
- Lower(BitWidth, 0), Upper(BitWidth, 0) {
+ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
if (Full)
Lower = Upper = APInt::getMaxValue(BitWidth);
else
@@ -37,16 +37,63 @@ ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
/// Initialize a range to hold the single specified value.
///
-ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { }
+ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) {}
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
- assert(L.getBitWidth() == U.getBitWidth() &&
+ assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
+ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
+ const ConstantRange &CR) {
+ uint32_t W = CR.getBitWidth();
+ switch (Pred) {
+ default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
+ case ICmpInst::ICMP_EQ:
+ return CR;
+ case ICmpInst::ICMP_NE:
+ if (CR.isSingleElement())
+ return ConstantRange(CR.getUpper(), CR.getLower());
+ return ConstantRange(W);
+ case ICmpInst::ICMP_ULT:
+ return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
+ case ICmpInst::ICMP_SLT:
+ return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
+ case ICmpInst::ICMP_ULE: {
+ APInt UMax(CR.getUnsignedMax());
+ if (UMax.isMaxValue())
+ return ConstantRange(W);
+ return ConstantRange(APInt::getMinValue(W), UMax + 1);
+ }
+ case ICmpInst::ICMP_SLE: {
+ APInt SMax(CR.getSignedMax());
+ if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
+ return ConstantRange(W);
+ return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
+ }
+ case ICmpInst::ICMP_UGT:
+ return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
+ case ICmpInst::ICMP_SGT:
+ return ConstantRange(CR.getSignedMin() + 1,
+ APInt::getSignedMinValue(W));
+ case ICmpInst::ICMP_UGE: {
+ APInt UMin(CR.getUnsignedMin());
+ if (UMin.isMinValue())
+ return ConstantRange(W);
+ return ConstantRange(UMin, APInt::getNullValue(W));
+ }
+ case ICmpInst::ICMP_SGE: {
+ APInt SMin(CR.getSignedMin());
+ if (SMin.isMinSignedValue())
+ return ConstantRange(W);
+ return ConstantRange(SMin, APInt::getSignedMinValue(W));
+ }
+ }
+}
+
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
@@ -112,14 +159,10 @@ APInt ConstantRange::getSignedMax() const {
else
return SignedMax;
} else {
- if ((getUpper() - 1).slt(getLower())) {
- if (getLower() != SignedMax)
- return SignedMax;
- else
- return getUpper() - 1;
- } else {
+ if (getLower().isNegative() == getUpper().isNegative())
+ return SignedMax;
+ else
return getUpper() - 1;
- }
}
}
@@ -157,6 +200,30 @@ bool ConstantRange::contains(const APInt &V) const {
return Lower.ule(V) || V.ult(Upper);
}
+/// contains - Return true if the argument is a subset of this range.
+/// Two equal set contain each other. The empty set is considered to be
+/// contained by all other sets.
+///
+bool ConstantRange::contains(const ConstantRange &Other) const {
+ if (isFullSet()) return true;
+ if (Other.isFullSet()) return false;
+ if (Other.isEmptySet()) return true;
+ if (isEmptySet()) return false;
+
+ if (!isWrappedSet()) {
+ if (Other.isWrappedSet())
+ return false;
+
+ return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
+ }
+
+ if (!Other.isWrappedSet())
+ return Other.getUpper().ule(Upper) ||
+ Lower.ule(Other.getLower());
+
+ return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
+}
+
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(const APInt &Val) const {
@@ -208,59 +275,20 @@ ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
}
/// intersectWith - Return the range that results from the intersection of this
-/// range with another range.
-///
+/// range with another range. The resultant range is guaranteed to include all
+/// elements contained in both input ranges, and to have the smallest possible
+/// set size that does so. Because there may be two intersections with the
+/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
- // Handle common special cases
- if (isEmptySet() || CR.isFullSet())
- return *this;
- if (isFullSet() || CR.isEmptySet())
- return CR;
-
- if (!isWrappedSet()) {
- if (!CR.isWrappedSet()) {
- using namespace APIntOps;
- APInt L = umax(Lower, CR.Lower);
- APInt U = umin(Upper, CR.Upper);
-
- if (L.ult(U)) // If range isn't empty...
- return ConstantRange(L, U);
- else
- return ConstantRange(getBitWidth(), false);// Otherwise, empty set
- } else
- return intersect1Wrapped(CR, *this);
- } else { // We know "this" is wrapped...
- if (!CR.isWrappedSet())
- return intersect1Wrapped(*this, CR);
- else {
- // Both ranges are wrapped...
- using namespace APIntOps;
- APInt L = umax(Lower, CR.Lower);
- APInt U = umin(Upper, CR.Upper);
- return ConstantRange(L, U);
- }
- }
- return *this;
-}
-
-/// maximalIntersectWith - Return the range that results from the intersection
-/// of this range with another range. The resultant range is guaranteed to
-/// include all elements contained in both input ranges, and to have the
-/// smallest possible set size that does so. Because there may be two
-/// intersections with the same set size, A.maximalIntersectWith(B) might not
-/// be equal to B.maximalIntersect(A).
-ConstantRange ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
- return CR.maximalIntersectWith(*this);
+ return CR.intersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.ult(CR.Lower)) {
@@ -343,69 +371,74 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
- APInt L = Lower, U = Upper;
-
if (!isWrappedSet() && !CR.isWrappedSet()) {
+ if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
+ // If the two ranges are disjoint, find the smaller gap and bridge it.
+ APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
+ if (d1.ult(d2))
+ return ConstantRange(Lower, CR.Upper);
+ else
+ return ConstantRange(CR.Lower, Upper);
+ }
+
+ APInt L = Lower, U = Upper;
if (CR.Lower.ult(L))
L = CR.Lower;
-
- if (CR.Upper.ugt(U))
+ if ((CR.Upper - 1).ugt(U - 1))
U = CR.Upper;
+
+ if (L == 0 && U == 0)
+ return ConstantRange(getBitWidth());
+
+ return ConstantRange(L, U);
}
- if (isWrappedSet() && !CR.isWrappedSet()) {
- if ((CR.Lower.ult(Upper) && CR.Upper.ult(Upper)) ||
- (CR.Lower.ugt(Lower) && CR.Upper.ugt(Lower))) {
+ if (!CR.isWrappedSet()) {
+ // ------U L----- and ------U L----- : this
+ // L--U L--U : CR
+ if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
return *this;
- }
- if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) {
+ // ------U L----- : this
+ // L---------U : CR
+ if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
return ConstantRange(getBitWidth());
- }
-
- if (CR.Lower.ule(Upper) && CR.Upper.ule(Lower)) {
- APInt d1 = CR.Upper - Upper, d2 = Lower - CR.Upper;
- if (d1.ult(d2)) {
- U = CR.Upper;
- } else {
- L = CR.Upper;
- }
- }
- if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) {
+ // ----U L---- : this
+ // L---U : CR
+ // <d1> <d2>
+ if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
- if (d1.ult(d2)) {
- U = CR.Lower + 1;
- } else {
- L = CR.Upper - 1;
- }
+ if (d1.ult(d2))
+ return ConstantRange(Lower, CR.Upper);
+ else
+ return ConstantRange(CR.Lower, Upper);
}
- if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) {
- APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Lower;
+ // ----U L----- : this
+ // L----U : CR
+ if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
+ return ConstantRange(CR.Lower, Upper);
- if (d1.ult(d2)) {
- U = CR.Lower + 1;
- } else {
- L = CR.Lower;
- }
- }
+ // ------U L---- : this
+ // L-----U : CR
+ if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower))
+ return ConstantRange(Lower, CR.Upper);
}
- if (isWrappedSet() && CR.isWrappedSet()) {
- if (Lower.ult(CR.Upper) || CR.Lower.ult(Upper))
- return ConstantRange(getBitWidth());
+ assert(isWrappedSet() && CR.isWrappedSet() &&
+ "ConstantRange::unionWith missed wrapped union unwrapped case");
- if (CR.Upper.ugt(U)) {
- U = CR.Upper;
- }
-
- if (CR.Lower.ult(L)) {
- L = CR.Lower;
- }
+ // ------U L---- and ------U L---- : this
+ // -U L----------- and ------------U L : CR
+ if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
+ return ConstantRange(getBitWidth());
- if (L == U) return ConstantRange(getBitWidth());
- }
+ APInt L = Lower, U = Upper;
+ if (CR.Upper.ugt(U))
+ U = CR.Upper;
+ if (CR.Lower.ult(L))
+ L = CR.Lower;
return ConstantRange(L, U);
}
@@ -435,7 +468,7 @@ ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
- APInt::getLowBitsSet(DstTySize, SrcTySize-1));
+ APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
}
APInt L = Lower; L.sext(DstTySize);
@@ -459,6 +492,99 @@ ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
return ConstantRange(L, U);
}
+ConstantRange
+ConstantRange::add(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (isFullSet() || Other.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
+ APInt NewLower = getLower() + Other.getLower();
+ APInt NewUpper = getUpper() + Other.getUpper() - 1;
+ if (NewLower == NewUpper)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ ConstantRange X = ConstantRange(NewLower, NewUpper);
+ if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
+ // We've wrapped, therefore, full set.
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return X;
+}
+
+ConstantRange
+ConstantRange::multiply(const ConstantRange &Other) const {
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (isFullSet() || Other.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
+ APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
+ APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
+ APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
+
+ ConstantRange Result_zext = ConstantRange(this_min * Other_min,
+ this_max * Other_max + 1);
+ return Result_zext.truncate(getBitWidth());
+}
+
+ConstantRange
+ConstantRange::smax(const ConstantRange &Other) const {
+ // X smax Y is: range(smax(X_smin, Y_smin),
+ // smax(X_smax, Y_smax))
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
+ APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
+ if (NewU == NewL)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(NewL, NewU);
+}
+
+ConstantRange
+ConstantRange::umax(const ConstantRange &Other) const {
+ // X umax Y is: range(umax(X_umin, Y_umin),
+ // umax(X_umax, Y_umax))
+ if (isEmptySet() || Other.isEmptySet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
+ APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
+ if (NewU == NewL)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+ return ConstantRange(NewL, NewU);
+}
+
+ConstantRange
+ConstantRange::udiv(const ConstantRange &RHS) const {
+ if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/false);
+ if (RHS.isFullSet())
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
+
+ APInt RHS_umin = RHS.getUnsignedMin();
+ if (RHS_umin == 0) {
+ // We want the lowest value in RHS excluding zero. Usually that would be 1
+ // except for a range in the form of [X, 1) in which case it would be X.
+ if (RHS.getUpper() == 1)
+ RHS_umin = RHS.getLower();
+ else
+ RHS_umin = APInt(getBitWidth(), 1);
+ }
+
+ APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
+
+ // If the LHS is Full and the RHS is a wrapped interval containing 1 then
+ // this could occur.
+ if (Lower == Upper)
+ return ConstantRange(getBitWidth(), /*isFullSet=*/true);
+
+ return ConstantRange(Lower, Upper);
+}
+
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(raw_ostream &OS) const {
@@ -470,3 +596,5 @@ void ConstantRange::print(raw_ostream &OS) const {
void ConstantRange::dump() const {
print(errs());
}
+
+
diff --git a/lib/Support/Debug.cpp b/lib/Support/Debug.cpp
index a09cddf..71ff411 100644
--- a/lib/Support/Debug.cpp
+++ b/lib/Support/Debug.cpp
@@ -27,51 +27,37 @@
#include "llvm/Support/Debug.h"
using namespace llvm;
+// All Debug.h functionality is a no-op in NDEBUG mode.
+#ifndef NDEBUG
bool llvm::DebugFlag; // DebugFlag - Exported boolean set by the -debug option
-namespace {
-#ifndef NDEBUG
- // -debug - Command line option to enable the DEBUG statements in the passes.
- // This flag may only be enabled in debug builds.
- static cl::opt<bool, true>
- Debug("debug", cl::desc("Enable debug output"), cl::Hidden,
- cl::location(DebugFlag));
+// -debug - Command line option to enable the DEBUG statements in the passes.
+// This flag may only be enabled in debug builds.
+static cl::opt<bool, true>
+Debug("debug", cl::desc("Enable debug output"), cl::Hidden,
+ cl::location(DebugFlag));
- static std::string CurrentDebugType;
- static struct DebugOnlyOpt {
- void operator=(const std::string &Val) const {
- DebugFlag |= !Val.empty();
- CurrentDebugType = Val;
- }
- } DebugOnlyOptLoc;
+static std::string CurrentDebugType;
+static struct DebugOnlyOpt {
+ void operator=(const std::string &Val) const {
+ DebugFlag |= !Val.empty();
+ CurrentDebugType = Val;
+ }
+} DebugOnlyOptLoc;
- static cl::opt<DebugOnlyOpt, true, cl::parser<std::string> >
- DebugOnly("debug-only", cl::desc("Enable a specific type of debug output"),
- cl::Hidden, cl::value_desc("debug string"),
- cl::location(DebugOnlyOptLoc), cl::ValueRequired);
-#endif
-}
+static cl::opt<DebugOnlyOpt, true, cl::parser<std::string> >
+DebugOnly("debug-only", cl::desc("Enable a specific type of debug output"),
+ cl::Hidden, cl::value_desc("debug string"),
+ cl::location(DebugOnlyOptLoc), cl::ValueRequired);
// isCurrentDebugType - Return true if the specified string is the debug type
// specified on the command line, or if none was specified on the command line
// with the -debug-only=X option.
//
bool llvm::isCurrentDebugType(const char *DebugType) {
-#ifndef NDEBUG
return CurrentDebugType.empty() || DebugType == CurrentDebugType;
+}
#else
- return false;
+// Avoid "has no symbols" warning.
+int Debug_dummy = 0;
#endif
-}
-
-// getErrorOutputStream - Returns the error output stream (std::cerr). This
-// places the std::c* I/O streams into one .cpp file and relieves the whole
-// program from having to have hundreds of static c'tor/d'tors for them.
-//
-OStream &llvm::getErrorOutputStream(const char *DebugType) {
- static OStream cnoout(0);
- if (DebugFlag && isCurrentDebugType(DebugType))
- return cerr;
- else
- return cnoout;
-}
diff --git a/lib/Support/Dwarf.cpp b/lib/Support/Dwarf.cpp
index fa99035..8b688ca 100644
--- a/lib/Support/Dwarf.cpp
+++ b/lib/Support/Dwarf.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cassert>
@@ -83,7 +84,7 @@ const char *TagString(unsigned Tag) {
case DW_TAG_lo_user: return "DW_TAG_lo_user";
case DW_TAG_hi_user: return "DW_TAG_hi_user";
}
- assert(0 && "Unknown Dwarf Tag");
+ llvm_unreachable("Unknown Dwarf Tag");
return "";
}
@@ -94,7 +95,7 @@ const char *ChildrenString(unsigned Children) {
case DW_CHILDREN_no: return "CHILDREN_no";
case DW_CHILDREN_yes: return "CHILDREN_yes";
}
- assert(0 && "Unknown Dwarf ChildrenFlag");
+ llvm_unreachable("Unknown Dwarf ChildrenFlag");
return "";
}
@@ -205,7 +206,7 @@ const char *AttributeString(unsigned Attribute) {
case DW_AT_APPLE_major_runtime_vers: return "DW_AT_APPLE_major_runtime_vers";
case DW_AT_APPLE_runtime_class: return "DW_AT_APPLE_runtime_class";
}
- assert(0 && "Unknown Dwarf Attribute");
+ llvm_unreachable("Unknown Dwarf Attribute");
return "";
}
@@ -235,7 +236,7 @@ const char *FormEncodingString(unsigned Encoding) {
case DW_FORM_ref_udata: return "FORM_ref_udata";
case DW_FORM_indirect: return "FORM_indirect";
}
- assert(0 && "Unknown Dwarf Form Encoding");
+ llvm_unreachable("Unknown Dwarf Form Encoding");
return "";
}
@@ -310,7 +311,7 @@ const char *OperationEncodingString(unsigned Encoding) {
case DW_OP_lo_user: return "OP_lo_user";
case DW_OP_hi_user: return "OP_hi_user";
}
- assert(0 && "Unknown Dwarf Operation Encoding");
+ llvm_unreachable("Unknown Dwarf Operation Encoding");
return "";
}
@@ -336,7 +337,7 @@ const char *AttributeEncodingString(unsigned Encoding) {
case DW_ATE_lo_user: return "ATE_lo_user";
case DW_ATE_hi_user: return "ATE_hi_user";
}
- assert(0 && "Unknown Dwarf Attribute Encoding");
+ llvm_unreachable("Unknown Dwarf Attribute Encoding");
return "";
}
@@ -350,7 +351,7 @@ const char *DecimalSignString(unsigned Sign) {
case DW_DS_leading_separate: return "DS_leading_separate";
case DW_DS_trailing_separate: return "DS_trailing_separate";
}
- assert(0 && "Unknown Dwarf Decimal Sign Attribute");
+ llvm_unreachable("Unknown Dwarf Decimal Sign Attribute");
return "";
}
@@ -364,7 +365,7 @@ const char *EndianityString(unsigned Endian) {
case DW_END_lo_user: return "END_lo_user";
case DW_END_hi_user: return "END_hi_user";
}
- assert(0 && "Unknown Dwarf Endianity");
+ llvm_unreachable("Unknown Dwarf Endianity");
return "";
}
@@ -377,7 +378,7 @@ const char *AccessibilityString(unsigned Access) {
case DW_ACCESS_protected: return "ACCESS_protected";
case DW_ACCESS_private: return "ACCESS_private";
}
- assert(0 && "Unknown Dwarf Accessibility");
+ llvm_unreachable("Unknown Dwarf Accessibility");
return "";
}
@@ -389,7 +390,7 @@ const char *VisibilityString(unsigned Visibility) {
case DW_VIS_exported: return "VIS_exported";
case DW_VIS_qualified: return "VIS_qualified";
}
- assert(0 && "Unknown Dwarf Visibility");
+ llvm_unreachable("Unknown Dwarf Visibility");
return "";
}
@@ -401,7 +402,7 @@ const char *VirtualityString(unsigned Virtuality) {
case DW_VIRTUALITY_virtual: return "VIRTUALITY_virtual";
case DW_VIRTUALITY_pure_virtual: return "VIRTUALITY_pure_virtual";
}
- assert(0 && "Unknown Dwarf Virtuality");
+ llvm_unreachable("Unknown Dwarf Virtuality");
return "";
}
@@ -431,7 +432,7 @@ const char *LanguageString(unsigned Language) {
case DW_LANG_lo_user: return "LANG_lo_user";
case DW_LANG_hi_user: return "LANG_hi_user";
}
- assert(0 && "Unknown Dwarf Language");
+ llvm_unreachable("Unknown Dwarf Language");
return "";
}
@@ -444,7 +445,7 @@ const char *CaseString(unsigned Case) {
case DW_ID_down_case: return "ID_down_case";
case DW_ID_case_insensitive: return "ID_case_insensitive";
}
- assert(0 && "Unknown Dwarf Identifier Case");
+ llvm_unreachable("Unknown Dwarf Identifier Case");
return "";
}
@@ -458,7 +459,7 @@ const char *ConventionString(unsigned Convention) {
case DW_CC_lo_user: return "CC_lo_user";
case DW_CC_hi_user: return "CC_hi_user";
}
- assert(0 && "Unknown Dwarf Calling Convention");
+ llvm_unreachable("Unknown Dwarf Calling Convention");
return "";
}
@@ -471,7 +472,7 @@ const char *InlineCodeString(unsigned Code) {
case DW_INL_declared_not_inlined: return "INL_declared_not_inlined";
case DW_INL_declared_inlined: return "INL_declared_inlined";
}
- assert(0 && "Unknown Dwarf Inline Code");
+ llvm_unreachable("Unknown Dwarf Inline Code");
return "";
}
@@ -482,7 +483,7 @@ const char *ArrayOrderString(unsigned Order) {
case DW_ORD_row_major: return "ORD_row_major";
case DW_ORD_col_major: return "ORD_col_major";
}
- assert(0 && "Unknown Dwarf Array Order");
+ llvm_unreachable("Unknown Dwarf Array Order");
return "";
}
@@ -493,7 +494,7 @@ const char *DiscriminantString(unsigned Discriminant) {
case DW_DSC_label: return "DSC_label";
case DW_DSC_range: return "DSC_range";
}
- assert(0 && "Unknown Dwarf Discriminant Descriptor");
+ llvm_unreachable("Unknown Dwarf Discriminant Descriptor");
return "";
}
@@ -514,7 +515,7 @@ const char *LNStandardString(unsigned Standard) {
case DW_LNS_set_epilogue_begin: return "LNS_set_epilogue_begin";
case DW_LNS_set_isa: return "LNS_set_isa";
}
- assert(0 && "Unknown Dwarf Line Number Standard");
+ llvm_unreachable("Unknown Dwarf Line Number Standard");
return "";
}
@@ -529,7 +530,7 @@ const char *LNExtendedString(unsigned Encoding) {
case DW_LNE_lo_user: return "LNE_lo_user";
case DW_LNE_hi_user: return "LNE_hi_user";
}
- assert(0 && "Unknown Dwarf Line Number Extended Opcode Encoding");
+ llvm_unreachable("Unknown Dwarf Line Number Extended Opcode Encoding");
return "";
}
@@ -544,7 +545,7 @@ const char *MacinfoString(unsigned Encoding) {
case DW_MACINFO_end_file: return "MACINFO_end_file";
case DW_MACINFO_vendor_ext: return "MACINFO_vendor_ext";
}
- assert(0 && "Unknown Dwarf Macinfo Type Encodings");
+ llvm_unreachable("Unknown Dwarf Macinfo Type Encodings");
return "";
}
@@ -580,7 +581,7 @@ const char *CallFrameString(unsigned Encoding) {
case DW_CFA_lo_user: return "CFA_lo_user";
case DW_CFA_hi_user: return "CFA_hi_user";
}
- assert(0 && "Unknown Dwarf Call Frame Instruction Encodings");
+ llvm_unreachable("Unknown Dwarf Call Frame Instruction Encodings");
return "";
}
diff --git a/lib/Support/ErrorHandling.cpp b/lib/Support/ErrorHandling.cpp
new file mode 100644
index 0000000..dff4f03
--- /dev/null
+++ b/lib/Support/ErrorHandling.cpp
@@ -0,0 +1,73 @@
+//===- lib/Support/ErrorHandling.cpp - Callbacks for errors -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an API for error handling, it supersedes cerr+abort(), and
+// cerr+exit() style error handling.
+// Callbacks can be registered for these errors through this API.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Threading.h"
+#include <cassert>
+#include <cstdlib>
+
+using namespace llvm;
+using namespace std;
+
+static llvm_error_handler_t ErrorHandler = 0;
+static void *ErrorHandlerUserData = 0;
+
+namespace llvm {
+void llvm_install_error_handler(llvm_error_handler_t handler,
+ void *user_data) {
+ assert(!llvm_is_multithreaded() &&
+ "Cannot register error handlers after starting multithreaded mode!\n");
+ assert(!ErrorHandler && "Error handler already registered!\n");
+ ErrorHandler = handler;
+ ErrorHandlerUserData = user_data;
+}
+
+void llvm_remove_error_handler() {
+ ErrorHandler = 0;
+}
+
+void llvm_report_error(const char *reason) {
+ llvm_report_error(Twine(reason));
+}
+
+void llvm_report_error(const std::string &reason) {
+ llvm_report_error(Twine(reason));
+}
+
+void llvm_report_error(const Twine &reason) {
+ if (!ErrorHandler) {
+ errs() << "LLVM ERROR: " << reason << "\n";
+ } else {
+ ErrorHandler(ErrorHandlerUserData, reason.str());
+ }
+ exit(1);
+}
+
+void llvm_unreachable_internal(const char *msg, const char *file,
+ unsigned line) {
+ // This code intentionally doesn't call the ErrorHandler callback, because
+ // llvm_unreachable is intended to be used to indicate "impossible"
+ // situations, and not legitimate runtime errors.
+ if (msg)
+ errs() << msg << "\n";
+ errs() << "UNREACHABLE executed";
+ if (file)
+ errs() << " at " << file << ":" << line;
+ errs() << "!\n";
+ abort();
+}
+}
+
diff --git a/lib/Support/FoldingSet.cpp b/lib/Support/FoldingSet.cpp
index 41c730e..954dc77 100644
--- a/lib/Support/FoldingSet.cpp
+++ b/lib/Support/FoldingSet.cpp
@@ -15,6 +15,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstring>
@@ -50,7 +51,7 @@ void FoldingSetNodeID::AddInteger(unsigned long I) {
else if (sizeof(long) == sizeof(long long)) {
AddInteger((unsigned long long)I);
} else {
- assert(0 && "unexpected sizeof(long)");
+ llvm_unreachable("unexpected sizeof(long)");
}
}
void FoldingSetNodeID::AddInteger(long long I) {
@@ -62,14 +63,14 @@ void FoldingSetNodeID::AddInteger(unsigned long long I) {
Bits.push_back(unsigned(I >> 32));
}
-void FoldingSetNodeID::AddString(const char *String, const char *End) {
- unsigned Size = static_cast<unsigned>(End - String);
+void FoldingSetNodeID::AddString(StringRef String) {
+ unsigned Size = String.size();
Bits.push_back(Size);
if (!Size) return;
unsigned Units = Size / 4;
unsigned Pos = 0;
- const unsigned *Base = (const unsigned *)String;
+ const unsigned *Base = (const unsigned*) String.data();
// If the string is aligned do a bulk transfer.
if (!((intptr_t)Base & 3)) {
@@ -99,14 +100,6 @@ void FoldingSetNodeID::AddString(const char *String, const char *End) {
Bits.push_back(V);
}
-void FoldingSetNodeID::AddString(const char *String) {
- AddString(String, String + strlen(String));
-}
-
-void FoldingSetNodeID::AddString(const std::string &String) {
- AddString(&*String.begin(), &*String.end());
-}
-
/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
/// lookup the node in the FoldingSetImpl.
unsigned FoldingSetNodeID::ComputeHash() const {
diff --git a/lib/Support/FormattedStream.cpp b/lib/Support/FormattedStream.cpp
new file mode 100644
index 0000000..70f2cfa
--- /dev/null
+++ b/lib/Support/FormattedStream.cpp
@@ -0,0 +1,93 @@
+//===-- llvm/Support/FormattedStream.cpp - Formatted streams ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of formatted_raw_ostream.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/FormattedStream.h"
+
+using namespace llvm;
+
+/// CountColumns - Examine the given char sequence and figure out which
+/// column we end up in after output.
+///
+static unsigned CountColumns(unsigned Column, const char *Ptr, size_t Size) {
+ // Keep track of the current column by scanning the string for
+ // special characters
+
+ for (const char *End = Ptr + Size; Ptr != End; ++Ptr) {
+ ++Column;
+ if (*Ptr == '\n' || *Ptr == '\r')
+ Column = 0;
+ else if (*Ptr == '\t')
+ // Assumes tab stop = 8 characters.
+ Column += (8 - (Column & 0x7)) & 0x7;
+ }
+
+ return Column;
+}
+
+/// ComputeColumn - Examine the current output and figure out which
+/// column we end up in after output.
+void formatted_raw_ostream::ComputeColumn(const char *Ptr, size_t Size) {
+ // If our previous scan pointer is inside the buffer, assume we already
+ // scanned those bytes. This depends on raw_ostream to not change our buffer
+ // in unexpected ways.
+ if (Ptr <= Scanned && Scanned <= Ptr + Size) {
+ // Scan all characters added since our last scan to determine the new
+ // column.
+ ColumnScanned = CountColumns(ColumnScanned, Scanned,
+ Size - (Scanned - Ptr));
+ } else
+ ColumnScanned = CountColumns(ColumnScanned, Ptr, Size);
+
+ // Update the scanning pointer.
+ Scanned = Ptr + Size;
+}
+
+/// PadToColumn - Align the output to some column number.
+///
+/// \param NewCol - The column to move to.
+/// \param MinPad - The minimum space to give after the most recent
+/// I/O, even if the current column + minpad > newcol.
+///
+void formatted_raw_ostream::PadToColumn(unsigned NewCol) {
+ // Figure out what's in the buffer and add it to the column count.
+ ComputeColumn(getBufferStart(), GetNumBytesInBuffer());
+
+ // Output spaces until we reach the desired column.
+ indent(std::max(int(NewCol - ColumnScanned), 1));
+}
+
+void formatted_raw_ostream::write_impl(const char *Ptr, size_t Size) {
+ // Figure out what's in the buffer and add it to the column count.
+ ComputeColumn(Ptr, Size);
+
+ // Write the data to the underlying stream (which is unbuffered, so
+ // the data will be immediately written out).
+ TheStream->write(Ptr, Size);
+
+ // Reset the scanning pointer.
+ Scanned = 0;
+}
+
+/// fouts() - This returns a reference to a formatted_raw_ostream for
+/// standard output. Use it like: fouts() << "foo" << "bar";
+formatted_raw_ostream &llvm::fouts() {
+ static formatted_raw_ostream S(outs());
+ return S;
+}
+
+/// ferrs() - This returns a reference to a formatted_raw_ostream for
+/// standard error. Use it like: ferrs() << "foo" << "bar";
+formatted_raw_ostream &llvm::ferrs() {
+ static formatted_raw_ostream S(errs());
+ return S;
+}
diff --git a/lib/Support/GraphWriter.cpp b/lib/Support/GraphWriter.cpp
index c359dfb..c8bca6e 100644
--- a/lib/Support/GraphWriter.cpp
+++ b/lib/Support/GraphWriter.cpp
@@ -12,13 +12,47 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/GraphWriter.h"
-#include "llvm/Support/Streams.h"
#include "llvm/System/Path.h"
#include "llvm/System/Program.h"
#include "llvm/Config/config.h"
using namespace llvm;
-void llvm::DisplayGraph(const sys::Path &Filename) {
+std::string llvm::DOT::EscapeString(const std::string &Label) {
+ std::string Str(Label);
+ for (unsigned i = 0; i != Str.length(); ++i)
+ switch (Str[i]) {
+ case '\n':
+ Str.insert(Str.begin()+i, '\\'); // Escape character...
+ ++i;
+ Str[i] = 'n';
+ break;
+ case '\t':
+ Str.insert(Str.begin()+i, ' '); // Convert to two spaces
+ ++i;
+ Str[i] = ' ';
+ break;
+ case '\\':
+ if (i+1 != Str.length())
+ switch (Str[i+1]) {
+ case 'l': continue; // don't disturb \l
+ case '|': case '{': case '}':
+ Str.erase(Str.begin()+i); continue;
+ default: break;
+ }
+ case '{': case '}':
+ case '<': case '>':
+ case '|': case '"':
+ Str.insert(Str.begin()+i, '\\'); // Escape character...
+ ++i; // don't infinite loop
+ break;
+ }
+ return Str;
+}
+
+
+
+void llvm::DisplayGraph(const sys::Path &Filename, bool wait,
+ GraphProgram::Name program) {
std::string ErrMsg;
#if HAVE_GRAPHVIZ
sys::Path Graphviz(LLVM_PATH_GRAPHVIZ);
@@ -28,18 +62,61 @@ void llvm::DisplayGraph(const sys::Path &Filename) {
args.push_back(Filename.c_str());
args.push_back(0);
- cerr << "Running 'Graphviz' program... " << std::flush;
- if (sys::Program::ExecuteAndWait(Graphviz, &args[0],0,0,0,0,&ErrMsg)) {
- cerr << "Error viewing graph: " << ErrMsg << "\n";
- }
-#elif (HAVE_GV && HAVE_DOT)
+ errs() << "Running 'Graphviz' program... ";
+ if (sys::Program::ExecuteAndWait(Graphviz, &args[0],0,0,0,0,&ErrMsg))
+ errs() << "Error viewing graph " << Filename.str() << ": " << ErrMsg
+ << "\n";
+ else
+ Filename.eraseFromDisk();
+
+#elif (HAVE_GV && (HAVE_DOT || HAVE_FDP || HAVE_NEATO || \
+ HAVE_TWOPI || HAVE_CIRCO))
sys::Path PSFilename = Filename;
PSFilename.appendSuffix("ps");
-
- sys::Path dot(LLVM_PATH_DOT);
+
+ sys::Path prog;
+
+ // Set default grapher
+#if HAVE_CIRCO
+ prog = sys::Path(LLVM_PATH_CIRCO);
+#endif
+#if HAVE_TWOPI
+ prog = sys::Path(LLVM_PATH_TWOPI);
+#endif
+#if HAVE_NEATO
+ prog = sys::Path(LLVM_PATH_NEATO);
+#endif
+#if HAVE_FDP
+ prog = sys::Path(LLVM_PATH_FDP);
+#endif
+#if HAVE_DOT
+ prog = sys::Path(LLVM_PATH_DOT);
+#endif
+
+ // Find which program the user wants
+#if HAVE_DOT
+ if (program == GraphProgram::DOT)
+ prog = sys::Path(LLVM_PATH_DOT);
+#endif
+#if (HAVE_FDP)
+ if (program == GraphProgram::FDP)
+ prog = sys::Path(LLVM_PATH_FDP);
+#endif
+#if (HAVE_NEATO)
+ if (program == GraphProgram::NEATO)
+ prog = sys::Path(LLVM_PATH_NEATO);
+#endif
+#if (HAVE_TWOPI)
+ if (program == GraphProgram::TWOPI)
+ prog = sys::Path(LLVM_PATH_TWOPI);
+#endif
+#if (HAVE_CIRCO)
+ if (program == GraphProgram::CIRCO)
+ prog = sys::Path(LLVM_PATH_CIRCO);
+#endif
std::vector<const char*> args;
- args.push_back(dot.c_str());
+ args.push_back(prog.c_str());
args.push_back("-Tps");
args.push_back("-Nfontname=Courier");
args.push_back("-Gsize=7.5,10");
@@ -48,11 +125,13 @@ void llvm::DisplayGraph(const sys::Path &Filename) {
args.push_back(PSFilename.c_str());
args.push_back(0);
- cerr << "Running 'dot' program... " << std::flush;
- if (sys::Program::ExecuteAndWait(dot, &args[0],0,0,0,0,&ErrMsg)) {
- cerr << "Error viewing graph: '" << ErrMsg << "\n";
+ errs() << "Running '" << prog.str() << "' program... ";
+
+ if (sys::Program::ExecuteAndWait(prog, &args[0], 0, 0, 0, 0, &ErrMsg)) {
+ errs() << "Error viewing graph " << Filename.str() << ": '"
+ << ErrMsg << "\n";
} else {
- cerr << " done. \n";
+ errs() << " done. \n";
sys::Path gv(LLVM_PATH_GV);
args.clear();
@@ -62,11 +141,18 @@ void llvm::DisplayGraph(const sys::Path &Filename) {
args.push_back(0);
ErrMsg.clear();
- if (sys::Program::ExecuteAndWait(gv, &args[0],0,0,0,0,&ErrMsg)) {
- cerr << "Error viewing graph: " << ErrMsg << "\n";
+ if (wait) {
+ if (sys::Program::ExecuteAndWait(gv, &args[0],0,0,0,0,&ErrMsg))
+ errs() << "Error viewing graph: " << ErrMsg << "\n";
+ Filename.eraseFromDisk();
+ PSFilename.eraseFromDisk();
+ }
+ else {
+ sys::Program::ExecuteNoWait(gv, &args[0],0,0,0,&ErrMsg);
+ errs() << "Remember to erase graph files: " << Filename.str() << " "
+ << PSFilename.str() << "\n";
}
}
- PSFilename.eraseFromDisk();
#elif HAVE_DOTTY
sys::Path dotty(LLVM_PATH_DOTTY);
@@ -75,15 +161,15 @@ void llvm::DisplayGraph(const sys::Path &Filename) {
args.push_back(Filename.c_str());
args.push_back(0);
- cerr << "Running 'dotty' program... " << std::flush;
+ errs() << "Running 'dotty' program... ";
if (sys::Program::ExecuteAndWait(dotty, &args[0],0,0,0,0,&ErrMsg)) {
- cerr << "Error viewing graph: " << ErrMsg << "\n";
+ errs() << "Error viewing graph " << Filename.str() << ": "
+ << ErrMsg << "\n";
} else {
#ifdef __MINGW32__ // Dotty spawns another app and doesn't wait until it returns
return;
#endif
+ Filename.eraseFromDisk();
}
#endif
-
- Filename.eraseFromDisk();
}
diff --git a/lib/Support/MemoryObject.cpp b/lib/Support/MemoryObject.cpp
new file mode 100644
index 0000000..91e3ecd
--- /dev/null
+++ b/lib/Support/MemoryObject.cpp
@@ -0,0 +1,34 @@
+//===- MemoryObject.cpp - Abstract memory interface -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/MemoryObject.h"
+using namespace llvm;
+
+MemoryObject::~MemoryObject() {
+}
+
+int MemoryObject::readBytes(uint64_t address,
+ uint64_t size,
+ uint8_t* buf,
+ uint64_t* copied) const {
+ uint64_t current = address;
+ uint64_t limit = getBase() + getExtent();
+
+ while (current - address < size && current < limit) {
+ if (readByte(current, &buf[(current - address)]))
+ return -1;
+
+ current++;
+ }
+
+ if (copied)
+ *copied = current - address;
+
+ return 0;
+}
diff --git a/lib/Support/PluginLoader.cpp b/lib/Support/PluginLoader.cpp
index ef32af4..36caecf 100644
--- a/lib/Support/PluginLoader.cpp
+++ b/lib/Support/PluginLoader.cpp
@@ -14,10 +14,9 @@
#define DONT_GET_PLUGIN_LOADER_OPTION
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Mutex.h"
-#include <ostream>
#include <vector>
using namespace llvm;
@@ -25,23 +24,23 @@ static ManagedStatic<std::vector<std::string> > Plugins;
static ManagedStatic<sys::SmartMutex<true> > PluginsLock;
void PluginLoader::operator=(const std::string &Filename) {
- sys::SmartScopedLock<true> Lock(&*PluginsLock);
+ sys::SmartScopedLock<true> Lock(*PluginsLock);
std::string Error;
if (sys::DynamicLibrary::LoadLibraryPermanently(Filename.c_str(), &Error)) {
- cerr << "Error opening '" << Filename << "': " << Error
- << "\n -load request ignored.\n";
+ errs() << "Error opening '" << Filename << "': " << Error
+ << "\n -load request ignored.\n";
} else {
Plugins->push_back(Filename);
}
}
unsigned PluginLoader::getNumPlugins() {
- sys::SmartScopedLock<true> Lock(&*PluginsLock);
+ sys::SmartScopedLock<true> Lock(*PluginsLock);
return Plugins.isConstructed() ? Plugins->size() : 0;
}
std::string &PluginLoader::getPlugin(unsigned num) {
- sys::SmartScopedLock<true> Lock(&*PluginsLock);
+ sys::SmartScopedLock<true> Lock(*PluginsLock);
assert(Plugins.isConstructed() && num < Plugins->size() &&
"Asking for an out of bounds plugin");
return (*Plugins)[num];
diff --git a/lib/Support/PrettyStackTrace.cpp b/lib/Support/PrettyStackTrace.cpp
index 14290a1..68b41a7 100644
--- a/lib/Support/PrettyStackTrace.cpp
+++ b/lib/Support/PrettyStackTrace.cpp
@@ -19,6 +19,10 @@
#include "llvm/ADT/SmallString.h"
using namespace llvm;
+namespace llvm {
+ bool DisablePrettyStackTrace = false;
+}
+
// FIXME: This should be thread local when llvm supports threads.
static sys::ThreadLocal<const PrettyStackTraceEntry> PrettyStackTraceHead;
@@ -67,15 +71,16 @@ static void CrashHandler(void *Cookie) {
}
if (!TmpStr.empty()) {
- __crashreporter_info__ = strdup(TmpStr.c_str());
- errs() << __crashreporter_info__;
+ __crashreporter_info__ = strdup(std::string(TmpStr.str()).c_str());
+ errs() << TmpStr.str();
}
#endif
}
static bool RegisterCrashPrinter() {
- sys::AddSignalHandler(CrashHandler, 0);
+ if (!DisablePrettyStackTrace)
+ sys::AddSignalHandler(CrashHandler, 0);
return false;
}
diff --git a/lib/Support/Regex.cpp b/lib/Support/Regex.cpp
new file mode 100644
index 0000000..618ca05
--- /dev/null
+++ b/lib/Support/Regex.cpp
@@ -0,0 +1,92 @@
+//===-- Regex.cpp - Regular Expression matcher implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a POSIX regular expression matcher.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallVector.h"
+#include "regex_impl.h"
+#include <string>
+using namespace llvm;
+
+Regex::Regex(const StringRef &regex, unsigned Flags) {
+ unsigned flags = 0;
+ preg = new llvm_regex();
+ preg->re_endp = regex.end();
+ if (Flags & IgnoreCase)
+ flags |= REG_ICASE;
+ if (Flags & Newline)
+ flags |= REG_NEWLINE;
+ error = llvm_regcomp(preg, regex.data(), flags|REG_EXTENDED|REG_PEND);
+}
+
+Regex::~Regex() {
+ llvm_regfree(preg);
+ delete preg;
+}
+
+bool Regex::isValid(std::string &Error) {
+ if (!error)
+ return true;
+
+ size_t len = llvm_regerror(error, preg, NULL, 0);
+
+ Error.resize(len);
+ llvm_regerror(error, preg, &Error[0], len);
+ return false;
+}
+
+/// getNumMatches - In a valid regex, return the number of parenthesized
+/// matches it contains.
+unsigned Regex::getNumMatches() const {
+ return preg->re_nsub;
+}
+
+bool Regex::match(const StringRef &String, SmallVectorImpl<StringRef> *Matches){
+ unsigned nmatch = Matches ? preg->re_nsub+1 : 0;
+
+ // pmatch needs to have at least one element.
+ SmallVector<llvm_regmatch_t, 8> pm;
+ pm.resize(nmatch > 0 ? nmatch : 1);
+ pm[0].rm_so = 0;
+ pm[0].rm_eo = String.size();
+
+ int rc = llvm_regexec(preg, String.data(), nmatch, pm.data(), REG_STARTEND);
+
+ if (rc == REG_NOMATCH)
+ return false;
+ if (rc != 0) {
+ // regexec can fail due to invalid pattern or running out of memory.
+ error = rc;
+ return false;
+ }
+
+ // There was a match.
+
+ if (Matches) { // match position requested
+ Matches->clear();
+
+ for (unsigned i = 0; i != nmatch; ++i) {
+ if (pm[i].rm_so == -1) {
+ // this group didn't match
+ Matches->push_back(StringRef());
+ continue;
+ }
+ assert(pm[i].rm_eo > pm[i].rm_so);
+ Matches->push_back(StringRef(String.data()+pm[i].rm_so,
+ pm[i].rm_eo-pm[i].rm_so));
+ }
+ }
+
+ return true;
+}
diff --git a/lib/Support/SlowOperationInformer.cpp b/lib/Support/SlowOperationInformer.cpp
index d5ffff9..b4e9430 100644
--- a/lib/Support/SlowOperationInformer.cpp
+++ b/lib/Support/SlowOperationInformer.cpp
@@ -12,7 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/SlowOperationInformer.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Alarm.h"
#include <sstream>
#include <cassert>
@@ -28,8 +28,8 @@ SlowOperationInformer::~SlowOperationInformer() {
if (LastPrintAmount) {
// If we have printed something, make _sure_ we print the 100% amount, and
// also print a newline.
- cout << std::string(LastPrintAmount, '\b') << "Progress "
- << OperationName << ": 100% \n";
+ outs() << std::string(LastPrintAmount, '\b') << "Progress "
+ << OperationName << ": 100% \n";
}
}
@@ -40,7 +40,7 @@ SlowOperationInformer::~SlowOperationInformer() {
bool SlowOperationInformer::progress(unsigned Amount) {
int status = sys::AlarmStatus();
if (status == -1) {
- cout << "\n";
+ outs() << "\n";
LastPrintAmount = 0;
return true;
}
@@ -61,6 +61,7 @@ bool SlowOperationInformer::progress(unsigned Amount) {
OS << "% ";
LastPrintAmount = OS.str().size();
- cout << ToPrint+OS.str() << std::flush;
+ outs() << ToPrint+OS.str();
+ outs().flush();
return false;
}
diff --git a/lib/Support/SourceMgr.cpp b/lib/Support/SourceMgr.cpp
index 6b0d55c1..4b93f7f 100644
--- a/lib/Support/SourceMgr.cpp
+++ b/lib/Support/SourceMgr.cpp
@@ -18,7 +18,24 @@
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+namespace {
+ struct LineNoCacheTy {
+ int LastQueryBufferID;
+ const char *LastQuery;
+ unsigned LineNoOfQuery;
+ };
+}
+
+static LineNoCacheTy *getCache(void *Ptr) {
+ return (LineNoCacheTy*)Ptr;
+}
+
+
SourceMgr::~SourceMgr() {
+ // Delete the line # cache if allocated.
+ if (LineNoCacheTy *Cache = getCache(LineNoCache))
+ delete Cache;
+
while (!Buffers.empty()) {
delete Buffers.back().Buffer;
Buffers.pop_back();
@@ -71,8 +88,31 @@ unsigned SourceMgr::FindLineNumber(SMLoc Loc, int BufferID) const {
const char *Ptr = Buff->getBufferStart();
+ // If we have a line number cache, and if the query is to a later point in the
+ // same file, start searching from the last query location. This optimizes
+ // for the case when multiple diagnostics come out of one file in order.
+ if (LineNoCacheTy *Cache = getCache(LineNoCache))
+ if (Cache->LastQueryBufferID == BufferID &&
+ Cache->LastQuery <= Loc.getPointer()) {
+ Ptr = Cache->LastQuery;
+ LineNo = Cache->LineNoOfQuery;
+ }
+
+ // Scan for the location being queried, keeping track of the number of lines
+ // we see.
for (; SMLoc::getFromPointer(Ptr) != Loc; ++Ptr)
if (*Ptr == '\n') ++LineNo;
+
+
+ // Allocate the line number cache if it doesn't exist.
+ if (LineNoCache == 0)
+ LineNoCache = new LineNoCacheTy();
+
+ // Update the line # cache.
+ LineNoCacheTy &Cache = *getCache(LineNoCache);
+ Cache.LastQueryBufferID = BufferID;
+ Cache.LastQuery = Ptr;
+ Cache.LineNoOfQuery = LineNo;
return LineNo;
}
diff --git a/lib/Support/Statistic.cpp b/lib/Support/Statistic.cpp
index 33570b0..14f94bc 100644
--- a/lib/Support/Statistic.cpp
+++ b/lib/Support/Statistic.cpp
@@ -24,16 +24,15 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Mutex.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
-#include <ostream>
#include <cstring>
using namespace llvm;
// GetLibSupportInfoOutputFile - Return a file stream to print our output on.
-namespace llvm { extern std::ostream *GetLibSupportInfoOutputFile(); }
+namespace llvm { extern raw_ostream *GetLibSupportInfoOutputFile(); }
/// -stats - Command line option to cause transformations to emit stats about
/// what they did.
@@ -58,14 +57,14 @@ public:
}
static ManagedStatic<StatisticInfo> StatInfo;
-static ManagedStatic<sys::Mutex> StatLock;
+static ManagedStatic<sys::SmartMutex<true> > StatLock;
/// RegisterStatistic - The first time a statistic is bumped, this method is
/// called.
void Statistic::RegisterStatistic() {
// If stats are enabled, inform StatInfo that this statistic should be
// printed.
- sys::ScopedLock Writer(&*StatLock);
+ sys::SmartScopedLock<true> Writer(*StatLock);
if (!Initialized) {
if (Enabled)
StatInfo->addStatistic(this);
@@ -96,7 +95,7 @@ StatisticInfo::~StatisticInfo() {
if (Stats.empty()) return;
// Get the stream to write to.
- std::ostream &OutStream = *GetLibSupportInfoOutputFile();
+ raw_ostream &OutStream = *GetLibSupportInfoOutputFile();
// Figure out how long the biggest Value and Name fields are.
unsigned MaxNameLen = 0, MaxValLen = 0;
@@ -125,8 +124,9 @@ StatisticInfo::~StatisticInfo() {
}
- OutStream << std::endl; // Flush the output stream...
+ OutStream << '\n'; // Flush the output stream...
+ OutStream.flush();
- if (&OutStream != cerr.stream() && &OutStream != cout.stream())
+ if (&OutStream != &outs() && &OutStream != &errs())
delete &OutStream; // Close the file.
}
diff --git a/lib/Support/StringMap.cpp b/lib/Support/StringMap.cpp
index 0c61732..040308b 100644
--- a/lib/Support/StringMap.cpp
+++ b/lib/Support/StringMap.cpp
@@ -65,14 +65,13 @@ static unsigned HashString(const char *Start, const char *End) {
/// specified bucket will be non-null. Otherwise, it will be null. In either
/// case, the FullHashValue field of the bucket will be set to the hash value
/// of the string.
-unsigned StringMapImpl::LookupBucketFor(const char *NameStart,
- const char *NameEnd) {
+unsigned StringMapImpl::LookupBucketFor(const StringRef &Name) {
unsigned HTSize = NumBuckets;
if (HTSize == 0) { // Hash table unallocated so far?
init(16);
HTSize = NumBuckets;
}
- unsigned FullHashValue = HashString(NameStart, NameEnd);
+ unsigned FullHashValue = HashString(Name.begin(), Name.end());
unsigned BucketNo = FullHashValue & (HTSize-1);
unsigned ProbeAmt = 1;
@@ -102,12 +101,10 @@ unsigned StringMapImpl::LookupBucketFor(const char *NameStart,
// being non-null and for the full hash value) not at the items. This
// is important for cache locality.
- // Do the comparison like this because NameStart isn't necessarily
+ // Do the comparison like this because Name isn't necessarily
// null-terminated!
char *ItemStr = (char*)BucketItem+ItemSize;
- unsigned ItemStrLen = BucketItem->getKeyLength();
- if (unsigned(NameEnd-NameStart) == ItemStrLen &&
- memcmp(ItemStr, NameStart, ItemStrLen) == 0) {
+ if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
// We found a match!
return BucketNo;
}
@@ -126,10 +123,10 @@ unsigned StringMapImpl::LookupBucketFor(const char *NameStart,
/// FindKey - Look up the bucket that contains the specified key. If it exists
/// in the map, return the bucket number of the key. Otherwise return -1.
/// This does not modify the map.
-int StringMapImpl::FindKey(const char *KeyStart, const char *KeyEnd) const {
+int StringMapImpl::FindKey(const StringRef &Key) const {
unsigned HTSize = NumBuckets;
if (HTSize == 0) return -1; // Really empty table?
- unsigned FullHashValue = HashString(KeyStart, KeyEnd);
+ unsigned FullHashValue = HashString(Key.begin(), Key.end());
unsigned BucketNo = FullHashValue & (HTSize-1);
unsigned ProbeAmt = 1;
@@ -151,9 +148,7 @@ int StringMapImpl::FindKey(const char *KeyStart, const char *KeyEnd) const {
// Do the comparison like this because NameStart isn't necessarily
// null-terminated!
char *ItemStr = (char*)BucketItem+ItemSize;
- unsigned ItemStrLen = BucketItem->getKeyLength();
- if (unsigned(KeyEnd-KeyStart) == ItemStrLen &&
- memcmp(ItemStr, KeyStart, ItemStrLen) == 0) {
+ if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
// We found a match!
return BucketNo;
}
@@ -172,16 +167,15 @@ int StringMapImpl::FindKey(const char *KeyStart, const char *KeyEnd) const {
/// delete it. This aborts if the value isn't in the table.
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
const char *VStr = (char*)V + ItemSize;
- StringMapEntryBase *V2 = RemoveKey(VStr, VStr+V->getKeyLength());
+ StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
V2 = V2;
assert(V == V2 && "Didn't find key?");
}
/// RemoveKey - Remove the StringMapEntry for the specified key from the
/// table, returning it. If the key is not in the table, this returns null.
-StringMapEntryBase *StringMapImpl::RemoveKey(const char *KeyStart,
- const char *KeyEnd) {
- int Bucket = FindKey(KeyStart, KeyEnd);
+StringMapEntryBase *StringMapImpl::RemoveKey(const StringRef &Key) {
+ int Bucket = FindKey(Key);
if (Bucket == -1) return 0;
StringMapEntryBase *Result = TheTable[Bucket].Item;
diff --git a/lib/Support/StringPool.cpp b/lib/Support/StringPool.cpp
index b9c1fd0..1ee917f 100644
--- a/lib/Support/StringPool.cpp
+++ b/lib/Support/StringPool.cpp
@@ -12,7 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/StringPool.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/ADT/StringRef.h"
using namespace llvm;
@@ -22,12 +22,12 @@ StringPool::~StringPool() {
assert(InternTable.empty() && "PooledStringPtr leaked!");
}
-PooledStringPtr StringPool::intern(const char *Begin, const char *End) {
- table_t::iterator I = InternTable.find(Begin, End);
+PooledStringPtr StringPool::intern(const StringRef &Key) {
+ table_t::iterator I = InternTable.find(Key);
if (I != InternTable.end())
return PooledStringPtr(&*I);
- entry_t *S = entry_t::Create(Begin, End);
+ entry_t *S = entry_t::Create(Key.begin(), Key.end());
S->getValue().Pool = this;
InternTable.insert(S);
diff --git a/lib/Support/StringRef.cpp b/lib/Support/StringRef.cpp
new file mode 100644
index 0000000..deaa19e
--- /dev/null
+++ b/lib/Support/StringRef.cpp
@@ -0,0 +1,188 @@
+//===-- StringRef.cpp - Lightweight String References ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringRef.h"
+using namespace llvm;
+
+// MSVC emits references to this into the translation units which reference it.
+#ifndef _MSC_VER
+const size_t StringRef::npos;
+#endif
+
+//===----------------------------------------------------------------------===//
+// String Searching
+//===----------------------------------------------------------------------===//
+
+
+/// find - Search for the first string \arg Str in the string.
+///
+/// \return - The index of the first occurence of \arg Str, or npos if not
+/// found.
+size_t StringRef::find(const StringRef &Str) const {
+ size_t N = Str.size();
+ if (N > Length)
+ return npos;
+ for (size_t i = 0, e = Length - N + 1; i != e; ++i)
+ if (substr(i, N).equals(Str))
+ return i;
+ return npos;
+}
+
+/// rfind - Search for the last string \arg Str in the string.
+///
+/// \return - The index of the last occurence of \arg Str, or npos if not
+/// found.
+size_t StringRef::rfind(const StringRef &Str) const {
+ size_t N = Str.size();
+ if (N > Length)
+ return npos;
+ for (size_t i = Length - N + 1, e = 0; i != e;) {
+ --i;
+ if (substr(i, N).equals(Str))
+ return i;
+ }
+ return npos;
+}
+
+/// find_first_of - Find the first character from the string 'Chars' in the
+/// current string or return npos if not in string.
+StringRef::size_type StringRef::find_first_of(StringRef Chars) const {
+ for (size_type i = 0, e = Length; i != e; ++i)
+ if (Chars.find(Data[i]) != npos)
+ return i;
+ return npos;
+}
+
+/// find_first_not_of - Find the first character in the string that is not
+/// in the string 'Chars' or return npos if all are in string. Same as find.
+StringRef::size_type StringRef::find_first_not_of(StringRef Chars) const {
+ for (size_type i = 0, e = Length; i != e; ++i)
+ if (Chars.find(Data[i]) == npos)
+ return i;
+ return npos;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Helpful Algorithms
+//===----------------------------------------------------------------------===//
+
+/// count - Return the number of non-overlapped occurrences of \arg Str in
+/// the string.
+size_t StringRef::count(const StringRef &Str) const {
+ size_t Count = 0;
+ size_t N = Str.size();
+ if (N > Length)
+ return 0;
+ for (size_t i = 0, e = Length - N + 1; i != e; ++i)
+ if (substr(i, N).equals(Str))
+ ++Count;
+ return Count;
+}
+
+/// GetAsUnsignedInteger - Workhorse method that converts a integer character
+/// sequence of radix up to 36 to an unsigned long long value.
+static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
+ unsigned long long &Result) {
+ // Autosense radix if not specified.
+ if (Radix == 0) {
+ if (Str.startswith("0x")) {
+ Str = Str.substr(2);
+ Radix = 16;
+ } else if (Str.startswith("0b")) {
+ Str = Str.substr(2);
+ Radix = 2;
+ } else if (Str.startswith("0"))
+ Radix = 8;
+ else
+ Radix = 10;
+ }
+
+ // Empty strings (after the radix autosense) are invalid.
+ if (Str.empty()) return true;
+
+ // Parse all the bytes of the string given this radix. Watch for overflow.
+ Result = 0;
+ while (!Str.empty()) {
+ unsigned CharVal;
+ if (Str[0] >= '0' && Str[0] <= '9')
+ CharVal = Str[0]-'0';
+ else if (Str[0] >= 'a' && Str[0] <= 'z')
+ CharVal = Str[0]-'a'+10;
+ else if (Str[0] >= 'A' && Str[0] <= 'Z')
+ CharVal = Str[0]-'A'+10;
+ else
+ return true;
+
+ // If the parsed value is larger than the integer radix, the string is
+ // invalid.
+ if (CharVal >= Radix)
+ return true;
+
+ // Add in this character.
+ unsigned long long PrevResult = Result;
+ Result = Result*Radix+CharVal;
+
+ // Check for overflow.
+ if (Result < PrevResult)
+ return true;
+
+ Str = Str.substr(1);
+ }
+
+ return false;
+}
+
+bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
+ return GetAsUnsignedInteger(*this, Radix, Result);
+}
+
+
+bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
+ unsigned long long ULLVal;
+
+ // Handle positive strings first.
+ if (empty() || front() != '-') {
+ if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
+ // Check for value so large it overflows a signed value.
+ (long long)ULLVal < 0)
+ return true;
+ Result = ULLVal;
+ return false;
+ }
+
+ // Get the positive part of the value.
+ if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
+ // Reject values so large they'd overflow as negative signed, but allow
+ // "-0". This negates the unsigned so that the negative isn't undefined
+ // on signed overflow.
+ (long long)-ULLVal > 0)
+ return true;
+
+ Result = -ULLVal;
+ return false;
+}
+
+bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
+ long long Val;
+ if (getAsInteger(Radix, Val) ||
+ (int)Val != Val)
+ return true;
+ Result = Val;
+ return false;
+}
+
+bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
+ unsigned long long Val;
+ if (getAsInteger(Radix, Val) ||
+ (unsigned)Val != Val)
+ return true;
+ Result = Val;
+ return false;
+}
diff --git a/lib/Support/SystemUtils.cpp b/lib/Support/SystemUtils.cpp
index c8c3238..299032f 100644
--- a/lib/Support/SystemUtils.cpp
+++ b/lib/Support/SystemUtils.cpp
@@ -12,22 +12,20 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Support/Streams.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/System/Process.h"
#include "llvm/System/Program.h"
-#include <ostream>
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
-bool llvm::CheckBitcodeOutputToConsole(std::ostream* stream_to_check,
+bool llvm::CheckBitcodeOutputToConsole(raw_ostream &stream_to_check,
bool print_warning) {
- if (stream_to_check == cout.stream() &&
- sys::Process::StandardOutIsDisplayed()) {
+ if (stream_to_check.is_displayed()) {
if (print_warning) {
- cerr << "WARNING: You're attempting to print out a bitcode file.\n"
- << "This is inadvisable as it may cause display problems. If\n"
- << "you REALLY want to taste LLVM bitcode first-hand, you\n"
- << "can force output with the `-f' option.\n\n";
+ errs() << "WARNING: You're attempting to print out a bitcode file.\n"
+ << "This is inadvisable as it may cause display problems. If\n"
+ << "you REALLY want to taste LLVM bitcode first-hand, you\n"
+ << "can force output with the `-f' option.\n\n";
}
return true;
}
@@ -35,24 +33,17 @@ bool llvm::CheckBitcodeOutputToConsole(std::ostream* stream_to_check,
}
/// FindExecutable - Find a named executable, giving the argv[0] of program
-/// being executed. This allows us to find another LLVM tool if it is built
-/// into the same directory, but that directory is neither the current
-/// directory, nor in the PATH. If the executable cannot be found, return an
-/// empty string. Return the input string if given a full path to an executable.
-///
+/// being executed. This allows us to find another LLVM tool if it is built in
+/// the same directory. If the executable cannot be found, return an
+/// empty string.
+/// @brief Find a named executable.
#undef FindExecutable // needed on windows :(
sys::Path llvm::FindExecutable(const std::string &ExeName,
- const std::string &ProgramPath) {
- // First check if the given name is already a valid path to an executable.
- sys::Path Result(ExeName);
- Result.makeAbsolute();
- if (Result.canExecute())
- return Result;
-
- // Otherwise check the directory that the calling program is in. We can do
+ const char *Argv0, void *MainAddr) {
+ // Check the directory that the calling program is in. We can do
// this if ProgramPath contains at least one / character, indicating that it
- // is a relative path to bugpoint itself.
- Result = ProgramPath;
+ // is a relative path to the executable itself.
+ sys::Path Result = sys::Path::GetMainExecutable(Argv0, MainAddr);
Result.eraseComponent();
if (!Result.isEmpty()) {
Result.appendComponent(ExeName);
@@ -60,5 +51,5 @@ sys::Path llvm::FindExecutable(const std::string &ExeName,
return Result;
}
- return sys::Program::FindProgramByName(ExeName);
+ return sys::Path();
}
diff --git a/lib/Support/TargetRegistry.cpp b/lib/Support/TargetRegistry.cpp
new file mode 100644
index 0000000..5896447
--- /dev/null
+++ b/lib/Support/TargetRegistry.cpp
@@ -0,0 +1,92 @@
+//===--- TargetRegistry.cpp - Target registration -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/System/Host.h"
+#include <cassert>
+using namespace llvm;
+
+// Clients are responsible for avoid race conditions in registration.
+static Target *FirstTarget = 0;
+
+TargetRegistry::iterator TargetRegistry::begin() {
+ return iterator(FirstTarget);
+}
+
+const Target *TargetRegistry::lookupTarget(const std::string &TT,
+ std::string &Error) {
+ // Provide special warning when no targets are initialized.
+ if (begin() == end()) {
+ Error = "Unable to find target for this triple (no targets are registered)";
+ return 0;
+ }
+ const Target *Best = 0, *EquallyBest = 0;
+ unsigned BestQuality = 0;
+ for (iterator it = begin(), ie = end(); it != ie; ++it) {
+ if (unsigned Qual = it->TripleMatchQualityFn(TT)) {
+ if (!Best || Qual > BestQuality) {
+ Best = &*it;
+ EquallyBest = 0;
+ BestQuality = Qual;
+ } else if (Qual == BestQuality)
+ EquallyBest = &*it;
+ }
+ }
+
+ if (!Best) {
+ Error = "No available targets are compatible with this triple, "
+ "see -version for the available targets.";
+ return 0;
+ }
+
+ // Otherwise, take the best target, but make sure we don't have two equally
+ // good best targets.
+ if (EquallyBest) {
+ Error = std::string("Cannot choose between targets \"") +
+ Best->Name + "\" and \"" + EquallyBest->Name + "\"";
+ return 0;
+ }
+
+ return Best;
+}
+
+void TargetRegistry::RegisterTarget(Target &T,
+ const char *Name,
+ const char *ShortDesc,
+ Target::TripleMatchQualityFnTy TQualityFn,
+ bool HasJIT) {
+ assert(Name && ShortDesc && TQualityFn &&
+ "Missing required target information!");
+
+ // Check if this target has already been initialized, we allow this as a
+ // convenience to some clients.
+ if (T.Name)
+ return;
+
+ // Add to the list of targets.
+ T.Next = FirstTarget;
+ FirstTarget = &T;
+
+ T.Name = Name;
+ T.ShortDesc = ShortDesc;
+ T.TripleMatchQualityFn = TQualityFn;
+ T.HasJIT = HasJIT;
+}
+
+const Target *TargetRegistry::getClosestTargetForJIT(std::string &Error) {
+ const Target *TheTarget = lookupTarget(sys::getHostTriple(), Error);
+
+ if (TheTarget && !TheTarget->hasJIT()) {
+ Error = "No JIT compatible target available for this host";
+ return 0;
+ }
+
+ return TheTarget;
+}
+
diff --git a/lib/Support/Timer.cpp b/lib/Support/Timer.cpp
index ede1dc9..dd58d1f 100644
--- a/lib/Support/Timer.cpp
+++ b/lib/Support/Timer.cpp
@@ -14,16 +14,16 @@
#include "llvm/Support/Timer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Format.h"
#include "llvm/System/Process.h"
#include <algorithm>
-#include <fstream>
#include <functional>
#include <map>
using namespace llvm;
// GetLibSupportInfoOutputFile - Return a file stream to print our output on.
-namespace llvm { extern std::ostream *GetLibSupportInfoOutputFile(); }
+namespace llvm { extern raw_ostream *GetLibSupportInfoOutputFile(); }
// getLibSupportInfoOutputFilename - This ugly hack is brought to you courtesy
// of constructor/destructor ordering being unspecified by C++. Basically the
@@ -145,7 +145,7 @@ static TimeRecord getTimeRecord(bool Start) {
static ManagedStatic<std::vector<Timer*> > ActiveTimers;
void Timer::startTimer() {
- sys::SmartScopedLock<true> L(&Lock);
+ sys::SmartScopedLock<true> L(Lock);
Started = true;
ActiveTimers->push_back(this);
TimeRecord TR = getTimeRecord(true);
@@ -157,7 +157,7 @@ void Timer::startTimer() {
}
void Timer::stopTimer() {
- sys::SmartScopedLock<true> L(&Lock);
+ sys::SmartScopedLock<true> L(Lock);
TimeRecord TR = getTimeRecord(false);
Elapsed += TR.Elapsed;
UserTime += TR.UserTime;
@@ -229,7 +229,7 @@ static ManagedStatic<Name2Timer> NamedTimers;
static ManagedStatic<Name2Pair> NamedGroupedTimers;
static Timer &getNamedRegionTimer(const std::string &Name) {
- sys::SmartScopedLock<true> L(&*TimerLock);
+ sys::SmartScopedLock<true> L(*TimerLock);
Name2Timer::iterator I = NamedTimers->find(Name);
if (I != NamedTimers->end())
return I->second;
@@ -239,7 +239,7 @@ static Timer &getNamedRegionTimer(const std::string &Name) {
static Timer &getNamedRegionTimer(const std::string &Name,
const std::string &GroupName) {
- sys::SmartScopedLock<true> L(&*TimerLock);
+ sys::SmartScopedLock<true> L(*TimerLock);
Name2Pair::iterator I = NamedGroupedTimers->find(GroupName);
if (I == NamedGroupedTimers->end()) {
@@ -269,38 +269,17 @@ NamedRegionTimer::NamedRegionTimer(const std::string &Name,
// TimerGroup Implementation
//===----------------------------------------------------------------------===//
-// printAlignedFP - Simulate the printf "%A.Bf" format, where A is the
-// TotalWidth size, and B is the AfterDec size.
-//
-static void printAlignedFP(double Val, unsigned AfterDec, unsigned TotalWidth,
- std::ostream &OS) {
- assert(TotalWidth >= AfterDec+1 && "Bad FP Format!");
- OS.width(TotalWidth-AfterDec-1);
- char OldFill = OS.fill();
- OS.fill(' ');
- OS << (int)Val; // Integer part;
- OS << ".";
- OS.width(AfterDec);
- OS.fill('0');
- unsigned ResultFieldSize = 1;
- while (AfterDec--) ResultFieldSize *= 10;
- OS << (int)(Val*ResultFieldSize) % ResultFieldSize;
- OS.fill(OldFill);
-}
-static void printVal(double Val, double Total, std::ostream &OS) {
+static void printVal(double Val, double Total, raw_ostream &OS) {
if (Total < 1e-7) // Avoid dividing by zero...
OS << " ----- ";
else {
- OS << " ";
- printAlignedFP(Val, 4, 7, OS);
- OS << " (";
- printAlignedFP(Val*100/Total, 1, 5, OS);
- OS << "%)";
+ OS << " " << format("%7.4f", Val) << " (";
+ OS << format("%5.1f", Val*100/Total) << "%)";
}
}
-void Timer::print(const Timer &Total, std::ostream &OS) {
+void Timer::print(const Timer &Total, raw_ostream &OS) {
if (&Total < this) {
Total.Lock.acquire();
Lock.acquire();
@@ -320,13 +299,11 @@ void Timer::print(const Timer &Total, std::ostream &OS) {
OS << " ";
if (Total.MemUsed) {
- OS.width(9);
- OS << MemUsed << " ";
+ OS << format("%9lld", (long long)MemUsed) << " ";
}
if (Total.PeakMem) {
if (PeakMem) {
- OS.width(9);
- OS << PeakMem << " ";
+ OS << format("%9lld", (long long)PeakMem) << " ";
} else
OS << " ";
}
@@ -344,28 +321,30 @@ void Timer::print(const Timer &Total, std::ostream &OS) {
}
// GetLibSupportInfoOutputFile - Return a file stream to print our output on...
-std::ostream *
+raw_ostream *
llvm::GetLibSupportInfoOutputFile() {
std::string &LibSupportInfoOutputFilename = getLibSupportInfoOutputFilename();
if (LibSupportInfoOutputFilename.empty())
- return cerr.stream();
+ return &errs();
if (LibSupportInfoOutputFilename == "-")
- return cout.stream();
+ return &outs();
- std::ostream *Result = new std::ofstream(LibSupportInfoOutputFilename.c_str(),
- std::ios::app);
- if (!Result->good()) {
- cerr << "Error opening info-output-file '"
+
+ std::string Error;
+ raw_ostream *Result = new raw_fd_ostream(LibSupportInfoOutputFilename.c_str(),
+ Error, raw_fd_ostream::F_Append);
+ if (Error.empty())
+ return Result;
+
+ errs() << "Error opening info-output-file '"
<< LibSupportInfoOutputFilename << " for appending!\n";
- delete Result;
- return cerr.stream();
- }
- return Result;
+ delete Result;
+ return &errs();
}
void TimerGroup::removeTimer() {
- sys::SmartScopedLock<true> L(&*TimerLock);
+ sys::SmartScopedLock<true> L(*TimerLock);
if (--NumTimers == 0 && !TimersToPrint.empty()) { // Print timing report...
// Sort the timers in descending order by amount of time taken...
std::sort(TimersToPrint.begin(), TimersToPrint.end(),
@@ -375,7 +354,7 @@ void TimerGroup::removeTimer() {
unsigned Padding = (80-Name.length())/2;
if (Padding > 80) Padding = 0; // Don't allow "negative" numbers
- std::ostream *OutStream = GetLibSupportInfoOutputFile();
+ raw_ostream *OutStream = GetLibSupportInfoOutputFile();
++NumTimers;
{ // Scope to contain Total timer... don't allow total timer to drop us to
@@ -397,10 +376,8 @@ void TimerGroup::removeTimer() {
if (this != DefaultTimerGroup) {
*OutStream << " Total Execution Time: ";
- printAlignedFP(Total.getProcessTime(), 4, 5, *OutStream);
- *OutStream << " seconds (";
- printAlignedFP(Total.getWallTime(), 4, 5, *OutStream);
- *OutStream << " wall clock)\n";
+ *OutStream << format("%5.4f", Total.getProcessTime()) << " seconds (";
+ *OutStream << format("%5.4f", Total.getWallTime()) << " wall clock)\n";
}
*OutStream << "\n";
@@ -422,24 +399,25 @@ void TimerGroup::removeTimer() {
TimersToPrint[i].print(Total, *OutStream);
Total.print(Total, *OutStream);
- *OutStream << std::endl; // Flush output
+ *OutStream << '\n';
+ OutStream->flush();
}
--NumTimers;
TimersToPrint.clear();
- if (OutStream != cerr.stream() && OutStream != cout.stream())
+ if (OutStream != &errs() && OutStream != &outs())
delete OutStream; // Close the file...
}
}
void TimerGroup::addTimer() {
- sys::SmartScopedLock<true> L(&*TimerLock);
+ sys::SmartScopedLock<true> L(*TimerLock);
++NumTimers;
}
void TimerGroup::addTimerToPrint(const Timer &T) {
- sys::SmartScopedLock<true> L(&*TimerLock);
+ sys::SmartScopedLock<true> L(*TimerLock);
TimersToPrint.push_back(Timer(true, T));
}
diff --git a/lib/Support/Triple.cpp b/lib/Support/Triple.cpp
index 279bd43..6f805da 100644
--- a/lib/Support/Triple.cpp
+++ b/lib/Support/Triple.cpp
@@ -8,6 +8,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Triple.h"
+
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Twine.h"
#include <cassert>
#include <cstring>
using namespace llvm;
@@ -18,22 +21,60 @@ const char *Triple::getArchTypeName(ArchType Kind) {
switch (Kind) {
case InvalidArch: return "<invalid>";
case UnknownArch: return "unknown";
-
- case x86: return "i386";
- case x86_64: return "x86_64";
- case ppc: return "powerpc";
- case ppc64: return "powerpc64";
+
+ case alpha: return "alpha";
+ case arm: return "arm";
+ case bfin: return "bfin";
+ case cellspu: return "cellspu";
+ case mips: return "mips";
+ case mipsel: return "mipsel";
+ case msp430: return "msp430";
+ case pic16: return "pic16";
+ case ppc64: return "powerpc64";
+ case ppc: return "powerpc";
+ case sparc: return "sparc";
+ case systemz: return "s390x";
+ case tce: return "tce";
+ case thumb: return "thumb";
+ case x86: return "i386";
+ case x86_64: return "x86_64";
+ case xcore: return "xcore";
}
return "<invalid>";
}
+const char *Triple::getArchTypePrefix(ArchType Kind) {
+ switch (Kind) {
+ default:
+ return 0;
+
+ case alpha: return "alpha";
+
+ case arm:
+ case thumb: return "arm";
+
+ case bfin: return "bfin";
+
+ case cellspu: return "spu";
+
+ case ppc64:
+ case ppc: return "ppc";
+
+ case sparc: return "sparc";
+
+ case x86:
+ case x86_64: return "x86";
+ case xcore: return "xcore";
+ }
+}
+
const char *Triple::getVendorTypeName(VendorType Kind) {
switch (Kind) {
case UnknownVendor: return "unknown";
case Apple: return "apple";
- case PC: return "PC";
+ case PC: return "pc";
}
return "<invalid>";
@@ -44,35 +85,166 @@ const char *Triple::getOSTypeName(OSType Kind) {
case UnknownOS: return "unknown";
case AuroraUX: return "auroraux";
+ case Cygwin: return "cygwin";
case Darwin: return "darwin";
case DragonFly: return "dragonfly";
case FreeBSD: return "freebsd";
case Linux: return "linux";
+ case MinGW32: return "mingw32";
+ case MinGW64: return "mingw64";
+ case NetBSD: return "netbsd";
case OpenBSD: return "openbsd";
+ case Solaris: return "solaris";
+ case Win32: return "win32";
}
return "<invalid>";
}
+Triple::ArchType Triple::getArchTypeForLLVMName(const StringRef &Name) {
+ if (Name == "alpha")
+ return alpha;
+ if (Name == "arm")
+ return arm;
+ if (Name == "bfin")
+ return bfin;
+ if (Name == "cellspu")
+ return cellspu;
+ if (Name == "mips")
+ return mips;
+ if (Name == "mipsel")
+ return mipsel;
+ if (Name == "msp430")
+ return msp430;
+ if (Name == "pic16")
+ return pic16;
+ if (Name == "ppc64")
+ return ppc64;
+ if (Name == "ppc")
+ return ppc;
+ if (Name == "sparc")
+ return sparc;
+ if (Name == "systemz")
+ return systemz;
+ if (Name == "tce")
+ return tce;
+ if (Name == "thumb")
+ return thumb;
+ if (Name == "x86")
+ return x86;
+ if (Name == "x86-64")
+ return x86_64;
+ if (Name == "xcore")
+ return xcore;
+
+ return UnknownArch;
+}
+
+Triple::ArchType Triple::getArchTypeForDarwinArchName(const StringRef &Str) {
+ // See arch(3) and llvm-gcc's driver-driver.c. We don't implement support for
+ // archs which Darwin doesn't use.
+
+ // The matching this routine does is fairly pointless, since it is neither the
+ // complete architecture list, nor a reasonable subset. The problem is that
+ // historically the driver driver accepts this and also ties its -march=
+ // handling to the architecture name, so we need to be careful before removing
+ // support for it.
+
+ // This code must be kept in sync with Clang's Darwin specific argument
+ // translation.
+
+ if (Str == "ppc" || Str == "ppc601" || Str == "ppc603" || Str == "ppc604" ||
+ Str == "ppc604e" || Str == "ppc750" || Str == "ppc7400" ||
+ Str == "ppc7450" || Str == "ppc970")
+ return Triple::ppc;
+
+ if (Str == "ppc64")
+ return Triple::ppc64;
+
+ if (Str == "i386" || Str == "i486" || Str == "i486SX" || Str == "pentium" ||
+ Str == "i586" || Str == "pentpro" || Str == "i686" || Str == "pentIIm3" ||
+ Str == "pentIIm5" || Str == "pentium4")
+ return Triple::x86;
+
+ if (Str == "x86_64")
+ return Triple::x86_64;
+
+ // This is derived from the driver driver.
+ if (Str == "arm" || Str == "armv4t" || Str == "armv5" || Str == "xscale" ||
+ Str == "armv6" || Str == "armv7")
+ return Triple::arm;
+
+ return Triple::UnknownArch;
+}
+
//
void Triple::Parse() const {
assert(!isInitialized() && "Invalid parse call.");
- std::string ArchName = getArchName();
+ StringRef ArchName = getArchName();
+ StringRef VendorName = getVendorName();
+ StringRef OSName = getOSName();
+
if (ArchName.size() == 4 && ArchName[0] == 'i' &&
- ArchName[2] == '8' && ArchName[3] == '6')
+ ArchName[2] == '8' && ArchName[3] == '6' &&
+ ArchName[1] - '3' < 6) // i[3-9]86
Arch = x86;
else if (ArchName == "amd64" || ArchName == "x86_64")
Arch = x86_64;
+ else if (ArchName == "bfin")
+ Arch = bfin;
+ else if (ArchName == "pic16")
+ Arch = pic16;
else if (ArchName == "powerpc")
Arch = ppc;
else if (ArchName == "powerpc64")
Arch = ppc64;
+ else if (ArchName == "arm" ||
+ ArchName.startswith("armv") ||
+ ArchName == "xscale")
+ Arch = arm;
+ else if (ArchName == "thumb" ||
+ ArchName.startswith("thumbv"))
+ Arch = thumb;
+ else if (ArchName.startswith("alpha"))
+ Arch = alpha;
+ else if (ArchName == "spu" || ArchName == "cellspu")
+ Arch = cellspu;
+ else if (ArchName == "msp430")
+ Arch = msp430;
+ else if (ArchName == "mips" || ArchName == "mipsallegrex")
+ Arch = mips;
+ else if (ArchName == "mipsel" || ArchName == "mipsallegrexel" ||
+ ArchName == "psp")
+ Arch = mipsel;
+ else if (ArchName == "sparc")
+ Arch = sparc;
+ else if (ArchName == "s390x")
+ Arch = systemz;
+ else if (ArchName == "tce")
+ Arch = tce;
+ else if (ArchName == "xcore")
+ Arch = xcore;
else
Arch = UnknownArch;
- std::string VendorName = getVendorName();
+
+ // Handle some exceptional cases where the OS / environment components are
+ // stuck into the vendor field.
+ if (StringRef(getTriple()).count('-') == 1) {
+ StringRef VendorName = getVendorName();
+
+ if (VendorName.startswith("mingw32")) { // 'i386-mingw32', etc.
+ Vendor = PC;
+ OS = MinGW32;
+ return;
+ }
+
+ // arm-elf is another example, but we don't currently parse anything about
+ // the environment.
+ }
+
if (VendorName == "apple")
Vendor = Apple;
else if (VendorName == "pc")
@@ -80,78 +252,129 @@ void Triple::Parse() const {
else
Vendor = UnknownVendor;
- std::string OSName = getOSName();
- if (memcmp(&OSName[0], "auroraux", 8) == 0)
+ if (OSName.startswith("auroraux"))
OS = AuroraUX;
- else if (memcmp(&OSName[0], "darwin", 6) == 0)
+ else if (OSName.startswith("cygwin"))
+ OS = Cygwin;
+ else if (OSName.startswith("darwin"))
OS = Darwin;
- else if (memcmp(&OSName[0], "dragonfly", 9) == 0)
+ else if (OSName.startswith("dragonfly"))
OS = DragonFly;
- else if (memcmp(&OSName[0], "freebsd", 7) == 0)
+ else if (OSName.startswith("freebsd"))
OS = FreeBSD;
- else if (memcmp(&OSName[0], "linux", 5) == 0)
+ else if (OSName.startswith("linux"))
OS = Linux;
- else if (memcmp(&OSName[0], "openbsd", 7) == 0)
+ else if (OSName.startswith("mingw32"))
+ OS = MinGW32;
+ else if (OSName.startswith("mingw64"))
+ OS = MinGW64;
+ else if (OSName.startswith("netbsd"))
+ OS = NetBSD;
+ else if (OSName.startswith("openbsd"))
OS = OpenBSD;
+ else if (OSName.startswith("solaris"))
+ OS = Solaris;
+ else if (OSName.startswith("win32"))
+ OS = Win32;
else
OS = UnknownOS;
assert(isInitialized() && "Failed to initialize!");
}
-static std::string extract(const std::string &A,
- std::string::size_type begin,
- std::string::size_type end) {
- if (begin == std::string::npos)
- return "";
- if (end == std::string::npos)
- return A.substr(begin);
- return A.substr(begin, end - begin);
+StringRef Triple::getArchName() const {
+ return StringRef(Data).split('-').first; // Isolate first component
}
-static std::string extract1(const std::string &A,
- std::string::size_type begin,
- std::string::size_type end) {
- if (begin == std::string::npos || begin == end)
- return "";
- return extract(A, begin + 1, end);
+StringRef Triple::getVendorName() const {
+ StringRef Tmp = StringRef(Data).split('-').second; // Strip first component
+ return Tmp.split('-').first; // Isolate second component
}
-std::string Triple::getArchName() const {
- std::string Tmp = Data;
- return extract(Tmp, 0, Tmp.find('-'));
+StringRef Triple::getOSName() const {
+ StringRef Tmp = StringRef(Data).split('-').second; // Strip first component
+ Tmp = Tmp.split('-').second; // Strip second component
+ return Tmp.split('-').first; // Isolate third component
}
-std::string Triple::getVendorName() const {
- std::string Tmp = Data;
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- return extract(Tmp, 0, Tmp.find('-'));
+StringRef Triple::getEnvironmentName() const {
+ StringRef Tmp = StringRef(Data).split('-').second; // Strip first component
+ Tmp = Tmp.split('-').second; // Strip second component
+ return Tmp.split('-').second; // Strip third component
}
-std::string Triple::getOSName() const {
- std::string Tmp = Data;
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- return extract(Tmp, 0, Tmp.find('-'));
+StringRef Triple::getOSAndEnvironmentName() const {
+ StringRef Tmp = StringRef(Data).split('-').second; // Strip first component
+ return Tmp.split('-').second; // Strip second component
}
-std::string Triple::getEnvironmentName() const {
- std::string Tmp = Data;
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- return extract(Tmp, 0, std::string::npos);
+static unsigned EatNumber(StringRef &Str) {
+ assert(!Str.empty() && Str[0] >= '0' && Str[0] <= '9' && "Not a number");
+ unsigned Result = Str[0]-'0';
+
+ // Eat the digit.
+ Str = Str.substr(1);
+
+ // Handle "darwin11".
+ if (Result == 1 && !Str.empty() && Str[0] >= '0' && Str[0] <= '9') {
+ Result = Result*10 + (Str[0] - '0');
+ // Eat the digit.
+ Str = Str.substr(1);
+ }
+
+ return Result;
}
-std::string Triple::getOSAndEnvironmentName() const {
- std::string Tmp = Data;
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- Tmp = extract1(Tmp, Tmp.find('-'), std::string::npos);
- return extract(Tmp, 0, std::string::npos);
+/// getDarwinNumber - Parse the 'darwin number' out of the specific target
+/// triple. For example, if we have darwin8.5 return 8,5,0. If any entry is
+/// not defined, return 0's. This requires that the triple have an OSType of
+/// darwin before it is called.
+void Triple::getDarwinNumber(unsigned &Maj, unsigned &Min,
+ unsigned &Revision) const {
+ assert(getOS() == Darwin && "Not a darwin target triple!");
+ StringRef OSName = getOSName();
+ assert(OSName.startswith("darwin") && "Unknown darwin target triple!");
+
+ // Strip off "darwin".
+ OSName = OSName.substr(6);
+
+ Maj = Min = Revision = 0;
+
+ if (OSName.empty() || OSName[0] < '0' || OSName[0] > '9')
+ return;
+
+ // The major version is the first digit.
+ Maj = EatNumber(OSName);
+ if (OSName.empty()) return;
+
+ // Handle minor version: 10.4.9 -> darwin8.9.
+ if (OSName[0] != '.')
+ return;
+
+ // Eat the '.'.
+ OSName = OSName.substr(1);
+
+ if (OSName.empty() || OSName[0] < '0' || OSName[0] > '9')
+ return;
+
+ Min = EatNumber(OSName);
+ if (OSName.empty()) return;
+
+ // Handle revision darwin8.9.1
+ if (OSName[0] != '.')
+ return;
+
+ // Eat the '.'.
+ OSName = OSName.substr(1);
+
+ if (OSName.empty() || OSName[0] < '0' || OSName[0] > '9')
+ return;
+
+ Revision = EatNumber(OSName);
}
-void Triple::setTriple(const std::string &Str) {
- Data = Str;
+void Triple::setTriple(const Twine &Str) {
+ Data = Str.str();
Arch = InvalidArch;
}
@@ -167,15 +390,22 @@ void Triple::setOS(OSType Kind) {
setOSName(getOSTypeName(Kind));
}
-void Triple::setArchName(const std::string &Str) {
- setTriple(Str + "-" + getVendorName() + "-" + getOSAndEnvironmentName());
+void Triple::setArchName(const StringRef &Str) {
+ // Work around a miscompilation bug for Twines in gcc 4.0.3.
+ SmallString<64> Triple;
+ Triple += Str;
+ Triple += "-";
+ Triple += getVendorName();
+ Triple += "-";
+ Triple += getOSAndEnvironmentName();
+ setTriple(Triple.str());
}
-void Triple::setVendorName(const std::string &Str) {
+void Triple::setVendorName(const StringRef &Str) {
setTriple(getArchName() + "-" + Str + "-" + getOSAndEnvironmentName());
}
-void Triple::setOSName(const std::string &Str) {
+void Triple::setOSName(const StringRef &Str) {
if (hasEnvironment())
setTriple(getArchName() + "-" + getVendorName() + "-" + Str +
"-" + getEnvironmentName());
@@ -183,11 +413,11 @@ void Triple::setOSName(const std::string &Str) {
setTriple(getArchName() + "-" + getVendorName() + "-" + Str);
}
-void Triple::setEnvironmentName(const std::string &Str) {
+void Triple::setEnvironmentName(const StringRef &Str) {
setTriple(getArchName() + "-" + getVendorName() + "-" + getOSName() +
"-" + Str);
}
-void Triple::setOSAndEnvironmentName(const std::string &Str) {
+void Triple::setOSAndEnvironmentName(const StringRef &Str) {
setTriple(getArchName() + "-" + getVendorName() + "-" + Str);
}
diff --git a/lib/Support/Twine.cpp b/lib/Support/Twine.cpp
new file mode 100644
index 0000000..292c0c2
--- /dev/null
+++ b/lib/Support/Twine.cpp
@@ -0,0 +1,133 @@
+//===-- Twine.cpp - Fast Temporary String Concatenation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+std::string Twine::str() const {
+ SmallString<256> Vec;
+ toVector(Vec);
+ return std::string(Vec.begin(), Vec.end());
+}
+
+void Twine::toVector(SmallVectorImpl<char> &Out) const {
+ raw_svector_ostream OS(Out);
+ print(OS);
+}
+
+void Twine::printOneChild(raw_ostream &OS, const void *Ptr,
+ NodeKind Kind) const {
+ switch (Kind) {
+ case Twine::NullKind: break;
+ case Twine::EmptyKind: break;
+ case Twine::TwineKind:
+ static_cast<const Twine*>(Ptr)->print(OS);
+ break;
+ case Twine::CStringKind:
+ OS << static_cast<const char*>(Ptr);
+ break;
+ case Twine::StdStringKind:
+ OS << *static_cast<const std::string*>(Ptr);
+ break;
+ case Twine::StringRefKind:
+ OS << *static_cast<const StringRef*>(Ptr);
+ break;
+ case Twine::DecUIKind:
+ OS << *static_cast<const unsigned int*>(Ptr);
+ break;
+ case Twine::DecIKind:
+ OS << *static_cast<const int*>(Ptr);
+ break;
+ case Twine::DecULKind:
+ OS << *static_cast<const unsigned long*>(Ptr);
+ break;
+ case Twine::DecLKind:
+ OS << *static_cast<const long*>(Ptr);
+ break;
+ case Twine::DecULLKind:
+ OS << *static_cast<const unsigned long long*>(Ptr);
+ break;
+ case Twine::DecLLKind:
+ OS << *static_cast<const long long*>(Ptr);
+ break;
+ case Twine::UHexKind:
+ OS.write_hex(*static_cast<const uint64_t*>(Ptr));
+ break;
+ }
+}
+
+void Twine::printOneChildRepr(raw_ostream &OS, const void *Ptr,
+ NodeKind Kind) const {
+ switch (Kind) {
+ case Twine::NullKind:
+ OS << "null"; break;
+ case Twine::EmptyKind:
+ OS << "empty"; break;
+ case Twine::TwineKind:
+ OS << "rope:";
+ static_cast<const Twine*>(Ptr)->printRepr(OS);
+ break;
+ case Twine::CStringKind:
+ OS << "cstring:\""
+ << static_cast<const char*>(Ptr) << "\"";
+ break;
+ case Twine::StdStringKind:
+ OS << "std::string:\""
+ << static_cast<const std::string*>(Ptr) << "\"";
+ break;
+ case Twine::StringRefKind:
+ OS << "stringref:\""
+ << static_cast<const StringRef*>(Ptr) << "\"";
+ break;
+ case Twine::DecUIKind:
+ OS << "decUI:\"" << *static_cast<const unsigned int*>(Ptr) << "\"";
+ break;
+ case Twine::DecIKind:
+ OS << "decI:\"" << *static_cast<const int*>(Ptr) << "\"";
+ break;
+ case Twine::DecULKind:
+ OS << "decUL:\"" << *static_cast<const unsigned long*>(Ptr) << "\"";
+ break;
+ case Twine::DecLKind:
+ OS << "decL:\"" << *static_cast<const long*>(Ptr) << "\"";
+ break;
+ case Twine::DecULLKind:
+ OS << "decULL:\"" << *static_cast<const unsigned long long*>(Ptr) << "\"";
+ break;
+ case Twine::DecLLKind:
+ OS << "decLL:\"" << *static_cast<const long long*>(Ptr) << "\"";
+ break;
+ case Twine::UHexKind:
+ OS << "uhex:\"" << static_cast<const uint64_t*>(Ptr) << "\"";
+ break;
+ }
+}
+
+void Twine::print(raw_ostream &OS) const {
+ printOneChild(OS, LHS, getLHSKind());
+ printOneChild(OS, RHS, getRHSKind());
+}
+
+void Twine::printRepr(raw_ostream &OS) const {
+ OS << "(Twine ";
+ printOneChildRepr(OS, LHS, getLHSKind());
+ OS << " ";
+ printOneChildRepr(OS, RHS, getRHSKind());
+ OS << ")";
+}
+
+void Twine::dump() const {
+ print(llvm::errs());
+}
+
+void Twine::dumpRepr() const {
+ printRepr(llvm::errs());
+}
diff --git a/lib/Support/raw_os_ostream.cpp b/lib/Support/raw_os_ostream.cpp
new file mode 100644
index 0000000..3374dd7
--- /dev/null
+++ b/lib/Support/raw_os_ostream.cpp
@@ -0,0 +1,30 @@
+//===--- raw_os_ostream.cpp - Implement the raw_os_ostream class ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements support adapting raw_ostream to std::ostream.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/raw_os_ostream.h"
+#include <ostream>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// raw_os_ostream
+//===----------------------------------------------------------------------===//
+
+raw_os_ostream::~raw_os_ostream() {
+ flush();
+}
+
+void raw_os_ostream::write_impl(const char *Ptr, size_t Size) {
+ OS.write(Ptr, Size);
+}
+
+uint64_t raw_os_ostream::current_pos() { return OS.tellp(); }
diff --git a/lib/Support/raw_ostream.cpp b/lib/Support/raw_ostream.cpp
index 42e6fda..0a82cc1 100644
--- a/lib/Support/raw_ostream.cpp
+++ b/lib/Support/raw_ostream.cpp
@@ -18,7 +18,11 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Compiler.h"
-#include <ostream>
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include <sys/stat.h>
+#include <sys/types.h>
#if defined(HAVE_UNISTD_H)
# include <unistd.h>
@@ -43,10 +47,59 @@
using namespace llvm;
+raw_ostream::~raw_ostream() {
+ // raw_ostream's subclasses should take care to flush the buffer
+ // in their destructors.
+ assert(OutBufCur == OutBufStart &&
+ "raw_ostream destructor called with non-empty buffer!");
+
+ if (BufferMode == InternalBuffer)
+ delete [] OutBufStart;
+
+ // If there are any pending errors, report them now. Clients wishing
+ // to avoid llvm_report_error calls should check for errors with
+ // has_error() and clear the error flag with clear_error() before
+ // destructing raw_ostream objects which may have errors.
+ if (Error)
+ llvm_report_error("IO failure on output stream.");
+}
// An out of line virtual method to provide a home for the class vtable.
void raw_ostream::handle() {}
+size_t raw_ostream::preferred_buffer_size() {
+ // BUFSIZ is intended to be a reasonable default.
+ return BUFSIZ;
+}
+
+void raw_ostream::SetBuffered() {
+ // Ask the subclass to determine an appropriate buffer size.
+ if (size_t Size = preferred_buffer_size())
+ SetBufferSize(Size);
+ else
+ // It may return 0, meaning this stream should be unbuffered.
+ SetUnbuffered();
+}
+
+void raw_ostream::SetBufferAndMode(char *BufferStart, size_t Size,
+ BufferKind Mode) {
+ assert(((Mode == Unbuffered && BufferStart == 0 && Size == 0) ||
+ (Mode != Unbuffered && BufferStart && Size)) &&
+ "stream must be unbuffered or have at least one byte");
+ // Make sure the current buffer is free of content (we can't flush here; the
+ // child buffer management logic will be in write_impl).
+ assert(GetNumBytesInBuffer() == 0 && "Current buffer is non-empty!");
+
+ if (BufferMode == InternalBuffer)
+ delete [] OutBufStart;
+ OutBufStart = BufferStart;
+ OutBufEnd = OutBufStart+Size;
+ OutBufCur = OutBufStart;
+ BufferMode = Mode;
+
+ assert(OutBufStart <= OutBufEnd && "Invalid size!");
+}
+
raw_ostream &raw_ostream::operator<<(unsigned long N) {
// Zero is a special case.
if (N == 0)
@@ -73,10 +126,10 @@ raw_ostream &raw_ostream::operator<<(long N) {
}
raw_ostream &raw_ostream::operator<<(unsigned long long N) {
- // Zero is a special case.
- if (N == 0)
- return *this << '0';
-
+ // Output using 32-bit div/mod when possible.
+ if (N == static_cast<unsigned long>(N))
+ return this->operator<<(static_cast<unsigned long>(N));
+
char NumberBuffer[20];
char *EndPtr = NumberBuffer+sizeof(NumberBuffer);
char *CurPtr = EndPtr;
@@ -97,10 +150,7 @@ raw_ostream &raw_ostream::operator<<(long long N) {
return this->operator<<(static_cast<unsigned long long>(N));
}
-raw_ostream &raw_ostream::operator<<(const void *P) {
- uintptr_t N = (uintptr_t) P;
- *this << '0' << 'x';
-
+raw_ostream &raw_ostream::write_hex(unsigned long long N) {
// Zero is a special case.
if (N == 0)
return *this << '0';
@@ -110,7 +160,7 @@ raw_ostream &raw_ostream::operator<<(const void *P) {
char *CurPtr = EndPtr;
while (N) {
- unsigned x = N % 16;
+ uintptr_t x = N % 16;
*--CurPtr = (x < 10 ? '0' + x : 'a' + x - 10);
N /= 16;
}
@@ -118,44 +168,78 @@ raw_ostream &raw_ostream::operator<<(const void *P) {
return write(CurPtr, EndPtr-CurPtr);
}
+raw_ostream &raw_ostream::operator<<(const void *P) {
+ *this << '0' << 'x';
+
+ return write_hex((uintptr_t) P);
+}
+
+raw_ostream &raw_ostream::operator<<(double N) {
+ this->operator<<(ftostr(N));
+ return *this;
+}
+
+
+
void raw_ostream::flush_nonempty() {
assert(OutBufCur > OutBufStart && "Invalid call to flush_nonempty.");
- write_impl(OutBufStart, OutBufCur - OutBufStart);
- OutBufCur = OutBufStart;
+ size_t Length = OutBufCur - OutBufStart;
+ OutBufCur = OutBufStart;
+ write_impl(OutBufStart, Length);
}
raw_ostream &raw_ostream::write(unsigned char C) {
// Group exceptional cases into a single branch.
- if (OutBufCur >= OutBufEnd) {
- if (Unbuffered) {
- write_impl(reinterpret_cast<char*>(&C), 1);
- return *this;
+ if (BUILTIN_EXPECT(OutBufCur >= OutBufEnd, false)) {
+ if (BUILTIN_EXPECT(!OutBufStart, false)) {
+ if (BufferMode == Unbuffered) {
+ write_impl(reinterpret_cast<char*>(&C), 1);
+ return *this;
+ }
+ // Set up a buffer and start over.
+ SetBuffered();
+ return write(C);
}
-
- if (!OutBufStart)
- SetBufferSize();
- else
- flush_nonempty();
+
+ flush_nonempty();
}
*OutBufCur++ = C;
return *this;
}
-raw_ostream &raw_ostream::write(const char *Ptr, unsigned Size) {
+raw_ostream &raw_ostream::write(const char *Ptr, size_t Size) {
// Group exceptional cases into a single branch.
if (BUILTIN_EXPECT(OutBufCur+Size > OutBufEnd, false)) {
- if (Unbuffered) {
- write_impl(Ptr, Size);
- return *this;
+ if (BUILTIN_EXPECT(!OutBufStart, false)) {
+ if (BufferMode == Unbuffered) {
+ write_impl(Ptr, Size);
+ return *this;
+ }
+ // Set up a buffer and start over.
+ SetBuffered();
+ return write(Ptr, Size);
}
-
- if (!OutBufStart)
- SetBufferSize();
- else
+
+ // Write out the data in buffer-sized blocks until the remainder
+ // fits within the buffer.
+ do {
+ size_t NumBytes = OutBufEnd - OutBufCur;
+ copy_to_buffer(Ptr, NumBytes);
flush_nonempty();
+ Ptr += NumBytes;
+ Size -= NumBytes;
+ } while (OutBufCur+Size > OutBufEnd);
}
-
+
+ copy_to_buffer(Ptr, Size);
+
+ return *this;
+}
+
+void raw_ostream::copy_to_buffer(const char *Ptr, size_t Size) {
+ assert(Size <= size_t(OutBufEnd - OutBufCur) && "Buffer overrun!");
+
// Handle short strings specially, memcpy isn't very good at very short
// strings.
switch (Size) {
@@ -165,40 +249,24 @@ raw_ostream &raw_ostream::write(const char *Ptr, unsigned Size) {
case 1: OutBufCur[0] = Ptr[0]; // FALL THROUGH
case 0: break;
default:
- // Normally the string to emit is shorter than the buffer.
- if (Size <= unsigned(OutBufEnd-OutBufStart)) {
- memcpy(OutBufCur, Ptr, Size);
- break;
- }
-
- // Otherwise we are emitting a string larger than our buffer. We
- // know we already flushed, so just write it out directly.
- write_impl(Ptr, Size);
- Size = 0;
+ memcpy(OutBufCur, Ptr, Size);
break;
}
- OutBufCur += Size;
- return *this;
+ OutBufCur += Size;
}
// Formatted output.
raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) {
// If we have more than a few bytes left in our output buffer, try
// formatting directly onto its end.
- //
- // FIXME: This test is a bit silly, since if we don't have enough
- // space in the buffer we will have to flush the formatted output
- // anyway. We should just flush upfront in such cases, and use the
- // whole buffer as our scratch pad. Note, however, that this case is
- // also necessary for correctness on unbuffered streams.
- unsigned NextBufferSize = 127;
- if (OutBufEnd-OutBufCur > 3) {
- unsigned BufferBytesLeft = OutBufEnd-OutBufCur;
- unsigned BytesUsed = Fmt.print(OutBufCur, BufferBytesLeft);
+ size_t NextBufferSize = 127;
+ size_t BufferBytesLeft = OutBufEnd - OutBufCur;
+ if (BufferBytesLeft > 3) {
+ size_t BytesUsed = Fmt.print(OutBufCur, BufferBytesLeft);
// Common case is that we have plenty of space.
- if (BytesUsed < BufferBytesLeft) {
+ if (BytesUsed <= BufferBytesLeft) {
OutBufCur += BytesUsed;
return *this;
}
@@ -217,11 +285,11 @@ raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) {
V.resize(NextBufferSize);
// Try formatting into the SmallVector.
- unsigned BytesUsed = Fmt.print(&V[0], NextBufferSize);
+ size_t BytesUsed = Fmt.print(V.data(), NextBufferSize);
// If BytesUsed fit into the vector, we win.
if (BytesUsed <= NextBufferSize)
- return write(&V[0], BytesUsed);
+ return write(V.data(), BytesUsed);
// Otherwise, try again with a new size.
assert(BytesUsed > NextBufferSize && "Didn't grow buffer!?");
@@ -229,6 +297,26 @@ raw_ostream &raw_ostream::operator<<(const format_object_base &Fmt) {
}
}
+/// indent - Insert 'NumSpaces' spaces.
+raw_ostream &raw_ostream::indent(unsigned NumSpaces) {
+ static const char Spaces[] = " "
+ " "
+ " ";
+
+ // Usually the indentation is small, handle it with a fastpath.
+ if (NumSpaces < array_lengthof(Spaces))
+ return write(Spaces, NumSpaces);
+
+ while (NumSpaces) {
+ unsigned NumToWrite = std::min(NumSpaces,
+ (unsigned)array_lengthof(Spaces)-1);
+ write(Spaces, NumToWrite);
+ NumSpaces -= NumToWrite;
+ }
+ return *this;
+}
+
+
//===----------------------------------------------------------------------===//
// Formatted Output
//===----------------------------------------------------------------------===//
@@ -245,8 +333,12 @@ void format_object_base::home() {
/// occurs, information about the error is put into ErrorInfo, and the
/// stream should be immediately destroyed; the string will be empty
/// if no error occurred.
-raw_fd_ostream::raw_fd_ostream(const char *Filename, bool Binary,
- std::string &ErrorInfo) : pos(0) {
+raw_fd_ostream::raw_fd_ostream(const char *Filename, std::string &ErrorInfo,
+ unsigned Flags) : pos(0) {
+ // Verify that we don't have both "append" and "excl".
+ assert((!(Flags & F_Excl) || !(Flags & F_Append)) &&
+ "Cannot specify both 'excl' and 'append' file creation flags!");
+
ErrorInfo.clear();
// Handle "-" as stdout.
@@ -254,18 +346,26 @@ raw_fd_ostream::raw_fd_ostream(const char *Filename, bool Binary,
FD = STDOUT_FILENO;
// If user requested binary then put stdout into binary mode if
// possible.
- if (Binary)
+ if (Flags & F_Binary)
sys::Program::ChangeStdoutToBinary();
ShouldClose = false;
return;
}
- int Flags = O_WRONLY|O_CREAT|O_TRUNC;
+ int OpenFlags = O_WRONLY|O_CREAT;
#ifdef O_BINARY
- if (Binary)
- Flags |= O_BINARY;
+ if (Flags & F_Binary)
+ OpenFlags |= O_BINARY;
#endif
- FD = open(Filename, Flags, 0644);
+
+ if (Flags & F_Append)
+ OpenFlags |= O_APPEND;
+ else
+ OpenFlags |= O_TRUNC;
+ if (Flags & F_Excl)
+ OpenFlags |= O_EXCL;
+
+ FD = open(Filename, OpenFlags, 0664);
if (FD < 0) {
ErrorInfo = "Error opening output file '" + std::string(Filename) + "'";
ShouldClose = false;
@@ -275,33 +375,56 @@ raw_fd_ostream::raw_fd_ostream(const char *Filename, bool Binary,
}
raw_fd_ostream::~raw_fd_ostream() {
- if (FD >= 0) {
- flush();
- if (ShouldClose)
- ::close(FD);
- }
+ if (FD < 0) return;
+ flush();
+ if (ShouldClose)
+ if (::close(FD) != 0)
+ error_detected();
}
-void raw_fd_ostream::write_impl(const char *Ptr, unsigned Size) {
+
+void raw_fd_ostream::write_impl(const char *Ptr, size_t Size) {
assert (FD >= 0 && "File already closed.");
pos += Size;
- ::write(FD, Ptr, Size);
+ if (::write(FD, Ptr, Size) != (ssize_t) Size)
+ error_detected();
}
void raw_fd_ostream::close() {
assert (ShouldClose);
ShouldClose = false;
flush();
- ::close(FD);
+ if (::close(FD) != 0)
+ error_detected();
FD = -1;
}
uint64_t raw_fd_ostream::seek(uint64_t off) {
flush();
- pos = lseek(FD, off, SEEK_SET);
+ pos = ::lseek(FD, off, SEEK_SET);
+ if (pos != off)
+ error_detected();
return pos;
}
+size_t raw_fd_ostream::preferred_buffer_size() {
+#if !defined(_MSC_VER) && !defined(__MINGW32__) // Windows has no st_blksize.
+ assert(FD >= 0 && "File not yet open!");
+ struct stat statbuf;
+ if (fstat(FD, &statbuf) == 0) {
+ // If this is a terminal, don't use buffering. Line buffering
+ // would be a more traditional thing to do, but it's not worth
+ // the complexity.
+ if (S_ISCHR(statbuf.st_mode) && isatty(FD))
+ return 0;
+ // Return the preferred block size.
+ return statbuf.st_blksize;
+ }
+ error_detected();
+#endif
+ return raw_ostream::preferred_buffer_size();
+}
+
raw_ostream &raw_fd_ostream::changeColor(enum Colors colors, bool bold,
bool bg) {
if (sys::Process::ColorNeedsFlush())
@@ -310,7 +433,7 @@ raw_ostream &raw_fd_ostream::changeColor(enum Colors colors, bool bold,
(colors == SAVEDCOLOR) ? sys::Process::OutputBold(bg)
: sys::Process::OutputColor(colors, bold, bg);
if (colorcode) {
- unsigned len = strlen(colorcode);
+ size_t len = strlen(colorcode);
write(colorcode, len);
// don't account colors towards output characters
pos -= len;
@@ -323,7 +446,7 @@ raw_ostream &raw_fd_ostream::resetColor() {
flush();
const char *colorcode = sys::Process::ResetColor();
if (colorcode) {
- unsigned len = strlen(colorcode);
+ size_t len = strlen(colorcode);
write(colorcode, len);
// don't account colors towards output characters
pos -= len;
@@ -331,12 +454,18 @@ raw_ostream &raw_fd_ostream::resetColor() {
return *this;
}
+bool raw_fd_ostream::is_displayed() const {
+ return sys::Process::FileDescriptorIsDisplayed(FD);
+}
+
//===----------------------------------------------------------------------===//
// raw_stdout/err_ostream
//===----------------------------------------------------------------------===//
+// Set buffer settings to model stdout and stderr behavior.
+// Set standard error to be unbuffered by default.
raw_stdout_ostream::raw_stdout_ostream():raw_fd_ostream(STDOUT_FILENO, false) {}
-raw_stderr_ostream::raw_stderr_ostream():raw_fd_ostream(STDERR_FILENO, false,
+raw_stderr_ostream::raw_stderr_ostream():raw_fd_ostream(STDERR_FILENO, false,
true) {}
// An out of line virtual method to provide a home for the class vtable.
@@ -357,23 +486,12 @@ raw_ostream &llvm::errs() {
return S;
}
-//===----------------------------------------------------------------------===//
-// raw_os_ostream
-//===----------------------------------------------------------------------===//
-
-raw_os_ostream::~raw_os_ostream() {
- flush();
-}
-
-void raw_os_ostream::write_impl(const char *Ptr, unsigned Size) {
- OS.write(Ptr, Size);
+/// nulls() - This returns a reference to a raw_ostream which discards output.
+raw_ostream &llvm::nulls() {
+ static raw_null_ostream S;
+ return S;
}
-uint64_t raw_os_ostream::current_pos() { return OS.tellp(); }
-
-uint64_t raw_os_ostream::tell() {
- return (uint64_t)OS.tellp() + GetNumBytesInBuffer();
-}
//===----------------------------------------------------------------------===//
// raw_string_ostream
@@ -383,7 +501,7 @@ raw_string_ostream::~raw_string_ostream() {
flush();
}
-void raw_string_ostream::write_impl(const char *Ptr, unsigned Size) {
+void raw_string_ostream::write_impl(const char *Ptr, size_t Size) {
OS.append(Ptr, Size);
}
@@ -391,16 +509,65 @@ void raw_string_ostream::write_impl(const char *Ptr, unsigned Size) {
// raw_svector_ostream
//===----------------------------------------------------------------------===//
+// The raw_svector_ostream implementation uses the SmallVector itself as the
+// buffer for the raw_ostream. We guarantee that the raw_ostream buffer is
+// always pointing past the end of the vector, but within the vector
+// capacity. This allows raw_ostream to write directly into the correct place,
+// and we only need to set the vector size when the data is flushed.
+
+raw_svector_ostream::raw_svector_ostream(SmallVectorImpl<char> &O) : OS(O) {
+ // Set up the initial external buffer. We make sure that the buffer has at
+ // least 128 bytes free; raw_ostream itself only requires 64, but we want to
+ // make sure that we don't grow the buffer unnecessarily on destruction (when
+ // the data is flushed). See the FIXME below.
+ OS.reserve(OS.size() + 128);
+ SetBuffer(OS.end(), OS.capacity() - OS.size());
+}
+
raw_svector_ostream::~raw_svector_ostream() {
+ // FIXME: Prevent resizing during this flush().
flush();
}
-void raw_svector_ostream::write_impl(const char *Ptr, unsigned Size) {
- OS.append(Ptr, Ptr + Size);
+void raw_svector_ostream::write_impl(const char *Ptr, size_t Size) {
+ assert(Ptr == OS.end() && OS.size() + Size <= OS.capacity() &&
+ "Invalid write_impl() call!");
+
+ // We don't need to copy the bytes, just commit the bytes to the
+ // SmallVector.
+ OS.set_size(OS.size() + Size);
+
+ // Grow the vector if necessary.
+ if (OS.capacity() - OS.size() < 64)
+ OS.reserve(OS.capacity() * 2);
+
+ // Update the buffer position.
+ SetBuffer(OS.end(), OS.capacity() - OS.size());
}
uint64_t raw_svector_ostream::current_pos() { return OS.size(); }
-uint64_t raw_svector_ostream::tell() {
- return OS.size() + GetNumBytesInBuffer();
+StringRef raw_svector_ostream::str() {
+ flush();
+ return StringRef(OS.begin(), OS.size());
+}
+
+//===----------------------------------------------------------------------===//
+// raw_null_ostream
+//===----------------------------------------------------------------------===//
+
+raw_null_ostream::~raw_null_ostream() {
+#ifndef NDEBUG
+ // ~raw_ostream asserts that the buffer is empty. This isn't necessary
+ // with raw_null_ostream, but it's better to have raw_null_ostream follow
+ // the rules than to change the rules just for raw_null_ostream.
+ flush();
+#endif
+}
+
+void raw_null_ostream::write_impl(const char *Ptr, size_t Size) {
+}
+
+uint64_t raw_null_ostream::current_pos() {
+ return 0;
}
diff --git a/lib/Support/regcclass.h b/lib/Support/regcclass.h
new file mode 100644
index 0000000..2cea3e4
--- /dev/null
+++ b/lib/Support/regcclass.h
@@ -0,0 +1,70 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)cclass.h 8.3 (Berkeley) 3/20/94
+ */
+
+/* character-class table */
+static struct cclass {
+ const char *name;
+ const char *chars;
+ const char *multis;
+} cclasses[] = {
+ { "alnum", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
+0123456789", ""} ,
+ { "alpha", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
+ ""} ,
+ { "blank", " \t", ""} ,
+ { "cntrl", "\007\b\t\n\v\f\r\1\2\3\4\5\6\16\17\20\21\22\23\24\
+\25\26\27\30\31\32\33\34\35\36\37\177", ""} ,
+ { "digit", "0123456789", ""} ,
+ { "graph", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
+0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
+ ""} ,
+ { "lower", "abcdefghijklmnopqrstuvwxyz",
+ ""} ,
+ { "print", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
+0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ ",
+ ""} ,
+ { "punct", "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
+ ""} ,
+ { "space", "\t\n\v\f\r ", ""} ,
+ { "upper", "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
+ ""} ,
+ { "xdigit", "0123456789ABCDEFabcdef",
+ ""} ,
+ { NULL, 0, "" }
+};
diff --git a/lib/Support/regcname.h b/lib/Support/regcname.h
new file mode 100644
index 0000000..3c0bb24
--- /dev/null
+++ b/lib/Support/regcname.h
@@ -0,0 +1,139 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)cname.h 8.3 (Berkeley) 3/20/94
+ */
+
+/* character-name table */
+static struct cname {
+ const char *name;
+ char code;
+} cnames[] = {
+ { "NUL", '\0' },
+ { "SOH", '\001' },
+ { "STX", '\002' },
+ { "ETX", '\003' },
+ { "EOT", '\004' },
+ { "ENQ", '\005' },
+ { "ACK", '\006' },
+ { "BEL", '\007' },
+ { "alert", '\007' },
+ { "BS", '\010' },
+ { "backspace", '\b' },
+ { "HT", '\011' },
+ { "tab", '\t' },
+ { "LF", '\012' },
+ { "newline", '\n' },
+ { "VT", '\013' },
+ { "vertical-tab", '\v' },
+ { "FF", '\014' },
+ { "form-feed", '\f' },
+ { "CR", '\015' },
+ { "carriage-return", '\r' },
+ { "SO", '\016' },
+ { "SI", '\017' },
+ { "DLE", '\020' },
+ { "DC1", '\021' },
+ { "DC2", '\022' },
+ { "DC3", '\023' },
+ { "DC4", '\024' },
+ { "NAK", '\025' },
+ { "SYN", '\026' },
+ { "ETB", '\027' },
+ { "CAN", '\030' },
+ { "EM", '\031' },
+ { "SUB", '\032' },
+ { "ESC", '\033' },
+ { "IS4", '\034' },
+ { "FS", '\034' },
+ { "IS3", '\035' },
+ { "GS", '\035' },
+ { "IS2", '\036' },
+ { "RS", '\036' },
+ { "IS1", '\037' },
+ { "US", '\037' },
+ { "space", ' ' },
+ { "exclamation-mark", '!' },
+ { "quotation-mark", '"' },
+ { "number-sign", '#' },
+ { "dollar-sign", '$' },
+ { "percent-sign", '%' },
+ { "ampersand", '&' },
+ { "apostrophe", '\'' },
+ { "left-parenthesis", '(' },
+ { "right-parenthesis", ')' },
+ { "asterisk", '*' },
+ { "plus-sign", '+' },
+ { "comma", ',' },
+ { "hyphen", '-' },
+ { "hyphen-minus", '-' },
+ { "period", '.' },
+ { "full-stop", '.' },
+ { "slash", '/' },
+ { "solidus", '/' },
+ { "zero", '0' },
+ { "one", '1' },
+ { "two", '2' },
+ { "three", '3' },
+ { "four", '4' },
+ { "five", '5' },
+ { "six", '6' },
+ { "seven", '7' },
+ { "eight", '8' },
+ { "nine", '9' },
+ { "colon", ':' },
+ { "semicolon", ';' },
+ { "less-than-sign", '<' },
+ { "equals-sign", '=' },
+ { "greater-than-sign", '>' },
+ { "question-mark", '?' },
+ { "commercial-at", '@' },
+ { "left-square-bracket", '[' },
+ { "backslash", '\\' },
+ { "reverse-solidus", '\\' },
+ { "right-square-bracket", ']' },
+ { "circumflex", '^' },
+ { "circumflex-accent", '^' },
+ { "underscore", '_' },
+ { "low-line", '_' },
+ { "grave-accent", '`' },
+ { "left-brace", '{' },
+ { "left-curly-bracket", '{' },
+ { "vertical-line", '|' },
+ { "right-brace", '}' },
+ { "right-curly-bracket", '}' },
+ { "tilde", '~' },
+ { "DEL", '\177' },
+ { NULL, 0 }
+};
diff --git a/lib/Support/regcomp.c b/lib/Support/regcomp.c
new file mode 100644
index 0000000..cd018d5
--- /dev/null
+++ b/lib/Support/regcomp.c
@@ -0,0 +1,1525 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regcomp.c 8.5 (Berkeley) 3/20/94
+ */
+
+#include <sys/types.h>
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <limits.h>
+#include <stdlib.h>
+#include "regex_impl.h"
+
+#include "regutils.h"
+#include "regex2.h"
+
+#include "regcclass.h"
+#include "regcname.h"
+
+/*
+ * parse structure, passed up and down to avoid global variables and
+ * other clumsinesses
+ */
+struct parse {
+ char *next; /* next character in RE */
+ char *end; /* end of string (-> NUL normally) */
+ int error; /* has an error been seen? */
+ sop *strip; /* malloced strip */
+ sopno ssize; /* malloced strip size (allocated) */
+ sopno slen; /* malloced strip length (used) */
+ int ncsalloc; /* number of csets allocated */
+ struct re_guts *g;
+# define NPAREN 10 /* we need to remember () 1-9 for back refs */
+ sopno pbegin[NPAREN]; /* -> ( ([0] unused) */
+ sopno pend[NPAREN]; /* -> ) ([0] unused) */
+};
+
+static void p_ere(struct parse *, int);
+static void p_ere_exp(struct parse *);
+static void p_str(struct parse *);
+static void p_bre(struct parse *, int, int);
+static int p_simp_re(struct parse *, int);
+static int p_count(struct parse *);
+static void p_bracket(struct parse *);
+static void p_b_term(struct parse *, cset *);
+static void p_b_cclass(struct parse *, cset *);
+static void p_b_eclass(struct parse *, cset *);
+static char p_b_symbol(struct parse *);
+static char p_b_coll_elem(struct parse *, int);
+static char othercase(int);
+static void bothcases(struct parse *, int);
+static void ordinary(struct parse *, int);
+static void nonnewline(struct parse *);
+static void repeat(struct parse *, sopno, int, int);
+static int seterr(struct parse *, int);
+static cset *allocset(struct parse *);
+static void freeset(struct parse *, cset *);
+static int freezeset(struct parse *, cset *);
+static int firstch(struct parse *, cset *);
+static int nch(struct parse *, cset *);
+static void mcadd(struct parse *, cset *, const char *);
+static void mcinvert(struct parse *, cset *);
+static void mccase(struct parse *, cset *);
+static int isinsets(struct re_guts *, int);
+static int samesets(struct re_guts *, int, int);
+static void categorize(struct parse *, struct re_guts *);
+static sopno dupl(struct parse *, sopno, sopno);
+static void doemit(struct parse *, sop, size_t);
+static void doinsert(struct parse *, sop, size_t, sopno);
+static void dofwd(struct parse *, sopno, sop);
+static void enlarge(struct parse *, sopno);
+static void stripsnug(struct parse *, struct re_guts *);
+static void findmust(struct parse *, struct re_guts *);
+static sopno pluscount(struct parse *, struct re_guts *);
+
+static char nuls[10]; /* place to point scanner in event of error */
+
+/*
+ * macros for use with parse structure
+ * BEWARE: these know that the parse structure is named `p' !!!
+ */
+#define PEEK() (*p->next)
+#define PEEK2() (*(p->next+1))
+#define MORE() (p->next < p->end)
+#define MORE2() (p->next+1 < p->end)
+#define SEE(c) (MORE() && PEEK() == (c))
+#define SEETWO(a, b) (MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
+#define EAT(c) ((SEE(c)) ? (NEXT(), 1) : 0)
+#define EATTWO(a, b) ((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
+#define NEXT() (p->next++)
+#define NEXT2() (p->next += 2)
+#define NEXTn(n) (p->next += (n))
+#define GETNEXT() (*p->next++)
+#define SETERROR(e) seterr(p, (e))
+#define REQUIRE(co, e) (void)((co) || SETERROR(e))
+#define MUSTSEE(c, e) (REQUIRE(MORE() && PEEK() == (c), e))
+#define MUSTEAT(c, e) (REQUIRE(MORE() && GETNEXT() == (c), e))
+#define MUSTNOTSEE(c, e) (REQUIRE(!MORE() || PEEK() != (c), e))
+#define EMIT(op, sopnd) doemit(p, (sop)(op), (size_t)(sopnd))
+#define INSERT(op, pos) doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
+#define AHEAD(pos) dofwd(p, pos, HERE()-(pos))
+#define ASTERN(sop, pos) EMIT(sop, HERE()-pos)
+#define HERE() (p->slen)
+#define THERE() (p->slen - 1)
+#define THERETHERE() (p->slen - 2)
+#define DROP(n) (p->slen -= (n))
+
+#ifdef _POSIX2_RE_DUP_MAX
+#define DUPMAX _POSIX2_RE_DUP_MAX
+#else
+#define DUPMAX 255
+#endif
+#define INFINITY (DUPMAX + 1)
+
+#ifndef NDEBUG
+static int never = 0; /* for use in asserts; shuts lint up */
+#else
+#define never 0 /* some <assert.h>s have bugs too */
+#endif
+
+/*
+ - llvm_regcomp - interface for parser and compilation
+ */
+int /* 0 success, otherwise REG_something */
+llvm_regcomp(llvm_regex_t *preg, const char *pattern, int cflags)
+{
+ struct parse pa;
+ struct re_guts *g;
+ struct parse *p = &pa;
+ int i;
+ size_t len;
+#ifdef REDEBUG
+# define GOODFLAGS(f) (f)
+#else
+# define GOODFLAGS(f) ((f)&~REG_DUMP)
+#endif
+
+ cflags = GOODFLAGS(cflags);
+ if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
+ return(REG_INVARG);
+
+ if (cflags&REG_PEND) {
+ if (preg->re_endp < pattern)
+ return(REG_INVARG);
+ len = preg->re_endp - pattern;
+ } else
+ len = strlen((const char *)pattern);
+
+ /* do the mallocs early so failure handling is easy */
+ g = (struct re_guts *)malloc(sizeof(struct re_guts) +
+ (NC-1)*sizeof(cat_t));
+ if (g == NULL)
+ return(REG_ESPACE);
+ p->ssize = len/(size_t)2*(size_t)3 + (size_t)1; /* ugh */
+ p->strip = (sop *)calloc(p->ssize, sizeof(sop));
+ p->slen = 0;
+ if (p->strip == NULL) {
+ free((char *)g);
+ return(REG_ESPACE);
+ }
+
+ /* set things up */
+ p->g = g;
+ p->next = (char *)pattern; /* convenience; we do not modify it */
+ p->end = p->next + len;
+ p->error = 0;
+ p->ncsalloc = 0;
+ for (i = 0; i < NPAREN; i++) {
+ p->pbegin[i] = 0;
+ p->pend[i] = 0;
+ }
+ g->csetsize = NC;
+ g->sets = NULL;
+ g->setbits = NULL;
+ g->ncsets = 0;
+ g->cflags = cflags;
+ g->iflags = 0;
+ g->nbol = 0;
+ g->neol = 0;
+ g->must = NULL;
+ g->mlen = 0;
+ g->nsub = 0;
+ g->ncategories = 1; /* category 0 is "everything else" */
+ g->categories = &g->catspace[-(CHAR_MIN)];
+ (void) memset((char *)g->catspace, 0, NC*sizeof(cat_t));
+ g->backrefs = 0;
+
+ /* do it */
+ EMIT(OEND, 0);
+ g->firststate = THERE();
+ if (cflags&REG_EXTENDED)
+ p_ere(p, OUT);
+ else if (cflags&REG_NOSPEC)
+ p_str(p);
+ else
+ p_bre(p, OUT, OUT);
+ EMIT(OEND, 0);
+ g->laststate = THERE();
+
+ /* tidy up loose ends and fill things in */
+ categorize(p, g);
+ stripsnug(p, g);
+ findmust(p, g);
+ g->nplus = pluscount(p, g);
+ g->magic = MAGIC2;
+ preg->re_nsub = g->nsub;
+ preg->re_g = g;
+ preg->re_magic = MAGIC1;
+#ifndef REDEBUG
+ /* not debugging, so can't rely on the assert() in llvm_regexec() */
+ if (g->iflags&REGEX_BAD)
+ SETERROR(REG_ASSERT);
+#endif
+
+ /* win or lose, we're done */
+ if (p->error != 0) /* lose */
+ llvm_regfree(preg);
+ return(p->error);
+}
+
+/*
+ - p_ere - ERE parser top level, concatenation and alternation
+ */
+static void
+p_ere(struct parse *p, int stop) /* character this ERE should end at */
+{
+ char c;
+ sopno prevback = 0;
+ sopno prevfwd = 0;
+ sopno conc;
+ int first = 1; /* is this the first alternative? */
+
+ for (;;) {
+ /* do a bunch of concatenated expressions */
+ conc = HERE();
+ while (MORE() && (c = PEEK()) != '|' && c != stop)
+ p_ere_exp(p);
+ REQUIRE(HERE() != conc, REG_EMPTY); /* require nonempty */
+
+ if (!EAT('|'))
+ break; /* NOTE BREAK OUT */
+
+ if (first) {
+ INSERT(OCH_, conc); /* offset is wrong */
+ prevfwd = conc;
+ prevback = conc;
+ first = 0;
+ }
+ ASTERN(OOR1, prevback);
+ prevback = THERE();
+ AHEAD(prevfwd); /* fix previous offset */
+ prevfwd = HERE();
+ EMIT(OOR2, 0); /* offset is very wrong */
+ }
+
+ if (!first) { /* tail-end fixups */
+ AHEAD(prevfwd);
+ ASTERN(O_CH, prevback);
+ }
+
+ assert(!MORE() || SEE(stop));
+}
+
+/*
+ - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op
+ */
+static void
+p_ere_exp(struct parse *p)
+{
+ char c;
+ sopno pos;
+ int count;
+ int count2;
+ sopno subno;
+ int wascaret = 0;
+
+ assert(MORE()); /* caller should have ensured this */
+ c = GETNEXT();
+
+ pos = HERE();
+ switch (c) {
+ case '(':
+ REQUIRE(MORE(), REG_EPAREN);
+ p->g->nsub++;
+ subno = p->g->nsub;
+ if (subno < NPAREN)
+ p->pbegin[subno] = HERE();
+ EMIT(OLPAREN, subno);
+ if (!SEE(')'))
+ p_ere(p, ')');
+ if (subno < NPAREN) {
+ p->pend[subno] = HERE();
+ assert(p->pend[subno] != 0);
+ }
+ EMIT(ORPAREN, subno);
+ MUSTEAT(')', REG_EPAREN);
+ break;
+#ifndef POSIX_MISTAKE
+ case ')': /* happens only if no current unmatched ( */
+ /*
+ * You may ask, why the ifndef? Because I didn't notice
+ * this until slightly too late for 1003.2, and none of the
+ * other 1003.2 regular-expression reviewers noticed it at
+ * all. So an unmatched ) is legal POSIX, at least until
+ * we can get it fixed.
+ */
+ SETERROR(REG_EPAREN);
+ break;
+#endif
+ case '^':
+ EMIT(OBOL, 0);
+ p->g->iflags |= USEBOL;
+ p->g->nbol++;
+ wascaret = 1;
+ break;
+ case '$':
+ EMIT(OEOL, 0);
+ p->g->iflags |= USEEOL;
+ p->g->neol++;
+ break;
+ case '|':
+ SETERROR(REG_EMPTY);
+ break;
+ case '*':
+ case '+':
+ case '?':
+ SETERROR(REG_BADRPT);
+ break;
+ case '.':
+ if (p->g->cflags&REG_NEWLINE)
+ nonnewline(p);
+ else
+ EMIT(OANY, 0);
+ break;
+ case '[':
+ p_bracket(p);
+ break;
+ case '\\':
+ REQUIRE(MORE(), REG_EESCAPE);
+ c = GETNEXT();
+ ordinary(p, c);
+ break;
+ case '{': /* okay as ordinary except if digit follows */
+ REQUIRE(!MORE() || !isdigit((uch)PEEK()), REG_BADRPT);
+ /* FALLTHROUGH */
+ default:
+ ordinary(p, c);
+ break;
+ }
+
+ if (!MORE())
+ return;
+ c = PEEK();
+ /* we call { a repetition if followed by a digit */
+ if (!( c == '*' || c == '+' || c == '?' ||
+ (c == '{' && MORE2() && isdigit((uch)PEEK2())) ))
+ return; /* no repetition, we're done */
+ NEXT();
+
+ REQUIRE(!wascaret, REG_BADRPT);
+ switch (c) {
+ case '*': /* implemented as +? */
+ /* this case does not require the (y|) trick, noKLUDGE */
+ INSERT(OPLUS_, pos);
+ ASTERN(O_PLUS, pos);
+ INSERT(OQUEST_, pos);
+ ASTERN(O_QUEST, pos);
+ break;
+ case '+':
+ INSERT(OPLUS_, pos);
+ ASTERN(O_PLUS, pos);
+ break;
+ case '?':
+ /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
+ INSERT(OCH_, pos); /* offset slightly wrong */
+ ASTERN(OOR1, pos); /* this one's right */
+ AHEAD(pos); /* fix the OCH_ */
+ EMIT(OOR2, 0); /* offset very wrong... */
+ AHEAD(THERE()); /* ...so fix it */
+ ASTERN(O_CH, THERETHERE());
+ break;
+ case '{':
+ count = p_count(p);
+ if (EAT(',')) {
+ if (isdigit((uch)PEEK())) {
+ count2 = p_count(p);
+ REQUIRE(count <= count2, REG_BADBR);
+ } else /* single number with comma */
+ count2 = INFINITY;
+ } else /* just a single number */
+ count2 = count;
+ repeat(p, pos, count, count2);
+ if (!EAT('}')) { /* error heuristics */
+ while (MORE() && PEEK() != '}')
+ NEXT();
+ REQUIRE(MORE(), REG_EBRACE);
+ SETERROR(REG_BADBR);
+ }
+ break;
+ }
+
+ if (!MORE())
+ return;
+ c = PEEK();
+ if (!( c == '*' || c == '+' || c == '?' ||
+ (c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
+ return;
+ SETERROR(REG_BADRPT);
+}
+
+/*
+ - p_str - string (no metacharacters) "parser"
+ */
+static void
+p_str(struct parse *p)
+{
+ REQUIRE(MORE(), REG_EMPTY);
+ while (MORE())
+ ordinary(p, GETNEXT());
+}
+
+/*
+ - p_bre - BRE parser top level, anchoring and concatenation
+ * Giving end1 as OUT essentially eliminates the end1/end2 check.
+ *
+ * This implementation is a bit of a kludge, in that a trailing $ is first
+ * taken as an ordinary character and then revised to be an anchor. The
+ * only undesirable side effect is that '$' gets included as a character
+ * category in such cases. This is fairly harmless; not worth fixing.
+ * The amount of lookahead needed to avoid this kludge is excessive.
+ */
+static void
+p_bre(struct parse *p,
+ int end1, /* first terminating character */
+ int end2) /* second terminating character */
+{
+ sopno start = HERE();
+ int first = 1; /* first subexpression? */
+ int wasdollar = 0;
+
+ if (EAT('^')) {
+ EMIT(OBOL, 0);
+ p->g->iflags |= USEBOL;
+ p->g->nbol++;
+ }
+ while (MORE() && !SEETWO(end1, end2)) {
+ wasdollar = p_simp_re(p, first);
+ first = 0;
+ }
+ if (wasdollar) { /* oops, that was a trailing anchor */
+ DROP(1);
+ EMIT(OEOL, 0);
+ p->g->iflags |= USEEOL;
+ p->g->neol++;
+ }
+
+ REQUIRE(HERE() != start, REG_EMPTY); /* require nonempty */
+}
+
+/*
+ - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
+ */
+static int /* was the simple RE an unbackslashed $? */
+p_simp_re(struct parse *p,
+ int starordinary) /* is a leading * an ordinary character? */
+{
+ int c;
+ int count;
+ int count2;
+ sopno pos;
+ int i;
+ sopno subno;
+# define BACKSL (1<<CHAR_BIT)
+
+ pos = HERE(); /* repetion op, if any, covers from here */
+
+ assert(MORE()); /* caller should have ensured this */
+ c = GETNEXT();
+ if (c == '\\') {
+ REQUIRE(MORE(), REG_EESCAPE);
+ c = BACKSL | GETNEXT();
+ }
+ switch (c) {
+ case '.':
+ if (p->g->cflags&REG_NEWLINE)
+ nonnewline(p);
+ else
+ EMIT(OANY, 0);
+ break;
+ case '[':
+ p_bracket(p);
+ break;
+ case BACKSL|'{':
+ SETERROR(REG_BADRPT);
+ break;
+ case BACKSL|'(':
+ p->g->nsub++;
+ subno = p->g->nsub;
+ if (subno < NPAREN)
+ p->pbegin[subno] = HERE();
+ EMIT(OLPAREN, subno);
+ /* the MORE here is an error heuristic */
+ if (MORE() && !SEETWO('\\', ')'))
+ p_bre(p, '\\', ')');
+ if (subno < NPAREN) {
+ p->pend[subno] = HERE();
+ assert(p->pend[subno] != 0);
+ }
+ EMIT(ORPAREN, subno);
+ REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
+ break;
+ case BACKSL|')': /* should not get here -- must be user */
+ case BACKSL|'}':
+ SETERROR(REG_EPAREN);
+ break;
+ case BACKSL|'1':
+ case BACKSL|'2':
+ case BACKSL|'3':
+ case BACKSL|'4':
+ case BACKSL|'5':
+ case BACKSL|'6':
+ case BACKSL|'7':
+ case BACKSL|'8':
+ case BACKSL|'9':
+ i = (c&~BACKSL) - '0';
+ assert(i < NPAREN);
+ if (p->pend[i] != 0) {
+ assert(i <= p->g->nsub);
+ EMIT(OBACK_, i);
+ assert(p->pbegin[i] != 0);
+ assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
+ assert(OP(p->strip[p->pend[i]]) == ORPAREN);
+ (void) dupl(p, p->pbegin[i]+1, p->pend[i]);
+ EMIT(O_BACK, i);
+ } else
+ SETERROR(REG_ESUBREG);
+ p->g->backrefs = 1;
+ break;
+ case '*':
+ REQUIRE(starordinary, REG_BADRPT);
+ /* FALLTHROUGH */
+ default:
+ ordinary(p, (char)c);
+ break;
+ }
+
+ if (EAT('*')) { /* implemented as +? */
+ /* this case does not require the (y|) trick, noKLUDGE */
+ INSERT(OPLUS_, pos);
+ ASTERN(O_PLUS, pos);
+ INSERT(OQUEST_, pos);
+ ASTERN(O_QUEST, pos);
+ } else if (EATTWO('\\', '{')) {
+ count = p_count(p);
+ if (EAT(',')) {
+ if (MORE() && isdigit((uch)PEEK())) {
+ count2 = p_count(p);
+ REQUIRE(count <= count2, REG_BADBR);
+ } else /* single number with comma */
+ count2 = INFINITY;
+ } else /* just a single number */
+ count2 = count;
+ repeat(p, pos, count, count2);
+ if (!EATTWO('\\', '}')) { /* error heuristics */
+ while (MORE() && !SEETWO('\\', '}'))
+ NEXT();
+ REQUIRE(MORE(), REG_EBRACE);
+ SETERROR(REG_BADBR);
+ }
+ } else if (c == '$') /* $ (but not \$) ends it */
+ return(1);
+
+ return(0);
+}
+
+/*
+ - p_count - parse a repetition count
+ */
+static int /* the value */
+p_count(struct parse *p)
+{
+ int count = 0;
+ int ndigits = 0;
+
+ while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
+ count = count*10 + (GETNEXT() - '0');
+ ndigits++;
+ }
+
+ REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
+ return(count);
+}
+
+/*
+ - p_bracket - parse a bracketed character list
+ *
+ * Note a significant property of this code: if the allocset() did SETERROR,
+ * no set operations are done.
+ */
+static void
+p_bracket(struct parse *p)
+{
+ cset *cs;
+ int invert = 0;
+
+ /* Dept of Truly Sickening Special-Case Kludges */
+ if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
+ EMIT(OBOW, 0);
+ NEXTn(6);
+ return;
+ }
+ if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
+ EMIT(OEOW, 0);
+ NEXTn(6);
+ return;
+ }
+
+ if ((cs = allocset(p)) == NULL) {
+ /* allocset did set error status in p */
+ return;
+ }
+
+ if (EAT('^'))
+ invert++; /* make note to invert set at end */
+ if (EAT(']'))
+ CHadd(cs, ']');
+ else if (EAT('-'))
+ CHadd(cs, '-');
+ while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
+ p_b_term(p, cs);
+ if (EAT('-'))
+ CHadd(cs, '-');
+ MUSTEAT(']', REG_EBRACK);
+
+ if (p->error != 0) { /* don't mess things up further */
+ freeset(p, cs);
+ return;
+ }
+
+ if (p->g->cflags&REG_ICASE) {
+ int i;
+ int ci;
+
+ for (i = p->g->csetsize - 1; i >= 0; i--)
+ if (CHIN(cs, i) && isalpha(i)) {
+ ci = othercase(i);
+ if (ci != i)
+ CHadd(cs, ci);
+ }
+ if (cs->multis != NULL)
+ mccase(p, cs);
+ }
+ if (invert) {
+ int i;
+
+ for (i = p->g->csetsize - 1; i >= 0; i--)
+ if (CHIN(cs, i))
+ CHsub(cs, i);
+ else
+ CHadd(cs, i);
+ if (p->g->cflags&REG_NEWLINE)
+ CHsub(cs, '\n');
+ if (cs->multis != NULL)
+ mcinvert(p, cs);
+ }
+
+ assert(cs->multis == NULL); /* xxx */
+
+ if (nch(p, cs) == 1) { /* optimize singleton sets */
+ ordinary(p, firstch(p, cs));
+ freeset(p, cs);
+ } else
+ EMIT(OANYOF, freezeset(p, cs));
+}
+
+/*
+ - p_b_term - parse one term of a bracketed character list
+ */
+static void
+p_b_term(struct parse *p, cset *cs)
+{
+ char c;
+ char start, finish;
+ int i;
+
+ /* classify what we've got */
+ switch ((MORE()) ? PEEK() : '\0') {
+ case '[':
+ c = (MORE2()) ? PEEK2() : '\0';
+ break;
+ case '-':
+ SETERROR(REG_ERANGE);
+ return; /* NOTE RETURN */
+ break;
+ default:
+ c = '\0';
+ break;
+ }
+
+ switch (c) {
+ case ':': /* character class */
+ NEXT2();
+ REQUIRE(MORE(), REG_EBRACK);
+ c = PEEK();
+ REQUIRE(c != '-' && c != ']', REG_ECTYPE);
+ p_b_cclass(p, cs);
+ REQUIRE(MORE(), REG_EBRACK);
+ REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
+ break;
+ case '=': /* equivalence class */
+ NEXT2();
+ REQUIRE(MORE(), REG_EBRACK);
+ c = PEEK();
+ REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
+ p_b_eclass(p, cs);
+ REQUIRE(MORE(), REG_EBRACK);
+ REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
+ break;
+ default: /* symbol, ordinary character, or range */
+/* xxx revision needed for multichar stuff */
+ start = p_b_symbol(p);
+ if (SEE('-') && MORE2() && PEEK2() != ']') {
+ /* range */
+ NEXT();
+ if (EAT('-'))
+ finish = '-';
+ else
+ finish = p_b_symbol(p);
+ } else
+ finish = start;
+/* xxx what about signed chars here... */
+ REQUIRE(start <= finish, REG_ERANGE);
+ for (i = start; i <= finish; i++)
+ CHadd(cs, i);
+ break;
+ }
+}
+
+/*
+ - p_b_cclass - parse a character-class name and deal with it
+ */
+static void
+p_b_cclass(struct parse *p, cset *cs)
+{
+ char *sp = p->next;
+ struct cclass *cp;
+ size_t len;
+ const char *u;
+ char c;
+
+ while (MORE() && isalpha(PEEK()))
+ NEXT();
+ len = p->next - sp;
+ for (cp = cclasses; cp->name != NULL; cp++)
+ if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
+ break;
+ if (cp->name == NULL) {
+ /* oops, didn't find it */
+ SETERROR(REG_ECTYPE);
+ return;
+ }
+
+ u = cp->chars;
+ while ((c = *u++) != '\0')
+ CHadd(cs, c);
+ for (u = cp->multis; *u != '\0'; u += strlen(u) + 1)
+ MCadd(p, cs, u);
+}
+
+/*
+ - p_b_eclass - parse an equivalence-class name and deal with it
+ *
+ * This implementation is incomplete. xxx
+ */
+static void
+p_b_eclass(struct parse *p, cset *cs)
+{
+ char c;
+
+ c = p_b_coll_elem(p, '=');
+ CHadd(cs, c);
+}
+
+/*
+ - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
+ */
+static char /* value of symbol */
+p_b_symbol(struct parse *p)
+{
+ char value;
+
+ REQUIRE(MORE(), REG_EBRACK);
+ if (!EATTWO('[', '.'))
+ return(GETNEXT());
+
+ /* collating symbol */
+ value = p_b_coll_elem(p, '.');
+ REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
+ return(value);
+}
+
+/*
+ - p_b_coll_elem - parse a collating-element name and look it up
+ */
+static char /* value of collating element */
+p_b_coll_elem(struct parse *p,
+ int endc) /* name ended by endc,']' */
+{
+ char *sp = p->next;
+ struct cname *cp;
+ int len;
+
+ while (MORE() && !SEETWO(endc, ']'))
+ NEXT();
+ if (!MORE()) {
+ SETERROR(REG_EBRACK);
+ return(0);
+ }
+ len = p->next - sp;
+ for (cp = cnames; cp->name != NULL; cp++)
+ if (strncmp(cp->name, sp, len) == 0 && cp->name[len] == '\0')
+ return(cp->code); /* known name */
+ if (len == 1)
+ return(*sp); /* single character */
+ SETERROR(REG_ECOLLATE); /* neither */
+ return(0);
+}
+
+/*
+ - othercase - return the case counterpart of an alphabetic
+ */
+static char /* if no counterpart, return ch */
+othercase(int ch)
+{
+ ch = (uch)ch;
+ assert(isalpha(ch));
+ if (isupper(ch))
+ return ((uch)tolower(ch));
+ else if (islower(ch))
+ return ((uch)toupper(ch));
+ else /* peculiar, but could happen */
+ return(ch);
+}
+
+/*
+ - bothcases - emit a dualcase version of a two-case character
+ *
+ * Boy, is this implementation ever a kludge...
+ */
+static void
+bothcases(struct parse *p, int ch)
+{
+ char *oldnext = p->next;
+ char *oldend = p->end;
+ char bracket[3];
+
+ ch = (uch)ch;
+ assert(othercase(ch) != ch); /* p_bracket() would recurse */
+ p->next = bracket;
+ p->end = bracket+2;
+ bracket[0] = ch;
+ bracket[1] = ']';
+ bracket[2] = '\0';
+ p_bracket(p);
+ assert(p->next == bracket+2);
+ p->next = oldnext;
+ p->end = oldend;
+}
+
+/*
+ - ordinary - emit an ordinary character
+ */
+static void
+ordinary(struct parse *p, int ch)
+{
+ cat_t *cap = p->g->categories;
+
+ if ((p->g->cflags&REG_ICASE) && isalpha((uch)ch) && othercase(ch) != ch)
+ bothcases(p, ch);
+ else {
+ EMIT(OCHAR, (uch)ch);
+ if (cap[ch] == 0)
+ cap[ch] = p->g->ncategories++;
+ }
+}
+
+/*
+ - nonnewline - emit REG_NEWLINE version of OANY
+ *
+ * Boy, is this implementation ever a kludge...
+ */
+static void
+nonnewline(struct parse *p)
+{
+ char *oldnext = p->next;
+ char *oldend = p->end;
+ char bracket[4];
+
+ p->next = bracket;
+ p->end = bracket+3;
+ bracket[0] = '^';
+ bracket[1] = '\n';
+ bracket[2] = ']';
+ bracket[3] = '\0';
+ p_bracket(p);
+ assert(p->next == bracket+3);
+ p->next = oldnext;
+ p->end = oldend;
+}
+
+/*
+ - repeat - generate code for a bounded repetition, recursively if needed
+ */
+static void
+repeat(struct parse *p,
+ sopno start, /* operand from here to end of strip */
+ int from, /* repeated from this number */
+ int to) /* to this number of times (maybe INFINITY) */
+{
+ sopno finish = HERE();
+# define N 2
+# define INF 3
+# define REP(f, t) ((f)*8 + (t))
+# define MAP(n) (((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
+ sopno copy;
+
+ if (p->error != 0) /* head off possible runaway recursion */
+ return;
+
+ assert(from <= to);
+
+ switch (REP(MAP(from), MAP(to))) {
+ case REP(0, 0): /* must be user doing this */
+ DROP(finish-start); /* drop the operand */
+ break;
+ case REP(0, 1): /* as x{1,1}? */
+ case REP(0, N): /* as x{1,n}? */
+ case REP(0, INF): /* as x{1,}? */
+ /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
+ INSERT(OCH_, start); /* offset is wrong... */
+ repeat(p, start+1, 1, to);
+ ASTERN(OOR1, start);
+ AHEAD(start); /* ... fix it */
+ EMIT(OOR2, 0);
+ AHEAD(THERE());
+ ASTERN(O_CH, THERETHERE());
+ break;
+ case REP(1, 1): /* trivial case */
+ /* done */
+ break;
+ case REP(1, N): /* as x?x{1,n-1} */
+ /* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
+ INSERT(OCH_, start);
+ ASTERN(OOR1, start);
+ AHEAD(start);
+ EMIT(OOR2, 0); /* offset very wrong... */
+ AHEAD(THERE()); /* ...so fix it */
+ ASTERN(O_CH, THERETHERE());
+ copy = dupl(p, start+1, finish+1);
+ assert(copy == finish+4);
+ repeat(p, copy, 1, to-1);
+ break;
+ case REP(1, INF): /* as x+ */
+ INSERT(OPLUS_, start);
+ ASTERN(O_PLUS, start);
+ break;
+ case REP(N, N): /* as xx{m-1,n-1} */
+ copy = dupl(p, start, finish);
+ repeat(p, copy, from-1, to-1);
+ break;
+ case REP(N, INF): /* as xx{n-1,INF} */
+ copy = dupl(p, start, finish);
+ repeat(p, copy, from-1, to);
+ break;
+ default: /* "can't happen" */
+ SETERROR(REG_ASSERT); /* just in case */
+ break;
+ }
+}
+
+/*
+ - seterr - set an error condition
+ */
+static int /* useless but makes type checking happy */
+seterr(struct parse *p, int e)
+{
+ if (p->error == 0) /* keep earliest error condition */
+ p->error = e;
+ p->next = nuls; /* try to bring things to a halt */
+ p->end = nuls;
+ return(0); /* make the return value well-defined */
+}
+
+/*
+ - allocset - allocate a set of characters for []
+ */
+static cset *
+allocset(struct parse *p)
+{
+ int no = p->g->ncsets++;
+ size_t nc;
+ size_t nbytes;
+ cset *cs;
+ size_t css = (size_t)p->g->csetsize;
+ int i;
+
+ if (no >= p->ncsalloc) { /* need another column of space */
+ void *ptr;
+
+ p->ncsalloc += CHAR_BIT;
+ nc = p->ncsalloc;
+ assert(nc % CHAR_BIT == 0);
+ nbytes = nc / CHAR_BIT * css;
+
+ ptr = (cset *)realloc((char *)p->g->sets, nc * sizeof(cset));
+ if (ptr == NULL)
+ goto nomem;
+ p->g->sets = ptr;
+
+ ptr = (uch *)realloc((char *)p->g->setbits, nbytes);
+ if (ptr == NULL)
+ goto nomem;
+ p->g->setbits = ptr;
+
+ for (i = 0; i < no; i++)
+ p->g->sets[i].ptr = p->g->setbits + css*(i/CHAR_BIT);
+
+ (void) memset((char *)p->g->setbits + (nbytes - css), 0, css);
+ }
+ /* XXX should not happen */
+ if (p->g->sets == NULL || p->g->setbits == NULL)
+ goto nomem;
+
+ cs = &p->g->sets[no];
+ cs->ptr = p->g->setbits + css*((no)/CHAR_BIT);
+ cs->mask = 1 << ((no) % CHAR_BIT);
+ cs->hash = 0;
+ cs->smultis = 0;
+ cs->multis = NULL;
+
+ return(cs);
+nomem:
+ free(p->g->sets);
+ p->g->sets = NULL;
+ free(p->g->setbits);
+ p->g->setbits = NULL;
+
+ SETERROR(REG_ESPACE);
+ /* caller's responsibility not to do set ops */
+ return(NULL);
+}
+
+/*
+ - freeset - free a now-unused set
+ */
+static void
+freeset(struct parse *p, cset *cs)
+{
+ size_t i;
+ cset *top = &p->g->sets[p->g->ncsets];
+ size_t css = (size_t)p->g->csetsize;
+
+ for (i = 0; i < css; i++)
+ CHsub(cs, i);
+ if (cs == top-1) /* recover only the easy case */
+ p->g->ncsets--;
+}
+
+/*
+ - freezeset - final processing on a set of characters
+ *
+ * The main task here is merging identical sets. This is usually a waste
+ * of time (although the hash code minimizes the overhead), but can win
+ * big if REG_ICASE is being used. REG_ICASE, by the way, is why the hash
+ * is done using addition rather than xor -- all ASCII [aA] sets xor to
+ * the same value!
+ */
+static int /* set number */
+freezeset(struct parse *p, cset *cs)
+{
+ uch h = cs->hash;
+ size_t i;
+ cset *top = &p->g->sets[p->g->ncsets];
+ cset *cs2;
+ size_t css = (size_t)p->g->csetsize;
+
+ /* look for an earlier one which is the same */
+ for (cs2 = &p->g->sets[0]; cs2 < top; cs2++)
+ if (cs2->hash == h && cs2 != cs) {
+ /* maybe */
+ for (i = 0; i < css; i++)
+ if (!!CHIN(cs2, i) != !!CHIN(cs, i))
+ break; /* no */
+ if (i == css)
+ break; /* yes */
+ }
+
+ if (cs2 < top) { /* found one */
+ freeset(p, cs);
+ cs = cs2;
+ }
+
+ return((int)(cs - p->g->sets));
+}
+
+/*
+ - firstch - return first character in a set (which must have at least one)
+ */
+static int /* character; there is no "none" value */
+firstch(struct parse *p, cset *cs)
+{
+ size_t i;
+ size_t css = (size_t)p->g->csetsize;
+
+ for (i = 0; i < css; i++)
+ if (CHIN(cs, i))
+ return((char)i);
+ assert(never);
+ return(0); /* arbitrary */
+}
+
+/*
+ - nch - number of characters in a set
+ */
+static int
+nch(struct parse *p, cset *cs)
+{
+ size_t i;
+ size_t css = (size_t)p->g->csetsize;
+ int n = 0;
+
+ for (i = 0; i < css; i++)
+ if (CHIN(cs, i))
+ n++;
+ return(n);
+}
+
+/*
+ - mcadd - add a collating element to a cset
+ */
+static void
+mcadd( struct parse *p, cset *cs, const char *cp)
+{
+ size_t oldend = cs->smultis;
+ void *np;
+
+ cs->smultis += strlen(cp) + 1;
+ np = realloc(cs->multis, cs->smultis);
+ if (np == NULL) {
+ if (cs->multis)
+ free(cs->multis);
+ cs->multis = NULL;
+ SETERROR(REG_ESPACE);
+ return;
+ }
+ cs->multis = np;
+
+ llvm_strlcpy(cs->multis + oldend - 1, cp, cs->smultis - oldend + 1);
+}
+
+/*
+ - mcinvert - invert the list of collating elements in a cset
+ *
+ * This would have to know the set of possibilities. Implementation
+ * is deferred.
+ */
+/* ARGSUSED */
+static void
+mcinvert(struct parse *p, cset *cs)
+{
+ assert(cs->multis == NULL); /* xxx */
+}
+
+/*
+ - mccase - add case counterparts of the list of collating elements in a cset
+ *
+ * This would have to know the set of possibilities. Implementation
+ * is deferred.
+ */
+/* ARGSUSED */
+static void
+mccase(struct parse *p, cset *cs)
+{
+ assert(cs->multis == NULL); /* xxx */
+}
+
+/*
+ - isinsets - is this character in any sets?
+ */
+static int /* predicate */
+isinsets(struct re_guts *g, int c)
+{
+ uch *col;
+ int i;
+ int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT;
+ unsigned uc = (uch)c;
+
+ for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize)
+ if (col[uc] != 0)
+ return(1);
+ return(0);
+}
+
+/*
+ - samesets - are these two characters in exactly the same sets?
+ */
+static int /* predicate */
+samesets(struct re_guts *g, int c1, int c2)
+{
+ uch *col;
+ int i;
+ int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT;
+ unsigned uc1 = (uch)c1;
+ unsigned uc2 = (uch)c2;
+
+ for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize)
+ if (col[uc1] != col[uc2])
+ return(0);
+ return(1);
+}
+
+/*
+ - categorize - sort out character categories
+ */
+static void
+categorize(struct parse *p, struct re_guts *g)
+{
+ cat_t *cats = g->categories;
+ int c;
+ int c2;
+ cat_t cat;
+
+ /* avoid making error situations worse */
+ if (p->error != 0)
+ return;
+
+ for (c = CHAR_MIN; c <= CHAR_MAX; c++)
+ if (cats[c] == 0 && isinsets(g, c)) {
+ cat = g->ncategories++;
+ cats[c] = cat;
+ for (c2 = c+1; c2 <= CHAR_MAX; c2++)
+ if (cats[c2] == 0 && samesets(g, c, c2))
+ cats[c2] = cat;
+ }
+}
+
+/*
+ - dupl - emit a duplicate of a bunch of sops
+ */
+static sopno /* start of duplicate */
+dupl(struct parse *p,
+ sopno start, /* from here */
+ sopno finish) /* to this less one */
+{
+ sopno ret = HERE();
+ sopno len = finish - start;
+
+ assert(finish >= start);
+ if (len == 0)
+ return(ret);
+ enlarge(p, p->ssize + len); /* this many unexpected additions */
+ assert(p->ssize >= p->slen + len);
+ (void) memmove((char *)(p->strip + p->slen),
+ (char *)(p->strip + start), (size_t)len*sizeof(sop));
+ p->slen += len;
+ return(ret);
+}
+
+/*
+ - doemit - emit a strip operator
+ *
+ * It might seem better to implement this as a macro with a function as
+ * hard-case backup, but it's just too big and messy unless there are
+ * some changes to the data structures. Maybe later.
+ */
+static void
+doemit(struct parse *p, sop op, size_t opnd)
+{
+ /* avoid making error situations worse */
+ if (p->error != 0)
+ return;
+
+ /* deal with oversize operands ("can't happen", more or less) */
+ assert(opnd < 1<<OPSHIFT);
+
+ /* deal with undersized strip */
+ if (p->slen >= p->ssize)
+ enlarge(p, (p->ssize+1) / 2 * 3); /* +50% */
+ assert(p->slen < p->ssize);
+
+ /* finally, it's all reduced to the easy case */
+ p->strip[p->slen++] = SOP(op, opnd);
+}
+
+/*
+ - doinsert - insert a sop into the strip
+ */
+static void
+doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
+{
+ sopno sn;
+ sop s;
+ int i;
+
+ /* avoid making error situations worse */
+ if (p->error != 0)
+ return;
+
+ sn = HERE();
+ EMIT(op, opnd); /* do checks, ensure space */
+ assert(HERE() == sn+1);
+ s = p->strip[sn];
+
+ /* adjust paren pointers */
+ assert(pos > 0);
+ for (i = 1; i < NPAREN; i++) {
+ if (p->pbegin[i] >= pos) {
+ p->pbegin[i]++;
+ }
+ if (p->pend[i] >= pos) {
+ p->pend[i]++;
+ }
+ }
+
+ memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
+ (HERE()-pos-1)*sizeof(sop));
+ p->strip[pos] = s;
+}
+
+/*
+ - dofwd - complete a forward reference
+ */
+static void
+dofwd(struct parse *p, sopno pos, sop value)
+{
+ /* avoid making error situations worse */
+ if (p->error != 0)
+ return;
+
+ assert(value < 1<<OPSHIFT);
+ p->strip[pos] = OP(p->strip[pos]) | value;
+}
+
+/*
+ - enlarge - enlarge the strip
+ */
+static void
+enlarge(struct parse *p, sopno size)
+{
+ sop *sp;
+
+ if (p->ssize >= size)
+ return;
+
+ sp = (sop *)realloc(p->strip, size*sizeof(sop));
+ if (sp == NULL) {
+ SETERROR(REG_ESPACE);
+ return;
+ }
+ p->strip = sp;
+ p->ssize = size;
+}
+
+/*
+ - stripsnug - compact the strip
+ */
+static void
+stripsnug(struct parse *p, struct re_guts *g)
+{
+ g->nstates = p->slen;
+ g->strip = (sop *)realloc((char *)p->strip, p->slen * sizeof(sop));
+ if (g->strip == NULL) {
+ SETERROR(REG_ESPACE);
+ g->strip = p->strip;
+ }
+}
+
+/*
+ - findmust - fill in must and mlen with longest mandatory literal string
+ *
+ * This algorithm could do fancy things like analyzing the operands of |
+ * for common subsequences. Someday. This code is simple and finds most
+ * of the interesting cases.
+ *
+ * Note that must and mlen got initialized during setup.
+ */
+static void
+findmust(struct parse *p, struct re_guts *g)
+{
+ sop *scan;
+ sop *start = 0; /* start initialized in the default case, after that */
+ sop *newstart = 0; /* newstart was initialized in the OCHAR case */
+ sopno newlen;
+ sop s;
+ char *cp;
+ sopno i;
+
+ /* avoid making error situations worse */
+ if (p->error != 0)
+ return;
+
+ /* find the longest OCHAR sequence in strip */
+ newlen = 0;
+ scan = g->strip + 1;
+ do {
+ s = *scan++;
+ switch (OP(s)) {
+ case OCHAR: /* sequence member */
+ if (newlen == 0) /* new sequence */
+ newstart = scan - 1;
+ newlen++;
+ break;
+ case OPLUS_: /* things that don't break one */
+ case OLPAREN:
+ case ORPAREN:
+ break;
+ case OQUEST_: /* things that must be skipped */
+ case OCH_:
+ scan--;
+ do {
+ scan += OPND(s);
+ s = *scan;
+ /* assert() interferes w debug printouts */
+ if (OP(s) != O_QUEST && OP(s) != O_CH &&
+ OP(s) != OOR2) {
+ g->iflags |= REGEX_BAD;
+ return;
+ }
+ } while (OP(s) != O_QUEST && OP(s) != O_CH);
+ /* fallthrough */
+ default: /* things that break a sequence */
+ if (newlen > g->mlen) { /* ends one */
+ start = newstart;
+ g->mlen = newlen;
+ }
+ newlen = 0;
+ break;
+ }
+ } while (OP(s) != OEND);
+
+ if (g->mlen == 0) /* there isn't one */
+ return;
+
+ /* turn it into a character string */
+ g->must = malloc((size_t)g->mlen + 1);
+ if (g->must == NULL) { /* argh; just forget it */
+ g->mlen = 0;
+ return;
+ }
+ cp = g->must;
+ scan = start;
+ for (i = g->mlen; i > 0; i--) {
+ while (OP(s = *scan++) != OCHAR)
+ continue;
+ assert(cp < g->must + g->mlen);
+ *cp++ = (char)OPND(s);
+ }
+ assert(cp == g->must + g->mlen);
+ *cp++ = '\0'; /* just on general principles */
+}
+
+/*
+ - pluscount - count + nesting
+ */
+static sopno /* nesting depth */
+pluscount(struct parse *p, struct re_guts *g)
+{
+ sop *scan;
+ sop s;
+ sopno plusnest = 0;
+ sopno maxnest = 0;
+
+ if (p->error != 0)
+ return(0); /* there may not be an OEND */
+
+ scan = g->strip + 1;
+ do {
+ s = *scan++;
+ switch (OP(s)) {
+ case OPLUS_:
+ plusnest++;
+ break;
+ case O_PLUS:
+ if (plusnest > maxnest)
+ maxnest = plusnest;
+ plusnest--;
+ break;
+ }
+ } while (OP(s) != OEND);
+ if (plusnest != 0)
+ g->iflags |= REGEX_BAD;
+ return(maxnest);
+}
diff --git a/lib/Support/regengine.inc b/lib/Support/regengine.inc
new file mode 100644
index 0000000..0f27cfd
--- /dev/null
+++ b/lib/Support/regengine.inc
@@ -0,0 +1,1027 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)engine.c 8.5 (Berkeley) 3/20/94
+ */
+
+/*
+ * The matching engine and friends. This file is #included by regexec.c
+ * after suitable #defines of a variety of macros used herein, so that
+ * different state representations can be used without duplicating masses
+ * of code.
+ */
+
+#ifdef SNAMES
+#define matcher smatcher
+#define fast sfast
+#define slow sslow
+#define dissect sdissect
+#define backref sbackref
+#define step sstep
+#define print sprint
+#define at sat
+#define match smat
+#define nope snope
+#endif
+#ifdef LNAMES
+#define matcher lmatcher
+#define fast lfast
+#define slow lslow
+#define dissect ldissect
+#define backref lbackref
+#define step lstep
+#define print lprint
+#define at lat
+#define match lmat
+#define nope lnope
+#endif
+
+/* another structure passed up and down to avoid zillions of parameters */
+struct match {
+ struct re_guts *g;
+ int eflags;
+ llvm_regmatch_t *pmatch; /* [nsub+1] (0 element unused) */
+ char *offp; /* offsets work from here */
+ char *beginp; /* start of string -- virtual NUL precedes */
+ char *endp; /* end of string -- virtual NUL here */
+ char *coldp; /* can be no match starting before here */
+ char **lastpos; /* [nplus+1] */
+ STATEVARS;
+ states st; /* current states */
+ states fresh; /* states for a fresh start */
+ states tmp; /* temporary */
+ states empty; /* empty set of states */
+};
+
+static int matcher(struct re_guts *, char *, size_t, llvm_regmatch_t[], int);
+static char *dissect(struct match *, char *, char *, sopno, sopno);
+static char *backref(struct match *, char *, char *, sopno, sopno, sopno, int);
+static char *fast(struct match *, char *, char *, sopno, sopno);
+static char *slow(struct match *, char *, char *, sopno, sopno);
+static states step(struct re_guts *, sopno, sopno, states, int, states);
+#define MAX_RECURSION 100
+#define BOL (OUT+1)
+#define EOL (BOL+1)
+#define BOLEOL (BOL+2)
+#define NOTHING (BOL+3)
+#define BOW (BOL+4)
+#define EOW (BOL+5)
+#define CODEMAX (BOL+5) /* highest code used */
+#define NONCHAR(c) ((c) > CHAR_MAX)
+#define NNONCHAR (CODEMAX-CHAR_MAX)
+#ifdef REDEBUG
+static void print(struct match *, char *, states, int, FILE *);
+#endif
+#ifdef REDEBUG
+static void at(struct match *, char *, char *, char *, sopno, sopno);
+#endif
+#ifdef REDEBUG
+static char *pchar(int);
+#endif
+
+#ifdef REDEBUG
+#define SP(t, s, c) print(m, t, s, c, stdout)
+#define AT(t, p1, p2, s1, s2) at(m, t, p1, p2, s1, s2)
+#define NOTE(str) { if (m->eflags&REG_TRACE) (void)printf("=%s\n", (str)); }
+static int nope = 0;
+#else
+#define SP(t, s, c) /* nothing */
+#define AT(t, p1, p2, s1, s2) /* nothing */
+#define NOTE(s) /* nothing */
+#endif
+
+/*
+ - matcher - the actual matching engine
+ */
+static int /* 0 success, REG_NOMATCH failure */
+matcher(struct re_guts *g, char *string, size_t nmatch, llvm_regmatch_t pmatch[],
+ int eflags)
+{
+ char *endp;
+ size_t i;
+ struct match mv;
+ struct match *m = &mv;
+ char *dp;
+ const sopno gf = g->firststate+1; /* +1 for OEND */
+ const sopno gl = g->laststate;
+ char *start;
+ char *stop;
+
+ /* simplify the situation where possible */
+ if (g->cflags&REG_NOSUB)
+ nmatch = 0;
+ if (eflags&REG_STARTEND) {
+ start = string + pmatch[0].rm_so;
+ stop = string + pmatch[0].rm_eo;
+ } else {
+ start = string;
+ stop = start + strlen(start);
+ }
+ if (stop < start)
+ return(REG_INVARG);
+
+ /* prescreening; this does wonders for this rather slow code */
+ if (g->must != NULL) {
+ for (dp = start; dp < stop; dp++)
+ if (*dp == g->must[0] && stop - dp >= g->mlen &&
+ memcmp(dp, g->must, (size_t)g->mlen) == 0)
+ break;
+ if (dp == stop) /* we didn't find g->must */
+ return(REG_NOMATCH);
+ }
+
+ /* match struct setup */
+ m->g = g;
+ m->eflags = eflags;
+ m->pmatch = NULL;
+ m->lastpos = NULL;
+ m->offp = string;
+ m->beginp = start;
+ m->endp = stop;
+ STATESETUP(m, 4);
+ SETUP(m->st);
+ SETUP(m->fresh);
+ SETUP(m->tmp);
+ SETUP(m->empty);
+ CLEAR(m->empty);
+
+ /* this loop does only one repetition except for backrefs */
+ for (;;) {
+ endp = fast(m, start, stop, gf, gl);
+ if (endp == NULL) { /* a miss */
+ free(m->pmatch);
+ free(m->lastpos);
+ STATETEARDOWN(m);
+ return(REG_NOMATCH);
+ }
+ if (nmatch == 0 && !g->backrefs)
+ break; /* no further info needed */
+
+ /* where? */
+ assert(m->coldp != NULL);
+ for (;;) {
+ NOTE("finding start");
+ endp = slow(m, m->coldp, stop, gf, gl);
+ if (endp != NULL)
+ break;
+ assert(m->coldp < m->endp);
+ m->coldp++;
+ }
+ if (nmatch == 1 && !g->backrefs)
+ break; /* no further info needed */
+
+ /* oh my, he wants the subexpressions... */
+ if (m->pmatch == NULL)
+ m->pmatch = (llvm_regmatch_t *)malloc((m->g->nsub + 1) *
+ sizeof(llvm_regmatch_t));
+ if (m->pmatch == NULL) {
+ STATETEARDOWN(m);
+ return(REG_ESPACE);
+ }
+ for (i = 1; i <= m->g->nsub; i++)
+ m->pmatch[i].rm_so = m->pmatch[i].rm_eo = -1;
+ if (!g->backrefs && !(m->eflags&REG_BACKR)) {
+ NOTE("dissecting");
+ dp = dissect(m, m->coldp, endp, gf, gl);
+ } else {
+ if (g->nplus > 0 && m->lastpos == NULL)
+ m->lastpos = (char **)malloc((g->nplus+1) *
+ sizeof(char *));
+ if (g->nplus > 0 && m->lastpos == NULL) {
+ free(m->pmatch);
+ STATETEARDOWN(m);
+ return(REG_ESPACE);
+ }
+ NOTE("backref dissect");
+ dp = backref(m, m->coldp, endp, gf, gl, (sopno)0, 0);
+ }
+ if (dp != NULL)
+ break;
+
+ /* uh-oh... we couldn't find a subexpression-level match */
+ assert(g->backrefs); /* must be back references doing it */
+ assert(g->nplus == 0 || m->lastpos != NULL);
+ for (;;) {
+ if (dp != NULL || endp <= m->coldp)
+ break; /* defeat */
+ NOTE("backoff");
+ endp = slow(m, m->coldp, endp-1, gf, gl);
+ if (endp == NULL)
+ break; /* defeat */
+ /* try it on a shorter possibility */
+#ifndef NDEBUG
+ for (i = 1; i <= m->g->nsub; i++) {
+ assert(m->pmatch[i].rm_so == -1);
+ assert(m->pmatch[i].rm_eo == -1);
+ }
+#endif
+ NOTE("backoff dissect");
+ dp = backref(m, m->coldp, endp, gf, gl, (sopno)0, 0);
+ }
+ assert(dp == NULL || dp == endp);
+ if (dp != NULL) /* found a shorter one */
+ break;
+
+ /* despite initial appearances, there is no match here */
+ NOTE("false alarm");
+ if (m->coldp == stop)
+ break;
+ start = m->coldp + 1; /* recycle starting later */
+ }
+
+ /* fill in the details if requested */
+ if (nmatch > 0) {
+ pmatch[0].rm_so = m->coldp - m->offp;
+ pmatch[0].rm_eo = endp - m->offp;
+ }
+ if (nmatch > 1) {
+ assert(m->pmatch != NULL);
+ for (i = 1; i < nmatch; i++)
+ if (i <= m->g->nsub)
+ pmatch[i] = m->pmatch[i];
+ else {
+ pmatch[i].rm_so = -1;
+ pmatch[i].rm_eo = -1;
+ }
+ }
+
+ if (m->pmatch != NULL)
+ free((char *)m->pmatch);
+ if (m->lastpos != NULL)
+ free((char *)m->lastpos);
+ STATETEARDOWN(m);
+ return(0);
+}
+
+/*
+ - dissect - figure out what matched what, no back references
+ */
+static char * /* == stop (success) always */
+dissect(struct match *m, char *start, char *stop, sopno startst, sopno stopst)
+{
+ int i;
+ sopno ss; /* start sop of current subRE */
+ sopno es; /* end sop of current subRE */
+ char *sp; /* start of string matched by it */
+ char *stp; /* string matched by it cannot pass here */
+ char *rest; /* start of rest of string */
+ char *tail; /* string unmatched by rest of RE */
+ sopno ssub; /* start sop of subsubRE */
+ sopno esub; /* end sop of subsubRE */
+ char *ssp; /* start of string matched by subsubRE */
+ char *sep; /* end of string matched by subsubRE */
+ char *oldssp; /* previous ssp */
+
+ AT("diss", start, stop, startst, stopst);
+ sp = start;
+ for (ss = startst; ss < stopst; ss = es) {
+ /* identify end of subRE */
+ es = ss;
+ switch (OP(m->g->strip[es])) {
+ case OPLUS_:
+ case OQUEST_:
+ es += OPND(m->g->strip[es]);
+ break;
+ case OCH_:
+ while (OP(m->g->strip[es]) != O_CH)
+ es += OPND(m->g->strip[es]);
+ break;
+ }
+ es++;
+
+ /* figure out what it matched */
+ switch (OP(m->g->strip[ss])) {
+ case OEND:
+ assert(nope);
+ break;
+ case OCHAR:
+ sp++;
+ break;
+ case OBOL:
+ case OEOL:
+ case OBOW:
+ case OEOW:
+ break;
+ case OANY:
+ case OANYOF:
+ sp++;
+ break;
+ case OBACK_:
+ case O_BACK:
+ assert(nope);
+ break;
+ /* cases where length of match is hard to find */
+ case OQUEST_:
+ stp = stop;
+ for (;;) {
+ /* how long could this one be? */
+ rest = slow(m, sp, stp, ss, es);
+ assert(rest != NULL); /* it did match */
+ /* could the rest match the rest? */
+ tail = slow(m, rest, stop, es, stopst);
+ if (tail == stop)
+ break; /* yes! */
+ /* no -- try a shorter match for this one */
+ stp = rest - 1;
+ assert(stp >= sp); /* it did work */
+ }
+ ssub = ss + 1;
+ esub = es - 1;
+ /* did innards match? */
+ if (slow(m, sp, rest, ssub, esub) != NULL) {
+ char *dp = dissect(m, sp, rest, ssub, esub);
+ (void)dp; /* avoid warning if assertions off */
+ assert(dp == rest);
+ } else /* no */
+ assert(sp == rest);
+ sp = rest;
+ break;
+ case OPLUS_:
+ stp = stop;
+ for (;;) {
+ /* how long could this one be? */
+ rest = slow(m, sp, stp, ss, es);
+ assert(rest != NULL); /* it did match */
+ /* could the rest match the rest? */
+ tail = slow(m, rest, stop, es, stopst);
+ if (tail == stop)
+ break; /* yes! */
+ /* no -- try a shorter match for this one */
+ stp = rest - 1;
+ assert(stp >= sp); /* it did work */
+ }
+ ssub = ss + 1;
+ esub = es - 1;
+ ssp = sp;
+ oldssp = ssp;
+ for (;;) { /* find last match of innards */
+ sep = slow(m, ssp, rest, ssub, esub);
+ if (sep == NULL || sep == ssp)
+ break; /* failed or matched null */
+ oldssp = ssp; /* on to next try */
+ ssp = sep;
+ }
+ if (sep == NULL) {
+ /* last successful match */
+ sep = ssp;
+ ssp = oldssp;
+ }
+ assert(sep == rest); /* must exhaust substring */
+ assert(slow(m, ssp, sep, ssub, esub) == rest);
+ {
+ char *dp = dissect(m, ssp, sep, ssub, esub);
+ (void)dp; /* avoid warning if assertions off */
+ assert(dp == sep);
+ }
+ sp = rest;
+ break;
+ case OCH_:
+ stp = stop;
+ for (;;) {
+ /* how long could this one be? */
+ rest = slow(m, sp, stp, ss, es);
+ assert(rest != NULL); /* it did match */
+ /* could the rest match the rest? */
+ tail = slow(m, rest, stop, es, stopst);
+ if (tail == stop)
+ break; /* yes! */
+ /* no -- try a shorter match for this one */
+ stp = rest - 1;
+ assert(stp >= sp); /* it did work */
+ }
+ ssub = ss + 1;
+ esub = ss + OPND(m->g->strip[ss]) - 1;
+ assert(OP(m->g->strip[esub]) == OOR1);
+ for (;;) { /* find first matching branch */
+ if (slow(m, sp, rest, ssub, esub) == rest)
+ break; /* it matched all of it */
+ /* that one missed, try next one */
+ assert(OP(m->g->strip[esub]) == OOR1);
+ esub++;
+ assert(OP(m->g->strip[esub]) == OOR2);
+ ssub = esub + 1;
+ esub += OPND(m->g->strip[esub]);
+ if (OP(m->g->strip[esub]) == OOR2)
+ esub--;
+ else
+ assert(OP(m->g->strip[esub]) == O_CH);
+ }
+ {
+ char *dp = dissect(m, sp, rest, ssub, esub);
+ (void)dp; /* avoid warning if assertions off */
+ assert(dp == rest);
+ }
+ sp = rest;
+ break;
+ case O_PLUS:
+ case O_QUEST:
+ case OOR1:
+ case OOR2:
+ case O_CH:
+ assert(nope);
+ break;
+ case OLPAREN:
+ i = OPND(m->g->strip[ss]);
+ assert(0 < i && i <= m->g->nsub);
+ m->pmatch[i].rm_so = sp - m->offp;
+ break;
+ case ORPAREN:
+ i = OPND(m->g->strip[ss]);
+ assert(0 < i && i <= m->g->nsub);
+ m->pmatch[i].rm_eo = sp - m->offp;
+ break;
+ default: /* uh oh */
+ assert(nope);
+ break;
+ }
+ }
+
+ assert(sp == stop);
+ return(sp);
+}
+
+/*
+ - backref - figure out what matched what, figuring in back references
+ */
+static char * /* == stop (success) or NULL (failure) */
+backref(struct match *m, char *start, char *stop, sopno startst, sopno stopst,
+ sopno lev, int rec) /* PLUS nesting level */
+{
+ int i;
+ sopno ss; /* start sop of current subRE */
+ char *sp; /* start of string matched by it */
+ sopno ssub; /* start sop of subsubRE */
+ sopno esub; /* end sop of subsubRE */
+ char *ssp; /* start of string matched by subsubRE */
+ char *dp;
+ size_t len;
+ int hard;
+ sop s;
+ llvm_regoff_t offsave;
+ cset *cs;
+
+ AT("back", start, stop, startst, stopst);
+ sp = start;
+
+ /* get as far as we can with easy stuff */
+ hard = 0;
+ for (ss = startst; !hard && ss < stopst; ss++)
+ switch (OP(s = m->g->strip[ss])) {
+ case OCHAR:
+ if (sp == stop || *sp++ != (char)OPND(s))
+ return(NULL);
+ break;
+ case OANY:
+ if (sp == stop)
+ return(NULL);
+ sp++;
+ break;
+ case OANYOF:
+ cs = &m->g->sets[OPND(s)];
+ if (sp == stop || !CHIN(cs, *sp++))
+ return(NULL);
+ break;
+ case OBOL:
+ if ( (sp == m->beginp && !(m->eflags&REG_NOTBOL)) ||
+ (sp < m->endp && *(sp-1) == '\n' &&
+ (m->g->cflags&REG_NEWLINE)) )
+ { /* yes */ }
+ else
+ return(NULL);
+ break;
+ case OEOL:
+ if ( (sp == m->endp && !(m->eflags&REG_NOTEOL)) ||
+ (sp < m->endp && *sp == '\n' &&
+ (m->g->cflags&REG_NEWLINE)) )
+ { /* yes */ }
+ else
+ return(NULL);
+ break;
+ case OBOW:
+ if (( (sp == m->beginp && !(m->eflags&REG_NOTBOL)) ||
+ (sp < m->endp && *(sp-1) == '\n' &&
+ (m->g->cflags&REG_NEWLINE)) ||
+ (sp > m->beginp &&
+ !ISWORD(*(sp-1))) ) &&
+ (sp < m->endp && ISWORD(*sp)) )
+ { /* yes */ }
+ else
+ return(NULL);
+ break;
+ case OEOW:
+ if (( (sp == m->endp && !(m->eflags&REG_NOTEOL)) ||
+ (sp < m->endp && *sp == '\n' &&
+ (m->g->cflags&REG_NEWLINE)) ||
+ (sp < m->endp && !ISWORD(*sp)) ) &&
+ (sp > m->beginp && ISWORD(*(sp-1))) )
+ { /* yes */ }
+ else
+ return(NULL);
+ break;
+ case O_QUEST:
+ break;
+ case OOR1: /* matches null but needs to skip */
+ ss++;
+ s = m->g->strip[ss];
+ do {
+ assert(OP(s) == OOR2);
+ ss += OPND(s);
+ } while (OP(s = m->g->strip[ss]) != O_CH);
+ /* note that the ss++ gets us past the O_CH */
+ break;
+ default: /* have to make a choice */
+ hard = 1;
+ break;
+ }
+ if (!hard) { /* that was it! */
+ if (sp != stop)
+ return(NULL);
+ return(sp);
+ }
+ ss--; /* adjust for the for's final increment */
+
+ /* the hard stuff */
+ AT("hard", sp, stop, ss, stopst);
+ s = m->g->strip[ss];
+ switch (OP(s)) {
+ case OBACK_: /* the vilest depths */
+ i = OPND(s);
+ assert(0 < i && i <= m->g->nsub);
+ if (m->pmatch[i].rm_eo == -1)
+ return(NULL);
+ assert(m->pmatch[i].rm_so != -1);
+ len = m->pmatch[i].rm_eo - m->pmatch[i].rm_so;
+ if (len == 0 && rec++ > MAX_RECURSION)
+ return(NULL);
+ assert(stop - m->beginp >= len);
+ if (sp > stop - len)
+ return(NULL); /* not enough left to match */
+ ssp = m->offp + m->pmatch[i].rm_so;
+ if (memcmp(sp, ssp, len) != 0)
+ return(NULL);
+ while (m->g->strip[ss] != SOP(O_BACK, i))
+ ss++;
+ return(backref(m, sp+len, stop, ss+1, stopst, lev, rec));
+ break;
+ case OQUEST_: /* to null or not */
+ dp = backref(m, sp, stop, ss+1, stopst, lev, rec);
+ if (dp != NULL)
+ return(dp); /* not */
+ return(backref(m, sp, stop, ss+OPND(s)+1, stopst, lev, rec));
+ break;
+ case OPLUS_:
+ assert(m->lastpos != NULL);
+ assert(lev+1 <= m->g->nplus);
+ m->lastpos[lev+1] = sp;
+ return(backref(m, sp, stop, ss+1, stopst, lev+1, rec));
+ break;
+ case O_PLUS:
+ if (sp == m->lastpos[lev]) /* last pass matched null */
+ return(backref(m, sp, stop, ss+1, stopst, lev-1, rec));
+ /* try another pass */
+ m->lastpos[lev] = sp;
+ dp = backref(m, sp, stop, ss-OPND(s)+1, stopst, lev, rec);
+ if (dp == NULL)
+ return(backref(m, sp, stop, ss+1, stopst, lev-1, rec));
+ else
+ return(dp);
+ break;
+ case OCH_: /* find the right one, if any */
+ ssub = ss + 1;
+ esub = ss + OPND(s) - 1;
+ assert(OP(m->g->strip[esub]) == OOR1);
+ for (;;) { /* find first matching branch */
+ dp = backref(m, sp, stop, ssub, esub, lev, rec);
+ if (dp != NULL)
+ return(dp);
+ /* that one missed, try next one */
+ if (OP(m->g->strip[esub]) == O_CH)
+ return(NULL); /* there is none */
+ esub++;
+ assert(OP(m->g->strip[esub]) == OOR2);
+ ssub = esub + 1;
+ esub += OPND(m->g->strip[esub]);
+ if (OP(m->g->strip[esub]) == OOR2)
+ esub--;
+ else
+ assert(OP(m->g->strip[esub]) == O_CH);
+ }
+ break;
+ case OLPAREN: /* must undo assignment if rest fails */
+ i = OPND(s);
+ assert(0 < i && i <= m->g->nsub);
+ offsave = m->pmatch[i].rm_so;
+ m->pmatch[i].rm_so = sp - m->offp;
+ dp = backref(m, sp, stop, ss+1, stopst, lev, rec);
+ if (dp != NULL)
+ return(dp);
+ m->pmatch[i].rm_so = offsave;
+ return(NULL);
+ break;
+ case ORPAREN: /* must undo assignment if rest fails */
+ i = OPND(s);
+ assert(0 < i && i <= m->g->nsub);
+ offsave = m->pmatch[i].rm_eo;
+ m->pmatch[i].rm_eo = sp - m->offp;
+ dp = backref(m, sp, stop, ss+1, stopst, lev, rec);
+ if (dp != NULL)
+ return(dp);
+ m->pmatch[i].rm_eo = offsave;
+ return(NULL);
+ break;
+ default: /* uh oh */
+ assert(nope);
+ break;
+ }
+
+ /* "can't happen" */
+ assert(nope);
+ /* NOTREACHED */
+ return NULL;
+}
+
+/*
+ - fast - step through the string at top speed
+ */
+static char * /* where tentative match ended, or NULL */
+fast(struct match *m, char *start, char *stop, sopno startst, sopno stopst)
+{
+ states st = m->st;
+ states fresh = m->fresh;
+ states tmp = m->tmp;
+ char *p = start;
+ int c = (start == m->beginp) ? OUT : *(start-1);
+ int lastc; /* previous c */
+ int flagch;
+ int i;
+ char *coldp; /* last p after which no match was underway */
+
+ CLEAR(st);
+ SET1(st, startst);
+ st = step(m->g, startst, stopst, st, NOTHING, st);
+ ASSIGN(fresh, st);
+ SP("start", st, *p);
+ coldp = NULL;
+ for (;;) {
+ /* next character */
+ lastc = c;
+ c = (p == m->endp) ? OUT : *p;
+ if (EQ(st, fresh))
+ coldp = p;
+
+ /* is there an EOL and/or BOL between lastc and c? */
+ flagch = '\0';
+ i = 0;
+ if ( (lastc == '\n' && m->g->cflags&REG_NEWLINE) ||
+ (lastc == OUT && !(m->eflags&REG_NOTBOL)) ) {
+ flagch = BOL;
+ i = m->g->nbol;
+ }
+ if ( (c == '\n' && m->g->cflags&REG_NEWLINE) ||
+ (c == OUT && !(m->eflags&REG_NOTEOL)) ) {
+ flagch = (flagch == BOL) ? BOLEOL : EOL;
+ i += m->g->neol;
+ }
+ if (i != 0) {
+ for (; i > 0; i--)
+ st = step(m->g, startst, stopst, st, flagch, st);
+ SP("boleol", st, c);
+ }
+
+ /* how about a word boundary? */
+ if ( (flagch == BOL || (lastc != OUT && !ISWORD(lastc))) &&
+ (c != OUT && ISWORD(c)) ) {
+ flagch = BOW;
+ }
+ if ( (lastc != OUT && ISWORD(lastc)) &&
+ (flagch == EOL || (c != OUT && !ISWORD(c))) ) {
+ flagch = EOW;
+ }
+ if (flagch == BOW || flagch == EOW) {
+ st = step(m->g, startst, stopst, st, flagch, st);
+ SP("boweow", st, c);
+ }
+
+ /* are we done? */
+ if (ISSET(st, stopst) || p == stop)
+ break; /* NOTE BREAK OUT */
+
+ /* no, we must deal with this character */
+ ASSIGN(tmp, st);
+ ASSIGN(st, fresh);
+ assert(c != OUT);
+ st = step(m->g, startst, stopst, tmp, c, st);
+ SP("aft", st, c);
+ assert(EQ(step(m->g, startst, stopst, st, NOTHING, st), st));
+ p++;
+ }
+
+ assert(coldp != NULL);
+ m->coldp = coldp;
+ if (ISSET(st, stopst))
+ return(p+1);
+ else
+ return(NULL);
+}
+
+/*
+ - slow - step through the string more deliberately
+ */
+static char * /* where it ended */
+slow(struct match *m, char *start, char *stop, sopno startst, sopno stopst)
+{
+ states st = m->st;
+ states empty = m->empty;
+ states tmp = m->tmp;
+ char *p = start;
+ int c = (start == m->beginp) ? OUT : *(start-1);
+ int lastc; /* previous c */
+ int flagch;
+ int i;
+ char *matchp; /* last p at which a match ended */
+
+ AT("slow", start, stop, startst, stopst);
+ CLEAR(st);
+ SET1(st, startst);
+ SP("sstart", st, *p);
+ st = step(m->g, startst, stopst, st, NOTHING, st);
+ matchp = NULL;
+ for (;;) {
+ /* next character */
+ lastc = c;
+ c = (p == m->endp) ? OUT : *p;
+
+ /* is there an EOL and/or BOL between lastc and c? */
+ flagch = '\0';
+ i = 0;
+ if ( (lastc == '\n' && m->g->cflags&REG_NEWLINE) ||
+ (lastc == OUT && !(m->eflags&REG_NOTBOL)) ) {
+ flagch = BOL;
+ i = m->g->nbol;
+ }
+ if ( (c == '\n' && m->g->cflags&REG_NEWLINE) ||
+ (c == OUT && !(m->eflags&REG_NOTEOL)) ) {
+ flagch = (flagch == BOL) ? BOLEOL : EOL;
+ i += m->g->neol;
+ }
+ if (i != 0) {
+ for (; i > 0; i--)
+ st = step(m->g, startst, stopst, st, flagch, st);
+ SP("sboleol", st, c);
+ }
+
+ /* how about a word boundary? */
+ if ( (flagch == BOL || (lastc != OUT && !ISWORD(lastc))) &&
+ (c != OUT && ISWORD(c)) ) {
+ flagch = BOW;
+ }
+ if ( (lastc != OUT && ISWORD(lastc)) &&
+ (flagch == EOL || (c != OUT && !ISWORD(c))) ) {
+ flagch = EOW;
+ }
+ if (flagch == BOW || flagch == EOW) {
+ st = step(m->g, startst, stopst, st, flagch, st);
+ SP("sboweow", st, c);
+ }
+
+ /* are we done? */
+ if (ISSET(st, stopst))
+ matchp = p;
+ if (EQ(st, empty) || p == stop)
+ break; /* NOTE BREAK OUT */
+
+ /* no, we must deal with this character */
+ ASSIGN(tmp, st);
+ ASSIGN(st, empty);
+ assert(c != OUT);
+ st = step(m->g, startst, stopst, tmp, c, st);
+ SP("saft", st, c);
+ assert(EQ(step(m->g, startst, stopst, st, NOTHING, st), st));
+ p++;
+ }
+
+ return(matchp);
+}
+
+
+/*
+ - step - map set of states reachable before char to set reachable after
+ */
+static states
+step(struct re_guts *g,
+ sopno start, /* start state within strip */
+ sopno stop, /* state after stop state within strip */
+ states bef, /* states reachable before */
+ int ch, /* character or NONCHAR code */
+ states aft) /* states already known reachable after */
+{
+ cset *cs;
+ sop s;
+ sopno pc;
+ onestate here; /* note, macros know this name */
+ sopno look;
+ int i;
+
+ for (pc = start, INIT(here, pc); pc != stop; pc++, INC(here)) {
+ s = g->strip[pc];
+ switch (OP(s)) {
+ case OEND:
+ assert(pc == stop-1);
+ break;
+ case OCHAR:
+ /* only characters can match */
+ assert(!NONCHAR(ch) || ch != (char)OPND(s));
+ if (ch == (char)OPND(s))
+ FWD(aft, bef, 1);
+ break;
+ case OBOL:
+ if (ch == BOL || ch == BOLEOL)
+ FWD(aft, bef, 1);
+ break;
+ case OEOL:
+ if (ch == EOL || ch == BOLEOL)
+ FWD(aft, bef, 1);
+ break;
+ case OBOW:
+ if (ch == BOW)
+ FWD(aft, bef, 1);
+ break;
+ case OEOW:
+ if (ch == EOW)
+ FWD(aft, bef, 1);
+ break;
+ case OANY:
+ if (!NONCHAR(ch))
+ FWD(aft, bef, 1);
+ break;
+ case OANYOF:
+ cs = &g->sets[OPND(s)];
+ if (!NONCHAR(ch) && CHIN(cs, ch))
+ FWD(aft, bef, 1);
+ break;
+ case OBACK_: /* ignored here */
+ case O_BACK:
+ FWD(aft, aft, 1);
+ break;
+ case OPLUS_: /* forward, this is just an empty */
+ FWD(aft, aft, 1);
+ break;
+ case O_PLUS: /* both forward and back */
+ FWD(aft, aft, 1);
+ i = ISSETBACK(aft, OPND(s));
+ BACK(aft, aft, OPND(s));
+ if (!i && ISSETBACK(aft, OPND(s))) {
+ /* oho, must reconsider loop body */
+ pc -= OPND(s) + 1;
+ INIT(here, pc);
+ }
+ break;
+ case OQUEST_: /* two branches, both forward */
+ FWD(aft, aft, 1);
+ FWD(aft, aft, OPND(s));
+ break;
+ case O_QUEST: /* just an empty */
+ FWD(aft, aft, 1);
+ break;
+ case OLPAREN: /* not significant here */
+ case ORPAREN:
+ FWD(aft, aft, 1);
+ break;
+ case OCH_: /* mark the first two branches */
+ FWD(aft, aft, 1);
+ assert(OP(g->strip[pc+OPND(s)]) == OOR2);
+ FWD(aft, aft, OPND(s));
+ break;
+ case OOR1: /* done a branch, find the O_CH */
+ if (ISSTATEIN(aft, here)) {
+ for (look = 1;
+ OP(s = g->strip[pc+look]) != O_CH;
+ look += OPND(s))
+ assert(OP(s) == OOR2);
+ FWD(aft, aft, look);
+ }
+ break;
+ case OOR2: /* propagate OCH_'s marking */
+ FWD(aft, aft, 1);
+ if (OP(g->strip[pc+OPND(s)]) != O_CH) {
+ assert(OP(g->strip[pc+OPND(s)]) == OOR2);
+ FWD(aft, aft, OPND(s));
+ }
+ break;
+ case O_CH: /* just empty */
+ FWD(aft, aft, 1);
+ break;
+ default: /* ooooops... */
+ assert(nope);
+ break;
+ }
+ }
+
+ return(aft);
+}
+
+#ifdef REDEBUG
+/*
+ - print - print a set of states
+ */
+static void
+print(struct match *m, char *caption, states st, int ch, FILE *d)
+{
+ struct re_guts *g = m->g;
+ int i;
+ int first = 1;
+
+ if (!(m->eflags&REG_TRACE))
+ return;
+
+ (void)fprintf(d, "%s", caption);
+ if (ch != '\0')
+ (void)fprintf(d, " %s", pchar(ch));
+ for (i = 0; i < g->nstates; i++)
+ if (ISSET(st, i)) {
+ (void)fprintf(d, "%s%d", (first) ? "\t" : ", ", i);
+ first = 0;
+ }
+ (void)fprintf(d, "\n");
+}
+
+/*
+ - at - print current situation
+ */
+static void
+at(struct match *m, char *title, char *start, char *stop, sopno startst,
+ sopno stopst)
+{
+ if (!(m->eflags&REG_TRACE))
+ return;
+
+ (void)printf("%s %s-", title, pchar(*start));
+ (void)printf("%s ", pchar(*stop));
+ (void)printf("%ld-%ld\n", (long)startst, (long)stopst);
+}
+
+#ifndef PCHARDONE
+#define PCHARDONE /* never again */
+/*
+ - pchar - make a character printable
+ *
+ * Is this identical to regchar() over in debug.c? Well, yes. But a
+ * duplicate here avoids having a debugging-capable regexec.o tied to
+ * a matching debug.o, and this is convenient. It all disappears in
+ * the non-debug compilation anyway, so it doesn't matter much.
+ */
+static char * /* -> representation */
+pchar(int ch)
+{
+ static char pbuf[10];
+
+ if (isprint(ch) || ch == ' ')
+ (void)snprintf(pbuf, sizeof pbuf, "%c", ch);
+ else
+ (void)snprintf(pbuf, sizeof pbuf, "\\%o", ch);
+ return(pbuf);
+}
+#endif
+#endif
+
+#undef matcher
+#undef fast
+#undef slow
+#undef dissect
+#undef backref
+#undef step
+#undef print
+#undef at
+#undef match
+#undef nope
diff --git a/lib/Support/regerror.c b/lib/Support/regerror.c
new file mode 100644
index 0000000..1d67c9a
--- /dev/null
+++ b/lib/Support/regerror.c
@@ -0,0 +1,135 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regerror.c 8.4 (Berkeley) 3/20/94
+ */
+
+#include <sys/types.h>
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <limits.h>
+#include <stdlib.h>
+#include "regex_impl.h"
+
+#include "regutils.h"
+
+#ifdef _MSC_VER
+#define snprintf _snprintf
+#endif
+
+static const char *regatoi(const llvm_regex_t *, char *, int);
+
+static struct rerr {
+ int code;
+ const char *name;
+ const char *explain;
+} rerrs[] = {
+ { REG_NOMATCH, "REG_NOMATCH", "llvm_regexec() failed to match" },
+ { REG_BADPAT, "REG_BADPAT", "invalid regular expression" },
+ { REG_ECOLLATE, "REG_ECOLLATE", "invalid collating element" },
+ { REG_ECTYPE, "REG_ECTYPE", "invalid character class" },
+ { REG_EESCAPE, "REG_EESCAPE", "trailing backslash (\\)" },
+ { REG_ESUBREG, "REG_ESUBREG", "invalid backreference number" },
+ { REG_EBRACK, "REG_EBRACK", "brackets ([ ]) not balanced" },
+ { REG_EPAREN, "REG_EPAREN", "parentheses not balanced" },
+ { REG_EBRACE, "REG_EBRACE", "braces not balanced" },
+ { REG_BADBR, "REG_BADBR", "invalid repetition count(s)" },
+ { REG_ERANGE, "REG_ERANGE", "invalid character range" },
+ { REG_ESPACE, "REG_ESPACE", "out of memory" },
+ { REG_BADRPT, "REG_BADRPT", "repetition-operator operand invalid" },
+ { REG_EMPTY, "REG_EMPTY", "empty (sub)expression" },
+ { REG_ASSERT, "REG_ASSERT", "\"can't happen\" -- you found a bug" },
+ { REG_INVARG, "REG_INVARG", "invalid argument to regex routine" },
+ { 0, "", "*** unknown regexp error code ***" }
+};
+
+/*
+ - llvm_regerror - the interface to error numbers
+ = extern size_t llvm_regerror(int, const llvm_regex_t *, char *, size_t);
+ */
+/* ARGSUSED */
+size_t
+llvm_regerror(int errcode, const llvm_regex_t *preg, char *errbuf, size_t errbuf_size)
+{
+ struct rerr *r;
+ size_t len;
+ int target = errcode &~ REG_ITOA;
+ const char *s;
+ char convbuf[50];
+
+ if (errcode == REG_ATOI)
+ s = regatoi(preg, convbuf, sizeof convbuf);
+ else {
+ for (r = rerrs; r->code != 0; r++)
+ if (r->code == target)
+ break;
+
+ if (errcode&REG_ITOA) {
+ if (r->code != 0) {
+ assert(strlen(r->name) < sizeof(convbuf));
+ (void) llvm_strlcpy(convbuf, r->name, sizeof convbuf);
+ } else
+ (void)snprintf(convbuf, sizeof convbuf,
+ "REG_0x%x", target);
+ s = convbuf;
+ } else
+ s = r->explain;
+ }
+
+ len = strlen(s) + 1;
+ if (errbuf_size > 0) {
+ llvm_strlcpy(errbuf, s, errbuf_size);
+ }
+
+ return(len);
+}
+
+/*
+ - regatoi - internal routine to implement REG_ATOI
+ */
+static const char *
+regatoi(const llvm_regex_t *preg, char *localbuf, int localbufsize)
+{
+ struct rerr *r;
+
+ for (r = rerrs; r->code != 0; r++)
+ if (strcmp(r->name, preg->re_endp) == 0)
+ break;
+ if (r->code == 0)
+ return("0");
+
+ (void)snprintf(localbuf, localbufsize, "%d", r->code);
+ return(localbuf);
+}
diff --git a/lib/Support/regex2.h b/lib/Support/regex2.h
new file mode 100644
index 0000000..21659c3
--- /dev/null
+++ b/lib/Support/regex2.h
@@ -0,0 +1,157 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regex2.h 8.4 (Berkeley) 3/20/94
+ */
+
+/*
+ * internals of regex_t
+ */
+#define MAGIC1 ((('r'^0200)<<8) | 'e')
+
+/*
+ * The internal representation is a *strip*, a sequence of
+ * operators ending with an endmarker. (Some terminology etc. is a
+ * historical relic of earlier versions which used multiple strips.)
+ * Certain oddities in the representation are there to permit running
+ * the machinery backwards; in particular, any deviation from sequential
+ * flow must be marked at both its source and its destination. Some
+ * fine points:
+ *
+ * - OPLUS_ and O_PLUS are *inside* the loop they create.
+ * - OQUEST_ and O_QUEST are *outside* the bypass they create.
+ * - OCH_ and O_CH are *outside* the multi-way branch they create, while
+ * OOR1 and OOR2 are respectively the end and the beginning of one of
+ * the branches. Note that there is an implicit OOR2 following OCH_
+ * and an implicit OOR1 preceding O_CH.
+ *
+ * In state representations, an operator's bit is on to signify a state
+ * immediately *preceding* "execution" of that operator.
+ */
+typedef unsigned long sop; /* strip operator */
+typedef long sopno;
+#define OPRMASK 0xf8000000LU
+#define OPDMASK 0x07ffffffLU
+#define OPSHIFT ((unsigned)27)
+#define OP(n) ((n)&OPRMASK)
+#define OPND(n) ((n)&OPDMASK)
+#define SOP(op, opnd) ((op)|(opnd))
+/* operators meaning operand */
+/* (back, fwd are offsets) */
+#define OEND (1LU<<OPSHIFT) /* endmarker - */
+#define OCHAR (2LU<<OPSHIFT) /* character unsigned char */
+#define OBOL (3LU<<OPSHIFT) /* left anchor - */
+#define OEOL (4LU<<OPSHIFT) /* right anchor - */
+#define OANY (5LU<<OPSHIFT) /* . - */
+#define OANYOF (6LU<<OPSHIFT) /* [...] set number */
+#define OBACK_ (7LU<<OPSHIFT) /* begin \d paren number */
+#define O_BACK (8LU<<OPSHIFT) /* end \d paren number */
+#define OPLUS_ (9LU<<OPSHIFT) /* + prefix fwd to suffix */
+#define O_PLUS (10LU<<OPSHIFT) /* + suffix back to prefix */
+#define OQUEST_ (11LU<<OPSHIFT) /* ? prefix fwd to suffix */
+#define O_QUEST (12LU<<OPSHIFT) /* ? suffix back to prefix */
+#define OLPAREN (13LU<<OPSHIFT) /* ( fwd to ) */
+#define ORPAREN (14LU<<OPSHIFT) /* ) back to ( */
+#define OCH_ (15LU<<OPSHIFT) /* begin choice fwd to OOR2 */
+#define OOR1 (16LU<<OPSHIFT) /* | pt. 1 back to OOR1 or OCH_ */
+#define OOR2 (17LU<<OPSHIFT) /* | pt. 2 fwd to OOR2 or O_CH */
+#define O_CH (18LU<<OPSHIFT) /* end choice back to OOR1 */
+#define OBOW (19LU<<OPSHIFT) /* begin word - */
+#define OEOW (20LU<<OPSHIFT) /* end word - */
+
+/*
+ * Structure for [] character-set representation. Character sets are
+ * done as bit vectors, grouped 8 to a byte vector for compactness.
+ * The individual set therefore has both a pointer to the byte vector
+ * and a mask to pick out the relevant bit of each byte. A hash code
+ * simplifies testing whether two sets could be identical.
+ *
+ * This will get trickier for multicharacter collating elements. As
+ * preliminary hooks for dealing with such things, we also carry along
+ * a string of multi-character elements, and decide the size of the
+ * vectors at run time.
+ */
+typedef struct {
+ uch *ptr; /* -> uch [csetsize] */
+ uch mask; /* bit within array */
+ uch hash; /* hash code */
+ size_t smultis;
+ char *multis; /* -> char[smulti] ab\0cd\0ef\0\0 */
+} cset;
+/* note that CHadd and CHsub are unsafe, and CHIN doesn't yield 0/1 */
+#define CHadd(cs, c) ((cs)->ptr[(uch)(c)] |= (cs)->mask, (cs)->hash += (c))
+#define CHsub(cs, c) ((cs)->ptr[(uch)(c)] &= ~(cs)->mask, (cs)->hash -= (c))
+#define CHIN(cs, c) ((cs)->ptr[(uch)(c)] & (cs)->mask)
+#define MCadd(p, cs, cp) mcadd(p, cs, cp) /* llvm_regcomp() internal fns */
+#define MCsub(p, cs, cp) mcsub(p, cs, cp)
+#define MCin(p, cs, cp) mcin(p, cs, cp)
+
+/* stuff for character categories */
+typedef unsigned char cat_t;
+
+/*
+ * main compiled-expression structure
+ */
+struct re_guts {
+ int magic;
+# define MAGIC2 ((('R'^0200)<<8)|'E')
+ sop *strip; /* malloced area for strip */
+ int csetsize; /* number of bits in a cset vector */
+ int ncsets; /* number of csets in use */
+ cset *sets; /* -> cset [ncsets] */
+ uch *setbits; /* -> uch[csetsize][ncsets/CHAR_BIT] */
+ int cflags; /* copy of llvm_regcomp() cflags argument */
+ sopno nstates; /* = number of sops */
+ sopno firststate; /* the initial OEND (normally 0) */
+ sopno laststate; /* the final OEND */
+ int iflags; /* internal flags */
+# define USEBOL 01 /* used ^ */
+# define USEEOL 02 /* used $ */
+# define REGEX_BAD 04 /* something wrong */
+ int nbol; /* number of ^ used */
+ int neol; /* number of $ used */
+ int ncategories; /* how many character categories */
+ cat_t *categories; /* ->catspace[-CHAR_MIN] */
+ char *must; /* match must contain this string */
+ int mlen; /* length of must */
+ size_t nsub; /* copy of re_nsub */
+ int backrefs; /* does it use back references? */
+ sopno nplus; /* how deep does it nest +s? */
+ /* catspace must be last */
+ cat_t catspace[1]; /* actually [NC] */
+};
+
+/* misc utilities */
+#define OUT (CHAR_MAX+1) /* a non-character value */
+#define ISWORD(c) (isalnum(c&0xff) || (c) == '_')
diff --git a/lib/Support/regex_impl.h b/lib/Support/regex_impl.h
new file mode 100644
index 0000000..f8296c9
--- /dev/null
+++ b/lib/Support/regex_impl.h
@@ -0,0 +1,108 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992 Henry Spencer.
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer of the University of Toronto.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regex.h 8.1 (Berkeley) 6/2/93
+ */
+
+#ifndef _REGEX_H_
+#define _REGEX_H_
+
+#include <sys/types.h>
+typedef off_t llvm_regoff_t;
+typedef struct {
+ llvm_regoff_t rm_so; /* start of match */
+ llvm_regoff_t rm_eo; /* end of match */
+} llvm_regmatch_t;
+
+typedef struct llvm_regex {
+ int re_magic;
+ size_t re_nsub; /* number of parenthesized subexpressions */
+ const char *re_endp; /* end pointer for REG_PEND */
+ struct re_guts *re_g; /* none of your business :-) */
+} llvm_regex_t;
+
+/* llvm_regcomp() flags */
+#define REG_BASIC 0000
+#define REG_EXTENDED 0001
+#define REG_ICASE 0002
+#define REG_NOSUB 0004
+#define REG_NEWLINE 0010
+#define REG_NOSPEC 0020
+#define REG_PEND 0040
+#define REG_DUMP 0200
+
+/* llvm_regerror() flags */
+#define REG_NOMATCH 1
+#define REG_BADPAT 2
+#define REG_ECOLLATE 3
+#define REG_ECTYPE 4
+#define REG_EESCAPE 5
+#define REG_ESUBREG 6
+#define REG_EBRACK 7
+#define REG_EPAREN 8
+#define REG_EBRACE 9
+#define REG_BADBR 10
+#define REG_ERANGE 11
+#define REG_ESPACE 12
+#define REG_BADRPT 13
+#define REG_EMPTY 14
+#define REG_ASSERT 15
+#define REG_INVARG 16
+#define REG_ATOI 255 /* convert name to number (!) */
+#define REG_ITOA 0400 /* convert number to name (!) */
+
+/* llvm_regexec() flags */
+#define REG_NOTBOL 00001
+#define REG_NOTEOL 00002
+#define REG_STARTEND 00004
+#define REG_TRACE 00400 /* tracing of execution */
+#define REG_LARGE 01000 /* force large representation */
+#define REG_BACKR 02000 /* force use of backref code */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+int llvm_regcomp(llvm_regex_t *, const char *, int);
+size_t llvm_regerror(int, const llvm_regex_t *, char *, size_t);
+int llvm_regexec(const llvm_regex_t *, const char *, size_t,
+ llvm_regmatch_t [], int);
+void llvm_regfree(llvm_regex_t *);
+size_t llvm_strlcpy(char *dst, const char *src, size_t siz);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !_REGEX_H_ */
diff --git a/lib/Support/regexec.c b/lib/Support/regexec.c
new file mode 100644
index 0000000..7d70f6e
--- /dev/null
+++ b/lib/Support/regexec.c
@@ -0,0 +1,161 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regexec.c 8.3 (Berkeley) 3/20/94
+ */
+
+/*
+ * the outer shell of llvm_regexec()
+ *
+ * This file includes engine.inc *twice*, after muchos fiddling with the
+ * macros that code uses. This lets the same code operate on two different
+ * representations for state sets.
+ */
+#include <sys/types.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <limits.h>
+#include <ctype.h>
+#include "regex_impl.h"
+
+#include "regutils.h"
+#include "regex2.h"
+
+/* macros for manipulating states, small version */
+#define states long
+#define states1 states /* for later use in llvm_regexec() decision */
+#define CLEAR(v) ((v) = 0)
+#define SET0(v, n) ((v) &= ~((unsigned long)1 << (n)))
+#define SET1(v, n) ((v) |= (unsigned long)1 << (n))
+#define ISSET(v, n) (((v) & ((unsigned long)1 << (n))) != 0)
+#define ASSIGN(d, s) ((d) = (s))
+#define EQ(a, b) ((a) == (b))
+#define STATEVARS long dummy /* dummy version */
+#define STATESETUP(m, n) /* nothing */
+#define STATETEARDOWN(m) /* nothing */
+#define SETUP(v) ((v) = 0)
+#define onestate long
+#define INIT(o, n) ((o) = (unsigned long)1 << (n))
+#define INC(o) ((o) <<= 1)
+#define ISSTATEIN(v, o) (((v) & (o)) != 0)
+/* some abbreviations; note that some of these know variable names! */
+/* do "if I'm here, I can also be there" etc without branches */
+#define FWD(dst, src, n) ((dst) |= ((unsigned long)(src)&(here)) << (n))
+#define BACK(dst, src, n) ((dst) |= ((unsigned long)(src)&(here)) >> (n))
+#define ISSETBACK(v, n) (((v) & ((unsigned long)here >> (n))) != 0)
+/* function names */
+#define SNAMES /* engine.inc looks after details */
+
+#include "regengine.inc"
+
+/* now undo things */
+#undef states
+#undef CLEAR
+#undef SET0
+#undef SET1
+#undef ISSET
+#undef ASSIGN
+#undef EQ
+#undef STATEVARS
+#undef STATESETUP
+#undef STATETEARDOWN
+#undef SETUP
+#undef onestate
+#undef INIT
+#undef INC
+#undef ISSTATEIN
+#undef FWD
+#undef BACK
+#undef ISSETBACK
+#undef SNAMES
+
+/* macros for manipulating states, large version */
+#define states char *
+#define CLEAR(v) memset(v, 0, m->g->nstates)
+#define SET0(v, n) ((v)[n] = 0)
+#define SET1(v, n) ((v)[n] = 1)
+#define ISSET(v, n) ((v)[n])
+#define ASSIGN(d, s) memmove(d, s, m->g->nstates)
+#define EQ(a, b) (memcmp(a, b, m->g->nstates) == 0)
+#define STATEVARS long vn; char *space
+#define STATESETUP(m, nv) { (m)->space = malloc((nv)*(m)->g->nstates); \
+ if ((m)->space == NULL) return(REG_ESPACE); \
+ (m)->vn = 0; }
+#define STATETEARDOWN(m) { free((m)->space); }
+#define SETUP(v) ((v) = &m->space[m->vn++ * m->g->nstates])
+#define onestate long
+#define INIT(o, n) ((o) = (n))
+#define INC(o) ((o)++)
+#define ISSTATEIN(v, o) ((v)[o])
+/* some abbreviations; note that some of these know variable names! */
+/* do "if I'm here, I can also be there" etc without branches */
+#define FWD(dst, src, n) ((dst)[here+(n)] |= (src)[here])
+#define BACK(dst, src, n) ((dst)[here-(n)] |= (src)[here])
+#define ISSETBACK(v, n) ((v)[here - (n)])
+/* function names */
+#define LNAMES /* flag */
+
+#include "regengine.inc"
+
+/*
+ - llvm_regexec - interface for matching
+ *
+ * We put this here so we can exploit knowledge of the state representation
+ * when choosing which matcher to call. Also, by this point the matchers
+ * have been prototyped.
+ */
+int /* 0 success, REG_NOMATCH failure */
+llvm_regexec(const llvm_regex_t *preg, const char *string, size_t nmatch,
+ llvm_regmatch_t pmatch[], int eflags)
+{
+ struct re_guts *g = preg->re_g;
+#ifdef REDEBUG
+# define GOODFLAGS(f) (f)
+#else
+# define GOODFLAGS(f) ((f)&(REG_NOTBOL|REG_NOTEOL|REG_STARTEND))
+#endif
+
+ if (preg->re_magic != MAGIC1 || g->magic != MAGIC2)
+ return(REG_BADPAT);
+ assert(!(g->iflags&REGEX_BAD));
+ if (g->iflags&REGEX_BAD) /* backstop for no-debug case */
+ return(REG_BADPAT);
+ eflags = GOODFLAGS(eflags);
+
+ if (g->nstates <= (long)(CHAR_BIT*sizeof(states1)) && !(eflags&REG_LARGE))
+ return(smatcher(g, (char *)string, nmatch, pmatch, eflags));
+ else
+ return(lmatcher(g, (char *)string, nmatch, pmatch, eflags));
+}
diff --git a/lib/Support/regfree.c b/lib/Support/regfree.c
new file mode 100644
index 0000000..dc2b4af
--- /dev/null
+++ b/lib/Support/regfree.c
@@ -0,0 +1,72 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)regfree.c 8.3 (Berkeley) 3/20/94
+ */
+
+#include <sys/types.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include "regex_impl.h"
+
+#include "regutils.h"
+#include "regex2.h"
+
+/*
+ - llvm_regfree - free everything
+ */
+void
+llvm_regfree(llvm_regex_t *preg)
+{
+ struct re_guts *g;
+
+ if (preg->re_magic != MAGIC1) /* oops */
+ return; /* nice to complain, but hard */
+
+ g = preg->re_g;
+ if (g == NULL || g->magic != MAGIC2) /* oops again */
+ return;
+ preg->re_magic = 0; /* mark it invalid */
+ g->magic = 0; /* mark it invalid */
+
+ if (g->strip != NULL)
+ free((char *)g->strip);
+ if (g->sets != NULL)
+ free((char *)g->sets);
+ if (g->setbits != NULL)
+ free((char *)g->setbits);
+ if (g->must != NULL)
+ free(g->must);
+ free((char *)g);
+}
diff --git a/lib/Support/regstrlcpy.c b/lib/Support/regstrlcpy.c
new file mode 100644
index 0000000..8b68afd
--- /dev/null
+++ b/lib/Support/regstrlcpy.c
@@ -0,0 +1,52 @@
+/*
+ * This code is derived from OpenBSD's libc, original license follows:
+ *
+ * Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <sys/types.h>
+#include <string.h>
+
+#include "regex_impl.h"
+/*
+ * Copy src to string dst of size siz. At most siz-1 characters
+ * will be copied. Always NUL terminates (unless siz == 0).
+ * Returns strlen(src); if retval >= siz, truncation occurred.
+ */
+size_t
+llvm_strlcpy(char *dst, const char *src, size_t siz)
+{
+ char *d = dst;
+ const char *s = src;
+ size_t n = siz;
+
+ /* Copy as many bytes as will fit */
+ if (n != 0) {
+ while (--n != 0) {
+ if ((*d++ = *s++) == '\0')
+ break;
+ }
+ }
+
+ /* Not enough room in dst, add NUL and traverse rest of src */
+ if (n == 0) {
+ if (siz != 0)
+ *d = '\0'; /* NUL-terminate dst */
+ while (*s++)
+ ;
+ }
+
+ return(s - src - 1); /* count does not include NUL */
+}
diff --git a/lib/Support/regutils.h b/lib/Support/regutils.h
new file mode 100644
index 0000000..d0ee100
--- /dev/null
+++ b/lib/Support/regutils.h
@@ -0,0 +1,53 @@
+/*-
+ * This code is derived from OpenBSD's libc/regex, original license follows:
+ *
+ * Copyright (c) 1992, 1993, 1994 Henry Spencer.
+ * Copyright (c) 1992, 1993, 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Henry Spencer.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)utils.h 8.3 (Berkeley) 3/20/94
+ */
+
+/* utility definitions */
+#define NC (CHAR_MAX - CHAR_MIN + 1)
+typedef unsigned char uch;
+
+/* switch off assertions (if not already off) if no REDEBUG */
+#ifndef REDEBUG
+#ifndef NDEBUG
+#define NDEBUG /* no assertions please */
+#endif
+#endif
+#include <assert.h>
+
+/* for old systems with bcopy() but no memmove() */
+#ifdef USEBCOPY
+#define memmove(d, s, c) bcopy(s, d, c)
+#endif
diff --git a/lib/System/CMakeLists.txt b/lib/System/CMakeLists.txt
index bf7a0c6..2945e33 100644
--- a/lib/System/CMakeLists.txt
+++ b/lib/System/CMakeLists.txt
@@ -13,9 +13,32 @@ add_llvm_library(LLVMSystem
Program.cpp
RWMutex.cpp
Signals.cpp
+ ThreadLocal.cpp
Threading.cpp
TimeValue.cpp
- ThreadLocal.cpp
+ Unix/Alarm.inc
+ Unix/Host.inc
+ Unix/Memory.inc
+ Unix/Mutex.inc
+ Unix/Path.inc
+ Unix/Process.inc
+ Unix/Program.inc
+ Unix/RWMutex.inc
+ Unix/Signals.inc
+ Unix/ThreadLocal.inc
+ Unix/TimeValue.inc
+ Win32/Alarm.inc
+ Win32/DynamicLibrary.inc
+ Win32/Host.inc
+ Win32/Memory.inc
+ Win32/Mutex.inc
+ Win32/Path.inc
+ Win32/Process.inc
+ Win32/Program.inc
+ Win32/RWMutex.inc
+ Win32/Signals.inc
+ Win32/ThreadLocal.inc
+ Win32/TimeValue.inc
)
if( BUILD_SHARED_LIBS AND NOT WIN32 )
diff --git a/lib/System/Disassembler.cpp b/lib/System/Disassembler.cpp
index 378fe26..bad427a 100644
--- a/lib/System/Disassembler.cpp
+++ b/lib/System/Disassembler.cpp
@@ -26,7 +26,7 @@
using namespace llvm;
-bool llvm::sys::hasDisassembler(void)
+bool llvm::sys::hasDisassembler()
{
#if defined (__i386__) || defined (__amd64__) || defined (__x86_64__)
// We have option to enable udis86 library.
diff --git a/lib/System/DynamicLibrary.cpp b/lib/System/DynamicLibrary.cpp
index ef5c9e6..6efab94 100644
--- a/lib/System/DynamicLibrary.cpp
+++ b/lib/System/DynamicLibrary.cpp
@@ -9,42 +9,43 @@
//
// This header file implements the operating system DynamicLibrary concept.
//
+// FIXME: This file leaks the ExplicitSymbols and OpenedHandles vector, and is
+// not thread safe!
+//
//===----------------------------------------------------------------------===//
#include "llvm/System/DynamicLibrary.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/System/RWMutex.h"
#include "llvm/Config/config.h"
#include <cstdio>
#include <cstring>
#include <map>
+#include <vector>
// Collection of symbol name/value pairs to be searched prior to any libraries.
-static std::map<std::string, void*> symbols;
-static llvm::sys::SmartRWMutex<true> SymbolsLock;
+static std::map<std::string, void*> *ExplicitSymbols = 0;
+static struct ExplicitSymbolsDeleter {
+ ~ExplicitSymbolsDeleter() {
+ if (ExplicitSymbols)
+ delete ExplicitSymbols;
+ }
+} Dummy;
void llvm::sys::DynamicLibrary::AddSymbol(const char* symbolName,
void *symbolValue) {
- llvm::sys::SmartScopedWriter<true> Writer(&SymbolsLock);
- symbols[symbolName] = symbolValue;
+ if (ExplicitSymbols == 0)
+ ExplicitSymbols = new std::map<std::string, void*>();
+ (*ExplicitSymbols)[symbolName] = symbolValue;
}
-// It is not possible to use ltdl.c on VC++ builds as the terms of its LGPL
-// license and special exception would cause all of LLVM to be placed under
-// the LGPL. This is because the exception applies only when libtool is
-// used, and obviously libtool is not used with Visual Studio. An entirely
-// separate implementation is provided in win32/DynamicLibrary.cpp.
-
#ifdef LLVM_ON_WIN32
#include "Win32/DynamicLibrary.inc"
#else
-//#include "ltdl.h"
#include <dlfcn.h>
-#include <cassert>
using namespace llvm;
using namespace llvm::sys;
@@ -53,56 +54,44 @@ using namespace llvm::sys;
//=== independent code.
//===----------------------------------------------------------------------===//
-//static std::vector<lt_dlhandle> OpenedHandles;
-static std::vector<void *> OpenedHandles;
-
-DynamicLibrary::DynamicLibrary() {}
+static std::vector<void *> *OpenedHandles = 0;
-DynamicLibrary::~DynamicLibrary() {
- SmartScopedWriter<true> Writer(&SymbolsLock);
- while(!OpenedHandles.empty()) {
- void *H = OpenedHandles.back(); OpenedHandles.pop_back();
- dlclose(H);
- }
-}
bool DynamicLibrary::LoadLibraryPermanently(const char *Filename,
std::string *ErrMsg) {
- SmartScopedWriter<true> Writer(&SymbolsLock);
void *H = dlopen(Filename, RTLD_LAZY|RTLD_GLOBAL);
if (H == 0) {
- if (ErrMsg)
- *ErrMsg = dlerror();
+ if (ErrMsg) *ErrMsg = dlerror();
return true;
}
- OpenedHandles.push_back(H);
+ if (OpenedHandles == 0)
+ OpenedHandles = new std::vector<void *>();
+ OpenedHandles->push_back(H);
return false;
}
void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
- // check_ltdl_initialization();
-
// First check symbols added via AddSymbol().
- SymbolsLock.reader_acquire();
- std::map<std::string, void *>::iterator I = symbols.find(symbolName);
- std::map<std::string, void *>::iterator E = symbols.end();
- SymbolsLock.reader_release();
+ if (ExplicitSymbols) {
+ std::map<std::string, void *>::iterator I =
+ ExplicitSymbols->find(symbolName);
+ std::map<std::string, void *>::iterator E = ExplicitSymbols->end();
- if (I != E)
- return I->second;
+ if (I != E)
+ return I->second;
+ }
- SymbolsLock.writer_acquire();
// Now search the libraries.
- for (std::vector<void *>::iterator I = OpenedHandles.begin(),
- E = OpenedHandles.end(); I != E; ++I) {
- //lt_ptr ptr = lt_dlsym(*I, symbolName);
- void *ptr = dlsym(*I, symbolName);
- if (ptr) {
- SymbolsLock.writer_release();
- return ptr;
+ if (OpenedHandles) {
+ for (std::vector<void *>::iterator I = OpenedHandles->begin(),
+ E = OpenedHandles->end(); I != E; ++I) {
+ //lt_ptr ptr = lt_dlsym(*I, symbolName);
+ void *ptr = dlsym(*I, symbolName);
+ if (ptr) {
+ return ptr;
+ }
}
}
- SymbolsLock.writer_release();
#define EXPLICIT_SYMBOL(SYM) \
extern void *SYM; if (!strcmp(symbolName, #SYM)) return &SYM
diff --git a/lib/System/Errno.cpp b/lib/System/Errno.cpp
index d046aba..68f66f6 100644
--- a/lib/System/Errno.cpp
+++ b/lib/System/Errno.cpp
@@ -17,6 +17,10 @@
#if HAVE_STRING_H
#include <string.h>
+#if HAVE_ERRNO_H
+#include <errno.h>
+#endif
+
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only TRULY operating system
//=== independent code.
@@ -26,7 +30,6 @@ namespace llvm {
namespace sys {
#if HAVE_ERRNO_H
-#include <errno.h>
std::string StrError() {
return StrError(errno);
}
diff --git a/lib/System/Makefile b/lib/System/Makefile
index 49704c3..d4fd60e 100644
--- a/lib/System/Makefile
+++ b/lib/System/Makefile
@@ -11,6 +11,12 @@ LEVEL = ../..
LIBRARYNAME = LLVMSystem
BUILD_ARCHIVE = 1
+include $(LEVEL)/Makefile.config
+
+ifeq ($(HOST_OS),MingW)
+ REQUIRES_EH := 1
+endif
+
EXTRA_DIST = Unix Win32 README.txt
include $(LEVEL)/Makefile.common
diff --git a/lib/System/Memory.cpp b/lib/System/Memory.cpp
index 375c73c..e2d838d 100644
--- a/lib/System/Memory.cpp
+++ b/lib/System/Memory.cpp
@@ -37,13 +37,16 @@ void llvm::sys::Memory::InvalidateInstructionCache(const void *Addr,
// icache invalidation for PPC and ARM.
#if defined(__APPLE__)
-#if (defined(__POWERPC__) || defined (__ppc__) || \
+
+# if (defined(__POWERPC__) || defined (__ppc__) || \
defined(_POWER) || defined(_ARCH_PPC)) || defined(__arm__)
sys_icache_invalidate(Addr, Len);
-#endif
+# endif
+
#else
-#if (defined(__POWERPC__) || defined (__ppc__) || \
- defined(_POWER) || defined(_ARCH_PPC)) && defined(__GNUC__)
+
+# if (defined(__POWERPC__) || defined (__ppc__) || \
+ defined(_POWER) || defined(_ARCH_PPC)) && defined(__GNUC__)
const size_t LineSize = 32;
const intptr_t Mask = ~(LineSize - 1);
@@ -57,6 +60,12 @@ void llvm::sys::Memory::InvalidateInstructionCache(const void *Addr,
for (intptr_t Line = StartLine; Line < EndLine; Line += LineSize)
asm volatile("icbi 0, %0" : : "r"(Line));
asm volatile("isync");
-#endif
+# elif defined(__arm__) && defined(__GNUC__)
+ // FIXME: Can we safely always call this for __GNUC__ everywhere?
+ char *Start = (char*) Addr;
+ char *End = Start + Len;
+ __clear_cache(Start, End);
+# endif
+
#endif // end apple
}
diff --git a/lib/System/Mutex.cpp b/lib/System/Mutex.cpp
index a5e9920..8ccd6e5 100644
--- a/lib/System/Mutex.cpp
+++ b/lib/System/Mutex.cpp
@@ -115,8 +115,7 @@ MutexImpl::acquire()
int errorcode = pthread_mutex_lock(mutex);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
bool
@@ -129,8 +128,7 @@ MutexImpl::release()
int errorcode = pthread_mutex_unlock(mutex);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
bool
@@ -143,8 +141,7 @@ MutexImpl::tryacquire()
int errorcode = pthread_mutex_trylock(mutex);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
}
diff --git a/lib/System/Path.cpp b/lib/System/Path.cpp
index 72bd7ad..df33574 100644
--- a/lib/System/Path.cpp
+++ b/lib/System/Path.cpp
@@ -13,6 +13,7 @@
#include "llvm/System/Path.h"
#include "llvm/Config/config.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstring>
#include <ostream>
@@ -28,19 +29,10 @@ bool Path::operator==(const Path &that) const {
return path == that.path;
}
-bool Path::operator!=(const Path &that) const {
- return path != that.path;
-}
-
bool Path::operator<(const Path& that) const {
return path < that.path;
}
-std::ostream& llvm::operator<<(std::ostream &strm, const sys::Path &aPath) {
- strm << aPath.toString();
- return strm;
-}
-
Path
Path::GetLLVMConfigDir() {
Path result;
@@ -207,18 +199,6 @@ bool Path::hasMagicNumber(const std::string &Magic) const {
return false;
}
-void Path::makeAbsolute() {
- if (isAbsolute())
- return;
-
- Path CWD = Path::GetCurrentDirectory();
- assert(CWD.isAbsolute() && "GetCurrentDirectory returned relative path!");
-
- CWD.appendComponent(path);
-
- path = CWD.toString();
-}
-
static void getPathList(const char*path, std::vector<Path>& Paths) {
const char* at = path;
const char* delim = strchr(at, PathSeparator);
diff --git a/lib/System/Program.cpp b/lib/System/Program.cpp
index eb289d8..a3049d4 100644
--- a/lib/System/Program.cpp
+++ b/lib/System/Program.cpp
@@ -22,6 +22,33 @@ using namespace sys;
//=== independent code.
//===----------------------------------------------------------------------===//
+int
+Program::ExecuteAndWait(const Path& path,
+ const char** args,
+ const char** envp,
+ const Path** redirects,
+ unsigned secondsToWait,
+ unsigned memoryLimit,
+ std::string* ErrMsg) {
+ Program prg;
+ if (prg.Execute(path, args, envp, redirects, memoryLimit, ErrMsg))
+ return prg.Wait(secondsToWait, ErrMsg);
+ else
+ return -1;
+}
+
+void
+Program::ExecuteNoWait(const Path& path,
+ const char** args,
+ const char** envp,
+ const Path** redirects,
+ unsigned memoryLimit,
+ std::string* ErrMsg) {
+ Program prg;
+ prg.Execute(path, args, envp, redirects, memoryLimit, ErrMsg);
+}
+
+
}
// Include the platform-specific parts of this class.
diff --git a/lib/System/RWMutex.cpp b/lib/System/RWMutex.cpp
index 15d98cb..5faf220 100644
--- a/lib/System/RWMutex.cpp
+++ b/lib/System/RWMutex.cpp
@@ -117,8 +117,7 @@ RWMutexImpl::reader_acquire()
int errorcode = pthread_rwlock_rdlock(rwlock);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
bool
@@ -131,8 +130,7 @@ RWMutexImpl::reader_release()
int errorcode = pthread_rwlock_unlock(rwlock);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
bool
@@ -145,8 +143,7 @@ RWMutexImpl::writer_acquire()
int errorcode = pthread_rwlock_wrlock(rwlock);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
bool
@@ -159,8 +156,7 @@ RWMutexImpl::writer_release()
int errorcode = pthread_rwlock_unlock(rwlock);
return errorcode == 0;
- }
- return false;
+ } else return false;
}
}
diff --git a/lib/System/Threading.cpp b/lib/System/Threading.cpp
index a2d7f82..466c468 100644
--- a/lib/System/Threading.cpp
+++ b/lib/System/Threading.cpp
@@ -14,6 +14,7 @@
#include "llvm/System/Threading.h"
#include "llvm/System/Atomic.h"
#include "llvm/System/Mutex.h"
+#include "llvm/Config/config.h"
#include <cassert>
using namespace llvm;
diff --git a/lib/System/Unix/Alarm.inc b/lib/System/Unix/Alarm.inc
index 28ff1b8..fb42b6c 100644
--- a/lib/System/Unix/Alarm.inc
+++ b/lib/System/Unix/Alarm.inc
@@ -67,6 +67,6 @@ int sys::AlarmStatus() {
return 0;
}
-void Sleep(unsigned n) {
+void sys::Sleep(unsigned n) {
::sleep(n);
}
diff --git a/lib/System/Unix/Host.inc b/lib/System/Unix/Host.inc
index fb319fd..c76d6a4 100644
--- a/lib/System/Unix/Host.inc
+++ b/lib/System/Unix/Host.inc
@@ -16,7 +16,8 @@
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
-#include <llvm/Config/config.h>
+#include "llvm/Config/config.h"
+#include "llvm/ADT/StringRef.h"
#include "Unix.h"
#include <sys/utsname.h>
#include <string>
@@ -33,10 +34,47 @@ static std::string getOSVersion() {
}
std::string sys::getHostTriple() {
- // FIXME: Derive more directly instead of relying on the autoconf
- // generated variable.
+ // FIXME: Derive directly instead of relying on the autoconf generated
+ // variable.
- std::string Triple = LLVM_HOSTTRIPLE;
+ StringRef HostTripleString(LLVM_HOSTTRIPLE);
+ std::pair<StringRef, StringRef> ArchSplit = HostTripleString.split('-');
+
+ // Normalize the arch, since the host triple may not actually match the host.
+ std::string Arch = ArchSplit.first;
+
+ // It would be nice to do this in terms of llvm::Triple, but that is in
+ // Support which is layered above us.
+#if defined(__x86_64__)
+ Arch = "x86_64";
+#elif defined(__i386__)
+ Arch = "i386";
+#elif defined(__ppc64__)
+ Arch = "powerpc64";
+#elif defined(__ppc__)
+ Arch = "powerpc";
+#elif defined(__arm__)
+
+ // FIXME: We need to pick the right ARM triple (which involves querying the
+ // chip). However, for now this is most important for LLVM arch selection, so
+ // we only need to make sure to distinguish ARM and Thumb.
+# if defined(__thumb__)
+ Arch = "thumb";
+# else
+ Arch = "arm";
+# endif
+
+#else
+
+ // FIXME: When enough auto-detection is in place, this should just
+ // #error. Then at least the arch selection is done, and we only need the OS
+ // etc selection to kill off the use of LLVM_HOSTTRIPLE.
+
+#endif
+
+ std::string Triple(Arch);
+ Triple += '-';
+ Triple += ArchSplit.second;
// Force i<N>86 to i386.
if (Triple[0] == 'i' && isdigit(Triple[1]) &&
diff --git a/lib/System/Unix/Memory.inc b/lib/System/Unix/Memory.inc
index b7a7013..a80f56f 100644
--- a/lib/System/Unix/Memory.inc
+++ b/lib/System/Unix/Memory.inc
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "Unix.h"
+#include "llvm/Support/DataTypes.h"
#include "llvm/System/Process.h"
#ifdef HAVE_SYS_MMAN_H
@@ -28,12 +29,12 @@
/// is very OS specific.
///
llvm::sys::MemoryBlock
-llvm::sys::Memory::AllocateRWX(unsigned NumBytes, const MemoryBlock* NearBlock,
+llvm::sys::Memory::AllocateRWX(size_t NumBytes, const MemoryBlock* NearBlock,
std::string *ErrMsg) {
if (NumBytes == 0) return MemoryBlock();
- unsigned pageSize = Process::GetPageSize();
- unsigned NumPages = (NumBytes+pageSize-1)/pageSize;
+ size_t pageSize = Process::GetPageSize();
+ size_t NumPages = (NumBytes+pageSize-1)/pageSize;
int fd = -1;
#ifdef NEED_DEV_ZERO_FOR_MMAP
diff --git a/lib/System/Unix/Path.inc b/lib/System/Unix/Path.inc
index 1f73571..89285b4 100644
--- a/lib/System/Unix/Path.inc
+++ b/lib/System/Unix/Path.inc
@@ -16,7 +16,7 @@
//=== is guaranteed to work on *all* UNIX variants.
//===----------------------------------------------------------------------===//
-#include "llvm/Config/alloca.h"
+#include "llvm/ADT/SmallVector.h"
#include "Unix.h"
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
@@ -57,6 +57,10 @@
#include <dlfcn.h>
#endif
+#ifdef __APPLE__
+#include <mach-o/dyld.h>
+#endif
+
// Put in a hack for Cygwin which falsely reports that the mkdtemp function
// is available when it is not.
#ifdef __CYGWIN__
@@ -92,15 +96,7 @@ Path::isValid() const {
// Check some obvious things
if (path.empty())
return false;
- else if (path.length() >= MAXPATHLEN)
- return false;
-
- // Check that the characters are ascii chars
- size_t len = path.length();
- unsigned i = 0;
- while (i < len && isascii(path[i]))
- ++i;
- return i >= len;
+ return path.length() < MAXPATHLEN;
}
bool
@@ -117,6 +113,19 @@ Path::isAbsolute() const {
return false;
return path[0] == '/';
}
+
+void Path::makeAbsolute() {
+ if (isAbsolute())
+ return;
+
+ Path CWD = Path::GetCurrentDirectory();
+ assert(CWD.isAbsolute() && "GetCurrentDirectory returned relative path!");
+
+ CWD.appendComponent(path);
+
+ path = CWD.str();
+}
+
Path
Path::GetRootDirectory() {
Path result;
@@ -331,7 +340,17 @@ getprogpath(char ret[PATH_MAX], const char *bin)
/// GetMainExecutable - Return the path to the main executable, given the
/// value of argv[0] from program startup.
Path Path::GetMainExecutable(const char *argv0, void *MainAddr) {
-#if defined(__FreeBSD__)
+#if defined(__APPLE__)
+ // On OS X the executable path is saved to the stack by dyld. Reading it
+ // from there is much faster than calling dladdr, especially for large
+ // binaries with symbols.
+ char exe_path[MAXPATHLEN];
+ uint32_t size = sizeof(exe_path);
+ if (_NSGetExecutablePath(exe_path, &size) == 0) {
+ char link_path[MAXPATHLEN];
+ return Path(std::string(realpath(exe_path, link_path)));
+ }
+#elif defined(__FreeBSD__)
char exe_path[PATH_MAX];
if (getprogpath(exe_path, argv0) != NULL)
@@ -339,10 +358,8 @@ Path Path::GetMainExecutable(const char *argv0, void *MainAddr) {
#elif defined(__linux__) || defined(__CYGWIN__)
char exe_path[MAXPATHLEN];
ssize_t len = readlink("/proc/self/exe", exe_path, sizeof(exe_path));
- if (len > 0 && len < MAXPATHLEN - 1) {
- exe_path[len] = '\0';
- return Path(std::string(exe_path));
- }
+ if (len >= 0)
+ return Path(std::string(exe_path, len));
#elif defined(HAVE_DLFCN_H)
// Use dladdr to get executable path if available.
Dl_info DLInfo;
@@ -397,7 +414,9 @@ Path::getSuffix() const {
bool Path::getMagicNumber(std::string& Magic, unsigned len) const {
assert(len < 1024 && "Request for magic string too long");
- char* buf = (char*) alloca(1 + len);
+ SmallVector<char, 128> Buf;
+ Buf.resize(1 + len);
+ char* buf = Buf.data();
int fd = ::open(path.c_str(), O_RDONLY);
if (fd < 0)
return false;
@@ -426,12 +445,12 @@ Path::isDirectory() const {
bool
Path::canRead() const {
- return 0 == access(path.c_str(), F_OK | R_OK );
+ return 0 == access(path.c_str(), R_OK);
}
bool
Path::canWrite() const {
- return 0 == access(path.c_str(), F_OK | W_OK );
+ return 0 == access(path.c_str(), W_OK);
}
bool
@@ -499,7 +518,7 @@ static bool AddPermissionBits(const Path &File, int bits) {
// Get the file's current mode.
struct stat buf;
- if (0 != stat(File.toString().c_str(), &buf))
+ if (0 != stat(File.c_str(), &buf))
return false;
// Change the file to have whichever permissions bits from 'bits'
// that the umask would not disable.
@@ -631,7 +650,7 @@ Path::eraseSuffix() {
static bool createDirectoryHelper(char* beg, char* end, bool create_parents) {
- if (access(beg, F_OK | R_OK | W_OK) == 0)
+ if (access(beg, R_OK | W_OK) == 0)
return false;
if (create_parents) {
@@ -756,7 +775,7 @@ bool
Path::renamePathOnDisk(const Path& newName, std::string* ErrMsg) {
if (0 != ::rename(path.c_str(), newName.c_str()))
return MakeErrMsg(ErrMsg, std::string("can't rename '") + path + "' as '" +
- newName.toString() + "'");
+ newName.str() + "'");
return false;
}
@@ -778,13 +797,13 @@ sys::CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg){
int outFile = -1;
inFile = ::open(Src.c_str(), O_RDONLY);
if (inFile == -1)
- return MakeErrMsg(ErrMsg, Src.toString() +
+ return MakeErrMsg(ErrMsg, Src.str() +
": can't open source file to copy");
outFile = ::open(Dest.c_str(), O_WRONLY|O_CREAT, 0666);
if (outFile == -1) {
::close(inFile);
- return MakeErrMsg(ErrMsg, Dest.toString() +
+ return MakeErrMsg(ErrMsg, Dest.str() +
": can't create destination file for copy");
}
@@ -794,7 +813,7 @@ sys::CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg){
if (errno != EINTR && errno != EAGAIN) {
::close(inFile);
::close(outFile);
- return MakeErrMsg(ErrMsg, Src.toString()+": can't read source file");
+ return MakeErrMsg(ErrMsg, Src.str()+": can't read source file");
}
} else {
char *BufPtr = Buffer;
@@ -804,7 +823,7 @@ sys::CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg){
if (errno != EINTR && errno != EAGAIN) {
::close(inFile);
::close(outFile);
- return MakeErrMsg(ErrMsg, Dest.toString() +
+ return MakeErrMsg(ErrMsg, Dest.str() +
": can't write destination file");
}
} else {
@@ -826,7 +845,9 @@ Path::makeUnique(bool reuse_current, std::string* ErrMsg) {
// Append an XXXXXX pattern to the end of the file for use with mkstemp,
// mktemp or our own implementation.
- char *FNBuffer = (char*) alloca(path.size()+8);
+ SmallVector<char, 128> Buf;
+ Buf.resize(path.size()+8);
+ char *FNBuffer = Buf.data();
path.copy(FNBuffer,path.size());
if (isDirectory())
strcpy(FNBuffer+path.size(), "/XXXXXX");
diff --git a/lib/System/Unix/Process.inc b/lib/System/Unix/Process.inc
index 2da31c9..94e4c1b 100644
--- a/lib/System/Unix/Process.inc
+++ b/lib/System/Unix/Process.inc
@@ -46,11 +46,11 @@ Process::GetPageSize()
// On Cygwin, getpagesize() returns 64k but the page size for the purposes of
// memory protection and mmap() is 4k.
// See http://www.cygwin.com/ml/cygwin/2009-01/threads.html#00492
- static const int page_size = 0x1000;
+ const int page_size = 0x1000;
#elif defined(HAVE_GETPAGESIZE)
- static const int page_size = ::getpagesize();
+ const int page_size = ::getpagesize();
#elif defined(HAVE_SYSCONF)
- static long page_size = ::sysconf(_SC_PAGE_SIZE);
+ long page_size = ::sysconf(_SC_PAGE_SIZE);
#else
#warning Cannot get the page size on this machine
#endif
@@ -91,7 +91,7 @@ Process::GetTotalMemoryUsage()
malloc_statistics_t Stats;
malloc_zone_statistics(malloc_default_zone(), &Stats);
return Stats.size_allocated; // darwin
-#elif defined(HAVE_GETRUSAGE)
+#elif defined(HAVE_GETRUSAGE) && !defined(__HAIKU__)
struct rusage usage;
::getrusage(RUSAGE_SELF, &usage);
return usage.ru_maxrss;
@@ -179,27 +179,24 @@ void Process::PreventCoreFiles() {
}
bool Process::StandardInIsUserInput() {
-#if HAVE_ISATTY
- return isatty(0);
-#endif
- // If we don't have isatty, just return false.
- return false;
+ return FileDescriptorIsDisplayed(STDIN_FILENO);
}
bool Process::StandardOutIsDisplayed() {
-#if HAVE_ISATTY
- return isatty(1);
-#endif
- // If we don't have isatty, just return false.
- return false;
+ return FileDescriptorIsDisplayed(STDOUT_FILENO);
}
bool Process::StandardErrIsDisplayed() {
+ return FileDescriptorIsDisplayed(STDERR_FILENO);
+}
+
+bool Process::FileDescriptorIsDisplayed(int fd) {
#if HAVE_ISATTY
- return isatty(2);
-#endif
+ return isatty(fd);
+#else
// If we don't have isatty, just return false.
return false;
+#endif
}
static unsigned getColumns(int FileID) {
diff --git a/lib/System/Unix/Program.inc b/lib/System/Unix/Program.inc
index cdc6fee..56dea25 100644
--- a/lib/System/Unix/Program.inc
+++ b/lib/System/Unix/Program.inc
@@ -1,10 +1,10 @@
//===- llvm/System/Unix/Program.cpp -----------------------------*- C++ -*-===//
-//
+//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
-//
+//
//===----------------------------------------------------------------------===//
//
// This file implements the Unix specific portion of the Program class.
@@ -18,7 +18,6 @@
#include <llvm/Config/config.h>
#include "Unix.h"
-#include <iostream>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
@@ -35,6 +34,15 @@
namespace llvm {
using namespace sys;
+Program::Program() : Data_(0) {}
+
+Program::~Program() {}
+
+unsigned Program::GetPid() const {
+ uint64_t pid = reinterpret_cast<uint64_t>(Data_);
+ return static_cast<unsigned>(pid);
+}
+
// This function just uses the PATH environment variable to find the program.
Path
Program::FindProgramByName(const std::string& progName) {
@@ -45,16 +53,17 @@ Program::FindProgramByName(const std::string& progName) {
Path temp;
if (!temp.set(progName)) // invalid name
return Path();
- // FIXME: have to check for absolute filename - we cannot assume anything
- // about "." being in $PATH
- if (temp.canExecute()) // already executable as is
+ // Use the given path verbatim if it contains any slashes; this matches
+ // the behavior of sh(1) and friends.
+ if (progName.find('/') != std::string::npos)
return temp;
- // At this point, the file name is valid and its not executable
-
+ // At this point, the file name does not contain slashes. Search for it
+ // through the directories specified in the PATH environment variable.
+
// Get the path. If its empty, we can't do anything to find it.
const char *PathStr = getenv("PATH");
- if (PathStr == 0)
+ if (PathStr == 0)
return Path();
// Now we have a colon separated list of directories to search; try them.
@@ -93,7 +102,7 @@ static bool RedirectIO(const Path *Path, int FD, std::string* ErrMsg) {
// Redirect empty paths to /dev/null
File = "/dev/null";
else
- File = Path->toString();
+ File = Path->str();
// Open the file
int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666);
@@ -112,11 +121,6 @@ static bool RedirectIO(const Path *Path, int FD, std::string* ErrMsg) {
return false;
}
-static bool Timeout = false;
-static void TimeOutHandler(int Sig) {
- Timeout = true;
-}
-
static void SetMemoryLimits (unsigned size)
{
#if HAVE_SYS_RESOURCE_H
@@ -142,49 +146,47 @@ static void SetMemoryLimits (unsigned size)
#endif
}
-int
-Program::ExecuteAndWait(const Path& path,
- const char** args,
- const char** envp,
- const Path** redirects,
- unsigned secondsToWait,
- unsigned memoryLimit,
- std::string* ErrMsg)
+bool
+Program::Execute(const Path& path,
+ const char** args,
+ const char** envp,
+ const Path** redirects,
+ unsigned memoryLimit,
+ std::string* ErrMsg)
{
if (!path.canExecute()) {
if (ErrMsg)
- *ErrMsg = path.toString() + " is not executable";
- return -1;
+ *ErrMsg = path.str() + " is not executable";
+ return false;
}
-#ifdef HAVE_SYS_WAIT_H
// Create a child process.
int child = fork();
switch (child) {
// An error occured: Return to the caller.
case -1:
MakeErrMsg(ErrMsg, "Couldn't fork");
- return -1;
+ return false;
// Child process: Execute the program.
case 0: {
// Redirect file descriptors...
if (redirects) {
// Redirect stdin
- if (RedirectIO(redirects[0], 0, ErrMsg)) { return -1; }
+ if (RedirectIO(redirects[0], 0, ErrMsg)) { return false; }
// Redirect stdout
- if (RedirectIO(redirects[1], 1, ErrMsg)) { return -1; }
- if (redirects[1] && redirects[2] &&
+ if (RedirectIO(redirects[1], 1, ErrMsg)) { return false; }
+ if (redirects[1] && redirects[2] &&
*(redirects[1]) == *(redirects[2])) {
// If stdout and stderr should go to the same place, redirect stderr
// to the FD already open for stdout.
if (-1 == dup2(1,2)) {
MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout");
- return -1;
+ return false;
}
} else {
// Just redirect stderr
- if (RedirectIO(redirects[2], 2, ErrMsg)) { return -1; }
+ if (RedirectIO(redirects[2], 2, ErrMsg)) { return false; }
}
}
@@ -192,15 +194,19 @@ Program::ExecuteAndWait(const Path& path,
if (memoryLimit!=0) {
SetMemoryLimits(memoryLimit);
}
-
+
// Execute!
if (envp != 0)
- execve (path.c_str(), (char**)args, (char**)envp);
+ execve(path.c_str(), (char**)args, (char**)envp);
else
- execv (path.c_str(), (char**)args);
- // If the execve() failed, we should exit and let the parent pick up
- // our non-zero exit status.
- exit (errno);
+ execv(path.c_str(), (char**)args);
+ // If the execve() failed, we should exit. Follow Unix protocol and
+ // return 127 if the executable was not found, and 126 otherwise.
+ // Use _exit rather than exit so that atexit functions and static
+ // object destructors cloned from the parent process aren't
+ // redundantly run, and so that any data buffered in stdio buffers
+ // cloned from the parent aren't redundantly written out.
+ _exit(errno == ENOENT ? 127 : 126);
}
// Parent process: Break out of the switch to do our processing.
@@ -208,32 +214,41 @@ Program::ExecuteAndWait(const Path& path,
break;
}
- // Make sure stderr and stdout have been flushed
- std::cerr << std::flush;
- std::cout << std::flush;
- fsync(1);
- fsync(2);
+ Data_ = reinterpret_cast<void*>(child);
+
+ return true;
+}
+int
+Program::Wait(unsigned secondsToWait,
+ std::string* ErrMsg)
+{
+#ifdef HAVE_SYS_WAIT_H
struct sigaction Act, Old;
+ if (Data_ == 0) {
+ MakeErrMsg(ErrMsg, "Process not started!");
+ return -1;
+ }
+
// Install a timeout handler.
if (secondsToWait) {
- Timeout = false;
- Act.sa_sigaction = 0;
- Act.sa_handler = TimeOutHandler;
+ memset(&Act, 0, sizeof(Act));
+ Act.sa_handler = SIG_IGN;
sigemptyset(&Act.sa_mask);
- Act.sa_flags = 0;
sigaction(SIGALRM, &Act, &Old);
alarm(secondsToWait);
}
// Parent process: Wait for the child process to terminate.
int status;
+ uint64_t pid = reinterpret_cast<uint64_t>(Data_);
+ pid_t child = static_cast<pid_t>(pid);
while (wait(&status) != child)
if (secondsToWait && errno == EINTR) {
// Kill the child.
kill(child, SIGKILL);
-
+
// Turn off the alarm and restore the signal handler
alarm(0);
sigaction(SIGALRM, &Old, 0);
@@ -271,7 +286,25 @@ Program::ExecuteAndWait(const Path& path,
#else
return -99;
#endif
-
+
+}
+
+bool
+Program::Kill(std::string* ErrMsg) {
+ if (Data_ == 0) {
+ MakeErrMsg(ErrMsg, "Process not started!");
+ return true;
+ }
+
+ uint64_t pid64 = reinterpret_cast<uint64_t>(Data_);
+ pid_t pid = static_cast<pid_t>(pid64);
+
+ if (kill(pid, SIGKILL) != 0) {
+ MakeErrMsg(ErrMsg, "The process couldn't be killed!");
+ return true;
+ }
+
+ return false;
}
bool Program::ChangeStdinToBinary(){
diff --git a/lib/System/Unix/Signals.inc b/lib/System/Unix/Signals.inc
index e385e0c..d39e1e9 100644
--- a/lib/System/Unix/Signals.inc
+++ b/lib/System/Unix/Signals.inc
@@ -14,6 +14,7 @@
#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/System/Mutex.h"
#include <vector>
#include <algorithm>
#if HAVE_EXECINFO_H
@@ -33,6 +34,8 @@ using namespace llvm;
static RETSIGTYPE SignalHandler(int Sig); // defined below.
+static SmartMutex<true> SignalsMutex;
+
/// InterruptFunction - The function to call if ctrl-c is pressed.
static void (*InterruptFunction)() = 0;
@@ -113,6 +116,7 @@ static RETSIGTYPE SignalHandler(int Sig) {
sigfillset(&SigMask);
sigprocmask(SIG_UNBLOCK, &SigMask, 0);
+ SignalsMutex.acquire();
if (FilesToRemove != 0)
while (!FilesToRemove->empty()) {
FilesToRemove->back().eraseFromDisk(true);
@@ -122,14 +126,19 @@ static RETSIGTYPE SignalHandler(int Sig) {
if (std::find(IntSigs, IntSigsEnd, Sig) != IntSigsEnd) {
if (InterruptFunction) {
void (*IF)() = InterruptFunction;
+ SignalsMutex.release();
InterruptFunction = 0;
IF(); // run the interrupt function.
return;
}
+
+ SignalsMutex.release();
raise(Sig); // Execute the default handler.
return;
}
+ SignalsMutex.release();
+
// Otherwise if it is a fault (like SEGV) run any handler.
if (CallBacksToRun)
for (unsigned i = 0, e = CallBacksToRun->size(); i != e; ++i)
@@ -139,18 +148,23 @@ static RETSIGTYPE SignalHandler(int Sig) {
void llvm::sys::SetInterruptFunction(void (*IF)()) {
+ SignalsMutex.acquire();
InterruptFunction = IF;
+ SignalsMutex.release();
RegisterHandlers();
}
// RemoveFileOnSignal - The public API
bool llvm::sys::RemoveFileOnSignal(const sys::Path &Filename,
std::string* ErrMsg) {
+ SignalsMutex.acquire();
if (FilesToRemove == 0)
FilesToRemove = new std::vector<sys::Path>();
FilesToRemove->push_back(Filename);
+ SignalsMutex.release();
+
RegisterHandlers();
return false;
}
diff --git a/lib/System/Unix/TimeValue.inc b/lib/System/Unix/TimeValue.inc
index 8dd30b9..1ae8c71 100644
--- a/lib/System/Unix/TimeValue.inc
+++ b/lib/System/Unix/TimeValue.inc
@@ -21,7 +21,7 @@
namespace llvm {
using namespace sys;
-std::string TimeValue::toString() const {
+std::string TimeValue::str() const {
char buffer[32];
time_t ourTime = time_t(this->toEpochTime());
diff --git a/lib/System/Win32/DynamicLibrary.inc b/lib/System/Win32/DynamicLibrary.inc
index aa04268..10e64aa 100644
--- a/lib/System/Win32/DynamicLibrary.inc
+++ b/lib/System/Win32/DynamicLibrary.inc
@@ -67,7 +67,6 @@ extern "C" {
PVOID UserContext)
#endif
{
- llvm::sys::SmartScopedWriter<true> Writer(&SymbolsLock);
// Ignore VC++ runtimes prior to 7.1. Somehow some of them get loaded
// into the process.
if (stricmp(ModuleName, "msvci70") != 0 &&
@@ -89,36 +88,9 @@ extern "C" {
}
}
-DynamicLibrary::DynamicLibrary() : handle(0) {
- SmartScopedWriter<true> Writer(&SymbolsLock);
- handle = GetModuleHandle(NULL);
- OpenedHandles.push_back((HMODULE)handle);
-}
-
-DynamicLibrary::~DynamicLibrary() {
- llvm::sys::SmartScopedWriter<true> Writer(&SymbolsLock);
- if (handle == 0)
- return;
-
- // GetModuleHandle() does not increment the ref count, so we must not free
- // the handle to the executable.
- if (handle != GetModuleHandle(NULL))
- FreeLibrary((HMODULE)handle);
- handle = 0;
-
- for (std::vector<HMODULE>::iterator I = OpenedHandles.begin(),
- E = OpenedHandles.end(); I != E; ++I) {
- if (*I == handle) {
- // Note: don't use the swap/pop_back trick here. Order is important.
- OpenedHandles.erase(I);
- }
- }
-}
-
bool DynamicLibrary::LoadLibraryPermanently(const char *filename,
std::string *ErrMsg) {
if (filename) {
- llvm::sys::SmartScopedWriter<true> Writer(&SymbolsLock);
HMODULE a_handle = LoadLibrary(filename);
if (a_handle == 0)
@@ -170,24 +142,22 @@ bool DynamicLibrary::LoadLibraryPermanently(const char *filename,
void* DynamicLibrary::SearchForAddressOfSymbol(const char* symbolName) {
// First check symbols added via AddSymbol().
- SymbolsLock.reader_acquire();
- std::map<std::string, void *>::iterator I = symbols.find(symbolName);
- std::map<std::string, void *>::iterator E = symbols.end();
- SymbolsLock.reader_release();
- if (I != E)
- return I->second;
+ if (ExplicitSymbols) {
+ std::map<std::string, void *>::iterator I =
+ ExplicitSymbols->find(symbolName);
+ std::map<std::string, void *>::iterator E = ExplicitSymbols->end();
+ if (I != E)
+ return I->second;
+ }
// Now search the libraries.
- SymbolsLock.writer_acquire();
for (std::vector<HMODULE>::iterator I = OpenedHandles.begin(),
E = OpenedHandles.end(); I != E; ++I) {
FARPROC ptr = GetProcAddress((HMODULE)*I, symbolName);
if (ptr) {
- SymbolsLock.writer_release();
return (void *) ptr;
}
}
- SymbolsLock.writer_release();
#if defined(__MINGW32__)
{
diff --git a/lib/System/Win32/Memory.inc b/lib/System/Win32/Memory.inc
index 5e5cf7a..7611ecd 100644
--- a/lib/System/Win32/Memory.inc
+++ b/lib/System/Win32/Memory.inc
@@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "Win32.h"
+#include "llvm/Support/DataTypes.h"
#include "llvm/System/Process.h"
namespace llvm {
@@ -23,13 +24,13 @@ using namespace sys;
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
-MemoryBlock Memory::AllocateRWX(unsigned NumBytes,
+MemoryBlock Memory::AllocateRWX(size_t NumBytes,
const MemoryBlock *NearBlock,
std::string *ErrMsg) {
if (NumBytes == 0) return MemoryBlock();
- static const long pageSize = Process::GetPageSize();
- unsigned NumPages = (NumBytes+pageSize-1)/pageSize;
+ static const size_t pageSize = Process::GetPageSize();
+ size_t NumPages = (NumBytes+pageSize-1)/pageSize;
//FIXME: support NearBlock if ever needed on Win64.
diff --git a/lib/System/Win32/Path.inc b/lib/System/Win32/Path.inc
index 683c94b..46b965f 100644
--- a/lib/System/Win32/Path.inc
+++ b/lib/System/Win32/Path.inc
@@ -125,9 +125,30 @@ Path::isValid() const {
return true;
}
+void Path::makeAbsolute() {
+ TCHAR FullPath[MAX_PATH + 1] = {0};
+ LPTSTR FilePart = NULL;
+
+ DWORD RetLength = ::GetFullPathNameA(path.c_str(),
+ sizeof(FullPath)/sizeof(FullPath[0]),
+ FullPath, &FilePart);
+
+ if (0 == RetLength) {
+ // FIXME: Report the error GetLastError()
+ assert(0 && "Unable to make absolute path!");
+ } else if (RetLength > MAX_PATH) {
+ // FIXME: Report too small buffer (needed RetLength bytes).
+ assert(0 && "Unable to make absolute path!");
+ } else {
+ path = FullPath;
+ }
+}
+
bool
Path::isAbsolute(const char *NameStart, unsigned NameLen) {
assert(NameStart);
+ // FIXME: This does not handle correctly an absolute path starting from
+ // a drive letter or in UNC format.
switch (NameLen) {
case 0:
return false;
@@ -135,12 +156,15 @@ Path::isAbsolute(const char *NameStart, unsigned NameLen) {
case 2:
return NameStart[0] == '/';
default:
- return NameStart[0] == '/' || (NameStart[1] == ':' && NameStart[2] == '/');
+ return (NameStart[0] == '/' || (NameStart[1] == ':' && NameStart[2] == '/')) ||
+ (NameStart[0] == '\\' || (NameStart[1] == ':' && NameStart[2] == '\\'));
}
}
bool
Path::isAbsolute() const {
+ // FIXME: This does not handle correctly an absolute path starting from
+ // a drive letter or in UNC format.
switch (path.length()) {
case 0:
return false;
@@ -784,8 +808,8 @@ CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg) {
// Can't use CopyFile macro defined in Windows.h because it would mess up the
// above line. We use the expansion it would have in a non-UNICODE build.
if (!::CopyFileA(Src.c_str(), Dest.c_str(), false))
- return MakeErrMsg(ErrMsg, "Can't copy '" + Src.toString() +
- "' to '" + Dest.toString() + "': ");
+ return MakeErrMsg(ErrMsg, "Can't copy '" + Src.str() +
+ "' to '" + Dest.str() + "': ");
return false;
}
diff --git a/lib/System/Win32/Process.inc b/lib/System/Win32/Process.inc
index cfbe33c..feb0806 100644
--- a/lib/System/Win32/Process.inc
+++ b/lib/System/Win32/Process.inc
@@ -120,15 +120,19 @@ void Process::PreventCoreFiles() {
}
bool Process::StandardInIsUserInput() {
- return GetFileType((HANDLE)_get_osfhandle(0)) == FILE_TYPE_CHAR;
+ return FileDescriptorIsDisplayed(0);
}
bool Process::StandardOutIsDisplayed() {
- return GetFileType((HANDLE)_get_osfhandle(1)) == FILE_TYPE_CHAR;
+ return FileDescriptorIsDisplayed(1);
}
bool Process::StandardErrIsDisplayed() {
- return GetFileType((HANDLE)_get_osfhandle(2)) == FILE_TYPE_CHAR;
+ return FileDescriptorIsDisplayed(2);
+}
+
+bool Process::FileDescriptorIsDisplayed(int fd) {
+ return GetFileType((HANDLE)_get_osfhandle(fd)) == FILE_TYPE_CHAR;
}
unsigned Process::StandardOutColumns() {
diff --git a/lib/System/Win32/Program.inc b/lib/System/Win32/Program.inc
index 49086b8..a69826f 100644
--- a/lib/System/Win32/Program.inc
+++ b/lib/System/Win32/Program.inc
@@ -22,9 +22,32 @@
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
+namespace {
+ struct Win32ProcessInfo {
+ HANDLE hProcess;
+ DWORD dwProcessId;
+ };
+}
+
namespace llvm {
using namespace sys;
+Program::Program() : Data_(0) {}
+
+Program::~Program() {
+ if (Data_) {
+ Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
+ CloseHandle(wpi->hProcess);
+ delete wpi;
+ Data_ = 0;
+ }
+}
+
+unsigned Program::GetPid() const {
+ Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
+ return wpi->dwProcessId;
+}
+
// This function just uses the PATH environment variable to find the program.
Path
Program::FindProgramByName(const std::string& progName) {
@@ -82,7 +105,7 @@ static HANDLE RedirectIO(const Path *path, int fd, std::string* ErrMsg) {
if (path->isEmpty())
fname = "NUL";
else
- fname = path->toString().c_str();
+ fname = path->c_str();
SECURITY_ATTRIBUTES sa;
sa.nLength = sizeof(sa);
@@ -109,29 +132,41 @@ static HANDLE RedirectIO(const Path *path, int fd, std::string* ErrMsg) {
DWORD cbJobObjectInfoLength);
#endif
-int
-Program::ExecuteAndWait(const Path& path,
- const char** args,
- const char** envp,
- const Path** redirects,
- unsigned secondsToWait,
- unsigned memoryLimit,
- std::string* ErrMsg) {
+/// ArgNeedsQuotes - Check whether argument needs to be quoted when calling
+/// CreateProcess.
+static bool ArgNeedsQuotes(const char *Str) {
+ return Str[0] == '\0' || strchr(Str, ' ') != 0;
+}
+
+bool
+Program::Execute(const Path& path,
+ const char** args,
+ const char** envp,
+ const Path** redirects,
+ unsigned memoryLimit,
+ std::string* ErrMsg) {
+ if (Data_) {
+ Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
+ CloseHandle(wpi->hProcess);
+ delete wpi;
+ Data_ = 0;
+ }
+
if (!path.canExecute()) {
if (ErrMsg)
*ErrMsg = "program not executable";
- return -1;
+ return false;
}
// Windows wants a command line, not an array of args, to pass to the new
// process. We have to concatenate them all, while quoting the args that
- // have embedded spaces.
+ // have embedded spaces (or are empty).
// First, determine the length of the command line.
unsigned len = 0;
for (unsigned i = 0; args[i]; i++) {
len += strlen(args[i]) + 1;
- if (strchr(args[i], ' '))
+ if (ArgNeedsQuotes(args[i]))
len += 2;
}
@@ -142,7 +177,7 @@ Program::ExecuteAndWait(const Path& path,
for (unsigned i = 0; args[i]; i++) {
const char *arg = args[i];
size_t len = strlen(arg);
- bool needsQuoting = strchr(arg, ' ') != 0;
+ bool needsQuoting = ArgNeedsQuotes(arg);
if (needsQuoting)
*p++ = '"';
memcpy(p, arg, len);
@@ -195,13 +230,13 @@ Program::ExecuteAndWait(const Path& path,
si.hStdInput = RedirectIO(redirects[0], 0, ErrMsg);
if (si.hStdInput == INVALID_HANDLE_VALUE) {
MakeErrMsg(ErrMsg, "can't redirect stdin");
- return -1;
+ return false;
}
si.hStdOutput = RedirectIO(redirects[1], 1, ErrMsg);
if (si.hStdOutput == INVALID_HANDLE_VALUE) {
CloseHandle(si.hStdInput);
MakeErrMsg(ErrMsg, "can't redirect stdout");
- return -1;
+ return false;
}
if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) {
// If stdout and stderr should go to the same place, redirect stderr
@@ -216,7 +251,7 @@ Program::ExecuteAndWait(const Path& path,
CloseHandle(si.hStdInput);
CloseHandle(si.hStdOutput);
MakeErrMsg(ErrMsg, "can't redirect stderr");
- return -1;
+ return false;
}
}
}
@@ -237,16 +272,18 @@ Program::ExecuteAndWait(const Path& path,
CloseHandle(si.hStdError);
// Now return an error if the process didn't get created.
- if (!rc)
- {
+ if (!rc) {
SetLastError(err);
MakeErrMsg(ErrMsg, std::string("Couldn't execute program '") +
- path.toString() + "'");
- return -1;
+ path.str() + "'");
+ return false;
}
+ Win32ProcessInfo* wpi = new Win32ProcessInfo;
+ wpi->hProcess = pi.hProcess;
+ wpi->dwProcessId = pi.dwProcessId;
+ Data_ = wpi;
// Make sure these get closed no matter what.
- AutoHandle hProcess(pi.hProcess);
AutoHandle hThread(pi.hThread);
// Assign the process to a job if a memory limit is defined.
@@ -270,39 +307,68 @@ Program::ExecuteAndWait(const Path& path,
MakeErrMsg(ErrMsg, std::string("Unable to set memory limit"));
TerminateProcess(pi.hProcess, 1);
WaitForSingleObject(pi.hProcess, INFINITE);
- return -1;
+ return false;
}
}
- // Wait for it to terminate.
+ return true;
+}
+
+int
+Program::Wait(unsigned secondsToWait,
+ std::string* ErrMsg) {
+ if (Data_ == 0) {
+ MakeErrMsg(ErrMsg, "Process not started!");
+ return -1;
+ }
+
+ Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
+ HANDLE hProcess = wpi->hProcess;
+
+ // Wait for the process to terminate.
DWORD millisecondsToWait = INFINITE;
if (secondsToWait > 0)
millisecondsToWait = secondsToWait * 1000;
- if (WaitForSingleObject(pi.hProcess, millisecondsToWait) == WAIT_TIMEOUT) {
- if (!TerminateProcess(pi.hProcess, 1)) {
- MakeErrMsg(ErrMsg, std::string("Failed to terminate timed-out program '")
- + path.toString() + "'");
+ if (WaitForSingleObject(hProcess, millisecondsToWait) == WAIT_TIMEOUT) {
+ if (!TerminateProcess(hProcess, 1)) {
+ MakeErrMsg(ErrMsg, "Failed to terminate timed-out program.");
return -1;
}
- WaitForSingleObject(pi.hProcess, INFINITE);
+ WaitForSingleObject(hProcess, INFINITE);
}
// Get its exit status.
DWORD status;
- rc = GetExitCodeProcess(pi.hProcess, &status);
- err = GetLastError();
+ BOOL rc = GetExitCodeProcess(hProcess, &status);
+ DWORD err = GetLastError();
if (!rc) {
SetLastError(err);
- MakeErrMsg(ErrMsg, std::string("Failed getting status for program '") +
- path.toString() + "'");
+ MakeErrMsg(ErrMsg, "Failed getting status for program.");
return -1;
}
return status;
}
+bool
+Program::Kill(std::string* ErrMsg) {
+ if (Data_ == 0) {
+ MakeErrMsg(ErrMsg, "Process not started!");
+ return true;
+ }
+
+ Win32ProcessInfo* wpi = reinterpret_cast<Win32ProcessInfo*>(Data_);
+ HANDLE hProcess = wpi->hProcess;
+ if (TerminateProcess(hProcess, 1) == 0) {
+ MakeErrMsg(ErrMsg, "The process couldn't be killed!");
+ return true;
+ }
+
+ return false;
+}
+
bool Program::ChangeStdinToBinary(){
int result = _setmode( _fileno(stdin), _O_BINARY );
return result == -1;
diff --git a/lib/System/Win32/Signals.inc b/lib/System/Win32/Signals.inc
index 3a8f77e..dba2218 100644
--- a/lib/System/Win32/Signals.inc
+++ b/lib/System/Win32/Signals.inc
@@ -43,6 +43,9 @@ static std::vector<llvm::sys::Path> *FilesToRemove = NULL;
static std::vector<std::pair<void(*)(void*), void*> > *CallBacksToRun = 0;
static bool RegisteredUnhandledExceptionFilter = false;
static bool CleanupExecuted = false;
+#ifdef _MSC_VER
+static bool ExitOnUnhandledExceptions = false;
+#endif
static PTOP_LEVEL_EXCEPTION_FILTER OldFilter = NULL;
// Windows creates a new thread to execute the console handler when an event
@@ -57,8 +60,38 @@ namespace llvm {
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
+#ifdef _MSC_VER
+/// CRTReportHook - Function called on a CRT debugging event.
+static int CRTReportHook(int ReportType, char *Message, int *Return) {
+ // Don't cause a DebugBreak() on return.
+ if (Return)
+ *Return = 0;
+
+ switch (ReportType) {
+ default:
+ case _CRT_ASSERT:
+ fprintf(stderr, "CRT assert: %s\n", Message);
+ // FIXME: Is there a way to just crash? Perhaps throw to the unhandled
+ // exception code? Perhaps SetErrorMode() handles this.
+ _exit(3);
+ break;
+ case _CRT_ERROR:
+ fprintf(stderr, "CRT error: %s\n", Message);
+ // FIXME: Is there a way to just crash? Perhaps throw to the unhandled
+ // exception code? Perhaps SetErrorMode() handles this.
+ _exit(3);
+ break;
+ case _CRT_WARN:
+ fprintf(stderr, "CRT warn: %s\n", Message);
+ break;
+ }
+
+ // Don't call _CrtDbgReport.
+ return TRUE;
+}
+#endif
-static void RegisterHandler() {
+static void RegisterHandler() {
if (RegisteredUnhandledExceptionFilter) {
EnterCriticalSection(&CriticalSection);
return;
@@ -76,6 +109,14 @@ static void RegisterHandler() {
OldFilter = SetUnhandledExceptionFilter(LLVMUnhandledExceptionFilter);
SetConsoleCtrlHandler(LLVMConsoleCtrlHandler, TRUE);
+ // Environment variable to disable any kind of crash dialog.
+#ifdef _MSC_VER
+ if (getenv("LLVM_DISABLE_CRT_DEBUG")) {
+ _CrtSetReportHook(CRTReportHook);
+ ExitOnUnhandledExceptions = true;
+ }
+#endif
+
// IMPORTANT NOTE: Caller must call LeaveCriticalSection(&CriticalSection) or
// else multi-threading problems will ensue.
}
@@ -136,10 +177,7 @@ static void Cleanup() {
if (FilesToRemove != NULL)
while (!FilesToRemove->empty()) {
- try {
- FilesToRemove->back().eraseFromDisk();
- } catch (...) {
- }
+ FilesToRemove->back().eraseFromDisk();
FilesToRemove->pop_back();
}
@@ -238,6 +276,11 @@ static LONG WINAPI LLVMUnhandledExceptionFilter(LPEXCEPTION_POINTERS ep) {
assert(0 && "Crashed in LLVMUnhandledExceptionFilter");
}
+#ifdef _MSC_VER
+ if (ExitOnUnhandledExceptions)
+ _exit(-3);
+#endif
+
// Allow dialog box to pop up allowing choice to start debugger.
if (OldFilter)
return (*OldFilter)(ep);
diff --git a/lib/System/Win32/TimeValue.inc b/lib/System/Win32/TimeValue.inc
index 0ca87d4..e37f111 100644
--- a/lib/System/Win32/TimeValue.inc
+++ b/lib/System/Win32/TimeValue.inc
@@ -30,7 +30,7 @@ TimeValue TimeValue::now() {
return t;
}
-std::string TimeValue::toString() const {
+std::string TimeValue::str() const {
#ifdef __MINGW32__
// This ban may be lifted by either:
// (i) a future MinGW version other than 1.0 inherents the __time64_t type, or
diff --git a/lib/Target/ARM/ARM.h b/lib/Target/ARM/ARM.h
index 08dc07c..487ce1d 100644
--- a/lib/Target/ARM/ARM.h
+++ b/lib/Target/ARM/ARM.h
@@ -15,6 +15,7 @@
#ifndef TARGET_ARM_H
#define TARGET_ARM_H
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
@@ -24,7 +25,8 @@ class ARMBaseTargetMachine;
class FunctionPass;
class MachineCodeEmitter;
class JITCodeEmitter;
-class raw_ostream;
+class ObjectCodeEmitter;
+class formatted_raw_ostream;
// Enums corresponding to ARM condition codes
namespace ARMCC {
@@ -50,7 +52,7 @@ namespace ARMCC {
inline static CondCodes getOppositeCondition(CondCodes CC){
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case EQ: return NE;
case NE: return EQ;
case HS: return LO;
@@ -71,7 +73,7 @@ namespace ARMCC {
inline static const char *ARMCondCodeToString(ARMCC::CondCodes CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case ARMCC::EQ: return "eq";
case ARMCC::NE: return "ne";
case ARMCC::HS: return "hs";
@@ -90,20 +92,23 @@ inline static const char *ARMCondCodeToString(ARMCC::CondCodes CC) {
}
}
-FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM);
-FunctionPass *createARMCodePrinterPass(raw_ostream &O,
- ARMBaseTargetMachine &TM,
- bool Verbose);
-FunctionPass *createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
- MachineCodeEmitter &MCE);
+FunctionPass *createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
FunctionPass *createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE);
+FunctionPass *createARMObjectCodeEmitterPass(ARMBaseTargetMachine &TM,
+ ObjectCodeEmitter &OCE);
FunctionPass *createARMLoadStoreOptimizationPass(bool PreAlloc = false);
FunctionPass *createARMConstantIslandPass();
+FunctionPass *createNEONPreAllocPass();
+FunctionPass *createThumb2ITBlockPass();
+FunctionPass *createThumb2SizeReductionPass();
+
+extern Target TheARMTarget, TheThumbTarget;
} // end namespace llvm;
diff --git a/lib/Target/ARM/ARM.td b/lib/Target/ARM/ARM.td
index 9001e50..8851fbb 100644
--- a/lib/Target/ARM/ARM.td
+++ b/lib/Target/ARM/ARM.td
@@ -89,27 +89,20 @@ def : ProcNoItin<"xscale", [ArchV5TE]>;
def : ProcNoItin<"iwmmxt", [ArchV5TE]>;
// V6 Processors.
-def : Processor<"arm1136j-s", V6Itineraries,
- [ArchV6]>;
-def : Processor<"arm1136jf-s", V6Itineraries,
- [ArchV6, FeatureVFP2]>;
-def : Processor<"arm1176jz-s", V6Itineraries,
- [ArchV6]>;
-def : Processor<"arm1176jzf-s", V6Itineraries,
- [ArchV6, FeatureVFP2]>;
-def : Processor<"mpcorenovfp", V6Itineraries,
- [ArchV6]>;
-def : Processor<"mpcore", V6Itineraries,
- [ArchV6, FeatureVFP2]>;
+def : ProcNoItin<"arm1136j-s", [ArchV6]>;
+def : ProcNoItin<"arm1136jf-s", [ArchV6, FeatureVFP2]>;
+def : ProcNoItin<"arm1176jz-s", [ArchV6]>;
+def : ProcNoItin<"arm1176jzf-s", [ArchV6, FeatureVFP2]>;
+def : ProcNoItin<"mpcorenovfp", [ArchV6]>;
+def : ProcNoItin<"mpcore", [ArchV6, FeatureVFP2]>;
// V6T2 Processors.
-def : Processor<"arm1156t2-s", V6Itineraries,
- [ArchV6T2, FeatureThumb2]>;
-def : Processor<"arm1156t2f-s", V6Itineraries,
- [ArchV6T2, FeatureThumb2, FeatureVFP2]>;
+def : ProcNoItin<"arm1156t2-s", [ArchV6T2, FeatureThumb2]>;
+def : ProcNoItin<"arm1156t2f-s", [ArchV6T2, FeatureThumb2, FeatureVFP2]>;
// V7 Processors.
-def : ProcNoItin<"cortex-a8", [ArchV7A, FeatureThumb2, FeatureNEON]>;
+def : Processor<"cortex-a8", CortexA8Itineraries,
+ [ArchV7A, FeatureThumb2, FeatureNEON]>;
def : ProcNoItin<"cortex-a9", [ArchV7A, FeatureThumb2, FeatureNEON]>;
//===----------------------------------------------------------------------===//
@@ -131,13 +124,13 @@ def ARMInstrInfo : InstrInfo {
let TSFlagsFields = ["AddrModeBits",
"SizeFlag",
"IndexModeBits",
- "isUnaryDataProc",
- "Form"];
+ "Form",
+ "isUnaryDataProc"];
let TSFlagsShifts = [0,
4,
7,
9,
- 10];
+ 15];
}
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/ARM/ARMAddressingModes.h b/lib/Target/ARM/ARMAddressingModes.h
index 15c9ec1..1839153 100644
--- a/lib/Target/ARM/ARMAddressingModes.h
+++ b/lib/Target/ARM/ARMAddressingModes.h
@@ -15,11 +15,12 @@
#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
-
+
/// ARM_AM - ARM Addressing Mode Stuff
namespace ARM_AM {
enum ShiftOpc {
@@ -30,14 +31,14 @@ namespace ARM_AM {
ror,
rrx
};
-
+
enum AddrOpc {
add = '+', sub = '-'
};
-
+
static inline const char *getShiftOpcStr(ShiftOpc Op) {
switch (Op) {
- default: assert(0 && "Unknown shift opc!");
+ default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return "asr";
case ARM_AM::lsl: return "lsl";
case ARM_AM::lsr: return "lsr";
@@ -45,7 +46,7 @@ namespace ARM_AM {
case ARM_AM::rrx: return "rrx";
}
}
-
+
static inline ShiftOpc getShiftOpcForNode(SDValue N) {
switch (N.getOpcode()) {
default: return ARM_AM::no_shift;
@@ -70,7 +71,7 @@ namespace ARM_AM {
static inline const char *getAMSubModeStr(AMSubMode Mode) {
switch (Mode) {
- default: assert(0 && "Unknown addressing sub-mode!");
+ default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::ia: return "ia";
case ARM_AM::ib: return "ib";
case ARM_AM::da: return "da";
@@ -80,7 +81,7 @@ namespace ARM_AM {
static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
switch (Mode) {
- default: assert(0 && "Unknown addressing sub-mode!");
+ default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::ia: return isLD ? "fd" : "ea";
case ARM_AM::ib: return isLD ? "ed" : "fa";
case ARM_AM::da: return isLD ? "fa" : "ed";
@@ -94,14 +95,14 @@ namespace ARM_AM {
assert(Amt < 32 && "Invalid rotate amount");
return (Val >> Amt) | (Val << ((32-Amt)&31));
}
-
+
/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
///
static inline unsigned rotl32(unsigned Val, unsigned Amt) {
assert(Amt < 32 && "Invalid rotate amount");
return (Val << Amt) | (Val >> ((32-Amt)&31));
}
-
+
//===--------------------------------------------------------------------===//
// Addressing Mode #1: shift_operand with registers
//===--------------------------------------------------------------------===//
@@ -136,7 +137,7 @@ namespace ARM_AM {
static inline unsigned getSOImmValRot(unsigned Imm) {
return (Imm >> 8) * 2;
}
-
+
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
/// computing the rotate amount to use. If this immediate value cannot be
/// handled with a single shifter-op, determine a good rotate amount that will
@@ -145,14 +146,14 @@ namespace ARM_AM {
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
// of zero.
if ((Imm & ~255U) == 0) return 0;
-
+
// Use CTZ to compute the rotate amount.
unsigned TZ = CountTrailingZeros_32(Imm);
-
+
// Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
// not 9.
unsigned RotAmt = TZ & ~1;
-
+
// If we can handle this spread, return it.
if ((rotr32(Imm, RotAmt) & ~255U) == 0)
return (32-RotAmt)&31; // HW rotates right, not left.
@@ -165,16 +166,16 @@ namespace ARM_AM {
// Restart the search for a high-order bit after the initial seconds of
// ones.
unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
-
+
// Rotate amount must be even.
unsigned RotAmt2 = TZ2 & ~1;
-
+
// If this fits, use it.
if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
return (32-RotAmt2)&31; // HW rotates right, not left.
}
}
-
+
// Otherwise, we have no way to cover this span of bits with a single
// shifter_op immediate. Return a chunk of bits that will be useful to
// handle.
@@ -188,17 +189,17 @@ namespace ARM_AM {
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
// of zero.
if ((Arg & ~255U) == 0) return Arg;
-
+
unsigned RotAmt = getSOImmValRotate(Arg);
// If this cannot be handled with a single shifter_op, bail out.
if (rotr32(~255U, RotAmt) & Arg)
return -1;
-
+
// Encode this correctly.
return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
}
-
+
/// isSOImmTwoPartVal - Return true if the specified value can be obtained by
/// or'ing together two SOImmVal's.
static inline bool isSOImmTwoPartVal(unsigned V) {
@@ -206,12 +207,12 @@ namespace ARM_AM {
V = rotr32(~255U, getSOImmValRotate(V)) & V;
if (V == 0)
return false;
-
+
// If this can be handled with two shifter_op's, accept.
V = rotr32(~255U, getSOImmValRotate(V)) & V;
return V == 0;
}
-
+
/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
/// return the first chunk of it.
static inline unsigned getSOImmTwoPartFirst(unsigned V) {
@@ -221,14 +222,14 @@ namespace ARM_AM {
/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
/// return the second chunk of it.
static inline unsigned getSOImmTwoPartSecond(unsigned V) {
- // Mask out the first hunk.
+ // Mask out the first hunk.
V = rotr32(~255U, getSOImmValRotate(V)) & V;
-
+
// Take what's left.
assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
return V;
}
-
+
/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
/// by a left shift. Returns the shift amount to use.
static inline unsigned getThumbImmValShift(unsigned Imm) {
@@ -243,7 +244,7 @@ namespace ARM_AM {
/// isThumbImmShiftedVal - Return true if the specified value can be obtained
/// by left shifting a 8-bit immediate.
static inline bool isThumbImmShiftedVal(unsigned V) {
- // If this can be handled with
+ // If this can be handled with
V = (~255U << getThumbImmValShift(V)) & V;
return V == 0;
}
@@ -259,10 +260,10 @@ namespace ARM_AM {
return CountTrailingZeros_32(Imm);
}
- /// isThumbImm16ShiftedVal - Return true if the specified value can be
+ /// isThumbImm16ShiftedVal - Return true if the specified value can be
/// obtained by left shifting a 16-bit immediate.
static inline bool isThumbImm16ShiftedVal(unsigned V) {
- // If this can be handled with
+ // If this can be handled with
V = (~65535U << getThumbImm16ValShift(V)) & V;
return V == 0;
}
@@ -273,28 +274,6 @@ namespace ARM_AM {
return V >> getThumbImmValShift(V);
}
- /// getT2SOImmValDecode - Given a 12-bit encoded Thumb-2 modified immediate,
- /// return the corresponding 32-bit immediate value.
- /// See ARM Reference Manual A6.3.2.
- static inline unsigned getT2SOImmValDecode(unsigned Imm) {
- unsigned Base = Imm & 0xff;
- switch ((Imm >> 8) & 0xf) {
- case 0:
- return Base;
- case 1:
- return Base | (Base << 16);
- case 2:
- return (Base << 8) | (Base << 24);
- case 3:
- return Base | (Base << 8) | (Base << 16) | (Base << 24);
- default:
- break;
- }
-
- // shifted immediate
- unsigned RotAmount = ((Imm >> 7) & 0x1f) - 8;
- return (Base | 0x80) << (24 - RotAmount);
- }
/// getT2SOImmValSplat - Return the 12-bit encoded representation
/// if the specified value can be obtained by splatting the low 8 bits
@@ -305,12 +284,12 @@ namespace ARM_AM {
/// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
/// Return -1 if none of the above apply.
/// See ARM Reference Manual A6.3.2.
- static inline int getT2SOImmValSplat(unsigned V) {
+ static inline int getT2SOImmValSplatVal(unsigned V) {
unsigned u, Vs, Imm;
// control = 0
- if ((V & 0xffffff00) == 0)
+ if ((V & 0xffffff00) == 0)
return V;
-
+
// If the value is zeroes in the first byte, just shift those off
Vs = ((V & 0xff) == 0) ? V >> 8 : V;
// Any passing value only has 8 bits of payload, splatted across the word
@@ -329,11 +308,11 @@ namespace ARM_AM {
return -1;
}
- /// getT2SOImmValRotate - Return the 12-bit encoded representation if the
+ /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
/// specified value is a rotated 8-bit value. Return -1 if no rotation
/// encoding is possible.
/// See ARM Reference Manual A6.3.2.
- static inline int getT2SOImmValRotate (unsigned V) {
+ static inline int getT2SOImmValRotateVal(unsigned V) {
unsigned RotAmt = CountLeadingZeros_32(V);
if (RotAmt >= 24)
return -1;
@@ -346,23 +325,23 @@ namespace ARM_AM {
}
/// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
- /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
+ /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
/// encoding for it. If not, return -1.
/// See ARM Reference Manual A6.3.2.
static inline int getT2SOImmVal(unsigned Arg) {
// If 'Arg' is an 8-bit splat, then get the encoded value.
- int Splat = getT2SOImmValSplat(Arg);
+ int Splat = getT2SOImmValSplatVal(Arg);
if (Splat != -1)
return Splat;
-
+
// If 'Arg' can be handled with a single shifter_op return the value.
- int Rot = getT2SOImmValRotate(Arg);
+ int Rot = getT2SOImmValRotateVal(Arg);
if (Rot != -1)
return Rot;
return -1;
}
-
+
//===--------------------------------------------------------------------===//
// Addressing Mode #2
@@ -380,7 +359,7 @@ namespace ARM_AM {
// If this addressing mode is a frame index (before prolog/epilog insertion
// and code rewriting), this operand will have the form: FI#, reg0, <offs>
// with no shift amount for the frame offset.
- //
+ //
static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
assert(Imm12 < (1 << 12) && "Imm too large!");
bool isSub = Opc == sub;
@@ -395,8 +374,8 @@ namespace ARM_AM {
static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
return (ShiftOpc)(AM2Opc >> 13);
}
-
-
+
+
//===--------------------------------------------------------------------===//
// Addressing Mode #3
//===--------------------------------------------------------------------===//
@@ -409,7 +388,7 @@ namespace ARM_AM {
// The first operand is always a Reg. The second operand is a reg if in
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
// in bit 8, the immediate in bits 0-7.
-
+
/// getAM3Opc - This function encodes the addrmode3 opc field.
static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
bool isSub = Opc == sub;
@@ -421,7 +400,7 @@ namespace ARM_AM {
static inline AddrOpc getAM3Op(unsigned AM3Opc) {
return ((AM3Opc >> 8) & 1) ? sub : add;
}
-
+
//===--------------------------------------------------------------------===//
// Addressing Mode #4
//===--------------------------------------------------------------------===//
@@ -469,7 +448,7 @@ namespace ARM_AM {
//
// IA - Increment after
// DB - Decrement before
-
+
/// getAM5Opc - This function encodes the addrmode5 opc field.
static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
bool isSub = Opc == sub;
diff --git a/lib/Target/ARM/ARMBaseInstrInfo.cpp b/lib/Target/ARM/ARMBaseInstrInfo.cpp
new file mode 100644
index 0000000..ecdf5a0
--- /dev/null
+++ b/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -0,0 +1,1060 @@
+//===- ARMBaseInstrInfo.cpp - ARM Instruction Information -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBaseInstrInfo.h"
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMGenInstrInfo.inc"
+#include "ARMMachineFunctionInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace llvm;
+
+static cl::opt<bool>
+EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+ cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+ARMBaseInstrInfo::ARMBaseInstrInfo()
+ : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)) {
+}
+
+MachineInstr *
+ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ // FIXME: Thumb2 support.
+
+ if (!EnableARM3Addr)
+ return NULL;
+
+ MachineInstr *MI = MBBI;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ unsigned TSFlags = MI->getDesc().TSFlags;
+ bool isPre = false;
+ switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+ default: return NULL;
+ case ARMII::IndexModePre:
+ isPre = true;
+ break;
+ case ARMII::IndexModePost:
+ break;
+ }
+
+ // Try splitting an indexed load/store to an un-indexed one plus an add/sub
+ // operation.
+ unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
+ if (MemOpc == 0)
+ return NULL;
+
+ MachineInstr *UpdateMI = NULL;
+ MachineInstr *MemMI = NULL;
+ unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+ const TargetInstrDesc &TID = MI->getDesc();
+ unsigned NumOps = TID.getNumOperands();
+ bool isLoad = !TID.mayStore();
+ const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
+ const MachineOperand &Base = MI->getOperand(2);
+ const MachineOperand &Offset = MI->getOperand(NumOps-3);
+ unsigned WBReg = WB.getReg();
+ unsigned BaseReg = Base.getReg();
+ unsigned OffReg = Offset.getReg();
+ unsigned OffImm = MI->getOperand(NumOps-2).getImm();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
+ switch (AddrMode) {
+ default:
+ assert(false && "Unknown indexed op!");
+ return NULL;
+ case ARMII::AddrMode2: {
+ bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+ if (OffReg == 0) {
+ if (ARM_AM::getSOImmVal(Amt) == -1)
+ // Can't encode it in a so_imm operand. This transformation will
+ // add more than 1 instruction. Abandon!
+ return NULL;
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else if (Amt != 0) {
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+ unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
+ .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ case ARMII::AddrMode3 : {
+ bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+ if (OffReg == 0)
+ // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ }
+
+ std::vector<MachineInstr*> NewMIs;
+ if (isPre) {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+ NewMIs.push_back(MemMI);
+ NewMIs.push_back(UpdateMI);
+ } else {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+ if (WB.isDead())
+ UpdateMI->getOperand(0).setIsDead();
+ NewMIs.push_back(UpdateMI);
+ NewMIs.push_back(MemMI);
+ }
+
+ // Transfer LiveVariables states, kill / dead info.
+ if (LV) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+
+ LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
+ if (MO.isDef()) {
+ MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+ if (MO.isDead())
+ LV->addVirtualRegisterDead(Reg, NewMI);
+ }
+ if (MO.isUse() && MO.isKill()) {
+ for (unsigned j = 0; j < 2; ++j) {
+ // Look at the two new MI's in reverse order.
+ MachineInstr *NewMI = NewMIs[j];
+ if (!NewMI->readsRegister(Reg))
+ continue;
+ LV->addVirtualRegisterKilled(Reg, NewMI);
+ if (VI.removeKill(MI))
+ VI.Kills.push_back(NewMI);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ MFI->insert(MBBI, NewMIs[1]);
+ MFI->insert(MBBI, NewMIs[0]);
+ return NewMIs[0];
+}
+
+// Branch analysis.
+bool
+ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (isUncondBranchOpcode(LastOpc)) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (isCondBranchOpcode(LastOpc)) {
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(LastInst->getOperand(1));
+ Cond.push_back(LastInst->getOperand(2));
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with a B and a Bcc, handle it.
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+ if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(1));
+ Cond.push_back(SecondLastInst->getOperand(2));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // ...likewise if it ends with a branch table followed by an unconditional
+ // branch. The branch folder can create these, and we must get rid of them for
+ // correctness of Thumb constant islands.
+ if (isJumpTableBranchOpcode(SecondLastOpc) &&
+ isUncondBranchOpcode(LastOpc)) {
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+
+unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ // FIXME this should probably have a DebugLoc argument
+ DebugLoc dl = DebugLoc::getUnknownLoc();
+
+ ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
+ int BOpc = !AFI->isThumbFunction()
+ ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
+ int BccOpc = !AFI->isThumbFunction()
+ ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "ARM branch conditions have two components!");
+
+ if (FBB == 0) {
+ if (Cond.empty()) // Unconditional branch?
+ BuildMI(&MBB, dl, get(BOpc)).addMBB(TBB);
+ else
+ BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ BuildMI(&MBB, dl, get(BOpc)).addMBB(FBB);
+ return 2;
+}
+
+bool ARMBaseInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+ Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ unsigned Opc = MI->getOpcode();
+ if (isUncondBranchOpcode(Opc)) {
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
+ MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
+ MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
+ return true;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setImm(Pred[0].getImm());
+ MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
+ return true;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ if (Pred1.size() > 2 || Pred2.size() > 2)
+ return false;
+
+ ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
+ ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
+ if (CC1 == CC2)
+ return true;
+
+ switch (CC1) {
+ default:
+ return false;
+ case ARMCC::AL:
+ return true;
+ case ARMCC::HS:
+ return CC2 == ARMCC::HI;
+ case ARMCC::LS:
+ return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+ case ARMCC::GE:
+ return CC2 == ARMCC::GT;
+ case ARMCC::LE:
+ return CC2 == ARMCC::LT;
+ }
+}
+
+bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ // FIXME: This confuses implicit_def with optional CPSR def.
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
+ return false;
+
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == ARM::CPSR) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+
+/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI) DISABLE_INLINE;
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI) {
+ return JT[JTI].MBBs.size();
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ // Basic size info comes from the TSFlags field.
+ const TargetInstrDesc &TID = MI->getDesc();
+ unsigned TSFlags = TID.TSFlags;
+
+ unsigned Opc = MI->getOpcode();
+ switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
+ default: {
+ // If this machine instr is an inline asm, measure it.
+ if (MI->getOpcode() == ARM::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+ if (MI->isLabel())
+ return 0;
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown or unset size field for instr!");
+ case TargetInstrInfo::IMPLICIT_DEF:
+ case TargetInstrInfo::KILL:
+ case TargetInstrInfo::DBG_LABEL:
+ case TargetInstrInfo::EH_LABEL:
+ return 0;
+ }
+ break;
+ }
+ case ARMII::Size8Bytes: return 8; // ARM instruction x 2.
+ case ARMII::Size4Bytes: return 4; // ARM / Thumb2 instruction.
+ case ARMII::Size2Bytes: return 2; // Thumb1 instruction.
+ case ARMII::SizeSpecial: {
+ switch (Opc) {
+ case ARM::CONSTPOOL_ENTRY:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI->getOperand(2).getImm();
+ case ARM::Int_eh_sjlj_setjmp:
+ return 24;
+ case ARM::t2Int_eh_sjlj_setjmp:
+ return 20;
+ case ARM::BR_JTr:
+ case ARM::BR_JTm:
+ case ARM::BR_JTadd:
+ case ARM::tBR_JTr:
+ case ARM::t2BR_JT:
+ case ARM::t2TBB:
+ case ARM::t2TBH: {
+ // These are jumptable branches, i.e. a branch followed by an inlined
+ // jumptable. The size is 4 + 4 * number of entries. For TBB, each
+ // entry is one byte; TBH two byte each.
+ unsigned EntrySize = (Opc == ARM::t2TBB)
+ ? 1 : ((Opc == ARM::t2TBH) ? 2 : 4);
+ unsigned NumOps = TID.getNumOperands();
+ MachineOperand JTOP =
+ MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
+ unsigned JTI = JTOP.getIndex();
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ assert(JTI < JT.size());
+ // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
+ // 4 aligned. The assembler / linker may add 2 byte padding just before
+ // the JT entries. The size does not include this padding; the
+ // constant islands pass does separate bookkeeping for it.
+ // FIXME: If we know the size of the function is less than (1 << 16) *2
+ // bytes, we can use 16-bit entries instead. Then there won't be an
+ // alignment issue.
+ unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
+ unsigned NumEntries = getNumJTEntries(JT, JTI);
+ if (Opc == ARM::t2TBB && (NumEntries & 1))
+ // Make sure the instruction that follows TBB is 2-byte aligned.
+ // FIXME: Constant island pass should insert an "ALIGN" instruction
+ // instead.
+ ++NumEntries;
+ return NumEntries * EntrySize + InstSize;
+ }
+ default:
+ // Otherwise, pseudo-instruction sizes are zero.
+ return 0;
+ }
+ }
+ }
+ return 0; // Not reached
+}
+
+/// Return true if the instruction is a register to register move and
+/// leave the source and dest operands in the passed parameters.
+///
+bool
+ARMBaseInstrInfo::isMoveInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
+ SrcSubIdx = DstSubIdx = 0; // No sub-registers.
+
+ switch (MI.getOpcode()) {
+ default: break;
+ case ARM::FCPYS:
+ case ARM::FCPYD:
+ case ARM::VMOVD:
+ case ARM::VMOVQ: {
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ case ARM::MOVr:
+ case ARM::tMOVr:
+ case ARM::tMOVgpr2tgpr:
+ case ARM::tMOVtgpr2gpr:
+ case ARM::tMOVgpr2gpr:
+ case ARM::t2MOVr: {
+ assert(MI.getDesc().getNumOperands() >= 2 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ "Invalid ARM MOV instruction");
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned
+ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::LDR:
+ case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::t2LDRi12:
+ case ARM::tRestore:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::FLDD:
+ case ARM::FLDS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned
+ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::STR:
+ case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::t2STRi12:
+ case ARM::tSpill:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::FSTD:
+ case ARM::FSTS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+bool
+ARMBaseInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const {
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ if (DestRC != SrcRC) {
+ // Allow DPR / DPR_VFP2 / DPR_8 cross-class copies
+ // Allow QPR / QPR_VFP2 cross-class copies
+ if (DestRC == ARM::DPRRegisterClass) {
+ if (SrcRC == ARM::DPR_VFP2RegisterClass ||
+ SrcRC == ARM::DPR_8RegisterClass) {
+ } else
+ return false;
+ } else if (DestRC == ARM::DPR_VFP2RegisterClass) {
+ if (SrcRC == ARM::DPRRegisterClass ||
+ SrcRC == ARM::DPR_8RegisterClass) {
+ } else
+ return false;
+ } else if (DestRC == ARM::DPR_8RegisterClass) {
+ if (SrcRC == ARM::DPRRegisterClass ||
+ SrcRC == ARM::DPR_VFP2RegisterClass) {
+ } else
+ return false;
+ } else if ((DestRC == ARM::QPRRegisterClass &&
+ SrcRC == ARM::QPR_VFP2RegisterClass) ||
+ (DestRC == ARM::QPR_VFP2RegisterClass &&
+ SrcRC == ARM::QPRRegisterClass)) {
+ } else
+ return false;
+ }
+
+ if (DestRC == ARM::GPRRegisterClass) {
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr),
+ DestReg).addReg(SrcReg)));
+ } else if (DestRC == ARM::SPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYS), DestReg)
+ .addReg(SrcReg));
+ } else if ((DestRC == ARM::DPRRegisterClass) ||
+ (DestRC == ARM::DPR_VFP2RegisterClass) ||
+ (DestRC == ARM::DPR_8RegisterClass)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYD), DestReg)
+ .addReg(SrcReg));
+ } else if (DestRC == ARM::QPRRegisterClass ||
+ DestRC == ARM::QPR_VFP2RegisterClass) {
+ BuildMI(MBB, I, DL, get(ARM::VMOVQ), DestReg).addReg(SrcReg);
+ } else {
+ return false;
+ }
+
+ return true;
+}
+
+void ARMBaseInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC) const {
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
+ MachineMemOperand::MOStore, 0,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+
+ if (RC == ARM::GPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STR))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO));
+ } else if (RC == ARM::DPRRegisterClass ||
+ RC == ARM::DPR_VFP2RegisterClass ||
+ RC == ARM::DPR_8RegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTD))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (RC == ARM::SPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTS))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else {
+ assert((RC == ARM::QPRRegisterClass ||
+ RC == ARM::QPR_VFP2RegisterClass) && "Unknown regclass!");
+ // FIXME: Neon instructions should support predicates
+ BuildMI(MBB, I, DL, get(ARM::VSTRQ)).addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ }
+}
+
+void ARMBaseInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC) const {
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
+ MachineMemOperand::MOLoad, 0,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+
+ if (RC == ARM::GPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDR), DestReg)
+ .addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO));
+ } else if (RC == ARM::DPRRegisterClass ||
+ RC == ARM::DPR_VFP2RegisterClass ||
+ RC == ARM::DPR_8RegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDD), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (RC == ARM::SPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDS), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else {
+ assert((RC == ARM::QPRRegisterClass ||
+ RC == ARM::QPR_VFP2RegisterClass) && "Unknown regclass!");
+ // FIXME: Neon instructions should support predicates
+ BuildMI(MBB, I, DL, get(ARM::VLDRQ), DestReg).addFrameIndex(FI).addImm(0).addMemOperand(MMO);
+ }
+}
+
+MachineInstr *ARMBaseInstrInfo::
+foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops, int FI) const {
+ if (Ops.size() != 1) return NULL;
+
+ unsigned OpNum = Ops[0];
+ unsigned Opc = MI->getOpcode();
+ MachineInstr *NewMI = NULL;
+ if (Opc == ARM::MOVr || Opc == ARM::t2MOVr) {
+ // If it is updating CPSR, then it cannot be folded.
+ if (MI->getOperand(4).getReg() == ARM::CPSR && !MI->getOperand(4).isDead())
+ return NULL;
+ unsigned Pred = MI->getOperand(2).getImm();
+ unsigned PredReg = MI->getOperand(3).getReg();
+ if (OpNum == 0) { // move -> store
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ if (Opc == ARM::MOVr)
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::STR))
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
+ else // ARM::t2MOVr
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2STRi12))
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
+ } else { // move -> load
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ if (Opc == ARM::MOVr)
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::LDR))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef))
+ .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
+ else // ARM::t2MOVr
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2LDRi12))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
+ }
+ } else if (Opc == ARM::tMOVgpr2gpr ||
+ Opc == ARM::tMOVtgpr2gpr ||
+ Opc == ARM::tMOVgpr2tgpr) {
+ if (OpNum == 0) { // move -> store
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2STRi12))
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(ARMCC::AL).addReg(0);
+ } else { // move -> load
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::t2LDRi12))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(ARMCC::AL).addReg(0);
+ }
+ } else if (Opc == ARM::FCPYS) {
+ unsigned Pred = MI->getOperand(2).getImm();
+ unsigned PredReg = MI->getOperand(3).getReg();
+ if (OpNum == 0) { // move -> store
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTS))
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addFrameIndex(FI)
+ .addImm(0).addImm(Pred).addReg(PredReg);
+ } else { // move -> load
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDS))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
+ }
+ }
+ else if (Opc == ARM::FCPYD) {
+ unsigned Pred = MI->getOperand(2).getImm();
+ unsigned PredReg = MI->getOperand(3).getReg();
+ if (OpNum == 0) { // move -> store
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTD))
+ .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
+ } else { // move -> load
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDD))
+ .addReg(DstReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef))
+ .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
+ }
+ }
+
+ return NewMI;
+}
+
+MachineInstr*
+ARMBaseInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const {
+ // FIXME
+ return 0;
+}
+
+bool
+ARMBaseInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ if (Ops.size() != 1) return false;
+
+ unsigned Opc = MI->getOpcode();
+ if (Opc == ARM::MOVr || Opc == ARM::t2MOVr) {
+ // If it is updating CPSR, then it cannot be folded.
+ return MI->getOperand(4).getReg() != ARM::CPSR ||
+ MI->getOperand(4).isDead();
+ } else if (Opc == ARM::tMOVgpr2gpr ||
+ Opc == ARM::tMOVtgpr2gpr ||
+ Opc == ARM::tMOVgpr2tgpr) {
+ return true;
+ } else if (Opc == ARM::FCPYS || Opc == ARM::FCPYD) {
+ return true;
+ } else if (Opc == ARM::VMOVD || Opc == ARM::VMOVQ) {
+ return false; // FIXME
+ }
+
+ return false;
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes
+llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx == -1) {
+ PredReg = 0;
+ return ARMCC::AL;
+ }
+
+ PredReg = MI->getOperand(PIdx+1).getReg();
+ return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
+}
+
+
+int llvm::getMatchingCondBranchOpcode(int Opc) {
+ if (Opc == ARM::B)
+ return ARM::Bcc;
+ else if (Opc == ARM::tB)
+ return ARM::tBcc;
+ else if (Opc == ARM::t2B)
+ return ARM::t2Bcc;
+
+ llvm_unreachable("Unknown unconditional branch opcode!");
+ return 0;
+}
+
+
+void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII) {
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ while (NumBytes) {
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
+ unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
+ assert(ThisVal && "Didn't extract field correctly");
+
+ // We will handle these bits from offset, clear them.
+ NumBytes &= ~ThisVal;
+
+ assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
+
+ // Build the new ADD / SUB.
+ unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
+ BaseReg = DestReg;
+ }
+}
+
+bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const TargetInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrMode2.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrMode2;
+
+ if (Opcode == ARM::ADDri) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::MOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.RemoveOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ } else if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::SUBri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getSOImmVal(Offset) != -1) {
+ // Replace the FrameIndex with sp / fp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, pull as much of the immedidate into this ADDri/SUBri
+ // as possible.
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ // Get the properly encoded SOImmVal field.
+ assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+ unsigned ImmIdx = 0;
+ int InstrOffs = 0;
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ switch (AddrMode) {
+ case ARMII::AddrMode2: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode3: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ break;
+ }
+ case ARMII::AddrMode4:
+ // Can't fold any offset even if it's zero.
+ return false;
+ case ARMII::AddrMode5: {
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ break;
+ }
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ break;
+ }
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+
+ // Attempt to fold address comp. if opcode has offset bits
+ if (NumBits > 0) {
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ if (isSub)
+ ImmedOffset |= 1 << NumBits;
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub)
+ ImmedOffset |= 1 << NumBits;
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
diff --git a/lib/Target/ARM/ARMBaseInstrInfo.h b/lib/Target/ARM/ARMBaseInstrInfo.h
new file mode 100644
index 0000000..a13155b
--- /dev/null
+++ b/lib/Target/ARM/ARMBaseInstrInfo.h
@@ -0,0 +1,333 @@
+//===- ARMBaseInstrInfo.h - ARM Base Instruction Information -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMBASEINSTRUCTIONINFO_H
+#define ARMBASEINSTRUCTIONINFO_H
+
+#include "ARM.h"
+#include "ARMRegisterInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+namespace llvm {
+
+/// ARMII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace ARMII {
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction Flags.
+
+ //===------------------------------------------------------------------===//
+ // This four-bit field describes the addressing mode used.
+
+ AddrModeMask = 0xf,
+ AddrModeNone = 0,
+ AddrMode1 = 1,
+ AddrMode2 = 2,
+ AddrMode3 = 3,
+ AddrMode4 = 4,
+ AddrMode5 = 5,
+ AddrMode6 = 6,
+ AddrModeT1_1 = 7,
+ AddrModeT1_2 = 8,
+ AddrModeT1_4 = 9,
+ AddrModeT1_s = 10, // i8 * 4 for pc and sp relative data
+ AddrModeT2_i12 = 11,
+ AddrModeT2_i8 = 12,
+ AddrModeT2_so = 13,
+ AddrModeT2_pc = 14, // +/- i12 for pc relative data
+ AddrModeT2_i8s4 = 15, // i8 * 4
+
+ // Size* - Flags to keep track of the size of an instruction.
+ SizeShift = 4,
+ SizeMask = 7 << SizeShift,
+ SizeSpecial = 1, // 0 byte pseudo or special case.
+ Size8Bytes = 2,
+ Size4Bytes = 3,
+ Size2Bytes = 4,
+
+ // IndexMode - Unindex, pre-indexed, or post-indexed. Only valid for load
+ // and store ops
+ IndexModeShift = 7,
+ IndexModeMask = 3 << IndexModeShift,
+ IndexModePre = 1,
+ IndexModePost = 2,
+
+ //===------------------------------------------------------------------===//
+ // Instruction encoding formats.
+ //
+ FormShift = 9,
+ FormMask = 0x3f << FormShift,
+
+ // Pseudo instructions
+ Pseudo = 0 << FormShift,
+
+ // Multiply instructions
+ MulFrm = 1 << FormShift,
+
+ // Branch instructions
+ BrFrm = 2 << FormShift,
+ BrMiscFrm = 3 << FormShift,
+
+ // Data Processing instructions
+ DPFrm = 4 << FormShift,
+ DPSoRegFrm = 5 << FormShift,
+
+ // Load and Store
+ LdFrm = 6 << FormShift,
+ StFrm = 7 << FormShift,
+ LdMiscFrm = 8 << FormShift,
+ StMiscFrm = 9 << FormShift,
+ LdStMulFrm = 10 << FormShift,
+
+ // Miscellaneous arithmetic instructions
+ ArithMiscFrm = 11 << FormShift,
+
+ // Extend instructions
+ ExtFrm = 12 << FormShift,
+
+ // VFP formats
+ VFPUnaryFrm = 13 << FormShift,
+ VFPBinaryFrm = 14 << FormShift,
+ VFPConv1Frm = 15 << FormShift,
+ VFPConv2Frm = 16 << FormShift,
+ VFPConv3Frm = 17 << FormShift,
+ VFPConv4Frm = 18 << FormShift,
+ VFPConv5Frm = 19 << FormShift,
+ VFPLdStFrm = 20 << FormShift,
+ VFPLdStMulFrm = 21 << FormShift,
+ VFPMiscFrm = 22 << FormShift,
+
+ // Thumb format
+ ThumbFrm = 23 << FormShift,
+
+ // NEON format
+ NEONFrm = 24 << FormShift,
+ NEONGetLnFrm = 25 << FormShift,
+ NEONSetLnFrm = 26 << FormShift,
+ NEONDupFrm = 27 << FormShift,
+
+ //===------------------------------------------------------------------===//
+ // Misc flags.
+
+ // UnaryDP - Indicates this is a unary data processing instruction, i.e.
+ // it doesn't have a Rn operand.
+ UnaryDP = 1 << 15,
+
+ // Xform16Bit - Indicates this Thumb2 instruction may be transformed into
+ // a 16-bit Thumb instruction if certain conditions are met.
+ Xform16Bit = 1 << 16,
+
+ //===------------------------------------------------------------------===//
+ // Field shifts - such shifts are used to set field while generating
+ // machine instructions.
+ M_BitShift = 5,
+ ShiftImmShift = 5,
+ ShiftShift = 7,
+ N_BitShift = 7,
+ ImmHiShift = 8,
+ SoRotImmShift = 8,
+ RegRsShift = 8,
+ ExtRotImmShift = 10,
+ RegRdLoShift = 12,
+ RegRdShift = 12,
+ RegRdHiShift = 16,
+ RegRnShift = 16,
+ S_BitShift = 20,
+ W_BitShift = 21,
+ AM3_I_BitShift = 22,
+ D_BitShift = 22,
+ U_BitShift = 23,
+ P_BitShift = 24,
+ I_BitShift = 25,
+ CondShift = 28
+ };
+}
+
+class ARMBaseInstrInfo : public TargetInstrInfoImpl {
+protected:
+ // Can be only subclassed.
+ explicit ARMBaseInstrInfo();
+public:
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ virtual unsigned getUnindexedOpcode(unsigned Opc) const =0;
+
+ // Return true if the block does not fall through.
+ virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const =0;
+
+ virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const;
+
+ virtual const ARMBaseRegisterInfo &getRegisterInfo() const =0;
+
+ // Branch analysis.
+ virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const;
+ virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
+ virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const;
+
+ virtual
+ bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
+
+ // Predication support.
+ bool isPredicated(const MachineInstr *MI) const {
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
+ }
+
+ ARMCC::CondCodes getPredicate(const MachineInstr *MI) const {
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 ? (ARMCC::CondCodes)MI->getOperand(PIdx).getImm()
+ : ARMCC::AL;
+ }
+
+ virtual
+ bool PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const;
+
+ virtual
+ bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const;
+
+ virtual bool DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const;
+
+ /// GetInstSize - Returns the size of the specified MachineInstr.
+ ///
+ virtual unsigned GetInstSizeInBytes(const MachineInstr* MI) const;
+
+ /// Return true if the instruction is a register to register move and return
+ /// the source and dest operands and their sub-register indices by reference.
+ virtual bool isMoveInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
+
+ virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const;
+ virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const;
+
+ virtual bool copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const;
+
+ virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual bool canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const;
+
+ virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const;
+
+ virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr* MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr* LoadMI) const;
+
+};
+
+static inline
+const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
+ return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
+}
+
+static inline
+const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
+ return MIB.addReg(0);
+}
+
+static inline
+const MachineInstrBuilder &AddDefaultT1CC(const MachineInstrBuilder &MIB,
+ bool isDead = false) {
+ return MIB.addReg(ARM::CPSR, getDefRegState(true) | getDeadRegState(isDead));
+}
+
+static inline
+const MachineInstrBuilder &AddNoT1CC(const MachineInstrBuilder &MIB) {
+ return MIB.addReg(0);
+}
+
+static inline
+bool isUncondBranchOpcode(int Opc) {
+ return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B;
+}
+
+static inline
+bool isCondBranchOpcode(int Opc) {
+ return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc;
+}
+
+static inline
+bool isJumpTableBranchOpcode(int Opc) {
+ return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm || Opc == ARM::BR_JTadd ||
+ Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT;
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes getInstrPredicate(const MachineInstr *MI, unsigned &PredReg);
+
+int getMatchingCondBranchOpcode(int Opc);
+
+/// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of
+/// instructions to materializea destreg = basereg + immediate in ARM / Thumb2
+/// code.
+void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII);
+
+void emitT2RegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII);
+
+
+/// rewriteARMFrameIndex / rewriteT2FrameIndex -
+/// Rewrite MI to access 'Offset' bytes from the FP. Return false if the
+/// offset could not be handled directly in MI, and return the left-over
+/// portion by reference.
+bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII);
+
+bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII);
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/ARM/ARMBaseRegisterInfo.cpp b/lib/Target/ARM/ARMBaseRegisterInfo.cpp
new file mode 100644
index 0000000..42ef183
--- /dev/null
+++ b/lib/Target/ARM/ARMBaseRegisterInfo.cpp
@@ -0,0 +1,1360 @@
+//===- ARMBaseRegisterInfo.cpp - ARM Register Information -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the base ARM implementation of TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMInstrInfo.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLocation.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace llvm;
+
+unsigned ARMBaseRegisterInfo::getRegisterNumbering(unsigned RegEnum,
+ bool *isSPVFP) {
+ if (isSPVFP)
+ *isSPVFP = false;
+
+ using namespace ARM;
+ switch (RegEnum) {
+ default:
+ llvm_unreachable("Unknown ARM register!");
+ case R0: case D0: case Q0: return 0;
+ case R1: case D1: case Q1: return 1;
+ case R2: case D2: case Q2: return 2;
+ case R3: case D3: case Q3: return 3;
+ case R4: case D4: case Q4: return 4;
+ case R5: case D5: case Q5: return 5;
+ case R6: case D6: case Q6: return 6;
+ case R7: case D7: case Q7: return 7;
+ case R8: case D8: case Q8: return 8;
+ case R9: case D9: case Q9: return 9;
+ case R10: case D10: case Q10: return 10;
+ case R11: case D11: case Q11: return 11;
+ case R12: case D12: case Q12: return 12;
+ case SP: case D13: case Q13: return 13;
+ case LR: case D14: case Q14: return 14;
+ case PC: case D15: case Q15: return 15;
+
+ case D16: return 16;
+ case D17: return 17;
+ case D18: return 18;
+ case D19: return 19;
+ case D20: return 20;
+ case D21: return 21;
+ case D22: return 22;
+ case D23: return 23;
+ case D24: return 24;
+ case D25: return 25;
+ case D26: return 27;
+ case D27: return 27;
+ case D28: return 28;
+ case D29: return 29;
+ case D30: return 30;
+ case D31: return 31;
+
+ case S0: case S1: case S2: case S3:
+ case S4: case S5: case S6: case S7:
+ case S8: case S9: case S10: case S11:
+ case S12: case S13: case S14: case S15:
+ case S16: case S17: case S18: case S19:
+ case S20: case S21: case S22: case S23:
+ case S24: case S25: case S26: case S27:
+ case S28: case S29: case S30: case S31: {
+ if (isSPVFP)
+ *isSPVFP = true;
+ switch (RegEnum) {
+ default: return 0; // Avoid compile time warning.
+ case S0: return 0;
+ case S1: return 1;
+ case S2: return 2;
+ case S3: return 3;
+ case S4: return 4;
+ case S5: return 5;
+ case S6: return 6;
+ case S7: return 7;
+ case S8: return 8;
+ case S9: return 9;
+ case S10: return 10;
+ case S11: return 11;
+ case S12: return 12;
+ case S13: return 13;
+ case S14: return 14;
+ case S15: return 15;
+ case S16: return 16;
+ case S17: return 17;
+ case S18: return 18;
+ case S19: return 19;
+ case S20: return 20;
+ case S21: return 21;
+ case S22: return 22;
+ case S23: return 23;
+ case S24: return 24;
+ case S25: return 25;
+ case S26: return 26;
+ case S27: return 27;
+ case S28: return 28;
+ case S29: return 29;
+ case S30: return 30;
+ case S31: return 31;
+ }
+ }
+ }
+}
+
+ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMBaseInstrInfo &tii,
+ const ARMSubtarget &sti)
+ : ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
+ TII(tii), STI(sti),
+ FramePtr((STI.isTargetDarwin() || STI.isThumb()) ? ARM::R7 : ARM::R11) {
+}
+
+const unsigned*
+ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ static const unsigned CalleeSavedRegs[] = {
+ ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
+ ARM::R7, ARM::R6, ARM::R5, ARM::R4,
+
+ ARM::D15, ARM::D14, ARM::D13, ARM::D12,
+ ARM::D11, ARM::D10, ARM::D9, ARM::D8,
+ 0
+ };
+
+ static const unsigned DarwinCalleeSavedRegs[] = {
+ // Darwin ABI deviates from ARM standard ABI. R9 is not a callee-saved
+ // register.
+ ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
+ ARM::R11, ARM::R10, ARM::R8,
+
+ ARM::D15, ARM::D14, ARM::D13, ARM::D12,
+ ARM::D11, ARM::D10, ARM::D9, ARM::D8,
+ 0
+ };
+ return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
+}
+
+const TargetRegisterClass* const *
+ARMBaseRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
+ static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ 0
+ };
+
+ static const TargetRegisterClass * const ThumbCalleeSavedRegClasses[] = {
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::tGPRRegClass,
+ &ARM::tGPRRegClass,&ARM::tGPRRegClass,&ARM::tGPRRegClass,
+
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ 0
+ };
+
+ static const TargetRegisterClass * const DarwinCalleeSavedRegClasses[] = {
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass,
+
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ 0
+ };
+
+ static const TargetRegisterClass * const DarwinThumbCalleeSavedRegClasses[] ={
+ &ARM::GPRRegClass, &ARM::tGPRRegClass, &ARM::tGPRRegClass,
+ &ARM::tGPRRegClass, &ARM::tGPRRegClass, &ARM::GPRRegClass,
+ &ARM::GPRRegClass, &ARM::GPRRegClass,
+
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
+ 0
+ };
+
+ if (STI.isThumb1Only()) {
+ return STI.isTargetDarwin()
+ ? DarwinThumbCalleeSavedRegClasses : ThumbCalleeSavedRegClasses;
+ }
+ return STI.isTargetDarwin()
+ ? DarwinCalleeSavedRegClasses : CalleeSavedRegClasses;
+}
+
+BitVector ARMBaseRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ // FIXME: avoid re-calculating this everytime.
+ BitVector Reserved(getNumRegs());
+ Reserved.set(ARM::SP);
+ Reserved.set(ARM::PC);
+ if (STI.isTargetDarwin() || hasFP(MF))
+ Reserved.set(FramePtr);
+ // Some targets reserve R9.
+ if (STI.isR9Reserved())
+ Reserved.set(ARM::R9);
+ return Reserved;
+}
+
+bool ARMBaseRegisterInfo::isReservedReg(const MachineFunction &MF,
+ unsigned Reg) const {
+ switch (Reg) {
+ default: break;
+ case ARM::SP:
+ case ARM::PC:
+ return true;
+ case ARM::R7:
+ case ARM::R11:
+ if (FramePtr == Reg && (STI.isTargetDarwin() || hasFP(MF)))
+ return true;
+ break;
+ case ARM::R9:
+ return STI.isR9Reserved();
+ }
+
+ return false;
+}
+
+const TargetRegisterClass *
+ARMBaseRegisterInfo::getPointerRegClass(unsigned Kind) const {
+ return ARM::GPRRegisterClass;
+}
+
+/// getAllocationOrder - Returns the register allocation order for a specified
+/// register class in the form of a pair of TargetRegisterClass iterators.
+std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
+ARMBaseRegisterInfo::getAllocationOrder(const TargetRegisterClass *RC,
+ unsigned HintType, unsigned HintReg,
+ const MachineFunction &MF) const {
+ // Alternative register allocation orders when favoring even / odd registers
+ // of register pairs.
+
+ // No FP, R9 is available.
+ static const unsigned GPREven1[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8, ARM::R10,
+ ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7,
+ ARM::R9, ARM::R11
+ };
+ static const unsigned GPROdd1[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R9, ARM::R11,
+ ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
+ ARM::R8, ARM::R10
+ };
+
+ // FP is R7, R9 is available.
+ static const unsigned GPREven2[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R8, ARM::R10,
+ ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6,
+ ARM::R9, ARM::R11
+ };
+ static const unsigned GPROdd2[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R9, ARM::R11,
+ ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
+ ARM::R8, ARM::R10
+ };
+
+ // FP is R11, R9 is available.
+ static const unsigned GPREven3[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8,
+ ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7,
+ ARM::R9
+ };
+ static const unsigned GPROdd3[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R6, ARM::R9,
+ ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R7,
+ ARM::R8
+ };
+
+ // No FP, R9 is not available.
+ static const unsigned GPREven4[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R10,
+ ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8,
+ ARM::R11
+ };
+ static const unsigned GPROdd4[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R11,
+ ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
+ ARM::R10
+ };
+
+ // FP is R7, R9 is not available.
+ static const unsigned GPREven5[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R10,
+ ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6, ARM::R8,
+ ARM::R11
+ };
+ static const unsigned GPROdd5[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R11,
+ ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
+ ARM::R10
+ };
+
+ // FP is R11, R9 is not available.
+ static const unsigned GPREven6[] = {
+ ARM::R0, ARM::R2, ARM::R4, ARM::R6,
+ ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8
+ };
+ static const unsigned GPROdd6[] = {
+ ARM::R1, ARM::R3, ARM::R5, ARM::R7,
+ ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8
+ };
+
+
+ if (HintType == ARMRI::RegPairEven) {
+ if (isPhysicalRegister(HintReg) && getRegisterPairEven(HintReg, MF) == 0)
+ // It's no longer possible to fulfill this hint. Return the default
+ // allocation order.
+ return std::make_pair(RC->allocation_order_begin(MF),
+ RC->allocation_order_end(MF));
+
+ if (!STI.isTargetDarwin() && !hasFP(MF)) {
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPREven1,
+ GPREven1 + (sizeof(GPREven1)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPREven4,
+ GPREven4 + (sizeof(GPREven4)/sizeof(unsigned)));
+ } else if (FramePtr == ARM::R7) {
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPREven2,
+ GPREven2 + (sizeof(GPREven2)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPREven5,
+ GPREven5 + (sizeof(GPREven5)/sizeof(unsigned)));
+ } else { // FramePtr == ARM::R11
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPREven3,
+ GPREven3 + (sizeof(GPREven3)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPREven6,
+ GPREven6 + (sizeof(GPREven6)/sizeof(unsigned)));
+ }
+ } else if (HintType == ARMRI::RegPairOdd) {
+ if (isPhysicalRegister(HintReg) && getRegisterPairOdd(HintReg, MF) == 0)
+ // It's no longer possible to fulfill this hint. Return the default
+ // allocation order.
+ return std::make_pair(RC->allocation_order_begin(MF),
+ RC->allocation_order_end(MF));
+
+ if (!STI.isTargetDarwin() && !hasFP(MF)) {
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPROdd1,
+ GPROdd1 + (sizeof(GPROdd1)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPROdd4,
+ GPROdd4 + (sizeof(GPROdd4)/sizeof(unsigned)));
+ } else if (FramePtr == ARM::R7) {
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPROdd2,
+ GPROdd2 + (sizeof(GPROdd2)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPROdd5,
+ GPROdd5 + (sizeof(GPROdd5)/sizeof(unsigned)));
+ } else { // FramePtr == ARM::R11
+ if (!STI.isR9Reserved())
+ return std::make_pair(GPROdd3,
+ GPROdd3 + (sizeof(GPROdd3)/sizeof(unsigned)));
+ else
+ return std::make_pair(GPROdd6,
+ GPROdd6 + (sizeof(GPROdd6)/sizeof(unsigned)));
+ }
+ }
+ return std::make_pair(RC->allocation_order_begin(MF),
+ RC->allocation_order_end(MF));
+}
+
+/// ResolveRegAllocHint - Resolves the specified register allocation hint
+/// to a physical register. Returns the physical register if it is successful.
+unsigned
+ARMBaseRegisterInfo::ResolveRegAllocHint(unsigned Type, unsigned Reg,
+ const MachineFunction &MF) const {
+ if (Reg == 0 || !isPhysicalRegister(Reg))
+ return 0;
+ if (Type == 0)
+ return Reg;
+ else if (Type == (unsigned)ARMRI::RegPairOdd)
+ // Odd register.
+ return getRegisterPairOdd(Reg, MF);
+ else if (Type == (unsigned)ARMRI::RegPairEven)
+ // Even register.
+ return getRegisterPairEven(Reg, MF);
+ return 0;
+}
+
+void
+ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
+ MachineFunction &MF) const {
+ MachineRegisterInfo *MRI = &MF.getRegInfo();
+ std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
+ if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
+ Hint.first == (unsigned)ARMRI::RegPairEven) &&
+ Hint.second && TargetRegisterInfo::isVirtualRegister(Hint.second)) {
+ // If 'Reg' is one of the even / odd register pair and it's now changed
+ // (e.g. coalesced) into a different register. The other register of the
+ // pair allocation hint must be updated to reflect the relationship
+ // change.
+ unsigned OtherReg = Hint.second;
+ Hint = MRI->getRegAllocationHint(OtherReg);
+ if (Hint.second == Reg)
+ // Make sure the pair has not already divorced.
+ MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
+ }
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+///
+bool ARMBaseRegisterInfo::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ return (NoFramePointerElim ||
+ MFI->hasVarSizedObjects() ||
+ MFI->isFrameAddressTaken());
+}
+
+bool ARMBaseRegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (NoFramePointerElim && MFI->hasCalls())
+ return true;
+ return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken();
+}
+
+/// estimateStackSize - Estimate and return the size of the frame.
+static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) {
+ const MachineFrameInfo *FFI = MF.getFrameInfo();
+ int Offset = 0;
+ for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
+ int FixedOff = -FFI->getObjectOffset(i);
+ if (FixedOff > Offset) Offset = FixedOff;
+ }
+ for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
+ if (FFI->isDeadObjectIndex(i))
+ continue;
+ Offset += FFI->getObjectSize(i);
+ unsigned Align = FFI->getObjectAlignment(i);
+ // Adjust to alignment boundary
+ Offset = (Offset+Align-1)/Align*Align;
+ }
+ return (unsigned)Offset;
+}
+
+/// estimateRSStackSizeLimit - Look at each instruction that references stack
+/// frames and return the stack size limit beyond which some of these
+/// instructions will require scratch register during their expansion later.
+unsigned
+ARMBaseRegisterInfo::estimateRSStackSizeLimit(MachineFunction &MF) const {
+ unsigned Limit = (1 << 12) - 1;
+ for (MachineFunction::iterator BB = MF.begin(),E = MF.end(); BB != E; ++BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ if (!I->getOperand(i).isFI()) continue;
+
+ const TargetInstrDesc &Desc = TII.get(I->getOpcode());
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ if (AddrMode == ARMII::AddrMode3 ||
+ AddrMode == ARMII::AddrModeT2_i8)
+ return (1 << 8) - 1;
+
+ if (AddrMode == ARMII::AddrMode5 ||
+ AddrMode == ARMII::AddrModeT2_i8s4)
+ Limit = std::min(Limit, ((1U << 8) - 1) * 4);
+
+ if (AddrMode == ARMII::AddrModeT2_i12 && hasFP(MF))
+ // When the stack offset is negative, we will end up using
+ // the i8 instructions instead.
+ return (1 << 8) - 1;
+ break; // At most one FI per instruction
+ }
+ }
+ }
+
+ return Limit;
+}
+
+void
+ARMBaseRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // This tells PEI to spill the FP as if it is any other callee-save register
+ // to take advantage the eliminateFrameIndex machinery. This also ensures it
+ // is spilled in the order specified by getCalleeSavedRegs() to make it easier
+ // to combine multiple loads / stores.
+ bool CanEliminateFrame = true;
+ bool CS1Spilled = false;
+ bool LRSpilled = false;
+ unsigned NumGPRSpills = 0;
+ SmallVector<unsigned, 4> UnspilledCS1GPRs;
+ SmallVector<unsigned, 4> UnspilledCS2GPRs;
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Don't spill FP if the frame can be eliminated. This is determined
+ // by scanning the callee-save registers to see if any is used.
+ const unsigned *CSRegs = getCalleeSavedRegs();
+ const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses();
+ for (unsigned i = 0; CSRegs[i]; ++i) {
+ unsigned Reg = CSRegs[i];
+ bool Spilled = false;
+ if (MF.getRegInfo().isPhysRegUsed(Reg)) {
+ AFI->setCSRegisterIsSpilled(Reg);
+ Spilled = true;
+ CanEliminateFrame = false;
+ } else {
+ // Check alias registers too.
+ for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
+ if (MF.getRegInfo().isPhysRegUsed(*Aliases)) {
+ Spilled = true;
+ CanEliminateFrame = false;
+ }
+ }
+ }
+
+ if (CSRegClasses[i] == ARM::GPRRegisterClass ||
+ CSRegClasses[i] == ARM::tGPRRegisterClass) {
+ if (Spilled) {
+ NumGPRSpills++;
+
+ if (!STI.isTargetDarwin()) {
+ if (Reg == ARM::LR)
+ LRSpilled = true;
+ CS1Spilled = true;
+ continue;
+ }
+
+ // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
+ switch (Reg) {
+ case ARM::LR:
+ LRSpilled = true;
+ // Fallthrough
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ CS1Spilled = true;
+ break;
+ default:
+ break;
+ }
+ } else {
+ if (!STI.isTargetDarwin()) {
+ UnspilledCS1GPRs.push_back(Reg);
+ continue;
+ }
+
+ switch (Reg) {
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ UnspilledCS1GPRs.push_back(Reg);
+ break;
+ default:
+ UnspilledCS2GPRs.push_back(Reg);
+ break;
+ }
+ }
+ }
+ }
+
+ bool ForceLRSpill = false;
+ if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
+ unsigned FnSize = TII.GetFunctionSizeInBytes(MF);
+ // Force LR to be spilled if the Thumb function size is > 2048. This enables
+ // use of BL to implement far jump. If it turns out that it's not needed
+ // then the branch fix up path will undo it.
+ if (FnSize >= (1 << 11)) {
+ CanEliminateFrame = false;
+ ForceLRSpill = true;
+ }
+ }
+
+ bool ExtraCSSpill = false;
+ if (!CanEliminateFrame || cannotEliminateFrame(MF)) {
+ AFI->setHasStackFrame(true);
+
+ // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
+ // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
+ if (!LRSpilled && CS1Spilled) {
+ MF.getRegInfo().setPhysRegUsed(ARM::LR);
+ AFI->setCSRegisterIsSpilled(ARM::LR);
+ NumGPRSpills++;
+ UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
+ UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
+ ForceLRSpill = false;
+ ExtraCSSpill = true;
+ }
+
+ // Darwin ABI requires FP to point to the stack slot that contains the
+ // previous FP.
+ if (STI.isTargetDarwin() || hasFP(MF)) {
+ MF.getRegInfo().setPhysRegUsed(FramePtr);
+ NumGPRSpills++;
+ }
+
+ // If stack and double are 8-byte aligned and we are spilling an odd number
+ // of GPRs. Spill one extra callee save GPR so we won't have to pad between
+ // the integer and double callee save areas.
+ unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
+ if (TargetAlign == 8 && (NumGPRSpills & 1)) {
+ if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
+ for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
+ unsigned Reg = UnspilledCS1GPRs[i];
+ // Don't spill high register if the function is thumb1
+ if (!AFI->isThumb1OnlyFunction() ||
+ isARMLowRegister(Reg) || Reg == ARM::LR) {
+ MF.getRegInfo().setPhysRegUsed(Reg);
+ AFI->setCSRegisterIsSpilled(Reg);
+ if (!isReservedReg(MF, Reg))
+ ExtraCSSpill = true;
+ break;
+ }
+ }
+ } else if (!UnspilledCS2GPRs.empty() &&
+ !AFI->isThumb1OnlyFunction()) {
+ unsigned Reg = UnspilledCS2GPRs.front();
+ MF.getRegInfo().setPhysRegUsed(Reg);
+ AFI->setCSRegisterIsSpilled(Reg);
+ if (!isReservedReg(MF, Reg))
+ ExtraCSSpill = true;
+ }
+ }
+
+ // Estimate if we might need to scavenge a register at some point in order
+ // to materialize a stack offset. If so, either spill one additional
+ // callee-saved register or reserve a special spill slot to facilitate
+ // register scavenging. Thumb1 needs a spill slot for stack pointer
+ // adjustments also, even when the frame itself is small.
+ if (RS && !ExtraCSSpill) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ // If any of the stack slot references may be out of range of an
+ // immediate offset, make sure a register (or a spill slot) is
+ // available for the register scavenger. Note that if we're indexing
+ // off the frame pointer, the effective stack size is 4 bytes larger
+ // since the FP points to the stack slot of the previous FP.
+ if (estimateStackSize(MF, MFI) + (hasFP(MF) ? 4 : 0)
+ >= estimateRSStackSizeLimit(MF)) {
+ // If any non-reserved CS register isn't spilled, just spill one or two
+ // extra. That should take care of it!
+ unsigned NumExtras = TargetAlign / 4;
+ SmallVector<unsigned, 2> Extras;
+ while (NumExtras && !UnspilledCS1GPRs.empty()) {
+ unsigned Reg = UnspilledCS1GPRs.back();
+ UnspilledCS1GPRs.pop_back();
+ if (!isReservedReg(MF, Reg)) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ // For non-Thumb1 functions, also check for hi-reg CS registers
+ if (!AFI->isThumb1OnlyFunction()) {
+ while (NumExtras && !UnspilledCS2GPRs.empty()) {
+ unsigned Reg = UnspilledCS2GPRs.back();
+ UnspilledCS2GPRs.pop_back();
+ if (!isReservedReg(MF, Reg)) {
+ Extras.push_back(Reg);
+ NumExtras--;
+ }
+ }
+ }
+ if (Extras.size() && NumExtras == 0) {
+ for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
+ MF.getRegInfo().setPhysRegUsed(Extras[i]);
+ AFI->setCSRegisterIsSpilled(Extras[i]);
+ }
+ } else if (!AFI->isThumb1OnlyFunction()) {
+ // note: Thumb1 functions spill to R12, not the stack.
+ // Reserve a slot closest to SP or frame pointer.
+ const TargetRegisterClass *RC = ARM::GPRRegisterClass;
+ RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment()));
+ }
+ }
+ }
+ }
+
+ if (ForceLRSpill) {
+ MF.getRegInfo().setPhysRegUsed(ARM::LR);
+ AFI->setCSRegisterIsSpilled(ARM::LR);
+ AFI->setLRIsSpilledForFarJump(true);
+ }
+}
+
+unsigned ARMBaseRegisterInfo::getRARegister() const {
+ return ARM::LR;
+}
+
+unsigned ARMBaseRegisterInfo::getFrameRegister(MachineFunction &MF) const {
+ if (STI.isTargetDarwin() || hasFP(MF))
+ return FramePtr;
+ return ARM::SP;
+}
+
+unsigned ARMBaseRegisterInfo::getEHExceptionRegister() const {
+ llvm_unreachable("What is the exception register");
+ return 0;
+}
+
+unsigned ARMBaseRegisterInfo::getEHHandlerRegister() const {
+ llvm_unreachable("What is the exception handler register");
+ return 0;
+}
+
+int ARMBaseRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
+ return ARMGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
+}
+
+unsigned ARMBaseRegisterInfo::getRegisterPairEven(unsigned Reg,
+ const MachineFunction &MF) const {
+ switch (Reg) {
+ default: break;
+ // Return 0 if either register of the pair is a special register.
+ // So no R12, etc.
+ case ARM::R1:
+ return ARM::R0;
+ case ARM::R3:
+ // FIXME!
+ return STI.isThumb1Only() ? 0 : ARM::R2;
+ case ARM::R5:
+ return ARM::R4;
+ case ARM::R7:
+ return isReservedReg(MF, ARM::R7) ? 0 : ARM::R6;
+ case ARM::R9:
+ return isReservedReg(MF, ARM::R9) ? 0 :ARM::R8;
+ case ARM::R11:
+ return isReservedReg(MF, ARM::R11) ? 0 : ARM::R10;
+
+ case ARM::S1:
+ return ARM::S0;
+ case ARM::S3:
+ return ARM::S2;
+ case ARM::S5:
+ return ARM::S4;
+ case ARM::S7:
+ return ARM::S6;
+ case ARM::S9:
+ return ARM::S8;
+ case ARM::S11:
+ return ARM::S10;
+ case ARM::S13:
+ return ARM::S12;
+ case ARM::S15:
+ return ARM::S14;
+ case ARM::S17:
+ return ARM::S16;
+ case ARM::S19:
+ return ARM::S18;
+ case ARM::S21:
+ return ARM::S20;
+ case ARM::S23:
+ return ARM::S22;
+ case ARM::S25:
+ return ARM::S24;
+ case ARM::S27:
+ return ARM::S26;
+ case ARM::S29:
+ return ARM::S28;
+ case ARM::S31:
+ return ARM::S30;
+
+ case ARM::D1:
+ return ARM::D0;
+ case ARM::D3:
+ return ARM::D2;
+ case ARM::D5:
+ return ARM::D4;
+ case ARM::D7:
+ return ARM::D6;
+ case ARM::D9:
+ return ARM::D8;
+ case ARM::D11:
+ return ARM::D10;
+ case ARM::D13:
+ return ARM::D12;
+ case ARM::D15:
+ return ARM::D14;
+ case ARM::D17:
+ return ARM::D16;
+ case ARM::D19:
+ return ARM::D18;
+ case ARM::D21:
+ return ARM::D20;
+ case ARM::D23:
+ return ARM::D22;
+ case ARM::D25:
+ return ARM::D24;
+ case ARM::D27:
+ return ARM::D26;
+ case ARM::D29:
+ return ARM::D28;
+ case ARM::D31:
+ return ARM::D30;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseRegisterInfo::getRegisterPairOdd(unsigned Reg,
+ const MachineFunction &MF) const {
+ switch (Reg) {
+ default: break;
+ // Return 0 if either register of the pair is a special register.
+ // So no R12, etc.
+ case ARM::R0:
+ return ARM::R1;
+ case ARM::R2:
+ // FIXME!
+ return STI.isThumb1Only() ? 0 : ARM::R3;
+ case ARM::R4:
+ return ARM::R5;
+ case ARM::R6:
+ return isReservedReg(MF, ARM::R7) ? 0 : ARM::R7;
+ case ARM::R8:
+ return isReservedReg(MF, ARM::R9) ? 0 :ARM::R9;
+ case ARM::R10:
+ return isReservedReg(MF, ARM::R11) ? 0 : ARM::R11;
+
+ case ARM::S0:
+ return ARM::S1;
+ case ARM::S2:
+ return ARM::S3;
+ case ARM::S4:
+ return ARM::S5;
+ case ARM::S6:
+ return ARM::S7;
+ case ARM::S8:
+ return ARM::S9;
+ case ARM::S10:
+ return ARM::S11;
+ case ARM::S12:
+ return ARM::S13;
+ case ARM::S14:
+ return ARM::S15;
+ case ARM::S16:
+ return ARM::S17;
+ case ARM::S18:
+ return ARM::S19;
+ case ARM::S20:
+ return ARM::S21;
+ case ARM::S22:
+ return ARM::S23;
+ case ARM::S24:
+ return ARM::S25;
+ case ARM::S26:
+ return ARM::S27;
+ case ARM::S28:
+ return ARM::S29;
+ case ARM::S30:
+ return ARM::S31;
+
+ case ARM::D0:
+ return ARM::D1;
+ case ARM::D2:
+ return ARM::D3;
+ case ARM::D4:
+ return ARM::D5;
+ case ARM::D6:
+ return ARM::D7;
+ case ARM::D8:
+ return ARM::D9;
+ case ARM::D10:
+ return ARM::D11;
+ case ARM::D12:
+ return ARM::D13;
+ case ARM::D14:
+ return ARM::D15;
+ case ARM::D16:
+ return ARM::D17;
+ case ARM::D18:
+ return ARM::D19;
+ case ARM::D20:
+ return ARM::D21;
+ case ARM::D22:
+ return ARM::D23;
+ case ARM::D24:
+ return ARM::D25;
+ case ARM::D26:
+ return ARM::D27;
+ case ARM::D28:
+ return ARM::D29;
+ case ARM::D30:
+ return ARM::D31;
+ }
+
+ return 0;
+}
+
+/// emitLoadConstPool - Emits a load from constpool to materialize the
+/// specified immediate.
+void ARMBaseRegisterInfo::
+emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred,
+ unsigned PredReg) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineConstantPool *ConstantPool = MF.getConstantPool();
+ Constant *C =
+ ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
+
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx)
+ .addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
+}
+
+bool ARMBaseRegisterInfo::
+requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
+// not required, we reserve argument space for call sites in the function
+// immediately on entry to the current function. This eliminates the need for
+// add/sub sp brackets around call sites. Returns true if the call frame is
+// included as part of the stack frame.
+bool ARMBaseRegisterInfo::
+hasReservedCallFrame(MachineFunction &MF) const {
+ const MachineFrameInfo *FFI = MF.getFrameInfo();
+ unsigned CFSize = FFI->getMaxCallFrameSize();
+ // It's not always a good idea to include the call frame as part of the
+ // stack frame. ARM (especially Thumb) has small immediate offset to
+ // address the stack frame. So a large call frame can cause poor codegen
+ // and may even makes it impossible to scavenge a register.
+ if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
+ return false;
+
+ return !MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+static void
+emitSPUpdate(bool isARM,
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl, const ARMBaseInstrInfo &TII,
+ int NumBytes,
+ ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
+ Pred, PredReg, TII);
+ else
+ emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
+ Pred, PredReg, TII);
+}
+
+
+void ARMBaseRegisterInfo::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (!hasReservedCallFrame(MF)) {
+ // If we have alloca, convert as follows:
+ // ADJCALLSTACKDOWN -> sub, sp, sp, amount
+ // ADJCALLSTACKUP -> add, sp, sp, amount
+ MachineInstr *Old = I;
+ DebugLoc dl = Old->getDebugLoc();
+ unsigned Amount = Old->getOperand(0).getImm();
+ if (Amount != 0) {
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+ Amount = (Amount+Align-1)/Align*Align;
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This eliminateCallFramePseudoInstr does not suppor Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+
+ // Replace the pseudo instruction with a new instruction...
+ unsigned Opc = Old->getOpcode();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)Old->getOperand(1).getImm();
+ // FIXME: Thumb2 version of ADJCALLSTACKUP and ADJCALLSTACKDOWN?
+ if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
+ // Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
+ unsigned PredReg = Old->getOperand(2).getReg();
+ emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, Pred, PredReg);
+ } else {
+ // Note: PredReg is operand 3 for ADJCALLSTACKUP.
+ unsigned PredReg = Old->getOperand(3).getReg();
+ assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
+ emitSPUpdate(isARM, MBB, I, dl, TII, Amount, Pred, PredReg);
+ }
+ }
+ }
+ MBB.erase(I);
+}
+
+/// findScratchRegister - Find a 'free' ARM register. If register scavenger
+/// is not being used, R12 is available. Otherwise, try for a call-clobbered
+/// register first and then a spilled callee-saved register if that fails.
+static
+unsigned findScratchRegister(RegScavenger *RS, const TargetRegisterClass *RC,
+ ARMFunctionInfo *AFI) {
+ unsigned Reg = RS ? RS->FindUnusedReg(RC) : (unsigned) ARM::R12;
+ assert(!AFI->isThumb1OnlyFunction());
+ return Reg;
+}
+
+unsigned
+ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
+ unsigned i = 0;
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This eliminateFrameIndex does not support Thumb1!");
+
+ while (!MI.getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+ }
+
+ unsigned FrameReg = ARM::SP;
+ int FrameIndex = MI.getOperand(i).getIndex();
+ int Offset = MFI->getObjectOffset(FrameIndex) + MFI->getStackSize() + SPAdj;
+
+ if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
+ Offset -= AFI->getGPRCalleeSavedArea1Offset();
+ else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
+ Offset -= AFI->getGPRCalleeSavedArea2Offset();
+ else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex))
+ Offset -= AFI->getDPRCalleeSavedAreaOffset();
+ else if (hasFP(MF) && AFI->hasStackFrame()) {
+ assert(SPAdj == 0 && "Unexpected stack offset!");
+ // Use frame pointer to reference fixed objects unless this is a
+ // frameless function,
+ FrameReg = getFrameRegister(MF);
+ Offset -= AFI->getFramePtrSpillOffset();
+ }
+
+ // modify MI as necessary to handle as much of 'Offset' as possible
+ bool Done = false;
+ if (!AFI->isThumbFunction())
+ Done = rewriteARMFrameIndex(MI, i, FrameReg, Offset, TII);
+ else {
+ assert(AFI->isThumb2Function());
+ Done = rewriteT2FrameIndex(MI, i, FrameReg, Offset, TII);
+ }
+ if (Done)
+ return 0;
+
+ // If we get here, the immediate doesn't fit into the instruction. We folded
+ // as much as possible above, handle the rest, providing a register that is
+ // SP+LargeImm.
+ assert((Offset ||
+ (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4) &&
+ "This code isn't needed if offset already handled!");
+
+ // Insert a set of r12 with the full address: r12 = sp + offset
+ // If the offset we have is too large to fit into the instruction, we need
+ // to form it with a series of ADDri's. Do this by taking 8-bit chunks
+ // out of 'Offset'.
+ unsigned ScratchReg = findScratchRegister(RS, ARM::GPRRegisterClass, AFI);
+ if (ScratchReg == 0)
+ // No register is "free". Scavenge a register.
+ ScratchReg = RS->scavengeRegister(ARM::GPRRegisterClass, II, SPAdj);
+ int PIdx = MI.findFirstPredOperandIdx();
+ ARMCC::CondCodes Pred = (PIdx == -1)
+ ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
+ unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
+ if (Offset == 0)
+ // Must be addrmode4.
+ MI.getOperand(i).ChangeToRegister(FrameReg, false, false, false);
+ else {
+ if (!AFI->isThumbFunction())
+ emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
+ Offset, Pred, PredReg, TII);
+ else {
+ assert(AFI->isThumb2Function());
+ emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
+ Offset, Pred, PredReg, TII);
+ }
+ MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
+ }
+ return 0;
+}
+
+/// Move iterator pass the next bunch of callee save load / store ops for
+/// the particular spill area (1: integer area 1, 2: integer area 2,
+/// 3: fp area, 0: don't care).
+static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ int Opc1, int Opc2, unsigned Area,
+ const ARMSubtarget &STI) {
+ while (MBBI != MBB.end() &&
+ ((MBBI->getOpcode() == Opc1) || (MBBI->getOpcode() == Opc2)) &&
+ MBBI->getOperand(1).isFI()) {
+ if (Area != 0) {
+ bool Done = false;
+ unsigned Category = 0;
+ switch (MBBI->getOperand(0).getReg()) {
+ case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
+ case ARM::LR:
+ Category = 1;
+ break;
+ case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
+ Category = STI.isTargetDarwin() ? 2 : 1;
+ break;
+ case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
+ case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
+ Category = 3;
+ break;
+ default:
+ Done = true;
+ break;
+ }
+ if (Done || Category != Area)
+ break;
+ }
+
+ ++MBBI;
+ }
+}
+
+void ARMBaseRegisterInfo::
+emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitPrologue does not suppor Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+ unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
+ unsigned NumBytes = MFI->getStackSize();
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ DebugLoc dl = (MBBI != MBB.end() ?
+ MBBI->getDebugLoc() : DebugLoc::getUnknownLoc());
+
+ // Determine the sizes of each callee-save spill areas and record which frame
+ // belongs to which callee-save spill areas.
+ unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
+ int FramePtrSpillFI = 0;
+
+ // Allocate the vararg register save area. This is not counted in NumBytes.
+ if (VARegSaveSize)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -VARegSaveSize);
+
+ if (!AFI->hasStackFrame()) {
+ if (NumBytes != 0)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes);
+ return;
+ }
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ int FI = CSI[i].getFrameIdx();
+ switch (Reg) {
+ case ARM::R4:
+ case ARM::R5:
+ case ARM::R6:
+ case ARM::R7:
+ case ARM::LR:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ AFI->addGPRCalleeSavedArea1Frame(FI);
+ GPRCS1Size += 4;
+ break;
+ case ARM::R8:
+ case ARM::R9:
+ case ARM::R10:
+ case ARM::R11:
+ if (Reg == FramePtr)
+ FramePtrSpillFI = FI;
+ if (STI.isTargetDarwin()) {
+ AFI->addGPRCalleeSavedArea2Frame(FI);
+ GPRCS2Size += 4;
+ } else {
+ AFI->addGPRCalleeSavedArea1Frame(FI);
+ GPRCS1Size += 4;
+ }
+ break;
+ default:
+ AFI->addDPRCalleeSavedAreaFrame(FI);
+ DPRCSSize += 8;
+ }
+ }
+
+ // Build the new SUBri to adjust SP for integer callee-save spill area 1.
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -GPRCS1Size);
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, ARM::t2STRi12, 1, STI);
+
+ // Set FP to point to the stack slot that contains the previous FP.
+ // For Darwin, FP is R7, which has now been stored in spill area 1.
+ // Otherwise, if this is not Darwin, all the callee-saved registers go
+ // into spill area 1, including the FP in R11. In either case, it is
+ // now safe to emit this assignment.
+ if (STI.isTargetDarwin() || hasFP(MF)) {
+ unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri : ARM::t2ADDri;
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(ADDriOpc), FramePtr)
+ .addFrameIndex(FramePtrSpillFI).addImm(0);
+ AddDefaultCC(AddDefaultPred(MIB));
+ }
+
+ // Build the new SUBri to adjust SP for integer callee-save spill area 2.
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -GPRCS2Size);
+
+ // Build the new SUBri to adjust SP for FP callee-save spill area.
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, ARM::t2STRi12, 2, STI);
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRCSSize);
+
+ // Determine starting offsets of spill areas.
+ unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
+ unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
+ unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
+ AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes);
+ AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
+ AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
+ AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
+
+ NumBytes = DPRCSOffset;
+ if (NumBytes) {
+ // Insert it after all the callee-save spills.
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::FSTD, 0, 3, STI);
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes);
+ }
+
+ if (STI.isTargetELF() && hasFP(MF)) {
+ MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
+ AFI->getFramePtrSpillOffset());
+ }
+
+ AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
+ AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
+ AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
+}
+
+static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
+ for (unsigned i = 0; CSRegs[i]; ++i)
+ if (Reg == CSRegs[i])
+ return true;
+ return false;
+}
+
+static bool isCSRestore(MachineInstr *MI,
+ const ARMBaseInstrInfo &TII,
+ const unsigned *CSRegs) {
+ return ((MI->getOpcode() == (int)ARM::FLDD ||
+ MI->getOpcode() == (int)ARM::LDR ||
+ MI->getOpcode() == (int)ARM::t2LDRi12) &&
+ MI->getOperand(1).isFI() &&
+ isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
+}
+
+void ARMBaseRegisterInfo::
+emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = prior(MBB.end());
+ assert(MBBI->getDesc().isReturn() &&
+ "Can only insert epilog into returning blocks");
+ DebugLoc dl = MBBI->getDebugLoc();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ assert(!AFI->isThumb1OnlyFunction() &&
+ "This emitEpilogue does not suppor Thumb1!");
+ bool isARM = !AFI->isThumbFunction();
+
+ unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
+ int NumBytes = (int)MFI->getStackSize();
+
+ if (!AFI->hasStackFrame()) {
+ if (NumBytes != 0)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
+ } else {
+ // Unwind MBBI to point to first LDR / FLDD.
+ const unsigned *CSRegs = getCalleeSavedRegs();
+ if (MBBI != MBB.begin()) {
+ do
+ --MBBI;
+ while (MBBI != MBB.begin() && isCSRestore(MBBI, TII, CSRegs));
+ if (!isCSRestore(MBBI, TII, CSRegs))
+ ++MBBI;
+ }
+
+ // Move SP to start of FP callee save spill area.
+ NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
+ AFI->getGPRCalleeSavedArea2Size() +
+ AFI->getDPRCalleeSavedAreaSize());
+
+ // Darwin ABI requires FP to point to the stack slot that contains the
+ // previous FP.
+ bool HasFP = hasFP(MF);
+ if ((STI.isTargetDarwin() && NumBytes) || HasFP) {
+ NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
+ // Reset SP based on frame pointer only if the stack frame extends beyond
+ // frame pointer stack slot or target is ELF and the function has FP.
+ if (HasFP ||
+ AFI->getGPRCalleeSavedArea2Size() ||
+ AFI->getDPRCalleeSavedAreaSize() ||
+ AFI->getDPRCalleeSavedAreaOffset()) {
+ if (NumBytes) {
+ if (isARM)
+ emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII);
+ else
+ emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
+ ARMCC::AL, 0, TII);
+ } else {
+ // Thumb2 or ARM.
+ if (isARM)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
+ .addReg(FramePtr)
+ .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+ else
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2gpr), ARM::SP)
+ .addReg(FramePtr);
+ }
+ }
+ } else if (NumBytes)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
+
+ // Move SP to start of integer callee save spill area 2.
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::FLDD, 0, 3, STI);
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedAreaSize());
+
+ // Move SP to start of integer callee save spill area 1.
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, ARM::t2LDRi12, 2, STI);
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getGPRCalleeSavedArea2Size());
+
+ // Move SP to SP upon entry to the function.
+ movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, ARM::t2LDRi12, 1, STI);
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getGPRCalleeSavedArea1Size());
+ }
+
+ if (VARegSaveSize)
+ emitSPUpdate(isARM, MBB, MBBI, dl, TII, VARegSaveSize);
+}
+
+#include "ARMGenRegisterInfo.inc"
diff --git a/lib/Target/ARM/ARMBaseRegisterInfo.h b/lib/Target/ARM/ARMBaseRegisterInfo.h
new file mode 100644
index 0000000..da703fb
--- /dev/null
+++ b/lib/Target/ARM/ARMBaseRegisterInfo.h
@@ -0,0 +1,148 @@
+//===- ARMBaseRegisterInfo.h - ARM Register Information Impl ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the base ARM implementation of TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMBASEREGISTERINFO_H
+#define ARMBASEREGISTERINFO_H
+
+#include "ARM.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "ARMGenRegisterInfo.h.inc"
+
+namespace llvm {
+ class ARMSubtarget;
+ class ARMBaseInstrInfo;
+ class Type;
+
+/// Register allocation hints.
+namespace ARMRI {
+ enum {
+ RegPairOdd = 1,
+ RegPairEven = 2
+ };
+}
+
+/// isARMLowRegister - Returns true if the register is low register r0-r7.
+///
+static inline bool isARMLowRegister(unsigned Reg) {
+ using namespace ARM;
+ switch (Reg) {
+ case R0: case R1: case R2: case R3:
+ case R4: case R5: case R6: case R7:
+ return true;
+ default:
+ return false;
+ }
+}
+
+struct ARMBaseRegisterInfo : public ARMGenRegisterInfo {
+protected:
+ const ARMBaseInstrInfo &TII;
+ const ARMSubtarget &STI;
+
+ /// FramePtr - ARM physical register used as frame ptr.
+ unsigned FramePtr;
+
+ // Can be only subclassed.
+ explicit ARMBaseRegisterInfo(const ARMBaseInstrInfo &tii,
+ const ARMSubtarget &STI);
+
+ // Return the opcode that implements 'Op', or 0 if no opcode
+ unsigned getOpcode(int Op) const;
+
+public:
+ /// getRegisterNumbering - Given the enum value for some register, e.g.
+ /// ARM::LR, return the number that it corresponds to (e.g. 14). It
+ /// also returns true in isSPVFP if the register is a single precision
+ /// VFP register.
+ static unsigned getRegisterNumbering(unsigned RegEnum, bool *isSPVFP = 0);
+
+ /// Code Generation virtual methods...
+ const unsigned *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
+
+ const TargetRegisterClass* const*
+ getCalleeSavedRegClasses(const MachineFunction *MF = 0) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const;
+
+ const TargetRegisterClass *getPointerRegClass(unsigned Kind = 0) const;
+
+ std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
+ getAllocationOrder(const TargetRegisterClass *RC,
+ unsigned HintType, unsigned HintReg,
+ const MachineFunction &MF) const;
+
+ unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
+ const MachineFunction &MF) const;
+
+ void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
+ MachineFunction &MF) const;
+
+ bool hasFP(const MachineFunction &MF) const;
+
+ bool cannotEliminateFrame(const MachineFunction &MF) const;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS = NULL) const;
+
+ // Debug information queries.
+ unsigned getRARegister() const;
+ unsigned getFrameRegister(MachineFunction &MF) const;
+
+ // Exception handling queries.
+ unsigned getEHExceptionRegister() const;
+ unsigned getEHHandlerRegister() const;
+
+ int getDwarfRegNum(unsigned RegNum, bool isEH) const;
+
+ bool isLowRegister(unsigned Reg) const;
+
+
+ /// emitLoadConstPool - Emits a load from constpool to materialize the
+ /// specified immediate.
+ virtual void emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx,
+ int Val,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) const;
+
+ /// Code Generation virtual methods...
+ virtual bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
+
+ virtual bool requiresRegisterScavenging(const MachineFunction &MF) const;
+
+ virtual bool hasReservedCallFrame(MachineFunction &MF) const;
+
+ virtual void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
+
+ virtual void emitPrologue(MachineFunction &MF) const;
+ virtual void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
+
+private:
+ unsigned estimateRSStackSizeLimit(MachineFunction &MF) const;
+
+ unsigned getRegisterPairEven(unsigned Reg, const MachineFunction &MF) const;
+
+ unsigned getRegisterPairOdd(unsigned Reg, const MachineFunction &MF) const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/ARM/ARMCallingConv.td b/lib/Target/ARM/ARMCallingConv.td
index 8a4c741..7161639 100644
--- a/lib/Target/ARM/ARMCallingConv.td
+++ b/lib/Target/ARM/ARMCallingConv.td
@@ -111,6 +111,7 @@ def CC_ARM_AAPCS_VFP : CallingConv<[
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
@@ -122,6 +123,7 @@ def RetCC_ARM_AAPCS_VFP : CallingConv<[
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32], CCBitConvertToType<v2f64>>,
+ CCIfType<[v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15]>>,
diff --git a/lib/Target/ARM/ARMCodeEmitter.cpp b/lib/Target/ARM/ARMCodeEmitter.cpp
index f295761..6f1c624 100644
--- a/lib/Target/ARM/ARMCodeEmitter.cpp
+++ b/lib/Target/ARM/ARMCodeEmitter.cpp
@@ -26,14 +26,18 @@
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include <iomanip>
#endif
@@ -57,12 +61,18 @@ namespace {
ARMJITInfo *JTI;
const ARMInstrInfo *II;
const TargetData *TD;
+ const ARMSubtarget *Subtarget;
TargetMachine &TM;
CodeEmitter &MCE;
const std::vector<MachineConstantPoolEntry> *MCPEs;
const std::vector<MachineJumpTableEntry> *MJTEs;
bool IsPIC;
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineModuleInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
public:
static char ID;
explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
@@ -160,7 +170,7 @@ namespace {
/// Routines that handle operands which add machine relocations which are
/// fixed up by the relocation stage.
void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
- bool NeedStub, intptr_t ACPV = 0);
+ bool NeedStub, bool Indirect, intptr_t ACPV = 0);
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
@@ -174,36 +184,39 @@ namespace {
/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
-namespace llvm {
-
-FunctionPass *createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
- MachineCodeEmitter &MCE) {
+FunctionPass *llvm::createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
+ MachineCodeEmitter &MCE) {
return new Emitter<MachineCodeEmitter>(TM, MCE);
}
-FunctionPass *createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
- JITCodeEmitter &JCE) {
+FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
+ JITCodeEmitter &JCE) {
return new Emitter<JITCodeEmitter>(TM, JCE);
}
-
-} // end namespace llvm
+FunctionPass *llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine &TM,
+ ObjectCodeEmitter &OCE) {
+ return new Emitter<ObjectCodeEmitter>(TM, OCE);
+}
template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
+ JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
- JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
MCPEs = &MF.getConstantPool()->getConstants();
MJTEs = &MF.getJumpTableInfo()->getJumpTables();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
JTI->Initialize(MF, IsPIC);
+ MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
do {
- DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
+ DEBUG(errs() << "JITTing function '"
+ << MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
@@ -220,7 +233,7 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const {
switch (ARM_AM::getAM2ShiftOpc(Imm)) {
- default: assert(0 && "Unknown shift opc!");
+ default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
@@ -240,7 +253,7 @@ unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
else if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
- emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
+ emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
else if (MO.isCPI()) {
@@ -254,8 +267,10 @@ unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
else {
- cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << MO;
+#endif
+ llvm_unreachable(0);
}
return 0;
}
@@ -264,9 +279,14 @@ unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
///
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
- bool NeedStub, intptr_t ACPV) {
- MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- GV, ACPV, NeedStub));
+ bool NeedStub, bool Indirect,
+ intptr_t ACPV) {
+ MachineRelocation MR = Indirect
+ ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
+ GV, ACPV, NeedStub)
+ : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
+ GV, ACPV, NeedStub);
+ MCE.addRelocation(MR);
}
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
@@ -294,7 +314,7 @@ void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI,
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
+void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
unsigned Reloc) {
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, JTIndex, 0, true));
@@ -310,32 +330,28 @@ void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB,
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) {
-#ifndef NDEBUG
- DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
- << Binary << std::dec << "\n";
-#endif
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
MCE.emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) {
-#ifndef NDEBUG
- DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
- << (unsigned)Binary << std::dec << "\n";
- DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
- << (unsigned)(Binary >> 32) << std::dec << "\n";
-#endif
+ DEBUG(errs() << " 0x";
+ errs().write_hex(Binary) << "\n");
MCE.emitDWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
- DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
+ DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
NumEmitted++; // Keep track of the # of mi's emitted
switch (MI.getDesc().TSFlags & ARMII::FormMask) {
default: {
- assert(0 && "Unhandled instruction encoding format!");
+ llvm_unreachable("Unhandled instruction encoding format!");
break;
}
case ARMII::Pseudo:
@@ -393,6 +409,7 @@ void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
emitMiscInstruction(MI);
break;
}
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
}
template<class CodeEmitter>
@@ -400,7 +417,7 @@ void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
-
+
// Remember the CONSTPOOL_ENTRY address for later relocation.
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
@@ -410,55 +427,49 @@ void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
ARMConstantPoolValue *ACPV =
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
- DOUT << " ** ARM constant pool #" << CPI << " @ "
- << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
+ DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
GlobalValue *GV = ACPV->getGV();
if (GV) {
- assert(!ACPV->isStub() && "Don't know how to deal this yet!");
- if (ACPV->isNonLazyPointer())
- MCE.addRelocation(MachineRelocation::getIndirectSymbol(
- MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
- (intptr_t)ACPV, false));
- else
- emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
- ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
+ Reloc::Model RelocM = TM.getRelocationModel();
+ emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
+ isa<Function>(GV),
+ Subtarget->GVIsIndirectSymbol(GV, RelocM),
+ (intptr_t)ACPV);
} else {
- assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
}
emitWordLE(0);
} else {
Constant *CV = MCPE.Val.ConstVal;
-#ifndef NDEBUG
- DOUT << " ** Constant pool #" << CPI << " @ "
- << (void*)MCE.getCurrentPCValue() << " ";
- if (const Function *F = dyn_cast<Function>(CV))
- DOUT << F->getName();
- else
- DOUT << *CV;
- DOUT << '\n';
-#endif
+ DEBUG({
+ errs() << " ** Constant pool #" << CPI << " @ "
+ << (void*)MCE.getCurrentPCValue() << " ";
+ if (const Function *F = dyn_cast<Function>(CV))
+ errs() << F->getName();
+ else
+ errs() << *CV;
+ errs() << '\n';
+ });
if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
- emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
+ emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
emitWordLE(0);
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
emitWordLE(Val);
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
- if (CFP->getType() == Type::FloatTy)
+ if (CFP->getType()->isFloatTy())
emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
- else if (CFP->getType() == Type::DoubleTy)
+ else if (CFP->getType()->isDoubleTy())
emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else {
- assert(0 && "Unable to handle this constantpool entry!");
- abort();
+ llvm_unreachable("Unable to handle this constantpool entry!");
}
} else {
- assert(0 && "Unable to handle this constantpool entry!");
- abort();
+ llvm_unreachable("Unable to handle this constantpool entry!");
}
}
}
@@ -467,7 +478,8 @@ template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
- assert(MO1.isImm() && "Not a valid so_imm value!");
+ assert(MO1.isImm() && ARM_AM::getSOImmVal(MO1.isImm()) != -1 &&
+ "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
@@ -483,7 +495,7 @@ void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
- Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1));
+ Binary |= getMachineSoImmOpValue(V1);
emitWordLE(Binary);
// Now the 'orr' instruction.
@@ -501,14 +513,14 @@ void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
- Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2));
+ Binary |= getMachineSoImmOpValue(V2);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
// It's basically add r, pc, (LJTI - $+8)
-
+
const TargetInstrDesc &TID = MI.getDesc();
// Emit the 'add' instruction.
@@ -527,7 +539,6 @@ void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
// Encode the displacement.
- // Set bit I(25) to identify this is the immediate form of <shifter_op>.
Binary |= 1 << ARMII::I_BitShift;
emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
@@ -576,8 +587,8 @@ void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) {
template<class CodeEmitter>
void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) {
- DOUT << " ** LPC" << LabelID << " @ "
- << (void*)MCE.getCurrentPCValue() << '\n';
+ DEBUG(errs() << " ** LPC" << LabelID << " @ "
+ << (void*)MCE.getCurrentPCValue() << '\n');
JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}
@@ -586,13 +597,13 @@ void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
switch (Opcode) {
default:
- abort(); // FIXME:
+ llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
+ // FIXME: Add support for MOVimm32.
case TargetInstrInfo::INLINEASM: {
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
if (MI.getOperand(0).getSymbolName()[0]) {
- assert(0 && "JIT does not support inline asm!\n");
- abort();
+ llvm_report_error("JIT does not support inline asm!");
}
break;
}
@@ -601,7 +612,7 @@ void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
MCE.emitLabel(MI.getOperand(0).getImm());
break;
case TargetInstrInfo::IMPLICIT_DEF:
- case TargetInstrInfo::DECLARE:
+ case TargetInstrInfo::KILL:
case ARM::DWARF_LOC:
// Do nothing.
break;
@@ -674,7 +685,7 @@ unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
- default: assert(0 && "Unknown shift opc!");
+ default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
@@ -688,7 +699,7 @@ unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
// ASR - 100
// ROR - 110
switch (SOpc) {
- default: assert(0 && "Unknown shift opc!");
+ default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
@@ -713,12 +724,15 @@ unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) {
+ int SoImmVal = ARM_AM::getSOImmVal(SoImm);
+ assert(SoImmVal != -1 && "Not a valid so_imm value!");
+
// Encode rotate_imm.
- unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1)
+ unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
<< ARMII::SoRotImmShift;
// Encode immed_8.
- Binary |= ARM_AM::getSOImmValImm(SoImm);
+ Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
return Binary;
}
@@ -740,6 +754,10 @@ void Emitter<CodeEmitter>::emitDataProcessingInstruction(
unsigned ImplicitRn) {
const TargetInstrDesc &TID = MI.getDesc();
+ if (TID.Opcode == ARM::BFC) {
+ llvm_report_error("ARMv6t2 JIT is not yet supported.");
+ }
+
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
@@ -791,9 +809,7 @@ void Emitter<CodeEmitter>::emitDataProcessingInstruction(
}
// Encode so_imm.
- // Set bit I(25) to identify this is the immediate form of <shifter_op>.
- Binary |= 1 << ARMII::I_BitShift;
- Binary |= getMachineSoImmOpValue(MO.getImm());
+ Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
emitWordLE(Binary);
}
@@ -952,8 +968,8 @@ static unsigned getAddrModeUPBits(unsigned Mode) {
// DA - Decrement after - bit U = 0 and bit P = 0
// DB - Decrement before - bit U = 0 and bit P = 1
switch (Mode) {
- default: assert(0 && "Unknown addressing sub-mode!");
- case ARM_AM::da: break;
+ default: llvm_unreachable("Unknown addressing sub-mode!");
+ case ARM_AM::da: break;
case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
@@ -983,7 +999,7 @@ void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction(
Binary |= 0x1 << ARMII::W_BitShift;
// Set registers
- for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
+ for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
@@ -1107,7 +1123,7 @@ void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) {
unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
-
+
emitWordLE(Binary);
}
@@ -1115,8 +1131,9 @@ template<class CodeEmitter>
void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
- if (TID.Opcode == ARM::TPsoft)
- abort(); // FIXME
+ if (TID.Opcode == ARM::TPsoft) {
+ llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
+ }
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
@@ -1135,7 +1152,8 @@ void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) {
// Remember the base address of the inline jump table.
uintptr_t JTBase = MCE.getCurrentPCValue();
JTI->addJumpTableBaseAddr(JTIndex, JTBase);
- DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
+ DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
+ << '\n');
// Now emit the jump table entries.
const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
@@ -1155,17 +1173,17 @@ void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Handle jump tables.
- if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd ||
- TID.Opcode == ARM::t2BR_JTr || TID.Opcode == ARM::t2BR_JTadd) {
+ if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
// First emit a ldr pc, [] instruction.
emitDataProcessingInstruction(MI, ARM::PC);
// Then emit the inline jump table.
- unsigned JTIndex = (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::t2BR_JTr)
+ unsigned JTIndex =
+ (TID.Opcode == ARM::BR_JTr)
? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
emitInlineJumpTable(JTIndex);
return;
- } else if (TID.Opcode == ARM::BR_JTm || TID.Opcode == ARM::t2BR_JTm) {
+ } else if (TID.Opcode == ARM::BR_JTm) {
// First emit a ldr pc, [] instruction.
emitLoadStoreInstruction(MI, ARM::PC);
@@ -1183,7 +1201,7 @@ void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
if (TID.Opcode == ARM::BX_RET)
// The return register is LR.
Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
- else
+ else
// otherwise, set the return register
Binary |= getMachineOpValue(MI, 0);
@@ -1194,7 +1212,7 @@ static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
- RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
+ RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
if (!isSPVFP)
Binary |= RegD << ARMII::RegRdShift;
else {
@@ -1208,7 +1226,7 @@ static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
- RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
+ RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
if (!isSPVFP)
Binary |= RegN << ARMII::RegRnShift;
else {
@@ -1222,7 +1240,7 @@ static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
- RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
+ RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
if (!isSPVFP)
Binary |= RegM;
else {
@@ -1268,7 +1286,7 @@ void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) {
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, OpIdx);
-
+
emitWordLE(Binary);
}
@@ -1386,11 +1404,11 @@ void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction(
Binary |= 0x1 << ARMII::W_BitShift;
// First register is encoded in Dd.
- Binary |= encodeVFPRd(MI, 4);
+ Binary |= encodeVFPRd(MI, 5);
// Number of registers are encoded in offset field.
unsigned NumRegs = 1;
- for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
+ for (unsigned i = 6, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
@@ -1413,4 +1431,3 @@ void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) {
}
#include "ARMGenCodeEmitter.inc"
-
diff --git a/lib/Target/ARM/ARMConstantIslandPass.cpp b/lib/Target/ARM/ARMConstantIslandPass.cpp
index 9fedaa4..309e3ba 100644
--- a/lib/Target/ARM/ARMConstantIslandPass.cpp
+++ b/lib/Target/ARM/ARMConstantIslandPass.cpp
@@ -15,24 +15,31 @@
#define DEBUG_TYPE "arm-cp-islands"
#include "ARM.h"
+#include "ARMAddressingModes.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMInstrInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
-STATISTIC(NumCPEs, "Number of constpool entries");
-STATISTIC(NumSplit, "Number of uncond branches inserted");
-STATISTIC(NumCBrFixed, "Number of cond branches fixed");
-STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+STATISTIC(NumCPEs, "Number of constpool entries");
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+STATISTIC(NumCBrFixed, "Number of cond branches fixed");
+STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+STATISTIC(NumTBs, "Number of table branches generated");
+STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
+STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
namespace {
/// ARMConstantIslands - Due to limited PC-relative displacements, ARM
@@ -63,6 +70,8 @@ namespace {
/// to a return, unreachable, or unconditional branch).
std::vector<MachineBasicBlock*> WaterList;
+ typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
+
/// CPUser - One user of a constant pool, keeping the machine instruction
/// pointer, the constant pool being referenced, and the max displacement
/// allowed from the instruction to the CP.
@@ -70,8 +79,11 @@ namespace {
MachineInstr *MI;
MachineInstr *CPEMI;
unsigned MaxDisp;
- CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
- : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
+ bool NegOk;
+ bool IsSoImm;
+ CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
+ bool neg, bool soimm)
+ : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {}
};
/// CPUsers - Keep track of all of the machine instructions that use various
@@ -117,29 +129,34 @@ namespace {
///
SmallVector<MachineInstr*, 4> PushPopMIs;
+ /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
+ SmallVector<MachineInstr*, 4> T2JumpTables;
+
/// HasFarJump - True if any far jump instruction has been emitted during
/// the branch fix up pass.
bool HasFarJump;
const TargetInstrInfo *TII;
+ const ARMSubtarget *STI;
ARMFunctionInfo *AFI;
bool isThumb;
+ bool isThumb1;
bool isThumb2;
public:
static char ID;
ARMConstantIslands() : MachineFunctionPass(&ID) {}
- virtual bool runOnMachineFunction(MachineFunction &Fn);
+ virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM constant island placement and branch shortening pass";
}
private:
- void DoInitialPlacement(MachineFunction &Fn,
+ void DoInitialPlacement(MachineFunction &MF,
std::vector<MachineInstr*> &CPEMIs);
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
- void InitialFunctionScan(MachineFunction &Fn,
+ void InitialFunctionScan(MachineFunction &MF,
const std::vector<MachineInstr*> &CPEMIs);
MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
@@ -147,58 +164,62 @@ namespace {
bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
bool LookForWater(CPUser&U, unsigned UserOffset,
- MachineBasicBlock** NewMBB);
- MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB,
- std::vector<MachineBasicBlock*>::iterator IP);
+ MachineBasicBlock *&NewMBB);
+ MachineBasicBlock *AcceptWater(water_iterator IP);
void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
- MachineBasicBlock** NewMBB);
- bool HandleConstantPoolUser(MachineFunction &Fn, unsigned CPUserIndex);
+ MachineBasicBlock *&NewMBB);
+ bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
void RemoveDeadCPEMI(MachineInstr *CPEMI);
bool RemoveUnusedCPEntries();
bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
- MachineInstr *CPEMI, unsigned Disp,
- bool DoDump);
+ MachineInstr *CPEMI, unsigned Disp, bool NegOk,
+ bool DoDump = false);
bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
CPUser &U);
bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
- unsigned Disp, bool NegativeOK);
+ unsigned Disp, bool NegativeOK, bool IsSoImm = false);
bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
- bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br);
- bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br);
- bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br);
+ bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
+ bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
+ bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
bool UndoLRSpillRestore();
+ bool OptimizeThumb2Instructions(MachineFunction &MF);
+ bool OptimizeThumb2Branches(MachineFunction &MF);
+ bool OptimizeThumb2JumpTables(MachineFunction &MF);
unsigned GetOffsetOf(MachineInstr *MI) const;
void dumpBBs();
- void verify(MachineFunction &Fn);
+ void verify(MachineFunction &MF);
};
char ARMConstantIslands::ID = 0;
}
/// verify - check BBOffsets, BBSizes, alignment of islands
-void ARMConstantIslands::verify(MachineFunction &Fn) {
+void ARMConstantIslands::verify(MachineFunction &MF) {
assert(BBOffsets.size() == BBSizes.size());
for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
- if (isThumb) {
- for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
- MBBI != E; ++MBBI) {
- MachineBasicBlock *MBB = MBBI;
- if (!MBB->empty() &&
- MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY)
- assert((BBOffsets[MBB->getNumber()]%4 == 0 &&
- BBSizes[MBB->getNumber()]%4 == 0) ||
- (BBOffsets[MBB->getNumber()]%4 != 0 &&
- BBSizes[MBB->getNumber()]%4 != 0));
+ if (!isThumb)
+ return;
+#ifndef NDEBUG
+ for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ if (!MBB->empty() &&
+ MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
+ unsigned MBBId = MBB->getNumber();
+ assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
+ (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
}
}
+#endif
}
/// print block size and offset information - debugging
void ARMConstantIslands::dumpBBs() {
for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
- DOUT << "block " << J << " offset " << BBOffsets[J] <<
- " size " << BBSizes[J] << "\n";
+ DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
+ << " size " << BBSizes[J] << "\n");
}
}
@@ -208,31 +229,36 @@ FunctionPass *llvm::createARMConstantIslandPass() {
return new ARMConstantIslands();
}
-bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
- MachineConstantPool &MCP = *Fn.getConstantPool();
+bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
+ MachineConstantPool &MCP = *MF.getConstantPool();
+
+ TII = MF.getTarget().getInstrInfo();
+ AFI = MF.getInfo<ARMFunctionInfo>();
+ STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
- TII = Fn.getTarget().getInstrInfo();
- AFI = Fn.getInfo<ARMFunctionInfo>();
isThumb = AFI->isThumbFunction();
+ isThumb1 = AFI->isThumb1OnlyFunction();
isThumb2 = AFI->isThumb2Function();
HasFarJump = false;
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
- Fn.RenumberBlocks();
+ MF.RenumberBlocks();
+
+ // Thumb1 functions containing constant pools get 4-byte alignment.
+ // This is so we can keep exact track of where the alignment padding goes.
- /// Thumb functions containing constant pools get 2-byte alignment.
- /// This is so we can keep exact track of where the alignment padding goes.
- /// Set default.
- AFI->setAlign(isThumb ? 1U : 2U);
+ // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte
+ // aligned.
+ AFI->setAlign(isThumb1 ? 1U : 2U);
// Perform the initial placement of the constant pool entries. To start with,
// we put them all at the end of the function.
std::vector<MachineInstr*> CPEMIs;
if (!MCP.isEmpty()) {
- DoInitialPlacement(Fn, CPEMIs);
- if (isThumb)
+ DoInitialPlacement(MF, CPEMIs);
+ if (isThumb1)
AFI->setAlign(2U);
}
@@ -242,7 +268,7 @@ bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
// Do the initial scan of the function, building up information about the
// sizes of each block, the location of all the water, and finding all of the
// constant pool users.
- InitialFunctionScan(Fn, CPEMIs);
+ InitialFunctionScan(MF, CPEMIs);
CPEMIs.clear();
/// Remove dead constant pool entries.
@@ -251,25 +277,37 @@ bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
// Iteratively place constant pool entries and fix up branches until there
// is no change.
bool MadeChange = false;
+ unsigned NoCPIters = 0, NoBRIters = 0;
while (true) {
- bool Change = false;
+ bool CPChange = false;
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
- Change |= HandleConstantPoolUser(Fn, i);
+ CPChange |= HandleConstantPoolUser(MF, i);
+ if (CPChange && ++NoCPIters > 30)
+ llvm_unreachable("Constant Island pass failed to converge!");
DEBUG(dumpBBs());
+
+ bool BRChange = false;
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
- Change |= FixUpImmediateBr(Fn, ImmBranches[i]);
+ BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
+ if (BRChange && ++NoBRIters > 30)
+ llvm_unreachable("Branch Fix Up pass failed to converge!");
DEBUG(dumpBBs());
- if (!Change)
+
+ if (!CPChange && !BRChange)
break;
MadeChange = true;
}
+ // Shrink 32-bit Thumb2 branch, load, and store instructions.
+ if (isThumb2)
+ MadeChange |= OptimizeThumb2Instructions(MF);
+
// After a while, this might be made debug-only, but it is not expensive.
- verify(Fn);
+ verify(MF);
// If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
// Undo the spill / restore of LR if possible.
- if (!HasFarJump && AFI->isLRSpilledForFarJump() && isThumb)
+ if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
MadeChange |= UndoLRSpillRestore();
BBSizes.clear();
@@ -279,24 +317,25 @@ bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
CPEntries.clear();
ImmBranches.clear();
PushPopMIs.clear();
+ T2JumpTables.clear();
return MadeChange;
}
/// DoInitialPlacement - Perform the initial placement of the constant pool
/// entries. To start with, we put them all at the end of the function.
-void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
+void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
std::vector<MachineInstr*> &CPEMIs) {
// Create the basic block to hold the CPE's.
- MachineBasicBlock *BB = Fn.CreateMachineBasicBlock();
- Fn.push_back(BB);
+ MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
+ MF.push_back(BB);
// Add all of the constants from the constant pool to the end block, use an
// identity mapping of CPI's to CPE's.
const std::vector<MachineConstantPoolEntry> &CPs =
- Fn.getConstantPool()->getConstants();
+ MF.getConstantPool()->getConstants();
- const TargetData &TD = *Fn.getTarget().getTargetData();
+ const TargetData &TD = *MF.getTarget().getTargetData();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
// Verify that all constant pool entries are a multiple of 4 bytes. If not,
@@ -313,7 +352,8 @@ void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
CPEs.push_back(CPEntry(CPEMI, i));
CPEntries.push_back(CPEs);
NumCPEs++;
- DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n";
+ DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
+ << "\n");
}
}
@@ -352,10 +392,10 @@ ARMConstantIslands::CPEntry
/// InitialFunctionScan - Do the initial scan of the function, building up
/// information about the sizes of each block, the location of all the water,
/// and finding all of the constant pool users.
-void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
+void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
const std::vector<MachineInstr*> &CPEMIs) {
unsigned Offset = 0;
- for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
+ for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
MachineBasicBlock &MBB = *MBBI;
@@ -377,18 +417,19 @@ void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
unsigned Scale = 1;
int UOpc = Opc;
switch (Opc) {
+ default:
+ continue; // Ignore other JT branches
case ARM::tBR_JTr:
- case ARM::t2BR_JTr:
- case ARM::t2BR_JTm:
- case ARM::t2BR_JTadd:
- // A Thumb table jump may involve padding; for the offsets to
+ // A Thumb1 table jump may involve padding; for the offsets to
// be right, functions containing these must be 4-byte aligned.
AFI->setAlign(2U);
if ((Offset+MBBSize)%4 != 0)
+ // FIXME: Add a pseudo ALIGN instruction instead.
MBBSize += 2; // padding
continue; // Does not get an entry in ImmBranches
- default:
- continue; // Ignore other JT branches
+ case ARM::t2BR_JT:
+ T2JumpTables.push_back(I);
+ continue; // Does not get an entry in ImmBranches
case ARM::Bcc:
isCond = true;
UOpc = ARM::B;
@@ -427,6 +468,9 @@ void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
PushPopMIs.push_back(I);
+ if (Opc == ARM::CONSTPOOL_ENTRY)
+ continue;
+
// Scan the instructions for constant pool operands.
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (I->getOperand(op).isCPI()) {
@@ -436,50 +480,52 @@ void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
// Basic size info comes from the TSFlags field.
unsigned Bits = 0;
unsigned Scale = 1;
- unsigned TSFlags = I->getDesc().TSFlags;
- switch (TSFlags & ARMII::AddrModeMask) {
+ bool NegOk = false;
+ bool IsSoImm = false;
+
+ switch (Opc) {
default:
- // Constant pool entries can reach anything.
- if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
- continue;
- if (I->getOpcode() == ARM::tLEApcrel) {
- Bits = 8; // Taking the address of a CP entry.
- break;
- }
- assert(0 && "Unknown addressing mode for CP reference!");
- case ARMII::AddrMode1: // AM1: 8 bits << 2
- Bits = 8;
- Scale = 4; // Taking the address of a CP entry.
- break;
- case ARMII::AddrMode2:
- Bits = 12; // +-offset_12
- break;
- case ARMII::AddrMode3:
- Bits = 8; // +-offset_8
+ llvm_unreachable("Unknown addressing mode for CP reference!");
break;
- // addrmode4 has no immediate offset.
- case ARMII::AddrMode5:
+
+ // Taking the address of a CP entry.
+ case ARM::LEApcrel:
+ // This takes a SoImm, which is 8 bit immediate rotated. We'll
+ // pretend the maximum offset is 255 * 4. Since each instruction
+ // 4 byte wide, this is always correct. We'llc heck for other
+ // displacements that fits in a SoImm as well.
Bits = 8;
- Scale = 4; // +-(offset_8*4)
+ Scale = 4;
+ NegOk = true;
+ IsSoImm = true;
break;
- // addrmode6 has no immediate offset.
- case ARMII::AddrModeT1_1:
- Bits = 5; // +offset_5
+ case ARM::t2LEApcrel:
+ Bits = 12;
+ NegOk = true;
break;
- case ARMII::AddrModeT1_2:
- Bits = 5;
- Scale = 2; // +(offset_5*2)
+ case ARM::tLEApcrel:
+ Bits = 8;
+ Scale = 4;
break;
- case ARMII::AddrModeT1_4:
- Bits = 5;
- Scale = 4; // +(offset_5*4)
+
+ case ARM::LDR:
+ case ARM::LDRcp:
+ case ARM::t2LDRpci:
+ Bits = 12; // +-offset_12
+ NegOk = true;
break;
- case ARMII::AddrModeT1_s:
+
+ case ARM::tLDRpci:
+ case ARM::tLDRcp:
Bits = 8;
Scale = 4; // +(offset_8*4)
break;
- case ARMII::AddrModeT2_pc:
- Bits = 12; // +-offset_12
+
+ case ARM::FLDD:
+ case ARM::FLDS:
+ Bits = 8;
+ Scale = 4; // +-(offset_8*4)
+ NegOk = true;
break;
}
@@ -487,7 +533,7 @@ void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
unsigned CPI = I->getOperand(op).getIndex();
MachineInstr *CPEMI = CPEMIs[CPI];
unsigned MaxOffs = ((1 << Bits)-1) * Scale;
- CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
+ CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
// Increment corresponding CPEntry reference count.
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
@@ -563,7 +609,7 @@ void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
// Next, update WaterList. Specifically, we need to add NewMBB as having
// available water after it.
- std::vector<MachineBasicBlock*>::iterator IP =
+ water_iterator IP =
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
CompareMBBNumbers);
WaterList.insert(IP, NewBB);
@@ -590,8 +636,8 @@ MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
- BuildMI(OrigBB, DebugLoc::getUnknownLoc(),
- TII->get(isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B)).addMBB(NewBB);
+ unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
+ BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
NumSplit++;
// Update the CFG. All succs of OrigBB are now succs of NewBB.
@@ -625,7 +671,7 @@ MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
// available water after it (but not if it's already there, which happens
// when splitting before a conditional branch that is followed by an
// unconditional branch - in that case we want to insert NewBB).
- std::vector<MachineBasicBlock*>::iterator IP =
+ water_iterator IP =
std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
CompareMBBNumbers);
MachineBasicBlock* WaterBB = *IP;
@@ -648,7 +694,7 @@ MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
// We removed instructions from UserMBB, subtract that off from its size.
// Add 2 or 4 to the block to count the unconditional branch we added to it.
- unsigned delta = isThumb ? 2 : 4;
+ int delta = isThumb1 ? 2 : 4;
BBSizes[OrigBBI] -= NewBBSize - delta;
// ...and adjust BBOffsets for NewBB accordingly.
@@ -664,24 +710,39 @@ MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
/// constant pool entry).
bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
- unsigned TrialOffset, unsigned MaxDisp, bool NegativeOK) {
+ unsigned TrialOffset, unsigned MaxDisp,
+ bool NegativeOK, bool IsSoImm) {
// On Thumb offsets==2 mod 4 are rounded down by the hardware for
// purposes of the displacement computation; compensate for that here.
// Effectively, the valid range of displacements is 2 bytes smaller for such
// references.
- if (isThumb && UserOffset%4 !=0)
+ unsigned TotalAdj = 0;
+ if (isThumb && UserOffset%4 !=0) {
UserOffset -= 2;
+ TotalAdj = 2;
+ }
// CPEs will be rounded up to a multiple of 4.
- if (isThumb && TrialOffset%4 != 0)
+ if (isThumb && TrialOffset%4 != 0) {
TrialOffset += 2;
+ TotalAdj += 2;
+ }
+
+ // In Thumb2 mode, later branch adjustments can shift instructions up and
+ // cause alignment change. In the worst case scenario this can cause the
+ // user's effective address to be subtracted by 2 and the CPE's address to
+ // be plus 2.
+ if (isThumb2 && TotalAdj != 4)
+ MaxDisp -= (4 - TotalAdj);
if (UserOffset <= TrialOffset) {
// User before the Trial.
- if (TrialOffset-UserOffset <= MaxDisp)
+ if (TrialOffset - UserOffset <= MaxDisp)
return true;
+ // FIXME: Make use full range of soimm values.
} else if (NegativeOK) {
- if (UserOffset-TrialOffset <= MaxDisp)
+ if (UserOffset - TrialOffset <= MaxDisp)
return true;
+ // FIXME: Make use full range of soimm values.
}
return false;
}
@@ -690,39 +751,36 @@ bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
/// Water (a basic block) will be in range for the specific MI.
bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
- MachineBasicBlock* Water, CPUser &U)
-{
+ MachineBasicBlock* Water, CPUser &U) {
unsigned MaxDisp = U.MaxDisp;
- MachineFunction::iterator I = next(MachineFunction::iterator(Water));
unsigned CPEOffset = BBOffsets[Water->getNumber()] +
BBSizes[Water->getNumber()];
// If the CPE is to be inserted before the instruction, that will raise
- // the offset of the instruction. (Currently applies only to ARM, so
- // no alignment compensation attempted here.)
+ // the offset of the instruction.
if (CPEOffset < UserOffset)
UserOffset += U.CPEMI->getOperand(2).getImm();
- return OffsetIsInRange (UserOffset, CPEOffset, MaxDisp, !isThumb);
+ return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
}
/// CPEIsInRange - Returns true if the distance between specific MI and
/// specific ConstPool entry instruction can fit in MI's displacement field.
bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
- MachineInstr *CPEMI,
- unsigned MaxDisp, bool DoDump) {
+ MachineInstr *CPEMI, unsigned MaxDisp,
+ bool NegOk, bool DoDump) {
unsigned CPEOffset = GetOffsetOf(CPEMI);
assert(CPEOffset%4 == 0 && "Misaligned CPE");
if (DoDump) {
- DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm()
- << " max delta=" << MaxDisp
- << " insn address=" << UserOffset
- << " CPE address=" << CPEOffset
- << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI;
+ DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
+ << " max delta=" << MaxDisp
+ << " insn address=" << UserOffset
+ << " CPE address=" << CPEOffset
+ << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
}
- return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, !isThumb);
+ return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
}
#ifndef NDEBUG
@@ -745,52 +803,48 @@ static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
int delta) {
MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
- for(unsigned i=BB->getNumber()+1; i<BB->getParent()->getNumBlockIDs(); i++) {
+ for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
+ i < e; ++i) {
BBOffsets[i] += delta;
// If some existing blocks have padding, adjust the padding as needed, a
// bit tricky. delta can be negative so don't use % on that.
- if (isThumb) {
- MachineBasicBlock *MBB = MBBI;
- if (!MBB->empty()) {
- // Constant pool entries require padding.
- if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
- unsigned oldOffset = BBOffsets[i] - delta;
- if (oldOffset%4==0 && BBOffsets[i]%4!=0) {
- // add new padding
- BBSizes[i] += 2;
- delta += 2;
- } else if (oldOffset%4!=0 && BBOffsets[i]%4==0) {
- // remove existing padding
- BBSizes[i] -=2;
- delta -= 2;
- }
+ if (!isThumb)
+ continue;
+ MachineBasicBlock *MBB = MBBI;
+ if (!MBB->empty()) {
+ // Constant pool entries require padding.
+ if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
+ unsigned OldOffset = BBOffsets[i] - delta;
+ if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
+ // add new padding
+ BBSizes[i] += 2;
+ delta += 2;
+ } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
+ // remove existing padding
+ BBSizes[i] -= 2;
+ delta -= 2;
}
- // Thumb jump tables require padding. They should be at the end;
- // following unconditional branches are removed by AnalyzeBranch.
- MachineInstr *ThumbJTMI = NULL;
- if ((prior(MBB->end())->getOpcode() == ARM::tBR_JTr)
- || (prior(MBB->end())->getOpcode() == ARM::t2BR_JTr)
- || (prior(MBB->end())->getOpcode() == ARM::t2BR_JTm)
- || (prior(MBB->end())->getOpcode() == ARM::t2BR_JTadd))
- ThumbJTMI = prior(MBB->end());
- if (ThumbJTMI) {
- unsigned newMIOffset = GetOffsetOf(ThumbJTMI);
- unsigned oldMIOffset = newMIOffset - delta;
- if (oldMIOffset%4 == 0 && newMIOffset%4 != 0) {
- // remove existing padding
- BBSizes[i] -= 2;
- delta -= 2;
- } else if (oldMIOffset%4 != 0 && newMIOffset%4 == 0) {
- // add new padding
- BBSizes[i] += 2;
- delta += 2;
- }
+ }
+ // Thumb1 jump tables require padding. They should be at the end;
+ // following unconditional branches are removed by AnalyzeBranch.
+ MachineInstr *ThumbJTMI = prior(MBB->end());
+ if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
+ unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
+ unsigned OldMIOffset = NewMIOffset - delta;
+ if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
+ // remove existing padding
+ BBSizes[i] -= 2;
+ delta -= 2;
+ } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
+ // add new padding
+ BBSizes[i] += 2;
+ delta += 2;
}
- if (delta==0)
- return;
}
- MBBI = next(MBBI);
+ if (delta==0)
+ return;
}
+ MBBI = next(MBBI);
}
}
@@ -824,8 +878,8 @@ int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
MachineInstr *CPEMI = U.CPEMI;
// Check to see if the CPE is already in-range.
- if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, true)) {
- DOUT << "In range\n";
+ if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
+ DEBUG(errs() << "In range\n");
return 1;
}
@@ -839,8 +893,9 @@ int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
// Removing CPEs can leave empty entries, skip
if (CPEs[i].CPEMI == NULL)
continue;
- if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, false)) {
- DOUT << "Replacing CPE#" << CPI << " with CPE#" << CPEs[i].CPI << "\n";
+ if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
+ DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[i].CPI << "\n");
// Point the CPUser node to the replacement
U.CPEMI = CPEs[i].CPEMI;
// Change the CPI in the instruction operand to refer to the clone.
@@ -870,15 +925,15 @@ static inline unsigned getUnconditionalBrDisp(int Opc) {
default:
break;
}
-
+
return ((1<<23)-1)*4;
}
/// AcceptWater - Small amount of common code factored out of the following.
-
-MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB,
- std::vector<MachineBasicBlock*>::iterator IP) {
- DOUT << "found water in range\n";
+///
+MachineBasicBlock *ARMConstantIslands::AcceptWater(water_iterator IP) {
+ DEBUG(errs() << "found water in range\n");
+ MachineBasicBlock *WaterBB = *IP;
// Remove the original WaterList entry; we want subsequent
// insertions in this vicinity to go after the one we're
// about to insert. This considerably reduces the number
@@ -890,41 +945,44 @@ MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB,
/// LookForWater - look for an existing entry in the WaterList in which
/// we can place the CPE referenced from U so it's within range of U's MI.
-/// Returns true if found, false if not. If it returns true, *NewMBB
-/// is set to the WaterList entry.
-/// For ARM, we prefer the water that's farthest away. For Thumb, prefer
-/// water that will not introduce padding to water that will; within each
-/// group, prefer the water that's farthest away.
-
+/// Returns true if found, false if not. If it returns true, NewMBB
+/// is set to the WaterList entry. For Thumb, prefer water that will not
+/// introduce padding to water that will. To ensure that this pass
+/// terminates, the CPE location for a particular CPUser is only allowed to
+/// move to a lower address, so search backward from the end of the list and
+/// prefer the first water that is in range.
bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
- MachineBasicBlock** NewMBB) {
- std::vector<MachineBasicBlock*>::iterator IPThatWouldPad;
- MachineBasicBlock* WaterBBThatWouldPad = NULL;
- if (!WaterList.empty()) {
- for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()),
- B = WaterList.begin();; --IP) {
- MachineBasicBlock* WaterBB = *IP;
- if (WaterIsInRange(UserOffset, WaterBB, U)) {
- if (isThumb &&
- (BBOffsets[WaterBB->getNumber()] +
- BBSizes[WaterBB->getNumber()])%4 != 0) {
- // This is valid Water, but would introduce padding. Remember
- // it in case we don't find any Water that doesn't do this.
- if (!WaterBBThatWouldPad) {
- WaterBBThatWouldPad = WaterBB;
- IPThatWouldPad = IP;
- }
- } else {
- *NewMBB = AcceptWater(WaterBB, IP);
- return true;
+ MachineBasicBlock *&NewMBB) {
+ if (WaterList.empty())
+ return false;
+
+ bool FoundWaterThatWouldPad = false;
+ water_iterator IPThatWouldPad;
+ for (water_iterator IP = prior(WaterList.end()),
+ B = WaterList.begin();; --IP) {
+ MachineBasicBlock* WaterBB = *IP;
+ // Check if water is in range and at a lower address than the current one.
+ if (WaterIsInRange(UserOffset, WaterBB, U) &&
+ WaterBB->getNumber() < U.CPEMI->getParent()->getNumber()) {
+ unsigned WBBId = WaterBB->getNumber();
+ if (isThumb &&
+ (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
+ // This is valid Water, but would introduce padding. Remember
+ // it in case we don't find any Water that doesn't do this.
+ if (!FoundWaterThatWouldPad) {
+ FoundWaterThatWouldPad = true;
+ IPThatWouldPad = IP;
}
+ } else {
+ NewMBB = AcceptWater(IP);
+ return true;
+ }
}
- if (IP == B)
- break;
- }
+ if (IP == B)
+ break;
}
- if (isThumb && WaterBBThatWouldPad) {
- *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad);
+ if (FoundWaterThatWouldPad) {
+ NewMBB = AcceptWater(IPThatWouldPad);
return true;
}
return false;
@@ -934,12 +992,12 @@ bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
/// block is used if in range, and the conditional branch munged so control
/// flow is correct. Otherwise the block is split to create a hole with an
-/// unconditional branch around it. In either case *NewMBB is set to a
+/// unconditional branch around it. In either case NewMBB is set to a
/// block following which the new island can be inserted (the WaterList
/// is not adjusted).
-
void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
- unsigned UserOffset, MachineBasicBlock** NewMBB) {
+ unsigned UserOffset,
+ MachineBasicBlock *&NewMBB) {
CPUser &U = CPUsers[CPUserIndex];
MachineInstr *UserMI = U.MI;
MachineInstr *CPEMI = U.CPEMI;
@@ -950,18 +1008,18 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
// If the use is at the end of the block, or the end of the block
// is within range, make new water there. (The addition below is
- // for the unconditional branch we will be adding: 4 bytes on ARM,
- // 2 on Thumb. Possible Thumb alignment padding is allowed for
+ // for the unconditional branch we will be adding: 4 bytes on ARM + Thumb2,
+ // 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
// inside OffsetIsInRange.
// If the block ends in an unconditional branch already, it is water,
// and is known to be out of range, so we'll always be adding a branch.)
if (&UserMBB->back() == UserMI ||
- OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb ? 2: 4),
- U.MaxDisp, !isThumb)) {
- DOUT << "Split at end of block\n";
+ OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
+ U.MaxDisp, U.NegOk, U.IsSoImm)) {
+ DEBUG(errs() << "Split at end of block\n");
if (&UserMBB->back() == UserMI)
assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
- *NewMBB = next(MachineFunction::iterator(UserMBB));
+ NewMBB = next(MachineFunction::iterator(UserMBB));
// Add an unconditional branch from UserMBB to fallthrough block.
// Record it for branch lengthening; this new branch will not get out of
// range, but if the preceding conditional branch is out of range, the
@@ -969,16 +1027,16 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
// range, so the machinery has to know about it.
int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
- TII->get(UncondBr)).addMBB(*NewMBB);
+ TII->get(UncondBr)).addMBB(NewMBB);
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
ImmBranches.push_back(ImmBranch(&UserMBB->back(),
MaxDisp, false, UncondBr));
- int delta = isThumb ? 2 : 4;
+ int delta = isThumb1 ? 2 : 4;
BBSizes[UserMBB->getNumber()] += delta;
AdjustBBOffsetsAfter(UserMBB, delta);
} else {
// What a big block. Find a place within the block to split it.
- // This is a little tricky on Thumb since instructions are 2 bytes
+ // This is a little tricky on Thumb1 since instructions are 2 bytes
// and constant pool entries are 4 bytes: if instruction I references
// island CPE, and instruction I+1 references CPE', it will
// not work well to put CPE as far forward as possible, since then
@@ -991,7 +1049,7 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
// if not, we back up the insertion point.
// The 4 in the following is for the unconditional branch we'll be
- // inserting (allows for long branch on Thumb). Alignment of the
+ // inserting (allows for long branch on Thumb1). Alignment of the
// island is handled inside OffsetIsInRange.
unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
// This could point off the end of the block if we've already got
@@ -1000,7 +1058,7 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
// conditional and a maximally long unconditional).
if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
- (isThumb ? 6 : 8);
+ (isThumb1 ? 6 : 8);
unsigned EndInsertOffset = BaseInsertOffset +
CPEMI->getOperand(2).getImm();
MachineBasicBlock::iterator MI = UserMI;
@@ -1011,10 +1069,11 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
Offset += TII->GetInstSizeInBytes(MI),
MI = next(MI)) {
if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
+ CPUser &U = CPUsers[CPUIndex];
if (!OffsetIsInRange(Offset, EndInsertOffset,
- CPUsers[CPUIndex].MaxDisp, !isThumb)) {
- BaseInsertOffset -= (isThumb ? 2 : 4);
- EndInsertOffset -= (isThumb ? 2 : 4);
+ U.MaxDisp, U.NegOk, U.IsSoImm)) {
+ BaseInsertOffset -= (isThumb1 ? 2 : 4);
+ EndInsertOffset -= (isThumb1 ? 2 : 4);
}
// This is overly conservative, as we don't account for CPEMIs
// being reused within the block, but it doesn't matter much.
@@ -1022,8 +1081,8 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
CPUIndex++;
}
}
- DOUT << "Split in middle of big block\n";
- *NewMBB = SplitBlockBeforeInstr(prior(MI));
+ DEBUG(errs() << "Split in middle of big block\n");
+ NewMBB = SplitBlockBeforeInstr(prior(MI));
}
}
@@ -1031,7 +1090,7 @@ void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
/// is out-of-range. If so, pick up the constant pool value and move it some
/// place in-range. Return true if we changed any addresses (thus must run
/// another pass of branch lengthening), false otherwise.
-bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn,
+bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
unsigned CPUserIndex) {
CPUser &U = CPUsers[CPUserIndex];
MachineInstr *UserMI = U.MI;
@@ -1040,14 +1099,9 @@ bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn,
unsigned Size = CPEMI->getOperand(2).getImm();
MachineBasicBlock *NewMBB;
// Compute this only once, it's expensive. The 4 or 8 is the value the
- // hardware keeps in the PC (2 insns ahead of the reference).
+ // hardware keeps in the PC.
unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
- // Special case: tLEApcrel are two instructions MI's. The actual user is the
- // second instruction.
- if (UserMI->getOpcode() == ARM::tLEApcrel)
- UserOffset += 2;
-
// See if the current entry is within range, or there is a clone of it
// in range.
int result = LookForExistingCPEntry(U, UserOffset);
@@ -1058,19 +1112,16 @@ bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn,
// We will be generating a new clone. Get a UID for it.
unsigned ID = AFI->createConstPoolEntryUId();
- // Look for water where we can place this CPE. We look for the farthest one
- // away that will work. Forward references only for now (although later
- // we might find some that are backwards).
-
- if (!LookForWater(U, UserOffset, &NewMBB)) {
+ // Look for water where we can place this CPE.
+ if (!LookForWater(U, UserOffset, NewMBB)) {
// No water found.
- DOUT << "No water found\n";
- CreateNewWater(CPUserIndex, UserOffset, &NewMBB);
+ DEBUG(errs() << "No water found\n");
+ CreateNewWater(CPUserIndex, UserOffset, NewMBB);
}
// Okay, we know we can put an island before NewMBB now, do it!
- MachineBasicBlock *NewIsland = Fn.CreateMachineBasicBlock();
- Fn.insert(NewMBB, NewIsland);
+ MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
+ MF.insert(NewMBB, NewIsland);
// Update internal data structures to account for the newly inserted MBB.
UpdateForInsertedWaterBlock(NewIsland);
@@ -1101,7 +1152,8 @@ bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn,
break;
}
- DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI;
+ DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI
+ << '\t' << *UserMI);
return true;
}
@@ -1115,7 +1167,7 @@ void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
BBSizes[CPEBB->getNumber()] -= Size;
// All succeeding offsets have the current size value added in, fix this.
if (CPEBB->empty()) {
- // In thumb mode, the size of island may be padded by two to compensate for
+ // In thumb1 mode, the size of island may be padded by two to compensate for
// the alignment requirement. Then it will now be 2 when the block is
// empty, so fix this.
// All succeeding offsets have the current size value added in, fix this.
@@ -1157,11 +1209,11 @@ bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
unsigned DestOffset = BBOffsets[DestBB->getNumber()];
- DOUT << "Branch of destination BB#" << DestBB->getNumber()
- << " from BB#" << MI->getParent()->getNumber()
- << " max delta=" << MaxDisp
- << " from " << GetOffsetOf(MI) << " to " << DestOffset
- << " offset " << int(DestOffset-BrOffset) << "\t" << *MI;
+ DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
+ << " from BB#" << MI->getParent()->getNumber()
+ << " max delta=" << MaxDisp
+ << " from " << GetOffsetOf(MI) << " to " << DestOffset
+ << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
if (BrOffset <= DestOffset) {
// Branch before the Dest.
@@ -1176,7 +1228,7 @@ bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
/// away to fit in its displacement field.
-bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
+bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
@@ -1185,8 +1237,8 @@ bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
return false;
if (!Br.isCond)
- return FixUpUnconditionalBr(Fn, Br);
- return FixUpConditionalBr(Fn, Br);
+ return FixUpUnconditionalBr(MF, Br);
+ return FixUpConditionalBr(MF, Br);
}
/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
@@ -1194,10 +1246,11 @@ bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) {
/// spilled in the epilogue, then we can use BL to implement a far jump.
/// Otherwise, add an intermediate branch instruction to a branch.
bool
-ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
+ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *MBB = MI->getParent();
- assert(isThumb && !isThumb2 && "Expected a Thumb-1 function!");
+ if (!isThumb1)
+ llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
// Use BL to implement far jump.
Br.MaxDisp = (1 << 21) * 2;
@@ -1207,7 +1260,7 @@ ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
HasFarJump = true;
NumUBrFixed++;
- DOUT << " Changed B to long jump " << *MI;
+ DEBUG(errs() << " Changed B to long jump " << *MI);
return true;
}
@@ -1216,7 +1269,7 @@ ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) {
/// far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool
-ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
+ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
MachineInstr *MI = Br.MI;
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
@@ -1251,7 +1304,8 @@ ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
// b L1
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
- DOUT << " Invert Bcc condition and swap its destination with " << *BMI;
+ DEBUG(errs() << " Invert Bcc condition and swap its destination with "
+ << *BMI);
BMI->getOperand(0).setMBB(DestBB);
MI->getOperand(0).setMBB(NewDest);
MI->getOperand(1).setImm(CC);
@@ -1273,9 +1327,9 @@ ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
}
MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
- DOUT << " Insert B to BB#" << DestBB->getNumber()
- << " also invert condition and change dest. to BB#"
- << NextBB->getNumber() << "\n";
+ DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber()
+ << " also invert condition and change dest. to BB#"
+ << NextBB->getNumber() << "\n");
// Insert a new conditional branch and a new unconditional branch.
// Also update the ImmBranch as well as adding a new entry for the new branch.
@@ -1300,14 +1354,17 @@ ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) {
}
/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
-/// LR / restores LR to pc.
+/// LR / restores LR to pc. FIXME: This is done here because it's only possible
+/// to do this if tBfar is not used.
bool ARMConstantIslands::UndoLRSpillRestore() {
bool MadeChange = false;
for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
MachineInstr *MI = PushPopMIs[i];
+ // First two operands are predicates, the third is a zero since there
+ // is no writeback.
if (MI->getOpcode() == ARM::tPOP_RET &&
- MI->getOperand(0).getReg() == ARM::PC &&
- MI->getNumExplicitOperands() == 1) {
+ MI->getOperand(3).getReg() == ARM::PC &&
+ MI->getNumExplicitOperands() == 4) {
BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
MI->eraseFromParent();
MadeChange = true;
@@ -1315,3 +1372,201 @@ bool ARMConstantIslands::UndoLRSpillRestore() {
}
return MadeChange;
}
+
+bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
+ bool MadeChange = false;
+
+ // Shrink ADR and LDR from constantpool.
+ for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
+ CPUser &U = CPUsers[i];
+ unsigned Opcode = U.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2LEApcrel:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLEApcrel;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ case ARM::t2LDRpci:
+ if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
+ NewOpc = ARM::tLDRpci;
+ Bits = 8;
+ Scale = 4;
+ }
+ break;
+ }
+
+ if (!NewOpc)
+ continue;
+
+ unsigned UserOffset = GetOffsetOf(U.MI) + 4;
+ unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
+ // FIXME: Check if offset is multiple of scale if scale is not 4.
+ if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
+ U.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = U.MI->getParent();
+ BBSizes[MBB->getNumber()] -= 2;
+ AdjustBBOffsetsAfter(MBB, -2);
+ ++NumT2CPShrunk;
+ MadeChange = true;
+ }
+ }
+
+ MadeChange |= OptimizeThumb2Branches(MF);
+ MadeChange |= OptimizeThumb2JumpTables(MF);
+ return MadeChange;
+}
+
+bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
+ bool MadeChange = false;
+
+ for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
+ ImmBranch &Br = ImmBranches[i];
+ unsigned Opcode = Br.MI->getOpcode();
+ unsigned NewOpc = 0;
+ unsigned Scale = 1;
+ unsigned Bits = 0;
+ switch (Opcode) {
+ default: break;
+ case ARM::t2B:
+ NewOpc = ARM::tB;
+ Bits = 11;
+ Scale = 2;
+ break;
+ case ARM::t2Bcc:
+ NewOpc = ARM::tBcc;
+ Bits = 8;
+ Scale = 2;
+ break;
+ }
+ if (!NewOpc)
+ continue;
+
+ unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
+ MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
+ if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
+ Br.MI->setDesc(TII->get(NewOpc));
+ MachineBasicBlock *MBB = Br.MI->getParent();
+ BBSizes[MBB->getNumber()] -= 2;
+ AdjustBBOffsetsAfter(MBB, -2);
+ ++NumT2BrShrunk;
+ MadeChange = true;
+ }
+ }
+
+ return MadeChange;
+}
+
+
+/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
+/// jumptables when it's possible.
+bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
+ bool MadeChange = false;
+
+ // FIXME: After the tables are shrunk, can we get rid some of the
+ // constantpool tables?
+ const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
+ MachineInstr *MI = T2JumpTables[i];
+ const TargetInstrDesc &TID = MI->getDesc();
+ unsigned NumOps = TID.getNumOperands();
+ unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
+ MachineOperand JTOP = MI->getOperand(JTOpIdx);
+ unsigned JTI = JTOP.getIndex();
+ assert(JTI < JT.size());
+
+ bool ByteOk = true;
+ bool HalfWordOk = true;
+ unsigned JTOffset = GetOffsetOf(MI) + 4;
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
+ MachineBasicBlock *MBB = JTBBs[j];
+ unsigned DstOffset = BBOffsets[MBB->getNumber()];
+ // Negative offset is not ok. FIXME: We should change BB layout to make
+ // sure all the branches are forward.
+ if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
+ ByteOk = false;
+ unsigned TBHLimit = ((1<<16)-1)*2;
+ if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
+ HalfWordOk = false;
+ if (!ByteOk && !HalfWordOk)
+ break;
+ }
+
+ if (ByteOk || HalfWordOk) {
+ MachineBasicBlock *MBB = MI->getParent();
+ unsigned BaseReg = MI->getOperand(0).getReg();
+ bool BaseRegKill = MI->getOperand(0).isKill();
+ if (!BaseRegKill)
+ continue;
+ unsigned IdxReg = MI->getOperand(1).getReg();
+ bool IdxRegKill = MI->getOperand(1).isKill();
+ MachineBasicBlock::iterator PrevI = MI;
+ if (PrevI == MBB->begin())
+ continue;
+
+ MachineInstr *AddrMI = --PrevI;
+ bool OptOk = true;
+ // Examine the instruction that calculate the jumptable entry address.
+ // If it's not the one just before the t2BR_JT, we won't delete it, then
+ // it's not worth doing the optimization.
+ for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
+ const MachineOperand &MO = AddrMI->getOperand(k);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && MO.getReg() != BaseReg) {
+ OptOk = false;
+ break;
+ }
+ if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
+ OptOk = false;
+ break;
+ }
+ }
+ if (!OptOk)
+ continue;
+
+ // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
+ // to delete it as well.
+ MachineInstr *LeaMI = --PrevI;
+ if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
+ LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
+ LeaMI->getOperand(0).getReg() != BaseReg)
+ OptOk = false;
+
+ if (!OptOk)
+ continue;
+
+ unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
+ MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
+ .addReg(IdxReg, getKillRegState(IdxRegKill))
+ .addJumpTableIndex(JTI, JTOP.getTargetFlags())
+ .addImm(MI->getOperand(JTOpIdx+1).getImm());
+ // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
+ // is 2-byte aligned. For now, asm printer will fix it up.
+ unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
+ unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
+ OrigSize += TII->GetInstSizeInBytes(LeaMI);
+ OrigSize += TII->GetInstSizeInBytes(MI);
+
+ AddrMI->eraseFromParent();
+ LeaMI->eraseFromParent();
+ MI->eraseFromParent();
+
+ int delta = OrigSize - NewSize;
+ BBSizes[MBB->getNumber()] -= delta;
+ AdjustBBOffsetsAfter(MBB, -delta);
+
+ ++NumTBs;
+ MadeChange = true;
+ }
+ }
+
+ return MadeChange;
+}
diff --git a/lib/Target/ARM/ARMConstantPoolValue.cpp b/lib/Target/ARM/ARMConstantPoolValue.cpp
index a75ed3b..7170089 100644
--- a/lib/Target/ARM/ARMConstantPoolValue.cpp
+++ b/lib/Target/ARM/ARMConstantPoolValue.cpp
@@ -15,33 +15,31 @@
#include "llvm/ADT/FoldingSet.h"
#include "llvm/GlobalValue.h"
#include "llvm/Type.h"
-#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
+#include <cstdlib>
using namespace llvm;
ARMConstantPoolValue::ARMConstantPoolValue(GlobalValue *gv, unsigned id,
- ARMCP::ARMCPKind k,
+ ARMCP::ARMCPKind K,
unsigned char PCAdj,
const char *Modif,
bool AddCA)
: MachineConstantPoolValue((const Type*)gv->getType()),
- GV(gv), S(NULL), LabelId(id), Kind(k), PCAdjust(PCAdj),
+ GV(gv), S(NULL), LabelId(id), Kind(K), PCAdjust(PCAdj),
Modifier(Modif), AddCurrentAddress(AddCA) {}
-ARMConstantPoolValue::ARMConstantPoolValue(const char *s, unsigned id,
- ARMCP::ARMCPKind k,
+ARMConstantPoolValue::ARMConstantPoolValue(LLVMContext &C,
+ const char *s, unsigned id,
unsigned char PCAdj,
const char *Modif,
bool AddCA)
- : MachineConstantPoolValue((const Type*)Type::Int32Ty),
- GV(NULL), S(s), LabelId(id), Kind(k), PCAdjust(PCAdj),
+ : MachineConstantPoolValue((const Type*)Type::getInt32Ty(C)),
+ GV(NULL), S(strdup(s)), LabelId(id), Kind(ARMCP::CPValue), PCAdjust(PCAdj),
Modifier(Modif), AddCurrentAddress(AddCA) {}
-ARMConstantPoolValue::ARMConstantPoolValue(GlobalValue *gv,
- ARMCP::ARMCPKind k,
- const char *Modif)
- : MachineConstantPoolValue((const Type*)Type::Int32Ty),
- GV(gv), S(NULL), LabelId(0), Kind(k), PCAdjust(0),
+ARMConstantPoolValue::ARMConstantPoolValue(GlobalValue *gv, const char *Modif)
+ : MachineConstantPoolValue((const Type*)Type::getInt32Ty(gv->getContext())),
+ GV(gv), S(NULL), LabelId(0), Kind(ARMCP::CPValue), PCAdjust(0),
Modifier(Modif) {}
int ARMConstantPoolValue::getExistingMachineCPValue(MachineConstantPool *CP,
@@ -56,7 +54,6 @@ int ARMConstantPoolValue::getExistingMachineCPValue(MachineConstantPool *CP,
if (CPV->GV == GV &&
CPV->S == S &&
CPV->LabelId == LabelId &&
- CPV->Kind == Kind &&
CPV->PCAdjust == PCAdjust)
return i;
}
@@ -65,31 +62,28 @@ int ARMConstantPoolValue::getExistingMachineCPValue(MachineConstantPool *CP,
return -1;
}
+ARMConstantPoolValue::~ARMConstantPoolValue() {
+ free((void*)S);
+}
+
void
ARMConstantPoolValue::AddSelectionDAGCSEId(FoldingSetNodeID &ID) {
ID.AddPointer(GV);
ID.AddPointer(S);
ID.AddInteger(LabelId);
- ID.AddInteger((unsigned)Kind);
ID.AddInteger(PCAdjust);
}
void ARMConstantPoolValue::dump() const {
- cerr << " " << *this;
+ errs() << " " << *this;
}
-void ARMConstantPoolValue::print(std::ostream &O) const {
- raw_os_ostream RawOS(O);
- print(RawOS);
-}
void ARMConstantPoolValue::print(raw_ostream &O) const {
if (GV)
O << GV->getName();
else
O << S;
- if (isNonLazyPointer()) O << "$non_lazy_ptr";
- else if (isStub()) O << "$stub";
if (Modifier) O << "(" << Modifier << ")";
if (PCAdjust != 0) {
O << "-(LPC" << LabelId << "+" << (unsigned)PCAdjust;
diff --git a/lib/Target/ARM/ARMConstantPoolValue.h b/lib/Target/ARM/ARMConstantPoolValue.h
index d2b9066..00c4808 100644
--- a/lib/Target/ARM/ARMConstantPoolValue.h
+++ b/lib/Target/ARM/ARMConstantPoolValue.h
@@ -15,17 +15,16 @@
#define LLVM_TARGET_ARM_CONSTANTPOOLVALUE_H
#include "llvm/CodeGen/MachineConstantPool.h"
-#include <iosfwd>
namespace llvm {
class GlobalValue;
+class LLVMContext;
namespace ARMCP {
enum ARMCPKind {
CPValue,
- CPNonLazyPtr,
- CPStub
+ CPLSDA
};
}
@@ -36,7 +35,7 @@ class ARMConstantPoolValue : public MachineConstantPoolValue {
GlobalValue *GV; // GlobalValue being loaded.
const char *S; // ExtSymbol being loaded.
unsigned LabelId; // Label id of the load.
- ARMCP::ARMCPKind Kind; // non_lazy_ptr or stub?
+ ARMCP::ARMCPKind Kind; // Value or LSDA?
unsigned char PCAdjust; // Extra adjustment if constantpool is pc relative.
// 8 for ARM, 4 for Thumb.
const char *Modifier; // GV modifier i.e. (&GV(modifier)-(LPIC+8))
@@ -47,12 +46,12 @@ public:
ARMCP::ARMCPKind Kind = ARMCP::CPValue,
unsigned char PCAdj = 0, const char *Modifier = NULL,
bool AddCurrentAddress = false);
- ARMConstantPoolValue(const char *s, unsigned id,
- ARMCP::ARMCPKind Kind = ARMCP::CPValue,
+ ARMConstantPoolValue(LLVMContext &C, const char *s, unsigned id,
unsigned char PCAdj = 0, const char *Modifier = NULL,
bool AddCurrentAddress = false);
- ARMConstantPoolValue(GlobalValue *GV, ARMCP::ARMCPKind Kind,
- const char *Modifier);
+ ARMConstantPoolValue(GlobalValue *GV, const char *Modifier);
+ ARMConstantPoolValue();
+ ~ARMConstantPoolValue();
GlobalValue *getGV() const { return GV; }
@@ -61,27 +60,27 @@ public:
bool hasModifier() const { return Modifier != NULL; }
bool mustAddCurrentAddress() const { return AddCurrentAddress; }
unsigned getLabelId() const { return LabelId; }
- bool isNonLazyPointer() const { return Kind == ARMCP::CPNonLazyPtr; }
- bool isStub() const { return Kind == ARMCP::CPStub; }
unsigned char getPCAdjustment() const { return PCAdjust; }
+ bool isLSDA() { return Kind == ARMCP::CPLSDA; }
+
+ virtual unsigned getRelocationInfo() const {
+ // FIXME: This is conservatively claiming that these entries require a
+ // relocation, we may be able to do better than this.
+ return 2;
+ }
+
virtual int getExistingMachineCPValue(MachineConstantPool *CP,
unsigned Alignment);
virtual void AddSelectionDAGCSEId(FoldingSetNodeID &ID);
- void print(std::ostream *O) const { if (O) print(*O); }
- void print(std::ostream &O) const;
void print(raw_ostream *O) const { if (O) print(*O); }
void print(raw_ostream &O) const;
void dump() const;
};
- inline std::ostream &operator<<(std::ostream &O, const ARMConstantPoolValue &V) {
- V.print(O);
- return O;
-}
-
+
inline raw_ostream &operator<<(raw_ostream &O, const ARMConstantPoolValue &V) {
V.print(O);
return O;
diff --git a/lib/Target/ARM/ARMFrameInfo.h b/lib/Target/ARM/ARMFrameInfo.h
index 405b8f2..d5dae24 100644
--- a/lib/Target/ARM/ARMFrameInfo.h
+++ b/lib/Target/ARM/ARMFrameInfo.h
@@ -15,15 +15,15 @@
#define ARM_FRAMEINFO_H
#include "ARM.h"
-#include "llvm/Target/TargetFrameInfo.h"
#include "ARMSubtarget.h"
+#include "llvm/Target/TargetFrameInfo.h"
namespace llvm {
class ARMFrameInfo : public TargetFrameInfo {
public:
explicit ARMFrameInfo(const ARMSubtarget &ST)
- : TargetFrameInfo(StackGrowsDown, ST.getStackAlignment(), 0) {
+ : TargetFrameInfo(StackGrowsDown, ST.getStackAlignment(), 0, 4) {
}
};
diff --git a/lib/Target/ARM/ARMISelDAGToDAG.cpp b/lib/Target/ARM/ARMISelDAGToDAG.cpp
index 6485fc1..bebf4e8 100644
--- a/lib/Target/ARM/ARMISelDAGToDAG.cpp
+++ b/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -21,6 +21,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -30,10 +31,10 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
-using namespace llvm;
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
-static const unsigned arm_dsubreg_0 = 5;
-static const unsigned arm_dsubreg_1 = 6;
+using namespace llvm;
//===--------------------------------------------------------------------===//
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
@@ -48,8 +49,9 @@ class ARMDAGToDAGISel : public SelectionDAGISel {
const ARMSubtarget *Subtarget;
public:
- explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm)
- : SelectionDAGISel(tm), TM(tm),
+ explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), TM(tm),
Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
}
@@ -57,7 +59,8 @@ public:
return "ARM Instruction Selection";
}
- /// getI32Imm - Return a target constant with the specified value, of type i32.
+ /// getI32Imm - Return a target constant of type i32 with the specified
+ /// value.
inline SDValue getI32Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
@@ -74,6 +77,8 @@ public:
SDValue &Offset, SDValue &Opc);
bool SelectAddrMode3Offset(SDValue Op, SDValue N,
SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode4(SDValue Op, SDValue N, SDValue &Addr,
+ SDValue &Mode);
bool SelectAddrMode5(SDValue Op, SDValue N, SDValue &Base,
SDValue &Offset);
bool SelectAddrMode6(SDValue Op, SDValue N, SDValue &Addr, SDValue &Update,
@@ -118,15 +123,63 @@ private:
SDNode *SelectARMIndexedLoad(SDValue Op);
SDNode *SelectT2IndexedLoad(SDValue Op);
+ /// SelectDYN_ALLOC - Select dynamic alloc for Thumb.
+ SDNode *SelectDYN_ALLOC(SDValue Op);
+
+ /// SelectVLD - Select NEON load intrinsics. NumVecs should
+ /// be 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// loads of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs == 2, QOpcodes1 is not used.
+ SDNode *SelectVLD(SDValue Op, unsigned NumVecs, unsigned *DOpcodes,
+ unsigned *QOpcodes0, unsigned *QOpcodes1);
+
+ /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
+ /// be 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// load/store of D registers and even subregs and odd subregs of Q registers.
+ SDNode *SelectVLDSTLane(SDValue Op, bool IsLoad, unsigned NumVecs,
+ unsigned *DOpcodes, unsigned *QOpcodes0,
+ unsigned *QOpcodes1);
+
+ /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
+ SDNode *SelectV6T2BitfieldExtractOp(SDValue Op, unsigned Opc);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps);
+
+ /// PairDRegs - Insert a pair of double registers into an implicit def to
+ /// form a quad register.
+ SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
};
}
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc &&
+ isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+
void ARMDAGToDAGISel::InstructionSelect() {
DEBUG(BB->dump());
@@ -144,7 +197,7 @@ bool ARMDAGToDAGISel::SelectShifterOperandReg(SDValue Op,
// Don't match base register only case. That is matched to a separate
// lower complexity pattern with explicit register operand.
if (ShOpcVal == ARM_AM::no_shift) return false;
-
+
BaseReg = N.getOperand(0);
unsigned ShImmVal = 0;
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
@@ -198,7 +251,7 @@ bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
MVT::i32);
return true;
}
-
+
// Match simple R +/- imm12 operands.
if (N.getOpcode() == ISD::ADD)
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
@@ -223,15 +276,15 @@ bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
return true;
}
}
-
+
// Otherwise this is R +/- [possibly shifted] R
ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
unsigned ShAmt = 0;
-
+
Base = N.getOperand(0);
Offset = N.getOperand(1);
-
+
if (ShOpcVal != ARM_AM::no_shift) {
// Check to see if the RHS of the shift is a constant, if not, we can't fold
// it.
@@ -243,7 +296,7 @@ bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
ShOpcVal = ARM_AM::no_shift;
}
}
-
+
// Try matching (R shl C) + (R).
if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
@@ -260,7 +313,7 @@ bool ARMDAGToDAGISel::SelectAddrMode2(SDValue Op, SDValue N,
}
}
}
-
+
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
MVT::i32);
return true;
@@ -315,7 +368,7 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N,
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
return true;
}
-
+
if (N.getOpcode() != ISD::ADD) {
Base = N;
if (N.getOpcode() == ISD::FrameIndex) {
@@ -326,7 +379,7 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N,
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
return true;
}
-
+
// If the RHS is +/- imm8, fold into addr mode.
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
@@ -348,7 +401,7 @@ bool ARMDAGToDAGISel::SelectAddrMode3(SDValue Op, SDValue N,
return true;
}
}
-
+
Base = N.getOperand(0);
Offset = N.getOperand(1);
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
@@ -377,6 +430,12 @@ bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDValue Op, SDValue N,
return true;
}
+bool ARMDAGToDAGISel::SelectAddrMode4(SDValue Op, SDValue N,
+ SDValue &Addr, SDValue &Mode) {
+ Addr = N;
+ Mode = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N,
SDValue &Base, SDValue &Offset) {
@@ -392,7 +451,7 @@ bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N,
MVT::i32);
return true;
}
-
+
// If the RHS is +/- imm8, fold into addr mode.
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
@@ -417,7 +476,7 @@ bool ARMDAGToDAGISel::SelectAddrMode5(SDValue Op, SDValue N,
}
}
}
-
+
Base = N;
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
MVT::i32);
@@ -428,14 +487,14 @@ bool ARMDAGToDAGISel::SelectAddrMode6(SDValue Op, SDValue N,
SDValue &Addr, SDValue &Update,
SDValue &Opc) {
Addr = N;
- // The optional writeback is handled in ARMLoadStoreOpt.
+ // Default to no writeback.
Update = CurDAG->getRegister(0, MVT::i32);
Opc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(false), MVT::i32);
return true;
}
bool ARMDAGToDAGISel::SelectAddrModePC(SDValue Op, SDValue N,
- SDValue &Offset, SDValue &Label) {
+ SDValue &Offset, SDValue &Label) {
if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
Offset = N.getOperand(0);
SDValue N1 = N.getOperand(1);
@@ -451,13 +510,11 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue Op, SDValue N,
// FIXME dl should come from the parent load or store, not the address
DebugLoc dl = Op.getDebugLoc();
if (N.getOpcode() != ISD::ADD) {
- Base = N;
- // We must materialize a zero in a reg! Returning a constant here
- // wouldn't work without additional code to position the node within
- // ISel's topological ordering in a place where ISel will process it
- // normally. Instead, just explicitly issue a tMOVri8 node!
- Offset = SDValue(CurDAG->getTargetNode(ARM::tMOVi8, dl, MVT::i32,
- CurDAG->getTargetConstant(0, MVT::i32)), 0);
+ ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
+ if (!NC || NC->getZExtValue() != 0)
+ return false;
+
+ Base = Offset = N;
return true;
}
@@ -567,7 +624,7 @@ bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue Op, SDValue N,
}
}
}
-
+
return false;
}
@@ -594,41 +651,70 @@ bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue Op, SDValue N,
bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
// Match simple R + imm12 operands.
- if (N.getOpcode() != ISD::ADD)
- return false;
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index...
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ } else if (N.getOpcode() == ARMISD::Wrapper) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select t2LDRpci instead.
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
+ // Let t2LDRi8 handle (R - imm8).
+ return false;
+
int RHSC = (int)RHS->getZExtValue();
- if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits.
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
}
}
- return false;
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
}
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue Op, SDValue N,
SDValue &Base, SDValue &OffImm) {
- if (N.getOpcode() == ISD::ADD) {
+ // Match simple R - imm8 operands.
+ if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- int RHSC = (int)RHS->getZExtValue();
- if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
- Base = N.getOperand(0);
+ int RHSC = (int)RHS->getSExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
}
}
- } else if (N.getOpcode() == ISD::SUB) {
- if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- int RHSC = (int)RHS->getZExtValue();
- if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
- Base = N.getOperand(0);
- OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
- return true;
- }
- }
}
return false;
@@ -643,7 +729,7 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDValue Op, SDValue N,
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
- OffImm = (AM == ISD::PRE_INC)
+ OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
? CurDAG->getTargetConstant(RHSC, MVT::i32)
: CurDAG->getTargetConstant(-RHSC, MVT::i32);
return true;
@@ -658,7 +744,8 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDValue Op, SDValue N,
if (N.getOpcode() == ISD::ADD) {
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
- if (((RHSC & 0x3) == 0) && (RHSC < 0 && RHSC > -0x400)) { // 8 bits.
+ if (((RHSC & 0x3) == 0) &&
+ ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits.
Base = N.getOperand(0);
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
return true;
@@ -681,20 +768,17 @@ bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDValue Op, SDValue N,
bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue Op, SDValue N,
SDValue &Base,
SDValue &OffReg, SDValue &ShImm) {
- // Base only.
- if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
- Base = N;
- if (N.getOpcode() == ISD::FrameIndex) {
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
- } else if (N.getOpcode() == ARMISD::Wrapper) {
- Base = N.getOperand(0);
- if (Base.getOpcode() == ISD::TargetConstantPool)
- return false; // We want to select t2LDRpci instead.
- }
- OffReg = CurDAG->getRegister(0, MVT::i32);
- ShImm = CurDAG->getTargetConstant(0, MVT::i32);
- return true;
+ // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+
+ // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
+ return false;
+ else if (RHSC < 0 && RHSC >= -255) // 8 bits
+ return false;
}
// Look for (R + R) or (R + (R << [1,2,3])).
@@ -708,8 +792,8 @@ bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue Op, SDValue N,
ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
if (ShOpcVal == ARM_AM::lsl)
std::swap(Base, OffReg);
- }
-
+ }
+
if (ShOpcVal == ARM_AM::lsl) {
// Check to see if the RHS of the shift is a constant, if not, we can't fold
// it.
@@ -723,11 +807,8 @@ bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue Op, SDValue N,
} else {
ShOpcVal = ARM_AM::no_shift;
}
- } else if (SelectT2AddrModeImm12(Op, N, Base, ShImm) ||
- SelectT2AddrModeImm8 (Op, N, Base, ShImm))
- // Don't match if it's possible to match to one of the r +/- imm cases.
- return false;
-
+ }
+
ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
return true;
@@ -746,7 +827,7 @@ SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) {
if (AM == ISD::UNINDEXED)
return NULL;
- MVT LoadedVT = LD->getMemoryVT();
+ EVT LoadedVT = LD->getMemoryVT();
SDValue Offset, AMOpc;
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
unsigned Opcode = 0;
@@ -780,8 +861,8 @@ SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDValue Op) {
SDValue Base = LD->getBasePtr();
SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32), Chain };
- return CurDAG->getTargetNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
- MVT::Other, Ops, 6);
+ return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
+ MVT::Other, Ops, 6);
}
return NULL;
@@ -793,14 +874,14 @@ SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) {
if (AM == ISD::UNINDEXED)
return NULL;
- MVT LoadedVT = LD->getMemoryVT();
+ EVT LoadedVT = LD->getMemoryVT();
bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
SDValue Offset;
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
unsigned Opcode = 0;
bool Match = false;
if (SelectT2AddrModeImm8Offset(Op, LD->getOffset(), Offset)) {
- switch (LoadedVT.getSimpleVT()) {
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
case MVT::i32:
Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
break;
@@ -828,13 +909,300 @@ SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDValue Op) {
SDValue Base = LD->getBasePtr();
SDValue Ops[]= { Base, Offset, getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32), Chain };
- return CurDAG->getTargetNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
- MVT::Other, Ops, 5);
+ return CurDAG->getMachineNode(Opcode, Op.getDebugLoc(), MVT::i32, MVT::i32,
+ MVT::Other, Ops, 5);
+ }
+
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectDYN_ALLOC(SDValue Op) {
+ SDNode *N = Op.getNode();
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = Op.getValueType();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDValue Align = Op.getOperand(2);
+ SDValue SP = CurDAG->getRegister(ARM::SP, MVT::i32);
+ int32_t AlignVal = cast<ConstantSDNode>(Align)->getSExtValue();
+ if (AlignVal < 0)
+ // We need to align the stack. Use Thumb1 tAND which is the only thumb
+ // instruction that can read and write SP. This matches to a pseudo
+ // instruction that has a chain to ensure the result is written back to
+ // the stack pointer.
+ SP = SDValue(CurDAG->getMachineNode(ARM::tANDsp, dl, VT, SP, Align), 0);
+
+ bool isC = isa<ConstantSDNode>(Size);
+ uint32_t C = isC ? cast<ConstantSDNode>(Size)->getZExtValue() : ~0UL;
+ // Handle the most common case for both Thumb1 and Thumb2:
+ // tSUBspi - immediate is between 0 ... 508 inclusive.
+ if (C <= 508 && ((C & 3) == 0))
+ // FIXME: tSUBspi encode scale 4 implicitly.
+ return CurDAG->SelectNodeTo(N, ARM::tSUBspi_, VT, MVT::Other, SP,
+ CurDAG->getTargetConstant(C/4, MVT::i32),
+ Chain);
+
+ if (Subtarget->isThumb1Only()) {
+ // Use tADDspr since Thumb1 does not have a sub r, sp, r. ARMISelLowering
+ // should have negated the size operand already. FIXME: We can't insert
+ // new target independent node at this stage so we are forced to negate
+ // it earlier. Is there a better solution?
+ return CurDAG->SelectNodeTo(N, ARM::tADDspr_, VT, MVT::Other, SP, Size,
+ Chain);
+ } else if (Subtarget->isThumb2()) {
+ if (isC && Predicate_t2_so_imm(Size.getNode())) {
+ // t2SUBrSPi
+ SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain };
+ return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi_, VT, MVT::Other, Ops, 3);
+ } else if (isC && Predicate_imm0_4095(Size.getNode())) {
+ // t2SUBrSPi12
+ SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain };
+ return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi12_, VT, MVT::Other, Ops, 3);
+ } else {
+ // t2SUBrSPs
+ SDValue Ops[] = { SP, Size,
+ getI32Imm(ARM_AM::getSORegOpc(ARM_AM::lsl,0)), Chain };
+ return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPs_, VT, MVT::Other, Ops, 4);
+ }
+ }
+
+ // FIXME: Add ADD / SUB sp instructions for ARM.
+ return 0;
+}
+
+/// PairDRegs - Insert a pair of double registers into an implicit def to
+/// form a quad register.
+SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue Undef =
+ SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF, dl, VT), 0);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::DSUBREG_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::DSUBREG_1, MVT::i32);
+ SDNode *Pair = CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl,
+ VT, Undef, V0, SubReg0);
+ return CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl,
+ VT, SDValue(Pair, 0), V1, SubReg1);
+}
+
+/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
+/// for a 64-bit subregister of the vector.
+static EVT GetNEONSubregVT(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled NEON type");
+ case MVT::v16i8: return MVT::v8i8;
+ case MVT::v8i16: return MVT::v4i16;
+ case MVT::v4f32: return MVT::v2f32;
+ case MVT::v4i32: return MVT::v2i32;
+ case MVT::v2i64: return MVT::v1i64;
+ }
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLD(SDValue Op, unsigned NumVecs,
+ unsigned *DOpcodes, unsigned *QOpcodes0,
+ unsigned *QOpcodes1) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+ SDNode *N = Op.getNode();
+ DebugLoc dl = N->getDebugLoc();
+
+ SDValue MemAddr, MemUpdate, MemOpc;
+ if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ bool is64BitVector = VT.is64BitVector();
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ }
+
+ if (is64BitVector) {
+ unsigned Opc = DOpcodes[OpcodeIndex];
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
+ std::vector<EVT> ResTys(NumVecs, VT);
+ ResTys.push_back(MVT::Other);
+ return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
+ }
+
+ EVT RegVT = GetNEONSubregVT(VT);
+ if (NumVecs == 2) {
+ // Quad registers are directly supported for VLD2,
+ // loading 2 pairs of D regs.
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Chain };
+ std::vector<EVT> ResTys(4, VT);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 4);
+ Chain = SDValue(VLd, 4);
+
+ // Combine the even and odd subregs to produce the result.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
+ ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
+ }
+ } else {
+ // Otherwise, quad registers are loaded with two separate instructions,
+ // where one loads the even registers and the other loads the odd registers.
+
+ // Enable writeback to the address register.
+ MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
+
+ std::vector<EVT> ResTys(NumVecs, RegVT);
+ ResTys.push_back(MemAddr.getValueType());
+ ResTys.push_back(MVT::Other);
+
+ // Load the even subreg.
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, Chain };
+ SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 4);
+ Chain = SDValue(VLdA, NumVecs+1);
+
+ // Load the odd subreg.
+ Opc = QOpcodes1[OpcodeIndex];
+ const SDValue OpsB[] = { SDValue(VLdA, NumVecs), MemUpdate, MemOpc, Chain };
+ SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 4);
+ Chain = SDValue(VLdB, NumVecs+1);
+
+ // Combine the even and odd subregs to produce the result.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
+ ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
+ }
+ }
+ ReplaceUses(SDValue(N, NumVecs), Chain);
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDValue Op, bool IsLoad,
+ unsigned NumVecs, unsigned *DOpcodes,
+ unsigned *QOpcodes0,
+ unsigned *QOpcodes1) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+ SDNode *N = Op.getNode();
+ DebugLoc dl = N->getDebugLoc();
+
+ SDValue MemAddr, MemUpdate, MemOpc;
+ if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ unsigned Lane =
+ cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
+ EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+
+ // Quad registers are handled by load/store of subregs. Find the subreg info.
+ unsigned NumElts = 0;
+ int SubregIdx = 0;
+ EVT RegVT = VT;
+ if (!is64BitVector) {
+ RegVT = GetNEONSubregVT(VT);
+ NumElts = RegVT.getVectorNumElements();
+ SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
+ }
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld/vst lane type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ // Quad-register operations:
+ case MVT::v8i16: OpcodeIndex = 0; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 1; break;
+ }
+
+ SmallVector<SDValue, 9> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(MemUpdate);
+ Ops.push_back(MemOpc);
+
+ unsigned Opc = 0;
+ if (is64BitVector) {
+ Opc = DOpcodes[OpcodeIndex];
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(N->getOperand(Vec+3));
+ } else {
+ // Check if this is loading the even or odd subreg of a Q register.
+ if (Lane < NumElts) {
+ Opc = QOpcodes0[OpcodeIndex];
+ } else {
+ Lane -= NumElts;
+ Opc = QOpcodes1[OpcodeIndex];
+ }
+ // Extract the subregs of the input vector.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
+ N->getOperand(Vec+3)));
+ }
+ Ops.push_back(getI32Imm(Lane));
+ Ops.push_back(Chain);
+
+ if (!IsLoad)
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
+
+ std::vector<EVT> ResTys(NumVecs, RegVT);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLdLn =
+ CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), NumVecs+5);
+ // For a 64-bit vector load to D registers, nothing more needs to be done.
+ if (is64BitVector)
+ return VLdLn;
+
+ // For 128-bit vectors, take the 64-bit results of the load and insert them
+ // as subregs into the result.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
+ N->getOperand(Vec+3),
+ SDValue(VLdLn, Vec));
+ ReplaceUses(SDValue(N, Vec), QuadVec);
}
+ Chain = SDValue(VLdLn, NumVecs);
+ ReplaceUses(SDValue(N, NumVecs), Chain);
return NULL;
}
+SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDValue Op,
+ unsigned Opc) {
+ if (!Subtarget->hasV6T2Ops())
+ return NULL;
+
+ unsigned Shl_imm = 0;
+ if (isOpcWithIntImmediate(Op.getOperand(0).getNode(), ISD::SHL, Shl_imm)){
+ assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
+ unsigned Srl_imm = 0;
+ if (isInt32Immediate(Op.getOperand(1), Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+ unsigned Width = 32 - Srl_imm;
+ int LSB = Srl_imm - Shl_imm;
+ if ((LSB + Width) > 32)
+ return NULL;
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { Op.getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(Op.getNode(), Opc, MVT::i32, Ops, 5);
+ }
+ }
+ return NULL;
+}
SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
SDNode *N = Op.getNode();
@@ -848,44 +1216,50 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
case ISD::Constant: {
unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
bool UseCP = true;
- if (Subtarget->isThumb()) {
- if (Subtarget->hasThumb2())
- // Thumb2 has the MOVT instruction, so all immediates can
- // be done with MOV + MOVT, at worst.
- UseCP = 0;
- else
+ if (Subtarget->hasThumb2())
+ // Thumb2-aware targets have the MOVT instruction, so all immediates can
+ // be done with MOV + MOVT, at worst.
+ UseCP = 0;
+ else {
+ if (Subtarget->isThumb()) {
UseCP = (Val > 255 && // MOV
~Val > 255 && // MOV + MVN
!ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
- } else
- UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
- ARM_AM::getSOImmVal(~Val) == -1 && // MVN
- !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
+ } else
+ UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
+ ARM_AM::getSOImmVal(~Val) == -1 && // MVN
+ !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
+ }
+
if (UseCP) {
SDValue CPIdx =
- CurDAG->getTargetConstantPool(ConstantInt::get(Type::Int32Ty, Val),
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
TLI.getPointerTy());
SDNode *ResNode;
- if (Subtarget->isThumb())
- ResNode = CurDAG->getTargetNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
- CPIdx, CurDAG->getEntryNode());
- else {
+ if (Subtarget->isThumb1Only()) {
+ SDValue Pred = CurDAG->getTargetConstant(0xEULL, MVT::i32);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
+ ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
+ Ops, 4);
+ } else {
SDValue Ops[] = {
- CPIdx,
+ CPIdx,
CurDAG->getRegister(0, MVT::i32),
CurDAG->getTargetConstant(0, MVT::i32),
getAL(CurDAG),
CurDAG->getRegister(0, MVT::i32),
CurDAG->getEntryNode()
};
- ResNode=CurDAG->getTargetNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
- Ops, 6);
+ ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
+ Ops, 6);
}
ReplaceUses(Op, SDValue(ResNode, 0));
return NULL;
}
-
+
// Other cases are autogenerated.
break;
}
@@ -893,80 +1267,106 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
// Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb1Only()) {
return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
CurDAG->getTargetConstant(0, MVT::i32));
} else {
+ unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
+ ARM::t2ADDri : ARM::ADDri);
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
- getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
- CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->SelectNodeTo(N, ARM::ADDri, MVT::i32, Ops, 5);
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
}
}
- case ISD::ADD: {
- if (!Subtarget->isThumb())
- break;
- // Select add sp, c to tADDhirr.
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(Op.getOperand(0));
- RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(Op.getOperand(1));
- if (LHSR && LHSR->getReg() == ARM::SP) {
- std::swap(N0, N1);
- std::swap(LHSR, RHSR);
- }
- if (RHSR && RHSR->getReg() == ARM::SP) {
- SDValue Val = SDValue(CurDAG->getTargetNode(ARM::tMOVlor2hir, dl,
- Op.getValueType(), N0, N0), 0);
- return CurDAG->SelectNodeTo(N, ARM::tADDhirr, Op.getValueType(), Val, N1);
- }
+ case ARMISD::DYN_ALLOC:
+ return SelectDYN_ALLOC(Op);
+ case ISD::SRL:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(Op,
+ Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX))
+ return I;
+ break;
+ case ISD::SRA:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(Op,
+ Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX))
+ return I;
break;
- }
case ISD::MUL:
- if (Subtarget->isThumb())
+ if (Subtarget->isThumb1Only())
break;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RHSV = C->getZExtValue();
if (!RHSV) break;
if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
+ unsigned ShImm = Log2_32(RHSV-1);
+ if (ShImm >= 32)
+ break;
SDValue V = Op.getOperand(0);
- unsigned ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, Log2_32(RHSV-1));
- SDValue Ops[] = { V, V, CurDAG->getRegister(0, MVT::i32),
- CurDAG->getTargetConstant(ShImm, MVT::i32),
- getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
- CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
+ }
}
if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
+ unsigned ShImm = Log2_32(RHSV+1);
+ if (ShImm >= 32)
+ break;
SDValue V = Op.getOperand(0);
- unsigned ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, Log2_32(RHSV+1));
- SDValue Ops[] = { V, V, CurDAG->getRegister(0, MVT::i32),
- CurDAG->getTargetConstant(ShImm, MVT::i32),
- getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
- CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
+ }
}
}
break;
case ARMISD::FMRRD:
- return CurDAG->getTargetNode(ARM::FMRRD, dl, MVT::i32, MVT::i32,
- Op.getOperand(0), getAL(CurDAG),
- CurDAG->getRegister(0, MVT::i32));
+ return CurDAG->getMachineNode(ARM::FMRRD, dl, MVT::i32, MVT::i32,
+ Op.getOperand(0), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32));
case ISD::UMUL_LOHI: {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4);
+ } else {
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->getTargetNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ }
}
case ISD::SMUL_LOHI: {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4);
+ } else {
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
CurDAG->getRegister(0, MVT::i32) };
- return CurDAG->getTargetNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ }
}
case ISD::LOAD: {
SDNode *ResNode = 0;
- if (Subtarget->isThumb2())
+ if (Subtarget->isThumb() && Subtarget->hasThumb2())
ResNode = SelectT2IndexedLoad(Op);
else
ResNode = SelectARMIndexedLoad(Op);
@@ -988,7 +1388,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
// Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
// Pattern complexity = 6 cost = 1 size = 0
- unsigned Opc = Subtarget->isThumb() ?
+ unsigned Opc = Subtarget->isThumb() ?
((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
SDValue Chain = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
@@ -1003,8 +1403,8 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
cast<ConstantSDNode>(N2)->getZExtValue()),
MVT::i32);
SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
- SDNode *ResNode = CurDAG->getTargetNode(Opc, dl, MVT::Other,
- MVT::Flag, Ops, 5);
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
+ MVT::Flag, Ops, 5);
Chain = SDValue(ResNode, 0);
if (Op.getNode()->getNumValues() == 2) {
InFlag = SDValue(ResNode, 1);
@@ -1014,8 +1414,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
return NULL;
}
case ARMISD::CMOV: {
- bool isThumb = Subtarget->isThumb();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
@@ -1024,39 +1423,79 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
assert(N2.getOpcode() == ISD::Constant);
assert(N3.getOpcode() == ISD::Register);
- // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
- // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
- // Pattern complexity = 18 cost = 1 size = 0
- SDValue CPTmp0;
- SDValue CPTmp1;
- SDValue CPTmp2;
- if (!isThumb && VT == MVT::i32 &&
- SelectShifterOperandReg(Op, N1, CPTmp0, CPTmp1, CPTmp2)) {
- SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
- cast<ConstantSDNode>(N2)->getZExtValue()),
- MVT::i32);
- SDValue Ops[] = { N0, CPTmp0, CPTmp1, CPTmp2, Tmp2, N3, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(), ARM::MOVCCs, MVT::i32, Ops, 7);
- }
+ if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
+ // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
+ // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
+ // Pattern complexity = 18 cost = 1 size = 0
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ SDValue CPTmp2;
+ if (Subtarget->isThumb()) {
+ if (SelectT2ShifterOperandReg(Op, N1, CPTmp0, CPTmp1)) {
+ unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
+ unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
+ unsigned Opc = 0;
+ switch (SOShOp) {
+ case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
+ case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
+ case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
+ case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
+ default:
+ llvm_unreachable("Unknown so_reg opcode!");
+ break;
+ }
+ SDValue SOShImm =
+ CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N0, CPTmp0, SOShImm, Tmp2, N3, InFlag };
+ return CurDAG->SelectNodeTo(Op.getNode(), Opc, MVT::i32,Ops, 6);
+ }
+ } else {
+ if (SelectShifterOperandReg(Op, N1, CPTmp0, CPTmp1, CPTmp2)) {
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N0, CPTmp0, CPTmp1, CPTmp2, Tmp2, N3, InFlag };
+ return CurDAG->SelectNodeTo(Op.getNode(),
+ ARM::MOVCCs, MVT::i32, Ops, 7);
+ }
+ }
- // Pattern: (ARMcmov:i32 GPR:i32:$false,
- // (imm:i32)<<P:Predicate_so_imm>><<X:so_imm_XFORM>>:$true,
- // (imm:i32):$cc)
- // Emits: (MOVCCi:i32 GPR:i32:$false,
- // (so_imm_XFORM:i32 (imm:i32):$true), (imm:i32):$cc)
- // Pattern complexity = 10 cost = 1 size = 0
- if (VT == MVT::i32 &&
- N3.getOpcode() == ISD::Constant &&
- Predicate_so_imm(N3.getNode())) {
- SDValue Tmp1 = CurDAG->getTargetConstant(((unsigned)
- cast<ConstantSDNode>(N1)->getZExtValue()),
- MVT::i32);
- Tmp1 = Transform_so_imm_XFORM(Tmp1.getNode());
- SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
- cast<ConstantSDNode>(N2)->getZExtValue()),
- MVT::i32);
- SDValue Ops[] = { N0, Tmp1, Tmp2, N3, InFlag };
- return CurDAG->SelectNodeTo(Op.getNode(), ARM::MOVCCi, MVT::i32, Ops, 5);
+ // Pattern: (ARMcmov:i32 GPR:i32:$false,
+ // (imm:i32)<<P:Predicate_so_imm>>:$true,
+ // (imm:i32):$cc)
+ // Emits: (MOVCCi:i32 GPR:i32:$false,
+ // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
+ // Pattern complexity = 10 cost = 1 size = 0
+ if (N3.getOpcode() == ISD::Constant) {
+ if (Subtarget->isThumb()) {
+ if (Predicate_t2_so_imm(N3.getNode())) {
+ SDValue Tmp1 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N1)->getZExtValue()),
+ MVT::i32);
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N0, Tmp1, Tmp2, N3, InFlag };
+ return CurDAG->SelectNodeTo(Op.getNode(),
+ ARM::t2MOVCCi, MVT::i32, Ops, 5);
+ }
+ } else {
+ if (Predicate_so_imm(N3.getNode())) {
+ SDValue Tmp1 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N1)->getZExtValue()),
+ MVT::i32);
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N0, Tmp1, Tmp2, N3, InFlag };
+ return CurDAG->SelectNodeTo(Op.getNode(),
+ ARM::MOVCCi, MVT::i32, Ops, 5);
+ }
+ }
+ }
}
// Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
@@ -1073,23 +1512,25 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
MVT::i32);
SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: assert(false && "Illegal conditional move type!");
break;
case MVT::i32:
- Opc = isThumb ? ARM::tMOVCCr : ARM::MOVCCr;
+ Opc = Subtarget->isThumb()
+ ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
+ : ARM::MOVCCr;
break;
case MVT::f32:
Opc = ARM::FCPYScc;
break;
case MVT::f64:
Opc = ARM::FCPYDcc;
- break;
+ break;
}
return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5);
}
case ARMISD::CNEG: {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
@@ -1103,7 +1544,7 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
MVT::i32);
SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: assert(false && "Illegal conditional move type!");
break;
case MVT::f32:
@@ -1116,104 +1557,308 @@ SDNode *ARMDAGToDAGISel::Select(SDValue Op) {
return CurDAG->SelectNodeTo(Op.getNode(), Opc, VT, Ops, 5);
}
- case ISD::DECLARE: {
- SDValue Chain = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDValue N2 = Op.getOperand(2);
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
- // FIXME: handle VLAs.
- if (!FINode) {
- ReplaceUses(Op.getValue(0), Chain);
- return NULL;
+ case ARMISD::VZIP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VZIPd8; break;
+ case MVT::v4i16: Opc = ARM::VZIPd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VZIPd32; break;
+ case MVT::v16i8: Opc = ARM::VZIPq8; break;
+ case MVT::v8i16: Opc = ARM::VZIPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VZIPq32; break;
}
- if (N2.getOpcode() == ARMISD::PIC_ADD && isa<LoadSDNode>(N2.getOperand(0)))
- N2 = N2.getOperand(0);
- LoadSDNode *Ld = dyn_cast<LoadSDNode>(N2);
- if (!Ld) {
- ReplaceUses(Op.getValue(0), Chain);
- return NULL;
+ return CurDAG->getMachineNode(Opc, dl, VT, VT,
+ N->getOperand(0), N->getOperand(1));
+ }
+ case ARMISD::VUZP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VUZPd8; break;
+ case MVT::v4i16: Opc = ARM::VUZPd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VUZPd32; break;
+ case MVT::v16i8: Opc = ARM::VUZPq8; break;
+ case MVT::v8i16: Opc = ARM::VUZPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VUZPq32; break;
}
- SDValue BasePtr = Ld->getBasePtr();
- assert(BasePtr.getOpcode() == ARMISD::Wrapper &&
- isa<ConstantPoolSDNode>(BasePtr.getOperand(0)) &&
- "llvm.dbg.variable should be a constantpool node");
- ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(BasePtr.getOperand(0));
- GlobalValue *GV = 0;
- if (CP->isMachineConstantPoolEntry()) {
- ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)CP->getMachineCPVal();
- GV = ACPV->getGV();
- } else
- GV = dyn_cast<GlobalValue>(CP->getConstVal());
- if (!GV) {
- ReplaceUses(Op.getValue(0), Chain);
- return NULL;
+ return CurDAG->getMachineNode(Opc, dl, VT, VT,
+ N->getOperand(0), N->getOperand(1));
+ }
+ case ARMISD::VTRN: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VTRNd8; break;
+ case MVT::v4i16: Opc = ARM::VTRNd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VTRNq8; break;
+ case MVT::v8i16: Opc = ARM::VTRNq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VTRNq32; break;
}
-
- SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
- TLI.getPointerTy());
- SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
- SDValue Ops[] = { Tmp1, Tmp2, Chain };
- return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
- MVT::Other, Ops, 3);
+ return CurDAG->getMachineNode(Opc, dl, VT, VT,
+ N->getOperand(0), N->getOperand(1));
}
- case ISD::CONCAT_VECTORS: {
- MVT VT = Op.getValueType();
- assert(VT.is128BitVector() && Op.getNumOperands() == 2 &&
- "unexpected CONCAT_VECTORS");
- SDValue N0 = Op.getOperand(0);
- SDValue N1 = Op.getOperand(1);
- SDNode *Result =
- CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF, dl, VT);
- if (N0.getOpcode() != ISD::UNDEF)
- Result = CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, VT,
- SDValue(Result, 0), N0,
- CurDAG->getTargetConstant(arm_dsubreg_0,
- MVT::i32));
- if (N1.getOpcode() != ISD::UNDEF)
- Result = CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, VT,
- SDValue(Result, 0), N1,
- CurDAG->getTargetConstant(arm_dsubreg_1,
- MVT::i32));
- return Result;
- }
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ EVT VT = N->getValueType(0);
+ unsigned Opc = 0;
+
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_neon_vld2: {
+ unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
+ ARM::VLD2d32, ARM::VLD2d64 };
+ unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
+ return SelectVLD(Op, 2, DOpcodes, QOpcodes, 0);
+ }
- case ISD::VECTOR_SHUFFLE: {
- MVT VT = Op.getValueType();
-
- // Match 128-bit splat to VDUPLANEQ. (This could be done with a Pat in
- // ARMInstrNEON.td but it is awkward because the shuffle mask needs to be
- // transformed first into a lane number and then to both a subregister
- // index and an adjusted lane number.) If the source operand is a
- // SCALAR_TO_VECTOR, leave it so it will be matched later as a VDUP.
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- if (VT.is128BitVector() && SVOp->isSplat() &&
- Op.getOperand(0).getOpcode() != ISD::SCALAR_TO_VECTOR &&
- Op.getOperand(1).getOpcode() == ISD::UNDEF) {
- unsigned LaneVal = SVOp->getSplatIndex();
-
- MVT HalfVT;
- unsigned Opc = 0;
- switch (VT.getVectorElementType().getSimpleVT()) {
- default: assert(false && "unhandled VDUP splat type");
- case MVT::i8: Opc = ARM::VDUPLN8q; HalfVT = MVT::v8i8; break;
- case MVT::i16: Opc = ARM::VDUPLN16q; HalfVT = MVT::v4i16; break;
- case MVT::i32: Opc = ARM::VDUPLN32q; HalfVT = MVT::v2i32; break;
- case MVT::f32: Opc = ARM::VDUPLNfq; HalfVT = MVT::v2f32; break;
+ case Intrinsic::arm_neon_vld3: {
+ unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
+ ARM::VLD3d32, ARM::VLD3d64 };
+ unsigned QOpcodes0[] = { ARM::VLD3q8a, ARM::VLD3q16a, ARM::VLD3q32a };
+ unsigned QOpcodes1[] = { ARM::VLD3q8b, ARM::VLD3q16b, ARM::VLD3q32b };
+ return SelectVLD(Op, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4: {
+ unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
+ ARM::VLD4d32, ARM::VLD4d64 };
+ unsigned QOpcodes0[] = { ARM::VLD4q8a, ARM::VLD4q16a, ARM::VLD4q32a };
+ unsigned QOpcodes1[] = { ARM::VLD4q8b, ARM::VLD4q16b, ARM::VLD4q32b };
+ return SelectVLD(Op, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld2lane: {
+ unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD2LNq16a, ARM::VLD2LNq32a };
+ unsigned QOpcodes1[] = { ARM::VLD2LNq16b, ARM::VLD2LNq32b };
+ return SelectVLDSTLane(Op, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld3lane: {
+ unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD3LNq16a, ARM::VLD3LNq32a };
+ unsigned QOpcodes1[] = { ARM::VLD3LNq16b, ARM::VLD3LNq32b };
+ return SelectVLDSTLane(Op, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4lane: {
+ unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD4LNq16a, ARM::VLD4LNq32a };
+ unsigned QOpcodes1[] = { ARM::VLD4LNq16b, ARM::VLD4LNq32b };
+ return SelectVLDSTLane(Op, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst2: {
+ SDValue MemAddr, MemUpdate, MemOpc;
+ if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
+ return NULL;
+ SDValue Chain = N->getOperand(0);
+ VT = N->getOperand(3).getValueType();
+ if (VT.is64BitVector()) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst2 type");
+ case MVT::v8i8: Opc = ARM::VST2d8; break;
+ case MVT::v4i16: Opc = ARM::VST2d16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VST2d32; break;
+ case MVT::v1i64: Opc = ARM::VST2d64; break;
+ }
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
+ N->getOperand(3), N->getOperand(4), Chain };
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6);
+ }
+ // Quad registers are stored as pairs of double registers.
+ EVT RegVT;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst2 type");
+ case MVT::v16i8: Opc = ARM::VST2q8; RegVT = MVT::v8i8; break;
+ case MVT::v8i16: Opc = ARM::VST2q16; RegVT = MVT::v4i16; break;
+ case MVT::v4f32: Opc = ARM::VST2q32; RegVT = MVT::v2f32; break;
+ case MVT::v4i32: Opc = ARM::VST2q32; RegVT = MVT::v2i32; break;
+ }
+ SDValue D0 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(3));
+ SDValue D1 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(3));
+ SDValue D2 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(4));
+ SDValue D3 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(4));
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
+ D0, D1, D2, D3, Chain };
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 8);
+ }
+
+ case Intrinsic::arm_neon_vst3: {
+ SDValue MemAddr, MemUpdate, MemOpc;
+ if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
+ return NULL;
+ SDValue Chain = N->getOperand(0);
+ VT = N->getOperand(3).getValueType();
+ if (VT.is64BitVector()) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst3 type");
+ case MVT::v8i8: Opc = ARM::VST3d8; break;
+ case MVT::v4i16: Opc = ARM::VST3d16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VST3d32; break;
+ case MVT::v1i64: Opc = ARM::VST3d64; break;
+ }
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
+ N->getOperand(3), N->getOperand(4),
+ N->getOperand(5), Chain };
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7);
}
+ // Quad registers are stored with two separate instructions, where one
+ // stores the even registers and the other stores the odd registers.
+ EVT RegVT;
+ unsigned Opc2 = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst3 type");
+ case MVT::v16i8:
+ Opc = ARM::VST3q8a; Opc2 = ARM::VST3q8b; RegVT = MVT::v8i8; break;
+ case MVT::v8i16:
+ Opc = ARM::VST3q16a; Opc2 = ARM::VST3q16b; RegVT = MVT::v4i16; break;
+ case MVT::v4f32:
+ Opc = ARM::VST3q32a; Opc2 = ARM::VST3q32b; RegVT = MVT::v2f32; break;
+ case MVT::v4i32:
+ Opc = ARM::VST3q32a; Opc2 = ARM::VST3q32b; RegVT = MVT::v2i32; break;
+ }
+ // Enable writeback to the address register.
+ MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
+
+ SDValue D0 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(3));
+ SDValue D2 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(4));
+ SDValue D4 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(5));
+ const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, D0, D2, D4, Chain };
+ SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, OpsA, 7);
+ Chain = SDValue(VStA, 1);
+
+ SDValue D1 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(3));
+ SDValue D3 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(4));
+ SDValue D5 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(5));
+ MemAddr = SDValue(VStA, 0);
+ const SDValue OpsB[] = { MemAddr, MemUpdate, MemOpc, D1, D3, D5, Chain };
+ SDNode *VStB = CurDAG->getMachineNode(Opc2, dl, MemAddr.getValueType(),
+ MVT::Other, OpsB, 7);
+ Chain = SDValue(VStB, 1);
+ ReplaceUses(SDValue(N, 0), Chain);
+ return NULL;
+ }
- // The source operand needs to be changed to a subreg of the original
- // 128-bit operand, and the lane number needs to be adjusted accordingly.
- unsigned NumElts = VT.getVectorNumElements() / 2;
- unsigned SRVal = (LaneVal < NumElts ? arm_dsubreg_0 : arm_dsubreg_1);
- SDValue SR = CurDAG->getTargetConstant(SRVal, MVT::i32);
- SDValue NewLane = CurDAG->getTargetConstant(LaneVal % NumElts, MVT::i32);
- SDNode *SubReg = CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,
- dl, HalfVT, N->getOperand(0), SR);
- return CurDAG->SelectNodeTo(N, Opc, VT, SDValue(SubReg, 0), NewLane);
+ case Intrinsic::arm_neon_vst4: {
+ SDValue MemAddr, MemUpdate, MemOpc;
+ if (!SelectAddrMode6(Op, N->getOperand(2), MemAddr, MemUpdate, MemOpc))
+ return NULL;
+ SDValue Chain = N->getOperand(0);
+ VT = N->getOperand(3).getValueType();
+ if (VT.is64BitVector()) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst4 type");
+ case MVT::v8i8: Opc = ARM::VST4d8; break;
+ case MVT::v4i16: Opc = ARM::VST4d16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VST4d32; break;
+ case MVT::v1i64: Opc = ARM::VST4d64; break;
+ }
+ const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc,
+ N->getOperand(3), N->getOperand(4),
+ N->getOperand(5), N->getOperand(6), Chain };
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 8);
+ }
+ // Quad registers are stored with two separate instructions, where one
+ // stores the even registers and the other stores the odd registers.
+ EVT RegVT;
+ unsigned Opc2 = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst4 type");
+ case MVT::v16i8:
+ Opc = ARM::VST4q8a; Opc2 = ARM::VST4q8b; RegVT = MVT::v8i8; break;
+ case MVT::v8i16:
+ Opc = ARM::VST4q16a; Opc2 = ARM::VST4q16b; RegVT = MVT::v4i16; break;
+ case MVT::v4f32:
+ Opc = ARM::VST4q32a; Opc2 = ARM::VST4q32b; RegVT = MVT::v2f32; break;
+ case MVT::v4i32:
+ Opc = ARM::VST4q32a; Opc2 = ARM::VST4q32b; RegVT = MVT::v2i32; break;
+ }
+ // Enable writeback to the address register.
+ MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32);
+
+ SDValue D0 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(3));
+ SDValue D2 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(4));
+ SDValue D4 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(5));
+ SDValue D6 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
+ N->getOperand(6));
+ const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc,
+ D0, D2, D4, D6, Chain };
+ SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, OpsA, 8);
+ Chain = SDValue(VStA, 1);
+
+ SDValue D1 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(3));
+ SDValue D3 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(4));
+ SDValue D5 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(5));
+ SDValue D7 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
+ N->getOperand(6));
+ MemAddr = SDValue(VStA, 0);
+ const SDValue OpsB[] = { MemAddr, MemUpdate, MemOpc,
+ D1, D3, D5, D7, Chain };
+ SDNode *VStB = CurDAG->getMachineNode(Opc2, dl, MemAddr.getValueType(),
+ MVT::Other, OpsB, 8);
+ Chain = SDValue(VStB, 1);
+ ReplaceUses(SDValue(N, 0), Chain);
+ return NULL;
}
- break;
+ case Intrinsic::arm_neon_vst2lane: {
+ unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST2LNq16a, ARM::VST2LNq32a };
+ unsigned QOpcodes1[] = { ARM::VST2LNq16b, ARM::VST2LNq32b };
+ return SelectVLDSTLane(Op, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst3lane: {
+ unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST3LNq16a, ARM::VST3LNq32a };
+ unsigned QOpcodes1[] = { ARM::VST3LNq16b, ARM::VST3LNq32b };
+ return SelectVLDSTLane(Op, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst4lane: {
+ unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST4LNq16a, ARM::VST4LNq32a };
+ unsigned QOpcodes1[] = { ARM::VST4LNq16b, ARM::VST4LNq32b };
+ return SelectVLDSTLane(Op, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+ }
}
}
@@ -1224,20 +1869,17 @@ bool ARMDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
std::vector<SDValue> &OutOps) {
assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
-
- SDValue Base, Offset, Opc;
- if (!SelectAddrMode2(Op, Op, Base, Offset, Opc))
- return true;
-
- OutOps.push_back(Base);
- OutOps.push_back(Offset);
- OutOps.push_back(Opc);
+ // Require the address to be in a register. That is safe for all ARM
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
return false;
}
/// createARMISelDag - This pass converts a legalized DAG into a
/// ARM-specific DAG, ready for instruction scheduling.
///
-FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM) {
- return new ARMDAGToDAGISel(TM);
+FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new ARMDAGToDAGISel(TM, OptLevel);
}
diff --git a/lib/Target/ARM/ARMISelLowering.cpp b/lib/Target/ARM/ARMISelLowering.cpp
index 41c9ecc..426cecb 100644
--- a/lib/Target/ARM/ARMISelLowering.cpp
+++ b/lib/Target/ARM/ARMISelLowering.cpp
@@ -17,9 +17,11 @@
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
+#include "ARMPerfectShuffle.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
@@ -36,74 +38,101 @@
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include <sstream>
using namespace llvm;
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
- MVT PromotedBitwiseVT) {
+void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
+ EVT PromotedBitwiseVT) {
if (VT != PromotedLdStVT) {
- setOperationAction(ISD::LOAD, VT, Promote);
- AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
- setOperationAction(ISD::STORE, VT, Promote);
- AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
}
- MVT ElemTy = VT.getVectorElementType();
+ EVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
- setOperationAction(ISD::VSETCC, VT, Custom);
+ setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
- setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
- setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
- setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ if (ElemTy != MVT::i32) {
+ setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
+ }
+ setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
if (VT.isInteger()) {
- setOperationAction(ISD::SHL, VT, Custom);
- setOperationAction(ISD::SRA, VT, Custom);
- setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
}
// Promote all bit-wise operations.
if (VT.isInteger() && VT != PromotedBitwiseVT) {
- setOperationAction(ISD::AND, VT, Promote);
- AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
- setOperationAction(ISD::OR, VT, Promote);
- AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
- setOperationAction(ISD::XOR, VT, Promote);
- AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
- }
-}
-
-void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
+ setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::AND, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::OR, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ }
+
+ // Neon does not support vector divide/remainder operations.
+ setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
+}
+
+void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
addRegisterClass(VT, ARM::DPRRegisterClass);
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
}
-void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
+void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
addRegisterClass(VT, ARM::QPRRegisterClass);
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}
+static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
+ if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
+ return new TargetLoweringObjectFileMachO();
+ return new ARMElfTargetObjectFile();
+}
+
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
- : TargetLowering(TM), ARMPCLabelIndex(0) {
+ : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
if (Subtarget->isTargetDarwin()) {
@@ -188,11 +217,20 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setLibcallName(RTLIB::SRL_I128, 0);
setLibcallName(RTLIB::SRA_I128, 0);
- if (Subtarget->isThumb())
+ // Libcalls should use the AAPCS base standard ABI, even if hard float
+ // is in effect, as per the ARM RTABI specification, section 4.1.2.
+ if (Subtarget->isAAPCS_ABI()) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
+ CallingConv::ARM_AAPCS);
+ }
+ }
+
+ if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
else
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
- if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
@@ -213,6 +251,39 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
+ // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
+ // neither Neon nor VFP support any arithmetic operations on it.
+ setOperationAction(ISD::FADD, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FABS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
+
+ // Neon does not support some operations on v1i64 and v2i64 types.
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+ setOperationAction(ISD::MUL, MVT::v2i64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
+
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
@@ -246,7 +317,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
}
// i64 operation support.
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
@@ -287,7 +358,6 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
- setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
@@ -300,7 +370,14 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
- setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
+ // FIXME: Shouldn't need this, since no register is used, but the legalizer
+ // doesn't yet know how to not do that for SjLj.
+ setExceptionSelectorRegister(ARM::R0);
+ if (Subtarget->isThumb())
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ else
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
@@ -309,7 +386,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
- if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb())
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
// Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
@@ -339,7 +416,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
- if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
}
@@ -347,7 +424,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::FPOW, MVT::f32, Expand);
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
- if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
@@ -361,26 +438,19 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setStackPointerRegisterToSaveRestore(ARM::SP);
setSchedulingPreference(SchedulingForRegPressure);
- setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
- setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
-
- if (!Subtarget->isThumb()) {
- // Use branch latency information to determine if-conversion limits.
- // FIXME: If-converter should use instruction latency of the branch being
- // eliminated to compute the threshold. For ARMv6, the branch "latency"
- // varies depending on whether it's dynamically or statically predicted
- // and on whether the destination is in the prefetch buffer.
- const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
- const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
- unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
- if (Latency > 1) {
- setIfCvtBlockSizeLimit(Latency-1);
- if (Latency > 2)
- setIfCvtDupBlockSizeLimit(Latency-2);
- } else {
- setIfCvtBlockSizeLimit(10);
- setIfCvtDupBlockSizeLimit(2);
- }
+
+ // FIXME: If-converter should use instruction latency to determine
+ // profitability rather than relying on fixed limits.
+ if (Subtarget->getCPUString() == "generic") {
+ // Generic (and overly aggressive) if-conversion limits.
+ setIfCvtBlockSizeLimit(10);
+ setIfCvtDupBlockSizeLimit(2);
+ } else if (Subtarget->hasV6Ops()) {
+ setIfCvtBlockSizeLimit(2);
+ setIfCvtDupBlockSizeLimit(1);
+ } else {
+ setIfCvtBlockSizeLimit(3);
+ setIfCvtDupBlockSizeLimit(2);
}
maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
@@ -401,6 +471,7 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::tCALL: return "ARMISD::tCALL";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
@@ -425,6 +496,8 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+ case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
+
case ARMISD::VCEQ: return "ARMISD::VCEQ";
case ARMISD::VCGE: return "ARMISD::VCGE";
case ARMISD::VCGEU: return "ARMISD::VCGEU";
@@ -453,13 +526,21 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
- case ARMISD::VDUPLANEQ: return "ARMISD::VDUPLANEQ";
+ case ARMISD::VDUP: return "ARMISD::VDUP";
+ case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
+ case ARMISD::VEXT: return "ARMISD::VEXT";
+ case ARMISD::VREV64: return "ARMISD::VREV64";
+ case ARMISD::VREV32: return "ARMISD::VREV32";
+ case ARMISD::VREV16: return "ARMISD::VREV16";
+ case ARMISD::VZIP: return "ARMISD::VZIP";
+ case ARMISD::VUZP: return "ARMISD::VUZP";
+ case ARMISD::VTRN: return "ARMISD::VTRN";
}
}
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
- return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
+ return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
}
//===----------------------------------------------------------------------===//
@@ -469,7 +550,7 @@ unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code!");
+ default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
@@ -483,15 +564,12 @@ static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
}
}
-/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
-/// returns true if the operands should be inverted to form the proper
-/// comparison.
-static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
+static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
- bool Invert = false;
CondCode2 = ARMCC::AL;
switch (CC) {
- default: assert(0 && "Unknown FP condition!");
+ default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
@@ -499,7 +577,7 @@ static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
- case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
+ case ISD::SETOLE: CondCode = ARMCC::LS; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
@@ -513,24 +591,16 @@ static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
- return Invert;
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
-//
-// The lower operations present on calling convention works on this order:
-// LowerCALL (virt regs --> phys regs, virt regs --> stack)
-// LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
-// LowerRET (virt regs --> phys regs)
-// LowerCALL (phys regs --> virt regs)
-//
//===----------------------------------------------------------------------===//
#include "ARMGenCallingConv.inc"
// APCS f64 is in register pairs, possibly split to stack
-static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
CCState &State, bool CanFail) {
static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
@@ -560,7 +630,7 @@ static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
return true;
}
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -573,7 +643,7 @@ static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
}
// AAPCS f64 is in aligned register pairs
-static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
CCState &State, bool CanFail) {
static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
@@ -603,7 +673,7 @@ static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
return true;
}
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -615,7 +685,7 @@ static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
return true; // we handled it
}
-static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo, CCState &State) {
static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
@@ -635,7 +705,7 @@ static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
return true;
}
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -646,7 +716,7 @@ static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
return true; // we handled it
}
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -656,49 +726,48 @@ static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
-CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
- bool Return) const {
+CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) const {
switch (CC) {
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
- // Use target triple & subtarget features to do actual dispatch.
- if (Subtarget->isAAPCS_ABI()) {
- if (Subtarget->hasVFP2() &&
- FloatABIType == FloatABI::Hard)
- return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
- else
- return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
- } else
- return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ // Use target triple & subtarget features to do actual dispatch.
+ if (Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() &&
+ FloatABIType == FloatABI::Hard && !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ else
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ } else
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
case CallingConv::ARM_AAPCS_VFP:
- return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
case CallingConv::ARM_AAPCS:
- return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
case CallingConv::ARM_APCS:
- return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
}
}
-/// LowerCallResult - Lower the result values of an ISD::CALL into the
-/// appropriate copies out of appropriate physical registers. This assumes that
-/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
-/// being lowered. The returns a SDNode with the same number of values as the
-/// ISD::CALL.
-SDNode *ARMTargetLowering::
-LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG) {
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
- DebugLoc dl = TheCall->getDebugLoc();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- bool isVarArg = TheCall->isVarArg();
- CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
- CCInfo.AnalyzeCallResult(TheCall,
- CCAssignFnForNode(CallingConv, /* Return*/ true));
-
- SmallVector<SDValue, 8> ResultVals;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ true,
+ isVarArg));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
@@ -743,20 +812,17 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
}
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
break;
}
- ResultVals.push_back(Val);
+ InVals.push_back(Val);
}
- // Merge everything together with a MERGE_VALUES node.
- ResultVals.push_back(Chain);
- return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size()).getNode();
+ return Chain;
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
@@ -776,11 +842,11 @@ CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
/// LowerMemOpCallTo - Store the argument to the stack.
SDValue
-ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
- const SDValue &StackPtr,
- const CCValAssign &VA, SDValue Chain,
- SDValue Arg, ISD::ArgFlagsTy Flags) {
- DebugLoc dl = TheCall->getDebugLoc();
+ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
@@ -791,14 +857,13 @@ ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
PseudoSourceValue::getStack(), LocMemOffset);
}
-void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
+void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVector<SDValue, 8> &MemOpChains,
ISD::ArgFlagsTy Flags) {
- DebugLoc dl = TheCall->getDebugLoc();
SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
@@ -811,27 +876,31 @@ void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
- MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, NextVA,
- Chain, fmrrd.getValue(1), Flags));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
+ dl, DAG, NextVA,
+ Flags));
}
}
-/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
+/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
-SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- MVT RetVT = TheCall->getRetValType(0);
- SDValue Chain = TheCall->getChain();
- unsigned CC = TheCall->getCallingConv();
- bool isVarArg = TheCall->isVarArg();
- SDValue Callee = TheCall->getCallee();
- DebugLoc dl = TheCall->getDebugLoc();
+SDValue
+ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
- CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
@@ -851,12 +920,12 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
- SDValue Arg = TheCall->getArg(realArgIdx);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
+ SDValue Arg = Outs[realArgIdx].Val;
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
@@ -872,7 +941,7 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
break;
}
- // f64 and v2f64 are passed in i32 pairs and must be split into pieces
+ // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
@@ -880,23 +949,23 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, MVT::i32));
- PassF64ArgInRegs(TheCall, DAG, Chain, Op0, RegsToPass,
+ PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
VA = ArgLocs[++i]; // skip ahead to next loc
if (VA.isRegLoc()) {
- PassF64ArgInRegs(TheCall, DAG, Chain, Op1, RegsToPass,
+ PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
} else {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
- MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
- Chain, Op1, Flags));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
+ dl, DAG, VA, Flags));
}
} else {
- PassF64ArgInRegs(TheCall, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
+ PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, Flags);
}
} else if (VA.isRegLoc()) {
@@ -906,8 +975,8 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
- MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
- Chain, Arg, Flags));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
}
}
@@ -933,17 +1002,17 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
GlobalValue *GV = G->getGlobal();
isDirect = true;
- bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
- GV->hasLinkOnceLinkage());
+ bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && !isExt;
// tBX takes a register source operand.
- if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
- ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
- ARMCP::CPStub, 4);
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
+ ARMPCLabelIndex,
+ ARMCP::CPValue, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
@@ -960,9 +1029,9 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
isARMFunc = !Subtarget->isThumb() || isStub;
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
- if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
- ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
- ARMCP::CPStub, 4);
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
+ Sym, ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
@@ -977,7 +1046,7 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
- if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
+ if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
@@ -986,7 +1055,7 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
: ARMISD::CALL_NOLINK;
}
- if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) {
+ if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
// implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
InFlag = Chain.getValue(1);
@@ -1011,30 +1080,31 @@ SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
- if (RetVT != MVT::Other)
+ if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
- return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
- Op.getResNo());
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
}
-SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
- // The chain is always operand #0
- SDValue Chain = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
+SDValue
+ARMTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
// CCState - Info about the registers and stack slots.
- CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
- // Analyze return values of ISD::RET.
- CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
+ isVarArg));
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
@@ -1053,12 +1123,10 @@ SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- // ISD::RET => ret chain, (regnum1,val1), ...
- // So i*2+1 index only the regnums
- SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
+ SDValue Arg = Outs[realRVLocIdx].Val;
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
@@ -1112,13 +1180,13 @@ SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
-// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
// FIXME there is no actual debug info here
DebugLoc dl = Op.getDebugLoc();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
@@ -1137,11 +1205,11 @@ SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) {
DebugLoc dl = GA->getDebugLoc();
- MVT PtrVT = getPointerTy();
+ EVT PtrVT = getPointerTy();
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
- new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
- PCAdj, "tlsgd", true);
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, "tlsgd", true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
@@ -1154,12 +1222,13 @@ ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
- Entry.Ty = (const Type *) Type::Int32Ty;
+ Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
// FIXME: is there useful debug info available here?
std::pair<SDValue, SDValue> CallResult =
- LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
- 0, CallingConv::C, false,
+ LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
+ false, false, false, false,
+ 0, CallingConv::C, false, /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
return CallResult.first;
}
@@ -1173,16 +1242,16 @@ ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
DebugLoc dl = GA->getDebugLoc();
SDValue Offset;
SDValue Chain = DAG.getEntryNode();
- MVT PtrVT = getPointerTy();
+ EVT PtrVT = getPointerTy();
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
- if (GV->isDeclaration()){
+ if (GV->isDeclaration()) {
// initial exec model
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
- new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
- PCAdj, "gottpoff", true);
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, "gottpoff", true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
@@ -1194,8 +1263,7 @@ ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
} else {
// local exec model
- ARMConstantPoolValue *CPV =
- new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
@@ -1222,59 +1290,47 @@ ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) {
- MVT PtrVT = getPointerTy();
+ EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
if (RelocM == Reloc::PIC_) {
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
ARMConstantPoolValue *CPV =
- new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
+ new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
- CPAddr, NULL, 0);
+ CPAddr,
+ PseudoSourceValue::getConstantPool(), 0);
SDValue Chain = Result.getValue(1);
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
if (!UseGOTOFF)
- Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ PseudoSourceValue::getGOT(), 0);
return Result;
} else {
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
- return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0);
}
}
-/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
-/// even in non-static mode.
-static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
- // If symbol visibility is hidden, the extra load is not needed if
- // the symbol is definitely defined in the current translation unit.
- bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
- if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
- return false;
- return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
-}
-
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) {
- MVT PtrVT = getPointerTy();
+ EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
- bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
SDValue CPAddr;
if (RelocM == Reloc::Static)
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
else {
- unsigned PCAdj = (RelocM != Reloc::PIC_)
- ? 0 : (Subtarget->isThumb() ? 4 : 8);
- ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
- : ARMCP::CPValue;
- ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
- Kind, PCAdj);
+ unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
@@ -1286,7 +1342,8 @@ SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
- if (IsIndirect)
+
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
return Result;
@@ -1296,32 +1353,55 @@ SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
SelectionDAG &DAG){
assert(Subtarget->isTargetELF() &&
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
- MVT PtrVT = getPointerTy();
+ EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
- ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
- ARMPCLabelIndex,
- ARMCP::CPValue, PCAdj);
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
+ "_GLOBAL_OFFSET_TABLE_",
+ ARMPCLabelIndex, PCAdj);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
- SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
DebugLoc dl = Op.getDebugLoc();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
- case Intrinsic::arm_thread_pointer:
- return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ case Intrinsic::arm_thread_pointer: {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ }
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
+ ARMCP::CPLSDA, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
+ SDValue Chain = Result.getValue(1);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+ return Result;
+ }
case Intrinsic::eh_sjlj_setjmp:
- SDValue Res = DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32,
- Op.getOperand(1));
- return Res;
+ return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
}
}
@@ -1330,13 +1410,60 @@ static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
DebugLoc dl = Op.getDebugLoc();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
}
SDValue
+ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ DebugLoc dl = Node->getDebugLoc();
+ EVT VT = Node->getValueType(0);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDValue Align = Op.getOperand(2);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
+
+ unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
+ if (AlignVal > StackAlign)
+ // Do this now since selection pass cannot introduce new target
+ // independent node.
+ Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
+
+ // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
+ // using a "add r, sp, r" instead. Negate the size now so we don't have to
+ // do even more horrible hack later.
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (AFI->isThumb1OnlyFunction()) {
+ bool Negate = true;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
+ if (C) {
+ uint32_t Val = C->getZExtValue();
+ if (Val <= 508 && ((Val & 3) == 0))
+ Negate = false;
+ }
+ if (Negate)
+ Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
+ }
+
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other);
+ SDValue Ops1[] = { Chain, Size, Align };
+ SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
+ Chain = Res.getValue(1);
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
+ DAG.getIntPtrConstant(0, true), SDValue());
+ SDValue Ops2[] = { Res, Chain };
+ return DAG.getMergeValues(Ops2, 2, dl);
+}
+
+SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
DebugLoc dl) {
@@ -1344,7 +1471,7 @@ ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
TargetRegisterClass *RC;
- if (AFI->isThumbFunction())
+ if (AFI->isThumb1OnlyFunction())
RC = ARM::tGPRRegisterClass;
else
RC = ARM::GPRRegisterClass;
@@ -1371,21 +1498,25 @@ ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
}
SDValue
-ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
+ARMTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- SDValue Root = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- unsigned CC = MF.getFunction()->getCallingConv();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
- CCInfo.AnalyzeFormalArguments(Op.getNode(),
- CCAssignFnForNode(CC, /* Return*/ false));
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
SmallVector<SDValue, 16> ArgValues;
@@ -1394,7 +1525,7 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
// Arguments stored in registers.
if (VA.isRegLoc()) {
- MVT RegVT = VA.getLocVT();
+ EVT RegVT = VA.getLocVT();
SDValue ArgValue;
if (VA.needsCustom()) {
@@ -1404,43 +1535,43 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
if (VA.getLocVT() == MVT::v2f64) {
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
- Root, DAG, dl);
+ Chain, DAG, dl);
VA = ArgLocs[++i]; // skip ahead to next loc
SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
- Root, DAG, dl);
+ Chain, DAG, dl);
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
} else
- ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Root, DAG, dl);
+ ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
} else {
TargetRegisterClass *RC;
- if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32)
+
+ if (RegVT == MVT::f32)
RC = ARM::SPRRegisterClass;
- else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)
+ else if (RegVT == MVT::f64)
RC = ARM::DPRRegisterClass;
- else if (AFI->isThumbFunction())
- RC = ARM::tGPRRegisterClass;
+ else if (RegVT == MVT::v2f64)
+ RC = ARM::QPRRegisterClass;
+ else if (RegVT == MVT::i32)
+ RC = (AFI->isThumb1OnlyFunction() ?
+ ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
else
- RC = ARM::GPRRegisterClass;
-
- assert((RegVT == MVT::i32 || RegVT == MVT::f32 ||
- (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)) &&
- "RegVT not supported by FORMAL_ARGUMENTS Lowering");
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
- ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
@@ -1457,7 +1588,7 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
break;
}
- ArgValues.push_back(ArgValue);
+ InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
@@ -1470,7 +1601,7 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
- ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
}
}
@@ -1500,31 +1631,27 @@ ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
SmallVector<SDValue, 4> MemOps;
for (; NumGPRs < 4; ++NumGPRs) {
TargetRegisterClass *RC;
- if (AFI->isThumbFunction())
+ if (AFI->isThumb1OnlyFunction())
RC = ARM::tGPRRegisterClass;
else
RC = ARM::GPRRegisterClass;
unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
}
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &MemOps[0], MemOps.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
} else
// This will point to the next argument passed via stack.
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
/// isFloatingPointZero - Return true if this is +0.0.
@@ -1543,46 +1670,46 @@ static bool isFloatingPointZero(SDValue Op) {
return false;
}
-static bool isLegalCmpImmediate(unsigned C, bool isThumb) {
- return ( isThumb && (C & ~255U) == 0) ||
- (!isThumb && ARM_AM::getSOImmVal(C) != -1);
+static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
+ return ( isThumb1Only && (C & ~255U) == 0) ||
+ (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- SDValue &ARMCC, SelectionDAG &DAG, bool isThumb,
+ SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
DebugLoc dl) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
unsigned C = RHSC->getZExtValue();
- if (!isLegalCmpImmediate(C, isThumb)) {
+ if (!isLegalCmpImmediate(C, isThumb1Only)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
- if (isLegalCmpImmediate(C-1, isThumb)) {
+ if (isLegalCmpImmediate(C-1, isThumb1Only)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
- if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) {
+ if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETGT:
- if (isLegalCmpImmediate(C+1, isThumb)) {
+ if (isLegalCmpImmediate(C+1, isThumb1Only)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C+1, MVT::i32);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
- if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) {
+ if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C+1, MVT::i32);
}
@@ -1620,7 +1747,7 @@ static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
@@ -1631,13 +1758,12 @@ static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
if (LHS.getValueType() == MVT::i32) {
SDValue ARMCC;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
- SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
}
ARMCC::CondCodes CondCode, CondCode2;
- if (FPCCToARMCC(CC, CondCode, CondCode2))
- std::swap(TrueVal, FalseVal);
+ FPCCToARMCC(CC, CondCode, CondCode2);
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
@@ -1666,16 +1792,14 @@ static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
if (LHS.getValueType() == MVT::i32) {
SDValue ARMCC;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
- SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMCC, CCR,Cmp);
}
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
ARMCC::CondCodes CondCode, CondCode2;
- if (FPCCToARMCC(CC, CondCode, CondCode2))
- // Swap the LHS/RHS of the comparison if needed.
- std::swap(LHS, RHS);
+ FPCCToARMCC(CC, CondCode, CondCode2);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
@@ -1697,21 +1821,32 @@ SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
SDValue Index = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
- MVT PTy = getPointerTy();
+ EVT PTy = getPointerTy();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
- SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
+ SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
- bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
- Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy, dl,
- Chain, Addr, NULL, 0);
- Chain = Addr.getValue(1);
- if (isPIC)
+ if (Subtarget->isThumb2()) {
+ // Thumb2 uses a two-level jump. That is, it jumps into the jump table
+ // which does another jump to the destination. This also makes it easier
+ // to translate it to TBB / TBH later.
+ // FIXME: This might not work if the function is extremely large.
+ return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
+ Addr, Op.getOperand(2), JTI, UId);
+ }
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, NULL, 0);
+ Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
- return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ } else {
+ Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0);
+ Chain = Addr.getValue(1);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ }
}
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
@@ -1723,7 +1858,7 @@ static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
}
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned Opc =
Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
@@ -1737,8 +1872,8 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue Tmp0 = Op.getOperand(0);
SDValue Tmp1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
- MVT SrcVT = Tmp1.getValueType();
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Tmp1.getValueType();
SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
@@ -1749,7 +1884,7 @@ static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
@@ -1784,7 +1919,7 @@ ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
- MVT VT = MVT::i32;
+ EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
const unsigned MAX_LOADS_IN_LDM = 6;
@@ -1890,45 +2025,55 @@ static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
-static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
+static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Zero vectors are used to represent vector negation and in those cases
// will be implemented with the NEON VNEG instruction. However, VNEG does
// not support i64 elements, so sometimes the zero vectors will need to be
// explicitly constructed. For those cases, and potentially other uses in
- // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
+ // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
// to their dest type. This ensures they get CSE'd.
SDValue Vec;
- SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
- if (VT.getSizeInBits() == 64)
- Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
- else
- Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
+ SmallVector<SDValue, 8> Ops;
+ MVT TVT;
+
+ if (VT.getSizeInBits() == 64) {
+ Ops.assign(8, Cst); TVT = MVT::v8i8;
+ } else {
+ Ops.assign(16, Cst); TVT = MVT::v16i8;
+ }
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
///
-static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
+static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
- // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
- // type. This ensures they get CSE'd.
+ // Always build ones vectors as <16 x i32> or <8 x i32> bitcasted to their
+ // dest type. This ensures they get CSE'd.
SDValue Vec;
- SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
- if (VT.getSizeInBits() == 64)
- Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
- else
- Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
+ SmallVector<SDValue, 8> Ops;
+ MVT TVT;
+
+ if (VT.getSizeInBits() == 64) {
+ Ops.assign(8, Cst); TVT = MVT::v8i8;
+ } else {
+ Ops.assign(16, Cst); TVT = MVT::v16i8;
+ }
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// Lower vector shifts on NEON to use VSHL.
@@ -1947,7 +2092,7 @@ static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
// NEON uses the same intrinsics for both left and right shifts. For
// right shifts, the shift amounts are negative, so negate the vector of
// shift amounts.
- MVT ShiftVT = N->getOperand(1).getValueType();
+ EVT ShiftVT = N->getOperand(1).getValueType();
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
getZeroVector(ShiftVT, DAG, dl),
N->getOperand(1));
@@ -1959,8 +2104,11 @@ static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
N->getOperand(0), NegatedCount);
}
- assert(VT == MVT::i64 &&
- (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
+ // We can get here for a node like i32 = ISD::SHL i32, i64
+ if (VT != MVT::i64)
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
"Unknown shift to lower!");
// We only lower SRA, SRL of 1 here, all others use generic lowering.
@@ -1969,7 +2117,7 @@ static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
return SDValue();
// If we are in thumb mode, we don't have RRX.
- if (ST->isThumb()) return SDValue();
+ if (ST->isThumb1Only()) return SDValue();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
@@ -1998,13 +2146,13 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
DebugLoc dl = Op.getDebugLoc();
if (Op.getOperand(1).getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
- default: assert(0 && "Illegal FP comparison"); break;
+ default: llvm_unreachable("Illegal FP comparison"); break;
case ISD::SETUNE:
case ISD::SETNE: Invert = true; // Fallthrough
case ISD::SETOEQ:
@@ -2043,7 +2191,7 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
} else {
// Integer comparisons.
switch (SetCCOpcode) {
- default: assert(0 && "Illegal integer comparison"); break;
+ default: llvm_unreachable("Illegal integer comparison"); break;
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
case ISD::SETLT: Swap = true;
@@ -2056,7 +2204,7 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
}
- // Detect VTST (Vector Test Bits) = vicmp ne (and (op0, op1), zero).
+ // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
if (Opc == ARMISD::VCEQ) {
SDValue AndOp;
@@ -2147,7 +2295,7 @@ static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
}
default:
- assert(0 && "unexpected size for isVMOVSplat");
+ llvm_unreachable("unexpected size for isVMOVSplat");
break;
}
@@ -2174,22 +2322,123 @@ SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
SplatBitSize, DAG);
}
-static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
+static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
+ bool &ReverseVEXT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+ ReverseVEXT = false;
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, it may still be
+ // a VEXT but the source vectors must be swapped.
+ ExpectedElt += 1;
+ if (ExpectedElt == NumElts * 2) {
+ ExpectedElt = 0;
+ ReverseVEXT = true;
+ }
+
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ // Adjust the index value if the source operands will be swapped.
+ if (ReverseVEXT)
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isVREVMask - Check if a vector shuffle corresponds to a VREV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned BlockSize) {
+ assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
+ "Only possible block sizes for VREV are: 16, 32, 64");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ unsigned BlockElts = M[0] + 1;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned) M[i] !=
+ (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((unsigned) M[i] != i + WhichResult ||
+ (unsigned) M[i+1] != i + NumElts + WhichResult)
+ return false;
+ }
+ return true;
+}
+
+static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if ((unsigned) M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && VT.getVectorElementType().getSizeInBits() == 32)
+ return false;
+
+ return true;
+}
+
+static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((unsigned) M[i] != Idx ||
+ (unsigned) M[i+1] != Idx + NumElts)
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && VT.getVectorElementType().getSizeInBits() == 32)
+ return false;
+
+ return true;
+}
+
+static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
// Canonicalize all-zeros and all-ones vectors.
- ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
+ ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
if (ConstVal->isNullValue())
return getZeroVector(VT, DAG, dl);
if (ConstVal->isAllOnesValue())
return getOnesVector(VT, DAG, dl);
- MVT CanonicalVT;
+ EVT CanonicalVT;
if (VT.is64BitVector()) {
switch (Val.getValueType().getSizeInBits()) {
case 8: CanonicalVT = MVT::v8i8; break;
case 16: CanonicalVT = MVT::v4i16; break;
case 32: CanonicalVT = MVT::v2i32; break;
case 64: CanonicalVT = MVT::v1i64; break;
- default: assert(0 && "unexpected splat element type"); break;
+ default: llvm_unreachable("unexpected splat element type"); break;
}
} else {
assert(VT.is128BitVector() && "unknown splat vector size");
@@ -2198,7 +2447,7 @@ static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
case 16: CanonicalVT = MVT::v8i16; break;
case 32: CanonicalVT = MVT::v4i32; break;
case 64: CanonicalVT = MVT::v2i64; break;
- default: assert(0 && "unexpected splat element type"); break;
+ default: llvm_unreachable("unexpected splat element type"); break;
}
}
@@ -2213,69 +2462,291 @@ static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
- BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
- assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
- SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
- SplatUndef.getZExtValue(), SplatBitSize, DAG);
- if (Val.getNode())
- return BuildSplat(Val, Op.getValueType(), DAG, dl);
+ if (SplatBitSize <= 64) {
+ SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize, DAG);
+ if (Val.getNode())
+ return BuildSplat(Val, VT, DAG, dl);
+ }
+ }
+
+ // If there are only 2 elements in a 128-bit vector, insert them into an
+ // undef vector. This handles the common case for 128-bit vector argument
+ // passing, where the insertions should be translated to subreg accesses
+ // with no real instructions.
+ if (VT.is128BitVector() && Op.getNumOperands() == 2) {
+ SDValue Val = DAG.getUNDEF(VT);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
+ DAG.getIntPtrConstant(0));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
+ DAG.getIntPtrConstant(1));
+ return Val;
}
return SDValue();
}
-static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
- return Op;
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm, WhichResult;
+
+ return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isVREVMask(M, VT, 64) ||
+ isVREVMask(M, VT, 32) ||
+ isVREVMask(M, VT, 16) ||
+ isVEXTMask(M, VT, ReverseVEXT, Imm) ||
+ isVTRNMask(M, VT, WhichResult) ||
+ isVUZPMask(M, VT, WhichResult) ||
+ isVZIPMask(M, VT, WhichResult));
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ DebugLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3:
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3:
+ return DAG.getNode(ARMISD::VEXT, dl, VT,
+ OpLHS, OpRHS,
+ DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
+ case OP_VUZPL:
+ case OP_VUZPR:
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
+ case OP_VZIPL:
+ case OP_VZIPR:
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
+ case OP_VTRNL:
+ case OP_VTRNR:
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
+ }
}
-static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
- return Op;
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+ SmallVector<int, 8> ShuffleMask;
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ // FIXME: floating-point vectors should be canonicalized to integer vectors
+ // of the same time so that they get CSEd properly.
+ SVN->getMask(ShuffleMask);
+
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, MVT::i32));
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm;
+ if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
+ if (ReverseVEXT)
+ std::swap(V1, V2);
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ if (isVREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
+
+ // Check for Neon shuffles that modify both input vectors in place.
+ // If both results are used, i.e., if there are two shuffles with the same
+ // source operands and with masks corresponding to both results of one of
+ // these operations, DAG memoization will ensure that a single node is
+ // used for both shuffles.
+ unsigned WhichResult;
+ if (isVTRNMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVUZPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVZIPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ return SDValue();
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
- assert((VT == MVT::i8 || VT == MVT::i16) &&
- "unexpected type for custom-lowering vector extract");
SDValue Vec = Op.getOperand(0);
SDValue Lane = Op.getOperand(1);
+
+ // FIXME: This is invalid for 8 and 16-bit elements - the information about
+ // sign / zero extension is lost!
Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
- return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
+
+ if (VT.bitsLT(MVT::i32))
+ Op = DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
+ else if (VT.bitsGT(MVT::i32))
+ Op = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op);
+
+ return Op;
}
-static SDValue LowerCONCAT_VECTORS(SDValue Op) {
- if (Op.getValueType().is128BitVector() && Op.getNumOperands() == 2)
- return Op;
- return SDValue();
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
+ "unexpected CONCAT_VECTORS");
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Val = DAG.getUNDEF(MVT::v2f64);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
+ DAG.getIntPtrConstant(0));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
}
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- default: assert(0 && "Don't know how to custom lower this!"); abort();
+ default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress:
return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
LowerGlobalAddressELF(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
- case ISD::CALL: return LowerCALL(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::RETURNADDR: break;
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
@@ -2287,9 +2758,8 @@ SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::VSETCC: return LowerVSETCC(Op, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
- case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
- case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
}
return SDValue();
}
@@ -2301,7 +2771,7 @@ void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default:
- assert(0 && "Don't know how to custom expand this!");
+ llvm_unreachable("Don't know how to custom expand this!");
return;
case ISD::BIT_CONVERT:
Results.push_back(ExpandBIT_CONVERT(N, DAG));
@@ -2322,12 +2792,14 @@ void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
switch (MI->getOpcode()) {
- default: assert(false && "Unexpected instr type to insert");
- case ARM::tMOVCCr: {
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ case ARM::tMOVCCr_pseudo: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
@@ -2352,12 +2824,15 @@ ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
F->insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
- for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
- e = BB->succ_end(); i != e; ++i)
- sinkMBB->addSuccessor(*i);
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
- while(!BB->succ_empty())
+ while (!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
@@ -2381,6 +2856,78 @@ ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
+
+ case ARM::tANDsp:
+ case ARM::tADDspr_:
+ case ARM::tSUBspi_:
+ case ARM::t2SUBrSPi_:
+ case ARM::t2SUBrSPi12_:
+ case ARM::t2SUBrSPs_: {
+ MachineFunction *MF = BB->getParent();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool DstIsDead = MI->getOperand(0).isDead();
+ bool SrcIsKill = MI->getOperand(1).isKill();
+
+ if (SrcReg != ARM::SP) {
+ // Copy the source to SP from virtual register.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
+ unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
+ ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
+ BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
+ }
+
+ unsigned OpOpc = 0;
+ bool NeedPred = false, NeedCC = false, NeedOp3 = false;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected pseudo instruction!");
+ case ARM::tANDsp:
+ OpOpc = ARM::tAND;
+ NeedPred = true;
+ break;
+ case ARM::tADDspr_:
+ OpOpc = ARM::tADDspr;
+ break;
+ case ARM::tSUBspi_:
+ OpOpc = ARM::tSUBspi;
+ break;
+ case ARM::t2SUBrSPi_:
+ OpOpc = ARM::t2SUBrSPi;
+ NeedPred = true; NeedCC = true;
+ break;
+ case ARM::t2SUBrSPi12_:
+ OpOpc = ARM::t2SUBrSPi12;
+ NeedPred = true;
+ break;
+ case ARM::t2SUBrSPs_:
+ OpOpc = ARM::t2SUBrSPs;
+ NeedPred = true; NeedCC = true; NeedOp3 = true;
+ break;
+ }
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
+ if (OpOpc == ARM::tAND)
+ AddDefaultT1CC(MIB);
+ MIB.addReg(ARM::SP);
+ MIB.addOperand(MI->getOperand(2));
+ if (NeedOp3)
+ MIB.addOperand(MI->getOperand(3));
+ if (NeedPred)
+ AddDefaultPred(MIB);
+ if (NeedCC)
+ AddDefaultCC(MIB);
+
+ // Copy the result from SP to virtual register.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
+ unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
+ ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
+ BuildMI(BB, dl, TII->get(CopyOpc))
+ .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
+ .addReg(ARM::SP);
+ MF->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+ }
}
}
@@ -2393,7 +2940,7 @@ SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
unsigned Opc = N->getOpcode();
bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
@@ -2421,7 +2968,7 @@ SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
cast<ConstantSDNode>(RHS)->isNullValue()) {
std::swap(LHS, RHS);
SDValue Op0 = Slct.getOperand(0);
- MVT OpVT = isSlctCC ? Op0.getValueType() :
+ EVT OpVT = isSlctCC ? Op0.getValueType() :
Op0.getOperand(0).getValueType();
bool isInt = OpVT.isInteger();
CC = ISD::getSetCCInverse(CC, isInt);
@@ -2516,7 +3063,7 @@ static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
-static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
if (! getVShiftImm(Op, ElementBits, Cnt))
@@ -2530,7 +3077,7 @@ static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
/// absolute value must be in the range:
/// 1 <= |Value| <= ElementBits for a right shift; or
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
-static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
@@ -2571,7 +3118,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu: {
- MVT VT = N->getOperand(1).getValueType();
+ EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
@@ -2593,8 +3140,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
case Intrinsic::arm_neon_vshiftlu:
if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
break;
- assert(0 && "invalid shift count for vshll intrinsic");
- abort();
+ llvm_unreachable("invalid shift count for vshll intrinsic");
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
@@ -2611,8 +3157,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
case Intrinsic::arm_neon_vqshiftsu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
- assert(0 && "invalid shift count for vqshlu intrinsic");
- abort();
+ llvm_unreachable("invalid shift count for vqshlu intrinsic");
case Intrinsic::arm_neon_vshiftn:
case Intrinsic::arm_neon_vrshiftn:
@@ -2625,11 +3170,10 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
// Narrowing shifts require an immediate right shift.
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
break;
- assert(0 && "invalid shift count for narrowing vector shift intrinsic");
- abort();
+ llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
default:
- assert(0 && "unhandled vector shift");
+ llvm_unreachable("unhandled vector shift");
}
switch (IntNo) {
@@ -2678,7 +3222,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
}
case Intrinsic::arm_neon_vshiftins: {
- MVT VT = N->getOperand(1).getValueType();
+ EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
@@ -2687,8 +3231,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
VShiftOpc = ARMISD::VSRI;
else {
- assert(0 && "invalid shift count for vsli/vsri intrinsic");
- abort();
+ llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
}
return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
@@ -2712,7 +3255,7 @@ static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
/// their values after they get legalized to loads from a constant pool.
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// Nothing to be done for scalar shifts.
if (! VT.isVector())
@@ -2722,7 +3265,7 @@ static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
int64_t Cnt;
switch (N->getOpcode()) {
- default: assert(0 && "unexpected shift opcode");
+ default: llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
@@ -2755,8 +3298,8 @@ static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue Vec = N0.getOperand(0);
SDValue Lane = N0.getOperand(1);
- MVT VT = N->getValueType(0);
- MVT EltVT = N0.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT EltVT = N0.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (VT == MVT::i32 &&
@@ -2765,7 +3308,7 @@ static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
unsigned Opc = 0;
switch (N->getOpcode()) {
- default: assert(0 && "unexpected opcode");
+ default: llvm_unreachable("unexpected opcode");
case ISD::SIGN_EXTEND:
Opc = ARMISD::VGETLANEs;
break;
@@ -2802,10 +3345,88 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
return SDValue();
}
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
+ if (!Subtarget->hasV6Ops())
+ // Pre-v6 does not support unaligned mem access.
+ return false;
+ else if (!Subtarget->hasV6Ops()) {
+ // v6 may or may not support unaligned mem access.
+ if (!Subtarget->isTargetDarwin())
+ return false;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ return true;
+ // FIXME: VLD1 etc with standard alignment is legal.
+ }
+}
+
+static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == (V & ((1LL << 5) - 1));
+}
+
+static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ bool isNeg = false;
+ if (V < 0) {
+ isNeg = true;
+ V = - V;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // + imm12 or - imm8
+ if (isNeg)
+ return V == (V & ((1LL << 8) - 1));
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ // Same as ARM mode. FIXME: NEON?
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
-static bool isLegalAddressImmediate(int64_t V, MVT VT,
+static bool isLegalAddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
if (V == 0)
return true;
@@ -2813,36 +3434,15 @@ static bool isLegalAddressImmediate(int64_t V, MVT VT,
if (!VT.isSimple())
return false;
- if (Subtarget->isThumb()) {
- if (V < 0)
- return false;
-
- unsigned Scale = 1;
- switch (VT.getSimpleVT()) {
- default: return false;
- case MVT::i1:
- case MVT::i8:
- // Scale == 1;
- break;
- case MVT::i16:
- // Scale == 2;
- Scale = 2;
- break;
- case MVT::i32:
- // Scale == 4;
- Scale = 4;
- break;
- }
-
- if ((V & (Scale - 1)) != 0)
- return false;
- V /= Scale;
- return V == (V & ((1LL << 5) - 1));
- }
+ if (Subtarget->isThumb1Only())
+ return isLegalT1AddressImmediate(V, VT);
+ else if (Subtarget->isThumb2())
+ return isLegalT2AddressImmediate(V, VT, Subtarget);
+ // ARM mode.
if (V < 0)
V = - V;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
@@ -2854,7 +3454,7 @@ static bool isLegalAddressImmediate(int64_t V, MVT VT,
return V == (V & ((1LL << 8) - 1));
case MVT::f32:
case MVT::f64:
- if (!Subtarget->hasVFP2())
+ if (!Subtarget->hasVFP2()) // FIXME: NEON?
return false;
if ((V & 3) != 0)
return false;
@@ -2863,11 +3463,44 @@ static bool isLegalAddressImmediate(int64_t V, MVT VT,
}
}
+bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
+ EVT VT) const {
+ int Scale = AM.Scale;
+ if (Scale < 0)
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ Scale = Scale & ~1;
+ return Scale == 2 || Scale == 4 || Scale == 8;
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+}
+
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
- MVT VT = getValueType(Ty, true);
+ EVT VT = getValueType(Ty, true);
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
return false;
@@ -2879,7 +3512,7 @@ bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
case 0: // no scale reg, must be "r+i" or "r", or "i".
break;
case 1:
- if (Subtarget->isThumb())
+ if (Subtarget->isThumb1Only())
return false;
// FALL THROUGH.
default:
@@ -2890,22 +3523,22 @@ bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
if (!VT.isSimple())
return false;
+ if (Subtarget->isThumb2())
+ return isLegalT2ScaledAddressingMode(AM, VT);
+
int Scale = AM.Scale;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
- case MVT::i64:
- // This assumes i64 is legalized to a pair of i32. If not (i.e.
- // ldrd / strd are used, then its address mode is same as i16.
- // r + r
if (Scale < 0) Scale = -Scale;
if (Scale == 1)
return true;
// r + r << imm
return isPowerOf2_32(Scale & ~1);
case MVT::i16:
+ case MVT::i64:
// r + r
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
return true;
@@ -2917,15 +3550,15 @@ bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
- if (AM.Scale & 1) return false;
- return isPowerOf2_32(AM.Scale);
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
}
break;
}
return true;
}
-static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
+static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
@@ -2983,7 +3616,7 @@ static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
return false;
}
-static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT,
+static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
@@ -3019,7 +3652,7 @@ ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
if (Subtarget->isThumb1Only())
return false;
- MVT VT;
+ EVT VT;
SDValue Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
@@ -3037,7 +3670,7 @@ ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
- else
+ else
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
if (!isLegal)
@@ -3058,7 +3691,7 @@ bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
if (Subtarget->isThumb1Only())
return false;
- MVT VT;
+ EVT VT;
SDValue Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
@@ -3074,7 +3707,7 @@ bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
- else
+ else
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (!isLegal)
@@ -3128,12 +3761,12 @@ ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'l':
- if (Subtarget->isThumb())
+ if (Subtarget->isThumb1Only())
return std::make_pair(0U, ARM::tGPRRegisterClass);
else
return std::make_pair(0U, ARM::GPRRegisterClass);
@@ -3152,7 +3785,7 @@ ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
std::vector<unsigned> ARMTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() != 1)
return std::vector<unsigned>();
@@ -3214,10 +3847,16 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
switch (Constraint) {
case 'I':
- if (Subtarget->isThumb()) {
- // This must be a constant between 0 and 255, for ADD immediates.
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between 0 and 255, for ADD
+ // immediates.
if (CVal >= 0 && CVal <= 255)
break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getT2SOImmVal(CVal) != -1)
+ break;
} else {
// A constant that can be used as an immediate value in a
// data-processing instruction.
@@ -3227,7 +3866,7 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'J':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a constant between -255 and -1, for negated ADD
// immediates. This can be used in GCC with an "n" modifier that
// prints the negated value, for use with SUB instructions. It is
@@ -3244,13 +3883,21 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'K':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb1Only()) {
// A 32-bit value where only one byte has a nonzero value. Exclude
// zero to match GCC. This constraint is used by GCC internally for
// constants that can be loaded with a move/shift combination.
// It is not useful otherwise but is implemented for compatibility.
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getT2SOImmVal(~CVal) != -1)
+ break;
} else {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
@@ -3263,11 +3910,19 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'L':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb1Only()) {
// This must be a constant between -7 and 7,
// for 3-operand ADD/SUB immediate instructions.
if (CVal >= -7 && CVal < 7)
break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getT2SOImmVal(-CVal) != -1)
+ break;
} else {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
@@ -3280,7 +3935,7 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'M':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a multiple of 4 between 0 and 1020, for
// ADD sp + immediate.
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
@@ -3295,7 +3950,7 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'N':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a constant between 0 and 31, for shift amounts.
if (CVal >= 0 && CVal <= 31)
break;
@@ -3303,7 +3958,7 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return;
case 'O':
- if (Subtarget->isThumb()) {
+ if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a multiple of 4 between -508 and 508, for
// ADD/SUB sp = sp + immediate.
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
@@ -3322,3 +3977,9 @@ void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
Ops, DAG);
}
+
+bool
+ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The ARM target isn't yet aware of offsets.
+ return false;
+}
diff --git a/lib/Target/ARM/ARMISelLowering.h b/lib/Target/ARM/ARMISelLowering.h
index 553a86d..7d85f45 100644
--- a/lib/Target/ARM/ARMISelLowering.h
+++ b/lib/Target/ARM/ARMISelLowering.h
@@ -40,6 +40,7 @@ namespace llvm {
tCALL, // Thumb function call.
BRCOND, // Conditional branch.
BR_JT, // Jumptable branch.
+ BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump).
RET_FLAG, // Return with a flag operand.
PIC_ADD, // Add with a PC operand and a PIC label.
@@ -64,11 +65,13 @@ namespace llvm {
FMRRD, // double to two gprs.
FMDRR, // Two gprs to double.
- EH_SJLJ_SETJMP, // SjLj exception handling setjmp
- EH_SJLJ_LONGJMP, // SjLj exception handling longjmp
+ EH_SJLJ_SETJMP, // SjLj exception handling setjmp.
+ EH_SJLJ_LONGJMP, // SjLj exception handling longjmp.
THREAD_POINTER,
+ DYN_ALLOC, // Dynamic allocation on the stack.
+
VCEQ, // Vector compare equal.
VCGE, // Vector compare greater than or equal.
VCGEU, // Vector compare unsigned greater than or equal.
@@ -112,8 +115,18 @@ namespace llvm {
VGETLANEu, // zero-extend vector extract element
VGETLANEs, // sign-extend vector extract element
- // Vector duplicate lane (128-bit result only; 64-bit is a shuffle)
- VDUPLANEQ // splat a lane from a 64-bit vector to a 128-bit vector
+ // Vector duplicate:
+ VDUP,
+ VDUPLANE,
+
+ // Vector shuffles:
+ VEXT, // extract
+ VREV64, // reverse elements within 64-bit doublewords
+ VREV32, // reverse elements within 32-bit words
+ VREV16, // reverse elements within 16-bit halfwords
+ VZIP, // zip (interleave)
+ VUZP, // unzip (deinterleave)
+ VTRN // transpose
};
}
@@ -147,11 +160,18 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*>*) const;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ /// FIXME: Add getOptimalMemOpType to implement memcpy with NEON?
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
+ bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
@@ -175,13 +195,15 @@ namespace llvm {
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const;
+
+
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
@@ -200,21 +222,23 @@ namespace llvm {
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
+ bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const;
+ bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
private:
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when generating code for different targets.
const ARMSubtarget *Subtarget;
- /// ARMPCLabelIndex - Keep track the number of ARM PC labels created.
+ /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
///
unsigned ARMPCLabelIndex;
- void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT);
- void addDRTypeForNEON(MVT VT);
- void addQRTypeForNEON(MVT VT);
+ void addTypeForNEON(EVT VT, EVT PromotedLdStVT, EVT PromotedBitwiseVT);
+ void addDRTypeForNEON(EVT VT);
+ void addQRTypeForNEON(EVT VT);
typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
- void PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
+ void PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
@@ -224,15 +248,13 @@ namespace llvm {
SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG, DebugLoc dl);
- CCAssignFn *CCAssignFnForNode(unsigned CC, bool Return) const;
- SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
- const SDValue &StackPtr, const CCValAssign &VA,
- SDValue Chain, SDValue Arg, ISD::ArgFlagsTy Flags);
- SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
+ CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const;
+ SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags);
+ SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG);
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
@@ -241,9 +263,9 @@ namespace llvm {
SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG);
SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG);
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG);
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain,
@@ -252,6 +274,33 @@ namespace llvm {
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff);
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
};
}
diff --git a/lib/Target/ARM/ARMInstrFormats.td b/lib/Target/ARM/ARMInstrFormats.td
index 301a6c1..3d19f23 100644
--- a/lib/Target/ARM/ARMInstrFormats.td
+++ b/lib/Target/ARM/ARMInstrFormats.td
@@ -54,9 +54,16 @@ def NEONGetLnFrm : Format<25>;
def NEONSetLnFrm : Format<26>;
def NEONDupFrm : Format<27>;
-// Misc flag for data processing instructions that indicates whether
+// Misc flags.
+
// the instruction has a Rn register operand.
-class UnaryDP { bit isUnaryDataProc = 1; }
+// UnaryDP - Indicates this is a unary data processing instruction, i.e.
+// it doesn't have a Rn operand.
+class UnaryDP { bit isUnaryDataProc = 1; }
+
+// Xform16Bit - Indicates this Thumb2 instruction may be transformed into
+// a 16-bit Thumb instruction if certain conditions are met.
+class Xform16Bit { bit canXformTo16Bit = 1; }
//===----------------------------------------------------------------------===//
// ARM Instruction flags. These need to match ARMInstrInfo.h.
@@ -77,7 +84,7 @@ def AddrModeT1_1 : AddrMode<7>;
def AddrModeT1_2 : AddrMode<8>;
def AddrModeT1_4 : AddrMode<9>;
def AddrModeT1_s : AddrMode<10>;
-def AddrModeT2_i12: AddrMode<12>;
+def AddrModeT2_i12: AddrMode<11>;
def AddrModeT2_i8 : AddrMode<12>;
def AddrModeT2_so : AddrMode<13>;
def AddrModeT2_pc : AddrMode<14>;
@@ -103,11 +110,33 @@ def IndexModePost : IndexMode<2>;
//===----------------------------------------------------------------------===//
+// ARM special operands.
+//
+
+// ARM Predicate operand. Default to 14 = always (AL). Second part is CC
+// register whose default is 0 (no register).
+def pred : PredicateOperand<OtherVT, (ops i32imm, CCR),
+ (ops (i32 14), (i32 zero_reg))> {
+ let PrintMethod = "printPredicateOperand";
+}
+
+// Conditional code result for instructions whose 's' bit is set, e.g. subs.
+def cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 zero_reg))> {
+ let PrintMethod = "printSBitModifierOperand";
+}
+
+// Same as cc_out except it defaults to setting CPSR.
+def s_cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 CPSR))> {
+ let PrintMethod = "printSBitModifierOperand";
+}
+
+//===----------------------------------------------------------------------===//
+
// ARM Instruction templates.
//
class InstARM<AddrMode am, SizeFlagVal sz, IndexMode im,
- Format f, string cstr>
+ Format f, string cstr, InstrItinClass itin>
: Instruction {
field bits<32> Inst;
@@ -130,12 +159,15 @@ class InstARM<AddrMode am, SizeFlagVal sz, IndexMode im,
// Attributes specific to ARM instructions...
//
bit isUnaryDataProc = 0;
+ bit canXformTo16Bit = 0;
let Constraints = cstr;
+ let Itinerary = itin;
}
-class PseudoInst<dag oops, dag iops, string asm, list<dag> pattern>
- : InstARM<AddrModeNone, SizeSpecial, IndexModeNone, Pseudo, ""> {
+class PseudoInst<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : InstARM<AddrModeNone, SizeSpecial, IndexModeNone, Pseudo, "", itin> {
let OutOperandList = oops;
let InOperandList = iops;
let AsmString = asm;
@@ -144,9 +176,10 @@ class PseudoInst<dag oops, dag iops, string asm, list<dag> pattern>
// Almost all ARM instructions are predicable.
class I<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
- IndexMode im, Format f, string opc, string asm, string cstr,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr,
list<dag> pattern>
- : InstARM<am, sz, im, f, cstr> {
+ : InstARM<am, sz, im, f, cstr, itin> {
let OutOperandList = oops;
let InOperandList = !con(iops, (ops pred:$p));
let AsmString = !strconcat(opc, !strconcat("${p}", asm));
@@ -158,9 +191,10 @@ class I<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
// an input operand since by default it's a zero register. It will
// become an implicit def once it's "flipped".
class sI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
- IndexMode im, Format f, string opc, string asm, string cstr,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr,
list<dag> pattern>
- : InstARM<am, sz, im, f, cstr> {
+ : InstARM<am, sz, im, f, cstr, itin> {
let OutOperandList = oops;
let InOperandList = !con(iops, (ops pred:$p, cc_out:$s));
let AsmString = !strconcat(opc, !strconcat("${p}${s}", asm));
@@ -170,8 +204,9 @@ class sI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
// Special cases
class XI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
- IndexMode im, Format f, string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, im, f, cstr> {
+ IndexMode im, Format f, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, cstr, itin> {
let OutOperandList = oops;
let InOperandList = iops;
let AsmString = asm;
@@ -179,90 +214,93 @@ class XI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
list<Predicate> Predicates = [IsARM];
}
-class AI<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern>;
-class AsI<dag oops, dag iops, Format f, string opc,
+class AI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+class AsI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+class AXI<dag oops, dag iops, Format f, InstrItinClass itin,
string asm, list<dag> pattern>
- : sI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, opc,
+ : XI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern>;
-class AXI<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, asm,
- "", pattern>;
// Ctrl flow instructions
-class ABI<bits<4> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, BrFrm, opc,
- asm, "", pattern> {
+class ABI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, BrFrm, itin,
+ opc, asm, "", pattern> {
let Inst{27-24} = opcod;
}
-class ABXI<bits<4> opcod, dag oops, dag iops, string asm, list<dag> pattern>
- : XI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, BrFrm, asm,
- "", pattern> {
+class ABXI<bits<4> opcod, dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, BrFrm, itin,
+ asm, "", pattern> {
let Inst{27-24} = opcod;
}
-class ABXIx2<dag oops, dag iops, string asm, list<dag> pattern>
- : XI<oops, iops, AddrModeNone, Size8Bytes, IndexModeNone, BrMiscFrm, asm,
- "", pattern>;
+class ABXIx2<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, Size8Bytes, IndexModeNone, BrMiscFrm, itin,
+ asm, "", pattern>;
// BR_JT instructions
-class JTI<dag oops, dag iops, string asm, list<dag> pattern>
- : XI<oops, iops, AddrModeNone, SizeSpecial, IndexModeNone, BrMiscFrm,
+class JTI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrModeNone, SizeSpecial, IndexModeNone, BrMiscFrm, itin,
asm, "", pattern>;
// addrmode1 instructions
-class AI1<bits<4> opcod, dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{24-21} = opcod;
let Inst{27-26} = {0,0};
}
-class AsI1<bits<4> opcod, dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : sI<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AsI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{24-21} = opcod;
let Inst{27-26} = {0,0};
}
-class AXI1<bits<4> opcod, dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, asm,
- "", pattern> {
+class AXI1<bits<4> opcod, dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode1, Size4Bytes, IndexModeNone, f, itin,
+ asm, "", pattern> {
let Inst{24-21} = opcod;
let Inst{27-26} = {0,0};
}
-class AI1x2<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode1, Size8Bytes, IndexModeNone, f, opc,
- asm, "", pattern>;
+class AI1x2<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode1, Size8Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
// addrmode2 loads and stores
-class AI2<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI2<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{27-26} = {0,1};
}
// loads
-class AI2ldw<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI2ldw<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AXI2ldw<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f,
+class AXI2ldw<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
@@ -270,19 +308,19 @@ class AXI2ldw<dag oops, dag iops, Format f, string asm,
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AI2ldb<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI2ldb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 1; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AXI2ldb<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f,
+class AXI2ldb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
@@ -292,19 +330,19 @@ class AXI2ldb<dag oops, dag iops, Format f, string asm,
}
// stores
-class AI2stw<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI2stw<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AXI2stw<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f,
+class AXI2stw<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
@@ -312,19 +350,19 @@ class AXI2stw<dag oops, dag iops, Format f, string asm,
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AI2stb<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI2stb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 1; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AXI2stb<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f,
+class AXI2stb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode2, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
@@ -334,20 +372,20 @@ class AXI2stb<dag oops, dag iops, Format f, string asm,
}
// Pre-indexed loads
-class AI2ldwpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI2ldwpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AI2ldbpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI2ldbpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{22} = 1; // B bit
@@ -356,20 +394,20 @@ class AI2ldbpr<dag oops, dag iops, Format f, string opc,
}
// Pre-indexed stores
-class AI2stwpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI2stwpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 1; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
-class AI2stbpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI2stbpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 1; // W bit
let Inst{22} = 1; // B bit
@@ -378,20 +416,20 @@ class AI2stbpr<dag oops, dag iops, Format f, string opc,
}
// Post-indexed loads
-class AI2ldwpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI2ldwpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 0; // P bit
let Inst{27-26} = {0,1};
}
-class AI2ldbpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI2ldbpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 1; // B bit
@@ -400,20 +438,20 @@ class AI2ldbpo<dag oops, dag iops, Format f, string opc,
}
// Post-indexed stores
-class AI2stwpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI2stwpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 0; // P bit
let Inst{27-26} = {0,1};
}
-class AI2stbpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI2stbpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode2, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 1; // B bit
@@ -422,20 +460,20 @@ class AI2stbpo<dag oops, dag iops, Format f, string opc,
}
// addrmode3 instructions
-class AI3<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern>;
-class AXI3<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, asm,
- "", pattern>;
+class AI3<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+class AXI3<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ asm, "", pattern>;
// loads
-class AI3ldh<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3ldh<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -443,10 +481,11 @@ class AI3ldh<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AXI3ldh<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f,
+class AXI3ldh<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
@@ -456,10 +495,10 @@ class AXI3ldh<dag oops, dag iops, Format f, string asm,
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
}
-class AI3ldsh<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3ldsh<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 1; // S bit
@@ -467,10 +506,11 @@ class AI3ldsh<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AXI3ldsh<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f,
+class AXI3ldsh<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
@@ -480,10 +520,10 @@ class AXI3ldsh<dag oops, dag iops, Format f, string asm,
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
}
-class AI3ldsb<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3ldsb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 0; // H bit
let Inst{6} = 1; // S bit
@@ -491,10 +531,11 @@ class AI3ldsb<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AXI3ldsb<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f,
+class AXI3ldsb<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 0; // H bit
@@ -504,10 +545,10 @@ class AXI3ldsb<dag oops, dag iops, Format f, string asm,
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
}
-class AI3ldd<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3ldd<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 0; // H bit
let Inst{6} = 1; // S bit
@@ -515,13 +556,14 @@ class AI3ldd<dag oops, dag iops, Format f, string opc,
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
// stores
-class AI3sth<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3sth<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -529,10 +571,11 @@ class AI3sth<dag oops, dag iops, Format f, string opc,
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AXI3sth<dag oops, dag iops, Format f, string asm,
- list<dag> pattern>
- : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f,
+class AXI3sth<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
@@ -542,10 +585,10 @@ class AXI3sth<dag oops, dag iops, Format f, string asm,
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
}
-class AI3std<dag oops, dag iops, Format f, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, opc,
- asm, "", pattern> {
+class AI3std<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 1; // S bit
@@ -553,13 +596,14 @@ class AI3std<dag oops, dag iops, Format f, string opc,
let Inst{20} = 0; // L bit
let Inst{21} = 0; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
// Pre-indexed loads
-class AI3ldhpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI3ldhpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -567,11 +611,12 @@ class AI3ldhpr<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AI3ldshpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI3ldshpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 1; // S bit
@@ -579,11 +624,12 @@ class AI3ldshpr<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
-class AI3ldsbpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI3ldsbpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{4} = 1;
let Inst{5} = 0; // H bit
let Inst{6} = 1; // S bit
@@ -591,13 +637,14 @@ class AI3ldsbpr<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
// Pre-indexed stores
-class AI3sthpr<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, opc,
- asm, cstr, pattern> {
+class AI3sthpr<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePre, f, itin,
+ opc, asm, cstr, pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -605,13 +652,14 @@ class AI3sthpr<dag oops, dag iops, Format f, string opc,
let Inst{20} = 0; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 1; // P bit
+ let Inst{27-25} = 0b000;
}
// Post-indexed loads
-class AI3ldhpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI3ldhpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -619,11 +667,12 @@ class AI3ldhpo<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 0; // P bit
+ let Inst{27-25} = 0b000;
}
-class AI3ldshpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI3ldshpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 1; // S bit
@@ -631,11 +680,12 @@ class AI3ldshpo<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 0; // P bit
+ let Inst{27-25} = 0b000;
}
-class AI3ldsbpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI3ldsbpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{4} = 1;
let Inst{5} = 0; // H bit
let Inst{6} = 1; // S bit
@@ -643,13 +693,14 @@ class AI3ldsbpo<dag oops, dag iops, Format f, string opc,
let Inst{20} = 1; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 0; // P bit
+ let Inst{27-25} = 0b000;
}
// Post-indexed stores
-class AI3sthpo<dag oops, dag iops, Format f, string opc,
- string asm, string cstr, list<dag> pattern>
- : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, opc,
- asm, cstr,pattern> {
+class AI3sthpo<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : I<oops, iops, AddrMode3, Size4Bytes, IndexModePost, f, itin,
+ opc, asm, cstr,pattern> {
let Inst{4} = 1;
let Inst{5} = 1; // H bit
let Inst{6} = 0; // S bit
@@ -657,57 +708,60 @@ class AI3sthpo<dag oops, dag iops, Format f, string opc,
let Inst{20} = 0; // L bit
let Inst{21} = 1; // W bit
let Inst{24} = 0; // P bit
+ let Inst{27-25} = 0b000;
}
// addrmode4 instructions
-class AXI4ld<dag oops, dag iops, Format f, string asm, list<dag> pattern>
- : XI<oops, iops, AddrMode4, Size4Bytes, IndexModeNone, f, asm,
- "", pattern> {
+class AXI4ld<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode4, Size4Bytes, IndexModeNone, f, itin,
+ asm, "", pattern> {
let Inst{20} = 1; // L bit
let Inst{22} = 0; // S bit
let Inst{27-25} = 0b100;
}
-class AXI4st<dag oops, dag iops, Format f, string asm, list<dag> pattern>
- : XI<oops, iops, AddrMode4, Size4Bytes, IndexModeNone, f, asm,
- "", pattern> {
+class AXI4st<dag oops, dag iops, Format f, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : XI<oops, iops, AddrMode4, Size4Bytes, IndexModeNone, f, itin,
+ asm, "", pattern> {
let Inst{20} = 0; // L bit
let Inst{22} = 0; // S bit
let Inst{27-25} = 0b100;
}
// Unsigned multiply, multiply-accumulate instructions.
-class AMul1I<bits<7> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, opc,
- asm, "", pattern> {
+class AMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
let Inst{7-4} = 0b1001;
let Inst{20} = 0; // S bit
let Inst{27-21} = opcod;
}
-class AsMul1I<bits<7> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : sI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, opc,
- asm, "", pattern> {
+class AsMul1I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : sI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
let Inst{7-4} = 0b1001;
let Inst{27-21} = opcod;
}
// Most significant word multiply
-class AMul2I<bits<7> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, opc,
- asm, "", pattern> {
+class AMul2I<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
let Inst{7-4} = 0b1001;
let Inst{20} = 1;
let Inst{27-21} = opcod;
}
// SMUL<x><y> / SMULW<y> / SMLA<x><y> / SMLAW<x><y>
-class AMulxyI<bits<7> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, opc,
- asm, "", pattern> {
+class AMulxyI<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, MulFrm, itin,
+ opc, asm, "", pattern> {
let Inst{4} = 0;
let Inst{7} = 1;
let Inst{20} = 0;
@@ -715,19 +769,19 @@ class AMulxyI<bits<7> opcod, dag oops, dag iops, string opc,
}
// Extend instructions.
-class AExtI<bits<8> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, ExtFrm, opc,
- asm, "", pattern> {
+class AExtI<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, ExtFrm, itin,
+ opc, asm, "", pattern> {
let Inst{7-4} = 0b0111;
let Inst{27-20} = opcod;
}
// Misc Arithmetic instructions.
-class AMiscA1I<bits<8> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, ArithMiscFrm, opc,
- asm, "", pattern> {
+class AMiscA1I<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, ArithMiscFrm, itin,
+ opc, asm, "", pattern> {
let Inst{27-20} = opcod;
}
@@ -751,74 +805,120 @@ class ARMV6Pat<dag pattern, dag result> : Pat<pattern, result> {
// TI - Thumb instruction.
-class ThumbI<dag outs, dag ins, AddrMode am, SizeFlagVal sz,
- string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr> {
- let OutOperandList = outs;
- let InOperandList = ins;
+class ThumbI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
let AsmString = asm;
let Pattern = pattern;
list<Predicate> Predicates = [IsThumb];
}
-class TI<dag outs, dag ins, string asm, list<dag> pattern>
- : ThumbI<outs, ins, AddrModeNone, Size2Bytes, asm, "", pattern>;
+class TI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, Size2Bytes, itin, asm, "", pattern>;
-// BL, BLX(1) are translated by assembler into two instructions
-class TIx2<dag outs, dag ins, string asm, list<dag> pattern>
- : ThumbI<outs, ins, AddrModeNone, Size4Bytes, asm, "", pattern>;
-
-// BR_JT instructions
-class TJTI<dag outs, dag ins, string asm, list<dag> pattern>
- : ThumbI<outs, ins, AddrModeNone, SizeSpecial, asm, "", pattern>;
+// Two-address instructions
+class TIt<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, Size2Bytes, itin, asm, "$lhs = $dst", pattern>;
-// TPat - Same as Pat<>, but requires that the compiler be in Thumb mode.
-class TPat<dag pattern, dag result> : Pat<pattern, result> {
- list<Predicate> Predicates = [IsThumb];
-}
+// tBL, tBX instructions
+class TIx2<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, Size4Bytes, itin, asm, "", pattern>;
-class Tv5Pat<dag pattern, dag result> : Pat<pattern, result> {
- list<Predicate> Predicates = [IsThumb, HasV5T];
-}
+// BR_JT instructions
+class TJTI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : ThumbI<oops, iops, AddrModeNone, SizeSpecial, itin, asm, "", pattern>;
// Thumb1 only
-class Thumb1I<dag outs, dag ins, AddrMode am, SizeFlagVal sz,
- string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr> {
- let OutOperandList = outs;
- let InOperandList = ins;
+class Thumb1I<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
let AsmString = asm;
let Pattern = pattern;
list<Predicate> Predicates = [IsThumb1Only];
}
-class T1I<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeNone, Size2Bytes, asm, "", pattern>;
-class T1I1<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeT1_1, Size2Bytes, asm, "", pattern>;
-class T1I2<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeT1_2, Size2Bytes, asm, "", pattern>;
-class T1I4<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeT1_4, Size2Bytes, asm, "", pattern>;
-class T1Is<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeT1_s, Size2Bytes, asm, "", pattern>;
-class T1Ix2<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeNone, Size4Bytes, asm, "", pattern>;
-class T1JTI<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeNone, SizeSpecial, asm, "", pattern>;
+class T1I<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, Size2Bytes, itin, asm, "", pattern>;
+class T1Ix2<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, Size4Bytes, itin, asm, "", pattern>;
+class T1JTI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, SizeSpecial, itin, asm, "", pattern>;
// Two-address instructions
-class T1It<dag outs, dag ins, string asm, list<dag> pattern>
- : Thumb1I<outs, ins, AddrModeNone, Size2Bytes, asm, "$lhs = $dst", pattern>;
+class T1It<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb1I<oops, iops, AddrModeNone, Size2Bytes, itin,
+ asm, "$lhs = $dst", pattern>;
-class T1Pat<dag pattern, dag result> : Pat<pattern, result> {
+// Thumb1 instruction that can either be predicated or set CPSR.
+class Thumb1sI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
+ let OutOperandList = !con(oops, (ops s_cc_out:$s));
+ let InOperandList = !con(iops, (ops pred:$p));
+ let AsmString = !strconcat(opc, !strconcat("${s}${p}", asm));
+ let Pattern = pattern;
+ list<Predicate> Predicates = [IsThumb1Only];
+}
+
+class T1sI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1sI<oops, iops, AddrModeNone, Size2Bytes, itin, opc, asm, "", pattern>;
+
+// Two-address instructions
+class T1sIt<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1sI<oops, iops, AddrModeNone, Size2Bytes, itin, opc, asm,
+ "$lhs = $dst", pattern>;
+
+// Thumb1 instruction that can be predicated.
+class Thumb1pI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ops pred:$p));
+ let AsmString = !strconcat(opc, !strconcat("${p}", asm));
+ let Pattern = pattern;
list<Predicate> Predicates = [IsThumb1Only];
}
+class T1pI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeNone, Size2Bytes, itin, opc, asm, "", pattern>;
+
+// Two-address instructions
+class T1pIt<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeNone, Size2Bytes, itin, opc, asm,
+ "$lhs = $dst", pattern>;
+
+class T1pI1<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeT1_1, Size2Bytes, itin, opc, asm, "", pattern>;
+class T1pI2<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeT1_2, Size2Bytes, itin, opc, asm, "", pattern>;
+class T1pI4<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeT1_4, Size2Bytes, itin, opc, asm, "", pattern>;
+class T1pIs<dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : Thumb1pI<oops, iops, AddrModeT1_s, Size2Bytes, itin, opc, asm, "", pattern>;
+
// Thumb2I - Thumb2 instruction. Almost all Thumb2 instructions are predicable.
class Thumb2I<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin,
string opc, string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr> {
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
let OutOperandList = oops;
let InOperandList = !con(iops, (ops pred:$p));
let AsmString = !strconcat(opc, !strconcat("${p}", asm));
@@ -832,8 +932,9 @@ class Thumb2I<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
// FIXME: This uses unified syntax so {s} comes before {p}. We should make it
// more consistent.
class Thumb2sI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin,
string opc, string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr> {
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
let OutOperandList = oops;
let InOperandList = !con(iops, (ops pred:$p, cc_out:$s));
let AsmString = !strconcat(opc, !strconcat("${s}${p}", asm));
@@ -843,8 +944,9 @@ class Thumb2sI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
// Special cases
class Thumb2XI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ InstrItinClass itin,
string asm, string cstr, list<dag> pattern>
- : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr> {
+ : InstARM<am, sz, IndexModeNone, ThumbFrm, cstr, itin> {
let OutOperandList = oops;
let InOperandList = iops;
let AsmString = asm;
@@ -852,31 +954,46 @@ class Thumb2XI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
list<Predicate> Predicates = [IsThumb2];
}
-class T2I<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeNone, Size4Bytes, opc, asm, "", pattern>;
-class T2Ii12<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeT2_i12, Size4Bytes, opc, asm, "", pattern>;
-class T2Ii8<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeT2_i8, Size4Bytes, opc, asm, "", pattern>;
-class T2Iso<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeT2_so, Size4Bytes, opc, asm, "", pattern>;
-class T2Ipc<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeT2_pc, Size4Bytes, opc, asm, "", pattern>;
-class T2Ii8s4<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2I<oops, iops, AddrModeT2_i8s4, Size4Bytes, opc, asm, "", pattern>;
+class T2I<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeNone, Size4Bytes, itin, opc, asm, "", pattern>;
+class T2Ii12<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i12, Size4Bytes, itin, opc, asm, "", pattern>;
+class T2Ii8<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i8, Size4Bytes, itin, opc, asm, "", pattern>;
+class T2Iso<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_so, Size4Bytes, itin, opc, asm, "", pattern>;
+class T2Ipc<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_pc, Size4Bytes, itin, opc, asm, "", pattern>;
+class T2Ii8s4<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeT2_i8s4, Size4Bytes, itin, opc, asm, "", pattern>;
+
+class T2sI<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2sI<oops, iops, AddrModeNone, Size4Bytes, itin, opc, asm, "", pattern>;
+
+class T2XI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb2XI<oops, iops, AddrModeNone, Size4Bytes, itin, asm, "", pattern>;
+class T2JTI<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : Thumb2XI<oops, iops, AddrModeNone, SizeSpecial, itin, asm, "", pattern>;
-class T2sI<dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : Thumb2sI<oops, iops, AddrModeNone, Size4Bytes, opc, asm, "", pattern>;
+class T2Ix2<dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : Thumb2I<oops, iops, AddrModeNone, Size8Bytes, itin, opc, asm, "", pattern>;
-class T2XI<dag oops, dag iops, string asm, list<dag> pattern>
- : Thumb2XI<oops, iops, AddrModeNone, Size4Bytes, asm, "", pattern>;
-class T2JTI<dag oops, dag iops, string asm, list<dag> pattern>
- : Thumb2XI<oops, iops, AddrModeNone, SizeSpecial, asm, "", pattern>;
// T2Iidxldst - Thumb2 indexed load / store instructions.
class T2Iidxldst<dag oops, dag iops, AddrMode am, IndexMode im,
+ InstrItinClass itin,
string opc, string asm, string cstr, list<dag> pattern>
- : InstARM<am, Size4Bytes, im, ThumbFrm, cstr> {
+ : InstARM<am, Size4Bytes, im, ThumbFrm, cstr, itin> {
let OutOperandList = oops;
let InOperandList = !con(iops, (ops pred:$p));
let AsmString = !strconcat(opc, !strconcat("${p}", asm));
@@ -884,6 +1001,15 @@ class T2Iidxldst<dag oops, dag iops, AddrMode am, IndexMode im,
list<Predicate> Predicates = [IsThumb2];
}
+// Tv5Pat - Same as Pat<>, but requires V5T Thumb mode.
+class Tv5Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb1Only, HasV5T];
+}
+
+// T1Pat - Same as Pat<>, but requires that the compiler be in Thumb1 mode.
+class T1Pat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [IsThumb1Only];
+}
// T2Pat - Same as Pat<>, but requires that the compiler be in Thumb2 mode.
class T2Pat<dag pattern, dag result> : Pat<pattern, result> {
@@ -896,11 +1022,41 @@ class T2Pat<dag pattern, dag result> : Pat<pattern, result> {
// ARM VFP Instruction templates.
//
+// Almost all VFP instructions are predicable.
+class VFPI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string opc, string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = !con(iops, (ops pred:$p));
+ let AsmString = !strconcat(opc, !strconcat("${p}", asm));
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasVFP2];
+}
+
+// Special cases
+class VFPXI<dag oops, dag iops, AddrMode am, SizeFlagVal sz,
+ IndexMode im, Format f, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, sz, im, f, cstr, itin> {
+ let OutOperandList = oops;
+ let InOperandList = iops;
+ let AsmString = asm;
+ let Pattern = pattern;
+ list<Predicate> Predicates = [HasVFP2];
+}
+
+class VFPAI<dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPI<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, f, itin,
+ opc, asm, "", pattern>;
+
// ARM VFP addrmode5 loads and stores
class ADI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
+ InstrItinClass itin,
string opc, string asm, list<dag> pattern>
- : I<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
- VFPLdStFrm, opc, asm, "", pattern> {
+ : VFPI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
+ VFPLdStFrm, itin, opc, asm, "", pattern> {
// TODO: Mark the instructions with the appropriate subtarget info.
let Inst{27-24} = opcod1;
let Inst{21-20} = opcod2;
@@ -908,9 +1064,10 @@ class ADI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
}
class ASI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
+ InstrItinClass itin,
string opc, string asm, list<dag> pattern>
- : I<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
- VFPLdStFrm, opc, asm, "", pattern> {
+ : VFPI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
+ VFPLdStFrm, itin, opc, asm, "", pattern> {
// TODO: Mark the instructions with the appropriate subtarget info.
let Inst{27-24} = opcod1;
let Inst{21-20} = opcod2;
@@ -918,27 +1075,28 @@ class ASI5<bits<4> opcod1, bits<2> opcod2, dag oops, dag iops,
}
// Load / store multiple
-class AXSI5<dag oops, dag iops, string asm, list<dag> pattern>
- : XI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
- VFPLdStMulFrm, asm, "", pattern> {
+class AXDI5<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
+ VFPLdStMulFrm, itin, asm, "", pattern> {
// TODO: Mark the instructions with the appropriate subtarget info.
let Inst{27-25} = 0b110;
let Inst{11-8} = 0b1011;
}
-class AXDI5<dag oops, dag iops, string asm, list<dag> pattern>
- : XI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
- VFPLdStMulFrm, asm, "", pattern> {
+class AXSI5<dag oops, dag iops, InstrItinClass itin,
+ string asm, list<dag> pattern>
+ : VFPXI<oops, iops, AddrMode5, Size4Bytes, IndexModeNone,
+ VFPLdStMulFrm, itin, asm, "", pattern> {
// TODO: Mark the instructions with the appropriate subtarget info.
let Inst{27-25} = 0b110;
let Inst{11-8} = 0b1010;
}
-
// Double precision, unary
class ADuI<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3, dag oops, dag iops,
- string opc, string asm, list<dag> pattern>
- : AI<oops, iops, VFPUnaryFrm, opc, asm, pattern> {
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, pattern> {
let Inst{27-20} = opcod1;
let Inst{19-16} = opcod2;
let Inst{11-8} = 0b1011;
@@ -946,17 +1104,17 @@ class ADuI<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3, dag oops, dag iops,
}
// Double precision, binary
-class ADbI<bits<8> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AI<oops, iops, VFPBinaryFrm, opc, asm, pattern> {
+class ADbI<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, pattern> {
let Inst{27-20} = opcod;
let Inst{11-8} = 0b1011;
}
// Single precision, unary
class ASuI<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3, dag oops, dag iops,
- string opc, string asm, list<dag> pattern>
- : AI<oops, iops, VFPUnaryFrm, opc, asm, pattern> {
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPUnaryFrm, itin, opc, asm, pattern> {
// Bits 22 (D bit) and 5 (M bit) will be changed during instruction encoding.
let Inst{27-20} = opcod1;
let Inst{19-16} = opcod2;
@@ -964,48 +1122,74 @@ class ASuI<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3, dag oops, dag iops,
let Inst{7-4} = opcod3;
}
+// Single precision unary, if no NEON
+// Same as ASuI except not available if NEON is enabled
+class ASuIn<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : ASuI<opcod1, opcod2, opcod2, oops, iops, itin, opc, asm, pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+}
+
// Single precision, binary
-class ASbI<bits<8> opcod, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AI<oops, iops, VFPBinaryFrm, opc, asm, pattern> {
+class ASbI<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPBinaryFrm, itin, opc, asm, pattern> {
// Bit 22 (D bit) can be changed during instruction encoding.
let Inst{27-20} = opcod;
let Inst{11-8} = 0b1010;
}
+// Single precision binary, if no NEON
+// Same as ASbI except not available if NEON is enabled
+class ASbIn<bits<8> opcod, dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : ASbI<opcod, oops, iops, itin, opc, asm, pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+}
+
// VFP conversion instructions
class AVConv1I<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3,
- dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : AI<oops, iops, VFPConv1Frm, opc, asm, pattern> {
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, VFPConv1Frm, itin, opc, asm, pattern> {
let Inst{27-20} = opcod1;
let Inst{19-16} = opcod2;
let Inst{11-8} = opcod3;
let Inst{6} = 1;
}
+// VFP conversion instructions, if no NEON
+class AVConv1In<bits<8> opcod1, bits<4> opcod2, bits<4> opcod3,
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AVConv1I<opcod1, opcod2, opcod3, oops, iops, itin, opc, asm, pattern> {
+ list<Predicate> Predicates = [HasVFP2,DontUseNEONForFP];
+}
+
class AVConvXI<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, Format f,
- string opc, string asm, list<dag> pattern>
- : AI<oops, iops, f, opc, asm, pattern> {
+ InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : VFPAI<oops, iops, f, itin, opc, asm, pattern> {
let Inst{27-20} = opcod1;
let Inst{11-8} = opcod2;
let Inst{4} = 1;
}
-class AVConv2I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AVConvXI<opcod1, opcod2, oops, iops, VFPConv2Frm, opc, asm, pattern>;
+class AVConv2I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv2Frm, itin, opc, asm, pattern>;
-class AVConv3I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AVConvXI<opcod1, opcod2, oops, iops, VFPConv3Frm, opc, asm, pattern>;
+class AVConv3I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv3Frm, itin, opc, asm, pattern>;
-class AVConv4I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AVConvXI<opcod1, opcod2, oops, iops, VFPConv4Frm, opc, asm, pattern>;
+class AVConv4I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv4Frm, itin, opc, asm, pattern>;
-class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, string opc,
- string asm, list<dag> pattern>
- : AVConvXI<opcod1, opcod2, oops, iops, VFPConv5Frm, opc, asm, pattern>;
+class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
+ InstrItinClass itin, string opc, string asm, list<dag> pattern>
+ : AVConvXI<opcod1, opcod2, oops, iops, VFPConv5Frm, itin, opc, asm, pattern>;
//===----------------------------------------------------------------------===//
@@ -1013,9 +1197,9 @@ class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops, string opc,
// ARM NEON Instruction templates.
//
-class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, string asm,
- string cstr, list<dag> pattern>
- : InstARM<am, Size4Bytes, im, NEONFrm, cstr> {
+class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : InstARM<am, Size4Bytes, im, NEONFrm, cstr, itin> {
let OutOperandList = oops;
let InOperandList = iops;
let AsmString = asm;
@@ -1023,20 +1207,33 @@ class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, string asm,
list<Predicate> Predicates = [HasNEON];
}
-class NI<dag oops, dag iops, string asm, list<dag> pattern>
- : NeonI<oops, iops, AddrModeNone, IndexModeNone, asm, "", pattern> {
+class NI<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : NeonI<oops, iops, AddrModeNone, IndexModeNone, itin, asm, "", pattern> {
+}
+
+class NI4<dag oops, dag iops, InstrItinClass itin, string asm, list<dag> pattern>
+ : NeonI<oops, iops, AddrMode4, IndexModeNone, itin, asm, "", pattern> {
+}
+
+class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
+ dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NeonI<oops, iops, AddrMode6, IndexModeNone, itin, asm, cstr, pattern> {
+ let Inst{31-24} = 0b11110100;
}
-class NDataI<dag oops, dag iops, string asm, string cstr, list<dag> pattern>
- : NeonI<oops, iops, AddrModeNone, IndexModeNone, asm, cstr, pattern> {
+class NDataI<dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NeonI<oops, iops, AddrModeNone, IndexModeNone, itin, asm, cstr, pattern> {
let Inst{31-25} = 0b1111001;
}
// NEON "one register and a modified immediate" format.
class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6,
bit op5, bit op4,
- dag oops, dag iops, string asm, string cstr, list<dag> pattern>
- : NDataI<oops, iops, asm, cstr, pattern> {
+ dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, itin, asm, cstr, pattern> {
let Inst{23} = op23;
let Inst{21-19} = op21_19;
let Inst{11-8} = op11_8;
@@ -1049,8 +1246,9 @@ class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6,
// NEON 2 vector register format.
class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
bits<5> op11_7, bit op6, bit op4,
- dag oops, dag iops, string asm, string cstr, list<dag> pattern>
- : NDataI<oops, iops, asm, cstr, pattern> {
+ dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, itin, asm, cstr, pattern> {
let Inst{24-23} = op24_23;
let Inst{21-20} = op21_20;
let Inst{19-18} = op19_18;
@@ -1063,8 +1261,9 @@ class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
// NEON 2 vector register with immediate.
class N2VImm<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op6, bit op4,
- dag oops, dag iops, string asm, string cstr, list<dag> pattern>
- : NDataI<oops, iops, asm, cstr, pattern> {
+ dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, itin, asm, cstr, pattern> {
let Inst{24} = op24;
let Inst{23} = op23;
let Inst{21-16} = op21_16;
@@ -1076,8 +1275,9 @@ class N2VImm<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
// NEON 3 vector register format.
class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4,
- dag oops, dag iops, string asm, string cstr, list<dag> pattern>
- : NDataI<oops, iops, asm, cstr, pattern> {
+ dag oops, dag iops, InstrItinClass itin,
+ string asm, string cstr, list<dag> pattern>
+ : NDataI<oops, iops, itin, asm, cstr, pattern> {
let Inst{24} = op24;
let Inst{23} = op23;
let Inst{21-20} = op21_20;
@@ -1088,9 +1288,9 @@ class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4,
// NEON VMOVs between scalar and core registers.
class NVLaneOp<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
- dag oops, dag iops, Format f, string opc, string asm,
- list<dag> pattern>
- : AI<oops, iops, f, opc, asm, pattern> {
+ dag oops, dag iops, Format f, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : AI<oops, iops, f, itin, opc, asm, pattern> {
let Inst{27-20} = opcod1;
let Inst{11-8} = opcod2;
let Inst{6-5} = opcod3;
@@ -1098,13 +1298,23 @@ class NVLaneOp<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
list<Predicate> Predicates = [HasNEON];
}
class NVGetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
- dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONGetLnFrm, opc, asm,
- pattern>;
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONGetLnFrm, itin,
+ opc, asm, pattern>;
class NVSetLane<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
- dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONSetLnFrm, opc, asm,
- pattern>;
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONSetLnFrm, itin,
+ opc, asm, pattern>;
class NVDup<bits<8> opcod1, bits<4> opcod2, bits<2> opcod3,
- dag oops, dag iops, string opc, string asm, list<dag> pattern>
- : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONDupFrm, opc, asm, pattern>;
+ dag oops, dag iops, InstrItinClass itin,
+ string opc, string asm, list<dag> pattern>
+ : NVLaneOp<opcod1, opcod2, opcod3, oops, iops, NEONDupFrm, itin,
+ opc, asm, pattern>;
+
+// NEONFPPat - Same as Pat<>, but requires that the compiler be using NEON
+// for single-precision FP.
+class NEONFPPat<dag pattern, dag result> : Pat<pattern, result> {
+ list<Predicate> Predicates = [HasNEON,UseNEONForFP];
+}
diff --git a/lib/Target/ARM/ARMInstrInfo.cpp b/lib/Target/ARM/ARMInstrInfo.cpp
index 443fdc7..4c92891 100644
--- a/lib/Target/ARM/ARMInstrInfo.cpp
+++ b/lib/Target/ARM/ARMInstrInfo.cpp
@@ -21,52 +21,15 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
-static cl::opt<bool>
-EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
- cl::desc("Enable ARM 2-addr to 3-addr conv"));
-
-static inline
-const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
- return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
-}
-
-static inline
-const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
- return MIB.addReg(0);
-}
-
-ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget &STI)
- : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)) {
-}
-
ARMInstrInfo::ARMInstrInfo(const ARMSubtarget &STI)
- : ARMBaseInstrInfo(STI), RI(*this, STI) {
+ : RI(*this, STI), Subtarget(STI) {
}
-void ARMInstrInfo::reMaterialize(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg,
- const MachineInstr *Orig) const {
- DebugLoc dl = Orig->getDebugLoc();
- if (Orig->getOpcode() == ARM::MOVi2pieces) {
- RI.emitLoadConstPool(MBB, I, this, dl,
- DestReg,
- Orig->getOperand(1).getImm(),
- (ARMCC::CondCodes)Orig->getOperand(2).getImm(),
- Orig->getOperand(3).getReg());
- return;
- }
-
- MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
- MI->getOperand(0).setReg(DestReg);
- MBB.insert(I, MI);
-}
-
-static unsigned getUnindexedOpcode(unsigned Opc) {
+unsigned ARMInstrInfo::getUnindexedOpcode(unsigned Opc) const {
switch (Opc) {
default: break;
case ARM::LDR_PRE:
@@ -94,820 +57,45 @@ static unsigned getUnindexedOpcode(unsigned Opc) {
case ARM::STRB_POST:
return ARM::STRB;
}
- return 0;
-}
-
-MachineInstr *
-ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
- MachineBasicBlock::iterator &MBBI,
- LiveVariables *LV) const {
- if (!EnableARM3Addr)
- return NULL;
-
- MachineInstr *MI = MBBI;
- MachineFunction &MF = *MI->getParent()->getParent();
- unsigned TSFlags = MI->getDesc().TSFlags;
- bool isPre = false;
- switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
- default: return NULL;
- case ARMII::IndexModePre:
- isPre = true;
- break;
- case ARMII::IndexModePost:
- break;
- }
-
- // Try splitting an indexed load/store to an un-indexed one plus an add/sub
- // operation.
- unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
- if (MemOpc == 0)
- return NULL;
-
- MachineInstr *UpdateMI = NULL;
- MachineInstr *MemMI = NULL;
- unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
- const TargetInstrDesc &TID = MI->getDesc();
- unsigned NumOps = TID.getNumOperands();
- bool isLoad = !TID.mayStore();
- const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
- const MachineOperand &Base = MI->getOperand(2);
- const MachineOperand &Offset = MI->getOperand(NumOps-3);
- unsigned WBReg = WB.getReg();
- unsigned BaseReg = Base.getReg();
- unsigned OffReg = Offset.getReg();
- unsigned OffImm = MI->getOperand(NumOps-2).getImm();
- ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
- switch (AddrMode) {
- default:
- assert(false && "Unknown indexed op!");
- return NULL;
- case ARMII::AddrMode2: {
- bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
- unsigned Amt = ARM_AM::getAM2Offset(OffImm);
- if (OffReg == 0) {
- int SOImmVal = ARM_AM::getSOImmVal(Amt);
- if (SOImmVal == -1)
- // Can't encode it in a so_imm operand. This transformation will
- // add more than 1 instruction. Abandon!
- return NULL;
- UpdateMI = BuildMI(MF, MI->getDebugLoc(),
- get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
- .addReg(BaseReg).addImm(SOImmVal)
- .addImm(Pred).addReg(0).addReg(0);
- } else if (Amt != 0) {
- ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
- unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
- UpdateMI = BuildMI(MF, MI->getDebugLoc(),
- get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
- .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
- .addImm(Pred).addReg(0).addReg(0);
- } else
- UpdateMI = BuildMI(MF, MI->getDebugLoc(),
- get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
- .addReg(BaseReg).addReg(OffReg)
- .addImm(Pred).addReg(0).addReg(0);
- break;
- }
- case ARMII::AddrMode3 : {
- bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
- unsigned Amt = ARM_AM::getAM3Offset(OffImm);
- if (OffReg == 0)
- // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
- UpdateMI = BuildMI(MF, MI->getDebugLoc(),
- get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
- .addReg(BaseReg).addImm(Amt)
- .addImm(Pred).addReg(0).addReg(0);
- else
- UpdateMI = BuildMI(MF, MI->getDebugLoc(),
- get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
- .addReg(BaseReg).addReg(OffReg)
- .addImm(Pred).addReg(0).addReg(0);
- break;
- }
- }
-
- std::vector<MachineInstr*> NewMIs;
- if (isPre) {
- if (isLoad)
- MemMI = BuildMI(MF, MI->getDebugLoc(),
- get(MemOpc), MI->getOperand(0).getReg())
- .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
- else
- MemMI = BuildMI(MF, MI->getDebugLoc(),
- get(MemOpc)).addReg(MI->getOperand(1).getReg())
- .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
- NewMIs.push_back(MemMI);
- NewMIs.push_back(UpdateMI);
- } else {
- if (isLoad)
- MemMI = BuildMI(MF, MI->getDebugLoc(),
- get(MemOpc), MI->getOperand(0).getReg())
- .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
- else
- MemMI = BuildMI(MF, MI->getDebugLoc(),
- get(MemOpc)).addReg(MI->getOperand(1).getReg())
- .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
- if (WB.isDead())
- UpdateMI->getOperand(0).setIsDead();
- NewMIs.push_back(UpdateMI);
- NewMIs.push_back(MemMI);
- }
-
- // Transfer LiveVariables states, kill / dead info.
- if (LV) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
- unsigned Reg = MO.getReg();
-
- LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
- if (MO.isDef()) {
- MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
- if (MO.isDead())
- LV->addVirtualRegisterDead(Reg, NewMI);
- }
- if (MO.isUse() && MO.isKill()) {
- for (unsigned j = 0; j < 2; ++j) {
- // Look at the two new MI's in reverse order.
- MachineInstr *NewMI = NewMIs[j];
- if (!NewMI->readsRegister(Reg))
- continue;
- LV->addVirtualRegisterKilled(Reg, NewMI);
- if (VI.removeKill(MI))
- VI.Kills.push_back(NewMI);
- break;
- }
- }
- }
- }
- }
-
- MFI->insert(MBBI, NewMIs[1]);
- MFI->insert(MBBI, NewMIs[0]);
- return NewMIs[0];
-}
-
-// Branch analysis.
-bool
-ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify) const {
- // If the block has no terminators, it just falls into the block after it.
- MachineBasicBlock::iterator I = MBB.end();
- if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
- return false;
-
- // Get the last instruction in the block.
- MachineInstr *LastInst = I;
-
- // If there is only one terminator instruction, process it.
- unsigned LastOpc = LastInst->getOpcode();
- if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
- if (LastOpc == ARM::B || LastOpc == ARM::tB || LastOpc == ARM::t2B) {
- TBB = LastInst->getOperand(0).getMBB();
- return false;
- }
- if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc || LastOpc == ARM::t2Bcc) {
- // Block ends with fall-through condbranch.
- TBB = LastInst->getOperand(0).getMBB();
- Cond.push_back(LastInst->getOperand(1));
- Cond.push_back(LastInst->getOperand(2));
- return false;
- }
- return true; // Can't handle indirect branch.
- }
-
- // Get the instruction before it if it is a terminator.
- MachineInstr *SecondLastInst = I;
-
- // If there are three terminators, we don't know what sort of block this is.
- if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
- return true;
-
- // If the block ends with ARM::B/ARM::tB/ARM::t2B and a
- // ARM::Bcc/ARM::tBcc/ARM::t2Bcc, handle it.
- unsigned SecondLastOpc = SecondLastInst->getOpcode();
- if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
- (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB) ||
- (SecondLastOpc == ARM::t2Bcc && LastOpc == ARM::t2B)) {
- TBB = SecondLastInst->getOperand(0).getMBB();
- Cond.push_back(SecondLastInst->getOperand(1));
- Cond.push_back(SecondLastInst->getOperand(2));
- FBB = LastInst->getOperand(0).getMBB();
- return false;
- }
-
- // If the block ends with two unconditional branches, handle it. The second
- // one is not executed, so remove it.
- if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB ||
- SecondLastOpc==ARM::t2B) &&
- (LastOpc == ARM::B || LastOpc == ARM::tB || LastOpc == ARM::t2B)) {
- TBB = SecondLastInst->getOperand(0).getMBB();
- I = LastInst;
- if (AllowModify)
- I->eraseFromParent();
- return false;
- }
-
- // ...likewise if it ends with a branch table followed by an unconditional
- // branch. The branch folder can create these, and we must get rid of them for
- // correctness of Thumb constant islands.
- if ((SecondLastOpc == ARM::BR_JTr || SecondLastOpc==ARM::BR_JTm ||
- SecondLastOpc == ARM::BR_JTadd || SecondLastOpc==ARM::tBR_JTr ||
- SecondLastOpc == ARM::t2BR_JTr || SecondLastOpc==ARM::t2BR_JTm ||
- SecondLastOpc == ARM::t2BR_JTadd) &&
- (LastOpc == ARM::B || LastOpc == ARM::tB || LastOpc == ARM::t2B)) {
- I = LastInst;
- if (AllowModify)
- I->eraseFromParent();
- return true;
- }
-
- // Otherwise, can't handle this.
- return true;
-}
-
-
-unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
- MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- int BOpc = AFI->isThumbFunction() ?
- (AFI->isThumb2Function() ? ARM::t2B : ARM::tB) : ARM::B;
- int BccOpc = AFI->isThumbFunction() ?
- (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
-
- MachineBasicBlock::iterator I = MBB.end();
- if (I == MBB.begin()) return 0;
- --I;
- if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc)
- return 0;
-
- // Remove the branch.
- I->eraseFromParent();
-
- I = MBB.end();
-
- if (I == MBB.begin()) return 1;
- --I;
- if (I->getOpcode() != BccOpc)
- return 1;
-
- // Remove the branch.
- I->eraseFromParent();
- return 2;
-}
-
-unsigned
-ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- const SmallVectorImpl<MachineOperand> &Cond) const {
- // FIXME this should probably have a DebugLoc argument
- DebugLoc dl = DebugLoc::getUnknownLoc();
- MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- int BOpc = AFI->isThumbFunction() ?
- (AFI->isThumb2Function() ? ARM::t2B : ARM::tB) : ARM::B;
- int BccOpc = AFI->isThumbFunction() ?
- (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
-
- // Shouldn't be a fall through.
- assert(TBB && "InsertBranch must not be told to insert a fallthrough");
- assert((Cond.size() == 2 || Cond.size() == 0) &&
- "ARM branch conditions have two components!");
- if (FBB == 0) {
- if (Cond.empty()) // Unconditional branch?
- BuildMI(&MBB, dl, get(BOpc)).addMBB(TBB);
- else
- BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB)
- .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
- return 1;
- }
-
- // Two-way conditional branch.
- BuildMI(&MBB, dl, get(BccOpc)).addMBB(TBB)
- .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
- BuildMI(&MBB, dl, get(BOpc)).addMBB(FBB);
- return 2;
+ return 0;
}
-bool
-ARMBaseInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
+bool ARMInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
if (MBB.empty()) return false;
switch (MBB.back().getOpcode()) {
case ARM::BX_RET: // Return.
case ARM::LDM_RET:
- case ARM::tBX_RET:
- case ARM::tBX_RET_vararg:
- case ARM::tPOP_RET:
case ARM::B:
- case ARM::tB:
- case ARM::t2B: // Uncond branch.
- case ARM::tBR_JTr:
- case ARM::t2BR_JTr:
case ARM::BR_JTr: // Jumptable branch.
- case ARM::t2BR_JTm:
case ARM::BR_JTm: // Jumptable branch through mem.
- case ARM::t2BR_JTadd:
case ARM::BR_JTadd: // Jumptable branch add to pc.
return true;
- default: return false;
- }
-}
-
-bool ARMBaseInstrInfo::
-ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
- Cond[0].setImm(ARMCC::getOppositeCondition(CC));
- return false;
-}
-
-bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
- int PIdx = MI->findFirstPredOperandIdx();
- return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
-}
-
-bool ARMBaseInstrInfo::
-PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const {
- unsigned Opc = MI->getOpcode();
- if (Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B) {
- MI->setDesc(get((Opc == ARM::B) ? ARM::Bcc :
- ((Opc == ARM::tB) ? ARM::tBcc : ARM::t2Bcc)));
- MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
- MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
- return true;
- }
-
- int PIdx = MI->findFirstPredOperandIdx();
- if (PIdx != -1) {
- MachineOperand &PMO = MI->getOperand(PIdx);
- PMO.setImm(Pred[0].getImm());
- MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
- return true;
- }
- return false;
-}
-
-bool ARMBaseInstrInfo::
-SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
- const SmallVectorImpl<MachineOperand> &Pred2) const {
- if (Pred1.size() > 2 || Pred2.size() > 2)
- return false;
-
- ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
- ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
- if (CC1 == CC2)
- return true;
-
- switch (CC1) {
- default:
- return false;
- case ARMCC::AL:
- return true;
- case ARMCC::HS:
- return CC2 == ARMCC::HI;
- case ARMCC::LS:
- return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
- case ARMCC::GE:
- return CC2 == ARMCC::GT;
- case ARMCC::LE:
- return CC2 == ARMCC::LT;
- }
-}
-
-bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
- std::vector<MachineOperand> &Pred) const {
- const TargetInstrDesc &TID = MI->getDesc();
- if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
- return false;
-
- bool Found = false;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.getReg() == ARM::CPSR) {
- Pred.push_back(MO);
- Found = true;
- }
- }
-
- return Found;
-}
-
-
-/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
-static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
- unsigned JTI) DISABLE_INLINE;
-static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
- unsigned JTI) {
- return JT[JTI].MBBs.size();
-}
-
-/// GetInstSize - Return the size of the specified MachineInstr.
-///
-unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
- const MachineBasicBlock &MBB = *MI->getParent();
- const MachineFunction *MF = MBB.getParent();
- const TargetAsmInfo *TAI = MF->getTarget().getTargetAsmInfo();
-
- // Basic size info comes from the TSFlags field.
- const TargetInstrDesc &TID = MI->getDesc();
- unsigned TSFlags = TID.TSFlags;
-
- switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
- default: {
- // If this machine instr is an inline asm, measure it.
- if (MI->getOpcode() == ARM::INLINEASM)
- return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
- if (MI->isLabel())
- return 0;
- switch (MI->getOpcode()) {
- default:
- assert(0 && "Unknown or unset size field for instr!");
- break;
- case TargetInstrInfo::IMPLICIT_DEF:
- case TargetInstrInfo::DECLARE:
- case TargetInstrInfo::DBG_LABEL:
- case TargetInstrInfo::EH_LABEL:
- return 0;
- }
- break;
- }
- case ARMII::Size8Bytes: return 8; // Arm instruction x 2.
- case ARMII::Size4Bytes: return 4; // Arm instruction.
- case ARMII::Size2Bytes: return 2; // Thumb instruction.
- case ARMII::SizeSpecial: {
- switch (MI->getOpcode()) {
- case ARM::CONSTPOOL_ENTRY:
- // If this machine instr is a constant pool entry, its size is recorded as
- // operand #2.
- return MI->getOperand(2).getImm();
- case ARM::Int_eh_sjlj_setjmp: return 12;
- case ARM::BR_JTr:
- case ARM::BR_JTm:
- case ARM::BR_JTadd:
- case ARM::t2BR_JTr:
- case ARM::t2BR_JTm:
- case ARM::t2BR_JTadd:
- case ARM::tBR_JTr: {
- // These are jumptable branches, i.e. a branch followed by an inlined
- // jumptable. The size is 4 + 4 * number of entries.
- unsigned NumOps = TID.getNumOperands();
- MachineOperand JTOP =
- MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
- unsigned JTI = JTOP.getIndex();
- const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
- const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
- assert(JTI < JT.size());
- // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
- // 4 aligned. The assembler / linker may add 2 byte padding just before
- // the JT entries. The size does not include this padding; the
- // constant islands pass does separate bookkeeping for it.
- // FIXME: If we know the size of the function is less than (1 << 16) *2
- // bytes, we can use 16-bit entries instead. Then there won't be an
- // alignment issue.
- return getNumJTEntries(JT, JTI) * 4 +
- ((MI->getOpcode()==ARM::tBR_JTr) ? 2 : 4);
- }
- default:
- // Otherwise, pseudo-instruction sizes are zero.
- return 0;
- }
- }
- }
- return 0; // Not reached
-}
-
-/// Return true if the instruction is a register to register move and
-/// leave the source and dest operands in the passed parameters.
-///
-bool
-ARMBaseInstrInfo::isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
- SrcSubIdx = DstSubIdx = 0; // No sub-registers.
-
- unsigned oc = MI.getOpcode();
- switch (oc) {
default:
- return false;
- case ARM::FCPYS:
- case ARM::FCPYD:
- case ARM::VMOVD:
- case ARM::VMOVQ:
- SrcReg = MI.getOperand(1).getReg();
- DstReg = MI.getOperand(0).getReg();
- return true;
- case ARM::MOVr:
- assert(MI.getDesc().getNumOperands() >= 2 &&
- MI.getOperand(0).isReg() &&
- MI.getOperand(1).isReg() &&
- "Invalid ARM MOV instruction");
- SrcReg = MI.getOperand(1).getReg();
- DstReg = MI.getOperand(0).getReg();
- return true;
- }
-}
-
-unsigned
-ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- case ARM::LDR:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isReg() &&
- MI->getOperand(3).isImm() &&
- MI->getOperand(2).getReg() == 0 &&
- MI->getOperand(3).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- case ARM::FLDD:
- case ARM::FLDS:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- }
- return 0;
-}
-
-unsigned
-ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- case ARM::STR:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isReg() &&
- MI->getOperand(3).isImm() &&
- MI->getOperand(2).getReg() == 0 &&
- MI->getOperand(3).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- case ARM::FSTD:
- case ARM::FSTS:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
break;
}
- return 0;
-}
-
-bool
-ARMBaseInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg, unsigned SrcReg,
- const TargetRegisterClass *DestRC,
- const TargetRegisterClass *SrcRC) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- if (I != MBB.end()) DL = I->getDebugLoc();
-
- if (DestRC != SrcRC) {
- // Not yet supported!
- return false;
- }
-
- if (DestRC == ARM::GPRRegisterClass)
- AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
- .addReg(SrcReg)));
- else if (DestRC == ARM::SPRRegisterClass)
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYS), DestReg)
- .addReg(SrcReg));
- else if (DestRC == ARM::DPRRegisterClass)
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FCPYD), DestReg)
- .addReg(SrcReg));
- else if (DestRC == ARM::QPRRegisterClass)
- BuildMI(MBB, I, DL, get(ARM::VMOVQ), DestReg).addReg(SrcReg);
- else
- return false;
-
- return true;
-}
-
-void ARMBaseInstrInfo::
-storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
- unsigned SrcReg, bool isKill, int FI,
- const TargetRegisterClass *RC) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- if (I != MBB.end()) DL = I->getDebugLoc();
-
- if (RC == ARM::GPRRegisterClass) {
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STR))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addReg(0).addImm(0));
- } else if (RC == ARM::DPRRegisterClass) {
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTD))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0));
- } else {
- assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FSTS))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0));
- }
-}
-
-void
-ARMBaseInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const{
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
- if (RC == ARM::GPRRegisterClass) {
- Opc = ARM::STR;
- } else if (RC == ARM::DPRRegisterClass) {
- Opc = ARM::FSTD;
- } else {
- assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
- Opc = ARM::FSTS;
- }
-
- MachineInstrBuilder MIB =
- BuildMI(MF, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- AddDefaultPred(MIB);
- NewMIs.push_back(MIB);
- return;
-}
-
-void ARMBaseInstrInfo::
-loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
- unsigned DestReg, int FI,
- const TargetRegisterClass *RC) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- if (I != MBB.end()) DL = I->getDebugLoc();
-
- if (RC == ARM::GPRRegisterClass) {
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDR), DestReg)
- .addFrameIndex(FI).addReg(0).addImm(0));
- } else if (RC == ARM::DPRRegisterClass) {
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDD), DestReg)
- .addFrameIndex(FI).addImm(0));
- } else {
- assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
- AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::FLDS), DestReg)
- .addFrameIndex(FI).addImm(0));
- }
-}
-
-void ARMBaseInstrInfo::
-loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
- if (RC == ARM::GPRRegisterClass) {
- Opc = ARM::LDR;
- } else if (RC == ARM::DPRRegisterClass) {
- Opc = ARM::FLDD;
- } else {
- assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
- Opc = ARM::FLDS;
- }
-
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- AddDefaultPred(MIB);
- NewMIs.push_back(MIB);
- return;
+ return false;
}
-MachineInstr *ARMBaseInstrInfo::
-foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops, int FI) const {
- if (Ops.size() != 1) return NULL;
-
- unsigned OpNum = Ops[0];
- unsigned Opc = MI->getOpcode();
- MachineInstr *NewMI = NULL;
- switch (Opc) {
- default: break;
- case ARM::MOVr: {
- if (MI->getOperand(4).getReg() == ARM::CPSR)
- // If it is updating CPSR, then it cannot be folded.
- break;
- unsigned Pred = MI->getOperand(2).getImm();
- unsigned PredReg = MI->getOperand(3).getReg();
- if (OpNum == 0) { // move -> store
- unsigned SrcReg = MI->getOperand(1).getReg();
- bool isKill = MI->getOperand(1).isKill();
- bool isUndef = MI->getOperand(1).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::STR))
- .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
- .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
- } else { // move -> load
- unsigned DstReg = MI->getOperand(0).getReg();
- bool isDead = MI->getOperand(0).isDead();
- bool isUndef = MI->getOperand(0).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::LDR))
- .addReg(DstReg,
- RegState::Define |
- getDeadRegState(isDead) |
- getUndefRegState(isUndef))
- .addFrameIndex(FI).addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
- }
- break;
- }
- case ARM::FCPYS: {
- unsigned Pred = MI->getOperand(2).getImm();
- unsigned PredReg = MI->getOperand(3).getReg();
- if (OpNum == 0) { // move -> store
- unsigned SrcReg = MI->getOperand(1).getReg();
- bool isKill = MI->getOperand(1).isKill();
- bool isUndef = MI->getOperand(1).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTS))
- .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
- .addFrameIndex(FI)
- .addImm(0).addImm(Pred).addReg(PredReg);
- } else { // move -> load
- unsigned DstReg = MI->getOperand(0).getReg();
- bool isDead = MI->getOperand(0).isDead();
- bool isUndef = MI->getOperand(0).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDS))
- .addReg(DstReg,
- RegState::Define |
- getDeadRegState(isDead) |
- getUndefRegState(isUndef))
- .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
- }
- break;
- }
- case ARM::FCPYD: {
- unsigned Pred = MI->getOperand(2).getImm();
- unsigned PredReg = MI->getOperand(3).getReg();
- if (OpNum == 0) { // move -> store
- unsigned SrcReg = MI->getOperand(1).getReg();
- bool isKill = MI->getOperand(1).isKill();
- bool isUndef = MI->getOperand(1).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FSTD))
- .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
- .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
- } else { // move -> load
- unsigned DstReg = MI->getOperand(0).getReg();
- bool isDead = MI->getOperand(0).isDead();
- bool isUndef = MI->getOperand(0).isUndef();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::FLDD))
- .addReg(DstReg,
- RegState::Define |
- getDeadRegState(isDead) |
- getUndefRegState(isUndef))
- .addFrameIndex(FI).addImm(0).addImm(Pred).addReg(PredReg);
- }
- break;
- }
+void ARMInstrInfo::
+reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig) const {
+ DebugLoc dl = Orig->getDebugLoc();
+ if (Orig->getOpcode() == ARM::MOVi2pieces) {
+ RI.emitLoadConstPool(MBB, I, dl,
+ DestReg, SubIdx,
+ Orig->getOperand(1).getImm(),
+ (ARMCC::CondCodes)Orig->getOperand(2).getImm(),
+ Orig->getOperand(3).getReg());
+ return;
}
- return NewMI;
-}
-
-MachineInstr*
-ARMBaseInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- const SmallVectorImpl<unsigned> &Ops,
- MachineInstr* LoadMI) const {
- return 0;
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->getOperand(0).setReg(DestReg);
+ MBB.insert(I, MI);
}
-bool
-ARMBaseInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const {
- if (Ops.size() != 1) return false;
-
- unsigned Opc = MI->getOpcode();
- switch (Opc) {
- default: break;
- case ARM::MOVr:
- // If it is updating CPSR, then it cannot be folded.
- return MI->getOperand(4).getReg() != ARM::CPSR;
- case ARM::FCPYS:
- case ARM::FCPYD:
- return true;
-
- case ARM::VMOVD:
- case ARM::VMOVQ:
- return false; // FIXME
- }
-
- return false;
-}
diff --git a/lib/Target/ARM/ARMInstrInfo.h b/lib/Target/ARM/ARMInstrInfo.h
index 8c8f788..c616949 100644
--- a/lib/Target/ARM/ARMInstrInfo.h
+++ b/lib/Target/ARM/ARMInstrInfo.h
@@ -15,247 +15,27 @@
#define ARMINSTRUCTIONINFO_H
#include "llvm/Target/TargetInstrInfo.h"
+#include "ARMBaseInstrInfo.h"
#include "ARMRegisterInfo.h"
+#include "ARMSubtarget.h"
#include "ARM.h"
namespace llvm {
class ARMSubtarget;
-/// ARMII - This namespace holds all of the target specific flags that
-/// instruction info tracks.
-///
-namespace ARMII {
- enum {
- //===------------------------------------------------------------------===//
- // Instruction Flags.
-
- //===------------------------------------------------------------------===//
- // This four-bit field describes the addressing mode used.
-
- AddrModeMask = 0xf,
- AddrModeNone = 0,
- AddrMode1 = 1,
- AddrMode2 = 2,
- AddrMode3 = 3,
- AddrMode4 = 4,
- AddrMode5 = 5,
- AddrMode6 = 6,
- AddrModeT1_1 = 7,
- AddrModeT1_2 = 8,
- AddrModeT1_4 = 9,
- AddrModeT1_s = 10, // i8 * 4 for pc and sp relative data
- AddrModeT2_i12 = 11,
- AddrModeT2_i8 = 12,
- AddrModeT2_so = 13,
- AddrModeT2_pc = 14, // +/- i12 for pc relative data
- AddrModeT2_i8s4 = 15, // i8 * 4
-
- // Size* - Flags to keep track of the size of an instruction.
- SizeShift = 4,
- SizeMask = 7 << SizeShift,
- SizeSpecial = 1, // 0 byte pseudo or special case.
- Size8Bytes = 2,
- Size4Bytes = 3,
- Size2Bytes = 4,
-
- // IndexMode - Unindex, pre-indexed, or post-indexed. Only valid for load
- // and store ops
- IndexModeShift = 7,
- IndexModeMask = 3 << IndexModeShift,
- IndexModePre = 1,
- IndexModePost = 2,
-
- //===------------------------------------------------------------------===//
- // Misc flags.
-
- // UnaryDP - Indicates this is a unary data processing instruction, i.e.
- // it doesn't have a Rn operand.
- UnaryDP = 1 << 9,
-
- //===------------------------------------------------------------------===//
- // Instruction encoding formats.
- //
- FormShift = 10,
- FormMask = 0x1f << FormShift,
-
- // Pseudo instructions
- Pseudo = 0 << FormShift,
-
- // Multiply instructions
- MulFrm = 1 << FormShift,
-
- // Branch instructions
- BrFrm = 2 << FormShift,
- BrMiscFrm = 3 << FormShift,
-
- // Data Processing instructions
- DPFrm = 4 << FormShift,
- DPSoRegFrm = 5 << FormShift,
-
- // Load and Store
- LdFrm = 6 << FormShift,
- StFrm = 7 << FormShift,
- LdMiscFrm = 8 << FormShift,
- StMiscFrm = 9 << FormShift,
- LdStMulFrm = 10 << FormShift,
-
- // Miscellaneous arithmetic instructions
- ArithMiscFrm = 11 << FormShift,
-
- // Extend instructions
- ExtFrm = 12 << FormShift,
-
- // VFP formats
- VFPUnaryFrm = 13 << FormShift,
- VFPBinaryFrm = 14 << FormShift,
- VFPConv1Frm = 15 << FormShift,
- VFPConv2Frm = 16 << FormShift,
- VFPConv3Frm = 17 << FormShift,
- VFPConv4Frm = 18 << FormShift,
- VFPConv5Frm = 19 << FormShift,
- VFPLdStFrm = 20 << FormShift,
- VFPLdStMulFrm = 21 << FormShift,
- VFPMiscFrm = 22 << FormShift,
-
- // Thumb format
- ThumbFrm = 23 << FormShift,
-
- // NEON format
- NEONFrm = 24 << FormShift,
- NEONGetLnFrm = 25 << FormShift,
- NEONSetLnFrm = 26 << FormShift,
- NEONDupFrm = 27 << FormShift,
-
- //===------------------------------------------------------------------===//
- // Field shifts - such shifts are used to set field while generating
- // machine instructions.
- M_BitShift = 5,
- ShiftImmShift = 5,
- ShiftShift = 7,
- N_BitShift = 7,
- ImmHiShift = 8,
- SoRotImmShift = 8,
- RegRsShift = 8,
- ExtRotImmShift = 10,
- RegRdLoShift = 12,
- RegRdShift = 12,
- RegRdHiShift = 16,
- RegRnShift = 16,
- S_BitShift = 20,
- W_BitShift = 21,
- AM3_I_BitShift = 22,
- D_BitShift = 22,
- U_BitShift = 23,
- P_BitShift = 24,
- I_BitShift = 25,
- CondShift = 28
- };
-}
-
-class ARMBaseInstrInfo : public TargetInstrInfoImpl {
-protected:
- // Can be only subclassed.
- explicit ARMBaseInstrInfo(const ARMSubtarget &STI);
-public:
- virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
- MachineBasicBlock::iterator &MBBI,
- LiveVariables *LV) const;
-
- virtual const ARMBaseRegisterInfo &getRegisterInfo() const =0;
-
- // Branch analysis.
- virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify) const;
- virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
- virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- const SmallVectorImpl<MachineOperand> &Cond) const;
-
- virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
- virtual
- bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
-
- // Predication support.
- virtual bool isPredicated(const MachineInstr *MI) const;
-
- ARMCC::CondCodes getPredicate(const MachineInstr *MI) const {
- int PIdx = MI->findFirstPredOperandIdx();
- return PIdx != -1 ? (ARMCC::CondCodes)MI->getOperand(PIdx).getImm()
- : ARMCC::AL;
- }
-
- virtual
- bool PredicateInstruction(MachineInstr *MI,
- const SmallVectorImpl<MachineOperand> &Pred) const;
-
- virtual
- bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
- const SmallVectorImpl<MachineOperand> &Pred2) const;
-
- virtual bool DefinesPredicate(MachineInstr *MI,
- std::vector<MachineOperand> &Pred) const;
-
- /// GetInstSize - Returns the size of the specified MachineInstr.
- ///
- virtual unsigned GetInstSizeInBytes(const MachineInstr* MI) const;
-
- /// Return true if the instruction is a register to register move and return
- /// the source and dest operands and their sub-register indices by reference.
- virtual bool isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
-
- virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
- virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
-
- virtual bool copyRegToReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg, unsigned SrcReg,
- const TargetRegisterClass *DestRC,
- const TargetRegisterClass *SrcRC) const;
- virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned SrcReg, bool isKill, int FrameIndex,
- const TargetRegisterClass *RC) const;
-
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
- virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, int FrameIndex,
- const TargetRegisterClass *RC) const;
-
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
- virtual bool canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const;
-
- virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- const SmallVectorImpl<unsigned> &Ops,
- int FrameIndex) const;
-
- virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- const SmallVectorImpl<unsigned> &Ops,
- MachineInstr* LoadMI) const;
-};
-
class ARMInstrInfo : public ARMBaseInstrInfo {
ARMRegisterInfo RI;
+ const ARMSubtarget &Subtarget;
public:
explicit ARMInstrInfo(const ARMSubtarget &STI);
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const;
+
+ // Return true if the block does not fall through.
+ bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
+
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
@@ -263,7 +43,8 @@ public:
const ARMRegisterInfo &getRegisterInfo() const { return RI; }
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- unsigned DestReg, const MachineInstr *Orig) const;
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig) const;
};
}
diff --git a/lib/Target/ARM/ARMInstrInfo.td b/lib/Target/ARM/ARMInstrInfo.td
index 408f47a..8adfac3 100644
--- a/lib/Target/ARM/ARMInstrInfo.td
+++ b/lib/Target/ARM/ARMInstrInfo.td
@@ -34,6 +34,10 @@ def SDT_ARMBrJT : SDTypeProfile<0, 3,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
+def SDT_ARMBr2JT : SDTypeProfile<0, 4,
+ [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
+ SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
+
def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
@@ -71,6 +75,8 @@ def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
[SDNPHasChain]>;
+def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
+ [SDNPHasChain]>;
def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
[SDNPOutFlag]>;
@@ -93,10 +99,14 @@ def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", SDT_ARMEH_SJLJ_Setjmp>;
def HasV5T : Predicate<"Subtarget->hasV5TOps()">;
def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">;
def HasV6 : Predicate<"Subtarget->hasV6Ops()">;
+def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">;
+def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">;
def HasV7 : Predicate<"Subtarget->hasV7Ops()">;
def HasVFP2 : Predicate<"Subtarget->hasVFP2()">;
def HasVFP3 : Predicate<"Subtarget->hasVFP3()">;
def HasNEON : Predicate<"Subtarget->hasNEON()">;
+def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">;
+def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">;
def IsThumb : Predicate<"Subtarget->isThumb()">;
def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">;
def IsThumb2 : Predicate<"Subtarget->isThumb2()">;
@@ -117,25 +127,16 @@ class RegConstraint<string C> {
// ARM specific transformation functions and pattern fragments.
//
-// so_imm_XFORM - Return a so_imm value packed into the format described for
-// so_imm def below.
-def so_imm_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(N->getZExtValue()),
- MVT::i32);
-}]>;
-
// so_imm_neg_XFORM - Return a so_imm value packed into the format described for
// so_imm_neg def below.
def so_imm_neg_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(-(int)N->getZExtValue()),
- MVT::i32);
+ return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
}]>;
// so_imm_not_XFORM - Return a so_imm value packed into the format described for
// so_imm_not def below.
def so_imm_not_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(~(int)N->getZExtValue()),
- MVT::i32);
+ return CurDAG->getTargetConstant(~(int)N->getZExtValue(), MVT::i32);
}]>;
// rot_imm predicate - True if the 32-bit immediate is equal to 8, 16, or 24.
@@ -169,6 +170,48 @@ def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
}]>;
+/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
+/// e.g., 0xf000ffff
+def bf_inv_mask_imm : Operand<i32>,
+ PatLeaf<(imm), [{
+ uint32_t v = (uint32_t)N->getZExtValue();
+ if (v == 0xffffffff)
+ return 0;
+ // there can be 1's on either or both "outsides", all the "inside"
+ // bits must be 0's
+ unsigned int lsb = 0, msb = 31;
+ while (v & (1 << msb)) --msb;
+ while (v & (1 << lsb)) ++lsb;
+ for (unsigned int i = lsb; i <= msb; ++i) {
+ if (v & (1 << i))
+ return 0;
+ }
+ return 1;
+}] > {
+ let PrintMethod = "printBitfieldInvMaskImmOperand";
+}
+
+/// Split a 32-bit immediate into two 16 bit parts.
+def lo16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() & 0xffff,
+ MVT::i32);
+}]>;
+
+def hi16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32);
+}]>;
+
+def lo16AllZero : PatLeaf<(i32 imm), [{
+ // Returns true if all low 16-bits are 0.
+ return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
+ }], hi16>;
+
+/// imm0_65535 predicate - True if the 32-bit immediate is in the range
+/// [0.65535].
+def imm0_65535 : PatLeaf<(i32 imm), [{
+ return (uint32_t)N->getZExtValue() < 65536;
+}]>;
+
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
@@ -192,6 +235,9 @@ def cpinst_operand : Operand<i32> {
def jtblock_operand : Operand<i32> {
let PrintMethod = "printJTBlockOperand";
}
+def jt2block_operand : Operand<i32> {
+ let PrintMethod = "printJT2BlockOperand";
+}
// Local PC labels.
def pclabel : Operand<i32> {
@@ -212,9 +258,9 @@ def so_reg : Operand<i32>, // reg reg imm
// into so_imm instructions: the 8-bit immediate is the least significant bits
// [bits 0-7], the 4-bit shift amount is the next 4 bits [bits 8-11].
def so_imm : Operand<i32>,
- PatLeaf<(imm),
- [{ return ARM_AM::getSOImmVal(N->getZExtValue()) != -1; }],
- so_imm_XFORM> {
+ PatLeaf<(imm), [{
+ return ARM_AM::getSOImmVal(N->getZExtValue()) != -1;
+ }]> {
let PrintMethod = "printSOImmOperand";
}
@@ -230,14 +276,18 @@ def so_imm2part : Operand<i32>,
def so_imm2part_1 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartFirst((unsigned)N->getZExtValue());
- return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32);
+ return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def so_imm2part_2 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartSecond((unsigned)N->getZExtValue());
- return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32);
+ return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
+/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
+def imm0_31 : Operand<i32>, PatLeaf<(imm), [{
+ return (int32_t)N->getZExtValue() < 32;
+}]>;
// Define ARM specific addressing modes.
@@ -274,7 +324,7 @@ def am3offset : Operand<i32>,
// addrmode4 := reg, <mode|W>
//
def addrmode4 : Operand<i32>,
- ComplexPattern<i32, 2, "", []> {
+ ComplexPattern<i32, 2, "SelectAddrMode4", []> {
let PrintMethod = "printAddrMode4Operand";
let MIOperandInfo = (ops GPR, i32imm);
}
@@ -303,17 +353,8 @@ def addrmodepc : Operand<i32>,
let MIOperandInfo = (ops GPR, i32imm);
}
-// ARM Predicate operand. Default to 14 = always (AL). Second part is CC
-// register whose default is 0 (no register).
-def pred : PredicateOperand<OtherVT, (ops i32imm, CCR),
- (ops (i32 14), (i32 zero_reg))> {
- let PrintMethod = "printPredicateOperand";
-}
-
-// Conditional code result for instructions whose 's' bit is set, e.g. subs.
-//
-def cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 zero_reg))> {
- let PrintMethod = "printSBitModifierOperand";
+def nohash_imm : Operand<i32> {
+ let PrintMethod = "printNoHashImmediate";
}
//===----------------------------------------------------------------------===//
@@ -329,34 +370,44 @@ include "ARMInstrFormats.td"
multiclass AsI1_bin_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
def ri : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
- opc, " $dst, $a, $b",
- [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>;
+ IIC_iALUi, opc, " $dst, $a, $b",
+ [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]> {
+ let Inst{25} = 1;
+ }
def rr : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b), DPFrm,
- opc, " $dst, $a, $b",
+ IIC_iALUr, opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]> {
+ let Inst{25} = 0;
let isCommutable = Commutable;
}
def rs : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
- opc, " $dst, $a, $b",
- [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>;
+ IIC_iALUsr, opc, " $dst, $a, $b",
+ [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]> {
+ let Inst{25} = 0;
+ }
}
/// AI1_bin_s_irs - Similar to AsI1_bin_irs except it sets the 's' bit so the
-/// instruction modifies the CSPR register.
+/// instruction modifies the CPSR register.
let Defs = [CPSR] in {
multiclass AI1_bin_s_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
def ri : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
- opc, "s $dst, $a, $b",
- [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>;
+ IIC_iALUi, opc, "s $dst, $a, $b",
+ [(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]> {
+ let Inst{25} = 1;
+ }
def rr : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b), DPFrm,
- opc, "s $dst, $a, $b",
+ IIC_iALUr, opc, "s $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]> {
let isCommutable = Commutable;
+ let Inst{25} = 0;
}
def rs : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
- opc, "s $dst, $a, $b",
- [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>;
+ IIC_iALUsr, opc, "s $dst, $a, $b",
+ [(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]> {
+ let Inst{25} = 0;
+ }
}
}
@@ -366,17 +417,25 @@ multiclass AI1_bin_s_irs<bits<4> opcod, string opc, PatFrag opnode,
let Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
- def ri : AI1<opcod, (outs), (ins GPR:$a, so_imm:$b), DPFrm,
+ def ri : AI1<opcod, (outs), (ins GPR:$a, so_imm:$b), DPFrm, IIC_iCMPi,
opc, " $a, $b",
- [(opnode GPR:$a, so_imm:$b)]>;
- def rr : AI1<opcod, (outs), (ins GPR:$a, GPR:$b), DPFrm,
+ [(opnode GPR:$a, so_imm:$b)]> {
+ let Inst{20} = 1;
+ let Inst{25} = 1;
+ }
+ def rr : AI1<opcod, (outs), (ins GPR:$a, GPR:$b), DPFrm, IIC_iCMPr,
opc, " $a, $b",
[(opnode GPR:$a, GPR:$b)]> {
+ let Inst{20} = 1;
+ let Inst{25} = 0;
let isCommutable = Commutable;
}
- def rs : AI1<opcod, (outs), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
+ def rs : AI1<opcod, (outs), (ins GPR:$a, so_reg:$b), DPSoRegFrm, IIC_iCMPsr,
opc, " $a, $b",
- [(opnode GPR:$a, so_reg:$b)]>;
+ [(opnode GPR:$a, so_reg:$b)]> {
+ let Inst{20} = 1;
+ let Inst{25} = 0;
+ }
}
}
@@ -384,15 +443,15 @@ multiclass AI1_cmp_irs<bits<4> opcod, string opc, PatFrag opnode,
/// register and one whose operand is a register rotated by 8/16/24.
/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
multiclass AI_unary_rrot<bits<8> opcod, string opc, PatFrag opnode> {
- def r : AExtI<opcod, (outs GPR:$dst), (ins GPR:$Src),
- opc, " $dst, $Src",
- [(set GPR:$dst, (opnode GPR:$Src))]>,
+ def r : AExtI<opcod, (outs GPR:$dst), (ins GPR:$src),
+ IIC_iUNAr, opc, " $dst, $src",
+ [(set GPR:$dst, (opnode GPR:$src))]>,
Requires<[IsARM, HasV6]> {
let Inst{19-16} = 0b1111;
}
- def r_rot : AExtI<opcod, (outs GPR:$dst), (ins GPR:$Src, i32imm:$rot),
- opc, " $dst, $Src, ror $rot",
- [(set GPR:$dst, (opnode (rotr GPR:$Src, rot_imm:$rot)))]>,
+ def r_rot : AExtI<opcod, (outs GPR:$dst), (ins GPR:$src, i32imm:$rot),
+ IIC_iUNAsi, opc, " $dst, $src, ror $rot",
+ [(set GPR:$dst, (opnode (rotr GPR:$src, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]> {
let Inst{19-16} = 0b1111;
}
@@ -402,11 +461,11 @@ multiclass AI_unary_rrot<bits<8> opcod, string opc, PatFrag opnode> {
/// register and one whose operand is a register rotated by 8/16/24.
multiclass AI_bin_rrot<bits<8> opcod, string opc, PatFrag opnode> {
def rr : AExtI<opcod, (outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS),
- opc, " $dst, $LHS, $RHS",
+ IIC_iALUr, opc, " $dst, $LHS, $RHS",
[(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]>,
Requires<[IsARM, HasV6]>;
def rr_rot : AExtI<opcod, (outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot),
- opc, " $dst, $LHS, $RHS, ror $rot",
+ IIC_iALUsi, opc, " $dst, $LHS, $RHS, ror $rot",
[(set GPR:$dst, (opnode GPR:$LHS,
(rotr GPR:$RHS, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>;
@@ -417,37 +476,45 @@ let Uses = [CPSR] in {
multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
def ri : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b),
- DPFrm, opc, " $dst, $a, $b",
+ DPFrm, IIC_iALUi, opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>,
- Requires<[IsARM, CarryDefIsUnused]>;
+ Requires<[IsARM, CarryDefIsUnused]> {
+ let Inst{25} = 1;
+ }
def rr : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- DPFrm, opc, " $dst, $a, $b",
+ DPFrm, IIC_iALUr, opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>,
Requires<[IsARM, CarryDefIsUnused]> {
let isCommutable = Commutable;
+ let Inst{25} = 0;
}
def rs : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b),
- DPSoRegFrm, opc, " $dst, $a, $b",
+ DPSoRegFrm, IIC_iALUsr, opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>,
- Requires<[IsARM, CarryDefIsUnused]>;
+ Requires<[IsARM, CarryDefIsUnused]> {
+ let Inst{25} = 0;
+ }
// Carry setting variants
def Sri : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b),
- DPFrm, !strconcat(opc, "s $dst, $a, $b"),
+ DPFrm, IIC_iALUi, !strconcat(opc, "s $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>,
Requires<[IsARM, CarryDefIsUsed]> {
- let Defs = [CPSR];
+ let Defs = [CPSR];
+ let Inst{25} = 1;
}
def Srr : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- DPFrm, !strconcat(opc, "s $dst, $a, $b"),
+ DPFrm, IIC_iALUr, !strconcat(opc, "s $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>,
Requires<[IsARM, CarryDefIsUsed]> {
- let Defs = [CPSR];
+ let Defs = [CPSR];
+ let Inst{25} = 0;
}
def Srs : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b),
- DPSoRegFrm, !strconcat(opc, "s $dst, $a, $b"),
+ DPSoRegFrm, IIC_iALUsr, !strconcat(opc, "s $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>,
Requires<[IsARM, CarryDefIsUsed]> {
- let Defs = [CPSR];
+ let Defs = [CPSR];
+ let Inst{25} = 0;
}
}
}
@@ -467,23 +534,23 @@ multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
let neverHasSideEffects = 1, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
- i32imm:$size),
+ i32imm:$size), NoItinerary,
"${instid:label} ${cpidx:cpentry}", []>;
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKUP :
-PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p),
+PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
"@ ADJCALLSTACKUP $amt1",
[(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKDOWN :
-PseudoInst<(outs), (ins i32imm:$amt, pred:$p),
+PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary,
"@ ADJCALLSTACKDOWN $amt",
[(ARMcallseq_start timm:$amt)]>;
}
def DWARF_LOC :
-PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
+PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), NoItinerary,
".loc $file, $line, $col",
[(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>;
@@ -491,42 +558,42 @@ PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1 in {
def PICADD : AXI1<0b0100, (outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
- Pseudo, "$cp:\n\tadd$p $dst, pc, $a",
+ Pseudo, IIC_iALUr, "\n$cp:\n\tadd$p $dst, pc, $a",
[(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>;
let AddedComplexity = 10 in {
let canFoldAsLoad = 1 in
def PICLDR : AXI2ldw<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tldr$p $dst, $addr",
+ Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr$p $dst, $addr",
[(set GPR:$dst, (load addrmodepc:$addr))]>;
def PICLDRH : AXI3ldh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tldr${p}h $dst, $addr",
+ Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}h $dst, $addr",
[(set GPR:$dst, (zextloadi16 addrmodepc:$addr))]>;
def PICLDRB : AXI2ldb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tldr${p}b $dst, $addr",
+ Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}b $dst, $addr",
[(set GPR:$dst, (zextloadi8 addrmodepc:$addr))]>;
def PICLDRSH : AXI3ldsh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tldr${p}sh $dst, $addr",
+ Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}sh $dst, $addr",
[(set GPR:$dst, (sextloadi16 addrmodepc:$addr))]>;
def PICLDRSB : AXI3ldsb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tldr${p}sb $dst, $addr",
+ Pseudo, IIC_iLoadr, "\n${addr:label}:\n\tldr${p}sb $dst, $addr",
[(set GPR:$dst, (sextloadi8 addrmodepc:$addr))]>;
}
let AddedComplexity = 10 in {
def PICSTR : AXI2stw<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tstr$p $src, $addr",
+ Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr$p $src, $addr",
[(store GPR:$src, addrmodepc:$addr)]>;
def PICSTRH : AXI3sth<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tstr${p}h $src, $addr",
+ Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr${p}h $src, $addr",
[(truncstorei16 GPR:$src, addrmodepc:$addr)]>;
def PICSTRB : AXI2stb<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
- Pseudo, "${addr:label}:\n\tstr${p}b $src, $addr",
+ Pseudo, IIC_iStorer, "\n${addr:label}:\n\tstr${p}b $src, $addr",
[(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
}
} // isNotDuplicable = 1
@@ -534,135 +601,152 @@ def PICSTRB : AXI2stb<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
-def LEApcrel : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, pred:$p), Pseudo,
- !strconcat(!strconcat(".set PCRELV${:uid}, ($label-(",
- "${:private}PCRELL${:uid}+8))\n"),
- !strconcat("${:private}PCRELL${:uid}:\n\t",
- "add$p $dst, pc, #PCRELV${:uid}")),
+def LEApcrel : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, pred:$p),
+ Pseudo, IIC_iALUi,
+ !strconcat(!strconcat(".set ${:private}PCRELV${:uid}, ($label-(",
+ "${:private}PCRELL${:uid}+8))\n"),
+ !strconcat("${:private}PCRELL${:uid}:\n\t",
+ "add$p $dst, pc, #${:private}PCRELV${:uid}")),
[]>;
def LEApcrelJT : AXI1<0x0, (outs GPR:$dst),
- (ins i32imm:$label, i32imm:$id, pred:$p),
- Pseudo,
- !strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(",
- "${:private}PCRELL${:uid}+8))\n"),
- !strconcat("${:private}PCRELL${:uid}:\n\t",
- "add$p $dst, pc, #PCRELV${:uid}")),
- []>;
+ (ins i32imm:$label, nohash_imm:$id, pred:$p),
+ Pseudo, IIC_iALUi,
+ !strconcat(!strconcat(".set ${:private}PCRELV${:uid}, "
+ "(${label}_${id}-(",
+ "${:private}PCRELL${:uid}+8))\n"),
+ !strconcat("${:private}PCRELL${:uid}:\n\t",
+ "add$p $dst, pc, #${:private}PCRELV${:uid}")),
+ []> {
+ let Inst{25} = 1;
+}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
-let isReturn = 1, isTerminator = 1 in
- def BX_RET : AI<(outs), (ins), BrMiscFrm, "bx", " lr", [(ARMretflag)]> {
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in
+ def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
+ "bx", " lr", [(ARMretflag)]> {
let Inst{7-4} = 0b0001;
let Inst{19-8} = 0b111111111111;
let Inst{27-20} = 0b00010010;
}
// FIXME: remove when we have a way to marking a MI with these properties.
-// FIXME: $dst1 should be a def. But the extra ops must be in the end of the
-// operand list.
// FIXME: Should pc be an implicit operand like PICADD, etc?
-let isReturn = 1, isTerminator = 1 in
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1 in
def LDM_RET : AXI4ld<(outs),
- (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops),
- LdStMulFrm, "ldm${p}${addr:submode} $addr, $dst1",
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ LdStMulFrm, IIC_Br, "ldm${p}${addr:submode} $addr, $wb",
[]>;
// On non-Darwin platforms R9 is callee-saved.
-let isCall = 1, Itinerary = IIC_Br,
- Defs = [R0, R1, R2, R3, R12, LR,
- D0, D1, D2, D3, D4, D5, D6, D7, CPSR] in {
+let isCall = 1,
+ Defs = [R0, R1, R2, R3, R12, LR,
+ D0, D1, D2, D3, D4, D5, D6, D7,
+ D16, D17, D18, D19, D20, D21, D22, D23,
+ D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
def BL : ABXI<0b1011, (outs), (ins i32imm:$func, variable_ops),
- "bl ${func:call}",
- [(ARMcall tglobaladdr:$func)]>, Requires<[IsNotDarwin]>;
+ IIC_Br, "bl ${func:call}",
+ [(ARMcall tglobaladdr:$func)]>,
+ Requires<[IsARM, IsNotDarwin]>;
def BL_pred : ABI<0b1011, (outs), (ins i32imm:$func, variable_ops),
- "bl", " ${func:call}",
- [(ARMcall_pred tglobaladdr:$func)]>, Requires<[IsNotDarwin]>;
+ IIC_Br, "bl", " ${func:call}",
+ [(ARMcall_pred tglobaladdr:$func)]>,
+ Requires<[IsARM, IsNotDarwin]>;
// ARMv5T and above
def BLX : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm,
- "blx $func",
- [(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T, IsNotDarwin]> {
+ IIC_Br, "blx $func",
+ [(ARMcall GPR:$func)]>,
+ Requires<[IsARM, HasV5T, IsNotDarwin]> {
let Inst{7-4} = 0b0011;
let Inst{19-8} = 0b111111111111;
let Inst{27-20} = 0b00010010;
}
- let Uses = [LR] in {
- // ARMv4T
- def BX : ABXIx2<(outs), (ins GPR:$func, variable_ops),
- "mov lr, pc\n\tbx $func",
- [(ARMcall_nolink GPR:$func)]>, Requires<[IsNotDarwin]>;
+ // ARMv4T
+ def BX : ABXIx2<(outs), (ins GPR:$func, variable_ops),
+ IIC_Br, "mov lr, pc\n\tbx $func",
+ [(ARMcall_nolink GPR:$func)]>,
+ Requires<[IsARM, IsNotDarwin]> {
+ let Inst{7-4} = 0b0001;
+ let Inst{19-8} = 0b111111111111;
+ let Inst{27-20} = 0b00010010;
}
}
// On Darwin R9 is call-clobbered.
-let isCall = 1, Itinerary = IIC_Br,
- Defs = [R0, R1, R2, R3, R9, R12, LR,
- D0, D1, D2, D3, D4, D5, D6, D7, CPSR] in {
+let isCall = 1,
+ Defs = [R0, R1, R2, R3, R9, R12, LR,
+ D0, D1, D2, D3, D4, D5, D6, D7,
+ D16, D17, D18, D19, D20, D21, D22, D23,
+ D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
def BLr9 : ABXI<0b1011, (outs), (ins i32imm:$func, variable_ops),
- "bl ${func:call}",
- [(ARMcall tglobaladdr:$func)]>, Requires<[IsDarwin]>;
+ IIC_Br, "bl ${func:call}",
+ [(ARMcall tglobaladdr:$func)]>, Requires<[IsARM, IsDarwin]>;
def BLr9_pred : ABI<0b1011, (outs), (ins i32imm:$func, variable_ops),
- "bl", " ${func:call}",
- [(ARMcall_pred tglobaladdr:$func)]>, Requires<[IsDarwin]>;
+ IIC_Br, "bl", " ${func:call}",
+ [(ARMcall_pred tglobaladdr:$func)]>,
+ Requires<[IsARM, IsDarwin]>;
// ARMv5T and above
def BLXr9 : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm,
- "blx $func",
+ IIC_Br, "blx $func",
[(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T, IsDarwin]> {
let Inst{7-4} = 0b0011;
let Inst{19-8} = 0b111111111111;
let Inst{27-20} = 0b00010010;
}
- let Uses = [LR] in {
- // ARMv4T
- def BXr9 : ABXIx2<(outs), (ins GPR:$func, variable_ops),
- "mov lr, pc\n\tbx $func",
- [(ARMcall_nolink GPR:$func)]>, Requires<[IsDarwin]>;
+ // ARMv4T
+ def BXr9 : ABXIx2<(outs), (ins GPR:$func, variable_ops),
+ IIC_Br, "mov lr, pc\n\tbx $func",
+ [(ARMcall_nolink GPR:$func)]>, Requires<[IsARM, IsDarwin]> {
+ let Inst{7-4} = 0b0001;
+ let Inst{19-8} = 0b111111111111;
+ let Inst{27-20} = 0b00010010;
}
}
-let isBranch = 1, isTerminator = 1, Itinerary = IIC_Br in {
+let isBranch = 1, isTerminator = 1 in {
// B is "predicable" since it can be xformed into a Bcc.
let isBarrier = 1 in {
let isPredicable = 1 in
- def B : ABXI<0b1010, (outs), (ins brtarget:$target), "b $target",
- [(br bb:$target)]>;
+ def B : ABXI<0b1010, (outs), (ins brtarget:$target), IIC_Br,
+ "b $target", [(br bb:$target)]>;
let isNotDuplicable = 1, isIndirectBranch = 1 in {
def BR_JTr : JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id),
- "mov pc, $target \n$jt",
+ IIC_Br, "mov pc, $target \n$jt",
[(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]> {
let Inst{20} = 0; // S Bit
let Inst{24-21} = 0b1101;
- let Inst{27-26} = {0,0};
+ let Inst{27-25} = 0b000;
}
def BR_JTm : JTI<(outs),
(ins addrmode2:$target, jtblock_operand:$jt, i32imm:$id),
- "ldr pc, $target \n$jt",
- [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt,
- imm:$id)]> {
+ IIC_Br, "ldr pc, $target \n$jt",
+ [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt,
+ imm:$id)]> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
- let Inst{27-26} = {0,1};
+ let Inst{27-25} = 0b011;
}
def BR_JTadd : JTI<(outs),
(ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id),
- "add pc, $target, $idx \n$jt",
+ IIC_Br, "add pc, $target, $idx \n$jt",
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt,
imm:$id)]> {
let Inst{20} = 0; // S bit
let Inst{24-21} = 0b0100;
- let Inst{27-26} = {0,0};
+ let Inst{27-25} = 0b000;
}
} // isNotDuplicable = 1, isIndirectBranch = 1
} // isBarrier = 1
@@ -670,7 +754,7 @@ let isBranch = 1, isTerminator = 1, Itinerary = IIC_Br in {
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
def Bcc : ABI<0b1010, (outs), (ins brtarget:$target),
- "b", " $target",
+ IIC_Br, "b", " $target",
[/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>;
}
@@ -679,133 +763,141 @@ let isBranch = 1, isTerminator = 1, Itinerary = IIC_Br in {
//
// Load
-let canFoldAsLoad = 1 in
-def LDR : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+def LDR : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm, IIC_iLoadr,
"ldr", " $dst, $addr",
[(set GPR:$dst, (load addrmode2:$addr))]>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1 in
-def LDRcp : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
+def LDRcp : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm, IIC_iLoadr,
"ldr", " $dst, $addr", []>;
// Loads with zero extension
def LDRH : AI3ldh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
- "ldr", "h $dst, $addr",
- [(set GPR:$dst, (zextloadi16 addrmode3:$addr))]>;
+ IIC_iLoadr, "ldr", "h $dst, $addr",
+ [(set GPR:$dst, (zextloadi16 addrmode3:$addr))]>;
-def LDRB : AI2ldb<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
- "ldr", "b $dst, $addr",
- [(set GPR:$dst, (zextloadi8 addrmode2:$addr))]>;
+def LDRB : AI2ldb<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
+ IIC_iLoadr, "ldr", "b $dst, $addr",
+ [(set GPR:$dst, (zextloadi8 addrmode2:$addr))]>;
// Loads with sign extension
def LDRSH : AI3ldsh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
- "ldr", "sh $dst, $addr",
- [(set GPR:$dst, (sextloadi16 addrmode3:$addr))]>;
+ IIC_iLoadr, "ldr", "sh $dst, $addr",
+ [(set GPR:$dst, (sextloadi16 addrmode3:$addr))]>;
def LDRSB : AI3ldsb<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
- "ldr", "sb $dst, $addr",
- [(set GPR:$dst, (sextloadi8 addrmode3:$addr))]>;
+ IIC_iLoadr, "ldr", "sb $dst, $addr",
+ [(set GPR:$dst, (sextloadi8 addrmode3:$addr))]>;
-let mayLoad = 1 in {
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
def LDRD : AI3ldd<(outs GPR:$dst1, GPR:$dst2), (ins addrmode3:$addr), LdMiscFrm,
- "ldr", "d $dst1, $addr", []>, Requires<[IsARM, HasV5T]>;
+ IIC_iLoadr, "ldr", "d $dst1, $addr",
+ []>, Requires<[IsARM, HasV5TE]>;
// Indexed loads
def LDR_PRE : AI2ldwpr<(outs GPR:$dst, GPR:$base_wb),
- (ins addrmode2:$addr), LdFrm,
+ (ins addrmode2:$addr), LdFrm, IIC_iLoadru,
"ldr", " $dst, $addr!", "$addr.base = $base_wb", []>;
def LDR_POST : AI2ldwpo<(outs GPR:$dst, GPR:$base_wb),
- (ins GPR:$base, am2offset:$offset), LdFrm,
+ (ins GPR:$base, am2offset:$offset), LdFrm, IIC_iLoadru,
"ldr", " $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRH_PRE : AI3ldhpr<(outs GPR:$dst, GPR:$base_wb),
- (ins addrmode3:$addr), LdMiscFrm,
+ (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru,
"ldr", "h $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRH_POST : AI3ldhpo<(outs GPR:$dst, GPR:$base_wb),
- (ins GPR:$base,am3offset:$offset), LdMiscFrm,
+ (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru,
"ldr", "h $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRB_PRE : AI2ldbpr<(outs GPR:$dst, GPR:$base_wb),
- (ins addrmode2:$addr), LdFrm,
+ (ins addrmode2:$addr), LdFrm, IIC_iLoadru,
"ldr", "b $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRB_POST : AI2ldbpo<(outs GPR:$dst, GPR:$base_wb),
- (ins GPR:$base,am2offset:$offset), LdFrm,
+ (ins GPR:$base,am2offset:$offset), LdFrm, IIC_iLoadru,
"ldr", "b $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRSH_PRE : AI3ldshpr<(outs GPR:$dst, GPR:$base_wb),
- (ins addrmode3:$addr), LdMiscFrm,
+ (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru,
"ldr", "sh $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRSH_POST: AI3ldshpo<(outs GPR:$dst, GPR:$base_wb),
- (ins GPR:$base,am3offset:$offset), LdMiscFrm,
+ (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru,
"ldr", "sh $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRSB_PRE : AI3ldsbpr<(outs GPR:$dst, GPR:$base_wb),
- (ins addrmode3:$addr), LdMiscFrm,
+ (ins addrmode3:$addr), LdMiscFrm, IIC_iLoadru,
"ldr", "sb $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRSB_POST: AI3ldsbpo<(outs GPR:$dst, GPR:$base_wb),
- (ins GPR:$base,am3offset:$offset), LdMiscFrm,
+ (ins GPR:$base,am3offset:$offset), LdMiscFrm, IIC_iLoadru,
"ldr", "sb $dst, [$base], $offset", "$base = $base_wb", []>;
}
// Store
-def STR : AI2stw<(outs), (ins GPR:$src, addrmode2:$addr), StFrm,
+def STR : AI2stw<(outs), (ins GPR:$src, addrmode2:$addr), StFrm, IIC_iStorer,
"str", " $src, $addr",
[(store GPR:$src, addrmode2:$addr)]>;
// Stores with truncate
-def STRH : AI3sth<(outs), (ins GPR:$src, addrmode3:$addr), StMiscFrm,
+def STRH : AI3sth<(outs), (ins GPR:$src, addrmode3:$addr), StMiscFrm, IIC_iStorer,
"str", "h $src, $addr",
[(truncstorei16 GPR:$src, addrmode3:$addr)]>;
-def STRB : AI2stb<(outs), (ins GPR:$src, addrmode2:$addr), StFrm,
+def STRB : AI2stb<(outs), (ins GPR:$src, addrmode2:$addr), StFrm, IIC_iStorer,
"str", "b $src, $addr",
[(truncstorei8 GPR:$src, addrmode2:$addr)]>;
// Store doubleword
-let mayStore = 1 in
-def STRD : AI3std<(outs), (ins GPR:$src1, GPR:$src2, addrmode3:$addr),StMiscFrm,
- "str", "d $src1, $addr", []>, Requires<[IsARM, HasV5T]>;
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+def STRD : AI3std<(outs), (ins GPR:$src1, GPR:$src2, addrmode3:$addr),
+ StMiscFrm, IIC_iStorer,
+ "str", "d $src1, $addr", []>, Requires<[IsARM, HasV5TE]>;
// Indexed stores
def STR_PRE : AI2stwpr<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base, am2offset:$offset), StFrm,
+ (ins GPR:$src, GPR:$base, am2offset:$offset),
+ StFrm, IIC_iStoreru,
"str", " $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_store GPR:$src, GPR:$base, am2offset:$offset))]>;
def STR_POST : AI2stwpo<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
+ (ins GPR:$src, GPR:$base,am2offset:$offset),
+ StFrm, IIC_iStoreru,
"str", " $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb,
(post_store GPR:$src, GPR:$base, am2offset:$offset))]>;
def STRH_PRE : AI3sthpr<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm,
+ (ins GPR:$src, GPR:$base,am3offset:$offset),
+ StMiscFrm, IIC_iStoreru,
"str", "h $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_truncsti16 GPR:$src, GPR:$base,am3offset:$offset))]>;
def STRH_POST: AI3sthpo<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm,
+ (ins GPR:$src, GPR:$base,am3offset:$offset),
+ StMiscFrm, IIC_iStoreru,
"str", "h $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb, (post_truncsti16 GPR:$src,
GPR:$base, am3offset:$offset))]>;
def STRB_PRE : AI2stbpr<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
+ (ins GPR:$src, GPR:$base,am2offset:$offset),
+ StFrm, IIC_iStoreru,
"str", "b $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb, (pre_truncsti8 GPR:$src,
GPR:$base, am2offset:$offset))]>;
def STRB_POST: AI2stbpo<(outs GPR:$base_wb),
- (ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
+ (ins GPR:$src, GPR:$base,am2offset:$offset),
+ StFrm, IIC_iStoreru,
"str", "b $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb, (post_truncsti8 GPR:$src,
GPR:$base, am2offset:$offset))]>;
@@ -814,17 +906,16 @@ def STRB_POST: AI2stbpo<(outs GPR:$base_wb),
// Load / store multiple Instructions.
//
-// FIXME: $dst1 should be a def.
-let mayLoad = 1 in
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
def LDM : AXI4ld<(outs),
- (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops),
- LdStMulFrm, "ldm${p}${addr:submode} $addr, $dst1",
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ LdStMulFrm, IIC_iLoadm, "ldm${p}${addr:submode} $addr, $wb",
[]>;
-let mayStore = 1 in
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
def STM : AXI4st<(outs),
- (ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops),
- LdStMulFrm, "stm${p}${addr:submode} $addr, $src1",
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ LdStMulFrm, IIC_iStorem, "stm${p}${addr:submode} $addr, $wb",
[]>;
//===----------------------------------------------------------------------===//
@@ -832,16 +923,42 @@ def STM : AXI4st<(outs),
//
let neverHasSideEffects = 1 in
-def MOVr : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
- "mov", " $dst, $src", []>, UnaryDP;
-def MOVs : AsI1<0b1101, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm,
- "mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>, UnaryDP;
+def MOVr : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm, IIC_iMOVr,
+ "mov", " $dst, $src", []>, UnaryDP;
+def MOVs : AsI1<0b1101, (outs GPR:$dst), (ins so_reg:$src),
+ DPSoRegFrm, IIC_iMOVsr,
+ "mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>, UnaryDP;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
-def MOVi : AsI1<0b1101, (outs GPR:$dst), (ins so_imm:$src), DPFrm,
- "mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>, UnaryDP;
+def MOVi : AsI1<0b1101, (outs GPR:$dst), (ins so_imm:$src), DPFrm, IIC_iMOVi,
+ "mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>, UnaryDP {
+ let Inst{25} = 1;
+}
-def MOVrx : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo,
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in
+def MOVi16 : AI1<0b1000, (outs GPR:$dst), (ins i32imm:$src),
+ DPFrm, IIC_iMOVi,
+ "movw", " $dst, $src",
+ [(set GPR:$dst, imm0_65535:$src)]>,
+ Requires<[IsARM, HasV6T2]> {
+ let Inst{20} = 0;
+ let Inst{25} = 1;
+}
+
+let Constraints = "$src = $dst" in
+def MOVTi16 : AI1<0b1010, (outs GPR:$dst), (ins GPR:$src, i32imm:$imm),
+ DPFrm, IIC_iMOVi,
+ "movt", " $dst, $imm",
+ [(set GPR:$dst,
+ (or (and GPR:$src, 0xffff),
+ lo16AllZero:$imm))]>, UnaryDP,
+ Requires<[IsARM, HasV6T2]> {
+ let Inst{20} = 0;
+ let Inst{25} = 1;
+}
+
+let Uses = [CPSR] in
+def MOVrx : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo, IIC_iMOVsi,
"mov", " $dst, $src, rrx",
[(set GPR:$dst, (ARMrrx GPR:$src))]>, UnaryDP;
@@ -849,11 +966,11 @@ def MOVrx : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo,
// due to flag operands.
let Defs = [CPSR] in {
-def MOVsrl_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo,
- "mov", "s $dst, $src, lsr #1",
+def MOVsrl_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo,
+ IIC_iMOVsi, "mov", "s $dst, $src, lsr #1",
[(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP;
def MOVsra_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), Pseudo,
- "mov", "s $dst, $src, asr #1",
+ IIC_iMOVsi, "mov", "s $dst, $src, asr #1",
[(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP;
}
@@ -901,6 +1018,24 @@ defm UXTAH : AI_bin_rrot<0b01101111, "uxtah",
// TODO: UXT(A){B|H}16
+def SBFX : I<(outs GPR:$dst),
+ (ins GPR:$src, imm0_31:$lsb, imm0_31:$width),
+ AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iALUi,
+ "sbfx", " $dst, $src, $lsb, $width", "", []>,
+ Requires<[IsARM, HasV6T2]> {
+ let Inst{27-21} = 0b0111101;
+ let Inst{6-4} = 0b101;
+}
+
+def UBFX : I<(outs GPR:$dst),
+ (ins GPR:$src, imm0_31:$lsb, imm0_31:$width),
+ AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iALUi,
+ "ubfx", " $dst, $src, $lsb, $width", "", []>,
+ Requires<[IsARM, HasV6T2]> {
+ let Inst{27-21} = 0b0111111;
+ let Inst{6-4} = 0b101;
+}
+
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
@@ -923,30 +1058,36 @@ defm SBC : AI1_adde_sube_irs<0b0110, "sbc",
// These don't define reg/reg forms, because they are handled above.
def RSBri : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
- "rsb", " $dst, $a, $b",
- [(set GPR:$dst, (sub so_imm:$b, GPR:$a))]>;
+ IIC_iALUi, "rsb", " $dst, $a, $b",
+ [(set GPR:$dst, (sub so_imm:$b, GPR:$a))]> {
+ let Inst{25} = 1;
+}
def RSBrs : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
- "rsb", " $dst, $a, $b",
+ IIC_iALUsr, "rsb", " $dst, $a, $b",
[(set GPR:$dst, (sub so_reg:$b, GPR:$a))]>;
// RSB with 's' bit set.
let Defs = [CPSR] in {
def RSBSri : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
- "rsb", "s $dst, $a, $b",
- [(set GPR:$dst, (subc so_imm:$b, GPR:$a))]>;
+ IIC_iALUi, "rsb", "s $dst, $a, $b",
+ [(set GPR:$dst, (subc so_imm:$b, GPR:$a))]> {
+ let Inst{25} = 1;
+}
def RSBSrs : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
- "rsb", "s $dst, $a, $b",
+ IIC_iALUsr, "rsb", "s $dst, $a, $b",
[(set GPR:$dst, (subc so_reg:$b, GPR:$a))]>;
}
let Uses = [CPSR] in {
def RSCri : AsI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_imm:$b),
- DPFrm, "rsc", " $dst, $a, $b",
+ DPFrm, IIC_iALUi, "rsc", " $dst, $a, $b",
[(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>,
- Requires<[IsARM, CarryDefIsUnused]>;
+ Requires<[IsARM, CarryDefIsUnused]> {
+ let Inst{25} = 1;
+}
def RSCrs : AsI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b),
- DPSoRegFrm, "rsc", " $dst, $a, $b",
+ DPSoRegFrm, IIC_iALUsr, "rsc", " $dst, $a, $b",
[(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>,
Requires<[IsARM, CarryDefIsUnused]>;
}
@@ -954,11 +1095,13 @@ def RSCrs : AsI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b),
// FIXME: Allow these to be predicated.
let Defs = [CPSR], Uses = [CPSR] in {
def RSCSri : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_imm:$b),
- DPFrm, "rscs $dst, $a, $b",
+ DPFrm, IIC_iALUi, "rscs $dst, $a, $b",
[(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>,
- Requires<[IsARM, CarryDefIsUnused]>;
+ Requires<[IsARM, CarryDefIsUnused]> {
+ let Inst{25} = 1;
+}
def RSCSrs : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b),
- DPSoRegFrm, "rscs $dst, $a, $b",
+ DPSoRegFrm, IIC_iALUsr, "rscs $dst, $a, $b",
[(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>,
Requires<[IsARM, CarryDefIsUnused]>;
}
@@ -992,16 +1135,27 @@ defm EOR : AsI1_bin_irs<0b0001, "eor",
defm BIC : AsI1_bin_irs<0b1110, "bic",
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
-def MVNr : AsI1<0b1111, (outs GPR:$dst), (ins GPR:$src), DPFrm,
+def BFC : I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm),
+ AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iALUi,
+ "bfc", " $dst, $imm", "$src = $dst",
+ [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
+ Requires<[IsARM, HasV6T2]> {
+ let Inst{27-21} = 0b0111110;
+ let Inst{6-0} = 0b0011111;
+}
+
+def MVNr : AsI1<0b1111, (outs GPR:$dst), (ins GPR:$src), DPFrm, IIC_iMOVr,
"mvn", " $dst, $src",
[(set GPR:$dst, (not GPR:$src))]>, UnaryDP;
def MVNs : AsI1<0b1111, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm,
- "mvn", " $dst, $src",
+ IIC_iMOVsr, "mvn", " $dst, $src",
[(set GPR:$dst, (not so_reg:$src))]>, UnaryDP;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
-def MVNi : AsI1<0b1111, (outs GPR:$dst), (ins so_imm:$imm), DPFrm,
- "mvn", " $dst, $imm",
- [(set GPR:$dst, so_imm_not:$imm)]>,UnaryDP;
+def MVNi : AsI1<0b1111, (outs GPR:$dst), (ins so_imm:$imm), DPFrm,
+ IIC_iMOVi, "mvn", " $dst, $imm",
+ [(set GPR:$dst, so_imm_not:$imm)]>,UnaryDP {
+ let Inst{25} = 1;
+}
def : ARMPat<(and GPR:$src, so_imm_not:$imm),
(BICri GPR:$src, so_imm_not:$imm)>;
@@ -1012,43 +1166,48 @@ def : ARMPat<(and GPR:$src, so_imm_not:$imm),
let isCommutable = 1 in
def MUL : AsMul1I<0b0000000, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- "mul", " $dst, $a, $b",
+ IIC_iMUL32, "mul", " $dst, $a, $b",
[(set GPR:$dst, (mul GPR:$a, GPR:$b))]>;
def MLA : AsMul1I<0b0000001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
- "mla", " $dst, $a, $b, $c",
+ IIC_iMAC32, "mla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>;
+def MLS : AMul1I<0b0000011, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
+ IIC_iMAC32, "mls", " $dst, $a, $b, $c",
+ [(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>,
+ Requires<[IsARM, HasV6T2]>;
+
// Extra precision multiplies with low / high results
let neverHasSideEffects = 1 in {
let isCommutable = 1 in {
def SMULL : AsMul1I<0b0000110, (outs GPR:$ldst, GPR:$hdst),
- (ins GPR:$a, GPR:$b),
+ (ins GPR:$a, GPR:$b), IIC_iMUL64,
"smull", " $ldst, $hdst, $a, $b", []>;
def UMULL : AsMul1I<0b0000100, (outs GPR:$ldst, GPR:$hdst),
- (ins GPR:$a, GPR:$b),
+ (ins GPR:$a, GPR:$b), IIC_iMUL64,
"umull", " $ldst, $hdst, $a, $b", []>;
}
// Multiply + accumulate
def SMLAL : AsMul1I<0b0000111, (outs GPR:$ldst, GPR:$hdst),
- (ins GPR:$a, GPR:$b),
+ (ins GPR:$a, GPR:$b), IIC_iMAC64,
"smlal", " $ldst, $hdst, $a, $b", []>;
def UMLAL : AsMul1I<0b0000101, (outs GPR:$ldst, GPR:$hdst),
- (ins GPR:$a, GPR:$b),
+ (ins GPR:$a, GPR:$b), IIC_iMAC64,
"umlal", " $ldst, $hdst, $a, $b", []>;
def UMAAL : AMul1I <0b0000010, (outs GPR:$ldst, GPR:$hdst),
- (ins GPR:$a, GPR:$b),
+ (ins GPR:$a, GPR:$b), IIC_iMAC64,
"umaal", " $ldst, $hdst, $a, $b", []>,
Requires<[IsARM, HasV6]>;
} // neverHasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- "smmul", " $dst, $a, $b",
+ IIC_iMUL32, "smmul", " $dst, $a, $b",
[(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0001;
@@ -1056,7 +1215,7 @@ def SMMUL : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
}
def SMMLA : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
- "smmla", " $dst, $a, $b, $c",
+ IIC_iMAC32, "smmla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0001;
@@ -1064,7 +1223,7 @@ def SMMLA : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
def SMMLS : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
- "smmls", " $dst, $a, $b, $c",
+ IIC_iMAC32, "smmls", " $dst, $a, $b, $c",
[(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b1101;
@@ -1072,7 +1231,7 @@ def SMMLS : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
multiclass AI_smul<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "bb"), " $dst, $a, $b",
+ IIC_iMUL32, !strconcat(opc, "bb"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
(sext_inreg GPR:$b, i16)))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1081,7 +1240,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
}
def BT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "bt"), " $dst, $a, $b",
+ IIC_iMUL32, !strconcat(opc, "bt"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
(sra GPR:$b, (i32 16))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1090,7 +1249,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
}
def TB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "tb"), " $dst, $a, $b",
+ IIC_iMUL32, !strconcat(opc, "tb"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)),
(sext_inreg GPR:$b, i16)))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1099,7 +1258,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
}
def TT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "tt"), " $dst, $a, $b",
+ IIC_iMUL32, !strconcat(opc, "tt"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)),
(sra GPR:$b, (i32 16))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1108,7 +1267,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
}
def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "wb"), " $dst, $a, $b",
+ IIC_iMUL16, !strconcat(opc, "wb"), " $dst, $a, $b",
[(set GPR:$dst, (sra (opnode GPR:$a,
(sext_inreg GPR:$b, i16)), (i32 16)))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1117,7 +1276,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
}
def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
- !strconcat(opc, "wt"), " $dst, $a, $b",
+ IIC_iMUL16, !strconcat(opc, "wt"), " $dst, $a, $b",
[(set GPR:$dst, (sra (opnode GPR:$a,
(sra GPR:$b, (i32 16))), (i32 16)))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1129,7 +1288,7 @@ multiclass AI_smul<string opc, PatFrag opnode> {
multiclass AI_smla<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "bb"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "bb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc,
(opnode (sext_inreg GPR:$a, i16),
(sext_inreg GPR:$b, i16))))]>,
@@ -1139,7 +1298,7 @@ multiclass AI_smla<string opc, PatFrag opnode> {
}
def BT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "bt"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "bt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16),
(sra GPR:$b, (i32 16)))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1148,7 +1307,7 @@ multiclass AI_smla<string opc, PatFrag opnode> {
}
def TB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "tb"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "tb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)),
(sext_inreg GPR:$b, i16))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1157,7 +1316,7 @@ multiclass AI_smla<string opc, PatFrag opnode> {
}
def TT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "tt"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "tt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)),
(sra GPR:$b, (i32 16)))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1166,7 +1325,7 @@ multiclass AI_smla<string opc, PatFrag opnode> {
}
def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "wb"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "wb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
(sext_inreg GPR:$b, i16)), (i32 16))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1175,7 +1334,7 @@ multiclass AI_smla<string opc, PatFrag opnode> {
}
def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
- !strconcat(opc, "wt"), " $dst, $a, $b, $acc",
+ IIC_iMAC16, !strconcat(opc, "wt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
(sra GPR:$b, (i32 16))), (i32 16))))]>,
Requires<[IsARM, HasV5TE]> {
@@ -1194,7 +1353,7 @@ defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
// Misc. Arithmetic Instructions.
//
-def CLZ : AMiscA1I<0b000010110, (outs GPR:$dst), (ins GPR:$src),
+def CLZ : AMiscA1I<0b000010110, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
"clz", " $dst, $src",
[(set GPR:$dst, (ctlz GPR:$src))]>, Requires<[IsARM, HasV5T]> {
let Inst{7-4} = 0b0001;
@@ -1202,7 +1361,7 @@ def CLZ : AMiscA1I<0b000010110, (outs GPR:$dst), (ins GPR:$src),
let Inst{19-16} = 0b1111;
}
-def REV : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
+def REV : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
"rev", " $dst, $src",
[(set GPR:$dst, (bswap GPR:$src))]>, Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0011;
@@ -1210,7 +1369,7 @@ def REV : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
let Inst{19-16} = 0b1111;
}
-def REV16 : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
+def REV16 : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
"rev16", " $dst, $src",
[(set GPR:$dst,
(or (and (srl GPR:$src, (i32 8)), 0xFF),
@@ -1223,7 +1382,7 @@ def REV16 : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
let Inst{19-16} = 0b1111;
}
-def REVSH : AMiscA1I<0b01101111, (outs GPR:$dst), (ins GPR:$src),
+def REVSH : AMiscA1I<0b01101111, (outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
"revsh", " $dst, $src",
[(set GPR:$dst,
(sext_inreg
@@ -1237,7 +1396,7 @@ def REVSH : AMiscA1I<0b01101111, (outs GPR:$dst), (ins GPR:$src),
def PKHBT : AMiscA1I<0b01101000, (outs GPR:$dst),
(ins GPR:$src1, GPR:$src2, i32imm:$shamt),
- "pkhbt", " $dst, $src1, $src2, LSL $shamt",
+ IIC_iALUsi, "pkhbt", " $dst, $src1, $src2, LSL $shamt",
[(set GPR:$dst, (or (and GPR:$src1, 0xFFFF),
(and (shl GPR:$src2, (i32 imm:$shamt)),
0xFFFF0000)))]>,
@@ -1254,7 +1413,7 @@ def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)),
def PKHTB : AMiscA1I<0b01101000, (outs GPR:$dst),
(ins GPR:$src1, GPR:$src2, i32imm:$shamt),
- "pkhtb", " $dst, $src1, $src2, ASR $shamt",
+ IIC_iALUsi, "pkhtb", " $dst, $src1, $src2, ASR $shamt",
[(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000),
(and (sra GPR:$src2, imm16_31:$shamt),
0xFFFF)))]>, Requires<[IsARM, HasV6]> {
@@ -1300,21 +1459,23 @@ def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm),
// FIXME: should be able to write a pattern for ARMcmov, but can't use
// a two-value operand where a dag node expects two operands. :(
def MOVCCr : AI1<0b1101, (outs GPR:$dst), (ins GPR:$false, GPR:$true), DPFrm,
- "mov", " $dst, $true",
+ IIC_iCMOVr, "mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $dst">, UnaryDP;
def MOVCCs : AI1<0b1101, (outs GPR:$dst),
- (ins GPR:$false, so_reg:$true), DPSoRegFrm,
+ (ins GPR:$false, so_reg:$true), DPSoRegFrm, IIC_iCMOVsr,
"mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, so_reg:$true, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $dst">, UnaryDP;
def MOVCCi : AI1<0b1101, (outs GPR:$dst),
- (ins GPR:$false, so_imm:$true), DPFrm,
+ (ins GPR:$false, so_imm:$true), DPFrm, IIC_iCMOVi,
"mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, so_imm:$true, imm:$cc, CCR:$ccr))*/]>,
- RegConstraint<"$false = $dst">, UnaryDP;
+ RegConstraint<"$false = $dst">, UnaryDP {
+ let Inst{25} = 1;
+}
//===----------------------------------------------------------------------===//
@@ -1324,14 +1485,14 @@ def MOVCCi : AI1<0b1101, (outs GPR:$dst),
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1,
Defs = [R0, R12, LR, CPSR] in {
- def TPsoft : ABXI<0b1011, (outs), (ins),
+ def TPsoft : ABXI<0b1011, (outs), (ins), IIC_Br,
"bl __aeabi_read_tp",
[(set R0, ARMthread_pointer)]>;
}
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
-// eh_sjlj_setjmp() is a three instruction sequence to store the return
+// eh_sjlj_setjmp() is an instruction sequence to store the return
// address and save #0 in R0 for the non-longjmp case.
// Since by its nature we may be coming from some other function to get
// here, and we're using the stack frame for the containing function to
@@ -1342,13 +1503,19 @@ let isCall = 1,
// doing so, we also cause the prologue/epilogue code to actively preserve
// all of the callee-saved resgisters, which is exactly what we want.
let Defs =
- [ R0, R1, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR,
- D0, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 ] in {
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0,
+ D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
+ D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30,
+ D31 ] in {
def Int_eh_sjlj_setjmp : XI<(outs), (ins GPR:$src),
- AddrModeNone, SizeSpecial, IndexModeNone, Pseudo,
- "add r0, pc, #4\n\t"
- "str r0, [$src, #+4]\n\t"
- "mov r0, #0 @ eh_setjmp", "",
+ AddrModeNone, SizeSpecial, IndexModeNone,
+ Pseudo, NoItinerary,
+ "str sp, [$src, #+8] @ eh_setjmp begin\n\t"
+ "add r12, pc, #8\n\t"
+ "str r12, [$src, #+4]\n\t"
+ "mov r0, #0\n\t"
+ "add pc, pc, #0\n\t"
+ "mov r0, #1 @ eh_setjmp end", "",
[(set R0, (ARMeh_sjlj_setjmp GPR:$src))]>;
}
@@ -1366,25 +1533,36 @@ def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
// Two piece so_imms.
let isReMaterializable = 1 in
-def MOVi2pieces : AI1x2<(outs GPR:$dst), (ins so_imm2part:$src), Pseudo,
+def MOVi2pieces : AI1x2<(outs GPR:$dst), (ins so_imm2part:$src),
+ Pseudo, IIC_iMOVi,
"mov", " $dst, $src",
- [(set GPR:$dst, so_imm2part:$src)]>;
+ [(set GPR:$dst, so_imm2part:$src)]>,
+ Requires<[IsARM, NoV6T2]>;
def : ARMPat<(or GPR:$LHS, so_imm2part:$RHS),
- (ORRri (ORRri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
- (so_imm2part_2 imm:$RHS))>;
+ (ORRri (ORRri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
+ (so_imm2part_2 imm:$RHS))>;
def : ARMPat<(xor GPR:$LHS, so_imm2part:$RHS),
- (EORri (EORri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
- (so_imm2part_2 imm:$RHS))>;
+ (EORri (EORri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
+ (so_imm2part_2 imm:$RHS))>;
+
+// 32-bit immediate using movw + movt.
+// This is a single pseudo instruction to make it re-materializable. Remove
+// when we can do generalized remat.
+let isReMaterializable = 1 in
+def MOVi32imm : AI1x2<(outs GPR:$dst), (ins i32imm:$src), Pseudo, IIC_iMOVi,
+ "movw", " $dst, ${src:lo16}\n\tmovt${p} $dst, ${src:hi16}",
+ [(set GPR:$dst, (i32 imm:$src))]>,
+ Requires<[IsARM, HasV6T2]>;
// TODO: add,sub,and, 3-instr forms?
// Direct calls
def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>,
- Requires<[IsNotDarwin]>;
+ Requires<[IsARM, IsNotDarwin]>;
def : ARMPat<(ARMcall texternalsym:$func), (BLr9 texternalsym:$func)>,
- Requires<[IsDarwin]>;
+ Requires<[IsARM, IsDarwin]>;
// zextload i1 -> zextload i8
def : ARMPat<(zextloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>;
diff --git a/lib/Target/ARM/ARMInstrNEON.td b/lib/Target/ARM/ARMInstrNEON.td
index a62597b..cd370aa 100644
--- a/lib/Target/ARM/ARMInstrNEON.td
+++ b/lib/Target/ARM/ARMInstrNEON.td
@@ -65,8 +65,28 @@ def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
def NEONvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
def NEONvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
-def NEONvduplaneq : SDNode<"ARMISD::VDUPLANEQ",
- SDTypeProfile<1, 2, [SDTCisVT<2, i32>]>>;
+def NEONvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
+
+// VDUPLANE can produce a quad-register result from a double-register source,
+// so the result is not constrained to match the source.
+def NEONvduplane : SDNode<"ARMISD::VDUPLANE",
+ SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
+ SDTCisVT<2, i32>]>>;
+
+def SDTARMVEXT : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>, SDTCisVT<3, i32>]>;
+def NEONvext : SDNode<"ARMISD::VEXT", SDTARMVEXT>;
+
+def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
+def NEONvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
+def NEONvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
+def NEONvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
+
+def SDTARMVSHUF2 : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
+def NEONzip : SDNode<"ARMISD::VZIP", SDTARMVSHUF2>;
+def NEONuzp : SDNode<"ARMISD::VUZP", SDTARMVSHUF2>;
+def NEONtrn : SDNode<"ARMISD::VTRN", SDTARMVSHUF2>;
//===----------------------------------------------------------------------===//
// NEON operand definitions
@@ -87,28 +107,409 @@ def addrmode_neonldstm : Operand<i32>,
//===----------------------------------------------------------------------===//
/* TODO: Take advantage of vldm.
-let mayLoad = 1 in {
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in {
def VLDMD : NI<(outs),
(ins addrmode_neonldstm:$addr, reglist:$dst1, variable_ops),
+ IIC_fpLoadm,
"vldm${addr:submode} ${addr:base}, $dst1",
- []>;
+ []> {
+ let Inst{27-25} = 0b110;
+ let Inst{20} = 1;
+ let Inst{11-9} = 0b101;
+}
def VLDMS : NI<(outs),
(ins addrmode_neonldstm:$addr, reglist:$dst1, variable_ops),
+ IIC_fpLoadm,
"vldm${addr:submode} ${addr:base}, $dst1",
- []>;
+ []> {
+ let Inst{27-25} = 0b110;
+ let Inst{20} = 1;
+ let Inst{11-9} = 0b101;
+}
}
*/
// Use vldmia to load a Q register as a D register pair.
-def VLDRQ : NI<(outs QPR:$dst), (ins GPR:$addr),
+def VLDRQ : NI4<(outs QPR:$dst), (ins addrmode4:$addr),
+ IIC_fpLoadm,
"vldmia $addr, ${dst:dregpair}",
- [(set QPR:$dst, (v2f64 (load GPR:$addr)))]>;
+ [(set QPR:$dst, (v2f64 (load addrmode4:$addr)))]> {
+ let Inst{27-25} = 0b110;
+ let Inst{24} = 0; // P bit
+ let Inst{23} = 1; // U bit
+ let Inst{20} = 1;
+ let Inst{11-9} = 0b101;
+}
// Use vstmia to store a Q register as a D register pair.
-def VSTRQ : NI<(outs), (ins QPR:$src, GPR:$addr),
+def VSTRQ : NI4<(outs), (ins QPR:$src, addrmode4:$addr),
+ IIC_fpStorem,
"vstmia $addr, ${src:dregpair}",
- [(store (v2f64 QPR:$src), GPR:$addr)]>;
+ [(store (v2f64 QPR:$src), addrmode4:$addr)]> {
+ let Inst{27-25} = 0b110;
+ let Inst{24} = 0; // P bit
+ let Inst{23} = 1; // U bit
+ let Inst{20} = 0;
+ let Inst{11-9} = 0b101;
+}
+
+// VLD1 : Vector Load (multiple single elements)
+class VLD1D<bits<4> op7_4, string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : NLdSt<0,0b10,0b0111,op7_4, (outs DPR:$dst), (ins addrmode6:$addr), IIC_VLD1,
+ !strconcat(OpcodeStr, "\t\\{$dst\\}, $addr"), "",
+ [(set DPR:$dst, (Ty (IntOp addrmode6:$addr)))]>;
+class VLD1Q<bits<4> op7_4, string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : NLdSt<0,0b10,0b1010,op7_4, (outs QPR:$dst), (ins addrmode6:$addr), IIC_VLD1,
+ !strconcat(OpcodeStr, "\t${dst:dregpair}, $addr"), "",
+ [(set QPR:$dst, (Ty (IntOp addrmode6:$addr)))]>;
+
+def VLD1d8 : VLD1D<0b0000, "vld1.8", v8i8, int_arm_neon_vld1>;
+def VLD1d16 : VLD1D<0b0100, "vld1.16", v4i16, int_arm_neon_vld1>;
+def VLD1d32 : VLD1D<0b1000, "vld1.32", v2i32, int_arm_neon_vld1>;
+def VLD1df : VLD1D<0b1000, "vld1.32", v2f32, int_arm_neon_vld1>;
+def VLD1d64 : VLD1D<0b1100, "vld1.64", v1i64, int_arm_neon_vld1>;
+
+def VLD1q8 : VLD1Q<0b0000, "vld1.8", v16i8, int_arm_neon_vld1>;
+def VLD1q16 : VLD1Q<0b0100, "vld1.16", v8i16, int_arm_neon_vld1>;
+def VLD1q32 : VLD1Q<0b1000, "vld1.32", v4i32, int_arm_neon_vld1>;
+def VLD1qf : VLD1Q<0b1000, "vld1.32", v4f32, int_arm_neon_vld1>;
+def VLD1q64 : VLD1Q<0b1100, "vld1.64", v2i64, int_arm_neon_vld1>;
+
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in {
+
+// VLD2 : Vector Load (multiple 2-element structures)
+class VLD2D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b1000,op7_4, (outs DPR:$dst1, DPR:$dst2),
+ (ins addrmode6:$addr), IIC_VLD2,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2\\}, $addr"), "", []>;
+class VLD2Q<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b0011,op7_4,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$addr), IIC_VLD2,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2,$dst3,$dst4\\}, $addr"),
+ "", []>;
+
+def VLD2d8 : VLD2D<0b0000, "vld2.8">;
+def VLD2d16 : VLD2D<0b0100, "vld2.16">;
+def VLD2d32 : VLD2D<0b1000, "vld2.32">;
+def VLD2d64 : NLdSt<0,0b10,0b1010,0b1100, (outs DPR:$dst1, DPR:$dst2),
+ (ins addrmode6:$addr), IIC_VLD1,
+ "vld1.64\t\\{$dst1,$dst2\\}, $addr", "", []>;
+
+def VLD2q8 : VLD2Q<0b0000, "vld2.8">;
+def VLD2q16 : VLD2Q<0b0100, "vld2.16">;
+def VLD2q32 : VLD2Q<0b1000, "vld2.32">;
+
+// VLD3 : Vector Load (multiple 3-element structures)
+class VLD3D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b0100,op7_4, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6:$addr), IIC_VLD3,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2,$dst3\\}, $addr"), "", []>;
+class VLD3WB<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b0101,op7_4, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, GPR:$wb),
+ (ins addrmode6:$addr), IIC_VLD3,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2,$dst3\\}, $addr"),
+ "$addr.addr = $wb", []>;
+
+def VLD3d8 : VLD3D<0b0000, "vld3.8">;
+def VLD3d16 : VLD3D<0b0100, "vld3.16">;
+def VLD3d32 : VLD3D<0b1000, "vld3.32">;
+def VLD3d64 : NLdSt<0,0b10,0b0110,0b1100,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6:$addr), IIC_VLD1,
+ "vld1.64\t\\{$dst1,$dst2,$dst3\\}, $addr", "", []>;
+
+// vld3 to double-spaced even registers.
+def VLD3q8a : VLD3WB<0b0000, "vld3.8">;
+def VLD3q16a : VLD3WB<0b0100, "vld3.16">;
+def VLD3q32a : VLD3WB<0b1000, "vld3.32">;
+
+// vld3 to double-spaced odd registers.
+def VLD3q8b : VLD3WB<0b0000, "vld3.8">;
+def VLD3q16b : VLD3WB<0b0100, "vld3.16">;
+def VLD3q32b : VLD3WB<0b1000, "vld3.32">;
+
+// VLD4 : Vector Load (multiple 4-element structures)
+class VLD4D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b0000,op7_4,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$addr), IIC_VLD4,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2,$dst3,$dst4\\}, $addr"),
+ "", []>;
+class VLD4WB<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b10,0b0001,op7_4,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
+ (ins addrmode6:$addr), IIC_VLD4,
+ !strconcat(OpcodeStr, "\t\\{$dst1,$dst2,$dst3,$dst4\\}, $addr"),
+ "$addr.addr = $wb", []>;
+
+def VLD4d8 : VLD4D<0b0000, "vld4.8">;
+def VLD4d16 : VLD4D<0b0100, "vld4.16">;
+def VLD4d32 : VLD4D<0b1000, "vld4.32">;
+def VLD4d64 : NLdSt<0,0b10,0b0010,0b1100,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$addr), IIC_VLD1,
+ "vld1.64\t\\{$dst1,$dst2,$dst3,$dst4\\}, $addr", "", []>;
+
+// vld4 to double-spaced even registers.
+def VLD4q8a : VLD4WB<0b0000, "vld4.8">;
+def VLD4q16a : VLD4WB<0b0100, "vld4.16">;
+def VLD4q32a : VLD4WB<0b1000, "vld4.32">;
+
+// vld4 to double-spaced odd registers.
+def VLD4q8b : VLD4WB<0b0000, "vld4.8">;
+def VLD4q16b : VLD4WB<0b0100, "vld4.16">;
+def VLD4q32b : VLD4WB<0b1000, "vld4.32">;
+
+// VLD1LN : Vector Load (single element to one lane)
+// FIXME: Not yet implemented.
+
+// VLD2LN : Vector Load (single 2-element structure to one lane)
+class VLD2LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b10,op11_8,0b0000, (outs DPR:$dst1, DPR:$dst2),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, nohash_imm:$lane),
+ IIC_VLD2,
+ !strconcat(OpcodeStr, "\t\\{$dst1[$lane],$dst2[$lane]\\}, $addr"),
+ "$src1 = $dst1, $src2 = $dst2", []>;
+
+def VLD2LNd8 : VLD2LN<0b0001, "vld2.8">;
+def VLD2LNd16 : VLD2LN<0b0101, "vld2.16">;
+def VLD2LNd32 : VLD2LN<0b1001, "vld2.32">;
+
+// vld2 to double-spaced even registers.
+def VLD2LNq16a: VLD2LN<0b0101, "vld2.16">;
+def VLD2LNq32a: VLD2LN<0b1001, "vld2.32">;
+
+// vld2 to double-spaced odd registers.
+def VLD2LNq16b: VLD2LN<0b0101, "vld2.16">;
+def VLD2LNq32b: VLD2LN<0b1001, "vld2.32">;
+
+// VLD3LN : Vector Load (single 3-element structure to one lane)
+class VLD3LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b10,op11_8,0b0000, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3,
+ nohash_imm:$lane), IIC_VLD3,
+ !strconcat(OpcodeStr,
+ "\t\\{$dst1[$lane],$dst2[$lane],$dst3[$lane]\\}, $addr"),
+ "$src1 = $dst1, $src2 = $dst2, $src3 = $dst3", []>;
+
+def VLD3LNd8 : VLD3LN<0b0010, "vld3.8">;
+def VLD3LNd16 : VLD3LN<0b0110, "vld3.16">;
+def VLD3LNd32 : VLD3LN<0b1010, "vld3.32">;
+
+// vld3 to double-spaced even registers.
+def VLD3LNq16a: VLD3LN<0b0110, "vld3.16">;
+def VLD3LNq32a: VLD3LN<0b1010, "vld3.32">;
+
+// vld3 to double-spaced odd registers.
+def VLD3LNq16b: VLD3LN<0b0110, "vld3.16">;
+def VLD3LNq32b: VLD3LN<0b1010, "vld3.32">;
+
+// VLD4LN : Vector Load (single 4-element structure to one lane)
+class VLD4LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b10,op11_8,0b0000,
+ (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4,
+ nohash_imm:$lane), IIC_VLD4,
+ !strconcat(OpcodeStr,
+ "\t\\{$dst1[$lane],$dst2[$lane],$dst3[$lane],$dst4[$lane]\\}, $addr"),
+ "$src1 = $dst1, $src2 = $dst2, $src3 = $dst3, $src4 = $dst4", []>;
+
+def VLD4LNd8 : VLD4LN<0b0011, "vld4.8">;
+def VLD4LNd16 : VLD4LN<0b0111, "vld4.16">;
+def VLD4LNd32 : VLD4LN<0b1011, "vld4.32">;
+
+// vld4 to double-spaced even registers.
+def VLD4LNq16a: VLD4LN<0b0111, "vld4.16">;
+def VLD4LNq32a: VLD4LN<0b1011, "vld4.32">;
+
+// vld4 to double-spaced odd registers.
+def VLD4LNq16b: VLD4LN<0b0111, "vld4.16">;
+def VLD4LNq32b: VLD4LN<0b1011, "vld4.32">;
+
+// VLD1DUP : Vector Load (single element to all lanes)
+// VLD2DUP : Vector Load (single 2-element structure to all lanes)
+// VLD3DUP : Vector Load (single 3-element structure to all lanes)
+// VLD4DUP : Vector Load (single 4-element structure to all lanes)
+// FIXME: Not yet implemented.
+} // mayLoad = 1, hasExtraDefRegAllocReq = 1
+
+// VST1 : Vector Store (multiple single elements)
+class VST1D<bits<4> op7_4, string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : NLdSt<0,0b00,0b0111,op7_4, (outs), (ins addrmode6:$addr, DPR:$src), IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src\\}, $addr"), "",
+ [(IntOp addrmode6:$addr, (Ty DPR:$src))]>;
+class VST1Q<bits<4> op7_4, string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : NLdSt<0,0b00,0b1010,op7_4, (outs), (ins addrmode6:$addr, QPR:$src), IIC_VST,
+ !strconcat(OpcodeStr, "\t${src:dregpair}, $addr"), "",
+ [(IntOp addrmode6:$addr, (Ty QPR:$src))]>;
+
+let hasExtraSrcRegAllocReq = 1 in {
+def VST1d8 : VST1D<0b0000, "vst1.8", v8i8, int_arm_neon_vst1>;
+def VST1d16 : VST1D<0b0100, "vst1.16", v4i16, int_arm_neon_vst1>;
+def VST1d32 : VST1D<0b1000, "vst1.32", v2i32, int_arm_neon_vst1>;
+def VST1df : VST1D<0b1000, "vst1.32", v2f32, int_arm_neon_vst1>;
+def VST1d64 : VST1D<0b1100, "vst1.64", v1i64, int_arm_neon_vst1>;
+
+def VST1q8 : VST1Q<0b0000, "vst1.8", v16i8, int_arm_neon_vst1>;
+def VST1q16 : VST1Q<0b0100, "vst1.16", v8i16, int_arm_neon_vst1>;
+def VST1q32 : VST1Q<0b1000, "vst1.32", v4i32, int_arm_neon_vst1>;
+def VST1qf : VST1Q<0b1000, "vst1.32", v4f32, int_arm_neon_vst1>;
+def VST1q64 : VST1Q<0b1100, "vst1.64", v2i64, int_arm_neon_vst1>;
+} // hasExtraSrcRegAllocReq
+
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in {
+
+// VST2 : Vector Store (multiple 2-element structures)
+class VST2D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b1000,op7_4, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2), IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2\\}, $addr"), "", []>;
+class VST2Q<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b0011,op7_4, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
+ IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2,$src3,$src4\\}, $addr"),
+ "", []>;
+
+def VST2d8 : VST2D<0b0000, "vst2.8">;
+def VST2d16 : VST2D<0b0100, "vst2.16">;
+def VST2d32 : VST2D<0b1000, "vst2.32">;
+def VST2d64 : NLdSt<0,0b00,0b1010,0b1100, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2), IIC_VST,
+ "vst1.64\t\\{$src1,$src2\\}, $addr", "", []>;
+
+def VST2q8 : VST2Q<0b0000, "vst2.8">;
+def VST2q16 : VST2Q<0b0100, "vst2.16">;
+def VST2q32 : VST2Q<0b1000, "vst2.32">;
+
+// VST3 : Vector Store (multiple 3-element structures)
+class VST3D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b0100,op7_4, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3), IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2,$src3\\}, $addr"), "", []>;
+class VST3WB<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b0101,op7_4, (outs GPR:$wb),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3), IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2,$src3\\}, $addr"),
+ "$addr.addr = $wb", []>;
+
+def VST3d8 : VST3D<0b0000, "vst3.8">;
+def VST3d16 : VST3D<0b0100, "vst3.16">;
+def VST3d32 : VST3D<0b1000, "vst3.32">;
+def VST3d64 : NLdSt<0,0b00,0b0110,0b1100, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3),
+ IIC_VST,
+ "vst1.64\t\\{$src1,$src2,$src3\\}, $addr", "", []>;
+
+// vst3 to double-spaced even registers.
+def VST3q8a : VST3WB<0b0000, "vst3.8">;
+def VST3q16a : VST3WB<0b0100, "vst3.16">;
+def VST3q32a : VST3WB<0b1000, "vst3.32">;
+
+// vst3 to double-spaced odd registers.
+def VST3q8b : VST3WB<0b0000, "vst3.8">;
+def VST3q16b : VST3WB<0b0100, "vst3.16">;
+def VST3q32b : VST3WB<0b1000, "vst3.32">;
+
+// VST4 : Vector Store (multiple 4-element structures)
+class VST4D<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b0000,op7_4, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
+ IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2,$src3,$src4\\}, $addr"),
+ "", []>;
+class VST4WB<bits<4> op7_4, string OpcodeStr>
+ : NLdSt<0,0b00,0b0001,op7_4, (outs GPR:$wb),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
+ IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1,$src2,$src3,$src4\\}, $addr"),
+ "$addr.addr = $wb", []>;
+
+def VST4d8 : VST4D<0b0000, "vst4.8">;
+def VST4d16 : VST4D<0b0100, "vst4.16">;
+def VST4d32 : VST4D<0b1000, "vst4.32">;
+def VST4d64 : NLdSt<0,0b00,0b0010,0b1100, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3,
+ DPR:$src4), IIC_VST,
+ "vst1.64\t\\{$src1,$src2,$src3,$src4\\}, $addr", "", []>;
+
+// vst4 to double-spaced even registers.
+def VST4q8a : VST4WB<0b0000, "vst4.8">;
+def VST4q16a : VST4WB<0b0100, "vst4.16">;
+def VST4q32a : VST4WB<0b1000, "vst4.32">;
+
+// vst4 to double-spaced odd registers.
+def VST4q8b : VST4WB<0b0000, "vst4.8">;
+def VST4q16b : VST4WB<0b0100, "vst4.16">;
+def VST4q32b : VST4WB<0b1000, "vst4.32">;
+
+// VST1LN : Vector Store (single element from one lane)
+// FIXME: Not yet implemented.
+
+// VST2LN : Vector Store (single 2-element structure from one lane)
+class VST2LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b00,op11_8,0b0000, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, nohash_imm:$lane),
+ IIC_VST,
+ !strconcat(OpcodeStr, "\t\\{$src1[$lane],$src2[$lane]\\}, $addr"),
+ "", []>;
+
+def VST2LNd8 : VST2LN<0b0000, "vst2.8">;
+def VST2LNd16 : VST2LN<0b0100, "vst2.16">;
+def VST2LNd32 : VST2LN<0b1000, "vst2.32">;
+
+// vst2 to double-spaced even registers.
+def VST2LNq16a: VST2LN<0b0100, "vst2.16">;
+def VST2LNq32a: VST2LN<0b1000, "vst2.32">;
+
+// vst2 to double-spaced odd registers.
+def VST2LNq16b: VST2LN<0b0100, "vst2.16">;
+def VST2LNq32b: VST2LN<0b1000, "vst2.32">;
+
+// VST3LN : Vector Store (single 3-element structure from one lane)
+class VST3LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b00,op11_8,0b0000, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3,
+ nohash_imm:$lane), IIC_VST,
+ !strconcat(OpcodeStr,
+ "\t\\{$src1[$lane],$src2[$lane],$src3[$lane]\\}, $addr"), "", []>;
+
+def VST3LNd8 : VST3LN<0b0010, "vst3.8">;
+def VST3LNd16 : VST3LN<0b0110, "vst3.16">;
+def VST3LNd32 : VST3LN<0b1010, "vst3.32">;
+
+// vst3 to double-spaced even registers.
+def VST3LNq16a: VST3LN<0b0110, "vst3.16">;
+def VST3LNq32a: VST3LN<0b1010, "vst3.32">;
+
+// vst3 to double-spaced odd registers.
+def VST3LNq16b: VST3LN<0b0110, "vst3.16">;
+def VST3LNq32b: VST3LN<0b1010, "vst3.32">;
+
+// VST4LN : Vector Store (single 4-element structure from one lane)
+class VST4LN<bits<4> op11_8, string OpcodeStr>
+ : NLdSt<1,0b00,op11_8,0b0000, (outs),
+ (ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4,
+ nohash_imm:$lane), IIC_VST,
+ !strconcat(OpcodeStr,
+ "\t\\{$src1[$lane],$src2[$lane],$src3[$lane],$src4[$lane]\\}, $addr"),
+ "", []>;
+
+def VST4LNd8 : VST4LN<0b0011, "vst4.8">;
+def VST4LNd16 : VST4LN<0b0111, "vst4.16">;
+def VST4LNd32 : VST4LN<0b1011, "vst4.32">;
+
+// vst4 to double-spaced even registers.
+def VST4LNq16a: VST4LN<0b0111, "vst4.16">;
+def VST4LNq32a: VST4LN<0b1011, "vst4.32">;
+
+// vst4 to double-spaced odd registers.
+def VST4LNq16b: VST4LN<0b0111, "vst4.16">;
+def VST4LNq32b: VST4LN<0b1011, "vst4.32">;
+
+} // mayStore = 1, hasExtraSrcRegAllocReq = 1
//===----------------------------------------------------------------------===//
@@ -117,18 +518,27 @@ def VSTRQ : NI<(outs), (ins QPR:$src, GPR:$addr),
// Extract D sub-registers of Q registers.
// (arm_dsubreg_0 is 5; arm_dsubreg_1 is 6)
-def SubReg_i8_reg : SDNodeXForm<imm, [{
+def DSubReg_i8_reg : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(5 + N->getZExtValue() / 8, MVT::i32);
}]>;
-def SubReg_i16_reg : SDNodeXForm<imm, [{
+def DSubReg_i16_reg : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(5 + N->getZExtValue() / 4, MVT::i32);
}]>;
-def SubReg_i32_reg : SDNodeXForm<imm, [{
+def DSubReg_i32_reg : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(5 + N->getZExtValue() / 2, MVT::i32);
}]>;
-def SubReg_f64_reg : SDNodeXForm<imm, [{
+def DSubReg_f64_reg : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(5 + N->getZExtValue(), MVT::i32);
}]>;
+def DSubReg_f64_other_reg : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(5 + (1 - N->getZExtValue()), MVT::i32);
+}]>;
+
+// Extract S sub-registers of Q/D registers.
+// (arm_ssubreg_0 is 1; arm_ssubreg_1 is 2; etc.)
+def SSubReg_f32_reg : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(1 + N->getZExtValue(), MVT::i32);
+}]>;
// Translate lane numbers from Q registers to D subregs.
def SubReg_i8_lane : SDNodeXForm<imm, [{
@@ -150,117 +560,337 @@ class N2VD<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$dst),
- (ins DPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins DPR:$src), IIC_VUNAD, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set DPR:$dst, (ResTy (OpNode (OpTy DPR:$src))))]>;
class N2VQ<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$dst),
- (ins QPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins QPR:$src), IIC_VUNAQ, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set QPR:$dst, (ResTy (OpNode (OpTy QPR:$src))))]>;
+// Basic 2-register operations, scalar single-precision.
+class N2VDs<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4,
+ (outs DPR_VFP2:$dst), (ins DPR_VFP2:$src),
+ IIC_VUNAD, !strconcat(OpcodeStr, "\t$dst, $src"), "", []>;
+
+class N2VDsPat<SDNode OpNode, ValueType ResTy, ValueType OpTy, NeonI Inst>
+ : NEONFPPat<(ResTy (OpNode SPR:$a)),
+ (EXTRACT_SUBREG
+ (Inst (INSERT_SUBREG (OpTy (IMPLICIT_DEF)), SPR:$a, arm_ssubreg_0)),
+ arm_ssubreg_0)>;
+
// Basic 2-register intrinsics, both double- and quad-register.
class N2VDInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
- bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ InstrItinClass itin, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$dst),
- (ins DPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins DPR:$src), itin, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set DPR:$dst, (ResTy (IntOp (OpTy DPR:$src))))]>;
class N2VQInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
- bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ InstrItinClass itin, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$dst),
- (ins QPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins QPR:$src), itin, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src))))]>;
+// Basic 2-register intrinsics, scalar single-precision
+class N2VDInts<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4,
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
+ : N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4,
+ (outs DPR_VFP2:$dst), (ins DPR_VFP2:$src), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "", []>;
+
+class N2VDIntsPat<SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$a)),
+ (EXTRACT_SUBREG
+ (Inst (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$a, arm_ssubreg_0)),
+ arm_ssubreg_0)>;
+
// Narrow 2-register intrinsics.
class N2VNInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op6, bit op4,
- string OpcodeStr, ValueType TyD, ValueType TyQ, Intrinsic IntOp>
+ InstrItinClass itin, string OpcodeStr,
+ ValueType TyD, ValueType TyQ, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, op6, op4, (outs DPR:$dst),
- (ins QPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins QPR:$src), itin, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set DPR:$dst, (TyD (IntOp (TyQ QPR:$src))))]>;
// Long 2-register intrinsics. (This is currently only used for VMOVL and is
// derived from N2VImm instead of N2V because of the way the size is encoded.)
class N2VLInt<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
- bit op6, bit op4, string OpcodeStr, ValueType TyQ, ValueType TyD,
- Intrinsic IntOp>
+ bit op6, bit op4, InstrItinClass itin, string OpcodeStr,
+ ValueType TyQ, ValueType TyD, Intrinsic IntOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, op6, op4, (outs QPR:$dst),
- (ins DPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins DPR:$src), itin, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set QPR:$dst, (TyQ (IntOp (TyD DPR:$src))))]>;
+// 2-register shuffles (VTRN/VZIP/VUZP), both double- and quad-register.
+class N2VDShuffle<bits<2> op19_18, bits<5> op11_7, string OpcodeStr>
+ : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$dst1, DPR:$dst2),
+ (ins DPR:$src1, DPR:$src2), IIC_VPERMD,
+ !strconcat(OpcodeStr, "\t$dst1, $dst2"),
+ "$src1 = $dst1, $src2 = $dst2", []>;
+class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
+ InstrItinClass itin, string OpcodeStr>
+ : N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$dst1, QPR:$dst2),
+ (ins QPR:$src1, QPR:$src2), itin,
+ !strconcat(OpcodeStr, "\t$dst1, $dst2"),
+ "$src1 = $dst1, $src2 = $dst2", []>;
+
// Basic 3-register operations, both double- and quad-register.
class N3VD<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy,
SDNode OpNode, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs DPR:$dst), (ins DPR:$src1, DPR:$src2),
+ (outs DPR:$dst), (ins DPR:$src1, DPR:$src2), itin,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set DPR:$dst, (ResTy (OpNode (OpTy DPR:$src1), (OpTy DPR:$src2))))]> {
let isCommutable = Commutable;
}
+class N3VDSL<bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, ValueType Ty, SDNode ShOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst), (ins DPR:$src1, DPR_VFP2:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (Ty DPR:$dst),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (NEONvduplane (Ty DPR_VFP2:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
+ string OpcodeStr, ValueType Ty, SDNode ShOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst), (ins DPR:$src1, DPR_8:$src2, nohash_imm:$lane),
+ IIC_VMULi16D,
+ !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (Ty DPR:$dst),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (NEONvduplane (Ty DPR_8:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+
class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy,
SDNode OpNode, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
- (outs QPR:$dst), (ins QPR:$src1, QPR:$src2),
+ (outs QPR:$dst), (ins QPR:$src1, QPR:$src2), itin,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set QPR:$dst, (ResTy (OpNode (OpTy QPR:$src1), (OpTy QPR:$src2))))]> {
let isCommutable = Commutable;
}
+class N3VQSL<bits<2> op21_20, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, SDNode ShOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins QPR:$src1, DPR_VFP2:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VQSL16<bits<2> op21_20, bits<4> op11_8,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy, SDNode ShOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins QPR:$src1, DPR_8:$src2, nohash_imm:$lane),
+ IIC_VMULi16Q,
+ !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (NEONvduplane (OpTy DPR_8:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+
+// Basic 3-register operations, scalar single-precision
+class N3VDs<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ SDNode OpNode, bit Commutable>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR_VFP2:$dst), (ins DPR_VFP2:$src1, DPR_VFP2:$src2), IIC_VBIND,
+ !strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "", []> {
+ let isCommutable = Commutable;
+}
+class N3VDsPat<SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$a, SPR:$b)),
+ (EXTRACT_SUBREG
+ (Inst (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$a, arm_ssubreg_0),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$b, arm_ssubreg_0)),
+ arm_ssubreg_0)>;
// Basic 3-register intrinsics, both double- and quad-register.
class N3VDInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs DPR:$dst), (ins DPR:$src1, DPR:$src2),
+ (outs DPR:$dst), (ins DPR:$src1, DPR:$src2), itin,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set DPR:$dst, (ResTy (IntOp (OpTy DPR:$src1), (OpTy DPR:$src2))))]> {
let isCommutable = Commutable;
}
+class N3VDIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst), (ins DPR:$src1, DPR_VFP2:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (Ty DPR:$dst),
+ (Ty (IntOp (Ty DPR:$src1),
+ (Ty (NEONvduplane (Ty DPR_VFP2:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType Ty, Intrinsic IntOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst), (ins DPR:$src1, DPR_8:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (Ty DPR:$dst),
+ (Ty (IntOp (Ty DPR:$src1),
+ (Ty (NEONvduplane (Ty DPR_8:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+
class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ InstrItinClass itin, string OpcodeStr, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
- (outs QPR:$dst), (ins QPR:$src1, QPR:$src2),
+ (outs QPR:$dst), (ins QPR:$src1, QPR:$src2), itin,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src1), (OpTy QPR:$src2))))]> {
let isCommutable = Commutable;
}
+class N3VQIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins QPR:$src1, DPR_VFP2:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
+class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins QPR:$src1, DPR_8:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (ResTy (NEONvduplane (OpTy DPR_8:$src2),
+ imm:$lane)))))]> {
+ let isCommutable = 0;
+}
// Multiply-Add/Sub operations, both double- and quad-register.
class N3VDMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType Ty, SDNode MulOp, SDNode OpNode>
+ InstrItinClass itin, string OpcodeStr,
+ ValueType Ty, SDNode MulOp, SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs DPR:$dst), (ins DPR:$src1, DPR:$src2, DPR:$src3),
+ (outs DPR:$dst), (ins DPR:$src1, DPR:$src2, DPR:$src3), itin,
!strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst",
[(set DPR:$dst, (Ty (OpNode DPR:$src1,
(Ty (MulOp DPR:$src2, DPR:$src3)))))]>;
+class N3VDMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType Ty, SDNode MulOp, SDNode ShOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst),
+ (ins DPR:$src1, DPR:$src2, DPR_VFP2:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (Ty DPR:$dst),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (MulOp DPR:$src2,
+ (Ty (NEONvduplane (Ty DPR_VFP2:$src3),
+ imm:$lane)))))))]>;
+class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType Ty, SDNode MulOp, SDNode ShOp>
+ : N3V<0, 1, op21_20, op11_8, 1, 0,
+ (outs DPR:$dst),
+ (ins DPR:$src1, DPR:$src2, DPR_8:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (Ty DPR:$dst),
+ (Ty (ShOp (Ty DPR:$src1),
+ (Ty (MulOp DPR:$src2,
+ (Ty (NEONvduplane (Ty DPR_8:$src3),
+ imm:$lane)))))))]>;
+
class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType Ty, SDNode MulOp, SDNode OpNode>
+ InstrItinClass itin, string OpcodeStr, ValueType Ty,
+ SDNode MulOp, SDNode OpNode>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
- (outs QPR:$dst), (ins QPR:$src1, QPR:$src2, QPR:$src3),
+ (outs QPR:$dst), (ins QPR:$src1, QPR:$src2, QPR:$src3), itin,
!strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst",
[(set QPR:$dst, (Ty (OpNode QPR:$src1,
(Ty (MulOp QPR:$src2, QPR:$src3)))))]>;
+class N3VQMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ SDNode MulOp, SDNode ShOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst),
+ (ins QPR:$src1, QPR:$src2, DPR_VFP2:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (ResTy QPR:$dst),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (MulOp QPR:$src2,
+ (ResTy (NEONvduplane (OpTy DPR_VFP2:$src3),
+ imm:$lane)))))))]>;
+class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ SDNode MulOp, SDNode ShOp>
+ : N3V<1, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst),
+ (ins QPR:$src1, QPR:$src2, DPR_8:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (ResTy QPR:$dst),
+ (ResTy (ShOp (ResTy QPR:$src1),
+ (ResTy (MulOp QPR:$src2,
+ (ResTy (NEONvduplane (OpTy DPR_8:$src3),
+ imm:$lane)))))))]>;
+
+// Multiply-Add/Sub operations, scalar single-precision
+class N3VDMulOps<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr,
+ ValueType Ty, SDNode MulOp, SDNode OpNode>
+ : N3V<op24, op23, op21_20, op11_8, 0, op4,
+ (outs DPR_VFP2:$dst),
+ (ins DPR_VFP2:$src1, DPR_VFP2:$src2, DPR_VFP2:$src3), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst", []>;
+
+class N3VDMulOpsPat<SDNode MulNode, SDNode OpNode, NeonI Inst>
+ : NEONFPPat<(f32 (OpNode SPR:$acc, (f32 (MulNode SPR:$a, SPR:$b)))),
+ (EXTRACT_SUBREG
+ (Inst (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$acc, arm_ssubreg_0),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$a, arm_ssubreg_0),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$b, arm_ssubreg_0)),
+ arm_ssubreg_0)>;
// Neon 3-argument intrinsics, both double- and quad-register.
// The destination register is also used as the first source operand register.
class N3VDInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
- Intrinsic IntOp>
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs DPR:$dst), (ins DPR:$src1, DPR:$src2, DPR:$src3),
+ (outs DPR:$dst), (ins DPR:$src1, DPR:$src2, DPR:$src3), itin,
!strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst",
[(set DPR:$dst, (ResTy (IntOp (OpTy DPR:$src1),
(OpTy DPR:$src2), (OpTy DPR:$src3))))]>;
class N3VQInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType ResTy, ValueType OpTy,
- Intrinsic IntOp>
+ InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 1, op4,
- (outs QPR:$dst), (ins QPR:$src1, QPR:$src2, QPR:$src3),
+ (outs QPR:$dst), (ins QPR:$src1, QPR:$src2, QPR:$src3), itin,
!strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src1),
(OpTy QPR:$src2), (OpTy QPR:$src3))))]>;
@@ -268,19 +898,44 @@ class N3VQInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
// Neon Long 3-argument intrinsic. The destination register is
// a quad-register and is also used as the first source operand register.
class N3VLInt3<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType TyQ, ValueType TyD, Intrinsic IntOp>
+ InstrItinClass itin, string OpcodeStr,
+ ValueType TyQ, ValueType TyD, Intrinsic IntOp>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs QPR:$dst), (ins QPR:$src1, DPR:$src2, DPR:$src3),
+ (outs QPR:$dst), (ins QPR:$src1, DPR:$src2, DPR:$src3), itin,
!strconcat(OpcodeStr, "\t$dst, $src2, $src3"), "$src1 = $dst",
[(set QPR:$dst,
(TyQ (IntOp (TyQ QPR:$src1), (TyD DPR:$src2), (TyD DPR:$src3))))]>;
+class N3VLInt3SL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
+ : N3V<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst),
+ (ins QPR:$src1, DPR:$src2, DPR_VFP2:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (OpTy DPR:$src2),
+ (OpTy (NEONvduplane (OpTy DPR_VFP2:$src3),
+ imm:$lane)))))]>;
+class N3VLInt3SL16<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ Intrinsic IntOp>
+ : N3V<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst),
+ (ins QPR:$src1, DPR:$src2, DPR_8:$src3, nohash_imm:$lane), itin,
+ !strconcat(OpcodeStr, "\t$dst, $src2, $src3[$lane]"), "$src1 = $dst",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (ResTy QPR:$src1),
+ (OpTy DPR:$src2),
+ (OpTy (NEONvduplane (OpTy DPR_8:$src3),
+ imm:$lane)))))]>;
+
// Narrowing 3-register intrinsics.
class N3VNInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
string OpcodeStr, ValueType TyD, ValueType TyQ,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs DPR:$dst), (ins QPR:$src1, QPR:$src2),
+ (outs DPR:$dst), (ins QPR:$src1, QPR:$src2), IIC_VBINi4D,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set DPR:$dst, (TyD (IntOp (TyQ QPR:$src1), (TyQ QPR:$src2))))]> {
let isCommutable = Commutable;
@@ -288,21 +943,40 @@ class N3VNInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
// Long 3-register intrinsics.
class N3VLInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
- string OpcodeStr, ValueType TyQ, ValueType TyD,
+ InstrItinClass itin, string OpcodeStr, ValueType TyQ, ValueType TyD,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs QPR:$dst), (ins DPR:$src1, DPR:$src2),
+ (outs QPR:$dst), (ins DPR:$src1, DPR:$src2), itin,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set QPR:$dst, (TyQ (IntOp (TyD DPR:$src1), (TyD DPR:$src2))))]> {
let isCommutable = Commutable;
}
+class N3VLIntSL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
+ : N3V<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins DPR:$src1, DPR_VFP2:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (OpTy DPR:$src1),
+ (OpTy (NEONvduplane (OpTy DPR_VFP2:$src2),
+ imm:$lane)))))]>;
+class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
+ string OpcodeStr, ValueType ResTy, ValueType OpTy,
+ Intrinsic IntOp>
+ : N3V<op24, 1, op21_20, op11_8, 1, 0,
+ (outs QPR:$dst), (ins DPR:$src1, DPR_8:$src2, nohash_imm:$lane),
+ itin, !strconcat(OpcodeStr, "\t$dst, $src1, $src2[$lane]"), "",
+ [(set (ResTy QPR:$dst),
+ (ResTy (IntOp (OpTy DPR:$src1),
+ (OpTy (NEONvduplane (OpTy DPR_8:$src2),
+ imm:$lane)))))]>;
// Wide 3-register intrinsics.
class N3VWInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
string OpcodeStr, ValueType TyQ, ValueType TyD,
Intrinsic IntOp, bit Commutable>
: N3V<op24, op23, op21_20, op11_8, 0, op4,
- (outs QPR:$dst), (ins QPR:$src1, DPR:$src2),
+ (outs QPR:$dst), (ins QPR:$src1, DPR:$src2), IIC_VSUBiD,
!strconcat(OpcodeStr, "\t$dst, $src1, $src2"), "",
[(set QPR:$dst, (TyQ (IntOp (TyQ QPR:$src1), (TyD DPR:$src2))))]> {
let isCommutable = Commutable;
@@ -313,13 +987,13 @@ class N2VDPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4, (outs DPR:$dst),
- (ins DPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins DPR:$src), IIC_VSHLiD, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set DPR:$dst, (ResTy (IntOp (OpTy DPR:$src))))]>;
class N2VQPLInt<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4, (outs QPR:$dst),
- (ins QPR:$src), !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ (ins QPR:$src), IIC_VSHLiD, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src))))]>;
// Pairwise long 2-register accumulate intrinsics,
@@ -329,29 +1003,31 @@ class N2VDPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 0, op4,
- (outs DPR:$dst), (ins DPR:$src1, DPR:$src2),
+ (outs DPR:$dst), (ins DPR:$src1, DPR:$src2), IIC_VPALiD,
!strconcat(OpcodeStr, "\t$dst, $src2"), "$src1 = $dst",
[(set DPR:$dst, (ResTy (IntOp (ResTy DPR:$src1), (OpTy DPR:$src2))))]>;
class N2VQPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
: N2V<op24_23, op21_20, op19_18, op17_16, op11_7, 1, op4,
- (outs QPR:$dst), (ins QPR:$src1, QPR:$src2),
+ (outs QPR:$dst), (ins QPR:$src1, QPR:$src2), IIC_VPALiQ,
!strconcat(OpcodeStr, "\t$dst, $src2"), "$src1 = $dst",
[(set QPR:$dst, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$src2))))]>;
// Shift by immediate,
// both double- and quad-register.
class N2VDSh<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
- bit op4, string OpcodeStr, ValueType Ty, SDNode OpNode>
+ bit op4, InstrItinClass itin, string OpcodeStr,
+ ValueType Ty, SDNode OpNode>
: N2VImm<op24, op23, op21_16, op11_8, op7, 0, op4,
- (outs DPR:$dst), (ins DPR:$src, i32imm:$SIMM),
+ (outs DPR:$dst), (ins DPR:$src, i32imm:$SIMM), itin,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set DPR:$dst, (Ty (OpNode (Ty DPR:$src), (i32 imm:$SIMM))))]>;
class N2VQSh<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
- bit op4, string OpcodeStr, ValueType Ty, SDNode OpNode>
+ bit op4, InstrItinClass itin, string OpcodeStr,
+ ValueType Ty, SDNode OpNode>
: N2VImm<op24, op23, op21_16, op11_8, op7, 1, op4,
- (outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM),
+ (outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM), itin,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set QPR:$dst, (Ty (OpNode (Ty QPR:$src), (i32 imm:$SIMM))))]>;
@@ -360,17 +1036,17 @@ class N2VLSh<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op6, bit op4, string OpcodeStr, ValueType ResTy,
ValueType OpTy, SDNode OpNode>
: N2VImm<op24, op23, op21_16, op11_8, op7, op6, op4,
- (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM),
+ (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
(i32 imm:$SIMM))))]>;
// Narrow shift by immediate.
class N2VNSh<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
- bit op6, bit op4, string OpcodeStr, ValueType ResTy,
- ValueType OpTy, SDNode OpNode>
+ bit op6, bit op4, InstrItinClass itin, string OpcodeStr,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode>
: N2VImm<op24, op23, op21_16, op11_8, op7, op6, op4,
- (outs DPR:$dst), (ins QPR:$src, i32imm:$SIMM),
+ (outs DPR:$dst), (ins QPR:$src, i32imm:$SIMM), itin,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set DPR:$dst, (ResTy (OpNode (OpTy QPR:$src),
(i32 imm:$SIMM))))]>;
@@ -381,6 +1057,7 @@ class N2VDShAdd<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 0, op4,
(outs DPR:$dst), (ins DPR:$src1, DPR:$src2, i32imm:$SIMM),
+ IIC_VPALiD,
!strconcat(OpcodeStr, "\t$dst, $src2, $SIMM"), "$src1 = $dst",
[(set DPR:$dst, (Ty (add DPR:$src1,
(Ty (ShOp DPR:$src2, (i32 imm:$SIMM))))))]>;
@@ -388,6 +1065,7 @@ class N2VQShAdd<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 1, op4,
(outs QPR:$dst), (ins QPR:$src1, QPR:$src2, i32imm:$SIMM),
+ IIC_VPALiD,
!strconcat(OpcodeStr, "\t$dst, $src2, $SIMM"), "$src1 = $dst",
[(set QPR:$dst, (Ty (add QPR:$src1,
(Ty (ShOp QPR:$src2, (i32 imm:$SIMM))))))]>;
@@ -398,12 +1076,14 @@ class N2VDShIns<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 0, op4,
(outs DPR:$dst), (ins DPR:$src1, DPR:$src2, i32imm:$SIMM),
+ IIC_VSHLiD,
!strconcat(OpcodeStr, "\t$dst, $src2, $SIMM"), "$src1 = $dst",
[(set DPR:$dst, (Ty (ShOp DPR:$src1, DPR:$src2, (i32 imm:$SIMM))))]>;
class N2VQShIns<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType Ty, SDNode ShOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 1, op4,
(outs QPR:$dst), (ins QPR:$src1, QPR:$src2, i32imm:$SIMM),
+ IIC_VSHLiQ,
!strconcat(OpcodeStr, "\t$dst, $src2, $SIMM"), "$src1 = $dst",
[(set QPR:$dst, (Ty (ShOp QPR:$src1, QPR:$src2, (i32 imm:$SIMM))))]>;
@@ -413,14 +1093,14 @@ class N2VCvtD<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 0, op4,
- (outs DPR:$dst), (ins DPR:$src, i32imm:$SIMM),
+ (outs DPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VUNAD,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set DPR:$dst, (ResTy (IntOp (OpTy DPR:$src), (i32 imm:$SIMM))))]>;
class N2VCvtQ<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
bit op4, string OpcodeStr, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
: N2VImm<op24, op23, op21_16, op11_8, op7, 1, op4,
- (outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM),
+ (outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM), IIC_VUNAQ,
!strconcat(OpcodeStr, "\t$dst, $src, $SIMM"), "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src), (i32 imm:$SIMM))))]>;
@@ -428,50 +1108,68 @@ class N2VCvtQ<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
// Multiclasses
//===----------------------------------------------------------------------===//
+// Abbreviations used in multiclass suffixes:
+// Q = quarter int (8 bit) elements
+// H = half int (16 bit) elements
+// S = single int (32 bit) elements
+// D = double int (64 bit) elements
+
// Neon 3-register vector operations.
// First with only element sizes of 8, 16 and 32 bits:
multiclass N3V_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, SDNode OpNode, bit Commutable = 0> {
// 64-bit vector types.
- def v8i8 : N3VD<op24, op23, 0b00, op11_8, op4, !strconcat(OpcodeStr, "8"),
- v8i8, v8i8, OpNode, Commutable>;
- def v4i16 : N3VD<op24, op23, 0b01, op11_8, op4, !strconcat(OpcodeStr, "16"),
- v4i16, v4i16, OpNode, Commutable>;
- def v2i32 : N3VD<op24, op23, 0b10, op11_8, op4, !strconcat(OpcodeStr, "32"),
- v2i32, v2i32, OpNode, Commutable>;
+ def v8i8 : N3VD<op24, op23, 0b00, op11_8, op4, itinD16,
+ !strconcat(OpcodeStr, "8"), v8i8, v8i8, OpNode, Commutable>;
+ def v4i16 : N3VD<op24, op23, 0b01, op11_8, op4, itinD16,
+ !strconcat(OpcodeStr, "16"), v4i16, v4i16, OpNode, Commutable>;
+ def v2i32 : N3VD<op24, op23, 0b10, op11_8, op4, itinD32,
+ !strconcat(OpcodeStr, "32"), v2i32, v2i32, OpNode, Commutable>;
// 128-bit vector types.
- def v16i8 : N3VQ<op24, op23, 0b00, op11_8, op4, !strconcat(OpcodeStr, "8"),
- v16i8, v16i8, OpNode, Commutable>;
- def v8i16 : N3VQ<op24, op23, 0b01, op11_8, op4, !strconcat(OpcodeStr, "16"),
- v8i16, v8i16, OpNode, Commutable>;
- def v4i32 : N3VQ<op24, op23, 0b10, op11_8, op4, !strconcat(OpcodeStr, "32"),
- v4i32, v4i32, OpNode, Commutable>;
+ def v16i8 : N3VQ<op24, op23, 0b00, op11_8, op4, itinQ16,
+ !strconcat(OpcodeStr, "8"), v16i8, v16i8, OpNode, Commutable>;
+ def v8i16 : N3VQ<op24, op23, 0b01, op11_8, op4, itinQ16,
+ !strconcat(OpcodeStr, "16"), v8i16, v8i16, OpNode, Commutable>;
+ def v4i32 : N3VQ<op24, op23, 0b10, op11_8, op4, itinQ32,
+ !strconcat(OpcodeStr, "32"), v4i32, v4i32, OpNode, Commutable>;
+}
+
+multiclass N3VSL_HS<bits<4> op11_8, string OpcodeStr, SDNode ShOp> {
+ def v4i16 : N3VDSL16<0b01, op11_8, !strconcat(OpcodeStr, "16"), v4i16, ShOp>;
+ def v2i32 : N3VDSL<0b10, op11_8, IIC_VMULi32D, !strconcat(OpcodeStr, "32"), v2i32, ShOp>;
+ def v8i16 : N3VQSL16<0b01, op11_8, !strconcat(OpcodeStr, "16"), v8i16, v4i16, ShOp>;
+ def v4i32 : N3VQSL<0b10, op11_8, IIC_VMULi32Q, !strconcat(OpcodeStr, "32"), v4i32, v2i32, ShOp>;
}
// ....then also with element size 64 bits:
multiclass N3V_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
string OpcodeStr, SDNode OpNode, bit Commutable = 0>
- : N3V_QHS<op24, op23, op11_8, op4, OpcodeStr, OpNode, Commutable> {
- def v1i64 : N3VD<op24, op23, 0b11, op11_8, op4, !strconcat(OpcodeStr, "64"),
- v1i64, v1i64, OpNode, Commutable>;
- def v2i64 : N3VQ<op24, op23, 0b11, op11_8, op4, !strconcat(OpcodeStr, "64"),
- v2i64, v2i64, OpNode, Commutable>;
+ : N3V_QHS<op24, op23, op11_8, op4, itinD, itinD, itinQ, itinQ,
+ OpcodeStr, OpNode, Commutable> {
+ def v1i64 : N3VD<op24, op23, 0b11, op11_8, op4, itinD,
+ !strconcat(OpcodeStr, "64"), v1i64, v1i64, OpNode, Commutable>;
+ def v2i64 : N3VQ<op24, op23, 0b11, op11_8, op4, itinQ,
+ !strconcat(OpcodeStr, "64"), v2i64, v2i64, OpNode, Commutable>;
}
// Neon Narrowing 2-register vector intrinsics,
// source operand element sizes of 16, 32 and 64 bits:
multiclass N2VNInt_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
- bits<5> op11_7, bit op6, bit op4, string OpcodeStr,
+ bits<5> op11_7, bit op6, bit op4,
+ InstrItinClass itin, string OpcodeStr,
Intrinsic IntOp> {
def v8i8 : N2VNInt<op24_23, op21_20, 0b00, op17_16, op11_7, op6, op4,
- !strconcat(OpcodeStr, "16"), v8i8, v8i16, IntOp>;
+ itin, !strconcat(OpcodeStr, "16"), v8i8, v8i16, IntOp>;
def v4i16 : N2VNInt<op24_23, op21_20, 0b01, op17_16, op11_7, op6, op4,
- !strconcat(OpcodeStr, "32"), v4i16, v4i32, IntOp>;
+ itin, !strconcat(OpcodeStr, "32"), v4i16, v4i32, IntOp>;
def v2i32 : N2VNInt<op24_23, op21_20, 0b10, op17_16, op11_7, op6, op4,
- !strconcat(OpcodeStr, "64"), v2i32, v2i64, IntOp>;
+ itin, !strconcat(OpcodeStr, "64"), v2i32, v2i64, IntOp>;
}
@@ -480,11 +1178,11 @@ multiclass N2VNInt_HSD<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
multiclass N2VLInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
bit op4, string OpcodeStr, Intrinsic IntOp> {
def v8i16 : N2VLInt<op24, op23, 0b001000, op11_8, op7, op6, op4,
- !strconcat(OpcodeStr, "8"), v8i16, v8i8, IntOp>;
+ IIC_VQUNAiD, !strconcat(OpcodeStr, "8"), v8i16, v8i8, IntOp>;
def v4i32 : N2VLInt<op24, op23, 0b010000, op11_8, op7, op6, op4,
- !strconcat(OpcodeStr, "16"), v4i32, v4i16, IntOp>;
+ IIC_VQUNAiD, !strconcat(OpcodeStr, "16"), v4i32, v4i16, IntOp>;
def v2i64 : N2VLInt<op24, op23, 0b100000, op11_8, op7, op6, op4,
- !strconcat(OpcodeStr, "32"), v2i64, v2i32, IntOp>;
+ IIC_VQUNAiD, !strconcat(OpcodeStr, "32"), v2i64, v2i32, IntOp>;
}
@@ -492,38 +1190,56 @@ multiclass N2VLInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
// First with only element sizes of 16 and 32 bits:
multiclass N3VInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, Intrinsic IntOp, bit Commutable = 0> {
// 64-bit vector types.
- def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, !strconcat(OpcodeStr,"16"),
+ def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, itinD16, !strconcat(OpcodeStr,"16"),
v4i16, v4i16, IntOp, Commutable>;
- def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, !strconcat(OpcodeStr,"32"),
+ def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, itinD32, !strconcat(OpcodeStr,"32"),
v2i32, v2i32, IntOp, Commutable>;
// 128-bit vector types.
- def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, !strconcat(OpcodeStr,"16"),
+ def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, itinQ16, !strconcat(OpcodeStr,"16"),
v8i16, v8i16, IntOp, Commutable>;
- def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, !strconcat(OpcodeStr,"32"),
+ def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, itinQ32, !strconcat(OpcodeStr,"32"),
v4i32, v4i32, IntOp, Commutable>;
}
+multiclass N3VIntSL_HS<bits<4> op11_8,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, Intrinsic IntOp> {
+ def v4i16 : N3VDIntSL16<0b01, op11_8, itinD16, !strconcat(OpcodeStr, "16"), v4i16, IntOp>;
+ def v2i32 : N3VDIntSL<0b10, op11_8, itinD32, !strconcat(OpcodeStr, "32"), v2i32, IntOp>;
+ def v8i16 : N3VQIntSL16<0b01, op11_8, itinQ16, !strconcat(OpcodeStr, "16"), v8i16, v4i16, IntOp>;
+ def v4i32 : N3VQIntSL<0b10, op11_8, itinQ32, !strconcat(OpcodeStr, "32"), v4i32, v2i32, IntOp>;
+}
+
// ....then also with element size of 8 bits:
multiclass N3VInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, Intrinsic IntOp, bit Commutable = 0>
- : N3VInt_HS<op24, op23, op11_8, op4, OpcodeStr, IntOp, Commutable> {
- def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, !strconcat(OpcodeStr, "8"),
- v8i8, v8i8, IntOp, Commutable>;
- def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, !strconcat(OpcodeStr, "8"),
- v16i8, v16i8, IntOp, Commutable>;
+ : N3VInt_HS<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, IntOp, Commutable> {
+ def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, itinD16,
+ !strconcat(OpcodeStr, "8"), v8i8, v8i8, IntOp, Commutable>;
+ def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, itinQ16,
+ !strconcat(OpcodeStr, "8"), v16i8, v16i8, IntOp, Commutable>;
}
// ....then also with element size of 64 bits:
multiclass N3VInt_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, Intrinsic IntOp, bit Commutable = 0>
- : N3VInt_QHS<op24, op23, op11_8, op4, OpcodeStr, IntOp, Commutable> {
- def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, !strconcat(OpcodeStr,"64"),
- v1i64, v1i64, IntOp, Commutable>;
- def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, !strconcat(OpcodeStr,"64"),
- v2i64, v2i64, IntOp, Commutable>;
+ : N3VInt_QHS<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, IntOp, Commutable> {
+ def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, itinD32,
+ !strconcat(OpcodeStr,"64"), v1i64, v1i64, IntOp, Commutable>;
+ def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, itinQ32,
+ !strconcat(OpcodeStr,"64"), v2i64, v2i64, IntOp, Commutable>;
}
@@ -544,19 +1260,29 @@ multiclass N3VNInt_HSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// First with only element sizes of 16 and 32 bits:
multiclass N3VLInt_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
- string OpcodeStr, Intrinsic IntOp, bit Commutable = 0> {
- def v4i32 : N3VLInt<op24, op23, 0b01, op11_8, op4, !strconcat(OpcodeStr,"16"),
- v4i32, v4i16, IntOp, Commutable>;
- def v2i64 : N3VLInt<op24, op23, 0b10, op11_8, op4, !strconcat(OpcodeStr,"32"),
- v2i64, v2i32, IntOp, Commutable>;
+ InstrItinClass itin, string OpcodeStr,
+ Intrinsic IntOp, bit Commutable = 0> {
+ def v4i32 : N3VLInt<op24, op23, 0b01, op11_8, op4, itin,
+ !strconcat(OpcodeStr,"16"), v4i32, v4i16, IntOp, Commutable>;
+ def v2i64 : N3VLInt<op24, op23, 0b10, op11_8, op4, itin,
+ !strconcat(OpcodeStr,"32"), v2i64, v2i32, IntOp, Commutable>;
+}
+
+multiclass N3VLIntSL_HS<bit op24, bits<4> op11_8,
+ InstrItinClass itin, string OpcodeStr, Intrinsic IntOp> {
+ def v4i16 : N3VLIntSL16<op24, 0b01, op11_8, itin,
+ !strconcat(OpcodeStr, "16"), v4i32, v4i16, IntOp>;
+ def v2i32 : N3VLIntSL<op24, 0b10, op11_8, itin,
+ !strconcat(OpcodeStr, "32"), v2i64, v2i32, IntOp>;
}
// ....then also with element size of 8 bits:
multiclass N3VLInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
- string OpcodeStr, Intrinsic IntOp, bit Commutable = 0>
- : N3VLInt_HS<op24, op23, op11_8, op4, OpcodeStr, IntOp, Commutable> {
- def v8i16 : N3VLInt<op24, op23, 0b00, op11_8, op4, !strconcat(OpcodeStr, "8"),
- v8i16, v8i8, IntOp, Commutable>;
+ InstrItinClass itin, string OpcodeStr,
+ Intrinsic IntOp, bit Commutable = 0>
+ : N3VLInt_HS<op24, op23, op11_8, op4, itin, OpcodeStr, IntOp, Commutable> {
+ def v8i16 : N3VLInt<op24, op23, 0b00, op11_8, op4, itin,
+ !strconcat(OpcodeStr, "8"), v8i16, v8i8, IntOp, Commutable>;
}
@@ -576,43 +1302,58 @@ multiclass N3VWInt_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
// Neon Multiply-Op vector operations,
// element sizes of 8, 16 and 32 bits:
multiclass N3VMulOp_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
string OpcodeStr, SDNode OpNode> {
// 64-bit vector types.
- def v8i8 : N3VDMulOp<op24, op23, 0b00, op11_8, op4,
+ def v8i8 : N3VDMulOp<op24, op23, 0b00, op11_8, op4, itinD16,
!strconcat(OpcodeStr, "8"), v8i8, mul, OpNode>;
- def v4i16 : N3VDMulOp<op24, op23, 0b01, op11_8, op4,
+ def v4i16 : N3VDMulOp<op24, op23, 0b01, op11_8, op4, itinD16,
!strconcat(OpcodeStr, "16"), v4i16, mul, OpNode>;
- def v2i32 : N3VDMulOp<op24, op23, 0b10, op11_8, op4,
+ def v2i32 : N3VDMulOp<op24, op23, 0b10, op11_8, op4, itinD32,
!strconcat(OpcodeStr, "32"), v2i32, mul, OpNode>;
// 128-bit vector types.
- def v16i8 : N3VQMulOp<op24, op23, 0b00, op11_8, op4,
+ def v16i8 : N3VQMulOp<op24, op23, 0b00, op11_8, op4, itinQ16,
!strconcat(OpcodeStr, "8"), v16i8, mul, OpNode>;
- def v8i16 : N3VQMulOp<op24, op23, 0b01, op11_8, op4,
+ def v8i16 : N3VQMulOp<op24, op23, 0b01, op11_8, op4, itinQ16,
!strconcat(OpcodeStr, "16"), v8i16, mul, OpNode>;
- def v4i32 : N3VQMulOp<op24, op23, 0b10, op11_8, op4,
+ def v4i32 : N3VQMulOp<op24, op23, 0b10, op11_8, op4, itinQ32,
!strconcat(OpcodeStr, "32"), v4i32, mul, OpNode>;
}
+multiclass N3VMulOpSL_HS<bits<4> op11_8,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, SDNode ShOp> {
+ def v4i16 : N3VDMulOpSL16<0b01, op11_8, itinD16,
+ !strconcat(OpcodeStr, "16"), v4i16, mul, ShOp>;
+ def v2i32 : N3VDMulOpSL<0b10, op11_8, itinD32,
+ !strconcat(OpcodeStr, "32"), v2i32, mul, ShOp>;
+ def v8i16 : N3VQMulOpSL16<0b01, op11_8, itinQ16,
+ !strconcat(OpcodeStr, "16"), v8i16, v4i16, mul, ShOp>;
+ def v4i32 : N3VQMulOpSL<0b10, op11_8, itinQ32,
+ !strconcat(OpcodeStr, "32"), v4i32, v2i32, mul, ShOp>;
+}
// Neon 3-argument intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N3VInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, Intrinsic IntOp> {
// 64-bit vector types.
- def v8i8 : N3VDInt3<op24, op23, 0b00, op11_8, op4,
+ def v8i8 : N3VDInt3<op24, op23, 0b00, op11_8, op4, IIC_VMACi16D,
!strconcat(OpcodeStr, "8"), v8i8, v8i8, IntOp>;
- def v4i16 : N3VDInt3<op24, op23, 0b01, op11_8, op4,
+ def v4i16 : N3VDInt3<op24, op23, 0b01, op11_8, op4, IIC_VMACi16D,
!strconcat(OpcodeStr, "16"), v4i16, v4i16, IntOp>;
- def v2i32 : N3VDInt3<op24, op23, 0b10, op11_8, op4,
+ def v2i32 : N3VDInt3<op24, op23, 0b10, op11_8, op4, IIC_VMACi32D,
!strconcat(OpcodeStr, "32"), v2i32, v2i32, IntOp>;
// 128-bit vector types.
- def v16i8 : N3VQInt3<op24, op23, 0b00, op11_8, op4,
+ def v16i8 : N3VQInt3<op24, op23, 0b00, op11_8, op4, IIC_VMACi16Q,
!strconcat(OpcodeStr, "8"), v16i8, v16i8, IntOp>;
- def v8i16 : N3VQInt3<op24, op23, 0b01, op11_8, op4,
+ def v8i16 : N3VQInt3<op24, op23, 0b01, op11_8, op4, IIC_VMACi16Q,
!strconcat(OpcodeStr, "16"), v8i16, v8i16, IntOp>;
- def v4i32 : N3VQInt3<op24, op23, 0b10, op11_8, op4,
+ def v4i32 : N3VQInt3<op24, op23, 0b10, op11_8, op4, IIC_VMACi32Q,
!strconcat(OpcodeStr, "32"), v4i32, v4i32, IntOp>;
}
@@ -622,17 +1363,25 @@ multiclass N3VInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
// First with only element sizes of 16 and 32 bits:
multiclass N3VLInt3_HS<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, Intrinsic IntOp> {
- def v4i32 : N3VLInt3<op24, op23, 0b01, op11_8, op4,
+ def v4i32 : N3VLInt3<op24, op23, 0b01, op11_8, op4, IIC_VMACi16D,
!strconcat(OpcodeStr, "16"), v4i32, v4i16, IntOp>;
- def v2i64 : N3VLInt3<op24, op23, 0b10, op11_8, op4,
+ def v2i64 : N3VLInt3<op24, op23, 0b10, op11_8, op4, IIC_VMACi16D,
!strconcat(OpcodeStr, "32"), v2i64, v2i32, IntOp>;
}
+multiclass N3VLInt3SL_HS<bit op24, bits<4> op11_8,
+ string OpcodeStr, Intrinsic IntOp> {
+ def v4i16 : N3VLInt3SL16<op24, 0b01, op11_8, IIC_VMACi16D,
+ !strconcat(OpcodeStr, "16"), v4i32, v4i16, IntOp>;
+ def v2i32 : N3VLInt3SL<op24, 0b10, op11_8, IIC_VMACi32D,
+ !strconcat(OpcodeStr, "32"), v2i64, v2i32, IntOp>;
+}
+
// ....then also with element size of 8 bits:
multiclass N3VLInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
string OpcodeStr, Intrinsic IntOp>
: N3VLInt3_HS<op24, op23, op11_8, op4, OpcodeStr, IntOp> {
- def v8i16 : N3VLInt3<op24, op23, 0b01, op11_8, op4,
+ def v8i16 : N3VLInt3<op24, op23, 0b01, op11_8, op4, IIC_VMACi16D,
!strconcat(OpcodeStr, "8"), v8i16, v8i8, IntOp>;
}
@@ -640,23 +1389,24 @@ multiclass N3VLInt3_QHS<bit op24, bit op23, bits<4> op11_8, bit op4,
// Neon 2-register vector intrinsics,
// element sizes of 8, 16 and 32 bits:
multiclass N2VInt_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
- bits<5> op11_7, bit op4, string OpcodeStr,
- Intrinsic IntOp> {
+ bits<5> op11_7, bit op4,
+ InstrItinClass itinD, InstrItinClass itinQ,
+ string OpcodeStr, Intrinsic IntOp> {
// 64-bit vector types.
def v8i8 : N2VDInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "8"), v8i8, v8i8, IntOp>;
+ itinD, !strconcat(OpcodeStr, "8"), v8i8, v8i8, IntOp>;
def v4i16 : N2VDInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "16"), v4i16, v4i16, IntOp>;
+ itinD, !strconcat(OpcodeStr, "16"), v4i16, v4i16, IntOp>;
def v2i32 : N2VDInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "32"), v2i32, v2i32, IntOp>;
+ itinD, !strconcat(OpcodeStr, "32"), v2i32, v2i32, IntOp>;
// 128-bit vector types.
def v16i8 : N2VQInt<op24_23, op21_20, 0b00, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "8"), v16i8, v16i8, IntOp>;
+ itinQ, !strconcat(OpcodeStr, "8"), v16i8, v16i8, IntOp>;
def v8i16 : N2VQInt<op24_23, op21_20, 0b01, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "16"), v8i16, v8i16, IntOp>;
+ itinQ, !strconcat(OpcodeStr, "16"), v8i16, v8i16, IntOp>;
def v4i32 : N2VQInt<op24_23, op21_20, 0b10, op17_16, op11_7, op4,
- !strconcat(OpcodeStr, "32"), v4i32, v4i32, IntOp>;
+ itinQ, !strconcat(OpcodeStr, "32"), v4i32, v4i32, IntOp>;
}
@@ -709,25 +1459,25 @@ multiclass N2VPLInt2_QHS<bits<2> op24_23, bits<2> op21_20, bits<2> op17_16,
// Neon 2-register vector shift by immediate,
// element sizes of 8, 16, 32 and 64 bits:
multiclass N2VSh_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
- string OpcodeStr, SDNode OpNode> {
+ InstrItinClass itin, string OpcodeStr, SDNode OpNode> {
// 64-bit vector types.
- def v8i8 : N2VDSh<op24, op23, 0b001000, op11_8, 0, op4,
+ def v8i8 : N2VDSh<op24, op23, 0b001000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "8"), v8i8, OpNode>;
- def v4i16 : N2VDSh<op24, op23, 0b010000, op11_8, 0, op4,
+ def v4i16 : N2VDSh<op24, op23, 0b010000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "16"), v4i16, OpNode>;
- def v2i32 : N2VDSh<op24, op23, 0b100000, op11_8, 0, op4,
+ def v2i32 : N2VDSh<op24, op23, 0b100000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "32"), v2i32, OpNode>;
- def v1i64 : N2VDSh<op24, op23, 0b000000, op11_8, 1, op4,
+ def v1i64 : N2VDSh<op24, op23, 0b000000, op11_8, 1, op4, itin,
!strconcat(OpcodeStr, "64"), v1i64, OpNode>;
// 128-bit vector types.
- def v16i8 : N2VQSh<op24, op23, 0b001000, op11_8, 0, op4,
+ def v16i8 : N2VQSh<op24, op23, 0b001000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "8"), v16i8, OpNode>;
- def v8i16 : N2VQSh<op24, op23, 0b010000, op11_8, 0, op4,
+ def v8i16 : N2VQSh<op24, op23, 0b010000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "16"), v8i16, OpNode>;
- def v4i32 : N2VQSh<op24, op23, 0b100000, op11_8, 0, op4,
+ def v4i32 : N2VQSh<op24, op23, 0b100000, op11_8, 0, op4, itin,
!strconcat(OpcodeStr, "32"), v4i32, OpNode>;
- def v2i64 : N2VQSh<op24, op23, 0b000000, op11_8, 1, op4,
+ def v2i64 : N2VQSh<op24, op23, 0b000000, op11_8, 1, op4, itin,
!strconcat(OpcodeStr, "64"), v2i64, OpNode>;
}
@@ -790,24 +1540,30 @@ multiclass N2VShIns_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// Vector Add Operations.
// VADD : Vector Add (integer and floating-point)
-defm VADD : N3V_QHSD<0, 0, 0b1000, 0, "vadd.i", add, 1>;
-def VADDfd : N3VD<0, 0, 0b00, 0b1101, 0, "vadd.f32", v2f32, v2f32, fadd, 1>;
-def VADDfq : N3VQ<0, 0, 0b00, 0b1101, 0, "vadd.f32", v4f32, v4f32, fadd, 1>;
+defm VADD : N3V_QHSD<0, 0, 0b1000, 0, IIC_VBINiD, IIC_VBINiQ, "vadd.i", add, 1>;
+def VADDfd : N3VD<0, 0, 0b00, 0b1101, 0, IIC_VBIND, "vadd.f32", v2f32, v2f32, fadd, 1>;
+def VADDfq : N3VQ<0, 0, 0b00, 0b1101, 0, IIC_VBINQ, "vadd.f32", v4f32, v4f32, fadd, 1>;
// VADDL : Vector Add Long (Q = D + D)
-defm VADDLs : N3VLInt_QHS<0,1,0b0000,0, "vaddl.s", int_arm_neon_vaddls, 1>;
-defm VADDLu : N3VLInt_QHS<1,1,0b0000,0, "vaddl.u", int_arm_neon_vaddlu, 1>;
+defm VADDLs : N3VLInt_QHS<0,1,0b0000,0, IIC_VSHLiD, "vaddl.s", int_arm_neon_vaddls, 1>;
+defm VADDLu : N3VLInt_QHS<1,1,0b0000,0, IIC_VSHLiD, "vaddl.u", int_arm_neon_vaddlu, 1>;
// VADDW : Vector Add Wide (Q = Q + D)
defm VADDWs : N3VWInt_QHS<0,1,0b0001,0, "vaddw.s", int_arm_neon_vaddws, 0>;
defm VADDWu : N3VWInt_QHS<1,1,0b0001,0, "vaddw.u", int_arm_neon_vaddwu, 0>;
// VHADD : Vector Halving Add
-defm VHADDs : N3VInt_QHS<0,0,0b0000,0, "vhadd.s", int_arm_neon_vhadds, 1>;
-defm VHADDu : N3VInt_QHS<1,0,0b0000,0, "vhadd.u", int_arm_neon_vhaddu, 1>;
+defm VHADDs : N3VInt_QHS<0,0,0b0000,0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vhadd.s", int_arm_neon_vhadds, 1>;
+defm VHADDu : N3VInt_QHS<1,0,0b0000,0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vhadd.u", int_arm_neon_vhaddu, 1>;
// VRHADD : Vector Rounding Halving Add
-defm VRHADDs : N3VInt_QHS<0,0,0b0001,0, "vrhadd.s", int_arm_neon_vrhadds, 1>;
-defm VRHADDu : N3VInt_QHS<1,0,0b0001,0, "vrhadd.u", int_arm_neon_vrhaddu, 1>;
+defm VRHADDs : N3VInt_QHS<0,0,0b0001,0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vrhadd.s", int_arm_neon_vrhadds, 1>;
+defm VRHADDu : N3VInt_QHS<1,0,0b0001,0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vrhadd.u", int_arm_neon_vrhaddu, 1>;
// VQADD : Vector Saturating Add
-defm VQADDs : N3VInt_QHSD<0,0,0b0000,1, "vqadd.s", int_arm_neon_vqadds, 1>;
-defm VQADDu : N3VInt_QHSD<1,0,0b0000,1, "vqadd.u", int_arm_neon_vqaddu, 1>;
+defm VQADDs : N3VInt_QHSD<0,0,0b0000,1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vqadd.s", int_arm_neon_vqadds, 1>;
+defm VQADDu : N3VInt_QHSD<1,0,0b0000,1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vqadd.u", int_arm_neon_vqaddu, 1>;
// VADDHN : Vector Add and Narrow Returning High Half (D = Q + Q)
defm VADDHN : N3VNInt_HSD<0,1,0b0100,0, "vaddhn.i", int_arm_neon_vaddhn, 1>;
// VRADDHN : Vector Rounding Add and Narrow Returning High Half (D = Q + Q)
@@ -816,64 +1572,208 @@ defm VRADDHN : N3VNInt_HSD<1,1,0b0100,0, "vraddhn.i", int_arm_neon_vraddhn, 1>;
// Vector Multiply Operations.
// VMUL : Vector Multiply (integer, polynomial and floating-point)
-defm VMUL : N3V_QHS<0, 0, 0b1001, 1, "vmul.i", mul, 1>;
-def VMULpd : N3VDInt<1, 0, 0b00, 0b1001, 1, "vmul.p8", v8i8, v8i8,
+defm VMUL : N3V_QHS<0, 0, 0b1001, 1, IIC_VMULi16D, IIC_VMULi32D, IIC_VMULi16Q,
+ IIC_VMULi32Q, "vmul.i", mul, 1>;
+def VMULpd : N3VDInt<1, 0, 0b00, 0b1001, 1, IIC_VMULi16D, "vmul.p8", v8i8, v8i8,
int_arm_neon_vmulp, 1>;
-def VMULpq : N3VQInt<1, 0, 0b00, 0b1001, 1, "vmul.p8", v16i8, v16i8,
+def VMULpq : N3VQInt<1, 0, 0b00, 0b1001, 1, IIC_VMULi16Q, "vmul.p8", v16i8, v16i8,
int_arm_neon_vmulp, 1>;
-def VMULfd : N3VD<1, 0, 0b00, 0b1101, 1, "vmul.f32", v2f32, v2f32, fmul, 1>;
-def VMULfq : N3VQ<1, 0, 0b00, 0b1101, 1, "vmul.f32", v4f32, v4f32, fmul, 1>;
+def VMULfd : N3VD<1, 0, 0b00, 0b1101, 1, IIC_VBIND, "vmul.f32", v2f32, v2f32, fmul, 1>;
+def VMULfq : N3VQ<1, 0, 0b00, 0b1101, 1, IIC_VBINQ, "vmul.f32", v4f32, v4f32, fmul, 1>;
+defm VMULsl : N3VSL_HS<0b1000, "vmul.i", mul>;
+def VMULslfd : N3VDSL<0b10, 0b1001, IIC_VBIND, "vmul.f32", v2f32, fmul>;
+def VMULslfq : N3VQSL<0b10, 0b1001, IIC_VBINQ, "vmul.f32", v4f32, v2f32, fmul>;
+def : Pat<(v8i16 (mul (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2), imm:$lane)))),
+ (v8i16 (VMULslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (mul (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2), imm:$lane)))),
+ (v4i32 (VMULslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+def : Pat<(v4f32 (fmul (v4f32 QPR:$src1),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src2), imm:$lane)))),
+ (v4f32 (VMULslfq (v4f32 QPR:$src1),
+ (v2f32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
// VQDMULH : Vector Saturating Doubling Multiply Returning High Half
-defm VQDMULH : N3VInt_HS<0,0,0b1011,0, "vqdmulh.s", int_arm_neon_vqdmulh, 1>;
+defm VQDMULH : N3VInt_HS<0, 0, 0b1011, 0, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqdmulh.s", int_arm_neon_vqdmulh, 1>;
+defm VQDMULHsl: N3VIntSL_HS<0b1100, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqdmulh.s", int_arm_neon_vqdmulh>;
+def : Pat<(v8i16 (int_arm_neon_vqdmulh (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2), imm:$lane)))),
+ (v8i16 (VQDMULHslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (int_arm_neon_vqdmulh (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2), imm:$lane)))),
+ (v4i32 (VQDMULHslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
// VQRDMULH : Vector Rounding Saturating Doubling Multiply Returning High Half
-defm VQRDMULH : N3VInt_HS<1,0,0b1011,0, "vqrdmulh.s", int_arm_neon_vqrdmulh, 1>;
+defm VQRDMULH : N3VInt_HS<1, 0, 0b1011, 0, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqrdmulh.s", int_arm_neon_vqrdmulh, 1>;
+defm VQRDMULHsl : N3VIntSL_HS<0b1101, IIC_VMULi16D, IIC_VMULi32D,
+ IIC_VMULi16Q, IIC_VMULi32Q,
+ "vqrdmulh.s", int_arm_neon_vqrdmulh>;
+def : Pat<(v8i16 (int_arm_neon_vqrdmulh (v8i16 QPR:$src1),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src2), imm:$lane)))),
+ (v8i16 (VQRDMULHslv8i16 (v8i16 QPR:$src1),
+ (v4i16 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (int_arm_neon_vqrdmulh (v4i32 QPR:$src1),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src2), imm:$lane)))),
+ (v4i32 (VQRDMULHslv4i32 (v4i32 QPR:$src1),
+ (v2i32 (EXTRACT_SUBREG QPR:$src2,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
// VMULL : Vector Multiply Long (integer and polynomial) (Q = D * D)
-defm VMULLs : N3VLInt_QHS<0,1,0b1100,0, "vmull.s", int_arm_neon_vmulls, 1>;
-defm VMULLu : N3VLInt_QHS<1,1,0b1100,0, "vmull.u", int_arm_neon_vmullu, 1>;
-def VMULLp : N3VLInt<0, 1, 0b00, 0b1110, 0, "vmull.p8", v8i16, v8i8,
+defm VMULLs : N3VLInt_QHS<0,1,0b1100,0, IIC_VMULi16D, "vmull.s", int_arm_neon_vmulls, 1>;
+defm VMULLu : N3VLInt_QHS<1,1,0b1100,0, IIC_VMULi16D, "vmull.u", int_arm_neon_vmullu, 1>;
+def VMULLp : N3VLInt<0, 1, 0b00, 0b1110, 0, IIC_VMULi16D, "vmull.p8", v8i16, v8i8,
int_arm_neon_vmullp, 1>;
+defm VMULLsls : N3VLIntSL_HS<0, 0b1010, IIC_VMULi16D, "vmull.s", int_arm_neon_vmulls>;
+defm VMULLslu : N3VLIntSL_HS<1, 0b1010, IIC_VMULi16D, "vmull.u", int_arm_neon_vmullu>;
+
// VQDMULL : Vector Saturating Doubling Multiply Long (Q = D * D)
-defm VQDMULL : N3VLInt_HS<0,1,0b1101,0, "vqdmull.s", int_arm_neon_vqdmull, 1>;
+defm VQDMULL : N3VLInt_HS<0,1,0b1101,0, IIC_VMULi16D, "vqdmull.s", int_arm_neon_vqdmull, 1>;
+defm VQDMULLsl: N3VLIntSL_HS<0, 0b1011, IIC_VMULi16D, "vqdmull.s", int_arm_neon_vqdmull>;
// Vector Multiply-Accumulate and Multiply-Subtract Operations.
// VMLA : Vector Multiply Accumulate (integer and floating-point)
-defm VMLA : N3VMulOp_QHS<0, 0, 0b1001, 0, "vmla.i", add>;
-def VMLAfd : N3VDMulOp<0, 0, 0b00, 0b1101, 1, "vmla.f32", v2f32, fmul, fadd>;
-def VMLAfq : N3VQMulOp<0, 0, 0b00, 0b1101, 1, "vmla.f32", v4f32, fmul, fadd>;
+defm VMLA : N3VMulOp_QHS<0, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmla.i", add>;
+def VMLAfd : N3VDMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACD, "vmla.f32", v2f32, fmul, fadd>;
+def VMLAfq : N3VQMulOp<0, 0, 0b00, 0b1101, 1, IIC_VMACQ, "vmla.f32", v4f32, fmul, fadd>;
+defm VMLAsl : N3VMulOpSL_HS<0b0000, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmla.i", add>;
+def VMLAslfd : N3VDMulOpSL<0b10, 0b0001, IIC_VMACD, "vmla.f32", v2f32, fmul, fadd>;
+def VMLAslfq : N3VQMulOpSL<0b10, 0b0001, IIC_VMACQ, "vmla.f32", v4f32, v2f32, fmul, fadd>;
+
+def : Pat<(v8i16 (add (v8i16 QPR:$src1),
+ (mul (v8i16 QPR:$src2),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
+ (v8i16 (VMLAslv8i16 (v8i16 QPR:$src1),
+ (v8i16 QPR:$src2),
+ (v4i16 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+
+def : Pat<(v4i32 (add (v4i32 QPR:$src1),
+ (mul (v4i32 QPR:$src2),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
+ (v4i32 (VMLAslv4i32 (v4i32 QPR:$src1),
+ (v4i32 QPR:$src2),
+ (v2i32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def : Pat<(v4f32 (fadd (v4f32 QPR:$src1),
+ (fmul (v4f32 QPR:$src2),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
+ (v4f32 (VMLAslfq (v4f32 QPR:$src1),
+ (v4f32 QPR:$src2),
+ (v2f32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
// VMLAL : Vector Multiply Accumulate Long (Q += D * D)
defm VMLALs : N3VLInt3_QHS<0,1,0b1000,0, "vmlal.s", int_arm_neon_vmlals>;
defm VMLALu : N3VLInt3_QHS<1,1,0b1000,0, "vmlal.u", int_arm_neon_vmlalu>;
+
+defm VMLALsls : N3VLInt3SL_HS<0, 0b0010, "vmlal.s", int_arm_neon_vmlals>;
+defm VMLALslu : N3VLInt3SL_HS<1, 0b0010, "vmlal.u", int_arm_neon_vmlalu>;
+
// VQDMLAL : Vector Saturating Doubling Multiply Accumulate Long (Q += D * D)
defm VQDMLAL : N3VLInt3_HS<0, 1, 0b1001, 0, "vqdmlal.s", int_arm_neon_vqdmlal>;
+defm VQDMLALsl: N3VLInt3SL_HS<0, 0b0011, "vqdmlal.s", int_arm_neon_vqdmlal>;
+
// VMLS : Vector Multiply Subtract (integer and floating-point)
-defm VMLS : N3VMulOp_QHS<0, 0, 0b1001, 0, "vmls.i", sub>;
-def VMLSfd : N3VDMulOp<0, 0, 0b10, 0b1101, 1, "vmls.f32", v2f32, fmul, fsub>;
-def VMLSfq : N3VQMulOp<0, 0, 0b10, 0b1101, 1, "vmls.f32", v4f32, fmul, fsub>;
+defm VMLS : N3VMulOp_QHS<1, 0, 0b1001, 0, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmls.i", sub>;
+def VMLSfd : N3VDMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACD, "vmls.f32", v2f32, fmul, fsub>;
+def VMLSfq : N3VQMulOp<0, 0, 0b10, 0b1101, 1, IIC_VMACQ, "vmls.f32", v4f32, fmul, fsub>;
+defm VMLSsl : N3VMulOpSL_HS<0b0100, IIC_VMACi16D, IIC_VMACi32D,
+ IIC_VMACi16Q, IIC_VMACi32Q, "vmls.i", sub>;
+def VMLSslfd : N3VDMulOpSL<0b10, 0b0101, IIC_VMACD, "vmls.f32", v2f32, fmul, fsub>;
+def VMLSslfq : N3VQMulOpSL<0b10, 0b0101, IIC_VMACQ, "vmls.f32", v4f32, v2f32, fmul, fsub>;
+
+def : Pat<(v8i16 (sub (v8i16 QPR:$src1),
+ (mul (v8i16 QPR:$src2),
+ (v8i16 (NEONvduplane (v8i16 QPR:$src3), imm:$lane))))),
+ (v8i16 (VMLSslv8i16 (v8i16 QPR:$src1),
+ (v8i16 QPR:$src2),
+ (v4i16 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+
+def : Pat<(v4i32 (sub (v4i32 QPR:$src1),
+ (mul (v4i32 QPR:$src2),
+ (v4i32 (NEONvduplane (v4i32 QPR:$src3), imm:$lane))))),
+ (v4i32 (VMLSslv4i32 (v4i32 QPR:$src1),
+ (v4i32 QPR:$src2),
+ (v2i32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def : Pat<(v4f32 (fsub (v4f32 QPR:$src1),
+ (fmul (v4f32 QPR:$src2),
+ (v4f32 (NEONvduplane (v4f32 QPR:$src3), imm:$lane))))),
+ (v4f32 (VMLSslfq (v4f32 QPR:$src1),
+ (v4f32 QPR:$src2),
+ (v2f32 (EXTRACT_SUBREG QPR:$src3,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
// VMLSL : Vector Multiply Subtract Long (Q -= D * D)
defm VMLSLs : N3VLInt3_QHS<0,1,0b1010,0, "vmlsl.s", int_arm_neon_vmlsls>;
defm VMLSLu : N3VLInt3_QHS<1,1,0b1010,0, "vmlsl.u", int_arm_neon_vmlslu>;
+
+defm VMLSLsls : N3VLInt3SL_HS<0, 0b0110, "vmlsl.s", int_arm_neon_vmlsls>;
+defm VMLSLslu : N3VLInt3SL_HS<1, 0b0110, "vmlsl.u", int_arm_neon_vmlslu>;
+
// VQDMLSL : Vector Saturating Doubling Multiply Subtract Long (Q -= D * D)
defm VQDMLSL : N3VLInt3_HS<0, 1, 0b1011, 0, "vqdmlsl.s", int_arm_neon_vqdmlsl>;
+defm VQDMLSLsl: N3VLInt3SL_HS<0, 0b111, "vqdmlsl.s", int_arm_neon_vqdmlsl>;
// Vector Subtract Operations.
// VSUB : Vector Subtract (integer and floating-point)
-defm VSUB : N3V_QHSD<1, 0, 0b1000, 0, "vsub.i", sub, 0>;
-def VSUBfd : N3VD<0, 0, 0b10, 0b1101, 0, "vsub.f32", v2f32, v2f32, fsub, 0>;
-def VSUBfq : N3VQ<0, 0, 0b10, 0b1101, 0, "vsub.f32", v4f32, v4f32, fsub, 0>;
+defm VSUB : N3V_QHSD<1, 0, 0b1000, 0, IIC_VSUBiD, IIC_VSUBiQ, "vsub.i", sub, 0>;
+def VSUBfd : N3VD<0, 0, 0b10, 0b1101, 0, IIC_VBIND, "vsub.f32", v2f32, v2f32, fsub, 0>;
+def VSUBfq : N3VQ<0, 0, 0b10, 0b1101, 0, IIC_VBINQ, "vsub.f32", v4f32, v4f32, fsub, 0>;
// VSUBL : Vector Subtract Long (Q = D - D)
-defm VSUBLs : N3VLInt_QHS<0,1,0b0010,0, "vsubl.s", int_arm_neon_vsubls, 1>;
-defm VSUBLu : N3VLInt_QHS<1,1,0b0010,0, "vsubl.u", int_arm_neon_vsublu, 1>;
+defm VSUBLs : N3VLInt_QHS<0,1,0b0010,0, IIC_VSHLiD, "vsubl.s", int_arm_neon_vsubls, 1>;
+defm VSUBLu : N3VLInt_QHS<1,1,0b0010,0, IIC_VSHLiD, "vsubl.u", int_arm_neon_vsublu, 1>;
// VSUBW : Vector Subtract Wide (Q = Q - D)
defm VSUBWs : N3VWInt_QHS<0,1,0b0011,0, "vsubw.s", int_arm_neon_vsubws, 0>;
defm VSUBWu : N3VWInt_QHS<1,1,0b0011,0, "vsubw.u", int_arm_neon_vsubwu, 0>;
// VHSUB : Vector Halving Subtract
-defm VHSUBs : N3VInt_QHS<0, 0, 0b0010, 0, "vhsub.s", int_arm_neon_vhsubs, 0>;
-defm VHSUBu : N3VInt_QHS<1, 0, 0b0010, 0, "vhsub.u", int_arm_neon_vhsubu, 0>;
+defm VHSUBs : N3VInt_QHS<0, 0, 0b0010, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vhsub.s", int_arm_neon_vhsubs, 0>;
+defm VHSUBu : N3VInt_QHS<1, 0, 0b0010, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vhsub.u", int_arm_neon_vhsubu, 0>;
// VQSUB : Vector Saturing Subtract
-defm VQSUBs : N3VInt_QHSD<0, 0, 0b0010, 1, "vqsub.s", int_arm_neon_vqsubs, 0>;
-defm VQSUBu : N3VInt_QHSD<1, 0, 0b0010, 1, "vqsub.u", int_arm_neon_vqsubu, 0>;
+defm VQSUBs : N3VInt_QHSD<0, 0, 0b0010, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vqsub.s", int_arm_neon_vqsubs, 0>;
+defm VQSUBu : N3VInt_QHSD<1, 0, 0b0010, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vqsub.u", int_arm_neon_vqsubu, 0>;
// VSUBHN : Vector Subtract and Narrow Returning High Half (D = Q - Q)
defm VSUBHN : N3VNInt_HSD<0,1,0b0110,0, "vsubhn.i", int_arm_neon_vsubhn, 0>;
// VRSUBHN : Vector Rounding Subtract and Narrow Returning High Half (D=Q-Q)
@@ -882,85 +1782,101 @@ defm VRSUBHN : N3VNInt_HSD<1,1,0b0110,0, "vrsubhn.i", int_arm_neon_vrsubhn, 0>;
// Vector Comparisons.
// VCEQ : Vector Compare Equal
-defm VCEQ : N3V_QHS<1, 0, 0b1000, 1, "vceq.i", NEONvceq, 1>;
-def VCEQfd : N3VD<0,0,0b00,0b1110,0, "vceq.f32", v2i32, v2f32, NEONvceq, 1>;
-def VCEQfq : N3VQ<0,0,0b00,0b1110,0, "vceq.f32", v4i32, v4f32, NEONvceq, 1>;
+defm VCEQ : N3V_QHS<1, 0, 0b1000, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vceq.i", NEONvceq, 1>;
+def VCEQfd : N3VD<0,0,0b00,0b1110,0, IIC_VBIND, "vceq.f32", v2i32, v2f32, NEONvceq, 1>;
+def VCEQfq : N3VQ<0,0,0b00,0b1110,0, IIC_VBINQ, "vceq.f32", v4i32, v4f32, NEONvceq, 1>;
// VCGE : Vector Compare Greater Than or Equal
-defm VCGEs : N3V_QHS<0, 0, 0b0011, 1, "vcge.s", NEONvcge, 0>;
-defm VCGEu : N3V_QHS<1, 0, 0b0011, 1, "vcge.u", NEONvcgeu, 0>;
-def VCGEfd : N3VD<1,0,0b00,0b1110,0, "vcge.f32", v2i32, v2f32, NEONvcge, 0>;
-def VCGEfq : N3VQ<1,0,0b00,0b1110,0, "vcge.f32", v4i32, v4f32, NEONvcge, 0>;
+defm VCGEs : N3V_QHS<0, 0, 0b0011, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vcge.s", NEONvcge, 0>;
+defm VCGEu : N3V_QHS<1, 0, 0b0011, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vcge.u", NEONvcgeu, 0>;
+def VCGEfd : N3VD<1,0,0b00,0b1110,0, IIC_VBIND, "vcge.f32", v2i32, v2f32, NEONvcge, 0>;
+def VCGEfq : N3VQ<1,0,0b00,0b1110,0, IIC_VBINQ, "vcge.f32", v4i32, v4f32, NEONvcge, 0>;
// VCGT : Vector Compare Greater Than
-defm VCGTs : N3V_QHS<0, 0, 0b0011, 0, "vcgt.s", NEONvcgt, 0>;
-defm VCGTu : N3V_QHS<1, 0, 0b0011, 0, "vcgt.u", NEONvcgtu, 0>;
-def VCGTfd : N3VD<1,0,0b10,0b1110,0, "vcgt.f32", v2i32, v2f32, NEONvcgt, 0>;
-def VCGTfq : N3VQ<1,0,0b10,0b1110,0, "vcgt.f32", v4i32, v4f32, NEONvcgt, 0>;
+defm VCGTs : N3V_QHS<0, 0, 0b0011, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vcgt.s", NEONvcgt, 0>;
+defm VCGTu : N3V_QHS<1, 0, 0b0011, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vcgt.u", NEONvcgtu, 0>;
+def VCGTfd : N3VD<1,0,0b10,0b1110,0, IIC_VBIND, "vcgt.f32", v2i32, v2f32, NEONvcgt, 0>;
+def VCGTfq : N3VQ<1,0,0b10,0b1110,0, IIC_VBINQ, "vcgt.f32", v4i32, v4f32, NEONvcgt, 0>;
// VACGE : Vector Absolute Compare Greater Than or Equal (aka VCAGE)
-def VACGEd : N3VDInt<1, 0, 0b00, 0b1110, 1, "vacge.f32", v2i32, v2f32,
+def VACGEd : N3VDInt<1, 0, 0b00, 0b1110, 1, IIC_VBIND, "vacge.f32", v2i32, v2f32,
int_arm_neon_vacged, 0>;
-def VACGEq : N3VQInt<1, 0, 0b00, 0b1110, 1, "vacge.f32", v4i32, v4f32,
+def VACGEq : N3VQInt<1, 0, 0b00, 0b1110, 1, IIC_VBINQ, "vacge.f32", v4i32, v4f32,
int_arm_neon_vacgeq, 0>;
// VACGT : Vector Absolute Compare Greater Than (aka VCAGT)
-def VACGTd : N3VDInt<1, 0, 0b10, 0b1110, 1, "vacgt.f32", v2i32, v2f32,
+def VACGTd : N3VDInt<1, 0, 0b10, 0b1110, 1, IIC_VBIND, "vacgt.f32", v2i32, v2f32,
int_arm_neon_vacgtd, 0>;
-def VACGTq : N3VQInt<1, 0, 0b10, 0b1110, 1, "vacgt.f32", v4i32, v4f32,
+def VACGTq : N3VQInt<1, 0, 0b10, 0b1110, 1, IIC_VBINQ, "vacgt.f32", v4i32, v4f32,
int_arm_neon_vacgtq, 0>;
// VTST : Vector Test Bits
-defm VTST : N3V_QHS<0, 0, 0b1000, 1, "vtst.i", NEONvtst, 1>;
+defm VTST : N3V_QHS<0, 0, 0b1000, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vtst.i", NEONvtst, 1>;
// Vector Bitwise Operations.
// VAND : Vector Bitwise AND
-def VANDd : N3VD<0, 0, 0b00, 0b0001, 1, "vand", v2i32, v2i32, and, 1>;
-def VANDq : N3VQ<0, 0, 0b00, 0b0001, 1, "vand", v4i32, v4i32, and, 1>;
+def VANDd : N3VD<0, 0, 0b00, 0b0001, 1, IIC_VBINiD, "vand", v2i32, v2i32, and, 1>;
+def VANDq : N3VQ<0, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "vand", v4i32, v4i32, and, 1>;
// VEOR : Vector Bitwise Exclusive OR
-def VEORd : N3VD<1, 0, 0b00, 0b0001, 1, "veor", v2i32, v2i32, xor, 1>;
-def VEORq : N3VQ<1, 0, 0b00, 0b0001, 1, "veor", v4i32, v4i32, xor, 1>;
+def VEORd : N3VD<1, 0, 0b00, 0b0001, 1, IIC_VBINiD, "veor", v2i32, v2i32, xor, 1>;
+def VEORq : N3VQ<1, 0, 0b00, 0b0001, 1, IIC_VBINiQ, "veor", v4i32, v4i32, xor, 1>;
// VORR : Vector Bitwise OR
-def VORRd : N3VD<0, 0, 0b10, 0b0001, 1, "vorr", v2i32, v2i32, or, 1>;
-def VORRq : N3VQ<0, 0, 0b10, 0b0001, 1, "vorr", v4i32, v4i32, or, 1>;
+def VORRd : N3VD<0, 0, 0b10, 0b0001, 1, IIC_VBINiD, "vorr", v2i32, v2i32, or, 1>;
+def VORRq : N3VQ<0, 0, 0b10, 0b0001, 1, IIC_VBINiQ, "vorr", v4i32, v4i32, or, 1>;
// VBIC : Vector Bitwise Bit Clear (AND NOT)
def VBICd : N3V<0, 0, 0b01, 0b0001, 0, 1, (outs DPR:$dst),
- (ins DPR:$src1, DPR:$src2), "vbic\t$dst, $src1, $src2", "",
- [(set DPR:$dst, (v2i32 (and DPR:$src1,(vnot DPR:$src2))))]>;
+ (ins DPR:$src1, DPR:$src2), IIC_VBINiD,
+ "vbic\t$dst, $src1, $src2", "",
+ [(set DPR:$dst, (v2i32 (and DPR:$src1,
+ (vnot_conv DPR:$src2))))]>;
def VBICq : N3V<0, 0, 0b01, 0b0001, 1, 1, (outs QPR:$dst),
- (ins QPR:$src1, QPR:$src2), "vbic\t$dst, $src1, $src2", "",
- [(set QPR:$dst, (v4i32 (and QPR:$src1,(vnot QPR:$src2))))]>;
+ (ins QPR:$src1, QPR:$src2), IIC_VBINiQ,
+ "vbic\t$dst, $src1, $src2", "",
+ [(set QPR:$dst, (v4i32 (and QPR:$src1,
+ (vnot_conv QPR:$src2))))]>;
// VORN : Vector Bitwise OR NOT
def VORNd : N3V<0, 0, 0b11, 0b0001, 0, 1, (outs DPR:$dst),
- (ins DPR:$src1, DPR:$src2), "vorn\t$dst, $src1, $src2", "",
- [(set DPR:$dst, (v2i32 (or DPR:$src1, (vnot DPR:$src2))))]>;
+ (ins DPR:$src1, DPR:$src2), IIC_VBINiD,
+ "vorn\t$dst, $src1, $src2", "",
+ [(set DPR:$dst, (v2i32 (or DPR:$src1,
+ (vnot_conv DPR:$src2))))]>;
def VORNq : N3V<0, 0, 0b11, 0b0001, 1, 1, (outs QPR:$dst),
- (ins QPR:$src1, QPR:$src2), "vorn\t$dst, $src1, $src2", "",
- [(set QPR:$dst, (v4i32 (or QPR:$src1, (vnot QPR:$src2))))]>;
+ (ins QPR:$src1, QPR:$src2), IIC_VBINiQ,
+ "vorn\t$dst, $src1, $src2", "",
+ [(set QPR:$dst, (v4i32 (or QPR:$src1,
+ (vnot_conv QPR:$src2))))]>;
// VMVN : Vector Bitwise NOT
def VMVNd : N2V<0b11, 0b11, 0b00, 0b00, 0b01011, 0, 0,
- (outs DPR:$dst), (ins DPR:$src), "vmvn\t$dst, $src", "",
+ (outs DPR:$dst), (ins DPR:$src), IIC_VSHLiD,
+ "vmvn\t$dst, $src", "",
[(set DPR:$dst, (v2i32 (vnot DPR:$src)))]>;
def VMVNq : N2V<0b11, 0b11, 0b00, 0b00, 0b01011, 1, 0,
- (outs QPR:$dst), (ins QPR:$src), "vmvn\t$dst, $src", "",
+ (outs QPR:$dst), (ins QPR:$src), IIC_VSHLiD,
+ "vmvn\t$dst, $src", "",
[(set QPR:$dst, (v4i32 (vnot QPR:$src)))]>;
def : Pat<(v2i32 (vnot_conv DPR:$src)), (VMVNd DPR:$src)>;
def : Pat<(v4i32 (vnot_conv QPR:$src)), (VMVNq QPR:$src)>;
// VBSL : Vector Bitwise Select
def VBSLd : N3V<1, 0, 0b01, 0b0001, 0, 1, (outs DPR:$dst),
- (ins DPR:$src1, DPR:$src2, DPR:$src3),
+ (ins DPR:$src1, DPR:$src2, DPR:$src3), IIC_VCNTiD,
"vbsl\t$dst, $src2, $src3", "$src1 = $dst",
[(set DPR:$dst,
(v2i32 (or (and DPR:$src2, DPR:$src1),
- (and DPR:$src3, (vnot DPR:$src1)))))]>;
+ (and DPR:$src3, (vnot_conv DPR:$src1)))))]>;
def VBSLq : N3V<1, 0, 0b01, 0b0001, 1, 1, (outs QPR:$dst),
- (ins QPR:$src1, QPR:$src2, QPR:$src3),
+ (ins QPR:$src1, QPR:$src2, QPR:$src3), IIC_VCNTiQ,
"vbsl\t$dst, $src2, $src3", "$src1 = $dst",
[(set QPR:$dst,
(v4i32 (or (and QPR:$src2, QPR:$src1),
- (and QPR:$src3, (vnot QPR:$src1)))))]>;
+ (and QPR:$src3, (vnot_conv QPR:$src1)))))]>;
// VBIF : Vector Bitwise Insert if False
// like VBSL but with: "vbif\t$dst, $src3, $src1", "$src2 = $dst",
@@ -973,16 +1889,18 @@ def VBSLq : N3V<1, 0, 0b01, 0b0001, 1, 1, (outs QPR:$dst),
// Vector Absolute Differences.
// VABD : Vector Absolute Difference
-defm VABDs : N3VInt_QHS<0, 0, 0b0111, 0, "vabd.s", int_arm_neon_vabds, 0>;
-defm VABDu : N3VInt_QHS<1, 0, 0b0111, 0, "vabd.u", int_arm_neon_vabdu, 0>;
-def VABDfd : N3VDInt<1, 0, 0b10, 0b1101, 0, "vabd.f32", v2f32, v2f32,
- int_arm_neon_vabdf, 0>;
-def VABDfq : N3VQInt<1, 0, 0b10, 0b1101, 0, "vabd.f32", v4f32, v4f32,
- int_arm_neon_vabdf, 0>;
+defm VABDs : N3VInt_QHS<0, 0, 0b0111, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vabd.s", int_arm_neon_vabds, 0>;
+defm VABDu : N3VInt_QHS<1, 0, 0b0111, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vabd.u", int_arm_neon_vabdu, 0>;
+def VABDfd : N3VDInt<1, 0, 0b10, 0b1101, 0, IIC_VBIND, "vabd.f32", v2f32, v2f32,
+ int_arm_neon_vabds, 0>;
+def VABDfq : N3VQInt<1, 0, 0b10, 0b1101, 0, IIC_VBINQ, "vabd.f32", v4f32, v4f32,
+ int_arm_neon_vabds, 0>;
// VABDL : Vector Absolute Difference Long (Q = | D - D |)
-defm VABDLs : N3VLInt_QHS<0,1,0b0111,0, "vabdl.s", int_arm_neon_vabdls, 0>;
-defm VABDLu : N3VLInt_QHS<1,1,0b0111,0, "vabdl.u", int_arm_neon_vabdlu, 0>;
+defm VABDLs : N3VLInt_QHS<0,1,0b0111,0, IIC_VBINi4Q, "vabdl.s", int_arm_neon_vabdls, 0>;
+defm VABDLu : N3VLInt_QHS<1,1,0b0111,0, IIC_VBINi4Q, "vabdl.u", int_arm_neon_vabdlu, 0>;
// VABA : Vector Absolute Difference and Accumulate
defm VABAs : N3VInt3_QHS<0,1,0b0101,0, "vaba.s", int_arm_neon_vabas>;
@@ -995,32 +1913,36 @@ defm VABALu : N3VLInt3_QHS<1,1,0b0101,0, "vabal.u", int_arm_neon_vabalu>;
// Vector Maximum and Minimum.
// VMAX : Vector Maximum
-defm VMAXs : N3VInt_QHS<0, 0, 0b0110, 0, "vmax.s", int_arm_neon_vmaxs, 1>;
-defm VMAXu : N3VInt_QHS<1, 0, 0b0110, 0, "vmax.u", int_arm_neon_vmaxu, 1>;
-def VMAXfd : N3VDInt<0, 0, 0b00, 0b1111, 0, "vmax.f32", v2f32, v2f32,
- int_arm_neon_vmaxf, 1>;
-def VMAXfq : N3VQInt<0, 0, 0b00, 0b1111, 0, "vmax.f32", v4f32, v4f32,
- int_arm_neon_vmaxf, 1>;
+defm VMAXs : N3VInt_QHS<0, 0, 0b0110, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vmax.s", int_arm_neon_vmaxs, 1>;
+defm VMAXu : N3VInt_QHS<1, 0, 0b0110, 0, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vmax.u", int_arm_neon_vmaxu, 1>;
+def VMAXfd : N3VDInt<0, 0, 0b00, 0b1111, 0, IIC_VBIND, "vmax.f32", v2f32, v2f32,
+ int_arm_neon_vmaxs, 1>;
+def VMAXfq : N3VQInt<0, 0, 0b00, 0b1111, 0, IIC_VBINQ, "vmax.f32", v4f32, v4f32,
+ int_arm_neon_vmaxs, 1>;
// VMIN : Vector Minimum
-defm VMINs : N3VInt_QHS<0, 0, 0b0110, 1, "vmin.s", int_arm_neon_vmins, 1>;
-defm VMINu : N3VInt_QHS<1, 0, 0b0110, 1, "vmin.u", int_arm_neon_vminu, 1>;
-def VMINfd : N3VDInt<0, 0, 0b10, 0b1111, 0, "vmin.f32", v2f32, v2f32,
- int_arm_neon_vminf, 1>;
-def VMINfq : N3VQInt<0, 0, 0b10, 0b1111, 0, "vmin.f32", v4f32, v4f32,
- int_arm_neon_vminf, 1>;
+defm VMINs : N3VInt_QHS<0, 0, 0b0110, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vmin.s", int_arm_neon_vmins, 1>;
+defm VMINu : N3VInt_QHS<1, 0, 0b0110, 1, IIC_VBINi4D, IIC_VBINi4D, IIC_VBINi4Q,
+ IIC_VBINi4Q, "vmin.u", int_arm_neon_vminu, 1>;
+def VMINfd : N3VDInt<0, 0, 0b10, 0b1111, 0, IIC_VBIND, "vmin.f32", v2f32, v2f32,
+ int_arm_neon_vmins, 1>;
+def VMINfq : N3VQInt<0, 0, 0b10, 0b1111, 0, IIC_VBINQ, "vmin.f32", v4f32, v4f32,
+ int_arm_neon_vmins, 1>;
// Vector Pairwise Operations.
// VPADD : Vector Pairwise Add
-def VPADDi8 : N3VDInt<0, 0, 0b00, 0b1011, 1, "vpadd.i8", v8i8, v8i8,
- int_arm_neon_vpaddi, 0>;
-def VPADDi16 : N3VDInt<0, 0, 0b01, 0b1011, 1, "vpadd.i16", v4i16, v4i16,
- int_arm_neon_vpaddi, 0>;
-def VPADDi32 : N3VDInt<0, 0, 0b10, 0b1011, 1, "vpadd.i32", v2i32, v2i32,
- int_arm_neon_vpaddi, 0>;
-def VPADDf : N3VDInt<1, 0, 0b00, 0b1101, 0, "vpadd.f32", v2f32, v2f32,
- int_arm_neon_vpaddf, 0>;
+def VPADDi8 : N3VDInt<0, 0, 0b00, 0b1011, 1, IIC_VBINiD, "vpadd.i8", v8i8, v8i8,
+ int_arm_neon_vpadd, 0>;
+def VPADDi16 : N3VDInt<0, 0, 0b01, 0b1011, 1, IIC_VBINiD, "vpadd.i16", v4i16, v4i16,
+ int_arm_neon_vpadd, 0>;
+def VPADDi32 : N3VDInt<0, 0, 0b10, 0b1011, 1, IIC_VBINiD, "vpadd.i32", v2i32, v2i32,
+ int_arm_neon_vpadd, 0>;
+def VPADDf : N3VDInt<1, 0, 0b00, 0b1101, 0, IIC_VBIND, "vpadd.f32", v2f32, v2f32,
+ int_arm_neon_vpadd, 0>;
// VPADDL : Vector Pairwise Add Long
defm VPADDLs : N2VPLInt_QHS<0b11, 0b11, 0b00, 0b00100, 0, "vpaddl.s",
@@ -1035,81 +1957,91 @@ defm VPADALu : N2VPLInt2_QHS<0b11, 0b11, 0b00, 0b00101, 0, "vpadal.u",
int_arm_neon_vpadalu>;
// VPMAX : Vector Pairwise Maximum
-def VPMAXs8 : N3VDInt<0, 0, 0b00, 0b1010, 0, "vpmax.s8", v8i8, v8i8,
+def VPMAXs8 : N3VDInt<0, 0, 0b00, 0b1010, 0, IIC_VBINi4D, "vpmax.s8", v8i8, v8i8,
int_arm_neon_vpmaxs, 0>;
-def VPMAXs16 : N3VDInt<0, 0, 0b01, 0b1010, 0, "vpmax.s16", v4i16, v4i16,
+def VPMAXs16 : N3VDInt<0, 0, 0b01, 0b1010, 0, IIC_VBINi4D, "vpmax.s16", v4i16, v4i16,
int_arm_neon_vpmaxs, 0>;
-def VPMAXs32 : N3VDInt<0, 0, 0b10, 0b1010, 0, "vpmax.s32", v2i32, v2i32,
+def VPMAXs32 : N3VDInt<0, 0, 0b10, 0b1010, 0, IIC_VBINi4D, "vpmax.s32", v2i32, v2i32,
int_arm_neon_vpmaxs, 0>;
-def VPMAXu8 : N3VDInt<1, 0, 0b00, 0b1010, 0, "vpmax.u8", v8i8, v8i8,
+def VPMAXu8 : N3VDInt<1, 0, 0b00, 0b1010, 0, IIC_VBINi4D, "vpmax.u8", v8i8, v8i8,
int_arm_neon_vpmaxu, 0>;
-def VPMAXu16 : N3VDInt<1, 0, 0b01, 0b1010, 0, "vpmax.u16", v4i16, v4i16,
+def VPMAXu16 : N3VDInt<1, 0, 0b01, 0b1010, 0, IIC_VBINi4D, "vpmax.u16", v4i16, v4i16,
int_arm_neon_vpmaxu, 0>;
-def VPMAXu32 : N3VDInt<1, 0, 0b10, 0b1010, 0, "vpmax.u32", v2i32, v2i32,
+def VPMAXu32 : N3VDInt<1, 0, 0b10, 0b1010, 0, IIC_VBINi4D, "vpmax.u32", v2i32, v2i32,
int_arm_neon_vpmaxu, 0>;
-def VPMAXf : N3VDInt<1, 0, 0b00, 0b1111, 0, "vpmax.f32", v2f32, v2f32,
- int_arm_neon_vpmaxf, 0>;
+def VPMAXf : N3VDInt<1, 0, 0b00, 0b1111, 0, IIC_VBINi4D, "vpmax.f32", v2f32, v2f32,
+ int_arm_neon_vpmaxs, 0>;
// VPMIN : Vector Pairwise Minimum
-def VPMINs8 : N3VDInt<0, 0, 0b00, 0b1010, 1, "vpmin.s8", v8i8, v8i8,
+def VPMINs8 : N3VDInt<0, 0, 0b00, 0b1010, 1, IIC_VBINi4D, "vpmin.s8", v8i8, v8i8,
int_arm_neon_vpmins, 0>;
-def VPMINs16 : N3VDInt<0, 0, 0b01, 0b1010, 1, "vpmin.s16", v4i16, v4i16,
+def VPMINs16 : N3VDInt<0, 0, 0b01, 0b1010, 1, IIC_VBINi4D, "vpmin.s16", v4i16, v4i16,
int_arm_neon_vpmins, 0>;
-def VPMINs32 : N3VDInt<0, 0, 0b10, 0b1010, 1, "vpmin.s32", v2i32, v2i32,
+def VPMINs32 : N3VDInt<0, 0, 0b10, 0b1010, 1, IIC_VBINi4D, "vpmin.s32", v2i32, v2i32,
int_arm_neon_vpmins, 0>;
-def VPMINu8 : N3VDInt<1, 0, 0b00, 0b1010, 1, "vpmin.u8", v8i8, v8i8,
+def VPMINu8 : N3VDInt<1, 0, 0b00, 0b1010, 1, IIC_VBINi4D, "vpmin.u8", v8i8, v8i8,
int_arm_neon_vpminu, 0>;
-def VPMINu16 : N3VDInt<1, 0, 0b01, 0b1010, 1, "vpmin.u16", v4i16, v4i16,
+def VPMINu16 : N3VDInt<1, 0, 0b01, 0b1010, 1, IIC_VBINi4D, "vpmin.u16", v4i16, v4i16,
int_arm_neon_vpminu, 0>;
-def VPMINu32 : N3VDInt<1, 0, 0b10, 0b1010, 1, "vpmin.u32", v2i32, v2i32,
+def VPMINu32 : N3VDInt<1, 0, 0b10, 0b1010, 1, IIC_VBINi4D, "vpmin.u32", v2i32, v2i32,
int_arm_neon_vpminu, 0>;
-def VPMINf : N3VDInt<1, 0, 0b10, 0b1111, 0, "vpmin.f32", v2f32, v2f32,
- int_arm_neon_vpminf, 0>;
+def VPMINf : N3VDInt<1, 0, 0b10, 0b1111, 0, IIC_VBINi4D, "vpmin.f32", v2f32, v2f32,
+ int_arm_neon_vpmins, 0>;
// Vector Reciprocal and Reciprocal Square Root Estimate and Step.
// VRECPE : Vector Reciprocal Estimate
-def VRECPEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0, "vrecpe.u32",
+def VRECPEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
+ IIC_VUNAD, "vrecpe.u32",
v2i32, v2i32, int_arm_neon_vrecpe>;
-def VRECPEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0, "vrecpe.u32",
+def VRECPEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01000, 0,
+ IIC_VUNAQ, "vrecpe.u32",
v4i32, v4i32, int_arm_neon_vrecpe>;
-def VRECPEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0, "vrecpe.f32",
- v2f32, v2f32, int_arm_neon_vrecpef>;
-def VRECPEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0, "vrecpe.f32",
- v4f32, v4f32, int_arm_neon_vrecpef>;
+def VRECPEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
+ IIC_VUNAD, "vrecpe.f32",
+ v2f32, v2f32, int_arm_neon_vrecpe>;
+def VRECPEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01010, 0,
+ IIC_VUNAQ, "vrecpe.f32",
+ v4f32, v4f32, int_arm_neon_vrecpe>;
// VRECPS : Vector Reciprocal Step
-def VRECPSfd : N3VDInt<0, 0, 0b00, 0b1111, 1, "vrecps.f32", v2f32, v2f32,
+def VRECPSfd : N3VDInt<0, 0, 0b00, 0b1111, 1, IIC_VRECSD, "vrecps.f32", v2f32, v2f32,
int_arm_neon_vrecps, 1>;
-def VRECPSfq : N3VQInt<0, 0, 0b00, 0b1111, 1, "vrecps.f32", v4f32, v4f32,
+def VRECPSfq : N3VQInt<0, 0, 0b00, 0b1111, 1, IIC_VRECSQ, "vrecps.f32", v4f32, v4f32,
int_arm_neon_vrecps, 1>;
// VRSQRTE : Vector Reciprocal Square Root Estimate
-def VRSQRTEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0, "vrsqrte.u32",
- v2i32, v2i32, int_arm_neon_vrsqrte>;
-def VRSQRTEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0, "vrsqrte.u32",
- v4i32, v4i32, int_arm_neon_vrsqrte>;
-def VRSQRTEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0, "vrsqrte.f32",
- v2f32, v2f32, int_arm_neon_vrsqrtef>;
-def VRSQRTEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0, "vrsqrte.f32",
- v4f32, v4f32, int_arm_neon_vrsqrtef>;
+def VRSQRTEd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
+ IIC_VUNAD, "vrsqrte.u32",
+ v2i32, v2i32, int_arm_neon_vrsqrte>;
+def VRSQRTEq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01001, 0,
+ IIC_VUNAQ, "vrsqrte.u32",
+ v4i32, v4i32, int_arm_neon_vrsqrte>;
+def VRSQRTEfd : N2VDInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
+ IIC_VUNAD, "vrsqrte.f32",
+ v2f32, v2f32, int_arm_neon_vrsqrte>;
+def VRSQRTEfq : N2VQInt<0b11, 0b11, 0b10, 0b11, 0b01011, 0,
+ IIC_VUNAQ, "vrsqrte.f32",
+ v4f32, v4f32, int_arm_neon_vrsqrte>;
// VRSQRTS : Vector Reciprocal Square Root Step
-def VRSQRTSfd : N3VDInt<0, 0, 0b10, 0b1111, 1, "vrsqrts.f32", v2f32, v2f32,
+def VRSQRTSfd : N3VDInt<0, 0, 0b10, 0b1111, 1, IIC_VRECSD, "vrsqrts.f32", v2f32, v2f32,
int_arm_neon_vrsqrts, 1>;
-def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1, "vrsqrts.f32", v4f32, v4f32,
+def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1, IIC_VRECSQ, "vrsqrts.f32", v4f32, v4f32,
int_arm_neon_vrsqrts, 1>;
// Vector Shifts.
// VSHL : Vector Shift
-defm VSHLs : N3VInt_QHSD<0, 0, 0b0100, 0, "vshl.s", int_arm_neon_vshifts, 0>;
-defm VSHLu : N3VInt_QHSD<1, 0, 0b0100, 0, "vshl.u", int_arm_neon_vshiftu, 0>;
+defm VSHLs : N3VInt_QHSD<0, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl.s", int_arm_neon_vshifts, 0>;
+defm VSHLu : N3VInt_QHSD<1, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl.u", int_arm_neon_vshiftu, 0>;
// VSHL : Vector Shift Left (Immediate)
-defm VSHLi : N2VSh_QHSD<0, 1, 0b0111, 1, "vshl.i", NEONvshl>;
+defm VSHLi : N2VSh_QHSD<0, 1, 0b0111, 1, IIC_VSHLiD, "vshl.i", NEONvshl>;
// VSHR : Vector Shift Right (Immediate)
-defm VSHRs : N2VSh_QHSD<0, 1, 0b0000, 1, "vshr.s", NEONvshrs>;
-defm VSHRu : N2VSh_QHSD<1, 1, 0b0000, 1, "vshr.u", NEONvshru>;
+defm VSHRs : N2VSh_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr.s", NEONvshrs>;
+defm VSHRu : N2VSh_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr.u", NEONvshru>;
// VSHLL : Vector Shift Left Long
def VSHLLs8 : N2VLSh<0, 1, 0b001000, 0b1010, 0, 0, 1, "vshll.s8",
@@ -1134,86 +2066,90 @@ def VSHLLi32 : N2VLSh<1, 1, 0b111010, 0b0011, 0, 0, 0, "vshll.i32",
v2i64, v2i32, NEONvshlli>;
// VSHRN : Vector Shift Right and Narrow
-def VSHRN16 : N2VNSh<0, 1, 0b001000, 0b1000, 0, 0, 1, "vshrn.i16",
- v8i8, v8i16, NEONvshrn>;
-def VSHRN32 : N2VNSh<0, 1, 0b010000, 0b1000, 0, 0, 1, "vshrn.i32",
- v4i16, v4i32, NEONvshrn>;
-def VSHRN64 : N2VNSh<0, 1, 0b100000, 0b1000, 0, 0, 1, "vshrn.i64",
- v2i32, v2i64, NEONvshrn>;
+def VSHRN16 : N2VNSh<0, 1, 0b001000, 0b1000, 0, 0, 1,
+ IIC_VSHLiD, "vshrn.i16", v8i8, v8i16, NEONvshrn>;
+def VSHRN32 : N2VNSh<0, 1, 0b010000, 0b1000, 0, 0, 1,
+ IIC_VSHLiD, "vshrn.i32", v4i16, v4i32, NEONvshrn>;
+def VSHRN64 : N2VNSh<0, 1, 0b100000, 0b1000, 0, 0, 1,
+ IIC_VSHLiD, "vshrn.i64", v2i32, v2i64, NEONvshrn>;
// VRSHL : Vector Rounding Shift
-defm VRSHLs : N3VInt_QHSD<0,0,0b0101,0, "vrshl.s", int_arm_neon_vrshifts, 0>;
-defm VRSHLu : N3VInt_QHSD<1,0,0b0101,0, "vrshl.u", int_arm_neon_vrshiftu, 0>;
+defm VRSHLs : N3VInt_QHSD<0,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vrshl.s", int_arm_neon_vrshifts, 0>;
+defm VRSHLu : N3VInt_QHSD<1,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vrshl.u", int_arm_neon_vrshiftu, 0>;
// VRSHR : Vector Rounding Shift Right
-defm VRSHRs : N2VSh_QHSD<0, 1, 0b0010, 1, "vrshr.s", NEONvrshrs>;
-defm VRSHRu : N2VSh_QHSD<1, 1, 0b0010, 1, "vrshr.u", NEONvrshru>;
+defm VRSHRs : N2VSh_QHSD<0, 1, 0b0010, 1, IIC_VSHLi4D, "vrshr.s", NEONvrshrs>;
+defm VRSHRu : N2VSh_QHSD<1, 1, 0b0010, 1, IIC_VSHLi4D, "vrshr.u", NEONvrshru>;
// VRSHRN : Vector Rounding Shift Right and Narrow
-def VRSHRN16 : N2VNSh<0, 1, 0b001000, 0b1000, 0, 1, 1, "vrshrn.i16",
- v8i8, v8i16, NEONvrshrn>;
-def VRSHRN32 : N2VNSh<0, 1, 0b010000, 0b1000, 0, 1, 1, "vrshrn.i32",
- v4i16, v4i32, NEONvrshrn>;
-def VRSHRN64 : N2VNSh<0, 1, 0b100000, 0b1000, 0, 1, 1, "vrshrn.i64",
- v2i32, v2i64, NEONvrshrn>;
+def VRSHRN16 : N2VNSh<0, 1, 0b001000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vrshrn.i16", v8i8, v8i16, NEONvrshrn>;
+def VRSHRN32 : N2VNSh<0, 1, 0b010000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vrshrn.i32", v4i16, v4i32, NEONvrshrn>;
+def VRSHRN64 : N2VNSh<0, 1, 0b100000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vrshrn.i64", v2i32, v2i64, NEONvrshrn>;
// VQSHL : Vector Saturating Shift
-defm VQSHLs : N3VInt_QHSD<0,0,0b0100,1, "vqshl.s", int_arm_neon_vqshifts, 0>;
-defm VQSHLu : N3VInt_QHSD<1,0,0b0100,1, "vqshl.u", int_arm_neon_vqshiftu, 0>;
+defm VQSHLs : N3VInt_QHSD<0,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl.s", int_arm_neon_vqshifts, 0>;
+defm VQSHLu : N3VInt_QHSD<1,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl.u", int_arm_neon_vqshiftu, 0>;
// VQSHL : Vector Saturating Shift Left (Immediate)
-defm VQSHLsi : N2VSh_QHSD<0, 1, 0b0111, 1, "vqshl.s", NEONvqshls>;
-defm VQSHLui : N2VSh_QHSD<1, 1, 0b0111, 1, "vqshl.u", NEONvqshlu>;
+defm VQSHLsi : N2VSh_QHSD<0, 1, 0b0111, 1, IIC_VSHLi4D, "vqshl.s", NEONvqshls>;
+defm VQSHLui : N2VSh_QHSD<1, 1, 0b0111, 1, IIC_VSHLi4D, "vqshl.u", NEONvqshlu>;
// VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned)
-defm VQSHLsu : N2VSh_QHSD<1, 1, 0b0110, 1, "vqshlu.s", NEONvqshlsu>;
+defm VQSHLsu : N2VSh_QHSD<1, 1, 0b0110, 1, IIC_VSHLi4D, "vqshlu.s", NEONvqshlsu>;
// VQSHRN : Vector Saturating Shift Right and Narrow
-def VQSHRNs16 : N2VNSh<0, 1, 0b001000, 0b1001, 0, 0, 1, "vqshrn.s16",
- v8i8, v8i16, NEONvqshrns>;
-def VQSHRNs32 : N2VNSh<0, 1, 0b010000, 0b1001, 0, 0, 1, "vqshrn.s32",
- v4i16, v4i32, NEONvqshrns>;
-def VQSHRNs64 : N2VNSh<0, 1, 0b100000, 0b1001, 0, 0, 1, "vqshrn.s64",
- v2i32, v2i64, NEONvqshrns>;
-def VQSHRNu16 : N2VNSh<1, 1, 0b001000, 0b1001, 0, 0, 1, "vqshrn.u16",
- v8i8, v8i16, NEONvqshrnu>;
-def VQSHRNu32 : N2VNSh<1, 1, 0b010000, 0b1001, 0, 0, 1, "vqshrn.u32",
- v4i16, v4i32, NEONvqshrnu>;
-def VQSHRNu64 : N2VNSh<1, 1, 0b100000, 0b1001, 0, 0, 1, "vqshrn.u64",
- v2i32, v2i64, NEONvqshrnu>;
+def VQSHRNs16 : N2VNSh<0, 1, 0b001000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.s16", v8i8, v8i16, NEONvqshrns>;
+def VQSHRNs32 : N2VNSh<0, 1, 0b010000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.s32", v4i16, v4i32, NEONvqshrns>;
+def VQSHRNs64 : N2VNSh<0, 1, 0b100000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.s64", v2i32, v2i64, NEONvqshrns>;
+def VQSHRNu16 : N2VNSh<1, 1, 0b001000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.u16", v8i8, v8i16, NEONvqshrnu>;
+def VQSHRNu32 : N2VNSh<1, 1, 0b010000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.u32", v4i16, v4i32, NEONvqshrnu>;
+def VQSHRNu64 : N2VNSh<1, 1, 0b100000, 0b1001, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrn.u64", v2i32, v2i64, NEONvqshrnu>;
// VQSHRUN : Vector Saturating Shift Right and Narrow (Unsigned)
-def VQSHRUN16 : N2VNSh<1, 1, 0b001000, 0b1000, 0, 0, 1, "vqshrun.s16",
- v8i8, v8i16, NEONvqshrnsu>;
-def VQSHRUN32 : N2VNSh<1, 1, 0b010000, 0b1000, 0, 0, 1, "vqshrun.s32",
- v4i16, v4i32, NEONvqshrnsu>;
-def VQSHRUN64 : N2VNSh<1, 1, 0b100000, 0b1000, 0, 0, 1, "vqshrun.s64",
- v2i32, v2i64, NEONvqshrnsu>;
+def VQSHRUN16 : N2VNSh<1, 1, 0b001000, 0b1000, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrun.s16", v8i8, v8i16, NEONvqshrnsu>;
+def VQSHRUN32 : N2VNSh<1, 1, 0b010000, 0b1000, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrun.s32", v4i16, v4i32, NEONvqshrnsu>;
+def VQSHRUN64 : N2VNSh<1, 1, 0b100000, 0b1000, 0, 0, 1,
+ IIC_VSHLi4D, "vqshrun.s64", v2i32, v2i64, NEONvqshrnsu>;
// VQRSHL : Vector Saturating Rounding Shift
-defm VQRSHLs : N3VInt_QHSD<0, 0, 0b0101, 1, "vqrshl.s",
- int_arm_neon_vqrshifts, 0>;
-defm VQRSHLu : N3VInt_QHSD<1, 0, 0b0101, 1, "vqrshl.u",
- int_arm_neon_vqrshiftu, 0>;
+defm VQRSHLs : N3VInt_QHSD<0, 0, 0b0101, 1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl.s", int_arm_neon_vqrshifts, 0>;
+defm VQRSHLu : N3VInt_QHSD<1, 0, 0b0101, 1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl.u", int_arm_neon_vqrshiftu, 0>;
// VQRSHRN : Vector Saturating Rounding Shift Right and Narrow
-def VQRSHRNs16: N2VNSh<0, 1, 0b001000, 0b1001, 0, 1, 1, "vqrshrn.s16",
- v8i8, v8i16, NEONvqrshrns>;
-def VQRSHRNs32: N2VNSh<0, 1, 0b010000, 0b1001, 0, 1, 1, "vqrshrn.s32",
- v4i16, v4i32, NEONvqrshrns>;
-def VQRSHRNs64: N2VNSh<0, 1, 0b100000, 0b1001, 0, 1, 1, "vqrshrn.s64",
- v2i32, v2i64, NEONvqrshrns>;
-def VQRSHRNu16: N2VNSh<1, 1, 0b001000, 0b1001, 0, 1, 1, "vqrshrn.u16",
- v8i8, v8i16, NEONvqrshrnu>;
-def VQRSHRNu32: N2VNSh<1, 1, 0b010000, 0b1001, 0, 1, 1, "vqrshrn.u32",
- v4i16, v4i32, NEONvqrshrnu>;
-def VQRSHRNu64: N2VNSh<1, 1, 0b100000, 0b1001, 0, 1, 1, "vqrshrn.u64",
- v2i32, v2i64, NEONvqrshrnu>;
+def VQRSHRNs16: N2VNSh<0, 1, 0b001000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.s16", v8i8, v8i16, NEONvqrshrns>;
+def VQRSHRNs32: N2VNSh<0, 1, 0b010000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.s32", v4i16, v4i32, NEONvqrshrns>;
+def VQRSHRNs64: N2VNSh<0, 1, 0b100000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.s64", v2i32, v2i64, NEONvqrshrns>;
+def VQRSHRNu16: N2VNSh<1, 1, 0b001000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.u16", v8i8, v8i16, NEONvqrshrnu>;
+def VQRSHRNu32: N2VNSh<1, 1, 0b010000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.u32", v4i16, v4i32, NEONvqrshrnu>;
+def VQRSHRNu64: N2VNSh<1, 1, 0b100000, 0b1001, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrn.u64", v2i32, v2i64, NEONvqrshrnu>;
// VQRSHRUN : Vector Saturating Rounding Shift Right and Narrow (Unsigned)
-def VQRSHRUN16: N2VNSh<1, 1, 0b001000, 0b1000, 0, 1, 1, "vqrshrun.s16",
- v8i8, v8i16, NEONvqrshrnsu>;
-def VQRSHRUN32: N2VNSh<1, 1, 0b010000, 0b1000, 0, 1, 1, "vqrshrun.s32",
- v4i16, v4i32, NEONvqrshrnsu>;
-def VQRSHRUN64: N2VNSh<1, 1, 0b100000, 0b1000, 0, 1, 1, "vqrshrun.s64",
- v2i32, v2i64, NEONvqrshrnsu>;
+def VQRSHRUN16: N2VNSh<1, 1, 0b001000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrun.s16", v8i8, v8i16, NEONvqrshrnsu>;
+def VQRSHRUN32: N2VNSh<1, 1, 0b010000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrun.s32", v4i16, v4i32, NEONvqrshrnsu>;
+def VQRSHRUN64: N2VNSh<1, 1, 0b100000, 0b1000, 0, 1, 1,
+ IIC_VSHLi4D, "vqrshrun.s64", v2i32, v2i64, NEONvqrshrnsu>;
// VSRA : Vector Shift Right and Accumulate
defm VSRAs : N2VShAdd_QHSD<0, 1, 0b0001, 1, "vsra.s", NEONvshrs>;
@@ -1230,15 +2166,19 @@ defm VSRI : N2VShIns_QHSD<1, 1, 0b0100, 1, "vsri.", NEONvsri>;
// Vector Absolute and Saturating Absolute.
// VABS : Vector Absolute Value
-defm VABS : N2VInt_QHS<0b11, 0b11, 0b01, 0b00110, 0, "vabs.s",
+defm VABS : N2VInt_QHS<0b11, 0b11, 0b01, 0b00110, 0,
+ IIC_VUNAiD, IIC_VUNAiQ, "vabs.s",
int_arm_neon_vabs>;
-def VABSfd : N2VDInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0, "vabs.f32",
- v2f32, v2f32, int_arm_neon_vabsf>;
-def VABSfq : N2VQInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0, "vabs.f32",
- v4f32, v4f32, int_arm_neon_vabsf>;
+def VABSfd : N2VDInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
+ IIC_VUNAD, "vabs.f32",
+ v2f32, v2f32, int_arm_neon_vabs>;
+def VABSfq : N2VQInt<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
+ IIC_VUNAQ, "vabs.f32",
+ v4f32, v4f32, int_arm_neon_vabs>;
// VQABS : Vector Saturating Absolute Value
-defm VQABS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01110, 0, "vqabs.s",
+defm VQABS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01110, 0,
+ IIC_VQUNAiD, IIC_VQUNAiQ, "vqabs.s",
int_arm_neon_vqabs>;
// Vector Negate.
@@ -1248,11 +2188,11 @@ def vneg_conv : PatFrag<(ops node:$in), (sub immAllZerosV_bc, node:$in)>;
class VNEGD<bits<2> size, string OpcodeStr, ValueType Ty>
: N2V<0b11, 0b11, size, 0b01, 0b00111, 0, 0, (outs DPR:$dst), (ins DPR:$src),
- !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ IIC_VSHLiD, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set DPR:$dst, (Ty (vneg DPR:$src)))]>;
class VNEGQ<bits<2> size, string OpcodeStr, ValueType Ty>
: N2V<0b11, 0b11, size, 0b01, 0b00111, 1, 0, (outs QPR:$dst), (ins QPR:$src),
- !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ IIC_VSHLiD, !strconcat(OpcodeStr, "\t$dst, $src"), "",
[(set QPR:$dst, (Ty (vneg QPR:$src)))]>;
// VNEG : Vector Negate
@@ -1265,10 +2205,12 @@ def VNEGs32q : VNEGQ<0b10, "vneg.s32", v4i32>;
// VNEG : Vector Negate (floating-point)
def VNEGf32d : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 0, 0,
- (outs DPR:$dst), (ins DPR:$src), "vneg.f32\t$dst, $src", "",
+ (outs DPR:$dst), (ins DPR:$src), IIC_VUNAD,
+ "vneg.f32\t$dst, $src", "",
[(set DPR:$dst, (v2f32 (fneg DPR:$src)))]>;
def VNEGf32q : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 1, 0,
- (outs QPR:$dst), (ins QPR:$src), "vneg.f32\t$dst, $src", "",
+ (outs QPR:$dst), (ins QPR:$src), IIC_VUNAQ,
+ "vneg.f32\t$dst, $src", "",
[(set QPR:$dst, (v4f32 (fneg QPR:$src)))]>;
def : Pat<(v8i8 (vneg_conv DPR:$src)), (VNEGs8d DPR:$src)>;
@@ -1279,21 +2221,26 @@ def : Pat<(v8i16 (vneg_conv QPR:$src)), (VNEGs16q QPR:$src)>;
def : Pat<(v4i32 (vneg_conv QPR:$src)), (VNEGs32q QPR:$src)>;
// VQNEG : Vector Saturating Negate
-defm VQNEG : N2VInt_QHS<0b11, 0b11, 0b00, 0b01111, 0, "vqneg.s",
+defm VQNEG : N2VInt_QHS<0b11, 0b11, 0b00, 0b01111, 0,
+ IIC_VQUNAiD, IIC_VQUNAiQ, "vqneg.s",
int_arm_neon_vqneg>;
// Vector Bit Counting Operations.
// VCLS : Vector Count Leading Sign Bits
-defm VCLS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01000, 0, "vcls.s",
+defm VCLS : N2VInt_QHS<0b11, 0b11, 0b00, 0b01000, 0,
+ IIC_VCNTiD, IIC_VCNTiQ, "vcls.s",
int_arm_neon_vcls>;
// VCLZ : Vector Count Leading Zeros
-defm VCLZ : N2VInt_QHS<0b11, 0b11, 0b00, 0b01001, 0, "vclz.i",
+defm VCLZ : N2VInt_QHS<0b11, 0b11, 0b00, 0b01001, 0,
+ IIC_VCNTiD, IIC_VCNTiQ, "vclz.i",
int_arm_neon_vclz>;
// VCNT : Vector Count One Bits
-def VCNTd : N2VDInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0, "vcnt.8",
+def VCNTd : N2VDInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
+ IIC_VCNTiD, "vcnt.8",
v8i8, v8i8, int_arm_neon_vcnt>;
-def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0, "vcnt.8",
+def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0,
+ IIC_VCNTiQ, "vcnt.8",
v16i8, v16i8, int_arm_neon_vcnt>;
// Vector Move Operations.
@@ -1301,9 +2248,9 @@ def VCNTq : N2VQInt<0b11, 0b11, 0b00, 0b00, 0b01010, 0, "vcnt.8",
// VMOV : Vector Move (Register)
def VMOVD : N3V<0, 0, 0b10, 0b0001, 0, 1, (outs DPR:$dst), (ins DPR:$src),
- "vmov\t$dst, $src", "", []>;
+ IIC_VMOVD, "vmov\t$dst, $src", "", []>;
def VMOVQ : N3V<0, 0, 0b10, 0b0001, 1, 1, (outs QPR:$dst), (ins QPR:$src),
- "vmov\t$dst, $src", "", []>;
+ IIC_VMOVD, "vmov\t$dst, $src", "", []>;
// VMOV : Vector Move (Immediate)
@@ -1343,146 +2290,188 @@ def vmovImm64 : PatLeaf<(build_vector), [{
// be encoded based on the immed values.
def VMOVv8i8 : N1ModImm<1, 0b000, 0b1110, 0, 0, 0, 1, (outs DPR:$dst),
- (ins i8imm:$SIMM), "vmov.i8\t$dst, $SIMM", "",
+ (ins i8imm:$SIMM), IIC_VMOVImm,
+ "vmov.i8\t$dst, $SIMM", "",
[(set DPR:$dst, (v8i8 vmovImm8:$SIMM))]>;
def VMOVv16i8 : N1ModImm<1, 0b000, 0b1110, 0, 1, 0, 1, (outs QPR:$dst),
- (ins i8imm:$SIMM), "vmov.i8\t$dst, $SIMM", "",
+ (ins i8imm:$SIMM), IIC_VMOVImm,
+ "vmov.i8\t$dst, $SIMM", "",
[(set QPR:$dst, (v16i8 vmovImm8:$SIMM))]>;
def VMOVv4i16 : N1ModImm<1, 0b000, 0b1000, 0, 0, 0, 1, (outs DPR:$dst),
- (ins i16imm:$SIMM), "vmov.i16\t$dst, $SIMM", "",
+ (ins i16imm:$SIMM), IIC_VMOVImm,
+ "vmov.i16\t$dst, $SIMM", "",
[(set DPR:$dst, (v4i16 vmovImm16:$SIMM))]>;
def VMOVv8i16 : N1ModImm<1, 0b000, 0b1000, 0, 1, 0, 1, (outs QPR:$dst),
- (ins i16imm:$SIMM), "vmov.i16\t$dst, $SIMM", "",
+ (ins i16imm:$SIMM), IIC_VMOVImm,
+ "vmov.i16\t$dst, $SIMM", "",
[(set QPR:$dst, (v8i16 vmovImm16:$SIMM))]>;
def VMOVv2i32 : N1ModImm<1, 0b000, 0b0000, 0, 0, 0, 1, (outs DPR:$dst),
- (ins i32imm:$SIMM), "vmov.i32\t$dst, $SIMM", "",
+ (ins i32imm:$SIMM), IIC_VMOVImm,
+ "vmov.i32\t$dst, $SIMM", "",
[(set DPR:$dst, (v2i32 vmovImm32:$SIMM))]>;
def VMOVv4i32 : N1ModImm<1, 0b000, 0b0000, 0, 1, 0, 1, (outs QPR:$dst),
- (ins i32imm:$SIMM), "vmov.i32\t$dst, $SIMM", "",
+ (ins i32imm:$SIMM), IIC_VMOVImm,
+ "vmov.i32\t$dst, $SIMM", "",
[(set QPR:$dst, (v4i32 vmovImm32:$SIMM))]>;
def VMOVv1i64 : N1ModImm<1, 0b000, 0b1110, 0, 0, 1, 1, (outs DPR:$dst),
- (ins i64imm:$SIMM), "vmov.i64\t$dst, $SIMM", "",
+ (ins i64imm:$SIMM), IIC_VMOVImm,
+ "vmov.i64\t$dst, $SIMM", "",
[(set DPR:$dst, (v1i64 vmovImm64:$SIMM))]>;
def VMOVv2i64 : N1ModImm<1, 0b000, 0b1110, 0, 1, 1, 1, (outs QPR:$dst),
- (ins i64imm:$SIMM), "vmov.i64\t$dst, $SIMM", "",
+ (ins i64imm:$SIMM), IIC_VMOVImm,
+ "vmov.i64\t$dst, $SIMM", "",
[(set QPR:$dst, (v2i64 vmovImm64:$SIMM))]>;
// VMOV : Vector Get Lane (move scalar to ARM core register)
def VGETLNs8 : NVGetLane<0b11100101, 0b1011, 0b00,
- (outs GPR:$dst), (ins DPR:$src, i32imm:$lane),
- "vmov", ".s8\t$dst, $src[$lane]",
+ (outs GPR:$dst), (ins DPR:$src, nohash_imm:$lane),
+ IIC_VMOVSI, "vmov", ".s8\t$dst, $src[$lane]",
[(set GPR:$dst, (NEONvgetlanes (v8i8 DPR:$src),
imm:$lane))]>;
def VGETLNs16 : NVGetLane<0b11100001, 0b1011, 0b01,
- (outs GPR:$dst), (ins DPR:$src, i32imm:$lane),
- "vmov", ".s16\t$dst, $src[$lane]",
+ (outs GPR:$dst), (ins DPR:$src, nohash_imm:$lane),
+ IIC_VMOVSI, "vmov", ".s16\t$dst, $src[$lane]",
[(set GPR:$dst, (NEONvgetlanes (v4i16 DPR:$src),
imm:$lane))]>;
def VGETLNu8 : NVGetLane<0b11101101, 0b1011, 0b00,
- (outs GPR:$dst), (ins DPR:$src, i32imm:$lane),
- "vmov", ".u8\t$dst, $src[$lane]",
+ (outs GPR:$dst), (ins DPR:$src, nohash_imm:$lane),
+ IIC_VMOVSI, "vmov", ".u8\t$dst, $src[$lane]",
[(set GPR:$dst, (NEONvgetlaneu (v8i8 DPR:$src),
imm:$lane))]>;
def VGETLNu16 : NVGetLane<0b11101001, 0b1011, 0b01,
- (outs GPR:$dst), (ins DPR:$src, i32imm:$lane),
- "vmov", ".u16\t$dst, $src[$lane]",
+ (outs GPR:$dst), (ins DPR:$src, nohash_imm:$lane),
+ IIC_VMOVSI, "vmov", ".u16\t$dst, $src[$lane]",
[(set GPR:$dst, (NEONvgetlaneu (v4i16 DPR:$src),
imm:$lane))]>;
def VGETLNi32 : NVGetLane<0b11100001, 0b1011, 0b00,
- (outs GPR:$dst), (ins DPR:$src, i32imm:$lane),
- "vmov", ".32\t$dst, $src[$lane]",
+ (outs GPR:$dst), (ins DPR:$src, nohash_imm:$lane),
+ IIC_VMOVSI, "vmov", ".32\t$dst, $src[$lane]",
[(set GPR:$dst, (extractelt (v2i32 DPR:$src),
imm:$lane))]>;
// def VGETLNf32: see FMRDH and FMRDL in ARMInstrVFP.td
def : Pat<(NEONvgetlanes (v16i8 QPR:$src), imm:$lane),
(VGETLNs8 (v8i8 (EXTRACT_SUBREG QPR:$src,
- (SubReg_i8_reg imm:$lane))),
+ (DSubReg_i8_reg imm:$lane))),
(SubReg_i8_lane imm:$lane))>;
def : Pat<(NEONvgetlanes (v8i16 QPR:$src), imm:$lane),
(VGETLNs16 (v4i16 (EXTRACT_SUBREG QPR:$src,
- (SubReg_i16_reg imm:$lane))),
+ (DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane))>;
def : Pat<(NEONvgetlaneu (v16i8 QPR:$src), imm:$lane),
(VGETLNu8 (v8i8 (EXTRACT_SUBREG QPR:$src,
- (SubReg_i8_reg imm:$lane))),
+ (DSubReg_i8_reg imm:$lane))),
(SubReg_i8_lane imm:$lane))>;
def : Pat<(NEONvgetlaneu (v8i16 QPR:$src), imm:$lane),
(VGETLNu16 (v4i16 (EXTRACT_SUBREG QPR:$src,
- (SubReg_i16_reg imm:$lane))),
+ (DSubReg_i16_reg imm:$lane))),
(SubReg_i16_lane imm:$lane))>;
def : Pat<(extractelt (v4i32 QPR:$src), imm:$lane),
(VGETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src,
- (SubReg_i32_reg imm:$lane))),
+ (DSubReg_i32_reg imm:$lane))),
(SubReg_i32_lane imm:$lane))>;
+def : Pat<(extractelt (v2f32 DPR:$src1), imm:$src2),
+ (EXTRACT_SUBREG (COPY_TO_REGCLASS DPR:$src1, DPR_VFP2),
+ (SSubReg_f32_reg imm:$src2))>;
+def : Pat<(extractelt (v4f32 QPR:$src1), imm:$src2),
+ (EXTRACT_SUBREG (COPY_TO_REGCLASS QPR:$src1, QPR_VFP2),
+ (SSubReg_f32_reg imm:$src2))>;
//def : Pat<(extractelt (v2i64 QPR:$src1), imm:$src2),
-// (EXTRACT_SUBREG QPR:$src1, (SubReg_f64_reg imm:$src2))>;
+// (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
def : Pat<(extractelt (v2f64 QPR:$src1), imm:$src2),
- (EXTRACT_SUBREG QPR:$src1, (SubReg_f64_reg imm:$src2))>;
+ (EXTRACT_SUBREG QPR:$src1, (DSubReg_f64_reg imm:$src2))>;
// VMOV : Vector Set Lane (move ARM core register to scalar)
let Constraints = "$src1 = $dst" in {
def VSETLNi8 : NVSetLane<0b11100100, 0b1011, 0b00, (outs DPR:$dst),
- (ins DPR:$src1, GPR:$src2, i32imm:$lane),
- "vmov", ".8\t$dst[$lane], $src2",
+ (ins DPR:$src1, GPR:$src2, nohash_imm:$lane),
+ IIC_VMOVISL, "vmov", ".8\t$dst[$lane], $src2",
[(set DPR:$dst, (vector_insert (v8i8 DPR:$src1),
GPR:$src2, imm:$lane))]>;
def VSETLNi16 : NVSetLane<0b11100000, 0b1011, 0b01, (outs DPR:$dst),
- (ins DPR:$src1, GPR:$src2, i32imm:$lane),
- "vmov", ".16\t$dst[$lane], $src2",
+ (ins DPR:$src1, GPR:$src2, nohash_imm:$lane),
+ IIC_VMOVISL, "vmov", ".16\t$dst[$lane], $src2",
[(set DPR:$dst, (vector_insert (v4i16 DPR:$src1),
GPR:$src2, imm:$lane))]>;
def VSETLNi32 : NVSetLane<0b11100000, 0b1011, 0b00, (outs DPR:$dst),
- (ins DPR:$src1, GPR:$src2, i32imm:$lane),
- "vmov", ".32\t$dst[$lane], $src2",
+ (ins DPR:$src1, GPR:$src2, nohash_imm:$lane),
+ IIC_VMOVISL, "vmov", ".32\t$dst[$lane], $src2",
[(set DPR:$dst, (insertelt (v2i32 DPR:$src1),
GPR:$src2, imm:$lane))]>;
}
def : Pat<(vector_insert (v16i8 QPR:$src1), GPR:$src2, imm:$lane),
(v16i8 (INSERT_SUBREG QPR:$src1,
(VSETLNi8 (v8i8 (EXTRACT_SUBREG QPR:$src1,
- (SubReg_i8_reg imm:$lane))),
+ (DSubReg_i8_reg imm:$lane))),
GPR:$src2, (SubReg_i8_lane imm:$lane)),
- (SubReg_i8_reg imm:$lane)))>;
+ (DSubReg_i8_reg imm:$lane)))>;
def : Pat<(vector_insert (v8i16 QPR:$src1), GPR:$src2, imm:$lane),
(v8i16 (INSERT_SUBREG QPR:$src1,
(VSETLNi16 (v4i16 (EXTRACT_SUBREG QPR:$src1,
- (SubReg_i16_reg imm:$lane))),
+ (DSubReg_i16_reg imm:$lane))),
GPR:$src2, (SubReg_i16_lane imm:$lane)),
- (SubReg_i16_reg imm:$lane)))>;
+ (DSubReg_i16_reg imm:$lane)))>;
def : Pat<(insertelt (v4i32 QPR:$src1), GPR:$src2, imm:$lane),
(v4i32 (INSERT_SUBREG QPR:$src1,
(VSETLNi32 (v2i32 (EXTRACT_SUBREG QPR:$src1,
- (SubReg_i32_reg imm:$lane))),
+ (DSubReg_i32_reg imm:$lane))),
GPR:$src2, (SubReg_i32_lane imm:$lane)),
- (SubReg_i32_reg imm:$lane)))>;
+ (DSubReg_i32_reg imm:$lane)))>;
+
+def : Pat<(v2f32 (insertelt DPR:$src1, SPR:$src2, imm:$src3)),
+ (INSERT_SUBREG (COPY_TO_REGCLASS DPR:$src1, DPR_VFP2),
+ SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
+def : Pat<(v4f32 (insertelt QPR:$src1, SPR:$src2, imm:$src3)),
+ (INSERT_SUBREG (COPY_TO_REGCLASS QPR:$src1, QPR_VFP2),
+ SPR:$src2, (SSubReg_f32_reg imm:$src3))>;
//def : Pat<(v2i64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
-// (INSERT_SUBREG QPR:$src1, DPR:$src2, (SubReg_f64_reg imm:$src3))>;
+// (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
def : Pat<(v2f64 (insertelt QPR:$src1, DPR:$src2, imm:$src3)),
- (INSERT_SUBREG QPR:$src1, DPR:$src2, (SubReg_f64_reg imm:$src3))>;
+ (INSERT_SUBREG QPR:$src1, DPR:$src2, (DSubReg_f64_reg imm:$src3))>;
+
+def : Pat<(v2f32 (scalar_to_vector SPR:$src)),
+ (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), SPR:$src, arm_ssubreg_0)>;
+def : Pat<(v2f64 (scalar_to_vector DPR:$src)),
+ (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), DPR:$src, arm_dsubreg_0)>;
+def : Pat<(v4f32 (scalar_to_vector SPR:$src)),
+ (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, arm_ssubreg_0)>;
+
+def : Pat<(v8i8 (scalar_to_vector GPR:$src)),
+ (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+def : Pat<(v4i16 (scalar_to_vector GPR:$src)),
+ (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+def : Pat<(v2i32 (scalar_to_vector GPR:$src)),
+ (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0))>;
+
+def : Pat<(v16i8 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
+ (VSETLNi8 (v8i8 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ arm_dsubreg_0)>;
+def : Pat<(v8i16 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
+ (VSETLNi16 (v4i16 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ arm_dsubreg_0)>;
+def : Pat<(v4i32 (scalar_to_vector GPR:$src)),
+ (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
+ (VSETLNi32 (v2i32 (IMPLICIT_DEF)), GPR:$src, (i32 0)),
+ arm_dsubreg_0)>;
// VDUP : Vector Duplicate (from ARM core register to all elements)
-def splat_lo : PatFrag<(ops node:$lhs, node:$rhs),
- (vector_shuffle node:$lhs, node:$rhs), [{
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- return SVOp->isSplat() && SVOp->getSplatIndex() == 0;
-}]>;
-
class VDUPD<bits<8> opcod1, bits<2> opcod3, string asmSize, ValueType Ty>
: NVDup<opcod1, 0b1011, opcod3, (outs DPR:$dst), (ins GPR:$src),
- "vdup", !strconcat(asmSize, "\t$dst, $src"),
- [(set DPR:$dst, (Ty (splat_lo (scalar_to_vector GPR:$src), undef)))]>;
+ IIC_VMOVIS, "vdup", !strconcat(asmSize, "\t$dst, $src"),
+ [(set DPR:$dst, (Ty (NEONvdup (i32 GPR:$src))))]>;
class VDUPQ<bits<8> opcod1, bits<2> opcod3, string asmSize, ValueType Ty>
: NVDup<opcod1, 0b1011, opcod3, (outs QPR:$dst), (ins GPR:$src),
- "vdup", !strconcat(asmSize, "\t$dst, $src"),
- [(set QPR:$dst, (Ty (splat_lo (scalar_to_vector GPR:$src), undef)))]>;
+ IIC_VMOVIS, "vdup", !strconcat(asmSize, "\t$dst, $src"),
+ [(set QPR:$dst, (Ty (NEONvdup (i32 GPR:$src))))]>;
def VDUP8d : VDUPD<0b11101100, 0b00, ".8", v8i8>;
def VDUP16d : VDUPD<0b11101000, 0b01, ".16", v4i16>;
@@ -1492,45 +2481,28 @@ def VDUP16q : VDUPQ<0b11101010, 0b01, ".16", v8i16>;
def VDUP32q : VDUPQ<0b11101010, 0b00, ".32", v4i32>;
def VDUPfd : NVDup<0b11101000, 0b1011, 0b00, (outs DPR:$dst), (ins GPR:$src),
- "vdup", ".32\t$dst, $src",
- [(set DPR:$dst, (v2f32 (splat_lo
- (scalar_to_vector
- (f32 (bitconvert GPR:$src))),
- undef)))]>;
+ IIC_VMOVIS, "vdup", ".32\t$dst, $src",
+ [(set DPR:$dst, (v2f32 (NEONvdup
+ (f32 (bitconvert GPR:$src)))))]>;
def VDUPfq : NVDup<0b11101010, 0b1011, 0b00, (outs QPR:$dst), (ins GPR:$src),
- "vdup", ".32\t$dst, $src",
- [(set QPR:$dst, (v4f32 (splat_lo
- (scalar_to_vector
- (f32 (bitconvert GPR:$src))),
- undef)))]>;
+ IIC_VMOVIS, "vdup", ".32\t$dst, $src",
+ [(set QPR:$dst, (v4f32 (NEONvdup
+ (f32 (bitconvert GPR:$src)))))]>;
// VDUP : Vector Duplicate Lane (from scalar to all elements)
-def SHUFFLE_get_splat_lane : SDNodeXForm<vector_shuffle, [{
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- return CurDAG->getTargetConstant(SVOp->getSplatIndex(), MVT::i32);
-}]>;
-
-def splat_lane : PatFrag<(ops node:$lhs, node:$rhs),
- (vector_shuffle node:$lhs, node:$rhs), [{
- ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
- return SVOp->isSplat();
-}], SHUFFLE_get_splat_lane>;
-
class VDUPLND<bits<2> op19_18, bits<2> op17_16, string OpcodeStr, ValueType Ty>
: N2V<0b11, 0b11, op19_18, op17_16, 0b11000, 0, 0,
- (outs DPR:$dst), (ins DPR:$src, i32imm:$lane),
+ (outs DPR:$dst), (ins DPR:$src, nohash_imm:$lane), IIC_VMOVD,
!strconcat(OpcodeStr, "\t$dst, $src[$lane]"), "",
- [(set DPR:$dst, (Ty (splat_lane:$lane DPR:$src, undef)))]>;
+ [(set DPR:$dst, (Ty (NEONvduplane (Ty DPR:$src), imm:$lane)))]>;
-// vector_shuffle requires that the source and destination types match, so
-// VDUP to a 128-bit result uses a target-specific VDUPLANEQ node.
class VDUPLNQ<bits<2> op19_18, bits<2> op17_16, string OpcodeStr,
ValueType ResTy, ValueType OpTy>
: N2V<0b11, 0b11, op19_18, op17_16, 0b11000, 1, 0,
- (outs QPR:$dst), (ins DPR:$src, i32imm:$lane),
+ (outs QPR:$dst), (ins DPR:$src, nohash_imm:$lane), IIC_VMOVD,
!strconcat(OpcodeStr, "\t$dst, $src[$lane]"), "",
- [(set QPR:$dst, (ResTy (NEONvduplaneq (OpTy DPR:$src), imm:$lane)))]>;
+ [(set QPR:$dst, (ResTy (NEONvduplane (OpTy DPR:$src), imm:$lane)))]>;
def VDUPLN8d : VDUPLND<0b00, 0b01, "vdup.8", v8i8>;
def VDUPLN16d : VDUPLND<0b00, 0b10, "vdup.16", v4i16>;
@@ -1541,15 +2513,51 @@ def VDUPLN16q : VDUPLNQ<0b00, 0b10, "vdup.16", v8i16, v4i16>;
def VDUPLN32q : VDUPLNQ<0b01, 0b00, "vdup.32", v4i32, v2i32>;
def VDUPLNfq : VDUPLNQ<0b01, 0b00, "vdup.32", v4f32, v2f32>;
+def : Pat<(v16i8 (NEONvduplane (v16i8 QPR:$src), imm:$lane)),
+ (v16i8 (VDUPLN8q (v8i8 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i8_reg imm:$lane))),
+ (SubReg_i8_lane imm:$lane)))>;
+def : Pat<(v8i16 (NEONvduplane (v8i16 QPR:$src), imm:$lane)),
+ (v8i16 (VDUPLN16q (v4i16 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i16_reg imm:$lane))),
+ (SubReg_i16_lane imm:$lane)))>;
+def : Pat<(v4i32 (NEONvduplane (v4i32 QPR:$src), imm:$lane)),
+ (v4i32 (VDUPLN32q (v2i32 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+def : Pat<(v4f32 (NEONvduplane (v4f32 QPR:$src), imm:$lane)),
+ (v4f32 (VDUPLNfq (v2f32 (EXTRACT_SUBREG QPR:$src,
+ (DSubReg_i32_reg imm:$lane))),
+ (SubReg_i32_lane imm:$lane)))>;
+
+def VDUPfdf : N2V<0b11, 0b11, 0b01, 0b00, 0b11000, 0, 0,
+ (outs DPR:$dst), (ins SPR:$src),
+ IIC_VMOVD, "vdup.32\t$dst, ${src:lane}", "",
+ [(set DPR:$dst, (v2f32 (NEONvdup (f32 SPR:$src))))]>;
+
+def VDUPfqf : N2V<0b11, 0b11, 0b01, 0b00, 0b11000, 1, 0,
+ (outs QPR:$dst), (ins SPR:$src),
+ IIC_VMOVD, "vdup.32\t$dst, ${src:lane}", "",
+ [(set QPR:$dst, (v4f32 (NEONvdup (f32 SPR:$src))))]>;
+
+def : Pat<(v2i64 (NEONvduplane (v2i64 QPR:$src), imm:$lane)),
+ (INSERT_SUBREG QPR:$src,
+ (i64 (EXTRACT_SUBREG QPR:$src, (DSubReg_f64_reg imm:$lane))),
+ (DSubReg_f64_other_reg imm:$lane))>;
+def : Pat<(v2f64 (NEONvduplane (v2f64 QPR:$src), imm:$lane)),
+ (INSERT_SUBREG QPR:$src,
+ (f64 (EXTRACT_SUBREG QPR:$src, (DSubReg_f64_reg imm:$lane))),
+ (DSubReg_f64_other_reg imm:$lane))>;
+
// VMOVN : Vector Narrowing Move
-defm VMOVN : N2VNInt_HSD<0b11,0b11,0b10,0b00100,0,0, "vmovn.i",
+defm VMOVN : N2VNInt_HSD<0b11,0b11,0b10,0b00100,0,0, IIC_VMOVD, "vmovn.i",
int_arm_neon_vmovn>;
// VQMOVN : Vector Saturating Narrowing Move
-defm VQMOVNs : N2VNInt_HSD<0b11,0b11,0b10,0b00101,0,0, "vqmovn.s",
+defm VQMOVNs : N2VNInt_HSD<0b11,0b11,0b10,0b00101,0,0, IIC_VQUNAiD, "vqmovn.s",
int_arm_neon_vqmovns>;
-defm VQMOVNu : N2VNInt_HSD<0b11,0b11,0b10,0b00101,1,0, "vqmovn.u",
+defm VQMOVNu : N2VNInt_HSD<0b11,0b11,0b10,0b00101,1,0, IIC_VQUNAiD, "vqmovn.u",
int_arm_neon_vqmovnu>;
-defm VQMOVNsu : N2VNInt_HSD<0b11,0b11,0b10,0b00100,1,0, "vqmovun.s",
+defm VQMOVNsu : N2VNInt_HSD<0b11,0b11,0b10,0b00100,1,0, IIC_VQUNAiD, "vqmovun.s",
int_arm_neon_vqmovnsu>;
// VMOVL : Vector Lengthening Move
defm VMOVLs : N2VLInt_QHS<0,1,0b1010,0,0,1, "vmovl.s", int_arm_neon_vmovls>;
@@ -1597,6 +2605,247 @@ def VCVTxs2fq : N2VCvtQ<0, 1, 0b000000, 0b1110, 0, 1, "vcvt.f32.s32",
def VCVTxu2fq : N2VCvtQ<1, 1, 0b000000, 0b1110, 0, 1, "vcvt.f32.u32",
v4f32, v4i32, int_arm_neon_vcvtfxu2fp>;
+// Vector Reverse.
+
+// VREV64 : Vector Reverse elements within 64-bit doublewords
+
+class VREV64D<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 0, 0, (outs DPR:$dst),
+ (ins DPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set DPR:$dst, (Ty (NEONvrev64 (Ty DPR:$src))))]>;
+class VREV64Q<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00000, 1, 0, (outs QPR:$dst),
+ (ins QPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set QPR:$dst, (Ty (NEONvrev64 (Ty QPR:$src))))]>;
+
+def VREV64d8 : VREV64D<0b00, "vrev64.8", v8i8>;
+def VREV64d16 : VREV64D<0b01, "vrev64.16", v4i16>;
+def VREV64d32 : VREV64D<0b10, "vrev64.32", v2i32>;
+def VREV64df : VREV64D<0b10, "vrev64.32", v2f32>;
+
+def VREV64q8 : VREV64Q<0b00, "vrev64.8", v16i8>;
+def VREV64q16 : VREV64Q<0b01, "vrev64.16", v8i16>;
+def VREV64q32 : VREV64Q<0b10, "vrev64.32", v4i32>;
+def VREV64qf : VREV64Q<0b10, "vrev64.32", v4f32>;
+
+// VREV32 : Vector Reverse elements within 32-bit words
+
+class VREV32D<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 0, 0, (outs DPR:$dst),
+ (ins DPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set DPR:$dst, (Ty (NEONvrev32 (Ty DPR:$src))))]>;
+class VREV32Q<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00001, 1, 0, (outs QPR:$dst),
+ (ins QPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set QPR:$dst, (Ty (NEONvrev32 (Ty QPR:$src))))]>;
+
+def VREV32d8 : VREV32D<0b00, "vrev32.8", v8i8>;
+def VREV32d16 : VREV32D<0b01, "vrev32.16", v4i16>;
+
+def VREV32q8 : VREV32Q<0b00, "vrev32.8", v16i8>;
+def VREV32q16 : VREV32Q<0b01, "vrev32.16", v8i16>;
+
+// VREV16 : Vector Reverse elements within 16-bit halfwords
+
+class VREV16D<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 0, 0, (outs DPR:$dst),
+ (ins DPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set DPR:$dst, (Ty (NEONvrev16 (Ty DPR:$src))))]>;
+class VREV16Q<bits<2> op19_18, string OpcodeStr, ValueType Ty>
+ : N2V<0b11, 0b11, op19_18, 0b00, 0b00010, 1, 0, (outs QPR:$dst),
+ (ins QPR:$src), IIC_VMOVD,
+ !strconcat(OpcodeStr, "\t$dst, $src"), "",
+ [(set QPR:$dst, (Ty (NEONvrev16 (Ty QPR:$src))))]>;
+
+def VREV16d8 : VREV16D<0b00, "vrev16.8", v8i8>;
+def VREV16q8 : VREV16Q<0b00, "vrev16.8", v16i8>;
+
+// Other Vector Shuffles.
+
+// VEXT : Vector Extract
+
+class VEXTd<string OpcodeStr, ValueType Ty>
+ : N3V<0,1,0b11,0b0000,0,0, (outs DPR:$dst),
+ (ins DPR:$lhs, DPR:$rhs, i32imm:$index), IIC_VEXTD,
+ !strconcat(OpcodeStr, "\t$dst, $lhs, $rhs, $index"), "",
+ [(set DPR:$dst, (Ty (NEONvext (Ty DPR:$lhs),
+ (Ty DPR:$rhs), imm:$index)))]>;
+
+class VEXTq<string OpcodeStr, ValueType Ty>
+ : N3V<0,1,0b11,0b0000,1,0, (outs QPR:$dst),
+ (ins QPR:$lhs, QPR:$rhs, i32imm:$index), IIC_VEXTQ,
+ !strconcat(OpcodeStr, "\t$dst, $lhs, $rhs, $index"), "",
+ [(set QPR:$dst, (Ty (NEONvext (Ty QPR:$lhs),
+ (Ty QPR:$rhs), imm:$index)))]>;
+
+def VEXTd8 : VEXTd<"vext.8", v8i8>;
+def VEXTd16 : VEXTd<"vext.16", v4i16>;
+def VEXTd32 : VEXTd<"vext.32", v2i32>;
+def VEXTdf : VEXTd<"vext.32", v2f32>;
+
+def VEXTq8 : VEXTq<"vext.8", v16i8>;
+def VEXTq16 : VEXTq<"vext.16", v8i16>;
+def VEXTq32 : VEXTq<"vext.32", v4i32>;
+def VEXTqf : VEXTq<"vext.32", v4f32>;
+
+// VTRN : Vector Transpose
+
+def VTRNd8 : N2VDShuffle<0b00, 0b00001, "vtrn.8">;
+def VTRNd16 : N2VDShuffle<0b01, 0b00001, "vtrn.16">;
+def VTRNd32 : N2VDShuffle<0b10, 0b00001, "vtrn.32">;
+
+def VTRNq8 : N2VQShuffle<0b00, 0b00001, IIC_VPERMQ, "vtrn.8">;
+def VTRNq16 : N2VQShuffle<0b01, 0b00001, IIC_VPERMQ, "vtrn.16">;
+def VTRNq32 : N2VQShuffle<0b10, 0b00001, IIC_VPERMQ, "vtrn.32">;
+
+// VUZP : Vector Unzip (Deinterleave)
+
+def VUZPd8 : N2VDShuffle<0b00, 0b00010, "vuzp.8">;
+def VUZPd16 : N2VDShuffle<0b01, 0b00010, "vuzp.16">;
+def VUZPd32 : N2VDShuffle<0b10, 0b00010, "vuzp.32">;
+
+def VUZPq8 : N2VQShuffle<0b00, 0b00010, IIC_VPERMQ3, "vuzp.8">;
+def VUZPq16 : N2VQShuffle<0b01, 0b00010, IIC_VPERMQ3, "vuzp.16">;
+def VUZPq32 : N2VQShuffle<0b10, 0b00010, IIC_VPERMQ3, "vuzp.32">;
+
+// VZIP : Vector Zip (Interleave)
+
+def VZIPd8 : N2VDShuffle<0b00, 0b00011, "vzip.8">;
+def VZIPd16 : N2VDShuffle<0b01, 0b00011, "vzip.16">;
+def VZIPd32 : N2VDShuffle<0b10, 0b00011, "vzip.32">;
+
+def VZIPq8 : N2VQShuffle<0b00, 0b00011, IIC_VPERMQ3, "vzip.8">;
+def VZIPq16 : N2VQShuffle<0b01, 0b00011, IIC_VPERMQ3, "vzip.16">;
+def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip.32">;
+
+// Vector Table Lookup and Table Extension.
+
+// VTBL : Vector Table Lookup
+def VTBL1
+ : N3V<1,1,0b11,0b1000,0,0, (outs DPR:$dst),
+ (ins DPR:$tbl1, DPR:$src), IIC_VTB1,
+ "vtbl.8\t$dst, \\{$tbl1\\}, $src", "",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbl1 DPR:$tbl1, DPR:$src)))]>;
+let hasExtraSrcRegAllocReq = 1 in {
+def VTBL2
+ : N3V<1,1,0b11,0b1001,0,0, (outs DPR:$dst),
+ (ins DPR:$tbl1, DPR:$tbl2, DPR:$src), IIC_VTB2,
+ "vtbl.8\t$dst, \\{$tbl1,$tbl2\\}, $src", "",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbl2
+ DPR:$tbl1, DPR:$tbl2, DPR:$src)))]>;
+def VTBL3
+ : N3V<1,1,0b11,0b1010,0,0, (outs DPR:$dst),
+ (ins DPR:$tbl1, DPR:$tbl2, DPR:$tbl3, DPR:$src), IIC_VTB3,
+ "vtbl.8\t$dst, \\{$tbl1,$tbl2,$tbl3\\}, $src", "",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbl3
+ DPR:$tbl1, DPR:$tbl2, DPR:$tbl3, DPR:$src)))]>;
+def VTBL4
+ : N3V<1,1,0b11,0b1011,0,0, (outs DPR:$dst),
+ (ins DPR:$tbl1, DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src), IIC_VTB4,
+ "vtbl.8\t$dst, \\{$tbl1,$tbl2,$tbl3,$tbl4\\}, $src", "",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbl4 DPR:$tbl1, DPR:$tbl2,
+ DPR:$tbl3, DPR:$tbl4, DPR:$src)))]>;
+} // hasExtraSrcRegAllocReq = 1
+
+// VTBX : Vector Table Extension
+def VTBX1
+ : N3V<1,1,0b11,0b1000,1,0, (outs DPR:$dst),
+ (ins DPR:$orig, DPR:$tbl1, DPR:$src), IIC_VTBX1,
+ "vtbx.8\t$dst, \\{$tbl1\\}, $src", "$orig = $dst",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbx1
+ DPR:$orig, DPR:$tbl1, DPR:$src)))]>;
+let hasExtraSrcRegAllocReq = 1 in {
+def VTBX2
+ : N3V<1,1,0b11,0b1001,1,0, (outs DPR:$dst),
+ (ins DPR:$orig, DPR:$tbl1, DPR:$tbl2, DPR:$src), IIC_VTBX2,
+ "vtbx.8\t$dst, \\{$tbl1,$tbl2\\}, $src", "$orig = $dst",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbx2
+ DPR:$orig, DPR:$tbl1, DPR:$tbl2, DPR:$src)))]>;
+def VTBX3
+ : N3V<1,1,0b11,0b1010,1,0, (outs DPR:$dst),
+ (ins DPR:$orig, DPR:$tbl1, DPR:$tbl2, DPR:$tbl3, DPR:$src), IIC_VTBX3,
+ "vtbx.8\t$dst, \\{$tbl1,$tbl2,$tbl3\\}, $src", "$orig = $dst",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbx3 DPR:$orig, DPR:$tbl1,
+ DPR:$tbl2, DPR:$tbl3, DPR:$src)))]>;
+def VTBX4
+ : N3V<1,1,0b11,0b1011,1,0, (outs DPR:$dst), (ins DPR:$orig, DPR:$tbl1,
+ DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src), IIC_VTBX4,
+ "vtbx.8\t$dst, \\{$tbl1,$tbl2,$tbl3,$tbl4\\}, $src", "$orig = $dst",
+ [(set DPR:$dst, (v8i8 (int_arm_neon_vtbx4 DPR:$orig, DPR:$tbl1,
+ DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src)))]>;
+} // hasExtraSrcRegAllocReq = 1
+
+//===----------------------------------------------------------------------===//
+// NEON instructions for single-precision FP math
+//===----------------------------------------------------------------------===//
+
+// These need separate instructions because they must use DPR_VFP2 register
+// class which have SPR sub-registers.
+
+// Vector Add Operations used for single-precision FP
+let neverHasSideEffects = 1 in
+def VADDfd_sfp : N3VDs<0, 0, 0b00, 0b1101, 0, "vadd.f32", v2f32, v2f32, fadd,1>;
+def : N3VDsPat<fadd, VADDfd_sfp>;
+
+// Vector Sub Operations used for single-precision FP
+let neverHasSideEffects = 1 in
+def VSUBfd_sfp : N3VDs<0, 0, 0b10, 0b1101, 0, "vsub.f32", v2f32, v2f32, fsub,0>;
+def : N3VDsPat<fsub, VSUBfd_sfp>;
+
+// Vector Multiply Operations used for single-precision FP
+let neverHasSideEffects = 1 in
+def VMULfd_sfp : N3VDs<1, 0, 0b00, 0b1101, 1, "vmul.f32", v2f32, v2f32, fmul,1>;
+def : N3VDsPat<fmul, VMULfd_sfp>;
+
+// Vector Multiply-Accumulate/Subtract used for single-precision FP
+let neverHasSideEffects = 1 in
+def VMLAfd_sfp : N3VDMulOps<0, 0, 0b00, 0b1101, 1, IIC_VMACD, "vmla.f32", v2f32,fmul,fadd>;
+def : N3VDMulOpsPat<fmul, fadd, VMLAfd_sfp>;
+
+let neverHasSideEffects = 1 in
+def VMLSfd_sfp : N3VDMulOps<0, 0, 0b10, 0b1101, 1, IIC_VMACD, "vmls.f32", v2f32,fmul,fsub>;
+def : N3VDMulOpsPat<fmul, fsub, VMLSfd_sfp>;
+
+// Vector Absolute used for single-precision FP
+let neverHasSideEffects = 1 in
+def VABSfd_sfp : N2VDInts<0b11, 0b11, 0b10, 0b01, 0b01110, 0,
+ IIC_VUNAD, "vabs.f32",
+ v2f32, v2f32, int_arm_neon_vabs>;
+def : N2VDIntsPat<fabs, VABSfd_sfp>;
+
+// Vector Negate used for single-precision FP
+let neverHasSideEffects = 1 in
+def VNEGf32d_sfp : N2V<0b11, 0b11, 0b10, 0b01, 0b01111, 0, 0,
+ (outs DPR_VFP2:$dst), (ins DPR_VFP2:$src), IIC_VUNAD,
+ "vneg.f32\t$dst, $src", "", []>;
+def : N2VDIntsPat<fneg, VNEGf32d_sfp>;
+
+// Vector Convert between single-precision FP and integer
+let neverHasSideEffects = 1 in
+def VCVTf2sd_sfp : N2VDs<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt.s32.f32",
+ v2i32, v2f32, fp_to_sint>;
+def : N2VDsPat<arm_ftosi, f32, v2f32, VCVTf2sd_sfp>;
+
+let neverHasSideEffects = 1 in
+def VCVTf2ud_sfp : N2VDs<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt.u32.f32",
+ v2i32, v2f32, fp_to_uint>;
+def : N2VDsPat<arm_ftoui, f32, v2f32, VCVTf2ud_sfp>;
+
+let neverHasSideEffects = 1 in
+def VCVTs2fd_sfp : N2VDs<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt.f32.s32",
+ v2f32, v2i32, sint_to_fp>;
+def : N2VDsPat<arm_sitof, f32, v2i32, VCVTs2fd_sfp>;
+
+let neverHasSideEffects = 1 in
+def VCVTu2fd_sfp : N2VDs<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt.f32.u32",
+ v2f32, v2i32, uint_to_fp>;
+def : N2VDsPat<arm_uitof, f32, v2i32, VCVTu2fd_sfp>;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/ARM/ARMInstrThumb.td b/lib/Target/ARM/ARMInstrThumb.td
index 904d9b1..9816add 100644
--- a/lib/Target/ARM/ARMInstrThumb.td
+++ b/lib/Target/ARM/ARMInstrThumb.td
@@ -117,86 +117,150 @@ def t_addrmode_sp : Operand<i32>,
let Defs = [SP], Uses = [SP] in {
def tADJCALLSTACKUP :
-PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
"@ tADJCALLSTACKUP $amt1",
- [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb]>;
+ [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb1Only]>;
def tADJCALLSTACKDOWN :
-PseudoInst<(outs), (ins i32imm:$amt),
+PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
"@ tADJCALLSTACKDOWN $amt",
- [(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb]>;
+ [(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb1Only]>;
}
+// For both thumb1 and thumb2.
let isNotDuplicable = 1 in
-def tPICADD : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, pclabel:$cp),
- "$cp:\n\tadd $dst, pc",
- [(set tGPR:$dst, (ARMpic_add tGPR:$lhs, imm:$cp))]>;
+def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr,
+ "\n$cp:\n\tadd $dst, pc",
+ [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>;
// PC relative add.
-def tADDrPCi : T1I<(outs tGPR:$dst), (ins i32imm:$rhs),
+def tADDrPCi : T1I<(outs tGPR:$dst), (ins i32imm:$rhs), IIC_iALUi,
"add $dst, pc, $rhs * 4", []>;
// ADD rd, sp, #imm8
-// FIXME: hard code sp?
-def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, i32imm:$rhs),
- "add $dst, $sp, $rhs * 4 @ addrspi", []>;
+def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, i32imm:$rhs), IIC_iALUi,
+ "add $dst, $sp, $rhs * 4", []>;
// ADD sp, sp, #imm7
-// FIXME: hard code sp?
-def tADDspi : T1It<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
+def tADDspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iALUi,
"add $dst, $rhs * 4", []>;
-// FIXME: Make use of the following?
-// ADD rm, sp, rm
+// SUB sp, sp, #imm7
+def tSUBspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iALUi,
+ "sub $dst, $rhs * 4", []>;
+
+// ADD rm, sp
+def tADDrSP : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ "add $dst, $rhs", []>;
+
// ADD sp, rm
+def tADDspr : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ "add $dst, $rhs", []>;
+
+// Pseudo instruction that will expand into a tSUBspi + a copy.
+let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
+def tSUBspi_ : PseudoInst<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
+ NoItinerary, "@ sub $dst, $rhs * 4", []>;
+
+def tADDspr_ : PseudoInst<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
+ NoItinerary, "@ add $dst, $rhs", []>;
+
+let Defs = [CPSR] in
+def tANDsp : PseudoInst<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
+ NoItinerary, "@ and $dst, $rhs", []>;
+} // usesCustomDAGSchedInserter
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
-let isReturn = 1, isTerminator = 1 in {
- def tBX_RET : TI<(outs), (ins), "bx lr", [(ARMretflag)]>;
+let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
+ def tBX_RET : TI<(outs), (ins), IIC_Br, "bx lr", [(ARMretflag)]>;
// Alternative return instruction used by vararg functions.
- def tBX_RET_vararg : TI<(outs), (ins tGPR:$target), "bx $target", []>;
+ def tBX_RET_vararg : TI<(outs), (ins tGPR:$target), IIC_Br, "bx $target", []>;
}
// FIXME: remove when we have a way to marking a MI with these properties.
-let isReturn = 1, isTerminator = 1 in
-def tPOP_RET : TI<(outs reglist:$dst1, variable_ops), (ins),
- "pop $dst1", []>;
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1 in
+def tPOP_RET : T1I<(outs), (ins pred:$p, reglist:$wb, variable_ops), IIC_Br,
+ "pop${p} $wb", []>;
let isCall = 1,
- Defs = [R0, R1, R2, R3, LR,
- D0, D1, D2, D3, D4, D5, D6, D7] in {
- def tBL : TIx2<(outs), (ins i32imm:$func, variable_ops),
+ Defs = [R0, R1, R2, R3, R12, LR,
+ D0, D1, D2, D3, D4, D5, D6, D7,
+ D16, D17, D18, D19, D20, D21, D22, D23,
+ D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
+ // Also used for Thumb2
+ def tBL : TIx2<(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"bl ${func:call}",
- [(ARMtcall tglobaladdr:$func)]>;
- // ARMv5T and above
- def tBLXi : TIx2<(outs), (ins i32imm:$func, variable_ops),
+ [(ARMtcall tglobaladdr:$func)]>,
+ Requires<[IsThumb, IsNotDarwin]>;
+
+ // ARMv5T and above, also used for Thumb2
+ def tBLXi : TIx2<(outs), (ins i32imm:$func, variable_ops), IIC_Br,
"blx ${func:call}",
- [(ARMcall tglobaladdr:$func)]>, Requires<[HasV5T]>;
- def tBLXr : TI<(outs), (ins tGPR:$func, variable_ops),
+ [(ARMcall tglobaladdr:$func)]>,
+ Requires<[IsThumb, HasV5T, IsNotDarwin]>;
+
+ // Also used for Thumb2
+ def tBLXr : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br,
+ "blx $func",
+ [(ARMtcall GPR:$func)]>,
+ Requires<[IsThumb, HasV5T, IsNotDarwin]>;
+
+ // ARMv4T
+ def tBX : TIx2<(outs), (ins tGPR:$func, variable_ops), IIC_Br,
+ "mov lr, pc\n\tbx $func",
+ [(ARMcall_nolink tGPR:$func)]>,
+ Requires<[IsThumb1Only, IsNotDarwin]>;
+}
+
+// On Darwin R9 is call-clobbered.
+let isCall = 1,
+ Defs = [R0, R1, R2, R3, R9, R12, LR,
+ D0, D1, D2, D3, D4, D5, D6, D7,
+ D16, D17, D18, D19, D20, D21, D22, D23,
+ D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in {
+ // Also used for Thumb2
+ def tBLr9 : TIx2<(outs), (ins i32imm:$func, variable_ops), IIC_Br,
+ "bl ${func:call}",
+ [(ARMtcall tglobaladdr:$func)]>,
+ Requires<[IsThumb, IsDarwin]>;
+
+ // ARMv5T and above, also used for Thumb2
+ def tBLXi_r9 : TIx2<(outs), (ins i32imm:$func, variable_ops), IIC_Br,
+ "blx ${func:call}",
+ [(ARMcall tglobaladdr:$func)]>,
+ Requires<[IsThumb, HasV5T, IsDarwin]>;
+
+ // Also used for Thumb2
+ def tBLXr_r9 : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br,
"blx $func",
- [(ARMtcall tGPR:$func)]>, Requires<[HasV5T]>;
+ [(ARMtcall GPR:$func)]>,
+ Requires<[IsThumb, HasV5T, IsDarwin]>;
+
// ARMv4T
- def tBX : TIx2<(outs), (ins tGPR:$func, variable_ops),
- "cpy lr, pc\n\tbx $func",
- [(ARMcall_nolink tGPR:$func)]>;
+ def tBXr9 : TIx2<(outs), (ins tGPR:$func, variable_ops), IIC_Br,
+ "mov lr, pc\n\tbx $func",
+ [(ARMcall_nolink tGPR:$func)]>,
+ Requires<[IsThumb1Only, IsDarwin]>;
}
let isBranch = 1, isTerminator = 1 in {
let isBarrier = 1 in {
let isPredicable = 1 in
- def tB : T1I<(outs), (ins brtarget:$target), "b $target",
- [(br bb:$target)]>;
+ def tB : T1I<(outs), (ins brtarget:$target), IIC_Br,
+ "b $target", [(br bb:$target)]>;
// Far jump
- def tBfar : T1Ix2<(outs), (ins brtarget:$target),
+ let Defs = [LR] in
+ def tBfar : TIx2<(outs), (ins brtarget:$target), IIC_Br,
"bl $target\t@ far jump",[]>;
def tBR_JTr : T1JTI<(outs),
(ins tGPR:$target, jtblock_operand:$jt, i32imm:$id),
- "cpy pc, $target \n\t.align\t2\n$jt",
+ IIC_Br, "mov pc, $target\n\t.align\t2\n$jt",
[(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>;
}
}
@@ -204,7 +268,8 @@ let isBranch = 1, isTerminator = 1 in {
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
- def tBcc : T1I<(outs), (ins brtarget:$target, pred:$cc), "b$cc $target",
+ def tBcc : T1I<(outs), (ins brtarget:$target, pred:$cc), IIC_Br,
+ "b$cc $target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>;
//===----------------------------------------------------------------------===//
@@ -212,384 +277,363 @@ let isBranch = 1, isTerminator = 1 in
//
let canFoldAsLoad = 1 in
-def tLDR : T1I4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr),
- "ldr $dst, $addr",
+def tLDR : T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoadr,
+ "ldr", " $dst, $addr",
[(set tGPR:$dst, (load t_addrmode_s4:$addr))]>;
-def tLDRB : T1I1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr),
- "ldrb $dst, $addr",
+def tLDRB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoadr,
+ "ldrb", " $dst, $addr",
[(set tGPR:$dst, (zextloadi8 t_addrmode_s1:$addr))]>;
-def tLDRH : T1I2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr),
- "ldrh $dst, $addr",
+def tLDRH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoadr,
+ "ldrh", " $dst, $addr",
[(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>;
-def tLDRSB : T1I1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr),
- "ldrsb $dst, $addr",
+let AddedComplexity = 10 in
+def tLDRSB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoadr,
+ "ldrsb", " $dst, $addr",
[(set tGPR:$dst, (sextloadi8 t_addrmode_rr:$addr))]>;
-def tLDRSH : T1I2<(outs tGPR:$dst), (ins t_addrmode_rr:$addr),
- "ldrsh $dst, $addr",
+let AddedComplexity = 10 in
+def tLDRSH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoadr,
+ "ldrsh", " $dst, $addr",
[(set tGPR:$dst, (sextloadi16 t_addrmode_rr:$addr))]>;
let canFoldAsLoad = 1 in
-def tLDRspi : T1Is<(outs tGPR:$dst), (ins t_addrmode_sp:$addr),
- "ldr $dst, $addr",
+def tLDRspi : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoadi,
+ "ldr", " $dst, $addr",
[(set tGPR:$dst, (load t_addrmode_sp:$addr))]>;
// Special instruction for restore. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
let canFoldAsLoad = 1, mayLoad = 1 in
-def tRestore : T1Is<(outs tGPR:$dst), (ins t_addrmode_sp:$addr),
- "ldr $dst, $addr", []>;
+def tRestore : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoadi,
+ "ldr", " $dst, $addr", []>;
// Load tconstpool
let canFoldAsLoad = 1 in
-def tLDRpci : T1Is<(outs tGPR:$dst), (ins i32imm:$addr),
- "ldr $dst, $addr",
+def tLDRpci : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoadi,
+ "ldr", " $dst, $addr",
[(set tGPR:$dst, (load (ARMWrapper tconstpool:$addr)))]>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1 in
-def tLDRcp : T1Is<(outs tGPR:$dst), (ins i32imm:$addr),
- "ldr $dst, $addr", []>;
+def tLDRcp : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoadi,
+ "ldr", " $dst, $addr", []>;
-def tSTR : T1I4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr),
- "str $src, $addr",
+def tSTR : T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStorer,
+ "str", " $src, $addr",
[(store tGPR:$src, t_addrmode_s4:$addr)]>;
-def tSTRB : T1I1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr),
- "strb $src, $addr",
+def tSTRB : T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStorer,
+ "strb", " $src, $addr",
[(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>;
-def tSTRH : T1I2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr),
- "strh $src, $addr",
+def tSTRH : T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStorer,
+ "strh", " $src, $addr",
[(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>;
-def tSTRspi : T1Is<(outs), (ins tGPR:$src, t_addrmode_sp:$addr),
- "str $src, $addr",
+def tSTRspi : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStorei,
+ "str", " $src, $addr",
[(store tGPR:$src, t_addrmode_sp:$addr)]>;
let mayStore = 1 in {
// Special instruction for spill. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
-def tSpill : T1Is<(outs), (ins tGPR:$src, t_addrmode_sp:$addr),
- "str $src, $addr", []>;
+def tSpill : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStorei,
+ "str", " $src, $addr", []>;
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
-// TODO: A7-44: LDMIA - load multiple
+// These requires base address to be written back or one of the loaded regs.
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
+def tLDM : T1I<(outs),
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ IIC_iLoadm,
+ "ldm${addr:submode}${p} $addr, $wb", []>;
-let mayLoad = 1 in
-def tPOP : TI<(outs reglist:$dst1, variable_ops), (ins),
- "pop $dst1", []>;
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
+def tSTM : T1I<(outs),
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ IIC_iStorem,
+ "stm${addr:submode}${p} $addr, $wb", []>;
-let mayStore = 1 in
-def tPUSH : TI<(outs), (ins reglist:$src1, variable_ops),
- "push $src1", []>;
+let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
+def tPOP : T1I<(outs), (ins pred:$p, reglist:$wb, variable_ops), IIC_Br,
+ "pop${p} $wb", []>;
+
+let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
+def tPUSH : T1I<(outs), (ins pred:$p, reglist:$wb, variable_ops), IIC_Br,
+ "push${p} $wb", []>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
// Add with carry register
-let isCommutable = 1, Defs = [CPSR], Uses = [CPSR] in
-def tADCS : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "adc $dst, $rhs",
- [(set tGPR:$dst, (adde tGPR:$lhs, tGPR:$rhs))]>;
+let isCommutable = 1, Uses = [CPSR] in
+def tADC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "adc", " $dst, $rhs",
+ [(set tGPR:$dst, (adde tGPR:$lhs, tGPR:$rhs))]>;
// Add immediate
-let Defs = [CPSR] in {
-def tADDi3 : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "add $dst, $lhs, $rhs",
- [(set tGPR:$dst, (add tGPR:$lhs, imm0_7:$rhs))]>;
-def tADDSi3 : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "add $dst, $lhs, $rhs",
- [(set tGPR:$dst, (addc tGPR:$lhs, imm0_7:$rhs))]>;
-}
+def tADDi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
+ "add", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (add tGPR:$lhs, imm0_7:$rhs))]>;
-let Defs = [CPSR] in {
-def tADDi8 : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "add $dst, $rhs",
- [(set tGPR:$dst, (add tGPR:$lhs, imm8_255:$rhs))]>;
-def tADDSi8 : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "add $dst, $rhs",
- [(set tGPR:$dst, (addc tGPR:$lhs, imm8_255:$rhs))]>;
-}
+def tADDi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
+ "add", " $dst, $rhs",
+ [(set tGPR:$dst, (add tGPR:$lhs, imm8_255:$rhs))]>;
// Add register
-let isCommutable = 1, Defs = [CPSR] in {
-def tADDrr : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "add $dst, $lhs, $rhs",
- [(set tGPR:$dst, (add tGPR:$lhs, tGPR:$rhs))]>;
-def tADDSrr : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "add $dst, $lhs, $rhs",
- [(set tGPR:$dst, (addc tGPR:$lhs, tGPR:$rhs))]>;
-}
+let isCommutable = 1 in
+def tADDrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "add", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (add tGPR:$lhs, tGPR:$rhs))]>;
let neverHasSideEffects = 1 in
-def tADDhirr : T1It<(outs tGPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- "add $dst, $rhs @ addhirr", []>;
+def tADDhirr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ "add", " $dst, $rhs", []>;
// And register
-let isCommutable = 1, Defs = [CPSR] in
-def tAND : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "and $dst, $rhs",
- [(set tGPR:$dst, (and tGPR:$lhs, tGPR:$rhs))]>;
+let isCommutable = 1 in
+def tAND : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "and", " $dst, $rhs",
+ [(set tGPR:$dst, (and tGPR:$lhs, tGPR:$rhs))]>;
// ASR immediate
-let Defs = [CPSR] in
-def tASRri : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "asr $dst, $lhs, $rhs",
- [(set tGPR:$dst, (sra tGPR:$lhs, (i32 imm:$rhs)))]>;
+def tASRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
+ "asr", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (sra tGPR:$lhs, (i32 imm:$rhs)))]>;
// ASR register
-let Defs = [CPSR] in
-def tASRrr : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "asr $dst, $rhs",
- [(set tGPR:$dst, (sra tGPR:$lhs, tGPR:$rhs))]>;
+def tASRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
+ "asr", " $dst, $rhs",
+ [(set tGPR:$dst, (sra tGPR:$lhs, tGPR:$rhs))]>;
// BIC register
-let Defs = [CPSR] in
-def tBIC : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "bic $dst, $rhs",
- [(set tGPR:$dst, (and tGPR:$lhs, (not tGPR:$rhs)))]>;
+def tBIC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "bic", " $dst, $rhs",
+ [(set tGPR:$dst, (and tGPR:$lhs, (not tGPR:$rhs)))]>;
// CMN register
let Defs = [CPSR] in {
-def tCMN : T1I<(outs), (ins tGPR:$lhs, tGPR:$rhs),
- "cmn $lhs, $rhs",
- [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
-def tCMNZ : T1I<(outs), (ins tGPR:$lhs, tGPR:$rhs),
- "cmn $lhs, $rhs",
- [(ARMcmpZ tGPR:$lhs, (ineg tGPR:$rhs))]>;
+def tCMN : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
+ "cmn", " $lhs, $rhs",
+ [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
+def tCMNZ : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
+ "cmn", " $lhs, $rhs",
+ [(ARMcmpZ tGPR:$lhs, (ineg tGPR:$rhs))]>;
}
// CMP immediate
let Defs = [CPSR] in {
-def tCMPi8 : T1I<(outs), (ins tGPR:$lhs, i32imm:$rhs),
- "cmp $lhs, $rhs",
- [(ARMcmp tGPR:$lhs, imm0_255:$rhs)]>;
-def tCMPZi8 : T1I<(outs), (ins tGPR:$lhs, i32imm:$rhs),
- "cmp $lhs, $rhs",
- [(ARMcmpZ tGPR:$lhs, imm0_255:$rhs)]>;
+def tCMPi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMPi,
+ "cmp", " $lhs, $rhs",
+ [(ARMcmp tGPR:$lhs, imm0_255:$rhs)]>;
+def tCMPzi8 : T1pI<(outs), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMPi,
+ "cmp", " $lhs, $rhs",
+ [(ARMcmpZ tGPR:$lhs, imm0_255:$rhs)]>;
}
// CMP register
let Defs = [CPSR] in {
-def tCMPr : T1I<(outs), (ins tGPR:$lhs, tGPR:$rhs),
- "cmp $lhs, $rhs",
- [(ARMcmp tGPR:$lhs, tGPR:$rhs)]>;
-def tCMPZr : T1I<(outs), (ins tGPR:$lhs, tGPR:$rhs),
- "cmp $lhs, $rhs",
- [(ARMcmpZ tGPR:$lhs, tGPR:$rhs)]>;
+def tCMPr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
+ "cmp", " $lhs, $rhs",
+ [(ARMcmp tGPR:$lhs, tGPR:$rhs)]>;
+def tCMPzr : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
+ "cmp", " $lhs, $rhs",
+ [(ARMcmpZ tGPR:$lhs, tGPR:$rhs)]>;
+
+def tCMPhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr,
+ "cmp", " $lhs, $rhs", []>;
+def tCMPzhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr,
+ "cmp", " $lhs, $rhs", []>;
}
-// TODO: A7-37: CMP(3) - cmp hi regs
// XOR register
-let isCommutable = 1, Defs = [CPSR] in
-def tEOR : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "eor $dst, $rhs",
- [(set tGPR:$dst, (xor tGPR:$lhs, tGPR:$rhs))]>;
+let isCommutable = 1 in
+def tEOR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "eor", " $dst, $rhs",
+ [(set tGPR:$dst, (xor tGPR:$lhs, tGPR:$rhs))]>;
// LSL immediate
-let Defs = [CPSR] in
-def tLSLri : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "lsl $dst, $lhs, $rhs",
- [(set tGPR:$dst, (shl tGPR:$lhs, (i32 imm:$rhs)))]>;
+def tLSLri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
+ "lsl", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (shl tGPR:$lhs, (i32 imm:$rhs)))]>;
// LSL register
-let Defs = [CPSR] in
-def tLSLrr : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "lsl $dst, $rhs",
- [(set tGPR:$dst, (shl tGPR:$lhs, tGPR:$rhs))]>;
+def tLSLrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
+ "lsl", " $dst, $rhs",
+ [(set tGPR:$dst, (shl tGPR:$lhs, tGPR:$rhs))]>;
// LSR immediate
-let Defs = [CPSR] in
-def tLSRri : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "lsr $dst, $lhs, $rhs",
- [(set tGPR:$dst, (srl tGPR:$lhs, (i32 imm:$rhs)))]>;
+def tLSRri : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
+ "lsr", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (srl tGPR:$lhs, (i32 imm:$rhs)))]>;
// LSR register
-let Defs = [CPSR] in
-def tLSRrr : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "lsr $dst, $rhs",
- [(set tGPR:$dst, (srl tGPR:$lhs, tGPR:$rhs))]>;
+def tLSRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
+ "lsr", " $dst, $rhs",
+ [(set tGPR:$dst, (srl tGPR:$lhs, tGPR:$rhs))]>;
// move register
-let Defs = [CPSR] in
-def tMOVi8 : T1I<(outs tGPR:$dst), (ins i32imm:$src),
- "mov $dst, $src",
- [(set tGPR:$dst, imm0_255:$src)]>;
+def tMOVi8 : T1sI<(outs tGPR:$dst), (ins i32imm:$src), IIC_iMOVi,
+ "mov", " $dst, $src",
+ [(set tGPR:$dst, imm0_255:$src)]>;
// TODO: A7-73: MOV(2) - mov setting flag.
-// Note: MOV(2) of two low regs updates the flags, so we emit this as 'cpy',
-// which is MOV(3). This also supports high registers.
let neverHasSideEffects = 1 in {
-def tMOVr : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "cpy $dst, $src", []>;
-def tMOVhir2lor : T1I<(outs tGPR:$dst), (ins GPR:$src),
- "cpy $dst, $src\t@ hir2lor", []>;
-def tMOVlor2hir : T1I<(outs GPR:$dst), (ins tGPR:$src),
- "cpy $dst, $src\t@ lor2hir", []>;
-def tMOVhir2hir : T1I<(outs GPR:$dst), (ins GPR:$src),
- "cpy $dst, $src\t@ hir2hir", []>;
+// FIXME: Make this predicable.
+def tMOVr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
+ "mov $dst, $src", []>;
+let Defs = [CPSR] in
+def tMOVSr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
+ "movs $dst, $src", []>;
+
+// FIXME: Make these predicable.
+def tMOVgpr2tgpr : T1I<(outs tGPR:$dst), (ins GPR:$src), IIC_iMOVr,
+ "mov $dst, $src", []>;
+def tMOVtgpr2gpr : T1I<(outs GPR:$dst), (ins tGPR:$src), IIC_iMOVr,
+ "mov $dst, $src", []>;
+def tMOVgpr2gpr : T1I<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr,
+ "mov $dst, $src", []>;
} // neverHasSideEffects
// multiply register
-let isCommutable = 1, Defs = [CPSR] in
-def tMUL : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "mul $dst, $rhs",
- [(set tGPR:$dst, (mul tGPR:$lhs, tGPR:$rhs))]>;
+let isCommutable = 1 in
+def tMUL : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMUL32,
+ "mul", " $dst, $rhs",
+ [(set tGPR:$dst, (mul tGPR:$lhs, tGPR:$rhs))]>;
// move inverse register
-let Defs = [CPSR] in
-def tMVN : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "mvn $dst, $src",
- [(set tGPR:$dst, (not tGPR:$src))]>;
-
-// negate register
-let Defs = [CPSR] in
-def tNEG : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "neg $dst, $src",
- [(set tGPR:$dst, (ineg tGPR:$src))]>;
+def tMVN : T1sI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr,
+ "mvn", " $dst, $src",
+ [(set tGPR:$dst, (not tGPR:$src))]>;
// bitwise or register
-let isCommutable = 1, Defs = [CPSR] in
-def tORR : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "orr $dst, $rhs",
- [(set tGPR:$dst, (or tGPR:$lhs, tGPR:$rhs))]>;
+let isCommutable = 1 in
+def tORR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "orr", " $dst, $rhs",
+ [(set tGPR:$dst, (or tGPR:$lhs, tGPR:$rhs))]>;
// swaps
-def tREV : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "rev $dst, $src",
- [(set tGPR:$dst, (bswap tGPR:$src))]>,
- Requires<[IsThumb, HasV6]>;
-
-def tREV16 : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "rev16 $dst, $src",
- [(set tGPR:$dst,
- (or (and (srl tGPR:$src, (i32 8)), 0xFF),
- (or (and (shl tGPR:$src, (i32 8)), 0xFF00),
- (or (and (srl tGPR:$src, (i32 8)), 0xFF0000),
- (and (shl tGPR:$src, (i32 8)), 0xFF000000)))))]>,
- Requires<[IsThumb, HasV6]>;
-
-def tREVSH : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "revsh $dst, $src",
- [(set tGPR:$dst,
- (sext_inreg
- (or (srl (and tGPR:$src, 0xFFFF), (i32 8)),
- (shl tGPR:$src, (i32 8))), i16))]>,
- Requires<[IsThumb, HasV6]>;
+def tREV : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "rev", " $dst, $src",
+ [(set tGPR:$dst, (bswap tGPR:$src))]>,
+ Requires<[IsThumb1Only, HasV6]>;
+
+def tREV16 : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "rev16", " $dst, $src",
+ [(set tGPR:$dst,
+ (or (and (srl tGPR:$src, (i32 8)), 0xFF),
+ (or (and (shl tGPR:$src, (i32 8)), 0xFF00),
+ (or (and (srl tGPR:$src, (i32 8)), 0xFF0000),
+ (and (shl tGPR:$src, (i32 8)), 0xFF000000)))))]>,
+ Requires<[IsThumb1Only, HasV6]>;
+
+def tREVSH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "revsh", " $dst, $src",
+ [(set tGPR:$dst,
+ (sext_inreg
+ (or (srl (and tGPR:$src, 0xFF00), (i32 8)),
+ (shl tGPR:$src, (i32 8))), i16))]>,
+ Requires<[IsThumb1Only, HasV6]>;
// rotate right register
-let Defs = [CPSR] in
-def tROR : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "ror $dst, $rhs",
- [(set tGPR:$dst, (rotr tGPR:$lhs, tGPR:$rhs))]>;
+def tROR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr,
+ "ror", " $dst, $rhs",
+ [(set tGPR:$dst, (rotr tGPR:$lhs, tGPR:$rhs))]>;
+
+// negate register
+def tRSB : T1sI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iALUi,
+ "rsb", " $dst, $src, #0",
+ [(set tGPR:$dst, (ineg tGPR:$src))]>;
// Subtract with carry register
-let Defs = [CPSR], Uses = [CPSR] in
-def tSBCS : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "sbc $dst, $rhs",
- [(set tGPR:$dst, (sube tGPR:$lhs, tGPR:$rhs))]>;
+let Uses = [CPSR] in
+def tSBC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "sbc", " $dst, $rhs",
+ [(set tGPR:$dst, (sube tGPR:$lhs, tGPR:$rhs))]>;
// Subtract immediate
-let Defs = [CPSR] in {
-def tSUBi3 : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "sub $dst, $lhs, $rhs",
- [(set tGPR:$dst, (add tGPR:$lhs, imm0_7_neg:$rhs))]>;
-def tSUBSi3 : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "sub $dst, $lhs, $rhs",
- [(set tGPR:$dst, (addc tGPR:$lhs, imm0_7_neg:$rhs))]>;
-}
+def tSUBi3 : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
+ "sub", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (add tGPR:$lhs, imm0_7_neg:$rhs))]>;
-let Defs = [CPSR] in {
-def tSUBi8 : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "sub $dst, $rhs",
- [(set tGPR:$dst, (add tGPR:$lhs, imm8_255_neg:$rhs))]>;
-def tSUBSi8 : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "sub $dst, $rhs",
- [(set tGPR:$dst, (addc tGPR:$lhs, imm8_255_neg:$rhs))]>;
-}
+def tSUBi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi,
+ "sub", " $dst, $rhs",
+ [(set tGPR:$dst, (add tGPR:$lhs, imm8_255_neg:$rhs))]>;
// subtract register
-let Defs = [CPSR] in {
-def tSUBrr : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "sub $dst, $lhs, $rhs",
- [(set tGPR:$dst, (sub tGPR:$lhs, tGPR:$rhs))]>;
-def tSUBSrr : T1I<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs),
- "sub $dst, $lhs, $rhs",
- [(set tGPR:$dst, (subc tGPR:$lhs, tGPR:$rhs))]>;
-}
+def tSUBrr : T1sI<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr,
+ "sub", " $dst, $lhs, $rhs",
+ [(set tGPR:$dst, (sub tGPR:$lhs, tGPR:$rhs))]>;
// TODO: A7-96: STMIA - store multiple.
-def tSUBspi : T1It<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs),
- "sub $dst, $rhs * 4", []>;
-
// sign-extend byte
-def tSXTB : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "sxtb $dst, $src",
- [(set tGPR:$dst, (sext_inreg tGPR:$src, i8))]>,
- Requires<[IsThumb, HasV6]>;
+def tSXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "sxtb", " $dst, $src",
+ [(set tGPR:$dst, (sext_inreg tGPR:$src, i8))]>,
+ Requires<[IsThumb1Only, HasV6]>;
// sign-extend short
-def tSXTH : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "sxth $dst, $src",
- [(set tGPR:$dst, (sext_inreg tGPR:$src, i16))]>,
- Requires<[IsThumb, HasV6]>;
+def tSXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "sxth", " $dst, $src",
+ [(set tGPR:$dst, (sext_inreg tGPR:$src, i16))]>,
+ Requires<[IsThumb1Only, HasV6]>;
// test
let isCommutable = 1, Defs = [CPSR] in
-def tTST : T1I<(outs), (ins tGPR:$lhs, tGPR:$rhs),
- "tst $lhs, $rhs",
- [(ARMcmpZ (and tGPR:$lhs, tGPR:$rhs), 0)]>;
+def tTST : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr,
+ "tst", " $lhs, $rhs",
+ [(ARMcmpZ (and tGPR:$lhs, tGPR:$rhs), 0)]>;
// zero-extend byte
-def tUXTB : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "uxtb $dst, $src",
- [(set tGPR:$dst, (and tGPR:$src, 0xFF))]>,
- Requires<[IsThumb, HasV6]>;
+def tUXTB : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "uxtb", " $dst, $src",
+ [(set tGPR:$dst, (and tGPR:$src, 0xFF))]>,
+ Requires<[IsThumb1Only, HasV6]>;
// zero-extend short
-def tUXTH : T1I<(outs tGPR:$dst), (ins tGPR:$src),
- "uxth $dst, $src",
- [(set tGPR:$dst, (and tGPR:$src, 0xFFFF))]>,
- Requires<[IsThumb, HasV6]>;
+def tUXTH : T1pI<(outs tGPR:$dst), (ins tGPR:$src), IIC_iUNAr,
+ "uxth", " $dst, $src",
+ [(set tGPR:$dst, (and tGPR:$src, 0xFFFF))]>,
+ Requires<[IsThumb1Only, HasV6]>;
// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC DAG operation.
// Expanded by the scheduler into a branch sequence.
let usesCustomDAGSchedInserter = 1 in // Expanded by the scheduler.
- def tMOVCCr :
+ def tMOVCCr_pseudo :
PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc),
- "@ tMOVCCr $cc",
- [/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
+ NoItinerary, "@ tMOVCCr $cc",
+ [/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
+
+
+// 16-bit movcc in IT blocks for Thumb2.
+def tMOVCCr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iCMOVr,
+ "mov", " $dst, $rhs", []>;
+
+def tMOVCCi : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iCMOVi,
+ "mov", " $dst, $rhs", []>;
// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.
-def tLEApcrel : TIx2<(outs tGPR:$dst), (ins i32imm:$label),
- !strconcat(!strconcat(".set PCRELV${:uid}, ($label-(",
- "${:private}PCRELL${:uid}+4))\n"),
- !strconcat("\tmov $dst, #PCRELV${:uid}\n",
- "${:private}PCRELL${:uid}:\n\tadd $dst, pc")),
- []>;
-
-def tLEApcrelJT : TIx2<(outs tGPR:$dst), (ins i32imm:$label, i32imm:$id),
- !strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(",
- "${:private}PCRELL${:uid}+4))\n"),
- !strconcat("\tmov $dst, #PCRELV${:uid}\n",
- "${:private}PCRELL${:uid}:\n\tadd $dst, pc")),
- []>;
+def tLEApcrel : T1I<(outs tGPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALUi,
+ "adr$p $dst, #$label", []>;
+
+def tLEApcrelJT : T1I<(outs tGPR:$dst),
+ (ins i32imm:$label, nohash_imm:$id, pred:$p),
+ IIC_iALUi, "adr$p $dst, #${label}_${id}", []>;
//===----------------------------------------------------------------------===//
// TLS Instructions
@@ -598,7 +642,7 @@ def tLEApcrelJT : TIx2<(outs tGPR:$dst), (ins i32imm:$label, i32imm:$id),
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1,
Defs = [R0, LR] in {
- def tTPsoft : TIx2<(outs), (ins),
+ def tTPsoft : TIx2<(outs), (ins), IIC_Br,
"bl __aeabi_read_tp",
[(set R0, ARMthread_pointer)]>;
}
@@ -607,20 +651,46 @@ let isCall = 1,
// Non-Instruction Patterns
//
+// Add with carry
+def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs),
+ (tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs),
+ (tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs),
+ (tADDrr tGPR:$lhs, tGPR:$rhs)>;
+
+// Subtract with carry
+def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
+ (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
+def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
+ (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
+def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs),
+ (tSUBrr tGPR:$lhs, tGPR:$rhs)>;
+
// ConstantPool, GlobalAddress
-def : TPat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
-def : TPat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
+def : T1Pat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
+def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
// JumpTable
-def : TPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
- (tLEApcrelJT tjumptable:$dst, imm:$id)>;
+def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
+ (tLEApcrelJT tjumptable:$dst, imm:$id)>;
// Direct calls
-def : TPat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>;
-def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>;
+def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
+ Requires<[IsThumb, IsNotDarwin]>;
+def : T1Pat<(ARMtcall texternalsym:$func), (tBLr9 texternalsym:$func)>,
+ Requires<[IsThumb, IsDarwin]>;
+
+def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
+ Requires<[IsThumb, HasV5T, IsNotDarwin]>;
+def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi_r9 texternalsym:$func)>,
+ Requires<[IsThumb, HasV5T, IsDarwin]>;
// Indirect calls to ARM routines
-def : Tv5Pat<(ARMcall tGPR:$dst), (tBLXr tGPR:$dst)>;
+def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
+ Requires<[IsThumb, HasV5T, IsNotDarwin]>;
+def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr_r9 GPR:$dst)>,
+ Requires<[IsThumb, HasV5T, IsDarwin]>;
// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_s1:$addr),
@@ -631,6 +701,20 @@ def : T1Pat<(extloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_s2:$addr), (tLDRH t_addrmode_s2:$addr)>;
+// If it's impossible to use [r,r] address mode for sextload, select to
+// ldr{b|h} + sxt{b|h} instead.
+def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
+ (tSXTB (tLDRB t_addrmode_s1:$addr))>,
+ Requires<[IsThumb1Only, HasV6]>;
+def : T1Pat<(sextloadi16 t_addrmode_s2:$addr),
+ (tSXTH (tLDRH t_addrmode_s2:$addr))>,
+ Requires<[IsThumb1Only, HasV6]>;
+
+def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
+ (tASRri (tLSLri (tLDRB t_addrmode_s1:$addr), 24), 24)>;
+def : T1Pat<(sextloadi16 t_addrmode_s1:$addr),
+ (tASRri (tLSLri (tLDRH t_addrmode_s1:$addr), 16), 16)>;
+
// Large immediate handling.
// Two piece imms.
diff --git a/lib/Target/ARM/ARMInstrThumb2.td b/lib/Target/ARM/ARMInstrThumb2.td
index 50345a6..0750dcc 100644
--- a/lib/Target/ARM/ARMInstrThumb2.td
+++ b/lib/Target/ARM/ARMInstrThumb2.td
@@ -11,6 +11,21 @@
//
//===----------------------------------------------------------------------===//
+// IT block predicate field
+def it_pred : Operand<i32> {
+ let PrintMethod = "printPredicateOperand";
+}
+
+// IT block condition mask
+def it_mask : Operand<i32> {
+ let PrintMethod = "printThumbITMask";
+}
+
+// Table branch address
+def tb_addrmode : Operand<i32> {
+ let PrintMethod = "printTBAddrMode";
+}
+
// Shifted operands. No register controlled shifts for Thumb2.
// Note: We do not support rrx shifted operands yet.
def t2_so_reg : Operand<i32>, // reg imm
@@ -20,23 +35,14 @@ def t2_so_reg : Operand<i32>, // reg imm
let MIOperandInfo = (ops GPR, i32imm);
}
-// t2_so_imm_XFORM - Return a t2_so_imm value packed into the format
-// described for t2_so_imm def below.
-def t2_so_imm_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(
- ARM_AM::getT2SOImmVal(N->getZExtValue()), MVT::i32);
-}]>;
-
// t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value
def t2_so_imm_not_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(
- ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())), MVT::i32);
+ return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
}]>;
// t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value
def t2_so_imm_neg_XFORM : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant(
- ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())), MVT::i32);
+ return CurDAG->getTargetConstant(-((int)N->getZExtValue()), MVT::i32);
}]>;
// t2_so_imm - Match a 32-bit immediate operand, which is an
@@ -47,27 +53,21 @@ def t2_so_imm_neg_XFORM : SDNodeXForm<imm, [{
// [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11].
def t2_so_imm : Operand<i32>,
PatLeaf<(imm), [{
- return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1;
- }], t2_so_imm_XFORM> {
- let PrintMethod = "printT2SOImmOperand";
-}
+ return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1;
+}]>;
// t2_so_imm_not - Match an immediate that is a complement
// of a t2_so_imm.
def t2_so_imm_not : Operand<i32>,
PatLeaf<(imm), [{
- return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1;
- }], t2_so_imm_not_XFORM> {
- let PrintMethod = "printT2SOImmOperand";
-}
+ return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1;
+}], t2_so_imm_not_XFORM>;
// t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm.
def t2_so_imm_neg : Operand<i32>,
PatLeaf<(imm), [{
- return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1;
- }], t2_so_imm_neg_XFORM> {
- let PrintMethod = "printT2SOImmOperand";
-}
+ return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1;
+}], t2_so_imm_neg_XFORM>;
/// imm1_31 predicate - True if the 32-bit immediate is in the range [1,31].
def imm1_31 : PatLeaf<(i32 imm), [{
@@ -75,7 +75,8 @@ def imm1_31 : PatLeaf<(i32 imm), [{
}]>;
/// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095].
-def imm0_4095 : PatLeaf<(i32 imm), [{
+def imm0_4095 : Operand<i32>,
+ PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 4096;
}]>;
@@ -83,48 +84,9 @@ def imm0_4095_neg : PatLeaf<(i32 imm), [{
return (uint32_t)(-N->getZExtValue()) < 4096;
}], imm_neg_XFORM>;
-/// imm0_65535 predicate - True if the 32-bit immediate is in the range
-/// [0.65535].
-def imm0_65535 : PatLeaf<(i32 imm), [{
- return (uint32_t)N->getZExtValue() < 65536;
-}]>;
-
-/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
-/// e.g., 0xf000ffff
-def bf_inv_mask_imm : Operand<i32>,
- PatLeaf<(imm), [{
- uint32_t v = (uint32_t)N->getZExtValue();
- if (v == 0xffffffff)
- return 0;
- // naive checker. should do better, but simple is best for now since it's
- // more likely to be correct.
- while (v & 1) v >>= 1; // shift off the leading 1's
- if (v)
- {
- while (!(v & 1)) v >>=1; // shift off the mask
- while (v & 1) v >>= 1; // shift off the trailing 1's
- }
- // if this is a mask for clearing a bitfield, what's left should be zero.
- return (v == 0);
-}] > {
- let PrintMethod = "printBitfieldInvMaskImmOperand";
-}
-
-/// Split a 32-bit immediate into two 16 bit parts.
-def t2_lo16 : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() & 0xffff,
- MVT::i32);
-}]>;
-
-def t2_hi16 : SDNodeXForm<imm, [{
- return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32);
-}]>;
-
-def t2_lo16AllZero : PatLeaf<(i32 imm), [{
- // Returns true if all low 16-bits are 0.
- return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
- }], t2_hi16>;
-
+def imm0_255_neg : PatLeaf<(i32 imm), [{
+ return (uint32_t)(-N->getZExtValue()) < 255;
+}], imm_neg_XFORM>;
// Define Thumb2 specific addressing modes.
@@ -147,14 +109,14 @@ def t2am_imm8_offset : Operand<i32>,
let PrintMethod = "printT2AddrModeImm8OffsetOperand";
}
-// t2addrmode_imm8s4 := reg + (imm8 << 2)
+// t2addrmode_imm8s4 := reg +/- (imm8 << 2)
def t2addrmode_imm8s4 : Operand<i32>,
ComplexPattern<i32, 2, "SelectT2AddrModeImm8s4", []> {
- let PrintMethod = "printT2AddrModeImm8Operand";
+ let PrintMethod = "printT2AddrModeImm8s4Operand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
-// t2addrmode_so_reg := reg + reg << imm2
+// t2addrmode_so_reg := reg + (reg << imm2)
def t2addrmode_so_reg : Operand<i32>,
ComplexPattern<i32, 3, "SelectT2AddrModeSoReg", []> {
let PrintMethod = "printT2AddrModeSoRegOperand";
@@ -171,52 +133,58 @@ def t2addrmode_so_reg : Operand<i32>,
/// changed to modify CPSR.
multiclass T2I_un_irs<string opc, PatFrag opnode, bit Cheap = 0, bit ReMat = 0>{
// shifted imm
- def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src),
+ def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iMOVi,
opc, " $dst, $src",
[(set GPR:$dst, (opnode t2_so_imm:$src))]> {
let isAsCheapAsAMove = Cheap;
let isReMaterializable = ReMat;
}
// register
- def r : T2I<(outs GPR:$dst), (ins GPR:$src),
- opc, " $dst, $src",
+ def r : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr,
+ opc, ".w $dst, $src",
[(set GPR:$dst, (opnode GPR:$src))]>;
// shifted register
- def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src),
- opc, " $dst, $src",
+ def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src), IIC_iMOVsi,
+ opc, ".w $dst, $src",
[(set GPR:$dst, (opnode t2_so_reg:$src))]>;
}
/// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
// binary operation that produces a value. These are predicable and can be
/// changed to modify CPSR.
-multiclass T2I_bin_irs<string opc, PatFrag opnode, bit Commutable = 0> {
+multiclass T2I_bin_irs<string opc, PatFrag opnode,
+ bit Commutable = 0, string wide =""> {
// shifted imm
- def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
+ def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi,
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// register
- def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ opc, !strconcat(wide, " $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
- def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi,
+ opc, !strconcat(wide, " $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
+/// T2I_bin_w_irs - Same as T2I_bin_irs except these operations need
+// the ".w" prefix to indicate that they are wide.
+multiclass T2I_bin_w_irs<string opc, PatFrag opnode, bit Commutable = 0> :
+ T2I_bin_irs<opc, opnode, Commutable, ".w">;
+
/// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are
/// reversed. It doesn't define the 'rr' form since it's handled by its
/// T2I_bin_irs counterpart.
multiclass T2I_rbin_is<string opc, PatFrag opnode> {
// shifted imm
- def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
- opc, " $dst, $rhs, $lhs",
+ def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs), IIC_iALUi,
+ opc, ".w $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>;
// shifted register
- def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
+ def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs), IIC_iALUsi,
opc, " $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>;
}
@@ -226,18 +194,18 @@ multiclass T2I_rbin_is<string opc, PatFrag opnode> {
let Defs = [CPSR] in {
multiclass T2I_bin_s_irs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
- def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
- !strconcat(opc, "s"), " $dst, $lhs, $rhs",
+ def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi,
+ !strconcat(opc, "s"), ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// register
- def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- !strconcat(opc, "s"), " $dst, $lhs, $rhs",
+ def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ !strconcat(opc, "s"), ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
- def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
- !strconcat(opc, "s"), " $dst, $lhs, $rhs",
+ def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi,
+ !strconcat(opc, "s"), ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
}
@@ -246,22 +214,22 @@ multiclass T2I_bin_s_irs<string opc, PatFrag opnode, bit Commutable = 0> {
/// patterns for a binary operation that produces a value.
multiclass T2I_bin_ii12rs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
- def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// 12-bit imm
- def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
+ def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, imm0_4095:$rhs), IIC_iALUi,
!strconcat(opc, "w"), " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]>;
// register
- def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
- def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
@@ -271,41 +239,41 @@ multiclass T2I_bin_ii12rs<string opc, PatFrag opnode, bit Commutable = 0> {
let Uses = [CPSR] in {
multiclass T2I_adde_sube_irs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
- def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
+ def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi,
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUnused]>;
// register
- def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUnused]> {
let isCommutable = Commutable;
}
// shifted register
- def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUnused]>;
// Carry setting variants
// shifted imm
- def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
+ def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iALUi,
!strconcat(opc, "s $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
}
// register
- def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- !strconcat(opc, "s $dst, $lhs, $rhs"),
+ def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
+ !strconcat(opc, "s.w $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
let isCommutable = Commutable;
}
// shifted register
- def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
- !strconcat(opc, "s $dst, $lhs, $rhs"),
+ def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iALUsi,
+ !strconcat(opc, "s.w $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>,
Requires<[IsThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
@@ -313,49 +281,17 @@ multiclass T2I_adde_sube_irs<string opc, PatFrag opnode, bit Commutable = 0> {
}
}
-/// T2I_rsc_is - Same as T2I_adde_sube_irs except the order of operands are
-/// reversed. It doesn't define the 'rr' form since it's handled by its
-/// T2I_adde_sube_irs counterpart.
-let Defs = [CPSR], Uses = [CPSR] in {
-multiclass T2I_rsc_is<string opc, PatFrag opnode> {
- // shifted imm
- def ri : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
- opc, " $dst, $rhs, $lhs",
- [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>,
- Requires<[IsThumb2, CarryDefIsUnused]>;
- // shifted register
- def rs : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
- opc, " $dst, $rhs, $lhs",
- [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>,
- Requires<[IsThumb2, CarryDefIsUnused]>;
- // shifted imm
- def Sri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
- !strconcat(opc, "s $dst, $rhs, $lhs"),
- [(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>,
- Requires<[IsThumb2, CarryDefIsUsed]> {
- let Defs = [CPSR];
- }
- // shifted register
- def Srs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
- !strconcat(opc, "s $dst, $rhs, $lhs"),
- [(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>,
- Requires<[IsThumb2, CarryDefIsUsed]> {
- let Defs = [CPSR];
- }
-}
-}
-
-/// T2I_rbin_s_is - Same as T2I_bin_s_irs except the order of operands are
-/// reversed. It doesn't define the 'rr' form since it's handled by its
-/// T2I_bin_s_irs counterpart.
+/// T2I_rbin_s_is - Same as T2I_rbin_is except sets 's' bit.
let Defs = [CPSR] in {
multiclass T2I_rbin_s_is<string opc, PatFrag opnode> {
// shifted imm
def ri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s),
- !strconcat(opc, "${s} $dst, $rhs, $lhs"),
+ IIC_iALUi,
+ !strconcat(opc, "${s}.w $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>;
// shifted register
def rs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s),
+ IIC_iALUsi,
!strconcat(opc, "${s} $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>;
}
@@ -365,96 +301,96 @@ multiclass T2I_rbin_s_is<string opc, PatFrag opnode> {
// rotate operation that produces a value.
multiclass T2I_sh_ir<string opc, PatFrag opnode> {
// 5-bit imm
- def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs), IIC_iMOVsi,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, imm1_31:$rhs))]>;
// register
- def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
- opc, " $dst, $lhs, $rhs",
+ def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iMOVsr,
+ opc, ".w $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>;
}
-/// T21_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
+/// T2I_cmp_is - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
/// patterns. Similar to T2I_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
-let Uses = [CPSR] in {
+let Defs = [CPSR] in {
multiclass T2I_cmp_is<string opc, PatFrag opnode> {
// shifted imm
- def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs),
- opc, " $lhs, $rhs",
+ def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs), IIC_iCMPi,
+ opc, ".w $lhs, $rhs",
[(opnode GPR:$lhs, t2_so_imm:$rhs)]>;
// register
- def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs),
- opc, " $lhs, $rhs",
+ def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr,
+ opc, ".w $lhs, $rhs",
[(opnode GPR:$lhs, GPR:$rhs)]>;
// shifted register
- def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs),
- opc, " $lhs, $rhs",
+ def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs), IIC_iCMPsi,
+ opc, ".w $lhs, $rhs",
[(opnode GPR:$lhs, t2_so_reg:$rhs)]>;
}
}
/// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns.
multiclass T2I_ld<string opc, PatFrag opnode> {
- def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr),
- opc, " $dst, $addr",
+ def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr), IIC_iLoadi,
+ opc, ".w $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_imm12:$addr))]>;
- def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr),
+ def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr), IIC_iLoadi,
opc, " $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_imm8:$addr))]>;
- def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr),
- opc, " $dst, $addr",
+ def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr), IIC_iLoadr,
+ opc, ".w $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_so_reg:$addr))]>;
- def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr),
- opc, " $dst, $addr",
+ def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr), IIC_iLoadi,
+ opc, ".w $dst, $addr",
[(set GPR:$dst, (opnode (ARMWrapper tconstpool:$addr)))]>;
}
/// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns.
multiclass T2I_st<string opc, PatFrag opnode> {
- def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr),
- opc, " $src, $addr",
+ def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr), IIC_iStorei,
+ opc, ".w $src, $addr",
[(opnode GPR:$src, t2addrmode_imm12:$addr)]>;
- def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr),
+ def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr), IIC_iStorei,
opc, " $src, $addr",
[(opnode GPR:$src, t2addrmode_imm8:$addr)]>;
- def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr),
- opc, " $src, $addr",
+ def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr), IIC_iStorer,
+ opc, ".w $src, $addr",
[(opnode GPR:$src, t2addrmode_so_reg:$addr)]>;
}
/// T2I_picld - Defines the PIC load pattern.
class T2I_picld<string opc, PatFrag opnode> :
- T2I<(outs GPR:$dst), (ins addrmodepc:$addr),
- !strconcat("${addr:label}:\n\t", opc), " $dst, $addr",
+ T2I<(outs GPR:$dst), (ins addrmodepc:$addr), IIC_iLoadi,
+ !strconcat("\n${addr:label}:\n\t", opc), " $dst, $addr",
[(set GPR:$dst, (opnode addrmodepc:$addr))]>;
/// T2I_picst - Defines the PIC store pattern.
class T2I_picst<string opc, PatFrag opnode> :
- T2I<(outs), (ins GPR:$src, addrmodepc:$addr),
- !strconcat("${addr:label}:\n\t", opc), " $src, $addr",
+ T2I<(outs), (ins GPR:$src, addrmodepc:$addr), IIC_iStorer,
+ !strconcat("\n${addr:label}:\n\t", opc), " $src, $addr",
[(opnode GPR:$src, addrmodepc:$addr)]>;
/// T2I_unary_rrot - A unary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
multiclass T2I_unary_rrot<string opc, PatFrag opnode> {
- def r : T2I<(outs GPR:$dst), (ins GPR:$Src),
- opc, " $dst, $Src",
- [(set GPR:$dst, (opnode GPR:$Src))]>;
- def r_rot : T2I<(outs GPR:$dst), (ins GPR:$Src, i32imm:$rot),
- opc, " $dst, $Src, ror $rot",
- [(set GPR:$dst, (opnode (rotr GPR:$Src, rot_imm:$rot)))]>;
+ def r : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
+ opc, ".w $dst, $src",
+ [(set GPR:$dst, (opnode GPR:$src))]>;
+ def r_rot : T2I<(outs GPR:$dst), (ins GPR:$src, i32imm:$rot), IIC_iUNAsi,
+ opc, ".w $dst, $src, ror $rot",
+ [(set GPR:$dst, (opnode (rotr GPR:$src, rot_imm:$rot)))]>;
}
/// T2I_bin_rrot - A binary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
multiclass T2I_bin_rrot<string opc, PatFrag opnode> {
- def rr : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS),
+ def rr : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS), IIC_iALUr,
opc, " $dst, $LHS, $RHS",
[(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]>;
def rr_rot : T2I<(outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot),
- opc, " $dst, $LHS, $RHS, ror $rot",
+ IIC_iALUsr, opc, " $dst, $LHS, $RHS, ror $rot",
[(set GPR:$dst, (opnode GPR:$LHS,
(rotr GPR:$RHS, rot_imm:$rot)))]>;
}
@@ -467,42 +403,46 @@ multiclass T2I_bin_rrot<string opc, PatFrag opnode> {
// Miscellaneous Instructions.
//
-let isNotDuplicable = 1 in
-def t2PICADD : T2XI<(outs tGPR:$dst), (ins tGPR:$lhs, pclabel:$cp),
- "$cp:\n\tadd $dst, pc",
- [(set tGPR:$dst, (ARMpic_add tGPR:$lhs, imm:$cp))]>;
-
-
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
-def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p),
- !strconcat(!strconcat(".set PCRELV${:uid}, ($label-(",
- "${:private}PCRELL${:uid}+8))\n"),
- !strconcat("${:private}PCRELL${:uid}:\n\t",
- "add$p $dst, pc, #PCRELV${:uid}")),
- []>;
+def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALUi,
+ "adr$p.w $dst, #$label", []>;
def t2LEApcrelJT : T2XI<(outs GPR:$dst),
- (ins i32imm:$label, i32imm:$id, pred:$p),
- !strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(",
- "${:private}PCRELL${:uid}+8))\n"),
- !strconcat("${:private}PCRELL${:uid}:\n\t",
- "add$p $dst, pc, #PCRELV${:uid}")),
- []>;
-
-// ADD rd, sp, #so_imm
-def t2ADDrSPi : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm),
- "add $dst, $sp, $imm",
- []>;
-
-// ADD rd, sp, #imm12
-def t2ADDrSPi12 : T2XI<(outs GPR:$dst), (ins GPR:$sp, i32imm:$imm),
- "addw $dst, $sp, $imm",
- []>;
-
-def t2ADDrSPs : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs),
- "addw $dst, $sp, $rhs",
- []>;
+ (ins i32imm:$label, nohash_imm:$id, pred:$p), IIC_iALUi,
+ "adr$p.w $dst, #${label}_${id}", []>;
+
+// ADD r, sp, {so_imm|i12}
+def t2ADDrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm),
+ IIC_iALUi, "add", ".w $dst, $sp, $imm", []>;
+def t2ADDrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm),
+ IIC_iALUi, "addw", " $dst, $sp, $imm", []>;
+
+// ADD r, sp, so_reg
+def t2ADDrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs),
+ IIC_iALUsi, "add", ".w $dst, $sp, $rhs", []>;
+
+// SUB r, sp, {so_imm|i12}
+def t2SUBrSPi : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm),
+ IIC_iALUi, "sub", ".w $dst, $sp, $imm", []>;
+def t2SUBrSPi12 : T2I<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm),
+ IIC_iALUi, "subw", " $dst, $sp, $imm", []>;
+
+// SUB r, sp, so_reg
+def t2SUBrSPs : T2sI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs),
+ IIC_iALUsi,
+ "sub", " $dst, $sp, $rhs", []>;
+
+
+// Pseudo instruction that will expand into a t2SUBrSPi + a copy.
+let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
+def t2SUBrSPi_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm),
+ NoItinerary, "@ sub.w $dst, $sp, $imm", []>;
+def t2SUBrSPi12_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, imm0_4095:$imm),
+ NoItinerary, "@ subw $dst, $sp, $imm", []>;
+def t2SUBrSPs_ : PseudoInst<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs),
+ NoItinerary, "@ sub $dst, $sp, $rhs", []>;
+} // usesCustomDAGSchedInserter
//===----------------------------------------------------------------------===//
@@ -521,12 +461,14 @@ defm t2LDRB : T2I_ld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>;
defm t2LDRSH : T2I_ld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>;
defm t2LDRSB : T2I_ld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>;
-let mayLoad = 1 in {
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in {
// Load doubleword
-def t2LDRDi8 : T2Ii8s4<(outs GPR:$dst), (ins t2addrmode_imm8s4:$addr),
- "ldrd", " $dst, $addr", []>;
-def t2LDRDpci : T2Ii8s4<(outs GPR:$dst), (ins i32imm:$addr),
- "ldrd", " $dst, $addr", []>;
+def t2LDRDi8 : T2Ii8s4<(outs GPR:$dst1, GPR:$dst2),
+ (ins t2addrmode_imm8s4:$addr),
+ IIC_iLoadi, "ldrd", " $dst1, $addr", []>;
+def t2LDRDpci : T2Ii8s4<(outs GPR:$dst1, GPR:$dst2),
+ (ins i32imm:$addr), IIC_iLoadi,
+ "ldrd", " $dst1, $addr", []>;
}
// zextload i1 -> zextload i8
@@ -573,57 +515,57 @@ def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)),
let mayLoad = 1 in {
def t2LDR_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins t2addrmode_imm8:$addr),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iLoadiu,
"ldr", " $dst, $addr!", "$addr.base = $base_wb",
[]>;
def t2LDR_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iLoadiu,
"ldr", " $dst, [$base], $offset", "$base = $base_wb",
[]>;
def t2LDRB_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins t2addrmode_imm8:$addr),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iLoadiu,
"ldrb", " $dst, $addr!", "$addr.base = $base_wb",
[]>;
def t2LDRB_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iLoadiu,
"ldrb", " $dst, [$base], $offset", "$base = $base_wb",
[]>;
def t2LDRH_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins t2addrmode_imm8:$addr),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iLoadiu,
"ldrh", " $dst, $addr!", "$addr.base = $base_wb",
[]>;
def t2LDRH_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iLoadiu,
"ldrh", " $dst, [$base], $offset", "$base = $base_wb",
[]>;
def t2LDRSB_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins t2addrmode_imm8:$addr),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iLoadiu,
"ldrsb", " $dst, $addr!", "$addr.base = $base_wb",
[]>;
def t2LDRSB_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iLoadiu,
"ldrsb", " $dst, [$base], $offset", "$base = $base_wb",
[]>;
def t2LDRSH_PRE : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins t2addrmode_imm8:$addr),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iLoadiu,
"ldrsh", " $dst, $addr!", "$addr.base = $base_wb",
[]>;
def t2LDRSH_POST : T2Iidxldst<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iLoadiu,
"ldrsh", " $dst, [$base], $offset", "$base = $base_wb",
[]>;
}
@@ -634,108 +576,95 @@ defm t2STRB : T2I_st<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
defm t2STRH : T2I_st<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
// Store doubleword
-let mayLoad = 1 in
-def t2STRDi8 : T2Ii8s4<(outs), (ins GPR:$src, t2addrmode_imm8s4:$addr),
- "strd", " $src, $addr", []>;
+let mayLoad = 1, hasExtraSrcRegAllocReq = 1 in
+def t2STRDi8 : T2Ii8s4<(outs),
+ (ins GPR:$src1, GPR:$src2, t2addrmode_imm8s4:$addr),
+ IIC_iStorer, "strd", " $src1, $addr", []>;
// Indexed stores
def t2STR_PRE : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iStoreiu,
"str", " $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
def t2STR_POST : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iStoreiu,
"str", " $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb,
(post_store GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
def t2STRH_PRE : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iStoreiu,
"strh", " $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
def t2STRH_POST : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iStoreiu,
"strh", " $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb,
(post_truncsti16 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
def t2STRB_PRE : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePre,
+ AddrModeT2_i8, IndexModePre, IIC_iStoreiu,
"strb", " $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
def t2STRB_POST : T2Iidxldst<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, t2am_imm8_offset:$offset),
- AddrModeT2_i8, IndexModePost,
+ AddrModeT2_i8, IndexModePost, IIC_iStoreiu,
"strb", " $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb,
(post_truncsti8 GPR:$src, GPR:$base, t2am_imm8_offset:$offset))]>;
-// Address computation and loads and stores in PIC mode.
-let isNotDuplicable = 1, AddedComplexity = 10 in {
-let canFoldAsLoad = 1 in
-def t2PICLDR : T2I_picld<"ldr", UnOpFrag<(load node:$Src)>>;
-
-def t2PICLDRH : T2I_picld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>;
-def t2PICLDRB : T2I_picld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>;
-def t2PICLDRSH : T2I_picld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>;
-def t2PICLDRSB : T2I_picld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>;
-
-def t2PICSTR : T2I_picst<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>;
-def t2PICSTRH : T2I_picst<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
-def t2PICSTRB : T2I_picst<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
-} // isNotDuplicable = 1, AddedComplexity = 10
-
+// FIXME: ldrd / strd pre / post variants
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
-let mayLoad = 1 in
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
def t2LDM : T2XI<(outs),
- (ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops),
- "ldm${p}${addr:submode} $addr, $dst1", []>;
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ IIC_iLoadm, "ldm${addr:submode}${p}${addr:wide} $addr, $wb", []>;
-let mayStore = 1 in
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
def t2STM : T2XI<(outs),
- (ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops),
- "stm${p}${addr:submode} $addr, $src1", []>;
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ IIC_iStorem, "stm${addr:submode}${p}${addr:wide} $addr, $wb", []>;
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let neverHasSideEffects = 1 in
-def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src),
- "mov", " $dst, $src", []>;
+def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr,
+ "mov", ".w $dst, $src", []>;
-let isReMaterializable = 1, isAsCheapAsAMove = 1 in
-def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src),
- "mov", " $dst, $src",
+// AddedComplexity to ensure isel tries t2MOVi before t2MOVi16.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, AddedComplexity = 1 in
+def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src), IIC_iMOVi,
+ "mov", ".w $dst, $src",
[(set GPR:$dst, t2_so_imm:$src)]>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
-def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src),
+def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVi,
"movw", " $dst, $src",
[(set GPR:$dst, imm0_65535:$src)]>;
-// FIXME: Also available in ARM mode.
let Constraints = "$src = $dst" in
-def t2MOVTi16 : T2sI<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm),
- "movt", " $dst, $imm",
- [(set GPR:$dst,
- (or (and GPR:$src, 0xffff), t2_lo16AllZero:$imm))]>;
+def t2MOVTi16 : T2I<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm), IIC_iMOVi,
+ "movt", " $dst, $imm",
+ [(set GPR:$dst,
+ (or (and GPR:$src, 0xffff), lo16AllZero:$imm))]>;
//===----------------------------------------------------------------------===//
// Extend Instructions.
@@ -785,12 +714,14 @@ defm t2SUBS : T2I_bin_s_irs <"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>;
defm t2ADC : T2I_adde_sube_irs<"adc",BinOpFrag<(adde node:$LHS, node:$RHS)>,1>;
defm t2SBC : T2I_adde_sube_irs<"sbc",BinOpFrag<(sube node:$LHS, node:$RHS)>>;
-// RSB, RSC
+// RSB
defm t2RSB : T2I_rbin_is <"rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>;
defm t2RSBS : T2I_rbin_s_is <"rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>;
-defm t2RSC : T2I_rsc_is <"rsc", BinOpFrag<(sube node:$LHS, node:$RHS)>>;
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
+let AddedComplexity = 1 in
+def : T2Pat<(add GPR:$src, imm0_255_neg:$imm),
+ (t2SUBri GPR:$src, imm0_255_neg:$imm)>;
def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm),
(t2SUBri GPR:$src, t2_so_imm_neg:$imm)>;
def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm),
@@ -806,105 +737,250 @@ defm t2LSR : T2I_sh_ir<"lsr", BinOpFrag<(srl node:$LHS, node:$RHS)>>;
defm t2ASR : T2I_sh_ir<"asr", BinOpFrag<(sra node:$LHS, node:$RHS)>>;
defm t2ROR : T2I_sh_ir<"ror", BinOpFrag<(rotr node:$LHS, node:$RHS)>>;
-def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src),
- "mov", " $dst, $src, rrx",
+let Uses = [CPSR] in {
+def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
+ "rrx", " $dst, $src",
[(set GPR:$dst, (ARMrrx GPR:$src))]>;
+}
+
+let Defs = [CPSR] in {
+def t2MOVsrl_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
+ "lsrs.w $dst, $src, #1",
+ [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>;
+def t2MOVsra_flag : T2XI<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
+ "asrs.w $dst, $src, #1",
+ [(set GPR:$dst, (ARMsra_flag GPR:$src))]>;
+}
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
-defm t2AND : T2I_bin_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
-defm t2ORR : T2I_bin_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
-defm t2EOR : T2I_bin_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
+defm t2AND : T2I_bin_w_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
+defm t2ORR : T2I_bin_w_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
+defm t2EOR : T2I_bin_w_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
-defm t2BIC : T2I_bin_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
+defm t2BIC : T2I_bin_w_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
-def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm),
- (t2BICri GPR:$src, t2_so_imm_not:$imm)>;
+let Constraints = "$src = $dst" in
+def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm),
+ IIC_iALUi, "bfc", " $dst, $imm",
+ [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>;
-defm t2ORN : T2I_bin_irs<"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
+def t2SBFX : T2I<(outs GPR:$dst), (ins GPR:$src, imm0_31:$lsb, imm0_31:$width),
+ IIC_iALUi, "sbfx", " $dst, $src, $lsb, $width", []>;
-def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm),
- (t2ORNri GPR:$src, t2_so_imm_not:$imm)>;
+def t2UBFX : T2I<(outs GPR:$dst), (ins GPR:$src, imm0_31:$lsb, imm0_31:$width),
+ IIC_iALUi, "ubfx", " $dst, $src, $lsb, $width", []>;
+
+// FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1)
+
+defm t2ORN : T2I_bin_irs<"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
// Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version
let AddedComplexity = 1 in
defm t2MVN : T2I_un_irs <"mvn", UnOpFrag<(not node:$Src)>, 1, 1>;
-def : T2Pat<(t2_so_imm_not:$src),
- (t2MVNi t2_so_imm_not:$src)>;
-// A8.6.17 BFC - Bitfield clear
-// FIXME: Also available in ARM mode.
-let Constraints = "$src = $dst" in
-def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm),
- "bfc", " $dst, $imm",
- [(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>;
+def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm),
+ (t2BICri GPR:$src, t2_so_imm_not:$imm)>;
-// FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1)
+// FIXME: Disable this pattern on Darwin to workaround an assembler bug.
+def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm),
+ (t2ORNri GPR:$src, t2_so_imm_not:$imm)>,
+ Requires<[IsThumb2]>;
+
+def : T2Pat<(t2_so_imm_not:$src),
+ (t2MVNi t2_so_imm_not:$src)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
let isCommutable = 1 in
-def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b),
+def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
"mul", " $dst, $a, $b",
[(set GPR:$dst, (mul GPR:$a, GPR:$b))]>;
-def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
+def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32,
"mla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>;
-def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
+def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32,
"mls", " $dst, $a, $b, $c",
[(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>;
-// FIXME: SMULL, etc.
+// Extra precision multiplies with low / high results
+let neverHasSideEffects = 1 in {
+let isCommutable = 1 in {
+def t2SMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64,
+ "smull", " $ldst, $hdst, $a, $b", []>;
+
+def t2UMULL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMUL64,
+ "umull", " $ldst, $hdst, $a, $b", []>;
+}
+
+// Multiply + accumulate
+def t2SMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64,
+ "smlal", " $ldst, $hdst, $a, $b", []>;
+
+def t2UMLAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64,
+ "umlal", " $ldst, $hdst, $a, $b", []>;
+
+def t2UMAAL : T2I<(outs GPR:$ldst, GPR:$hdst), (ins GPR:$a, GPR:$b), IIC_iMAC64,
+ "umaal", " $ldst, $hdst, $a, $b", []>;
+} // neverHasSideEffects
+
+// Most significant word multiply
+def t2SMMUL : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
+ "smmul", " $dst, $a, $b",
+ [(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>;
+
+def t2SMMLA : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32,
+ "smmla", " $dst, $a, $b, $c",
+ [(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>;
+
+
+def t2SMMLS : T2I <(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c), IIC_iMAC32,
+ "smmls", " $dst, $a, $b, $c",
+ [(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>;
+
+multiclass T2I_smul<string opc, PatFrag opnode> {
+ def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
+ !strconcat(opc, "bb"), " $dst, $a, $b",
+ [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
+ (sext_inreg GPR:$b, i16)))]>;
+
+ def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
+ !strconcat(opc, "bt"), " $dst, $a, $b",
+ [(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
+ (sra GPR:$b, (i32 16))))]>;
+
+ def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
+ !strconcat(opc, "tb"), " $dst, $a, $b",
+ [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)),
+ (sext_inreg GPR:$b, i16)))]>;
+
+ def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL32,
+ !strconcat(opc, "tt"), " $dst, $a, $b",
+ [(set GPR:$dst, (opnode (sra GPR:$a, (i32 16)),
+ (sra GPR:$b, (i32 16))))]>;
+
+ def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16,
+ !strconcat(opc, "wb"), " $dst, $a, $b",
+ [(set GPR:$dst, (sra (opnode GPR:$a,
+ (sext_inreg GPR:$b, i16)), (i32 16)))]>;
+
+ def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b), IIC_iMUL16,
+ !strconcat(opc, "wt"), " $dst, $a, $b",
+ [(set GPR:$dst, (sra (opnode GPR:$a,
+ (sra GPR:$b, (i32 16))), (i32 16)))]>;
+}
+
+
+multiclass T2I_smla<string opc, PatFrag opnode> {
+ def BB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "bb"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc,
+ (opnode (sext_inreg GPR:$a, i16),
+ (sext_inreg GPR:$b, i16))))]>;
+
+ def BT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "bt"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16),
+ (sra GPR:$b, (i32 16)))))]>;
+
+ def TB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "tb"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)),
+ (sext_inreg GPR:$b, i16))))]>;
+
+ def TT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "tt"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, (i32 16)),
+ (sra GPR:$b, (i32 16)))))]>;
+
+ def WB : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "wb"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
+ (sext_inreg GPR:$b, i16)), (i32 16))))]>;
+
+ def WT : T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc), IIC_iMAC16,
+ !strconcat(opc, "wt"), " $dst, $a, $b, $acc",
+ [(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
+ (sra GPR:$b, (i32 16))), (i32 16))))]>;
+}
+
+defm t2SMUL : T2I_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+defm t2SMLA : T2I_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
+
+// TODO: Halfword multiple accumulate long: SMLAL<x><y>
+// TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD
+
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
-def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src),
+def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
"clz", " $dst, $src",
[(set GPR:$dst, (ctlz GPR:$src))]>;
-def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src),
- "rev", " $dst, $src",
+def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
+ "rev", ".w $dst, $src",
[(set GPR:$dst, (bswap GPR:$src))]>;
-def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src),
- "rev16", " $dst, $src",
+def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
+ "rev16", ".w $dst, $src",
[(set GPR:$dst,
(or (and (srl GPR:$src, (i32 8)), 0xFF),
(or (and (shl GPR:$src, (i32 8)), 0xFF00),
(or (and (srl GPR:$src, (i32 8)), 0xFF0000),
(and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>;
-/////
-/// A8.6.137 REVSH
-/////
-def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src),
- "revsh", " $dst, $src",
+def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src), IIC_iUNAr,
+ "revsh", ".w $dst, $src",
[(set GPR:$dst,
(sext_inreg
- (or (srl (and GPR:$src, 0xFFFF), (i32 8)),
+ (or (srl (and GPR:$src, 0xFF00), (i32 8)),
(shl GPR:$src, (i32 8))), i16))]>;
-// FIXME: PKHxx etc.
+def t2PKHBT : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt),
+ IIC_iALUsi, "pkhbt", " $dst, $src1, $src2, LSL $shamt",
+ [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF),
+ (and (shl GPR:$src2, (i32 imm:$shamt)),
+ 0xFFFF0000)))]>;
+
+// Alternate cases for PKHBT where identities eliminate some nodes.
+def : T2Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)),
+ (t2PKHBT GPR:$src1, GPR:$src2, 0)>;
+def : T2Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)),
+ (t2PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>;
+
+def t2PKHTB : T2I<(outs GPR:$dst), (ins GPR:$src1, GPR:$src2, i32imm:$shamt),
+ IIC_iALUsi, "pkhtb", " $dst, $src1, $src2, ASR $shamt",
+ [(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000),
+ (and (sra GPR:$src2, imm16_31:$shamt),
+ 0xFFFF)))]>;
+
+// Alternate cases for PKHTB where identities eliminate some nodes. Note that
+// a shift amount of 0 is *not legal* here, it is PKHBT instead.
+def : T2Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, (i32 16))),
+ (t2PKHTB GPR:$src1, GPR:$src2, 16)>;
+def : T2Pat<(or (and GPR:$src1, 0xFFFF0000),
+ (and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)),
+ (t2PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>;
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
-defm t2CMP : T2I_cmp_is<"cmp",
- BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
+defm t2CMP : T2I_cmp_is<"cmp",
+ BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
defm t2CMPz : T2I_cmp_is<"cmp",
BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>;
-defm t2CMN : T2I_cmp_is<"cmn",
- BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>;
+defm t2CMN : T2I_cmp_is<"cmn",
+ BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>;
defm t2CMNz : T2I_cmp_is<"cmn",
BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>;
@@ -923,45 +999,132 @@ defm t2TEQ : T2I_cmp_is<"teq",
// Short range conditional branch. Looks awesome for loops. Need to figure
// out how to use this one.
-// FIXME: Conditional moves
+
+// Conditional moves
+// FIXME: should be able to write a pattern for ARMcmov, but can't use
+// a two-value operand where a dag node expects two operands. :(
+def t2MOVCCr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true), IIC_iCMOVr,
+ "mov", ".w $dst, $true",
+ [/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>,
+ RegConstraint<"$false = $dst">;
+
+def t2MOVCCi : T2I<(outs GPR:$dst), (ins GPR:$false, t2_so_imm:$true),
+ IIC_iCMOVi, "mov", ".w $dst, $true",
+[/*(set GPR:$dst, (ARMcmov GPR:$false, t2_so_imm:$true, imm:$cc, CCR:$ccr))*/]>,
+ RegConstraint<"$false = $dst">;
+
+def t2MOVCClsl : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs),
+ IIC_iCMOVsi, "lsl", ".w $dst, $true, $rhs", []>,
+ RegConstraint<"$false = $dst">;
+def t2MOVCClsr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs),
+ IIC_iCMOVsi, "lsr", ".w $dst, $true, $rhs", []>,
+ RegConstraint<"$false = $dst">;
+def t2MOVCCasr : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs),
+ IIC_iCMOVsi, "asr", ".w $dst, $true, $rhs", []>,
+ RegConstraint<"$false = $dst">;
+def t2MOVCCror : T2I<(outs GPR:$dst), (ins GPR:$false, GPR:$true, i32imm:$rhs),
+ IIC_iCMOVsi, "ror", ".w $dst, $true, $rhs", []>,
+ RegConstraint<"$false = $dst">;
+
+//===----------------------------------------------------------------------===//
+// TLS Instructions
+//
+
+// __aeabi_read_tp preserves the registers r1-r3.
+let isCall = 1,
+ Defs = [R0, R12, LR, CPSR] in {
+ def t2TPsoft : T2XI<(outs), (ins), IIC_Br,
+ "bl __aeabi_read_tp",
+ [(set R0, ARMthread_pointer)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// SJLJ Exception handling intrinsics
+// eh_sjlj_setjmp() is an instruction sequence to store the return
+// address and save #0 in R0 for the non-longjmp case.
+// Since by its nature we may be coming from some other function to get
+// here, and we're using the stack frame for the containing function to
+// save/restore registers, we can't keep anything live in regs across
+// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
+// when we get here from a longjmp(). We force everthing out of registers
+// except for our own input by listing the relevant registers in Defs. By
+// doing so, we also cause the prologue/epilogue code to actively preserve
+// all of the callee-saved resgisters, which is exactly what we want.
+let Defs =
+ [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0,
+ D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
+ D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30,
+ D31 ] in {
+ def t2Int_eh_sjlj_setjmp : Thumb2XI<(outs), (ins GPR:$src),
+ AddrModeNone, SizeSpecial, NoItinerary,
+ "str.w sp, [$src, #+8] @ eh_setjmp begin\n"
+ "\tadr r12, 0f\n"
+ "\torr r12, #1\n"
+ "\tstr.w r12, [$src, #+4]\n"
+ "\tmovs r0, #0\n"
+ "\tb 1f\n"
+ "0:\tmovs r0, #1 @ eh_setjmp end\n"
+ "1:", "",
+ [(set R0, (ARMeh_sjlj_setjmp GPR:$src))]>;
+}
+
+
//===----------------------------------------------------------------------===//
// Control-Flow Instructions
//
+// FIXME: remove when we have a way to marking a MI with these properties.
+// FIXME: $dst1 should be a def. But the extra ops must be in the end of the
+// operand list.
+// FIXME: Should pc be an implicit operand like PICADD, etc?
+let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
+ hasExtraDefRegAllocReq = 1 in
+ def t2LDM_RET : T2XI<(outs),
+ (ins addrmode4:$addr, pred:$p, reglist:$wb, variable_ops),
+ IIC_Br, "ldm${addr:submode}${p}${addr:wide} $addr, $wb",
+ []>;
+
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
let isPredicable = 1 in
-def t2B : T2XI<(outs), (ins brtarget:$target),
- "b $target",
+def t2B : T2XI<(outs), (ins brtarget:$target), IIC_Br,
+ "b.w $target",
[(br bb:$target)]>;
let isNotDuplicable = 1, isIndirectBranch = 1 in {
-def t2BR_JTr : T2JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id),
- "mov pc, $target \n$jt",
- [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>;
+def t2BR_JT :
+ T2JTI<(outs),
+ (ins GPR:$target, GPR:$index, jt2block_operand:$jt, i32imm:$id),
+ IIC_Br, "mov pc, $target\n$jt",
+ [(ARMbr2jt GPR:$target, GPR:$index, tjumptable:$jt, imm:$id)]>;
-def t2BR_JTm :
+// FIXME: Add a non-pc based case that can be predicated.
+def t2TBB :
T2JTI<(outs),
- (ins t2addrmode_so_reg:$target, jtblock_operand:$jt, i32imm:$id),
- "ldr pc, $target \n$jt",
- [(ARMbrjt (i32 (load t2addrmode_so_reg:$target)), tjumptable:$jt,
- imm:$id)]>;
+ (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id),
+ IIC_Br, "tbb $index\n$jt", []>;
-def t2BR_JTadd :
+def t2TBH :
T2JTI<(outs),
- (ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id),
- "add pc, $target, $idx \n$jt",
- [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, imm:$id)]>;
-} // isNotDuplicate, isIndirectBranch
+ (ins tb_addrmode:$index, jt2block_operand:$jt, i32imm:$id),
+ IIC_Br, "tbh $index\n$jt", []>;
+} // isNotDuplicable, isIndirectBranch
+
} // isBranch, isTerminator, isBarrier
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
-def t2Bcc : T2I<(outs), (ins brtarget:$target),
- "b", " $target",
+def t2Bcc : T2I<(outs), (ins brtarget:$target), IIC_Br,
+ "b", ".w $target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>;
+
+// IT block
+def t2IT : Thumb2XI<(outs), (ins it_pred:$cc, it_mask:$mask),
+ AddrModeNone, Size2Bytes, IIC_iALUx,
+ "it$mask $cc", "", []>;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
@@ -972,7 +1135,10 @@ def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>;
def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(t2LEApcrelJT tjumptable:$dst, imm:$id)>;
-// Large immediate handling.
-
-def : T2Pat<(i32 imm:$src),
- (t2MOVTi16 (t2MOVi16 (t2_lo16 imm:$src)), (t2_hi16 imm:$src))>;
+// 32-bit immediate using movw + movt.
+// This is a single pseudo instruction to make it re-materializable. Remove
+// when we can do generalized remat.
+let isReMaterializable = 1 in
+def t2MOVi32imm : T2Ix2<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVi,
+ "movw", " $dst, ${src:lo16}\n\tmovt${p} $dst, ${src:hi16}",
+ [(set GPR:$dst, (i32 imm:$src))]>;
diff --git a/lib/Target/ARM/ARMInstrVFP.td b/lib/Target/ARM/ARMInstrVFP.td
index 9104c77..56336d1 100644
--- a/lib/Target/ARM/ARMInstrVFP.td
+++ b/lib/Target/ARM/ARMInstrVFP.td
@@ -36,57 +36,57 @@ def arm_fmdrr : SDNode<"ARMISD::FMDRR", SDT_FMDRR>;
let canFoldAsLoad = 1 in {
def FLDD : ADI5<0b1101, 0b01, (outs DPR:$dst), (ins addrmode5:$addr),
- "fldd", " $dst, $addr",
+ IIC_fpLoad64, "fldd", " $dst, $addr",
[(set DPR:$dst, (load addrmode5:$addr))]>;
def FLDS : ASI5<0b1101, 0b01, (outs SPR:$dst), (ins addrmode5:$addr),
- "flds", " $dst, $addr",
+ IIC_fpLoad32, "flds", " $dst, $addr",
[(set SPR:$dst, (load addrmode5:$addr))]>;
} // canFoldAsLoad
def FSTD : ADI5<0b1101, 0b00, (outs), (ins DPR:$src, addrmode5:$addr),
- "fstd", " $src, $addr",
+ IIC_fpStore64, "fstd", " $src, $addr",
[(store DPR:$src, addrmode5:$addr)]>;
def FSTS : ASI5<0b1101, 0b00, (outs), (ins SPR:$src, addrmode5:$addr),
- "fsts", " $src, $addr",
+ IIC_fpStore32, "fsts", " $src, $addr",
[(store SPR:$src, addrmode5:$addr)]>;
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
-let mayLoad = 1 in {
-def FLDMD : AXDI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$dst1,
- variable_ops),
- "fldm${addr:submode}d${p} ${addr:base}, $dst1",
+let mayLoad = 1, hasExtraDefRegAllocReq = 1 in {
+def FLDMD : AXDI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$wb,
+ variable_ops), IIC_fpLoadm,
+ "fldm${addr:submode}d${p} ${addr:base}, $wb",
[]> {
let Inst{20} = 1;
}
-def FLDMS : AXSI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$dst1,
- variable_ops),
- "fldm${addr:submode}s${p} ${addr:base}, $dst1",
+def FLDMS : AXSI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$wb,
+ variable_ops), IIC_fpLoadm,
+ "fldm${addr:submode}s${p} ${addr:base}, $wb",
[]> {
let Inst{20} = 1;
}
-}
+} // mayLoad, hasExtraDefRegAllocReq
-let mayStore = 1 in {
-def FSTMD : AXDI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$src1,
- variable_ops),
- "fstm${addr:submode}d${p} ${addr:base}, $src1",
+let mayStore = 1, hasExtraSrcRegAllocReq = 1 in {
+def FSTMD : AXDI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$wb,
+ variable_ops), IIC_fpStorem,
+ "fstm${addr:submode}d${p} ${addr:base}, $wb",
[]> {
let Inst{20} = 0;
}
-def FSTMS : AXSI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$src1,
- variable_ops),
- "fstm${addr:submode}s${p} ${addr:base}, $src1",
+def FSTMS : AXSI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$wb,
+ variable_ops), IIC_fpStorem,
+ "fstm${addr:submode}s${p} ${addr:base}, $wb",
[]> {
let Inst{20} = 0;
}
-} // mayStore
+} // mayStore, hasExtraSrcRegAllocReq
// FLDMX, FSTMX - mixing S/D registers for pre-armv6 cores
@@ -95,46 +95,48 @@ def FSTMS : AXSI5<(outs), (ins addrmode5:$addr, pred:$p, reglist:$src1,
//
def FADDD : ADbI<0b11100011, (outs DPR:$dst), (ins DPR:$a, DPR:$b),
- "faddd", " $dst, $a, $b",
+ IIC_fpALU64, "faddd", " $dst, $a, $b",
[(set DPR:$dst, (fadd DPR:$a, DPR:$b))]>;
-def FADDS : ASbI<0b11100011, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
- "fadds", " $dst, $a, $b",
- [(set SPR:$dst, (fadd SPR:$a, SPR:$b))]>;
+def FADDS : ASbIn<0b11100011, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
+ IIC_fpALU32, "fadds", " $dst, $a, $b",
+ [(set SPR:$dst, (fadd SPR:$a, SPR:$b))]>;
// These are encoded as unary instructions.
+let Defs = [FPSCR] in {
def FCMPED : ADuI<0b11101011, 0b0100, 0b1100, (outs), (ins DPR:$a, DPR:$b),
- "fcmped", " $a, $b",
+ IIC_fpCMP64, "fcmped", " $a, $b",
[(arm_cmpfp DPR:$a, DPR:$b)]>;
def FCMPES : ASuI<0b11101011, 0b0100, 0b1100, (outs), (ins SPR:$a, SPR:$b),
- "fcmpes", " $a, $b",
+ IIC_fpCMP32, "fcmpes", " $a, $b",
[(arm_cmpfp SPR:$a, SPR:$b)]>;
+}
def FDIVD : ADbI<0b11101000, (outs DPR:$dst), (ins DPR:$a, DPR:$b),
- "fdivd", " $dst, $a, $b",
+ IIC_fpDIV64, "fdivd", " $dst, $a, $b",
[(set DPR:$dst, (fdiv DPR:$a, DPR:$b))]>;
def FDIVS : ASbI<0b11101000, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
- "fdivs", " $dst, $a, $b",
+ IIC_fpDIV32, "fdivs", " $dst, $a, $b",
[(set SPR:$dst, (fdiv SPR:$a, SPR:$b))]>;
def FMULD : ADbI<0b11100010, (outs DPR:$dst), (ins DPR:$a, DPR:$b),
- "fmuld", " $dst, $a, $b",
+ IIC_fpMUL64, "fmuld", " $dst, $a, $b",
[(set DPR:$dst, (fmul DPR:$a, DPR:$b))]>;
-def FMULS : ASbI<0b11100010, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
- "fmuls", " $dst, $a, $b",
- [(set SPR:$dst, (fmul SPR:$a, SPR:$b))]>;
+def FMULS : ASbIn<0b11100010, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
+ IIC_fpMUL32, "fmuls", " $dst, $a, $b",
+ [(set SPR:$dst, (fmul SPR:$a, SPR:$b))]>;
def FNMULD : ADbI<0b11100010, (outs DPR:$dst), (ins DPR:$a, DPR:$b),
- "fnmuld", " $dst, $a, $b",
+ IIC_fpMUL64, "fnmuld", " $dst, $a, $b",
[(set DPR:$dst, (fneg (fmul DPR:$a, DPR:$b)))]> {
let Inst{6} = 1;
}
def FNMULS : ASbI<0b11100010, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
- "fnmuls", " $dst, $a, $b",
+ IIC_fpMUL32, "fnmuls", " $dst, $a, $b",
[(set SPR:$dst, (fneg (fmul SPR:$a, SPR:$b)))]> {
let Inst{6} = 1;
}
@@ -147,14 +149,14 @@ def : Pat<(fmul (fneg SPR:$a), SPR:$b),
def FSUBD : ADbI<0b11100011, (outs DPR:$dst), (ins DPR:$a, DPR:$b),
- "fsubd", " $dst, $a, $b",
+ IIC_fpALU64, "fsubd", " $dst, $a, $b",
[(set DPR:$dst, (fsub DPR:$a, DPR:$b))]> {
let Inst{6} = 1;
}
-def FSUBS : ASbI<0b11100011, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
- "fsubs", " $dst, $a, $b",
- [(set SPR:$dst, (fsub SPR:$a, SPR:$b))]> {
+def FSUBS : ASbIn<0b11100011, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
+ IIC_fpALU32, "fsubs", " $dst, $a, $b",
+ [(set SPR:$dst, (fsub SPR:$a, SPR:$b))]> {
let Inst{6} = 1;
}
@@ -163,29 +165,31 @@ def FSUBS : ASbI<0b11100011, (outs SPR:$dst), (ins SPR:$a, SPR:$b),
//
def FABSD : ADuI<0b11101011, 0b0000, 0b1100, (outs DPR:$dst), (ins DPR:$a),
- "fabsd", " $dst, $a",
+ IIC_fpUNA64, "fabsd", " $dst, $a",
[(set DPR:$dst, (fabs DPR:$a))]>;
-def FABSS : ASuI<0b11101011, 0b0000, 0b1100, (outs SPR:$dst), (ins SPR:$a),
- "fabss", " $dst, $a",
- [(set SPR:$dst, (fabs SPR:$a))]>;
+def FABSS : ASuIn<0b11101011, 0b0000, 0b1100, (outs SPR:$dst), (ins SPR:$a),
+ IIC_fpUNA32, "fabss", " $dst, $a",
+ [(set SPR:$dst, (fabs SPR:$a))]>;
+let Defs = [FPSCR] in {
def FCMPEZD : ADuI<0b11101011, 0b0101, 0b1100, (outs), (ins DPR:$a),
- "fcmpezd", " $a",
+ IIC_fpCMP64, "fcmpezd", " $a",
[(arm_cmpfp0 DPR:$a)]>;
def FCMPEZS : ASuI<0b11101011, 0b0101, 0b1100, (outs), (ins SPR:$a),
- "fcmpezs", " $a",
+ IIC_fpCMP32, "fcmpezs", " $a",
[(arm_cmpfp0 SPR:$a)]>;
+}
def FCVTDS : ASuI<0b11101011, 0b0111, 0b1100, (outs DPR:$dst), (ins SPR:$a),
- "fcvtds", " $dst, $a",
+ IIC_fpCVTDS, "fcvtds", " $dst, $a",
[(set DPR:$dst, (fextend SPR:$a))]>;
// Special case encoding: bits 11-8 is 0b1011.
-def FCVTSD : AI<(outs SPR:$dst), (ins DPR:$a), VFPUnaryFrm,
- "fcvtsd", " $dst, $a",
- [(set SPR:$dst, (fround DPR:$a))]> {
+def FCVTSD : VFPAI<(outs SPR:$dst), (ins DPR:$a), VFPUnaryFrm,
+ IIC_fpCVTSD, "fcvtsd", " $dst, $a",
+ [(set SPR:$dst, (fround DPR:$a))]> {
let Inst{27-23} = 0b11101;
let Inst{21-16} = 0b110111;
let Inst{11-8} = 0b1011;
@@ -194,26 +198,26 @@ def FCVTSD : AI<(outs SPR:$dst), (ins DPR:$a), VFPUnaryFrm,
let neverHasSideEffects = 1 in {
def FCPYD : ADuI<0b11101011, 0b0000, 0b0100, (outs DPR:$dst), (ins DPR:$a),
- "fcpyd", " $dst, $a", []>;
+ IIC_fpUNA64, "fcpyd", " $dst, $a", []>;
def FCPYS : ASuI<0b11101011, 0b0000, 0b0100, (outs SPR:$dst), (ins SPR:$a),
- "fcpys", " $dst, $a", []>;
+ IIC_fpUNA32, "fcpys", " $dst, $a", []>;
} // neverHasSideEffects
def FNEGD : ADuI<0b11101011, 0b0001, 0b0100, (outs DPR:$dst), (ins DPR:$a),
- "fnegd", " $dst, $a",
+ IIC_fpUNA64, "fnegd", " $dst, $a",
[(set DPR:$dst, (fneg DPR:$a))]>;
-def FNEGS : ASuI<0b11101011, 0b0001, 0b0100, (outs SPR:$dst), (ins SPR:$a),
- "fnegs", " $dst, $a",
- [(set SPR:$dst, (fneg SPR:$a))]>;
+def FNEGS : ASuIn<0b11101011, 0b0001, 0b0100, (outs SPR:$dst), (ins SPR:$a),
+ IIC_fpUNA32, "fnegs", " $dst, $a",
+ [(set SPR:$dst, (fneg SPR:$a))]>;
def FSQRTD : ADuI<0b11101011, 0b0001, 0b1100, (outs DPR:$dst), (ins DPR:$a),
- "fsqrtd", " $dst, $a",
+ IIC_fpSQRT64, "fsqrtd", " $dst, $a",
[(set DPR:$dst, (fsqrt DPR:$a))]>;
def FSQRTS : ASuI<0b11101011, 0b0001, 0b1100, (outs SPR:$dst), (ins SPR:$a),
- "fsqrts", " $dst, $a",
+ IIC_fpSQRT32, "fsqrts", " $dst, $a",
[(set SPR:$dst, (fsqrt SPR:$a))]>;
//===----------------------------------------------------------------------===//
@@ -221,16 +225,16 @@ def FSQRTS : ASuI<0b11101011, 0b0001, 0b1100, (outs SPR:$dst), (ins SPR:$a),
//
def FMRS : AVConv2I<0b11100001, 0b1010, (outs GPR:$dst), (ins SPR:$src),
- "fmrs", " $dst, $src",
+ IIC_VMOVSI, "fmrs", " $dst, $src",
[(set GPR:$dst, (bitconvert SPR:$src))]>;
def FMSR : AVConv4I<0b11100000, 0b1010, (outs SPR:$dst), (ins GPR:$src),
- "fmsr", " $dst, $src",
+ IIC_VMOVIS, "fmsr", " $dst, $src",
[(set SPR:$dst, (bitconvert GPR:$src))]>;
def FMRRD : AVConv3I<0b11000101, 0b1011,
- (outs GPR:$dst1, GPR:$dst2), (ins DPR:$src),
- "fmrrd", " $dst1, $dst2, $src",
+ (outs GPR:$wb, GPR:$dst2), (ins DPR:$src),
+ IIC_VMOVDI, "fmrrd", " $wb, $dst2, $src",
[/* FIXME: Can't write pattern for multiple result instr*/]>;
// FMDHR: GPR -> SPR
@@ -238,7 +242,7 @@ def FMRRD : AVConv3I<0b11000101, 0b1011,
def FMDRR : AVConv5I<0b11000100, 0b1011,
(outs DPR:$dst), (ins GPR:$src1, GPR:$src2),
- "fmdrr", " $dst, $src1, $src2",
+ IIC_VMOVID, "fmdrr", " $dst, $src1, $src2",
[(set DPR:$dst, (arm_fmdrr GPR:$src1, GPR:$src2))]>;
// FMRDH: SPR -> GPR
@@ -254,23 +258,23 @@ def FMDRR : AVConv5I<0b11000100, 0b1011,
// Int to FP:
def FSITOD : AVConv1I<0b11101011, 0b1000, 0b1011, (outs DPR:$dst), (ins SPR:$a),
- "fsitod", " $dst, $a",
+ IIC_fpCVTID, "fsitod", " $dst, $a",
[(set DPR:$dst, (arm_sitof SPR:$a))]> {
let Inst{7} = 1;
}
-def FSITOS : AVConv1I<0b11101011, 0b1000, 0b1010, (outs SPR:$dst), (ins SPR:$a),
- "fsitos", " $dst, $a",
+def FSITOS : AVConv1In<0b11101011, 0b1000, 0b1010, (outs SPR:$dst),(ins SPR:$a),
+ IIC_fpCVTIS, "fsitos", " $dst, $a",
[(set SPR:$dst, (arm_sitof SPR:$a))]> {
let Inst{7} = 1;
}
def FUITOD : AVConv1I<0b11101011, 0b1000, 0b1011, (outs DPR:$dst), (ins SPR:$a),
- "fuitod", " $dst, $a",
+ IIC_fpCVTID, "fuitod", " $dst, $a",
[(set DPR:$dst, (arm_uitof SPR:$a))]>;
-def FUITOS : AVConv1I<0b11101011, 0b1000, 0b1010, (outs SPR:$dst), (ins SPR:$a),
- "fuitos", " $dst, $a",
+def FUITOS : AVConv1In<0b11101011, 0b1000, 0b1010, (outs SPR:$dst),(ins SPR:$a),
+ IIC_fpCVTIS, "fuitos", " $dst, $a",
[(set SPR:$dst, (arm_uitof SPR:$a))]>;
// FP to Int:
@@ -278,28 +282,28 @@ def FUITOS : AVConv1I<0b11101011, 0b1000, 0b1010, (outs SPR:$dst), (ins SPR:$a),
def FTOSIZD : AVConv1I<0b11101011, 0b1101, 0b1011,
(outs SPR:$dst), (ins DPR:$a),
- "ftosizd", " $dst, $a",
+ IIC_fpCVTDI, "ftosizd", " $dst, $a",
[(set SPR:$dst, (arm_ftosi DPR:$a))]> {
let Inst{7} = 1; // Z bit
}
-def FTOSIZS : AVConv1I<0b11101011, 0b1101, 0b1010,
- (outs SPR:$dst), (ins SPR:$a),
- "ftosizs", " $dst, $a",
+def FTOSIZS : AVConv1In<0b11101011, 0b1101, 0b1010,
+ (outs SPR:$dst), (ins SPR:$a),
+ IIC_fpCVTSI, "ftosizs", " $dst, $a",
[(set SPR:$dst, (arm_ftosi SPR:$a))]> {
let Inst{7} = 1; // Z bit
}
def FTOUIZD : AVConv1I<0b11101011, 0b1100, 0b1011,
(outs SPR:$dst), (ins DPR:$a),
- "ftouizd", " $dst, $a",
+ IIC_fpCVTDI, "ftouizd", " $dst, $a",
[(set SPR:$dst, (arm_ftoui DPR:$a))]> {
let Inst{7} = 1; // Z bit
}
-def FTOUIZS : AVConv1I<0b11101011, 0b1100, 0b1010,
- (outs SPR:$dst), (ins SPR:$a),
- "ftouizs", " $dst, $a",
+def FTOUIZS : AVConv1In<0b11101011, 0b1100, 0b1010,
+ (outs SPR:$dst), (ins SPR:$a),
+ IIC_fpCVTSI, "ftouizs", " $dst, $a",
[(set SPR:$dst, (arm_ftoui SPR:$a))]> {
let Inst{7} = 1; // Z bit
}
@@ -309,48 +313,53 @@ def FTOUIZS : AVConv1I<0b11101011, 0b1100, 0b1010,
//
def FMACD : ADbI<0b11100000, (outs DPR:$dst), (ins DPR:$dstin, DPR:$a, DPR:$b),
- "fmacd", " $dst, $a, $b",
+ IIC_fpMAC64, "fmacd", " $dst, $a, $b",
[(set DPR:$dst, (fadd (fmul DPR:$a, DPR:$b), DPR:$dstin))]>,
RegConstraint<"$dstin = $dst">;
-def FMACS : ASbI<0b11100000, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
- "fmacs", " $dst, $a, $b",
- [(set SPR:$dst, (fadd (fmul SPR:$a, SPR:$b), SPR:$dstin))]>,
- RegConstraint<"$dstin = $dst">;
+def FMACS : ASbIn<0b11100000, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
+ IIC_fpMAC32, "fmacs", " $dst, $a, $b",
+ [(set SPR:$dst, (fadd (fmul SPR:$a, SPR:$b), SPR:$dstin))]>,
+ RegConstraint<"$dstin = $dst">;
def FMSCD : ADbI<0b11100001, (outs DPR:$dst), (ins DPR:$dstin, DPR:$a, DPR:$b),
- "fmscd", " $dst, $a, $b",
+ IIC_fpMAC64, "fmscd", " $dst, $a, $b",
[(set DPR:$dst, (fsub (fmul DPR:$a, DPR:$b), DPR:$dstin))]>,
RegConstraint<"$dstin = $dst">;
def FMSCS : ASbI<0b11100001, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
- "fmscs", " $dst, $a, $b",
+ IIC_fpMAC32, "fmscs", " $dst, $a, $b",
[(set SPR:$dst, (fsub (fmul SPR:$a, SPR:$b), SPR:$dstin))]>,
RegConstraint<"$dstin = $dst">;
def FNMACD : ADbI<0b11100000, (outs DPR:$dst), (ins DPR:$dstin, DPR:$a, DPR:$b),
- "fnmacd", " $dst, $a, $b",
+ IIC_fpMAC64, "fnmacd", " $dst, $a, $b",
[(set DPR:$dst, (fadd (fneg (fmul DPR:$a, DPR:$b)), DPR:$dstin))]>,
RegConstraint<"$dstin = $dst"> {
let Inst{6} = 1;
}
-def FNMACS : ASbI<0b11100000, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
- "fnmacs", " $dst, $a, $b",
+def FNMACS : ASbIn<0b11100000, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
+ IIC_fpMAC32, "fnmacs", " $dst, $a, $b",
[(set SPR:$dst, (fadd (fneg (fmul SPR:$a, SPR:$b)), SPR:$dstin))]>,
RegConstraint<"$dstin = $dst"> {
let Inst{6} = 1;
}
+def : Pat<(fsub DPR:$dstin, (fmul DPR:$a, DPR:$b)),
+ (FNMACD DPR:$dstin, DPR:$a, DPR:$b)>, Requires<[DontUseNEONForFP]>;
+def : Pat<(fsub SPR:$dstin, (fmul SPR:$a, SPR:$b)),
+ (FNMACS SPR:$dstin, SPR:$a, SPR:$b)>, Requires<[DontUseNEONForFP]>;
+
def FNMSCD : ADbI<0b11100001, (outs DPR:$dst), (ins DPR:$dstin, DPR:$a, DPR:$b),
- "fnmscd", " $dst, $a, $b",
+ IIC_fpMAC64, "fnmscd", " $dst, $a, $b",
[(set DPR:$dst, (fsub (fneg (fmul DPR:$a, DPR:$b)), DPR:$dstin))]>,
RegConstraint<"$dstin = $dst"> {
let Inst{6} = 1;
}
def FNMSCS : ASbI<0b11100001, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
- "fnmscs", " $dst, $a, $b",
+ IIC_fpMAC32, "fnmscs", " $dst, $a, $b",
[(set SPR:$dst, (fsub (fneg (fmul SPR:$a, SPR:$b)), SPR:$dstin))]>,
RegConstraint<"$dstin = $dst"> {
let Inst{6} = 1;
@@ -362,25 +371,25 @@ def FNMSCS : ASbI<0b11100001, (outs SPR:$dst), (ins SPR:$dstin, SPR:$a, SPR:$b),
def FCPYDcc : ADuI<0b11101011, 0b0000, 0b0100,
(outs DPR:$dst), (ins DPR:$false, DPR:$true),
- "fcpyd", " $dst, $true",
+ IIC_fpUNA64, "fcpyd", " $dst, $true",
[/*(set DPR:$dst, (ARMcmov DPR:$false, DPR:$true, imm:$cc))*/]>,
RegConstraint<"$false = $dst">;
def FCPYScc : ASuI<0b11101011, 0b0000, 0b0100,
(outs SPR:$dst), (ins SPR:$false, SPR:$true),
- "fcpys", " $dst, $true",
+ IIC_fpUNA32, "fcpys", " $dst, $true",
[/*(set SPR:$dst, (ARMcmov SPR:$false, SPR:$true, imm:$cc))*/]>,
RegConstraint<"$false = $dst">;
def FNEGDcc : ADuI<0b11101011, 0b0001, 0b0100,
(outs DPR:$dst), (ins DPR:$false, DPR:$true),
- "fnegd", " $dst, $true",
+ IIC_fpUNA64, "fnegd", " $dst, $true",
[/*(set DPR:$dst, (ARMcneg DPR:$false, DPR:$true, imm:$cc))*/]>,
RegConstraint<"$false = $dst">;
def FNEGScc : ASuI<0b11101011, 0b0001, 0b0100,
(outs SPR:$dst), (ins SPR:$false, SPR:$true),
- "fnegs", " $dst, $true",
+ IIC_fpUNA32, "fnegs", " $dst, $true",
[/*(set SPR:$dst, (ARMcneg SPR:$false, SPR:$true, imm:$cc))*/]>,
RegConstraint<"$false = $dst">;
@@ -389,8 +398,8 @@ def FNEGScc : ASuI<0b11101011, 0b0001, 0b0100,
// Misc.
//
-let Defs = [CPSR] in
-def FMSTAT : AI<(outs), (ins), VFPMiscFrm, "fmstat", "", [(arm_fmstat)]> {
+let Defs = [CPSR], Uses = [FPSCR] in
+def FMSTAT : VFPAI<(outs), (ins), VFPMiscFrm, IIC_fpSTAT, "fmstat", "", [(arm_fmstat)]> {
let Inst{27-20} = 0b11101111;
let Inst{19-16} = 0b0001;
let Inst{15-12} = 0b1111;
diff --git a/lib/Target/ARM/ARMJITInfo.cpp b/lib/Target/ARM/ARMJITInfo.cpp
index e551c41..24990e6 100644
--- a/lib/Target/ARM/ARMJITInfo.cpp
+++ b/lib/Target/ARM/ARMJITInfo.cpp
@@ -19,15 +19,15 @@
#include "ARMSubtarget.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/Config/alloca.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Memory.h"
#include <cstdlib>
using namespace llvm;
void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- abort();
+ llvm_report_error("ARMJITInfo::replaceMachineCodeForFunction");
}
/// JITCompilerFunction - This contains the address of the JIT function used to
@@ -45,11 +45,11 @@ static TargetJITInfo::JITCompilerFn JITCompilerFunction;
// CompilationCallback stub - We can't use a C function with inline assembly in
// it, because we the prolog/epilog inserted by GCC won't work for us (we need
// to preserve more context and manipulate the stack directly). Instead,
-// write our own wrapper, which does things our way, so we have complete
+// write our own wrapper, which does things our way, so we have complete
// control over register saving and restoring.
extern "C" {
#if defined(__arm__)
- void ARMCompilationCallback(void);
+ void ARMCompilationCallback();
asm(
".text\n"
".align 2\n"
@@ -77,11 +77,11 @@ extern "C" {
// order for the registers.
// +--------+
// 0 | LR | Original return address
- // +--------+
+ // +--------+
// 1 | LR | Stub address (start of stub)
// 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
// 6-20 | D0..D7 | Saved VFP registers
- // +--------+
+ // +--------+
//
#ifndef __SOFTFP__
// Restore VFP caller-saved registers.
@@ -103,15 +103,14 @@ extern "C" {
);
#else // Not an ARM host
void ARMCompilationCallback() {
- assert(0 && "Cannot call ARMCompilationCallback() on a non-ARM arch!\n");
- abort();
+ llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
}
#endif
}
-/// ARMCompilationCallbackC - This is the target-specific function invoked
-/// by the function stub when we did not know the real target of a call.
-/// This function must locate the start of the stub or call site and pass
+/// ARMCompilationCallbackC - This is the target-specific function invoked
+/// by the function stub when we did not know the real target of a call.
+/// This function must locate the start of the stub or call site and pass
/// it into the JIT compiler function.
extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
// Get the address of the compiled code for this function.
@@ -123,14 +122,12 @@ extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
// ldr pc, [pc,#-4]
// <addr>
if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
- cerr << "ERROR: Unable to mark stub writable\n";
- abort();
+ llvm_unreachable("ERROR: Unable to mark stub writable");
}
*(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
*(intptr_t *)(StubAddr+4) = NewVal;
if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
- cerr << "ERROR: Unable to mark stub executable\n";
- abort();
+ llvm_unreachable("ERROR: Unable to mark stub executable");
}
}
@@ -143,7 +140,14 @@ ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
JITCodeEmitter &JCE) {
JCE.startGVStub(GV, 4, 4);
+ intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable((void*)Addr, 4)) {
+ llvm_unreachable("ERROR: Unable to mark indirect symbol writable");
+ }
JCE.emitWordLE((intptr_t)Ptr);
+ if (!sys::Memory::setRangeExecutable((void*)Addr, 4)) {
+ llvm_unreachable("ERROR: Unable to mark indirect symbol executable");
+ }
void *PtrAddr = JCE.finishGVStub(GV);
addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
return PtrAddr;
@@ -161,31 +165,43 @@ void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
if (!LazyPtr) {
// In PIC mode, the function stub is loading a lazy-ptr.
LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE);
- if (F)
- DOUT << "JIT: Indirect symbol emitted at [" << LazyPtr << "] for GV '"
- << F->getName() << "'\n";
- else
- DOUT << "JIT: Stub emitted at [" << LazyPtr
- << "] for external function at '" << Fn << "'\n";
+ DEBUG(if (F)
+ errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
+ << "] for GV '" << F->getName() << "'\n";
+ else
+ errs() << "JIT: Stub emitted at [" << LazyPtr
+ << "] for external function at '" << Fn << "'\n");
}
JCE.startGVStub(F, 16, 4);
intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable((void*)Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
JCE.emitWordLE(0xe59fc004); // ldr pc, [pc, #+4]
JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
JCE.emitWordLE(LazyPtr - (Addr+4+8)); // func - (L_func$scv+8)
sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
+ if (!sys::Memory::setRangeExecutable((void*)Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
} else {
// The stub is 8-byte size and 4-aligned.
JCE.startGVStub(F, 8, 4);
intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable((void*)Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
JCE.emitWordLE((intptr_t)Fn); // addr of function
sys::Memory::InvalidateInstructionCache((void*)Addr, 8);
+ if (!sys::Memory::setRangeExecutable((void*)Addr, 8)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
}
} else {
// The compilation callback will overwrite the first two words of this
- // stub with indirect branch instructions targeting the compiled code.
+ // stub with indirect branch instructions targeting the compiled code.
// This stub sets the return address to restart the stub, so that
// the new branch will be invoked when we come back.
//
@@ -193,6 +209,9 @@ void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
// The stub is 16-byte size and 4-byte aligned.
JCE.startGVStub(F, 16, 4);
intptr_t Addr = (intptr_t)JCE.getCurrentPCValue();
+ if (!sys::Memory::setRangeWritable((void*)Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub writable");
+ }
// Save LR so the callback can determine which stub called it.
// The compilation callback is responsible for popping this prior
// to returning.
@@ -204,6 +223,9 @@ void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
// The address of the compilation callback.
JCE.emitWordLE((intptr_t)ARMCompilationCallback);
sys::Memory::InvalidateInstructionCache((void*)Addr, 16);
+ if (!sys::Memory::setRangeExecutable((void*)Addr, 16)) {
+ llvm_unreachable("ERROR: Unable to mark stub executable");
+ }
}
return JCE.finishGVStub(F);
diff --git a/lib/Target/ARM/ARMLoadStoreOptimizer.cpp b/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
index 59cf125..d2ec9ee 100644
--- a/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
+++ b/lib/Target/ARM/ARMLoadStoreOptimizer.cpp
@@ -15,9 +15,11 @@
#define DEBUG_TYPE "arm-ldst-opt"
#include "ARM.h"
#include "ARMAddressingModes.h"
+#include "ARMBaseInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
@@ -29,6 +31,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -61,6 +64,7 @@ namespace {
const TargetRegisterInfo *TRI;
ARMFunctionInfo *AFI;
RegScavenger *RS;
+ bool isThumb2;
virtual bool runOnMachineFunction(MachineFunction &Fn);
@@ -93,6 +97,15 @@ namespace {
void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps);
bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI);
+ bool MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const TargetInstrInfo *TII,
+ bool &Advance,
+ MachineBasicBlock::iterator &I);
+ bool MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ bool &Advance,
+ MachineBasicBlock::iterator &I);
bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
};
@@ -107,6 +120,14 @@ static int getLoadStoreMultipleOpcode(int Opcode) {
case ARM::STR:
NumSTMGened++;
return ARM::STM;
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ NumLDMGened++;
+ return ARM::t2LDM;
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ NumSTMGened++;
+ return ARM::t2STM;
case ARM::FLDS:
NumFLDMGened++;
return ARM::FLDMS;
@@ -119,14 +140,30 @@ static int getLoadStoreMultipleOpcode(int Opcode) {
case ARM::FSTD:
NumFSTMGened++;
return ARM::FSTMD;
- default: abort();
+ default: llvm_unreachable("Unhandled opcode!");
}
return 0;
}
+static bool isT2i32Load(unsigned Opc) {
+ return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
+}
+
+static bool isi32Load(unsigned Opc) {
+ return Opc == ARM::LDR || isT2i32Load(Opc);
+}
+
+static bool isT2i32Store(unsigned Opc) {
+ return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
+}
+
+static bool isi32Store(unsigned Opc) {
+ return Opc == ARM::STR || isT2i32Store(Opc);
+}
+
/// MergeOps - Create and insert a LDM or STM with Base as base register and
/// registers in Regs as the register operands that would be loaded / stored.
-/// It returns true if the transformation is done.
+/// It returns true if the transformation is done.
bool
ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
@@ -140,14 +177,20 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
return false;
ARM_AM::AMSubMode Mode = ARM_AM::ia;
- bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR;
- if (isAM4 && Offset == 4)
+ bool isAM4 = isi32Load(Opcode) || isi32Store(Opcode);
+ if (isAM4 && Offset == 4) {
+ if (isThumb2)
+ // Thumb2 does not support ldmib / stmib.
+ return false;
Mode = ARM_AM::ib;
- else if (isAM4 && Offset == -4 * (int)NumRegs + 4)
+ } else if (isAM4 && Offset == -4 * (int)NumRegs + 4) {
+ if (isThumb2)
+ // Thumb2 does not support ldmda / stmda.
+ return false;
Mode = ARM_AM::da;
- else if (isAM4 && Offset == -4 * (int)NumRegs)
+ } else if (isAM4 && Offset == -4 * (int)NumRegs) {
Mode = ARM_AM::db;
- else if (Offset != 0) {
+ } else if (Offset != 0) {
// If starting offset isn't zero, insert a MI to materialize a new base.
// But only do so if it is cost effective, i.e. merging more than two
// loads / stores.
@@ -155,7 +198,7 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
return false;
unsigned NewBase;
- if (Opcode == ARM::LDR)
+ if (isi32Load(Opcode))
// If it is a load, then just use one of the destination register to
// use as the new base.
NewBase = Regs[NumRegs-1].first;
@@ -165,24 +208,30 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
if (NewBase == 0)
return false;
}
- int BaseOpc = ARM::ADDri;
+ int BaseOpc = !isThumb2
+ ? ARM::ADDri
+ : ((Base == ARM::SP) ? ARM::t2ADDrSPi : ARM::t2ADDri);
if (Offset < 0) {
- BaseOpc = ARM::SUBri;
+ BaseOpc = !isThumb2
+ ? ARM::SUBri
+ : ((Base == ARM::SP) ? ARM::t2SUBrSPi : ARM::t2SUBri);
Offset = - Offset;
}
- int ImmedOffset = ARM_AM::getSOImmVal(Offset);
+ int ImmedOffset = isThumb2
+ ? ARM_AM::getT2SOImmVal(Offset) : ARM_AM::getSOImmVal(Offset);
if (ImmedOffset == -1)
+ // FIXME: Try t2ADDri12 or t2SUBri12?
return false; // Probably not worth it then.
BuildMI(MBB, MBBI, dl, TII->get(BaseOpc), NewBase)
- .addReg(Base, getKillRegState(BaseKill)).addImm(ImmedOffset)
+ .addReg(Base, getKillRegState(BaseKill)).addImm(Offset)
.addImm(Pred).addReg(PredReg).addReg(0);
Base = NewBase;
BaseKill = true; // New base is always killed right its use.
}
bool isDPR = Opcode == ARM::FLDD || Opcode == ARM::FSTD;
- bool isDef = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
+ bool isDef = isi32Load(Opcode) || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
Opcode = getLoadStoreMultipleOpcode(Opcode);
MachineInstrBuilder MIB = (isAM4)
? BuildMI(MBB, MBBI, dl, TII->get(Opcode))
@@ -192,6 +241,7 @@ ARMLoadStoreOpt::MergeOps(MachineBasicBlock &MBB,
.addReg(Base, getKillRegState(BaseKill))
.addImm(ARM_AM::getAM5Opc(Mode, false, isDPR ? NumRegs<<1 : NumRegs))
.addImm(Pred).addReg(PredReg);
+ MIB.addReg(0); // Add optional writeback (0 for now).
for (unsigned i = 0; i != NumRegs; ++i)
MIB = MIB.addReg(Regs[i].first, getDefRegState(isDef)
| getKillRegState(Regs[i].second));
@@ -207,7 +257,7 @@ ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
ARMCC::CondCodes Pred, unsigned PredReg,
unsigned Scratch, MemOpQueue &MemOps,
SmallVector<MachineBasicBlock::iterator, 4> &Merges) {
- bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR;
+ bool isAM4 = isi32Load(Opcode) || isi32Store(Opcode);
int Offset = MemOps[SIndex].Offset;
int SOffset = Offset;
unsigned Pos = MemOps[SIndex].Position;
@@ -265,41 +315,53 @@ ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex,
return;
}
-/// getInstrPredicate - If instruction is predicated, returns its predicate
-/// condition, otherwise returns AL. It also returns the condition code
-/// register by reference.
-static ARMCC::CondCodes getInstrPredicate(MachineInstr *MI, unsigned &PredReg) {
- int PIdx = MI->findFirstPredOperandIdx();
- if (PIdx == -1) {
- PredReg = 0;
- return ARMCC::AL;
- }
-
- PredReg = MI->getOperand(PIdx+1).getReg();
- return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
-}
-
static inline bool isMatchingDecrement(MachineInstr *MI, unsigned Base,
- unsigned Bytes, ARMCC::CondCodes Pred,
- unsigned PredReg) {
+ unsigned Bytes, unsigned Limit,
+ ARMCC::CondCodes Pred, unsigned PredReg){
unsigned MyPredReg = 0;
- return (MI && MI->getOpcode() == ARM::SUBri &&
- MI->getOperand(0).getReg() == Base &&
+ if (!MI)
+ return false;
+ if (MI->getOpcode() != ARM::t2SUBri &&
+ MI->getOpcode() != ARM::t2SUBrSPi &&
+ MI->getOpcode() != ARM::t2SUBrSPi12 &&
+ MI->getOpcode() != ARM::tSUBspi &&
+ MI->getOpcode() != ARM::SUBri)
+ return false;
+
+ // Make sure the offset fits in 8 bits.
+ if (Bytes <= 0 || (Limit && Bytes >= Limit))
+ return false;
+
+ unsigned Scale = (MI->getOpcode() == ARM::tSUBspi) ? 4 : 1; // FIXME
+ return (MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
- ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes &&
- getInstrPredicate(MI, MyPredReg) == Pred &&
+ (MI->getOperand(2).getImm()*Scale) == Bytes &&
+ llvm::getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
static inline bool isMatchingIncrement(MachineInstr *MI, unsigned Base,
- unsigned Bytes, ARMCC::CondCodes Pred,
- unsigned PredReg) {
+ unsigned Bytes, unsigned Limit,
+ ARMCC::CondCodes Pred, unsigned PredReg){
unsigned MyPredReg = 0;
- return (MI && MI->getOpcode() == ARM::ADDri &&
- MI->getOperand(0).getReg() == Base &&
+ if (!MI)
+ return false;
+ if (MI->getOpcode() != ARM::t2ADDri &&
+ MI->getOpcode() != ARM::t2ADDrSPi &&
+ MI->getOpcode() != ARM::t2ADDrSPi12 &&
+ MI->getOpcode() != ARM::tADDspi &&
+ MI->getOpcode() != ARM::ADDri)
+ return false;
+
+ if (Bytes <= 0 || (Limit && Bytes >= Limit))
+ // Make sure the offset fits in 8 bits.
+ return false;
+
+ unsigned Scale = (MI->getOpcode() == ARM::tADDspi) ? 4 : 1; // FIXME
+ return (MI->getOperand(0).getReg() == Base &&
MI->getOperand(1).getReg() == Base &&
- ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes &&
- getInstrPredicate(MI, MyPredReg) == Pred &&
+ (MI->getOperand(2).getImm()*Scale) == Bytes &&
+ llvm::getInstrPredicate(MI, MyPredReg) == Pred &&
MyPredReg == PredReg);
}
@@ -308,6 +370,10 @@ static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
default: return 0;
case ARM::LDR:
case ARM::STR:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
case ARM::FLDS:
case ARM::FSTS:
return 4;
@@ -316,7 +382,9 @@ static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
return 8;
case ARM::LDM:
case ARM::STM:
- return (MI->getNumOperands() - 4) * 4;
+ case ARM::t2LDM:
+ case ARM::t2STM:
+ return (MI->getNumOperands() - 5) * 4;
case ARM::FLDMS:
case ARM::FSTMS:
case ARM::FLDMD:
@@ -325,7 +393,7 @@ static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
}
}
-/// mergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base
+/// MergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base
/// register into the LDM/STM/FLDM{D|S}/FSTM{D|S} op when possible:
///
/// stmia rn, <ra, rb, rc>
@@ -337,17 +405,18 @@ static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) {
/// ldmia rn, <ra, rb, rc>
/// =>
/// ldmdb rn!, <ra, rb, rc>
-static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- bool &Advance,
- MachineBasicBlock::iterator &I) {
+bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ bool &Advance,
+ MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(0).getReg();
unsigned Bytes = getLSMultipleTransferSize(MI);
unsigned PredReg = 0;
- ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
int Opcode = MI->getOpcode();
- bool isAM4 = Opcode == ARM::LDM || Opcode == ARM::STM;
+ bool isAM4 = Opcode == ARM::LDM || Opcode == ARM::t2LDM ||
+ Opcode == ARM::STM || Opcode == ARM::t2STM;
if (isAM4) {
if (ARM_AM::getAM4WBFlag(MI->getOperand(1).getImm()))
@@ -364,13 +433,17 @@ static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
if (Mode == ARM_AM::ia &&
- isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::db, true));
+ MI->getOperand(4).setReg(Base);
+ MI->getOperand(4).setIsDef();
MBB.erase(PrevMBBI);
return true;
} else if (Mode == ARM_AM::ib &&
- isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::da, true));
+ MI->getOperand(4).setReg(Base); // WB to base
+ MI->getOperand(4).setIsDef();
MBB.erase(PrevMBBI);
return true;
}
@@ -379,8 +452,10 @@ static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
if (MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) &&
- isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true));
+ MI->getOperand(4).setReg(Base); // WB to base
+ MI->getOperand(4).setIsDef();
if (NextMBBI == I) {
Advance = true;
++I;
@@ -388,8 +463,10 @@ static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
MBB.erase(NextMBBI);
return true;
} else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) &&
- isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingDecrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true));
+ MI->getOperand(4).setReg(Base); // WB to base
+ MI->getOperand(4).setIsDef();
if (NextMBBI == I) {
Advance = true;
++I;
@@ -408,8 +485,10 @@ static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
if (Mode == ARM_AM::ia &&
- isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingDecrement(PrevMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::db, true, Offset));
+ MI->getOperand(4).setReg(Base); // WB to base
+ MI->getOperand(4).setIsDef();
MBB.erase(PrevMBBI);
return true;
}
@@ -418,8 +497,10 @@ static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB,
if (MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
if (Mode == ARM_AM::ia &&
- isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
+ isMatchingIncrement(NextMBBI, Base, Bytes, 0, Pred, PredReg)) {
MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::ia, true, Offset));
+ MI->getOperand(4).setReg(Base); // WB to base
+ MI->getOperand(4).setIsDef();
if (NextMBBI == I) {
Advance = true;
++I;
@@ -441,7 +522,13 @@ static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc) {
case ARM::FLDD: return ARM::FLDMD;
case ARM::FSTS: return ARM::FSTMS;
case ARM::FSTD: return ARM::FSTMD;
- default: abort();
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ return ARM::t2LDR_PRE;
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return ARM::t2STR_PRE;
+ default: llvm_unreachable("Unhandled opcode!");
}
return 0;
}
@@ -454,48 +541,62 @@ static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc) {
case ARM::FLDD: return ARM::FLDMD;
case ARM::FSTS: return ARM::FSTMS;
case ARM::FSTD: return ARM::FSTMD;
- default: abort();
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ return ARM::t2LDR_POST;
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return ARM::t2STR_POST;
+ default: llvm_unreachable("Unhandled opcode!");
}
return 0;
}
-/// mergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base
+/// MergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base
/// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible:
-static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- const TargetInstrInfo *TII,
- bool &Advance,
- MachineBasicBlock::iterator &I) {
+bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const TargetInstrInfo *TII,
+ bool &Advance,
+ MachineBasicBlock::iterator &I) {
MachineInstr *MI = MBBI;
unsigned Base = MI->getOperand(1).getReg();
bool BaseKill = MI->getOperand(1).isKill();
unsigned Bytes = getLSMultipleTransferSize(MI);
int Opcode = MI->getOpcode();
DebugLoc dl = MI->getDebugLoc();
+ bool isAM5 = Opcode == ARM::FLDD || Opcode == ARM::FLDS ||
+ Opcode == ARM::FSTD || Opcode == ARM::FSTS;
bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR;
- if ((isAM2 && ARM_AM::getAM2Offset(MI->getOperand(3).getImm()) != 0) ||
- (!isAM2 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0))
+ if (isAM2 && ARM_AM::getAM2Offset(MI->getOperand(3).getImm()) != 0)
return false;
+ else if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
+ return false;
+ else if (isT2i32Load(Opcode) || isT2i32Store(Opcode))
+ if (MI->getOperand(2).getImm() != 0)
+ return false;
- bool isLd = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
+ bool isLd = isi32Load(Opcode) || Opcode == ARM::FLDS || Opcode == ARM::FLDD;
// Can't do the merge if the destination register is the same as the would-be
// writeback register.
if (isLd && MI->getOperand(0).getReg() == Base)
return false;
unsigned PredReg = 0;
- ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
bool DoMerge = false;
ARM_AM::AddrOpc AddSub = ARM_AM::add;
unsigned NewOpc = 0;
+ // AM2 - 12 bits, thumb2 - 8 bits.
+ unsigned Limit = isAM5 ? 0 : (isAM2 ? 0x1000 : 0x100);
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PrevMBBI = prior(MBBI);
- if (isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) {
+ if (isMatchingDecrement(PrevMBBI, Base, Bytes, Limit, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
NewOpc = getPreIndexedLoadStoreOpcode(Opcode);
- } else if (isAM2 && isMatchingIncrement(PrevMBBI, Base, Bytes,
- Pred, PredReg)) {
+ } else if (!isAM5 &&
+ isMatchingIncrement(PrevMBBI, Base, Bytes, Limit,Pred,PredReg)) {
DoMerge = true;
NewOpc = getPreIndexedLoadStoreOpcode(Opcode);
}
@@ -505,11 +606,12 @@ static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
if (!DoMerge && MBBI != MBB.end()) {
MachineBasicBlock::iterator NextMBBI = next(MBBI);
- if (isAM2 && isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
+ if (!isAM5 &&
+ isMatchingDecrement(NextMBBI, Base, Bytes, Limit, Pred, PredReg)) {
DoMerge = true;
AddSub = ARM_AM::sub;
NewOpc = getPostIndexedLoadStoreOpcode(Opcode);
- } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) {
+ } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Limit,Pred,PredReg)) {
DoMerge = true;
NewOpc = getPostIndexedLoadStoreOpcode(Opcode);
}
@@ -526,33 +628,51 @@ static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
return false;
bool isDPR = NewOpc == ARM::FLDMD || NewOpc == ARM::FSTMD;
- unsigned Offset = isAM2 ? ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift)
- : ARM_AM::getAM5Opc((AddSub == ARM_AM::sub) ? ARM_AM::db : ARM_AM::ia,
- true, isDPR ? 2 : 1);
+ unsigned Offset = 0;
+ if (isAM5)
+ Offset = ARM_AM::getAM5Opc((AddSub == ARM_AM::sub)
+ ? ARM_AM::db
+ : ARM_AM::ia, true, (isDPR ? 2 : 1));
+ else if (isAM2)
+ Offset = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
+ else
+ Offset = AddSub == ARM_AM::sub ? -Bytes : Bytes;
if (isLd) {
- if (isAM2)
- // LDR_PRE, LDR_POST;
- BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
- .addReg(Base, RegState::Define)
- .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
- else
+ if (isAM5)
// FLDMS, FLDMD
BuildMI(MBB, MBBI, dl, TII->get(NewOpc))
.addReg(Base, getKillRegState(BaseKill))
.addImm(Offset).addImm(Pred).addReg(PredReg)
+ .addReg(Base, getDefRegState(true)) // WB base register
.addReg(MI->getOperand(0).getReg(), RegState::Define);
- } else {
- MachineOperand &MO = MI->getOperand(0);
- if (isAM2)
- // STR_PRE, STR_POST;
- BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
- .addReg(MO.getReg(), getKillRegState(MO.isKill()))
+ else if (isAM2)
+ // LDR_PRE, LDR_POST,
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
+ .addReg(Base, RegState::Define)
.addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
else
+ // t2LDR_PRE, t2LDR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), MI->getOperand(0).getReg())
+ .addReg(Base, RegState::Define)
+ .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
+ } else {
+ MachineOperand &MO = MI->getOperand(0);
+ if (isAM5)
// FSTMS, FSTMD
BuildMI(MBB, MBBI, dl, TII->get(NewOpc)).addReg(Base).addImm(Offset)
.addImm(Pred).addReg(PredReg)
+ .addReg(Base, getDefRegState(true)) // WB base register
.addReg(MO.getReg(), getKillRegState(MO.isKill()));
+ else if (isAM2)
+ // STR_PRE, STR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
+ .addReg(MO.getReg(), getKillRegState(MO.isKill()))
+ .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg);
+ else
+ // t2STR_PRE, t2STR_POST
+ BuildMI(MBB, MBBI, dl, TII->get(NewOpc), Base)
+ .addReg(MO.getReg(), getKillRegState(MO.isKill()))
+ .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
}
MBB.erase(MBBI);
@@ -561,7 +681,7 @@ static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB,
/// isMemoryOp - Returns true if instruction is a memory operations (that this
/// pass is capable of operating on).
-static bool isMemoryOp(MachineInstr *MI) {
+static bool isMemoryOp(const MachineInstr *MI) {
int Opcode = MI->getOpcode();
switch (Opcode) {
default: break;
@@ -574,6 +694,11 @@ static bool isMemoryOp(MachineInstr *MI) {
case ARM::FLDD:
case ARM::FSTD:
return MI->getOperand(1).isReg();
+ case ARM::t2LDRi8:
+ case ARM::t2LDRi12:
+ case ARM::t2STRi8:
+ case ARM::t2STRi12:
+ return MI->getOperand(1).isReg();
}
return false;
}
@@ -600,6 +725,12 @@ static int getMemoryOpOffset(const MachineInstr *MI) {
bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
unsigned NumOperands = MI->getDesc().getNumOperands();
unsigned OffField = MI->getOperand(NumOperands-3).getImm();
+
+ if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
+ Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
+ Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8)
+ return OffField;
+
int Offset = isAM2
? ARM_AM::getAM2Offset(OffField)
: (isAM3 ? ARM_AM::getAM3Offset(OffField)
@@ -621,37 +752,43 @@ static void InsertLDR_STR(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int OffImm, bool isDef,
DebugLoc dl, unsigned NewOpc,
- unsigned Reg, bool RegDeadKill,
- unsigned BaseReg, bool BaseKill,
- unsigned OffReg, bool OffKill,
+ unsigned Reg, bool RegDeadKill, bool RegUndef,
+ unsigned BaseReg, bool BaseKill, bool BaseUndef,
+ unsigned OffReg, bool OffKill, bool OffUndef,
ARMCC::CondCodes Pred, unsigned PredReg,
- const TargetInstrInfo *TII) {
- unsigned Offset;
- if (OffImm < 0)
- Offset = ARM_AM::getAM2Opc(ARM_AM::sub, -OffImm, ARM_AM::no_shift);
- else
- Offset = ARM_AM::getAM2Opc(ARM_AM::add, OffImm, ARM_AM::no_shift);
- if (isDef)
- BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
+ const TargetInstrInfo *TII, bool isT2) {
+ int Offset = OffImm;
+ if (!isT2) {
+ if (OffImm < 0)
+ Offset = ARM_AM::getAM2Opc(ARM_AM::sub, -OffImm, ARM_AM::no_shift);
+ else
+ Offset = ARM_AM::getAM2Opc(ARM_AM::add, OffImm, ARM_AM::no_shift);
+ }
+ if (isDef) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
+ TII->get(NewOpc))
.addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
- .addReg(BaseReg, getKillRegState(BaseKill))
- .addReg(OffReg, getKillRegState(OffKill))
- .addImm(Offset)
- .addImm(Pred).addReg(PredReg);
- else
- BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
- .addReg(Reg, getKillRegState(RegDeadKill))
- .addReg(BaseReg, getKillRegState(BaseKill))
- .addReg(OffReg, getKillRegState(OffKill))
- .addImm(Offset)
- .addImm(Pred).addReg(PredReg);
+ .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
+ if (!isT2)
+ MIB.addReg(OffReg, getKillRegState(OffKill)|getUndefRegState(OffUndef));
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
+ TII->get(NewOpc))
+ .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
+ .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
+ if (!isT2)
+ MIB.addReg(OffReg, getKillRegState(OffKill)|getUndefRegState(OffUndef));
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
+ }
}
bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI) {
MachineInstr *MI = &*MBBI;
unsigned Opcode = MI->getOpcode();
- if (Opcode == ARM::LDRD || Opcode == ARM::STRD) {
+ if (Opcode == ARM::LDRD || Opcode == ARM::STRD ||
+ Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) {
unsigned EvenReg = MI->getOperand(0).getReg();
unsigned OddReg = MI->getOperand(1).getReg();
unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
@@ -659,45 +796,59 @@ bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
if ((EvenRegNum & 1) == 0 && (EvenRegNum + 1) == OddRegNum)
return false;
- bool isLd = Opcode == ARM::LDRD;
+ bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
+ bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
bool EvenDeadKill = isLd ?
MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
+ bool EvenUndef = MI->getOperand(0).isUndef();
bool OddDeadKill = isLd ?
MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
+ bool OddUndef = MI->getOperand(1).isUndef();
const MachineOperand &BaseOp = MI->getOperand(2);
unsigned BaseReg = BaseOp.getReg();
bool BaseKill = BaseOp.isKill();
- const MachineOperand &OffOp = MI->getOperand(3);
- unsigned OffReg = OffOp.getReg();
- bool OffKill = OffOp.isKill();
+ bool BaseUndef = BaseOp.isUndef();
+ unsigned OffReg = isT2 ? 0 : MI->getOperand(3).getReg();
+ bool OffKill = isT2 ? false : MI->getOperand(3).isKill();
+ bool OffUndef = isT2 ? false : MI->getOperand(3).isUndef();
int OffImm = getMemoryOpOffset(MI);
unsigned PredReg = 0;
- ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ ARMCC::CondCodes Pred = llvm::getInstrPredicate(MI, PredReg);
if (OddRegNum > EvenRegNum && OffReg == 0 && OffImm == 0) {
// Ascending register numbers and no offset. It's safe to change it to a
// ldm or stm.
- unsigned NewOpc = (Opcode == ARM::LDRD) ? ARM::LDM : ARM::STM;
+ unsigned NewOpc = (isLd)
+ ? (isT2 ? ARM::t2LDM : ARM::LDM)
+ : (isT2 ? ARM::t2STM : ARM::STM);
if (isLd) {
BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
.addReg(BaseReg, getKillRegState(BaseKill))
.addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia))
.addImm(Pred).addReg(PredReg)
+ .addReg(0)
.addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
- .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill));
+ .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill));
++NumLDRD2LDM;
} else {
BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
.addReg(BaseReg, getKillRegState(BaseKill))
.addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia))
.addImm(Pred).addReg(PredReg)
- .addReg(EvenReg, getKillRegState(EvenDeadKill))
- .addReg(OddReg, getKillRegState(OddDeadKill));
+ .addReg(0)
+ .addReg(EvenReg,
+ getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
+ .addReg(OddReg,
+ getKillRegState(OddDeadKill) | getUndefRegState(OddUndef));
++NumSTRD2STM;
}
} else {
// Split into two instructions.
- unsigned NewOpc = (Opcode == ARM::LDRD) ? ARM::LDR : ARM::STR;
+ assert((!isT2 || !OffReg) &&
+ "Thumb2 ldrd / strd does not encode offset register!");
+ unsigned NewOpc = (isLd)
+ ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDR)
+ : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STR);
DebugLoc dl = MBBI->getDebugLoc();
// If this is a load and base register is killed, it may have been
// re-defed by the load, make sure the first load does not clobber it.
@@ -707,17 +858,23 @@ bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
(OffReg && TRI->regsOverlap(EvenReg, OffReg)))) {
assert(!TRI->regsOverlap(OddReg, BaseReg) &&
(!OffReg || !TRI->regsOverlap(OddReg, OffReg)));
- InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc, OddReg, OddDeadKill,
- BaseReg, false, OffReg, false, Pred, PredReg, TII);
- InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc, EvenReg, EvenDeadKill,
- BaseReg, BaseKill, OffReg, OffKill, Pred, PredReg, TII);
+ InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc,
+ OddReg, OddDeadKill, false,
+ BaseReg, false, BaseUndef, OffReg, false, OffUndef,
+ Pred, PredReg, TII, isT2);
+ InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
+ EvenReg, EvenDeadKill, false,
+ BaseReg, BaseKill, BaseUndef, OffReg, OffKill, OffUndef,
+ Pred, PredReg, TII, isT2);
} else {
InsertLDR_STR(MBB, MBBI, OffImm, isLd, dl, NewOpc,
- EvenReg, EvenDeadKill, BaseReg, false, OffReg, false,
- Pred, PredReg, TII);
+ EvenReg, EvenDeadKill, EvenUndef,
+ BaseReg, false, BaseUndef, OffReg, false, OffUndef,
+ Pred, PredReg, TII, isT2);
InsertLDR_STR(MBB, MBBI, OffImm+4, isLd, dl, NewOpc,
- OddReg, OddDeadKill, BaseReg, BaseKill, OffReg, OffKill,
- Pred, PredReg, TII);
+ OddReg, OddDeadKill, OddUndef,
+ BaseReg, BaseKill, BaseUndef, OffReg, OffKill, OffUndef,
+ Pred, PredReg, TII, isT2);
}
if (isLd)
++NumLDRD2LDR;
@@ -761,7 +918,7 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
unsigned Size = getLSMultipleTransferSize(MBBI);
unsigned Base = MBBI->getOperand(1).getReg();
unsigned PredReg = 0;
- ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg);
+ ARMCC::CondCodes Pred = llvm::getInstrPredicate(MBBI, PredReg);
int Offset = getMemoryOpOffset(MBBI);
// Watch out for:
// r4 := ldr [r5]
@@ -772,7 +929,7 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
// looks like the later ldr(s) use the same base register. Try to
// merge the ldr's so far, including this one. But don't try to
// combine the following ldr(s).
- Clobber = (Opcode == ARM::LDR && Base == MBBI->getOperand(0).getReg());
+ Clobber = (isi32Load(Opcode) && Base == MBBI->getOperand(0).getReg());
if (CurrBase == 0 && !Clobber) {
// Start of a new chain.
CurrBase = Base;
@@ -825,12 +982,8 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
// Try to find a free register to use as a new base in case it's needed.
// First advance to the instruction just before the start of the chain.
AdvanceRS(MBB, MemOps);
- // Find a scratch register. Make sure it's a call clobbered register or
- // a spilled callee-saved register.
- unsigned Scratch = RS->FindUnusedReg(&ARM::GPRRegClass, true);
- if (!Scratch)
- Scratch = RS->FindUnusedReg(&ARM::GPRRegClass,
- AFI->getSpilledCSRegisters());
+ // Find a scratch register.
+ unsigned Scratch = RS->FindUnusedReg(ARM::GPRRegisterClass);
// Process the load / store instructions.
RS->forward(prior(MBBI));
@@ -842,7 +995,7 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
// Try folding preceeding/trailing base inc/dec into the generated
// LDM/STM ops.
for (unsigned i = 0, e = Merges.size(); i < e; ++i)
- if (mergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI))
+ if (MergeBaseUpdateLSMultiple(MBB, Merges[i], Advance, MBBI))
++NumMerges;
NumMerges += Merges.size();
@@ -850,15 +1003,15 @@ bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
// that were not merged to form LDM/STM ops.
for (unsigned i = 0; i != NumMemOps; ++i)
if (!MemOps[i].Merged)
- if (mergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI))
+ if (MergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI))
++NumMerges;
- // RS may be pointing to an instruction that's deleted.
+ // RS may be pointing to an instruction that's deleted.
RS->skipTo(prior(MBBI));
} else if (NumMemOps == 1) {
// Try folding preceeding/trailing base inc/dec into the single
// load/store.
- if (mergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) {
+ if (MergeBaseUpdateLoadStore(MBB, MemOps[0].MBBI, TII, Advance, MBBI)) {
++NumMerges;
RS->forward(prior(MBBI));
}
@@ -907,16 +1060,18 @@ bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
if (MBB.empty()) return false;
MachineBasicBlock::iterator MBBI = prior(MBB.end());
- if (MBBI->getOpcode() == ARM::BX_RET && MBBI != MBB.begin()) {
+ if (MBBI != MBB.begin() &&
+ (MBBI->getOpcode() == ARM::BX_RET || MBBI->getOpcode() == ARM::tBX_RET)) {
MachineInstr *PrevMI = prior(MBBI);
- if (PrevMI->getOpcode() == ARM::LDM) {
+ if (PrevMI->getOpcode() == ARM::LDM || PrevMI->getOpcode() == ARM::t2LDM) {
MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1);
- if (MO.getReg() == ARM::LR) {
- PrevMI->setDesc(TII->get(ARM::LDM_RET));
- MO.setReg(ARM::PC);
- MBB.erase(MBBI);
- return true;
- }
+ if (MO.getReg() != ARM::LR)
+ return false;
+ unsigned NewOpc = isThumb2 ? ARM::t2LDM_RET : ARM::LDM_RET;
+ PrevMI->setDesc(TII->get(NewOpc));
+ MO.setReg(ARM::PC);
+ MBB.erase(MBBI);
+ return true;
}
}
return false;
@@ -928,6 +1083,7 @@ bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
RS = new RegScavenger();
+ isThumb2 = AFI->isThumb2Function();
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
@@ -956,6 +1112,7 @@ namespace {
const TargetRegisterInfo *TRI;
const ARMSubtarget *STI;
MachineRegisterInfo *MRI;
+ MachineFunction *MF;
virtual bool runOnMachineFunction(MachineFunction &Fn);
@@ -967,8 +1124,9 @@ namespace {
bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
unsigned &NewOpc, unsigned &EvenReg,
unsigned &OddReg, unsigned &BaseReg,
- unsigned &OffReg, unsigned &Offset,
- unsigned &PredReg, ARMCC::CondCodes &Pred);
+ unsigned &OffReg, int &Offset,
+ unsigned &PredReg, ARMCC::CondCodes &Pred,
+ bool &isT2);
bool RescheduleOps(MachineBasicBlock *MBB,
SmallVector<MachineInstr*, 4> &Ops,
unsigned Base, bool isLd,
@@ -984,6 +1142,7 @@ bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
TRI = Fn.getTarget().getRegisterInfo();
STI = &Fn.getTarget().getSubtarget<ARMSubtarget>();
MRI = &Fn.getRegInfo();
+ MF = &Fn;
bool Modified = false;
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
@@ -1045,48 +1204,83 @@ ARMPreAllocLoadStoreOpt::CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1,
DebugLoc &dl,
unsigned &NewOpc, unsigned &EvenReg,
unsigned &OddReg, unsigned &BaseReg,
- unsigned &OffReg, unsigned &Offset,
+ unsigned &OffReg, int &Offset,
unsigned &PredReg,
- ARMCC::CondCodes &Pred) {
+ ARMCC::CondCodes &Pred,
+ bool &isT2) {
+ // Make sure we're allowed to generate LDRD/STRD.
+ if (!STI->hasV5TEOps())
+ return false;
+
// FIXME: FLDS / FSTS -> FLDD / FSTD
+ unsigned Scale = 1;
unsigned Opcode = Op0->getOpcode();
if (Opcode == ARM::LDR)
NewOpc = ARM::LDRD;
else if (Opcode == ARM::STR)
NewOpc = ARM::STRD;
- else
- return 0;
+ else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
+ NewOpc = ARM::t2LDRDi8;
+ Scale = 4;
+ isT2 = true;
+ } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
+ NewOpc = ARM::t2STRDi8;
+ Scale = 4;
+ isT2 = true;
+ } else
+ return false;
+
+ // Make sure the offset registers match.
+ if (!isT2 &&
+ (Op0->getOperand(2).getReg() != Op1->getOperand(2).getReg()))
+ return false;
// Must sure the base address satisfies i64 ld / st alignment requirement.
if (!Op0->hasOneMemOperand() ||
- !Op0->memoperands_begin()->getValue() ||
- Op0->memoperands_begin()->isVolatile())
+ !(*Op0->memoperands_begin())->getValue() ||
+ (*Op0->memoperands_begin())->isVolatile())
return false;
- unsigned Align = Op0->memoperands_begin()->getAlignment();
+ unsigned Align = (*Op0->memoperands_begin())->getAlignment();
+ Function *Func = MF->getFunction();
unsigned ReqAlign = STI->hasV6Ops()
- ? TD->getPrefTypeAlignment(Type::Int64Ty) : 8; // Pre-v6 need 8-byte align
+ ? TD->getPrefTypeAlignment(Type::getInt64Ty(Func->getContext()))
+ : 8; // Pre-v6 need 8-byte align
if (Align < ReqAlign)
return false;
// Then make sure the immediate offset fits.
int OffImm = getMemoryOpOffset(Op0);
- ARM_AM::AddrOpc AddSub = ARM_AM::add;
- if (OffImm < 0) {
- AddSub = ARM_AM::sub;
- OffImm = - OffImm;
+ if (isT2) {
+ if (OffImm < 0) {
+ if (OffImm < -255)
+ // Can't fall back to t2LDRi8 / t2STRi8.
+ return false;
+ } else {
+ int Limit = (1 << 8) * Scale;
+ if (OffImm >= Limit || (OffImm & (Scale-1)))
+ return false;
+ }
+ Offset = OffImm;
+ } else {
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (OffImm < 0) {
+ AddSub = ARM_AM::sub;
+ OffImm = - OffImm;
+ }
+ int Limit = (1 << 8) * Scale;
+ if (OffImm >= Limit || (OffImm & (Scale-1)))
+ return false;
+ Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
}
- if (OffImm >= 256) // 8 bits
- return false;
- Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
-
EvenReg = Op0->getOperand(0).getReg();
OddReg = Op1->getOperand(0).getReg();
if (EvenReg == OddReg)
return false;
BaseReg = Op0->getOperand(1).getReg();
- OffReg = Op0->getOperand(2).getReg();
- Pred = getInstrPredicate(Op0, PredReg);
+ if (!isT2)
+ OffReg = Op0->getOperand(2).getReg();
+ Pred = llvm::getInstrPredicate(Op0, PredReg);
dl = Op0->getDebugLoc();
return true;
}
@@ -1138,7 +1332,7 @@ bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
LastOffset = Offset;
LastBytes = Bytes;
LastOpcode = Opcode;
- if (++NumMove == 8) // FIXME: Tune
+ if (++NumMove == 8) // FIXME: Tune this limit.
break;
}
@@ -1174,29 +1368,36 @@ bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
unsigned EvenReg = 0, OddReg = 0;
unsigned BaseReg = 0, OffReg = 0, PredReg = 0;
ARMCC::CondCodes Pred = ARMCC::AL;
+ bool isT2 = false;
unsigned NewOpc = 0;
- unsigned Offset = 0;
+ int Offset = 0;
DebugLoc dl;
if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
EvenReg, OddReg, BaseReg, OffReg,
- Offset, PredReg, Pred)) {
+ Offset, PredReg, Pred, isT2)) {
Ops.pop_back();
Ops.pop_back();
// Form the pair instruction.
if (isLd) {
- BuildMI(*MBB, InsertPos, dl, TII->get(NewOpc))
+ MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos,
+ dl, TII->get(NewOpc))
.addReg(EvenReg, RegState::Define)
.addReg(OddReg, RegState::Define)
- .addReg(BaseReg).addReg(0).addImm(Offset)
- .addImm(Pred).addReg(PredReg);
+ .addReg(BaseReg);
+ if (!isT2)
+ MIB.addReg(OffReg);
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
++NumLDRDFormed;
} else {
- BuildMI(*MBB, InsertPos, dl, TII->get(NewOpc))
+ MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos,
+ dl, TII->get(NewOpc))
.addReg(EvenReg)
.addReg(OddReg)
- .addReg(BaseReg).addReg(0).addImm(Offset)
- .addImm(Pred).addReg(PredReg);
+ .addReg(BaseReg);
+ if (!isT2)
+ MIB.addReg(OffReg);
+ MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
++NumSTRDFormed;
}
MBB->erase(Op0);
@@ -1249,12 +1450,11 @@ ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
if (!isMemoryOp(MI))
continue;
unsigned PredReg = 0;
- if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
+ if (llvm::getInstrPredicate(MI, PredReg) != ARMCC::AL)
continue;
- int Opcode = MI->getOpcode();
- bool isLd = Opcode == ARM::LDR ||
- Opcode == ARM::FLDS || Opcode == ARM::FLDD;
+ int Opc = MI->getOpcode();
+ bool isLd = isi32Load(Opc) || Opc == ARM::FLDS || Opc == ARM::FLDD;
unsigned Base = MI->getOperand(1).getReg();
int Offset = getMemoryOpOffset(MI);
diff --git a/lib/Target/ARM/ARMMCAsmInfo.cpp b/lib/Target/ARM/ARMMCAsmInfo.cpp
new file mode 100644
index 0000000..0ff65d2
--- /dev/null
+++ b/lib/Target/ARM/ARMMCAsmInfo.cpp
@@ -0,0 +1,72 @@
+//===-- ARMMCAsmInfo.cpp - ARM asm properties -------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the ARMMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMMCAsmInfo.h"
+using namespace llvm;
+
+static const char *const arm_asm_table[] = {
+ "{r0}", "r0",
+ "{r1}", "r1",
+ "{r2}", "r2",
+ "{r3}", "r3",
+ "{r4}", "r4",
+ "{r5}", "r5",
+ "{r6}", "r6",
+ "{r7}", "r7",
+ "{r8}", "r8",
+ "{r9}", "r9",
+ "{r10}", "r10",
+ "{r11}", "r11",
+ "{r12}", "r12",
+ "{r13}", "r13",
+ "{r14}", "r14",
+ "{lr}", "lr",
+ "{sp}", "sp",
+ "{ip}", "ip",
+ "{fp}", "fp",
+ "{sl}", "sl",
+ "{memory}", "memory",
+ "{cc}", "cc",
+ 0,0
+};
+
+ARMMCAsmInfoDarwin::ARMMCAsmInfoDarwin() {
+ AsmTransCBE = arm_asm_table;
+ Data64bitsDirective = 0;
+ CommentString = "@";
+ COMMDirectiveTakesAlignment = false;
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::SjLj;
+ AbsoluteEHSectionOffsets = false;
+}
+
+ARMELFMCAsmInfo::ARMELFMCAsmInfo() {
+ AlignmentIsInBytes = false;
+ Data64bitsDirective = 0;
+ CommentString = "@";
+ COMMDirectiveTakesAlignment = false;
+
+ NeedsSet = false;
+ HasLEB128 = true;
+ AbsoluteDebugSectionOffsets = true;
+ PrivateGlobalPrefix = ".L";
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+ LCOMMDirective = "\t.lcomm\t";
+
+ DwarfRequiresFrameSection = false;
+
+ SupportsDebugInformation = true;
+}
diff --git a/lib/Target/ARM/ARMMCAsmInfo.h b/lib/Target/ARM/ARMMCAsmInfo.h
new file mode 100644
index 0000000..90f7822
--- /dev/null
+++ b/lib/Target/ARM/ARMMCAsmInfo.h
@@ -0,0 +1,31 @@
+//=====-- ARMMCAsmInfo.h - ARM asm properties -------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the ARMMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ARMTARGETASMINFO_H
+#define LLVM_ARMTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoDarwin.h"
+
+namespace llvm {
+
+ struct ARMMCAsmInfoDarwin : public MCAsmInfoDarwin {
+ explicit ARMMCAsmInfoDarwin();
+ };
+
+ struct ARMELFMCAsmInfo : public MCAsmInfo {
+ explicit ARMELFMCAsmInfo();
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/ARM/ARMMachineFunctionInfo.h b/lib/Target/ARM/ARMMachineFunctionInfo.h
index 66d3df6..2176b27 100644
--- a/lib/Target/ARM/ARMMachineFunctionInfo.h
+++ b/lib/Target/ARM/ARMMachineFunctionInfo.h
@@ -1,10 +1,10 @@
//====- ARMMachineFuctionInfo.h - ARM machine function info -----*- C++ -*-===//
-//
+//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
-//
+//
//===----------------------------------------------------------------------===//
//
// This file declares ARM-specific per-machine-function information.
@@ -52,10 +52,6 @@ class ARMFunctionInfo : public MachineFunctionInfo {
/// enable far jump.
bool LRSpilledForFarJump;
- /// R3IsLiveIn - True if R3 is live in to this function.
- /// FIXME: Remove when register scavenger for Thumb is done.
- bool R3IsLiveIn;
-
/// FramePtrSpillOffset - If HasStackFrame, this records the frame pointer
/// spill stack offset.
unsigned FramePtrSpillOffset;
@@ -100,7 +96,7 @@ public:
hasThumb2(false),
Align(2U),
VarArgsRegSaveSize(0), HasStackFrame(false),
- LRSpilledForFarJump(false), R3IsLiveIn(false),
+ LRSpilledForFarJump(false),
FramePtrSpillOffset(0), GPRCS1Offset(0), GPRCS2Offset(0), DPRCSOffset(0),
GPRCS1Size(0), GPRCS2Size(0), DPRCSSize(0),
GPRCS1Frames(0), GPRCS2Frames(0), DPRCSFrames(0),
@@ -111,7 +107,7 @@ public:
hasThumb2(MF.getTarget().getSubtarget<ARMSubtarget>().hasThumb2()),
Align(isThumb ? 1U : 2U),
VarArgsRegSaveSize(0), HasStackFrame(false),
- LRSpilledForFarJump(false), R3IsLiveIn(false),
+ LRSpilledForFarJump(false),
FramePtrSpillOffset(0), GPRCS1Offset(0), GPRCS2Offset(0), DPRCSOffset(0),
GPRCS1Size(0), GPRCS2Size(0), DPRCSSize(0),
GPRCS1Frames(32), GPRCS2Frames(32), DPRCSFrames(32),
@@ -119,6 +115,7 @@ public:
JumpTableUId(0), ConstPoolEntryUId(0) {}
bool isThumbFunction() const { return isThumb; }
+ bool isThumb1OnlyFunction() const { return isThumb && !hasThumb2; }
bool isThumb2Function() const { return isThumb && hasThumb2; }
unsigned getAlign() const { return Align; }
@@ -133,13 +130,9 @@ public:
bool isLRSpilledForFarJump() const { return LRSpilledForFarJump; }
void setLRIsSpilledForFarJump(bool s) { LRSpilledForFarJump = s; }
- // FIXME: Remove when register scavenger for Thumb is done.
- bool isR3LiveIn() const { return R3IsLiveIn; }
- void setR3IsLiveIn(bool l) { R3IsLiveIn = l; }
-
unsigned getFramePtrSpillOffset() const { return FramePtrSpillOffset; }
void setFramePtrSpillOffset(unsigned o) { FramePtrSpillOffset = o; }
-
+
unsigned getGPRCalleeSavedArea1Offset() const { return GPRCS1Offset; }
unsigned getGPRCalleeSavedArea2Offset() const { return GPRCS2Offset; }
unsigned getDPRCalleeSavedAreaOffset() const { return DPRCSOffset; }
diff --git a/lib/Target/ARM/ARMPerfectShuffle.h b/lib/Target/ARM/ARMPerfectShuffle.h
new file mode 100644
index 0000000..5ff7c38
--- /dev/null
+++ b/lib/Target/ARM/ARMPerfectShuffle.h
@@ -0,0 +1,6586 @@
+//===-- ARMPerfectShuffle.h - NEON Perfect Shuffle Table ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file, which was autogenerated by llvm-PerfectShuffle, contains data
+// for the optimal way to build a perfect shuffle using neon instructions.
+//
+//===----------------------------------------------------------------------===//
+
+// 31 entries have cost 0
+// 242 entries have cost 1
+// 1447 entries have cost 2
+// 3602 entries have cost 3
+// 1237 entries have cost 4
+// 2 entries have cost 5
+
+// This table is 6561*4 = 26244 bytes in size.
+static const unsigned PerfectShuffleTable[6561+1] = {
+ 135053414U, // <0,0,0,0>: Cost 1 vdup0 LHS
+ 1543503974U, // <0,0,0,1>: Cost 2 vext2 <0,0,0,0>, LHS
+ 2618572962U, // <0,0,0,2>: Cost 3 vext2 <0,2,0,0>, <0,2,0,0>
+ 2568054923U, // <0,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1476398390U, // <0,0,0,4>: Cost 2 vext1 <0,0,0,0>, RHS
+ 2550140624U, // <0,0,0,5>: Cost 3 vext1 <0,0,0,0>, <5,1,7,3>
+ 2550141434U, // <0,0,0,6>: Cost 3 vext1 <0,0,0,0>, <6,2,7,3>
+ 2591945711U, // <0,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,0,u>: Cost 1 vdup0 LHS
+ 2886516736U, // <0,0,1,0>: Cost 3 vzipl LHS, <0,0,0,0>
+ 1812775014U, // <0,0,1,1>: Cost 2 vzipl LHS, LHS
+ 1618133094U, // <0,0,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2625209292U, // <0,0,1,3>: Cost 3 vext2 <1,3,0,0>, <1,3,0,0>
+ 2886558034U, // <0,0,1,4>: Cost 3 vzipl LHS, <0,4,1,5>
+ 2617246864U, // <0,0,1,5>: Cost 3 vext2 <0,0,0,0>, <1,5,3,7>
+ 3659723031U, // <0,0,1,6>: Cost 4 vext1 <6,0,0,1>, <6,0,0,1>
+ 2591953904U, // <0,0,1,7>: Cost 3 vext1 <7,0,0,1>, <7,0,0,1>
+ 1812775581U, // <0,0,1,u>: Cost 2 vzipl LHS, LHS
+ 3020734464U, // <0,0,2,0>: Cost 3 vtrnl LHS, <0,0,0,0>
+ 3020734474U, // <0,0,2,1>: Cost 3 vtrnl LHS, <0,0,1,1>
+ 1946992742U, // <0,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2631181989U, // <0,0,2,3>: Cost 3 vext2 <2,3,0,0>, <2,3,0,0>
+ 3020734668U, // <0,0,2,4>: Cost 3 vtrnl LHS, <0,2,4,6>
+ 3826550569U, // <0,0,2,5>: Cost 4 vuzpl <0,2,0,2>, <2,4,5,6>
+ 2617247674U, // <0,0,2,6>: Cost 3 vext2 <0,0,0,0>, <2,6,3,7>
+ 2591962097U, // <0,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1946992796U, // <0,0,2,u>: Cost 2 vtrnl LHS, LHS
+ 2635163787U, // <0,0,3,0>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2686419196U, // <0,0,3,1>: Cost 3 vext3 <0,3,1,0>, <0,3,1,0>
+ 2686492933U, // <0,0,3,2>: Cost 3 vext3 <0,3,2,0>, <0,3,2,0>
+ 2617248156U, // <0,0,3,3>: Cost 3 vext2 <0,0,0,0>, <3,3,3,3>
+ 2617248258U, // <0,0,3,4>: Cost 3 vext2 <0,0,0,0>, <3,4,5,6>
+ 3826551298U, // <0,0,3,5>: Cost 4 vuzpl <0,2,0,2>, <3,4,5,6>
+ 3690990200U, // <0,0,3,6>: Cost 4 vext2 <0,0,0,0>, <3,6,0,7>
+ 3713551042U, // <0,0,3,7>: Cost 4 vext2 <3,7,0,0>, <3,7,0,0>
+ 2635163787U, // <0,0,3,u>: Cost 3 vext2 <3,0,0,0>, <3,0,0,0>
+ 2617248658U, // <0,0,4,0>: Cost 3 vext2 <0,0,0,0>, <4,0,5,1>
+ 2888450150U, // <0,0,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021570150U, // <0,0,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 3641829519U, // <0,0,4,3>: Cost 4 vext1 <3,0,0,4>, <3,0,0,4>
+ 3021570252U, // <0,0,4,4>: Cost 3 vtrnl <0,2,4,6>, <0,2,4,6>
+ 1543507254U, // <0,0,4,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752810294U, // <0,0,4,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 3786998152U, // <0,0,4,7>: Cost 4 vext3 <4,7,5,0>, <0,4,7,5>
+ 1543507497U, // <0,0,4,u>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2684354972U, // <0,0,5,0>: Cost 3 vext3 <0,0,0,0>, <0,5,0,7>
+ 2617249488U, // <0,0,5,1>: Cost 3 vext2 <0,0,0,0>, <5,1,7,3>
+ 3765617070U, // <0,0,5,2>: Cost 4 vext3 <1,2,3,0>, <0,5,2,7>
+ 3635865780U, // <0,0,5,3>: Cost 4 vext1 <2,0,0,5>, <3,0,4,5>
+ 2617249734U, // <0,0,5,4>: Cost 3 vext2 <0,0,0,0>, <5,4,7,6>
+ 2617249796U, // <0,0,5,5>: Cost 3 vext2 <0,0,0,0>, <5,5,5,5>
+ 2718712274U, // <0,0,5,6>: Cost 3 vext3 <5,6,7,0>, <0,5,6,7>
+ 2617249960U, // <0,0,5,7>: Cost 3 vext2 <0,0,0,0>, <5,7,5,7>
+ 2720039396U, // <0,0,5,u>: Cost 3 vext3 <5,u,7,0>, <0,5,u,7>
+ 2684355053U, // <0,0,6,0>: Cost 3 vext3 <0,0,0,0>, <0,6,0,7>
+ 3963609190U, // <0,0,6,1>: Cost 4 vzipl <0,6,2,7>, LHS
+ 2617250298U, // <0,0,6,2>: Cost 3 vext2 <0,0,0,0>, <6,2,7,3>
+ 3796435464U, // <0,0,6,3>: Cost 4 vext3 <6,3,7,0>, <0,6,3,7>
+ 3659762998U, // <0,0,6,4>: Cost 4 vext1 <6,0,0,6>, RHS
+ 3659763810U, // <0,0,6,5>: Cost 4 vext1 <6,0,0,6>, <5,6,7,0>
+ 2617250616U, // <0,0,6,6>: Cost 3 vext2 <0,0,0,0>, <6,6,6,6>
+ 2657727309U, // <0,0,6,7>: Cost 3 vext2 <6,7,0,0>, <6,7,0,0>
+ 2658390942U, // <0,0,6,u>: Cost 3 vext2 <6,u,0,0>, <6,u,0,0>
+ 2659054575U, // <0,0,7,0>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 3635880854U, // <0,0,7,1>: Cost 4 vext1 <2,0,0,7>, <1,2,3,0>
+ 3635881401U, // <0,0,7,2>: Cost 4 vext1 <2,0,0,7>, <2,0,0,7>
+ 3734787298U, // <0,0,7,3>: Cost 4 vext2 <7,3,0,0>, <7,3,0,0>
+ 2617251174U, // <0,0,7,4>: Cost 3 vext2 <0,0,0,0>, <7,4,5,6>
+ 3659772002U, // <0,0,7,5>: Cost 4 vext1 <6,0,0,7>, <5,6,7,0>
+ 3659772189U, // <0,0,7,6>: Cost 4 vext1 <6,0,0,7>, <6,0,0,7>
+ 2617251436U, // <0,0,7,7>: Cost 3 vext2 <0,0,0,0>, <7,7,7,7>
+ 2659054575U, // <0,0,7,u>: Cost 3 vext2 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <0,0,u,0>: Cost 1 vdup0 LHS
+ 1817419878U, // <0,0,u,1>: Cost 2 vzipl LHS, LHS
+ 1947435110U, // <0,0,u,2>: Cost 2 vtrnl LHS, LHS
+ 2568120467U, // <0,0,u,3>: Cost 3 vext1 <3,0,0,u>, <3,0,0,u>
+ 1476463926U, // <0,0,u,4>: Cost 2 vext1 <0,0,0,u>, RHS
+ 1543510170U, // <0,0,u,5>: Cost 2 vext2 <0,0,0,0>, RHS
+ 2752813210U, // <0,0,u,6>: Cost 3 vuzpl <0,2,0,2>, RHS
+ 2592011255U, // <0,0,u,7>: Cost 3 vext1 <7,0,0,u>, <7,0,0,u>
+ 135053414U, // <0,0,u,u>: Cost 1 vdup0 LHS
+ 2618581002U, // <0,1,0,0>: Cost 3 vext2 <0,2,0,1>, <0,0,1,1>
+ 1557446758U, // <0,1,0,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2618581155U, // <0,1,0,2>: Cost 3 vext2 <0,2,0,1>, <0,2,0,1>
+ 2690548468U, // <0,1,0,3>: Cost 3 vext3 <1,0,3,0>, <1,0,3,0>
+ 2626543954U, // <0,1,0,4>: Cost 3 vext2 <1,5,0,1>, <0,4,1,5>
+ 4094985216U, // <0,1,0,5>: Cost 4 vtrnl <0,2,0,2>, <1,3,5,7>
+ 2592019278U, // <0,1,0,6>: Cost 3 vext1 <7,0,1,0>, <6,7,0,1>
+ 2592019448U, // <0,1,0,7>: Cost 3 vext1 <7,0,1,0>, <7,0,1,0>
+ 1557447325U, // <0,1,0,u>: Cost 2 vext2 <2,3,0,1>, LHS
+ 1476476938U, // <0,1,1,0>: Cost 2 vext1 <0,0,1,1>, <0,0,1,1>
+ 2886517556U, // <0,1,1,1>: Cost 3 vzipl LHS, <1,1,1,1>
+ 2886517654U, // <0,1,1,2>: Cost 3 vzipl LHS, <1,2,3,0>
+ 2886517720U, // <0,1,1,3>: Cost 3 vzipl LHS, <1,3,1,3>
+ 1476480310U, // <0,1,1,4>: Cost 2 vext1 <0,0,1,1>, RHS
+ 2886558864U, // <0,1,1,5>: Cost 3 vzipl LHS, <1,5,3,7>
+ 2550223354U, // <0,1,1,6>: Cost 3 vext1 <0,0,1,1>, <6,2,7,3>
+ 2550223856U, // <0,1,1,7>: Cost 3 vext1 <0,0,1,1>, <7,0,0,1>
+ 1476482862U, // <0,1,1,u>: Cost 2 vext1 <0,0,1,1>, LHS
+ 1494401126U, // <0,1,2,0>: Cost 2 vext1 <3,0,1,2>, LHS
+ 3020735284U, // <0,1,2,1>: Cost 3 vtrnl LHS, <1,1,1,1>
+ 2562172349U, // <0,1,2,2>: Cost 3 vext1 <2,0,1,2>, <2,0,1,2>
+ 835584U, // <0,1,2,3>: Cost 0 copy LHS
+ 1494404406U, // <0,1,2,4>: Cost 2 vext1 <3,0,1,2>, RHS
+ 3020735488U, // <0,1,2,5>: Cost 3 vtrnl LHS, <1,3,5,7>
+ 2631190458U, // <0,1,2,6>: Cost 3 vext2 <2,3,0,1>, <2,6,3,7>
+ 1518294010U, // <0,1,2,7>: Cost 2 vext1 <7,0,1,2>, <7,0,1,2>
+ 835584U, // <0,1,2,u>: Cost 0 copy LHS
+ 2692318156U, // <0,1,3,0>: Cost 3 vext3 <1,3,0,0>, <1,3,0,0>
+ 2691875800U, // <0,1,3,1>: Cost 3 vext3 <1,2,3,0>, <1,3,1,3>
+ 2691875806U, // <0,1,3,2>: Cost 3 vext3 <1,2,3,0>, <1,3,2,0>
+ 2692539367U, // <0,1,3,3>: Cost 3 vext3 <1,3,3,0>, <1,3,3,0>
+ 2562182454U, // <0,1,3,4>: Cost 3 vext1 <2,0,1,3>, RHS
+ 2691875840U, // <0,1,3,5>: Cost 3 vext3 <1,2,3,0>, <1,3,5,7>
+ 2692760578U, // <0,1,3,6>: Cost 3 vext3 <1,3,6,0>, <1,3,6,0>
+ 2639817411U, // <0,1,3,7>: Cost 3 vext2 <3,7,0,1>, <3,7,0,1>
+ 2691875863U, // <0,1,3,u>: Cost 3 vext3 <1,2,3,0>, <1,3,u,3>
+ 2568159334U, // <0,1,4,0>: Cost 3 vext1 <3,0,1,4>, LHS
+ 4095312692U, // <0,1,4,1>: Cost 4 vtrnl <0,2,4,6>, <1,1,1,1>
+ 2568160934U, // <0,1,4,2>: Cost 3 vext1 <3,0,1,4>, <2,3,0,1>
+ 2568161432U, // <0,1,4,3>: Cost 3 vext1 <3,0,1,4>, <3,0,1,4>
+ 2568162614U, // <0,1,4,4>: Cost 3 vext1 <3,0,1,4>, RHS
+ 1557450038U, // <0,1,4,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754235702U, // <0,1,4,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 2592052220U, // <0,1,4,7>: Cost 3 vext1 <7,0,1,4>, <7,0,1,4>
+ 1557450281U, // <0,1,4,u>: Cost 2 vext2 <2,3,0,1>, RHS
+ 3765617775U, // <0,1,5,0>: Cost 4 vext3 <1,2,3,0>, <1,5,0,1>
+ 2647781007U, // <0,1,5,1>: Cost 3 vext2 <5,1,0,1>, <5,1,0,1>
+ 3704934138U, // <0,1,5,2>: Cost 4 vext2 <2,3,0,1>, <5,2,3,0>
+ 2691875984U, // <0,1,5,3>: Cost 3 vext3 <1,2,3,0>, <1,5,3,7>
+ 2657734598U, // <0,1,5,4>: Cost 3 vext2 <6,7,0,1>, <5,4,7,6>
+ 2650435539U, // <0,1,5,5>: Cost 3 vext2 <5,5,0,1>, <5,5,0,1>
+ 2651099172U, // <0,1,5,6>: Cost 3 vext2 <5,6,0,1>, <5,6,0,1>
+ 2651762805U, // <0,1,5,7>: Cost 3 vext2 <5,7,0,1>, <5,7,0,1>
+ 2691876029U, // <0,1,5,u>: Cost 3 vext3 <1,2,3,0>, <1,5,u,7>
+ 2592063590U, // <0,1,6,0>: Cost 3 vext1 <7,0,1,6>, LHS
+ 3765617871U, // <0,1,6,1>: Cost 4 vext3 <1,2,3,0>, <1,6,1,7>
+ 2654417337U, // <0,1,6,2>: Cost 3 vext2 <6,2,0,1>, <6,2,0,1>
+ 3765617889U, // <0,1,6,3>: Cost 4 vext3 <1,2,3,0>, <1,6,3,7>
+ 2592066870U, // <0,1,6,4>: Cost 3 vext1 <7,0,1,6>, RHS
+ 3765617907U, // <0,1,6,5>: Cost 4 vext3 <1,2,3,0>, <1,6,5,7>
+ 2657071869U, // <0,1,6,6>: Cost 3 vext2 <6,6,0,1>, <6,6,0,1>
+ 1583993678U, // <0,1,6,7>: Cost 2 vext2 <6,7,0,1>, <6,7,0,1>
+ 1584657311U, // <0,1,6,u>: Cost 2 vext2 <6,u,0,1>, <6,u,0,1>
+ 2657735672U, // <0,1,7,0>: Cost 3 vext2 <6,7,0,1>, <7,0,1,0>
+ 2657735808U, // <0,1,7,1>: Cost 3 vext2 <6,7,0,1>, <7,1,7,1>
+ 2631193772U, // <0,1,7,2>: Cost 3 vext2 <2,3,0,1>, <7,2,3,0>
+ 2661053667U, // <0,1,7,3>: Cost 3 vext2 <7,3,0,1>, <7,3,0,1>
+ 2657736038U, // <0,1,7,4>: Cost 3 vext2 <6,7,0,1>, <7,4,5,6>
+ 3721524621U, // <0,1,7,5>: Cost 4 vext2 <5,1,0,1>, <7,5,1,0>
+ 2657736158U, // <0,1,7,6>: Cost 3 vext2 <6,7,0,1>, <7,6,1,0>
+ 2657736300U, // <0,1,7,7>: Cost 3 vext2 <6,7,0,1>, <7,7,7,7>
+ 2657736322U, // <0,1,7,u>: Cost 3 vext2 <6,7,0,1>, <7,u,1,2>
+ 1494450278U, // <0,1,u,0>: Cost 2 vext1 <3,0,1,u>, LHS
+ 1557452590U, // <0,1,u,1>: Cost 2 vext2 <2,3,0,1>, LHS
+ 2754238254U, // <0,1,u,2>: Cost 3 vuzpl <0,4,1,5>, LHS
+ 835584U, // <0,1,u,3>: Cost 0 copy LHS
+ 1494453558U, // <0,1,u,4>: Cost 2 vext1 <3,0,1,u>, RHS
+ 1557452954U, // <0,1,u,5>: Cost 2 vext2 <2,3,0,1>, RHS
+ 2754238618U, // <0,1,u,6>: Cost 3 vuzpl <0,4,1,5>, RHS
+ 1518343168U, // <0,1,u,7>: Cost 2 vext1 <7,0,1,u>, <7,0,1,u>
+ 835584U, // <0,1,u,u>: Cost 0 copy LHS
+ 2752299008U, // <0,2,0,0>: Cost 3 vuzpl LHS, <0,0,0,0>
+ 1544847462U, // <0,2,0,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678557286U, // <0,2,0,2>: Cost 2 vuzpl LHS, LHS
+ 2696521165U, // <0,2,0,3>: Cost 3 vext3 <2,0,3,0>, <2,0,3,0>
+ 2752340172U, // <0,2,0,4>: Cost 3 vuzpl LHS, <0,2,4,6>
+ 2691876326U, // <0,2,0,5>: Cost 3 vext3 <1,2,3,0>, <2,0,5,7>
+ 2618589695U, // <0,2,0,6>: Cost 3 vext2 <0,2,0,2>, <0,6,2,7>
+ 2592093185U, // <0,2,0,7>: Cost 3 vext1 <7,0,2,0>, <7,0,2,0>
+ 1678557340U, // <0,2,0,u>: Cost 2 vuzpl LHS, LHS
+ 2618589942U, // <0,2,1,0>: Cost 3 vext2 <0,2,0,2>, <1,0,3,2>
+ 2752299828U, // <0,2,1,1>: Cost 3 vuzpl LHS, <1,1,1,1>
+ 2886518376U, // <0,2,1,2>: Cost 3 vzipl LHS, <2,2,2,2>
+ 2752299766U, // <0,2,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 2550295862U, // <0,2,1,4>: Cost 3 vext1 <0,0,2,1>, RHS
+ 2752340992U, // <0,2,1,5>: Cost 3 vuzpl LHS, <1,3,5,7>
+ 2886559674U, // <0,2,1,6>: Cost 3 vzipl LHS, <2,6,3,7>
+ 3934208106U, // <0,2,1,7>: Cost 4 vuzpr <7,0,1,2>, <0,1,2,7>
+ 2752340771U, // <0,2,1,u>: Cost 3 vuzpl LHS, <1,0,u,2>
+ 1476558868U, // <0,2,2,0>: Cost 2 vext1 <0,0,2,2>, <0,0,2,2>
+ 2226628029U, // <0,2,2,1>: Cost 3 vrev <2,0,1,2>
+ 2752300648U, // <0,2,2,2>: Cost 3 vuzpl LHS, <2,2,2,2>
+ 3020736114U, // <0,2,2,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476562230U, // <0,2,2,4>: Cost 2 vext1 <0,0,2,2>, RHS
+ 2550304464U, // <0,2,2,5>: Cost 3 vext1 <0,0,2,2>, <5,1,7,3>
+ 2618591162U, // <0,2,2,6>: Cost 3 vext2 <0,2,0,2>, <2,6,3,7>
+ 2550305777U, // <0,2,2,7>: Cost 3 vext1 <0,0,2,2>, <7,0,0,2>
+ 1476564782U, // <0,2,2,u>: Cost 2 vext1 <0,0,2,2>, LHS
+ 2618591382U, // <0,2,3,0>: Cost 3 vext2 <0,2,0,2>, <3,0,1,2>
+ 2752301206U, // <0,2,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 3826043121U, // <0,2,3,2>: Cost 4 vuzpl LHS, <3,1,2,3>
+ 2752301468U, // <0,2,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618591746U, // <0,2,3,4>: Cost 3 vext2 <0,2,0,2>, <3,4,5,6>
+ 2752301570U, // <0,2,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 3830688102U, // <0,2,3,6>: Cost 4 vuzpl LHS, <3,2,6,3>
+ 2698807012U, // <0,2,3,7>: Cost 3 vext3 <2,3,7,0>, <2,3,7,0>
+ 2752301269U, // <0,2,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562261094U, // <0,2,4,0>: Cost 3 vext1 <2,0,2,4>, LHS
+ 4095313828U, // <0,2,4,1>: Cost 4 vtrnl <0,2,4,6>, <2,6,1,3>
+ 2226718152U, // <0,2,4,2>: Cost 3 vrev <2,0,2,4>
+ 2568235169U, // <0,2,4,3>: Cost 3 vext1 <3,0,2,4>, <3,0,2,4>
+ 2562264374U, // <0,2,4,4>: Cost 3 vext1 <2,0,2,4>, RHS
+ 1544850742U, // <0,2,4,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678560566U, // <0,2,4,6>: Cost 2 vuzpl LHS, RHS
+ 2592125957U, // <0,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1678560584U, // <0,2,4,u>: Cost 2 vuzpl LHS, RHS
+ 2691876686U, // <0,2,5,0>: Cost 3 vext3 <1,2,3,0>, <2,5,0,7>
+ 2618592976U, // <0,2,5,1>: Cost 3 vext2 <0,2,0,2>, <5,1,7,3>
+ 3765618528U, // <0,2,5,2>: Cost 4 vext3 <1,2,3,0>, <2,5,2,7>
+ 3765618536U, // <0,2,5,3>: Cost 4 vext3 <1,2,3,0>, <2,5,3,6>
+ 2618593222U, // <0,2,5,4>: Cost 3 vext2 <0,2,0,2>, <5,4,7,6>
+ 2752303108U, // <0,2,5,5>: Cost 3 vuzpl LHS, <5,5,5,5>
+ 2618593378U, // <0,2,5,6>: Cost 3 vext2 <0,2,0,2>, <5,6,7,0>
+ 2824785206U, // <0,2,5,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2824785207U, // <0,2,5,u>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 2752303950U, // <0,2,6,0>: Cost 3 vuzpl LHS, <6,7,0,1>
+ 3830690081U, // <0,2,6,1>: Cost 4 vuzpl LHS, <6,0,1,2>
+ 2618593786U, // <0,2,6,2>: Cost 3 vext2 <0,2,0,2>, <6,2,7,3>
+ 2691876794U, // <0,2,6,3>: Cost 3 vext3 <1,2,3,0>, <2,6,3,7>
+ 2752303990U, // <0,2,6,4>: Cost 3 vuzpl LHS, <6,7,4,5>
+ 3830690445U, // <0,2,6,5>: Cost 4 vuzpl LHS, <6,4,5,6>
+ 2752303928U, // <0,2,6,6>: Cost 3 vuzpl LHS, <6,6,6,6>
+ 2657743695U, // <0,2,6,7>: Cost 3 vext2 <6,7,0,2>, <6,7,0,2>
+ 2691876839U, // <0,2,6,u>: Cost 3 vext3 <1,2,3,0>, <2,6,u,7>
+ 2659070961U, // <0,2,7,0>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 2659734594U, // <0,2,7,1>: Cost 3 vext2 <7,1,0,2>, <7,1,0,2>
+ 3734140051U, // <0,2,7,2>: Cost 4 vext2 <7,2,0,2>, <7,2,0,2>
+ 2701166596U, // <0,2,7,3>: Cost 3 vext3 <2,7,3,0>, <2,7,3,0>
+ 2662389094U, // <0,2,7,4>: Cost 3 vext2 <7,5,0,2>, <7,4,5,6>
+ 2662389126U, // <0,2,7,5>: Cost 3 vext2 <7,5,0,2>, <7,5,0,2>
+ 3736794583U, // <0,2,7,6>: Cost 4 vext2 <7,6,0,2>, <7,6,0,2>
+ 2752304748U, // <0,2,7,7>: Cost 3 vuzpl LHS, <7,7,7,7>
+ 2659070961U, // <0,2,7,u>: Cost 3 vext2 <7,0,0,2>, <7,0,0,2>
+ 1476608026U, // <0,2,u,0>: Cost 2 vext1 <0,0,2,u>, <0,0,2,u>
+ 1544853294U, // <0,2,u,1>: Cost 2 vext2 <0,2,0,2>, LHS
+ 1678563118U, // <0,2,u,2>: Cost 2 vuzpl LHS, LHS
+ 3021178482U, // <0,2,u,3>: Cost 3 vtrnl LHS, <2,2,3,3>
+ 1476611382U, // <0,2,u,4>: Cost 2 vext1 <0,0,2,u>, RHS
+ 1544853658U, // <0,2,u,5>: Cost 2 vext2 <0,2,0,2>, RHS
+ 1678563482U, // <0,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 2824785449U, // <0,2,u,7>: Cost 3 vuzpr <1,0,3,2>, RHS
+ 1678563172U, // <0,2,u,u>: Cost 2 vuzpl LHS, LHS
+ 2556329984U, // <0,3,0,0>: Cost 3 vext1 <1,0,3,0>, <0,0,0,0>
+ 2686421142U, // <0,3,0,1>: Cost 3 vext3 <0,3,1,0>, <3,0,1,2>
+ 2562303437U, // <0,3,0,2>: Cost 3 vext1 <2,0,3,0>, <2,0,3,0>
+ 4094986652U, // <0,3,0,3>: Cost 4 vtrnl <0,2,0,2>, <3,3,3,3>
+ 2556333366U, // <0,3,0,4>: Cost 3 vext1 <1,0,3,0>, RHS
+ 4094986754U, // <0,3,0,5>: Cost 4 vtrnl <0,2,0,2>, <3,4,5,6>
+ 3798796488U, // <0,3,0,6>: Cost 4 vext3 <6,7,3,0>, <3,0,6,7>
+ 3776530634U, // <0,3,0,7>: Cost 4 vext3 <3,0,7,0>, <3,0,7,0>
+ 2556335918U, // <0,3,0,u>: Cost 3 vext1 <1,0,3,0>, LHS
+ 2886518934U, // <0,3,1,0>: Cost 3 vzipl LHS, <3,0,1,2>
+ 2556338933U, // <0,3,1,1>: Cost 3 vext1 <1,0,3,1>, <1,0,3,1>
+ 2691877105U, // <0,3,1,2>: Cost 3 vext3 <1,2,3,0>, <3,1,2,3>
+ 2886519196U, // <0,3,1,3>: Cost 3 vzipl LHS, <3,3,3,3>
+ 2886519298U, // <0,3,1,4>: Cost 3 vzipl LHS, <3,4,5,6>
+ 4095740418U, // <0,3,1,5>: Cost 4 vtrnl <0,3,1,4>, <3,4,5,6>
+ 3659944242U, // <0,3,1,6>: Cost 4 vext1 <6,0,3,1>, <6,0,3,1>
+ 3769600286U, // <0,3,1,7>: Cost 4 vext3 <1,u,3,0>, <3,1,7,3>
+ 2886519582U, // <0,3,1,u>: Cost 3 vzipl LHS, <3,u,1,2>
+ 1482604646U, // <0,3,2,0>: Cost 2 vext1 <1,0,3,2>, LHS
+ 1482605302U, // <0,3,2,1>: Cost 2 vext1 <1,0,3,2>, <1,0,3,2>
+ 2556348008U, // <0,3,2,2>: Cost 3 vext1 <1,0,3,2>, <2,2,2,2>
+ 3020736924U, // <0,3,2,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482607926U, // <0,3,2,4>: Cost 2 vext1 <1,0,3,2>, RHS
+ 3020737026U, // <0,3,2,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598154746U, // <0,3,2,6>: Cost 3 vext1 <u,0,3,2>, <6,2,7,3>
+ 2598155258U, // <0,3,2,7>: Cost 3 vext1 <u,0,3,2>, <7,0,1,2>
+ 1482610478U, // <0,3,2,u>: Cost 2 vext1 <1,0,3,2>, LHS
+ 3692341398U, // <0,3,3,0>: Cost 4 vext2 <0,2,0,3>, <3,0,1,2>
+ 2635851999U, // <0,3,3,1>: Cost 3 vext2 <3,1,0,3>, <3,1,0,3>
+ 3636069840U, // <0,3,3,2>: Cost 4 vext1 <2,0,3,3>, <2,0,3,3>
+ 2691877276U, // <0,3,3,3>: Cost 3 vext3 <1,2,3,0>, <3,3,3,3>
+ 3961522690U, // <0,3,3,4>: Cost 4 vzipl <0,3,1,4>, <3,4,5,6>
+ 3826797058U, // <0,3,3,5>: Cost 4 vuzpl <0,2,3,5>, <3,4,5,6>
+ 3703622282U, // <0,3,3,6>: Cost 4 vext2 <2,1,0,3>, <3,6,2,7>
+ 3769600452U, // <0,3,3,7>: Cost 4 vext3 <1,u,3,0>, <3,3,7,7>
+ 2640497430U, // <0,3,3,u>: Cost 3 vext2 <3,u,0,3>, <3,u,0,3>
+ 3962194070U, // <0,3,4,0>: Cost 4 vzipl <0,4,1,5>, <3,0,1,2>
+ 2232617112U, // <0,3,4,1>: Cost 3 vrev <3,0,1,4>
+ 2232690849U, // <0,3,4,2>: Cost 3 vrev <3,0,2,4>
+ 4095314332U, // <0,3,4,3>: Cost 4 vtrnl <0,2,4,6>, <3,3,3,3>
+ 3962194434U, // <0,3,4,4>: Cost 4 vzipl <0,4,1,5>, <3,4,5,6>
+ 2691877378U, // <0,3,4,5>: Cost 3 vext3 <1,2,3,0>, <3,4,5,6>
+ 3826765110U, // <0,3,4,6>: Cost 4 vuzpl <0,2,3,1>, RHS
+ 3665941518U, // <0,3,4,7>: Cost 4 vext1 <7,0,3,4>, <7,0,3,4>
+ 2691877405U, // <0,3,4,u>: Cost 3 vext3 <1,2,3,0>, <3,4,u,6>
+ 3630112870U, // <0,3,5,0>: Cost 4 vext1 <1,0,3,5>, LHS
+ 3630113526U, // <0,3,5,1>: Cost 4 vext1 <1,0,3,5>, <1,0,3,2>
+ 4035199734U, // <0,3,5,2>: Cost 4 vzipr <1,4,0,5>, <1,0,3,2>
+ 3769600578U, // <0,3,5,3>: Cost 4 vext3 <1,u,3,0>, <3,5,3,7>
+ 2232846516U, // <0,3,5,4>: Cost 3 vrev <3,0,4,5>
+ 3779037780U, // <0,3,5,5>: Cost 4 vext3 <3,4,5,0>, <3,5,5,7>
+ 2718714461U, // <0,3,5,6>: Cost 3 vext3 <5,6,7,0>, <3,5,6,7>
+ 2706106975U, // <0,3,5,7>: Cost 3 vext3 <3,5,7,0>, <3,5,7,0>
+ 2233141464U, // <0,3,5,u>: Cost 3 vrev <3,0,u,5>
+ 2691877496U, // <0,3,6,0>: Cost 3 vext3 <1,2,3,0>, <3,6,0,7>
+ 3727511914U, // <0,3,6,1>: Cost 4 vext2 <6,1,0,3>, <6,1,0,3>
+ 3765619338U, // <0,3,6,2>: Cost 4 vext3 <1,2,3,0>, <3,6,2,7>
+ 3765619347U, // <0,3,6,3>: Cost 4 vext3 <1,2,3,0>, <3,6,3,7>
+ 3765987996U, // <0,3,6,4>: Cost 4 vext3 <1,2,u,0>, <3,6,4,7>
+ 3306670270U, // <0,3,6,5>: Cost 4 vrev <3,0,5,6>
+ 3792456365U, // <0,3,6,6>: Cost 4 vext3 <5,6,7,0>, <3,6,6,6>
+ 2706770608U, // <0,3,6,7>: Cost 3 vext3 <3,6,7,0>, <3,6,7,0>
+ 2706844345U, // <0,3,6,u>: Cost 3 vext3 <3,6,u,0>, <3,6,u,0>
+ 3769600707U, // <0,3,7,0>: Cost 4 vext3 <1,u,3,0>, <3,7,0,1>
+ 2659742787U, // <0,3,7,1>: Cost 3 vext2 <7,1,0,3>, <7,1,0,3>
+ 3636102612U, // <0,3,7,2>: Cost 4 vext1 <2,0,3,7>, <2,0,3,7>
+ 3769600740U, // <0,3,7,3>: Cost 4 vext3 <1,u,3,0>, <3,7,3,7>
+ 3769600747U, // <0,3,7,4>: Cost 4 vext3 <1,u,3,0>, <3,7,4,5>
+ 3769600758U, // <0,3,7,5>: Cost 4 vext3 <1,u,3,0>, <3,7,5,7>
+ 3659993400U, // <0,3,7,6>: Cost 4 vext1 <6,0,3,7>, <6,0,3,7>
+ 3781176065U, // <0,3,7,7>: Cost 4 vext3 <3,7,7,0>, <3,7,7,0>
+ 2664388218U, // <0,3,7,u>: Cost 3 vext2 <7,u,0,3>, <7,u,0,3>
+ 1482653798U, // <0,3,u,0>: Cost 2 vext1 <1,0,3,u>, LHS
+ 1482654460U, // <0,3,u,1>: Cost 2 vext1 <1,0,3,u>, <1,0,3,u>
+ 2556397160U, // <0,3,u,2>: Cost 3 vext1 <1,0,3,u>, <2,2,2,2>
+ 3021179292U, // <0,3,u,3>: Cost 3 vtrnl LHS, <3,3,3,3>
+ 1482657078U, // <0,3,u,4>: Cost 2 vext1 <1,0,3,u>, RHS
+ 3021179394U, // <0,3,u,5>: Cost 3 vtrnl LHS, <3,4,5,6>
+ 2598203898U, // <0,3,u,6>: Cost 3 vext1 <u,0,3,u>, <6,2,7,3>
+ 2708097874U, // <0,3,u,7>: Cost 3 vext3 <3,u,7,0>, <3,u,7,0>
+ 1482659630U, // <0,3,u,u>: Cost 2 vext1 <1,0,3,u>, LHS
+ 2617278468U, // <0,4,0,0>: Cost 3 vext2 <0,0,0,4>, <0,0,0,4>
+ 2618605670U, // <0,4,0,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2618605734U, // <0,4,0,2>: Cost 3 vext2 <0,2,0,4>, <0,2,0,4>
+ 3642091695U, // <0,4,0,3>: Cost 4 vext1 <3,0,4,0>, <3,0,4,0>
+ 2753134796U, // <0,4,0,4>: Cost 3 vuzpl <0,2,4,6>, <0,2,4,6>
+ 2718714770U, // <0,4,0,5>: Cost 3 vext3 <5,6,7,0>, <4,0,5,1>
+ 3021245750U, // <0,4,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 3665982483U, // <0,4,0,7>: Cost 4 vext1 <7,0,4,0>, <7,0,4,0>
+ 3021245768U, // <0,4,0,u>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2568355942U, // <0,4,1,0>: Cost 3 vext1 <3,0,4,1>, LHS
+ 3692348212U, // <0,4,1,1>: Cost 4 vext2 <0,2,0,4>, <1,1,1,1>
+ 3692348310U, // <0,4,1,2>: Cost 4 vext2 <0,2,0,4>, <1,2,3,0>
+ 2568358064U, // <0,4,1,3>: Cost 3 vext1 <3,0,4,1>, <3,0,4,1>
+ 2568359222U, // <0,4,1,4>: Cost 3 vext1 <3,0,4,1>, RHS
+ 1812778294U, // <0,4,1,5>: Cost 2 vzipl LHS, RHS
+ 3022671158U, // <0,4,1,6>: Cost 3 vtrnl <0,4,1,5>, RHS
+ 2592248852U, // <0,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1812778537U, // <0,4,1,u>: Cost 2 vzipl LHS, RHS
+ 2568364134U, // <0,4,2,0>: Cost 3 vext1 <3,0,4,2>, LHS
+ 2238573423U, // <0,4,2,1>: Cost 3 vrev <4,0,1,2>
+ 3692349032U, // <0,4,2,2>: Cost 4 vext2 <0,2,0,4>, <2,2,2,2>
+ 2631214761U, // <0,4,2,3>: Cost 3 vext2 <2,3,0,4>, <2,3,0,4>
+ 2568367414U, // <0,4,2,4>: Cost 3 vext1 <3,0,4,2>, RHS
+ 2887028022U, // <0,4,2,5>: Cost 3 vzipl <0,2,0,2>, RHS
+ 1946996022U, // <0,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <0,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1946996040U, // <0,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 3692349590U, // <0,4,3,0>: Cost 4 vext2 <0,2,0,4>, <3,0,1,2>
+ 3826878614U, // <0,4,3,1>: Cost 4 vuzpl <0,2,4,6>, <3,0,1,2>
+ 3826878625U, // <0,4,3,2>: Cost 4 vuzpl <0,2,4,6>, <3,0,2,4>
+ 3692349852U, // <0,4,3,3>: Cost 4 vext2 <0,2,0,4>, <3,3,3,3>
+ 3692349954U, // <0,4,3,4>: Cost 4 vext2 <0,2,0,4>, <3,4,5,6>
+ 3826878978U, // <0,4,3,5>: Cost 4 vuzpl <0,2,4,6>, <3,4,5,6>
+ 4095200566U, // <0,4,3,6>: Cost 4 vtrnl <0,2,3,1>, RHS
+ 3713583814U, // <0,4,3,7>: Cost 4 vext2 <3,7,0,4>, <3,7,0,4>
+ 3692350238U, // <0,4,3,u>: Cost 4 vext2 <0,2,0,4>, <3,u,1,2>
+ 2550464552U, // <0,4,4,0>: Cost 3 vext1 <0,0,4,4>, <0,0,4,4>
+ 3962194914U, // <0,4,4,1>: Cost 4 vzipl <0,4,1,5>, <4,1,5,0>
+ 3693677631U, // <0,4,4,2>: Cost 4 vext2 <0,4,0,4>, <4,2,6,3>
+ 3642124467U, // <0,4,4,3>: Cost 4 vext1 <3,0,4,4>, <3,0,4,4>
+ 2718715088U, // <0,4,4,4>: Cost 3 vext3 <5,6,7,0>, <4,4,4,4>
+ 2618608950U, // <0,4,4,5>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2753137974U, // <0,4,4,6>: Cost 3 vuzpl <0,2,4,6>, RHS
+ 3666015255U, // <0,4,4,7>: Cost 4 vext1 <7,0,4,4>, <7,0,4,4>
+ 2618609193U, // <0,4,4,u>: Cost 3 vext2 <0,2,0,4>, RHS
+ 2568388710U, // <0,4,5,0>: Cost 3 vext1 <3,0,4,5>, LHS
+ 2568389526U, // <0,4,5,1>: Cost 3 vext1 <3,0,4,5>, <1,2,3,0>
+ 3636159963U, // <0,4,5,2>: Cost 4 vext1 <2,0,4,5>, <2,0,4,5>
+ 2568390836U, // <0,4,5,3>: Cost 3 vext1 <3,0,4,5>, <3,0,4,5>
+ 2568391990U, // <0,4,5,4>: Cost 3 vext1 <3,0,4,5>, RHS
+ 2718715180U, // <0,4,5,5>: Cost 3 vext3 <5,6,7,0>, <4,5,5,6>
+ 1618136374U, // <0,4,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592281624U, // <0,4,5,7>: Cost 3 vext1 <7,0,4,5>, <7,0,4,5>
+ 1618136392U, // <0,4,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2550480938U, // <0,4,6,0>: Cost 3 vext1 <0,0,4,6>, <0,0,4,6>
+ 3826880801U, // <0,4,6,1>: Cost 4 vuzpl <0,2,4,6>, <6,0,1,2>
+ 2562426332U, // <0,4,6,2>: Cost 3 vext1 <2,0,4,6>, <2,0,4,6>
+ 3786190181U, // <0,4,6,3>: Cost 4 vext3 <4,6,3,0>, <4,6,3,0>
+ 2718715252U, // <0,4,6,4>: Cost 3 vext3 <5,6,7,0>, <4,6,4,6>
+ 3826881165U, // <0,4,6,5>: Cost 4 vuzpl <0,2,4,6>, <6,4,5,6>
+ 2712669568U, // <0,4,6,6>: Cost 3 vext3 <4,6,6,0>, <4,6,6,0>
+ 2657760081U, // <0,4,6,7>: Cost 3 vext2 <6,7,0,4>, <6,7,0,4>
+ 2718715284U, // <0,4,6,u>: Cost 3 vext3 <5,6,7,0>, <4,6,u,2>
+ 3654090854U, // <0,4,7,0>: Cost 4 vext1 <5,0,4,7>, LHS
+ 3934229326U, // <0,4,7,1>: Cost 4 vuzpr <7,0,1,4>, <6,7,0,1>
+ 3734156437U, // <0,4,7,2>: Cost 4 vext2 <7,2,0,4>, <7,2,0,4>
+ 3734820070U, // <0,4,7,3>: Cost 4 vext2 <7,3,0,4>, <7,3,0,4>
+ 3654094134U, // <0,4,7,4>: Cost 4 vext1 <5,0,4,7>, RHS
+ 2713259464U, // <0,4,7,5>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2713333201U, // <0,4,7,6>: Cost 3 vext3 <4,7,6,0>, <4,7,6,0>
+ 3654095866U, // <0,4,7,7>: Cost 4 vext1 <5,0,4,7>, <7,0,1,2>
+ 2713259464U, // <0,4,7,u>: Cost 3 vext3 <4,7,5,0>, <4,7,5,0>
+ 2568413286U, // <0,4,u,0>: Cost 3 vext1 <3,0,4,u>, LHS
+ 2618611502U, // <0,4,u,1>: Cost 3 vext2 <0,2,0,4>, LHS
+ 2753140526U, // <0,4,u,2>: Cost 3 vuzpl <0,2,4,6>, LHS
+ 2568415415U, // <0,4,u,3>: Cost 3 vext1 <3,0,4,u>, <3,0,4,u>
+ 2568416566U, // <0,4,u,4>: Cost 3 vext1 <3,0,4,u>, RHS
+ 1817423158U, // <0,4,u,5>: Cost 2 vzipl LHS, RHS
+ 1947438390U, // <0,4,u,6>: Cost 2 vtrnl LHS, RHS
+ 2592306203U, // <0,4,u,7>: Cost 3 vext1 <7,0,4,u>, <7,0,4,u>
+ 1947438408U, // <0,4,u,u>: Cost 2 vtrnl LHS, RHS
+ 3630219264U, // <0,5,0,0>: Cost 4 vext1 <1,0,5,0>, <0,0,0,0>
+ 2625912934U, // <0,5,0,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 3692355748U, // <0,5,0,2>: Cost 4 vext2 <0,2,0,5>, <0,2,0,2>
+ 3693019384U, // <0,5,0,3>: Cost 4 vext2 <0,3,0,5>, <0,3,0,5>
+ 3630222646U, // <0,5,0,4>: Cost 4 vext1 <1,0,5,0>, RHS
+ 3699655062U, // <0,5,0,5>: Cost 4 vext2 <1,4,0,5>, <0,5,0,1>
+ 2718715508U, // <0,5,0,6>: Cost 3 vext3 <5,6,7,0>, <5,0,6,1>
+ 3087011126U, // <0,5,0,7>: Cost 3 vtrnr <0,0,0,0>, RHS
+ 2625913501U, // <0,5,0,u>: Cost 3 vext2 <1,4,0,5>, LHS
+ 1500659814U, // <0,5,1,0>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2886520528U, // <0,5,1,1>: Cost 3 vzipl LHS, <5,1,7,3>
+ 2574403176U, // <0,5,1,2>: Cost 3 vext1 <4,0,5,1>, <2,2,2,2>
+ 2574403734U, // <0,5,1,3>: Cost 3 vext1 <4,0,5,1>, <3,0,1,2>
+ 1500662674U, // <0,5,1,4>: Cost 2 vext1 <4,0,5,1>, <4,0,5,1>
+ 2886520836U, // <0,5,1,5>: Cost 3 vzipl LHS, <5,5,5,5>
+ 2886520930U, // <0,5,1,6>: Cost 3 vzipl LHS, <5,6,7,0>
+ 2718715600U, // <0,5,1,7>: Cost 3 vext3 <5,6,7,0>, <5,1,7,3>
+ 1500665646U, // <0,5,1,u>: Cost 2 vext1 <4,0,5,1>, LHS
+ 2556493926U, // <0,5,2,0>: Cost 3 vext1 <1,0,5,2>, LHS
+ 2244546120U, // <0,5,2,1>: Cost 3 vrev <5,0,1,2>
+ 3692357256U, // <0,5,2,2>: Cost 4 vext2 <0,2,0,5>, <2,2,5,7>
+ 2568439994U, // <0,5,2,3>: Cost 3 vext1 <3,0,5,2>, <3,0,5,2>
+ 2556497206U, // <0,5,2,4>: Cost 3 vext1 <1,0,5,2>, RHS
+ 3020738564U, // <0,5,2,5>: Cost 3 vtrnl LHS, <5,5,5,5>
+ 4027877161U, // <0,5,2,6>: Cost 4 vzipr <0,2,0,2>, <2,4,5,6>
+ 3093220662U, // <0,5,2,7>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3093220663U, // <0,5,2,u>: Cost 3 vtrnr <1,0,3,2>, RHS
+ 3699656854U, // <0,5,3,0>: Cost 4 vext2 <1,4,0,5>, <3,0,1,2>
+ 3699656927U, // <0,5,3,1>: Cost 4 vext2 <1,4,0,5>, <3,1,0,3>
+ 3699657006U, // <0,5,3,2>: Cost 4 vext2 <1,4,0,5>, <3,2,0,1>
+ 3699657116U, // <0,5,3,3>: Cost 4 vext2 <1,4,0,5>, <3,3,3,3>
+ 2637859284U, // <0,5,3,4>: Cost 3 vext2 <3,4,0,5>, <3,4,0,5>
+ 3790319453U, // <0,5,3,5>: Cost 4 vext3 <5,3,5,0>, <5,3,5,0>
+ 3699657354U, // <0,5,3,6>: Cost 4 vext2 <1,4,0,5>, <3,6,2,7>
+ 2716725103U, // <0,5,3,7>: Cost 3 vext3 <5,3,7,0>, <5,3,7,0>
+ 2716798840U, // <0,5,3,u>: Cost 3 vext3 <5,3,u,0>, <5,3,u,0>
+ 2661747602U, // <0,5,4,0>: Cost 3 vext2 <7,4,0,5>, <4,0,5,1>
+ 3630252810U, // <0,5,4,1>: Cost 4 vext1 <1,0,5,4>, <1,0,5,4>
+ 3636225507U, // <0,5,4,2>: Cost 4 vext1 <2,0,5,4>, <2,0,5,4>
+ 3716910172U, // <0,5,4,3>: Cost 4 vext2 <4,3,0,5>, <4,3,0,5>
+ 3962195892U, // <0,5,4,4>: Cost 4 vzipl <0,4,1,5>, <5,4,5,6>
+ 2625916214U, // <0,5,4,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3718901071U, // <0,5,4,6>: Cost 4 vext2 <4,6,0,5>, <4,6,0,5>
+ 2718715846U, // <0,5,4,7>: Cost 3 vext3 <5,6,7,0>, <5,4,7,6>
+ 2625916457U, // <0,5,4,u>: Cost 3 vext2 <1,4,0,5>, RHS
+ 3791278034U, // <0,5,5,0>: Cost 4 vext3 <5,5,0,0>, <5,5,0,0>
+ 3791351771U, // <0,5,5,1>: Cost 4 vext3 <5,5,1,0>, <5,5,1,0>
+ 3318386260U, // <0,5,5,2>: Cost 4 vrev <5,0,2,5>
+ 3791499245U, // <0,5,5,3>: Cost 4 vext3 <5,5,3,0>, <5,5,3,0>
+ 3318533734U, // <0,5,5,4>: Cost 4 vrev <5,0,4,5>
+ 2718715908U, // <0,5,5,5>: Cost 3 vext3 <5,6,7,0>, <5,5,5,5>
+ 2657767522U, // <0,5,5,6>: Cost 3 vext2 <6,7,0,5>, <5,6,7,0>
+ 2718715928U, // <0,5,5,7>: Cost 3 vext3 <5,6,7,0>, <5,5,7,7>
+ 2718715937U, // <0,5,5,u>: Cost 3 vext3 <5,6,7,0>, <5,5,u,7>
+ 2592358502U, // <0,5,6,0>: Cost 3 vext1 <7,0,5,6>, LHS
+ 3792015404U, // <0,5,6,1>: Cost 4 vext3 <5,6,1,0>, <5,6,1,0>
+ 3731509754U, // <0,5,6,2>: Cost 4 vext2 <6,7,0,5>, <6,2,7,3>
+ 3785748546U, // <0,5,6,3>: Cost 4 vext3 <4,5,6,0>, <5,6,3,4>
+ 2592361782U, // <0,5,6,4>: Cost 3 vext1 <7,0,5,6>, RHS
+ 2592362594U, // <0,5,6,5>: Cost 3 vext1 <7,0,5,6>, <5,6,7,0>
+ 3785748576U, // <0,5,6,6>: Cost 4 vext3 <4,5,6,0>, <5,6,6,7>
+ 1644974178U, // <0,5,6,7>: Cost 2 vext3 <5,6,7,0>, <5,6,7,0>
+ 1645047915U, // <0,5,6,u>: Cost 2 vext3 <5,6,u,0>, <5,6,u,0>
+ 2562506854U, // <0,5,7,0>: Cost 3 vext1 <2,0,5,7>, LHS
+ 2562507670U, // <0,5,7,1>: Cost 3 vext1 <2,0,5,7>, <1,2,3,0>
+ 2562508262U, // <0,5,7,2>: Cost 3 vext1 <2,0,5,7>, <2,0,5,7>
+ 3636250774U, // <0,5,7,3>: Cost 4 vext1 <2,0,5,7>, <3,0,1,2>
+ 2562510134U, // <0,5,7,4>: Cost 3 vext1 <2,0,5,7>, RHS
+ 2718716072U, // <0,5,7,5>: Cost 3 vext3 <5,6,7,0>, <5,7,5,7>
+ 2718716074U, // <0,5,7,6>: Cost 3 vext3 <5,6,7,0>, <5,7,6,0>
+ 2719379635U, // <0,5,7,7>: Cost 3 vext3 <5,7,7,0>, <5,7,7,0>
+ 2562512686U, // <0,5,7,u>: Cost 3 vext1 <2,0,5,7>, LHS
+ 1500717158U, // <0,5,u,0>: Cost 2 vext1 <4,0,5,u>, LHS
+ 2625918766U, // <0,5,u,1>: Cost 3 vext2 <1,4,0,5>, LHS
+ 2719674583U, // <0,5,u,2>: Cost 3 vext3 <5,u,2,0>, <5,u,2,0>
+ 2568489152U, // <0,5,u,3>: Cost 3 vext1 <3,0,5,u>, <3,0,5,u>
+ 1500720025U, // <0,5,u,4>: Cost 2 vext1 <4,0,5,u>, <4,0,5,u>
+ 2625919130U, // <0,5,u,5>: Cost 3 vext2 <1,4,0,5>, RHS
+ 2586407243U, // <0,5,u,6>: Cost 3 vext1 <6,0,5,u>, <6,0,5,u>
+ 1646301444U, // <0,5,u,7>: Cost 2 vext3 <5,u,7,0>, <5,u,7,0>
+ 1646375181U, // <0,5,u,u>: Cost 2 vext3 <5,u,u,0>, <5,u,u,0>
+ 2586411110U, // <0,6,0,0>: Cost 3 vext1 <6,0,6,0>, LHS
+ 2619949158U, // <0,6,0,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2619949220U, // <0,6,0,2>: Cost 3 vext2 <0,4,0,6>, <0,2,0,2>
+ 3785748789U, // <0,6,0,3>: Cost 4 vext3 <4,5,6,0>, <6,0,3,4>
+ 2619949386U, // <0,6,0,4>: Cost 3 vext2 <0,4,0,6>, <0,4,0,6>
+ 2586415202U, // <0,6,0,5>: Cost 3 vext1 <6,0,6,0>, <5,6,7,0>
+ 2586415436U, // <0,6,0,6>: Cost 3 vext1 <6,0,6,0>, <6,0,6,0>
+ 2952793398U, // <0,6,0,7>: Cost 3 vzipr <0,0,0,0>, RHS
+ 2619949725U, // <0,6,0,u>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562531430U, // <0,6,1,0>: Cost 3 vext1 <2,0,6,1>, LHS
+ 3693691700U, // <0,6,1,1>: Cost 4 vext2 <0,4,0,6>, <1,1,1,1>
+ 2886521338U, // <0,6,1,2>: Cost 3 vzipl LHS, <6,2,7,3>
+ 3693691864U, // <0,6,1,3>: Cost 4 vext2 <0,4,0,6>, <1,3,1,3>
+ 2562534710U, // <0,6,1,4>: Cost 3 vext1 <2,0,6,1>, RHS
+ 2580450932U, // <0,6,1,5>: Cost 3 vext1 <5,0,6,1>, <5,0,6,1>
+ 2886521656U, // <0,6,1,6>: Cost 3 vzipl LHS, <6,6,6,6>
+ 2966736182U, // <0,6,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 2966736183U, // <0,6,1,u>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1500741734U, // <0,6,2,0>: Cost 2 vext1 <4,0,6,2>, LHS
+ 2250518817U, // <0,6,2,1>: Cost 3 vrev <6,0,1,2>
+ 2574485096U, // <0,6,2,2>: Cost 3 vext1 <4,0,6,2>, <2,2,2,2>
+ 2631894694U, // <0,6,2,3>: Cost 3 vext2 <2,4,0,6>, <2,3,0,1>
+ 1500744604U, // <0,6,2,4>: Cost 2 vext1 <4,0,6,2>, <4,0,6,2>
+ 2574487248U, // <0,6,2,5>: Cost 3 vext1 <4,0,6,2>, <5,1,7,3>
+ 3020739384U, // <0,6,2,6>: Cost 3 vtrnl LHS, <6,6,6,6>
+ 2954136886U, // <0,6,2,7>: Cost 3 vzipr <0,2,0,2>, RHS
+ 1500747566U, // <0,6,2,u>: Cost 2 vext1 <4,0,6,2>, LHS
+ 3693693078U, // <0,6,3,0>: Cost 4 vext2 <0,4,0,6>, <3,0,1,2>
+ 3705637136U, // <0,6,3,1>: Cost 4 vext2 <2,4,0,6>, <3,1,5,7>
+ 3705637192U, // <0,6,3,2>: Cost 4 vext2 <2,4,0,6>, <3,2,3,0>
+ 3693693340U, // <0,6,3,3>: Cost 4 vext2 <0,4,0,6>, <3,3,3,3>
+ 2637867477U, // <0,6,3,4>: Cost 3 vext2 <3,4,0,6>, <3,4,0,6>
+ 3705637424U, // <0,6,3,5>: Cost 4 vext2 <2,4,0,6>, <3,5,1,7>
+ 3666154056U, // <0,6,3,6>: Cost 4 vext1 <7,0,6,3>, <6,3,7,0>
+ 2722697800U, // <0,6,3,7>: Cost 3 vext3 <6,3,7,0>, <6,3,7,0>
+ 2722771537U, // <0,6,3,u>: Cost 3 vext3 <6,3,u,0>, <6,3,u,0>
+ 2562556006U, // <0,6,4,0>: Cost 3 vext1 <2,0,6,4>, LHS
+ 4095316257U, // <0,6,4,1>: Cost 4 vtrnl <0,2,4,6>, <6,0,1,2>
+ 2562557420U, // <0,6,4,2>: Cost 3 vext1 <2,0,6,4>, <2,0,6,4>
+ 3636299926U, // <0,6,4,3>: Cost 4 vext1 <2,0,6,4>, <3,0,1,2>
+ 2562559286U, // <0,6,4,4>: Cost 3 vext1 <2,0,6,4>, RHS
+ 2619952438U, // <0,6,4,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2723287696U, // <0,6,4,6>: Cost 3 vext3 <6,4,6,0>, <6,4,6,0>
+ 4027895094U, // <0,6,4,7>: Cost 4 vzipr <0,2,0,4>, RHS
+ 2619952681U, // <0,6,4,u>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2718716594U, // <0,6,5,0>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3648250774U, // <0,6,5,1>: Cost 4 vext1 <4,0,6,5>, <1,2,3,0>
+ 3792458436U, // <0,6,5,2>: Cost 4 vext3 <5,6,7,0>, <6,5,2,7>
+ 3705638767U, // <0,6,5,3>: Cost 5 vext2 <2,4,0,6>, <5,3,7,0>
+ 3648252831U, // <0,6,5,4>: Cost 4 vext1 <4,0,6,5>, <4,0,6,5>
+ 3797619416U, // <0,6,5,5>: Cost 4 vext3 <6,5,5,0>, <6,5,5,0>
+ 3792458472U, // <0,6,5,6>: Cost 4 vext3 <5,6,7,0>, <6,5,6,7>
+ 4035202358U, // <0,6,5,7>: Cost 4 vzipr <1,4,0,5>, RHS
+ 2718716594U, // <0,6,5,u>: Cost 3 vext3 <5,6,7,0>, <6,5,0,7>
+ 3786412796U, // <0,6,6,0>: Cost 4 vext3 <4,6,6,0>, <6,6,0,0>
+ 3792458504U, // <0,6,6,1>: Cost 4 vext3 <5,6,7,0>, <6,6,1,3>
+ 3728200126U, // <0,6,6,2>: Cost 4 vext2 <6,2,0,6>, <6,2,0,6>
+ 3798135575U, // <0,6,6,3>: Cost 4 vext3 <6,6,3,0>, <6,6,3,0>
+ 3786412836U, // <0,6,6,4>: Cost 4 vext3 <4,6,6,0>, <6,6,4,4>
+ 3792458543U, // <0,6,6,5>: Cost 4 vext3 <5,6,7,0>, <6,6,5,6>
+ 2718716728U, // <0,6,6,6>: Cost 3 vext3 <5,6,7,0>, <6,6,6,6>
+ 2718716738U, // <0,6,6,7>: Cost 3 vext3 <5,6,7,0>, <6,6,7,7>
+ 2718716747U, // <0,6,6,u>: Cost 3 vext3 <5,6,7,0>, <6,6,u,7>
+ 2718716750U, // <0,6,7,0>: Cost 3 vext3 <5,6,7,0>, <6,7,0,1>
+ 2724909910U, // <0,6,7,1>: Cost 3 vext3 <6,7,1,0>, <6,7,1,0>
+ 3636323823U, // <0,6,7,2>: Cost 4 vext1 <2,0,6,7>, <2,0,6,7>
+ 2725057384U, // <0,6,7,3>: Cost 3 vext3 <6,7,3,0>, <6,7,3,0>
+ 2718716790U, // <0,6,7,4>: Cost 3 vext3 <5,6,7,0>, <6,7,4,5>
+ 2718716800U, // <0,6,7,5>: Cost 3 vext3 <5,6,7,0>, <6,7,5,6>
+ 3792458629U, // <0,6,7,6>: Cost 4 vext3 <5,6,7,0>, <6,7,6,2>
+ 2725352332U, // <0,6,7,7>: Cost 3 vext3 <6,7,7,0>, <6,7,7,0>
+ 2718716822U, // <0,6,7,u>: Cost 3 vext3 <5,6,7,0>, <6,7,u,1>
+ 1500790886U, // <0,6,u,0>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2619954990U, // <0,6,u,1>: Cost 3 vext2 <0,4,0,6>, LHS
+ 2562590192U, // <0,6,u,2>: Cost 3 vext1 <2,0,6,u>, <2,0,6,u>
+ 2725721017U, // <0,6,u,3>: Cost 3 vext3 <6,u,3,0>, <6,u,3,0>
+ 1500793762U, // <0,6,u,4>: Cost 2 vext1 <4,0,6,u>, <4,0,6,u>
+ 2619955354U, // <0,6,u,5>: Cost 3 vext2 <0,4,0,6>, RHS
+ 2725942228U, // <0,6,u,6>: Cost 3 vext3 <6,u,6,0>, <6,u,6,0>
+ 2954186038U, // <0,6,u,7>: Cost 3 vzipr <0,2,0,u>, RHS
+ 1500796718U, // <0,6,u,u>: Cost 2 vext1 <4,0,6,u>, LHS
+ 2256401391U, // <0,7,0,0>: Cost 3 vrev <7,0,0,0>
+ 2632564838U, // <0,7,0,1>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256548865U, // <0,7,0,2>: Cost 3 vrev <7,0,2,0>
+ 3700998396U, // <0,7,0,3>: Cost 4 vext2 <1,6,0,7>, <0,3,1,0>
+ 2718716952U, // <0,7,0,4>: Cost 3 vext3 <5,6,7,0>, <7,0,4,5>
+ 2718716962U, // <0,7,0,5>: Cost 3 vext3 <5,6,7,0>, <7,0,5,6>
+ 2621284845U, // <0,7,0,6>: Cost 3 vext2 <0,6,0,7>, <0,6,0,7>
+ 3904685542U, // <0,7,0,7>: Cost 4 vuzpr <2,0,5,7>, <2,0,5,7>
+ 2632565405U, // <0,7,0,u>: Cost 3 vext2 <2,5,0,7>, LHS
+ 2256409584U, // <0,7,1,0>: Cost 3 vrev <7,0,0,1>
+ 3706307380U, // <0,7,1,1>: Cost 4 vext2 <2,5,0,7>, <1,1,1,1>
+ 2632565654U, // <0,7,1,2>: Cost 3 vext2 <2,5,0,7>, <1,2,3,0>
+ 3769603168U, // <0,7,1,3>: Cost 4 vext3 <1,u,3,0>, <7,1,3,5>
+ 2256704532U, // <0,7,1,4>: Cost 3 vrev <7,0,4,1>
+ 3769603184U, // <0,7,1,5>: Cost 4 vext3 <1,u,3,0>, <7,1,5,3>
+ 3700999366U, // <0,7,1,6>: Cost 4 vext2 <1,6,0,7>, <1,6,0,7>
+ 2886522476U, // <0,7,1,7>: Cost 3 vzipl LHS, <7,7,7,7>
+ 2256999480U, // <0,7,1,u>: Cost 3 vrev <7,0,u,1>
+ 2586501222U, // <0,7,2,0>: Cost 3 vext1 <6,0,7,2>, LHS
+ 1182749690U, // <0,7,2,1>: Cost 2 vrev <7,0,1,2>
+ 3636356595U, // <0,7,2,2>: Cost 4 vext1 <2,0,7,2>, <2,0,7,2>
+ 2727711916U, // <0,7,2,3>: Cost 3 vext3 <7,2,3,0>, <7,2,3,0>
+ 2586504502U, // <0,7,2,4>: Cost 3 vext1 <6,0,7,2>, RHS
+ 2632566606U, // <0,7,2,5>: Cost 3 vext2 <2,5,0,7>, <2,5,0,7>
+ 2586505559U, // <0,7,2,6>: Cost 3 vext1 <6,0,7,2>, <6,0,7,2>
+ 3020740204U, // <0,7,2,7>: Cost 3 vtrnl LHS, <7,7,7,7>
+ 1183265849U, // <0,7,2,u>: Cost 2 vrev <7,0,u,2>
+ 3701000342U, // <0,7,3,0>: Cost 4 vext2 <1,6,0,7>, <3,0,1,2>
+ 3706308849U, // <0,7,3,1>: Cost 4 vext2 <2,5,0,7>, <3,1,2,3>
+ 3330315268U, // <0,7,3,2>: Cost 4 vrev <7,0,2,3>
+ 3706309020U, // <0,7,3,3>: Cost 4 vext2 <2,5,0,7>, <3,3,3,3>
+ 3706309122U, // <0,7,3,4>: Cost 4 vext2 <2,5,0,7>, <3,4,5,6>
+ 3712281127U, // <0,7,3,5>: Cost 4 vext2 <3,5,0,7>, <3,5,0,7>
+ 2639202936U, // <0,7,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 3802412321U, // <0,7,3,7>: Cost 4 vext3 <7,3,7,0>, <7,3,7,0>
+ 2640530202U, // <0,7,3,u>: Cost 3 vext2 <3,u,0,7>, <3,u,0,7>
+ 3654287462U, // <0,7,4,0>: Cost 4 vext1 <5,0,7,4>, LHS
+ 2256507900U, // <0,7,4,1>: Cost 3 vrev <7,0,1,4>
+ 2256581637U, // <0,7,4,2>: Cost 3 vrev <7,0,2,4>
+ 3660262008U, // <0,7,4,3>: Cost 4 vext1 <6,0,7,4>, <3,6,0,7>
+ 3786413405U, // <0,7,4,4>: Cost 4 vext3 <4,6,6,0>, <7,4,4,6>
+ 2632568118U, // <0,7,4,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3718917457U, // <0,7,4,6>: Cost 4 vext2 <4,6,0,7>, <4,6,0,7>
+ 3787003255U, // <0,7,4,7>: Cost 4 vext3 <4,7,5,0>, <7,4,7,5>
+ 2632568361U, // <0,7,4,u>: Cost 3 vext2 <2,5,0,7>, RHS
+ 3706310268U, // <0,7,5,0>: Cost 4 vext2 <2,5,0,7>, <5,0,7,0>
+ 3792459156U, // <0,7,5,1>: Cost 4 vext3 <5,6,7,0>, <7,5,1,7>
+ 3330331654U, // <0,7,5,2>: Cost 4 vrev <7,0,2,5>
+ 3722899255U, // <0,7,5,3>: Cost 4 vext2 <5,3,0,7>, <5,3,0,7>
+ 2256737304U, // <0,7,5,4>: Cost 3 vrev <7,0,4,5>
+ 3724226521U, // <0,7,5,5>: Cost 4 vext2 <5,5,0,7>, <5,5,0,7>
+ 2718717377U, // <0,7,5,6>: Cost 3 vext3 <5,6,7,0>, <7,5,6,7>
+ 2729997763U, // <0,7,5,7>: Cost 3 vext3 <7,5,7,0>, <7,5,7,0>
+ 2720044499U, // <0,7,5,u>: Cost 3 vext3 <5,u,7,0>, <7,5,u,7>
+ 3712946517U, // <0,7,6,0>: Cost 4 vext2 <3,6,0,7>, <6,0,7,0>
+ 2256524286U, // <0,7,6,1>: Cost 3 vrev <7,0,1,6>
+ 3792459246U, // <0,7,6,2>: Cost 4 vext3 <5,6,7,0>, <7,6,2,7>
+ 3796440567U, // <0,7,6,3>: Cost 4 vext3 <6,3,7,0>, <7,6,3,7>
+ 3654307126U, // <0,7,6,4>: Cost 4 vext1 <5,0,7,6>, RHS
+ 2656457394U, // <0,7,6,5>: Cost 3 vext2 <6,5,0,7>, <6,5,0,7>
+ 3792459281U, // <0,7,6,6>: Cost 4 vext3 <5,6,7,0>, <7,6,6,6>
+ 2730661396U, // <0,7,6,7>: Cost 3 vext3 <7,6,7,0>, <7,6,7,0>
+ 2658448293U, // <0,7,6,u>: Cost 3 vext2 <6,u,0,7>, <6,u,0,7>
+ 3787003431U, // <0,7,7,0>: Cost 4 vext3 <4,7,5,0>, <7,7,0,1>
+ 3654312854U, // <0,7,7,1>: Cost 4 vext1 <5,0,7,7>, <1,2,3,0>
+ 3654313446U, // <0,7,7,2>: Cost 4 vext1 <5,0,7,7>, <2,0,5,7>
+ 3804771905U, // <0,7,7,3>: Cost 4 vext3 <7,7,3,0>, <7,7,3,0>
+ 3654315318U, // <0,7,7,4>: Cost 4 vext1 <5,0,7,7>, RHS
+ 3654315651U, // <0,7,7,5>: Cost 4 vext1 <5,0,7,7>, <5,0,7,7>
+ 3660288348U, // <0,7,7,6>: Cost 4 vext1 <6,0,7,7>, <6,0,7,7>
+ 2718717548U, // <0,7,7,7>: Cost 3 vext3 <5,6,7,0>, <7,7,7,7>
+ 2664420990U, // <0,7,7,u>: Cost 3 vext2 <7,u,0,7>, <7,u,0,7>
+ 2256466935U, // <0,7,u,0>: Cost 3 vrev <7,0,0,u>
+ 1182798848U, // <0,7,u,1>: Cost 2 vrev <7,0,1,u>
+ 2256614409U, // <0,7,u,2>: Cost 3 vrev <7,0,2,u>
+ 2731693714U, // <0,7,u,3>: Cost 3 vext3 <7,u,3,0>, <7,u,3,0>
+ 2256761883U, // <0,7,u,4>: Cost 3 vrev <7,0,4,u>
+ 2632571034U, // <0,7,u,5>: Cost 3 vext2 <2,5,0,7>, RHS
+ 2669066421U, // <0,7,u,6>: Cost 3 vext2 <u,6,0,7>, <u,6,0,7>
+ 2731988662U, // <0,7,u,7>: Cost 3 vext3 <7,u,7,0>, <7,u,7,0>
+ 1183315007U, // <0,7,u,u>: Cost 2 vrev <7,0,u,u>
+ 135053414U, // <0,u,0,0>: Cost 1 vdup0 LHS
+ 1544896614U, // <0,u,0,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1678999654U, // <0,u,0,2>: Cost 2 vuzpl LHS, LHS
+ 2691880677U, // <0,u,0,3>: Cost 3 vext3 <1,2,3,0>, <u,0,3,2>
+ 1476988214U, // <0,u,0,4>: Cost 2 vext1 <0,0,u,0>, RHS
+ 2718791419U, // <0,u,0,5>: Cost 3 vext3 <5,6,u,0>, <u,0,5,6>
+ 3021248666U, // <0,u,0,6>: Cost 3 vtrnl <0,2,0,2>, RHS
+ 2592535607U, // <0,u,0,7>: Cost 3 vext1 <7,0,u,0>, <7,0,u,0>
+ 135053414U, // <0,u,0,u>: Cost 1 vdup0 LHS
+ 1476993097U, // <0,u,1,0>: Cost 2 vext1 <0,0,u,1>, <0,0,u,1>
+ 1812780846U, // <0,u,1,1>: Cost 2 vzipl LHS, LHS
+ 1618138926U, // <0,u,1,2>: Cost 2 vext3 <1,2,3,0>, LHS
+ 2752742134U, // <0,u,1,3>: Cost 3 vuzpl LHS, <1,0,3,2>
+ 1476996406U, // <0,u,1,4>: Cost 2 vext1 <0,0,u,1>, RHS
+ 1812781210U, // <0,u,1,5>: Cost 2 vzipl LHS, RHS
+ 2887006416U, // <0,u,1,6>: Cost 3 vzipl LHS, <u,6,3,7>
+ 2966736200U, // <0,u,1,7>: Cost 3 vzipr <2,3,0,1>, RHS
+ 1812781413U, // <0,u,1,u>: Cost 2 vzipl LHS, LHS
+ 1482973286U, // <0,u,2,0>: Cost 2 vext1 <1,0,u,2>, LHS
+ 1482973987U, // <0,u,2,1>: Cost 2 vext1 <1,0,u,2>, <1,0,u,2>
+ 1946998574U, // <0,u,2,2>: Cost 2 vtrnl LHS, LHS
+ 835584U, // <0,u,2,3>: Cost 0 copy LHS
+ 1482976566U, // <0,u,2,4>: Cost 2 vext1 <1,0,u,2>, RHS
+ 3020781631U, // <0,u,2,5>: Cost 3 vtrnl LHS, <u,4,5,6>
+ 1946998938U, // <0,u,2,6>: Cost 2 vtrnl LHS, RHS
+ 1518810169U, // <0,u,2,7>: Cost 2 vext1 <7,0,u,2>, <7,0,u,2>
+ 835584U, // <0,u,2,u>: Cost 0 copy LHS
+ 2618640534U, // <0,u,3,0>: Cost 3 vext2 <0,2,0,u>, <3,0,1,2>
+ 2752743574U, // <0,u,3,1>: Cost 3 vuzpl LHS, <3,0,1,2>
+ 2636556597U, // <0,u,3,2>: Cost 3 vext2 <3,2,0,u>, <3,2,0,u>
+ 2752743836U, // <0,u,3,3>: Cost 3 vuzpl LHS, <3,3,3,3>
+ 2618640898U, // <0,u,3,4>: Cost 3 vext2 <0,2,0,u>, <3,4,5,6>
+ 2752743938U, // <0,u,3,5>: Cost 3 vuzpl LHS, <3,4,5,6>
+ 2639202936U, // <0,u,3,6>: Cost 3 vext2 <3,6,0,7>, <3,6,0,7>
+ 2639874762U, // <0,u,3,7>: Cost 3 vext2 <3,7,0,u>, <3,7,0,u>
+ 2752743637U, // <0,u,3,u>: Cost 3 vuzpl LHS, <3,0,u,2>
+ 2562703462U, // <0,u,4,0>: Cost 3 vext1 <2,0,u,4>, LHS
+ 2888455982U, // <0,u,4,1>: Cost 3 vzipl <0,4,1,5>, LHS
+ 3021575982U, // <0,u,4,2>: Cost 3 vtrnl <0,2,4,6>, LHS
+ 2568677591U, // <0,u,4,3>: Cost 3 vext1 <3,0,u,4>, <3,0,u,4>
+ 2562706742U, // <0,u,4,4>: Cost 3 vext1 <2,0,u,4>, RHS
+ 1544899894U, // <0,u,4,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679002934U, // <0,u,4,6>: Cost 2 vuzpl LHS, RHS
+ 2718718033U, // <0,u,4,7>: Cost 3 vext3 <5,6,7,0>, <u,4,7,6>
+ 1679002952U, // <0,u,4,u>: Cost 2 vuzpl LHS, RHS
+ 2568683622U, // <0,u,5,0>: Cost 3 vext1 <3,0,u,5>, LHS
+ 2568684438U, // <0,u,5,1>: Cost 3 vext1 <3,0,u,5>, <1,2,3,0>
+ 3765622902U, // <0,u,5,2>: Cost 4 vext3 <1,2,3,0>, <u,5,2,7>
+ 2691881087U, // <0,u,5,3>: Cost 3 vext3 <1,2,3,0>, <u,5,3,7>
+ 2568686902U, // <0,u,5,4>: Cost 3 vext1 <3,0,u,5>, RHS
+ 2650492890U, // <0,u,5,5>: Cost 3 vext2 <5,5,0,u>, <5,5,0,u>
+ 1618139290U, // <0,u,5,6>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2824834358U, // <0,u,5,7>: Cost 3 vuzpr <1,0,3,u>, RHS
+ 1618139308U, // <0,u,5,u>: Cost 2 vext3 <1,2,3,0>, RHS
+ 2592579686U, // <0,u,6,0>: Cost 3 vext1 <7,0,u,6>, LHS
+ 2262496983U, // <0,u,6,1>: Cost 3 vrev <u,0,1,6>
+ 2654474688U, // <0,u,6,2>: Cost 3 vext2 <6,2,0,u>, <6,2,0,u>
+ 2691881168U, // <0,u,6,3>: Cost 3 vext3 <1,2,3,0>, <u,6,3,7>
+ 2592582966U, // <0,u,6,4>: Cost 3 vext1 <7,0,u,6>, RHS
+ 2656465587U, // <0,u,6,5>: Cost 3 vext2 <6,5,0,u>, <6,5,0,u>
+ 2657129220U, // <0,u,6,6>: Cost 3 vext2 <6,6,0,u>, <6,6,0,u>
+ 1584051029U, // <0,u,6,7>: Cost 2 vext2 <6,7,0,u>, <6,7,0,u>
+ 1584714662U, // <0,u,6,u>: Cost 2 vext2 <6,u,0,u>, <6,u,0,u>
+ 2562728038U, // <0,u,7,0>: Cost 3 vext1 <2,0,u,7>, LHS
+ 2562728854U, // <0,u,7,1>: Cost 3 vext1 <2,0,u,7>, <1,2,3,0>
+ 2562729473U, // <0,u,7,2>: Cost 3 vext1 <2,0,u,7>, <2,0,u,7>
+ 2661111018U, // <0,u,7,3>: Cost 3 vext2 <7,3,0,u>, <7,3,0,u>
+ 2562731318U, // <0,u,7,4>: Cost 3 vext1 <2,0,u,7>, RHS
+ 2718718258U, // <0,u,7,5>: Cost 3 vext3 <5,6,7,0>, <u,7,5,6>
+ 2586620261U, // <0,u,7,6>: Cost 3 vext1 <6,0,u,7>, <6,0,u,7>
+ 2657793644U, // <0,u,7,7>: Cost 3 vext2 <6,7,0,u>, <7,7,7,7>
+ 2562733870U, // <0,u,7,u>: Cost 3 vext1 <2,0,u,7>, LHS
+ 135053414U, // <0,u,u,0>: Cost 1 vdup0 LHS
+ 1544902446U, // <0,u,u,1>: Cost 2 vext2 <0,2,0,u>, LHS
+ 1679005486U, // <0,u,u,2>: Cost 2 vuzpl LHS, LHS
+ 835584U, // <0,u,u,3>: Cost 0 copy LHS
+ 1483025718U, // <0,u,u,4>: Cost 2 vext1 <1,0,u,u>, RHS
+ 1544902810U, // <0,u,u,5>: Cost 2 vext2 <0,2,0,u>, RHS
+ 1679005850U, // <0,u,u,6>: Cost 2 vuzpl LHS, RHS
+ 1518859327U, // <0,u,u,7>: Cost 2 vext1 <7,0,u,u>, <7,0,u,u>
+ 835584U, // <0,u,u,u>: Cost 0 copy LHS
+ 2689744896U, // <1,0,0,0>: Cost 3 vext3 <0,u,1,1>, <0,0,0,0>
+ 1610694666U, // <1,0,0,1>: Cost 2 vext3 <0,0,1,1>, <0,0,1,1>
+ 2689744916U, // <1,0,0,2>: Cost 3 vext3 <0,u,1,1>, <0,0,2,2>
+ 2619310332U, // <1,0,0,3>: Cost 3 vext2 <0,3,1,0>, <0,3,1,0>
+ 2684657701U, // <1,0,0,4>: Cost 3 vext3 <0,0,4,1>, <0,0,4,1>
+ 2620637598U, // <1,0,0,5>: Cost 3 vext2 <0,5,1,0>, <0,5,1,0>
+ 3708977654U, // <1,0,0,6>: Cost 4 vext2 <3,0,1,0>, <0,6,1,7>
+ 3666351168U, // <1,0,0,7>: Cost 4 vext1 <7,1,0,0>, <7,1,0,0>
+ 1611210825U, // <1,0,0,u>: Cost 2 vext3 <0,0,u,1>, <0,0,u,1>
+ 2556780646U, // <1,0,1,0>: Cost 3 vext1 <1,1,0,1>, LHS
+ 2556781355U, // <1,0,1,1>: Cost 3 vext1 <1,1,0,1>, <1,1,0,1>
+ 1616003174U, // <1,0,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 3693052888U, // <1,0,1,3>: Cost 4 vext2 <0,3,1,0>, <1,3,1,3>
+ 2556783926U, // <1,0,1,4>: Cost 3 vext1 <1,1,0,1>, RHS
+ 2580672143U, // <1,0,1,5>: Cost 3 vext1 <5,1,0,1>, <5,1,0,1>
+ 2724839566U, // <1,0,1,6>: Cost 3 vext3 <6,7,0,1>, <0,1,6,7>
+ 3654415354U, // <1,0,1,7>: Cost 4 vext1 <5,1,0,1>, <7,0,1,2>
+ 1616003228U, // <1,0,1,u>: Cost 2 vext3 <0,u,1,1>, LHS
+ 2685690019U, // <1,0,2,0>: Cost 3 vext3 <0,2,0,1>, <0,2,0,1>
+ 2685763756U, // <1,0,2,1>: Cost 3 vext3 <0,2,1,1>, <0,2,1,1>
+ 2698297524U, // <1,0,2,2>: Cost 3 vext3 <2,3,0,1>, <0,2,2,0>
+ 2685911230U, // <1,0,2,3>: Cost 3 vext3 <0,2,3,1>, <0,2,3,1>
+ 2689745100U, // <1,0,2,4>: Cost 3 vext3 <0,u,1,1>, <0,2,4,6>
+ 3764814038U, // <1,0,2,5>: Cost 4 vext3 <1,1,1,1>, <0,2,5,7>
+ 2724839640U, // <1,0,2,6>: Cost 3 vext3 <6,7,0,1>, <0,2,6,0>
+ 2592625658U, // <1,0,2,7>: Cost 3 vext1 <7,1,0,2>, <7,0,1,2>
+ 2686279915U, // <1,0,2,u>: Cost 3 vext3 <0,2,u,1>, <0,2,u,1>
+ 3087843328U, // <1,0,3,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 3087843338U, // <1,0,3,1>: Cost 3 vtrnr LHS, <0,0,1,1>
+ 67944550U, // <1,0,3,2>: Cost 1 vrev LHS
+ 2568743135U, // <1,0,3,3>: Cost 3 vext1 <3,1,0,3>, <3,1,0,3>
+ 2562772278U, // <1,0,3,4>: Cost 3 vext1 <2,1,0,3>, RHS
+ 4099850454U, // <1,0,3,5>: Cost 4 vtrnl <1,0,3,2>, <0,2,5,7>
+ 3704998538U, // <1,0,3,6>: Cost 4 vext2 <2,3,1,0>, <3,6,2,7>
+ 2592633923U, // <1,0,3,7>: Cost 3 vext1 <7,1,0,3>, <7,1,0,3>
+ 68386972U, // <1,0,3,u>: Cost 1 vrev LHS
+ 2620640146U, // <1,0,4,0>: Cost 3 vext2 <0,5,1,0>, <4,0,5,1>
+ 2689745234U, // <1,0,4,1>: Cost 3 vext3 <0,u,1,1>, <0,4,1,5>
+ 2689745244U, // <1,0,4,2>: Cost 3 vext3 <0,u,1,1>, <0,4,2,6>
+ 3760980320U, // <1,0,4,3>: Cost 4 vext3 <0,4,3,1>, <0,4,3,1>
+ 3761054057U, // <1,0,4,4>: Cost 4 vext3 <0,4,4,1>, <0,4,4,1>
+ 2619313462U, // <1,0,4,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 3761201531U, // <1,0,4,6>: Cost 4 vext3 <0,4,6,1>, <0,4,6,1>
+ 3666383940U, // <1,0,4,7>: Cost 4 vext1 <7,1,0,4>, <7,1,0,4>
+ 2619313705U, // <1,0,4,u>: Cost 3 vext2 <0,3,1,0>, RHS
+ 4029300736U, // <1,0,5,0>: Cost 4 vzipr <0,4,1,5>, <0,0,0,0>
+ 2895249510U, // <1,0,5,1>: Cost 3 vzipl <1,5,3,7>, LHS
+ 3028287590U, // <1,0,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3642501345U, // <1,0,5,3>: Cost 4 vext1 <3,1,0,5>, <3,1,0,5>
+ 2215592058U, // <1,0,5,4>: Cost 3 vrev <0,1,4,5>
+ 3724242907U, // <1,0,5,5>: Cost 4 vext2 <5,5,1,0>, <5,5,1,0>
+ 3724906540U, // <1,0,5,6>: Cost 4 vext2 <5,6,1,0>, <5,6,1,0>
+ 3911118134U, // <1,0,5,7>: Cost 4 vuzpr <3,1,3,0>, RHS
+ 3028287644U, // <1,0,5,u>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 3762086375U, // <1,0,6,0>: Cost 4 vext3 <0,6,0,1>, <0,6,0,1>
+ 2698297846U, // <1,0,6,1>: Cost 3 vext3 <2,3,0,1>, <0,6,1,7>
+ 3760022015U, // <1,0,6,2>: Cost 4 vext3 <0,2,u,1>, <0,6,2,7>
+ 3642509538U, // <1,0,6,3>: Cost 4 vext1 <3,1,0,6>, <3,1,0,6>
+ 3762381323U, // <1,0,6,4>: Cost 4 vext3 <0,6,4,1>, <0,6,4,1>
+ 3730215604U, // <1,0,6,5>: Cost 4 vext2 <6,5,1,0>, <6,5,1,0>
+ 3730879237U, // <1,0,6,6>: Cost 4 vext2 <6,6,1,0>, <6,6,1,0>
+ 2657801046U, // <1,0,6,7>: Cost 3 vext2 <6,7,1,0>, <6,7,1,0>
+ 2658464679U, // <1,0,6,u>: Cost 3 vext2 <6,u,1,0>, <6,u,1,0>
+ 2659128312U, // <1,0,7,0>: Cost 3 vext2 <7,0,1,0>, <7,0,1,0>
+ 4047898278U, // <1,0,7,1>: Cost 4 vzipr <3,5,1,7>, <2,3,0,1>
+ 2215460970U, // <1,0,7,2>: Cost 3 vrev <0,1,2,7>
+ 3734861035U, // <1,0,7,3>: Cost 4 vext2 <7,3,1,0>, <7,3,1,0>
+ 3731543398U, // <1,0,7,4>: Cost 4 vext2 <6,7,1,0>, <7,4,5,6>
+ 3736188301U, // <1,0,7,5>: Cost 4 vext2 <7,5,1,0>, <7,5,1,0>
+ 2663110110U, // <1,0,7,6>: Cost 3 vext2 <7,6,1,0>, <7,6,1,0>
+ 3731543660U, // <1,0,7,7>: Cost 4 vext2 <6,7,1,0>, <7,7,7,7>
+ 2664437376U, // <1,0,7,u>: Cost 3 vext2 <7,u,1,0>, <7,u,1,0>
+ 3087884288U, // <1,0,u,0>: Cost 3 vtrnr LHS, <0,0,0,0>
+ 1616003730U, // <1,0,u,1>: Cost 2 vext3 <0,u,1,1>, <0,u,1,1>
+ 67985515U, // <1,0,u,2>: Cost 1 vrev LHS
+ 2689893028U, // <1,0,u,3>: Cost 3 vext3 <0,u,3,1>, <0,u,3,1>
+ 2689745586U, // <1,0,u,4>: Cost 3 vext3 <0,u,1,1>, <0,u,4,6>
+ 2619316378U, // <1,0,u,5>: Cost 3 vext2 <0,3,1,0>, RHS
+ 2669082807U, // <1,0,u,6>: Cost 3 vext2 <u,6,1,0>, <u,6,1,0>
+ 2592674888U, // <1,0,u,7>: Cost 3 vext1 <7,1,0,u>, <7,1,0,u>
+ 68427937U, // <1,0,u,u>: Cost 1 vrev LHS
+ 1543585802U, // <1,1,0,0>: Cost 2 vext2 <0,0,1,1>, <0,0,1,1>
+ 1548894310U, // <1,1,0,1>: Cost 2 vext2 <0,u,1,1>, LHS
+ 2618654892U, // <1,1,0,2>: Cost 3 vext2 <0,2,1,1>, <0,2,1,1>
+ 2689745654U, // <1,1,0,3>: Cost 3 vext3 <0,u,1,1>, <1,0,3,2>
+ 2622636370U, // <1,1,0,4>: Cost 3 vext2 <0,u,1,1>, <0,4,1,5>
+ 2620645791U, // <1,1,0,5>: Cost 3 vext2 <0,5,1,1>, <0,5,1,1>
+ 3696378367U, // <1,1,0,6>: Cost 4 vext2 <0,u,1,1>, <0,6,2,7>
+ 3666424905U, // <1,1,0,7>: Cost 4 vext1 <7,1,1,0>, <7,1,1,0>
+ 1548894866U, // <1,1,0,u>: Cost 2 vext2 <0,u,1,1>, <0,u,1,1>
+ 1483112550U, // <1,1,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,1,1>: Cost 1 vdup1 LHS
+ 2622636950U, // <1,1,1,2>: Cost 3 vext2 <0,u,1,1>, <1,2,3,0>
+ 2622637016U, // <1,1,1,3>: Cost 3 vext2 <0,u,1,1>, <1,3,1,3>
+ 1483115830U, // <1,1,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2622637200U, // <1,1,1,5>: Cost 3 vext2 <0,u,1,1>, <1,5,3,7>
+ 2622637263U, // <1,1,1,6>: Cost 3 vext2 <0,u,1,1>, <1,6,1,7>
+ 2592691274U, // <1,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <1,1,1,u>: Cost 1 vdup1 LHS
+ 2550890588U, // <1,1,2,0>: Cost 3 vext1 <0,1,1,2>, <0,1,1,2>
+ 2617329183U, // <1,1,2,1>: Cost 3 vext2 <0,0,1,1>, <2,1,3,1>
+ 2622637672U, // <1,1,2,2>: Cost 3 vext2 <0,u,1,1>, <2,2,2,2>
+ 2622637734U, // <1,1,2,3>: Cost 3 vext2 <0,u,1,1>, <2,3,0,1>
+ 2550893878U, // <1,1,2,4>: Cost 3 vext1 <0,1,1,2>, RHS
+ 3696379744U, // <1,1,2,5>: Cost 4 vext2 <0,u,1,1>, <2,5,2,7>
+ 2622638010U, // <1,1,2,6>: Cost 3 vext2 <0,u,1,1>, <2,6,3,7>
+ 3804554170U, // <1,1,2,7>: Cost 4 vext3 <7,7,0,1>, <1,2,7,0>
+ 2622638139U, // <1,1,2,u>: Cost 3 vext2 <0,u,1,1>, <2,u,0,1>
+ 2622638230U, // <1,1,3,0>: Cost 3 vext2 <0,u,1,1>, <3,0,1,2>
+ 3087844148U, // <1,1,3,1>: Cost 3 vtrnr LHS, <1,1,1,1>
+ 4161585244U, // <1,1,3,2>: Cost 4 vtrnr LHS, <0,1,1,2>
+ 2014101606U, // <1,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 2622638594U, // <1,1,3,4>: Cost 3 vext2 <0,u,1,1>, <3,4,5,6>
+ 2689745920U, // <1,1,3,5>: Cost 3 vext3 <0,u,1,1>, <1,3,5,7>
+ 3763487753U, // <1,1,3,6>: Cost 4 vext3 <0,u,1,1>, <1,3,6,7>
+ 2592707660U, // <1,1,3,7>: Cost 3 vext1 <7,1,1,3>, <7,1,1,3>
+ 2014101611U, // <1,1,3,u>: Cost 2 vtrnr LHS, LHS
+ 2556878950U, // <1,1,4,0>: Cost 3 vext1 <1,1,1,4>, LHS
+ 2221335351U, // <1,1,4,1>: Cost 3 vrev <1,1,1,4>
+ 3696380988U, // <1,1,4,2>: Cost 4 vext2 <0,u,1,1>, <4,2,6,0>
+ 3763487805U, // <1,1,4,3>: Cost 4 vext3 <0,u,1,1>, <1,4,3,5>
+ 2556882230U, // <1,1,4,4>: Cost 3 vext1 <1,1,1,4>, RHS
+ 1548897590U, // <1,1,4,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2758184246U, // <1,1,4,6>: Cost 3 vuzpl <1,1,1,1>, RHS
+ 3666457677U, // <1,1,4,7>: Cost 4 vext1 <7,1,1,4>, <7,1,1,4>
+ 1548897833U, // <1,1,4,u>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2693653615U, // <1,1,5,0>: Cost 3 vext3 <1,5,0,1>, <1,5,0,1>
+ 2617331408U, // <1,1,5,1>: Cost 3 vext2 <0,0,1,1>, <5,1,7,3>
+ 4029302934U, // <1,1,5,2>: Cost 4 vzipr <0,4,1,5>, <3,0,1,2>
+ 2689746064U, // <1,1,5,3>: Cost 3 vext3 <0,u,1,1>, <1,5,3,7>
+ 2221564755U, // <1,1,5,4>: Cost 3 vrev <1,1,4,5>
+ 2955559250U, // <1,1,5,5>: Cost 3 vzipr <0,4,1,5>, <0,4,1,5>
+ 2617331810U, // <1,1,5,6>: Cost 3 vext2 <0,0,1,1>, <5,6,7,0>
+ 2825293110U, // <1,1,5,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 2689746109U, // <1,1,5,u>: Cost 3 vext3 <0,u,1,1>, <1,5,u,7>
+ 3696382241U, // <1,1,6,0>: Cost 4 vext2 <0,u,1,1>, <6,0,1,2>
+ 2689746127U, // <1,1,6,1>: Cost 3 vext3 <0,u,1,1>, <1,6,1,7>
+ 2617332218U, // <1,1,6,2>: Cost 3 vext2 <0,0,1,1>, <6,2,7,3>
+ 3763487969U, // <1,1,6,3>: Cost 4 vext3 <0,u,1,1>, <1,6,3,7>
+ 3696382605U, // <1,1,6,4>: Cost 4 vext2 <0,u,1,1>, <6,4,5,6>
+ 4029309266U, // <1,1,6,5>: Cost 4 vzipr <0,4,1,6>, <0,4,1,5>
+ 2617332536U, // <1,1,6,6>: Cost 3 vext2 <0,0,1,1>, <6,6,6,6>
+ 2724840702U, // <1,1,6,7>: Cost 3 vext3 <6,7,0,1>, <1,6,7,0>
+ 2725504263U, // <1,1,6,u>: Cost 3 vext3 <6,u,0,1>, <1,6,u,0>
+ 2617332720U, // <1,1,7,0>: Cost 3 vext2 <0,0,1,1>, <7,0,0,1>
+ 2659800138U, // <1,1,7,1>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 3691074717U, // <1,1,7,2>: Cost 4 vext2 <0,0,1,1>, <7,2,1,3>
+ 4167811174U, // <1,1,7,3>: Cost 4 vtrnr <1,1,5,7>, LHS
+ 2617333094U, // <1,1,7,4>: Cost 3 vext2 <0,0,1,1>, <7,4,5,6>
+ 3295396702U, // <1,1,7,5>: Cost 4 vrev <1,1,5,7>
+ 3803891014U, // <1,1,7,6>: Cost 4 vext3 <7,6,0,1>, <1,7,6,0>
+ 2617333356U, // <1,1,7,7>: Cost 3 vext2 <0,0,1,1>, <7,7,7,7>
+ 2659800138U, // <1,1,7,u>: Cost 3 vext2 <7,1,1,1>, <7,1,1,1>
+ 1483112550U, // <1,1,u,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,1,u,1>: Cost 1 vdup1 LHS
+ 2622642056U, // <1,1,u,2>: Cost 3 vext2 <0,u,1,1>, <u,2,3,3>
+ 2014142566U, // <1,1,u,3>: Cost 2 vtrnr LHS, LHS
+ 1483115830U, // <1,1,u,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 1548900506U, // <1,1,u,5>: Cost 2 vext2 <0,u,1,1>, RHS
+ 2622642384U, // <1,1,u,6>: Cost 3 vext2 <0,u,1,1>, <u,6,3,7>
+ 2825293353U, // <1,1,u,7>: Cost 3 vuzpr <1,1,1,1>, RHS
+ 202162278U, // <1,1,u,u>: Cost 1 vdup1 LHS
+ 2635251712U, // <1,2,0,0>: Cost 3 vext2 <3,0,1,2>, <0,0,0,0>
+ 1561509990U, // <1,2,0,1>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2618663085U, // <1,2,0,2>: Cost 3 vext2 <0,2,1,2>, <0,2,1,2>
+ 2696529358U, // <1,2,0,3>: Cost 3 vext3 <2,0,3,1>, <2,0,3,1>
+ 2635252050U, // <1,2,0,4>: Cost 3 vext2 <3,0,1,2>, <0,4,1,5>
+ 3769533926U, // <1,2,0,5>: Cost 4 vext3 <1,u,2,1>, <2,0,5,7>
+ 2621317617U, // <1,2,0,6>: Cost 3 vext2 <0,6,1,2>, <0,6,1,2>
+ 2659140170U, // <1,2,0,7>: Cost 3 vext2 <7,0,1,2>, <0,7,2,1>
+ 1561510557U, // <1,2,0,u>: Cost 2 vext2 <3,0,1,2>, LHS
+ 2623308516U, // <1,2,1,0>: Cost 3 vext2 <1,0,1,2>, <1,0,1,2>
+ 2635252532U, // <1,2,1,1>: Cost 3 vext2 <3,0,1,2>, <1,1,1,1>
+ 2631271318U, // <1,2,1,2>: Cost 3 vext2 <2,3,1,2>, <1,2,3,0>
+ 2958180454U, // <1,2,1,3>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2550959414U, // <1,2,1,4>: Cost 3 vext1 <0,1,2,1>, RHS
+ 2635252880U, // <1,2,1,5>: Cost 3 vext2 <3,0,1,2>, <1,5,3,7>
+ 2635252952U, // <1,2,1,6>: Cost 3 vext2 <3,0,1,2>, <1,6,2,7>
+ 3732882731U, // <1,2,1,7>: Cost 4 vext2 <7,0,1,2>, <1,7,3,0>
+ 2958180459U, // <1,2,1,u>: Cost 3 vzipr <0,u,1,1>, LHS
+ 2629281213U, // <1,2,2,0>: Cost 3 vext2 <2,0,1,2>, <2,0,1,2>
+ 2635253280U, // <1,2,2,1>: Cost 3 vext2 <3,0,1,2>, <2,1,3,2>
+ 2618664552U, // <1,2,2,2>: Cost 3 vext2 <0,2,1,2>, <2,2,2,2>
+ 2689746546U, // <1,2,2,3>: Cost 3 vext3 <0,u,1,1>, <2,2,3,3>
+ 3764815485U, // <1,2,2,4>: Cost 4 vext3 <1,1,1,1>, <2,2,4,5>
+ 3760023176U, // <1,2,2,5>: Cost 4 vext3 <0,2,u,1>, <2,2,5,7>
+ 2635253690U, // <1,2,2,6>: Cost 3 vext2 <3,0,1,2>, <2,6,3,7>
+ 2659141610U, // <1,2,2,7>: Cost 3 vext2 <7,0,1,2>, <2,7,0,1>
+ 2689746591U, // <1,2,2,u>: Cost 3 vext3 <0,u,1,1>, <2,2,u,3>
+ 403488870U, // <1,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1477231350U, // <1,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477232232U, // <1,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477233052U, // <1,2,3,3>: Cost 2 vext1 LHS, <3,3,3,3>
+ 403492150U, // <1,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1525010128U, // <1,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1525010938U, // <1,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525011450U, // <1,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403494702U, // <1,2,3,u>: Cost 1 vext1 LHS, LHS
+ 2641226607U, // <1,2,4,0>: Cost 3 vext2 <4,0,1,2>, <4,0,1,2>
+ 3624723446U, // <1,2,4,1>: Cost 4 vext1 <0,1,2,4>, <1,3,4,6>
+ 3301123609U, // <1,2,4,2>: Cost 4 vrev <2,1,2,4>
+ 2598759198U, // <1,2,4,3>: Cost 3 vext1 <u,1,2,4>, <3,u,1,2>
+ 2659142864U, // <1,2,4,4>: Cost 3 vext2 <7,0,1,2>, <4,4,4,4>
+ 1561513270U, // <1,2,4,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2659143028U, // <1,2,4,6>: Cost 3 vext2 <7,0,1,2>, <4,6,4,6>
+ 2659143112U, // <1,2,4,7>: Cost 3 vext2 <7,0,1,2>, <4,7,5,0>
+ 1561513513U, // <1,2,4,u>: Cost 2 vext2 <3,0,1,2>, RHS
+ 2550988902U, // <1,2,5,0>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2550989824U, // <1,2,5,1>: Cost 3 vext1 <0,1,2,5>, <1,3,5,7>
+ 3624732264U, // <1,2,5,2>: Cost 4 vext1 <0,1,2,5>, <2,2,2,2>
+ 2955559014U, // <1,2,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2550992182U, // <1,2,5,4>: Cost 3 vext1 <0,1,2,5>, RHS
+ 2659143684U, // <1,2,5,5>: Cost 3 vext2 <7,0,1,2>, <5,5,5,5>
+ 2659143778U, // <1,2,5,6>: Cost 3 vext2 <7,0,1,2>, <5,6,7,0>
+ 2659143848U, // <1,2,5,7>: Cost 3 vext2 <7,0,1,2>, <5,7,5,7>
+ 2550994734U, // <1,2,5,u>: Cost 3 vext1 <0,1,2,5>, LHS
+ 2700289945U, // <1,2,6,0>: Cost 3 vext3 <2,6,0,1>, <2,6,0,1>
+ 2635256232U, // <1,2,6,1>: Cost 3 vext2 <3,0,1,2>, <6,1,7,2>
+ 2659144186U, // <1,2,6,2>: Cost 3 vext2 <7,0,1,2>, <6,2,7,3>
+ 2689746874U, // <1,2,6,3>: Cost 3 vext3 <0,u,1,1>, <2,6,3,7>
+ 3763488705U, // <1,2,6,4>: Cost 4 vext3 <0,u,1,1>, <2,6,4,5>
+ 3763488716U, // <1,2,6,5>: Cost 4 vext3 <0,u,1,1>, <2,6,5,7>
+ 2659144504U, // <1,2,6,6>: Cost 3 vext2 <7,0,1,2>, <6,6,6,6>
+ 2657817432U, // <1,2,6,7>: Cost 3 vext2 <6,7,1,2>, <6,7,1,2>
+ 2689746919U, // <1,2,6,u>: Cost 3 vext3 <0,u,1,1>, <2,6,u,7>
+ 1585402874U, // <1,2,7,0>: Cost 2 vext2 <7,0,1,2>, <7,0,1,2>
+ 2659144770U, // <1,2,7,1>: Cost 3 vext2 <7,0,1,2>, <7,1,0,2>
+ 3708998858U, // <1,2,7,2>: Cost 4 vext2 <3,0,1,2>, <7,2,6,3>
+ 2635257059U, // <1,2,7,3>: Cost 3 vext2 <3,0,1,2>, <7,3,0,1>
+ 2659145062U, // <1,2,7,4>: Cost 3 vext2 <7,0,1,2>, <7,4,5,6>
+ 3732886916U, // <1,2,7,5>: Cost 4 vext2 <7,0,1,2>, <7,5,0,0>
+ 3732886998U, // <1,2,7,6>: Cost 4 vext2 <7,0,1,2>, <7,6,0,1>
+ 2659145255U, // <1,2,7,7>: Cost 3 vext2 <7,0,1,2>, <7,7,0,1>
+ 1590711938U, // <1,2,7,u>: Cost 2 vext2 <7,u,1,2>, <7,u,1,2>
+ 403529835U, // <1,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1477272310U, // <1,2,u,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1477273192U, // <1,2,u,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1477273750U, // <1,2,u,3>: Cost 2 vext1 LHS, <3,0,1,2>
+ 403533110U, // <1,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1561516186U, // <1,2,u,5>: Cost 2 vext2 <3,0,1,2>, RHS
+ 1525051898U, // <1,2,u,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1525052410U, // <1,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 403535662U, // <1,2,u,u>: Cost 1 vext1 LHS, LHS
+ 2819407872U, // <1,3,0,0>: Cost 3 vuzpr LHS, <0,0,0,0>
+ 1551564902U, // <1,3,0,1>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2819408630U, // <1,3,0,2>: Cost 3 vuzpr LHS, <1,0,3,2>
+ 2619334911U, // <1,3,0,3>: Cost 3 vext2 <0,3,1,3>, <0,3,1,3>
+ 2625306962U, // <1,3,0,4>: Cost 3 vext2 <1,3,1,3>, <0,4,1,5>
+ 3832725879U, // <1,3,0,5>: Cost 4 vuzpl <1,2,3,0>, <0,4,5,6>
+ 3699048959U, // <1,3,0,6>: Cost 4 vext2 <1,3,1,3>, <0,6,2,7>
+ 3776538827U, // <1,3,0,7>: Cost 4 vext3 <3,0,7,1>, <3,0,7,1>
+ 1551565469U, // <1,3,0,u>: Cost 2 vext2 <1,3,1,3>, LHS
+ 2618671862U, // <1,3,1,0>: Cost 3 vext2 <0,2,1,3>, <1,0,3,2>
+ 2819408692U, // <1,3,1,1>: Cost 3 vuzpr LHS, <1,1,1,1>
+ 2624643975U, // <1,3,1,2>: Cost 3 vext2 <1,2,1,3>, <1,2,1,3>
+ 1745666150U, // <1,3,1,3>: Cost 2 vuzpr LHS, LHS
+ 2557005110U, // <1,3,1,4>: Cost 3 vext1 <1,1,3,1>, RHS
+ 2625307792U, // <1,3,1,5>: Cost 3 vext2 <1,3,1,3>, <1,5,3,7>
+ 3698386127U, // <1,3,1,6>: Cost 4 vext2 <1,2,1,3>, <1,6,1,7>
+ 2592838748U, // <1,3,1,7>: Cost 3 vext1 <7,1,3,1>, <7,1,3,1>
+ 1745666155U, // <1,3,1,u>: Cost 2 vuzpr LHS, LHS
+ 2819408790U, // <1,3,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2625308193U, // <1,3,2,1>: Cost 3 vext2 <1,3,1,3>, <2,1,3,3>
+ 2819408036U, // <1,3,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819851890U, // <1,3,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819408794U, // <1,3,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 3893149890U, // <1,3,2,5>: Cost 4 vuzpr LHS, <0,2,3,5>
+ 2819408076U, // <1,3,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 3772041583U, // <1,3,2,7>: Cost 4 vext3 <2,3,0,1>, <3,2,7,3>
+ 2819408042U, // <1,3,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 1483276390U, // <1,3,3,0>: Cost 2 vext1 <1,1,3,3>, LHS
+ 1483277128U, // <1,3,3,1>: Cost 2 vext1 <1,1,3,3>, <1,1,3,3>
+ 2557019752U, // <1,3,3,2>: Cost 3 vext1 <1,1,3,3>, <2,2,2,2>
+ 2819408856U, // <1,3,3,3>: Cost 3 vuzpr LHS, <1,3,1,3>
+ 1483279670U, // <1,3,3,4>: Cost 2 vext1 <1,1,3,3>, RHS
+ 2819409614U, // <1,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2598826490U, // <1,3,3,6>: Cost 3 vext1 <u,1,3,3>, <6,2,7,3>
+ 3087844352U, // <1,3,3,7>: Cost 3 vtrnr LHS, <1,3,5,7>
+ 1483282222U, // <1,3,3,u>: Cost 2 vext1 <1,1,3,3>, LHS
+ 2568970342U, // <1,3,4,0>: Cost 3 vext1 <3,1,3,4>, LHS
+ 2568971224U, // <1,3,4,1>: Cost 3 vext1 <3,1,3,4>, <1,3,1,3>
+ 3832761290U, // <1,3,4,2>: Cost 4 vuzpl <1,2,3,4>, <4,1,2,3>
+ 2233428219U, // <1,3,4,3>: Cost 3 vrev <3,1,3,4>
+ 2568973622U, // <1,3,4,4>: Cost 3 vext1 <3,1,3,4>, RHS
+ 1551568182U, // <1,3,4,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410434U, // <1,3,4,6>: Cost 3 vuzpr LHS, <3,4,5,6>
+ 3666605151U, // <1,3,4,7>: Cost 4 vext1 <7,1,3,4>, <7,1,3,4>
+ 1551568425U, // <1,3,4,u>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2563006566U, // <1,3,5,0>: Cost 3 vext1 <2,1,3,5>, LHS
+ 2568979456U, // <1,3,5,1>: Cost 3 vext1 <3,1,3,5>, <1,3,5,7>
+ 2563008035U, // <1,3,5,2>: Cost 3 vext1 <2,1,3,5>, <2,1,3,5>
+ 2233436412U, // <1,3,5,3>: Cost 3 vrev <3,1,3,5>
+ 2563009846U, // <1,3,5,4>: Cost 3 vext1 <2,1,3,5>, RHS
+ 2867187716U, // <1,3,5,5>: Cost 3 vuzpr LHS, <5,5,5,5>
+ 2655834214U, // <1,3,5,6>: Cost 3 vext2 <6,4,1,3>, <5,6,7,4>
+ 1745669430U, // <1,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745669431U, // <1,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2867187810U, // <1,3,6,0>: Cost 3 vuzpr LHS, <5,6,7,0>
+ 3699052931U, // <1,3,6,1>: Cost 4 vext2 <1,3,1,3>, <6,1,3,1>
+ 2654507460U, // <1,3,6,2>: Cost 3 vext2 <6,2,1,3>, <6,2,1,3>
+ 3766291091U, // <1,3,6,3>: Cost 4 vext3 <1,3,3,1>, <3,6,3,7>
+ 2655834726U, // <1,3,6,4>: Cost 3 vext2 <6,4,1,3>, <6,4,1,3>
+ 3923384562U, // <1,3,6,5>: Cost 4 vuzpr <5,1,7,3>, <u,6,7,5>
+ 2657161992U, // <1,3,6,6>: Cost 3 vext2 <6,6,1,3>, <6,6,1,3>
+ 2819852218U, // <1,3,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819852219U, // <1,3,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 2706926275U, // <1,3,7,0>: Cost 3 vext3 <3,7,0,1>, <3,7,0,1>
+ 2659816524U, // <1,3,7,1>: Cost 3 vext2 <7,1,1,3>, <7,1,1,3>
+ 3636766245U, // <1,3,7,2>: Cost 4 vext1 <2,1,3,7>, <2,1,3,7>
+ 2867187903U, // <1,3,7,3>: Cost 3 vuzpr LHS, <5,7,u,3>
+ 2625312102U, // <1,3,7,4>: Cost 3 vext2 <1,3,1,3>, <7,4,5,6>
+ 2867188598U, // <1,3,7,5>: Cost 3 vuzpr LHS, <6,7,4,5>
+ 3728250344U, // <1,3,7,6>: Cost 4 vext2 <6,2,1,3>, <7,6,2,1>
+ 2867187880U, // <1,3,7,7>: Cost 3 vuzpr LHS, <5,7,5,7>
+ 2707516171U, // <1,3,7,u>: Cost 3 vext3 <3,7,u,1>, <3,7,u,1>
+ 1483317350U, // <1,3,u,0>: Cost 2 vext1 <1,1,3,u>, LHS
+ 1483318093U, // <1,3,u,1>: Cost 2 vext1 <1,1,3,u>, <1,1,3,u>
+ 2819410718U, // <1,3,u,2>: Cost 3 vuzpr LHS, <3,u,1,2>
+ 1745666717U, // <1,3,u,3>: Cost 2 vuzpr LHS, LHS
+ 1483320630U, // <1,3,u,4>: Cost 2 vext1 <1,1,3,u>, RHS
+ 1551571098U, // <1,3,u,5>: Cost 2 vext2 <1,3,1,3>, RHS
+ 2819410758U, // <1,3,u,6>: Cost 3 vuzpr LHS, <3,u,5,6>
+ 1745669673U, // <1,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 1745666722U, // <1,3,u,u>: Cost 2 vuzpr LHS, LHS
+ 2617352205U, // <1,4,0,0>: Cost 3 vext2 <0,0,1,4>, <0,0,1,4>
+ 2619342950U, // <1,4,0,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 3692421295U, // <1,4,0,2>: Cost 4 vext2 <0,2,1,4>, <0,2,1,4>
+ 2619343104U, // <1,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2617352530U, // <1,4,0,4>: Cost 3 vext2 <0,0,1,4>, <0,4,1,5>
+ 1634880402U, // <1,4,0,5>: Cost 2 vext3 <4,0,5,1>, <4,0,5,1>
+ 2713930652U, // <1,4,0,6>: Cost 3 vext3 <4,u,5,1>, <4,0,6,2>
+ 3732898396U, // <1,4,0,7>: Cost 4 vext2 <7,0,1,4>, <0,7,4,1>
+ 1635101613U, // <1,4,0,u>: Cost 2 vext3 <4,0,u,1>, <4,0,u,1>
+ 3693085430U, // <1,4,1,0>: Cost 4 vext2 <0,3,1,4>, <1,0,3,2>
+ 2623988535U, // <1,4,1,1>: Cost 3 vext2 <1,1,1,4>, <1,1,1,4>
+ 3693085590U, // <1,4,1,2>: Cost 4 vext2 <0,3,1,4>, <1,2,3,0>
+ 3692422134U, // <1,4,1,3>: Cost 4 vext2 <0,2,1,4>, <1,3,4,6>
+ 3693085726U, // <1,4,1,4>: Cost 4 vext2 <0,3,1,4>, <1,4,0,1>
+ 2892401974U, // <1,4,1,5>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3026619702U, // <1,4,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 3800206324U, // <1,4,1,7>: Cost 4 vext3 <7,0,4,1>, <4,1,7,0>
+ 2892402217U, // <1,4,1,u>: Cost 3 vzipl <1,1,1,1>, RHS
+ 3966978927U, // <1,4,2,0>: Cost 4 vzipl <1,2,3,4>, <4,0,1,2>
+ 3966979018U, // <1,4,2,1>: Cost 4 vzipl <1,2,3,4>, <4,1,2,3>
+ 3693086312U, // <1,4,2,2>: Cost 4 vext2 <0,3,1,4>, <2,2,2,2>
+ 2635269798U, // <1,4,2,3>: Cost 3 vext2 <3,0,1,4>, <2,3,0,1>
+ 3966979280U, // <1,4,2,4>: Cost 4 vzipl <1,2,3,4>, <4,4,4,4>
+ 2893204790U, // <1,4,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 3693086650U, // <1,4,2,6>: Cost 4 vext2 <0,3,1,4>, <2,6,3,7>
+ 3666662502U, // <1,4,2,7>: Cost 4 vext1 <7,1,4,2>, <7,1,4,2>
+ 2893205033U, // <1,4,2,u>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2563063910U, // <1,4,3,0>: Cost 3 vext1 <2,1,4,3>, LHS
+ 2563064730U, // <1,4,3,1>: Cost 3 vext1 <2,1,4,3>, <1,2,3,4>
+ 2563065386U, // <1,4,3,2>: Cost 3 vext1 <2,1,4,3>, <2,1,4,3>
+ 3693087132U, // <1,4,3,3>: Cost 4 vext2 <0,3,1,4>, <3,3,3,3>
+ 2619345410U, // <1,4,3,4>: Cost 3 vext2 <0,3,1,4>, <3,4,5,6>
+ 3087843666U, // <1,4,3,5>: Cost 3 vtrnr LHS, <0,4,1,5>
+ 3087843676U, // <1,4,3,6>: Cost 3 vtrnr LHS, <0,4,2,6>
+ 3666670695U, // <1,4,3,7>: Cost 4 vext1 <7,1,4,3>, <7,1,4,3>
+ 3087843669U, // <1,4,3,u>: Cost 3 vtrnr LHS, <0,4,1,u>
+ 2620672914U, // <1,4,4,0>: Cost 3 vext2 <0,5,1,4>, <4,0,5,1>
+ 3630842706U, // <1,4,4,1>: Cost 4 vext1 <1,1,4,4>, <1,1,4,4>
+ 3313069003U, // <1,4,4,2>: Cost 4 vrev <4,1,2,4>
+ 3642788100U, // <1,4,4,3>: Cost 4 vext1 <3,1,4,4>, <3,1,4,4>
+ 2713930960U, // <1,4,4,4>: Cost 3 vext3 <4,u,5,1>, <4,4,4,4>
+ 2619346230U, // <1,4,4,5>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2713930980U, // <1,4,4,6>: Cost 3 vext3 <4,u,5,1>, <4,4,6,6>
+ 3736882642U, // <1,4,4,7>: Cost 4 vext2 <7,6,1,4>, <4,7,6,1>
+ 2619346473U, // <1,4,4,u>: Cost 3 vext2 <0,3,1,4>, RHS
+ 2557108326U, // <1,4,5,0>: Cost 3 vext1 <1,1,4,5>, LHS
+ 2557109075U, // <1,4,5,1>: Cost 3 vext1 <1,1,4,5>, <1,1,4,5>
+ 2598913774U, // <1,4,5,2>: Cost 3 vext1 <u,1,4,5>, <2,3,u,1>
+ 3630852246U, // <1,4,5,3>: Cost 4 vext1 <1,1,4,5>, <3,0,1,2>
+ 2557111606U, // <1,4,5,4>: Cost 3 vext1 <1,1,4,5>, RHS
+ 2895252790U, // <1,4,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616006454U, // <1,4,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 3899059510U, // <1,4,5,7>: Cost 4 vuzpr <1,1,1,4>, RHS
+ 1616006472U, // <1,4,5,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2557116518U, // <1,4,6,0>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2557117236U, // <1,4,6,1>: Cost 3 vext1 <1,1,4,6>, <1,1,1,1>
+ 3630859880U, // <1,4,6,2>: Cost 4 vext1 <1,1,4,6>, <2,2,2,2>
+ 2569062550U, // <1,4,6,3>: Cost 3 vext1 <3,1,4,6>, <3,0,1,2>
+ 2557119798U, // <1,4,6,4>: Cost 3 vext1 <1,1,4,6>, RHS
+ 3763490174U, // <1,4,6,5>: Cost 4 vext3 <0,u,1,1>, <4,6,5,7>
+ 3763490183U, // <1,4,6,6>: Cost 4 vext3 <0,u,1,1>, <4,6,6,7>
+ 2712751498U, // <1,4,6,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 2557122350U, // <1,4,6,u>: Cost 3 vext1 <1,1,4,6>, LHS
+ 2659161084U, // <1,4,7,0>: Cost 3 vext2 <7,0,1,4>, <7,0,1,4>
+ 3732903040U, // <1,4,7,1>: Cost 4 vext2 <7,0,1,4>, <7,1,7,1>
+ 3734230174U, // <1,4,7,2>: Cost 4 vext2 <7,2,1,4>, <7,2,1,4>
+ 3734893807U, // <1,4,7,3>: Cost 4 vext2 <7,3,1,4>, <7,3,1,4>
+ 3660729654U, // <1,4,7,4>: Cost 4 vext1 <6,1,4,7>, RHS
+ 3786493384U, // <1,4,7,5>: Cost 4 vext3 <4,6,7,1>, <4,7,5,0>
+ 2713341394U, // <1,4,7,6>: Cost 3 vext3 <4,7,6,1>, <4,7,6,1>
+ 3660731386U, // <1,4,7,7>: Cost 4 vext1 <6,1,4,7>, <7,0,1,2>
+ 2664470148U, // <1,4,7,u>: Cost 3 vext2 <7,u,1,4>, <7,u,1,4>
+ 2557132902U, // <1,4,u,0>: Cost 3 vext1 <1,1,4,u>, LHS
+ 2619348782U, // <1,4,u,1>: Cost 3 vext2 <0,3,1,4>, LHS
+ 2563106351U, // <1,4,u,2>: Cost 3 vext1 <2,1,4,u>, <2,1,4,u>
+ 2713783816U, // <1,4,u,3>: Cost 3 vext3 <4,u,3,1>, <4,u,3,1>
+ 2622666815U, // <1,4,u,4>: Cost 3 vext2 <0,u,1,4>, <u,4,5,6>
+ 1640189466U, // <1,4,u,5>: Cost 2 vext3 <4,u,5,1>, <4,u,5,1>
+ 1616006697U, // <1,4,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2712751498U, // <1,4,u,7>: Cost 3 vext3 <4,6,7,1>, <4,6,7,1>
+ 1616006715U, // <1,4,u,u>: Cost 2 vext3 <0,u,1,1>, RHS
+ 2620014592U, // <1,5,0,0>: Cost 3 vext2 <0,4,1,5>, <0,0,0,0>
+ 1546272870U, // <1,5,0,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2618687664U, // <1,5,0,2>: Cost 3 vext2 <0,2,1,5>, <0,2,1,5>
+ 3693093120U, // <1,5,0,3>: Cost 4 vext2 <0,3,1,5>, <0,3,1,4>
+ 1546273106U, // <1,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2620678563U, // <1,5,0,5>: Cost 3 vext2 <0,5,1,5>, <0,5,1,5>
+ 2714668660U, // <1,5,0,6>: Cost 3 vext3 <5,0,6,1>, <5,0,6,1>
+ 3772042877U, // <1,5,0,7>: Cost 4 vext3 <2,3,0,1>, <5,0,7,1>
+ 1546273437U, // <1,5,0,u>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620015350U, // <1,5,1,0>: Cost 3 vext2 <0,4,1,5>, <1,0,3,2>
+ 2620015412U, // <1,5,1,1>: Cost 3 vext2 <0,4,1,5>, <1,1,1,1>
+ 2620015510U, // <1,5,1,2>: Cost 3 vext2 <0,4,1,5>, <1,2,3,0>
+ 2618688512U, // <1,5,1,3>: Cost 3 vext2 <0,2,1,5>, <1,3,5,7>
+ 2620015677U, // <1,5,1,4>: Cost 3 vext2 <0,4,1,5>, <1,4,3,5>
+ 2620015727U, // <1,5,1,5>: Cost 3 vext2 <0,4,1,5>, <1,5,0,1>
+ 2620015859U, // <1,5,1,6>: Cost 3 vext2 <0,4,1,5>, <1,6,5,7>
+ 3093728566U, // <1,5,1,7>: Cost 3 vtrnr <1,1,1,1>, RHS
+ 2620015981U, // <1,5,1,u>: Cost 3 vext2 <0,4,1,5>, <1,u,1,3>
+ 3692430816U, // <1,5,2,0>: Cost 4 vext2 <0,2,1,5>, <2,0,5,1>
+ 2620016163U, // <1,5,2,1>: Cost 3 vext2 <0,4,1,5>, <2,1,3,5>
+ 2620016232U, // <1,5,2,2>: Cost 3 vext2 <0,4,1,5>, <2,2,2,2>
+ 2620016294U, // <1,5,2,3>: Cost 3 vext2 <0,4,1,5>, <2,3,0,1>
+ 3693758221U, // <1,5,2,4>: Cost 4 vext2 <0,4,1,5>, <2,4,2,5>
+ 3692431209U, // <1,5,2,5>: Cost 4 vext2 <0,2,1,5>, <2,5,3,7>
+ 2620016570U, // <1,5,2,6>: Cost 3 vext2 <0,4,1,5>, <2,6,3,7>
+ 4173598006U, // <1,5,2,7>: Cost 4 vtrnr <2,1,3,2>, RHS
+ 2620016699U, // <1,5,2,u>: Cost 3 vext2 <0,4,1,5>, <2,u,0,1>
+ 2620016790U, // <1,5,3,0>: Cost 3 vext2 <0,4,1,5>, <3,0,1,2>
+ 2569110672U, // <1,5,3,1>: Cost 3 vext1 <3,1,5,3>, <1,5,3,7>
+ 3693758785U, // <1,5,3,2>: Cost 4 vext2 <0,4,1,5>, <3,2,2,2>
+ 2620017052U, // <1,5,3,3>: Cost 3 vext2 <0,4,1,5>, <3,3,3,3>
+ 2620017154U, // <1,5,3,4>: Cost 3 vext2 <0,4,1,5>, <3,4,5,6>
+ 3135623172U, // <1,5,3,5>: Cost 3 vtrnr LHS, <5,5,5,5>
+ 4161587048U, // <1,5,3,6>: Cost 4 vtrnr LHS, <2,5,3,6>
+ 2014104886U, // <1,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2014104887U, // <1,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2620017554U, // <1,5,4,0>: Cost 3 vext2 <0,4,1,5>, <4,0,5,1>
+ 2620017634U, // <1,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 3693759551U, // <1,5,4,2>: Cost 4 vext2 <0,4,1,5>, <4,2,6,3>
+ 3642861837U, // <1,5,4,3>: Cost 4 vext1 <3,1,5,4>, <3,1,5,4>
+ 2575092710U, // <1,5,4,4>: Cost 3 vext1 <4,1,5,4>, <4,1,5,4>
+ 1546276150U, // <1,5,4,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2759855414U, // <1,5,4,6>: Cost 3 vuzpl <1,3,5,7>, RHS
+ 2713931718U, // <1,5,4,7>: Cost 3 vext3 <4,u,5,1>, <5,4,7,6>
+ 1546276393U, // <1,5,4,u>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2557182054U, // <1,5,5,0>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2557182812U, // <1,5,5,1>: Cost 3 vext1 <1,1,5,5>, <1,1,5,5>
+ 3630925347U, // <1,5,5,2>: Cost 4 vext1 <1,1,5,5>, <2,1,3,5>
+ 4029301675U, // <1,5,5,3>: Cost 4 vzipr <0,4,1,5>, <1,2,5,3>
+ 2557185334U, // <1,5,5,4>: Cost 3 vext1 <1,1,5,5>, RHS
+ 2713931780U, // <1,5,5,5>: Cost 3 vext3 <4,u,5,1>, <5,5,5,5>
+ 2667794530U, // <1,5,5,6>: Cost 3 vext2 <u,4,1,5>, <5,6,7,0>
+ 2713931800U, // <1,5,5,7>: Cost 3 vext3 <4,u,5,1>, <5,5,7,7>
+ 2557187886U, // <1,5,5,u>: Cost 3 vext1 <1,1,5,5>, LHS
+ 2718208036U, // <1,5,6,0>: Cost 3 vext3 <5,6,0,1>, <5,6,0,1>
+ 2620019115U, // <1,5,6,1>: Cost 3 vext2 <0,4,1,5>, <6,1,7,5>
+ 2667794938U, // <1,5,6,2>: Cost 3 vext2 <u,4,1,5>, <6,2,7,3>
+ 3787673666U, // <1,5,6,3>: Cost 4 vext3 <4,u,5,1>, <5,6,3,4>
+ 3693761165U, // <1,5,6,4>: Cost 4 vext2 <0,4,1,5>, <6,4,5,6>
+ 3319279297U, // <1,5,6,5>: Cost 4 vrev <5,1,5,6>
+ 2667795256U, // <1,5,6,6>: Cost 3 vext2 <u,4,1,5>, <6,6,6,6>
+ 2713931874U, // <1,5,6,7>: Cost 3 vext3 <4,u,5,1>, <5,6,7,0>
+ 2713931883U, // <1,5,6,u>: Cost 3 vext3 <4,u,5,1>, <5,6,u,0>
+ 2557198438U, // <1,5,7,0>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2557199156U, // <1,5,7,1>: Cost 3 vext1 <1,1,5,7>, <1,1,1,1>
+ 2569143974U, // <1,5,7,2>: Cost 3 vext1 <3,1,5,7>, <2,3,0,1>
+ 2569144592U, // <1,5,7,3>: Cost 3 vext1 <3,1,5,7>, <3,1,5,7>
+ 2557201718U, // <1,5,7,4>: Cost 3 vext1 <1,1,5,7>, RHS
+ 2713931944U, // <1,5,7,5>: Cost 3 vext3 <4,u,5,1>, <5,7,5,7>
+ 3787673770U, // <1,5,7,6>: Cost 4 vext3 <4,u,5,1>, <5,7,6,0>
+ 2719387828U, // <1,5,7,7>: Cost 3 vext3 <5,7,7,1>, <5,7,7,1>
+ 2557204270U, // <1,5,7,u>: Cost 3 vext1 <1,1,5,7>, LHS
+ 2620020435U, // <1,5,u,0>: Cost 3 vext2 <0,4,1,5>, <u,0,1,2>
+ 1546278702U, // <1,5,u,1>: Cost 2 vext2 <0,4,1,5>, LHS
+ 2620020616U, // <1,5,u,2>: Cost 3 vext2 <0,4,1,5>, <u,2,3,3>
+ 2620020668U, // <1,5,u,3>: Cost 3 vext2 <0,4,1,5>, <u,3,0,1>
+ 1594054682U, // <1,5,u,4>: Cost 2 vext2 <u,4,1,5>, <u,4,1,5>
+ 1546279066U, // <1,5,u,5>: Cost 2 vext2 <0,4,1,5>, RHS
+ 2620020944U, // <1,5,u,6>: Cost 3 vext2 <0,4,1,5>, <u,6,3,7>
+ 2014145846U, // <1,5,u,7>: Cost 2 vtrnr LHS, RHS
+ 2014145847U, // <1,5,u,u>: Cost 2 vtrnr LHS, RHS
+ 3692437504U, // <1,6,0,0>: Cost 4 vext2 <0,2,1,6>, <0,0,0,0>
+ 2618695782U, // <1,6,0,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 2618695857U, // <1,6,0,2>: Cost 3 vext2 <0,2,1,6>, <0,2,1,6>
+ 3794161970U, // <1,6,0,3>: Cost 4 vext3 <6,0,3,1>, <6,0,3,1>
+ 2620023122U, // <1,6,0,4>: Cost 3 vext2 <0,4,1,6>, <0,4,1,5>
+ 2620686756U, // <1,6,0,5>: Cost 3 vext2 <0,5,1,6>, <0,5,1,6>
+ 2621350389U, // <1,6,0,6>: Cost 3 vext2 <0,6,1,6>, <0,6,1,6>
+ 4028599606U, // <1,6,0,7>: Cost 4 vzipr <0,3,1,0>, RHS
+ 2618696349U, // <1,6,0,u>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3692438262U, // <1,6,1,0>: Cost 4 vext2 <0,2,1,6>, <1,0,3,2>
+ 2625995572U, // <1,6,1,1>: Cost 3 vext2 <1,4,1,6>, <1,1,1,1>
+ 3692438422U, // <1,6,1,2>: Cost 4 vext2 <0,2,1,6>, <1,2,3,0>
+ 3692438488U, // <1,6,1,3>: Cost 4 vext2 <0,2,1,6>, <1,3,1,3>
+ 2625995820U, // <1,6,1,4>: Cost 3 vext2 <1,4,1,6>, <1,4,1,6>
+ 3692438672U, // <1,6,1,5>: Cost 4 vext2 <0,2,1,6>, <1,5,3,7>
+ 3692438720U, // <1,6,1,6>: Cost 4 vext2 <0,2,1,6>, <1,6,0,1>
+ 2958183734U, // <1,6,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2958183735U, // <1,6,1,u>: Cost 3 vzipr <0,u,1,1>, RHS
+ 2721526201U, // <1,6,2,0>: Cost 3 vext3 <6,2,0,1>, <6,2,0,1>
+ 3692439097U, // <1,6,2,1>: Cost 4 vext2 <0,2,1,6>, <2,1,6,0>
+ 3692439144U, // <1,6,2,2>: Cost 4 vext2 <0,2,1,6>, <2,2,2,2>
+ 3692439206U, // <1,6,2,3>: Cost 4 vext2 <0,2,1,6>, <2,3,0,1>
+ 3636948278U, // <1,6,2,4>: Cost 4 vext1 <2,1,6,2>, RHS
+ 3787674092U, // <1,6,2,5>: Cost 4 vext3 <4,u,5,1>, <6,2,5,7>
+ 2618697658U, // <1,6,2,6>: Cost 3 vext2 <0,2,1,6>, <2,6,3,7>
+ 2970799414U, // <1,6,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2970799415U, // <1,6,2,u>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2563211366U, // <1,6,3,0>: Cost 3 vext1 <2,1,6,3>, LHS
+ 3699738854U, // <1,6,3,1>: Cost 4 vext2 <1,4,1,6>, <3,1,1,1>
+ 2563212860U, // <1,6,3,2>: Cost 3 vext1 <2,1,6,3>, <2,1,6,3>
+ 3692439964U, // <1,6,3,3>: Cost 4 vext2 <0,2,1,6>, <3,3,3,3>
+ 2563214646U, // <1,6,3,4>: Cost 3 vext1 <2,1,6,3>, RHS
+ 4191820018U, // <1,6,3,5>: Cost 4 vtrnr <5,1,7,3>, <u,6,7,5>
+ 2587103648U, // <1,6,3,6>: Cost 3 vext1 <6,1,6,3>, <6,1,6,3>
+ 3087845306U, // <1,6,3,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 3087845307U, // <1,6,3,u>: Cost 3 vtrnr LHS, <2,6,3,u>
+ 3693767570U, // <1,6,4,0>: Cost 4 vext2 <0,4,1,6>, <4,0,5,1>
+ 3693767650U, // <1,6,4,1>: Cost 4 vext2 <0,4,1,6>, <4,1,5,0>
+ 3636962877U, // <1,6,4,2>: Cost 4 vext1 <2,1,6,4>, <2,1,6,4>
+ 3325088134U, // <1,6,4,3>: Cost 4 vrev <6,1,3,4>
+ 3693767898U, // <1,6,4,4>: Cost 4 vext2 <0,4,1,6>, <4,4,5,5>
+ 2618699062U, // <1,6,4,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3833670966U, // <1,6,4,6>: Cost 4 vuzpl <1,3,6,7>, RHS
+ 4028632374U, // <1,6,4,7>: Cost 4 vzipr <0,3,1,4>, RHS
+ 2618699305U, // <1,6,4,u>: Cost 3 vext2 <0,2,1,6>, RHS
+ 3693768264U, // <1,6,5,0>: Cost 4 vext2 <0,4,1,6>, <5,0,1,2>
+ 3630998373U, // <1,6,5,1>: Cost 4 vext1 <1,1,6,5>, <1,1,6,5>
+ 3636971070U, // <1,6,5,2>: Cost 4 vext1 <2,1,6,5>, <2,1,6,5>
+ 3642943767U, // <1,6,5,3>: Cost 4 vext1 <3,1,6,5>, <3,1,6,5>
+ 3693768628U, // <1,6,5,4>: Cost 4 vext2 <0,4,1,6>, <5,4,5,6>
+ 3732918276U, // <1,6,5,5>: Cost 4 vext2 <7,0,1,6>, <5,5,5,5>
+ 2620690530U, // <1,6,5,6>: Cost 3 vext2 <0,5,1,6>, <5,6,7,0>
+ 2955562294U, // <1,6,5,7>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2955562295U, // <1,6,5,u>: Cost 3 vzipr <0,4,1,5>, RHS
+ 2724180733U, // <1,6,6,0>: Cost 3 vext3 <6,6,0,1>, <6,6,0,1>
+ 3631006566U, // <1,6,6,1>: Cost 4 vext1 <1,1,6,6>, <1,1,6,6>
+ 3631007674U, // <1,6,6,2>: Cost 4 vext1 <1,1,6,6>, <2,6,3,7>
+ 3692442184U, // <1,6,6,3>: Cost 4 vext2 <0,2,1,6>, <6,3,7,0>
+ 3631009078U, // <1,6,6,4>: Cost 4 vext1 <1,1,6,6>, RHS
+ 3787674416U, // <1,6,6,5>: Cost 4 vext3 <4,u,5,1>, <6,6,5,7>
+ 2713932600U, // <1,6,6,6>: Cost 3 vext3 <4,u,5,1>, <6,6,6,6>
+ 2713932610U, // <1,6,6,7>: Cost 3 vext3 <4,u,5,1>, <6,6,7,7>
+ 2713932619U, // <1,6,6,u>: Cost 3 vext3 <4,u,5,1>, <6,6,u,7>
+ 1651102542U, // <1,6,7,0>: Cost 2 vext3 <6,7,0,1>, <6,7,0,1>
+ 2724918103U, // <1,6,7,1>: Cost 3 vext3 <6,7,1,1>, <6,7,1,1>
+ 2698302306U, // <1,6,7,2>: Cost 3 vext3 <2,3,0,1>, <6,7,2,3>
+ 3642960153U, // <1,6,7,3>: Cost 4 vext1 <3,1,6,7>, <3,1,6,7>
+ 2713932662U, // <1,6,7,4>: Cost 3 vext3 <4,u,5,1>, <6,7,4,5>
+ 2725213051U, // <1,6,7,5>: Cost 3 vext3 <6,7,5,1>, <6,7,5,1>
+ 2724844426U, // <1,6,7,6>: Cost 3 vext3 <6,7,0,1>, <6,7,6,7>
+ 4035956022U, // <1,6,7,7>: Cost 4 vzipr <1,5,1,7>, RHS
+ 1651692438U, // <1,6,7,u>: Cost 2 vext3 <6,7,u,1>, <6,7,u,1>
+ 1651766175U, // <1,6,u,0>: Cost 2 vext3 <6,u,0,1>, <6,u,0,1>
+ 2618701614U, // <1,6,u,1>: Cost 3 vext2 <0,2,1,6>, LHS
+ 3135663508U, // <1,6,u,2>: Cost 3 vtrnr LHS, <4,6,u,2>
+ 3692443580U, // <1,6,u,3>: Cost 4 vext2 <0,2,1,6>, <u,3,0,1>
+ 2713932743U, // <1,6,u,4>: Cost 3 vext3 <4,u,5,1>, <6,u,4,5>
+ 2618701978U, // <1,6,u,5>: Cost 3 vext2 <0,2,1,6>, RHS
+ 2622683344U, // <1,6,u,6>: Cost 3 vext2 <0,u,1,6>, <u,6,3,7>
+ 3087886266U, // <1,6,u,7>: Cost 3 vtrnr LHS, <2,6,3,7>
+ 1652356071U, // <1,6,u,u>: Cost 2 vext3 <6,u,u,1>, <6,u,u,1>
+ 2726171632U, // <1,7,0,0>: Cost 3 vext3 <7,0,0,1>, <7,0,0,1>
+ 2626666598U, // <1,7,0,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 3695100067U, // <1,7,0,2>: Cost 4 vext2 <0,6,1,7>, <0,2,0,1>
+ 3707044102U, // <1,7,0,3>: Cost 4 vext2 <2,6,1,7>, <0,3,2,1>
+ 2726466580U, // <1,7,0,4>: Cost 3 vext3 <7,0,4,1>, <7,0,4,1>
+ 3654921933U, // <1,7,0,5>: Cost 4 vext1 <5,1,7,0>, <5,1,7,0>
+ 2621358582U, // <1,7,0,6>: Cost 3 vext2 <0,6,1,7>, <0,6,1,7>
+ 2622022215U, // <1,7,0,7>: Cost 3 vext2 <0,7,1,7>, <0,7,1,7>
+ 2626667165U, // <1,7,0,u>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2593128550U, // <1,7,1,0>: Cost 3 vext1 <7,1,7,1>, LHS
+ 2626667316U, // <1,7,1,1>: Cost 3 vext2 <1,5,1,7>, <1,1,1,1>
+ 3700409238U, // <1,7,1,2>: Cost 4 vext2 <1,5,1,7>, <1,2,3,0>
+ 2257294428U, // <1,7,1,3>: Cost 3 vrev <7,1,3,1>
+ 2593131830U, // <1,7,1,4>: Cost 3 vext1 <7,1,7,1>, RHS
+ 2626667646U, // <1,7,1,5>: Cost 3 vext2 <1,5,1,7>, <1,5,1,7>
+ 2627331279U, // <1,7,1,6>: Cost 3 vext2 <1,6,1,7>, <1,6,1,7>
+ 2593133696U, // <1,7,1,7>: Cost 3 vext1 <7,1,7,1>, <7,1,7,1>
+ 2628658545U, // <1,7,1,u>: Cost 3 vext2 <1,u,1,7>, <1,u,1,7>
+ 2587164774U, // <1,7,2,0>: Cost 3 vext1 <6,1,7,2>, LHS
+ 3701073445U, // <1,7,2,1>: Cost 4 vext2 <1,6,1,7>, <2,1,3,7>
+ 3700409960U, // <1,7,2,2>: Cost 4 vext2 <1,5,1,7>, <2,2,2,2>
+ 2638612134U, // <1,7,2,3>: Cost 3 vext2 <3,5,1,7>, <2,3,0,1>
+ 2587168054U, // <1,7,2,4>: Cost 3 vext1 <6,1,7,2>, RHS
+ 3706382167U, // <1,7,2,5>: Cost 4 vext2 <2,5,1,7>, <2,5,1,7>
+ 2587169192U, // <1,7,2,6>: Cost 3 vext1 <6,1,7,2>, <6,1,7,2>
+ 3660911610U, // <1,7,2,7>: Cost 4 vext1 <6,1,7,2>, <7,0,1,2>
+ 2587170606U, // <1,7,2,u>: Cost 3 vext1 <6,1,7,2>, LHS
+ 1507459174U, // <1,7,3,0>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2569257984U, // <1,7,3,1>: Cost 3 vext1 <3,1,7,3>, <1,3,5,7>
+ 2581202536U, // <1,7,3,2>: Cost 3 vext1 <5,1,7,3>, <2,2,2,2>
+ 2569259294U, // <1,7,3,3>: Cost 3 vext1 <3,1,7,3>, <3,1,7,3>
+ 1507462454U, // <1,7,3,4>: Cost 2 vext1 <5,1,7,3>, RHS
+ 1507462864U, // <1,7,3,5>: Cost 2 vext1 <5,1,7,3>, <5,1,7,3>
+ 2581205498U, // <1,7,3,6>: Cost 3 vext1 <5,1,7,3>, <6,2,7,3>
+ 2581206010U, // <1,7,3,7>: Cost 3 vext1 <5,1,7,3>, <7,0,1,2>
+ 1507465006U, // <1,7,3,u>: Cost 2 vext1 <5,1,7,3>, LHS
+ 2728826164U, // <1,7,4,0>: Cost 3 vext3 <7,4,0,1>, <7,4,0,1>
+ 3654951732U, // <1,7,4,1>: Cost 4 vext1 <5,1,7,4>, <1,1,1,1>
+ 3330987094U, // <1,7,4,2>: Cost 4 vrev <7,1,2,4>
+ 3331060831U, // <1,7,4,3>: Cost 4 vrev <7,1,3,4>
+ 3787674971U, // <1,7,4,4>: Cost 4 vext3 <4,u,5,1>, <7,4,4,4>
+ 2626669878U, // <1,7,4,5>: Cost 3 vext2 <1,5,1,7>, RHS
+ 3785979241U, // <1,7,4,6>: Cost 4 vext3 <4,6,0,1>, <7,4,6,0>
+ 3787085176U, // <1,7,4,7>: Cost 4 vext3 <4,7,6,1>, <7,4,7,6>
+ 2626670121U, // <1,7,4,u>: Cost 3 vext2 <1,5,1,7>, RHS
+ 2569273446U, // <1,7,5,0>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2569274368U, // <1,7,5,1>: Cost 3 vext1 <3,1,7,5>, <1,3,5,7>
+ 3643016808U, // <1,7,5,2>: Cost 4 vext1 <3,1,7,5>, <2,2,2,2>
+ 2569275680U, // <1,7,5,3>: Cost 3 vext1 <3,1,7,5>, <3,1,7,5>
+ 2569276726U, // <1,7,5,4>: Cost 3 vext1 <3,1,7,5>, RHS
+ 4102034790U, // <1,7,5,5>: Cost 4 vtrnl <1,3,5,7>, <7,4,5,6>
+ 2651222067U, // <1,7,5,6>: Cost 3 vext2 <5,6,1,7>, <5,6,1,7>
+ 3899378998U, // <1,7,5,7>: Cost 4 vuzpr <1,1,5,7>, RHS
+ 2569279278U, // <1,7,5,u>: Cost 3 vext1 <3,1,7,5>, LHS
+ 2730153430U, // <1,7,6,0>: Cost 3 vext3 <7,6,0,1>, <7,6,0,1>
+ 2724845022U, // <1,7,6,1>: Cost 3 vext3 <6,7,0,1>, <7,6,1,0>
+ 3643025338U, // <1,7,6,2>: Cost 4 vext1 <3,1,7,6>, <2,6,3,7>
+ 3643025697U, // <1,7,6,3>: Cost 4 vext1 <3,1,7,6>, <3,1,7,6>
+ 3643026742U, // <1,7,6,4>: Cost 4 vext1 <3,1,7,6>, RHS
+ 3654971091U, // <1,7,6,5>: Cost 4 vext1 <5,1,7,6>, <5,1,7,6>
+ 3787675153U, // <1,7,6,6>: Cost 4 vext3 <4,u,5,1>, <7,6,6,6>
+ 2724845076U, // <1,7,6,7>: Cost 3 vext3 <6,7,0,1>, <7,6,7,0>
+ 2725508637U, // <1,7,6,u>: Cost 3 vext3 <6,u,0,1>, <7,6,u,0>
+ 2730817063U, // <1,7,7,0>: Cost 3 vext3 <7,7,0,1>, <7,7,0,1>
+ 3631088436U, // <1,7,7,1>: Cost 4 vext1 <1,1,7,7>, <1,1,1,1>
+ 3660949158U, // <1,7,7,2>: Cost 4 vext1 <6,1,7,7>, <2,3,0,1>
+ 3801904705U, // <1,7,7,3>: Cost 4 vext3 <7,3,0,1>, <7,7,3,0>
+ 3631090998U, // <1,7,7,4>: Cost 4 vext1 <1,1,7,7>, RHS
+ 2662503828U, // <1,7,7,5>: Cost 3 vext2 <7,5,1,7>, <7,5,1,7>
+ 3660951981U, // <1,7,7,6>: Cost 4 vext1 <6,1,7,7>, <6,1,7,7>
+ 2713933420U, // <1,7,7,7>: Cost 3 vext3 <4,u,5,1>, <7,7,7,7>
+ 2731406959U, // <1,7,7,u>: Cost 3 vext3 <7,7,u,1>, <7,7,u,1>
+ 1507500134U, // <1,7,u,0>: Cost 2 vext1 <5,1,7,u>, LHS
+ 2626672430U, // <1,7,u,1>: Cost 3 vext2 <1,5,1,7>, LHS
+ 2581243496U, // <1,7,u,2>: Cost 3 vext1 <5,1,7,u>, <2,2,2,2>
+ 2569300259U, // <1,7,u,3>: Cost 3 vext1 <3,1,7,u>, <3,1,7,u>
+ 1507503414U, // <1,7,u,4>: Cost 2 vext1 <5,1,7,u>, RHS
+ 1507503829U, // <1,7,u,5>: Cost 2 vext1 <5,1,7,u>, <5,1,7,u>
+ 2581246458U, // <1,7,u,6>: Cost 3 vext1 <5,1,7,u>, <6,2,7,3>
+ 2581246970U, // <1,7,u,7>: Cost 3 vext1 <5,1,7,u>, <7,0,1,2>
+ 1507505966U, // <1,7,u,u>: Cost 2 vext1 <5,1,7,u>, LHS
+ 1543643153U, // <1,u,0,0>: Cost 2 vext2 <0,0,1,u>, <0,0,1,u>
+ 1546297446U, // <1,u,0,1>: Cost 2 vext2 <0,4,1,u>, LHS
+ 2819448852U, // <1,u,0,2>: Cost 3 vuzpr LHS, <0,0,2,2>
+ 2619375876U, // <1,u,0,3>: Cost 3 vext2 <0,3,1,u>, <0,3,1,u>
+ 1546297685U, // <1,u,0,4>: Cost 2 vext2 <0,4,1,u>, <0,4,1,u>
+ 1658771190U, // <1,u,0,5>: Cost 2 vext3 <u,0,5,1>, <u,0,5,1>
+ 2736789248U, // <1,u,0,6>: Cost 3 vext3 <u,7,0,1>, <u,0,6,2>
+ 2659189376U, // <1,u,0,7>: Cost 3 vext2 <7,0,1,u>, <0,7,u,1>
+ 1546298013U, // <1,u,0,u>: Cost 2 vext2 <0,4,1,u>, LHS
+ 1483112550U, // <1,u,1,0>: Cost 2 vext1 <1,1,1,1>, LHS
+ 202162278U, // <1,u,1,1>: Cost 1 vdup1 LHS
+ 1616009006U, // <1,u,1,2>: Cost 2 vext3 <0,u,1,1>, LHS
+ 1745707110U, // <1,u,1,3>: Cost 2 vuzpr LHS, LHS
+ 1483115830U, // <1,u,1,4>: Cost 2 vext1 <1,1,1,1>, RHS
+ 2620040336U, // <1,u,1,5>: Cost 3 vext2 <0,4,1,u>, <1,5,3,7>
+ 3026622618U, // <1,u,1,6>: Cost 3 vtrnl <1,1,1,1>, RHS
+ 2958183752U, // <1,u,1,7>: Cost 3 vzipr <0,u,1,1>, RHS
+ 202162278U, // <1,u,1,u>: Cost 1 vdup1 LHS
+ 2819449750U, // <1,u,2,0>: Cost 3 vuzpr LHS, <1,2,3,0>
+ 2893207342U, // <1,u,2,1>: Cost 3 vzipl <1,2,3,0>, LHS
+ 2819448996U, // <1,u,2,2>: Cost 3 vuzpr LHS, <0,2,0,2>
+ 2819450482U, // <1,u,2,3>: Cost 3 vuzpr LHS, <2,2,3,3>
+ 2819449754U, // <1,u,2,4>: Cost 3 vuzpr LHS, <1,2,3,4>
+ 2893207706U, // <1,u,2,5>: Cost 3 vzipl <1,2,3,0>, RHS
+ 2819449036U, // <1,u,2,6>: Cost 3 vuzpr LHS, <0,2,4,6>
+ 2970799432U, // <1,u,2,7>: Cost 3 vzipr <3,0,1,2>, RHS
+ 2819449002U, // <1,u,2,u>: Cost 3 vuzpr LHS, <0,2,0,u>
+ 403931292U, // <1,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1477673718U, // <1,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 115726126U, // <1,u,3,2>: Cost 1 vrev LHS
+ 2014102173U, // <1,u,3,3>: Cost 2 vtrnr LHS, LHS
+ 403934518U, // <1,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1507536601U, // <1,u,3,5>: Cost 2 vext1 <5,1,u,3>, <5,1,u,3>
+ 1525453306U, // <1,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 2014105129U, // <1,u,3,7>: Cost 2 vtrnr LHS, RHS
+ 403937070U, // <1,u,3,u>: Cost 1 vext1 LHS, LHS
+ 2620042157U, // <1,u,4,0>: Cost 3 vext2 <0,4,1,u>, <4,0,u,1>
+ 2620042237U, // <1,u,4,1>: Cost 3 vext2 <0,4,1,u>, <4,1,u,0>
+ 2263217967U, // <1,u,4,2>: Cost 3 vrev <u,1,2,4>
+ 2569341224U, // <1,u,4,3>: Cost 3 vext1 <3,1,u,4>, <3,1,u,4>
+ 2569342262U, // <1,u,4,4>: Cost 3 vext1 <3,1,u,4>, RHS
+ 1546300726U, // <1,u,4,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2819449180U, // <1,u,4,6>: Cost 3 vuzpr LHS, <0,4,2,6>
+ 2724845649U, // <1,u,4,7>: Cost 3 vext3 <6,7,0,1>, <u,4,7,6>
+ 1546300969U, // <1,u,4,u>: Cost 2 vext2 <0,4,1,u>, RHS
+ 2551431270U, // <1,u,5,0>: Cost 3 vext1 <0,1,u,5>, LHS
+ 2551432192U, // <1,u,5,1>: Cost 3 vext1 <0,1,u,5>, <1,3,5,7>
+ 3028293422U, // <1,u,5,2>: Cost 3 vtrnl <1,3,5,7>, LHS
+ 2955559068U, // <1,u,5,3>: Cost 3 vzipr <0,4,1,5>, LHS
+ 2551434550U, // <1,u,5,4>: Cost 3 vext1 <0,1,u,5>, RHS
+ 2895255706U, // <1,u,5,5>: Cost 3 vzipl <1,5,3,7>, RHS
+ 1616009370U, // <1,u,5,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710390U, // <1,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 1745710391U, // <1,u,5,u>: Cost 2 vuzpr LHS, RHS
+ 2653221159U, // <1,u,6,0>: Cost 3 vext2 <6,0,1,u>, <6,0,1,u>
+ 2725509303U, // <1,u,6,1>: Cost 3 vext3 <6,u,0,1>, <u,6,1,0>
+ 2659193338U, // <1,u,6,2>: Cost 3 vext2 <7,0,1,u>, <6,2,7,3>
+ 2689751248U, // <1,u,6,3>: Cost 3 vext3 <0,u,1,1>, <u,6,3,7>
+ 2867228774U, // <1,u,6,4>: Cost 3 vuzpr LHS, <5,6,7,4>
+ 3764820194U, // <1,u,6,5>: Cost 4 vext3 <1,1,1,1>, <u,6,5,7>
+ 2657202957U, // <1,u,6,6>: Cost 3 vext2 <6,6,1,u>, <6,6,1,u>
+ 2819450810U, // <1,u,6,7>: Cost 3 vuzpr LHS, <2,6,3,7>
+ 2819450811U, // <1,u,6,u>: Cost 3 vuzpr LHS, <2,6,3,u>
+ 1585452032U, // <1,u,7,0>: Cost 2 vext2 <7,0,1,u>, <7,0,1,u>
+ 2557420340U, // <1,u,7,1>: Cost 3 vext1 <1,1,u,7>, <1,1,1,1>
+ 2569365158U, // <1,u,7,2>: Cost 3 vext1 <3,1,u,7>, <2,3,0,1>
+ 2569365803U, // <1,u,7,3>: Cost 3 vext1 <3,1,u,7>, <3,1,u,7>
+ 2557422902U, // <1,u,7,4>: Cost 3 vext1 <1,1,u,7>, RHS
+ 2662512021U, // <1,u,7,5>: Cost 3 vext2 <7,5,1,u>, <7,5,1,u>
+ 2724845884U, // <1,u,7,6>: Cost 3 vext3 <6,7,0,1>, <u,7,6,7>
+ 2659194476U, // <1,u,7,7>: Cost 3 vext2 <7,0,1,u>, <7,7,7,7>
+ 1590761096U, // <1,u,7,u>: Cost 2 vext2 <7,u,1,u>, <7,u,1,u>
+ 403972257U, // <1,u,u,0>: Cost 1 vext1 LHS, LHS
+ 202162278U, // <1,u,u,1>: Cost 1 vdup1 LHS
+ 115767091U, // <1,u,u,2>: Cost 1 vrev LHS
+ 1745707677U, // <1,u,u,3>: Cost 2 vuzpr LHS, LHS
+ 403975478U, // <1,u,u,4>: Cost 1 vext1 LHS, RHS
+ 1546303642U, // <1,u,u,5>: Cost 2 vext2 <0,4,1,u>, RHS
+ 1616009613U, // <1,u,u,6>: Cost 2 vext3 <0,u,1,1>, RHS
+ 1745710633U, // <1,u,u,7>: Cost 2 vuzpr LHS, RHS
+ 403978030U, // <1,u,u,u>: Cost 1 vext1 LHS, LHS
+ 2551463936U, // <2,0,0,0>: Cost 3 vext1 <0,2,0,0>, <0,0,0,0>
+ 2685698058U, // <2,0,0,1>: Cost 3 vext3 <0,2,0,2>, <0,0,1,1>
+ 1610776596U, // <2,0,0,2>: Cost 2 vext3 <0,0,2,2>, <0,0,2,2>
+ 2619384069U, // <2,0,0,3>: Cost 3 vext2 <0,3,2,0>, <0,3,2,0>
+ 2551467318U, // <2,0,0,4>: Cost 3 vext1 <0,2,0,0>, RHS
+ 3899836596U, // <2,0,0,5>: Cost 4 vuzpr <1,2,3,0>, <3,0,4,5>
+ 2621374968U, // <2,0,0,6>: Cost 3 vext2 <0,6,2,0>, <0,6,2,0>
+ 4168271334U, // <2,0,0,7>: Cost 4 vtrnr <1,2,3,0>, <2,0,5,7>
+ 1611219018U, // <2,0,0,u>: Cost 2 vext3 <0,0,u,2>, <0,0,u,2>
+ 2551472138U, // <2,0,1,0>: Cost 3 vext1 <0,2,0,1>, <0,0,1,1>
+ 2690564186U, // <2,0,1,1>: Cost 3 vext3 <1,0,3,2>, <0,1,1,0>
+ 1611956326U, // <2,0,1,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2826092646U, // <2,0,1,3>: Cost 3 vuzpr <1,2,3,0>, LHS
+ 2551475510U, // <2,0,1,4>: Cost 3 vext1 <0,2,0,1>, RHS
+ 3692463248U, // <2,0,1,5>: Cost 4 vext2 <0,2,2,0>, <1,5,3,7>
+ 2587308473U, // <2,0,1,6>: Cost 3 vext1 <6,2,0,1>, <6,2,0,1>
+ 3661050874U, // <2,0,1,7>: Cost 4 vext1 <6,2,0,1>, <7,0,1,2>
+ 1611956380U, // <2,0,1,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 1477738598U, // <2,0,2,0>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2551481078U, // <2,0,2,1>: Cost 3 vext1 <0,2,0,2>, <1,0,3,2>
+ 2551481796U, // <2,0,2,2>: Cost 3 vext1 <0,2,0,2>, <2,0,2,0>
+ 2551482518U, // <2,0,2,3>: Cost 3 vext1 <0,2,0,2>, <3,0,1,2>
+ 1477741878U, // <2,0,2,4>: Cost 2 vext1 <0,2,0,2>, RHS
+ 2551484112U, // <2,0,2,5>: Cost 3 vext1 <0,2,0,2>, <5,1,7,3>
+ 2551484759U, // <2,0,2,6>: Cost 3 vext1 <0,2,0,2>, <6,0,7,2>
+ 2551485434U, // <2,0,2,7>: Cost 3 vext1 <0,2,0,2>, <7,0,1,2>
+ 1477744430U, // <2,0,2,u>: Cost 2 vext1 <0,2,0,2>, LHS
+ 2953625600U, // <2,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2953627302U, // <2,0,3,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 2953625764U, // <2,0,3,2>: Cost 3 vzipr LHS, <0,2,0,2>
+ 4027369695U, // <2,0,3,3>: Cost 4 vzipr LHS, <3,1,0,3>
+ 3625233718U, // <2,0,3,4>: Cost 4 vext1 <0,2,0,3>, RHS
+ 3899836110U, // <2,0,3,5>: Cost 4 vuzpr <1,2,3,0>, <2,3,4,5>
+ 4032012618U, // <2,0,3,6>: Cost 4 vzipr LHS, <0,4,0,6>
+ 3899835392U, // <2,0,3,7>: Cost 4 vuzpr <1,2,3,0>, <1,3,5,7>
+ 2953625770U, // <2,0,3,u>: Cost 3 vzipr LHS, <0,2,0,u>
+ 2551496806U, // <2,0,4,0>: Cost 3 vext1 <0,2,0,4>, LHS
+ 2685698386U, // <2,0,4,1>: Cost 3 vext3 <0,2,0,2>, <0,4,1,5>
+ 2685698396U, // <2,0,4,2>: Cost 3 vext3 <0,2,0,2>, <0,4,2,6>
+ 3625240726U, // <2,0,4,3>: Cost 4 vext1 <0,2,0,4>, <3,0,1,2>
+ 2551500086U, // <2,0,4,4>: Cost 3 vext1 <0,2,0,4>, RHS
+ 2618723638U, // <2,0,4,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765409590U, // <2,0,4,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 3799990664U, // <2,0,4,7>: Cost 4 vext3 <7,0,1,2>, <0,4,7,5>
+ 2685698450U, // <2,0,4,u>: Cost 3 vext3 <0,2,0,2>, <0,4,u,6>
+ 3625246822U, // <2,0,5,0>: Cost 4 vext1 <0,2,0,5>, LHS
+ 3289776304U, // <2,0,5,1>: Cost 4 vrev <0,2,1,5>
+ 2690564526U, // <2,0,5,2>: Cost 3 vext3 <1,0,3,2>, <0,5,2,7>
+ 3289923778U, // <2,0,5,3>: Cost 4 vrev <0,2,3,5>
+ 2216255691U, // <2,0,5,4>: Cost 3 vrev <0,2,4,5>
+ 3726307332U, // <2,0,5,5>: Cost 4 vext2 <5,u,2,0>, <5,5,5,5>
+ 3726307426U, // <2,0,5,6>: Cost 4 vext2 <5,u,2,0>, <5,6,7,0>
+ 2826095926U, // <2,0,5,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 2216550639U, // <2,0,5,u>: Cost 3 vrev <0,2,u,5>
+ 4162420736U, // <2,0,6,0>: Cost 4 vtrnr <0,2,4,6>, <0,0,0,0>
+ 2901885030U, // <2,0,6,1>: Cost 3 vzipl <2,6,3,7>, LHS
+ 2685698559U, // <2,0,6,2>: Cost 3 vext3 <0,2,0,2>, <0,6,2,7>
+ 3643173171U, // <2,0,6,3>: Cost 4 vext1 <3,2,0,6>, <3,2,0,6>
+ 2216263884U, // <2,0,6,4>: Cost 3 vrev <0,2,4,6>
+ 3730289341U, // <2,0,6,5>: Cost 4 vext2 <6,5,2,0>, <6,5,2,0>
+ 3726308152U, // <2,0,6,6>: Cost 4 vext2 <5,u,2,0>, <6,6,6,6>
+ 3899836346U, // <2,0,6,7>: Cost 4 vuzpr <1,2,3,0>, <2,6,3,7>
+ 2216558832U, // <2,0,6,u>: Cost 3 vrev <0,2,u,6>
+ 2659202049U, // <2,0,7,0>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 3726308437U, // <2,0,7,1>: Cost 4 vext2 <5,u,2,0>, <7,1,2,3>
+ 2726249034U, // <2,0,7,2>: Cost 3 vext3 <7,0,1,2>, <0,7,2,1>
+ 3734934772U, // <2,0,7,3>: Cost 4 vext2 <7,3,2,0>, <7,3,2,0>
+ 3726308710U, // <2,0,7,4>: Cost 4 vext2 <5,u,2,0>, <7,4,5,6>
+ 3726308814U, // <2,0,7,5>: Cost 4 vext2 <5,u,2,0>, <7,5,u,2>
+ 3736925671U, // <2,0,7,6>: Cost 4 vext2 <7,6,2,0>, <7,6,2,0>
+ 3726308972U, // <2,0,7,7>: Cost 4 vext2 <5,u,2,0>, <7,7,7,7>
+ 2659202049U, // <2,0,7,u>: Cost 3 vext2 <7,0,2,0>, <7,0,2,0>
+ 1477787750U, // <2,0,u,0>: Cost 2 vext1 <0,2,0,u>, LHS
+ 2953668262U, // <2,0,u,1>: Cost 3 vzipr LHS, <2,3,0,1>
+ 1611956893U, // <2,0,u,2>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2551531670U, // <2,0,u,3>: Cost 3 vext1 <0,2,0,u>, <3,0,1,2>
+ 1477791030U, // <2,0,u,4>: Cost 2 vext1 <0,2,0,u>, RHS
+ 2618726554U, // <2,0,u,5>: Cost 3 vext2 <0,2,2,0>, RHS
+ 2765412506U, // <2,0,u,6>: Cost 3 vuzpl <2,3,0,1>, RHS
+ 2826096169U, // <2,0,u,7>: Cost 3 vuzpr <1,2,3,0>, RHS
+ 1611956947U, // <2,0,u,u>: Cost 2 vext3 <0,2,0,2>, LHS
+ 2569453670U, // <2,1,0,0>: Cost 3 vext1 <3,2,1,0>, LHS
+ 2619392102U, // <2,1,0,1>: Cost 3 vext2 <0,3,2,1>, LHS
+ 3759440619U, // <2,1,0,2>: Cost 4 vext3 <0,2,0,2>, <1,0,2,0>
+ 1616823030U, // <2,1,0,3>: Cost 2 vext3 <1,0,3,2>, <1,0,3,2>
+ 2569456950U, // <2,1,0,4>: Cost 3 vext1 <3,2,1,0>, RHS
+ 2690712328U, // <2,1,0,5>: Cost 3 vext3 <1,0,5,2>, <1,0,5,2>
+ 3661115841U, // <2,1,0,6>: Cost 4 vext1 <6,2,1,0>, <6,2,1,0>
+ 2622046794U, // <2,1,0,7>: Cost 3 vext2 <0,7,2,1>, <0,7,2,1>
+ 1617191715U, // <2,1,0,u>: Cost 2 vext3 <1,0,u,2>, <1,0,u,2>
+ 2551545958U, // <2,1,1,0>: Cost 3 vext1 <0,2,1,1>, LHS
+ 2685698868U, // <2,1,1,1>: Cost 3 vext3 <0,2,0,2>, <1,1,1,1>
+ 2628682646U, // <2,1,1,2>: Cost 3 vext2 <1,u,2,1>, <1,2,3,0>
+ 2685698888U, // <2,1,1,3>: Cost 3 vext3 <0,2,0,2>, <1,1,3,3>
+ 2551549238U, // <2,1,1,4>: Cost 3 vext1 <0,2,1,1>, RHS
+ 3693134992U, // <2,1,1,5>: Cost 4 vext2 <0,3,2,1>, <1,5,3,7>
+ 3661124034U, // <2,1,1,6>: Cost 4 vext1 <6,2,1,1>, <6,2,1,1>
+ 3625292794U, // <2,1,1,7>: Cost 4 vext1 <0,2,1,1>, <7,0,1,2>
+ 2685698933U, // <2,1,1,u>: Cost 3 vext3 <0,2,0,2>, <1,1,u,3>
+ 2551554150U, // <2,1,2,0>: Cost 3 vext1 <0,2,1,2>, LHS
+ 3893649571U, // <2,1,2,1>: Cost 4 vuzpr <0,2,0,1>, <0,2,0,1>
+ 2551555688U, // <2,1,2,2>: Cost 3 vext1 <0,2,1,2>, <2,2,2,2>
+ 2685698966U, // <2,1,2,3>: Cost 3 vext3 <0,2,0,2>, <1,2,3,0>
+ 2551557430U, // <2,1,2,4>: Cost 3 vext1 <0,2,1,2>, RHS
+ 3763422123U, // <2,1,2,5>: Cost 4 vext3 <0,u,0,2>, <1,2,5,3>
+ 3693135802U, // <2,1,2,6>: Cost 4 vext2 <0,3,2,1>, <2,6,3,7>
+ 2726249402U, // <2,1,2,7>: Cost 3 vext3 <7,0,1,2>, <1,2,7,0>
+ 2685699011U, // <2,1,2,u>: Cost 3 vext3 <0,2,0,2>, <1,2,u,0>
+ 2551562342U, // <2,1,3,0>: Cost 3 vext1 <0,2,1,3>, LHS
+ 2953625610U, // <2,1,3,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953627798U, // <2,1,3,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 2953626584U, // <2,1,3,3>: Cost 3 vzipr LHS, <1,3,1,3>
+ 2551565622U, // <2,1,3,4>: Cost 3 vext1 <0,2,1,3>, RHS
+ 2953625938U, // <2,1,3,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,3,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 4032013519U, // <2,1,3,7>: Cost 4 vzipr LHS, <1,6,1,7>
+ 2953625617U, // <2,1,3,u>: Cost 3 vzipr LHS, <0,0,1,u>
+ 2690565154U, // <2,1,4,0>: Cost 3 vext3 <1,0,3,2>, <1,4,0,5>
+ 3625313270U, // <2,1,4,1>: Cost 4 vext1 <0,2,1,4>, <1,3,4,6>
+ 3771532340U, // <2,1,4,2>: Cost 4 vext3 <2,2,2,2>, <1,4,2,5>
+ 1148404634U, // <2,1,4,3>: Cost 2 vrev <1,2,3,4>
+ 3625315638U, // <2,1,4,4>: Cost 4 vext1 <0,2,1,4>, RHS
+ 2619395382U, // <2,1,4,5>: Cost 3 vext2 <0,3,2,1>, RHS
+ 3837242678U, // <2,1,4,6>: Cost 4 vuzpl <2,0,1,2>, RHS
+ 3799991394U, // <2,1,4,7>: Cost 4 vext3 <7,0,1,2>, <1,4,7,6>
+ 1148773319U, // <2,1,4,u>: Cost 2 vrev <1,2,u,4>
+ 2551578726U, // <2,1,5,0>: Cost 3 vext1 <0,2,1,5>, LHS
+ 2551579648U, // <2,1,5,1>: Cost 3 vext1 <0,2,1,5>, <1,3,5,7>
+ 3625321952U, // <2,1,5,2>: Cost 4 vext1 <0,2,1,5>, <2,0,5,1>
+ 2685699216U, // <2,1,5,3>: Cost 3 vext3 <0,2,0,2>, <1,5,3,7>
+ 2551582006U, // <2,1,5,4>: Cost 3 vext1 <0,2,1,5>, RHS
+ 3740913668U, // <2,1,5,5>: Cost 4 vext2 <u,3,2,1>, <5,5,5,5>
+ 3661156806U, // <2,1,5,6>: Cost 4 vext1 <6,2,1,5>, <6,2,1,5>
+ 3893652790U, // <2,1,5,7>: Cost 4 vuzpr <0,2,0,1>, RHS
+ 2685699261U, // <2,1,5,u>: Cost 3 vext3 <0,2,0,2>, <1,5,u,7>
+ 2551586918U, // <2,1,6,0>: Cost 3 vext1 <0,2,1,6>, LHS
+ 3625329398U, // <2,1,6,1>: Cost 4 vext1 <0,2,1,6>, <1,0,3,2>
+ 2551588794U, // <2,1,6,2>: Cost 3 vext1 <0,2,1,6>, <2,6,3,7>
+ 3088679014U, // <2,1,6,3>: Cost 3 vtrnr <0,2,4,6>, LHS
+ 2551590198U, // <2,1,6,4>: Cost 3 vext1 <0,2,1,6>, RHS
+ 4029382994U, // <2,1,6,5>: Cost 4 vzipr <0,4,2,6>, <0,4,1,5>
+ 3625333560U, // <2,1,6,6>: Cost 4 vext1 <0,2,1,6>, <6,6,6,6>
+ 3731624800U, // <2,1,6,7>: Cost 4 vext2 <6,7,2,1>, <6,7,2,1>
+ 2551592750U, // <2,1,6,u>: Cost 3 vext1 <0,2,1,6>, LHS
+ 2622051322U, // <2,1,7,0>: Cost 3 vext2 <0,7,2,1>, <7,0,1,2>
+ 3733615699U, // <2,1,7,1>: Cost 4 vext2 <7,1,2,1>, <7,1,2,1>
+ 3795125538U, // <2,1,7,2>: Cost 4 vext3 <6,1,7,2>, <1,7,2,0>
+ 2222171037U, // <2,1,7,3>: Cost 3 vrev <1,2,3,7>
+ 3740915046U, // <2,1,7,4>: Cost 4 vext2 <u,3,2,1>, <7,4,5,6>
+ 3296060335U, // <2,1,7,5>: Cost 4 vrev <1,2,5,7>
+ 3736933864U, // <2,1,7,6>: Cost 4 vext2 <7,6,2,1>, <7,6,2,1>
+ 3805300055U, // <2,1,7,7>: Cost 4 vext3 <7,u,1,2>, <1,7,7,u>
+ 2669827714U, // <2,1,7,u>: Cost 3 vext2 <u,7,2,1>, <7,u,1,2>
+ 2551603302U, // <2,1,u,0>: Cost 3 vext1 <0,2,1,u>, LHS
+ 2953666570U, // <2,1,u,1>: Cost 3 vzipr LHS, <0,0,1,1>
+ 2953668758U, // <2,1,u,2>: Cost 3 vzipr LHS, <3,0,1,2>
+ 1148437406U, // <2,1,u,3>: Cost 2 vrev <1,2,3,u>
+ 2551606582U, // <2,1,u,4>: Cost 3 vext1 <0,2,1,u>, RHS
+ 2953666898U, // <2,1,u,5>: Cost 3 vzipr LHS, <0,4,1,5>
+ 2587398596U, // <2,1,u,6>: Cost 3 vext1 <6,2,1,3>, <6,2,1,3>
+ 2669828370U, // <2,1,u,7>: Cost 3 vext2 <u,7,2,1>, <u,7,2,1>
+ 1148806091U, // <2,1,u,u>: Cost 2 vrev <1,2,u,u>
+ 1543667732U, // <2,2,0,0>: Cost 2 vext2 <0,0,2,2>, <0,0,2,2>
+ 1548976230U, // <2,2,0,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 2685699524U, // <2,2,0,2>: Cost 3 vext3 <0,2,0,2>, <2,0,2,0>
+ 2685699535U, // <2,2,0,3>: Cost 3 vext3 <0,2,0,2>, <2,0,3,2>
+ 2551614774U, // <2,2,0,4>: Cost 3 vext1 <0,2,2,0>, RHS
+ 3704422830U, // <2,2,0,5>: Cost 4 vext2 <2,2,2,2>, <0,5,2,7>
+ 3893657642U, // <2,2,0,6>: Cost 4 vuzpr <0,2,0,2>, <0,0,4,6>
+ 3770574323U, // <2,2,0,7>: Cost 4 vext3 <2,0,7,2>, <2,0,7,2>
+ 1548976796U, // <2,2,0,u>: Cost 2 vext2 <0,u,2,2>, <0,u,2,2>
+ 2622718710U, // <2,2,1,0>: Cost 3 vext2 <0,u,2,2>, <1,0,3,2>
+ 2622718772U, // <2,2,1,1>: Cost 3 vext2 <0,u,2,2>, <1,1,1,1>
+ 2622718870U, // <2,2,1,2>: Cost 3 vext2 <0,u,2,2>, <1,2,3,0>
+ 2819915878U, // <2,2,1,3>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 3625364790U, // <2,2,1,4>: Cost 4 vext1 <0,2,2,1>, RHS
+ 2622719120U, // <2,2,1,5>: Cost 3 vext2 <0,u,2,2>, <1,5,3,7>
+ 3760031292U, // <2,2,1,6>: Cost 4 vext3 <0,2,u,2>, <2,1,6,3>
+ 3667170468U, // <2,2,1,7>: Cost 4 vext1 <7,2,2,1>, <7,2,2,1>
+ 2819915883U, // <2,2,1,u>: Cost 3 vuzpr <0,2,0,2>, LHS
+ 1489829990U, // <2,2,2,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 2563572470U, // <2,2,2,1>: Cost 3 vext1 <2,2,2,2>, <1,0,3,2>
+ 269271142U, // <2,2,2,2>: Cost 1 vdup2 LHS
+ 2685699698U, // <2,2,2,3>: Cost 3 vext3 <0,2,0,2>, <2,2,3,3>
+ 1489833270U, // <2,2,2,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 2685699720U, // <2,2,2,5>: Cost 3 vext3 <0,2,0,2>, <2,2,5,7>
+ 2622719930U, // <2,2,2,6>: Cost 3 vext2 <0,u,2,2>, <2,6,3,7>
+ 2593436837U, // <2,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <2,2,2,u>: Cost 1 vdup2 LHS
+ 2685699750U, // <2,2,3,0>: Cost 3 vext3 <0,2,0,2>, <2,3,0,1>
+ 2690565806U, // <2,2,3,1>: Cost 3 vext3 <1,0,3,2>, <2,3,1,0>
+ 2953627240U, // <2,2,3,2>: Cost 3 vzipr LHS, <2,2,2,2>
+ 1879883878U, // <2,2,3,3>: Cost 2 vzipr LHS, LHS
+ 2685699790U, // <2,2,3,4>: Cost 3 vext3 <0,2,0,2>, <2,3,4,5>
+ 3893659342U, // <2,2,3,5>: Cost 4 vuzpr <0,2,0,2>, <2,3,4,5>
+ 2958270812U, // <2,2,3,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2593445030U, // <2,2,3,7>: Cost 3 vext1 <7,2,2,3>, <7,2,2,3>
+ 1879883883U, // <2,2,3,u>: Cost 2 vzipr LHS, LHS
+ 2551644262U, // <2,2,4,0>: Cost 3 vext1 <0,2,2,4>, LHS
+ 3625386742U, // <2,2,4,1>: Cost 4 vext1 <0,2,2,4>, <1,0,3,2>
+ 2551645902U, // <2,2,4,2>: Cost 3 vext1 <0,2,2,4>, <2,3,4,5>
+ 3759441686U, // <2,2,4,3>: Cost 4 vext3 <0,2,0,2>, <2,4,3,5>
+ 2551647542U, // <2,2,4,4>: Cost 3 vext1 <0,2,2,4>, RHS
+ 1548979510U, // <2,2,4,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2764901686U, // <2,2,4,6>: Cost 3 vuzpl <2,2,2,2>, RHS
+ 3667195047U, // <2,2,4,7>: Cost 4 vext1 <7,2,2,4>, <7,2,2,4>
+ 1548979753U, // <2,2,4,u>: Cost 2 vext2 <0,u,2,2>, RHS
+ 3696463432U, // <2,2,5,0>: Cost 4 vext2 <0,u,2,2>, <5,0,1,2>
+ 2617413328U, // <2,2,5,1>: Cost 3 vext2 <0,0,2,2>, <5,1,7,3>
+ 2685699936U, // <2,2,5,2>: Cost 3 vext3 <0,2,0,2>, <2,5,2,7>
+ 4027383910U, // <2,2,5,3>: Cost 4 vzipr <0,1,2,5>, LHS
+ 2228201085U, // <2,2,5,4>: Cost 3 vrev <2,2,4,5>
+ 2617413636U, // <2,2,5,5>: Cost 3 vext2 <0,0,2,2>, <5,5,5,5>
+ 2617413730U, // <2,2,5,6>: Cost 3 vext2 <0,0,2,2>, <5,6,7,0>
+ 2819919158U, // <2,2,5,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 2819919159U, // <2,2,5,u>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 3625402554U, // <2,2,6,0>: Cost 4 vext1 <0,2,2,6>, <0,2,2,6>
+ 3760031652U, // <2,2,6,1>: Cost 4 vext3 <0,2,u,2>, <2,6,1,3>
+ 2617414138U, // <2,2,6,2>: Cost 3 vext2 <0,0,2,2>, <6,2,7,3>
+ 2685700026U, // <2,2,6,3>: Cost 3 vext3 <0,2,0,2>, <2,6,3,7>
+ 3625405750U, // <2,2,6,4>: Cost 4 vext1 <0,2,2,6>, RHS
+ 3760031692U, // <2,2,6,5>: Cost 4 vext3 <0,2,u,2>, <2,6,5,7>
+ 3088679116U, // <2,2,6,6>: Cost 3 vtrnr <0,2,4,6>, <0,2,4,6>
+ 2657891169U, // <2,2,6,7>: Cost 3 vext2 <6,7,2,2>, <6,7,2,2>
+ 2685700071U, // <2,2,6,u>: Cost 3 vext3 <0,2,0,2>, <2,6,u,7>
+ 2726250474U, // <2,2,7,0>: Cost 3 vext3 <7,0,1,2>, <2,7,0,1>
+ 3704427616U, // <2,2,7,1>: Cost 4 vext2 <2,2,2,2>, <7,1,3,5>
+ 2660545701U, // <2,2,7,2>: Cost 3 vext2 <7,2,2,2>, <7,2,2,2>
+ 4030718054U, // <2,2,7,3>: Cost 4 vzipr <0,6,2,7>, LHS
+ 2617415014U, // <2,2,7,4>: Cost 3 vext2 <0,0,2,2>, <7,4,5,6>
+ 3302033032U, // <2,2,7,5>: Cost 4 vrev <2,2,5,7>
+ 3661246929U, // <2,2,7,6>: Cost 4 vext1 <6,2,2,7>, <6,2,2,7>
+ 2617415276U, // <2,2,7,7>: Cost 3 vext2 <0,0,2,2>, <7,7,7,7>
+ 2731558962U, // <2,2,7,u>: Cost 3 vext3 <7,u,1,2>, <2,7,u,1>
+ 1489829990U, // <2,2,u,0>: Cost 2 vext1 <2,2,2,2>, LHS
+ 1548982062U, // <2,2,u,1>: Cost 2 vext2 <0,u,2,2>, LHS
+ 269271142U, // <2,2,u,2>: Cost 1 vdup2 LHS
+ 1879924838U, // <2,2,u,3>: Cost 2 vzipr LHS, LHS
+ 1489833270U, // <2,2,u,4>: Cost 2 vext1 <2,2,2,2>, RHS
+ 1548982426U, // <2,2,u,5>: Cost 2 vext2 <0,u,2,2>, RHS
+ 2953666908U, // <2,2,u,6>: Cost 3 vzipr LHS, <0,4,2,6>
+ 2819919401U, // <2,2,u,7>: Cost 3 vuzpr <0,2,0,2>, RHS
+ 269271142U, // <2,2,u,u>: Cost 1 vdup2 LHS
+ 1544339456U, // <2,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470597734U, // <2,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1548984484U, // <2,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2619408648U, // <2,3,0,3>: Cost 3 vext2 <0,3,2,3>, <0,3,2,3>
+ 1548984658U, // <2,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665857454U, // <2,3,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 2622726655U, // <2,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2593494188U, // <2,3,0,7>: Cost 3 vext1 <7,2,3,0>, <7,2,3,0>
+ 470598301U, // <2,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544340214U, // <2,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544340276U, // <2,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544340374U, // <2,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1548985304U, // <2,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2551696694U, // <2,3,1,4>: Cost 3 vext1 <0,2,3,1>, RHS
+ 1548985488U, // <2,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2622727375U, // <2,3,1,6>: Cost 3 vext2 LHS, <1,6,1,7>
+ 2665858347U, // <2,3,1,7>: Cost 3 vext2 LHS, <1,7,3,0>
+ 1548985709U, // <2,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 2622727613U, // <2,3,2,0>: Cost 3 vext2 LHS, <2,0,1,2>
+ 2622727711U, // <2,3,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 1544341096U, // <2,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544341158U, // <2,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 2622727958U, // <2,3,2,4>: Cost 3 vext2 LHS, <2,4,3,5>
+ 2622728032U, // <2,3,2,5>: Cost 3 vext2 LHS, <2,5,2,7>
+ 1548986298U, // <2,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2665859050U, // <2,3,2,7>: Cost 3 vext2 LHS, <2,7,0,1>
+ 1548986427U, // <2,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1548986518U, // <2,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2622728415U, // <2,3,3,1>: Cost 3 vext2 LHS, <3,1,0,3>
+ 1489913458U, // <2,3,3,2>: Cost 2 vext1 <2,2,3,3>, <2,2,3,3>
+ 1544341916U, // <2,3,3,3>: Cost 2 vext2 LHS, <3,3,3,3>
+ 1548986882U, // <2,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2665859632U, // <2,3,3,5>: Cost 3 vext2 LHS, <3,5,1,7>
+ 2234304870U, // <2,3,3,6>: Cost 3 vrev <3,2,6,3>
+ 2958271632U, // <2,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 1548987166U, // <2,3,3,u>: Cost 2 vext2 LHS, <3,u,1,2>
+ 1483948134U, // <2,3,4,0>: Cost 2 vext1 <1,2,3,4>, LHS
+ 1483948954U, // <2,3,4,1>: Cost 2 vext1 <1,2,3,4>, <1,2,3,4>
+ 2622729276U, // <2,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2557692054U, // <2,3,4,3>: Cost 3 vext1 <1,2,3,4>, <3,0,1,2>
+ 1483951414U, // <2,3,4,4>: Cost 2 vext1 <1,2,3,4>, RHS
+ 470601014U, // <2,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592118644U, // <2,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2593526960U, // <2,3,4,7>: Cost 3 vext1 <7,2,3,4>, <7,2,3,4>
+ 470601257U, // <2,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2551726182U, // <2,3,5,0>: Cost 3 vext1 <0,2,3,5>, LHS
+ 1592118992U, // <2,3,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2665860862U, // <2,3,5,2>: Cost 3 vext2 LHS, <5,2,3,4>
+ 2551728642U, // <2,3,5,3>: Cost 3 vext1 <0,2,3,5>, <3,4,5,6>
+ 1592119238U, // <2,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592119300U, // <2,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592119394U, // <2,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1592119464U, // <2,3,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1592119545U, // <2,3,5,u>: Cost 2 vext2 LHS, <5,u,5,7>
+ 2622730529U, // <2,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2557707164U, // <2,3,6,1>: Cost 3 vext1 <1,2,3,6>, <1,2,3,6>
+ 1592119802U, // <2,3,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2665861682U, // <2,3,6,3>: Cost 3 vext2 LHS, <6,3,4,5>
+ 2622730893U, // <2,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 2665861810U, // <2,3,6,5>: Cost 3 vext2 LHS, <6,5,0,7>
+ 1592120120U, // <2,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592120142U, // <2,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1592120223U, // <2,3,6,u>: Cost 2 vext2 LHS, <6,u,0,1>
+ 1592120314U, // <2,3,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659890261U, // <2,3,7,1>: Cost 3 vext2 <7,1,2,3>, <7,1,2,3>
+ 2660553894U, // <2,3,7,2>: Cost 3 vext2 <7,2,2,3>, <7,2,2,3>
+ 2665862371U, // <2,3,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592120678U, // <2,3,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665862534U, // <2,3,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2665862614U, // <2,3,7,6>: Cost 3 vext2 LHS, <7,6,0,1>
+ 1592120940U, // <2,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592120962U, // <2,3,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1548990163U, // <2,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 470603566U, // <2,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1548990341U, // <2,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 1548990396U, // <2,3,u,3>: Cost 2 vext2 LHS, <u,3,0,1>
+ 1548990527U, // <2,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 470603930U, // <2,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1548990672U, // <2,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1592121600U, // <2,3,u,7>: Cost 2 vext2 LHS, <u,7,0,1>
+ 470604133U, // <2,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2617425942U, // <2,4,0,0>: Cost 3 vext2 <0,0,2,4>, <0,0,2,4>
+ 2618753126U, // <2,4,0,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2618753208U, // <2,4,0,2>: Cost 3 vext2 <0,2,2,4>, <0,2,2,4>
+ 2619416841U, // <2,4,0,3>: Cost 3 vext2 <0,3,2,4>, <0,3,2,4>
+ 2587593628U, // <2,4,0,4>: Cost 3 vext1 <6,2,4,0>, <4,0,6,2>
+ 2712832914U, // <2,4,0,5>: Cost 3 vext3 <4,6,u,2>, <4,0,5,1>
+ 1634962332U, // <2,4,0,6>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 3799993252U, // <2,4,0,7>: Cost 4 vext3 <7,0,1,2>, <4,0,7,1>
+ 1634962332U, // <2,4,0,u>: Cost 2 vext3 <4,0,6,2>, <4,0,6,2>
+ 2619417334U, // <2,4,1,0>: Cost 3 vext2 <0,3,2,4>, <1,0,3,2>
+ 3692495668U, // <2,4,1,1>: Cost 4 vext2 <0,2,2,4>, <1,1,1,1>
+ 2625389466U, // <2,4,1,2>: Cost 3 vext2 <1,3,2,4>, <1,2,3,4>
+ 2826125414U, // <2,4,1,3>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 3699794995U, // <2,4,1,4>: Cost 4 vext2 <1,4,2,4>, <1,4,2,4>
+ 3692496016U, // <2,4,1,5>: Cost 4 vext2 <0,2,2,4>, <1,5,3,7>
+ 3763424238U, // <2,4,1,6>: Cost 4 vext3 <0,u,0,2>, <4,1,6,3>
+ 3667317942U, // <2,4,1,7>: Cost 4 vext1 <7,2,4,1>, <7,2,4,1>
+ 2826125419U, // <2,4,1,u>: Cost 3 vuzpr <1,2,3,4>, LHS
+ 2629371336U, // <2,4,2,0>: Cost 3 vext2 <2,0,2,4>, <2,0,2,4>
+ 3699131946U, // <2,4,2,1>: Cost 4 vext2 <1,3,2,4>, <2,1,4,3>
+ 2630698602U, // <2,4,2,2>: Cost 3 vext2 <2,2,2,4>, <2,2,2,4>
+ 2618754766U, // <2,4,2,3>: Cost 3 vext2 <0,2,2,4>, <2,3,4,5>
+ 2826126234U, // <2,4,2,4>: Cost 3 vuzpr <1,2,3,4>, <1,2,3,4>
+ 2899119414U, // <2,4,2,5>: Cost 3 vzipl <2,2,2,2>, RHS
+ 3033337142U, // <2,4,2,6>: Cost 3 vtrnl <2,2,2,2>, RHS
+ 3800214597U, // <2,4,2,7>: Cost 4 vext3 <7,0,4,2>, <4,2,7,0>
+ 2899119657U, // <2,4,2,u>: Cost 3 vzipl <2,2,2,2>, RHS
+ 2635344033U, // <2,4,3,0>: Cost 3 vext2 <3,0,2,4>, <3,0,2,4>
+ 4032012325U, // <2,4,3,1>: Cost 4 vzipr LHS, <0,0,4,1>
+ 3692497228U, // <2,4,3,2>: Cost 4 vext2 <0,2,2,4>, <3,2,3,4>
+ 3692497308U, // <2,4,3,3>: Cost 4 vext2 <0,2,2,4>, <3,3,3,3>
+ 3001404624U, // <2,4,3,4>: Cost 3 vzipr LHS, <4,4,4,4>
+ 2953627342U, // <2,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2953625804U, // <2,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3899868160U, // <2,4,3,7>: Cost 4 vuzpr <1,2,3,4>, <1,3,5,7>
+ 2953625806U, // <2,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 2710916266U, // <2,4,4,0>: Cost 3 vext3 <4,4,0,2>, <4,4,0,2>
+ 3899869648U, // <2,4,4,1>: Cost 4 vuzpr <1,2,3,4>, <3,4,0,1>
+ 3899869658U, // <2,4,4,2>: Cost 4 vuzpr <1,2,3,4>, <3,4,1,2>
+ 3899868930U, // <2,4,4,3>: Cost 4 vuzpr <1,2,3,4>, <2,4,1,3>
+ 2712833232U, // <2,4,4,4>: Cost 3 vext3 <4,6,u,2>, <4,4,4,4>
+ 2618756406U, // <2,4,4,5>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2765737270U, // <2,4,4,6>: Cost 3 vuzpl <2,3,4,5>, RHS
+ 4168304426U, // <2,4,4,7>: Cost 4 vtrnr <1,2,3,4>, <2,4,5,7>
+ 2618756649U, // <2,4,4,u>: Cost 3 vext2 <0,2,2,4>, RHS
+ 2551800011U, // <2,4,5,0>: Cost 3 vext1 <0,2,4,5>, <0,2,4,5>
+ 2569716470U, // <2,4,5,1>: Cost 3 vext1 <3,2,4,5>, <1,0,3,2>
+ 2563745405U, // <2,4,5,2>: Cost 3 vext1 <2,2,4,5>, <2,2,4,5>
+ 2569718102U, // <2,4,5,3>: Cost 3 vext1 <3,2,4,5>, <3,2,4,5>
+ 2551803190U, // <2,4,5,4>: Cost 3 vext1 <0,2,4,5>, RHS
+ 3625545732U, // <2,4,5,5>: Cost 4 vext1 <0,2,4,5>, <5,5,5,5>
+ 1611959606U, // <2,4,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128694U, // <2,4,5,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959624U, // <2,4,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478066278U, // <2,4,6,0>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2551808758U, // <2,4,6,1>: Cost 3 vext1 <0,2,4,6>, <1,0,3,2>
+ 2551809516U, // <2,4,6,2>: Cost 3 vext1 <0,2,4,6>, <2,0,6,4>
+ 2551810198U, // <2,4,6,3>: Cost 3 vext1 <0,2,4,6>, <3,0,1,2>
+ 1478069558U, // <2,4,6,4>: Cost 2 vext1 <0,2,4,6>, RHS
+ 2901888310U, // <2,4,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 2551812920U, // <2,4,6,6>: Cost 3 vext1 <0,2,4,6>, <6,6,6,6>
+ 2726251914U, // <2,4,6,7>: Cost 3 vext3 <7,0,1,2>, <4,6,7,1>
+ 1478072110U, // <2,4,6,u>: Cost 2 vext1 <0,2,4,6>, LHS
+ 2659234821U, // <2,4,7,0>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 3786722726U, // <2,4,7,1>: Cost 4 vext3 <4,7,1,2>, <4,7,1,2>
+ 3734303911U, // <2,4,7,2>: Cost 4 vext2 <7,2,2,4>, <7,2,2,4>
+ 3734967544U, // <2,4,7,3>: Cost 4 vext2 <7,3,2,4>, <7,3,2,4>
+ 3727005030U, // <2,4,7,4>: Cost 4 vext2 <6,0,2,4>, <7,4,5,6>
+ 2726251976U, // <2,4,7,5>: Cost 3 vext3 <7,0,1,2>, <4,7,5,0>
+ 2726251986U, // <2,4,7,6>: Cost 3 vext3 <7,0,1,2>, <4,7,6,1>
+ 3727005292U, // <2,4,7,7>: Cost 4 vext2 <6,0,2,4>, <7,7,7,7>
+ 2659234821U, // <2,4,7,u>: Cost 3 vext2 <7,0,2,4>, <7,0,2,4>
+ 1478082662U, // <2,4,u,0>: Cost 2 vext1 <0,2,4,u>, LHS
+ 2618758958U, // <2,4,u,1>: Cost 3 vext2 <0,2,2,4>, LHS
+ 2551826024U, // <2,4,u,2>: Cost 3 vext1 <0,2,4,u>, <2,2,2,2>
+ 2551826582U, // <2,4,u,3>: Cost 3 vext1 <0,2,4,u>, <3,0,1,2>
+ 1478085942U, // <2,4,u,4>: Cost 2 vext1 <0,2,4,u>, RHS
+ 2953668302U, // <2,4,u,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 1611959849U, // <2,4,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 2826128937U, // <2,4,u,7>: Cost 3 vuzpr <1,2,3,4>, RHS
+ 1611959867U, // <2,4,u,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 3691839488U, // <2,5,0,0>: Cost 4 vext2 <0,1,2,5>, <0,0,0,0>
+ 2618097766U, // <2,5,0,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620088484U, // <2,5,0,2>: Cost 3 vext2 <0,4,2,5>, <0,2,0,2>
+ 2619425034U, // <2,5,0,3>: Cost 3 vext2 <0,3,2,5>, <0,3,2,5>
+ 2620088667U, // <2,5,0,4>: Cost 3 vext2 <0,4,2,5>, <0,4,2,5>
+ 2620752300U, // <2,5,0,5>: Cost 3 vext2 <0,5,2,5>, <0,5,2,5>
+ 3693830655U, // <2,5,0,6>: Cost 4 vext2 <0,4,2,5>, <0,6,2,7>
+ 3094531382U, // <2,5,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 2618098333U, // <2,5,0,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 3691840246U, // <2,5,1,0>: Cost 4 vext2 <0,1,2,5>, <1,0,3,2>
+ 3691840308U, // <2,5,1,1>: Cost 4 vext2 <0,1,2,5>, <1,1,1,1>
+ 2626061206U, // <2,5,1,2>: Cost 3 vext2 <1,4,2,5>, <1,2,3,0>
+ 2618098688U, // <2,5,1,3>: Cost 3 vext2 <0,1,2,5>, <1,3,5,7>
+ 2626061364U, // <2,5,1,4>: Cost 3 vext2 <1,4,2,5>, <1,4,2,5>
+ 3691840656U, // <2,5,1,5>: Cost 4 vext2 <0,1,2,5>, <1,5,3,7>
+ 3789082310U, // <2,5,1,6>: Cost 4 vext3 <5,1,6,2>, <5,1,6,2>
+ 2712833744U, // <2,5,1,7>: Cost 3 vext3 <4,6,u,2>, <5,1,7,3>
+ 2628715896U, // <2,5,1,u>: Cost 3 vext2 <1,u,2,5>, <1,u,2,5>
+ 3693831613U, // <2,5,2,0>: Cost 4 vext2 <0,4,2,5>, <2,0,1,2>
+ 4026698642U, // <2,5,2,1>: Cost 4 vzipr <0,0,2,2>, <4,0,5,1>
+ 2632033896U, // <2,5,2,2>: Cost 3 vext2 <2,4,2,5>, <2,2,2,2>
+ 3691841190U, // <2,5,2,3>: Cost 4 vext2 <0,1,2,5>, <2,3,0,1>
+ 2632034061U, // <2,5,2,4>: Cost 3 vext2 <2,4,2,5>, <2,4,2,5>
+ 3691841352U, // <2,5,2,5>: Cost 4 vext2 <0,1,2,5>, <2,5,0,1>
+ 3691841466U, // <2,5,2,6>: Cost 4 vext2 <0,1,2,5>, <2,6,3,7>
+ 3088354614U, // <2,5,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 3088354615U, // <2,5,2,u>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 2557829222U, // <2,5,3,0>: Cost 3 vext1 <1,2,5,3>, LHS
+ 2557830059U, // <2,5,3,1>: Cost 3 vext1 <1,2,5,3>, <1,2,5,3>
+ 2575746766U, // <2,5,3,2>: Cost 3 vext1 <4,2,5,3>, <2,3,4,5>
+ 3691841948U, // <2,5,3,3>: Cost 4 vext2 <0,1,2,5>, <3,3,3,3>
+ 2619427330U, // <2,5,3,4>: Cost 3 vext2 <0,3,2,5>, <3,4,5,6>
+ 2581720847U, // <2,5,3,5>: Cost 3 vext1 <5,2,5,3>, <5,2,5,3>
+ 2953628162U, // <2,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953626624U, // <2,5,3,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2953626625U, // <2,5,3,u>: Cost 3 vzipr LHS, <1,3,5,u>
+ 2569781350U, // <2,5,4,0>: Cost 3 vext1 <3,2,5,4>, LHS
+ 3631580076U, // <2,5,4,1>: Cost 4 vext1 <1,2,5,4>, <1,2,5,4>
+ 2569782990U, // <2,5,4,2>: Cost 3 vext1 <3,2,5,4>, <2,3,4,5>
+ 2569783646U, // <2,5,4,3>: Cost 3 vext1 <3,2,5,4>, <3,2,5,4>
+ 2569784630U, // <2,5,4,4>: Cost 3 vext1 <3,2,5,4>, RHS
+ 2618101046U, // <2,5,4,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 3893905922U, // <2,5,4,6>: Cost 4 vuzpr <0,2,3,5>, <3,4,5,6>
+ 3094564150U, // <2,5,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 2618101289U, // <2,5,4,u>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2551873638U, // <2,5,5,0>: Cost 3 vext1 <0,2,5,5>, LHS
+ 3637560320U, // <2,5,5,1>: Cost 4 vext1 <2,2,5,5>, <1,3,5,7>
+ 3637560966U, // <2,5,5,2>: Cost 4 vext1 <2,2,5,5>, <2,2,5,5>
+ 3723030343U, // <2,5,5,3>: Cost 4 vext2 <5,3,2,5>, <5,3,2,5>
+ 2551876918U, // <2,5,5,4>: Cost 3 vext1 <0,2,5,5>, RHS
+ 2712834052U, // <2,5,5,5>: Cost 3 vext3 <4,6,u,2>, <5,5,5,5>
+ 4028713474U, // <2,5,5,6>: Cost 4 vzipr <0,3,2,5>, <3,4,5,6>
+ 2712834072U, // <2,5,5,7>: Cost 3 vext3 <4,6,u,2>, <5,5,7,7>
+ 2712834081U, // <2,5,5,u>: Cost 3 vext3 <4,6,u,2>, <5,5,u,7>
+ 2575769702U, // <2,5,6,0>: Cost 3 vext1 <4,2,5,6>, LHS
+ 3631596462U, // <2,5,6,1>: Cost 4 vext1 <1,2,5,6>, <1,2,5,6>
+ 2655924730U, // <2,5,6,2>: Cost 3 vext2 <6,4,2,5>, <6,2,7,3>
+ 3643541856U, // <2,5,6,3>: Cost 4 vext1 <3,2,5,6>, <3,2,5,6>
+ 2655924849U, // <2,5,6,4>: Cost 3 vext2 <6,4,2,5>, <6,4,2,5>
+ 3787755607U, // <2,5,6,5>: Cost 4 vext3 <4,u,6,2>, <5,6,5,7>
+ 4029385218U, // <2,5,6,6>: Cost 4 vzipr <0,4,2,6>, <3,4,5,6>
+ 3088682294U, // <2,5,6,7>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 3088682295U, // <2,5,6,u>: Cost 3 vtrnr <0,2,4,6>, RHS
+ 2563833958U, // <2,5,7,0>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2551890678U, // <2,5,7,1>: Cost 3 vext1 <0,2,5,7>, <1,0,3,2>
+ 2563835528U, // <2,5,7,2>: Cost 3 vext1 <2,2,5,7>, <2,2,5,7>
+ 3637577878U, // <2,5,7,3>: Cost 4 vext1 <2,2,5,7>, <3,0,1,2>
+ 2563837238U, // <2,5,7,4>: Cost 3 vext1 <2,2,5,7>, RHS
+ 2712834216U, // <2,5,7,5>: Cost 3 vext3 <4,6,u,2>, <5,7,5,7>
+ 2712834220U, // <2,5,7,6>: Cost 3 vext3 <4,6,u,2>, <5,7,6,2>
+ 4174449974U, // <2,5,7,7>: Cost 4 vtrnr <2,2,5,7>, RHS
+ 2563839790U, // <2,5,7,u>: Cost 3 vext1 <2,2,5,7>, LHS
+ 2563842150U, // <2,5,u,0>: Cost 3 vext1 <2,2,5,u>, LHS
+ 2618103598U, // <2,5,u,1>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2563843721U, // <2,5,u,2>: Cost 3 vext1 <2,2,5,u>, <2,2,5,u>
+ 2569816418U, // <2,5,u,3>: Cost 3 vext1 <3,2,5,u>, <3,2,5,u>
+ 2622748735U, // <2,5,u,4>: Cost 3 vext2 <0,u,2,5>, <u,4,5,6>
+ 2618103962U, // <2,5,u,5>: Cost 3 vext2 <0,1,2,5>, RHS
+ 2953669122U, // <2,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2953667584U, // <2,5,u,7>: Cost 3 vzipr LHS, <1,3,5,7>
+ 2618104165U, // <2,5,u,u>: Cost 3 vext2 <0,1,2,5>, LHS
+ 2620096512U, // <2,6,0,0>: Cost 3 vext2 <0,4,2,6>, <0,0,0,0>
+ 1546354790U, // <2,6,0,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620096676U, // <2,6,0,2>: Cost 3 vext2 <0,4,2,6>, <0,2,0,2>
+ 3693838588U, // <2,6,0,3>: Cost 4 vext2 <0,4,2,6>, <0,3,1,0>
+ 1546355036U, // <2,6,0,4>: Cost 2 vext2 <0,4,2,6>, <0,4,2,6>
+ 3694502317U, // <2,6,0,5>: Cost 4 vext2 <0,5,2,6>, <0,5,2,6>
+ 2551911246U, // <2,6,0,6>: Cost 3 vext1 <0,2,6,0>, <6,7,0,1>
+ 2720723287U, // <2,6,0,7>: Cost 3 vext3 <6,0,7,2>, <6,0,7,2>
+ 1546355357U, // <2,6,0,u>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620097270U, // <2,6,1,0>: Cost 3 vext2 <0,4,2,6>, <1,0,3,2>
+ 2620097332U, // <2,6,1,1>: Cost 3 vext2 <0,4,2,6>, <1,1,1,1>
+ 2620097430U, // <2,6,1,2>: Cost 3 vext2 <0,4,2,6>, <1,2,3,0>
+ 2820243558U, // <2,6,1,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2620097598U, // <2,6,1,4>: Cost 3 vext2 <0,4,2,6>, <1,4,3,6>
+ 2620097680U, // <2,6,1,5>: Cost 3 vext2 <0,4,2,6>, <1,5,3,7>
+ 3693839585U, // <2,6,1,6>: Cost 4 vext2 <0,4,2,6>, <1,6,3,7>
+ 2721386920U, // <2,6,1,7>: Cost 3 vext3 <6,1,7,2>, <6,1,7,2>
+ 2820243563U, // <2,6,1,u>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 2714014137U, // <2,6,2,0>: Cost 3 vext3 <4,u,6,2>, <6,2,0,1>
+ 2712834500U, // <2,6,2,1>: Cost 3 vext3 <4,6,u,2>, <6,2,1,3>
+ 2620098152U, // <2,6,2,2>: Cost 3 vext2 <0,4,2,6>, <2,2,2,2>
+ 2620098214U, // <2,6,2,3>: Cost 3 vext2 <0,4,2,6>, <2,3,0,1>
+ 2632042254U, // <2,6,2,4>: Cost 3 vext2 <2,4,2,6>, <2,4,2,6>
+ 2712834540U, // <2,6,2,5>: Cost 3 vext3 <4,6,u,2>, <6,2,5,7>
+ 2820243660U, // <2,6,2,6>: Cost 3 vuzpr <0,2,4,6>, <0,2,4,6>
+ 2958265654U, // <2,6,2,7>: Cost 3 vzipr <0,u,2,2>, RHS
+ 2620098619U, // <2,6,2,u>: Cost 3 vext2 <0,4,2,6>, <2,u,0,1>
+ 2620098710U, // <2,6,3,0>: Cost 3 vext2 <0,4,2,6>, <3,0,1,2>
+ 3893986982U, // <2,6,3,1>: Cost 4 vuzpr <0,2,4,6>, <2,3,0,1>
+ 2569848762U, // <2,6,3,2>: Cost 3 vext1 <3,2,6,3>, <2,6,3,7>
+ 2620098972U, // <2,6,3,3>: Cost 3 vext2 <0,4,2,6>, <3,3,3,3>
+ 2620099074U, // <2,6,3,4>: Cost 3 vext2 <0,4,2,6>, <3,4,5,6>
+ 3893987022U, // <2,6,3,5>: Cost 4 vuzpr <0,2,4,6>, <2,3,4,5>
+ 3001404644U, // <2,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1879887158U, // <2,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1879887159U, // <2,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2620099484U, // <2,6,4,0>: Cost 3 vext2 <0,4,2,6>, <4,0,6,2>
+ 2620099566U, // <2,6,4,1>: Cost 3 vext2 <0,4,2,6>, <4,1,6,3>
+ 2620099644U, // <2,6,4,2>: Cost 3 vext2 <0,4,2,6>, <4,2,6,0>
+ 3643599207U, // <2,6,4,3>: Cost 4 vext1 <3,2,6,4>, <3,2,6,4>
+ 2575830080U, // <2,6,4,4>: Cost 3 vext1 <4,2,6,4>, <4,2,6,4>
+ 1546358070U, // <2,6,4,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2667875700U, // <2,6,4,6>: Cost 3 vext2 <u,4,2,6>, <4,6,4,6>
+ 4028042550U, // <2,6,4,7>: Cost 4 vzipr <0,2,2,4>, RHS
+ 1546358313U, // <2,6,4,u>: Cost 2 vext2 <0,4,2,6>, RHS
+ 3693841992U, // <2,6,5,0>: Cost 4 vext2 <0,4,2,6>, <5,0,1,2>
+ 2667876048U, // <2,6,5,1>: Cost 3 vext2 <u,4,2,6>, <5,1,7,3>
+ 2712834756U, // <2,6,5,2>: Cost 3 vext3 <4,6,u,2>, <6,5,2,7>
+ 3643607400U, // <2,6,5,3>: Cost 4 vext1 <3,2,6,5>, <3,2,6,5>
+ 2252091873U, // <2,6,5,4>: Cost 3 vrev <6,2,4,5>
+ 2667876356U, // <2,6,5,5>: Cost 3 vext2 <u,4,2,6>, <5,5,5,5>
+ 2667876450U, // <2,6,5,6>: Cost 3 vext2 <u,4,2,6>, <5,6,7,0>
+ 2820246838U, // <2,6,5,7>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2820246839U, // <2,6,5,u>: Cost 3 vuzpr <0,2,4,6>, RHS
+ 2563899494U, // <2,6,6,0>: Cost 3 vext1 <2,2,6,6>, LHS
+ 3893988683U, // <2,6,6,1>: Cost 4 vuzpr <0,2,4,6>, <4,6,0,1>
+ 2563901072U, // <2,6,6,2>: Cost 3 vext1 <2,2,6,6>, <2,2,6,6>
+ 3893987236U, // <2,6,6,3>: Cost 4 vuzpr <0,2,4,6>, <2,6,1,3>
+ 2563902774U, // <2,6,6,4>: Cost 3 vext1 <2,2,6,6>, RHS
+ 3893988723U, // <2,6,6,5>: Cost 4 vuzpr <0,2,4,6>, <4,6,4,5>
+ 2712834872U, // <2,6,6,6>: Cost 3 vext3 <4,6,u,2>, <6,6,6,6>
+ 2955644214U, // <2,6,6,7>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2955644215U, // <2,6,6,u>: Cost 3 vzipr <0,4,2,6>, RHS
+ 2712834894U, // <2,6,7,0>: Cost 3 vext3 <4,6,u,2>, <6,7,0,1>
+ 2724926296U, // <2,6,7,1>: Cost 3 vext3 <6,7,1,2>, <6,7,1,2>
+ 2725000033U, // <2,6,7,2>: Cost 3 vext3 <6,7,2,2>, <6,7,2,2>
+ 2702365544U, // <2,6,7,3>: Cost 3 vext3 <3,0,1,2>, <6,7,3,0>
+ 2712834934U, // <2,6,7,4>: Cost 3 vext3 <4,6,u,2>, <6,7,4,5>
+ 3776107393U, // <2,6,7,5>: Cost 4 vext3 <3,0,1,2>, <6,7,5,7>
+ 2725294981U, // <2,6,7,6>: Cost 3 vext3 <6,7,6,2>, <6,7,6,2>
+ 2726253452U, // <2,6,7,7>: Cost 3 vext3 <7,0,1,2>, <6,7,7,0>
+ 2712834966U, // <2,6,7,u>: Cost 3 vext3 <4,6,u,2>, <6,7,u,1>
+ 2620102355U, // <2,6,u,0>: Cost 3 vext2 <0,4,2,6>, <u,0,1,2>
+ 1546360622U, // <2,6,u,1>: Cost 2 vext2 <0,4,2,6>, LHS
+ 2620102536U, // <2,6,u,2>: Cost 3 vext2 <0,4,2,6>, <u,2,3,3>
+ 2820244125U, // <2,6,u,3>: Cost 3 vuzpr <0,2,4,6>, LHS
+ 1594136612U, // <2,6,u,4>: Cost 2 vext2 <u,4,2,6>, <u,4,2,6>
+ 1546360986U, // <2,6,u,5>: Cost 2 vext2 <0,4,2,6>, RHS
+ 2620102864U, // <2,6,u,6>: Cost 3 vext2 <0,4,2,6>, <u,6,3,7>
+ 1879928118U, // <2,6,u,7>: Cost 2 vzipr LHS, RHS
+ 1879928119U, // <2,6,u,u>: Cost 2 vzipr LHS, RHS
+ 2726179825U, // <2,7,0,0>: Cost 3 vext3 <7,0,0,2>, <7,0,0,2>
+ 1652511738U, // <2,7,0,1>: Cost 2 vext3 <7,0,1,2>, <7,0,1,2>
+ 2621431972U, // <2,7,0,2>: Cost 3 vext2 <0,6,2,7>, <0,2,0,2>
+ 2257949868U, // <2,7,0,3>: Cost 3 vrev <7,2,3,0>
+ 2726474773U, // <2,7,0,4>: Cost 3 vext3 <7,0,4,2>, <7,0,4,2>
+ 2620768686U, // <2,7,0,5>: Cost 3 vext2 <0,5,2,7>, <0,5,2,7>
+ 2621432319U, // <2,7,0,6>: Cost 3 vext2 <0,6,2,7>, <0,6,2,7>
+ 2599760953U, // <2,7,0,7>: Cost 3 vext1 <u,2,7,0>, <7,0,u,2>
+ 1653027897U, // <2,7,0,u>: Cost 2 vext3 <7,0,u,2>, <7,0,u,2>
+ 2639348470U, // <2,7,1,0>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695174452U, // <2,7,1,1>: Cost 4 vext2 <0,6,2,7>, <1,1,1,1>
+ 3695174550U, // <2,7,1,2>: Cost 4 vext2 <0,6,2,7>, <1,2,3,0>
+ 3694511104U, // <2,7,1,3>: Cost 4 vext2 <0,5,2,7>, <1,3,5,7>
+ 3713090594U, // <2,7,1,4>: Cost 4 vext2 <3,6,2,7>, <1,4,0,5>
+ 3693184144U, // <2,7,1,5>: Cost 4 vext2 <0,3,2,7>, <1,5,3,7>
+ 2627405016U, // <2,7,1,6>: Cost 3 vext2 <1,6,2,7>, <1,6,2,7>
+ 3799995519U, // <2,7,1,7>: Cost 4 vext3 <7,0,1,2>, <7,1,7,0>
+ 2639348470U, // <2,7,1,u>: Cost 3 vext2 <3,6,2,7>, <1,0,3,2>
+ 3695175101U, // <2,7,2,0>: Cost 4 vext2 <0,6,2,7>, <2,0,1,2>
+ 3643655168U, // <2,7,2,1>: Cost 4 vext1 <3,2,7,2>, <1,3,5,7>
+ 2257892517U, // <2,7,2,2>: Cost 3 vrev <7,2,2,2>
+ 3695175334U, // <2,7,2,3>: Cost 4 vext2 <0,6,2,7>, <2,3,0,1>
+ 3695175465U, // <2,7,2,4>: Cost 4 vext2 <0,6,2,7>, <2,4,5,6>
+ 2632714080U, // <2,7,2,5>: Cost 3 vext2 <2,5,2,7>, <2,5,2,7>
+ 2633377713U, // <2,7,2,6>: Cost 3 vext2 <2,6,2,7>, <2,6,2,7>
+ 3695175658U, // <2,7,2,7>: Cost 4 vext2 <0,6,2,7>, <2,7,0,1>
+ 2634704979U, // <2,7,2,u>: Cost 3 vext2 <2,u,2,7>, <2,u,2,7>
+ 1514094694U, // <2,7,3,0>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2569921680U, // <2,7,3,1>: Cost 3 vext1 <3,2,7,3>, <1,5,3,7>
+ 2587838056U, // <2,7,3,2>: Cost 3 vext1 <6,2,7,3>, <2,2,2,2>
+ 2569922927U, // <2,7,3,3>: Cost 3 vext1 <3,2,7,3>, <3,2,7,3>
+ 1514097974U, // <2,7,3,4>: Cost 2 vext1 <6,2,7,3>, RHS
+ 2581868321U, // <2,7,3,5>: Cost 3 vext1 <5,2,7,3>, <5,2,7,3>
+ 1514099194U, // <2,7,3,6>: Cost 2 vext1 <6,2,7,3>, <6,2,7,3>
+ 2587841530U, // <2,7,3,7>: Cost 3 vext1 <6,2,7,3>, <7,0,1,2>
+ 1514100526U, // <2,7,3,u>: Cost 2 vext1 <6,2,7,3>, LHS
+ 2708706617U, // <2,7,4,0>: Cost 3 vext3 <4,0,6,2>, <7,4,0,6>
+ 3649643418U, // <2,7,4,1>: Cost 4 vext1 <4,2,7,4>, <1,2,3,4>
+ 3649644330U, // <2,7,4,2>: Cost 4 vext1 <4,2,7,4>, <2,4,5,7>
+ 2257982640U, // <2,7,4,3>: Cost 3 vrev <7,2,3,4>
+ 3649645641U, // <2,7,4,4>: Cost 4 vext1 <4,2,7,4>, <4,2,7,4>
+ 2621435190U, // <2,7,4,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2712835441U, // <2,7,4,6>: Cost 3 vext3 <4,6,u,2>, <7,4,6,u>
+ 3799995762U, // <2,7,4,7>: Cost 4 vext3 <7,0,1,2>, <7,4,7,0>
+ 2621435433U, // <2,7,4,u>: Cost 3 vext2 <0,6,2,7>, RHS
+ 2729497990U, // <2,7,5,0>: Cost 3 vext3 <7,5,0,2>, <7,5,0,2>
+ 3643679744U, // <2,7,5,1>: Cost 4 vext1 <3,2,7,5>, <1,3,5,7>
+ 3637708424U, // <2,7,5,2>: Cost 4 vext1 <2,2,7,5>, <2,2,5,7>
+ 3643681137U, // <2,7,5,3>: Cost 4 vext1 <3,2,7,5>, <3,2,7,5>
+ 2599800118U, // <2,7,5,4>: Cost 3 vext1 <u,2,7,5>, RHS
+ 3786577334U, // <2,7,5,5>: Cost 4 vext3 <4,6,u,2>, <7,5,5,5>
+ 3786577345U, // <2,7,5,6>: Cost 4 vext3 <4,6,u,2>, <7,5,6,7>
+ 2599802214U, // <2,7,5,7>: Cost 3 vext1 <u,2,7,5>, <7,4,5,6>
+ 2599802670U, // <2,7,5,u>: Cost 3 vext1 <u,2,7,5>, LHS
+ 2581889126U, // <2,7,6,0>: Cost 3 vext1 <5,2,7,6>, LHS
+ 3643687936U, // <2,7,6,1>: Cost 4 vext1 <3,2,7,6>, <1,3,5,7>
+ 2663240186U, // <2,7,6,2>: Cost 3 vext2 <7,6,2,7>, <6,2,7,3>
+ 3643689330U, // <2,7,6,3>: Cost 4 vext1 <3,2,7,6>, <3,2,7,6>
+ 2581892406U, // <2,7,6,4>: Cost 3 vext1 <5,2,7,6>, RHS
+ 2581892900U, // <2,7,6,5>: Cost 3 vext1 <5,2,7,6>, <5,2,7,6>
+ 2587865597U, // <2,7,6,6>: Cost 3 vext1 <6,2,7,6>, <6,2,7,6>
+ 3786577428U, // <2,7,6,7>: Cost 4 vext3 <4,6,u,2>, <7,6,7,0>
+ 2581894958U, // <2,7,6,u>: Cost 3 vext1 <5,2,7,6>, LHS
+ 2726254119U, // <2,7,7,0>: Cost 3 vext3 <7,0,1,2>, <7,7,0,1>
+ 3804640817U, // <2,7,7,1>: Cost 4 vext3 <7,7,1,2>, <7,7,1,2>
+ 3637724826U, // <2,7,7,2>: Cost 4 vext1 <2,2,7,7>, <2,2,7,7>
+ 3734992123U, // <2,7,7,3>: Cost 4 vext2 <7,3,2,7>, <7,3,2,7>
+ 2552040758U, // <2,7,7,4>: Cost 3 vext1 <0,2,7,7>, RHS
+ 3799995992U, // <2,7,7,5>: Cost 4 vext3 <7,0,1,2>, <7,7,5,5>
+ 2663241198U, // <2,7,7,6>: Cost 3 vext2 <7,6,2,7>, <7,6,2,7>
+ 2712835692U, // <2,7,7,7>: Cost 3 vext3 <4,6,u,2>, <7,7,7,7>
+ 2731562607U, // <2,7,7,u>: Cost 3 vext3 <7,u,1,2>, <7,7,u,1>
+ 1514135654U, // <2,7,u,0>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1657820802U, // <2,7,u,1>: Cost 2 vext3 <7,u,1,2>, <7,u,1,2>
+ 2587879016U, // <2,7,u,2>: Cost 3 vext1 <6,2,7,u>, <2,2,2,2>
+ 2569963892U, // <2,7,u,3>: Cost 3 vext1 <3,2,7,u>, <3,2,7,u>
+ 1514138934U, // <2,7,u,4>: Cost 2 vext1 <6,2,7,u>, RHS
+ 2621438106U, // <2,7,u,5>: Cost 3 vext2 <0,6,2,7>, RHS
+ 1514140159U, // <2,7,u,6>: Cost 2 vext1 <6,2,7,u>, <6,2,7,u>
+ 2587882490U, // <2,7,u,7>: Cost 3 vext1 <6,2,7,u>, <7,0,1,2>
+ 1514141486U, // <2,7,u,u>: Cost 2 vext1 <6,2,7,u>, LHS
+ 1544380416U, // <2,u,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 470638699U, // <2,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544380580U, // <2,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1658631909U, // <2,u,0,3>: Cost 2 vext3 <u,0,3,2>, <u,0,3,2>
+ 1544380754U, // <2,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2665898414U, // <2,u,0,5>: Cost 3 vext2 LHS, <0,5,2,7>
+ 1658853120U, // <2,u,0,6>: Cost 2 vext3 <u,0,6,2>, <u,0,6,2>
+ 3094531625U, // <2,u,0,7>: Cost 3 vtrnr <1,2,3,0>, RHS
+ 470639261U, // <2,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544381174U, // <2,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544381236U, // <2,u,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544381334U, // <2,u,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544381400U, // <2,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618123325U, // <2,u,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544381584U, // <2,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618123489U, // <2,u,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2726254427U, // <2,u,1,7>: Cost 3 vext3 <7,0,1,2>, <u,1,7,3>
+ 1544381823U, // <2,u,1,u>: Cost 2 vext2 LHS, <1,u,3,3>
+ 1478328422U, // <2,u,2,0>: Cost 2 vext1 <0,2,u,2>, LHS
+ 2618123807U, // <2,u,2,1>: Cost 3 vext2 LHS, <2,1,3,1>
+ 269271142U, // <2,u,2,2>: Cost 1 vdup2 LHS
+ 1544382118U, // <2,u,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1478331702U, // <2,u,2,4>: Cost 2 vext1 <0,2,u,2>, RHS
+ 2618124136U, // <2,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544382394U, // <2,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 3088354857U, // <2,u,2,7>: Cost 3 vtrnr <0,2,0,2>, RHS
+ 269271142U, // <2,u,2,u>: Cost 1 vdup2 LHS
+ 1544382614U, // <2,u,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 2953627374U, // <2,u,3,1>: Cost 3 vzipr LHS, <2,3,u,1>
+ 1490282143U, // <2,u,3,2>: Cost 2 vext1 <2,2,u,3>, <2,2,u,3>
+ 1879883932U, // <2,u,3,3>: Cost 2 vzipr LHS, LHS
+ 1544382978U, // <2,u,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2953627378U, // <2,u,3,5>: Cost 3 vzipr LHS, <2,3,u,5>
+ 1514172931U, // <2,u,3,6>: Cost 2 vext1 <6,2,u,3>, <6,2,u,3>
+ 1879887176U, // <2,u,3,7>: Cost 2 vzipr LHS, RHS
+ 1879883937U, // <2,u,3,u>: Cost 2 vzipr LHS, LHS
+ 1484316774U, // <2,u,4,0>: Cost 2 vext1 <1,2,u,4>, LHS
+ 1484317639U, // <2,u,4,1>: Cost 2 vext1 <1,2,u,4>, <1,2,u,4>
+ 2552088270U, // <2,u,4,2>: Cost 3 vext1 <0,2,u,4>, <2,3,4,5>
+ 1190213513U, // <2,u,4,3>: Cost 2 vrev <u,2,3,4>
+ 1484320054U, // <2,u,4,4>: Cost 2 vext1 <1,2,u,4>, RHS
+ 470641974U, // <2,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1592159604U, // <2,u,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 3094564393U, // <2,u,4,7>: Cost 3 vtrnr <1,2,3,4>, RHS
+ 470642217U, // <2,u,4,u>: Cost 1 vext2 LHS, RHS
+ 2552094959U, // <2,u,5,0>: Cost 3 vext1 <0,2,u,5>, <0,2,u,5>
+ 1592159952U, // <2,u,5,1>: Cost 2 vext2 LHS, <5,1,7,3>
+ 2564040353U, // <2,u,5,2>: Cost 3 vext1 <2,2,u,5>, <2,2,u,5>
+ 2690275455U, // <2,u,5,3>: Cost 3 vext3 <0,u,u,2>, <u,5,3,7>
+ 1592160198U, // <2,u,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592160260U, // <2,u,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1611962522U, // <2,u,5,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1592160424U, // <2,u,5,7>: Cost 2 vext2 LHS, <5,7,5,7>
+ 1611962540U, // <2,u,5,u>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1478361190U, // <2,u,6,0>: Cost 2 vext1 <0,2,u,6>, LHS
+ 2552103670U, // <2,u,6,1>: Cost 3 vext1 <0,2,u,6>, <1,0,3,2>
+ 1592160762U, // <2,u,6,2>: Cost 2 vext2 LHS, <6,2,7,3>
+ 2685704400U, // <2,u,6,3>: Cost 3 vext3 <0,2,0,2>, <u,6,3,7>
+ 1478364470U, // <2,u,6,4>: Cost 2 vext1 <0,2,u,6>, RHS
+ 2901891226U, // <2,u,6,5>: Cost 3 vzipl <2,6,3,7>, RHS
+ 1592161080U, // <2,u,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592161102U, // <2,u,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1478367022U, // <2,u,6,u>: Cost 2 vext1 <0,2,u,6>, LHS
+ 1592161274U, // <2,u,7,0>: Cost 2 vext2 LHS, <7,0,1,2>
+ 2659931226U, // <2,u,7,1>: Cost 3 vext2 <7,1,2,u>, <7,1,2,u>
+ 2564056739U, // <2,u,7,2>: Cost 3 vext1 <2,2,u,7>, <2,2,u,7>
+ 2665903331U, // <2,u,7,3>: Cost 3 vext2 LHS, <7,3,0,1>
+ 1592161638U, // <2,u,7,4>: Cost 2 vext2 LHS, <7,4,5,6>
+ 2665903494U, // <2,u,7,5>: Cost 3 vext2 LHS, <7,5,0,2>
+ 2587947527U, // <2,u,7,6>: Cost 3 vext1 <6,2,u,7>, <6,2,u,7>
+ 1592161900U, // <2,u,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1592161922U, // <2,u,7,u>: Cost 2 vext2 LHS, <7,u,1,2>
+ 1478377574U, // <2,u,u,0>: Cost 2 vext1 <0,2,u,u>, LHS
+ 470644526U, // <2,u,u,1>: Cost 1 vext2 LHS, LHS
+ 269271142U, // <2,u,u,2>: Cost 1 vdup2 LHS
+ 1879924892U, // <2,u,u,3>: Cost 2 vzipr LHS, LHS
+ 1478380854U, // <2,u,u,4>: Cost 2 vext1 <0,2,u,u>, RHS
+ 470644890U, // <2,u,u,5>: Cost 1 vext2 LHS, RHS
+ 1611962765U, // <2,u,u,6>: Cost 2 vext3 <0,2,0,2>, RHS
+ 1879928136U, // <2,u,u,7>: Cost 2 vzipr LHS, RHS
+ 470645093U, // <2,u,u,u>: Cost 1 vext2 LHS, LHS
+ 1611448320U, // <3,0,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611890698U, // <3,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611890708U, // <3,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 3763576860U, // <3,0,0,3>: Cost 4 vext3 LHS, <0,0,3,1>
+ 2689835045U, // <3,0,0,4>: Cost 3 vext3 LHS, <0,0,4,1>
+ 3698508206U, // <3,0,0,5>: Cost 4 vext2 <1,2,3,0>, <0,5,2,7>
+ 3763576887U, // <3,0,0,6>: Cost 4 vext3 LHS, <0,0,6,1>
+ 3667678434U, // <3,0,0,7>: Cost 4 vext1 <7,3,0,0>, <7,3,0,0>
+ 1616093258U, // <3,0,0,u>: Cost 2 vext3 LHS, <0,0,u,2>
+ 1490337894U, // <3,0,1,0>: Cost 2 vext1 <2,3,0,1>, LHS
+ 2685632602U, // <3,0,1,1>: Cost 3 vext3 LHS, <0,1,1,0>
+ 537706598U, // <3,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2624766936U, // <3,0,1,3>: Cost 3 vext2 <1,2,3,0>, <1,3,1,3>
+ 1490341174U, // <3,0,1,4>: Cost 2 vext1 <2,3,0,1>, RHS
+ 2624767120U, // <3,0,1,5>: Cost 3 vext2 <1,2,3,0>, <1,5,3,7>
+ 2732966030U, // <3,0,1,6>: Cost 3 vext3 LHS, <0,1,6,7>
+ 2593944803U, // <3,0,1,7>: Cost 3 vext1 <7,3,0,1>, <7,3,0,1>
+ 537706652U, // <3,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685632684U, // <3,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 2685632692U, // <3,0,2,2>: Cost 3 vext3 LHS, <0,2,2,0>
+ 2685632702U, // <3,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611890892U, // <3,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2732966102U, // <3,0,2,5>: Cost 3 vext3 LHS, <0,2,5,7>
+ 2624767930U, // <3,0,2,6>: Cost 3 vext2 <1,2,3,0>, <2,6,3,7>
+ 2685632744U, // <3,0,2,7>: Cost 3 vext3 LHS, <0,2,7,7>
+ 1611890924U, // <3,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2624768150U, // <3,0,3,0>: Cost 3 vext2 <1,2,3,0>, <3,0,1,2>
+ 2685632764U, // <3,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 2685632774U, // <3,0,3,2>: Cost 3 vext3 LHS, <0,3,2,1>
+ 2624768412U, // <3,0,3,3>: Cost 3 vext2 <1,2,3,0>, <3,3,3,3>
+ 2624768514U, // <3,0,3,4>: Cost 3 vext2 <1,2,3,0>, <3,4,5,6>
+ 3702491714U, // <3,0,3,5>: Cost 4 vext2 <1,u,3,0>, <3,5,3,7>
+ 2624768632U, // <3,0,3,6>: Cost 3 vext2 <1,2,3,0>, <3,6,0,7>
+ 3702491843U, // <3,0,3,7>: Cost 4 vext2 <1,u,3,0>, <3,7,0,1>
+ 2686959934U, // <3,0,3,u>: Cost 3 vext3 <0,3,u,3>, <0,3,u,3>
+ 2689835336U, // <3,0,4,0>: Cost 3 vext3 LHS, <0,4,0,4>
+ 1611891026U, // <3,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611891036U, // <3,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3763577184U, // <3,0,4,3>: Cost 4 vext3 LHS, <0,4,3,1>
+ 2689835374U, // <3,0,4,4>: Cost 3 vext3 LHS, <0,4,4,6>
+ 1551027510U, // <3,0,4,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2666573172U, // <3,0,4,6>: Cost 3 vext2 <u,2,3,0>, <4,6,4,6>
+ 3667711206U, // <3,0,4,7>: Cost 4 vext1 <7,3,0,4>, <7,3,0,4>
+ 1616093586U, // <3,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2685190556U, // <3,0,5,0>: Cost 3 vext3 LHS, <0,5,0,7>
+ 2666573520U, // <3,0,5,1>: Cost 3 vext2 <u,2,3,0>, <5,1,7,3>
+ 3040886886U, // <3,0,5,2>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 3625912834U, // <3,0,5,3>: Cost 4 vext1 <0,3,0,5>, <3,4,5,6>
+ 2666573766U, // <3,0,5,4>: Cost 3 vext2 <u,2,3,0>, <5,4,7,6>
+ 2666573828U, // <3,0,5,5>: Cost 3 vext2 <u,2,3,0>, <5,5,5,5>
+ 2732966354U, // <3,0,5,6>: Cost 3 vext3 LHS, <0,5,6,7>
+ 2666573992U, // <3,0,5,7>: Cost 3 vext2 <u,2,3,0>, <5,7,5,7>
+ 3040886940U, // <3,0,5,u>: Cost 3 vtrnl <3,4,5,6>, LHS
+ 2685190637U, // <3,0,6,0>: Cost 3 vext3 LHS, <0,6,0,7>
+ 2732966390U, // <3,0,6,1>: Cost 3 vext3 LHS, <0,6,1,7>
+ 2689835519U, // <3,0,6,2>: Cost 3 vext3 LHS, <0,6,2,7>
+ 3667724438U, // <3,0,6,3>: Cost 4 vext1 <7,3,0,6>, <3,0,1,2>
+ 3763577355U, // <3,0,6,4>: Cost 4 vext3 LHS, <0,6,4,1>
+ 3806708243U, // <3,0,6,5>: Cost 4 vext3 LHS, <0,6,5,0>
+ 2666574648U, // <3,0,6,6>: Cost 3 vext2 <u,2,3,0>, <6,6,6,6>
+ 2657948520U, // <3,0,6,7>: Cost 3 vext2 <6,7,3,0>, <6,7,3,0>
+ 2689835573U, // <3,0,6,u>: Cost 3 vext3 LHS, <0,6,u,7>
+ 2666574842U, // <3,0,7,0>: Cost 3 vext2 <u,2,3,0>, <7,0,1,2>
+ 2685633095U, // <3,0,7,1>: Cost 3 vext3 LHS, <0,7,1,7>
+ 2660603052U, // <3,0,7,2>: Cost 3 vext2 <7,2,3,0>, <7,2,3,0>
+ 3643844997U, // <3,0,7,3>: Cost 4 vext1 <3,3,0,7>, <3,3,0,7>
+ 2666575206U, // <3,0,7,4>: Cost 3 vext2 <u,2,3,0>, <7,4,5,6>
+ 3655790391U, // <3,0,7,5>: Cost 4 vext1 <5,3,0,7>, <5,3,0,7>
+ 3731690968U, // <3,0,7,6>: Cost 4 vext2 <6,7,3,0>, <7,6,0,3>
+ 2666575468U, // <3,0,7,7>: Cost 3 vext2 <u,2,3,0>, <7,7,7,7>
+ 2664584850U, // <3,0,7,u>: Cost 3 vext2 <7,u,3,0>, <7,u,3,0>
+ 1616093834U, // <3,0,u,0>: Cost 2 vext3 LHS, <0,u,0,2>
+ 1611891346U, // <3,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537707165U, // <3,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2689835684U, // <3,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1616093874U, // <3,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551030426U, // <3,0,u,5>: Cost 2 vext2 <1,2,3,0>, RHS
+ 2624772304U, // <3,0,u,6>: Cost 3 vext2 <1,2,3,0>, <u,6,3,7>
+ 2594002154U, // <3,0,u,7>: Cost 3 vext1 <7,3,0,u>, <7,3,0,u>
+ 537707219U, // <3,0,u,u>: Cost 1 vext3 LHS, LHS
+ 2552201318U, // <3,1,0,0>: Cost 3 vext1 <0,3,1,0>, LHS
+ 2618802278U, // <3,1,0,1>: Cost 3 vext2 <0,2,3,1>, LHS
+ 2618802366U, // <3,1,0,2>: Cost 3 vext2 <0,2,3,1>, <0,2,3,1>
+ 1611449078U, // <3,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2552204598U, // <3,1,0,4>: Cost 3 vext1 <0,3,1,0>, RHS
+ 2732966663U, // <3,1,0,5>: Cost 3 vext3 LHS, <1,0,5,1>
+ 3906258396U, // <3,1,0,6>: Cost 4 vuzpr <2,3,0,1>, <2,0,4,6>
+ 3667752171U, // <3,1,0,7>: Cost 4 vext1 <7,3,1,0>, <7,3,1,0>
+ 1611891491U, // <3,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 2689835819U, // <3,1,1,0>: Cost 3 vext3 LHS, <1,1,0,1>
+ 1611449140U, // <3,1,1,1>: Cost 2 vext3 LHS, <1,1,1,1>
+ 2624775063U, // <3,1,1,2>: Cost 3 vext2 <1,2,3,1>, <1,2,3,1>
+ 1611891528U, // <3,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 2689835859U, // <3,1,1,4>: Cost 3 vext3 LHS, <1,1,4,5>
+ 2689835868U, // <3,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 3763577701U, // <3,1,1,6>: Cost 4 vext3 LHS, <1,1,6,5>
+ 3765273452U, // <3,1,1,7>: Cost 4 vext3 <1,1,7,3>, <1,1,7,3>
+ 1611891573U, // <3,1,1,u>: Cost 2 vext3 LHS, <1,1,u,3>
+ 2629420494U, // <3,1,2,0>: Cost 3 vext2 <2,0,3,1>, <2,0,3,1>
+ 2689835911U, // <3,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2564163248U, // <3,1,2,2>: Cost 3 vext1 <2,3,1,2>, <2,3,1,2>
+ 1611449238U, // <3,1,2,3>: Cost 2 vext3 LHS, <1,2,3,0>
+ 2564164918U, // <3,1,2,4>: Cost 3 vext1 <2,3,1,2>, RHS
+ 2689835947U, // <3,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 3692545978U, // <3,1,2,6>: Cost 4 vext2 <0,2,3,1>, <2,6,3,7>
+ 2732966842U, // <3,1,2,7>: Cost 3 vext3 LHS, <1,2,7,0>
+ 1611891651U, // <3,1,2,u>: Cost 2 vext3 LHS, <1,2,u,0>
+ 1484456038U, // <3,1,3,0>: Cost 2 vext1 <1,3,1,3>, LHS
+ 1611891672U, // <3,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685633502U, // <3,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2685633512U, // <3,1,3,3>: Cost 3 vext3 LHS, <1,3,3,1>
+ 1484459318U, // <3,1,3,4>: Cost 2 vext1 <1,3,1,3>, RHS
+ 1611891712U, // <3,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2689836041U, // <3,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2733409294U, // <3,1,3,7>: Cost 3 vext3 LHS, <1,3,7,3>
+ 1611891735U, // <3,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 2552234086U, // <3,1,4,0>: Cost 3 vext1 <0,3,1,4>, LHS
+ 2732966955U, // <3,1,4,1>: Cost 3 vext3 LHS, <1,4,1,5>
+ 2732966964U, // <3,1,4,2>: Cost 3 vext3 LHS, <1,4,2,5>
+ 2685633597U, // <3,1,4,3>: Cost 3 vext3 LHS, <1,4,3,5>
+ 2552237366U, // <3,1,4,4>: Cost 3 vext1 <0,3,1,4>, RHS
+ 2618805558U, // <3,1,4,5>: Cost 3 vext2 <0,2,3,1>, RHS
+ 2769472822U, // <3,1,4,6>: Cost 3 vuzpl <3,0,1,2>, RHS
+ 3667784943U, // <3,1,4,7>: Cost 4 vext1 <7,3,1,4>, <7,3,1,4>
+ 2685633642U, // <3,1,4,u>: Cost 3 vext3 LHS, <1,4,u,5>
+ 2689836143U, // <3,1,5,0>: Cost 3 vext3 LHS, <1,5,0,1>
+ 2564187280U, // <3,1,5,1>: Cost 3 vext1 <2,3,1,5>, <1,5,3,7>
+ 2564187827U, // <3,1,5,2>: Cost 3 vext1 <2,3,1,5>, <2,3,1,5>
+ 1611891856U, // <3,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 2689836183U, // <3,1,5,4>: Cost 3 vext3 LHS, <1,5,4,5>
+ 3759375522U, // <3,1,5,5>: Cost 4 vext3 LHS, <1,5,5,7>
+ 3720417378U, // <3,1,5,6>: Cost 4 vext2 <4,u,3,1>, <5,6,7,0>
+ 2832518454U, // <3,1,5,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611891901U, // <3,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 3763578048U, // <3,1,6,0>: Cost 4 vext3 LHS, <1,6,0,1>
+ 2689836239U, // <3,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2732967128U, // <3,1,6,2>: Cost 3 vext3 LHS, <1,6,2,7>
+ 2685633761U, // <3,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 3763578088U, // <3,1,6,4>: Cost 4 vext3 LHS, <1,6,4,5>
+ 2689836275U, // <3,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 3763578108U, // <3,1,6,6>: Cost 4 vext3 LHS, <1,6,6,7>
+ 2732967166U, // <3,1,6,7>: Cost 3 vext3 LHS, <1,6,7,0>
+ 2685633806U, // <3,1,6,u>: Cost 3 vext3 LHS, <1,6,u,7>
+ 3631972454U, // <3,1,7,0>: Cost 4 vext1 <1,3,1,7>, LHS
+ 2659947612U, // <3,1,7,1>: Cost 3 vext2 <7,1,3,1>, <7,1,3,1>
+ 4036102294U, // <3,1,7,2>: Cost 4 vzipr <1,5,3,7>, <3,0,1,2>
+ 3095396454U, // <3,1,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 3631975734U, // <3,1,7,4>: Cost 4 vext1 <1,3,1,7>, RHS
+ 2222982144U, // <3,1,7,5>: Cost 3 vrev <1,3,5,7>
+ 3296797705U, // <3,1,7,6>: Cost 4 vrev <1,3,6,7>
+ 3720418924U, // <3,1,7,7>: Cost 4 vext2 <4,u,3,1>, <7,7,7,7>
+ 3095396459U, // <3,1,7,u>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1484496998U, // <3,1,u,0>: Cost 2 vext1 <1,3,1,u>, LHS
+ 1611892077U, // <3,1,u,1>: Cost 2 vext3 LHS, <1,u,1,3>
+ 2685633907U, // <3,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 1611892092U, // <3,1,u,3>: Cost 2 vext3 LHS, <1,u,3,0>
+ 1484500278U, // <3,1,u,4>: Cost 2 vext1 <1,3,1,u>, RHS
+ 1611892117U, // <3,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685633950U, // <3,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 2832518697U, // <3,1,u,7>: Cost 3 vuzpr <2,3,0,1>, RHS
+ 1611892140U, // <3,1,u,u>: Cost 2 vext3 LHS, <1,u,u,3>
+ 2623455232U, // <3,2,0,0>: Cost 3 vext2 <1,0,3,2>, <0,0,0,0>
+ 1549713510U, // <3,2,0,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 2689836484U, // <3,2,0,2>: Cost 3 vext3 LHS, <2,0,2,0>
+ 2685633997U, // <3,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2623455570U, // <3,2,0,4>: Cost 3 vext2 <1,0,3,2>, <0,4,1,5>
+ 2732967398U, // <3,2,0,5>: Cost 3 vext3 LHS, <2,0,5,7>
+ 2689836524U, // <3,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2229044964U, // <3,2,0,7>: Cost 3 vrev <2,3,7,0>
+ 1549714077U, // <3,2,0,u>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1549714166U, // <3,2,1,0>: Cost 2 vext2 <1,0,3,2>, <1,0,3,2>
+ 2623456052U, // <3,2,1,1>: Cost 3 vext2 <1,0,3,2>, <1,1,1,1>
+ 2623456150U, // <3,2,1,2>: Cost 3 vext2 <1,0,3,2>, <1,2,3,0>
+ 2685634079U, // <3,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2552286518U, // <3,2,1,4>: Cost 3 vext1 <0,3,2,1>, RHS
+ 2623456400U, // <3,2,1,5>: Cost 3 vext2 <1,0,3,2>, <1,5,3,7>
+ 2689836604U, // <3,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 3667834101U, // <3,2,1,7>: Cost 4 vext1 <7,3,2,1>, <7,3,2,1>
+ 1155385070U, // <3,2,1,u>: Cost 2 vrev <2,3,u,1>
+ 2689836629U, // <3,2,2,0>: Cost 3 vext3 LHS, <2,2,0,1>
+ 2689836640U, // <3,2,2,1>: Cost 3 vext3 LHS, <2,2,1,3>
+ 1611449960U, // <3,2,2,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892338U, // <3,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 2689836669U, // <3,2,2,4>: Cost 3 vext3 LHS, <2,2,4,5>
+ 2689836680U, // <3,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2689836688U, // <3,2,2,6>: Cost 3 vext3 LHS, <2,2,6,6>
+ 3763578518U, // <3,2,2,7>: Cost 4 vext3 LHS, <2,2,7,3>
+ 1611892383U, // <3,2,2,u>: Cost 2 vext3 LHS, <2,2,u,3>
+ 1611450022U, // <3,2,3,0>: Cost 2 vext3 LHS, <2,3,0,1>
+ 2685191854U, // <3,2,3,1>: Cost 3 vext3 LHS, <2,3,1,0>
+ 2685191865U, // <3,2,3,2>: Cost 3 vext3 LHS, <2,3,2,2>
+ 2685191875U, // <3,2,3,3>: Cost 3 vext3 LHS, <2,3,3,3>
+ 1611450062U, // <3,2,3,4>: Cost 2 vext3 LHS, <2,3,4,5>
+ 2732967635U, // <3,2,3,5>: Cost 3 vext3 LHS, <2,3,5,1>
+ 2732967645U, // <3,2,3,6>: Cost 3 vext3 LHS, <2,3,6,2>
+ 2732967652U, // <3,2,3,7>: Cost 3 vext3 LHS, <2,3,7,0>
+ 1611450094U, // <3,2,3,u>: Cost 2 vext3 LHS, <2,3,u,1>
+ 2558279782U, // <3,2,4,0>: Cost 3 vext1 <1,3,2,4>, LHS
+ 2558280602U, // <3,2,4,1>: Cost 3 vext1 <1,3,2,4>, <1,2,3,4>
+ 2732967692U, // <3,2,4,2>: Cost 3 vext3 LHS, <2,4,2,4>
+ 2685634326U, // <3,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2558283062U, // <3,2,4,4>: Cost 3 vext1 <1,3,2,4>, RHS
+ 1549716790U, // <3,2,4,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689836844U, // <3,2,4,6>: Cost 3 vext3 LHS, <2,4,6,0>
+ 2229077736U, // <3,2,4,7>: Cost 3 vrev <2,3,7,4>
+ 1549717033U, // <3,2,4,u>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2552316006U, // <3,2,5,0>: Cost 3 vext1 <0,3,2,5>, LHS
+ 2228643507U, // <3,2,5,1>: Cost 3 vrev <2,3,1,5>
+ 2689836896U, // <3,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685634408U, // <3,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1155122894U, // <3,2,5,4>: Cost 2 vrev <2,3,4,5>
+ 2665263108U, // <3,2,5,5>: Cost 3 vext2 <u,0,3,2>, <5,5,5,5>
+ 2689836932U, // <3,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2665263272U, // <3,2,5,7>: Cost 3 vext2 <u,0,3,2>, <5,7,5,7>
+ 1155417842U, // <3,2,5,u>: Cost 2 vrev <2,3,u,5>
+ 2689836953U, // <3,2,6,0>: Cost 3 vext3 LHS, <2,6,0,1>
+ 2689836964U, // <3,2,6,1>: Cost 3 vext3 LHS, <2,6,1,3>
+ 2689836976U, // <3,2,6,2>: Cost 3 vext3 LHS, <2,6,2,6>
+ 1611892666U, // <3,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 2689836993U, // <3,2,6,4>: Cost 3 vext3 LHS, <2,6,4,5>
+ 2689837004U, // <3,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689837013U, // <3,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2665263950U, // <3,2,6,7>: Cost 3 vext2 <u,0,3,2>, <6,7,0,1>
+ 1611892711U, // <3,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 2665264122U, // <3,2,7,0>: Cost 3 vext2 <u,0,3,2>, <7,0,1,2>
+ 2623460419U, // <3,2,7,1>: Cost 3 vext2 <1,0,3,2>, <7,1,0,3>
+ 4169138340U, // <3,2,7,2>: Cost 4 vtrnr <1,3,5,7>, <0,2,0,2>
+ 2962358374U, // <3,2,7,3>: Cost 3 vzipr <1,5,3,7>, LHS
+ 2665264486U, // <3,2,7,4>: Cost 3 vext2 <u,0,3,2>, <7,4,5,6>
+ 2228954841U, // <3,2,7,5>: Cost 3 vrev <2,3,5,7>
+ 2229028578U, // <3,2,7,6>: Cost 3 vrev <2,3,6,7>
+ 2665264748U, // <3,2,7,7>: Cost 3 vext2 <u,0,3,2>, <7,7,7,7>
+ 2962358379U, // <3,2,7,u>: Cost 3 vzipr <1,5,3,7>, LHS
+ 1611892795U, // <3,2,u,0>: Cost 2 vext3 LHS, <2,u,0,1>
+ 1549719342U, // <3,2,u,1>: Cost 2 vext2 <1,0,3,2>, LHS
+ 1611449960U, // <3,2,u,2>: Cost 2 vext3 LHS, <2,2,2,2>
+ 1611892824U, // <3,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 1611892835U, // <3,2,u,4>: Cost 2 vext3 LHS, <2,u,4,5>
+ 1549719706U, // <3,2,u,5>: Cost 2 vext2 <1,0,3,2>, RHS
+ 2689837168U, // <3,2,u,6>: Cost 3 vext3 LHS, <2,u,6,0>
+ 2665265408U, // <3,2,u,7>: Cost 3 vext2 <u,0,3,2>, <u,7,0,1>
+ 1611892867U, // <3,2,u,u>: Cost 2 vext3 LHS, <2,u,u,1>
+ 2685192331U, // <3,3,0,0>: Cost 3 vext3 LHS, <3,0,0,0>
+ 1611450518U, // <3,3,0,1>: Cost 2 vext3 LHS, <3,0,1,2>
+ 2685634717U, // <3,3,0,2>: Cost 3 vext3 LHS, <3,0,2,0>
+ 2564294806U, // <3,3,0,3>: Cost 3 vext1 <2,3,3,0>, <3,0,1,2>
+ 2685634736U, // <3,3,0,4>: Cost 3 vext3 LHS, <3,0,4,1>
+ 2732968122U, // <3,3,0,5>: Cost 3 vext3 LHS, <3,0,5,2>
+ 3763579075U, // <3,3,0,6>: Cost 4 vext3 LHS, <3,0,6,2>
+ 4034053264U, // <3,3,0,7>: Cost 4 vzipr <1,2,3,0>, <1,5,3,7>
+ 1611450581U, // <3,3,0,u>: Cost 2 vext3 LHS, <3,0,u,2>
+ 2685192415U, // <3,3,1,0>: Cost 3 vext3 LHS, <3,1,0,3>
+ 1550385992U, // <3,3,1,1>: Cost 2 vext2 <1,1,3,3>, <1,1,3,3>
+ 2685192433U, // <3,3,1,2>: Cost 3 vext3 LHS, <3,1,2,3>
+ 2685634808U, // <3,3,1,3>: Cost 3 vext3 LHS, <3,1,3,1>
+ 2558332214U, // <3,3,1,4>: Cost 3 vext1 <1,3,3,1>, RHS
+ 2685634828U, // <3,3,1,5>: Cost 3 vext3 LHS, <3,1,5,3>
+ 3759376661U, // <3,3,1,6>: Cost 4 vext3 LHS, <3,1,6,3>
+ 2703477022U, // <3,3,1,7>: Cost 3 vext3 <3,1,7,3>, <3,1,7,3>
+ 1555031423U, // <3,3,1,u>: Cost 2 vext2 <1,u,3,3>, <1,u,3,3>
+ 2564309094U, // <3,3,2,0>: Cost 3 vext1 <2,3,3,2>, LHS
+ 2630100513U, // <3,3,2,1>: Cost 3 vext2 <2,1,3,3>, <2,1,3,3>
+ 1557022322U, // <3,3,2,2>: Cost 2 vext2 <2,2,3,3>, <2,2,3,3>
+ 2685192520U, // <3,3,2,3>: Cost 3 vext3 LHS, <3,2,3,0>
+ 2564312374U, // <3,3,2,4>: Cost 3 vext1 <2,3,3,2>, RHS
+ 2732968286U, // <3,3,2,5>: Cost 3 vext3 LHS, <3,2,5,4>
+ 2685634918U, // <3,3,2,6>: Cost 3 vext3 LHS, <3,2,6,3>
+ 2704140655U, // <3,3,2,7>: Cost 3 vext3 <3,2,7,3>, <3,2,7,3>
+ 1561004120U, // <3,3,2,u>: Cost 2 vext2 <2,u,3,3>, <2,u,3,3>
+ 1496547430U, // <3,3,3,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 2624129256U, // <3,3,3,1>: Cost 3 vext2 <1,1,3,3>, <3,1,1,3>
+ 2630764866U, // <3,3,3,2>: Cost 3 vext2 <2,2,3,3>, <3,2,2,3>
+ 336380006U, // <3,3,3,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,3,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 2732968368U, // <3,3,3,5>: Cost 3 vext3 LHS, <3,3,5,5>
+ 2624129683U, // <3,3,3,6>: Cost 3 vext2 <1,1,3,3>, <3,6,3,7>
+ 2594182400U, // <3,3,3,7>: Cost 3 vext1 <7,3,3,3>, <7,3,3,3>
+ 336380006U, // <3,3,3,u>: Cost 1 vdup3 LHS
+ 2558353510U, // <3,3,4,0>: Cost 3 vext1 <1,3,3,4>, LHS
+ 2558354411U, // <3,3,4,1>: Cost 3 vext1 <1,3,3,4>, <1,3,3,4>
+ 2564327108U, // <3,3,4,2>: Cost 3 vext1 <2,3,3,4>, <2,3,3,4>
+ 2564327938U, // <3,3,4,3>: Cost 3 vext1 <2,3,3,4>, <3,4,5,6>
+ 2960343962U, // <3,3,4,4>: Cost 3 vzipr <1,2,3,4>, <1,2,3,4>
+ 1611893250U, // <3,3,4,5>: Cost 2 vext3 LHS, <3,4,5,6>
+ 2771619126U, // <3,3,4,6>: Cost 3 vuzpl <3,3,3,3>, RHS
+ 4034086032U, // <3,3,4,7>: Cost 4 vzipr <1,2,3,4>, <1,5,3,7>
+ 1611893277U, // <3,3,4,u>: Cost 2 vext3 LHS, <3,4,u,6>
+ 2558361702U, // <3,3,5,0>: Cost 3 vext1 <1,3,3,5>, LHS
+ 2558362604U, // <3,3,5,1>: Cost 3 vext1 <1,3,3,5>, <1,3,3,5>
+ 2558363342U, // <3,3,5,2>: Cost 3 vext1 <1,3,3,5>, <2,3,4,5>
+ 2732968512U, // <3,3,5,3>: Cost 3 vext3 LHS, <3,5,3,5>
+ 2558364982U, // <3,3,5,4>: Cost 3 vext1 <1,3,3,5>, RHS
+ 3101279950U, // <3,3,5,5>: Cost 3 vtrnr <2,3,4,5>, <2,3,4,5>
+ 2665934946U, // <3,3,5,6>: Cost 3 vext2 <u,1,3,3>, <5,6,7,0>
+ 2826636598U, // <3,3,5,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2826636599U, // <3,3,5,u>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 2732968568U, // <3,3,6,0>: Cost 3 vext3 LHS, <3,6,0,7>
+ 3763579521U, // <3,3,6,1>: Cost 4 vext3 LHS, <3,6,1,7>
+ 2732968586U, // <3,3,6,2>: Cost 3 vext3 LHS, <3,6,2,7>
+ 2732968595U, // <3,3,6,3>: Cost 3 vext3 LHS, <3,6,3,7>
+ 2732968604U, // <3,3,6,4>: Cost 3 vext3 LHS, <3,6,4,7>
+ 3763579557U, // <3,3,6,5>: Cost 4 vext3 LHS, <3,6,5,7>
+ 2732968621U, // <3,3,6,6>: Cost 3 vext3 LHS, <3,6,6,6>
+ 2657973099U, // <3,3,6,7>: Cost 3 vext2 <6,7,3,3>, <6,7,3,3>
+ 2658636732U, // <3,3,6,u>: Cost 3 vext2 <6,u,3,3>, <6,u,3,3>
+ 2558378086U, // <3,3,7,0>: Cost 3 vext1 <1,3,3,7>, LHS
+ 2558378990U, // <3,3,7,1>: Cost 3 vext1 <1,3,3,7>, <1,3,3,7>
+ 2564351687U, // <3,3,7,2>: Cost 3 vext1 <2,3,3,7>, <2,3,3,7>
+ 2661291264U, // <3,3,7,3>: Cost 3 vext2 <7,3,3,3>, <7,3,3,3>
+ 2558381366U, // <3,3,7,4>: Cost 3 vext1 <1,3,3,7>, RHS
+ 2732968694U, // <3,3,7,5>: Cost 3 vext3 LHS, <3,7,5,7>
+ 3781126907U, // <3,3,7,6>: Cost 4 vext3 <3,7,6,3>, <3,7,6,3>
+ 3095397376U, // <3,3,7,7>: Cost 3 vtrnr <1,3,5,7>, <1,3,5,7>
+ 2558383918U, // <3,3,7,u>: Cost 3 vext1 <1,3,3,7>, LHS
+ 1496547430U, // <3,3,u,0>: Cost 2 vext1 <3,3,3,3>, LHS
+ 1611893534U, // <3,3,u,1>: Cost 2 vext3 LHS, <3,u,1,2>
+ 1592858504U, // <3,3,u,2>: Cost 2 vext2 <u,2,3,3>, <u,2,3,3>
+ 336380006U, // <3,3,u,3>: Cost 1 vdup3 LHS
+ 1496550710U, // <3,3,u,4>: Cost 2 vext1 <3,3,3,3>, RHS
+ 1611893574U, // <3,3,u,5>: Cost 2 vext3 LHS, <3,u,5,6>
+ 2690280268U, // <3,3,u,6>: Cost 3 vext3 LHS, <3,u,6,3>
+ 2826636841U, // <3,3,u,7>: Cost 3 vuzpr <1,3,1,3>, RHS
+ 336380006U, // <3,3,u,u>: Cost 1 vdup3 LHS
+ 2624798720U, // <3,4,0,0>: Cost 3 vext2 <1,2,3,4>, <0,0,0,0>
+ 1551056998U, // <3,4,0,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624798884U, // <3,4,0,2>: Cost 3 vext2 <1,2,3,4>, <0,2,0,2>
+ 3693232384U, // <3,4,0,3>: Cost 4 vext2 <0,3,3,4>, <0,3,1,4>
+ 2624799058U, // <3,4,0,4>: Cost 3 vext2 <1,2,3,4>, <0,4,1,5>
+ 1659227026U, // <3,4,0,5>: Cost 2 vext3 LHS, <4,0,5,1>
+ 1659227036U, // <3,4,0,6>: Cost 2 vext3 LHS, <4,0,6,2>
+ 3667973382U, // <3,4,0,7>: Cost 4 vext1 <7,3,4,0>, <7,3,4,0>
+ 1551057565U, // <3,4,0,u>: Cost 2 vext2 <1,2,3,4>, LHS
+ 2624799478U, // <3,4,1,0>: Cost 3 vext2 <1,2,3,4>, <1,0,3,2>
+ 2624799540U, // <3,4,1,1>: Cost 3 vext2 <1,2,3,4>, <1,1,1,1>
+ 1551057818U, // <3,4,1,2>: Cost 2 vext2 <1,2,3,4>, <1,2,3,4>
+ 2624799704U, // <3,4,1,3>: Cost 3 vext2 <1,2,3,4>, <1,3,1,3>
+ 2564377910U, // <3,4,1,4>: Cost 3 vext1 <2,3,4,1>, RHS
+ 2689838050U, // <3,4,1,5>: Cost 3 vext3 LHS, <4,1,5,0>
+ 2689838062U, // <3,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2628117807U, // <3,4,1,7>: Cost 3 vext2 <1,7,3,4>, <1,7,3,4>
+ 1555039616U, // <3,4,1,u>: Cost 2 vext2 <1,u,3,4>, <1,u,3,4>
+ 3626180710U, // <3,4,2,0>: Cost 4 vext1 <0,3,4,2>, LHS
+ 2624800298U, // <3,4,2,1>: Cost 3 vext2 <1,2,3,4>, <2,1,4,3>
+ 2624800360U, // <3,4,2,2>: Cost 3 vext2 <1,2,3,4>, <2,2,2,2>
+ 2624800422U, // <3,4,2,3>: Cost 3 vext2 <1,2,3,4>, <2,3,0,1>
+ 2624800514U, // <3,4,2,4>: Cost 3 vext2 <1,2,3,4>, <2,4,1,3>
+ 2709965878U, // <3,4,2,5>: Cost 3 vext3 <4,2,5,3>, <4,2,5,3>
+ 2689838140U, // <3,4,2,6>: Cost 3 vext3 LHS, <4,2,6,0>
+ 2634090504U, // <3,4,2,7>: Cost 3 vext2 <2,7,3,4>, <2,7,3,4>
+ 2689838158U, // <3,4,2,u>: Cost 3 vext3 LHS, <4,2,u,0>
+ 2624800918U, // <3,4,3,0>: Cost 3 vext2 <1,2,3,4>, <3,0,1,2>
+ 2636081403U, // <3,4,3,1>: Cost 3 vext2 <3,1,3,4>, <3,1,3,4>
+ 2636745036U, // <3,4,3,2>: Cost 3 vext2 <3,2,3,4>, <3,2,3,4>
+ 2624801180U, // <3,4,3,3>: Cost 3 vext2 <1,2,3,4>, <3,3,3,3>
+ 2624801232U, // <3,4,3,4>: Cost 3 vext2 <1,2,3,4>, <3,4,0,1>
+ 2905836854U, // <3,4,3,5>: Cost 3 vzipl <3,3,3,3>, RHS
+ 3040054582U, // <3,4,3,6>: Cost 3 vtrnl <3,3,3,3>, RHS
+ 3702524611U, // <3,4,3,7>: Cost 4 vext2 <1,u,3,4>, <3,7,0,1>
+ 2624801566U, // <3,4,3,u>: Cost 3 vext2 <1,2,3,4>, <3,u,1,2>
+ 2564399206U, // <3,4,4,0>: Cost 3 vext1 <2,3,4,4>, LHS
+ 2564400026U, // <3,4,4,1>: Cost 3 vext1 <2,3,4,4>, <1,2,3,4>
+ 2564400845U, // <3,4,4,2>: Cost 3 vext1 <2,3,4,4>, <2,3,4,4>
+ 2570373542U, // <3,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 1659227344U, // <3,4,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1551060278U, // <3,4,4,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1659227364U, // <3,4,4,6>: Cost 2 vext3 LHS, <4,4,6,6>
+ 3668006154U, // <3,4,4,7>: Cost 4 vext1 <7,3,4,4>, <7,3,4,4>
+ 1551060521U, // <3,4,4,u>: Cost 2 vext2 <1,2,3,4>, RHS
+ 1490665574U, // <3,4,5,0>: Cost 2 vext1 <2,3,4,5>, LHS
+ 2689838341U, // <3,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1490667214U, // <3,4,5,2>: Cost 2 vext1 <2,3,4,5>, <2,3,4,5>
+ 2564409494U, // <3,4,5,3>: Cost 3 vext1 <2,3,4,5>, <3,0,1,2>
+ 1490668854U, // <3,4,5,4>: Cost 2 vext1 <2,3,4,5>, RHS
+ 2689838381U, // <3,4,5,5>: Cost 3 vext3 LHS, <4,5,5,7>
+ 537709878U, // <3,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2594272523U, // <3,4,5,7>: Cost 3 vext1 <7,3,4,5>, <7,3,4,5>
+ 537709896U, // <3,4,5,u>: Cost 1 vext3 LHS, RHS
+ 2689838411U, // <3,4,6,0>: Cost 3 vext3 LHS, <4,6,0,1>
+ 2558444534U, // <3,4,6,1>: Cost 3 vext1 <1,3,4,6>, <1,3,4,6>
+ 2666607098U, // <3,4,6,2>: Cost 3 vext2 <u,2,3,4>, <6,2,7,3>
+ 2558446082U, // <3,4,6,3>: Cost 3 vext1 <1,3,4,6>, <3,4,5,6>
+ 1659227508U, // <3,4,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2689838462U, // <3,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 2689838471U, // <3,4,6,6>: Cost 3 vext3 LHS, <4,6,6,7>
+ 2657981292U, // <3,4,6,7>: Cost 3 vext2 <6,7,3,4>, <6,7,3,4>
+ 1659227540U, // <3,4,6,u>: Cost 2 vext3 LHS, <4,6,u,2>
+ 2666607610U, // <3,4,7,0>: Cost 3 vext2 <u,2,3,4>, <7,0,1,2>
+ 3702527072U, // <3,4,7,1>: Cost 4 vext2 <1,u,3,4>, <7,1,3,5>
+ 2660635824U, // <3,4,7,2>: Cost 3 vext2 <7,2,3,4>, <7,2,3,4>
+ 3644139945U, // <3,4,7,3>: Cost 4 vext1 <3,3,4,7>, <3,3,4,7>
+ 2666607974U, // <3,4,7,4>: Cost 3 vext2 <u,2,3,4>, <7,4,5,6>
+ 2732969416U, // <3,4,7,5>: Cost 3 vext3 LHS, <4,7,5,0>
+ 2732969425U, // <3,4,7,6>: Cost 3 vext3 LHS, <4,7,6,0>
+ 2666608236U, // <3,4,7,7>: Cost 3 vext2 <u,2,3,4>, <7,7,7,7>
+ 2664617622U, // <3,4,7,u>: Cost 3 vext2 <7,u,3,4>, <7,u,3,4>
+ 1490690150U, // <3,4,u,0>: Cost 2 vext1 <2,3,4,u>, LHS
+ 1551062830U, // <3,4,u,1>: Cost 2 vext2 <1,2,3,4>, LHS
+ 1490691793U, // <3,4,u,2>: Cost 2 vext1 <2,3,4,u>, <2,3,4,u>
+ 2624804796U, // <3,4,u,3>: Cost 3 vext2 <1,2,3,4>, <u,3,0,1>
+ 1490693430U, // <3,4,u,4>: Cost 2 vext1 <2,3,4,u>, RHS
+ 1551063194U, // <3,4,u,5>: Cost 2 vext2 <1,2,3,4>, RHS
+ 537710121U, // <3,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2594297102U, // <3,4,u,7>: Cost 3 vext1 <7,3,4,u>, <7,3,4,u>
+ 537710139U, // <3,4,u,u>: Cost 1 vext3 LHS, RHS
+ 3692576768U, // <3,5,0,0>: Cost 4 vext2 <0,2,3,5>, <0,0,0,0>
+ 2618835046U, // <3,5,0,1>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2618835138U, // <3,5,0,2>: Cost 3 vext2 <0,2,3,5>, <0,2,3,5>
+ 3692577024U, // <3,5,0,3>: Cost 4 vext2 <0,2,3,5>, <0,3,1,4>
+ 2689838690U, // <3,5,0,4>: Cost 3 vext3 LHS, <5,0,4,1>
+ 2732969579U, // <3,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2732969588U, // <3,5,0,6>: Cost 3 vext3 LHS, <5,0,6,1>
+ 2246963055U, // <3,5,0,7>: Cost 3 vrev <5,3,7,0>
+ 2618835613U, // <3,5,0,u>: Cost 3 vext2 <0,2,3,5>, LHS
+ 2594308198U, // <3,5,1,0>: Cost 3 vext1 <7,3,5,1>, LHS
+ 3692577588U, // <3,5,1,1>: Cost 4 vext2 <0,2,3,5>, <1,1,1,1>
+ 2624807835U, // <3,5,1,2>: Cost 3 vext2 <1,2,3,5>, <1,2,3,5>
+ 2625471468U, // <3,5,1,3>: Cost 3 vext2 <1,3,3,5>, <1,3,3,5>
+ 2626135101U, // <3,5,1,4>: Cost 3 vext2 <1,4,3,5>, <1,4,3,5>
+ 2594311888U, // <3,5,1,5>: Cost 3 vext1 <7,3,5,1>, <5,1,7,3>
+ 3699877107U, // <3,5,1,6>: Cost 4 vext2 <1,4,3,5>, <1,6,5,7>
+ 1641680592U, // <3,5,1,7>: Cost 2 vext3 <5,1,7,3>, <5,1,7,3>
+ 1641754329U, // <3,5,1,u>: Cost 2 vext3 <5,1,u,3>, <5,1,u,3>
+ 3692578274U, // <3,5,2,0>: Cost 4 vext2 <0,2,3,5>, <2,0,5,3>
+ 2630116899U, // <3,5,2,1>: Cost 3 vext2 <2,1,3,5>, <2,1,3,5>
+ 3692578408U, // <3,5,2,2>: Cost 4 vext2 <0,2,3,5>, <2,2,2,2>
+ 2625472206U, // <3,5,2,3>: Cost 3 vext2 <1,3,3,5>, <2,3,4,5>
+ 2632107798U, // <3,5,2,4>: Cost 3 vext2 <2,4,3,5>, <2,4,3,5>
+ 2715938575U, // <3,5,2,5>: Cost 3 vext3 <5,2,5,3>, <5,2,5,3>
+ 3692578746U, // <3,5,2,6>: Cost 4 vext2 <0,2,3,5>, <2,6,3,7>
+ 2716086049U, // <3,5,2,7>: Cost 3 vext3 <5,2,7,3>, <5,2,7,3>
+ 2634762330U, // <3,5,2,u>: Cost 3 vext2 <2,u,3,5>, <2,u,3,5>
+ 3692578966U, // <3,5,3,0>: Cost 4 vext2 <0,2,3,5>, <3,0,1,2>
+ 2636089596U, // <3,5,3,1>: Cost 3 vext2 <3,1,3,5>, <3,1,3,5>
+ 3699214668U, // <3,5,3,2>: Cost 4 vext2 <1,3,3,5>, <3,2,3,4>
+ 2638080412U, // <3,5,3,3>: Cost 3 vext2 <3,4,3,5>, <3,3,3,3>
+ 2618837506U, // <3,5,3,4>: Cost 3 vext2 <0,2,3,5>, <3,4,5,6>
+ 2832844494U, // <3,5,3,5>: Cost 3 vuzpr <2,3,4,5>, <2,3,4,5>
+ 4033415682U, // <3,5,3,6>: Cost 4 vzipr <1,1,3,3>, <3,4,5,6>
+ 3095072054U, // <3,5,3,7>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 3095072055U, // <3,5,3,u>: Cost 3 vtrnr <1,3,1,3>, RHS
+ 2600304742U, // <3,5,4,0>: Cost 3 vext1 <u,3,5,4>, LHS
+ 3763580815U, // <3,5,4,1>: Cost 4 vext3 LHS, <5,4,1,5>
+ 2564474582U, // <3,5,4,2>: Cost 3 vext1 <2,3,5,4>, <2,3,5,4>
+ 3699879044U, // <3,5,4,3>: Cost 4 vext2 <1,4,3,5>, <4,3,5,0>
+ 2600308022U, // <3,5,4,4>: Cost 3 vext1 <u,3,5,4>, RHS
+ 2618838326U, // <3,5,4,5>: Cost 3 vext2 <0,2,3,5>, RHS
+ 2772454710U, // <3,5,4,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1659228102U, // <3,5,4,7>: Cost 2 vext3 LHS, <5,4,7,6>
+ 1659228111U, // <3,5,4,u>: Cost 2 vext3 LHS, <5,4,u,6>
+ 2570453094U, // <3,5,5,0>: Cost 3 vext1 <3,3,5,5>, LHS
+ 2624810704U, // <3,5,5,1>: Cost 3 vext2 <1,2,3,5>, <5,1,7,3>
+ 2570454734U, // <3,5,5,2>: Cost 3 vext1 <3,3,5,5>, <2,3,4,5>
+ 2570455472U, // <3,5,5,3>: Cost 3 vext1 <3,3,5,5>, <3,3,5,5>
+ 2570456374U, // <3,5,5,4>: Cost 3 vext1 <3,3,5,5>, RHS
+ 1659228164U, // <3,5,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 2732969998U, // <3,5,5,6>: Cost 3 vext3 LHS, <5,5,6,6>
+ 1659228184U, // <3,5,5,7>: Cost 2 vext3 LHS, <5,5,7,7>
+ 1659228193U, // <3,5,5,u>: Cost 2 vext3 LHS, <5,5,u,7>
+ 2732970020U, // <3,5,6,0>: Cost 3 vext3 LHS, <5,6,0,1>
+ 2732970035U, // <3,5,6,1>: Cost 3 vext3 LHS, <5,6,1,7>
+ 2564490968U, // <3,5,6,2>: Cost 3 vext1 <2,3,5,6>, <2,3,5,6>
+ 2732970050U, // <3,5,6,3>: Cost 3 vext3 LHS, <5,6,3,4>
+ 2732970060U, // <3,5,6,4>: Cost 3 vext3 LHS, <5,6,4,5>
+ 2732970071U, // <3,5,6,5>: Cost 3 vext3 LHS, <5,6,5,7>
+ 2732970080U, // <3,5,6,6>: Cost 3 vext3 LHS, <5,6,6,7>
+ 1659228258U, // <3,5,6,7>: Cost 2 vext3 LHS, <5,6,7,0>
+ 1659228267U, // <3,5,6,u>: Cost 2 vext3 LHS, <5,6,u,0>
+ 1484783718U, // <3,5,7,0>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484784640U, // <3,5,7,1>: Cost 2 vext1 <1,3,5,7>, <1,3,5,7>
+ 2558527080U, // <3,5,7,2>: Cost 3 vext1 <1,3,5,7>, <2,2,2,2>
+ 2558527638U, // <3,5,7,3>: Cost 3 vext1 <1,3,5,7>, <3,0,1,2>
+ 1484786998U, // <3,5,7,4>: Cost 2 vext1 <1,3,5,7>, RHS
+ 1659228328U, // <3,5,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2732970154U, // <3,5,7,6>: Cost 3 vext3 LHS, <5,7,6,0>
+ 2558531180U, // <3,5,7,7>: Cost 3 vext1 <1,3,5,7>, <7,7,7,7>
+ 1484789550U, // <3,5,7,u>: Cost 2 vext1 <1,3,5,7>, LHS
+ 1484791910U, // <3,5,u,0>: Cost 2 vext1 <1,3,5,u>, LHS
+ 1484792833U, // <3,5,u,1>: Cost 2 vext1 <1,3,5,u>, <1,3,5,u>
+ 2558535272U, // <3,5,u,2>: Cost 3 vext1 <1,3,5,u>, <2,2,2,2>
+ 2558535830U, // <3,5,u,3>: Cost 3 vext1 <1,3,5,u>, <3,0,1,2>
+ 1484795190U, // <3,5,u,4>: Cost 2 vext1 <1,3,5,u>, RHS
+ 1659228409U, // <3,5,u,5>: Cost 2 vext3 LHS, <5,u,5,7>
+ 2772457626U, // <3,5,u,6>: Cost 3 vuzpl <3,4,5,6>, RHS
+ 1646326023U, // <3,5,u,7>: Cost 2 vext3 <5,u,7,3>, <5,u,7,3>
+ 1484797742U, // <3,5,u,u>: Cost 2 vext1 <1,3,5,u>, LHS
+ 2558541926U, // <3,6,0,0>: Cost 3 vext1 <1,3,6,0>, LHS
+ 2689839393U, // <3,6,0,1>: Cost 3 vext3 LHS, <6,0,1,2>
+ 2689839404U, // <3,6,0,2>: Cost 3 vext3 LHS, <6,0,2,4>
+ 3706519808U, // <3,6,0,3>: Cost 4 vext2 <2,5,3,6>, <0,3,1,4>
+ 2689839420U, // <3,6,0,4>: Cost 3 vext3 LHS, <6,0,4,2>
+ 2732970314U, // <3,6,0,5>: Cost 3 vext3 LHS, <6,0,5,7>
+ 2732970316U, // <3,6,0,6>: Cost 3 vext3 LHS, <6,0,6,0>
+ 2960313654U, // <3,6,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 2689839456U, // <3,6,0,u>: Cost 3 vext3 LHS, <6,0,u,2>
+ 3763581290U, // <3,6,1,0>: Cost 4 vext3 LHS, <6,1,0,3>
+ 3763581297U, // <3,6,1,1>: Cost 4 vext3 LHS, <6,1,1,1>
+ 2624816028U, // <3,6,1,2>: Cost 3 vext2 <1,2,3,6>, <1,2,3,6>
+ 3763581315U, // <3,6,1,3>: Cost 4 vext3 LHS, <6,1,3,1>
+ 2626143294U, // <3,6,1,4>: Cost 3 vext2 <1,4,3,6>, <1,4,3,6>
+ 3763581335U, // <3,6,1,5>: Cost 4 vext3 LHS, <6,1,5,3>
+ 2721321376U, // <3,6,1,6>: Cost 3 vext3 <6,1,6,3>, <6,1,6,3>
+ 2721395113U, // <3,6,1,7>: Cost 3 vext3 <6,1,7,3>, <6,1,7,3>
+ 2628797826U, // <3,6,1,u>: Cost 3 vext2 <1,u,3,6>, <1,u,3,6>
+ 2594390118U, // <3,6,2,0>: Cost 3 vext1 <7,3,6,2>, LHS
+ 2721616324U, // <3,6,2,1>: Cost 3 vext3 <6,2,1,3>, <6,2,1,3>
+ 2630788725U, // <3,6,2,2>: Cost 3 vext2 <2,2,3,6>, <2,2,3,6>
+ 3763581395U, // <3,6,2,3>: Cost 4 vext3 LHS, <6,2,3,0>
+ 2632115991U, // <3,6,2,4>: Cost 3 vext2 <2,4,3,6>, <2,4,3,6>
+ 2632779624U, // <3,6,2,5>: Cost 3 vext2 <2,5,3,6>, <2,5,3,6>
+ 2594394618U, // <3,6,2,6>: Cost 3 vext1 <7,3,6,2>, <6,2,7,3>
+ 1648316922U, // <3,6,2,7>: Cost 2 vext3 <6,2,7,3>, <6,2,7,3>
+ 1648390659U, // <3,6,2,u>: Cost 2 vext3 <6,2,u,3>, <6,2,u,3>
+ 3693914262U, // <3,6,3,0>: Cost 4 vext2 <0,4,3,6>, <3,0,1,2>
+ 3638281176U, // <3,6,3,1>: Cost 4 vext1 <2,3,6,3>, <1,3,1,3>
+ 3696568678U, // <3,6,3,2>: Cost 4 vext2 <0,u,3,6>, <3,2,6,3>
+ 2638088604U, // <3,6,3,3>: Cost 3 vext2 <3,4,3,6>, <3,3,3,3>
+ 2632780290U, // <3,6,3,4>: Cost 3 vext2 <2,5,3,6>, <3,4,5,6>
+ 3712494145U, // <3,6,3,5>: Cost 4 vext2 <3,5,3,6>, <3,5,3,6>
+ 3698559612U, // <3,6,3,6>: Cost 4 vext2 <1,2,3,6>, <3,6,1,2>
+ 2959674678U, // <3,6,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 2959674679U, // <3,6,3,u>: Cost 3 vzipr <1,1,3,3>, RHS
+ 3763581536U, // <3,6,4,0>: Cost 4 vext3 LHS, <6,4,0,6>
+ 2722943590U, // <3,6,4,1>: Cost 3 vext3 <6,4,1,3>, <6,4,1,3>
+ 2732970609U, // <3,6,4,2>: Cost 3 vext3 LHS, <6,4,2,5>
+ 3698560147U, // <3,6,4,3>: Cost 4 vext2 <1,2,3,6>, <4,3,6,6>
+ 2732970628U, // <3,6,4,4>: Cost 3 vext3 LHS, <6,4,4,6>
+ 2689839757U, // <3,6,4,5>: Cost 3 vext3 LHS, <6,4,5,6>
+ 2732970640U, // <3,6,4,6>: Cost 3 vext3 LHS, <6,4,6,0>
+ 2960346422U, // <3,6,4,7>: Cost 3 vzipr <1,2,3,4>, RHS
+ 2689839784U, // <3,6,4,u>: Cost 3 vext3 LHS, <6,4,u,6>
+ 2576498790U, // <3,6,5,0>: Cost 3 vext1 <4,3,6,5>, LHS
+ 3650241270U, // <3,6,5,1>: Cost 4 vext1 <4,3,6,5>, <1,0,3,2>
+ 2732970692U, // <3,6,5,2>: Cost 3 vext3 LHS, <6,5,2,7>
+ 2576501250U, // <3,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 2576501906U, // <3,6,5,4>: Cost 3 vext1 <4,3,6,5>, <4,3,6,5>
+ 3650244622U, // <3,6,5,5>: Cost 4 vext1 <4,3,6,5>, <5,5,6,6>
+ 4114633528U, // <3,6,5,6>: Cost 4 vtrnl <3,4,5,6>, <6,6,6,6>
+ 2732970735U, // <3,6,5,7>: Cost 3 vext3 LHS, <6,5,7,5>
+ 2576504622U, // <3,6,5,u>: Cost 3 vext1 <4,3,6,5>, LHS
+ 2732970749U, // <3,6,6,0>: Cost 3 vext3 LHS, <6,6,0,1>
+ 2724270856U, // <3,6,6,1>: Cost 3 vext3 <6,6,1,3>, <6,6,1,3>
+ 2624819706U, // <3,6,6,2>: Cost 3 vext2 <1,2,3,6>, <6,2,7,3>
+ 3656223234U, // <3,6,6,3>: Cost 4 vext1 <5,3,6,6>, <3,4,5,6>
+ 2732970788U, // <3,6,6,4>: Cost 3 vext3 LHS, <6,6,4,4>
+ 2732970800U, // <3,6,6,5>: Cost 3 vext3 LHS, <6,6,5,7>
+ 1659228984U, // <3,6,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659228994U, // <3,6,6,7>: Cost 2 vext3 LHS, <6,6,7,7>
+ 1659229003U, // <3,6,6,u>: Cost 2 vext3 LHS, <6,6,u,7>
+ 1659229006U, // <3,6,7,0>: Cost 2 vext3 LHS, <6,7,0,1>
+ 2558600201U, // <3,6,7,1>: Cost 3 vext1 <1,3,6,7>, <1,3,6,7>
+ 2558601146U, // <3,6,7,2>: Cost 3 vext1 <1,3,6,7>, <2,6,3,7>
+ 2725081963U, // <3,6,7,3>: Cost 3 vext3 <6,7,3,3>, <6,7,3,3>
+ 1659229046U, // <3,6,7,4>: Cost 2 vext3 LHS, <6,7,4,5>
+ 2715423611U, // <3,6,7,5>: Cost 3 vext3 <5,1,7,3>, <6,7,5,1>
+ 2722059141U, // <3,6,7,6>: Cost 3 vext3 <6,2,7,3>, <6,7,6,2>
+ 2962361654U, // <3,6,7,7>: Cost 3 vzipr <1,5,3,7>, RHS
+ 1659229078U, // <3,6,7,u>: Cost 2 vext3 LHS, <6,7,u,1>
+ 1659229087U, // <3,6,u,0>: Cost 2 vext3 LHS, <6,u,0,1>
+ 2689840041U, // <3,6,u,1>: Cost 3 vext3 LHS, <6,u,1,2>
+ 2558609339U, // <3,6,u,2>: Cost 3 vext1 <1,3,6,u>, <2,6,3,u>
+ 2576525853U, // <3,6,u,3>: Cost 3 vext1 <4,3,6,u>, <3,4,u,6>
+ 1659229127U, // <3,6,u,4>: Cost 2 vext3 LHS, <6,u,4,5>
+ 2689840081U, // <3,6,u,5>: Cost 3 vext3 LHS, <6,u,5,6>
+ 1659228984U, // <3,6,u,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1652298720U, // <3,6,u,7>: Cost 2 vext3 <6,u,7,3>, <6,u,7,3>
+ 1659229159U, // <3,6,u,u>: Cost 2 vext3 LHS, <6,u,u,1>
+ 2626813952U, // <3,7,0,0>: Cost 3 vext2 <1,5,3,7>, <0,0,0,0>
+ 1553072230U, // <3,7,0,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814116U, // <3,7,0,2>: Cost 3 vext2 <1,5,3,7>, <0,2,0,2>
+ 3700556028U, // <3,7,0,3>: Cost 4 vext2 <1,5,3,7>, <0,3,1,0>
+ 2626814290U, // <3,7,0,4>: Cost 3 vext2 <1,5,3,7>, <0,4,1,5>
+ 2582507375U, // <3,7,0,5>: Cost 3 vext1 <5,3,7,0>, <5,3,7,0>
+ 2588480072U, // <3,7,0,6>: Cost 3 vext1 <6,3,7,0>, <6,3,7,0>
+ 2732971055U, // <3,7,0,7>: Cost 3 vext3 LHS, <7,0,7,1>
+ 1553072797U, // <3,7,0,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626814710U, // <3,7,1,0>: Cost 3 vext2 <1,5,3,7>, <1,0,3,2>
+ 2626814772U, // <3,7,1,1>: Cost 3 vext2 <1,5,3,7>, <1,1,1,1>
+ 2626814870U, // <3,7,1,2>: Cost 3 vext2 <1,5,3,7>, <1,2,3,0>
+ 2625487854U, // <3,7,1,3>: Cost 3 vext2 <1,3,3,7>, <1,3,3,7>
+ 2582514998U, // <3,7,1,4>: Cost 3 vext1 <5,3,7,1>, RHS
+ 1553073296U, // <3,7,1,5>: Cost 2 vext2 <1,5,3,7>, <1,5,3,7>
+ 2627478753U, // <3,7,1,6>: Cost 3 vext2 <1,6,3,7>, <1,6,3,7>
+ 2727367810U, // <3,7,1,7>: Cost 3 vext3 <7,1,7,3>, <7,1,7,3>
+ 1555064195U, // <3,7,1,u>: Cost 2 vext2 <1,u,3,7>, <1,u,3,7>
+ 2588491878U, // <3,7,2,0>: Cost 3 vext1 <6,3,7,2>, LHS
+ 3700557318U, // <3,7,2,1>: Cost 4 vext2 <1,5,3,7>, <2,1,0,3>
+ 2626815592U, // <3,7,2,2>: Cost 3 vext2 <1,5,3,7>, <2,2,2,2>
+ 2626815654U, // <3,7,2,3>: Cost 3 vext2 <1,5,3,7>, <2,3,0,1>
+ 2588495158U, // <3,7,2,4>: Cost 3 vext1 <6,3,7,2>, RHS
+ 2632787817U, // <3,7,2,5>: Cost 3 vext2 <2,5,3,7>, <2,5,3,7>
+ 1559709626U, // <3,7,2,6>: Cost 2 vext2 <2,6,3,7>, <2,6,3,7>
+ 2728031443U, // <3,7,2,7>: Cost 3 vext3 <7,2,7,3>, <7,2,7,3>
+ 1561036892U, // <3,7,2,u>: Cost 2 vext2 <2,u,3,7>, <2,u,3,7>
+ 2626816150U, // <3,7,3,0>: Cost 3 vext2 <1,5,3,7>, <3,0,1,2>
+ 2626816268U, // <3,7,3,1>: Cost 3 vext2 <1,5,3,7>, <3,1,5,3>
+ 2633451878U, // <3,7,3,2>: Cost 3 vext2 <2,6,3,7>, <3,2,6,3>
+ 2626816412U, // <3,7,3,3>: Cost 3 vext2 <1,5,3,7>, <3,3,3,3>
+ 2626816514U, // <3,7,3,4>: Cost 3 vext2 <1,5,3,7>, <3,4,5,6>
+ 2638760514U, // <3,7,3,5>: Cost 3 vext2 <3,5,3,7>, <3,5,3,7>
+ 2639424147U, // <3,7,3,6>: Cost 3 vext2 <3,6,3,7>, <3,6,3,7>
+ 2826961920U, // <3,7,3,7>: Cost 3 vuzpr <1,3,5,7>, <1,3,5,7>
+ 2626816798U, // <3,7,3,u>: Cost 3 vext2 <1,5,3,7>, <3,u,1,2>
+ 2582536294U, // <3,7,4,0>: Cost 3 vext1 <5,3,7,4>, LHS
+ 2582537360U, // <3,7,4,1>: Cost 3 vext1 <5,3,7,4>, <1,5,3,7>
+ 2588510138U, // <3,7,4,2>: Cost 3 vext1 <6,3,7,4>, <2,6,3,7>
+ 3700558996U, // <3,7,4,3>: Cost 4 vext2 <1,5,3,7>, <4,3,6,7>
+ 2582539574U, // <3,7,4,4>: Cost 3 vext1 <5,3,7,4>, RHS
+ 1553075510U, // <3,7,4,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2588512844U, // <3,7,4,6>: Cost 3 vext1 <6,3,7,4>, <6,3,7,4>
+ 2564625766U, // <3,7,4,7>: Cost 3 vext1 <2,3,7,4>, <7,4,5,6>
+ 1553075753U, // <3,7,4,u>: Cost 2 vext2 <1,5,3,7>, RHS
+ 2732971398U, // <3,7,5,0>: Cost 3 vext3 LHS, <7,5,0,2>
+ 2626817744U, // <3,7,5,1>: Cost 3 vext2 <1,5,3,7>, <5,1,7,3>
+ 3700559649U, // <3,7,5,2>: Cost 4 vext2 <1,5,3,7>, <5,2,7,3>
+ 2626817903U, // <3,7,5,3>: Cost 3 vext2 <1,5,3,7>, <5,3,7,0>
+ 2258728203U, // <3,7,5,4>: Cost 3 vrev <7,3,4,5>
+ 2732971446U, // <3,7,5,5>: Cost 3 vext3 LHS, <7,5,5,5>
+ 2732971457U, // <3,7,5,6>: Cost 3 vext3 LHS, <7,5,6,7>
+ 2826964278U, // <3,7,5,7>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2826964279U, // <3,7,5,u>: Cost 3 vuzpr <1,3,5,7>, RHS
+ 2732971478U, // <3,7,6,0>: Cost 3 vext3 LHS, <7,6,0,1>
+ 2732971486U, // <3,7,6,1>: Cost 3 vext3 LHS, <7,6,1,0>
+ 2633454074U, // <3,7,6,2>: Cost 3 vext2 <2,6,3,7>, <6,2,7,3>
+ 2633454152U, // <3,7,6,3>: Cost 3 vext2 <2,6,3,7>, <6,3,7,0>
+ 2732971518U, // <3,7,6,4>: Cost 3 vext3 LHS, <7,6,4,5>
+ 2732971526U, // <3,7,6,5>: Cost 3 vext3 LHS, <7,6,5,4>
+ 2732971537U, // <3,7,6,6>: Cost 3 vext3 LHS, <7,6,6,6>
+ 2732971540U, // <3,7,6,7>: Cost 3 vext3 LHS, <7,6,7,0>
+ 2726041124U, // <3,7,6,u>: Cost 3 vext3 <6,u,7,3>, <7,6,u,7>
+ 2570616934U, // <3,7,7,0>: Cost 3 vext1 <3,3,7,7>, LHS
+ 2570617856U, // <3,7,7,1>: Cost 3 vext1 <3,3,7,7>, <1,3,5,7>
+ 2564646635U, // <3,7,7,2>: Cost 3 vext1 <2,3,7,7>, <2,3,7,7>
+ 2570619332U, // <3,7,7,3>: Cost 3 vext1 <3,3,7,7>, <3,3,7,7>
+ 2570620214U, // <3,7,7,4>: Cost 3 vext1 <3,3,7,7>, RHS
+ 2582564726U, // <3,7,7,5>: Cost 3 vext1 <5,3,7,7>, <5,3,7,7>
+ 2588537423U, // <3,7,7,6>: Cost 3 vext1 <6,3,7,7>, <6,3,7,7>
+ 1659229804U, // <3,7,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1659229804U, // <3,7,7,u>: Cost 2 vext3 LHS, <7,7,7,7>
+ 2626819795U, // <3,7,u,0>: Cost 3 vext2 <1,5,3,7>, <u,0,1,2>
+ 1553078062U, // <3,7,u,1>: Cost 2 vext2 <1,5,3,7>, LHS
+ 2626819973U, // <3,7,u,2>: Cost 3 vext2 <1,5,3,7>, <u,2,3,0>
+ 2826961565U, // <3,7,u,3>: Cost 3 vuzpr <1,3,5,7>, LHS
+ 2626820159U, // <3,7,u,4>: Cost 3 vext2 <1,5,3,7>, <u,4,5,6>
+ 1553078426U, // <3,7,u,5>: Cost 2 vext2 <1,5,3,7>, RHS
+ 1595545808U, // <3,7,u,6>: Cost 2 vext2 <u,6,3,7>, <u,6,3,7>
+ 1659229804U, // <3,7,u,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1553078629U, // <3,7,u,u>: Cost 2 vext2 <1,5,3,7>, LHS
+ 1611448320U, // <3,u,0,0>: Cost 2 vext3 LHS, <0,0,0,0>
+ 1611896531U, // <3,u,0,1>: Cost 2 vext3 LHS, <u,0,1,2>
+ 1659672284U, // <3,u,0,2>: Cost 2 vext3 LHS, <u,0,2,2>
+ 1616099045U, // <3,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 2685638381U, // <3,u,0,4>: Cost 3 vext3 LHS, <u,0,4,1>
+ 1663874806U, // <3,u,0,5>: Cost 2 vext3 LHS, <u,0,5,1>
+ 1663874816U, // <3,u,0,6>: Cost 2 vext3 LHS, <u,0,6,2>
+ 2960313672U, // <3,u,0,7>: Cost 3 vzipr <1,2,3,0>, RHS
+ 1611896594U, // <3,u,0,u>: Cost 2 vext3 LHS, <u,0,u,2>
+ 1549763324U, // <3,u,1,0>: Cost 2 vext2 <1,0,3,u>, <1,0,3,u>
+ 1550426957U, // <3,u,1,1>: Cost 2 vext2 <1,1,3,u>, <1,1,3,u>
+ 537712430U, // <3,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1616541495U, // <3,u,1,3>: Cost 2 vext3 LHS, <u,1,3,3>
+ 1490930998U, // <3,u,1,4>: Cost 2 vext1 <2,3,u,1>, RHS
+ 1553081489U, // <3,u,1,5>: Cost 2 vext2 <1,5,3,u>, <1,5,3,u>
+ 2627486946U, // <3,u,1,6>: Cost 3 vext2 <1,6,3,u>, <1,6,3,u>
+ 1659230043U, // <3,u,1,7>: Cost 2 vext3 LHS, <u,1,7,3>
+ 537712484U, // <3,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1611890852U, // <3,u,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2624833102U, // <3,u,2,1>: Cost 3 vext2 <1,2,3,u>, <2,1,u,3>
+ 1557063287U, // <3,u,2,2>: Cost 2 vext2 <2,2,3,u>, <2,2,3,u>
+ 1616099205U, // <3,u,2,3>: Cost 2 vext3 LHS, <u,2,3,0>
+ 1611890892U, // <3,u,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2689841054U, // <3,u,2,5>: Cost 3 vext3 LHS, <u,2,5,7>
+ 1559717819U, // <3,u,2,6>: Cost 2 vext2 <2,6,3,u>, <2,6,3,u>
+ 1659230124U, // <3,u,2,7>: Cost 2 vext3 LHS, <u,2,7,3>
+ 1616541618U, // <3,u,2,u>: Cost 2 vext3 LHS, <u,2,u,0>
+ 1611896764U, // <3,u,3,0>: Cost 2 vext3 LHS, <u,3,0,1>
+ 1484973079U, // <3,u,3,1>: Cost 2 vext1 <1,3,u,3>, <1,3,u,3>
+ 2685638607U, // <3,u,3,2>: Cost 3 vext3 LHS, <u,3,2,2>
+ 336380006U, // <3,u,3,3>: Cost 1 vdup3 LHS
+ 1611896804U, // <3,u,3,4>: Cost 2 vext3 LHS, <u,3,4,5>
+ 1616541679U, // <3,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 2690283512U, // <3,u,3,6>: Cost 3 vext3 LHS, <u,3,6,7>
+ 2959674696U, // <3,u,3,7>: Cost 3 vzipr <1,1,3,3>, RHS
+ 336380006U, // <3,u,3,u>: Cost 1 vdup3 LHS
+ 2558722150U, // <3,u,4,0>: Cost 3 vext1 <1,3,u,4>, LHS
+ 1659672602U, // <3,u,4,1>: Cost 2 vext3 LHS, <u,4,1,5>
+ 1659672612U, // <3,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 2689841196U, // <3,u,4,3>: Cost 3 vext3 LHS, <u,4,3,5>
+ 1659227344U, // <3,u,4,4>: Cost 2 vext3 LHS, <4,4,4,4>
+ 1611896895U, // <3,u,4,5>: Cost 2 vext3 LHS, <u,4,5,6>
+ 1663875144U, // <3,u,4,6>: Cost 2 vext3 LHS, <u,4,6,6>
+ 1659230289U, // <3,u,4,7>: Cost 2 vext3 LHS, <u,4,7,6>
+ 1611896922U, // <3,u,4,u>: Cost 2 vext3 LHS, <u,4,u,6>
+ 1490960486U, // <3,u,5,0>: Cost 2 vext1 <2,3,u,5>, LHS
+ 2689841261U, // <3,u,5,1>: Cost 3 vext3 LHS, <u,5,1,7>
+ 1490962162U, // <3,u,5,2>: Cost 2 vext1 <2,3,u,5>, <2,3,u,5>
+ 1616541823U, // <3,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1490963766U, // <3,u,5,4>: Cost 2 vext1 <2,3,u,5>, RHS
+ 1659228164U, // <3,u,5,5>: Cost 2 vext3 LHS, <5,5,5,5>
+ 537712794U, // <3,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1659230371U, // <3,u,5,7>: Cost 2 vext3 LHS, <u,5,7,7>
+ 537712812U, // <3,u,5,u>: Cost 1 vext3 LHS, RHS
+ 2689841327U, // <3,u,6,0>: Cost 3 vext3 LHS, <u,6,0,1>
+ 2558739482U, // <3,u,6,1>: Cost 3 vext1 <1,3,u,6>, <1,3,u,6>
+ 2689841351U, // <3,u,6,2>: Cost 3 vext3 LHS, <u,6,2,7>
+ 1616099536U, // <3,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1659227508U, // <3,u,6,4>: Cost 2 vext3 LHS, <4,6,4,6>
+ 2690283746U, // <3,u,6,5>: Cost 3 vext3 LHS, <u,6,5,7>
+ 1659228984U, // <3,u,6,6>: Cost 2 vext3 LHS, <6,6,6,6>
+ 1659230445U, // <3,u,6,7>: Cost 2 vext3 LHS, <u,6,7,0>
+ 1616099581U, // <3,u,6,u>: Cost 2 vext3 LHS, <u,6,u,7>
+ 1485004902U, // <3,u,7,0>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1485005851U, // <3,u,7,1>: Cost 2 vext1 <1,3,u,7>, <1,3,u,7>
+ 2558748264U, // <3,u,7,2>: Cost 3 vext1 <1,3,u,7>, <2,2,2,2>
+ 3095397021U, // <3,u,7,3>: Cost 3 vtrnr <1,3,5,7>, LHS
+ 1485008182U, // <3,u,7,4>: Cost 2 vext1 <1,3,u,7>, RHS
+ 1659228328U, // <3,u,7,5>: Cost 2 vext3 LHS, <5,7,5,7>
+ 2722060599U, // <3,u,7,6>: Cost 3 vext3 <6,2,7,3>, <u,7,6,2>
+ 1659229804U, // <3,u,7,7>: Cost 2 vext3 LHS, <7,7,7,7>
+ 1485010734U, // <3,u,7,u>: Cost 2 vext1 <1,3,u,7>, LHS
+ 1616099665U, // <3,u,u,0>: Cost 2 vext3 LHS, <u,u,0,1>
+ 1611897179U, // <3,u,u,1>: Cost 2 vext3 LHS, <u,u,1,2>
+ 537712997U, // <3,u,u,2>: Cost 1 vext3 LHS, LHS
+ 336380006U, // <3,u,u,3>: Cost 1 vdup3 LHS
+ 1616099705U, // <3,u,u,4>: Cost 2 vext3 LHS, <u,u,4,5>
+ 1611897219U, // <3,u,u,5>: Cost 2 vext3 LHS, <u,u,5,6>
+ 537713037U, // <3,u,u,6>: Cost 1 vext3 LHS, RHS
+ 1659230607U, // <3,u,u,7>: Cost 2 vext3 LHS, <u,u,7,0>
+ 537713051U, // <3,u,u,u>: Cost 1 vext3 LHS, LHS
+ 2691907584U, // <4,0,0,0>: Cost 3 vext3 <1,2,3,4>, <0,0,0,0>
+ 2691907594U, // <4,0,0,1>: Cost 3 vext3 <1,2,3,4>, <0,0,1,1>
+ 2691907604U, // <4,0,0,2>: Cost 3 vext3 <1,2,3,4>, <0,0,2,2>
+ 3709862144U, // <4,0,0,3>: Cost 4 vext2 <3,1,4,0>, <0,3,1,4>
+ 2684682280U, // <4,0,0,4>: Cost 3 vext3 <0,0,4,4>, <0,0,4,4>
+ 3694600633U, // <4,0,0,5>: Cost 4 vext2 <0,5,4,0>, <0,5,4,0>
+ 3291431290U, // <4,0,0,6>: Cost 4 vrev <0,4,6,0>
+ 3668342067U, // <4,0,0,7>: Cost 4 vext1 <7,4,0,0>, <7,4,0,0>
+ 2691907657U, // <4,0,0,u>: Cost 3 vext3 <1,2,3,4>, <0,0,u,1>
+ 2570715238U, // <4,0,1,0>: Cost 3 vext1 <3,4,0,1>, LHS
+ 2570716058U, // <4,0,1,1>: Cost 3 vext1 <3,4,0,1>, <1,2,3,4>
+ 1618165862U, // <4,0,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570717648U, // <4,0,1,3>: Cost 3 vext1 <3,4,0,1>, <3,4,0,1>
+ 2570718518U, // <4,0,1,4>: Cost 3 vext1 <3,4,0,1>, RHS
+ 2594607206U, // <4,0,1,5>: Cost 3 vext1 <7,4,0,1>, <5,6,7,4>
+ 3662377563U, // <4,0,1,6>: Cost 4 vext1 <6,4,0,1>, <6,4,0,1>
+ 2594608436U, // <4,0,1,7>: Cost 3 vext1 <7,4,0,1>, <7,4,0,1>
+ 1618165916U, // <4,0,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2685714598U, // <4,0,2,0>: Cost 3 vext3 <0,2,0,4>, <0,2,0,4>
+ 3759530159U, // <4,0,2,1>: Cost 4 vext3 <0,2,1,4>, <0,2,1,4>
+ 2685862072U, // <4,0,2,2>: Cost 3 vext3 <0,2,2,4>, <0,2,2,4>
+ 2631476937U, // <4,0,2,3>: Cost 3 vext2 <2,3,4,0>, <2,3,4,0>
+ 2685714636U, // <4,0,2,4>: Cost 3 vext3 <0,2,0,4>, <0,2,4,6>
+ 3765649622U, // <4,0,2,5>: Cost 4 vext3 <1,2,3,4>, <0,2,5,7>
+ 2686157020U, // <4,0,2,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 3668358453U, // <4,0,2,7>: Cost 4 vext1 <7,4,0,2>, <7,4,0,2>
+ 2686304494U, // <4,0,2,u>: Cost 3 vext3 <0,2,u,4>, <0,2,u,4>
+ 3632529510U, // <4,0,3,0>: Cost 4 vext1 <1,4,0,3>, LHS
+ 2686451968U, // <4,0,3,1>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2686525705U, // <4,0,3,2>: Cost 3 vext3 <0,3,2,4>, <0,3,2,4>
+ 3760341266U, // <4,0,3,3>: Cost 4 vext3 <0,3,3,4>, <0,3,3,4>
+ 3632532790U, // <4,0,3,4>: Cost 4 vext1 <1,4,0,3>, RHS
+ 3913254606U, // <4,0,3,5>: Cost 4 vuzpr <3,4,5,0>, <2,3,4,5>
+ 3705219740U, // <4,0,3,6>: Cost 4 vext2 <2,3,4,0>, <3,6,4,7>
+ 3713845990U, // <4,0,3,7>: Cost 4 vext2 <3,7,4,0>, <3,7,4,0>
+ 2686451968U, // <4,0,3,u>: Cost 3 vext3 <0,3,1,4>, <0,3,1,4>
+ 2552823910U, // <4,0,4,0>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2691907922U, // <4,0,4,1>: Cost 3 vext3 <1,2,3,4>, <0,4,1,5>
+ 2691907932U, // <4,0,4,2>: Cost 3 vext3 <1,2,3,4>, <0,4,2,6>
+ 3626567830U, // <4,0,4,3>: Cost 4 vext1 <0,4,0,4>, <3,0,1,2>
+ 2552827190U, // <4,0,4,4>: Cost 3 vext1 <0,4,0,4>, RHS
+ 2631478582U, // <4,0,4,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 3626570017U, // <4,0,4,6>: Cost 4 vext1 <0,4,0,4>, <6,0,1,2>
+ 3668374839U, // <4,0,4,7>: Cost 4 vext1 <7,4,0,4>, <7,4,0,4>
+ 2552829742U, // <4,0,4,u>: Cost 3 vext1 <0,4,0,4>, LHS
+ 2558804070U, // <4,0,5,0>: Cost 3 vext1 <1,4,0,5>, LHS
+ 1839644774U, // <4,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2913386660U, // <4,0,5,2>: Cost 3 vzipl RHS, <0,2,0,2>
+ 2570750420U, // <4,0,5,3>: Cost 3 vext1 <3,4,0,5>, <3,4,0,5>
+ 2558807350U, // <4,0,5,4>: Cost 3 vext1 <1,4,0,5>, RHS
+ 3987128750U, // <4,0,5,5>: Cost 4 vzipl RHS, <0,5,2,7>
+ 3987128822U, // <4,0,5,6>: Cost 4 vzipl RHS, <0,6,1,7>
+ 2594641208U, // <4,0,5,7>: Cost 3 vext1 <7,4,0,5>, <7,4,0,5>
+ 1839645341U, // <4,0,5,u>: Cost 2 vzipl RHS, LHS
+ 2552840294U, // <4,0,6,0>: Cost 3 vext1 <0,4,0,6>, LHS
+ 3047604234U, // <4,0,6,1>: Cost 3 vtrnl RHS, <0,0,1,1>
+ 1973862502U, // <4,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2570758613U, // <4,0,6,3>: Cost 3 vext1 <3,4,0,6>, <3,4,0,6>
+ 2552843574U, // <4,0,6,4>: Cost 3 vext1 <0,4,0,6>, RHS
+ 2217664887U, // <4,0,6,5>: Cost 3 vrev <0,4,5,6>
+ 3662418528U, // <4,0,6,6>: Cost 4 vext1 <6,4,0,6>, <6,4,0,6>
+ 2658022257U, // <4,0,6,7>: Cost 3 vext2 <6,7,4,0>, <6,7,4,0>
+ 1973862556U, // <4,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 3731764218U, // <4,0,7,0>: Cost 4 vext2 <6,7,4,0>, <7,0,1,2>
+ 3988324454U, // <4,0,7,1>: Cost 4 vzipl <4,7,5,0>, LHS
+ 4122034278U, // <4,0,7,2>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 3735082246U, // <4,0,7,3>: Cost 4 vext2 <7,3,4,0>, <7,3,4,0>
+ 3731764536U, // <4,0,7,4>: Cost 4 vext2 <6,7,4,0>, <7,4,0,5>
+ 3937145718U, // <4,0,7,5>: Cost 4 vuzpr <7,4,5,0>, <6,7,4,5>
+ 3737073145U, // <4,0,7,6>: Cost 4 vext2 <7,6,4,0>, <7,6,4,0>
+ 3731764844U, // <4,0,7,7>: Cost 4 vext2 <6,7,4,0>, <7,7,7,7>
+ 4122034332U, // <4,0,7,u>: Cost 4 vtrnl <4,6,7,1>, LHS
+ 2552856678U, // <4,0,u,0>: Cost 3 vext1 <0,4,0,u>, LHS
+ 1841635430U, // <4,0,u,1>: Cost 2 vzipl RHS, LHS
+ 1618166429U, // <4,0,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2570774999U, // <4,0,u,3>: Cost 3 vext1 <3,4,0,u>, <3,4,0,u>
+ 2552859958U, // <4,0,u,4>: Cost 3 vext1 <0,4,0,u>, RHS
+ 2631481498U, // <4,0,u,5>: Cost 3 vext2 <2,3,4,0>, RHS
+ 2686157020U, // <4,0,u,6>: Cost 3 vext3 <0,2,6,4>, <0,2,6,4>
+ 2594665787U, // <4,0,u,7>: Cost 3 vext1 <7,4,0,u>, <7,4,0,u>
+ 1618166483U, // <4,0,u,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2617548837U, // <4,1,0,0>: Cost 3 vext2 <0,0,4,1>, <0,0,4,1>
+ 2622857318U, // <4,1,0,1>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3693281484U, // <4,1,0,2>: Cost 4 vext2 <0,3,4,1>, <0,2,4,6>
+ 2691908342U, // <4,1,0,3>: Cost 3 vext3 <1,2,3,4>, <1,0,3,2>
+ 2622857554U, // <4,1,0,4>: Cost 3 vext2 <0,u,4,1>, <0,4,1,5>
+ 3764470538U, // <4,1,0,5>: Cost 4 vext3 <1,0,5,4>, <1,0,5,4>
+ 3695272459U, // <4,1,0,6>: Cost 4 vext2 <0,6,4,1>, <0,6,4,1>
+ 3733094980U, // <4,1,0,7>: Cost 4 vext2 <7,0,4,1>, <0,7,1,4>
+ 2622857885U, // <4,1,0,u>: Cost 3 vext2 <0,u,4,1>, LHS
+ 3696599798U, // <4,1,1,0>: Cost 4 vext2 <0,u,4,1>, <1,0,3,2>
+ 2691097399U, // <4,1,1,1>: Cost 3 vext3 <1,1,1,4>, <1,1,1,4>
+ 2631484314U, // <4,1,1,2>: Cost 3 vext2 <2,3,4,1>, <1,2,3,4>
+ 2691908424U, // <4,1,1,3>: Cost 3 vext3 <1,2,3,4>, <1,1,3,3>
+ 3696600125U, // <4,1,1,4>: Cost 4 vext2 <0,u,4,1>, <1,4,3,5>
+ 3696600175U, // <4,1,1,5>: Cost 4 vext2 <0,u,4,1>, <1,5,0,1>
+ 3696600307U, // <4,1,1,6>: Cost 4 vext2 <0,u,4,1>, <1,6,5,7>
+ 3668423997U, // <4,1,1,7>: Cost 4 vext1 <7,4,1,1>, <7,4,1,1>
+ 2691908469U, // <4,1,1,u>: Cost 3 vext3 <1,2,3,4>, <1,1,u,3>
+ 2570797158U, // <4,1,2,0>: Cost 3 vext1 <3,4,1,2>, LHS
+ 2570797978U, // <4,1,2,1>: Cost 3 vext1 <3,4,1,2>, <1,2,3,4>
+ 3696600680U, // <4,1,2,2>: Cost 4 vext2 <0,u,4,1>, <2,2,2,2>
+ 1618166682U, // <4,1,2,3>: Cost 2 vext3 <1,2,3,4>, <1,2,3,4>
+ 2570800438U, // <4,1,2,4>: Cost 3 vext1 <3,4,1,2>, RHS
+ 3765650347U, // <4,1,2,5>: Cost 4 vext3 <1,2,3,4>, <1,2,5,3>
+ 3696601018U, // <4,1,2,6>: Cost 4 vext2 <0,u,4,1>, <2,6,3,7>
+ 3668432190U, // <4,1,2,7>: Cost 4 vext1 <7,4,1,2>, <7,4,1,2>
+ 1618535367U, // <4,1,2,u>: Cost 2 vext3 <1,2,u,4>, <1,2,u,4>
+ 2564833382U, // <4,1,3,0>: Cost 3 vext1 <2,4,1,3>, LHS
+ 2691908568U, // <4,1,3,1>: Cost 3 vext3 <1,2,3,4>, <1,3,1,3>
+ 2691908578U, // <4,1,3,2>: Cost 3 vext3 <1,2,3,4>, <1,3,2,4>
+ 2692572139U, // <4,1,3,3>: Cost 3 vext3 <1,3,3,4>, <1,3,3,4>
+ 2564836662U, // <4,1,3,4>: Cost 3 vext1 <2,4,1,3>, RHS
+ 2691908608U, // <4,1,3,5>: Cost 3 vext3 <1,2,3,4>, <1,3,5,7>
+ 2588725862U, // <4,1,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 3662468090U, // <4,1,3,7>: Cost 4 vext1 <6,4,1,3>, <7,0,1,2>
+ 2691908631U, // <4,1,3,u>: Cost 3 vext3 <1,2,3,4>, <1,3,u,3>
+ 3760194590U, // <4,1,4,0>: Cost 4 vext3 <0,3,1,4>, <1,4,0,1>
+ 3693947874U, // <4,1,4,1>: Cost 4 vext2 <0,4,4,1>, <4,1,5,0>
+ 3765650484U, // <4,1,4,2>: Cost 4 vext3 <1,2,3,4>, <1,4,2,5>
+ 3113877606U, // <4,1,4,3>: Cost 3 vtrnr <4,4,4,4>, LHS
+ 3760194630U, // <4,1,4,4>: Cost 4 vext3 <0,3,1,4>, <1,4,4,5>
+ 2622860598U, // <4,1,4,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 3297436759U, // <4,1,4,6>: Cost 4 vrev <1,4,6,4>
+ 3800007772U, // <4,1,4,7>: Cost 4 vext3 <7,0,1,4>, <1,4,7,0>
+ 2622860841U, // <4,1,4,u>: Cost 3 vext2 <0,u,4,1>, RHS
+ 1479164006U, // <4,1,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552906486U, // <4,1,5,1>: Cost 3 vext1 <0,4,1,5>, <1,0,3,2>
+ 2552907299U, // <4,1,5,2>: Cost 3 vext1 <0,4,1,5>, <2,1,3,5>
+ 2552907926U, // <4,1,5,3>: Cost 3 vext1 <0,4,1,5>, <3,0,1,2>
+ 1479167286U, // <4,1,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 2913387664U, // <4,1,5,5>: Cost 3 vzipl RHS, <1,5,3,7>
+ 2600686074U, // <4,1,5,6>: Cost 3 vext1 <u,4,1,5>, <6,2,7,3>
+ 2600686586U, // <4,1,5,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479169838U, // <4,1,5,u>: Cost 2 vext1 <0,4,1,5>, LHS
+ 2552914022U, // <4,1,6,0>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2558886708U, // <4,1,6,1>: Cost 3 vext1 <1,4,1,6>, <1,1,1,1>
+ 4028205206U, // <4,1,6,2>: Cost 4 vzipr <0,2,4,6>, <3,0,1,2>
+ 3089858662U, // <4,1,6,3>: Cost 3 vtrnr <0,4,2,6>, LHS
+ 2552917302U, // <4,1,6,4>: Cost 3 vext1 <0,4,1,6>, RHS
+ 2223637584U, // <4,1,6,5>: Cost 3 vrev <1,4,5,6>
+ 4121347081U, // <4,1,6,6>: Cost 4 vtrnl RHS, <1,3,6,7>
+ 3721155406U, // <4,1,6,7>: Cost 4 vext2 <5,0,4,1>, <6,7,0,1>
+ 2552919854U, // <4,1,6,u>: Cost 3 vext1 <0,4,1,6>, LHS
+ 2659357716U, // <4,1,7,0>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 3733763173U, // <4,1,7,1>: Cost 4 vext2 <7,1,4,1>, <7,1,4,1>
+ 3734426806U, // <4,1,7,2>: Cost 4 vext2 <7,2,4,1>, <7,2,4,1>
+ 2695226671U, // <4,1,7,3>: Cost 3 vext3 <1,7,3,4>, <1,7,3,4>
+ 3721155942U, // <4,1,7,4>: Cost 4 vext2 <5,0,4,1>, <7,4,5,6>
+ 3721155976U, // <4,1,7,5>: Cost 4 vext2 <5,0,4,1>, <7,5,0,4>
+ 3662500458U, // <4,1,7,6>: Cost 4 vext1 <6,4,1,7>, <6,4,1,7>
+ 3721156204U, // <4,1,7,7>: Cost 4 vext2 <5,0,4,1>, <7,7,7,7>
+ 2659357716U, // <4,1,7,u>: Cost 3 vext2 <7,0,4,1>, <7,0,4,1>
+ 1479188582U, // <4,1,u,0>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2552931062U, // <4,1,u,1>: Cost 3 vext1 <0,4,1,u>, <1,0,3,2>
+ 2552931944U, // <4,1,u,2>: Cost 3 vext1 <0,4,1,u>, <2,2,2,2>
+ 1622148480U, // <4,1,u,3>: Cost 2 vext3 <1,u,3,4>, <1,u,3,4>
+ 1479191862U, // <4,1,u,4>: Cost 2 vext1 <0,4,1,u>, RHS
+ 2622863514U, // <4,1,u,5>: Cost 3 vext2 <0,u,4,1>, RHS
+ 2588725862U, // <4,1,u,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2600686586U, // <4,1,u,7>: Cost 3 vext1 <u,4,1,5>, <7,0,1,2>
+ 1479194414U, // <4,1,u,u>: Cost 2 vext1 <0,4,1,u>, LHS
+ 2617557030U, // <4,2,0,0>: Cost 3 vext2 <0,0,4,2>, <0,0,4,2>
+ 2622865510U, // <4,2,0,1>: Cost 3 vext2 <0,u,4,2>, LHS
+ 2622865612U, // <4,2,0,2>: Cost 3 vext2 <0,u,4,2>, <0,2,4,6>
+ 3693289753U, // <4,2,0,3>: Cost 4 vext2 <0,3,4,2>, <0,3,4,2>
+ 2635473244U, // <4,2,0,4>: Cost 3 vext2 <3,0,4,2>, <0,4,2,6>
+ 3765650918U, // <4,2,0,5>: Cost 4 vext3 <1,2,3,4>, <2,0,5,7>
+ 2696775148U, // <4,2,0,6>: Cost 3 vext3 <2,0,6,4>, <2,0,6,4>
+ 3695944285U, // <4,2,0,7>: Cost 4 vext2 <0,7,4,2>, <0,7,4,2>
+ 2622866077U, // <4,2,0,u>: Cost 3 vext2 <0,u,4,2>, LHS
+ 3696607990U, // <4,2,1,0>: Cost 4 vext2 <0,u,4,2>, <1,0,3,2>
+ 3696608052U, // <4,2,1,1>: Cost 4 vext2 <0,u,4,2>, <1,1,1,1>
+ 3696608150U, // <4,2,1,2>: Cost 4 vext2 <0,u,4,2>, <1,2,3,0>
+ 3895574630U, // <4,2,1,3>: Cost 4 vuzpr <0,4,u,2>, LHS
+ 2691909162U, // <4,2,1,4>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608400U, // <4,2,1,5>: Cost 4 vext2 <0,u,4,2>, <1,5,3,7>
+ 3760784956U, // <4,2,1,6>: Cost 4 vext3 <0,4,0,4>, <2,1,6,3>
+ 3773908549U, // <4,2,1,7>: Cost 5 vext3 <2,5,7,4>, <2,1,7,3>
+ 2691909162U, // <4,2,1,u>: Cost 3 vext3 <1,2,3,4>, <2,1,4,3>
+ 3696608748U, // <4,2,2,0>: Cost 4 vext2 <0,u,4,2>, <2,0,6,4>
+ 3696608828U, // <4,2,2,1>: Cost 4 vext2 <0,u,4,2>, <2,1,6,3>
+ 2691909224U, // <4,2,2,2>: Cost 3 vext3 <1,2,3,4>, <2,2,2,2>
+ 2691909234U, // <4,2,2,3>: Cost 3 vext3 <1,2,3,4>, <2,2,3,3>
+ 3759605368U, // <4,2,2,4>: Cost 4 vext3 <0,2,2,4>, <2,2,4,0>
+ 3696609156U, // <4,2,2,5>: Cost 4 vext2 <0,u,4,2>, <2,5,6,7>
+ 3760785040U, // <4,2,2,6>: Cost 4 vext3 <0,4,0,4>, <2,2,6,6>
+ 3668505927U, // <4,2,2,7>: Cost 4 vext1 <7,4,2,2>, <7,4,2,2>
+ 2691909279U, // <4,2,2,u>: Cost 3 vext3 <1,2,3,4>, <2,2,u,3>
+ 2691909286U, // <4,2,3,0>: Cost 3 vext3 <1,2,3,4>, <2,3,0,1>
+ 3764840111U, // <4,2,3,1>: Cost 4 vext3 <1,1,1,4>, <2,3,1,1>
+ 3765651129U, // <4,2,3,2>: Cost 4 vext3 <1,2,3,4>, <2,3,2,2>
+ 2698544836U, // <4,2,3,3>: Cost 3 vext3 <2,3,3,4>, <2,3,3,4>
+ 2685863630U, // <4,2,3,4>: Cost 3 vext3 <0,2,2,4>, <2,3,4,5>
+ 2698692310U, // <4,2,3,5>: Cost 3 vext3 <2,3,5,4>, <2,3,5,4>
+ 3772507871U, // <4,2,3,6>: Cost 4 vext3 <2,3,6,4>, <2,3,6,4>
+ 2698839784U, // <4,2,3,7>: Cost 3 vext3 <2,3,7,4>, <2,3,7,4>
+ 2691909358U, // <4,2,3,u>: Cost 3 vext3 <1,2,3,4>, <2,3,u,1>
+ 2564915302U, // <4,2,4,0>: Cost 3 vext1 <2,4,2,4>, LHS
+ 2564916122U, // <4,2,4,1>: Cost 3 vext1 <2,4,2,4>, <1,2,3,4>
+ 2564917004U, // <4,2,4,2>: Cost 3 vext1 <2,4,2,4>, <2,4,2,4>
+ 2699208469U, // <4,2,4,3>: Cost 3 vext3 <2,4,3,4>, <2,4,3,4>
+ 2564918582U, // <4,2,4,4>: Cost 3 vext1 <2,4,2,4>, RHS
+ 2622868790U, // <4,2,4,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229667632U, // <4,2,4,6>: Cost 3 vrev <2,4,6,4>
+ 3800082229U, // <4,2,4,7>: Cost 4 vext3 <7,0,2,4>, <2,4,7,0>
+ 2622869033U, // <4,2,4,u>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2552979558U, // <4,2,5,0>: Cost 3 vext1 <0,4,2,5>, LHS
+ 2558952342U, // <4,2,5,1>: Cost 3 vext1 <1,4,2,5>, <1,2,3,0>
+ 2564925032U, // <4,2,5,2>: Cost 3 vext1 <2,4,2,5>, <2,2,2,2>
+ 2967060582U, // <4,2,5,3>: Cost 3 vzipr <2,3,4,5>, LHS
+ 2552982838U, // <4,2,5,4>: Cost 3 vext1 <0,4,2,5>, RHS
+ 3987130190U, // <4,2,5,5>: Cost 4 vzipl RHS, <2,5,0,7>
+ 2913388474U, // <4,2,5,6>: Cost 3 vzipl RHS, <2,6,3,7>
+ 3895577910U, // <4,2,5,7>: Cost 4 vuzpr <0,4,u,2>, RHS
+ 2552985390U, // <4,2,5,u>: Cost 3 vext1 <0,4,2,5>, LHS
+ 1479245926U, // <4,2,6,0>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2552988406U, // <4,2,6,1>: Cost 3 vext1 <0,4,2,6>, <1,0,3,2>
+ 2552989288U, // <4,2,6,2>: Cost 3 vext1 <0,4,2,6>, <2,2,2,2>
+ 2954461286U, // <4,2,6,3>: Cost 3 vzipr <0,2,4,6>, LHS
+ 1479249206U, // <4,2,6,4>: Cost 2 vext1 <0,4,2,6>, RHS
+ 2229610281U, // <4,2,6,5>: Cost 3 vrev <2,4,5,6>
+ 2600767994U, // <4,2,6,6>: Cost 3 vext1 <u,4,2,6>, <6,2,7,3>
+ 2600768506U, // <4,2,6,7>: Cost 3 vext1 <u,4,2,6>, <7,0,1,2>
+ 1479251758U, // <4,2,6,u>: Cost 2 vext1 <0,4,2,6>, LHS
+ 2659365909U, // <4,2,7,0>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 3733771366U, // <4,2,7,1>: Cost 4 vext2 <7,1,4,2>, <7,1,4,2>
+ 3734434999U, // <4,2,7,2>: Cost 4 vext2 <7,2,4,2>, <7,2,4,2>
+ 2701199368U, // <4,2,7,3>: Cost 3 vext3 <2,7,3,4>, <2,7,3,4>
+ 4175774618U, // <4,2,7,4>: Cost 4 vtrnr <2,4,5,7>, <1,2,3,4>
+ 3303360298U, // <4,2,7,5>: Cost 4 vrev <2,4,5,7>
+ 3727136217U, // <4,2,7,6>: Cost 4 vext2 <6,0,4,2>, <7,6,0,4>
+ 3727136364U, // <4,2,7,7>: Cost 4 vext2 <6,0,4,2>, <7,7,7,7>
+ 2659365909U, // <4,2,7,u>: Cost 3 vext2 <7,0,4,2>, <7,0,4,2>
+ 1479262310U, // <4,2,u,0>: Cost 2 vext1 <0,4,2,u>, LHS
+ 2553004790U, // <4,2,u,1>: Cost 3 vext1 <0,4,2,u>, <1,0,3,2>
+ 2553005672U, // <4,2,u,2>: Cost 3 vext1 <0,4,2,u>, <2,2,2,2>
+ 2954477670U, // <4,2,u,3>: Cost 3 vzipr <0,2,4,u>, LHS
+ 1479265590U, // <4,2,u,4>: Cost 2 vext1 <0,4,2,u>, RHS
+ 2622871706U, // <4,2,u,5>: Cost 3 vext2 <0,u,4,2>, RHS
+ 2229700404U, // <4,2,u,6>: Cost 3 vrev <2,4,6,u>
+ 2600784890U, // <4,2,u,7>: Cost 3 vext1 <u,4,2,u>, <7,0,1,2>
+ 1479268142U, // <4,2,u,u>: Cost 2 vext1 <0,4,2,u>, LHS
+ 3765651595U, // <4,3,0,0>: Cost 4 vext3 <1,2,3,4>, <3,0,0,0>
+ 2691909782U, // <4,3,0,1>: Cost 3 vext3 <1,2,3,4>, <3,0,1,2>
+ 2702452897U, // <4,3,0,2>: Cost 3 vext3 <3,0,2,4>, <3,0,2,4>
+ 3693297946U, // <4,3,0,3>: Cost 4 vext2 <0,3,4,3>, <0,3,4,3>
+ 3760711856U, // <4,3,0,4>: Cost 4 vext3 <0,3,u,4>, <3,0,4,1>
+ 2235533820U, // <4,3,0,5>: Cost 3 vrev <3,4,5,0>
+ 3309349381U, // <4,3,0,6>: Cost 4 vrev <3,4,6,0>
+ 3668563278U, // <4,3,0,7>: Cost 4 vext1 <7,4,3,0>, <7,4,3,0>
+ 2691909845U, // <4,3,0,u>: Cost 3 vext3 <1,2,3,4>, <3,0,u,2>
+ 2235173328U, // <4,3,1,0>: Cost 3 vrev <3,4,0,1>
+ 3764840678U, // <4,3,1,1>: Cost 4 vext3 <1,1,1,4>, <3,1,1,1>
+ 2630173594U, // <4,3,1,2>: Cost 3 vext2 <2,1,4,3>, <1,2,3,4>
+ 2703190267U, // <4,3,1,3>: Cost 3 vext3 <3,1,3,4>, <3,1,3,4>
+ 3760195840U, // <4,3,1,4>: Cost 4 vext3 <0,3,1,4>, <3,1,4,0>
+ 3765651724U, // <4,3,1,5>: Cost 4 vext3 <1,2,3,4>, <3,1,5,3>
+ 3309357574U, // <4,3,1,6>: Cost 4 vrev <3,4,6,1>
+ 3769633054U, // <4,3,1,7>: Cost 4 vext3 <1,u,3,4>, <3,1,7,3>
+ 2703558952U, // <4,3,1,u>: Cost 3 vext3 <3,1,u,4>, <3,1,u,4>
+ 3626770534U, // <4,3,2,0>: Cost 4 vext1 <0,4,3,2>, LHS
+ 2630174250U, // <4,3,2,1>: Cost 3 vext2 <2,1,4,3>, <2,1,4,3>
+ 3765651777U, // <4,3,2,2>: Cost 4 vext3 <1,2,3,4>, <3,2,2,2>
+ 2703853900U, // <4,3,2,3>: Cost 3 vext3 <3,2,3,4>, <3,2,3,4>
+ 3626773814U, // <4,3,2,4>: Cost 4 vext1 <0,4,3,2>, RHS
+ 2704001374U, // <4,3,2,5>: Cost 3 vext3 <3,2,5,4>, <3,2,5,4>
+ 3765651814U, // <4,3,2,6>: Cost 4 vext3 <1,2,3,4>, <3,2,6,3>
+ 3769633135U, // <4,3,2,7>: Cost 4 vext3 <1,u,3,4>, <3,2,7,3>
+ 2634819681U, // <4,3,2,u>: Cost 3 vext2 <2,u,4,3>, <2,u,4,3>
+ 3765651839U, // <4,3,3,0>: Cost 4 vext3 <1,2,3,4>, <3,3,0,1>
+ 3765651848U, // <4,3,3,1>: Cost 4 vext3 <1,2,3,4>, <3,3,1,1>
+ 3710552404U, // <4,3,3,2>: Cost 4 vext2 <3,2,4,3>, <3,2,4,3>
+ 2691910044U, // <4,3,3,3>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2704591270U, // <4,3,3,4>: Cost 3 vext3 <3,3,4,4>, <3,3,4,4>
+ 3769633202U, // <4,3,3,5>: Cost 4 vext3 <1,u,3,4>, <3,3,5,7>
+ 3703917212U, // <4,3,3,6>: Cost 4 vext2 <2,1,4,3>, <3,6,4,7>
+ 3769633220U, // <4,3,3,7>: Cost 4 vext3 <1,u,3,4>, <3,3,7,7>
+ 2691910044U, // <4,3,3,u>: Cost 3 vext3 <1,2,3,4>, <3,3,3,3>
+ 2691910096U, // <4,3,4,0>: Cost 3 vext3 <1,2,3,4>, <3,4,0,1>
+ 2691910106U, // <4,3,4,1>: Cost 3 vext3 <1,2,3,4>, <3,4,1,2>
+ 2564990741U, // <4,3,4,2>: Cost 3 vext1 <2,4,3,4>, <2,4,3,4>
+ 3765651946U, // <4,3,4,3>: Cost 4 vext3 <1,2,3,4>, <3,4,3,0>
+ 2691910136U, // <4,3,4,4>: Cost 3 vext3 <1,2,3,4>, <3,4,4,5>
+ 2686454274U, // <4,3,4,5>: Cost 3 vext3 <0,3,1,4>, <3,4,5,6>
+ 2235640329U, // <4,3,4,6>: Cost 3 vrev <3,4,6,4>
+ 3801483792U, // <4,3,4,7>: Cost 4 vext3 <7,2,3,4>, <3,4,7,2>
+ 2691910168U, // <4,3,4,u>: Cost 3 vext3 <1,2,3,4>, <3,4,u,1>
+ 2559025254U, // <4,3,5,0>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559026237U, // <4,3,5,1>: Cost 3 vext1 <1,4,3,5>, <1,4,3,5>
+ 2564998862U, // <4,3,5,2>: Cost 3 vext1 <2,4,3,5>, <2,3,4,5>
+ 2570971548U, // <4,3,5,3>: Cost 3 vext1 <3,4,3,5>, <3,3,3,3>
+ 2559028534U, // <4,3,5,4>: Cost 3 vext1 <1,4,3,5>, RHS
+ 4163519477U, // <4,3,5,5>: Cost 4 vtrnr <0,4,1,5>, <1,3,4,5>
+ 3309390346U, // <4,3,5,6>: Cost 4 vrev <3,4,6,5>
+ 2706139747U, // <4,3,5,7>: Cost 3 vext3 <3,5,7,4>, <3,5,7,4>
+ 2559031086U, // <4,3,5,u>: Cost 3 vext1 <1,4,3,5>, LHS
+ 2559033446U, // <4,3,6,0>: Cost 3 vext1 <1,4,3,6>, LHS
+ 2559034430U, // <4,3,6,1>: Cost 3 vext1 <1,4,3,6>, <1,4,3,6>
+ 2565007127U, // <4,3,6,2>: Cost 3 vext1 <2,4,3,6>, <2,4,3,6>
+ 2570979740U, // <4,3,6,3>: Cost 3 vext1 <3,4,3,6>, <3,3,3,3>
+ 2559036726U, // <4,3,6,4>: Cost 3 vext1 <1,4,3,6>, RHS
+ 1161841154U, // <4,3,6,5>: Cost 2 vrev <3,4,5,6>
+ 4028203932U, // <4,3,6,6>: Cost 4 vzipr <0,2,4,6>, <1,2,3,6>
+ 2706803380U, // <4,3,6,7>: Cost 3 vext3 <3,6,7,4>, <3,6,7,4>
+ 1162062365U, // <4,3,6,u>: Cost 2 vrev <3,4,u,6>
+ 3769633475U, // <4,3,7,0>: Cost 4 vext3 <1,u,3,4>, <3,7,0,1>
+ 3769633488U, // <4,3,7,1>: Cost 4 vext3 <1,u,3,4>, <3,7,1,5>
+ 3638757144U, // <4,3,7,2>: Cost 4 vext1 <2,4,3,7>, <2,4,3,7>
+ 3769633508U, // <4,3,7,3>: Cost 4 vext3 <1,u,3,4>, <3,7,3,7>
+ 3769633515U, // <4,3,7,4>: Cost 4 vext3 <1,u,3,4>, <3,7,4,5>
+ 3769633526U, // <4,3,7,5>: Cost 4 vext3 <1,u,3,4>, <3,7,5,7>
+ 3662647932U, // <4,3,7,6>: Cost 4 vext1 <6,4,3,7>, <6,4,3,7>
+ 3781208837U, // <4,3,7,7>: Cost 4 vext3 <3,7,7,4>, <3,7,7,4>
+ 3769633547U, // <4,3,7,u>: Cost 4 vext3 <1,u,3,4>, <3,7,u,1>
+ 2559049830U, // <4,3,u,0>: Cost 3 vext1 <1,4,3,u>, LHS
+ 2691910430U, // <4,3,u,1>: Cost 3 vext3 <1,2,3,4>, <3,u,1,2>
+ 2565023513U, // <4,3,u,2>: Cost 3 vext1 <2,4,3,u>, <2,4,3,u>
+ 2707835698U, // <4,3,u,3>: Cost 3 vext3 <3,u,3,4>, <3,u,3,4>
+ 2559053110U, // <4,3,u,4>: Cost 3 vext1 <1,4,3,u>, RHS
+ 1161857540U, // <4,3,u,5>: Cost 2 vrev <3,4,5,u>
+ 2235673101U, // <4,3,u,6>: Cost 3 vrev <3,4,6,u>
+ 2708130646U, // <4,3,u,7>: Cost 3 vext3 <3,u,7,4>, <3,u,7,4>
+ 1162078751U, // <4,3,u,u>: Cost 2 vrev <3,4,u,u>
+ 2617573416U, // <4,4,0,0>: Cost 3 vext2 <0,0,4,4>, <0,0,4,4>
+ 1570373734U, // <4,4,0,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779676774U, // <4,4,0,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 3760196480U, // <4,4,0,3>: Cost 4 vext3 <0,3,1,4>, <4,0,3,1>
+ 2576977100U, // <4,4,0,4>: Cost 3 vext1 <4,4,4,0>, <4,4,4,0>
+ 2718747538U, // <4,4,0,5>: Cost 3 vext3 <5,6,7,4>, <4,0,5,1>
+ 2718747548U, // <4,4,0,6>: Cost 3 vext3 <5,6,7,4>, <4,0,6,2>
+ 3668637015U, // <4,4,0,7>: Cost 4 vext1 <7,4,4,0>, <7,4,4,0>
+ 1570374301U, // <4,4,0,u>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2644116214U, // <4,4,1,0>: Cost 3 vext2 <4,4,4,4>, <1,0,3,2>
+ 2644116276U, // <4,4,1,1>: Cost 3 vext2 <4,4,4,4>, <1,1,1,1>
+ 2691910602U, // <4,4,1,2>: Cost 3 vext3 <1,2,3,4>, <4,1,2,3>
+ 2644116440U, // <4,4,1,3>: Cost 3 vext2 <4,4,4,4>, <1,3,1,3>
+ 2711227356U, // <4,4,1,4>: Cost 3 vext3 <4,4,4,4>, <4,1,4,3>
+ 2709310438U, // <4,4,1,5>: Cost 3 vext3 <4,1,5,4>, <4,1,5,4>
+ 3765652462U, // <4,4,1,6>: Cost 4 vext3 <1,2,3,4>, <4,1,6,3>
+ 3768970231U, // <4,4,1,7>: Cost 4 vext3 <1,7,3,4>, <4,1,7,3>
+ 2695891968U, // <4,4,1,u>: Cost 3 vext3 <1,u,3,4>, <4,1,u,3>
+ 3703260634U, // <4,4,2,0>: Cost 4 vext2 <2,0,4,4>, <2,0,4,4>
+ 3765652499U, // <4,4,2,1>: Cost 4 vext3 <1,2,3,4>, <4,2,1,4>
+ 2644117096U, // <4,4,2,2>: Cost 3 vext2 <4,4,4,4>, <2,2,2,2>
+ 2631509709U, // <4,4,2,3>: Cost 3 vext2 <2,3,4,4>, <2,3,4,4>
+ 2644117269U, // <4,4,2,4>: Cost 3 vext2 <4,4,4,4>, <2,4,3,4>
+ 3705251698U, // <4,4,2,5>: Cost 4 vext2 <2,3,4,4>, <2,5,4,7>
+ 2710047808U, // <4,4,2,6>: Cost 3 vext3 <4,2,6,4>, <4,2,6,4>
+ 3783863369U, // <4,4,2,7>: Cost 4 vext3 <4,2,7,4>, <4,2,7,4>
+ 2634827874U, // <4,4,2,u>: Cost 3 vext2 <2,u,4,4>, <2,u,4,4>
+ 2644117654U, // <4,4,3,0>: Cost 3 vext2 <4,4,4,4>, <3,0,1,2>
+ 3638797210U, // <4,4,3,1>: Cost 4 vext1 <2,4,4,3>, <1,2,3,4>
+ 3638798082U, // <4,4,3,2>: Cost 4 vext1 <2,4,4,3>, <2,4,1,3>
+ 2637482406U, // <4,4,3,3>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 2638146039U, // <4,4,3,4>: Cost 3 vext2 <3,4,4,4>, <3,4,4,4>
+ 3913287374U, // <4,4,3,5>: Cost 4 vuzpr <3,4,5,4>, <2,3,4,5>
+ 3765652625U, // <4,4,3,6>: Cost 4 vext3 <1,2,3,4>, <4,3,6,4>
+ 3713878762U, // <4,4,3,7>: Cost 4 vext2 <3,7,4,4>, <3,7,4,4>
+ 2637482406U, // <4,4,3,u>: Cost 3 vext2 <3,3,4,4>, <3,3,4,4>
+ 1503264870U, // <4,4,4,0>: Cost 2 vext1 <4,4,4,4>, LHS
+ 2577007514U, // <4,4,4,1>: Cost 3 vext1 <4,4,4,4>, <1,2,3,4>
+ 2577008232U, // <4,4,4,2>: Cost 3 vext1 <4,4,4,4>, <2,2,2,2>
+ 2571037175U, // <4,4,4,3>: Cost 3 vext1 <3,4,4,4>, <3,4,4,4>
+ 161926454U, // <4,4,4,4>: Cost 1 vdup0 RHS
+ 1570377014U, // <4,4,4,5>: Cost 2 vext2 <4,4,4,4>, RHS
+ 2779680054U, // <4,4,4,6>: Cost 3 vuzpl <4,6,4,6>, RHS
+ 2594927963U, // <4,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <4,4,4,u>: Cost 1 vdup0 RHS
+ 2571042918U, // <4,4,5,0>: Cost 3 vext1 <3,4,4,5>, LHS
+ 2571043738U, // <4,4,5,1>: Cost 3 vext1 <3,4,4,5>, <1,2,3,4>
+ 3638814495U, // <4,4,5,2>: Cost 4 vext1 <2,4,4,5>, <2,4,4,5>
+ 2571045368U, // <4,4,5,3>: Cost 3 vext1 <3,4,4,5>, <3,4,4,5>
+ 2571046198U, // <4,4,5,4>: Cost 3 vext1 <3,4,4,5>, RHS
+ 1839648054U, // <4,4,5,5>: Cost 2 vzipl RHS, RHS
+ 1618169142U, // <4,4,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594936156U, // <4,4,5,7>: Cost 3 vext1 <7,4,4,5>, <7,4,4,5>
+ 1618169160U, // <4,4,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2553135206U, // <4,4,6,0>: Cost 3 vext1 <0,4,4,6>, LHS
+ 3626877686U, // <4,4,6,1>: Cost 4 vext1 <0,4,4,6>, <1,0,3,2>
+ 2565080782U, // <4,4,6,2>: Cost 3 vext1 <2,4,4,6>, <2,3,4,5>
+ 2571053561U, // <4,4,6,3>: Cost 3 vext1 <3,4,4,6>, <3,4,4,6>
+ 2553138486U, // <4,4,6,4>: Cost 3 vext1 <0,4,4,6>, RHS
+ 2241555675U, // <4,4,6,5>: Cost 3 vrev <4,4,5,6>
+ 1973865782U, // <4,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2658055029U, // <4,4,6,7>: Cost 3 vext2 <6,7,4,4>, <6,7,4,4>
+ 1973865800U, // <4,4,6,u>: Cost 2 vtrnl RHS, RHS
+ 2644120570U, // <4,4,7,0>: Cost 3 vext2 <4,4,4,4>, <7,0,1,2>
+ 3638829978U, // <4,4,7,1>: Cost 4 vext1 <2,4,4,7>, <1,2,3,4>
+ 3638830881U, // <4,4,7,2>: Cost 4 vext1 <2,4,4,7>, <2,4,4,7>
+ 3735115018U, // <4,4,7,3>: Cost 4 vext2 <7,3,4,4>, <7,3,4,4>
+ 2662036827U, // <4,4,7,4>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 2713292236U, // <4,4,7,5>: Cost 3 vext3 <4,7,5,4>, <4,7,5,4>
+ 2713365973U, // <4,4,7,6>: Cost 3 vext3 <4,7,6,4>, <4,7,6,4>
+ 2644121196U, // <4,4,7,7>: Cost 3 vext2 <4,4,4,4>, <7,7,7,7>
+ 2662036827U, // <4,4,7,u>: Cost 3 vext2 <7,4,4,4>, <7,4,4,4>
+ 1503297638U, // <4,4,u,0>: Cost 2 vext1 <4,4,4,u>, LHS
+ 1570379566U, // <4,4,u,1>: Cost 2 vext2 <4,4,4,4>, LHS
+ 2779682606U, // <4,4,u,2>: Cost 3 vuzpl <4,6,4,6>, LHS
+ 2571069947U, // <4,4,u,3>: Cost 3 vext1 <3,4,4,u>, <3,4,4,u>
+ 161926454U, // <4,4,u,4>: Cost 1 vdup0 RHS
+ 1841638710U, // <4,4,u,5>: Cost 2 vzipl RHS, RHS
+ 1618169385U, // <4,4,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 2594960735U, // <4,4,u,7>: Cost 3 vext1 <7,4,4,u>, <7,4,4,u>
+ 161926454U, // <4,4,u,u>: Cost 1 vdup0 RHS
+ 2631516160U, // <4,5,0,0>: Cost 3 vext2 <2,3,4,5>, <0,0,0,0>
+ 1557774438U, // <4,5,0,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2618908875U, // <4,5,0,2>: Cost 3 vext2 <0,2,4,5>, <0,2,4,5>
+ 2571078140U, // <4,5,0,3>: Cost 3 vext1 <3,4,5,0>, <3,4,5,0>
+ 2626871634U, // <4,5,0,4>: Cost 3 vext2 <1,5,4,5>, <0,4,1,5>
+ 3705258414U, // <4,5,0,5>: Cost 4 vext2 <2,3,4,5>, <0,5,2,7>
+ 2594968438U, // <4,5,0,6>: Cost 3 vext1 <7,4,5,0>, <6,7,4,5>
+ 2594968928U, // <4,5,0,7>: Cost 3 vext1 <7,4,5,0>, <7,4,5,0>
+ 1557775005U, // <4,5,0,u>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631516918U, // <4,5,1,0>: Cost 3 vext2 <2,3,4,5>, <1,0,3,2>
+ 2624217939U, // <4,5,1,1>: Cost 3 vext2 <1,1,4,5>, <1,1,4,5>
+ 2631517078U, // <4,5,1,2>: Cost 3 vext2 <2,3,4,5>, <1,2,3,0>
+ 2821341286U, // <4,5,1,3>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 3895086054U, // <4,5,1,4>: Cost 4 vuzpr <0,4,1,5>, <4,1,5,4>
+ 2626872471U, // <4,5,1,5>: Cost 3 vext2 <1,5,4,5>, <1,5,4,5>
+ 3895083131U, // <4,5,1,6>: Cost 4 vuzpr <0,4,1,5>, <0,1,4,6>
+ 2718748368U, // <4,5,1,7>: Cost 3 vext3 <5,6,7,4>, <5,1,7,3>
+ 2821341291U, // <4,5,1,u>: Cost 3 vuzpr <0,4,1,5>, LHS
+ 2571092070U, // <4,5,2,0>: Cost 3 vext1 <3,4,5,2>, LHS
+ 3699287585U, // <4,5,2,1>: Cost 4 vext2 <1,3,4,5>, <2,1,3,3>
+ 2630854269U, // <4,5,2,2>: Cost 3 vext2 <2,2,4,5>, <2,2,4,5>
+ 1557776078U, // <4,5,2,3>: Cost 2 vext2 <2,3,4,5>, <2,3,4,5>
+ 2631517974U, // <4,5,2,4>: Cost 3 vext2 <2,3,4,5>, <2,4,3,5>
+ 3692652384U, // <4,5,2,5>: Cost 4 vext2 <0,2,4,5>, <2,5,2,7>
+ 2631518138U, // <4,5,2,6>: Cost 3 vext2 <2,3,4,5>, <2,6,3,7>
+ 4164013366U, // <4,5,2,7>: Cost 4 vtrnr <0,4,u,2>, RHS
+ 1561094243U, // <4,5,2,u>: Cost 2 vext2 <2,u,4,5>, <2,u,4,5>
+ 2631518358U, // <4,5,3,0>: Cost 3 vext2 <2,3,4,5>, <3,0,1,2>
+ 3895084710U, // <4,5,3,1>: Cost 4 vuzpr <0,4,1,5>, <2,3,0,1>
+ 2631518540U, // <4,5,3,2>: Cost 3 vext2 <2,3,4,5>, <3,2,3,4>
+ 2631518620U, // <4,5,3,3>: Cost 3 vext2 <2,3,4,5>, <3,3,3,3>
+ 2631518716U, // <4,5,3,4>: Cost 3 vext2 <2,3,4,5>, <3,4,5,0>
+ 2631518784U, // <4,5,3,5>: Cost 3 vext2 <2,3,4,5>, <3,5,3,5>
+ 2658060980U, // <4,5,3,6>: Cost 3 vext2 <6,7,4,5>, <3,6,7,4>
+ 2640145131U, // <4,5,3,7>: Cost 3 vext2 <3,7,4,5>, <3,7,4,5>
+ 2631519006U, // <4,5,3,u>: Cost 3 vext2 <2,3,4,5>, <3,u,1,2>
+ 2571108454U, // <4,5,4,0>: Cost 3 vext1 <3,4,5,4>, LHS
+ 3632907342U, // <4,5,4,1>: Cost 4 vext1 <1,4,5,4>, <1,4,5,4>
+ 2571110094U, // <4,5,4,2>: Cost 3 vext1 <3,4,5,4>, <2,3,4,5>
+ 2571110912U, // <4,5,4,3>: Cost 3 vext1 <3,4,5,4>, <3,4,5,4>
+ 2571111734U, // <4,5,4,4>: Cost 3 vext1 <3,4,5,4>, RHS
+ 1557777718U, // <4,5,4,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2645454195U, // <4,5,4,6>: Cost 3 vext2 <4,6,4,5>, <4,6,4,5>
+ 2718748614U, // <4,5,4,7>: Cost 3 vext3 <5,6,7,4>, <5,4,7,6>
+ 1557777961U, // <4,5,4,u>: Cost 2 vext2 <2,3,4,5>, RHS
+ 1503346790U, // <4,5,5,0>: Cost 2 vext1 <4,4,5,5>, LHS
+ 2913398480U, // <4,5,5,1>: Cost 3 vzipl RHS, <5,1,7,3>
+ 2631519998U, // <4,5,5,2>: Cost 3 vext2 <2,3,4,5>, <5,2,3,4>
+ 2577090710U, // <4,5,5,3>: Cost 3 vext1 <4,4,5,5>, <3,0,1,2>
+ 1503349978U, // <4,5,5,4>: Cost 2 vext1 <4,4,5,5>, <4,4,5,5>
+ 2631520260U, // <4,5,5,5>: Cost 3 vext2 <2,3,4,5>, <5,5,5,5>
+ 2913390690U, // <4,5,5,6>: Cost 3 vzipl RHS, <5,6,7,0>
+ 2821344566U, // <4,5,5,7>: Cost 3 vuzpr <0,4,1,5>, RHS
+ 1503352622U, // <4,5,5,u>: Cost 2 vext1 <4,4,5,5>, LHS
+ 1497383014U, // <4,5,6,0>: Cost 2 vext1 <3,4,5,6>, LHS
+ 2559181904U, // <4,5,6,1>: Cost 3 vext1 <1,4,5,6>, <1,4,5,6>
+ 2565154601U, // <4,5,6,2>: Cost 3 vext1 <2,4,5,6>, <2,4,5,6>
+ 1497385474U, // <4,5,6,3>: Cost 2 vext1 <3,4,5,6>, <3,4,5,6>
+ 1497386294U, // <4,5,6,4>: Cost 2 vext1 <3,4,5,6>, RHS
+ 3047608324U, // <4,5,6,5>: Cost 3 vtrnl RHS, <5,5,5,5>
+ 2571129656U, // <4,5,6,6>: Cost 3 vext1 <3,4,5,6>, <6,6,6,6>
+ 27705344U, // <4,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,6,u>: Cost 0 copy RHS
+ 2565161062U, // <4,5,7,0>: Cost 3 vext1 <2,4,5,7>, LHS
+ 2565161882U, // <4,5,7,1>: Cost 3 vext1 <2,4,5,7>, <1,2,3,4>
+ 2565162794U, // <4,5,7,2>: Cost 3 vext1 <2,4,5,7>, <2,4,5,7>
+ 2661381387U, // <4,5,7,3>: Cost 3 vext2 <7,3,4,5>, <7,3,4,5>
+ 2565164342U, // <4,5,7,4>: Cost 3 vext1 <2,4,5,7>, RHS
+ 2718748840U, // <4,5,7,5>: Cost 3 vext3 <5,6,7,4>, <5,7,5,7>
+ 2718748846U, // <4,5,7,6>: Cost 3 vext3 <5,6,7,4>, <5,7,6,4>
+ 2719412407U, // <4,5,7,7>: Cost 3 vext3 <5,7,7,4>, <5,7,7,4>
+ 2565166894U, // <4,5,7,u>: Cost 3 vext1 <2,4,5,7>, LHS
+ 1497399398U, // <4,5,u,0>: Cost 2 vext1 <3,4,5,u>, LHS
+ 1557780270U, // <4,5,u,1>: Cost 2 vext2 <2,3,4,5>, LHS
+ 2631522181U, // <4,5,u,2>: Cost 3 vext2 <2,3,4,5>, <u,2,3,0>
+ 1497401860U, // <4,5,u,3>: Cost 2 vext1 <3,4,5,u>, <3,4,5,u>
+ 1497402678U, // <4,5,u,4>: Cost 2 vext1 <3,4,5,u>, RHS
+ 1557780634U, // <4,5,u,5>: Cost 2 vext2 <2,3,4,5>, RHS
+ 2631522512U, // <4,5,u,6>: Cost 3 vext2 <2,3,4,5>, <u,6,3,7>
+ 27705344U, // <4,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,5,u,u>: Cost 0 copy RHS
+ 2618916864U, // <4,6,0,0>: Cost 3 vext2 <0,2,4,6>, <0,0,0,0>
+ 1545175142U, // <4,6,0,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1545175244U, // <4,6,0,2>: Cost 2 vext2 <0,2,4,6>, <0,2,4,6>
+ 3692658940U, // <4,6,0,3>: Cost 4 vext2 <0,2,4,6>, <0,3,1,0>
+ 2618917202U, // <4,6,0,4>: Cost 3 vext2 <0,2,4,6>, <0,4,1,5>
+ 3852910806U, // <4,6,0,5>: Cost 4 vuzpl RHS, <0,2,5,7>
+ 2253525648U, // <4,6,0,6>: Cost 3 vrev <6,4,6,0>
+ 4040764726U, // <4,6,0,7>: Cost 4 vzipr <2,3,4,0>, RHS
+ 1545175709U, // <4,6,0,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 2618917622U, // <4,6,1,0>: Cost 3 vext2 <0,2,4,6>, <1,0,3,2>
+ 2618917684U, // <4,6,1,1>: Cost 3 vext2 <0,2,4,6>, <1,1,1,1>
+ 2618917782U, // <4,6,1,2>: Cost 3 vext2 <0,2,4,6>, <1,2,3,0>
+ 2618917848U, // <4,6,1,3>: Cost 3 vext2 <0,2,4,6>, <1,3,1,3>
+ 3692659773U, // <4,6,1,4>: Cost 4 vext2 <0,2,4,6>, <1,4,3,5>
+ 2618918032U, // <4,6,1,5>: Cost 3 vext2 <0,2,4,6>, <1,5,3,7>
+ 3692659937U, // <4,6,1,6>: Cost 4 vext2 <0,2,4,6>, <1,6,3,7>
+ 4032146742U, // <4,6,1,7>: Cost 4 vzipr <0,u,4,1>, RHS
+ 2618918253U, // <4,6,1,u>: Cost 3 vext2 <0,2,4,6>, <1,u,1,3>
+ 2618918380U, // <4,6,2,0>: Cost 3 vext2 <0,2,4,6>, <2,0,6,4>
+ 2618918460U, // <4,6,2,1>: Cost 3 vext2 <0,2,4,6>, <2,1,6,3>
+ 2618918504U, // <4,6,2,2>: Cost 3 vext2 <0,2,4,6>, <2,2,2,2>
+ 2618918566U, // <4,6,2,3>: Cost 3 vext2 <0,2,4,6>, <2,3,0,1>
+ 2618918679U, // <4,6,2,4>: Cost 3 vext2 <0,2,4,6>, <2,4,3,6>
+ 2618918788U, // <4,6,2,5>: Cost 3 vext2 <0,2,4,6>, <2,5,6,7>
+ 2618918842U, // <4,6,2,6>: Cost 3 vext2 <0,2,4,6>, <2,6,3,7>
+ 2718749178U, // <4,6,2,7>: Cost 3 vext3 <5,6,7,4>, <6,2,7,3>
+ 2618918971U, // <4,6,2,u>: Cost 3 vext2 <0,2,4,6>, <2,u,0,1>
+ 2618919062U, // <4,6,3,0>: Cost 3 vext2 <0,2,4,6>, <3,0,1,2>
+ 2636171526U, // <4,6,3,1>: Cost 3 vext2 <3,1,4,6>, <3,1,4,6>
+ 3692661057U, // <4,6,3,2>: Cost 4 vext2 <0,2,4,6>, <3,2,2,2>
+ 2618919324U, // <4,6,3,3>: Cost 3 vext2 <0,2,4,6>, <3,3,3,3>
+ 2618919426U, // <4,6,3,4>: Cost 3 vext2 <0,2,4,6>, <3,4,5,6>
+ 2638826058U, // <4,6,3,5>: Cost 3 vext2 <3,5,4,6>, <3,5,4,6>
+ 3913303030U, // <4,6,3,6>: Cost 4 vuzpr <3,4,5,6>, <1,3,4,6>
+ 2722730572U, // <4,6,3,7>: Cost 3 vext3 <6,3,7,4>, <6,3,7,4>
+ 2618919710U, // <4,6,3,u>: Cost 3 vext2 <0,2,4,6>, <3,u,1,2>
+ 2565210214U, // <4,6,4,0>: Cost 3 vext1 <2,4,6,4>, LHS
+ 2718749286U, // <4,6,4,1>: Cost 3 vext3 <5,6,7,4>, <6,4,1,3>
+ 2565211952U, // <4,6,4,2>: Cost 3 vext1 <2,4,6,4>, <2,4,6,4>
+ 2571184649U, // <4,6,4,3>: Cost 3 vext1 <3,4,6,4>, <3,4,6,4>
+ 2565213494U, // <4,6,4,4>: Cost 3 vext1 <2,4,6,4>, RHS
+ 1545178422U, // <4,6,4,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705430326U, // <4,6,4,6>: Cost 2 vuzpl RHS, RHS
+ 2595075437U, // <4,6,4,7>: Cost 3 vext1 <7,4,6,4>, <7,4,6,4>
+ 1545178665U, // <4,6,4,u>: Cost 2 vext2 <0,2,4,6>, RHS
+ 2565218406U, // <4,6,5,0>: Cost 3 vext1 <2,4,6,5>, LHS
+ 2645462736U, // <4,6,5,1>: Cost 3 vext2 <4,6,4,6>, <5,1,7,3>
+ 2913399290U, // <4,6,5,2>: Cost 3 vzipl RHS, <6,2,7,3>
+ 3913305394U, // <4,6,5,3>: Cost 4 vuzpr <3,4,5,6>, <4,5,6,3>
+ 2645462982U, // <4,6,5,4>: Cost 3 vext2 <4,6,4,6>, <5,4,7,6>
+ 2779172868U, // <4,6,5,5>: Cost 3 vuzpl RHS, <5,5,5,5>
+ 2913391416U, // <4,6,5,6>: Cost 3 vzipl RHS, <6,6,6,6>
+ 2821426486U, // <4,6,5,7>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 2821426487U, // <4,6,5,u>: Cost 3 vuzpr <0,4,2,6>, RHS
+ 1503428710U, // <4,6,6,0>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2577171190U, // <4,6,6,1>: Cost 3 vext1 <4,4,6,6>, <1,0,3,2>
+ 2645463546U, // <4,6,6,2>: Cost 3 vext2 <4,6,4,6>, <6,2,7,3>
+ 2577172630U, // <4,6,6,3>: Cost 3 vext1 <4,4,6,6>, <3,0,1,2>
+ 1503431908U, // <4,6,6,4>: Cost 2 vext1 <4,4,6,6>, <4,4,6,6>
+ 2253501069U, // <4,6,6,5>: Cost 3 vrev <6,4,5,6>
+ 2618921784U, // <4,6,6,6>: Cost 3 vext2 <0,2,4,6>, <6,6,6,6>
+ 2954464566U, // <4,6,6,7>: Cost 3 vzipr <0,2,4,6>, RHS
+ 1503434542U, // <4,6,6,u>: Cost 2 vext1 <4,4,6,6>, LHS
+ 2645464058U, // <4,6,7,0>: Cost 3 vext2 <4,6,4,6>, <7,0,1,2>
+ 2779173882U, // <4,6,7,1>: Cost 3 vuzpl RHS, <7,0,1,2>
+ 3638978355U, // <4,6,7,2>: Cost 4 vext1 <2,4,6,7>, <2,4,6,7>
+ 2725090156U, // <4,6,7,3>: Cost 3 vext3 <6,7,3,4>, <6,7,3,4>
+ 2645464422U, // <4,6,7,4>: Cost 3 vext2 <4,6,4,6>, <7,4,5,6>
+ 2779174246U, // <4,6,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 3852915914U, // <4,6,7,6>: Cost 4 vuzpl RHS, <7,2,6,3>
+ 2779174508U, // <4,6,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2779173945U, // <4,6,7,u>: Cost 3 vuzpl RHS, <7,0,u,2>
+ 1503445094U, // <4,6,u,0>: Cost 2 vext1 <4,4,6,u>, LHS
+ 1545180974U, // <4,6,u,1>: Cost 2 vext2 <0,2,4,6>, LHS
+ 1705432878U, // <4,6,u,2>: Cost 2 vuzpl RHS, LHS
+ 2618922940U, // <4,6,u,3>: Cost 3 vext2 <0,2,4,6>, <u,3,0,1>
+ 1503448294U, // <4,6,u,4>: Cost 2 vext1 <4,4,6,u>, <4,4,6,u>
+ 1545181338U, // <4,6,u,5>: Cost 2 vext2 <0,2,4,6>, RHS
+ 1705433242U, // <4,6,u,6>: Cost 2 vuzpl RHS, RHS
+ 2954480950U, // <4,6,u,7>: Cost 3 vzipr <0,2,4,u>, RHS
+ 1545181541U, // <4,6,u,u>: Cost 2 vext2 <0,2,4,6>, LHS
+ 3706601472U, // <4,7,0,0>: Cost 4 vext2 <2,5,4,7>, <0,0,0,0>
+ 2632859750U, // <4,7,0,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2726343685U, // <4,7,0,2>: Cost 3 vext3 <7,0,2,4>, <7,0,2,4>
+ 3701293312U, // <4,7,0,3>: Cost 4 vext2 <1,6,4,7>, <0,3,1,4>
+ 3706601810U, // <4,7,0,4>: Cost 4 vext2 <2,5,4,7>, <0,4,1,5>
+ 2259424608U, // <4,7,0,5>: Cost 3 vrev <7,4,5,0>
+ 3695321617U, // <4,7,0,6>: Cost 4 vext2 <0,6,4,7>, <0,6,4,7>
+ 3800454194U, // <4,7,0,7>: Cost 4 vext3 <7,0,7,4>, <7,0,7,4>
+ 2632860317U, // <4,7,0,u>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2259064116U, // <4,7,1,0>: Cost 3 vrev <7,4,0,1>
+ 3700630324U, // <4,7,1,1>: Cost 4 vext2 <1,5,4,7>, <1,1,1,1>
+ 2632860570U, // <4,7,1,2>: Cost 3 vext2 <2,5,4,7>, <1,2,3,4>
+ 3769635936U, // <4,7,1,3>: Cost 4 vext3 <1,u,3,4>, <7,1,3,5>
+ 3656920374U, // <4,7,1,4>: Cost 4 vext1 <5,4,7,1>, RHS
+ 3700630681U, // <4,7,1,5>: Cost 4 vext2 <1,5,4,7>, <1,5,4,7>
+ 3701294314U, // <4,7,1,6>: Cost 4 vext2 <1,6,4,7>, <1,6,4,7>
+ 3793818754U, // <4,7,1,7>: Cost 4 vext3 <5,u,7,4>, <7,1,7,3>
+ 2259654012U, // <4,7,1,u>: Cost 3 vrev <7,4,u,1>
+ 3656925286U, // <4,7,2,0>: Cost 4 vext1 <5,4,7,2>, LHS
+ 3706603050U, // <4,7,2,1>: Cost 4 vext2 <2,5,4,7>, <2,1,4,3>
+ 3706603112U, // <4,7,2,2>: Cost 4 vext2 <2,5,4,7>, <2,2,2,2>
+ 2727744688U, // <4,7,2,3>: Cost 3 vext3 <7,2,3,4>, <7,2,3,4>
+ 3705939745U, // <4,7,2,4>: Cost 4 vext2 <2,4,4,7>, <2,4,4,7>
+ 2632861554U, // <4,7,2,5>: Cost 3 vext2 <2,5,4,7>, <2,5,4,7>
+ 3706603450U, // <4,7,2,6>: Cost 4 vext2 <2,5,4,7>, <2,6,3,7>
+ 3792491731U, // <4,7,2,7>: Cost 4 vext3 <5,6,7,4>, <7,2,7,3>
+ 2634852453U, // <4,7,2,u>: Cost 3 vext2 <2,u,4,7>, <2,u,4,7>
+ 3706603670U, // <4,7,3,0>: Cost 4 vext2 <2,5,4,7>, <3,0,1,2>
+ 3662906266U, // <4,7,3,1>: Cost 4 vext1 <6,4,7,3>, <1,2,3,4>
+ 3725183326U, // <4,7,3,2>: Cost 4 vext2 <5,6,4,7>, <3,2,5,4>
+ 3706603932U, // <4,7,3,3>: Cost 4 vext2 <2,5,4,7>, <3,3,3,3>
+ 3701295618U, // <4,7,3,4>: Cost 4 vext2 <1,6,4,7>, <3,4,5,6>
+ 2638834251U, // <4,7,3,5>: Cost 3 vext2 <3,5,4,7>, <3,5,4,7>
+ 2639497884U, // <4,7,3,6>: Cost 3 vext2 <3,6,4,7>, <3,6,4,7>
+ 3802445093U, // <4,7,3,7>: Cost 4 vext3 <7,3,7,4>, <7,3,7,4>
+ 2640825150U, // <4,7,3,u>: Cost 3 vext2 <3,u,4,7>, <3,u,4,7>
+ 2718750004U, // <4,7,4,0>: Cost 3 vext3 <5,6,7,4>, <7,4,0,1>
+ 3706604490U, // <4,7,4,1>: Cost 4 vext2 <2,5,4,7>, <4,1,2,3>
+ 3656943474U, // <4,7,4,2>: Cost 4 vext1 <5,4,7,4>, <2,5,4,7>
+ 3779884371U, // <4,7,4,3>: Cost 4 vext3 <3,5,7,4>, <7,4,3,5>
+ 2259383643U, // <4,7,4,4>: Cost 3 vrev <7,4,4,4>
+ 2632863030U, // <4,7,4,5>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2259531117U, // <4,7,4,6>: Cost 3 vrev <7,4,6,4>
+ 3907340074U, // <4,7,4,7>: Cost 4 vuzpr <2,4,5,7>, <2,4,5,7>
+ 2632863273U, // <4,7,4,u>: Cost 3 vext2 <2,5,4,7>, RHS
+ 2913391610U, // <4,7,5,0>: Cost 3 vzipl RHS, <7,0,1,2>
+ 3645006848U, // <4,7,5,1>: Cost 4 vext1 <3,4,7,5>, <1,3,5,7>
+ 2589181646U, // <4,7,5,2>: Cost 3 vext1 <6,4,7,5>, <2,3,4,5>
+ 3645008403U, // <4,7,5,3>: Cost 4 vext1 <3,4,7,5>, <3,4,7,5>
+ 2913391974U, // <4,7,5,4>: Cost 3 vzipl RHS, <7,4,5,6>
+ 2583211973U, // <4,7,5,5>: Cost 3 vext1 <5,4,7,5>, <5,4,7,5>
+ 2589184670U, // <4,7,5,6>: Cost 3 vext1 <6,4,7,5>, <6,4,7,5>
+ 2913392236U, // <4,7,5,7>: Cost 3 vzipl RHS, <7,7,7,7>
+ 2913392258U, // <4,7,5,u>: Cost 3 vzipl RHS, <7,u,1,2>
+ 1509474406U, // <4,7,6,0>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3047609338U, // <4,7,6,1>: Cost 3 vtrnl RHS, <7,0,1,2>
+ 2583217768U, // <4,7,6,2>: Cost 3 vext1 <5,4,7,6>, <2,2,2,2>
+ 2583218326U, // <4,7,6,3>: Cost 3 vext1 <5,4,7,6>, <3,0,1,2>
+ 1509477686U, // <4,7,6,4>: Cost 2 vext1 <5,4,7,6>, RHS
+ 1509478342U, // <4,7,6,5>: Cost 2 vext1 <5,4,7,6>, <5,4,7,6>
+ 2583220730U, // <4,7,6,6>: Cost 3 vext1 <5,4,7,6>, <6,2,7,3>
+ 3047609964U, // <4,7,6,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509480238U, // <4,7,6,u>: Cost 2 vext1 <5,4,7,6>, LHS
+ 3650994278U, // <4,7,7,0>: Cost 4 vext1 <4,4,7,7>, LHS
+ 3650995098U, // <4,7,7,1>: Cost 4 vext1 <4,4,7,7>, <1,2,3,4>
+ 3650996010U, // <4,7,7,2>: Cost 4 vext1 <4,4,7,7>, <2,4,5,7>
+ 3804804677U, // <4,7,7,3>: Cost 4 vext3 <7,7,3,4>, <7,7,3,4>
+ 3650997486U, // <4,7,7,4>: Cost 4 vext1 <4,4,7,7>, <4,4,7,7>
+ 2662725039U, // <4,7,7,5>: Cost 3 vext2 <7,5,4,7>, <7,5,4,7>
+ 3662942880U, // <4,7,7,6>: Cost 4 vext1 <6,4,7,7>, <6,4,7,7>
+ 2718750316U, // <4,7,7,7>: Cost 3 vext3 <5,6,7,4>, <7,7,7,7>
+ 2664715938U, // <4,7,7,u>: Cost 3 vext2 <7,u,4,7>, <7,u,4,7>
+ 1509490790U, // <4,7,u,0>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2632865582U, // <4,7,u,1>: Cost 3 vext2 <2,5,4,7>, LHS
+ 2583234152U, // <4,7,u,2>: Cost 3 vext1 <5,4,7,u>, <2,2,2,2>
+ 2583234710U, // <4,7,u,3>: Cost 3 vext1 <5,4,7,u>, <3,0,1,2>
+ 1509494070U, // <4,7,u,4>: Cost 2 vext1 <5,4,7,u>, RHS
+ 1509494728U, // <4,7,u,5>: Cost 2 vext1 <5,4,7,u>, <5,4,7,u>
+ 2583237114U, // <4,7,u,6>: Cost 3 vext1 <5,4,7,u>, <6,2,7,3>
+ 3047757420U, // <4,7,u,7>: Cost 3 vtrnl RHS, <7,7,7,7>
+ 1509496622U, // <4,7,u,u>: Cost 2 vext1 <5,4,7,u>, LHS
+ 2618933248U, // <4,u,0,0>: Cost 3 vext2 <0,2,4,u>, <0,0,0,0>
+ 1545191526U, // <4,u,0,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1545191630U, // <4,u,0,2>: Cost 2 vext2 <0,2,4,u>, <0,2,4,u>
+ 2691913445U, // <4,u,0,3>: Cost 3 vext3 <1,2,3,4>, <u,0,3,2>
+ 2618933586U, // <4,u,0,4>: Cost 3 vext2 <0,2,4,u>, <0,4,1,5>
+ 2265397305U, // <4,u,0,5>: Cost 3 vrev <u,4,5,0>
+ 2595189625U, // <4,u,0,6>: Cost 3 vext1 <7,4,u,0>, <6,7,4,u>
+ 2595190139U, // <4,u,0,7>: Cost 3 vext1 <7,4,u,0>, <7,4,u,0>
+ 1545192093U, // <4,u,0,u>: Cost 2 vext2 <0,2,4,u>, LHS
+ 2618934006U, // <4,u,1,0>: Cost 3 vext2 <0,2,4,u>, <1,0,3,2>
+ 2618934068U, // <4,u,1,1>: Cost 3 vext2 <0,2,4,u>, <1,1,1,1>
+ 1618171694U, // <4,u,1,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2618934232U, // <4,u,1,3>: Cost 3 vext2 <0,2,4,u>, <1,3,1,3>
+ 2695894848U, // <4,u,1,4>: Cost 3 vext3 <1,u,3,4>, <u,1,4,3>
+ 2618934416U, // <4,u,1,5>: Cost 3 vext2 <0,2,4,u>, <1,5,3,7>
+ 3692676321U, // <4,u,1,6>: Cost 4 vext2 <0,2,4,u>, <1,6,3,7>
+ 2718750555U, // <4,u,1,7>: Cost 3 vext3 <5,6,7,4>, <u,1,7,3>
+ 1618171748U, // <4,u,1,u>: Cost 2 vext3 <1,2,3,4>, LHS
+ 2553397350U, // <4,u,2,0>: Cost 3 vext1 <0,4,u,2>, LHS
+ 2630215215U, // <4,u,2,1>: Cost 3 vext2 <2,1,4,u>, <2,1,4,u>
+ 2618934888U, // <4,u,2,2>: Cost 3 vext2 <0,2,4,u>, <2,2,2,2>
+ 1557800657U, // <4,u,2,3>: Cost 2 vext2 <2,3,4,u>, <2,3,4,u>
+ 2618935065U, // <4,u,2,4>: Cost 3 vext2 <0,2,4,u>, <2,4,3,u>
+ 2733864859U, // <4,u,2,5>: Cost 3 vext3 <u,2,5,4>, <u,2,5,4>
+ 2618935226U, // <4,u,2,6>: Cost 3 vext2 <0,2,4,u>, <2,6,3,7>
+ 2718750636U, // <4,u,2,7>: Cost 3 vext3 <5,6,7,4>, <u,2,7,3>
+ 1561118822U, // <4,u,2,u>: Cost 2 vext2 <2,u,4,u>, <2,u,4,u>
+ 2618935446U, // <4,u,3,0>: Cost 3 vext2 <0,2,4,u>, <3,0,1,2>
+ 2779318422U, // <4,u,3,1>: Cost 3 vuzpl RHS, <3,0,1,2>
+ 2636851545U, // <4,u,3,2>: Cost 3 vext2 <3,2,4,u>, <3,2,4,u>
+ 2618935708U, // <4,u,3,3>: Cost 3 vext2 <0,2,4,u>, <3,3,3,3>
+ 2618935810U, // <4,u,3,4>: Cost 3 vext2 <0,2,4,u>, <3,4,5,6>
+ 2691913711U, // <4,u,3,5>: Cost 3 vext3 <1,2,3,4>, <u,3,5,7>
+ 2588725862U, // <4,u,3,6>: Cost 3 vext1 <6,4,1,3>, <6,4,1,3>
+ 2640169710U, // <4,u,3,7>: Cost 3 vext2 <3,7,4,u>, <3,7,4,u>
+ 2618936094U, // <4,u,3,u>: Cost 3 vext2 <0,2,4,u>, <3,u,1,2>
+ 1503559782U, // <4,u,4,0>: Cost 2 vext1 <4,4,u,4>, LHS
+ 2692282391U, // <4,u,4,1>: Cost 3 vext3 <1,2,u,4>, <u,4,1,2>
+ 2565359426U, // <4,u,4,2>: Cost 3 vext1 <2,4,u,4>, <2,4,u,4>
+ 2571332123U, // <4,u,4,3>: Cost 3 vext1 <3,4,u,4>, <3,4,u,4>
+ 161926454U, // <4,u,4,4>: Cost 1 vdup0 RHS
+ 1545194806U, // <4,u,4,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1705577782U, // <4,u,4,6>: Cost 2 vuzpl RHS, RHS
+ 2718750801U, // <4,u,4,7>: Cost 3 vext3 <5,6,7,4>, <u,4,7,6>
+ 161926454U, // <4,u,4,u>: Cost 1 vdup0 RHS
+ 1479164006U, // <4,u,5,0>: Cost 2 vext1 <0,4,1,5>, LHS
+ 1839650606U, // <4,u,5,1>: Cost 2 vzipl RHS, LHS
+ 2565367502U, // <4,u,5,2>: Cost 3 vext1 <2,4,u,5>, <2,3,4,5>
+ 3089777309U, // <4,u,5,3>: Cost 3 vtrnr <0,4,1,5>, LHS
+ 1479167286U, // <4,u,5,4>: Cost 2 vext1 <0,4,1,5>, RHS
+ 1839650970U, // <4,u,5,5>: Cost 2 vzipl RHS, RHS
+ 1618172058U, // <4,u,5,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 3089780265U, // <4,u,5,7>: Cost 3 vtrnr <0,4,1,5>, RHS
+ 1618172076U, // <4,u,5,u>: Cost 2 vext3 <1,2,3,4>, RHS
+ 1479688294U, // <4,u,6,0>: Cost 2 vext1 <0,4,u,6>, LHS
+ 2553430774U, // <4,u,6,1>: Cost 3 vext1 <0,4,u,6>, <1,0,3,2>
+ 1973868334U, // <4,u,6,2>: Cost 2 vtrnl RHS, LHS
+ 1497606685U, // <4,u,6,3>: Cost 2 vext1 <3,4,u,6>, <3,4,u,6>
+ 1479691574U, // <4,u,6,4>: Cost 2 vext1 <0,4,u,6>, RHS
+ 1509552079U, // <4,u,6,5>: Cost 2 vext1 <5,4,u,6>, <5,4,u,6>
+ 1973868698U, // <4,u,6,6>: Cost 2 vtrnl RHS, RHS
+ 27705344U, // <4,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,6,u>: Cost 0 copy RHS
+ 2565382246U, // <4,u,7,0>: Cost 3 vext1 <2,4,u,7>, LHS
+ 2565383066U, // <4,u,7,1>: Cost 3 vext1 <2,4,u,7>, <1,2,3,4>
+ 2565384005U, // <4,u,7,2>: Cost 3 vext1 <2,4,u,7>, <2,4,u,7>
+ 2661405966U, // <4,u,7,3>: Cost 3 vext2 <7,3,4,u>, <7,3,4,u>
+ 2565385526U, // <4,u,7,4>: Cost 3 vext1 <2,4,u,7>, RHS
+ 2779321702U, // <4,u,7,5>: Cost 3 vuzpl RHS, <7,4,5,6>
+ 2589274793U, // <4,u,7,6>: Cost 3 vext1 <6,4,u,7>, <6,4,u,7>
+ 2779321964U, // <4,u,7,7>: Cost 3 vuzpl RHS, <7,7,7,7>
+ 2565388078U, // <4,u,7,u>: Cost 3 vext1 <2,4,u,7>, LHS
+ 1479704678U, // <4,u,u,0>: Cost 2 vext1 <0,4,u,u>, LHS
+ 1545197358U, // <4,u,u,1>: Cost 2 vext2 <0,2,4,u>, LHS
+ 1618172261U, // <4,u,u,2>: Cost 2 vext3 <1,2,3,4>, LHS
+ 1497623071U, // <4,u,u,3>: Cost 2 vext1 <3,4,u,u>, <3,4,u,u>
+ 161926454U, // <4,u,u,4>: Cost 1 vdup0 RHS
+ 1545197722U, // <4,u,u,5>: Cost 2 vext2 <0,2,4,u>, RHS
+ 1618172301U, // <4,u,u,6>: Cost 2 vext3 <1,2,3,4>, RHS
+ 27705344U, // <4,u,u,7>: Cost 0 copy RHS
+ 27705344U, // <4,u,u,u>: Cost 0 copy RHS
+ 2687123456U, // <5,0,0,0>: Cost 3 vext3 <0,4,1,5>, <0,0,0,0>
+ 2687123466U, // <5,0,0,1>: Cost 3 vext3 <0,4,1,5>, <0,0,1,1>
+ 2687123476U, // <5,0,0,2>: Cost 3 vext3 <0,4,1,5>, <0,0,2,2>
+ 3710599434U, // <5,0,0,3>: Cost 4 vext2 <3,2,5,0>, <0,3,2,5>
+ 2642166098U, // <5,0,0,4>: Cost 3 vext2 <4,1,5,0>, <0,4,1,5>
+ 3657060306U, // <5,0,0,5>: Cost 4 vext1 <5,5,0,0>, <5,5,0,0>
+ 3292094923U, // <5,0,0,6>: Cost 4 vrev <0,5,6,0>
+ 3669005700U, // <5,0,0,7>: Cost 4 vext1 <7,5,0,0>, <7,5,0,0>
+ 2687123530U, // <5,0,0,u>: Cost 3 vext3 <0,4,1,5>, <0,0,u,2>
+ 2559434854U, // <5,0,1,0>: Cost 3 vext1 <1,5,0,1>, LHS
+ 2559435887U, // <5,0,1,1>: Cost 3 vext1 <1,5,0,1>, <1,5,0,1>
+ 1613381734U, // <5,0,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 3698656256U, // <5,0,1,3>: Cost 4 vext2 <1,2,5,0>, <1,3,5,7>
+ 2559438134U, // <5,0,1,4>: Cost 3 vext1 <1,5,0,1>, RHS
+ 2583326675U, // <5,0,1,5>: Cost 3 vext1 <5,5,0,1>, <5,5,0,1>
+ 3715908851U, // <5,0,1,6>: Cost 4 vext2 <4,1,5,0>, <1,6,5,7>
+ 3657069562U, // <5,0,1,7>: Cost 4 vext1 <5,5,0,1>, <7,0,1,2>
+ 1613381788U, // <5,0,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2686017700U, // <5,0,2,0>: Cost 3 vext3 <0,2,4,5>, <0,2,0,2>
+ 2685796528U, // <5,0,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2698625208U, // <5,0,2,2>: Cost 3 vext3 <2,3,4,5>, <0,2,2,4>
+ 2685944002U, // <5,0,2,3>: Cost 3 vext3 <0,2,3,5>, <0,2,3,5>
+ 2686017739U, // <5,0,2,4>: Cost 3 vext3 <0,2,4,5>, <0,2,4,5>
+ 2686091476U, // <5,0,2,5>: Cost 3 vext3 <0,2,5,5>, <0,2,5,5>
+ 2725167324U, // <5,0,2,6>: Cost 3 vext3 <6,7,4,5>, <0,2,6,4>
+ 2595280230U, // <5,0,2,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 2686312687U, // <5,0,2,u>: Cost 3 vext3 <0,2,u,5>, <0,2,u,5>
+ 3760128248U, // <5,0,3,0>: Cost 4 vext3 <0,3,0,5>, <0,3,0,5>
+ 3759685888U, // <5,0,3,1>: Cost 4 vext3 <0,2,3,5>, <0,3,1,4>
+ 2686533898U, // <5,0,3,2>: Cost 3 vext3 <0,3,2,5>, <0,3,2,5>
+ 3760349459U, // <5,0,3,3>: Cost 4 vext3 <0,3,3,5>, <0,3,3,5>
+ 2638187004U, // <5,0,3,4>: Cost 3 vext2 <3,4,5,0>, <3,4,5,0>
+ 3776348452U, // <5,0,3,5>: Cost 4 vext3 <3,0,4,5>, <0,3,5,4>
+ 3713256094U, // <5,0,3,6>: Cost 4 vext2 <3,6,5,0>, <3,6,5,0>
+ 3914064896U, // <5,0,3,7>: Cost 4 vuzpr <3,5,7,0>, <1,3,5,7>
+ 2686976320U, // <5,0,3,u>: Cost 3 vext3 <0,3,u,5>, <0,3,u,5>
+ 2559459430U, // <5,0,4,0>: Cost 3 vext1 <1,5,0,4>, LHS
+ 1613381970U, // <5,0,4,1>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 2687123804U, // <5,0,4,2>: Cost 3 vext3 <0,4,1,5>, <0,4,2,6>
+ 3761013092U, // <5,0,4,3>: Cost 4 vext3 <0,4,3,5>, <0,4,3,5>
+ 2559462710U, // <5,0,4,4>: Cost 3 vext1 <1,5,0,4>, RHS
+ 2638187830U, // <5,0,4,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 3761234303U, // <5,0,4,6>: Cost 4 vext3 <0,4,6,5>, <0,4,6,5>
+ 2646150600U, // <5,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1613381970U, // <5,0,4,u>: Cost 2 vext3 <0,4,1,5>, <0,4,1,5>
+ 3766763926U, // <5,0,5,0>: Cost 4 vext3 <1,4,0,5>, <0,5,0,1>
+ 2919268454U, // <5,0,5,1>: Cost 3 vzipl <5,5,5,5>, LHS
+ 3053486182U, // <5,0,5,2>: Cost 3 vtrnl <5,5,5,5>, LHS
+ 3723210589U, // <5,0,5,3>: Cost 4 vext2 <5,3,5,0>, <5,3,5,0>
+ 3766763966U, // <5,0,5,4>: Cost 4 vext3 <1,4,0,5>, <0,5,4,5>
+ 2650796031U, // <5,0,5,5>: Cost 3 vext2 <5,5,5,0>, <5,5,5,0>
+ 3719893090U, // <5,0,5,6>: Cost 4 vext2 <4,7,5,0>, <5,6,7,0>
+ 3914067254U, // <5,0,5,7>: Cost 4 vuzpr <3,5,7,0>, RHS
+ 2919269021U, // <5,0,5,u>: Cost 3 vzipl <5,5,5,5>, LHS
+ 4047519744U, // <5,0,6,0>: Cost 4 vzipr <3,4,5,6>, <0,0,0,0>
+ 2920038502U, // <5,0,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 3759759871U, // <5,0,6,2>: Cost 4 vext3 <0,2,4,5>, <0,6,2,7>
+ 3645164070U, // <5,0,6,3>: Cost 4 vext1 <3,5,0,6>, <3,5,0,6>
+ 3762414095U, // <5,0,6,4>: Cost 4 vext3 <0,6,4,5>, <0,6,4,5>
+ 3993780690U, // <5,0,6,5>: Cost 4 vzipl <5,6,7,0>, <0,5,6,7>
+ 3719893816U, // <5,0,6,6>: Cost 4 vext2 <4,7,5,0>, <6,6,6,6>
+ 2662077302U, // <5,0,6,7>: Cost 3 vext2 <7,4,5,0>, <6,7,4,5>
+ 2920039069U, // <5,0,6,u>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2565455974U, // <5,0,7,0>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2565456790U, // <5,0,7,1>: Cost 3 vext1 <2,5,0,7>, <1,2,3,0>
+ 2565457742U, // <5,0,7,2>: Cost 3 vext1 <2,5,0,7>, <2,5,0,7>
+ 3639199894U, // <5,0,7,3>: Cost 4 vext1 <2,5,0,7>, <3,0,1,2>
+ 2565459254U, // <5,0,7,4>: Cost 3 vext1 <2,5,0,7>, RHS
+ 2589347938U, // <5,0,7,5>: Cost 3 vext1 <6,5,0,7>, <5,6,7,0>
+ 2589348530U, // <5,0,7,6>: Cost 3 vext1 <6,5,0,7>, <6,5,0,7>
+ 4188456422U, // <5,0,7,7>: Cost 4 vtrnr RHS, <2,0,5,7>
+ 2565461806U, // <5,0,7,u>: Cost 3 vext1 <2,5,0,7>, LHS
+ 2687124106U, // <5,0,u,0>: Cost 3 vext3 <0,4,1,5>, <0,u,0,2>
+ 1616036502U, // <5,0,u,1>: Cost 2 vext3 <0,u,1,5>, <0,u,1,5>
+ 1613382301U, // <5,0,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2689925800U, // <5,0,u,3>: Cost 3 vext3 <0,u,3,5>, <0,u,3,5>
+ 2687124146U, // <5,0,u,4>: Cost 3 vext3 <0,4,1,5>, <0,u,4,6>
+ 2638190746U, // <5,0,u,5>: Cost 3 vext2 <3,4,5,0>, RHS
+ 2589356723U, // <5,0,u,6>: Cost 3 vext1 <6,5,0,u>, <6,5,0,u>
+ 2595280230U, // <5,0,u,7>: Cost 3 vext1 <7,5,0,2>, <7,4,5,6>
+ 1613382355U, // <5,0,u,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2646818816U, // <5,1,0,0>: Cost 3 vext2 <4,u,5,1>, <0,0,0,0>
+ 1573077094U, // <5,1,0,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2646818980U, // <5,1,0,2>: Cost 3 vext2 <4,u,5,1>, <0,2,0,2>
+ 2687124214U, // <5,1,0,3>: Cost 3 vext3 <0,4,1,5>, <1,0,3,2>
+ 2641510738U, // <5,1,0,4>: Cost 3 vext2 <4,0,5,1>, <0,4,1,5>
+ 2641510814U, // <5,1,0,5>: Cost 3 vext2 <4,0,5,1>, <0,5,1,0>
+ 3720561142U, // <5,1,0,6>: Cost 4 vext2 <4,u,5,1>, <0,6,1,7>
+ 3298141357U, // <5,1,0,7>: Cost 4 vrev <1,5,7,0>
+ 1573077661U, // <5,1,0,u>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2223891567U, // <5,1,1,0>: Cost 3 vrev <1,5,0,1>
+ 2687124276U, // <5,1,1,1>: Cost 3 vext3 <0,4,1,5>, <1,1,1,1>
+ 2646819734U, // <5,1,1,2>: Cost 3 vext2 <4,u,5,1>, <1,2,3,0>
+ 2687124296U, // <5,1,1,3>: Cost 3 vext3 <0,4,1,5>, <1,1,3,3>
+ 2691326803U, // <5,1,1,4>: Cost 3 vext3 <1,1,4,5>, <1,1,4,5>
+ 2691400540U, // <5,1,1,5>: Cost 3 vext3 <1,1,5,5>, <1,1,5,5>
+ 3765216101U, // <5,1,1,6>: Cost 4 vext3 <1,1,6,5>, <1,1,6,5>
+ 3765289838U, // <5,1,1,7>: Cost 4 vext3 <1,1,7,5>, <1,1,7,5>
+ 2687124341U, // <5,1,1,u>: Cost 3 vext3 <0,4,1,5>, <1,1,u,3>
+ 3297641584U, // <5,1,2,0>: Cost 4 vrev <1,5,0,2>
+ 3763520391U, // <5,1,2,1>: Cost 4 vext3 <0,u,1,5>, <1,2,1,3>
+ 2646820456U, // <5,1,2,2>: Cost 3 vext2 <4,u,5,1>, <2,2,2,2>
+ 2687124374U, // <5,1,2,3>: Cost 3 vext3 <0,4,1,5>, <1,2,3,0>
+ 2691990436U, // <5,1,2,4>: Cost 3 vext3 <1,2,4,5>, <1,2,4,5>
+ 2687124395U, // <5,1,2,5>: Cost 3 vext3 <0,4,1,5>, <1,2,5,3>
+ 2646820794U, // <5,1,2,6>: Cost 3 vext2 <4,u,5,1>, <2,6,3,7>
+ 3808199610U, // <5,1,2,7>: Cost 4 vext3 <u,3,4,5>, <1,2,7,0>
+ 2687124419U, // <5,1,2,u>: Cost 3 vext3 <0,4,1,5>, <1,2,u,0>
+ 2577440870U, // <5,1,3,0>: Cost 3 vext1 <4,5,1,3>, LHS
+ 2687124440U, // <5,1,3,1>: Cost 3 vext3 <0,4,1,5>, <1,3,1,3>
+ 3759686627U, // <5,1,3,2>: Cost 4 vext3 <0,2,3,5>, <1,3,2,5>
+ 2692580332U, // <5,1,3,3>: Cost 3 vext3 <1,3,3,5>, <1,3,3,5>
+ 2687124469U, // <5,1,3,4>: Cost 3 vext3 <0,4,1,5>, <1,3,4,5>
+ 2685207552U, // <5,1,3,5>: Cost 3 vext3 <0,1,2,5>, <1,3,5,7>
+ 3760866313U, // <5,1,3,6>: Cost 4 vext3 <0,4,1,5>, <1,3,6,7>
+ 2692875280U, // <5,1,3,7>: Cost 3 vext3 <1,3,7,5>, <1,3,7,5>
+ 2687124503U, // <5,1,3,u>: Cost 3 vext3 <0,4,1,5>, <1,3,u,3>
+ 1567771538U, // <5,1,4,0>: Cost 2 vext2 <4,0,5,1>, <4,0,5,1>
+ 2693096491U, // <5,1,4,1>: Cost 3 vext3 <1,4,1,5>, <1,4,1,5>
+ 2693170228U, // <5,1,4,2>: Cost 3 vext3 <1,4,2,5>, <1,4,2,5>
+ 2687124541U, // <5,1,4,3>: Cost 3 vext3 <0,4,1,5>, <1,4,3,5>
+ 2646822096U, // <5,1,4,4>: Cost 3 vext2 <4,u,5,1>, <4,4,4,4>
+ 1573080374U, // <5,1,4,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646822260U, // <5,1,4,6>: Cost 3 vext2 <4,u,5,1>, <4,6,4,6>
+ 3298174129U, // <5,1,4,7>: Cost 4 vrev <1,5,7,4>
+ 1573080602U, // <5,1,4,u>: Cost 2 vext2 <4,u,5,1>, <4,u,5,1>
+ 2687124591U, // <5,1,5,0>: Cost 3 vext3 <0,4,1,5>, <1,5,0,1>
+ 2646822543U, // <5,1,5,1>: Cost 3 vext2 <4,u,5,1>, <5,1,0,1>
+ 3760866433U, // <5,1,5,2>: Cost 4 vext3 <0,4,1,5>, <1,5,2,1>
+ 2687124624U, // <5,1,5,3>: Cost 3 vext3 <0,4,1,5>, <1,5,3,7>
+ 2687124631U, // <5,1,5,4>: Cost 3 vext3 <0,4,1,5>, <1,5,4,5>
+ 2646822916U, // <5,1,5,5>: Cost 3 vext2 <4,u,5,1>, <5,5,5,5>
+ 2646823010U, // <5,1,5,6>: Cost 3 vext2 <4,u,5,1>, <5,6,7,0>
+ 2646823080U, // <5,1,5,7>: Cost 3 vext2 <4,u,5,1>, <5,7,5,7>
+ 2687124663U, // <5,1,5,u>: Cost 3 vext3 <0,4,1,5>, <1,5,u,1>
+ 2553577574U, // <5,1,6,0>: Cost 3 vext1 <0,5,1,6>, LHS
+ 3763520719U, // <5,1,6,1>: Cost 4 vext3 <0,u,1,5>, <1,6,1,7>
+ 2646823418U, // <5,1,6,2>: Cost 3 vext2 <4,u,5,1>, <6,2,7,3>
+ 3760866529U, // <5,1,6,3>: Cost 4 vext3 <0,4,1,5>, <1,6,3,7>
+ 2553580854U, // <5,1,6,4>: Cost 3 vext1 <0,5,1,6>, RHS
+ 2687124723U, // <5,1,6,5>: Cost 3 vext3 <0,4,1,5>, <1,6,5,7>
+ 2646823736U, // <5,1,6,6>: Cost 3 vext2 <4,u,5,1>, <6,6,6,6>
+ 2646823758U, // <5,1,6,7>: Cost 3 vext2 <4,u,5,1>, <6,7,0,1>
+ 2646823839U, // <5,1,6,u>: Cost 3 vext2 <4,u,5,1>, <6,u,0,1>
+ 2559557734U, // <5,1,7,0>: Cost 3 vext1 <1,5,1,7>, LHS
+ 2559558452U, // <5,1,7,1>: Cost 3 vext1 <1,5,1,7>, <1,1,1,1>
+ 2571503270U, // <5,1,7,2>: Cost 3 vext1 <3,5,1,7>, <2,3,0,1>
+ 2040971366U, // <5,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2559561014U, // <5,1,7,4>: Cost 3 vext1 <1,5,1,7>, RHS
+ 2595393232U, // <5,1,7,5>: Cost 3 vext1 <7,5,1,7>, <5,1,7,3>
+ 4188455035U, // <5,1,7,6>: Cost 4 vtrnr RHS, <0,1,4,6>
+ 2646824556U, // <5,1,7,7>: Cost 3 vext2 <4,u,5,1>, <7,7,7,7>
+ 2040971371U, // <5,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1591662326U, // <5,1,u,0>: Cost 2 vext2 <u,0,5,1>, <u,0,5,1>
+ 1573082926U, // <5,1,u,1>: Cost 2 vext2 <4,u,5,1>, LHS
+ 2695824760U, // <5,1,u,2>: Cost 3 vext3 <1,u,2,5>, <1,u,2,5>
+ 2040979558U, // <5,1,u,3>: Cost 2 vtrnr RHS, LHS
+ 2687124874U, // <5,1,u,4>: Cost 3 vext3 <0,4,1,5>, <1,u,4,5>
+ 1573083290U, // <5,1,u,5>: Cost 2 vext2 <4,u,5,1>, RHS
+ 2646825168U, // <5,1,u,6>: Cost 3 vext2 <4,u,5,1>, <u,6,3,7>
+ 2646825216U, // <5,1,u,7>: Cost 3 vext2 <4,u,5,1>, <u,7,0,1>
+ 2040979563U, // <5,1,u,u>: Cost 2 vtrnr RHS, LHS
+ 3702652928U, // <5,2,0,0>: Cost 4 vext2 <1,u,5,2>, <0,0,0,0>
+ 2628911206U, // <5,2,0,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2641518756U, // <5,2,0,2>: Cost 3 vext2 <4,0,5,2>, <0,2,0,2>
+ 3759760847U, // <5,2,0,3>: Cost 4 vext3 <0,2,4,5>, <2,0,3,2>
+ 3760866775U, // <5,2,0,4>: Cost 4 vext3 <0,4,1,5>, <2,0,4,1>
+ 3759539680U, // <5,2,0,5>: Cost 4 vext3 <0,2,1,5>, <2,0,5,1>
+ 3760866796U, // <5,2,0,6>: Cost 4 vext3 <0,4,1,5>, <2,0,6,4>
+ 3304114054U, // <5,2,0,7>: Cost 4 vrev <2,5,7,0>
+ 2628911773U, // <5,2,0,u>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2623603464U, // <5,2,1,0>: Cost 3 vext2 <1,0,5,2>, <1,0,5,2>
+ 3698008921U, // <5,2,1,1>: Cost 4 vext2 <1,1,5,2>, <1,1,5,2>
+ 3633325603U, // <5,2,1,2>: Cost 4 vext1 <1,5,2,1>, <2,1,3,5>
+ 2687125027U, // <5,2,1,3>: Cost 3 vext3 <0,4,1,5>, <2,1,3,5>
+ 3633327414U, // <5,2,1,4>: Cost 4 vext1 <1,5,2,1>, RHS
+ 3759539760U, // <5,2,1,5>: Cost 4 vext3 <0,2,1,5>, <2,1,5,0>
+ 3760866876U, // <5,2,1,6>: Cost 4 vext3 <0,4,1,5>, <2,1,6,3>
+ 3304122247U, // <5,2,1,7>: Cost 4 vrev <2,5,7,1>
+ 2687125072U, // <5,2,1,u>: Cost 3 vext3 <0,4,1,5>, <2,1,u,5>
+ 3633332326U, // <5,2,2,0>: Cost 4 vext1 <1,5,2,2>, LHS
+ 3759760992U, // <5,2,2,1>: Cost 4 vext3 <0,2,4,5>, <2,2,1,3>
+ 2687125096U, // <5,2,2,2>: Cost 3 vext3 <0,4,1,5>, <2,2,2,2>
+ 2687125106U, // <5,2,2,3>: Cost 3 vext3 <0,4,1,5>, <2,2,3,3>
+ 2697963133U, // <5,2,2,4>: Cost 3 vext3 <2,2,4,5>, <2,2,4,5>
+ 3759466120U, // <5,2,2,5>: Cost 4 vext3 <0,2,0,5>, <2,2,5,7>
+ 3760866960U, // <5,2,2,6>: Cost 4 vext3 <0,4,1,5>, <2,2,6,6>
+ 3771926168U, // <5,2,2,7>: Cost 4 vext3 <2,2,7,5>, <2,2,7,5>
+ 2687125151U, // <5,2,2,u>: Cost 3 vext3 <0,4,1,5>, <2,2,u,3>
+ 2687125158U, // <5,2,3,0>: Cost 3 vext3 <0,4,1,5>, <2,3,0,1>
+ 2698405555U, // <5,2,3,1>: Cost 3 vext3 <2,3,1,5>, <2,3,1,5>
+ 2577516238U, // <5,2,3,2>: Cost 3 vext1 <4,5,2,3>, <2,3,4,5>
+ 3759687365U, // <5,2,3,3>: Cost 4 vext3 <0,2,3,5>, <2,3,3,5>
+ 1624884942U, // <5,2,3,4>: Cost 2 vext3 <2,3,4,5>, <2,3,4,5>
+ 2698700503U, // <5,2,3,5>: Cost 3 vext3 <2,3,5,5>, <2,3,5,5>
+ 3772368608U, // <5,2,3,6>: Cost 4 vext3 <2,3,4,5>, <2,3,6,5>
+ 3702655716U, // <5,2,3,7>: Cost 4 vext2 <1,u,5,2>, <3,7,3,7>
+ 1625179890U, // <5,2,3,u>: Cost 2 vext3 <2,3,u,5>, <2,3,u,5>
+ 2641521555U, // <5,2,4,0>: Cost 3 vext2 <4,0,5,2>, <4,0,5,2>
+ 3772368642U, // <5,2,4,1>: Cost 4 vext3 <2,3,4,5>, <2,4,1,3>
+ 2699142925U, // <5,2,4,2>: Cost 3 vext3 <2,4,2,5>, <2,4,2,5>
+ 2698626838U, // <5,2,4,3>: Cost 3 vext3 <2,3,4,5>, <2,4,3,5>
+ 2698626848U, // <5,2,4,4>: Cost 3 vext3 <2,3,4,5>, <2,4,4,6>
+ 2628914486U, // <5,2,4,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2645503353U, // <5,2,4,6>: Cost 3 vext2 <4,6,5,2>, <4,6,5,2>
+ 3304146826U, // <5,2,4,7>: Cost 4 vrev <2,5,7,4>
+ 2628914729U, // <5,2,4,u>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2553643110U, // <5,2,5,0>: Cost 3 vext1 <0,5,2,5>, LHS
+ 3758950227U, // <5,2,5,1>: Cost 4 vext3 <0,1,2,5>, <2,5,1,3>
+ 3759761248U, // <5,2,5,2>: Cost 4 vext3 <0,2,4,5>, <2,5,2,7>
+ 2982396006U, // <5,2,5,3>: Cost 3 vzipr <4,u,5,5>, LHS
+ 2553646390U, // <5,2,5,4>: Cost 3 vext1 <0,5,2,5>, RHS
+ 2553647108U, // <5,2,5,5>: Cost 3 vext1 <0,5,2,5>, <5,5,5,5>
+ 3760867204U, // <5,2,5,6>: Cost 4 vext3 <0,4,1,5>, <2,5,6,7>
+ 3702657141U, // <5,2,5,7>: Cost 4 vext2 <1,u,5,2>, <5,7,0,1>
+ 2982396011U, // <5,2,5,u>: Cost 3 vzipr <4,u,5,5>, LHS
+ 3627393126U, // <5,2,6,0>: Cost 4 vext1 <0,5,2,6>, LHS
+ 3760867236U, // <5,2,6,1>: Cost 4 vext3 <0,4,1,5>, <2,6,1,3>
+ 2645504506U, // <5,2,6,2>: Cost 3 vext2 <4,6,5,2>, <6,2,7,3>
+ 2687125434U, // <5,2,6,3>: Cost 3 vext3 <0,4,1,5>, <2,6,3,7>
+ 2700617665U, // <5,2,6,4>: Cost 3 vext3 <2,6,4,5>, <2,6,4,5>
+ 3760867276U, // <5,2,6,5>: Cost 4 vext3 <0,4,1,5>, <2,6,5,7>
+ 3763521493U, // <5,2,6,6>: Cost 4 vext3 <0,u,1,5>, <2,6,6,7>
+ 3719246670U, // <5,2,6,7>: Cost 4 vext2 <4,6,5,2>, <6,7,0,1>
+ 2687125479U, // <5,2,6,u>: Cost 3 vext3 <0,4,1,5>, <2,6,u,7>
+ 2565603430U, // <5,2,7,0>: Cost 3 vext1 <2,5,2,7>, LHS
+ 2553660150U, // <5,2,7,1>: Cost 3 vext1 <0,5,2,7>, <1,0,3,2>
+ 2565605216U, // <5,2,7,2>: Cost 3 vext1 <2,5,2,7>, <2,5,2,7>
+ 2961178726U, // <5,2,7,3>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2565606710U, // <5,2,7,4>: Cost 3 vext1 <2,5,2,7>, RHS
+ 4034920552U, // <5,2,7,5>: Cost 4 vzipr <1,3,5,7>, <0,1,2,5>
+ 3114713292U, // <5,2,7,6>: Cost 3 vtrnr RHS, <0,2,4,6>
+ 3702658668U, // <5,2,7,7>: Cost 4 vext2 <1,u,5,2>, <7,7,7,7>
+ 2961178731U, // <5,2,7,u>: Cost 3 vzipr <1,3,5,7>, LHS
+ 2687125563U, // <5,2,u,0>: Cost 3 vext3 <0,4,1,5>, <2,u,0,1>
+ 2628917038U, // <5,2,u,1>: Cost 3 vext2 <1,u,5,2>, LHS
+ 2565613409U, // <5,2,u,2>: Cost 3 vext1 <2,5,2,u>, <2,5,2,u>
+ 2687125592U, // <5,2,u,3>: Cost 3 vext3 <0,4,1,5>, <2,u,3,3>
+ 1628203107U, // <5,2,u,4>: Cost 2 vext3 <2,u,4,5>, <2,u,4,5>
+ 2628917402U, // <5,2,u,5>: Cost 3 vext2 <1,u,5,2>, RHS
+ 2702092405U, // <5,2,u,6>: Cost 3 vext3 <2,u,6,5>, <2,u,6,5>
+ 3304179598U, // <5,2,u,7>: Cost 4 vrev <2,5,7,u>
+ 1628498055U, // <5,2,u,u>: Cost 2 vext3 <2,u,u,5>, <2,u,u,5>
+ 3760867467U, // <5,3,0,0>: Cost 4 vext3 <0,4,1,5>, <3,0,0,0>
+ 2687125654U, // <5,3,0,1>: Cost 3 vext3 <0,4,1,5>, <3,0,1,2>
+ 3759761565U, // <5,3,0,2>: Cost 4 vext3 <0,2,4,5>, <3,0,2,0>
+ 3633391766U, // <5,3,0,3>: Cost 4 vext1 <1,5,3,0>, <3,0,1,2>
+ 2687125680U, // <5,3,0,4>: Cost 3 vext3 <0,4,1,5>, <3,0,4,1>
+ 3760277690U, // <5,3,0,5>: Cost 4 vext3 <0,3,2,5>, <3,0,5,2>
+ 3310013014U, // <5,3,0,6>: Cost 4 vrev <3,5,6,0>
+ 2236344927U, // <5,3,0,7>: Cost 3 vrev <3,5,7,0>
+ 2687125717U, // <5,3,0,u>: Cost 3 vext3 <0,4,1,5>, <3,0,u,2>
+ 3760867551U, // <5,3,1,0>: Cost 4 vext3 <0,4,1,5>, <3,1,0,3>
+ 3760867558U, // <5,3,1,1>: Cost 4 vext3 <0,4,1,5>, <3,1,1,1>
+ 2624938923U, // <5,3,1,2>: Cost 3 vext2 <1,2,5,3>, <1,2,5,3>
+ 2703198460U, // <5,3,1,3>: Cost 3 vext3 <3,1,3,5>, <3,1,3,5>
+ 3760867587U, // <5,3,1,4>: Cost 4 vext3 <0,4,1,5>, <3,1,4,3>
+ 2636219536U, // <5,3,1,5>: Cost 3 vext2 <3,1,5,3>, <1,5,3,7>
+ 3698681075U, // <5,3,1,6>: Cost 4 vext2 <1,2,5,3>, <1,6,5,7>
+ 2703493408U, // <5,3,1,7>: Cost 3 vext3 <3,1,7,5>, <3,1,7,5>
+ 2628920721U, // <5,3,1,u>: Cost 3 vext2 <1,u,5,3>, <1,u,5,3>
+ 3766765870U, // <5,3,2,0>: Cost 4 vext3 <1,4,0,5>, <3,2,0,1>
+ 3698681379U, // <5,3,2,1>: Cost 4 vext2 <1,2,5,3>, <2,1,3,5>
+ 3760867649U, // <5,3,2,2>: Cost 4 vext3 <0,4,1,5>, <3,2,2,2>
+ 2698627404U, // <5,3,2,3>: Cost 3 vext3 <2,3,4,5>, <3,2,3,4>
+ 2703935830U, // <5,3,2,4>: Cost 3 vext3 <3,2,4,5>, <3,2,4,5>
+ 2698627422U, // <5,3,2,5>: Cost 3 vext3 <2,3,4,5>, <3,2,5,4>
+ 3760867686U, // <5,3,2,6>: Cost 4 vext3 <0,4,1,5>, <3,2,6,3>
+ 3769788783U, // <5,3,2,7>: Cost 4 vext3 <1,u,5,5>, <3,2,7,3>
+ 2701945209U, // <5,3,2,u>: Cost 3 vext3 <2,u,4,5>, <3,2,u,4>
+ 3760867711U, // <5,3,3,0>: Cost 4 vext3 <0,4,1,5>, <3,3,0,1>
+ 2636220684U, // <5,3,3,1>: Cost 3 vext2 <3,1,5,3>, <3,1,5,3>
+ 3772369298U, // <5,3,3,2>: Cost 4 vext3 <2,3,4,5>, <3,3,2,2>
+ 2687125916U, // <5,3,3,3>: Cost 3 vext3 <0,4,1,5>, <3,3,3,3>
+ 2704599463U, // <5,3,3,4>: Cost 3 vext3 <3,3,4,5>, <3,3,4,5>
+ 2704673200U, // <5,3,3,5>: Cost 3 vext3 <3,3,5,5>, <3,3,5,5>
+ 3709962935U, // <5,3,3,6>: Cost 4 vext2 <3,1,5,3>, <3,6,7,7>
+ 3772369346U, // <5,3,3,7>: Cost 4 vext3 <2,3,4,5>, <3,3,7,5>
+ 2704894411U, // <5,3,3,u>: Cost 3 vext3 <3,3,u,5>, <3,3,u,5>
+ 2704968148U, // <5,3,4,0>: Cost 3 vext3 <3,4,0,5>, <3,4,0,5>
+ 3698682850U, // <5,3,4,1>: Cost 4 vext2 <1,2,5,3>, <4,1,5,0>
+ 2642857014U, // <5,3,4,2>: Cost 3 vext2 <4,2,5,3>, <4,2,5,3>
+ 2705189359U, // <5,3,4,3>: Cost 3 vext3 <3,4,3,5>, <3,4,3,5>
+ 2705263096U, // <5,3,4,4>: Cost 3 vext3 <3,4,4,5>, <3,4,4,5>
+ 2685946370U, // <5,3,4,5>: Cost 3 vext3 <0,2,3,5>, <3,4,5,6>
+ 3779152394U, // <5,3,4,6>: Cost 4 vext3 <3,4,6,5>, <3,4,6,5>
+ 2236377699U, // <5,3,4,7>: Cost 3 vrev <3,5,7,4>
+ 2687126045U, // <5,3,4,u>: Cost 3 vext3 <0,4,1,5>, <3,4,u,6>
+ 2571632742U, // <5,3,5,0>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2559689870U, // <5,3,5,1>: Cost 3 vext1 <1,5,3,5>, <1,5,3,5>
+ 2571634382U, // <5,3,5,2>: Cost 3 vext1 <3,5,3,5>, <2,3,4,5>
+ 2571635264U, // <5,3,5,3>: Cost 3 vext1 <3,5,3,5>, <3,5,3,5>
+ 2571636022U, // <5,3,5,4>: Cost 3 vext1 <3,5,3,5>, RHS
+ 2559692804U, // <5,3,5,5>: Cost 3 vext1 <1,5,3,5>, <5,5,5,5>
+ 3720581218U, // <5,3,5,6>: Cost 4 vext2 <4,u,5,3>, <5,6,7,0>
+ 2236385892U, // <5,3,5,7>: Cost 3 vrev <3,5,7,5>
+ 2571638574U, // <5,3,5,u>: Cost 3 vext1 <3,5,3,5>, LHS
+ 2565668966U, // <5,3,6,0>: Cost 3 vext1 <2,5,3,6>, LHS
+ 3633439887U, // <5,3,6,1>: Cost 4 vext1 <1,5,3,6>, <1,5,3,6>
+ 2565670760U, // <5,3,6,2>: Cost 3 vext1 <2,5,3,6>, <2,5,3,6>
+ 2565671426U, // <5,3,6,3>: Cost 3 vext1 <2,5,3,6>, <3,4,5,6>
+ 2565672246U, // <5,3,6,4>: Cost 3 vext1 <2,5,3,6>, RHS
+ 3639414630U, // <5,3,6,5>: Cost 4 vext1 <2,5,3,6>, <5,3,6,0>
+ 4047521640U, // <5,3,6,6>: Cost 4 vzipr <3,4,5,6>, <2,5,3,6>
+ 2725169844U, // <5,3,6,7>: Cost 3 vext3 <6,7,4,5>, <3,6,7,4>
+ 2565674798U, // <5,3,6,u>: Cost 3 vext1 <2,5,3,6>, LHS
+ 1485963366U, // <5,3,7,0>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485964432U, // <5,3,7,1>: Cost 2 vext1 <1,5,3,7>, <1,5,3,7>
+ 2559706728U, // <5,3,7,2>: Cost 3 vext1 <1,5,3,7>, <2,2,2,2>
+ 2559707286U, // <5,3,7,3>: Cost 3 vext1 <1,5,3,7>, <3,0,1,2>
+ 1485966646U, // <5,3,7,4>: Cost 2 vext1 <1,5,3,7>, RHS
+ 2559708880U, // <5,3,7,5>: Cost 3 vext1 <1,5,3,7>, <5,1,7,3>
+ 2601513466U, // <5,3,7,6>: Cost 3 vext1 <u,5,3,7>, <6,2,7,3>
+ 3114714112U, // <5,3,7,7>: Cost 3 vtrnr RHS, <1,3,5,7>
+ 1485969198U, // <5,3,7,u>: Cost 2 vext1 <1,5,3,7>, LHS
+ 1485971558U, // <5,3,u,0>: Cost 2 vext1 <1,5,3,u>, LHS
+ 1485972625U, // <5,3,u,1>: Cost 2 vext1 <1,5,3,u>, <1,5,3,u>
+ 2559714920U, // <5,3,u,2>: Cost 3 vext1 <1,5,3,u>, <2,2,2,2>
+ 2559715478U, // <5,3,u,3>: Cost 3 vext1 <1,5,3,u>, <3,0,1,2>
+ 1485974838U, // <5,3,u,4>: Cost 2 vext1 <1,5,3,u>, RHS
+ 2687126342U, // <5,3,u,5>: Cost 3 vext3 <0,4,1,5>, <3,u,5,6>
+ 2601521658U, // <5,3,u,6>: Cost 3 vext1 <u,5,3,u>, <6,2,7,3>
+ 2236410471U, // <5,3,u,7>: Cost 3 vrev <3,5,7,u>
+ 1485977390U, // <5,3,u,u>: Cost 2 vext1 <1,5,3,u>, LHS
+ 3627491430U, // <5,4,0,0>: Cost 4 vext1 <0,5,4,0>, LHS
+ 2636890214U, // <5,4,0,1>: Cost 3 vext2 <3,2,5,4>, LHS
+ 3703333028U, // <5,4,0,2>: Cost 4 vext2 <2,0,5,4>, <0,2,0,2>
+ 3782249348U, // <5,4,0,3>: Cost 4 vext3 <4,0,3,5>, <4,0,3,5>
+ 2642198866U, // <5,4,0,4>: Cost 3 vext2 <4,1,5,4>, <0,4,1,5>
+ 2687126418U, // <5,4,0,5>: Cost 3 vext3 <0,4,1,5>, <4,0,5,1>
+ 2242243887U, // <5,4,0,6>: Cost 3 vrev <4,5,6,0>
+ 3316059448U, // <5,4,0,7>: Cost 4 vrev <4,5,7,0>
+ 2636890781U, // <5,4,0,u>: Cost 3 vext2 <3,2,5,4>, LHS
+ 2241809658U, // <5,4,1,0>: Cost 3 vrev <4,5,0,1>
+ 3698025307U, // <5,4,1,1>: Cost 4 vext2 <1,1,5,4>, <1,1,5,4>
+ 3698688940U, // <5,4,1,2>: Cost 4 vext2 <1,2,5,4>, <1,2,5,4>
+ 3698689024U, // <5,4,1,3>: Cost 4 vext2 <1,2,5,4>, <1,3,5,7>
+ 3700016206U, // <5,4,1,4>: Cost 4 vext2 <1,4,5,4>, <1,4,5,4>
+ 2687126498U, // <5,4,1,5>: Cost 3 vext3 <0,4,1,5>, <4,1,5,0>
+ 3760868336U, // <5,4,1,6>: Cost 4 vext3 <0,4,1,5>, <4,1,6,5>
+ 3316067641U, // <5,4,1,7>: Cost 4 vrev <4,5,7,1>
+ 2242399554U, // <5,4,1,u>: Cost 3 vrev <4,5,u,1>
+ 3703334371U, // <5,4,2,0>: Cost 4 vext2 <2,0,5,4>, <2,0,5,4>
+ 3703998004U, // <5,4,2,1>: Cost 4 vext2 <2,1,5,4>, <2,1,5,4>
+ 3704661637U, // <5,4,2,2>: Cost 4 vext2 <2,2,5,4>, <2,2,5,4>
+ 2636891854U, // <5,4,2,3>: Cost 3 vext2 <3,2,5,4>, <2,3,4,5>
+ 3705988903U, // <5,4,2,4>: Cost 4 vext2 <2,4,5,4>, <2,4,5,4>
+ 2698628150U, // <5,4,2,5>: Cost 3 vext3 <2,3,4,5>, <4,2,5,3>
+ 3760868415U, // <5,4,2,6>: Cost 4 vext3 <0,4,1,5>, <4,2,6,3>
+ 3783871562U, // <5,4,2,7>: Cost 4 vext3 <4,2,7,5>, <4,2,7,5>
+ 2666752099U, // <5,4,2,u>: Cost 3 vext2 <u,2,5,4>, <2,u,4,5>
+ 3639459942U, // <5,4,3,0>: Cost 4 vext1 <2,5,4,3>, LHS
+ 3709970701U, // <5,4,3,1>: Cost 4 vext2 <3,1,5,4>, <3,1,5,4>
+ 2636892510U, // <5,4,3,2>: Cost 3 vext2 <3,2,5,4>, <3,2,5,4>
+ 3710634396U, // <5,4,3,3>: Cost 4 vext2 <3,2,5,4>, <3,3,3,3>
+ 2638219776U, // <5,4,3,4>: Cost 3 vext2 <3,4,5,4>, <3,4,5,4>
+ 3766987908U, // <5,4,3,5>: Cost 4 vext3 <1,4,3,5>, <4,3,5,0>
+ 2710719634U, // <5,4,3,6>: Cost 3 vext3 <4,3,6,5>, <4,3,6,5>
+ 3914097664U, // <5,4,3,7>: Cost 4 vuzpr <3,5,7,4>, <1,3,5,7>
+ 2640874308U, // <5,4,3,u>: Cost 3 vext2 <3,u,5,4>, <3,u,5,4>
+ 2583642214U, // <5,4,4,0>: Cost 3 vext1 <5,5,4,4>, LHS
+ 2642201574U, // <5,4,4,1>: Cost 3 vext2 <4,1,5,4>, <4,1,5,4>
+ 3710635062U, // <5,4,4,2>: Cost 4 vext2 <3,2,5,4>, <4,2,5,3>
+ 3717270664U, // <5,4,4,3>: Cost 4 vext2 <4,3,5,4>, <4,3,5,4>
+ 2713963728U, // <5,4,4,4>: Cost 3 vext3 <4,u,5,5>, <4,4,4,4>
+ 1637567706U, // <5,4,4,5>: Cost 2 vext3 <4,4,5,5>, <4,4,5,5>
+ 2242276659U, // <5,4,4,6>: Cost 3 vrev <4,5,6,4>
+ 2646183372U, // <5,4,4,7>: Cost 3 vext2 <4,7,5,4>, <4,7,5,4>
+ 1637788917U, // <5,4,4,u>: Cost 2 vext3 <4,4,u,5>, <4,4,u,5>
+ 2559762534U, // <5,4,5,0>: Cost 3 vext1 <1,5,4,5>, LHS
+ 2559763607U, // <5,4,5,1>: Cost 3 vext1 <1,5,4,5>, <1,5,4,5>
+ 2698628366U, // <5,4,5,2>: Cost 3 vext3 <2,3,4,5>, <4,5,2,3>
+ 3633506454U, // <5,4,5,3>: Cost 4 vext1 <1,5,4,5>, <3,0,1,2>
+ 2559765814U, // <5,4,5,4>: Cost 3 vext1 <1,5,4,5>, RHS
+ 2583654395U, // <5,4,5,5>: Cost 3 vext1 <5,5,4,5>, <5,5,4,5>
+ 1613385014U, // <5,4,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 3901639990U, // <5,4,5,7>: Cost 4 vuzpr <1,5,0,4>, RHS
+ 1613385032U, // <5,4,5,u>: Cost 2 vext3 <0,4,1,5>, RHS
+ 2559770726U, // <5,4,6,0>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2559771648U, // <5,4,6,1>: Cost 3 vext1 <1,5,4,6>, <1,3,5,7>
+ 3633514088U, // <5,4,6,2>: Cost 4 vext1 <1,5,4,6>, <2,2,2,2>
+ 2571717122U, // <5,4,6,3>: Cost 3 vext1 <3,5,4,6>, <3,4,5,6>
+ 2559774006U, // <5,4,6,4>: Cost 3 vext1 <1,5,4,6>, RHS
+ 2712636796U, // <5,4,6,5>: Cost 3 vext3 <4,6,5,5>, <4,6,5,5>
+ 3760868743U, // <5,4,6,6>: Cost 4 vext3 <0,4,1,5>, <4,6,6,7>
+ 2712784270U, // <5,4,6,7>: Cost 3 vext3 <4,6,7,5>, <4,6,7,5>
+ 2559776558U, // <5,4,6,u>: Cost 3 vext1 <1,5,4,6>, LHS
+ 2565750886U, // <5,4,7,0>: Cost 3 vext1 <2,5,4,7>, LHS
+ 2565751706U, // <5,4,7,1>: Cost 3 vext1 <2,5,4,7>, <1,2,3,4>
+ 2565752690U, // <5,4,7,2>: Cost 3 vext1 <2,5,4,7>, <2,5,4,7>
+ 2571725387U, // <5,4,7,3>: Cost 3 vext1 <3,5,4,7>, <3,5,4,7>
+ 2565754166U, // <5,4,7,4>: Cost 3 vext1 <2,5,4,7>, RHS
+ 3114713426U, // <5,4,7,5>: Cost 3 vtrnr RHS, <0,4,1,5>
+ 94817590U, // <5,4,7,6>: Cost 1 vrev RHS
+ 2595616175U, // <5,4,7,7>: Cost 3 vext1 <7,5,4,7>, <7,5,4,7>
+ 94965064U, // <5,4,7,u>: Cost 1 vrev RHS
+ 2559787110U, // <5,4,u,0>: Cost 3 vext1 <1,5,4,u>, LHS
+ 2559788186U, // <5,4,u,1>: Cost 3 vext1 <1,5,4,u>, <1,5,4,u>
+ 2242014483U, // <5,4,u,2>: Cost 3 vrev <4,5,2,u>
+ 2667419628U, // <5,4,u,3>: Cost 3 vext2 <u,3,5,4>, <u,3,5,4>
+ 2559790390U, // <5,4,u,4>: Cost 3 vext1 <1,5,4,u>, RHS
+ 1640222238U, // <5,4,u,5>: Cost 2 vext3 <4,u,5,5>, <4,u,5,5>
+ 94825783U, // <5,4,u,6>: Cost 1 vrev RHS
+ 2714111536U, // <5,4,u,7>: Cost 3 vext3 <4,u,7,5>, <4,u,7,5>
+ 94973257U, // <5,4,u,u>: Cost 1 vrev RHS
+ 2646851584U, // <5,5,0,0>: Cost 3 vext2 <4,u,5,5>, <0,0,0,0>
+ 1573109862U, // <5,5,0,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646851748U, // <5,5,0,2>: Cost 3 vext2 <4,u,5,5>, <0,2,0,2>
+ 3760279130U, // <5,5,0,3>: Cost 4 vext3 <0,3,2,5>, <5,0,3,2>
+ 2687127138U, // <5,5,0,4>: Cost 3 vext3 <0,4,1,5>, <5,0,4,1>
+ 2248142847U, // <5,5,0,5>: Cost 3 vrev <5,5,5,0>
+ 3720593910U, // <5,5,0,6>: Cost 4 vext2 <4,u,5,5>, <0,6,1,7>
+ 4182502710U, // <5,5,0,7>: Cost 4 vtrnr <3,5,7,0>, RHS
+ 1573110429U, // <5,5,0,u>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2646852342U, // <5,5,1,0>: Cost 3 vext2 <4,u,5,5>, <1,0,3,2>
+ 2624291676U, // <5,5,1,1>: Cost 3 vext2 <1,1,5,5>, <1,1,5,5>
+ 2646852502U, // <5,5,1,2>: Cost 3 vext2 <4,u,5,5>, <1,2,3,0>
+ 2646852568U, // <5,5,1,3>: Cost 3 vext2 <4,u,5,5>, <1,3,1,3>
+ 2715217591U, // <5,5,1,4>: Cost 3 vext3 <5,1,4,5>, <5,1,4,5>
+ 2628936848U, // <5,5,1,5>: Cost 3 vext2 <1,u,5,5>, <1,5,3,7>
+ 3698033907U, // <5,5,1,6>: Cost 4 vext2 <1,1,5,5>, <1,6,5,7>
+ 2713964240U, // <5,5,1,7>: Cost 3 vext3 <4,u,5,5>, <5,1,7,3>
+ 2628937107U, // <5,5,1,u>: Cost 3 vext2 <1,u,5,5>, <1,u,5,5>
+ 3645497446U, // <5,5,2,0>: Cost 4 vext1 <3,5,5,2>, LHS
+ 3760869099U, // <5,5,2,1>: Cost 4 vext3 <0,4,1,5>, <5,2,1,3>
+ 2646853224U, // <5,5,2,2>: Cost 3 vext2 <4,u,5,5>, <2,2,2,2>
+ 2698628862U, // <5,5,2,3>: Cost 3 vext3 <2,3,4,5>, <5,2,3,4>
+ 3772370694U, // <5,5,2,4>: Cost 4 vext3 <2,3,4,5>, <5,2,4,3>
+ 2713964303U, // <5,5,2,5>: Cost 3 vext3 <4,u,5,5>, <5,2,5,3>
+ 2646853562U, // <5,5,2,6>: Cost 3 vext2 <4,u,5,5>, <2,6,3,7>
+ 4038198272U, // <5,5,2,7>: Cost 4 vzipr <1,u,5,2>, <1,3,5,7>
+ 2701946667U, // <5,5,2,u>: Cost 3 vext3 <2,u,4,5>, <5,2,u,4>
+ 2646853782U, // <5,5,3,0>: Cost 3 vext2 <4,u,5,5>, <3,0,1,2>
+ 3698034922U, // <5,5,3,1>: Cost 4 vext2 <1,1,5,5>, <3,1,1,5>
+ 3702679919U, // <5,5,3,2>: Cost 4 vext2 <1,u,5,5>, <3,2,7,3>
+ 2637564336U, // <5,5,3,3>: Cost 3 vext2 <3,3,5,5>, <3,3,5,5>
+ 2646854146U, // <5,5,3,4>: Cost 3 vext2 <4,u,5,5>, <3,4,5,6>
+ 2638891602U, // <5,5,3,5>: Cost 3 vext2 <3,5,5,5>, <3,5,5,5>
+ 3702680247U, // <5,5,3,6>: Cost 4 vext2 <1,u,5,5>, <3,6,7,7>
+ 3702680259U, // <5,5,3,7>: Cost 4 vext2 <1,u,5,5>, <3,7,0,1>
+ 2646854430U, // <5,5,3,u>: Cost 3 vext2 <4,u,5,5>, <3,u,1,2>
+ 2646854546U, // <5,5,4,0>: Cost 3 vext2 <4,u,5,5>, <4,0,5,1>
+ 2642209767U, // <5,5,4,1>: Cost 3 vext2 <4,1,5,5>, <4,1,5,5>
+ 3711306806U, // <5,5,4,2>: Cost 4 vext2 <3,3,5,5>, <4,2,5,3>
+ 3645516369U, // <5,5,4,3>: Cost 4 vext1 <3,5,5,4>, <3,5,5,4>
+ 1570458842U, // <5,5,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1573113142U, // <5,5,4,5>: Cost 2 vext2 <4,u,5,5>, RHS
+ 2645527932U, // <5,5,4,6>: Cost 3 vext2 <4,6,5,5>, <4,6,5,5>
+ 2713964486U, // <5,5,4,7>: Cost 3 vext3 <4,u,5,5>, <5,4,7,6>
+ 1573113374U, // <5,5,4,u>: Cost 2 vext2 <4,u,5,5>, <4,u,5,5>
+ 1509982310U, // <5,5,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2646855376U, // <5,5,5,1>: Cost 3 vext2 <4,u,5,5>, <5,1,7,3>
+ 2583725672U, // <5,5,5,2>: Cost 3 vext1 <5,5,5,5>, <2,2,2,2>
+ 2583726230U, // <5,5,5,3>: Cost 3 vext1 <5,5,5,5>, <3,0,1,2>
+ 1509985590U, // <5,5,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,5,5>: Cost 1 vdup1 RHS
+ 2646855778U, // <5,5,5,6>: Cost 3 vext2 <4,u,5,5>, <5,6,7,0>
+ 2646855848U, // <5,5,5,7>: Cost 3 vext2 <4,u,5,5>, <5,7,5,7>
+ 229035318U, // <5,5,5,u>: Cost 1 vdup1 RHS
+ 2577760358U, // <5,5,6,0>: Cost 3 vext1 <4,5,5,6>, LHS
+ 3633587361U, // <5,5,6,1>: Cost 4 vext1 <1,5,5,6>, <1,5,5,6>
+ 2646856186U, // <5,5,6,2>: Cost 3 vext2 <4,u,5,5>, <6,2,7,3>
+ 3633588738U, // <5,5,6,3>: Cost 4 vext1 <1,5,5,6>, <3,4,5,6>
+ 2718535756U, // <5,5,6,4>: Cost 3 vext3 <5,6,4,5>, <5,6,4,5>
+ 2644202223U, // <5,5,6,5>: Cost 3 vext2 <4,4,5,5>, <6,5,7,5>
+ 2973780482U, // <5,5,6,6>: Cost 3 vzipr <3,4,5,6>, <3,4,5,6>
+ 2646856526U, // <5,5,6,7>: Cost 3 vext2 <4,u,5,5>, <6,7,0,1>
+ 2646856607U, // <5,5,6,u>: Cost 3 vext2 <4,u,5,5>, <6,u,0,1>
+ 2571796582U, // <5,5,7,0>: Cost 3 vext1 <3,5,5,7>, LHS
+ 3633595392U, // <5,5,7,1>: Cost 4 vext1 <1,5,5,7>, <1,3,5,7>
+ 2571798222U, // <5,5,7,2>: Cost 3 vext1 <3,5,5,7>, <2,3,4,5>
+ 2571799124U, // <5,5,7,3>: Cost 3 vext1 <3,5,5,7>, <3,5,5,7>
+ 2571799862U, // <5,5,7,4>: Cost 3 vext1 <3,5,5,7>, RHS
+ 3114717188U, // <5,5,7,5>: Cost 3 vtrnr RHS, <5,5,5,5>
+ 4034923010U, // <5,5,7,6>: Cost 4 vzipr <1,3,5,7>, <3,4,5,6>
+ 2040974646U, // <5,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 2040974647U, // <5,5,7,u>: Cost 2 vtrnr RHS, RHS
+ 1509982310U, // <5,5,u,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 1573115694U, // <5,5,u,1>: Cost 2 vext2 <4,u,5,5>, LHS
+ 2571806414U, // <5,5,u,2>: Cost 3 vext1 <3,5,5,u>, <2,3,4,5>
+ 2571807317U, // <5,5,u,3>: Cost 3 vext1 <3,5,5,u>, <3,5,5,u>
+ 1509985590U, // <5,5,u,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,5,u,5>: Cost 1 vdup1 RHS
+ 2646857936U, // <5,5,u,6>: Cost 3 vext2 <4,u,5,5>, <u,6,3,7>
+ 2040982838U, // <5,5,u,7>: Cost 2 vtrnr RHS, RHS
+ 229035318U, // <5,5,u,u>: Cost 1 vdup1 RHS
+ 2638233600U, // <5,6,0,0>: Cost 3 vext2 <3,4,5,6>, <0,0,0,0>
+ 1564491878U, // <5,6,0,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2632261796U, // <5,6,0,2>: Cost 3 vext2 <2,4,5,6>, <0,2,0,2>
+ 2638233856U, // <5,6,0,3>: Cost 3 vext2 <3,4,5,6>, <0,3,1,4>
+ 2638233938U, // <5,6,0,4>: Cost 3 vext2 <3,4,5,6>, <0,4,1,5>
+ 3706003885U, // <5,6,0,5>: Cost 4 vext2 <2,4,5,6>, <0,5,2,6>
+ 3706003967U, // <5,6,0,6>: Cost 4 vext2 <2,4,5,6>, <0,6,2,7>
+ 4047473974U, // <5,6,0,7>: Cost 4 vzipr <3,4,5,0>, RHS
+ 1564492445U, // <5,6,0,u>: Cost 2 vext2 <3,4,5,6>, LHS
+ 2638234358U, // <5,6,1,0>: Cost 3 vext2 <3,4,5,6>, <1,0,3,2>
+ 2638234420U, // <5,6,1,1>: Cost 3 vext2 <3,4,5,6>, <1,1,1,1>
+ 2638234518U, // <5,6,1,2>: Cost 3 vext2 <3,4,5,6>, <1,2,3,0>
+ 2638234584U, // <5,6,1,3>: Cost 3 vext2 <3,4,5,6>, <1,3,1,3>
+ 2626290768U, // <5,6,1,4>: Cost 3 vext2 <1,4,5,6>, <1,4,5,6>
+ 2638234768U, // <5,6,1,5>: Cost 3 vext2 <3,4,5,6>, <1,5,3,7>
+ 3700032719U, // <5,6,1,6>: Cost 4 vext2 <1,4,5,6>, <1,6,1,7>
+ 2982366518U, // <5,6,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 2628945300U, // <5,6,1,u>: Cost 3 vext2 <1,u,5,6>, <1,u,5,6>
+ 3706004925U, // <5,6,2,0>: Cost 4 vext2 <2,4,5,6>, <2,0,1,2>
+ 3711976966U, // <5,6,2,1>: Cost 4 vext2 <3,4,5,6>, <2,1,0,3>
+ 2638235240U, // <5,6,2,2>: Cost 3 vext2 <3,4,5,6>, <2,2,2,2>
+ 2638235302U, // <5,6,2,3>: Cost 3 vext2 <3,4,5,6>, <2,3,0,1>
+ 2632263465U, // <5,6,2,4>: Cost 3 vext2 <2,4,5,6>, <2,4,5,6>
+ 2638235496U, // <5,6,2,5>: Cost 3 vext2 <3,4,5,6>, <2,5,3,6>
+ 2638235578U, // <5,6,2,6>: Cost 3 vext2 <3,4,5,6>, <2,6,3,7>
+ 2713965050U, // <5,6,2,7>: Cost 3 vext3 <4,u,5,5>, <6,2,7,3>
+ 2634917997U, // <5,6,2,u>: Cost 3 vext2 <2,u,5,6>, <2,u,5,6>
+ 2638235798U, // <5,6,3,0>: Cost 3 vext2 <3,4,5,6>, <3,0,1,2>
+ 3711977695U, // <5,6,3,1>: Cost 4 vext2 <3,4,5,6>, <3,1,0,3>
+ 3710650720U, // <5,6,3,2>: Cost 4 vext2 <3,2,5,6>, <3,2,5,6>
+ 2638236060U, // <5,6,3,3>: Cost 3 vext2 <3,4,5,6>, <3,3,3,3>
+ 1564494338U, // <5,6,3,4>: Cost 2 vext2 <3,4,5,6>, <3,4,5,6>
+ 2638236234U, // <5,6,3,5>: Cost 3 vext2 <3,4,5,6>, <3,5,4,6>
+ 3711978104U, // <5,6,3,6>: Cost 4 vext2 <3,4,5,6>, <3,6,0,7>
+ 4034227510U, // <5,6,3,7>: Cost 4 vzipr <1,2,5,3>, RHS
+ 1567148870U, // <5,6,3,u>: Cost 2 vext2 <3,u,5,6>, <3,u,5,6>
+ 2577817702U, // <5,6,4,0>: Cost 3 vext1 <4,5,6,4>, LHS
+ 3700034544U, // <5,6,4,1>: Cost 4 vext2 <1,4,5,6>, <4,1,6,5>
+ 2723033713U, // <5,6,4,2>: Cost 3 vext3 <6,4,2,5>, <6,4,2,5>
+ 2638236818U, // <5,6,4,3>: Cost 3 vext2 <3,4,5,6>, <4,3,6,5>
+ 2644208859U, // <5,6,4,4>: Cost 3 vext2 <4,4,5,6>, <4,4,5,6>
+ 1564495158U, // <5,6,4,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2645536125U, // <5,6,4,6>: Cost 3 vext2 <4,6,5,6>, <4,6,5,6>
+ 2723402398U, // <5,6,4,7>: Cost 3 vext3 <6,4,7,5>, <6,4,7,5>
+ 1564495401U, // <5,6,4,u>: Cost 2 vext2 <3,4,5,6>, RHS
+ 2577825894U, // <5,6,5,0>: Cost 3 vext1 <4,5,6,5>, LHS
+ 2662125264U, // <5,6,5,1>: Cost 3 vext2 <7,4,5,6>, <5,1,7,3>
+ 3775836867U, // <5,6,5,2>: Cost 4 vext3 <2,u,6,5>, <6,5,2,6>
+ 3711979343U, // <5,6,5,3>: Cost 4 vext2 <3,4,5,6>, <5,3,3,4>
+ 2650181556U, // <5,6,5,4>: Cost 3 vext2 <5,4,5,6>, <5,4,5,6>
+ 2662125572U, // <5,6,5,5>: Cost 3 vext2 <7,4,5,6>, <5,5,5,5>
+ 2638237732U, // <5,6,5,6>: Cost 3 vext2 <3,4,5,6>, <5,6,0,1>
+ 2982399286U, // <5,6,5,7>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2982399287U, // <5,6,5,u>: Cost 3 vzipr <4,u,5,5>, RHS
+ 2583806054U, // <5,6,6,0>: Cost 3 vext1 <5,5,6,6>, LHS
+ 3711979910U, // <5,6,6,1>: Cost 4 vext2 <3,4,5,6>, <6,1,3,4>
+ 2662126074U, // <5,6,6,2>: Cost 3 vext2 <7,4,5,6>, <6,2,7,3>
+ 2583808514U, // <5,6,6,3>: Cost 3 vext1 <5,5,6,6>, <3,4,5,6>
+ 2583809334U, // <5,6,6,4>: Cost 3 vext1 <5,5,6,6>, RHS
+ 2583810062U, // <5,6,6,5>: Cost 3 vext1 <5,5,6,6>, <5,5,6,6>
+ 2638238520U, // <5,6,6,6>: Cost 3 vext2 <3,4,5,6>, <6,6,6,6>
+ 2973781302U, // <5,6,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2973781303U, // <5,6,6,u>: Cost 3 vzipr <3,4,5,6>, RHS
+ 430358630U, // <5,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1504101110U, // <5,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1504101992U, // <5,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504102550U, // <5,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430361910U, // <5,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1504104390U, // <5,6,7,5>: Cost 2 vext1 RHS, <5,4,7,6>
+ 1504105272U, // <5,6,7,6>: Cost 2 vext1 RHS, <6,6,6,6>
+ 1504106092U, // <5,6,7,7>: Cost 2 vext1 RHS, <7,7,7,7>
+ 430364462U, // <5,6,7,u>: Cost 1 vext1 RHS, LHS
+ 430366822U, // <5,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1564497710U, // <5,6,u,1>: Cost 2 vext2 <3,4,5,6>, LHS
+ 1504110184U, // <5,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1504110742U, // <5,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 430370103U, // <5,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1564498074U, // <5,6,u,5>: Cost 2 vext2 <3,4,5,6>, RHS
+ 1504113146U, // <5,6,u,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1504113658U, // <5,6,u,7>: Cost 2 vext1 RHS, <7,0,1,2>
+ 430372654U, // <5,6,u,u>: Cost 1 vext1 RHS, LHS
+ 2625634304U, // <5,7,0,0>: Cost 3 vext2 <1,3,5,7>, <0,0,0,0>
+ 1551892582U, // <5,7,0,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625634468U, // <5,7,0,2>: Cost 3 vext2 <1,3,5,7>, <0,2,0,2>
+ 2571889247U, // <5,7,0,3>: Cost 3 vext1 <3,5,7,0>, <3,5,7,0>
+ 2625634642U, // <5,7,0,4>: Cost 3 vext2 <1,3,5,7>, <0,4,1,5>
+ 2595778728U, // <5,7,0,5>: Cost 3 vext1 <7,5,7,0>, <5,7,5,7>
+ 3699376639U, // <5,7,0,6>: Cost 4 vext2 <1,3,5,7>, <0,6,2,7>
+ 2260235715U, // <5,7,0,7>: Cost 3 vrev <7,5,7,0>
+ 1551893149U, // <5,7,0,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625635062U, // <5,7,1,0>: Cost 3 vext2 <1,3,5,7>, <1,0,3,2>
+ 2624308020U, // <5,7,1,1>: Cost 3 vext2 <1,1,5,7>, <1,1,1,1>
+ 2625635222U, // <5,7,1,2>: Cost 3 vext2 <1,3,5,7>, <1,2,3,0>
+ 1551893504U, // <5,7,1,3>: Cost 2 vext2 <1,3,5,7>, <1,3,5,7>
+ 2571898166U, // <5,7,1,4>: Cost 3 vext1 <3,5,7,1>, RHS
+ 2625635472U, // <5,7,1,5>: Cost 3 vext2 <1,3,5,7>, <1,5,3,7>
+ 2627626227U, // <5,7,1,6>: Cost 3 vext2 <1,6,5,7>, <1,6,5,7>
+ 3702031684U, // <5,7,1,7>: Cost 4 vext2 <1,7,5,7>, <1,7,5,7>
+ 1555211669U, // <5,7,1,u>: Cost 2 vext2 <1,u,5,7>, <1,u,5,7>
+ 2629617126U, // <5,7,2,0>: Cost 3 vext2 <2,0,5,7>, <2,0,5,7>
+ 3699377670U, // <5,7,2,1>: Cost 4 vext2 <1,3,5,7>, <2,1,0,3>
+ 2625635944U, // <5,7,2,2>: Cost 3 vext2 <1,3,5,7>, <2,2,2,2>
+ 2625636006U, // <5,7,2,3>: Cost 3 vext2 <1,3,5,7>, <2,3,0,1>
+ 2632271658U, // <5,7,2,4>: Cost 3 vext2 <2,4,5,7>, <2,4,5,7>
+ 2625636201U, // <5,7,2,5>: Cost 3 vext2 <1,3,5,7>, <2,5,3,7>
+ 2625636282U, // <5,7,2,6>: Cost 3 vext2 <1,3,5,7>, <2,6,3,7>
+ 3708004381U, // <5,7,2,7>: Cost 4 vext2 <2,7,5,7>, <2,7,5,7>
+ 2625636411U, // <5,7,2,u>: Cost 3 vext2 <1,3,5,7>, <2,u,0,1>
+ 2625636502U, // <5,7,3,0>: Cost 3 vext2 <1,3,5,7>, <3,0,1,2>
+ 2625636604U, // <5,7,3,1>: Cost 3 vext2 <1,3,5,7>, <3,1,3,5>
+ 3699378478U, // <5,7,3,2>: Cost 4 vext2 <1,3,5,7>, <3,2,0,1>
+ 2625636764U, // <5,7,3,3>: Cost 3 vext2 <1,3,5,7>, <3,3,3,3>
+ 2625636866U, // <5,7,3,4>: Cost 3 vext2 <1,3,5,7>, <3,4,5,6>
+ 2625636959U, // <5,7,3,5>: Cost 3 vext2 <1,3,5,7>, <3,5,7,0>
+ 3699378808U, // <5,7,3,6>: Cost 4 vext2 <1,3,5,7>, <3,6,0,7>
+ 2640235254U, // <5,7,3,7>: Cost 3 vext2 <3,7,5,7>, <3,7,5,7>
+ 2625637150U, // <5,7,3,u>: Cost 3 vext2 <1,3,5,7>, <3,u,1,2>
+ 2571919462U, // <5,7,4,0>: Cost 3 vext1 <3,5,7,4>, LHS
+ 2571920384U, // <5,7,4,1>: Cost 3 vext1 <3,5,7,4>, <1,3,5,7>
+ 3699379260U, // <5,7,4,2>: Cost 4 vext2 <1,3,5,7>, <4,2,6,0>
+ 2571922019U, // <5,7,4,3>: Cost 3 vext1 <3,5,7,4>, <3,5,7,4>
+ 2571922742U, // <5,7,4,4>: Cost 3 vext1 <3,5,7,4>, RHS
+ 1551895862U, // <5,7,4,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2846277980U, // <5,7,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646207951U, // <5,7,4,7>: Cost 3 vext2 <4,7,5,7>, <4,7,5,7>
+ 1551896105U, // <5,7,4,u>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2583871590U, // <5,7,5,0>: Cost 3 vext1 <5,5,7,5>, LHS
+ 2652180176U, // <5,7,5,1>: Cost 3 vext2 <5,7,5,7>, <5,1,7,3>
+ 2625638177U, // <5,7,5,2>: Cost 3 vext2 <1,3,5,7>, <5,2,7,3>
+ 2625638262U, // <5,7,5,3>: Cost 3 vext2 <1,3,5,7>, <5,3,7,7>
+ 2583874870U, // <5,7,5,4>: Cost 3 vext1 <5,5,7,5>, RHS
+ 2846281732U, // <5,7,5,5>: Cost 3 vuzpr RHS, <5,5,5,5>
+ 2651517015U, // <5,7,5,6>: Cost 3 vext2 <5,6,5,7>, <5,6,5,7>
+ 1772539190U, // <5,7,5,7>: Cost 2 vuzpr RHS, RHS
+ 1772539191U, // <5,7,5,u>: Cost 2 vuzpr RHS, RHS
+ 2846281826U, // <5,7,6,0>: Cost 3 vuzpr RHS, <5,6,7,0>
+ 3699380615U, // <5,7,6,1>: Cost 4 vext2 <1,3,5,7>, <6,1,3,5>
+ 2846281108U, // <5,7,6,2>: Cost 3 vuzpr RHS, <4,6,u,2>
+ 2589854210U, // <5,7,6,3>: Cost 3 vext1 <6,5,7,6>, <3,4,5,6>
+ 2846281830U, // <5,7,6,4>: Cost 3 vuzpr RHS, <5,6,7,4>
+ 2725467658U, // <5,7,6,5>: Cost 3 vext3 <6,7,u,5>, <7,6,5,u>
+ 2846281076U, // <5,7,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2846279610U, // <5,7,6,7>: Cost 3 vuzpr RHS, <2,6,3,7>
+ 2846279611U, // <5,7,6,u>: Cost 3 vuzpr RHS, <2,6,3,u>
+ 1510146150U, // <5,7,7,0>: Cost 2 vext1 <5,5,7,7>, LHS
+ 2846282574U, // <5,7,7,1>: Cost 3 vuzpr RHS, <6,7,0,1>
+ 2583889512U, // <5,7,7,2>: Cost 3 vext1 <5,5,7,7>, <2,2,2,2>
+ 2846281919U, // <5,7,7,3>: Cost 3 vuzpr RHS, <5,7,u,3>
+ 1510149430U, // <5,7,7,4>: Cost 2 vext1 <5,5,7,7>, RHS
+ 1510150168U, // <5,7,7,5>: Cost 2 vext1 <5,5,7,7>, <5,5,7,7>
+ 2583892474U, // <5,7,7,6>: Cost 3 vext1 <5,5,7,7>, <6,2,7,3>
+ 2625640044U, // <5,7,7,7>: Cost 3 vext2 <1,3,5,7>, <7,7,7,7>
+ 1510151982U, // <5,7,7,u>: Cost 2 vext1 <5,5,7,7>, LHS
+ 1510154342U, // <5,7,u,0>: Cost 2 vext1 <5,5,7,u>, LHS
+ 1551898414U, // <5,7,u,1>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625640325U, // <5,7,u,2>: Cost 3 vext2 <1,3,5,7>, <u,2,3,0>
+ 1772536477U, // <5,7,u,3>: Cost 2 vuzpr RHS, LHS
+ 1510157622U, // <5,7,u,4>: Cost 2 vext1 <5,5,7,u>, RHS
+ 1551898778U, // <5,7,u,5>: Cost 2 vext2 <1,3,5,7>, RHS
+ 2625640656U, // <5,7,u,6>: Cost 3 vext2 <1,3,5,7>, <u,6,3,7>
+ 1772539433U, // <5,7,u,7>: Cost 2 vuzpr RHS, RHS
+ 1551898981U, // <5,7,u,u>: Cost 2 vext2 <1,3,5,7>, LHS
+ 2625642496U, // <5,u,0,0>: Cost 3 vext2 <1,3,5,u>, <0,0,0,0>
+ 1551900774U, // <5,u,0,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625642660U, // <5,u,0,2>: Cost 3 vext2 <1,3,5,u>, <0,2,0,2>
+ 2698630885U, // <5,u,0,3>: Cost 3 vext3 <2,3,4,5>, <u,0,3,2>
+ 2687129325U, // <5,u,0,4>: Cost 3 vext3 <0,4,1,5>, <u,0,4,1>
+ 2689783542U, // <5,u,0,5>: Cost 3 vext3 <0,u,1,5>, <u,0,5,1>
+ 2266134675U, // <5,u,0,6>: Cost 3 vrev <u,5,6,0>
+ 2595853772U, // <5,u,0,7>: Cost 3 vext1 <7,5,u,0>, <7,5,u,0>
+ 1551901341U, // <5,u,0,u>: Cost 2 vext2 <1,3,5,u>, LHS
+ 2625643254U, // <5,u,1,0>: Cost 3 vext2 <1,3,5,u>, <1,0,3,2>
+ 2625643316U, // <5,u,1,1>: Cost 3 vext2 <1,3,5,u>, <1,1,1,1>
+ 1613387566U, // <5,u,1,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1551901697U, // <5,u,1,3>: Cost 2 vext2 <1,3,5,u>, <1,3,5,u>
+ 2626307154U, // <5,u,1,4>: Cost 3 vext2 <1,4,5,u>, <1,4,5,u>
+ 2689783622U, // <5,u,1,5>: Cost 3 vext3 <0,u,1,5>, <u,1,5,0>
+ 2627634420U, // <5,u,1,6>: Cost 3 vext2 <1,6,5,u>, <1,6,5,u>
+ 2982366536U, // <5,u,1,7>: Cost 3 vzipr <4,u,5,1>, RHS
+ 1613387620U, // <5,u,1,u>: Cost 2 vext3 <0,4,1,5>, LHS
+ 2846286742U, // <5,u,2,0>: Cost 3 vuzpr RHS, <1,2,3,0>
+ 2685796528U, // <5,u,2,1>: Cost 3 vext3 <0,2,1,5>, <0,2,1,5>
+ 2625644136U, // <5,u,2,2>: Cost 3 vext2 <1,3,5,u>, <2,2,2,2>
+ 2687129480U, // <5,u,2,3>: Cost 3 vext3 <0,4,1,5>, <u,2,3,3>
+ 2632279851U, // <5,u,2,4>: Cost 3 vext2 <2,4,5,u>, <2,4,5,u>
+ 2625644394U, // <5,u,2,5>: Cost 3 vext2 <1,3,5,u>, <2,5,3,u>
+ 2625644474U, // <5,u,2,6>: Cost 3 vext2 <1,3,5,u>, <2,6,3,7>
+ 2713966508U, // <5,u,2,7>: Cost 3 vext3 <4,u,5,5>, <u,2,7,3>
+ 2625644603U, // <5,u,2,u>: Cost 3 vext2 <1,3,5,u>, <2,u,0,1>
+ 2687129532U, // <5,u,3,0>: Cost 3 vext3 <0,4,1,5>, <u,3,0,1>
+ 2636261649U, // <5,u,3,1>: Cost 3 vext2 <3,1,5,u>, <3,1,5,u>
+ 2636925282U, // <5,u,3,2>: Cost 3 vext2 <3,2,5,u>, <3,2,5,u>
+ 2625644956U, // <5,u,3,3>: Cost 3 vext2 <1,3,5,u>, <3,3,3,3>
+ 1564510724U, // <5,u,3,4>: Cost 2 vext2 <3,4,5,u>, <3,4,5,u>
+ 2625645160U, // <5,u,3,5>: Cost 3 vext2 <1,3,5,u>, <3,5,u,0>
+ 2734610422U, // <5,u,3,6>: Cost 3 vext3 <u,3,6,5>, <u,3,6,5>
+ 2640243447U, // <5,u,3,7>: Cost 3 vext2 <3,7,5,u>, <3,7,5,u>
+ 1567165256U, // <5,u,3,u>: Cost 2 vext2 <3,u,5,u>, <3,u,5,u>
+ 1567828889U, // <5,u,4,0>: Cost 2 vext2 <4,0,5,u>, <4,0,5,u>
+ 1661163546U, // <5,u,4,1>: Cost 2 vext3 <u,4,1,5>, <u,4,1,5>
+ 2734463012U, // <5,u,4,2>: Cost 3 vext3 <u,3,4,5>, <u,4,2,6>
+ 2698631212U, // <5,u,4,3>: Cost 3 vext3 <2,3,4,5>, <u,4,3,5>
+ 1570458842U, // <5,u,4,4>: Cost 2 vext2 <4,4,5,5>, <4,4,5,5>
+ 1551904054U, // <5,u,4,5>: Cost 2 vext2 <1,3,5,u>, RHS
+ 2846286172U, // <5,u,4,6>: Cost 3 vuzpr RHS, <0,4,2,6>
+ 2646216144U, // <5,u,4,7>: Cost 3 vext2 <4,7,5,u>, <4,7,5,u>
+ 1551904297U, // <5,u,4,u>: Cost 2 vext2 <1,3,5,u>, RHS
+ 1509982310U, // <5,u,5,0>: Cost 2 vext1 <5,5,5,5>, LHS
+ 2560058555U, // <5,u,5,1>: Cost 3 vext1 <1,5,u,5>, <1,5,u,5>
+ 2698926194U, // <5,u,5,2>: Cost 3 vext3 <2,3,u,5>, <u,5,2,3>
+ 2698631295U, // <5,u,5,3>: Cost 3 vext3 <2,3,4,5>, <u,5,3,7>
+ 1509985590U, // <5,u,5,4>: Cost 2 vext1 <5,5,5,5>, RHS
+ 229035318U, // <5,u,5,5>: Cost 1 vdup1 RHS
+ 1613387930U, // <5,u,5,6>: Cost 2 vext3 <0,4,1,5>, RHS
+ 1772547382U, // <5,u,5,7>: Cost 2 vuzpr RHS, RHS
+ 229035318U, // <5,u,5,u>: Cost 1 vdup1 RHS
+ 2566037606U, // <5,u,6,0>: Cost 3 vext1 <2,5,u,6>, LHS
+ 2920044334U, // <5,u,6,1>: Cost 3 vzipl <5,6,7,0>, LHS
+ 2566039445U, // <5,u,6,2>: Cost 3 vext1 <2,5,u,6>, <2,5,u,6>
+ 2687129808U, // <5,u,6,3>: Cost 3 vext3 <0,4,1,5>, <u,6,3,7>
+ 2566040886U, // <5,u,6,4>: Cost 3 vext1 <2,5,u,6>, RHS
+ 2920044698U, // <5,u,6,5>: Cost 3 vzipl <5,6,7,0>, RHS
+ 2846289268U, // <5,u,6,6>: Cost 3 vuzpr RHS, <4,6,4,6>
+ 2973781320U, // <5,u,6,7>: Cost 3 vzipr <3,4,5,6>, RHS
+ 2687129853U, // <5,u,6,u>: Cost 3 vext3 <0,4,1,5>, <u,6,u,7>
+ 430506086U, // <5,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1486333117U, // <5,u,7,1>: Cost 2 vext1 <1,5,u,7>, <1,5,u,7>
+ 1504249448U, // <5,u,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 2040971933U, // <5,u,7,3>: Cost 2 vtrnr RHS, LHS
+ 430509384U, // <5,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1504251600U, // <5,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 118708378U, // <5,u,7,6>: Cost 1 vrev RHS
+ 2040974889U, // <5,u,7,7>: Cost 2 vtrnr RHS, RHS
+ 430511918U, // <5,u,7,u>: Cost 1 vext1 RHS, LHS
+ 430514278U, // <5,u,u,0>: Cost 1 vext1 RHS, LHS
+ 1551906606U, // <5,u,u,1>: Cost 2 vext2 <1,3,5,u>, LHS
+ 1613388133U, // <5,u,u,2>: Cost 2 vext3 <0,4,1,5>, LHS
+ 1772544669U, // <5,u,u,3>: Cost 2 vuzpr RHS, LHS
+ 430517577U, // <5,u,u,4>: Cost 1 vext1 RHS, RHS
+ 229035318U, // <5,u,u,5>: Cost 1 vdup1 RHS
+ 118716571U, // <5,u,u,6>: Cost 1 vrev RHS
+ 1772547625U, // <5,u,u,7>: Cost 2 vuzpr RHS, RHS
+ 430520110U, // <5,u,u,u>: Cost 1 vext1 RHS, LHS
+ 2686025728U, // <6,0,0,0>: Cost 3 vext3 <0,2,4,6>, <0,0,0,0>
+ 2686025738U, // <6,0,0,1>: Cost 3 vext3 <0,2,4,6>, <0,0,1,1>
+ 2686025748U, // <6,0,0,2>: Cost 3 vext3 <0,2,4,6>, <0,0,2,2>
+ 3779084320U, // <6,0,0,3>: Cost 4 vext3 <3,4,5,6>, <0,0,3,5>
+ 2642903388U, // <6,0,0,4>: Cost 3 vext2 <4,2,6,0>, <0,4,2,6>
+ 3657723939U, // <6,0,0,5>: Cost 4 vext1 <5,6,0,0>, <5,6,0,0>
+ 3926676514U, // <6,0,0,6>: Cost 4 vuzpr <5,6,7,0>, <7,0,5,6>
+ 3926675786U, // <6,0,0,7>: Cost 4 vuzpr <5,6,7,0>, <6,0,5,7>
+ 2686025802U, // <6,0,0,u>: Cost 3 vext3 <0,2,4,6>, <0,0,u,2>
+ 2566070374U, // <6,0,1,0>: Cost 3 vext1 <2,6,0,1>, LHS
+ 3759767642U, // <6,0,1,1>: Cost 4 vext3 <0,2,4,6>, <0,1,1,0>
+ 1612284006U, // <6,0,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2583988738U, // <6,0,1,3>: Cost 3 vext1 <5,6,0,1>, <3,4,5,6>
+ 2566073654U, // <6,0,1,4>: Cost 3 vext1 <2,6,0,1>, RHS
+ 2583990308U, // <6,0,1,5>: Cost 3 vext1 <5,6,0,1>, <5,6,0,1>
+ 2589963005U, // <6,0,1,6>: Cost 3 vext1 <6,6,0,1>, <6,6,0,1>
+ 2595935702U, // <6,0,1,7>: Cost 3 vext1 <7,6,0,1>, <7,6,0,1>
+ 1612284060U, // <6,0,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2686025892U, // <6,0,2,0>: Cost 3 vext3 <0,2,4,6>, <0,2,0,2>
+ 2685804721U, // <6,0,2,1>: Cost 3 vext3 <0,2,1,6>, <0,2,1,6>
+ 3759620282U, // <6,0,2,2>: Cost 4 vext3 <0,2,2,6>, <0,2,2,6>
+ 2705342658U, // <6,0,2,3>: Cost 3 vext3 <3,4,5,6>, <0,2,3,5>
+ 1612284108U, // <6,0,2,4>: Cost 2 vext3 <0,2,4,6>, <0,2,4,6>
+ 3706029956U, // <6,0,2,5>: Cost 4 vext2 <2,4,6,0>, <2,5,6,7>
+ 2686173406U, // <6,0,2,6>: Cost 3 vext3 <0,2,6,6>, <0,2,6,6>
+ 3651769338U, // <6,0,2,7>: Cost 4 vext1 <4,6,0,2>, <7,0,1,2>
+ 1612579056U, // <6,0,2,u>: Cost 2 vext3 <0,2,u,6>, <0,2,u,6>
+ 3706030230U, // <6,0,3,0>: Cost 4 vext2 <2,4,6,0>, <3,0,1,2>
+ 2705342720U, // <6,0,3,1>: Cost 3 vext3 <3,4,5,6>, <0,3,1,4>
+ 2705342730U, // <6,0,3,2>: Cost 3 vext3 <3,4,5,6>, <0,3,2,5>
+ 3706030492U, // <6,0,3,3>: Cost 4 vext2 <2,4,6,0>, <3,3,3,3>
+ 2644896258U, // <6,0,3,4>: Cost 3 vext2 <4,5,6,0>, <3,4,5,6>
+ 3718638154U, // <6,0,3,5>: Cost 4 vext2 <4,5,6,0>, <3,5,4,6>
+ 3729918619U, // <6,0,3,6>: Cost 4 vext2 <6,4,6,0>, <3,6,4,6>
+ 3926672384U, // <6,0,3,7>: Cost 4 vuzpr <5,6,7,0>, <1,3,5,7>
+ 2705342784U, // <6,0,3,u>: Cost 3 vext3 <3,4,5,6>, <0,3,u,5>
+ 2687058250U, // <6,0,4,0>: Cost 3 vext3 <0,4,0,6>, <0,4,0,6>
+ 2686026066U, // <6,0,4,1>: Cost 3 vext3 <0,2,4,6>, <0,4,1,5>
+ 1613463900U, // <6,0,4,2>: Cost 2 vext3 <0,4,2,6>, <0,4,2,6>
+ 3761021285U, // <6,0,4,3>: Cost 4 vext3 <0,4,3,6>, <0,4,3,6>
+ 2687353198U, // <6,0,4,4>: Cost 3 vext3 <0,4,4,6>, <0,4,4,6>
+ 2632289590U, // <6,0,4,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2645560704U, // <6,0,4,6>: Cost 3 vext2 <4,6,6,0>, <4,6,6,0>
+ 2646224337U, // <6,0,4,7>: Cost 3 vext2 <4,7,6,0>, <4,7,6,0>
+ 1613906322U, // <6,0,4,u>: Cost 2 vext3 <0,4,u,6>, <0,4,u,6>
+ 3651788902U, // <6,0,5,0>: Cost 4 vext1 <4,6,0,5>, LHS
+ 2687795620U, // <6,0,5,1>: Cost 3 vext3 <0,5,1,6>, <0,5,1,6>
+ 3761611181U, // <6,0,5,2>: Cost 4 vext3 <0,5,2,6>, <0,5,2,6>
+ 3723284326U, // <6,0,5,3>: Cost 4 vext2 <5,3,6,0>, <5,3,6,0>
+ 2646224838U, // <6,0,5,4>: Cost 3 vext2 <4,7,6,0>, <5,4,7,6>
+ 3718639630U, // <6,0,5,5>: Cost 4 vext2 <4,5,6,0>, <5,5,6,6>
+ 2652196962U, // <6,0,5,6>: Cost 3 vext2 <5,7,6,0>, <5,6,7,0>
+ 2852932918U, // <6,0,5,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852932919U, // <6,0,5,u>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 2852933730U, // <6,0,6,0>: Cost 3 vuzpr <5,6,7,0>, <5,6,7,0>
+ 2925985894U, // <6,0,6,1>: Cost 3 vzipl <6,6,6,6>, LHS
+ 3060203622U, // <6,0,6,2>: Cost 3 vtrnl <6,6,6,6>, LHS
+ 3718640178U, // <6,0,6,3>: Cost 4 vext2 <4,5,6,0>, <6,3,4,5>
+ 2656178832U, // <6,0,6,4>: Cost 3 vext2 <6,4,6,0>, <6,4,6,0>
+ 3725939378U, // <6,0,6,5>: Cost 4 vext2 <5,7,6,0>, <6,5,0,7>
+ 2657506098U, // <6,0,6,6>: Cost 3 vext2 <6,6,6,0>, <6,6,6,0>
+ 2619020110U, // <6,0,6,7>: Cost 3 vext2 <0,2,6,0>, <6,7,0,1>
+ 2925986461U, // <6,0,6,u>: Cost 3 vzipl <6,6,6,6>, LHS
+ 2572091494U, // <6,0,7,0>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2572092310U, // <6,0,7,1>: Cost 3 vext1 <3,6,0,7>, <1,2,3,0>
+ 2980495524U, // <6,0,7,2>: Cost 3 vzipr RHS, <0,2,0,2>
+ 2572094072U, // <6,0,7,3>: Cost 3 vext1 <3,6,0,7>, <3,6,0,7>
+ 2572094774U, // <6,0,7,4>: Cost 3 vext1 <3,6,0,7>, RHS
+ 4054238242U, // <6,0,7,5>: Cost 4 vzipr RHS, <1,4,0,5>
+ 3645837653U, // <6,0,7,6>: Cost 4 vext1 <3,6,0,7>, <6,0,7,0>
+ 4054239054U, // <6,0,7,7>: Cost 4 vzipr RHS, <2,5,0,7>
+ 2572097326U, // <6,0,7,u>: Cost 3 vext1 <3,6,0,7>, LHS
+ 2686026378U, // <6,0,u,0>: Cost 3 vext3 <0,2,4,6>, <0,u,0,2>
+ 2686026386U, // <6,0,u,1>: Cost 3 vext3 <0,2,4,6>, <0,u,1,1>
+ 1612284573U, // <6,0,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2705343144U, // <6,0,u,3>: Cost 3 vext3 <3,4,5,6>, <0,u,3,5>
+ 1616265906U, // <6,0,u,4>: Cost 2 vext3 <0,u,4,6>, <0,u,4,6>
+ 2632292506U, // <6,0,u,5>: Cost 3 vext2 <2,4,6,0>, RHS
+ 2590020356U, // <6,0,u,6>: Cost 3 vext1 <6,6,0,u>, <6,6,0,u>
+ 2852933161U, // <6,0,u,7>: Cost 3 vuzpr <5,6,7,0>, RHS
+ 1612284627U, // <6,0,u,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 2595995750U, // <6,1,0,0>: Cost 3 vext1 <7,6,1,0>, LHS
+ 2646229094U, // <6,1,0,1>: Cost 3 vext2 <4,7,6,1>, LHS
+ 3694092492U, // <6,1,0,2>: Cost 4 vext2 <0,4,6,1>, <0,2,4,6>
+ 2686026486U, // <6,1,0,3>: Cost 3 vext3 <0,2,4,6>, <1,0,3,2>
+ 2595999030U, // <6,1,0,4>: Cost 3 vext1 <7,6,1,0>, RHS
+ 3767730952U, // <6,1,0,5>: Cost 4 vext3 <1,5,4,6>, <1,0,5,2>
+ 2596000590U, // <6,1,0,6>: Cost 3 vext1 <7,6,1,0>, <6,7,0,1>
+ 2596001246U, // <6,1,0,7>: Cost 3 vext1 <7,6,1,0>, <7,6,1,0>
+ 2686026531U, // <6,1,0,u>: Cost 3 vext3 <0,2,4,6>, <1,0,u,2>
+ 3763602219U, // <6,1,1,0>: Cost 4 vext3 <0,u,2,6>, <1,1,0,1>
+ 2686026548U, // <6,1,1,1>: Cost 3 vext3 <0,2,4,6>, <1,1,1,1>
+ 3764929346U, // <6,1,1,2>: Cost 4 vext3 <1,1,2,6>, <1,1,2,6>
+ 2686026568U, // <6,1,1,3>: Cost 3 vext3 <0,2,4,6>, <1,1,3,3>
+ 2691334996U, // <6,1,1,4>: Cost 3 vext3 <1,1,4,6>, <1,1,4,6>
+ 3760874332U, // <6,1,1,5>: Cost 4 vext3 <0,4,1,6>, <1,1,5,5>
+ 3765224294U, // <6,1,1,6>: Cost 4 vext3 <1,1,6,6>, <1,1,6,6>
+ 3669751263U, // <6,1,1,7>: Cost 4 vext1 <7,6,1,1>, <7,6,1,1>
+ 2686026613U, // <6,1,1,u>: Cost 3 vext3 <0,2,4,6>, <1,1,u,3>
+ 2554208358U, // <6,1,2,0>: Cost 3 vext1 <0,6,1,2>, LHS
+ 3763602311U, // <6,1,2,1>: Cost 4 vext3 <0,u,2,6>, <1,2,1,3>
+ 3639895971U, // <6,1,2,2>: Cost 4 vext1 <2,6,1,2>, <2,6,1,2>
+ 2686026646U, // <6,1,2,3>: Cost 3 vext3 <0,2,4,6>, <1,2,3,0>
+ 2554211638U, // <6,1,2,4>: Cost 3 vext1 <0,6,1,2>, RHS
+ 3760874411U, // <6,1,2,5>: Cost 4 vext3 <0,4,1,6>, <1,2,5,3>
+ 2554212858U, // <6,1,2,6>: Cost 3 vext1 <0,6,1,2>, <6,2,7,3>
+ 3802973114U, // <6,1,2,7>: Cost 4 vext3 <7,4,5,6>, <1,2,7,0>
+ 2686026691U, // <6,1,2,u>: Cost 3 vext3 <0,2,4,6>, <1,2,u,0>
+ 2566160486U, // <6,1,3,0>: Cost 3 vext1 <2,6,1,3>, LHS
+ 2686026712U, // <6,1,3,1>: Cost 3 vext3 <0,2,4,6>, <1,3,1,3>
+ 2686026724U, // <6,1,3,2>: Cost 3 vext3 <0,2,4,6>, <1,3,2,6>
+ 3759768552U, // <6,1,3,3>: Cost 4 vext3 <0,2,4,6>, <1,3,3,1>
+ 2692662262U, // <6,1,3,4>: Cost 3 vext3 <1,3,4,6>, <1,3,4,6>
+ 2686026752U, // <6,1,3,5>: Cost 3 vext3 <0,2,4,6>, <1,3,5,7>
+ 2590053128U, // <6,1,3,6>: Cost 3 vext1 <6,6,1,3>, <6,6,1,3>
+ 3663795194U, // <6,1,3,7>: Cost 4 vext1 <6,6,1,3>, <7,0,1,2>
+ 2686026775U, // <6,1,3,u>: Cost 3 vext3 <0,2,4,6>, <1,3,u,3>
+ 2641587099U, // <6,1,4,0>: Cost 3 vext2 <4,0,6,1>, <4,0,6,1>
+ 2693104684U, // <6,1,4,1>: Cost 3 vext3 <1,4,1,6>, <1,4,1,6>
+ 3639912357U, // <6,1,4,2>: Cost 4 vext1 <2,6,1,4>, <2,6,1,4>
+ 2687206462U, // <6,1,4,3>: Cost 3 vext3 <0,4,2,6>, <1,4,3,6>
+ 3633941814U, // <6,1,4,4>: Cost 4 vext1 <1,6,1,4>, RHS
+ 2693399632U, // <6,1,4,5>: Cost 3 vext3 <1,4,5,6>, <1,4,5,6>
+ 3765077075U, // <6,1,4,6>: Cost 4 vext3 <1,1,4,6>, <1,4,6,0>
+ 2646232530U, // <6,1,4,7>: Cost 3 vext2 <4,7,6,1>, <4,7,6,1>
+ 2687206507U, // <6,1,4,u>: Cost 3 vext3 <0,4,2,6>, <1,4,u,6>
+ 2647559796U, // <6,1,5,0>: Cost 3 vext2 <5,0,6,1>, <5,0,6,1>
+ 3765077118U, // <6,1,5,1>: Cost 4 vext3 <1,1,4,6>, <1,5,1,7>
+ 3767583878U, // <6,1,5,2>: Cost 4 vext3 <1,5,2,6>, <1,5,2,6>
+ 2686026896U, // <6,1,5,3>: Cost 3 vext3 <0,2,4,6>, <1,5,3,7>
+ 2693989528U, // <6,1,5,4>: Cost 3 vext3 <1,5,4,6>, <1,5,4,6>
+ 3767805089U, // <6,1,5,5>: Cost 4 vext3 <1,5,5,6>, <1,5,5,6>
+ 2652868706U, // <6,1,5,6>: Cost 3 vext2 <5,u,6,1>, <5,6,7,0>
+ 3908250934U, // <6,1,5,7>: Cost 4 vuzpr <2,6,0,1>, RHS
+ 2686026941U, // <6,1,5,u>: Cost 3 vext3 <0,2,4,6>, <1,5,u,7>
+ 2554241126U, // <6,1,6,0>: Cost 3 vext1 <0,6,1,6>, LHS
+ 3763602639U, // <6,1,6,1>: Cost 4 vext3 <0,u,2,6>, <1,6,1,7>
+ 3759547607U, // <6,1,6,2>: Cost 4 vext3 <0,2,1,6>, <1,6,2,6>
+ 3115221094U, // <6,1,6,3>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2554244406U, // <6,1,6,4>: Cost 3 vext1 <0,6,1,6>, RHS
+ 3760874739U, // <6,1,6,5>: Cost 4 vext3 <0,4,1,6>, <1,6,5,7>
+ 2554245944U, // <6,1,6,6>: Cost 3 vext1 <0,6,1,6>, <6,6,6,6>
+ 3719975758U, // <6,1,6,7>: Cost 4 vext2 <4,7,6,1>, <6,7,0,1>
+ 3115221099U, // <6,1,6,u>: Cost 3 vtrnr <4,6,4,6>, LHS
+ 2560221286U, // <6,1,7,0>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560222415U, // <6,1,7,1>: Cost 3 vext1 <1,6,1,7>, <1,6,1,7>
+ 2980497558U, // <6,1,7,2>: Cost 3 vzipr RHS, <3,0,1,2>
+ 3103211622U, // <6,1,7,3>: Cost 3 vtrnr <2,6,3,7>, LHS
+ 2560224566U, // <6,1,7,4>: Cost 3 vext1 <1,6,1,7>, RHS
+ 2980495698U, // <6,1,7,5>: Cost 3 vzipr RHS, <0,4,1,5>
+ 3633967526U, // <6,1,7,6>: Cost 4 vext1 <1,6,1,7>, <6,1,7,0>
+ 4054237686U, // <6,1,7,7>: Cost 4 vzipr RHS, <0,6,1,7>
+ 2560227118U, // <6,1,7,u>: Cost 3 vext1 <1,6,1,7>, LHS
+ 2560229478U, // <6,1,u,0>: Cost 3 vext1 <1,6,1,u>, LHS
+ 2686027117U, // <6,1,u,1>: Cost 3 vext3 <0,2,4,6>, <1,u,1,3>
+ 2686027129U, // <6,1,u,2>: Cost 3 vext3 <0,2,4,6>, <1,u,2,6>
+ 2686027132U, // <6,1,u,3>: Cost 3 vext3 <0,2,4,6>, <1,u,3,0>
+ 2687206795U, // <6,1,u,4>: Cost 3 vext3 <0,4,2,6>, <1,u,4,6>
+ 2686027157U, // <6,1,u,5>: Cost 3 vext3 <0,2,4,6>, <1,u,5,7>
+ 2590094093U, // <6,1,u,6>: Cost 3 vext1 <6,6,1,u>, <6,6,1,u>
+ 2596066790U, // <6,1,u,7>: Cost 3 vext1 <7,6,1,u>, <7,6,1,u>
+ 2686027177U, // <6,1,u,u>: Cost 3 vext3 <0,2,4,6>, <1,u,u,0>
+ 2646900736U, // <6,2,0,0>: Cost 3 vext2 <4,u,6,2>, <0,0,0,0>
+ 1573159014U, // <6,2,0,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2646900900U, // <6,2,0,2>: Cost 3 vext2 <4,u,6,2>, <0,2,0,2>
+ 3759769037U, // <6,2,0,3>: Cost 4 vext3 <0,2,4,6>, <2,0,3,0>
+ 2641592668U, // <6,2,0,4>: Cost 3 vext2 <4,0,6,2>, <0,4,2,6>
+ 3779085794U, // <6,2,0,5>: Cost 4 vext3 <3,4,5,6>, <2,0,5,3>
+ 2686027244U, // <6,2,0,6>: Cost 3 vext3 <0,2,4,6>, <2,0,6,4>
+ 3669816807U, // <6,2,0,7>: Cost 4 vext1 <7,6,2,0>, <7,6,2,0>
+ 1573159581U, // <6,2,0,u>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2230527897U, // <6,2,1,0>: Cost 3 vrev <2,6,0,1>
+ 2646901556U, // <6,2,1,1>: Cost 3 vext2 <4,u,6,2>, <1,1,1,1>
+ 2646901654U, // <6,2,1,2>: Cost 3 vext2 <4,u,6,2>, <1,2,3,0>
+ 2847047782U, // <6,2,1,3>: Cost 3 vuzpr <4,6,u,2>, LHS
+ 3771049517U, // <6,2,1,4>: Cost 4 vext3 <2,1,4,6>, <2,1,4,6>
+ 2646901904U, // <6,2,1,5>: Cost 3 vext2 <4,u,6,2>, <1,5,3,7>
+ 2686027324U, // <6,2,1,6>: Cost 3 vext3 <0,2,4,6>, <2,1,6,3>
+ 3669825000U, // <6,2,1,7>: Cost 4 vext1 <7,6,2,1>, <7,6,2,1>
+ 2231117793U, // <6,2,1,u>: Cost 3 vrev <2,6,u,1>
+ 3763603029U, // <6,2,2,0>: Cost 4 vext3 <0,u,2,6>, <2,2,0,1>
+ 3759769184U, // <6,2,2,1>: Cost 4 vext3 <0,2,4,6>, <2,2,1,3>
+ 2686027368U, // <6,2,2,2>: Cost 3 vext3 <0,2,4,6>, <2,2,2,2>
+ 2686027378U, // <6,2,2,3>: Cost 3 vext3 <0,2,4,6>, <2,2,3,3>
+ 2697971326U, // <6,2,2,4>: Cost 3 vext3 <2,2,4,6>, <2,2,4,6>
+ 3759769224U, // <6,2,2,5>: Cost 4 vext3 <0,2,4,6>, <2,2,5,7>
+ 2698118800U, // <6,2,2,6>: Cost 3 vext3 <2,2,6,6>, <2,2,6,6>
+ 3920794092U, // <6,2,2,7>: Cost 4 vuzpr <4,6,u,2>, <6,2,5,7>
+ 2686027423U, // <6,2,2,u>: Cost 3 vext3 <0,2,4,6>, <2,2,u,3>
+ 2686027430U, // <6,2,3,0>: Cost 3 vext3 <0,2,4,6>, <2,3,0,1>
+ 3759769262U, // <6,2,3,1>: Cost 4 vext3 <0,2,4,6>, <2,3,1,0>
+ 2698487485U, // <6,2,3,2>: Cost 3 vext3 <2,3,2,6>, <2,3,2,6>
+ 2705344196U, // <6,2,3,3>: Cost 3 vext3 <3,4,5,6>, <2,3,3,4>
+ 2686027470U, // <6,2,3,4>: Cost 3 vext3 <0,2,4,6>, <2,3,4,5>
+ 2698708696U, // <6,2,3,5>: Cost 3 vext3 <2,3,5,6>, <2,3,5,6>
+ 2724660961U, // <6,2,3,6>: Cost 3 vext3 <6,6,6,6>, <2,3,6,6>
+ 2729232104U, // <6,2,3,7>: Cost 3 vext3 <7,4,5,6>, <2,3,7,4>
+ 2686027502U, // <6,2,3,u>: Cost 3 vext3 <0,2,4,6>, <2,3,u,1>
+ 1567853468U, // <6,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 3759769351U, // <6,2,4,1>: Cost 4 vext3 <0,2,4,6>, <2,4,1,u>
+ 2699151118U, // <6,2,4,2>: Cost 3 vext3 <2,4,2,6>, <2,4,2,6>
+ 2686027543U, // <6,2,4,3>: Cost 3 vext3 <0,2,4,6>, <2,4,3,6>
+ 2699298592U, // <6,2,4,4>: Cost 3 vext3 <2,4,4,6>, <2,4,4,6>
+ 1573162294U, // <6,2,4,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686027564U, // <6,2,4,6>: Cost 3 vext3 <0,2,4,6>, <2,4,6,0>
+ 3719982547U, // <6,2,4,7>: Cost 4 vext2 <4,7,6,2>, <4,7,6,2>
+ 1573162532U, // <6,2,4,u>: Cost 2 vext2 <4,u,6,2>, <4,u,6,2>
+ 3779086154U, // <6,2,5,0>: Cost 4 vext3 <3,4,5,6>, <2,5,0,3>
+ 2646904528U, // <6,2,5,1>: Cost 3 vext2 <4,u,6,2>, <5,1,7,3>
+ 3759769440U, // <6,2,5,2>: Cost 4 vext3 <0,2,4,6>, <2,5,2,7>
+ 2699888488U, // <6,2,5,3>: Cost 3 vext3 <2,5,3,6>, <2,5,3,6>
+ 2230855617U, // <6,2,5,4>: Cost 3 vrev <2,6,4,5>
+ 2646904836U, // <6,2,5,5>: Cost 3 vext2 <4,u,6,2>, <5,5,5,5>
+ 2646904930U, // <6,2,5,6>: Cost 3 vext2 <4,u,6,2>, <5,6,7,0>
+ 2847051062U, // <6,2,5,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 2700257173U, // <6,2,5,u>: Cost 3 vext3 <2,5,u,6>, <2,5,u,6>
+ 2687207321U, // <6,2,6,0>: Cost 3 vext3 <0,4,2,6>, <2,6,0,1>
+ 2686027684U, // <6,2,6,1>: Cost 3 vext3 <0,2,4,6>, <2,6,1,3>
+ 2566260656U, // <6,2,6,2>: Cost 3 vext1 <2,6,2,6>, <2,6,2,6>
+ 2685806522U, // <6,2,6,3>: Cost 3 vext3 <0,2,1,6>, <2,6,3,7>
+ 2687207361U, // <6,2,6,4>: Cost 3 vext3 <0,4,2,6>, <2,6,4,5>
+ 2686027724U, // <6,2,6,5>: Cost 3 vext3 <0,2,4,6>, <2,6,5,7>
+ 2646905656U, // <6,2,6,6>: Cost 3 vext2 <4,u,6,2>, <6,6,6,6>
+ 2646905678U, // <6,2,6,7>: Cost 3 vext2 <4,u,6,2>, <6,7,0,1>
+ 2686027751U, // <6,2,6,u>: Cost 3 vext3 <0,2,4,6>, <2,6,u,7>
+ 2554323046U, // <6,2,7,0>: Cost 3 vext1 <0,6,2,7>, LHS
+ 2572239606U, // <6,2,7,1>: Cost 3 vext1 <3,6,2,7>, <1,0,3,2>
+ 2566268849U, // <6,2,7,2>: Cost 3 vext1 <2,6,2,7>, <2,6,2,7>
+ 1906753638U, // <6,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2554326326U, // <6,2,7,4>: Cost 3 vext1 <0,6,2,7>, RHS
+ 3304687564U, // <6,2,7,5>: Cost 4 vrev <2,6,5,7>
+ 2980495708U, // <6,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2646906476U, // <6,2,7,7>: Cost 3 vext2 <4,u,6,2>, <7,7,7,7>
+ 1906753643U, // <6,2,7,u>: Cost 2 vzipr RHS, LHS
+ 1591744256U, // <6,2,u,0>: Cost 2 vext2 <u,0,6,2>, <u,0,6,2>
+ 1573164846U, // <6,2,u,1>: Cost 2 vext2 <4,u,6,2>, LHS
+ 2701805650U, // <6,2,u,2>: Cost 3 vext3 <2,u,2,6>, <2,u,2,6>
+ 1906761830U, // <6,2,u,3>: Cost 2 vzipr RHS, LHS
+ 2686027875U, // <6,2,u,4>: Cost 3 vext3 <0,2,4,6>, <2,u,4,5>
+ 1573165210U, // <6,2,u,5>: Cost 2 vext2 <4,u,6,2>, RHS
+ 2686322800U, // <6,2,u,6>: Cost 3 vext3 <0,2,u,6>, <2,u,6,0>
+ 2847051305U, // <6,2,u,7>: Cost 3 vuzpr <4,6,u,2>, RHS
+ 1906761835U, // <6,2,u,u>: Cost 2 vzipr RHS, LHS
+ 3759769739U, // <6,3,0,0>: Cost 4 vext3 <0,2,4,6>, <3,0,0,0>
+ 2686027926U, // <6,3,0,1>: Cost 3 vext3 <0,2,4,6>, <3,0,1,2>
+ 2686027937U, // <6,3,0,2>: Cost 3 vext3 <0,2,4,6>, <3,0,2,4>
+ 3640027286U, // <6,3,0,3>: Cost 4 vext1 <2,6,3,0>, <3,0,1,2>
+ 2687207601U, // <6,3,0,4>: Cost 3 vext3 <0,4,2,6>, <3,0,4,2>
+ 2705344698U, // <6,3,0,5>: Cost 3 vext3 <3,4,5,6>, <3,0,5,2>
+ 3663917847U, // <6,3,0,6>: Cost 4 vext1 <6,6,3,0>, <6,6,3,0>
+ 2237008560U, // <6,3,0,7>: Cost 3 vrev <3,6,7,0>
+ 2686027989U, // <6,3,0,u>: Cost 3 vext3 <0,2,4,6>, <3,0,u,2>
+ 3759769823U, // <6,3,1,0>: Cost 4 vext3 <0,2,4,6>, <3,1,0,3>
+ 3759769830U, // <6,3,1,1>: Cost 4 vext3 <0,2,4,6>, <3,1,1,1>
+ 3759769841U, // <6,3,1,2>: Cost 4 vext3 <0,2,4,6>, <3,1,2,3>
+ 3759769848U, // <6,3,1,3>: Cost 4 vext3 <0,2,4,6>, <3,1,3,1>
+ 2703280390U, // <6,3,1,4>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3759769868U, // <6,3,1,5>: Cost 4 vext3 <0,2,4,6>, <3,1,5,3>
+ 3704063194U, // <6,3,1,6>: Cost 4 vext2 <2,1,6,3>, <1,6,3,0>
+ 3767732510U, // <6,3,1,7>: Cost 4 vext3 <1,5,4,6>, <3,1,7,3>
+ 2703280390U, // <6,3,1,u>: Cost 3 vext3 <3,1,4,6>, <3,1,4,6>
+ 3704063468U, // <6,3,2,0>: Cost 4 vext2 <2,1,6,3>, <2,0,6,4>
+ 2630321724U, // <6,3,2,1>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769921U, // <6,3,2,2>: Cost 4 vext3 <0,2,4,6>, <3,2,2,2>
+ 3759769928U, // <6,3,2,3>: Cost 4 vext3 <0,2,4,6>, <3,2,3,0>
+ 3704063767U, // <6,3,2,4>: Cost 4 vext2 <2,1,6,3>, <2,4,3,6>
+ 3704063876U, // <6,3,2,5>: Cost 4 vext2 <2,1,6,3>, <2,5,6,7>
+ 2636957626U, // <6,3,2,6>: Cost 3 vext2 <3,2,6,3>, <2,6,3,7>
+ 3777907058U, // <6,3,2,7>: Cost 4 vext3 <3,2,7,6>, <3,2,7,6>
+ 2630321724U, // <6,3,2,u>: Cost 3 vext2 <2,1,6,3>, <2,1,6,3>
+ 3759769983U, // <6,3,3,0>: Cost 4 vext3 <0,2,4,6>, <3,3,0,1>
+ 3710036245U, // <6,3,3,1>: Cost 4 vext2 <3,1,6,3>, <3,1,6,3>
+ 2636958054U, // <6,3,3,2>: Cost 3 vext2 <3,2,6,3>, <3,2,6,3>
+ 2686028188U, // <6,3,3,3>: Cost 3 vext3 <0,2,4,6>, <3,3,3,3>
+ 2704607656U, // <6,3,3,4>: Cost 3 vext3 <3,3,4,6>, <3,3,4,6>
+ 3773041072U, // <6,3,3,5>: Cost 4 vext3 <2,4,4,6>, <3,3,5,5>
+ 3711363731U, // <6,3,3,6>: Cost 4 vext2 <3,3,6,3>, <3,6,3,7>
+ 3767732676U, // <6,3,3,7>: Cost 4 vext3 <1,5,4,6>, <3,3,7,7>
+ 2707999179U, // <6,3,3,u>: Cost 3 vext3 <3,u,5,6>, <3,3,u,5>
+ 2584232038U, // <6,3,4,0>: Cost 3 vext1 <5,6,3,4>, LHS
+ 2642267118U, // <6,3,4,1>: Cost 3 vext2 <4,1,6,3>, <4,1,6,3>
+ 2642930751U, // <6,3,4,2>: Cost 3 vext2 <4,2,6,3>, <4,2,6,3>
+ 2705197552U, // <6,3,4,3>: Cost 3 vext3 <3,4,3,6>, <3,4,3,6>
+ 2584235318U, // <6,3,4,4>: Cost 3 vext1 <5,6,3,4>, RHS
+ 1631603202U, // <6,3,4,5>: Cost 2 vext3 <3,4,5,6>, <3,4,5,6>
+ 2654211444U, // <6,3,4,6>: Cost 3 vext2 <6,1,6,3>, <4,6,4,6>
+ 2237041332U, // <6,3,4,7>: Cost 3 vrev <3,6,7,4>
+ 1631824413U, // <6,3,4,u>: Cost 2 vext3 <3,4,u,6>, <3,4,u,6>
+ 3640066150U, // <6,3,5,0>: Cost 4 vext1 <2,6,3,5>, LHS
+ 3772746288U, // <6,3,5,1>: Cost 4 vext3 <2,4,0,6>, <3,5,1,7>
+ 3640067790U, // <6,3,5,2>: Cost 4 vext1 <2,6,3,5>, <2,3,4,5>
+ 3773041216U, // <6,3,5,3>: Cost 4 vext3 <2,4,4,6>, <3,5,3,5>
+ 2705934922U, // <6,3,5,4>: Cost 3 vext3 <3,5,4,6>, <3,5,4,6>
+ 3773041236U, // <6,3,5,5>: Cost 4 vext3 <2,4,4,6>, <3,5,5,7>
+ 3779086940U, // <6,3,5,6>: Cost 4 vext3 <3,4,5,6>, <3,5,6,6>
+ 3767732831U, // <6,3,5,7>: Cost 4 vext3 <1,5,4,6>, <3,5,7,0>
+ 2706229870U, // <6,3,5,u>: Cost 3 vext3 <3,5,u,6>, <3,5,u,6>
+ 2602164326U, // <6,3,6,0>: Cost 3 vext1 <u,6,3,6>, LHS
+ 2654212512U, // <6,3,6,1>: Cost 3 vext2 <6,1,6,3>, <6,1,6,3>
+ 2566334393U, // <6,3,6,2>: Cost 3 vext1 <2,6,3,6>, <2,6,3,6>
+ 3704066588U, // <6,3,6,3>: Cost 4 vext2 <2,1,6,3>, <6,3,2,1>
+ 2602167524U, // <6,3,6,4>: Cost 3 vext1 <u,6,3,6>, <4,4,6,6>
+ 3710702321U, // <6,3,6,5>: Cost 4 vext2 <3,2,6,3>, <6,5,7,7>
+ 2724661933U, // <6,3,6,6>: Cost 3 vext3 <6,6,6,6>, <3,6,6,6>
+ 3710702465U, // <6,3,6,7>: Cost 4 vext2 <3,2,6,3>, <6,7,5,7>
+ 2602170158U, // <6,3,6,u>: Cost 3 vext1 <u,6,3,6>, LHS
+ 1492598886U, // <6,3,7,0>: Cost 2 vext1 <2,6,3,7>, LHS
+ 2560369889U, // <6,3,7,1>: Cost 3 vext1 <1,6,3,7>, <1,6,3,7>
+ 1492600762U, // <6,3,7,2>: Cost 2 vext1 <2,6,3,7>, <2,6,3,7>
+ 2566342806U, // <6,3,7,3>: Cost 3 vext1 <2,6,3,7>, <3,0,1,2>
+ 1492602166U, // <6,3,7,4>: Cost 2 vext1 <2,6,3,7>, RHS
+ 2602176208U, // <6,3,7,5>: Cost 3 vext1 <u,6,3,7>, <5,1,7,3>
+ 2566345210U, // <6,3,7,6>: Cost 3 vext1 <2,6,3,7>, <6,2,7,3>
+ 2980496528U, // <6,3,7,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492604718U, // <6,3,7,u>: Cost 2 vext1 <2,6,3,7>, LHS
+ 1492607078U, // <6,3,u,0>: Cost 2 vext1 <2,6,3,u>, LHS
+ 2686028574U, // <6,3,u,1>: Cost 3 vext3 <0,2,4,6>, <3,u,1,2>
+ 1492608955U, // <6,3,u,2>: Cost 2 vext1 <2,6,3,u>, <2,6,3,u>
+ 2566350998U, // <6,3,u,3>: Cost 3 vext1 <2,6,3,u>, <3,0,1,2>
+ 1492610358U, // <6,3,u,4>: Cost 2 vext1 <2,6,3,u>, RHS
+ 1634257734U, // <6,3,u,5>: Cost 2 vext3 <3,u,5,6>, <3,u,5,6>
+ 2566353489U, // <6,3,u,6>: Cost 3 vext1 <2,6,3,u>, <6,3,u,0>
+ 2980504720U, // <6,3,u,7>: Cost 3 vzipr RHS, <1,5,3,7>
+ 1492612910U, // <6,3,u,u>: Cost 2 vext1 <2,6,3,u>, LHS
+ 3703406592U, // <6,4,0,0>: Cost 4 vext2 <2,0,6,4>, <0,0,0,0>
+ 2629664870U, // <6,4,0,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2629664972U, // <6,4,0,2>: Cost 3 vext2 <2,0,6,4>, <0,2,4,6>
+ 3779087232U, // <6,4,0,3>: Cost 4 vext3 <3,4,5,6>, <4,0,3,1>
+ 2642936156U, // <6,4,0,4>: Cost 3 vext2 <4,2,6,4>, <0,4,2,6>
+ 2712570770U, // <6,4,0,5>: Cost 3 vext3 <4,6,4,6>, <4,0,5,1>
+ 2687208348U, // <6,4,0,6>: Cost 3 vext3 <0,4,2,6>, <4,0,6,2>
+ 3316723081U, // <6,4,0,7>: Cost 4 vrev <4,6,7,0>
+ 2629665437U, // <6,4,0,u>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2242473291U, // <6,4,1,0>: Cost 3 vrev <4,6,0,1>
+ 3700089652U, // <6,4,1,1>: Cost 4 vext2 <1,4,6,4>, <1,1,1,1>
+ 3703407510U, // <6,4,1,2>: Cost 4 vext2 <2,0,6,4>, <1,2,3,0>
+ 2852962406U, // <6,4,1,3>: Cost 3 vuzpr <5,6,7,4>, LHS
+ 3628166454U, // <6,4,1,4>: Cost 4 vext1 <0,6,4,1>, RHS
+ 3760876514U, // <6,4,1,5>: Cost 4 vext3 <0,4,1,6>, <4,1,5,0>
+ 2687208430U, // <6,4,1,6>: Cost 3 vext3 <0,4,2,6>, <4,1,6,3>
+ 3316731274U, // <6,4,1,7>: Cost 4 vrev <4,6,7,1>
+ 2243063187U, // <6,4,1,u>: Cost 3 vrev <4,6,u,1>
+ 2629666284U, // <6,4,2,0>: Cost 3 vext2 <2,0,6,4>, <2,0,6,4>
+ 3703408188U, // <6,4,2,1>: Cost 4 vext2 <2,0,6,4>, <2,1,6,3>
+ 3703408232U, // <6,4,2,2>: Cost 4 vext2 <2,0,6,4>, <2,2,2,2>
+ 3703408294U, // <6,4,2,3>: Cost 4 vext2 <2,0,6,4>, <2,3,0,1>
+ 2632320816U, // <6,4,2,4>: Cost 3 vext2 <2,4,6,4>, <2,4,6,4>
+ 2923384118U, // <6,4,2,5>: Cost 3 vzipl <6,2,7,3>, RHS
+ 2687208508U, // <6,4,2,6>: Cost 3 vext3 <0,4,2,6>, <4,2,6,0>
+ 3760950341U, // <6,4,2,7>: Cost 4 vext3 <0,4,2,6>, <4,2,7,0>
+ 2634975348U, // <6,4,2,u>: Cost 3 vext2 <2,u,6,4>, <2,u,6,4>
+ 3703408790U, // <6,4,3,0>: Cost 4 vext2 <2,0,6,4>, <3,0,1,2>
+ 3316305238U, // <6,4,3,1>: Cost 4 vrev <4,6,1,3>
+ 3703408947U, // <6,4,3,2>: Cost 4 vext2 <2,0,6,4>, <3,2,0,6>
+ 3703409052U, // <6,4,3,3>: Cost 4 vext2 <2,0,6,4>, <3,3,3,3>
+ 2644929026U, // <6,4,3,4>: Cost 3 vext2 <4,5,6,4>, <3,4,5,6>
+ 3718670922U, // <6,4,3,5>: Cost 4 vext2 <4,5,6,4>, <3,5,4,6>
+ 2705345682U, // <6,4,3,6>: Cost 3 vext3 <3,4,5,6>, <4,3,6,5>
+ 3926705152U, // <6,4,3,7>: Cost 4 vuzpr <5,6,7,4>, <1,3,5,7>
+ 2668817222U, // <6,4,3,u>: Cost 3 vext2 <u,5,6,4>, <3,u,5,6>
+ 2590277734U, // <6,4,4,0>: Cost 3 vext1 <6,6,4,4>, LHS
+ 3716017135U, // <6,4,4,1>: Cost 4 vext2 <4,1,6,4>, <4,1,6,4>
+ 2642938944U, // <6,4,4,2>: Cost 3 vext2 <4,2,6,4>, <4,2,6,4>
+ 3717344401U, // <6,4,4,3>: Cost 4 vext2 <4,3,6,4>, <4,3,6,4>
+ 2712571088U, // <6,4,4,4>: Cost 3 vext3 <4,6,4,6>, <4,4,4,4>
+ 2629668150U, // <6,4,4,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1637649636U, // <6,4,4,6>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2646257109U, // <6,4,4,7>: Cost 3 vext2 <4,7,6,4>, <4,7,6,4>
+ 1637649636U, // <6,4,4,u>: Cost 2 vext3 <4,4,6,6>, <4,4,6,6>
+ 2566398054U, // <6,4,5,0>: Cost 3 vext1 <2,6,4,5>, LHS
+ 3760876805U, // <6,4,5,1>: Cost 4 vext3 <0,4,1,6>, <4,5,1,3>
+ 2566399937U, // <6,4,5,2>: Cost 3 vext1 <2,6,4,5>, <2,6,4,5>
+ 2584316418U, // <6,4,5,3>: Cost 3 vext1 <5,6,4,5>, <3,4,5,6>
+ 2566401334U, // <6,4,5,4>: Cost 3 vext1 <2,6,4,5>, RHS
+ 2584318028U, // <6,4,5,5>: Cost 3 vext1 <5,6,4,5>, <5,6,4,5>
+ 1612287286U, // <6,4,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965686U, // <6,4,5,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287304U, // <6,4,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504608358U, // <6,4,6,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2578350838U, // <6,4,6,1>: Cost 3 vext1 <4,6,4,6>, <1,0,3,2>
+ 2578351720U, // <6,4,6,2>: Cost 3 vext1 <4,6,4,6>, <2,2,2,2>
+ 2578352278U, // <6,4,6,3>: Cost 3 vext1 <4,6,4,6>, <3,0,1,2>
+ 1504611638U, // <6,4,6,4>: Cost 2 vext1 <4,6,4,6>, RHS
+ 2578353872U, // <6,4,6,5>: Cost 3 vext1 <4,6,4,6>, <5,1,7,3>
+ 2578354682U, // <6,4,6,6>: Cost 3 vext1 <4,6,4,6>, <6,2,7,3>
+ 2578355194U, // <6,4,6,7>: Cost 3 vext1 <4,6,4,6>, <7,0,1,2>
+ 1504614190U, // <6,4,6,u>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2572386406U, // <6,4,7,0>: Cost 3 vext1 <3,6,4,7>, LHS
+ 2572387226U, // <6,4,7,1>: Cost 3 vext1 <3,6,4,7>, <1,2,3,4>
+ 3640157902U, // <6,4,7,2>: Cost 4 vext1 <2,6,4,7>, <2,3,4,5>
+ 2572389020U, // <6,4,7,3>: Cost 3 vext1 <3,6,4,7>, <3,6,4,7>
+ 2572389686U, // <6,4,7,4>: Cost 3 vext1 <3,6,4,7>, RHS
+ 2980497102U, // <6,4,7,5>: Cost 3 vzipr RHS, <2,3,4,5>
+ 2980495564U, // <6,4,7,6>: Cost 3 vzipr RHS, <0,2,4,6>
+ 4054239090U, // <6,4,7,7>: Cost 4 vzipr RHS, <2,5,4,7>
+ 2572392238U, // <6,4,7,u>: Cost 3 vext1 <3,6,4,7>, LHS
+ 1504608358U, // <6,4,u,0>: Cost 2 vext1 <4,6,4,6>, LHS
+ 2629670702U, // <6,4,u,1>: Cost 3 vext2 <2,0,6,4>, LHS
+ 2566424516U, // <6,4,u,2>: Cost 3 vext1 <2,6,4,u>, <2,6,4,u>
+ 2584340994U, // <6,4,u,3>: Cost 3 vext1 <5,6,4,u>, <3,4,5,6>
+ 1640156694U, // <6,4,u,4>: Cost 2 vext3 <4,u,4,6>, <4,u,4,6>
+ 2629671066U, // <6,4,u,5>: Cost 3 vext2 <2,0,6,4>, RHS
+ 1612287529U, // <6,4,u,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 2852965929U, // <6,4,u,7>: Cost 3 vuzpr <5,6,7,4>, RHS
+ 1612287547U, // <6,4,u,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 3708723200U, // <6,5,0,0>: Cost 4 vext2 <2,u,6,5>, <0,0,0,0>
+ 2634981478U, // <6,5,0,1>: Cost 3 vext2 <2,u,6,5>, LHS
+ 3694125260U, // <6,5,0,2>: Cost 4 vext2 <0,4,6,5>, <0,2,4,6>
+ 3779087962U, // <6,5,0,3>: Cost 4 vext3 <3,4,5,6>, <5,0,3,2>
+ 3760877154U, // <6,5,0,4>: Cost 4 vext3 <0,4,1,6>, <5,0,4,1>
+ 4195110916U, // <6,5,0,5>: Cost 4 vtrnr <5,6,7,0>, <5,5,5,5>
+ 3696779775U, // <6,5,0,6>: Cost 4 vext2 <0,u,6,5>, <0,6,2,7>
+ 1175212130U, // <6,5,0,7>: Cost 2 vrev <5,6,7,0>
+ 1175285867U, // <6,5,0,u>: Cost 2 vrev <5,6,u,0>
+ 2248445988U, // <6,5,1,0>: Cost 3 vrev <5,6,0,1>
+ 3698107237U, // <6,5,1,1>: Cost 4 vext2 <1,1,6,5>, <1,1,6,5>
+ 3708724118U, // <6,5,1,2>: Cost 4 vext2 <2,u,6,5>, <1,2,3,0>
+ 3908575334U, // <6,5,1,3>: Cost 4 vuzpr <2,6,4,5>, LHS
+ 3716023376U, // <6,5,1,4>: Cost 4 vext2 <4,1,6,5>, <1,4,5,6>
+ 3708724368U, // <6,5,1,5>: Cost 4 vext2 <2,u,6,5>, <1,5,3,7>
+ 3767733960U, // <6,5,1,6>: Cost 4 vext3 <1,5,4,6>, <5,1,6,4>
+ 2712571600U, // <6,5,1,7>: Cost 3 vext3 <4,6,4,6>, <5,1,7,3>
+ 2712571609U, // <6,5,1,u>: Cost 3 vext3 <4,6,4,6>, <5,1,u,3>
+ 2578391142U, // <6,5,2,0>: Cost 3 vext1 <4,6,5,2>, LHS
+ 3704079934U, // <6,5,2,1>: Cost 4 vext2 <2,1,6,5>, <2,1,6,5>
+ 3708724840U, // <6,5,2,2>: Cost 4 vext2 <2,u,6,5>, <2,2,2,2>
+ 3705407182U, // <6,5,2,3>: Cost 4 vext2 <2,3,6,5>, <2,3,4,5>
+ 2578394422U, // <6,5,2,4>: Cost 3 vext1 <4,6,5,2>, RHS
+ 3717351272U, // <6,5,2,5>: Cost 4 vext2 <4,3,6,5>, <2,5,3,6>
+ 2634983354U, // <6,5,2,6>: Cost 3 vext2 <2,u,6,5>, <2,6,3,7>
+ 3115486518U, // <6,5,2,7>: Cost 3 vtrnr <4,6,u,2>, RHS
+ 2634983541U, // <6,5,2,u>: Cost 3 vext2 <2,u,6,5>, <2,u,6,5>
+ 3708725398U, // <6,5,3,0>: Cost 4 vext2 <2,u,6,5>, <3,0,1,2>
+ 3710052631U, // <6,5,3,1>: Cost 4 vext2 <3,1,6,5>, <3,1,6,5>
+ 3708725606U, // <6,5,3,2>: Cost 4 vext2 <2,u,6,5>, <3,2,6,3>
+ 3708725660U, // <6,5,3,3>: Cost 4 vext2 <2,u,6,5>, <3,3,3,3>
+ 2643610114U, // <6,5,3,4>: Cost 3 vext2 <4,3,6,5>, <3,4,5,6>
+ 3717352010U, // <6,5,3,5>: Cost 4 vext2 <4,3,6,5>, <3,5,4,6>
+ 3773632358U, // <6,5,3,6>: Cost 4 vext3 <2,5,3,6>, <5,3,6,0>
+ 2248978533U, // <6,5,3,7>: Cost 3 vrev <5,6,7,3>
+ 2249052270U, // <6,5,3,u>: Cost 3 vrev <5,6,u,3>
+ 2596323430U, // <6,5,4,0>: Cost 3 vext1 <7,6,5,4>, LHS
+ 3716025328U, // <6,5,4,1>: Cost 4 vext2 <4,1,6,5>, <4,1,6,5>
+ 3716688961U, // <6,5,4,2>: Cost 4 vext2 <4,2,6,5>, <4,2,6,5>
+ 2643610770U, // <6,5,4,3>: Cost 3 vext2 <4,3,6,5>, <4,3,6,5>
+ 2596326710U, // <6,5,4,4>: Cost 3 vext1 <7,6,5,4>, RHS
+ 2634984758U, // <6,5,4,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 3767734199U, // <6,5,4,6>: Cost 4 vext3 <1,5,4,6>, <5,4,6,0>
+ 1643696070U, // <6,5,4,7>: Cost 2 vext3 <5,4,7,6>, <5,4,7,6>
+ 1643769807U, // <6,5,4,u>: Cost 2 vext3 <5,4,u,6>, <5,4,u,6>
+ 2578415718U, // <6,5,5,0>: Cost 3 vext1 <4,6,5,5>, LHS
+ 3652158198U, // <6,5,5,1>: Cost 4 vext1 <4,6,5,5>, <1,0,3,2>
+ 3652159080U, // <6,5,5,2>: Cost 4 vext1 <4,6,5,5>, <2,2,2,2>
+ 3652159638U, // <6,5,5,3>: Cost 4 vext1 <4,6,5,5>, <3,0,1,2>
+ 2578418998U, // <6,5,5,4>: Cost 3 vext1 <4,6,5,5>, RHS
+ 2712571908U, // <6,5,5,5>: Cost 3 vext3 <4,6,4,6>, <5,5,5,5>
+ 2718027790U, // <6,5,5,6>: Cost 3 vext3 <5,5,6,6>, <5,5,6,6>
+ 2712571928U, // <6,5,5,7>: Cost 3 vext3 <4,6,4,6>, <5,5,7,7>
+ 2712571937U, // <6,5,5,u>: Cost 3 vext3 <4,6,4,6>, <5,5,u,7>
+ 2705346596U, // <6,5,6,0>: Cost 3 vext3 <3,4,5,6>, <5,6,0,1>
+ 3767144496U, // <6,5,6,1>: Cost 4 vext3 <1,4,5,6>, <5,6,1,4>
+ 3773116473U, // <6,5,6,2>: Cost 4 vext3 <2,4,5,6>, <5,6,2,4>
+ 2705346626U, // <6,5,6,3>: Cost 3 vext3 <3,4,5,6>, <5,6,3,4>
+ 2705346636U, // <6,5,6,4>: Cost 3 vext3 <3,4,5,6>, <5,6,4,5>
+ 3908577217U, // <6,5,6,5>: Cost 4 vuzpr <2,6,4,5>, <2,6,4,5>
+ 2578428728U, // <6,5,6,6>: Cost 3 vext1 <4,6,5,6>, <6,6,6,6>
+ 2712572002U, // <6,5,6,7>: Cost 3 vext3 <4,6,4,6>, <5,6,7,0>
+ 2705346668U, // <6,5,6,u>: Cost 3 vext3 <3,4,5,6>, <5,6,u,1>
+ 2560516198U, // <6,5,7,0>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560517363U, // <6,5,7,1>: Cost 3 vext1 <1,6,5,7>, <1,6,5,7>
+ 2566490060U, // <6,5,7,2>: Cost 3 vext1 <2,6,5,7>, <2,6,5,7>
+ 3634260118U, // <6,5,7,3>: Cost 4 vext1 <1,6,5,7>, <3,0,1,2>
+ 2560519478U, // <6,5,7,4>: Cost 3 vext1 <1,6,5,7>, RHS
+ 2980498650U, // <6,5,7,5>: Cost 3 vzipr RHS, <4,4,5,5>
+ 2980497922U, // <6,5,7,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 3103214902U, // <6,5,7,7>: Cost 3 vtrnr <2,6,3,7>, RHS
+ 2560522030U, // <6,5,7,u>: Cost 3 vext1 <1,6,5,7>, LHS
+ 2560524390U, // <6,5,u,0>: Cost 3 vext1 <1,6,5,u>, LHS
+ 2560525556U, // <6,5,u,1>: Cost 3 vext1 <1,6,5,u>, <1,6,5,u>
+ 2566498253U, // <6,5,u,2>: Cost 3 vext1 <2,6,5,u>, <2,6,5,u>
+ 2646931439U, // <6,5,u,3>: Cost 3 vext2 <4,u,6,5>, <u,3,5,7>
+ 2560527670U, // <6,5,u,4>: Cost 3 vext1 <1,6,5,u>, RHS
+ 2634987674U, // <6,5,u,5>: Cost 3 vext2 <2,u,6,5>, RHS
+ 2980506114U, // <6,5,u,6>: Cost 3 vzipr RHS, <3,4,5,6>
+ 1175277674U, // <6,5,u,7>: Cost 2 vrev <5,6,7,u>
+ 1175351411U, // <6,5,u,u>: Cost 2 vrev <5,6,u,u>
+ 2578448486U, // <6,6,0,0>: Cost 3 vext1 <4,6,6,0>, LHS
+ 1573191782U, // <6,6,0,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2686030124U, // <6,6,0,2>: Cost 3 vext3 <0,2,4,6>, <6,0,2,4>
+ 3779088690U, // <6,6,0,3>: Cost 4 vext3 <3,4,5,6>, <6,0,3,1>
+ 2687209788U, // <6,6,0,4>: Cost 3 vext3 <0,4,2,6>, <6,0,4,2>
+ 3652194000U, // <6,6,0,5>: Cost 4 vext1 <4,6,6,0>, <5,1,7,3>
+ 2254852914U, // <6,6,0,6>: Cost 3 vrev <6,6,6,0>
+ 4041575734U, // <6,6,0,7>: Cost 4 vzipr <2,4,6,0>, RHS
+ 1573192349U, // <6,6,0,u>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2646934262U, // <6,6,1,0>: Cost 3 vext2 <4,u,6,6>, <1,0,3,2>
+ 2646934324U, // <6,6,1,1>: Cost 3 vext2 <4,u,6,6>, <1,1,1,1>
+ 2646934422U, // <6,6,1,2>: Cost 3 vext2 <4,u,6,6>, <1,2,3,0>
+ 2846785638U, // <6,6,1,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3760951694U, // <6,6,1,4>: Cost 4 vext3 <0,4,2,6>, <6,1,4,3>
+ 2646934672U, // <6,6,1,5>: Cost 3 vext2 <4,u,6,6>, <1,5,3,7>
+ 2712572320U, // <6,6,1,6>: Cost 3 vext3 <4,6,4,6>, <6,1,6,3>
+ 3775549865U, // <6,6,1,7>: Cost 4 vext3 <2,u,2,6>, <6,1,7,3>
+ 2846785643U, // <6,6,1,u>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 3759772094U, // <6,6,2,0>: Cost 4 vext3 <0,2,4,6>, <6,2,0,6>
+ 3704751676U, // <6,6,2,1>: Cost 4 vext2 <2,2,6,6>, <2,1,6,3>
+ 2631009936U, // <6,6,2,2>: Cost 3 vext2 <2,2,6,6>, <2,2,6,6>
+ 2646935206U, // <6,6,2,3>: Cost 3 vext2 <4,u,6,6>, <2,3,0,1>
+ 3759772127U, // <6,6,2,4>: Cost 4 vext3 <0,2,4,6>, <6,2,4,3>
+ 3704752004U, // <6,6,2,5>: Cost 4 vext2 <2,2,6,6>, <2,5,6,7>
+ 2646935482U, // <6,6,2,6>: Cost 3 vext2 <4,u,6,6>, <2,6,3,7>
+ 2712572410U, // <6,6,2,7>: Cost 3 vext3 <4,6,4,6>, <6,2,7,3>
+ 2712572419U, // <6,6,2,u>: Cost 3 vext3 <4,6,4,6>, <6,2,u,3>
+ 2646935702U, // <6,6,3,0>: Cost 3 vext2 <4,u,6,6>, <3,0,1,2>
+ 3777024534U, // <6,6,3,1>: Cost 4 vext3 <3,1,4,6>, <6,3,1,4>
+ 3704752453U, // <6,6,3,2>: Cost 4 vext2 <2,2,6,6>, <3,2,2,6>
+ 2646935964U, // <6,6,3,3>: Cost 3 vext2 <4,u,6,6>, <3,3,3,3>
+ 2705347122U, // <6,6,3,4>: Cost 3 vext3 <3,4,5,6>, <6,3,4,5>
+ 3779678778U, // <6,6,3,5>: Cost 4 vext3 <3,5,4,6>, <6,3,5,4>
+ 2657553069U, // <6,6,3,6>: Cost 3 vext2 <6,6,6,6>, <3,6,6,6>
+ 4039609654U, // <6,6,3,7>: Cost 4 vzipr <2,1,6,3>, RHS
+ 2708001366U, // <6,6,3,u>: Cost 3 vext3 <3,u,5,6>, <6,3,u,5>
+ 2578481254U, // <6,6,4,0>: Cost 3 vext1 <4,6,6,4>, LHS
+ 3652223734U, // <6,6,4,1>: Cost 4 vext1 <4,6,6,4>, <1,0,3,2>
+ 3760951922U, // <6,6,4,2>: Cost 4 vext3 <0,4,2,6>, <6,4,2,6>
+ 3779089019U, // <6,6,4,3>: Cost 4 vext3 <3,4,5,6>, <6,4,3,6>
+ 1570540772U, // <6,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1573195062U, // <6,6,4,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 2712572560U, // <6,6,4,6>: Cost 3 vext3 <4,6,4,6>, <6,4,6,0>
+ 2723410591U, // <6,6,4,7>: Cost 3 vext3 <6,4,7,6>, <6,4,7,6>
+ 1573195304U, // <6,6,4,u>: Cost 2 vext2 <4,u,6,6>, <4,u,6,6>
+ 3640287334U, // <6,6,5,0>: Cost 4 vext1 <2,6,6,5>, LHS
+ 2646937296U, // <6,6,5,1>: Cost 3 vext2 <4,u,6,6>, <5,1,7,3>
+ 3640289235U, // <6,6,5,2>: Cost 4 vext1 <2,6,6,5>, <2,6,6,5>
+ 3720679279U, // <6,6,5,3>: Cost 4 vext2 <4,u,6,6>, <5,3,7,0>
+ 2646937542U, // <6,6,5,4>: Cost 3 vext2 <4,u,6,6>, <5,4,7,6>
+ 2646937604U, // <6,6,5,5>: Cost 3 vext2 <4,u,6,6>, <5,5,5,5>
+ 2646937698U, // <6,6,5,6>: Cost 3 vext2 <4,u,6,6>, <5,6,7,0>
+ 2846788918U, // <6,6,5,7>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 2846788919U, // <6,6,5,u>: Cost 3 vuzpr <4,6,4,6>, RHS
+ 1516699750U, // <6,6,6,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 2590442230U, // <6,6,6,1>: Cost 3 vext1 <6,6,6,6>, <1,0,3,2>
+ 2646938106U, // <6,6,6,2>: Cost 3 vext2 <4,u,6,6>, <6,2,7,3>
+ 2590443670U, // <6,6,6,3>: Cost 3 vext1 <6,6,6,6>, <3,0,1,2>
+ 1516703030U, // <6,6,6,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 2590445264U, // <6,6,6,5>: Cost 3 vext1 <6,6,6,6>, <5,1,7,3>
+ 296144182U, // <6,6,6,6>: Cost 1 vdup2 RHS
+ 2712572738U, // <6,6,6,7>: Cost 3 vext3 <4,6,4,6>, <6,6,7,7>
+ 296144182U, // <6,6,6,u>: Cost 1 vdup2 RHS
+ 2566561894U, // <6,6,7,0>: Cost 3 vext1 <2,6,6,7>, LHS
+ 3634332924U, // <6,6,7,1>: Cost 4 vext1 <1,6,6,7>, <1,6,6,7>
+ 2566563797U, // <6,6,7,2>: Cost 3 vext1 <2,6,6,7>, <2,6,6,7>
+ 2584480258U, // <6,6,7,3>: Cost 3 vext1 <5,6,6,7>, <3,4,5,6>
+ 2566565174U, // <6,6,7,4>: Cost 3 vext1 <2,6,6,7>, RHS
+ 2717438846U, // <6,6,7,5>: Cost 3 vext3 <5,4,7,6>, <6,7,5,4>
+ 2980500280U, // <6,6,7,6>: Cost 3 vzipr RHS, <6,6,6,6>
+ 1906756918U, // <6,6,7,7>: Cost 2 vzipr RHS, RHS
+ 1906756919U, // <6,6,7,u>: Cost 2 vzipr RHS, RHS
+ 1516699750U, // <6,6,u,0>: Cost 2 vext1 <6,6,6,6>, LHS
+ 1573197614U, // <6,6,u,1>: Cost 2 vext2 <4,u,6,6>, LHS
+ 2566571990U, // <6,6,u,2>: Cost 3 vext1 <2,6,6,u>, <2,6,6,u>
+ 2846786205U, // <6,6,u,3>: Cost 3 vuzpr <4,6,4,6>, LHS
+ 1516703030U, // <6,6,u,4>: Cost 2 vext1 <6,6,6,6>, RHS
+ 1573197978U, // <6,6,u,5>: Cost 2 vext2 <4,u,6,6>, RHS
+ 296144182U, // <6,6,u,6>: Cost 1 vdup2 RHS
+ 1906765110U, // <6,6,u,7>: Cost 2 vzipr RHS, RHS
+ 296144182U, // <6,6,u,u>: Cost 1 vdup2 RHS
+ 1571209216U, // <6,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497467494U, // <6,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571209380U, // <6,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2644951292U, // <6,7,0,3>: Cost 3 vext2 RHS, <0,3,1,0>
+ 1571209554U, // <6,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510756450U, // <6,7,0,5>: Cost 2 vext1 <5,6,7,0>, <5,6,7,0>
+ 2644951542U, // <6,7,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 2584499194U, // <6,7,0,7>: Cost 3 vext1 <5,6,7,0>, <7,0,1,2>
+ 497468061U, // <6,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571209974U, // <6,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571210036U, // <6,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571210134U, // <6,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1571210200U, // <6,7,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2644952098U, // <6,7,1,4>: Cost 3 vext2 RHS, <1,4,0,5>
+ 1571210384U, // <6,7,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644952271U, // <6,7,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2578535418U, // <6,7,1,7>: Cost 3 vext1 <4,6,7,1>, <7,0,1,2>
+ 1571210605U, // <6,7,1,u>: Cost 2 vext2 RHS, <1,u,1,3>
+ 2644952509U, // <6,7,2,0>: Cost 3 vext2 RHS, <2,0,1,2>
+ 2644952582U, // <6,7,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571210856U, // <6,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571210918U, // <6,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2644952828U, // <6,7,2,4>: Cost 3 vext2 RHS, <2,4,0,6>
+ 2633009028U, // <6,7,2,5>: Cost 3 vext2 <2,5,6,7>, <2,5,6,7>
+ 1571211194U, // <6,7,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2668840938U, // <6,7,2,7>: Cost 3 vext2 RHS, <2,7,0,1>
+ 1571211323U, // <6,7,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571211414U, // <6,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644953311U, // <6,7,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2644953390U, // <6,7,3,2>: Cost 3 vext2 RHS, <3,2,0,1>
+ 1571211676U, // <6,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571211778U, // <6,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2644953648U, // <6,7,3,5>: Cost 3 vext2 RHS, <3,5,1,7>
+ 2644953720U, // <6,7,3,6>: Cost 3 vext2 RHS, <3,6,0,7>
+ 2644953795U, // <6,7,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571212062U, // <6,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1573202834U, // <6,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644954058U, // <6,7,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 2644954166U, // <6,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2644954258U, // <6,7,4,3>: Cost 3 vext2 RHS, <4,3,6,5>
+ 1571212496U, // <6,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497470774U, // <6,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1573203316U, // <6,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2646281688U, // <6,7,4,7>: Cost 3 vext2 <4,7,6,7>, <4,7,6,7>
+ 497471017U, // <6,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2644954696U, // <6,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1573203664U, // <6,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2644954878U, // <6,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2644954991U, // <6,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571213254U, // <6,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571213316U, // <6,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571213410U, // <6,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1573204136U, // <6,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1573204217U, // <6,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 2644955425U, // <6,7,6,0>: Cost 3 vext2 RHS, <6,0,1,2>
+ 2644955561U, // <6,7,6,1>: Cost 3 vext2 RHS, <6,1,7,3>
+ 1573204474U, // <6,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2644955698U, // <6,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 2644955789U, // <6,7,6,4>: Cost 3 vext2 RHS, <6,4,5,6>
+ 2644955889U, // <6,7,6,5>: Cost 3 vext2 RHS, <6,5,7,7>
+ 1571214136U, // <6,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571214158U, // <6,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1573204895U, // <6,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1573204986U, // <6,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2572608656U, // <6,7,7,1>: Cost 3 vext1 <3,6,7,7>, <1,5,3,7>
+ 2644956362U, // <6,7,7,2>: Cost 3 vext2 RHS, <7,2,6,3>
+ 2572610231U, // <6,7,7,3>: Cost 3 vext1 <3,6,7,7>, <3,6,7,7>
+ 1573205350U, // <6,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 2646947220U, // <6,7,7,5>: Cost 3 vext2 RHS, <7,5,1,7>
+ 1516786498U, // <6,7,7,6>: Cost 2 vext1 <6,6,7,7>, <6,6,7,7>
+ 1571214956U, // <6,7,7,7>: Cost 2 vext2 RHS, <7,7,7,7>
+ 1573205634U, // <6,7,7,u>: Cost 2 vext2 RHS, <7,u,1,2>
+ 1571215059U, // <6,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497473326U, // <6,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571215237U, // <6,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571215292U, // <6,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571215423U, // <6,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497473690U, // <6,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571215568U, // <6,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 1573206272U, // <6,7,u,7>: Cost 2 vext2 RHS, <u,7,0,1>
+ 497473893U, // <6,7,u,u>: Cost 1 vext2 RHS, LHS
+ 1571217408U, // <6,u,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497475686U, // <6,u,0,1>: Cost 1 vext2 RHS, LHS
+ 1571217572U, // <6,u,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2689865445U, // <6,u,0,3>: Cost 3 vext3 <0,u,2,6>, <u,0,3,2>
+ 1571217746U, // <6,u,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1510830187U, // <6,u,0,5>: Cost 2 vext1 <5,6,u,0>, <5,6,u,0>
+ 2644959734U, // <6,u,0,6>: Cost 3 vext2 RHS, <0,6,1,7>
+ 1193130221U, // <6,u,0,7>: Cost 2 vrev <u,6,7,0>
+ 497476253U, // <6,u,0,u>: Cost 1 vext2 RHS, LHS
+ 1571218166U, // <6,u,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571218228U, // <6,u,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1612289838U, // <6,u,1,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571218392U, // <6,u,1,3>: Cost 2 vext2 RHS, <1,3,1,3>
+ 2566663478U, // <6,u,1,4>: Cost 3 vext1 <2,6,u,1>, RHS
+ 1571218576U, // <6,u,1,5>: Cost 2 vext2 RHS, <1,5,3,7>
+ 2644960463U, // <6,u,1,6>: Cost 3 vext2 RHS, <1,6,1,7>
+ 2717439835U, // <6,u,1,7>: Cost 3 vext3 <5,4,7,6>, <u,1,7,3>
+ 1612289892U, // <6,u,1,u>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1504870502U, // <6,u,2,0>: Cost 2 vext1 <4,6,u,2>, LHS
+ 2644960774U, // <6,u,2,1>: Cost 3 vext2 RHS, <2,1,0,3>
+ 1571219048U, // <6,u,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571219110U, // <6,u,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 1504873782U, // <6,u,2,4>: Cost 2 vext1 <4,6,u,2>, RHS
+ 2633017221U, // <6,u,2,5>: Cost 3 vext2 <2,5,6,u>, <2,5,6,u>
+ 1571219386U, // <6,u,2,6>: Cost 2 vext2 RHS, <2,6,3,7>
+ 2712573868U, // <6,u,2,7>: Cost 3 vext3 <4,6,4,6>, <u,2,7,3>
+ 1571219515U, // <6,u,2,u>: Cost 2 vext2 RHS, <2,u,0,1>
+ 1571219606U, // <6,u,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2644961503U, // <6,u,3,1>: Cost 3 vext2 RHS, <3,1,0,3>
+ 2566678499U, // <6,u,3,2>: Cost 3 vext1 <2,6,u,3>, <2,6,u,3>
+ 1571219868U, // <6,u,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571219970U, // <6,u,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 2689865711U, // <6,u,3,5>: Cost 3 vext3 <0,u,2,6>, <u,3,5,7>
+ 2708002806U, // <6,u,3,6>: Cost 3 vext3 <3,u,5,6>, <u,3,6,5>
+ 2644961987U, // <6,u,3,7>: Cost 3 vext2 RHS, <3,7,0,1>
+ 1571220254U, // <6,u,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571220370U, // <6,u,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2644962250U, // <6,u,4,1>: Cost 3 vext2 RHS, <4,1,2,3>
+ 1661245476U, // <6,u,4,2>: Cost 2 vext3 <u,4,2,6>, <u,4,2,6>
+ 2686031917U, // <6,u,4,3>: Cost 3 vext3 <0,2,4,6>, <u,4,3,6>
+ 1571220688U, // <6,u,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497478967U, // <6,u,4,5>: Cost 1 vext2 RHS, RHS
+ 1571220852U, // <6,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1661614161U, // <6,u,4,7>: Cost 2 vext3 <u,4,7,6>, <u,4,7,6>
+ 497479209U, // <6,u,4,u>: Cost 1 vext2 RHS, RHS
+ 2566692966U, // <6,u,5,0>: Cost 3 vext1 <2,6,u,5>, LHS
+ 1571221200U, // <6,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2566694885U, // <6,u,5,2>: Cost 3 vext1 <2,6,u,5>, <2,6,u,5>
+ 2689865855U, // <6,u,5,3>: Cost 3 vext3 <0,u,2,6>, <u,5,3,7>
+ 1571221446U, // <6,u,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571221508U, // <6,u,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1612290202U, // <6,u,5,6>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1571221672U, // <6,u,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1612290220U, // <6,u,5,u>: Cost 2 vext3 <0,2,4,6>, RHS
+ 1504903270U, // <6,u,6,0>: Cost 2 vext1 <4,6,u,6>, LHS
+ 2644963752U, // <6,u,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571222010U, // <6,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2686032080U, // <6,u,6,3>: Cost 3 vext3 <0,2,4,6>, <u,6,3,7>
+ 1504906550U, // <6,u,6,4>: Cost 2 vext1 <4,6,u,6>, RHS
+ 2644964079U, // <6,u,6,5>: Cost 3 vext2 RHS, <6,5,7,5>
+ 296144182U, // <6,u,6,6>: Cost 1 vdup2 RHS
+ 1571222350U, // <6,u,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 296144182U, // <6,u,6,u>: Cost 1 vdup2 RHS
+ 1492967526U, // <6,u,7,0>: Cost 2 vext1 <2,6,u,7>, LHS
+ 2560738574U, // <6,u,7,1>: Cost 3 vext1 <1,6,u,7>, <1,6,u,7>
+ 1492969447U, // <6,u,7,2>: Cost 2 vext1 <2,6,u,7>, <2,6,u,7>
+ 1906753692U, // <6,u,7,3>: Cost 2 vzipr RHS, LHS
+ 1492970806U, // <6,u,7,4>: Cost 2 vext1 <2,6,u,7>, RHS
+ 2980495761U, // <6,u,7,5>: Cost 3 vzipr RHS, <0,4,u,5>
+ 1516860235U, // <6,u,7,6>: Cost 2 vext1 <6,6,u,7>, <6,6,u,7>
+ 1906756936U, // <6,u,7,7>: Cost 2 vzipr RHS, RHS
+ 1492973358U, // <6,u,7,u>: Cost 2 vext1 <2,6,u,7>, LHS
+ 1492975718U, // <6,u,u,0>: Cost 2 vext1 <2,6,u,u>, LHS
+ 497481518U, // <6,u,u,1>: Cost 1 vext2 RHS, LHS
+ 1612290405U, // <6,u,u,2>: Cost 2 vext3 <0,2,4,6>, LHS
+ 1571223484U, // <6,u,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1492978998U, // <6,u,u,4>: Cost 2 vext1 <2,6,u,u>, RHS
+ 497481882U, // <6,u,u,5>: Cost 1 vext2 RHS, RHS
+ 296144182U, // <6,u,u,6>: Cost 1 vdup2 RHS
+ 1906765128U, // <6,u,u,7>: Cost 2 vzipr RHS, RHS
+ 497482085U, // <6,u,u,u>: Cost 1 vext2 RHS, LHS
+ 1638318080U, // <7,0,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638318090U, // <7,0,0,1>: Cost 2 vext3 RHS, <0,0,1,1>
+ 1638318100U, // <7,0,0,2>: Cost 2 vext3 RHS, <0,0,2,2>
+ 3646442178U, // <7,0,0,3>: Cost 4 vext1 <3,7,0,0>, <3,7,0,0>
+ 2712059941U, // <7,0,0,4>: Cost 3 vext3 RHS, <0,0,4,1>
+ 2651603364U, // <7,0,0,5>: Cost 3 vext2 <5,6,7,0>, <0,5,1,6>
+ 2590618445U, // <7,0,0,6>: Cost 3 vext1 <6,7,0,0>, <6,7,0,0>
+ 3785801798U, // <7,0,0,7>: Cost 4 vext3 RHS, <0,0,7,7>
+ 1638318153U, // <7,0,0,u>: Cost 2 vext3 RHS, <0,0,u,1>
+ 1516879974U, // <7,0,1,0>: Cost 2 vext1 <6,7,0,1>, LHS
+ 2693922911U, // <7,0,1,1>: Cost 3 vext3 <1,5,3,7>, <0,1,1,5>
+ 564576358U, // <7,0,1,2>: Cost 1 vext3 RHS, LHS
+ 2638996480U, // <7,0,1,3>: Cost 3 vext2 <3,5,7,0>, <1,3,5,7>
+ 1516883254U, // <7,0,1,4>: Cost 2 vext1 <6,7,0,1>, RHS
+ 2649613456U, // <7,0,1,5>: Cost 3 vext2 <5,3,7,0>, <1,5,3,7>
+ 1516884814U, // <7,0,1,6>: Cost 2 vext1 <6,7,0,1>, <6,7,0,1>
+ 2590626808U, // <7,0,1,7>: Cost 3 vext1 <6,7,0,1>, <7,0,1,0>
+ 564576412U, // <7,0,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,0,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2692743344U, // <7,0,2,1>: Cost 3 vext3 <1,3,5,7>, <0,2,1,5>
+ 2712060084U, // <7,0,2,2>: Cost 3 vext3 RHS, <0,2,2,0>
+ 2712060094U, // <7,0,2,3>: Cost 3 vext3 RHS, <0,2,3,1>
+ 1638318284U, // <7,0,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712060118U, // <7,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2651604922U, // <7,0,2,6>: Cost 3 vext2 <5,6,7,0>, <2,6,3,7>
+ 2686255336U, // <7,0,2,7>: Cost 3 vext3 <0,2,7,7>, <0,2,7,7>
+ 1638318316U, // <7,0,2,u>: Cost 2 vext3 RHS, <0,2,u,2>
+ 2651605142U, // <7,0,3,0>: Cost 3 vext2 <5,6,7,0>, <3,0,1,2>
+ 2712060156U, // <7,0,3,1>: Cost 3 vext3 RHS, <0,3,1,0>
+ 2712060165U, // <7,0,3,2>: Cost 3 vext3 RHS, <0,3,2,0>
+ 2651605404U, // <7,0,3,3>: Cost 3 vext2 <5,6,7,0>, <3,3,3,3>
+ 2651605506U, // <7,0,3,4>: Cost 3 vext2 <5,6,7,0>, <3,4,5,6>
+ 2638998111U, // <7,0,3,5>: Cost 3 vext2 <3,5,7,0>, <3,5,7,0>
+ 2639661744U, // <7,0,3,6>: Cost 3 vext2 <3,6,7,0>, <3,6,7,0>
+ 3712740068U, // <7,0,3,7>: Cost 4 vext2 <3,5,7,0>, <3,7,3,7>
+ 2640989010U, // <7,0,3,u>: Cost 3 vext2 <3,u,7,0>, <3,u,7,0>
+ 2712060232U, // <7,0,4,0>: Cost 3 vext3 RHS, <0,4,0,4>
+ 1638318418U, // <7,0,4,1>: Cost 2 vext3 RHS, <0,4,1,5>
+ 1638318428U, // <7,0,4,2>: Cost 2 vext3 RHS, <0,4,2,6>
+ 3646474950U, // <7,0,4,3>: Cost 4 vext1 <3,7,0,4>, <3,7,0,4>
+ 2712060270U, // <7,0,4,4>: Cost 3 vext3 RHS, <0,4,4,6>
+ 1577864502U, // <7,0,4,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 2651606388U, // <7,0,4,6>: Cost 3 vext2 <5,6,7,0>, <4,6,4,6>
+ 3787792776U, // <7,0,4,7>: Cost 4 vext3 RHS, <0,4,7,5>
+ 1638318481U, // <7,0,4,u>: Cost 2 vext3 RHS, <0,4,u,5>
+ 2590654566U, // <7,0,5,0>: Cost 3 vext1 <6,7,0,5>, LHS
+ 2651606736U, // <7,0,5,1>: Cost 3 vext2 <5,6,7,0>, <5,1,7,3>
+ 2712060334U, // <7,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649616239U, // <7,0,5,3>: Cost 3 vext2 <5,3,7,0>, <5,3,7,0>
+ 2651606982U, // <7,0,5,4>: Cost 3 vext2 <5,6,7,0>, <5,4,7,6>
+ 2651607044U, // <7,0,5,5>: Cost 3 vext2 <5,6,7,0>, <5,5,5,5>
+ 1577865314U, // <7,0,5,6>: Cost 2 vext2 <5,6,7,0>, <5,6,7,0>
+ 2651607208U, // <7,0,5,7>: Cost 3 vext2 <5,6,7,0>, <5,7,5,7>
+ 1579192580U, // <7,0,5,u>: Cost 2 vext2 <5,u,7,0>, <5,u,7,0>
+ 2688393709U, // <7,0,6,0>: Cost 3 vext3 <0,6,0,7>, <0,6,0,7>
+ 2712060406U, // <7,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 2688541183U, // <7,0,6,2>: Cost 3 vext3 <0,6,2,7>, <0,6,2,7>
+ 2655588936U, // <7,0,6,3>: Cost 3 vext2 <6,3,7,0>, <6,3,7,0>
+ 3762430481U, // <7,0,6,4>: Cost 4 vext3 <0,6,4,7>, <0,6,4,7>
+ 2651607730U, // <7,0,6,5>: Cost 3 vext2 <5,6,7,0>, <6,5,0,7>
+ 2651607864U, // <7,0,6,6>: Cost 3 vext2 <5,6,7,0>, <6,6,6,6>
+ 2651607886U, // <7,0,6,7>: Cost 3 vext2 <5,6,7,0>, <6,7,0,1>
+ 2688983605U, // <7,0,6,u>: Cost 3 vext3 <0,6,u,7>, <0,6,u,7>
+ 2651608058U, // <7,0,7,0>: Cost 3 vext2 <5,6,7,0>, <7,0,1,2>
+ 2932703334U, // <7,0,7,1>: Cost 3 vzipl <7,7,7,7>, LHS
+ 3066921062U, // <7,0,7,2>: Cost 3 vtrnl <7,7,7,7>, LHS
+ 3712742678U, // <7,0,7,3>: Cost 4 vext2 <3,5,7,0>, <7,3,5,7>
+ 2651608422U, // <7,0,7,4>: Cost 3 vext2 <5,6,7,0>, <7,4,5,6>
+ 2651608513U, // <7,0,7,5>: Cost 3 vext2 <5,6,7,0>, <7,5,6,7>
+ 2663552532U, // <7,0,7,6>: Cost 3 vext2 <7,6,7,0>, <7,6,7,0>
+ 2651608684U, // <7,0,7,7>: Cost 3 vext2 <5,6,7,0>, <7,7,7,7>
+ 2651608706U, // <7,0,7,u>: Cost 3 vext2 <5,6,7,0>, <7,u,1,2>
+ 1638318730U, // <7,0,u,0>: Cost 2 vext3 RHS, <0,u,0,2>
+ 1638318738U, // <7,0,u,1>: Cost 2 vext3 RHS, <0,u,1,1>
+ 564576925U, // <7,0,u,2>: Cost 1 vext3 RHS, LHS
+ 2572765898U, // <7,0,u,3>: Cost 3 vext1 <3,7,0,u>, <3,7,0,u>
+ 1638318770U, // <7,0,u,4>: Cost 2 vext3 RHS, <0,u,4,6>
+ 1577867418U, // <7,0,u,5>: Cost 2 vext2 <5,6,7,0>, RHS
+ 1516942165U, // <7,0,u,6>: Cost 2 vext1 <6,7,0,u>, <6,7,0,u>
+ 2651609344U, // <7,0,u,7>: Cost 3 vext2 <5,6,7,0>, <u,7,0,1>
+ 564576979U, // <7,0,u,u>: Cost 1 vext3 RHS, LHS
+ 2590687334U, // <7,1,0,0>: Cost 3 vext1 <6,7,1,0>, LHS
+ 2639003750U, // <7,1,0,1>: Cost 3 vext2 <3,5,7,1>, LHS
+ 2793357414U, // <7,1,0,2>: Cost 3 vuzpl <7,0,1,2>, LHS
+ 1638318838U, // <7,1,0,3>: Cost 2 vext3 RHS, <1,0,3,2>
+ 2590690614U, // <7,1,0,4>: Cost 3 vext1 <6,7,1,0>, RHS
+ 2712060679U, // <7,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2590692182U, // <7,1,0,6>: Cost 3 vext1 <6,7,1,0>, <6,7,1,0>
+ 3785802521U, // <7,1,0,7>: Cost 4 vext3 RHS, <1,0,7,1>
+ 1638318883U, // <7,1,0,u>: Cost 2 vext3 RHS, <1,0,u,2>
+ 2712060715U, // <7,1,1,0>: Cost 3 vext3 RHS, <1,1,0,1>
+ 1638318900U, // <7,1,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 3774300994U, // <7,1,1,2>: Cost 4 vext3 <2,6,3,7>, <1,1,2,6>
+ 1638318920U, // <7,1,1,3>: Cost 2 vext3 RHS, <1,1,3,3>
+ 2712060755U, // <7,1,1,4>: Cost 3 vext3 RHS, <1,1,4,5>
+ 2691416926U, // <7,1,1,5>: Cost 3 vext3 <1,1,5,7>, <1,1,5,7>
+ 2590700375U, // <7,1,1,6>: Cost 3 vext1 <6,7,1,1>, <6,7,1,1>
+ 3765158766U, // <7,1,1,7>: Cost 4 vext3 <1,1,5,7>, <1,1,7,5>
+ 1638318965U, // <7,1,1,u>: Cost 2 vext3 RHS, <1,1,u,3>
+ 2712060796U, // <7,1,2,0>: Cost 3 vext3 RHS, <1,2,0,1>
+ 2712060807U, // <7,1,2,1>: Cost 3 vext3 RHS, <1,2,1,3>
+ 3712747112U, // <7,1,2,2>: Cost 4 vext2 <3,5,7,1>, <2,2,2,2>
+ 1638318998U, // <7,1,2,3>: Cost 2 vext3 RHS, <1,2,3,0>
+ 2712060836U, // <7,1,2,4>: Cost 3 vext3 RHS, <1,2,4,5>
+ 2712060843U, // <7,1,2,5>: Cost 3 vext3 RHS, <1,2,5,3>
+ 2590708568U, // <7,1,2,6>: Cost 3 vext1 <6,7,1,2>, <6,7,1,2>
+ 2735948730U, // <7,1,2,7>: Cost 3 vext3 RHS, <1,2,7,0>
+ 1638319043U, // <7,1,2,u>: Cost 2 vext3 RHS, <1,2,u,0>
+ 2712060876U, // <7,1,3,0>: Cost 3 vext3 RHS, <1,3,0,0>
+ 1638319064U, // <7,1,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2712060894U, // <7,1,3,2>: Cost 3 vext3 RHS, <1,3,2,0>
+ 2692596718U, // <7,1,3,3>: Cost 3 vext3 <1,3,3,7>, <1,3,3,7>
+ 2712060917U, // <7,1,3,4>: Cost 3 vext3 RHS, <1,3,4,5>
+ 1619002368U, // <7,1,3,5>: Cost 2 vext3 <1,3,5,7>, <1,3,5,7>
+ 2692817929U, // <7,1,3,6>: Cost 3 vext3 <1,3,6,7>, <1,3,6,7>
+ 2735948814U, // <7,1,3,7>: Cost 3 vext3 RHS, <1,3,7,3>
+ 1619223579U, // <7,1,3,u>: Cost 2 vext3 <1,3,u,7>, <1,3,u,7>
+ 2712060962U, // <7,1,4,0>: Cost 3 vext3 RHS, <1,4,0,5>
+ 2712060971U, // <7,1,4,1>: Cost 3 vext3 RHS, <1,4,1,5>
+ 2712060980U, // <7,1,4,2>: Cost 3 vext3 RHS, <1,4,2,5>
+ 2712060989U, // <7,1,4,3>: Cost 3 vext3 RHS, <1,4,3,5>
+ 3785802822U, // <7,1,4,4>: Cost 4 vext3 RHS, <1,4,4,5>
+ 2639007030U, // <7,1,4,5>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2645642634U, // <7,1,4,6>: Cost 3 vext2 <4,6,7,1>, <4,6,7,1>
+ 3719384520U, // <7,1,4,7>: Cost 4 vext2 <4,6,7,1>, <4,7,5,0>
+ 2639007273U, // <7,1,4,u>: Cost 3 vext2 <3,5,7,1>, RHS
+ 2572812390U, // <7,1,5,0>: Cost 3 vext1 <3,7,1,5>, LHS
+ 2693776510U, // <7,1,5,1>: Cost 3 vext3 <1,5,1,7>, <1,5,1,7>
+ 3774301318U, // <7,1,5,2>: Cost 4 vext3 <2,6,3,7>, <1,5,2,6>
+ 1620182160U, // <7,1,5,3>: Cost 2 vext3 <1,5,3,7>, <1,5,3,7>
+ 2572815670U, // <7,1,5,4>: Cost 3 vext1 <3,7,1,5>, RHS
+ 3766486178U, // <7,1,5,5>: Cost 4 vext3 <1,3,5,7>, <1,5,5,7>
+ 2651615331U, // <7,1,5,6>: Cost 3 vext2 <5,6,7,1>, <5,6,7,1>
+ 2652278964U, // <7,1,5,7>: Cost 3 vext2 <5,7,7,1>, <5,7,7,1>
+ 1620550845U, // <7,1,5,u>: Cost 2 vext3 <1,5,u,7>, <1,5,u,7>
+ 3768108230U, // <7,1,6,0>: Cost 4 vext3 <1,6,0,7>, <1,6,0,7>
+ 2694440143U, // <7,1,6,1>: Cost 3 vext3 <1,6,1,7>, <1,6,1,7>
+ 2712061144U, // <7,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2694587617U, // <7,1,6,3>: Cost 3 vext3 <1,6,3,7>, <1,6,3,7>
+ 3768403178U, // <7,1,6,4>: Cost 4 vext3 <1,6,4,7>, <1,6,4,7>
+ 2694735091U, // <7,1,6,5>: Cost 3 vext3 <1,6,5,7>, <1,6,5,7>
+ 3768550652U, // <7,1,6,6>: Cost 4 vext3 <1,6,6,7>, <1,6,6,7>
+ 2652279630U, // <7,1,6,7>: Cost 3 vext2 <5,7,7,1>, <6,7,0,1>
+ 2694956302U, // <7,1,6,u>: Cost 3 vext3 <1,6,u,7>, <1,6,u,7>
+ 2645644282U, // <7,1,7,0>: Cost 3 vext2 <4,6,7,1>, <7,0,1,2>
+ 2859062094U, // <7,1,7,1>: Cost 3 vuzpr <6,7,0,1>, <6,7,0,1>
+ 3779462437U, // <7,1,7,2>: Cost 4 vext3 <3,5,1,7>, <1,7,2,3>
+ 3121938534U, // <7,1,7,3>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2554916150U, // <7,1,7,4>: Cost 3 vext1 <0,7,1,7>, RHS
+ 3769140548U, // <7,1,7,5>: Cost 4 vext3 <1,7,5,7>, <1,7,5,7>
+ 3726022164U, // <7,1,7,6>: Cost 4 vext2 <5,7,7,1>, <7,6,7,0>
+ 2554918508U, // <7,1,7,7>: Cost 3 vext1 <0,7,1,7>, <7,7,7,7>
+ 3121938539U, // <7,1,7,u>: Cost 3 vtrnr <5,7,5,7>, LHS
+ 2572836966U, // <7,1,u,0>: Cost 3 vext1 <3,7,1,u>, LHS
+ 1638319469U, // <7,1,u,1>: Cost 2 vext3 RHS, <1,u,1,3>
+ 2712061299U, // <7,1,u,2>: Cost 3 vext3 RHS, <1,u,2,0>
+ 1622173059U, // <7,1,u,3>: Cost 2 vext3 <1,u,3,7>, <1,u,3,7>
+ 2572840246U, // <7,1,u,4>: Cost 3 vext1 <3,7,1,u>, RHS
+ 1622320533U, // <7,1,u,5>: Cost 2 vext3 <1,u,5,7>, <1,u,5,7>
+ 2696136094U, // <7,1,u,6>: Cost 3 vext3 <1,u,6,7>, <1,u,6,7>
+ 2859060777U, // <7,1,u,7>: Cost 3 vuzpr <6,7,0,1>, RHS
+ 1622541744U, // <7,1,u,u>: Cost 2 vext3 <1,u,u,7>, <1,u,u,7>
+ 2712061364U, // <7,2,0,0>: Cost 3 vext3 RHS, <2,0,0,2>
+ 2712061373U, // <7,2,0,1>: Cost 3 vext3 RHS, <2,0,1,2>
+ 2712061380U, // <7,2,0,2>: Cost 3 vext3 RHS, <2,0,2,0>
+ 2712061389U, // <7,2,0,3>: Cost 3 vext3 RHS, <2,0,3,0>
+ 2712061404U, // <7,2,0,4>: Cost 3 vext3 RHS, <2,0,4,6>
+ 2696725990U, // <7,2,0,5>: Cost 3 vext3 <2,0,5,7>, <2,0,5,7>
+ 2712061417U, // <7,2,0,6>: Cost 3 vext3 RHS, <2,0,6,1>
+ 3785803251U, // <7,2,0,7>: Cost 4 vext3 RHS, <2,0,7,2>
+ 2696947201U, // <7,2,0,u>: Cost 3 vext3 <2,0,u,7>, <2,0,u,7>
+ 2712061446U, // <7,2,1,0>: Cost 3 vext3 RHS, <2,1,0,3>
+ 3785803276U, // <7,2,1,1>: Cost 4 vext3 RHS, <2,1,1,0>
+ 3785803285U, // <7,2,1,2>: Cost 4 vext3 RHS, <2,1,2,0>
+ 2712061471U, // <7,2,1,3>: Cost 3 vext3 RHS, <2,1,3,1>
+ 2712061482U, // <7,2,1,4>: Cost 3 vext3 RHS, <2,1,4,3>
+ 3766486576U, // <7,2,1,5>: Cost 4 vext3 <1,3,5,7>, <2,1,5,0>
+ 2712061500U, // <7,2,1,6>: Cost 3 vext3 RHS, <2,1,6,3>
+ 2602718850U, // <7,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 2712061516U, // <7,2,1,u>: Cost 3 vext3 RHS, <2,1,u,1>
+ 2712061525U, // <7,2,2,0>: Cost 3 vext3 RHS, <2,2,0,1>
+ 2712061536U, // <7,2,2,1>: Cost 3 vext3 RHS, <2,2,1,3>
+ 1638319720U, // <7,2,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638319730U, // <7,2,2,3>: Cost 2 vext3 RHS, <2,2,3,3>
+ 2712061565U, // <7,2,2,4>: Cost 3 vext3 RHS, <2,2,4,5>
+ 2698053256U, // <7,2,2,5>: Cost 3 vext3 <2,2,5,7>, <2,2,5,7>
+ 2712061584U, // <7,2,2,6>: Cost 3 vext3 RHS, <2,2,6,6>
+ 3771795096U, // <7,2,2,7>: Cost 4 vext3 <2,2,5,7>, <2,2,7,5>
+ 1638319775U, // <7,2,2,u>: Cost 2 vext3 RHS, <2,2,u,3>
+ 1638319782U, // <7,2,3,0>: Cost 2 vext3 RHS, <2,3,0,1>
+ 2693924531U, // <7,2,3,1>: Cost 3 vext3 <1,5,3,7>, <2,3,1,5>
+ 2700560061U, // <7,2,3,2>: Cost 3 vext3 <2,6,3,7>, <2,3,2,6>
+ 2693924551U, // <7,2,3,3>: Cost 3 vext3 <1,5,3,7>, <2,3,3,7>
+ 1638319822U, // <7,2,3,4>: Cost 2 vext3 RHS, <2,3,4,5>
+ 2698716889U, // <7,2,3,5>: Cost 3 vext3 <2,3,5,7>, <2,3,5,7>
+ 2712061665U, // <7,2,3,6>: Cost 3 vext3 RHS, <2,3,6,6>
+ 2735949540U, // <7,2,3,7>: Cost 3 vext3 RHS, <2,3,7,0>
+ 1638319854U, // <7,2,3,u>: Cost 2 vext3 RHS, <2,3,u,1>
+ 2712061692U, // <7,2,4,0>: Cost 3 vext3 RHS, <2,4,0,6>
+ 2712061698U, // <7,2,4,1>: Cost 3 vext3 RHS, <2,4,1,3>
+ 2712061708U, // <7,2,4,2>: Cost 3 vext3 RHS, <2,4,2,4>
+ 2712061718U, // <7,2,4,3>: Cost 3 vext3 RHS, <2,4,3,5>
+ 2712061728U, // <7,2,4,4>: Cost 3 vext3 RHS, <2,4,4,6>
+ 2699380522U, // <7,2,4,5>: Cost 3 vext3 <2,4,5,7>, <2,4,5,7>
+ 2712061740U, // <7,2,4,6>: Cost 3 vext3 RHS, <2,4,6,0>
+ 3809691445U, // <7,2,4,7>: Cost 4 vext3 RHS, <2,4,7,0>
+ 2699601733U, // <7,2,4,u>: Cost 3 vext3 <2,4,u,7>, <2,4,u,7>
+ 2699675470U, // <7,2,5,0>: Cost 3 vext3 <2,5,0,7>, <2,5,0,7>
+ 3766486867U, // <7,2,5,1>: Cost 4 vext3 <1,3,5,7>, <2,5,1,3>
+ 2699822944U, // <7,2,5,2>: Cost 3 vext3 <2,5,2,7>, <2,5,2,7>
+ 2692745065U, // <7,2,5,3>: Cost 3 vext3 <1,3,5,7>, <2,5,3,7>
+ 2699970418U, // <7,2,5,4>: Cost 3 vext3 <2,5,4,7>, <2,5,4,7>
+ 3766486907U, // <7,2,5,5>: Cost 4 vext3 <1,3,5,7>, <2,5,5,7>
+ 2700117892U, // <7,2,5,6>: Cost 3 vext3 <2,5,6,7>, <2,5,6,7>
+ 3771795334U, // <7,2,5,7>: Cost 4 vext3 <2,2,5,7>, <2,5,7,0>
+ 2692745110U, // <7,2,5,u>: Cost 3 vext3 <1,3,5,7>, <2,5,u,7>
+ 2572894310U, // <7,2,6,0>: Cost 3 vext1 <3,7,2,6>, LHS
+ 2712061860U, // <7,2,6,1>: Cost 3 vext3 RHS, <2,6,1,3>
+ 2700486577U, // <7,2,6,2>: Cost 3 vext3 <2,6,2,7>, <2,6,2,7>
+ 1626818490U, // <7,2,6,3>: Cost 2 vext3 <2,6,3,7>, <2,6,3,7>
+ 2572897590U, // <7,2,6,4>: Cost 3 vext1 <3,7,2,6>, RHS
+ 2700707788U, // <7,2,6,5>: Cost 3 vext3 <2,6,5,7>, <2,6,5,7>
+ 2700781525U, // <7,2,6,6>: Cost 3 vext3 <2,6,6,7>, <2,6,6,7>
+ 3774597086U, // <7,2,6,7>: Cost 4 vext3 <2,6,7,7>, <2,6,7,7>
+ 1627187175U, // <7,2,6,u>: Cost 2 vext3 <2,6,u,7>, <2,6,u,7>
+ 2735949802U, // <7,2,7,0>: Cost 3 vext3 RHS, <2,7,0,1>
+ 3780200434U, // <7,2,7,1>: Cost 4 vext3 <3,6,2,7>, <2,7,1,0>
+ 3773564928U, // <7,2,7,2>: Cost 4 vext3 <2,5,2,7>, <2,7,2,5>
+ 2986541158U, // <7,2,7,3>: Cost 3 vzipr <5,5,7,7>, LHS
+ 2554989878U, // <7,2,7,4>: Cost 3 vext1 <0,7,2,7>, RHS
+ 3775113245U, // <7,2,7,5>: Cost 4 vext3 <2,7,5,7>, <2,7,5,7>
+ 4060283228U, // <7,2,7,6>: Cost 4 vzipr <5,5,7,7>, <0,4,2,6>
+ 2554992236U, // <7,2,7,7>: Cost 3 vext1 <0,7,2,7>, <7,7,7,7>
+ 2986541163U, // <7,2,7,u>: Cost 3 vzipr <5,5,7,7>, LHS
+ 1638320187U, // <7,2,u,0>: Cost 2 vext3 RHS, <2,u,0,1>
+ 2693924936U, // <7,2,u,1>: Cost 3 vext3 <1,5,3,7>, <2,u,1,5>
+ 1638319720U, // <7,2,u,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1628145756U, // <7,2,u,3>: Cost 2 vext3 <2,u,3,7>, <2,u,3,7>
+ 1638320227U, // <7,2,u,4>: Cost 2 vext3 RHS, <2,u,4,5>
+ 2702035054U, // <7,2,u,5>: Cost 3 vext3 <2,u,5,7>, <2,u,5,7>
+ 2702108791U, // <7,2,u,6>: Cost 3 vext3 <2,u,6,7>, <2,u,6,7>
+ 2735949945U, // <7,2,u,7>: Cost 3 vext3 RHS, <2,u,7,0>
+ 1628514441U, // <7,2,u,u>: Cost 2 vext3 <2,u,u,7>, <2,u,u,7>
+ 2712062091U, // <7,3,0,0>: Cost 3 vext3 RHS, <3,0,0,0>
+ 1638320278U, // <7,3,0,1>: Cost 2 vext3 RHS, <3,0,1,2>
+ 2712062109U, // <7,3,0,2>: Cost 3 vext3 RHS, <3,0,2,0>
+ 2590836886U, // <7,3,0,3>: Cost 3 vext1 <6,7,3,0>, <3,0,1,2>
+ 2712062128U, // <7,3,0,4>: Cost 3 vext3 RHS, <3,0,4,1>
+ 2712062138U, // <7,3,0,5>: Cost 3 vext3 RHS, <3,0,5,2>
+ 2590839656U, // <7,3,0,6>: Cost 3 vext1 <6,7,3,0>, <6,7,3,0>
+ 3311414017U, // <7,3,0,7>: Cost 4 vrev <3,7,7,0>
+ 1638320341U, // <7,3,0,u>: Cost 2 vext3 RHS, <3,0,u,2>
+ 2237164227U, // <7,3,1,0>: Cost 3 vrev <3,7,0,1>
+ 2712062182U, // <7,3,1,1>: Cost 3 vext3 RHS, <3,1,1,1>
+ 2712062193U, // <7,3,1,2>: Cost 3 vext3 RHS, <3,1,2,3>
+ 2692745468U, // <7,3,1,3>: Cost 3 vext3 <1,3,5,7>, <3,1,3,5>
+ 2712062214U, // <7,3,1,4>: Cost 3 vext3 RHS, <3,1,4,6>
+ 2693925132U, // <7,3,1,5>: Cost 3 vext3 <1,5,3,7>, <3,1,5,3>
+ 3768183059U, // <7,3,1,6>: Cost 4 vext3 <1,6,1,7>, <3,1,6,1>
+ 2692745504U, // <7,3,1,7>: Cost 3 vext3 <1,3,5,7>, <3,1,7,5>
+ 2696063273U, // <7,3,1,u>: Cost 3 vext3 <1,u,5,7>, <3,1,u,5>
+ 2712062254U, // <7,3,2,0>: Cost 3 vext3 RHS, <3,2,0,1>
+ 2712062262U, // <7,3,2,1>: Cost 3 vext3 RHS, <3,2,1,0>
+ 2712062273U, // <7,3,2,2>: Cost 3 vext3 RHS, <3,2,2,2>
+ 2712062280U, // <7,3,2,3>: Cost 3 vext3 RHS, <3,2,3,0>
+ 2712062294U, // <7,3,2,4>: Cost 3 vext3 RHS, <3,2,4,5>
+ 2712062302U, // <7,3,2,5>: Cost 3 vext3 RHS, <3,2,5,4>
+ 2700560742U, // <7,3,2,6>: Cost 3 vext3 <2,6,3,7>, <3,2,6,3>
+ 2712062319U, // <7,3,2,7>: Cost 3 vext3 RHS, <3,2,7,3>
+ 2712062325U, // <7,3,2,u>: Cost 3 vext3 RHS, <3,2,u,0>
+ 2712062335U, // <7,3,3,0>: Cost 3 vext3 RHS, <3,3,0,1>
+ 2636368158U, // <7,3,3,1>: Cost 3 vext2 <3,1,7,3>, <3,1,7,3>
+ 2637031791U, // <7,3,3,2>: Cost 3 vext2 <3,2,7,3>, <3,2,7,3>
+ 1638320540U, // <7,3,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062374U, // <7,3,3,4>: Cost 3 vext3 RHS, <3,3,4,4>
+ 2704689586U, // <7,3,3,5>: Cost 3 vext3 <3,3,5,7>, <3,3,5,7>
+ 2590864235U, // <7,3,3,6>: Cost 3 vext1 <6,7,3,3>, <6,7,3,3>
+ 2704837060U, // <7,3,3,7>: Cost 3 vext3 <3,3,7,7>, <3,3,7,7>
+ 1638320540U, // <7,3,3,u>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2712062416U, // <7,3,4,0>: Cost 3 vext3 RHS, <3,4,0,1>
+ 2712062426U, // <7,3,4,1>: Cost 3 vext3 RHS, <3,4,1,2>
+ 2566981640U, // <7,3,4,2>: Cost 3 vext1 <2,7,3,4>, <2,7,3,4>
+ 2712062447U, // <7,3,4,3>: Cost 3 vext3 RHS, <3,4,3,5>
+ 2712062456U, // <7,3,4,4>: Cost 3 vext3 RHS, <3,4,4,5>
+ 1638320642U, // <7,3,4,5>: Cost 2 vext3 RHS, <3,4,5,6>
+ 2648313204U, // <7,3,4,6>: Cost 3 vext2 <5,1,7,3>, <4,6,4,6>
+ 3311446789U, // <7,3,4,7>: Cost 4 vrev <3,7,7,4>
+ 1638320669U, // <7,3,4,u>: Cost 2 vext3 RHS, <3,4,u,6>
+ 2602819686U, // <7,3,5,0>: Cost 3 vext1 <u,7,3,5>, LHS
+ 1574571728U, // <7,3,5,1>: Cost 2 vext2 <5,1,7,3>, <5,1,7,3>
+ 2648977185U, // <7,3,5,2>: Cost 3 vext2 <5,2,7,3>, <5,2,7,3>
+ 2705869378U, // <7,3,5,3>: Cost 3 vext3 <3,5,3,7>, <3,5,3,7>
+ 2237491947U, // <7,3,5,4>: Cost 3 vrev <3,7,4,5>
+ 2706016852U, // <7,3,5,5>: Cost 3 vext3 <3,5,5,7>, <3,5,5,7>
+ 2648313954U, // <7,3,5,6>: Cost 3 vext2 <5,1,7,3>, <5,6,7,0>
+ 2692745823U, // <7,3,5,7>: Cost 3 vext3 <1,3,5,7>, <3,5,7,0>
+ 1579217159U, // <7,3,5,u>: Cost 2 vext2 <5,u,7,3>, <5,u,7,3>
+ 2706311800U, // <7,3,6,0>: Cost 3 vext3 <3,6,0,7>, <3,6,0,7>
+ 2654286249U, // <7,3,6,1>: Cost 3 vext2 <6,1,7,3>, <6,1,7,3>
+ 1581208058U, // <7,3,6,2>: Cost 2 vext2 <6,2,7,3>, <6,2,7,3>
+ 2706533011U, // <7,3,6,3>: Cost 3 vext3 <3,6,3,7>, <3,6,3,7>
+ 2706606748U, // <7,3,6,4>: Cost 3 vext3 <3,6,4,7>, <3,6,4,7>
+ 3780422309U, // <7,3,6,5>: Cost 4 vext3 <3,6,5,7>, <3,6,5,7>
+ 2712062637U, // <7,3,6,6>: Cost 3 vext3 RHS, <3,6,6,6>
+ 2706827959U, // <7,3,6,7>: Cost 3 vext3 <3,6,7,7>, <3,6,7,7>
+ 1585189856U, // <7,3,6,u>: Cost 2 vext2 <6,u,7,3>, <6,u,7,3>
+ 2693925571U, // <7,3,7,0>: Cost 3 vext3 <1,5,3,7>, <3,7,0,1>
+ 2693925584U, // <7,3,7,1>: Cost 3 vext3 <1,5,3,7>, <3,7,1,5>
+ 2700561114U, // <7,3,7,2>: Cost 3 vext3 <2,6,3,7>, <3,7,2,6>
+ 2572978916U, // <7,3,7,3>: Cost 3 vext1 <3,7,3,7>, <3,7,3,7>
+ 2693925611U, // <7,3,7,4>: Cost 3 vext3 <1,5,3,7>, <3,7,4,5>
+ 2707344118U, // <7,3,7,5>: Cost 3 vext3 <3,7,5,7>, <3,7,5,7>
+ 2654950894U, // <7,3,7,6>: Cost 3 vext2 <6,2,7,3>, <7,6,2,7>
+ 2648315500U, // <7,3,7,7>: Cost 3 vext2 <5,1,7,3>, <7,7,7,7>
+ 2693925643U, // <7,3,7,u>: Cost 3 vext3 <1,5,3,7>, <3,7,u,1>
+ 2237221578U, // <7,3,u,0>: Cost 3 vrev <3,7,0,u>
+ 1638320926U, // <7,3,u,1>: Cost 2 vext3 RHS, <3,u,1,2>
+ 1593153452U, // <7,3,u,2>: Cost 2 vext2 <u,2,7,3>, <u,2,7,3>
+ 1638320540U, // <7,3,u,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 2237516526U, // <7,3,u,4>: Cost 3 vrev <3,7,4,u>
+ 1638320966U, // <7,3,u,5>: Cost 2 vext3 RHS, <3,u,5,6>
+ 2712062796U, // <7,3,u,6>: Cost 3 vext3 RHS, <3,u,6,3>
+ 2692967250U, // <7,3,u,7>: Cost 3 vext3 <1,3,u,7>, <3,u,7,0>
+ 1638320989U, // <7,3,u,u>: Cost 2 vext3 RHS, <3,u,u,2>
+ 2651635712U, // <7,4,0,0>: Cost 3 vext2 <5,6,7,4>, <0,0,0,0>
+ 1577893990U, // <7,4,0,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2651635876U, // <7,4,0,2>: Cost 3 vext2 <5,6,7,4>, <0,2,0,2>
+ 3785804672U, // <7,4,0,3>: Cost 4 vext3 RHS, <4,0,3,1>
+ 2651636050U, // <7,4,0,4>: Cost 3 vext2 <5,6,7,4>, <0,4,1,5>
+ 1638468498U, // <7,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638468508U, // <7,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787795364U, // <7,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1640459181U, // <7,4,0,u>: Cost 2 vext3 RHS, <4,0,u,1>
+ 2651636470U, // <7,4,1,0>: Cost 3 vext2 <5,6,7,4>, <1,0,3,2>
+ 2651636532U, // <7,4,1,1>: Cost 3 vext2 <5,6,7,4>, <1,1,1,1>
+ 2712062922U, // <7,4,1,2>: Cost 3 vext3 RHS, <4,1,2,3>
+ 2639029248U, // <7,4,1,3>: Cost 3 vext2 <3,5,7,4>, <1,3,5,7>
+ 2712062940U, // <7,4,1,4>: Cost 3 vext3 RHS, <4,1,4,3>
+ 2712062946U, // <7,4,1,5>: Cost 3 vext3 RHS, <4,1,5,0>
+ 2712062958U, // <7,4,1,6>: Cost 3 vext3 RHS, <4,1,6,3>
+ 3785804791U, // <7,4,1,7>: Cost 4 vext3 RHS, <4,1,7,3>
+ 2712062973U, // <7,4,1,u>: Cost 3 vext3 RHS, <4,1,u,0>
+ 3785804807U, // <7,4,2,0>: Cost 4 vext3 RHS, <4,2,0,1>
+ 3785804818U, // <7,4,2,1>: Cost 4 vext3 RHS, <4,2,1,3>
+ 2651637352U, // <7,4,2,2>: Cost 3 vext2 <5,6,7,4>, <2,2,2,2>
+ 2651637414U, // <7,4,2,3>: Cost 3 vext2 <5,6,7,4>, <2,3,0,1>
+ 3716753194U, // <7,4,2,4>: Cost 4 vext2 <4,2,7,4>, <2,4,5,7>
+ 2712063030U, // <7,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 2712063036U, // <7,4,2,6>: Cost 3 vext3 RHS, <4,2,6,0>
+ 3773123658U, // <7,4,2,7>: Cost 4 vext3 <2,4,5,7>, <4,2,7,5>
+ 2712063054U, // <7,4,2,u>: Cost 3 vext3 RHS, <4,2,u,0>
+ 2651637910U, // <7,4,3,0>: Cost 3 vext2 <5,6,7,4>, <3,0,1,2>
+ 3712772348U, // <7,4,3,1>: Cost 4 vext2 <3,5,7,4>, <3,1,3,5>
+ 3785804906U, // <7,4,3,2>: Cost 4 vext3 RHS, <4,3,2,1>
+ 2651638172U, // <7,4,3,3>: Cost 3 vext2 <5,6,7,4>, <3,3,3,3>
+ 2651638274U, // <7,4,3,4>: Cost 3 vext2 <5,6,7,4>, <3,4,5,6>
+ 2639030883U, // <7,4,3,5>: Cost 3 vext2 <3,5,7,4>, <3,5,7,4>
+ 2712063122U, // <7,4,3,6>: Cost 3 vext3 RHS, <4,3,6,5>
+ 3712772836U, // <7,4,3,7>: Cost 4 vext2 <3,5,7,4>, <3,7,3,7>
+ 2641021782U, // <7,4,3,u>: Cost 3 vext2 <3,u,7,4>, <3,u,7,4>
+ 2714053802U, // <7,4,4,0>: Cost 3 vext3 RHS, <4,4,0,2>
+ 3785804978U, // <7,4,4,1>: Cost 4 vext3 RHS, <4,4,1,1>
+ 3716754505U, // <7,4,4,2>: Cost 4 vext2 <4,2,7,4>, <4,2,7,4>
+ 3785804998U, // <7,4,4,3>: Cost 4 vext3 RHS, <4,4,3,3>
+ 1638321360U, // <7,4,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638468826U, // <7,4,4,5>: Cost 2 vext3 RHS, <4,4,5,5>
+ 1638468836U, // <7,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 3785215214U, // <7,4,4,7>: Cost 4 vext3 <4,4,7,7>, <4,4,7,7>
+ 1640459509U, // <7,4,4,u>: Cost 2 vext3 RHS, <4,4,u,5>
+ 1517207654U, // <7,4,5,0>: Cost 2 vext1 <6,7,4,5>, LHS
+ 2573034640U, // <7,4,5,1>: Cost 3 vext1 <3,7,4,5>, <1,5,3,7>
+ 2712063246U, // <7,4,5,2>: Cost 3 vext3 RHS, <4,5,2,3>
+ 2573036267U, // <7,4,5,3>: Cost 3 vext1 <3,7,4,5>, <3,7,4,5>
+ 1517210934U, // <7,4,5,4>: Cost 2 vext1 <6,7,4,5>, RHS
+ 2711989549U, // <7,4,5,5>: Cost 3 vext3 <4,5,5,7>, <4,5,5,7>
+ 564579638U, // <7,4,5,6>: Cost 1 vext3 RHS, RHS
+ 2651639976U, // <7,4,5,7>: Cost 3 vext2 <5,6,7,4>, <5,7,5,7>
+ 564579656U, // <7,4,5,u>: Cost 1 vext3 RHS, RHS
+ 2712063307U, // <7,4,6,0>: Cost 3 vext3 RHS, <4,6,0,1>
+ 3767668056U, // <7,4,6,1>: Cost 4 vext3 <1,5,3,7>, <4,6,1,5>
+ 2651640314U, // <7,4,6,2>: Cost 3 vext2 <5,6,7,4>, <6,2,7,3>
+ 2655621708U, // <7,4,6,3>: Cost 3 vext2 <6,3,7,4>, <6,3,7,4>
+ 1638468980U, // <7,4,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712063358U, // <7,4,6,5>: Cost 3 vext3 RHS, <4,6,5,7>
+ 2712063367U, // <7,4,6,6>: Cost 3 vext3 RHS, <4,6,6,7>
+ 2712210826U, // <7,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1638469012U, // <7,4,6,u>: Cost 2 vext3 RHS, <4,6,u,2>
+ 2651640826U, // <7,4,7,0>: Cost 3 vext2 <5,6,7,4>, <7,0,1,2>
+ 3773713830U, // <7,4,7,1>: Cost 4 vext3 <2,5,4,7>, <4,7,1,2>
+ 3773713842U, // <7,4,7,2>: Cost 4 vext3 <2,5,4,7>, <4,7,2,5>
+ 3780349372U, // <7,4,7,3>: Cost 4 vext3 <3,6,4,7>, <4,7,3,6>
+ 2651641140U, // <7,4,7,4>: Cost 3 vext2 <5,6,7,4>, <7,4,0,1>
+ 2712210888U, // <7,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 2712210898U, // <7,4,7,6>: Cost 3 vext3 RHS, <4,7,6,1>
+ 2651641452U, // <7,4,7,7>: Cost 3 vext2 <5,6,7,4>, <7,7,7,7>
+ 2713538026U, // <7,4,7,u>: Cost 3 vext3 <4,7,u,7>, <4,7,u,7>
+ 1517232230U, // <7,4,u,0>: Cost 2 vext1 <6,7,4,u>, LHS
+ 1577899822U, // <7,4,u,1>: Cost 2 vext2 <5,6,7,4>, LHS
+ 2712063489U, // <7,4,u,2>: Cost 3 vext3 RHS, <4,u,2,3>
+ 2573060846U, // <7,4,u,3>: Cost 3 vext1 <3,7,4,u>, <3,7,4,u>
+ 1640312342U, // <7,4,u,4>: Cost 2 vext3 RHS, <4,u,4,6>
+ 1638469146U, // <7,4,u,5>: Cost 2 vext3 RHS, <4,u,5,1>
+ 564579881U, // <7,4,u,6>: Cost 1 vext3 RHS, RHS
+ 2714054192U, // <7,4,u,7>: Cost 3 vext3 RHS, <4,u,7,5>
+ 564579899U, // <7,4,u,u>: Cost 1 vext3 RHS, RHS
+ 2579038310U, // <7,5,0,0>: Cost 3 vext1 <4,7,5,0>, LHS
+ 2636382310U, // <7,5,0,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2796339302U, // <7,5,0,2>: Cost 3 vuzpl <7,4,5,6>, LHS
+ 3646810719U, // <7,5,0,3>: Cost 4 vext1 <3,7,5,0>, <3,5,7,0>
+ 2712063586U, // <7,5,0,4>: Cost 3 vext3 RHS, <5,0,4,1>
+ 2735951467U, // <7,5,0,5>: Cost 3 vext3 RHS, <5,0,5,1>
+ 2735951476U, // <7,5,0,6>: Cost 3 vext3 RHS, <5,0,6,1>
+ 2579043322U, // <7,5,0,7>: Cost 3 vext1 <4,7,5,0>, <7,0,1,2>
+ 2636382877U, // <7,5,0,u>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211087U, // <7,5,1,0>: Cost 3 vext3 RHS, <5,1,0,1>
+ 3698180916U, // <7,5,1,1>: Cost 4 vext2 <1,1,7,5>, <1,1,1,1>
+ 3710124950U, // <7,5,1,2>: Cost 4 vext2 <3,1,7,5>, <1,2,3,0>
+ 2636383232U, // <7,5,1,3>: Cost 3 vext2 <3,1,7,5>, <1,3,5,7>
+ 2712211127U, // <7,5,1,4>: Cost 3 vext3 RHS, <5,1,4,5>
+ 2590994128U, // <7,5,1,5>: Cost 3 vext1 <6,7,5,1>, <5,1,7,3>
+ 2590995323U, // <7,5,1,6>: Cost 3 vext1 <6,7,5,1>, <6,7,5,1>
+ 1638469328U, // <7,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638469337U, // <7,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 3785805536U, // <7,5,2,0>: Cost 4 vext3 RHS, <5,2,0,1>
+ 3785805544U, // <7,5,2,1>: Cost 4 vext3 RHS, <5,2,1,0>
+ 3704817288U, // <7,5,2,2>: Cost 4 vext2 <2,2,7,5>, <2,2,5,7>
+ 2712063742U, // <7,5,2,3>: Cost 3 vext3 RHS, <5,2,3,4>
+ 3716761386U, // <7,5,2,4>: Cost 4 vext2 <4,2,7,5>, <2,4,5,7>
+ 2714054415U, // <7,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 3774304024U, // <7,5,2,6>: Cost 4 vext3 <2,6,3,7>, <5,2,6,3>
+ 2712063777U, // <7,5,2,7>: Cost 3 vext3 RHS, <5,2,7,3>
+ 2712063787U, // <7,5,2,u>: Cost 3 vext3 RHS, <5,2,u,4>
+ 3634888806U, // <7,5,3,0>: Cost 4 vext1 <1,7,5,3>, LHS
+ 2636384544U, // <7,5,3,1>: Cost 3 vext2 <3,1,7,5>, <3,1,7,5>
+ 3710790001U, // <7,5,3,2>: Cost 4 vext2 <3,2,7,5>, <3,2,7,5>
+ 3710126492U, // <7,5,3,3>: Cost 4 vext2 <3,1,7,5>, <3,3,3,3>
+ 3634892086U, // <7,5,3,4>: Cost 4 vext1 <1,7,5,3>, RHS
+ 2639039076U, // <7,5,3,5>: Cost 3 vext2 <3,5,7,5>, <3,5,7,5>
+ 3713444533U, // <7,5,3,6>: Cost 4 vext2 <3,6,7,5>, <3,6,7,5>
+ 2693926767U, // <7,5,3,7>: Cost 3 vext3 <1,5,3,7>, <5,3,7,0>
+ 2712063864U, // <7,5,3,u>: Cost 3 vext3 RHS, <5,3,u,0>
+ 2579071078U, // <7,5,4,0>: Cost 3 vext1 <4,7,5,4>, LHS
+ 3646841856U, // <7,5,4,1>: Cost 4 vext1 <3,7,5,4>, <1,3,5,7>
+ 3716762698U, // <7,5,4,2>: Cost 4 vext2 <4,2,7,5>, <4,2,7,5>
+ 3646843491U, // <7,5,4,3>: Cost 4 vext1 <3,7,5,4>, <3,5,7,4>
+ 2579074358U, // <7,5,4,4>: Cost 3 vext1 <4,7,5,4>, RHS
+ 2636385590U, // <7,5,4,5>: Cost 3 vext2 <3,1,7,5>, RHS
+ 2645675406U, // <7,5,4,6>: Cost 3 vext2 <4,6,7,5>, <4,6,7,5>
+ 1638322118U, // <7,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1638469583U, // <7,5,4,u>: Cost 2 vext3 RHS, <5,4,u,6>
+ 2714054611U, // <7,5,5,0>: Cost 3 vext3 RHS, <5,5,0,1>
+ 2652974800U, // <7,5,5,1>: Cost 3 vext2 <5,u,7,5>, <5,1,7,3>
+ 3710127905U, // <7,5,5,2>: Cost 4 vext2 <3,1,7,5>, <5,2,7,3>
+ 3785805808U, // <7,5,5,3>: Cost 4 vext3 RHS, <5,5,3,3>
+ 2712211450U, // <7,5,5,4>: Cost 3 vext3 RHS, <5,5,4,4>
+ 1638322180U, // <7,5,5,5>: Cost 2 vext3 RHS, <5,5,5,5>
+ 2712064014U, // <7,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638469656U, // <7,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 1638469665U, // <7,5,5,u>: Cost 2 vext3 RHS, <5,5,u,7>
+ 2712064036U, // <7,5,6,0>: Cost 3 vext3 RHS, <5,6,0,1>
+ 2714054707U, // <7,5,6,1>: Cost 3 vext3 RHS, <5,6,1,7>
+ 3785805879U, // <7,5,6,2>: Cost 4 vext3 RHS, <5,6,2,2>
+ 2712064066U, // <7,5,6,3>: Cost 3 vext3 RHS, <5,6,3,4>
+ 2712064076U, // <7,5,6,4>: Cost 3 vext3 RHS, <5,6,4,5>
+ 2714054743U, // <7,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712064096U, // <7,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 1638322274U, // <7,5,6,7>: Cost 2 vext3 RHS, <5,6,7,0>
+ 1638469739U, // <7,5,6,u>: Cost 2 vext3 RHS, <5,6,u,0>
+ 1511325798U, // <7,5,7,0>: Cost 2 vext1 <5,7,5,7>, LHS
+ 2692747392U, // <7,5,7,1>: Cost 3 vext3 <1,3,5,7>, <5,7,1,3>
+ 2585069160U, // <7,5,7,2>: Cost 3 vext1 <5,7,5,7>, <2,2,2,2>
+ 2573126390U, // <7,5,7,3>: Cost 3 vext1 <3,7,5,7>, <3,7,5,7>
+ 1511329078U, // <7,5,7,4>: Cost 2 vext1 <5,7,5,7>, RHS
+ 1638469800U, // <7,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712211626U, // <7,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2712211636U, // <7,5,7,7>: Cost 3 vext3 RHS, <5,7,7,1>
+ 1638469823U, // <7,5,7,u>: Cost 2 vext3 RHS, <5,7,u,3>
+ 1511333990U, // <7,5,u,0>: Cost 2 vext1 <5,7,5,u>, LHS
+ 2636388142U, // <7,5,u,1>: Cost 3 vext2 <3,1,7,5>, LHS
+ 2712211671U, // <7,5,u,2>: Cost 3 vext3 RHS, <5,u,2,0>
+ 2573134583U, // <7,5,u,3>: Cost 3 vext1 <3,7,5,u>, <3,7,5,u>
+ 1511337270U, // <7,5,u,4>: Cost 2 vext1 <5,7,5,u>, RHS
+ 1638469881U, // <7,5,u,5>: Cost 2 vext3 RHS, <5,u,5,7>
+ 2712064258U, // <7,5,u,6>: Cost 3 vext3 RHS, <5,u,6,7>
+ 1638469892U, // <7,5,u,7>: Cost 2 vext3 RHS, <5,u,7,0>
+ 1638469904U, // <7,5,u,u>: Cost 2 vext3 RHS, <5,u,u,3>
+ 2650324992U, // <7,6,0,0>: Cost 3 vext2 <5,4,7,6>, <0,0,0,0>
+ 1576583270U, // <7,6,0,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712064300U, // <7,6,0,2>: Cost 3 vext3 RHS, <6,0,2,4>
+ 2255295336U, // <7,6,0,3>: Cost 3 vrev <6,7,3,0>
+ 2712064316U, // <7,6,0,4>: Cost 3 vext3 RHS, <6,0,4,2>
+ 2585088098U, // <7,6,0,5>: Cost 3 vext1 <5,7,6,0>, <5,6,7,0>
+ 2735952204U, // <7,6,0,6>: Cost 3 vext3 RHS, <6,0,6,0>
+ 2712211799U, // <7,6,0,7>: Cost 3 vext3 RHS, <6,0,7,2>
+ 1576583837U, // <7,6,0,u>: Cost 2 vext2 <5,4,7,6>, LHS
+ 1181340494U, // <7,6,1,0>: Cost 2 vrev <6,7,0,1>
+ 2650325812U, // <7,6,1,1>: Cost 3 vext2 <5,4,7,6>, <1,1,1,1>
+ 2650325910U, // <7,6,1,2>: Cost 3 vext2 <5,4,7,6>, <1,2,3,0>
+ 2650325976U, // <7,6,1,3>: Cost 3 vext2 <5,4,7,6>, <1,3,1,3>
+ 2579123510U, // <7,6,1,4>: Cost 3 vext1 <4,7,6,1>, RHS
+ 2650326160U, // <7,6,1,5>: Cost 3 vext2 <5,4,7,6>, <1,5,3,7>
+ 2714055072U, // <7,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2712064425U, // <7,6,1,7>: Cost 3 vext3 RHS, <6,1,7,3>
+ 1181930390U, // <7,6,1,u>: Cost 2 vrev <6,7,u,1>
+ 2712211897U, // <7,6,2,0>: Cost 3 vext3 RHS, <6,2,0,1>
+ 2714055108U, // <7,6,2,1>: Cost 3 vext3 RHS, <6,2,1,3>
+ 2650326632U, // <7,6,2,2>: Cost 3 vext2 <5,4,7,6>, <2,2,2,2>
+ 2650326694U, // <7,6,2,3>: Cost 3 vext2 <5,4,7,6>, <2,3,0,1>
+ 2714055137U, // <7,6,2,4>: Cost 3 vext3 RHS, <6,2,4,5>
+ 2714055148U, // <7,6,2,5>: Cost 3 vext3 RHS, <6,2,5,7>
+ 2650326970U, // <7,6,2,6>: Cost 3 vext2 <5,4,7,6>, <2,6,3,7>
+ 1638470138U, // <7,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638470147U, // <7,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2650327190U, // <7,6,3,0>: Cost 3 vext2 <5,4,7,6>, <3,0,1,2>
+ 2255172441U, // <7,6,3,1>: Cost 3 vrev <6,7,1,3>
+ 2255246178U, // <7,6,3,2>: Cost 3 vrev <6,7,2,3>
+ 2650327452U, // <7,6,3,3>: Cost 3 vext2 <5,4,7,6>, <3,3,3,3>
+ 2712064562U, // <7,6,3,4>: Cost 3 vext3 RHS, <6,3,4,5>
+ 2650327627U, // <7,6,3,5>: Cost 3 vext2 <5,4,7,6>, <3,5,4,7>
+ 3713452726U, // <7,6,3,6>: Cost 4 vext2 <3,6,7,6>, <3,6,7,6>
+ 2700563016U, // <7,6,3,7>: Cost 3 vext3 <2,6,3,7>, <6,3,7,0>
+ 2712064593U, // <7,6,3,u>: Cost 3 vext3 RHS, <6,3,u,0>
+ 2650327954U, // <7,6,4,0>: Cost 3 vext2 <5,4,7,6>, <4,0,5,1>
+ 2735952486U, // <7,6,4,1>: Cost 3 vext3 RHS, <6,4,1,3>
+ 2735952497U, // <7,6,4,2>: Cost 3 vext3 RHS, <6,4,2,5>
+ 2255328108U, // <7,6,4,3>: Cost 3 vrev <6,7,3,4>
+ 2712212100U, // <7,6,4,4>: Cost 3 vext3 RHS, <6,4,4,6>
+ 1576586550U, // <7,6,4,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2714055312U, // <7,6,4,6>: Cost 3 vext3 RHS, <6,4,6,0>
+ 2712212126U, // <7,6,4,7>: Cost 3 vext3 RHS, <6,4,7,5>
+ 1576586793U, // <7,6,4,u>: Cost 2 vext2 <5,4,7,6>, RHS
+ 2579152998U, // <7,6,5,0>: Cost 3 vext1 <4,7,6,5>, LHS
+ 2650328784U, // <7,6,5,1>: Cost 3 vext2 <5,4,7,6>, <5,1,7,3>
+ 2714055364U, // <7,6,5,2>: Cost 3 vext3 RHS, <6,5,2,7>
+ 3785806538U, // <7,6,5,3>: Cost 4 vext3 RHS, <6,5,3,4>
+ 1576587206U, // <7,6,5,4>: Cost 2 vext2 <5,4,7,6>, <5,4,7,6>
+ 2650329092U, // <7,6,5,5>: Cost 3 vext2 <5,4,7,6>, <5,5,5,5>
+ 2650329186U, // <7,6,5,6>: Cost 3 vext2 <5,4,7,6>, <5,6,7,0>
+ 2712064753U, // <7,6,5,7>: Cost 3 vext3 RHS, <6,5,7,7>
+ 1181963162U, // <7,6,5,u>: Cost 2 vrev <6,7,u,5>
+ 2714055421U, // <7,6,6,0>: Cost 3 vext3 RHS, <6,6,0,1>
+ 2714055432U, // <7,6,6,1>: Cost 3 vext3 RHS, <6,6,1,3>
+ 2650329594U, // <7,6,6,2>: Cost 3 vext2 <5,4,7,6>, <6,2,7,3>
+ 3785806619U, // <7,6,6,3>: Cost 4 vext3 RHS, <6,6,3,4>
+ 2712212260U, // <7,6,6,4>: Cost 3 vext3 RHS, <6,6,4,4>
+ 2714055472U, // <7,6,6,5>: Cost 3 vext3 RHS, <6,6,5,7>
+ 1638323000U, // <7,6,6,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470466U, // <7,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 1638470475U, // <7,6,6,u>: Cost 2 vext3 RHS, <6,6,u,7>
+ 1638323022U, // <7,6,7,0>: Cost 2 vext3 RHS, <6,7,0,1>
+ 2712064854U, // <7,6,7,1>: Cost 3 vext3 RHS, <6,7,1,0>
+ 2712064865U, // <7,6,7,2>: Cost 3 vext3 RHS, <6,7,2,2>
+ 2712064872U, // <7,6,7,3>: Cost 3 vext3 RHS, <6,7,3,0>
+ 1638323062U, // <7,6,7,4>: Cost 2 vext3 RHS, <6,7,4,5>
+ 2712064894U, // <7,6,7,5>: Cost 3 vext3 RHS, <6,7,5,4>
+ 2712064905U, // <7,6,7,6>: Cost 3 vext3 RHS, <6,7,6,6>
+ 2712064915U, // <7,6,7,7>: Cost 3 vext3 RHS, <6,7,7,7>
+ 1638323094U, // <7,6,7,u>: Cost 2 vext3 RHS, <6,7,u,1>
+ 1638470559U, // <7,6,u,0>: Cost 2 vext3 RHS, <6,u,0,1>
+ 1576589102U, // <7,6,u,1>: Cost 2 vext2 <5,4,7,6>, LHS
+ 2712212402U, // <7,6,u,2>: Cost 3 vext3 RHS, <6,u,2,2>
+ 2712212409U, // <7,6,u,3>: Cost 3 vext3 RHS, <6,u,3,0>
+ 1638470599U, // <7,6,u,4>: Cost 2 vext3 RHS, <6,u,4,5>
+ 1576589466U, // <7,6,u,5>: Cost 2 vext2 <5,4,7,6>, RHS
+ 1638323000U, // <7,6,u,6>: Cost 2 vext3 RHS, <6,6,6,6>
+ 1638470624U, // <7,6,u,7>: Cost 2 vext3 RHS, <6,u,7,3>
+ 1638470631U, // <7,6,u,u>: Cost 2 vext3 RHS, <6,u,u,1>
+ 2712065007U, // <7,7,0,0>: Cost 3 vext3 RHS, <7,0,0,0>
+ 1638323194U, // <7,7,0,1>: Cost 2 vext3 RHS, <7,0,1,2>
+ 2712065025U, // <7,7,0,2>: Cost 3 vext3 RHS, <7,0,2,0>
+ 3646958337U, // <7,7,0,3>: Cost 4 vext1 <3,7,7,0>, <3,7,7,0>
+ 2712065044U, // <7,7,0,4>: Cost 3 vext3 RHS, <7,0,4,1>
+ 2585161907U, // <7,7,0,5>: Cost 3 vext1 <5,7,7,0>, <5,7,7,0>
+ 2591134604U, // <7,7,0,6>: Cost 3 vext1 <6,7,7,0>, <6,7,7,0>
+ 2591134714U, // <7,7,0,7>: Cost 3 vext1 <6,7,7,0>, <7,0,1,2>
+ 1638323257U, // <7,7,0,u>: Cost 2 vext3 RHS, <7,0,u,2>
+ 2712065091U, // <7,7,1,0>: Cost 3 vext3 RHS, <7,1,0,3>
+ 2712065098U, // <7,7,1,1>: Cost 3 vext3 RHS, <7,1,1,1>
+ 2712065109U, // <7,7,1,2>: Cost 3 vext3 RHS, <7,1,2,3>
+ 2692748384U, // <7,7,1,3>: Cost 3 vext3 <1,3,5,7>, <7,1,3,5>
+ 2585169206U, // <7,7,1,4>: Cost 3 vext1 <5,7,7,1>, RHS
+ 2693928048U, // <7,7,1,5>: Cost 3 vext3 <1,5,3,7>, <7,1,5,3>
+ 2585170766U, // <7,7,1,6>: Cost 3 vext1 <5,7,7,1>, <6,7,0,1>
+ 2735953024U, // <7,7,1,7>: Cost 3 vext3 RHS, <7,1,7,1>
+ 2695918731U, // <7,7,1,u>: Cost 3 vext3 <1,u,3,7>, <7,1,u,3>
+ 3770471574U, // <7,7,2,0>: Cost 4 vext3 <2,0,5,7>, <7,2,0,5>
+ 3785807002U, // <7,7,2,1>: Cost 4 vext3 RHS, <7,2,1,0>
+ 2712065189U, // <7,7,2,2>: Cost 3 vext3 RHS, <7,2,2,2>
+ 2712065196U, // <7,7,2,3>: Cost 3 vext3 RHS, <7,2,3,0>
+ 3773125818U, // <7,7,2,4>: Cost 4 vext3 <2,4,5,7>, <7,2,4,5>
+ 3766490305U, // <7,7,2,5>: Cost 4 vext3 <1,3,5,7>, <7,2,5,3>
+ 2700563658U, // <7,7,2,6>: Cost 3 vext3 <2,6,3,7>, <7,2,6,3>
+ 2735953107U, // <7,7,2,7>: Cost 3 vext3 RHS, <7,2,7,3>
+ 2701890780U, // <7,7,2,u>: Cost 3 vext3 <2,u,3,7>, <7,2,u,3>
+ 2712065251U, // <7,7,3,0>: Cost 3 vext3 RHS, <7,3,0,1>
+ 3766490350U, // <7,7,3,1>: Cost 4 vext3 <1,3,5,7>, <7,3,1,3>
+ 3774305530U, // <7,7,3,2>: Cost 4 vext3 <2,6,3,7>, <7,3,2,6>
+ 2637728196U, // <7,7,3,3>: Cost 3 vext2 <3,3,7,7>, <3,3,7,7>
+ 2712065291U, // <7,7,3,4>: Cost 3 vext3 RHS, <7,3,4,5>
+ 2585186486U, // <7,7,3,5>: Cost 3 vext1 <5,7,7,3>, <5,7,7,3>
+ 2639719095U, // <7,7,3,6>: Cost 3 vext2 <3,6,7,7>, <3,6,7,7>
+ 2640382728U, // <7,7,3,7>: Cost 3 vext2 <3,7,7,7>, <3,7,7,7>
+ 2641046361U, // <7,7,3,u>: Cost 3 vext2 <3,u,7,7>, <3,u,7,7>
+ 2712212792U, // <7,7,4,0>: Cost 3 vext3 RHS, <7,4,0,5>
+ 3646989312U, // <7,7,4,1>: Cost 4 vext1 <3,7,7,4>, <1,3,5,7>
+ 3785807176U, // <7,7,4,2>: Cost 4 vext3 RHS, <7,4,2,3>
+ 3646991109U, // <7,7,4,3>: Cost 4 vext1 <3,7,7,4>, <3,7,7,4>
+ 2712065371U, // <7,7,4,4>: Cost 3 vext3 RHS, <7,4,4,4>
+ 1638323558U, // <7,7,4,5>: Cost 2 vext3 RHS, <7,4,5,6>
+ 2712212845U, // <7,7,4,6>: Cost 3 vext3 RHS, <7,4,6,4>
+ 2591167846U, // <7,7,4,7>: Cost 3 vext1 <6,7,7,4>, <7,4,5,6>
+ 1638323585U, // <7,7,4,u>: Cost 2 vext3 RHS, <7,4,u,6>
+ 2585198694U, // <7,7,5,0>: Cost 3 vext1 <5,7,7,5>, LHS
+ 2712212884U, // <7,7,5,1>: Cost 3 vext3 RHS, <7,5,1,7>
+ 3711471393U, // <7,7,5,2>: Cost 4 vext2 <3,3,7,7>, <5,2,7,3>
+ 2649673590U, // <7,7,5,3>: Cost 3 vext2 <5,3,7,7>, <5,3,7,7>
+ 2712065455U, // <7,7,5,4>: Cost 3 vext3 RHS, <7,5,4,7>
+ 1577259032U, // <7,7,5,5>: Cost 2 vext2 <5,5,7,7>, <5,5,7,7>
+ 2712065473U, // <7,7,5,6>: Cost 3 vext3 RHS, <7,5,6,7>
+ 2712212936U, // <7,7,5,7>: Cost 3 vext3 RHS, <7,5,7,5>
+ 1579249931U, // <7,7,5,u>: Cost 2 vext2 <5,u,7,7>, <5,u,7,7>
+ 2591178854U, // <7,7,6,0>: Cost 3 vext1 <6,7,7,6>, LHS
+ 2735953374U, // <7,7,6,1>: Cost 3 vext3 RHS, <7,6,1,0>
+ 2712212974U, // <7,7,6,2>: Cost 3 vext3 RHS, <7,6,2,7>
+ 2655646287U, // <7,7,6,3>: Cost 3 vext2 <6,3,7,7>, <6,3,7,7>
+ 2591182134U, // <7,7,6,4>: Cost 3 vext1 <6,7,7,6>, RHS
+ 2656973553U, // <7,7,6,5>: Cost 3 vext2 <6,5,7,7>, <6,5,7,7>
+ 1583895362U, // <7,7,6,6>: Cost 2 vext2 <6,6,7,7>, <6,6,7,7>
+ 2712065556U, // <7,7,6,7>: Cost 3 vext3 RHS, <7,6,7,0>
+ 1585222628U, // <7,7,6,u>: Cost 2 vext2 <6,u,7,7>, <6,u,7,7>
+ 1523417190U, // <7,7,7,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 2597159670U, // <7,7,7,1>: Cost 3 vext1 <7,7,7,7>, <1,0,3,2>
+ 2597160552U, // <7,7,7,2>: Cost 3 vext1 <7,7,7,7>, <2,2,2,2>
+ 2597161110U, // <7,7,7,3>: Cost 3 vext1 <7,7,7,7>, <3,0,1,2>
+ 1523420470U, // <7,7,7,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 2651002296U, // <7,7,7,5>: Cost 3 vext2 <5,5,7,7>, <7,5,5,7>
+ 2657637906U, // <7,7,7,6>: Cost 3 vext2 <6,6,7,7>, <7,6,6,7>
+ 363253046U, // <7,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,7,u>: Cost 1 vdup3 RHS
+ 1523417190U, // <7,7,u,0>: Cost 2 vext1 <7,7,7,7>, LHS
+ 1638471298U, // <7,7,u,1>: Cost 2 vext3 RHS, <7,u,1,2>
+ 2712213132U, // <7,7,u,2>: Cost 3 vext3 RHS, <7,u,2,3>
+ 2712213138U, // <7,7,u,3>: Cost 3 vext3 RHS, <7,u,3,0>
+ 1523420470U, // <7,7,u,4>: Cost 2 vext1 <7,7,7,7>, RHS
+ 1638471338U, // <7,7,u,5>: Cost 2 vext3 RHS, <7,u,5,6>
+ 1595840756U, // <7,7,u,6>: Cost 2 vext2 <u,6,7,7>, <u,6,7,7>
+ 363253046U, // <7,7,u,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,7,u,u>: Cost 1 vdup3 RHS
+ 1638318080U, // <7,u,0,0>: Cost 2 vext3 RHS, <0,0,0,0>
+ 1638323923U, // <7,u,0,1>: Cost 2 vext3 RHS, <u,0,1,2>
+ 1662211804U, // <7,u,0,2>: Cost 2 vext3 RHS, <u,0,2,2>
+ 1638323941U, // <7,u,0,3>: Cost 2 vext3 RHS, <u,0,3,2>
+ 2712065773U, // <7,u,0,4>: Cost 3 vext3 RHS, <u,0,4,1>
+ 1662359286U, // <7,u,0,5>: Cost 2 vext3 RHS, <u,0,5,1>
+ 1662359296U, // <7,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 2987150664U, // <7,u,0,7>: Cost 3 vzipr <5,6,7,0>, RHS
+ 1638323986U, // <7,u,0,u>: Cost 2 vext3 RHS, <u,0,u,2>
+ 1517469798U, // <7,u,1,0>: Cost 2 vext1 <6,7,u,1>, LHS
+ 1638318900U, // <7,u,1,1>: Cost 2 vext3 RHS, <1,1,1,1>
+ 564582190U, // <7,u,1,2>: Cost 1 vext3 RHS, LHS
+ 1638324023U, // <7,u,1,3>: Cost 2 vext3 RHS, <u,1,3,3>
+ 1517473078U, // <7,u,1,4>: Cost 2 vext1 <6,7,u,1>, RHS
+ 2693928777U, // <7,u,1,5>: Cost 3 vext3 <1,5,3,7>, <u,1,5,3>
+ 1517474710U, // <7,u,1,6>: Cost 2 vext1 <6,7,u,1>, <6,7,u,1>
+ 1640462171U, // <7,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 564582244U, // <7,u,1,u>: Cost 1 vext3 RHS, LHS
+ 1638318244U, // <7,u,2,0>: Cost 2 vext3 RHS, <0,2,0,2>
+ 2712065907U, // <7,u,2,1>: Cost 3 vext3 RHS, <u,2,1,0>
+ 1638319720U, // <7,u,2,2>: Cost 2 vext3 RHS, <2,2,2,2>
+ 1638324101U, // <7,u,2,3>: Cost 2 vext3 RHS, <u,2,3,0>
+ 1638318284U, // <7,u,2,4>: Cost 2 vext3 RHS, <0,2,4,6>
+ 2712065947U, // <7,u,2,5>: Cost 3 vext3 RHS, <u,2,5,4>
+ 2700564387U, // <7,u,2,6>: Cost 3 vext3 <2,6,3,7>, <u,2,6,3>
+ 1640314796U, // <7,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 1638324146U, // <7,u,2,u>: Cost 2 vext3 RHS, <u,2,u,0>
+ 1638324156U, // <7,u,3,0>: Cost 2 vext3 RHS, <u,3,0,1>
+ 1638319064U, // <7,u,3,1>: Cost 2 vext3 RHS, <1,3,1,3>
+ 2700564435U, // <7,u,3,2>: Cost 3 vext3 <2,6,3,7>, <u,3,2,6>
+ 1638320540U, // <7,u,3,3>: Cost 2 vext3 RHS, <3,3,3,3>
+ 1638324196U, // <7,u,3,4>: Cost 2 vext3 RHS, <u,3,4,5>
+ 1638324207U, // <7,u,3,5>: Cost 2 vext3 RHS, <u,3,5,7>
+ 2700564472U, // <7,u,3,6>: Cost 3 vext3 <2,6,3,7>, <u,3,6,7>
+ 2695919610U, // <7,u,3,7>: Cost 3 vext3 <1,u,3,7>, <u,3,7,0>
+ 1638324228U, // <7,u,3,u>: Cost 2 vext3 RHS, <u,3,u,1>
+ 2712066061U, // <7,u,4,0>: Cost 3 vext3 RHS, <u,4,0,1>
+ 1662212122U, // <7,u,4,1>: Cost 2 vext3 RHS, <u,4,1,5>
+ 1662212132U, // <7,u,4,2>: Cost 2 vext3 RHS, <u,4,2,6>
+ 2712066092U, // <7,u,4,3>: Cost 3 vext3 RHS, <u,4,3,5>
+ 1638321360U, // <7,u,4,4>: Cost 2 vext3 RHS, <4,4,4,4>
+ 1638324287U, // <7,u,4,5>: Cost 2 vext3 RHS, <u,4,5,6>
+ 1662359624U, // <7,u,4,6>: Cost 2 vext3 RHS, <u,4,6,6>
+ 1640314961U, // <7,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 1638324314U, // <7,u,4,u>: Cost 2 vext3 RHS, <u,4,u,6>
+ 1517502566U, // <7,u,5,0>: Cost 2 vext1 <6,7,u,5>, LHS
+ 1574612693U, // <7,u,5,1>: Cost 2 vext2 <5,1,7,u>, <5,1,7,u>
+ 2712066162U, // <7,u,5,2>: Cost 3 vext3 RHS, <u,5,2,3>
+ 1638324351U, // <7,u,5,3>: Cost 2 vext3 RHS, <u,5,3,7>
+ 1576603592U, // <7,u,5,4>: Cost 2 vext2 <5,4,7,u>, <5,4,7,u>
+ 1577267225U, // <7,u,5,5>: Cost 2 vext2 <5,5,7,u>, <5,5,7,u>
+ 564582554U, // <7,u,5,6>: Cost 1 vext3 RHS, RHS
+ 1640462499U, // <7,u,5,7>: Cost 2 vext3 RHS, <u,5,7,7>
+ 564582572U, // <7,u,5,u>: Cost 1 vext3 RHS, RHS
+ 2712066223U, // <7,u,6,0>: Cost 3 vext3 RHS, <u,6,0,1>
+ 2712066238U, // <7,u,6,1>: Cost 3 vext3 RHS, <u,6,1,7>
+ 1581249023U, // <7,u,6,2>: Cost 2 vext2 <6,2,7,u>, <6,2,7,u>
+ 1638324432U, // <7,u,6,3>: Cost 2 vext3 RHS, <u,6,3,7>
+ 1638468980U, // <7,u,6,4>: Cost 2 vext3 RHS, <4,6,4,6>
+ 2712066274U, // <7,u,6,5>: Cost 3 vext3 RHS, <u,6,5,7>
+ 1583903555U, // <7,u,6,6>: Cost 2 vext2 <6,6,7,u>, <6,6,7,u>
+ 1640315117U, // <7,u,6,7>: Cost 2 vext3 RHS, <u,6,7,0>
+ 1638324477U, // <7,u,6,u>: Cost 2 vext3 RHS, <u,6,u,7>
+ 1638471936U, // <7,u,7,0>: Cost 2 vext3 RHS, <u,7,0,1>
+ 2692970763U, // <7,u,7,1>: Cost 3 vext3 <1,3,u,7>, <u,7,1,3>
+ 2700933399U, // <7,u,7,2>: Cost 3 vext3 <2,6,u,7>, <u,7,2,6>
+ 2573347601U, // <7,u,7,3>: Cost 3 vext1 <3,7,u,7>, <3,7,u,7>
+ 1638471976U, // <7,u,7,4>: Cost 2 vext3 RHS, <u,7,4,5>
+ 1511551171U, // <7,u,7,5>: Cost 2 vext1 <5,7,u,7>, <5,7,u,7>
+ 2712213815U, // <7,u,7,6>: Cost 3 vext3 RHS, <u,7,6,2>
+ 363253046U, // <7,u,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <7,u,7,u>: Cost 1 vdup3 RHS
+ 1638324561U, // <7,u,u,0>: Cost 2 vext3 RHS, <u,u,0,1>
+ 1638324571U, // <7,u,u,1>: Cost 2 vext3 RHS, <u,u,1,2>
+ 564582757U, // <7,u,u,2>: Cost 1 vext3 RHS, LHS
+ 1638324587U, // <7,u,u,3>: Cost 2 vext3 RHS, <u,u,3,0>
+ 1638324601U, // <7,u,u,4>: Cost 2 vext3 RHS, <u,u,4,5>
+ 1638324611U, // <7,u,u,5>: Cost 2 vext3 RHS, <u,u,5,6>
+ 564582797U, // <7,u,u,6>: Cost 1 vext3 RHS, RHS
+ 363253046U, // <7,u,u,7>: Cost 1 vdup3 RHS
+ 564582811U, // <7,u,u,u>: Cost 1 vext3 RHS, LHS
+ 135053414U, // <u,0,0,0>: Cost 1 vdup0 LHS
+ 1611489290U, // <u,0,0,1>: Cost 2 vext3 LHS, <0,0,1,1>
+ 1611489300U, // <u,0,0,2>: Cost 2 vext3 LHS, <0,0,2,2>
+ 2568054923U, // <u,0,0,3>: Cost 3 vext1 <3,0,0,0>, <3,0,0,0>
+ 1481706806U, // <u,0,0,4>: Cost 2 vext1 <0,u,0,0>, RHS
+ 2555449040U, // <u,0,0,5>: Cost 3 vext1 <0,u,0,0>, <5,1,7,3>
+ 2591282078U, // <u,0,0,6>: Cost 3 vext1 <6,u,0,0>, <6,u,0,0>
+ 2591945711U, // <u,0,0,7>: Cost 3 vext1 <7,0,0,0>, <7,0,0,0>
+ 135053414U, // <u,0,0,u>: Cost 1 vdup0 LHS
+ 1493655654U, // <u,0,1,0>: Cost 2 vext1 <2,u,0,1>, LHS
+ 1860550758U, // <u,0,1,1>: Cost 2 vzipl LHS, LHS
+ 537747563U, // <u,0,1,2>: Cost 1 vext3 LHS, LHS
+ 2625135576U, // <u,0,1,3>: Cost 3 vext2 <1,2,u,0>, <1,3,1,3>
+ 1493658934U, // <u,0,1,4>: Cost 2 vext1 <2,u,0,1>, RHS
+ 2625135760U, // <u,0,1,5>: Cost 3 vext2 <1,2,u,0>, <1,5,3,7>
+ 1517548447U, // <u,0,1,6>: Cost 2 vext1 <6,u,0,1>, <6,u,0,1>
+ 2591290362U, // <u,0,1,7>: Cost 3 vext1 <6,u,0,1>, <7,0,1,2>
+ 537747612U, // <u,0,1,u>: Cost 1 vext3 LHS, LHS
+ 1611489444U, // <u,0,2,0>: Cost 2 vext3 LHS, <0,2,0,2>
+ 2685231276U, // <u,0,2,1>: Cost 3 vext3 LHS, <0,2,1,1>
+ 1994768486U, // <u,0,2,2>: Cost 2 vtrnl LHS, LHS
+ 2685231294U, // <u,0,2,3>: Cost 3 vext3 LHS, <0,2,3,1>
+ 1611489484U, // <u,0,2,4>: Cost 2 vext3 LHS, <0,2,4,6>
+ 2712068310U, // <u,0,2,5>: Cost 3 vext3 RHS, <0,2,5,7>
+ 2625136570U, // <u,0,2,6>: Cost 3 vext2 <1,2,u,0>, <2,6,3,7>
+ 2591962097U, // <u,0,2,7>: Cost 3 vext1 <7,0,0,2>, <7,0,0,2>
+ 1611489516U, // <u,0,2,u>: Cost 2 vext3 LHS, <0,2,u,2>
+ 2954067968U, // <u,0,3,0>: Cost 3 vzipr LHS, <0,0,0,0>
+ 2685231356U, // <u,0,3,1>: Cost 3 vext3 LHS, <0,3,1,0>
+ 72589981U, // <u,0,3,2>: Cost 1 vrev LHS
+ 2625137052U, // <u,0,3,3>: Cost 3 vext2 <1,2,u,0>, <3,3,3,3>
+ 2625137154U, // <u,0,3,4>: Cost 3 vext2 <1,2,u,0>, <3,4,5,6>
+ 2639071848U, // <u,0,3,5>: Cost 3 vext2 <3,5,u,0>, <3,5,u,0>
+ 2639735481U, // <u,0,3,6>: Cost 3 vext2 <3,6,u,0>, <3,6,u,0>
+ 2597279354U, // <u,0,3,7>: Cost 3 vext1 <7,u,0,3>, <7,u,0,3>
+ 73032403U, // <u,0,3,u>: Cost 1 vrev LHS
+ 2687074636U, // <u,0,4,0>: Cost 3 vext3 <0,4,0,u>, <0,4,0,u>
+ 1611489618U, // <u,0,4,1>: Cost 2 vext3 LHS, <0,4,1,5>
+ 1611489628U, // <u,0,4,2>: Cost 2 vext3 LHS, <0,4,2,6>
+ 3629222038U, // <u,0,4,3>: Cost 4 vext1 <0,u,0,4>, <3,0,1,2>
+ 2555481398U, // <u,0,4,4>: Cost 3 vext1 <0,u,0,4>, RHS
+ 1551396150U, // <u,0,4,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 2651680116U, // <u,0,4,6>: Cost 3 vext2 <5,6,u,0>, <4,6,4,6>
+ 2646150600U, // <u,0,4,7>: Cost 3 vext2 <4,7,5,0>, <4,7,5,0>
+ 1611932050U, // <u,0,4,u>: Cost 2 vext3 LHS, <0,4,u,6>
+ 2561458278U, // <u,0,5,0>: Cost 3 vext1 <1,u,0,5>, LHS
+ 1863532646U, // <u,0,5,1>: Cost 2 vzipl RHS, LHS
+ 2712068526U, // <u,0,5,2>: Cost 3 vext3 RHS, <0,5,2,7>
+ 2649689976U, // <u,0,5,3>: Cost 3 vext2 <5,3,u,0>, <5,3,u,0>
+ 2220237489U, // <u,0,5,4>: Cost 3 vrev <0,u,4,5>
+ 2651680772U, // <u,0,5,5>: Cost 3 vext2 <5,6,u,0>, <5,5,5,5>
+ 1577939051U, // <u,0,5,6>: Cost 2 vext2 <5,6,u,0>, <5,6,u,0>
+ 2830077238U, // <u,0,5,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 1579266317U, // <u,0,5,u>: Cost 2 vext2 <5,u,u,0>, <5,u,u,0>
+ 2555494502U, // <u,0,6,0>: Cost 3 vext1 <0,u,0,6>, LHS
+ 2712068598U, // <u,0,6,1>: Cost 3 vext3 RHS, <0,6,1,7>
+ 1997750374U, // <u,0,6,2>: Cost 2 vtrnl RHS, LHS
+ 2655662673U, // <u,0,6,3>: Cost 3 vext2 <6,3,u,0>, <6,3,u,0>
+ 2555497782U, // <u,0,6,4>: Cost 3 vext1 <0,u,0,6>, RHS
+ 2651681459U, // <u,0,6,5>: Cost 3 vext2 <5,6,u,0>, <6,5,0,u>
+ 2651681592U, // <u,0,6,6>: Cost 3 vext2 <5,6,u,0>, <6,6,6,6>
+ 2651681614U, // <u,0,6,7>: Cost 3 vext2 <5,6,u,0>, <6,7,0,1>
+ 1997750428U, // <u,0,6,u>: Cost 2 vtrnl RHS, LHS
+ 2567446630U, // <u,0,7,0>: Cost 3 vext1 <2,u,0,7>, LHS
+ 2567447446U, // <u,0,7,1>: Cost 3 vext1 <2,u,0,7>, <1,2,3,0>
+ 2567448641U, // <u,0,7,2>: Cost 3 vext1 <2,u,0,7>, <2,u,0,7>
+ 2573421338U, // <u,0,7,3>: Cost 3 vext1 <3,u,0,7>, <3,u,0,7>
+ 2567449910U, // <u,0,7,4>: Cost 3 vext1 <2,u,0,7>, RHS
+ 2651682242U, // <u,0,7,5>: Cost 3 vext2 <5,6,u,0>, <7,5,6,u>
+ 2591339429U, // <u,0,7,6>: Cost 3 vext1 <6,u,0,7>, <6,u,0,7>
+ 2651682412U, // <u,0,7,7>: Cost 3 vext2 <5,6,u,0>, <7,7,7,7>
+ 2567452462U, // <u,0,7,u>: Cost 3 vext1 <2,u,0,7>, LHS
+ 135053414U, // <u,0,u,0>: Cost 1 vdup0 LHS
+ 1611489938U, // <u,0,u,1>: Cost 2 vext3 LHS, <0,u,1,1>
+ 537748125U, // <u,0,u,2>: Cost 1 vext3 LHS, LHS
+ 2685674148U, // <u,0,u,3>: Cost 3 vext3 LHS, <0,u,3,1>
+ 1611932338U, // <u,0,u,4>: Cost 2 vext3 LHS, <0,u,4,6>
+ 1551399066U, // <u,0,u,5>: Cost 2 vext2 <1,2,u,0>, RHS
+ 1517605798U, // <u,0,u,6>: Cost 2 vext1 <6,u,0,u>, <6,u,0,u>
+ 2830077481U, // <u,0,u,7>: Cost 3 vuzpr <1,u,3,0>, RHS
+ 537748179U, // <u,0,u,u>: Cost 1 vext3 LHS, LHS
+ 1544101961U, // <u,1,0,0>: Cost 2 vext2 <0,0,u,1>, <0,0,u,1>
+ 1558036582U, // <u,1,0,1>: Cost 2 vext2 <2,3,u,1>, LHS
+ 2619171051U, // <u,1,0,2>: Cost 3 vext2 <0,2,u,1>, <0,2,u,1>
+ 1611490038U, // <u,1,0,3>: Cost 2 vext3 LHS, <1,0,3,2>
+ 2555522358U, // <u,1,0,4>: Cost 3 vext1 <0,u,1,0>, RHS
+ 2712068871U, // <u,1,0,5>: Cost 3 vext3 RHS, <1,0,5,1>
+ 2591355815U, // <u,1,0,6>: Cost 3 vext1 <6,u,1,0>, <6,u,1,0>
+ 2597328512U, // <u,1,0,7>: Cost 3 vext1 <7,u,1,0>, <7,u,1,0>
+ 1611490083U, // <u,1,0,u>: Cost 2 vext3 LHS, <1,0,u,2>
+ 1481785446U, // <u,1,1,0>: Cost 2 vext1 <0,u,1,1>, LHS
+ 202162278U, // <u,1,1,1>: Cost 1 vdup1 LHS
+ 2555528808U, // <u,1,1,2>: Cost 3 vext1 <0,u,1,1>, <2,2,2,2>
+ 1611490120U, // <u,1,1,3>: Cost 2 vext3 LHS, <1,1,3,3>
+ 1481788726U, // <u,1,1,4>: Cost 2 vext1 <0,u,1,1>, RHS
+ 2689876828U, // <u,1,1,5>: Cost 3 vext3 LHS, <1,1,5,5>
+ 2591364008U, // <u,1,1,6>: Cost 3 vext1 <6,u,1,1>, <6,u,1,1>
+ 2592691274U, // <u,1,1,7>: Cost 3 vext1 <7,1,1,1>, <7,1,1,1>
+ 202162278U, // <u,1,1,u>: Cost 1 vdup1 LHS
+ 1499709542U, // <u,1,2,0>: Cost 2 vext1 <3,u,1,2>, LHS
+ 2689876871U, // <u,1,2,1>: Cost 3 vext3 LHS, <1,2,1,3>
+ 2631116445U, // <u,1,2,2>: Cost 3 vext2 <2,2,u,1>, <2,2,u,1>
+ 835584U, // <u,1,2,3>: Cost 0 copy LHS
+ 1499712822U, // <u,1,2,4>: Cost 2 vext1 <3,u,1,2>, RHS
+ 2689876907U, // <u,1,2,5>: Cost 3 vext3 LHS, <1,2,5,3>
+ 2631780282U, // <u,1,2,6>: Cost 3 vext2 <2,3,u,1>, <2,6,3,7>
+ 1523603074U, // <u,1,2,7>: Cost 2 vext1 <7,u,1,2>, <7,u,1,2>
+ 835584U, // <u,1,2,u>: Cost 0 copy LHS
+ 1487773798U, // <u,1,3,0>: Cost 2 vext1 <1,u,1,3>, LHS
+ 1611490264U, // <u,1,3,1>: Cost 2 vext3 LHS, <1,3,1,3>
+ 2685232094U, // <u,1,3,2>: Cost 3 vext3 LHS, <1,3,2,0>
+ 2018746470U, // <u,1,3,3>: Cost 2 vtrnr LHS, LHS
+ 1487777078U, // <u,1,3,4>: Cost 2 vext1 <1,u,1,3>, RHS
+ 1611490304U, // <u,1,3,5>: Cost 2 vext3 LHS, <1,3,5,7>
+ 2685674505U, // <u,1,3,6>: Cost 3 vext3 LHS, <1,3,6,7>
+ 2640407307U, // <u,1,3,7>: Cost 3 vext2 <3,7,u,1>, <3,7,u,1>
+ 1611490327U, // <u,1,3,u>: Cost 2 vext3 LHS, <1,3,u,3>
+ 1567992749U, // <u,1,4,0>: Cost 2 vext2 <4,0,u,1>, <4,0,u,1>
+ 2693121070U, // <u,1,4,1>: Cost 3 vext3 <1,4,1,u>, <1,4,1,u>
+ 2693194807U, // <u,1,4,2>: Cost 3 vext3 <1,4,2,u>, <1,4,2,u>
+ 1152386432U, // <u,1,4,3>: Cost 2 vrev <1,u,3,4>
+ 2555555126U, // <u,1,4,4>: Cost 3 vext1 <0,u,1,4>, RHS
+ 1558039862U, // <u,1,4,5>: Cost 2 vext2 <2,3,u,1>, RHS
+ 2645716371U, // <u,1,4,6>: Cost 3 vext2 <4,6,u,1>, <4,6,u,1>
+ 2597361284U, // <u,1,4,7>: Cost 3 vext1 <7,u,1,4>, <7,u,1,4>
+ 1152755117U, // <u,1,4,u>: Cost 2 vrev <1,u,u,4>
+ 1481818214U, // <u,1,5,0>: Cost 2 vext1 <0,u,1,5>, LHS
+ 2555560694U, // <u,1,5,1>: Cost 3 vext1 <0,u,1,5>, <1,0,3,2>
+ 2555561576U, // <u,1,5,2>: Cost 3 vext1 <0,u,1,5>, <2,2,2,2>
+ 1611490448U, // <u,1,5,3>: Cost 2 vext3 LHS, <1,5,3,7>
+ 1481821494U, // <u,1,5,4>: Cost 2 vext1 <0,u,1,5>, RHS
+ 2651025435U, // <u,1,5,5>: Cost 3 vext2 <5,5,u,1>, <5,5,u,1>
+ 2651689068U, // <u,1,5,6>: Cost 3 vext2 <5,6,u,1>, <5,6,u,1>
+ 2823966006U, // <u,1,5,7>: Cost 3 vuzpr <0,u,1,1>, RHS
+ 1611932861U, // <u,1,5,u>: Cost 2 vext3 LHS, <1,5,u,7>
+ 2555568230U, // <u,1,6,0>: Cost 3 vext1 <0,u,1,6>, LHS
+ 2689877199U, // <u,1,6,1>: Cost 3 vext3 LHS, <1,6,1,7>
+ 2712069336U, // <u,1,6,2>: Cost 3 vext3 RHS, <1,6,2,7>
+ 2685232353U, // <u,1,6,3>: Cost 3 vext3 LHS, <1,6,3,7>
+ 2555571510U, // <u,1,6,4>: Cost 3 vext1 <0,u,1,6>, RHS
+ 2689877235U, // <u,1,6,5>: Cost 3 vext3 LHS, <1,6,5,7>
+ 2657661765U, // <u,1,6,6>: Cost 3 vext2 <6,6,u,1>, <6,6,u,1>
+ 1584583574U, // <u,1,6,7>: Cost 2 vext2 <6,7,u,1>, <6,7,u,1>
+ 1585247207U, // <u,1,6,u>: Cost 2 vext2 <6,u,u,1>, <6,u,u,1>
+ 2561548390U, // <u,1,7,0>: Cost 3 vext1 <1,u,1,7>, LHS
+ 2561549681U, // <u,1,7,1>: Cost 3 vext1 <1,u,1,7>, <1,u,1,7>
+ 2573493926U, // <u,1,7,2>: Cost 3 vext1 <3,u,1,7>, <2,3,0,1>
+ 2042962022U, // <u,1,7,3>: Cost 2 vtrnr RHS, LHS
+ 2561551670U, // <u,1,7,4>: Cost 3 vext1 <1,u,1,7>, RHS
+ 2226300309U, // <u,1,7,5>: Cost 3 vrev <1,u,5,7>
+ 2658325990U, // <u,1,7,6>: Cost 3 vext2 <6,7,u,1>, <7,6,1,u>
+ 2658326124U, // <u,1,7,7>: Cost 3 vext2 <6,7,u,1>, <7,7,7,7>
+ 2042962027U, // <u,1,7,u>: Cost 2 vtrnr RHS, LHS
+ 1481842790U, // <u,1,u,0>: Cost 2 vext1 <0,u,1,u>, LHS
+ 202162278U, // <u,1,u,1>: Cost 1 vdup1 LHS
+ 2685674867U, // <u,1,u,2>: Cost 3 vext3 LHS, <1,u,2,0>
+ 835584U, // <u,1,u,3>: Cost 0 copy LHS
+ 1481846070U, // <u,1,u,4>: Cost 2 vext1 <0,u,1,u>, RHS
+ 1611933077U, // <u,1,u,5>: Cost 2 vext3 LHS, <1,u,5,7>
+ 2685674910U, // <u,1,u,6>: Cost 3 vext3 LHS, <1,u,6,7>
+ 1523652232U, // <u,1,u,7>: Cost 2 vext1 <7,u,1,u>, <7,u,1,u>
+ 835584U, // <u,1,u,u>: Cost 0 copy LHS
+ 1544110154U, // <u,2,0,0>: Cost 2 vext2 <0,0,u,2>, <0,0,u,2>
+ 1545437286U, // <u,2,0,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1545437420U, // <u,2,0,2>: Cost 2 vext2 <0,2,u,2>, <0,2,u,2>
+ 2685232589U, // <u,2,0,3>: Cost 3 vext3 LHS, <2,0,3,0>
+ 2619179346U, // <u,2,0,4>: Cost 3 vext2 <0,2,u,2>, <0,4,1,5>
+ 2712069606U, // <u,2,0,5>: Cost 3 vext3 RHS, <2,0,5,7>
+ 2689877484U, // <u,2,0,6>: Cost 3 vext3 LHS, <2,0,6,4>
+ 2659656273U, // <u,2,0,7>: Cost 3 vext2 <7,0,u,2>, <0,7,2,u>
+ 1545437853U, // <u,2,0,u>: Cost 2 vext2 <0,2,u,2>, LHS
+ 1550082851U, // <u,2,1,0>: Cost 2 vext2 <1,0,u,2>, <1,0,u,2>
+ 2619179828U, // <u,2,1,1>: Cost 3 vext2 <0,2,u,2>, <1,1,1,1>
+ 2619179926U, // <u,2,1,2>: Cost 3 vext2 <0,2,u,2>, <1,2,3,0>
+ 2685232671U, // <u,2,1,3>: Cost 3 vext3 LHS, <2,1,3,1>
+ 2555604278U, // <u,2,1,4>: Cost 3 vext1 <0,u,2,1>, RHS
+ 2619180176U, // <u,2,1,5>: Cost 3 vext2 <0,2,u,2>, <1,5,3,7>
+ 2689877564U, // <u,2,1,6>: Cost 3 vext3 LHS, <2,1,6,3>
+ 2602718850U, // <u,2,1,7>: Cost 3 vext1 <u,7,2,1>, <7,u,1,2>
+ 1158703235U, // <u,2,1,u>: Cost 2 vrev <2,u,u,1>
+ 1481867366U, // <u,2,2,0>: Cost 2 vext1 <0,u,2,2>, LHS
+ 2555609846U, // <u,2,2,1>: Cost 3 vext1 <0,u,2,2>, <1,0,3,2>
+ 269271142U, // <u,2,2,2>: Cost 1 vdup2 LHS
+ 1611490930U, // <u,2,2,3>: Cost 2 vext3 LHS, <2,2,3,3>
+ 1481870646U, // <u,2,2,4>: Cost 2 vext1 <0,u,2,2>, RHS
+ 2689877640U, // <u,2,2,5>: Cost 3 vext3 LHS, <2,2,5,7>
+ 2619180986U, // <u,2,2,6>: Cost 3 vext2 <0,2,u,2>, <2,6,3,7>
+ 2593436837U, // <u,2,2,7>: Cost 3 vext1 <7,2,2,2>, <7,2,2,2>
+ 269271142U, // <u,2,2,u>: Cost 1 vdup2 LHS
+ 408134301U, // <u,2,3,0>: Cost 1 vext1 LHS, LHS
+ 1481876214U, // <u,2,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 1481877096U, // <u,2,3,2>: Cost 2 vext1 LHS, <2,2,2,2>
+ 1880326246U, // <u,2,3,3>: Cost 2 vzipr LHS, LHS
+ 408137014U, // <u,2,3,4>: Cost 1 vext1 LHS, RHS
+ 1529654992U, // <u,2,3,5>: Cost 2 vext1 LHS, <5,1,7,3>
+ 1529655802U, // <u,2,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1529656314U, // <u,2,3,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408139566U, // <u,2,3,u>: Cost 1 vext1 LHS, LHS
+ 1567853468U, // <u,2,4,0>: Cost 2 vext2 <4,0,6,2>, <4,0,6,2>
+ 2561598362U, // <u,2,4,1>: Cost 3 vext1 <1,u,2,4>, <1,2,3,4>
+ 2555627214U, // <u,2,4,2>: Cost 3 vext1 <0,u,2,4>, <2,3,4,5>
+ 2685232918U, // <u,2,4,3>: Cost 3 vext3 LHS, <2,4,3,5>
+ 2555628854U, // <u,2,4,4>: Cost 3 vext1 <0,u,2,4>, RHS
+ 1545440566U, // <u,2,4,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1571982740U, // <u,2,4,6>: Cost 2 vext2 <4,6,u,2>, <4,6,u,2>
+ 2592125957U, // <u,2,4,7>: Cost 3 vext1 <7,0,2,4>, <7,0,2,4>
+ 1545440809U, // <u,2,4,u>: Cost 2 vext2 <0,2,u,2>, RHS
+ 2555633766U, // <u,2,5,0>: Cost 3 vext1 <0,u,2,5>, LHS
+ 2561606550U, // <u,2,5,1>: Cost 3 vext1 <1,u,2,5>, <1,2,3,0>
+ 2689877856U, // <u,2,5,2>: Cost 3 vext3 LHS, <2,5,2,7>
+ 2685233000U, // <u,2,5,3>: Cost 3 vext3 LHS, <2,5,3,6>
+ 1158441059U, // <u,2,5,4>: Cost 2 vrev <2,u,4,5>
+ 2645725188U, // <u,2,5,5>: Cost 3 vext2 <4,6,u,2>, <5,5,5,5>
+ 2689877892U, // <u,2,5,6>: Cost 3 vext3 LHS, <2,5,6,7>
+ 2823900470U, // <u,2,5,7>: Cost 3 vuzpr <0,u,0,2>, RHS
+ 1158736007U, // <u,2,5,u>: Cost 2 vrev <2,u,u,5>
+ 1481900134U, // <u,2,6,0>: Cost 2 vext1 <0,u,2,6>, LHS
+ 2555642614U, // <u,2,6,1>: Cost 3 vext1 <0,u,2,6>, <1,0,3,2>
+ 2555643496U, // <u,2,6,2>: Cost 3 vext1 <0,u,2,6>, <2,2,2,2>
+ 1611491258U, // <u,2,6,3>: Cost 2 vext3 LHS, <2,6,3,7>
+ 1481903414U, // <u,2,6,4>: Cost 2 vext1 <0,u,2,6>, RHS
+ 2689877964U, // <u,2,6,5>: Cost 3 vext3 LHS, <2,6,5,7>
+ 2689877973U, // <u,2,6,6>: Cost 3 vext3 LHS, <2,6,6,7>
+ 2645726030U, // <u,2,6,7>: Cost 3 vext2 <4,6,u,2>, <6,7,0,1>
+ 1611933671U, // <u,2,6,u>: Cost 2 vext3 LHS, <2,6,u,7>
+ 1585919033U, // <u,2,7,0>: Cost 2 vext2 <7,0,u,2>, <7,0,u,2>
+ 2573566710U, // <u,2,7,1>: Cost 3 vext1 <3,u,2,7>, <1,0,3,2>
+ 2567596115U, // <u,2,7,2>: Cost 3 vext1 <2,u,2,7>, <2,u,2,7>
+ 1906901094U, // <u,2,7,3>: Cost 2 vzipr RHS, LHS
+ 2555653430U, // <u,2,7,4>: Cost 3 vext1 <0,u,2,7>, RHS
+ 2800080230U, // <u,2,7,5>: Cost 3 vuzpl LHS, <7,4,5,6>
+ 2980643164U, // <u,2,7,6>: Cost 3 vzipr RHS, <0,4,2,6>
+ 2645726828U, // <u,2,7,7>: Cost 3 vext2 <4,6,u,2>, <7,7,7,7>
+ 1906901099U, // <u,2,7,u>: Cost 2 vzipr RHS, LHS
+ 408175266U, // <u,2,u,0>: Cost 1 vext1 LHS, LHS
+ 1545443118U, // <u,2,u,1>: Cost 2 vext2 <0,2,u,2>, LHS
+ 269271142U, // <u,2,u,2>: Cost 1 vdup2 LHS
+ 1611491416U, // <u,2,u,3>: Cost 2 vext3 LHS, <2,u,3,3>
+ 408177974U, // <u,2,u,4>: Cost 1 vext1 LHS, RHS
+ 1545443482U, // <u,2,u,5>: Cost 2 vext2 <0,2,u,2>, RHS
+ 1726339226U, // <u,2,u,6>: Cost 2 vuzpl LHS, RHS
+ 1529697274U, // <u,2,u,7>: Cost 2 vext1 LHS, <7,0,1,2>
+ 408180526U, // <u,2,u,u>: Cost 1 vext1 LHS, LHS
+ 1544781824U, // <u,3,0,0>: Cost 2 vext2 LHS, <0,0,0,0>
+ 471040156U, // <u,3,0,1>: Cost 1 vext2 LHS, LHS
+ 1544781988U, // <u,3,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 2618523900U, // <u,3,0,3>: Cost 3 vext2 LHS, <0,3,1,0>
+ 1544782162U, // <u,3,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 2238188352U, // <u,3,0,5>: Cost 3 vrev <3,u,5,0>
+ 2623169023U, // <u,3,0,6>: Cost 3 vext2 LHS, <0,6,2,7>
+ 2238335826U, // <u,3,0,7>: Cost 3 vrev <3,u,7,0>
+ 471040669U, // <u,3,0,u>: Cost 1 vext2 LHS, LHS
+ 1544782582U, // <u,3,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 1544782644U, // <u,3,1,1>: Cost 2 vext2 LHS, <1,1,1,1>
+ 1544782742U, // <u,3,1,2>: Cost 2 vext2 LHS, <1,2,3,0>
+ 1544782808U, // <u,3,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 2618524733U, // <u,3,1,4>: Cost 3 vext2 LHS, <1,4,3,5>
+ 1544782992U, // <u,3,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 2618524897U, // <u,3,1,6>: Cost 3 vext2 LHS, <1,6,3,7>
+ 2703517987U, // <u,3,1,7>: Cost 3 vext3 <3,1,7,u>, <3,1,7,u>
+ 1544783213U, // <u,3,1,u>: Cost 2 vext2 LHS, <1,u,1,3>
+ 1529716838U, // <u,3,2,0>: Cost 2 vext1 <u,u,3,2>, LHS
+ 1164167966U, // <u,3,2,1>: Cost 2 vrev <3,u,1,2>
+ 1544783464U, // <u,3,2,2>: Cost 2 vext2 LHS, <2,2,2,2>
+ 1544783526U, // <u,3,2,3>: Cost 2 vext2 LHS, <2,3,0,1>
+ 1529720118U, // <u,3,2,4>: Cost 2 vext1 <u,u,3,2>, RHS
+ 2618525544U, // <u,3,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544783802U, // <u,3,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 2704181620U, // <u,3,2,7>: Cost 3 vext3 <3,2,7,u>, <3,2,7,u>
+ 1544783931U, // <u,3,2,u>: Cost 2 vext2 LHS, <2,u,0,1>
+ 1544784022U, // <u,3,3,0>: Cost 2 vext2 LHS, <3,0,1,2>
+ 1487922559U, // <u,3,3,1>: Cost 2 vext1 <1,u,3,3>, <1,u,3,3>
+ 1493895256U, // <u,3,3,2>: Cost 2 vext1 <2,u,3,3>, <2,u,3,3>
+ 336380006U, // <u,3,3,3>: Cost 1 vdup3 LHS
+ 1544784386U, // <u,3,3,4>: Cost 2 vext2 LHS, <3,4,5,6>
+ 2824054478U, // <u,3,3,5>: Cost 3 vuzpr LHS, <2,3,4,5>
+ 2238286668U, // <u,3,3,6>: Cost 3 vrev <3,u,6,3>
+ 2954069136U, // <u,3,3,7>: Cost 3 vzipr LHS, <1,5,3,7>
+ 336380006U, // <u,3,3,u>: Cost 1 vdup3 LHS
+ 1487929446U, // <u,3,4,0>: Cost 2 vext1 <1,u,3,4>, LHS
+ 1487930752U, // <u,3,4,1>: Cost 2 vext1 <1,u,3,4>, <1,u,3,4>
+ 2623171644U, // <u,3,4,2>: Cost 3 vext2 LHS, <4,2,6,0>
+ 2561673366U, // <u,3,4,3>: Cost 3 vext1 <1,u,3,4>, <3,0,1,2>
+ 1487932726U, // <u,3,4,4>: Cost 2 vext1 <1,u,3,4>, RHS
+ 471043382U, // <u,3,4,5>: Cost 1 vext2 LHS, RHS
+ 1592561012U, // <u,3,4,6>: Cost 2 vext2 LHS, <4,6,4,6>
+ 2238368598U, // <u,3,4,7>: Cost 3 vrev <3,u,7,4>
+ 471043625U, // <u,3,4,u>: Cost 1 vext2 LHS, RHS
+ 2555707494U, // <u,3,5,0>: Cost 3 vext1 <0,u,3,5>, LHS
+ 1574645465U, // <u,3,5,1>: Cost 2 vext2 <5,1,u,3>, <5,1,u,3>
+ 2567653106U, // <u,3,5,2>: Cost 3 vext1 <2,u,3,5>, <2,3,u,5>
+ 2555709954U, // <u,3,5,3>: Cost 3 vext1 <0,u,3,5>, <3,4,5,6>
+ 1592561606U, // <u,3,5,4>: Cost 2 vext2 LHS, <5,4,7,6>
+ 1592561668U, // <u,3,5,5>: Cost 2 vext2 LHS, <5,5,5,5>
+ 1592561762U, // <u,3,5,6>: Cost 2 vext2 LHS, <5,6,7,0>
+ 1750314294U, // <u,3,5,7>: Cost 2 vuzpr LHS, RHS
+ 1750314295U, // <u,3,5,u>: Cost 2 vuzpr LHS, RHS
+ 2623172897U, // <u,3,6,0>: Cost 3 vext2 LHS, <6,0,1,2>
+ 2561688962U, // <u,3,6,1>: Cost 3 vext1 <1,u,3,6>, <1,u,3,6>
+ 1581281795U, // <u,3,6,2>: Cost 2 vext2 <6,2,u,3>, <6,2,u,3>
+ 2706541204U, // <u,3,6,3>: Cost 3 vext3 <3,6,3,u>, <3,6,3,u>
+ 2623173261U, // <u,3,6,4>: Cost 3 vext2 LHS, <6,4,5,6>
+ 1164495686U, // <u,3,6,5>: Cost 2 vrev <3,u,5,6>
+ 1592562488U, // <u,3,6,6>: Cost 2 vext2 LHS, <6,6,6,6>
+ 1592562510U, // <u,3,6,7>: Cost 2 vext2 LHS, <6,7,0,1>
+ 1164716897U, // <u,3,6,u>: Cost 2 vrev <3,u,u,6>
+ 1487954022U, // <u,3,7,0>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1487955331U, // <u,3,7,1>: Cost 2 vext1 <1,u,3,7>, <1,u,3,7>
+ 1493928028U, // <u,3,7,2>: Cost 2 vext1 <2,u,3,7>, <2,u,3,7>
+ 2561697942U, // <u,3,7,3>: Cost 3 vext1 <1,u,3,7>, <3,0,1,2>
+ 1487957302U, // <u,3,7,4>: Cost 2 vext1 <1,u,3,7>, RHS
+ 2707352311U, // <u,3,7,5>: Cost 3 vext3 <3,7,5,u>, <3,7,5,u>
+ 2655024623U, // <u,3,7,6>: Cost 3 vext2 <6,2,u,3>, <7,6,2,u>
+ 1592563308U, // <u,3,7,7>: Cost 2 vext2 LHS, <7,7,7,7>
+ 1487959854U, // <u,3,7,u>: Cost 2 vext1 <1,u,3,7>, LHS
+ 1544787667U, // <u,3,u,0>: Cost 2 vext2 LHS, <u,0,1,2>
+ 471045934U, // <u,3,u,1>: Cost 1 vext2 LHS, LHS
+ 1549432709U, // <u,3,u,2>: Cost 2 vext2 LHS, <u,2,3,0>
+ 336380006U, // <u,3,u,3>: Cost 1 vdup3 LHS
+ 1544788031U, // <u,3,u,4>: Cost 2 vext2 LHS, <u,4,5,6>
+ 471046298U, // <u,3,u,5>: Cost 1 vext2 LHS, RHS
+ 1549433040U, // <u,3,u,6>: Cost 2 vext2 LHS, <u,6,3,7>
+ 1750314537U, // <u,3,u,7>: Cost 2 vuzpr LHS, RHS
+ 471046501U, // <u,3,u,u>: Cost 1 vext2 LHS, LHS
+ 2625167360U, // <u,4,0,0>: Cost 3 vext2 <1,2,u,4>, <0,0,0,0>
+ 1551425638U, // <u,4,0,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2619195630U, // <u,4,0,2>: Cost 3 vext2 <0,2,u,4>, <0,2,u,4>
+ 2619343104U, // <u,4,0,3>: Cost 3 vext2 <0,3,1,4>, <0,3,1,4>
+ 2625167698U, // <u,4,0,4>: Cost 3 vext2 <1,2,u,4>, <0,4,1,5>
+ 1638329234U, // <u,4,0,5>: Cost 2 vext3 RHS, <4,0,5,1>
+ 1638329244U, // <u,4,0,6>: Cost 2 vext3 RHS, <4,0,6,2>
+ 3787803556U, // <u,4,0,7>: Cost 4 vext3 RHS, <4,0,7,1>
+ 1551426205U, // <u,4,0,u>: Cost 2 vext2 <1,2,u,4>, LHS
+ 2555748454U, // <u,4,1,0>: Cost 3 vext1 <0,u,4,1>, LHS
+ 2625168180U, // <u,4,1,1>: Cost 3 vext2 <1,2,u,4>, <1,1,1,1>
+ 1551426503U, // <u,4,1,2>: Cost 2 vext2 <1,2,u,4>, <1,2,u,4>
+ 2625168344U, // <u,4,1,3>: Cost 3 vext2 <1,2,u,4>, <1,3,1,3>
+ 2555751734U, // <u,4,1,4>: Cost 3 vext1 <0,u,4,1>, RHS
+ 1860554038U, // <u,4,1,5>: Cost 2 vzipl LHS, RHS
+ 2689879022U, // <u,4,1,6>: Cost 3 vext3 LHS, <4,1,6,3>
+ 2592248852U, // <u,4,1,7>: Cost 3 vext1 <7,0,4,1>, <7,0,4,1>
+ 1555408301U, // <u,4,1,u>: Cost 2 vext2 <1,u,u,4>, <1,u,u,4>
+ 2555756646U, // <u,4,2,0>: Cost 3 vext1 <0,u,4,2>, LHS
+ 2625168943U, // <u,4,2,1>: Cost 3 vext2 <1,2,u,4>, <2,1,4,u>
+ 2625169000U, // <u,4,2,2>: Cost 3 vext2 <1,2,u,4>, <2,2,2,2>
+ 2619197134U, // <u,4,2,3>: Cost 3 vext2 <0,2,u,4>, <2,3,4,5>
+ 2555759926U, // <u,4,2,4>: Cost 3 vext1 <0,u,4,2>, RHS
+ 2712071222U, // <u,4,2,5>: Cost 3 vext3 RHS, <4,2,5,3>
+ 1994771766U, // <u,4,2,6>: Cost 2 vtrnl LHS, RHS
+ 2592257045U, // <u,4,2,7>: Cost 3 vext1 <7,0,4,2>, <7,0,4,2>
+ 1994771784U, // <u,4,2,u>: Cost 2 vtrnl LHS, RHS
+ 2625169558U, // <u,4,3,0>: Cost 3 vext2 <1,2,u,4>, <3,0,1,2>
+ 2567709594U, // <u,4,3,1>: Cost 3 vext1 <2,u,4,3>, <1,2,3,4>
+ 2567710817U, // <u,4,3,2>: Cost 3 vext1 <2,u,4,3>, <2,u,4,3>
+ 2625169820U, // <u,4,3,3>: Cost 3 vext2 <1,2,u,4>, <3,3,3,3>
+ 2625169922U, // <u,4,3,4>: Cost 3 vext2 <1,2,u,4>, <3,4,5,6>
+ 2954069710U, // <u,4,3,5>: Cost 3 vzipr LHS, <2,3,4,5>
+ 2954068172U, // <u,4,3,6>: Cost 3 vzipr LHS, <0,2,4,6>
+ 3903849472U, // <u,4,3,7>: Cost 4 vuzpr <1,u,3,4>, <1,3,5,7>
+ 2954068174U, // <u,4,3,u>: Cost 3 vzipr LHS, <0,2,4,u>
+ 1505919078U, // <u,4,4,0>: Cost 2 vext1 <4,u,4,4>, LHS
+ 2567717831U, // <u,4,4,1>: Cost 3 vext1 <2,u,4,4>, <1,2,u,4>
+ 2567719010U, // <u,4,4,2>: Cost 3 vext1 <2,u,4,4>, <2,u,4,4>
+ 2570373542U, // <u,4,4,3>: Cost 3 vext1 <3,3,4,4>, <3,3,4,4>
+ 161926454U, // <u,4,4,4>: Cost 1 vdup0 RHS
+ 1551428918U, // <u,4,4,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 1638329572U, // <u,4,4,6>: Cost 2 vext3 RHS, <4,4,6,6>
+ 2594927963U, // <u,4,4,7>: Cost 3 vext1 <7,4,4,4>, <7,4,4,4>
+ 161926454U, // <u,4,4,u>: Cost 1 vdup0 RHS
+ 1493983334U, // <u,4,5,0>: Cost 2 vext1 <2,u,4,5>, LHS
+ 2689879301U, // <u,4,5,1>: Cost 3 vext3 LHS, <4,5,1,3>
+ 1493985379U, // <u,4,5,2>: Cost 2 vext1 <2,u,4,5>, <2,u,4,5>
+ 2567727254U, // <u,4,5,3>: Cost 3 vext1 <2,u,4,5>, <3,0,1,2>
+ 1493986614U, // <u,4,5,4>: Cost 2 vext1 <2,u,4,5>, RHS
+ 1863535926U, // <u,4,5,5>: Cost 2 vzipl RHS, RHS
+ 537750838U, // <u,4,5,6>: Cost 1 vext3 LHS, RHS
+ 2830110006U, // <u,4,5,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537750856U, // <u,4,5,u>: Cost 1 vext3 LHS, RHS
+ 1482047590U, // <u,4,6,0>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2555790070U, // <u,4,6,1>: Cost 3 vext1 <0,u,4,6>, <1,0,3,2>
+ 2555790952U, // <u,4,6,2>: Cost 3 vext1 <0,u,4,6>, <2,2,2,2>
+ 2555791510U, // <u,4,6,3>: Cost 3 vext1 <0,u,4,6>, <3,0,1,2>
+ 1482050870U, // <u,4,6,4>: Cost 2 vext1 <0,u,4,6>, RHS
+ 2689879422U, // <u,4,6,5>: Cost 3 vext3 LHS, <4,6,5,7>
+ 1997753654U, // <u,4,6,6>: Cost 2 vtrnl RHS, RHS
+ 2712071562U, // <u,4,6,7>: Cost 3 vext3 RHS, <4,6,7,1>
+ 1482053422U, // <u,4,6,u>: Cost 2 vext1 <0,u,4,6>, LHS
+ 2567741542U, // <u,4,7,0>: Cost 3 vext1 <2,u,4,7>, LHS
+ 2567742362U, // <u,4,7,1>: Cost 3 vext1 <2,u,4,7>, <1,2,3,4>
+ 2567743589U, // <u,4,7,2>: Cost 3 vext1 <2,u,4,7>, <2,u,4,7>
+ 2573716286U, // <u,4,7,3>: Cost 3 vext1 <3,u,4,7>, <3,u,4,7>
+ 2567744822U, // <u,4,7,4>: Cost 3 vext1 <2,u,4,7>, RHS
+ 2712071624U, // <u,4,7,5>: Cost 3 vext3 RHS, <4,7,5,0>
+ 96808489U, // <u,4,7,6>: Cost 1 vrev RHS
+ 2651715180U, // <u,4,7,7>: Cost 3 vext2 <5,6,u,4>, <7,7,7,7>
+ 96955963U, // <u,4,7,u>: Cost 1 vrev RHS
+ 1482063974U, // <u,4,u,0>: Cost 2 vext1 <0,u,4,u>, LHS
+ 1551431470U, // <u,4,u,1>: Cost 2 vext2 <1,2,u,4>, LHS
+ 1494009958U, // <u,4,u,2>: Cost 2 vext1 <2,u,4,u>, <2,u,4,u>
+ 2555807894U, // <u,4,u,3>: Cost 3 vext1 <0,u,4,u>, <3,0,1,2>
+ 161926454U, // <u,4,u,4>: Cost 1 vdup0 RHS
+ 1551431834U, // <u,4,u,5>: Cost 2 vext2 <1,2,u,4>, RHS
+ 537751081U, // <u,4,u,6>: Cost 1 vext3 LHS, RHS
+ 2830110249U, // <u,4,u,7>: Cost 3 vuzpr <1,u,3,4>, RHS
+ 537751099U, // <u,4,u,u>: Cost 1 vext3 LHS, RHS
+ 2631811072U, // <u,5,0,0>: Cost 3 vext2 <2,3,u,5>, <0,0,0,0>
+ 1558069350U, // <u,5,0,1>: Cost 2 vext2 <2,3,u,5>, LHS
+ 2619203823U, // <u,5,0,2>: Cost 3 vext2 <0,2,u,5>, <0,2,u,5>
+ 2619867456U, // <u,5,0,3>: Cost 3 vext2 <0,3,u,5>, <0,3,u,5>
+ 1546273106U, // <u,5,0,4>: Cost 2 vext2 <0,4,1,5>, <0,4,1,5>
+ 2733010539U, // <u,5,0,5>: Cost 3 vext3 LHS, <5,0,5,1>
+ 2597622682U, // <u,5,0,6>: Cost 3 vext1 <7,u,5,0>, <6,7,u,5>
+ 1176539396U, // <u,5,0,7>: Cost 2 vrev <5,u,7,0>
+ 1558069917U, // <u,5,0,u>: Cost 2 vext2 <2,3,u,5>, LHS
+ 1505968230U, // <u,5,1,0>: Cost 2 vext1 <4,u,5,1>, LHS
+ 2624512887U, // <u,5,1,1>: Cost 3 vext2 <1,1,u,5>, <1,1,u,5>
+ 2631811990U, // <u,5,1,2>: Cost 3 vext2 <2,3,u,5>, <1,2,3,0>
+ 2618541056U, // <u,5,1,3>: Cost 3 vext2 <0,1,u,5>, <1,3,5,7>
+ 1505971510U, // <u,5,1,4>: Cost 2 vext1 <4,u,5,1>, RHS
+ 2627167419U, // <u,5,1,5>: Cost 3 vext2 <1,5,u,5>, <1,5,u,5>
+ 2579714554U, // <u,5,1,6>: Cost 3 vext1 <4,u,5,1>, <6,2,7,3>
+ 1638330064U, // <u,5,1,7>: Cost 2 vext3 RHS, <5,1,7,3>
+ 1638477529U, // <u,5,1,u>: Cost 2 vext3 RHS, <5,1,u,3>
+ 2561802342U, // <u,5,2,0>: Cost 3 vext1 <1,u,5,2>, LHS
+ 2561803264U, // <u,5,2,1>: Cost 3 vext1 <1,u,5,2>, <1,3,5,7>
+ 2631149217U, // <u,5,2,2>: Cost 3 vext2 <2,2,u,5>, <2,2,u,5>
+ 1558071026U, // <u,5,2,3>: Cost 2 vext2 <2,3,u,5>, <2,3,u,5>
+ 2561805622U, // <u,5,2,4>: Cost 3 vext1 <1,u,5,2>, RHS
+ 2714062607U, // <u,5,2,5>: Cost 3 vext3 RHS, <5,2,5,3>
+ 2631813050U, // <u,5,2,6>: Cost 3 vext2 <2,3,u,5>, <2,6,3,7>
+ 3092335926U, // <u,5,2,7>: Cost 3 vtrnr <0,u,0,2>, RHS
+ 1561389191U, // <u,5,2,u>: Cost 2 vext2 <2,u,u,5>, <2,u,u,5>
+ 2561810534U, // <u,5,3,0>: Cost 3 vext1 <1,u,5,3>, LHS
+ 2561811857U, // <u,5,3,1>: Cost 3 vext1 <1,u,5,3>, <1,u,5,3>
+ 2631813474U, // <u,5,3,2>: Cost 3 vext2 <2,3,u,5>, <3,2,5,u>
+ 2631813532U, // <u,5,3,3>: Cost 3 vext2 <2,3,u,5>, <3,3,3,3>
+ 2619869698U, // <u,5,3,4>: Cost 3 vext2 <0,3,u,5>, <3,4,5,6>
+ 3001847002U, // <u,5,3,5>: Cost 3 vzipr LHS, <4,4,5,5>
+ 2954070530U, // <u,5,3,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 2018749750U, // <u,5,3,7>: Cost 2 vtrnr LHS, RHS
+ 2018749751U, // <u,5,3,u>: Cost 2 vtrnr LHS, RHS
+ 2573762662U, // <u,5,4,0>: Cost 3 vext1 <3,u,5,4>, LHS
+ 2620017634U, // <u,5,4,1>: Cost 3 vext2 <0,4,1,5>, <4,1,5,0>
+ 2573764338U, // <u,5,4,2>: Cost 3 vext1 <3,u,5,4>, <2,3,u,5>
+ 2573765444U, // <u,5,4,3>: Cost 3 vext1 <3,u,5,4>, <3,u,5,4>
+ 1570680053U, // <u,5,4,4>: Cost 2 vext2 <4,4,u,5>, <4,4,u,5>
+ 1558072630U, // <u,5,4,5>: Cost 2 vext2 <2,3,u,5>, RHS
+ 2645749143U, // <u,5,4,6>: Cost 3 vext2 <4,6,u,5>, <4,6,u,5>
+ 1638330310U, // <u,5,4,7>: Cost 2 vext3 RHS, <5,4,7,6>
+ 1558072873U, // <u,5,4,u>: Cost 2 vext2 <2,3,u,5>, RHS
+ 1506000998U, // <u,5,5,0>: Cost 2 vext1 <4,u,5,5>, LHS
+ 2561827984U, // <u,5,5,1>: Cost 3 vext1 <1,u,5,5>, <1,5,3,7>
+ 2579744360U, // <u,5,5,2>: Cost 3 vext1 <4,u,5,5>, <2,2,2,2>
+ 2579744918U, // <u,5,5,3>: Cost 3 vext1 <4,u,5,5>, <3,0,1,2>
+ 1506004278U, // <u,5,5,4>: Cost 2 vext1 <4,u,5,5>, RHS
+ 229035318U, // <u,5,5,5>: Cost 1 vdup1 RHS
+ 2712072206U, // <u,5,5,6>: Cost 3 vext3 RHS, <5,5,6,6>
+ 1638330392U, // <u,5,5,7>: Cost 2 vext3 RHS, <5,5,7,7>
+ 229035318U, // <u,5,5,u>: Cost 1 vdup1 RHS
+ 1500037222U, // <u,5,6,0>: Cost 2 vext1 <3,u,5,6>, LHS
+ 2561836436U, // <u,5,6,1>: Cost 3 vext1 <1,u,5,6>, <1,u,5,6>
+ 2567809133U, // <u,5,6,2>: Cost 3 vext1 <2,u,5,6>, <2,u,5,6>
+ 1500040006U, // <u,5,6,3>: Cost 2 vext1 <3,u,5,6>, <3,u,5,6>
+ 1500040502U, // <u,5,6,4>: Cost 2 vext1 <3,u,5,6>, RHS
+ 2714062935U, // <u,5,6,5>: Cost 3 vext3 RHS, <5,6,5,7>
+ 2712072288U, // <u,5,6,6>: Cost 3 vext3 RHS, <5,6,6,7>
+ 27705344U, // <u,5,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,6,u>: Cost 0 copy RHS
+ 1488101478U, // <u,5,7,0>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488102805U, // <u,5,7,1>: Cost 2 vext1 <1,u,5,7>, <1,u,5,7>
+ 2561844840U, // <u,5,7,2>: Cost 3 vext1 <1,u,5,7>, <2,2,2,2>
+ 2561845398U, // <u,5,7,3>: Cost 3 vext1 <1,u,5,7>, <3,0,1,2>
+ 1488104758U, // <u,5,7,4>: Cost 2 vext1 <1,u,5,7>, RHS
+ 1638330536U, // <u,5,7,5>: Cost 2 vext3 RHS, <5,7,5,7>
+ 2712072362U, // <u,5,7,6>: Cost 3 vext3 RHS, <5,7,6,0>
+ 2042965302U, // <u,5,7,7>: Cost 2 vtrnr RHS, RHS
+ 1488107310U, // <u,5,7,u>: Cost 2 vext1 <1,u,5,7>, LHS
+ 1488109670U, // <u,5,u,0>: Cost 2 vext1 <1,u,5,u>, LHS
+ 1488110998U, // <u,5,u,1>: Cost 2 vext1 <1,u,5,u>, <1,u,5,u>
+ 2561853032U, // <u,5,u,2>: Cost 3 vext1 <1,u,5,u>, <2,2,2,2>
+ 1500056392U, // <u,5,u,3>: Cost 2 vext1 <3,u,5,u>, <3,u,5,u>
+ 1488112950U, // <u,5,u,4>: Cost 2 vext1 <1,u,5,u>, RHS
+ 229035318U, // <u,5,u,5>: Cost 1 vdup1 RHS
+ 2954111490U, // <u,5,u,6>: Cost 3 vzipr LHS, <3,4,5,6>
+ 27705344U, // <u,5,u,7>: Cost 0 copy RHS
+ 27705344U, // <u,5,u,u>: Cost 0 copy RHS
+ 2619211776U, // <u,6,0,0>: Cost 3 vext2 <0,2,u,6>, <0,0,0,0>
+ 1545470054U, // <u,6,0,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1545470192U, // <u,6,0,2>: Cost 2 vext2 <0,2,u,6>, <0,2,u,6>
+ 2255958969U, // <u,6,0,3>: Cost 3 vrev <6,u,3,0>
+ 1546797458U, // <u,6,0,4>: Cost 2 vext2 <0,4,u,6>, <0,4,u,6>
+ 2720624971U, // <u,6,0,5>: Cost 3 vext3 <6,0,5,u>, <6,0,5,u>
+ 2256180180U, // <u,6,0,6>: Cost 3 vrev <6,u,6,0>
+ 2960682294U, // <u,6,0,7>: Cost 3 vzipr <1,2,u,0>, RHS
+ 1545470621U, // <u,6,0,u>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1182004127U, // <u,6,1,0>: Cost 2 vrev <6,u,0,1>
+ 2619212596U, // <u,6,1,1>: Cost 3 vext2 <0,2,u,6>, <1,1,1,1>
+ 2619212694U, // <u,6,1,2>: Cost 3 vext2 <0,2,u,6>, <1,2,3,0>
+ 2619212760U, // <u,6,1,3>: Cost 3 vext2 <0,2,u,6>, <1,3,1,3>
+ 2626511979U, // <u,6,1,4>: Cost 3 vext2 <1,4,u,6>, <1,4,u,6>
+ 2619212944U, // <u,6,1,5>: Cost 3 vext2 <0,2,u,6>, <1,5,3,7>
+ 2714063264U, // <u,6,1,6>: Cost 3 vext3 RHS, <6,1,6,3>
+ 2967326006U, // <u,6,1,7>: Cost 3 vzipr <2,3,u,1>, RHS
+ 1182594023U, // <u,6,1,u>: Cost 2 vrev <6,u,u,1>
+ 1506050150U, // <u,6,2,0>: Cost 2 vext1 <4,u,6,2>, LHS
+ 2579792630U, // <u,6,2,1>: Cost 3 vext1 <4,u,6,2>, <1,0,3,2>
+ 2619213416U, // <u,6,2,2>: Cost 3 vext2 <0,2,u,6>, <2,2,2,2>
+ 2619213478U, // <u,6,2,3>: Cost 3 vext2 <0,2,u,6>, <2,3,0,1>
+ 1506053430U, // <u,6,2,4>: Cost 2 vext1 <4,u,6,2>, RHS
+ 2633148309U, // <u,6,2,5>: Cost 3 vext2 <2,5,u,6>, <2,5,u,6>
+ 2619213754U, // <u,6,2,6>: Cost 3 vext2 <0,2,u,6>, <2,6,3,7>
+ 1638330874U, // <u,6,2,7>: Cost 2 vext3 RHS, <6,2,7,3>
+ 1638478339U, // <u,6,2,u>: Cost 2 vext3 RHS, <6,2,u,3>
+ 2619213974U, // <u,6,3,0>: Cost 3 vext2 <0,2,u,6>, <3,0,1,2>
+ 2255836074U, // <u,6,3,1>: Cost 3 vrev <6,u,1,3>
+ 2255909811U, // <u,6,3,2>: Cost 3 vrev <6,u,2,3>
+ 2619214236U, // <u,6,3,3>: Cost 3 vext2 <0,2,u,6>, <3,3,3,3>
+ 1564715549U, // <u,6,3,4>: Cost 2 vext2 <3,4,u,6>, <3,4,u,6>
+ 2639121006U, // <u,6,3,5>: Cost 3 vext2 <3,5,u,6>, <3,5,u,6>
+ 3001847012U, // <u,6,3,6>: Cost 3 vzipr LHS, <4,4,6,6>
+ 1880329526U, // <u,6,3,7>: Cost 2 vzipr LHS, RHS
+ 1880329527U, // <u,6,3,u>: Cost 2 vzipr LHS, RHS
+ 2567864422U, // <u,6,4,0>: Cost 3 vext1 <2,u,6,4>, LHS
+ 2733011558U, // <u,6,4,1>: Cost 3 vext3 LHS, <6,4,1,3>
+ 2567866484U, // <u,6,4,2>: Cost 3 vext1 <2,u,6,4>, <2,u,6,4>
+ 2638458005U, // <u,6,4,3>: Cost 3 vext2 <3,4,u,6>, <4,3,6,u>
+ 1570540772U, // <u,6,4,4>: Cost 2 vext2 <4,4,6,6>, <4,4,6,6>
+ 1545473334U, // <u,6,4,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 1572015512U, // <u,6,4,6>: Cost 2 vext2 <4,6,u,6>, <4,6,u,6>
+ 2960715062U, // <u,6,4,7>: Cost 3 vzipr <1,2,u,4>, RHS
+ 1545473577U, // <u,6,4,u>: Cost 2 vext2 <0,2,u,6>, RHS
+ 2567872614U, // <u,6,5,0>: Cost 3 vext1 <2,u,6,5>, LHS
+ 2645757648U, // <u,6,5,1>: Cost 3 vext2 <4,6,u,6>, <5,1,7,3>
+ 2567874490U, // <u,6,5,2>: Cost 3 vext1 <2,u,6,5>, <2,6,3,7>
+ 2576501250U, // <u,6,5,3>: Cost 3 vext1 <4,3,6,5>, <3,4,5,6>
+ 1576660943U, // <u,6,5,4>: Cost 2 vext2 <5,4,u,6>, <5,4,u,6>
+ 2645757956U, // <u,6,5,5>: Cost 3 vext2 <4,6,u,6>, <5,5,5,5>
+ 2645758050U, // <u,6,5,6>: Cost 3 vext2 <4,6,u,6>, <5,6,7,0>
+ 2824080694U, // <u,6,5,7>: Cost 3 vuzpr <0,u,2,6>, RHS
+ 1182626795U, // <u,6,5,u>: Cost 2 vrev <6,u,u,5>
+ 1506082918U, // <u,6,6,0>: Cost 2 vext1 <4,u,6,6>, LHS
+ 2579825398U, // <u,6,6,1>: Cost 3 vext1 <4,u,6,6>, <1,0,3,2>
+ 2645758458U, // <u,6,6,2>: Cost 3 vext2 <4,6,u,6>, <6,2,7,3>
+ 2579826838U, // <u,6,6,3>: Cost 3 vext1 <4,u,6,6>, <3,0,1,2>
+ 1506086198U, // <u,6,6,4>: Cost 2 vext1 <4,u,6,6>, RHS
+ 2579828432U, // <u,6,6,5>: Cost 3 vext1 <4,u,6,6>, <5,1,7,3>
+ 296144182U, // <u,6,6,6>: Cost 1 vdup2 RHS
+ 1638331202U, // <u,6,6,7>: Cost 2 vext3 RHS, <6,6,7,7>
+ 296144182U, // <u,6,6,u>: Cost 1 vdup2 RHS
+ 432349286U, // <u,6,7,0>: Cost 1 vext1 RHS, LHS
+ 1506091766U, // <u,6,7,1>: Cost 2 vext1 RHS, <1,0,3,2>
+ 1506092648U, // <u,6,7,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506093206U, // <u,6,7,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432352809U, // <u,6,7,4>: Cost 1 vext1 RHS, RHS
+ 1506094800U, // <u,6,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 1506095610U, // <u,6,7,6>: Cost 2 vext1 RHS, <6,2,7,3>
+ 1906904374U, // <u,6,7,7>: Cost 2 vzipr RHS, RHS
+ 432355118U, // <u,6,7,u>: Cost 1 vext1 RHS, LHS
+ 432357478U, // <u,6,u,0>: Cost 1 vext1 RHS, LHS
+ 1545475886U, // <u,6,u,1>: Cost 2 vext2 <0,2,u,6>, LHS
+ 1506100840U, // <u,6,u,2>: Cost 2 vext1 RHS, <2,2,2,2>
+ 1506101398U, // <u,6,u,3>: Cost 2 vext1 RHS, <3,0,1,2>
+ 432361002U, // <u,6,u,4>: Cost 1 vext1 RHS, RHS
+ 1545476250U, // <u,6,u,5>: Cost 2 vext2 <0,2,u,6>, RHS
+ 296144182U, // <u,6,u,6>: Cost 1 vdup2 RHS
+ 1880370486U, // <u,6,u,7>: Cost 2 vzipr LHS, RHS
+ 432363310U, // <u,6,u,u>: Cost 1 vext1 RHS, LHS
+ 1571356672U, // <u,7,0,0>: Cost 2 vext2 RHS, <0,0,0,0>
+ 497614950U, // <u,7,0,1>: Cost 1 vext2 RHS, LHS
+ 1571356836U, // <u,7,0,2>: Cost 2 vext2 RHS, <0,2,0,2>
+ 2573880146U, // <u,7,0,3>: Cost 3 vext1 <3,u,7,0>, <3,u,7,0>
+ 1571357010U, // <u,7,0,4>: Cost 2 vext2 RHS, <0,4,1,5>
+ 1512083716U, // <u,7,0,5>: Cost 2 vext1 <5,u,7,0>, <5,u,7,0>
+ 2621874741U, // <u,7,0,6>: Cost 3 vext2 <0,6,u,7>, <0,6,u,7>
+ 2585826298U, // <u,7,0,7>: Cost 3 vext1 <5,u,7,0>, <7,0,1,2>
+ 497615517U, // <u,7,0,u>: Cost 1 vext2 RHS, LHS
+ 1571357430U, // <u,7,1,0>: Cost 2 vext2 RHS, <1,0,3,2>
+ 1571357492U, // <u,7,1,1>: Cost 2 vext2 RHS, <1,1,1,1>
+ 1571357590U, // <u,7,1,2>: Cost 2 vext2 RHS, <1,2,3,0>
+ 1552114715U, // <u,7,1,3>: Cost 2 vext2 <1,3,u,7>, <1,3,u,7>
+ 2573888822U, // <u,7,1,4>: Cost 3 vext1 <3,u,7,1>, RHS
+ 1553441981U, // <u,7,1,5>: Cost 2 vext2 <1,5,u,7>, <1,5,u,7>
+ 2627847438U, // <u,7,1,6>: Cost 3 vext2 <1,6,u,7>, <1,6,u,7>
+ 2727408775U, // <u,7,1,7>: Cost 3 vext3 <7,1,7,u>, <7,1,7,u>
+ 1555432880U, // <u,7,1,u>: Cost 2 vext2 <1,u,u,7>, <1,u,u,7>
+ 2629838337U, // <u,7,2,0>: Cost 3 vext2 <2,0,u,7>, <2,0,u,7>
+ 1188058754U, // <u,7,2,1>: Cost 2 vrev <7,u,1,2>
+ 1571358312U, // <u,7,2,2>: Cost 2 vext2 RHS, <2,2,2,2>
+ 1571358374U, // <u,7,2,3>: Cost 2 vext2 RHS, <2,3,0,1>
+ 2632492869U, // <u,7,2,4>: Cost 3 vext2 <2,4,u,7>, <2,4,u,7>
+ 2633156502U, // <u,7,2,5>: Cost 3 vext2 <2,5,u,7>, <2,5,u,7>
+ 1560078311U, // <u,7,2,6>: Cost 2 vext2 <2,6,u,7>, <2,6,u,7>
+ 2728072408U, // <u,7,2,7>: Cost 3 vext3 <7,2,7,u>, <7,2,7,u>
+ 1561405577U, // <u,7,2,u>: Cost 2 vext2 <2,u,u,7>, <2,u,u,7>
+ 1571358870U, // <u,7,3,0>: Cost 2 vext2 RHS, <3,0,1,2>
+ 2627184913U, // <u,7,3,1>: Cost 3 vext2 <1,5,u,7>, <3,1,5,u>
+ 2633820523U, // <u,7,3,2>: Cost 3 vext2 <2,6,u,7>, <3,2,6,u>
+ 1571359132U, // <u,7,3,3>: Cost 2 vext2 RHS, <3,3,3,3>
+ 1571359234U, // <u,7,3,4>: Cost 2 vext2 RHS, <3,4,5,6>
+ 1512108295U, // <u,7,3,5>: Cost 2 vext1 <5,u,7,3>, <5,u,7,3>
+ 1518080992U, // <u,7,3,6>: Cost 2 vext1 <6,u,7,3>, <6,u,7,3>
+ 2640456465U, // <u,7,3,7>: Cost 3 vext2 <3,7,u,7>, <3,7,u,7>
+ 1571359518U, // <u,7,3,u>: Cost 2 vext2 RHS, <3,u,1,2>
+ 1571359634U, // <u,7,4,0>: Cost 2 vext2 RHS, <4,0,5,1>
+ 2573911067U, // <u,7,4,1>: Cost 3 vext1 <3,u,7,4>, <1,3,u,7>
+ 2645101622U, // <u,7,4,2>: Cost 3 vext2 RHS, <4,2,5,3>
+ 2573912918U, // <u,7,4,3>: Cost 3 vext1 <3,u,7,4>, <3,u,7,4>
+ 1571359952U, // <u,7,4,4>: Cost 2 vext2 RHS, <4,4,4,4>
+ 497618248U, // <u,7,4,5>: Cost 1 vext2 RHS, RHS
+ 1571360116U, // <u,7,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 2645102024U, // <u,7,4,7>: Cost 3 vext2 RHS, <4,7,5,0>
+ 497618473U, // <u,7,4,u>: Cost 1 vext2 RHS, RHS
+ 2645102152U, // <u,7,5,0>: Cost 3 vext2 RHS, <5,0,1,2>
+ 1571360464U, // <u,7,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 2645102334U, // <u,7,5,2>: Cost 3 vext2 RHS, <5,2,3,4>
+ 2645102447U, // <u,7,5,3>: Cost 3 vext2 RHS, <5,3,7,0>
+ 1571360710U, // <u,7,5,4>: Cost 2 vext2 RHS, <5,4,7,6>
+ 1571360772U, // <u,7,5,5>: Cost 2 vext2 RHS, <5,5,5,5>
+ 1571360866U, // <u,7,5,6>: Cost 2 vext2 RHS, <5,6,7,0>
+ 1571360936U, // <u,7,5,7>: Cost 2 vext2 RHS, <5,7,5,7>
+ 1571361017U, // <u,7,5,u>: Cost 2 vext2 RHS, <5,u,5,7>
+ 1530044518U, // <u,7,6,0>: Cost 2 vext1 <u,u,7,6>, LHS
+ 2645103016U, // <u,7,6,1>: Cost 3 vext2 RHS, <6,1,7,2>
+ 1571361274U, // <u,7,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 2645103154U, // <u,7,6,3>: Cost 3 vext2 RHS, <6,3,4,5>
+ 1530047798U, // <u,7,6,4>: Cost 2 vext1 <u,u,7,6>, RHS
+ 1188386474U, // <u,7,6,5>: Cost 2 vrev <7,u,5,6>
+ 1571361592U, // <u,7,6,6>: Cost 2 vext2 RHS, <6,6,6,6>
+ 1571361614U, // <u,7,6,7>: Cost 2 vext2 RHS, <6,7,0,1>
+ 1571361695U, // <u,7,6,u>: Cost 2 vext2 RHS, <6,u,0,1>
+ 1571361786U, // <u,7,7,0>: Cost 2 vext2 RHS, <7,0,1,2>
+ 2573935616U, // <u,7,7,1>: Cost 3 vext1 <3,u,7,7>, <1,3,5,7>
+ 2645103781U, // <u,7,7,2>: Cost 3 vext2 RHS, <7,2,2,2>
+ 2573937497U, // <u,7,7,3>: Cost 3 vext1 <3,u,7,7>, <3,u,7,7>
+ 1571362150U, // <u,7,7,4>: Cost 2 vext2 RHS, <7,4,5,6>
+ 1512141067U, // <u,7,7,5>: Cost 2 vext1 <5,u,7,7>, <5,u,7,7>
+ 1518113764U, // <u,7,7,6>: Cost 2 vext1 <6,u,7,7>, <6,u,7,7>
+ 363253046U, // <u,7,7,7>: Cost 1 vdup3 RHS
+ 363253046U, // <u,7,7,u>: Cost 1 vdup3 RHS
+ 1571362515U, // <u,7,u,0>: Cost 2 vext2 RHS, <u,0,1,2>
+ 497620782U, // <u,7,u,1>: Cost 1 vext2 RHS, LHS
+ 1571362693U, // <u,7,u,2>: Cost 2 vext2 RHS, <u,2,3,0>
+ 1571362748U, // <u,7,u,3>: Cost 2 vext2 RHS, <u,3,0,1>
+ 1571362879U, // <u,7,u,4>: Cost 2 vext2 RHS, <u,4,5,6>
+ 497621146U, // <u,7,u,5>: Cost 1 vext2 RHS, RHS
+ 1571363024U, // <u,7,u,6>: Cost 2 vext2 RHS, <u,6,3,7>
+ 363253046U, // <u,7,u,7>: Cost 1 vdup3 RHS
+ 497621349U, // <u,7,u,u>: Cost 1 vext2 RHS, LHS
+ 135053414U, // <u,u,0,0>: Cost 1 vdup0 LHS
+ 471081121U, // <u,u,0,1>: Cost 1 vext2 LHS, LHS
+ 1544822948U, // <u,u,0,2>: Cost 2 vext2 LHS, <0,2,0,2>
+ 1616140005U, // <u,u,0,3>: Cost 2 vext3 LHS, <u,0,3,2>
+ 1544823122U, // <u,u,0,4>: Cost 2 vext2 LHS, <0,4,1,5>
+ 1512157453U, // <u,u,0,5>: Cost 2 vext1 <5,u,u,0>, <5,u,u,0>
+ 1662220032U, // <u,u,0,6>: Cost 2 vext3 RHS, <u,0,6,2>
+ 1194457487U, // <u,u,0,7>: Cost 2 vrev <u,u,7,0>
+ 471081629U, // <u,u,0,u>: Cost 1 vext2 LHS, LHS
+ 1544823542U, // <u,u,1,0>: Cost 2 vext2 LHS, <1,0,3,2>
+ 202162278U, // <u,u,1,1>: Cost 1 vdup1 LHS
+ 537753390U, // <u,u,1,2>: Cost 1 vext3 LHS, LHS
+ 1544823768U, // <u,u,1,3>: Cost 2 vext2 LHS, <1,3,1,3>
+ 1494248758U, // <u,u,1,4>: Cost 2 vext1 <2,u,u,1>, RHS
+ 1544823952U, // <u,u,1,5>: Cost 2 vext2 LHS, <1,5,3,7>
+ 1518138343U, // <u,u,1,6>: Cost 2 vext1 <6,u,u,1>, <6,u,u,1>
+ 1640322907U, // <u,u,1,7>: Cost 2 vext3 RHS, <u,1,7,3>
+ 537753444U, // <u,u,1,u>: Cost 1 vext3 LHS, LHS
+ 1482309734U, // <u,u,2,0>: Cost 2 vext1 <0,u,u,2>, LHS
+ 1194031451U, // <u,u,2,1>: Cost 2 vrev <u,u,1,2>
+ 269271142U, // <u,u,2,2>: Cost 1 vdup2 LHS
+ 835584U, // <u,u,2,3>: Cost 0 copy LHS
+ 1482313014U, // <u,u,2,4>: Cost 2 vext1 <0,u,u,2>, RHS
+ 2618566504U, // <u,u,2,5>: Cost 3 vext2 LHS, <2,5,3,6>
+ 1544824762U, // <u,u,2,6>: Cost 2 vext2 LHS, <2,6,3,7>
+ 1638479788U, // <u,u,2,7>: Cost 2 vext3 RHS, <u,2,7,3>
+ 835584U, // <u,u,2,u>: Cost 0 copy LHS
+ 408576723U, // <u,u,3,0>: Cost 1 vext1 LHS, LHS
+ 1482318582U, // <u,u,3,1>: Cost 2 vext1 LHS, <1,0,3,2>
+ 120371557U, // <u,u,3,2>: Cost 1 vrev LHS
+ 336380006U, // <u,u,3,3>: Cost 1 vdup3 LHS
+ 408579382U, // <u,u,3,4>: Cost 1 vext1 LHS, RHS
+ 1616140271U, // <u,u,3,5>: Cost 2 vext3 LHS, <u,3,5,7>
+ 1530098170U, // <u,u,3,6>: Cost 2 vext1 LHS, <6,2,7,3>
+ 1880329544U, // <u,u,3,7>: Cost 2 vzipr LHS, RHS
+ 408581934U, // <u,u,3,u>: Cost 1 vext1 LHS, LHS
+ 1488298086U, // <u,u,4,0>: Cost 2 vext1 <1,u,u,4>, LHS
+ 1488299437U, // <u,u,4,1>: Cost 2 vext1 <1,u,u,4>, <1,u,u,4>
+ 1659271204U, // <u,u,4,2>: Cost 2 vext3 LHS, <u,4,2,6>
+ 1194195311U, // <u,u,4,3>: Cost 2 vrev <u,u,3,4>
+ 161926454U, // <u,u,4,4>: Cost 1 vdup0 RHS
+ 471084342U, // <u,u,4,5>: Cost 1 vext2 LHS, RHS
+ 1571368308U, // <u,u,4,6>: Cost 2 vext2 RHS, <4,6,4,6>
+ 1640323153U, // <u,u,4,7>: Cost 2 vext3 RHS, <u,4,7,6>
+ 471084585U, // <u,u,4,u>: Cost 1 vext2 LHS, RHS
+ 1494278246U, // <u,u,5,0>: Cost 2 vext1 <2,u,u,5>, LHS
+ 1571368656U, // <u,u,5,1>: Cost 2 vext2 RHS, <5,1,7,3>
+ 1494280327U, // <u,u,5,2>: Cost 2 vext1 <2,u,u,5>, <2,u,u,5>
+ 1616140415U, // <u,u,5,3>: Cost 2 vext3 LHS, <u,5,3,7>
+ 1494281526U, // <u,u,5,4>: Cost 2 vext1 <2,u,u,5>, RHS
+ 229035318U, // <u,u,5,5>: Cost 1 vdup1 RHS
+ 537753754U, // <u,u,5,6>: Cost 1 vext3 LHS, RHS
+ 1750355254U, // <u,u,5,7>: Cost 2 vuzpr LHS, RHS
+ 537753772U, // <u,u,5,u>: Cost 1 vext3 LHS, RHS
+ 1482342502U, // <u,u,6,0>: Cost 2 vext1 <0,u,u,6>, LHS
+ 2556084982U, // <u,u,6,1>: Cost 3 vext1 <0,u,u,6>, <1,0,3,2>
+ 1571369466U, // <u,u,6,2>: Cost 2 vext2 RHS, <6,2,7,3>
+ 1611938000U, // <u,u,6,3>: Cost 2 vext3 LHS, <u,6,3,7>
+ 1482345782U, // <u,u,6,4>: Cost 2 vext1 <0,u,u,6>, RHS
+ 1194359171U, // <u,u,6,5>: Cost 2 vrev <u,u,5,6>
+ 296144182U, // <u,u,6,6>: Cost 1 vdup2 RHS
+ 27705344U, // <u,u,6,7>: Cost 0 copy RHS
+ 27705344U, // <u,u,6,u>: Cost 0 copy RHS
+ 432496742U, // <u,u,7,0>: Cost 1 vext1 RHS, LHS
+ 1488324016U, // <u,u,7,1>: Cost 2 vext1 <1,u,u,7>, <1,u,u,7>
+ 1494296713U, // <u,u,7,2>: Cost 2 vext1 <2,u,u,7>, <2,u,u,7>
+ 1906901148U, // <u,u,7,3>: Cost 2 vzipr RHS, LHS
+ 432500283U, // <u,u,7,4>: Cost 1 vext1 RHS, RHS
+ 1506242256U, // <u,u,7,5>: Cost 2 vext1 RHS, <5,1,7,3>
+ 120699277U, // <u,u,7,6>: Cost 1 vrev RHS
+ 363253046U, // <u,u,7,7>: Cost 1 vdup3 RHS
+ 432502574U, // <u,u,7,u>: Cost 1 vext1 RHS, LHS
+ 408617688U, // <u,u,u,0>: Cost 1 vext1 LHS, LHS
+ 471086894U, // <u,u,u,1>: Cost 1 vext2 LHS, LHS
+ 537753957U, // <u,u,u,2>: Cost 1 vext3 LHS, LHS
+ 835584U, // <u,u,u,3>: Cost 0 copy LHS
+ 408620342U, // <u,u,u,4>: Cost 1 vext1 LHS, RHS
+ 471087258U, // <u,u,u,5>: Cost 1 vext2 LHS, RHS
+ 537753997U, // <u,u,u,6>: Cost 1 vext3 LHS, RHS
+ 27705344U, // <u,u,u,7>: Cost 0 copy RHS
+ 835584U, // <u,u,u,u>: Cost 0 copy LHS
+ 0
+};
diff --git a/lib/Target/ARM/ARMRegisterInfo.cpp b/lib/Target/ARM/ARMRegisterInfo.cpp
index f809f37..d5bc3f6 100644
--- a/lib/Target/ARM/ARMRegisterInfo.cpp
+++ b/lib/Target/ARM/ARMRegisterInfo.cpp
@@ -13,6 +13,7 @@
#include "ARM.h"
#include "ARMAddressingModes.h"
+#include "ARMBaseInstrInfo.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
@@ -26,6 +27,7 @@
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
@@ -33,1370 +35,7 @@
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
-unsigned ARMBaseRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
- using namespace ARM;
- switch (RegEnum) {
- case R0: case S0: case D0: return 0;
- case R1: case S1: case D1: return 1;
- case R2: case S2: case D2: return 2;
- case R3: case S3: case D3: return 3;
- case R4: case S4: case D4: return 4;
- case R5: case S5: case D5: return 5;
- case R6: case S6: case D6: return 6;
- case R7: case S7: case D7: return 7;
- case R8: case S8: case D8: return 8;
- case R9: case S9: case D9: return 9;
- case R10: case S10: case D10: return 10;
- case R11: case S11: case D11: return 11;
- case R12: case S12: case D12: return 12;
- case SP: case S13: case D13: return 13;
- case LR: case S14: case D14: return 14;
- case PC: case S15: case D15: return 15;
- case S16: return 16;
- case S17: return 17;
- case S18: return 18;
- case S19: return 19;
- case S20: return 20;
- case S21: return 21;
- case S22: return 22;
- case S23: return 23;
- case S24: return 24;
- case S25: return 25;
- case S26: return 26;
- case S27: return 27;
- case S28: return 28;
- case S29: return 29;
- case S30: return 30;
- case S31: return 31;
- default:
- assert(0 && "Unknown ARM register!");
- abort();
- }
-}
-
-unsigned ARMBaseRegisterInfo::getRegisterNumbering(unsigned RegEnum,
- bool &isSPVFP) {
- isSPVFP = false;
-
- using namespace ARM;
- switch (RegEnum) {
- default:
- assert(0 && "Unknown ARM register!");
- abort();
- case R0: case D0: return 0;
- case R1: case D1: return 1;
- case R2: case D2: return 2;
- case R3: case D3: return 3;
- case R4: case D4: return 4;
- case R5: case D5: return 5;
- case R6: case D6: return 6;
- case R7: case D7: return 7;
- case R8: case D8: return 8;
- case R9: case D9: return 9;
- case R10: case D10: return 10;
- case R11: case D11: return 11;
- case R12: case D12: return 12;
- case SP: case D13: return 13;
- case LR: case D14: return 14;
- case PC: case D15: return 15;
-
- case S0: case S1: case S2: case S3:
- case S4: case S5: case S6: case S7:
- case S8: case S9: case S10: case S11:
- case S12: case S13: case S14: case S15:
- case S16: case S17: case S18: case S19:
- case S20: case S21: case S22: case S23:
- case S24: case S25: case S26: case S27:
- case S28: case S29: case S30: case S31: {
- isSPVFP = true;
- switch (RegEnum) {
- default: return 0; // Avoid compile time warning.
- case S0: return 0;
- case S1: return 1;
- case S2: return 2;
- case S3: return 3;
- case S4: return 4;
- case S5: return 5;
- case S6: return 6;
- case S7: return 7;
- case S8: return 8;
- case S9: return 9;
- case S10: return 10;
- case S11: return 11;
- case S12: return 12;
- case S13: return 13;
- case S14: return 14;
- case S15: return 15;
- case S16: return 16;
- case S17: return 17;
- case S18: return 18;
- case S19: return 19;
- case S20: return 20;
- case S21: return 21;
- case S22: return 22;
- case S23: return 23;
- case S24: return 24;
- case S25: return 25;
- case S26: return 26;
- case S27: return 27;
- case S28: return 28;
- case S29: return 29;
- case S30: return 30;
- case S31: return 31;
- }
- }
- }
-}
-
-ARMBaseRegisterInfo::ARMBaseRegisterInfo(const TargetInstrInfo &tii,
- const ARMSubtarget &sti)
- : ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
- TII(tii), STI(sti),
- FramePtr((STI.isTargetDarwin() || STI.isThumb()) ? ARM::R7 : ARM::R11) {
-}
-
-ARMRegisterInfo::ARMRegisterInfo(const TargetInstrInfo &tii,
+ARMRegisterInfo::ARMRegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMBaseRegisterInfo(tii, sti) {
}
-
-static inline
-const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
- return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
-}
-
-static inline
-const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
- return MIB.addReg(0);
-}
-
-/// emitLoadConstPool - Emits a load from constpool to materialize the
-/// specified immediate.
-void ARMRegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- const TargetInstrInfo *TII, DebugLoc dl,
- unsigned DestReg, int Val,
- ARMCC::CondCodes Pred,
- unsigned PredReg) const {
- MachineFunction &MF = *MBB.getParent();
- MachineConstantPool *ConstantPool = MF.getConstantPool();
- Constant *C = ConstantInt::get(Type::Int32Ty, Val);
- unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
-
- BuildMI(MBB, MBBI, dl, TII->get(ARM::LDRcp), DestReg)
- .addConstantPoolIndex(Idx)
- .addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
-}
-
-const unsigned*
-ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
- static const unsigned CalleeSavedRegs[] = {
- ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
- ARM::R7, ARM::R6, ARM::R5, ARM::R4,
-
- ARM::D15, ARM::D14, ARM::D13, ARM::D12,
- ARM::D11, ARM::D10, ARM::D9, ARM::D8,
- 0
- };
-
- static const unsigned DarwinCalleeSavedRegs[] = {
- // Darwin ABI deviates from ARM standard ABI. R9 is not a callee-saved
- // register.
- ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
- ARM::R11, ARM::R10, ARM::R8,
-
- ARM::D15, ARM::D14, ARM::D13, ARM::D12,
- ARM::D11, ARM::D10, ARM::D9, ARM::D8,
- 0
- };
- return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
-}
-
-const TargetRegisterClass* const *
-ARMBaseRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
- static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
-
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- 0
- };
-
- static const TargetRegisterClass * const ThumbCalleeSavedRegClasses[] = {
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::tGPRRegClass,
- &ARM::tGPRRegClass,&ARM::tGPRRegClass,&ARM::tGPRRegClass,
-
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- 0
- };
-
- static const TargetRegisterClass * const DarwinCalleeSavedRegClasses[] = {
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass,
-
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- 0
- };
-
- static const TargetRegisterClass * const DarwinThumbCalleeSavedRegClasses[] ={
- &ARM::GPRRegClass, &ARM::tGPRRegClass, &ARM::tGPRRegClass,
- &ARM::tGPRRegClass, &ARM::tGPRRegClass, &ARM::GPRRegClass,
- &ARM::GPRRegClass, &ARM::GPRRegClass,
-
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
- 0
- };
-
- if (STI.isThumb()) {
- return STI.isTargetDarwin()
- ? DarwinThumbCalleeSavedRegClasses : ThumbCalleeSavedRegClasses;
- }
- return STI.isTargetDarwin()
- ? DarwinCalleeSavedRegClasses : CalleeSavedRegClasses;
-}
-
-BitVector ARMBaseRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
- // FIXME: avoid re-calculating this everytime.
- BitVector Reserved(getNumRegs());
- Reserved.set(ARM::SP);
- Reserved.set(ARM::PC);
- if (STI.isTargetDarwin() || hasFP(MF))
- Reserved.set(FramePtr);
- // Some targets reserve R9.
- if (STI.isR9Reserved())
- Reserved.set(ARM::R9);
- return Reserved;
-}
-
-bool
-ARMBaseRegisterInfo::isReservedReg(const MachineFunction &MF, unsigned Reg) const {
- switch (Reg) {
- default: break;
- case ARM::SP:
- case ARM::PC:
- return true;
- case ARM::R7:
- case ARM::R11:
- if (FramePtr == Reg && (STI.isTargetDarwin() || hasFP(MF)))
- return true;
- break;
- case ARM::R9:
- return STI.isR9Reserved();
- }
-
- return false;
-}
-
-const TargetRegisterClass *ARMBaseRegisterInfo::getPointerRegClass() const {
- return &ARM::GPRRegClass;
-}
-
-/// getAllocationOrder - Returns the register allocation order for a specified
-/// register class in the form of a pair of TargetRegisterClass iterators.
-std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
-ARMBaseRegisterInfo::getAllocationOrder(const TargetRegisterClass *RC,
- unsigned HintType, unsigned HintReg,
- const MachineFunction &MF) const {
- // Alternative register allocation orders when favoring even / odd registers
- // of register pairs.
-
- // No FP, R9 is available.
- static const unsigned GPREven1[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8, ARM::R10,
- ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7,
- ARM::R9, ARM::R11
- };
- static const unsigned GPROdd1[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R9, ARM::R11,
- ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
- ARM::R8, ARM::R10
- };
-
- // FP is R7, R9 is available.
- static const unsigned GPREven2[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R8, ARM::R10,
- ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6,
- ARM::R9, ARM::R11
- };
- static const unsigned GPROdd2[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R9, ARM::R11,
- ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
- ARM::R8, ARM::R10
- };
-
- // FP is R11, R9 is available.
- static const unsigned GPREven3[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8,
- ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7,
- ARM::R9
- };
- static const unsigned GPROdd3[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R6, ARM::R9,
- ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R7,
- ARM::R8
- };
-
- // No FP, R9 is not available.
- static const unsigned GPREven4[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R10,
- ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8,
- ARM::R11
- };
- static const unsigned GPROdd4[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R11,
- ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
- ARM::R10
- };
-
- // FP is R7, R9 is not available.
- static const unsigned GPREven5[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R10,
- ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6, ARM::R8,
- ARM::R11
- };
- static const unsigned GPROdd5[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R11,
- ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
- ARM::R10
- };
-
- // FP is R11, R9 is not available.
- static const unsigned GPREven6[] = {
- ARM::R0, ARM::R2, ARM::R4, ARM::R6,
- ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8
- };
- static const unsigned GPROdd6[] = {
- ARM::R1, ARM::R3, ARM::R5, ARM::R7,
- ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8
- };
-
-
- if (HintType == ARMRI::RegPairEven) {
- if (isPhysicalRegister(HintReg) && getRegisterPairEven(HintReg, MF) == 0)
- // It's no longer possible to fulfill this hint. Return the default
- // allocation order.
- return std::make_pair(RC->allocation_order_begin(MF),
- RC->allocation_order_end(MF));
-
- if (!STI.isTargetDarwin() && !hasFP(MF)) {
- if (!STI.isR9Reserved())
- return std::make_pair(GPREven1,
- GPREven1 + (sizeof(GPREven1)/sizeof(unsigned)));
- else
- return std::make_pair(GPREven4,
- GPREven4 + (sizeof(GPREven4)/sizeof(unsigned)));
- } else if (FramePtr == ARM::R7) {
- if (!STI.isR9Reserved())
- return std::make_pair(GPREven2,
- GPREven2 + (sizeof(GPREven2)/sizeof(unsigned)));
- else
- return std::make_pair(GPREven5,
- GPREven5 + (sizeof(GPREven5)/sizeof(unsigned)));
- } else { // FramePtr == ARM::R11
- if (!STI.isR9Reserved())
- return std::make_pair(GPREven3,
- GPREven3 + (sizeof(GPREven3)/sizeof(unsigned)));
- else
- return std::make_pair(GPREven6,
- GPREven6 + (sizeof(GPREven6)/sizeof(unsigned)));
- }
- } else if (HintType == ARMRI::RegPairOdd) {
- if (isPhysicalRegister(HintReg) && getRegisterPairOdd(HintReg, MF) == 0)
- // It's no longer possible to fulfill this hint. Return the default
- // allocation order.
- return std::make_pair(RC->allocation_order_begin(MF),
- RC->allocation_order_end(MF));
-
- if (!STI.isTargetDarwin() && !hasFP(MF)) {
- if (!STI.isR9Reserved())
- return std::make_pair(GPROdd1,
- GPROdd1 + (sizeof(GPROdd1)/sizeof(unsigned)));
- else
- return std::make_pair(GPROdd4,
- GPROdd4 + (sizeof(GPROdd4)/sizeof(unsigned)));
- } else if (FramePtr == ARM::R7) {
- if (!STI.isR9Reserved())
- return std::make_pair(GPROdd2,
- GPROdd2 + (sizeof(GPROdd2)/sizeof(unsigned)));
- else
- return std::make_pair(GPROdd5,
- GPROdd5 + (sizeof(GPROdd5)/sizeof(unsigned)));
- } else { // FramePtr == ARM::R11
- if (!STI.isR9Reserved())
- return std::make_pair(GPROdd3,
- GPROdd3 + (sizeof(GPROdd3)/sizeof(unsigned)));
- else
- return std::make_pair(GPROdd6,
- GPROdd6 + (sizeof(GPROdd6)/sizeof(unsigned)));
- }
- }
- return std::make_pair(RC->allocation_order_begin(MF),
- RC->allocation_order_end(MF));
-}
-
-/// ResolveRegAllocHint - Resolves the specified register allocation hint
-/// to a physical register. Returns the physical register if it is successful.
-unsigned
-ARMBaseRegisterInfo::ResolveRegAllocHint(unsigned Type, unsigned Reg,
- const MachineFunction &MF) const {
- if (Reg == 0 || !isPhysicalRegister(Reg))
- return 0;
- if (Type == 0)
- return Reg;
- else if (Type == (unsigned)ARMRI::RegPairOdd)
- // Odd register.
- return getRegisterPairOdd(Reg, MF);
- else if (Type == (unsigned)ARMRI::RegPairEven)
- // Even register.
- return getRegisterPairEven(Reg, MF);
- return 0;
-}
-
-void
-ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
- MachineFunction &MF) const {
- MachineRegisterInfo *MRI = &MF.getRegInfo();
- std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
- if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
- Hint.first == (unsigned)ARMRI::RegPairEven) &&
- Hint.second && TargetRegisterInfo::isVirtualRegister(Hint.second)) {
- // If 'Reg' is one of the even / odd register pair and it's now changed
- // (e.g. coalesced) into a different register. The other register of the
- // pair allocation hint must be updated to reflect the relationship
- // change.
- unsigned OtherReg = Hint.second;
- Hint = MRI->getRegAllocationHint(OtherReg);
- if (Hint.second == Reg)
- // Make sure the pair has not already divorced.
- MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
- }
-}
-
-bool
-ARMRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
- return true;
-}
-
-/// hasFP - Return true if the specified function should have a dedicated frame
-/// pointer register. This is true if the function has variable sized allocas
-/// or if frame pointer elimination is disabled.
-///
-bool ARMBaseRegisterInfo::hasFP(const MachineFunction &MF) const {
- const MachineFrameInfo *MFI = MF.getFrameInfo();
- return (NoFramePointerElim ||
- MFI->hasVarSizedObjects() ||
- MFI->isFrameAddressTaken());
-}
-
-// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
-// not required, we reserve argument space for call sites in the function
-// immediately on entry to the current function. This eliminates the need for
-// add/sub sp brackets around call sites. Returns true if the call frame is
-// included as part of the stack frame.
-bool ARMRegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
- const MachineFrameInfo *FFI = MF.getFrameInfo();
- unsigned CFSize = FFI->getMaxCallFrameSize();
- // It's not always a good idea to include the call frame as part of the
- // stack frame. ARM (especially Thumb) has small immediate offset to
- // address the stack frame. So a large call frame can cause poor codegen
- // and may even makes it impossible to scavenge a register.
- if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
- return false;
-
- return !MF.getFrameInfo()->hasVarSizedObjects();
-}
-
-/// emitARMRegPlusImmediate - Emits a series of instructions to materialize
-/// a destreg = basereg + immediate in ARM code.
-static
-void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, unsigned BaseReg, int NumBytes,
- ARMCC::CondCodes Pred, unsigned PredReg,
- const TargetInstrInfo &TII,
- DebugLoc dl) {
- bool isSub = NumBytes < 0;
- if (isSub) NumBytes = -NumBytes;
-
- while (NumBytes) {
- unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
- unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
- assert(ThisVal && "Didn't extract field correctly");
-
- // We will handle these bits from offset, clear them.
- NumBytes &= ~ThisVal;
-
- // Get the properly encoded SOImmVal field.
- int SOImmVal = ARM_AM::getSOImmVal(ThisVal);
- assert(SOImmVal != -1 && "Bit extraction didn't work?");
-
- // Build the new ADD / SUB.
- BuildMI(MBB, MBBI, dl, TII.get(isSub ? ARM::SUBri : ARM::ADDri), DestReg)
- .addReg(BaseReg, RegState::Kill).addImm(SOImmVal)
- .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
- BaseReg = DestReg;
- }
-}
-
-static void
-emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
- const TargetInstrInfo &TII, DebugLoc dl,
- int NumBytes,
- ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
- emitARMRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes,
- Pred, PredReg, TII, dl);
-}
-
-void ARMRegisterInfo::
-eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) const {
- if (!hasReservedCallFrame(MF)) {
- // If we have alloca, convert as follows:
- // ADJCALLSTACKDOWN -> sub, sp, sp, amount
- // ADJCALLSTACKUP -> add, sp, sp, amount
- MachineInstr *Old = I;
- DebugLoc dl = Old->getDebugLoc();
- unsigned Amount = Old->getOperand(0).getImm();
- if (Amount != 0) {
- // We need to keep the stack aligned properly. To do this, we round the
- // amount of space needed for the outgoing arguments up to the next
- // alignment boundary.
- unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
- Amount = (Amount+Align-1)/Align*Align;
-
- // Replace the pseudo instruction with a new instruction...
- unsigned Opc = Old->getOpcode();
- ARMCC::CondCodes Pred = (ARMCC::CondCodes)Old->getOperand(1).getImm();
- if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
- // Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
- unsigned PredReg = Old->getOperand(2).getReg();
- emitSPUpdate(MBB, I, TII, dl, -Amount, Pred, PredReg);
- } else {
- // Note: PredReg is operand 3 for ADJCALLSTACKUP.
- unsigned PredReg = Old->getOperand(3).getReg();
- assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
- emitSPUpdate(MBB, I, TII, dl, Amount, Pred, PredReg);
- }
- }
- }
- MBB.erase(I);
-}
-
-/// findScratchRegister - Find a 'free' ARM register. If register scavenger
-/// is not being used, R12 is available. Otherwise, try for a call-clobbered
-/// register first and then a spilled callee-saved register if that fails.
-static
-unsigned findScratchRegister(RegScavenger *RS, const TargetRegisterClass *RC,
- ARMFunctionInfo *AFI) {
- unsigned Reg = RS ? RS->FindUnusedReg(RC, true) : (unsigned) ARM::R12;
- assert (!AFI->isThumbFunction());
- if (Reg == 0)
- // Try a already spilled CS register.
- Reg = RS->FindUnusedReg(RC, AFI->getSpilledCSRegisters());
-
- return Reg;
-}
-
-void ARMRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const{
- unsigned i = 0;
- MachineInstr &MI = *II;
- MachineBasicBlock &MBB = *MI.getParent();
- MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- DebugLoc dl = MI.getDebugLoc();
-
- while (!MI.getOperand(i).isFI()) {
- ++i;
- assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
- }
-
- unsigned FrameReg = ARM::SP;
- int FrameIndex = MI.getOperand(i).getIndex();
- int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
- MF.getFrameInfo()->getStackSize() + SPAdj;
-
- if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
- Offset -= AFI->getGPRCalleeSavedArea1Offset();
- else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
- Offset -= AFI->getGPRCalleeSavedArea2Offset();
- else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex))
- Offset -= AFI->getDPRCalleeSavedAreaOffset();
- else if (hasFP(MF)) {
- assert(SPAdj == 0 && "Unexpected");
- // There is alloca()'s in this function, must reference off the frame
- // pointer instead.
- FrameReg = getFrameRegister(MF);
- Offset -= AFI->getFramePtrSpillOffset();
- }
-
- unsigned Opcode = MI.getOpcode();
- const TargetInstrDesc &Desc = MI.getDesc();
- unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
- bool isSub = false;
-
- // Memory operands in inline assembly always use AddrMode2.
- if (Opcode == ARM::INLINEASM)
- AddrMode = ARMII::AddrMode2;
-
- if (Opcode == ARM::ADDri) {
- Offset += MI.getOperand(i+1).getImm();
- if (Offset == 0) {
- // Turn it into a move.
- MI.setDesc(TII.get(ARM::MOVr));
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.RemoveOperand(i+1);
- return;
- } else if (Offset < 0) {
- Offset = -Offset;
- isSub = true;
- MI.setDesc(TII.get(ARM::SUBri));
- }
-
- // Common case: small offset, fits into instruction.
- int ImmedOffset = ARM_AM::getSOImmVal(Offset);
- if (ImmedOffset != -1) {
- // Replace the FrameIndex with sp / fp
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.getOperand(i+1).ChangeToImmediate(ImmedOffset);
- return;
- }
-
- // Otherwise, we fallback to common code below to form the imm offset with
- // a sequence of ADDri instructions. First though, pull as much of the imm
- // into this ADDri as possible.
- unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
- unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
-
- // We will handle these bits from offset, clear them.
- Offset &= ~ThisImmVal;
-
- // Get the properly encoded SOImmVal field.
- int ThisSOImmVal = ARM_AM::getSOImmVal(ThisImmVal);
- assert(ThisSOImmVal != -1 && "Bit extraction didn't work?");
- MI.getOperand(i+1).ChangeToImmediate(ThisSOImmVal);
- } else {
- unsigned ImmIdx = 0;
- int InstrOffs = 0;
- unsigned NumBits = 0;
- unsigned Scale = 1;
- switch (AddrMode) {
- case ARMII::AddrMode2: {
- ImmIdx = i+2;
- InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
- if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
- InstrOffs *= -1;
- NumBits = 12;
- break;
- }
- case ARMII::AddrMode3: {
- ImmIdx = i+2;
- InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
- if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
- InstrOffs *= -1;
- NumBits = 8;
- break;
- }
- case ARMII::AddrMode5: {
- ImmIdx = i+1;
- InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
- if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
- InstrOffs *= -1;
- NumBits = 8;
- Scale = 4;
- break;
- }
- default:
- assert(0 && "Unsupported addressing mode!");
- abort();
- break;
- }
-
- Offset += InstrOffs * Scale;
- assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
- if (Offset < 0) {
- Offset = -Offset;
- isSub = true;
- }
-
- // Common case: small offset, fits into instruction.
- MachineOperand &ImmOp = MI.getOperand(ImmIdx);
- int ImmedOffset = Offset / Scale;
- unsigned Mask = (1 << NumBits) - 1;
- if ((unsigned)Offset <= Mask * Scale) {
- // Replace the FrameIndex with sp
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- if (isSub)
- ImmedOffset |= 1 << NumBits;
- ImmOp.ChangeToImmediate(ImmedOffset);
- return;
- }
-
- // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
- ImmedOffset = ImmedOffset & Mask;
- if (isSub)
- ImmedOffset |= 1 << NumBits;
- ImmOp.ChangeToImmediate(ImmedOffset);
- Offset &= ~(Mask*Scale);
- }
-
- // If we get here, the immediate doesn't fit into the instruction. We folded
- // as much as possible above, handle the rest, providing a register that is
- // SP+LargeImm.
- assert(Offset && "This code isn't needed if offset already handled!");
-
- // Insert a set of r12 with the full address: r12 = sp + offset
- // If the offset we have is too large to fit into the instruction, we need
- // to form it with a series of ADDri's. Do this by taking 8-bit chunks
- // out of 'Offset'.
- unsigned ScratchReg = findScratchRegister(RS, &ARM::GPRRegClass, AFI);
- if (ScratchReg == 0)
- // No register is "free". Scavenge a register.
- ScratchReg = RS->scavengeRegister(&ARM::GPRRegClass, II, SPAdj);
- int PIdx = MI.findFirstPredOperandIdx();
- ARMCC::CondCodes Pred = (PIdx == -1)
- ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
- unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
- emitARMRegPlusImmediate(MBB, II, ScratchReg, FrameReg,
- isSub ? -Offset : Offset, Pred, PredReg, TII, dl);
- MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
-}
-
-static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) {
- const MachineFrameInfo *FFI = MF.getFrameInfo();
- int Offset = 0;
- for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
- int FixedOff = -FFI->getObjectOffset(i);
- if (FixedOff > Offset) Offset = FixedOff;
- }
- for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
- if (FFI->isDeadObjectIndex(i))
- continue;
- Offset += FFI->getObjectSize(i);
- unsigned Align = FFI->getObjectAlignment(i);
- // Adjust to alignment boundary
- Offset = (Offset+Align-1)/Align*Align;
- }
- return (unsigned)Offset;
-}
-
-void
-ARMBaseRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
- RegScavenger *RS) const {
- // This tells PEI to spill the FP as if it is any other callee-save register
- // to take advantage the eliminateFrameIndex machinery. This also ensures it
- // is spilled in the order specified by getCalleeSavedRegs() to make it easier
- // to combine multiple loads / stores.
- bool CanEliminateFrame = true;
- bool CS1Spilled = false;
- bool LRSpilled = false;
- unsigned NumGPRSpills = 0;
- SmallVector<unsigned, 4> UnspilledCS1GPRs;
- SmallVector<unsigned, 4> UnspilledCS2GPRs;
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
-
- // Don't spill FP if the frame can be eliminated. This is determined
- // by scanning the callee-save registers to see if any is used.
- const unsigned *CSRegs = getCalleeSavedRegs();
- const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses();
- for (unsigned i = 0; CSRegs[i]; ++i) {
- unsigned Reg = CSRegs[i];
- bool Spilled = false;
- if (MF.getRegInfo().isPhysRegUsed(Reg)) {
- AFI->setCSRegisterIsSpilled(Reg);
- Spilled = true;
- CanEliminateFrame = false;
- } else {
- // Check alias registers too.
- for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
- if (MF.getRegInfo().isPhysRegUsed(*Aliases)) {
- Spilled = true;
- CanEliminateFrame = false;
- }
- }
- }
-
- if (CSRegClasses[i] == &ARM::GPRRegClass) {
- if (Spilled) {
- NumGPRSpills++;
-
- if (!STI.isTargetDarwin()) {
- if (Reg == ARM::LR)
- LRSpilled = true;
- CS1Spilled = true;
- continue;
- }
-
- // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
- switch (Reg) {
- case ARM::LR:
- LRSpilled = true;
- // Fallthrough
- case ARM::R4:
- case ARM::R5:
- case ARM::R6:
- case ARM::R7:
- CS1Spilled = true;
- break;
- default:
- break;
- }
- } else {
- if (!STI.isTargetDarwin()) {
- UnspilledCS1GPRs.push_back(Reg);
- continue;
- }
-
- switch (Reg) {
- case ARM::R4:
- case ARM::R5:
- case ARM::R6:
- case ARM::R7:
- case ARM::LR:
- UnspilledCS1GPRs.push_back(Reg);
- break;
- default:
- UnspilledCS2GPRs.push_back(Reg);
- break;
- }
- }
- }
- }
-
- bool ForceLRSpill = false;
- if (!LRSpilled && AFI->isThumbFunction()) {
- unsigned FnSize = TII.GetFunctionSizeInBytes(MF);
- // Force LR to be spilled if the Thumb function size is > 2048. This enables
- // use of BL to implement far jump. If it turns out that it's not needed
- // then the branch fix up path will undo it.
- if (FnSize >= (1 << 11)) {
- CanEliminateFrame = false;
- ForceLRSpill = true;
- }
- }
-
- bool ExtraCSSpill = false;
- if (!CanEliminateFrame || hasFP(MF)) {
- AFI->setHasStackFrame(true);
-
- // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
- // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
- if (!LRSpilled && CS1Spilled) {
- MF.getRegInfo().setPhysRegUsed(ARM::LR);
- AFI->setCSRegisterIsSpilled(ARM::LR);
- NumGPRSpills++;
- UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
- UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
- ForceLRSpill = false;
- ExtraCSSpill = true;
- }
-
- // Darwin ABI requires FP to point to the stack slot that contains the
- // previous FP.
- if (STI.isTargetDarwin() || hasFP(MF)) {
- MF.getRegInfo().setPhysRegUsed(FramePtr);
- NumGPRSpills++;
- }
-
- // If stack and double are 8-byte aligned and we are spilling an odd number
- // of GPRs. Spill one extra callee save GPR so we won't have to pad between
- // the integer and double callee save areas.
- unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
- if (TargetAlign == 8 && (NumGPRSpills & 1)) {
- if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
- for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
- unsigned Reg = UnspilledCS1GPRs[i];
- // Don't spiil high register if the function is thumb
- if (!AFI->isThumbFunction() ||
- isARMLowRegister(Reg) || Reg == ARM::LR) {
- MF.getRegInfo().setPhysRegUsed(Reg);
- AFI->setCSRegisterIsSpilled(Reg);
- if (!isReservedReg(MF, Reg))
- ExtraCSSpill = true;
- break;
- }
- }
- } else if (!UnspilledCS2GPRs.empty() &&
- !AFI->isThumbFunction()) {
- unsigned Reg = UnspilledCS2GPRs.front();
- MF.getRegInfo().setPhysRegUsed(Reg);
- AFI->setCSRegisterIsSpilled(Reg);
- if (!isReservedReg(MF, Reg))
- ExtraCSSpill = true;
- }
- }
-
- // Estimate if we might need to scavenge a register at some point in order
- // to materialize a stack offset. If so, either spill one additional
- // callee-saved register or reserve a special spill slot to facilitate
- // register scavenging.
- if (RS && !ExtraCSSpill && !AFI->isThumbFunction()) {
- MachineFrameInfo *MFI = MF.getFrameInfo();
- unsigned Size = estimateStackSize(MF, MFI);
- unsigned Limit = (1 << 12) - 1;
- for (MachineFunction::iterator BB = MF.begin(),E = MF.end();BB != E; ++BB)
- for (MachineBasicBlock::iterator I= BB->begin(); I != BB->end(); ++I) {
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (I->getOperand(i).isFI()) {
- unsigned Opcode = I->getOpcode();
- const TargetInstrDesc &Desc = TII.get(Opcode);
- unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
- if (AddrMode == ARMII::AddrMode3) {
- Limit = (1 << 8) - 1;
- goto DoneEstimating;
- } else if (AddrMode == ARMII::AddrMode5) {
- unsigned ThisLimit = ((1 << 8) - 1) * 4;
- if (ThisLimit < Limit)
- Limit = ThisLimit;
- }
- }
- }
- DoneEstimating:
- if (Size >= Limit) {
- // If any non-reserved CS register isn't spilled, just spill one or two
- // extra. That should take care of it!
- unsigned NumExtras = TargetAlign / 4;
- SmallVector<unsigned, 2> Extras;
- while (NumExtras && !UnspilledCS1GPRs.empty()) {
- unsigned Reg = UnspilledCS1GPRs.back();
- UnspilledCS1GPRs.pop_back();
- if (!isReservedReg(MF, Reg)) {
- Extras.push_back(Reg);
- NumExtras--;
- }
- }
- while (NumExtras && !UnspilledCS2GPRs.empty()) {
- unsigned Reg = UnspilledCS2GPRs.back();
- UnspilledCS2GPRs.pop_back();
- if (!isReservedReg(MF, Reg)) {
- Extras.push_back(Reg);
- NumExtras--;
- }
- }
- if (Extras.size() && NumExtras == 0) {
- for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
- MF.getRegInfo().setPhysRegUsed(Extras[i]);
- AFI->setCSRegisterIsSpilled(Extras[i]);
- }
- } else {
- // Reserve a slot closest to SP or frame pointer.
- const TargetRegisterClass *RC = &ARM::GPRRegClass;
- RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
- RC->getAlignment()));
- }
- }
- }
- }
-
- if (ForceLRSpill) {
- MF.getRegInfo().setPhysRegUsed(ARM::LR);
- AFI->setCSRegisterIsSpilled(ARM::LR);
- AFI->setLRIsSpilledForFarJump(true);
- }
-}
-
-/// Move iterator pass the next bunch of callee save load / store ops for
-/// the particular spill area (1: integer area 1, 2: integer area 2,
-/// 3: fp area, 0: don't care).
-static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- int Opc, unsigned Area,
- const ARMSubtarget &STI) {
- while (MBBI != MBB.end() &&
- MBBI->getOpcode() == Opc && MBBI->getOperand(1).isFI()) {
- if (Area != 0) {
- bool Done = false;
- unsigned Category = 0;
- switch (MBBI->getOperand(0).getReg()) {
- case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
- case ARM::LR:
- Category = 1;
- break;
- case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
- Category = STI.isTargetDarwin() ? 2 : 1;
- break;
- case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
- case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
- Category = 3;
- break;
- default:
- Done = true;
- break;
- }
- if (Done || Category != Area)
- break;
- }
-
- ++MBBI;
- }
-}
-
-void ARMRegisterInfo::emitPrologue(MachineFunction &MF) const {
- MachineBasicBlock &MBB = MF.front();
- MachineBasicBlock::iterator MBBI = MBB.begin();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
- unsigned NumBytes = MFI->getStackSize();
- const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
- DebugLoc dl = (MBBI != MBB.end() ?
- MBBI->getDebugLoc() : DebugLoc::getUnknownLoc());
-
- // Determine the sizes of each callee-save spill areas and record which frame
- // belongs to which callee-save spill areas.
- unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
- int FramePtrSpillFI = 0;
-
- if (VARegSaveSize)
- emitSPUpdate(MBB, MBBI, TII, dl, -VARegSaveSize);
-
- if (!AFI->hasStackFrame()) {
- if (NumBytes != 0)
- emitSPUpdate(MBB, MBBI, TII, dl, -NumBytes);
- return;
- }
-
- for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
- unsigned Reg = CSI[i].getReg();
- int FI = CSI[i].getFrameIdx();
- switch (Reg) {
- case ARM::R4:
- case ARM::R5:
- case ARM::R6:
- case ARM::R7:
- case ARM::LR:
- if (Reg == FramePtr)
- FramePtrSpillFI = FI;
- AFI->addGPRCalleeSavedArea1Frame(FI);
- GPRCS1Size += 4;
- break;
- case ARM::R8:
- case ARM::R9:
- case ARM::R10:
- case ARM::R11:
- if (Reg == FramePtr)
- FramePtrSpillFI = FI;
- if (STI.isTargetDarwin()) {
- AFI->addGPRCalleeSavedArea2Frame(FI);
- GPRCS2Size += 4;
- } else {
- AFI->addGPRCalleeSavedArea1Frame(FI);
- GPRCS1Size += 4;
- }
- break;
- default:
- AFI->addDPRCalleeSavedAreaFrame(FI);
- DPRCSSize += 8;
- }
- }
-
- // Build the new SUBri to adjust SP for integer callee-save spill area 1.
- emitSPUpdate(MBB, MBBI, TII, dl, -GPRCS1Size);
- movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 1, STI);
-
- // Darwin ABI requires FP to point to the stack slot that contains the
- // previous FP.
- if (STI.isTargetDarwin() || hasFP(MF)) {
- MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI, dl, TII.get(ARM::ADDri), FramePtr)
- .addFrameIndex(FramePtrSpillFI).addImm(0);
- AddDefaultCC(AddDefaultPred(MIB));
- }
-
- // Build the new SUBri to adjust SP for integer callee-save spill area 2.
- emitSPUpdate(MBB, MBBI, TII, dl, -GPRCS2Size);
-
- // Build the new SUBri to adjust SP for FP callee-save spill area.
- movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 2, STI);
- emitSPUpdate(MBB, MBBI, TII, dl, -DPRCSSize);
-
- // Determine starting offsets of spill areas.
- unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
- unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
- unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
- AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes);
- AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
- AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
- AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
-
- NumBytes = DPRCSOffset;
- if (NumBytes) {
- // Insert it after all the callee-save spills.
- movePastCSLoadStoreOps(MBB, MBBI, ARM::FSTD, 3, STI);
- emitSPUpdate(MBB, MBBI, TII, dl, -NumBytes);
- }
-
- if (STI.isTargetELF() && hasFP(MF)) {
- MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
- AFI->getFramePtrSpillOffset());
- }
-
- AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
- AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
- AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
-}
-
-static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
- for (unsigned i = 0; CSRegs[i]; ++i)
- if (Reg == CSRegs[i])
- return true;
- return false;
-}
-
-static bool isCSRestore(MachineInstr *MI, const unsigned *CSRegs) {
- return ((MI->getOpcode() == ARM::FLDD ||
- MI->getOpcode() == ARM::LDR) &&
- MI->getOperand(1).isFI() &&
- isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
-}
-
-void ARMRegisterInfo::emitEpilogue(MachineFunction &MF,
- MachineBasicBlock &MBB) const {
- MachineBasicBlock::iterator MBBI = prior(MBB.end());
- assert(MBBI->getOpcode() == ARM::BX_RET &&
- "Can only insert epilog into returning blocks");
- DebugLoc dl = MBBI->getDebugLoc();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
- int NumBytes = (int)MFI->getStackSize();
-
- if (!AFI->hasStackFrame()) {
- if (NumBytes != 0)
- emitSPUpdate(MBB, MBBI, TII, dl, NumBytes);
- } else {
- // Unwind MBBI to point to first LDR / FLDD.
- const unsigned *CSRegs = getCalleeSavedRegs();
- if (MBBI != MBB.begin()) {
- do
- --MBBI;
- while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs));
- if (!isCSRestore(MBBI, CSRegs))
- ++MBBI;
- }
-
- // Move SP to start of FP callee save spill area.
- NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
- AFI->getGPRCalleeSavedArea2Size() +
- AFI->getDPRCalleeSavedAreaSize());
-
- // Darwin ABI requires FP to point to the stack slot that contains the
- // previous FP.
- if ((STI.isTargetDarwin() && NumBytes) || hasFP(MF)) {
- NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
- // Reset SP based on frame pointer only if the stack frame extends beyond
- // frame pointer stack slot or target is ELF and the function has FP.
- if (AFI->getGPRCalleeSavedArea2Size() ||
- AFI->getDPRCalleeSavedAreaSize() ||
- AFI->getDPRCalleeSavedAreaOffset()||
- hasFP(MF)) {
- if (NumBytes)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::SUBri), ARM::SP).addReg(FramePtr)
- .addImm(NumBytes)
- .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
- else
- BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP).addReg(FramePtr)
- .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
- }
- } else if (NumBytes) {
- emitSPUpdate(MBB, MBBI, TII, dl, NumBytes);
- }
-
- // Move SP to start of integer callee save spill area 2.
- movePastCSLoadStoreOps(MBB, MBBI, ARM::FLDD, 3, STI);
- emitSPUpdate(MBB, MBBI, TII, dl, AFI->getDPRCalleeSavedAreaSize());
-
- // Move SP to start of integer callee save spill area 1.
- movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 2, STI);
- emitSPUpdate(MBB, MBBI, TII, dl, AFI->getGPRCalleeSavedArea2Size());
-
- // Move SP to SP upon entry to the function.
- movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 1, STI);
- emitSPUpdate(MBB, MBBI, TII, dl, AFI->getGPRCalleeSavedArea1Size());
- }
-
- if (VARegSaveSize)
- emitSPUpdate(MBB, MBBI, TII, dl, VARegSaveSize);
-
-}
-
-unsigned ARMBaseRegisterInfo::getRARegister() const {
- return ARM::LR;
-}
-
-unsigned ARMBaseRegisterInfo::getFrameRegister(MachineFunction &MF) const {
- if (STI.isTargetDarwin() || hasFP(MF))
- return FramePtr;
- return ARM::SP;
-}
-
-unsigned ARMBaseRegisterInfo::getEHExceptionRegister() const {
- assert(0 && "What is the exception register");
- return 0;
-}
-
-unsigned ARMBaseRegisterInfo::getEHHandlerRegister() const {
- assert(0 && "What is the exception handler register");
- return 0;
-}
-
-int ARMBaseRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
- return ARMGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
-}
-
-unsigned ARMBaseRegisterInfo::getRegisterPairEven(unsigned Reg,
- const MachineFunction &MF) const {
- switch (Reg) {
- default: break;
- // Return 0 if either register of the pair is a special register.
- // So no R12, etc.
- case ARM::R1:
- return ARM::R0;
- case ARM::R3:
- // FIXME!
- return STI.isThumb() ? 0 : ARM::R2;
- case ARM::R5:
- return ARM::R4;
- case ARM::R7:
- return isReservedReg(MF, ARM::R7) ? 0 : ARM::R6;
- case ARM::R9:
- return isReservedReg(MF, ARM::R9) ? 0 :ARM::R8;
- case ARM::R11:
- return isReservedReg(MF, ARM::R11) ? 0 : ARM::R10;
-
- case ARM::S1:
- return ARM::S0;
- case ARM::S3:
- return ARM::S2;
- case ARM::S5:
- return ARM::S4;
- case ARM::S7:
- return ARM::S6;
- case ARM::S9:
- return ARM::S8;
- case ARM::S11:
- return ARM::S10;
- case ARM::S13:
- return ARM::S12;
- case ARM::S15:
- return ARM::S14;
- case ARM::S17:
- return ARM::S16;
- case ARM::S19:
- return ARM::S18;
- case ARM::S21:
- return ARM::S20;
- case ARM::S23:
- return ARM::S22;
- case ARM::S25:
- return ARM::S24;
- case ARM::S27:
- return ARM::S26;
- case ARM::S29:
- return ARM::S28;
- case ARM::S31:
- return ARM::S30;
-
- case ARM::D1:
- return ARM::D0;
- case ARM::D3:
- return ARM::D2;
- case ARM::D5:
- return ARM::D4;
- case ARM::D7:
- return ARM::D6;
- case ARM::D9:
- return ARM::D8;
- case ARM::D11:
- return ARM::D10;
- case ARM::D13:
- return ARM::D12;
- case ARM::D15:
- return ARM::D14;
- }
-
- return 0;
-}
-
-unsigned ARMBaseRegisterInfo::getRegisterPairOdd(unsigned Reg,
- const MachineFunction &MF) const {
- switch (Reg) {
- default: break;
- // Return 0 if either register of the pair is a special register.
- // So no R12, etc.
- case ARM::R0:
- return ARM::R1;
- case ARM::R2:
- // FIXME!
- return STI.isThumb() ? 0 : ARM::R3;
- case ARM::R4:
- return ARM::R5;
- case ARM::R6:
- return isReservedReg(MF, ARM::R7) ? 0 : ARM::R7;
- case ARM::R8:
- return isReservedReg(MF, ARM::R9) ? 0 :ARM::R9;
- case ARM::R10:
- return isReservedReg(MF, ARM::R11) ? 0 : ARM::R11;
-
- case ARM::S0:
- return ARM::S1;
- case ARM::S2:
- return ARM::S3;
- case ARM::S4:
- return ARM::S5;
- case ARM::S6:
- return ARM::S7;
- case ARM::S8:
- return ARM::S9;
- case ARM::S10:
- return ARM::S11;
- case ARM::S12:
- return ARM::S13;
- case ARM::S14:
- return ARM::S15;
- case ARM::S16:
- return ARM::S17;
- case ARM::S18:
- return ARM::S19;
- case ARM::S20:
- return ARM::S21;
- case ARM::S22:
- return ARM::S23;
- case ARM::S24:
- return ARM::S25;
- case ARM::S26:
- return ARM::S27;
- case ARM::S28:
- return ARM::S29;
- case ARM::S30:
- return ARM::S31;
-
- case ARM::D0:
- return ARM::D1;
- case ARM::D2:
- return ARM::D3;
- case ARM::D4:
- return ARM::D5;
- case ARM::D6:
- return ARM::D7;
- case ARM::D8:
- return ARM::D9;
- case ARM::D10:
- return ARM::D11;
- case ARM::D12:
- return ARM::D13;
- case ARM::D14:
- return ARM::D15;
- }
-
- return 0;
-}
-
-#include "ARMGenRegisterInfo.inc"
diff --git a/lib/Target/ARM/ARMRegisterInfo.h b/lib/Target/ARM/ARMRegisterInfo.h
index 7fe075a..041afd0 100644
--- a/lib/Target/ARM/ARMRegisterInfo.h
+++ b/lib/Target/ARM/ARMRegisterInfo.h
@@ -16,127 +16,26 @@
#include "ARM.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "ARMGenRegisterInfo.h.inc"
+#include "ARMBaseRegisterInfo.h"
namespace llvm {
class ARMSubtarget;
- class TargetInstrInfo;
+ class ARMBaseInstrInfo;
class Type;
-/// Register allocation hints.
-namespace ARMRI {
- enum {
- RegPairOdd = 1,
- RegPairEven = 2
+namespace ARM {
+ /// SubregIndex - The index of various subregister classes. Note that
+ /// these indices must be kept in sync with the class indices in the
+ /// ARMRegisterInfo.td file.
+ enum SubregIndex {
+ SSUBREG_0 = 1, SSUBREG_1 = 2, SSUBREG_2 = 3, SSUBREG_3 = 4,
+ DSUBREG_0 = 5, DSUBREG_1 = 6
};
}
-/// isARMLowRegister - Returns true if the register is low register r0-r7.
-///
-static inline bool isARMLowRegister(unsigned Reg) {
- using namespace ARM;
- switch (Reg) {
- case R0: case R1: case R2: case R3:
- case R4: case R5: case R6: case R7:
- return true;
- default:
- return false;
- }
-}
-
-struct ARMBaseRegisterInfo : public ARMGenRegisterInfo {
-protected:
- const TargetInstrInfo &TII;
- const ARMSubtarget &STI;
-
- /// FramePtr - ARM physical register used as frame ptr.
- unsigned FramePtr;
-public:
- ARMBaseRegisterInfo(const TargetInstrInfo &tii, const ARMSubtarget &STI);
-
- /// getRegisterNumbering - Given the enum value for some register, e.g.
- /// ARM::LR, return the number that it corresponds to (e.g. 14).
- static unsigned getRegisterNumbering(unsigned RegEnum);
-
- /// Same as previous getRegisterNumbering except it returns true in isSPVFP
- /// if the register is a single precision VFP register.
- static unsigned getRegisterNumbering(unsigned RegEnum, bool &isSPVFP);
-
- /// Code Generation virtual methods...
- const unsigned *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
-
- const TargetRegisterClass* const*
- getCalleeSavedRegClasses(const MachineFunction *MF = 0) const;
-
- BitVector getReservedRegs(const MachineFunction &MF) const;
-
- bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
-
- const TargetRegisterClass *getPointerRegClass() const;
-
- std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
- getAllocationOrder(const TargetRegisterClass *RC,
- unsigned HintType, unsigned HintReg,
- const MachineFunction &MF) const;
-
- unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
- const MachineFunction &MF) const;
-
- void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
- MachineFunction &MF) const;
-
- bool hasFP(const MachineFunction &MF) const;
-
- void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
- RegScavenger *RS = NULL) const;
-
- // Debug information queries.
- unsigned getRARegister() const;
- unsigned getFrameRegister(MachineFunction &MF) const;
-
- // Exception handling queries.
- unsigned getEHExceptionRegister() const;
- unsigned getEHHandlerRegister() const;
-
- int getDwarfRegNum(unsigned RegNum, bool isEH) const;
-
- bool isLowRegister(unsigned Reg) const;
-
-private:
- unsigned getRegisterPairEven(unsigned Reg, const MachineFunction &MF) const;
-
- unsigned getRegisterPairOdd(unsigned Reg, const MachineFunction &MF) const;
-};
-
struct ARMRegisterInfo : public ARMBaseRegisterInfo {
public:
- ARMRegisterInfo(const TargetInstrInfo &tii, const ARMSubtarget &STI);
-
- /// emitLoadConstPool - Emits a load from constpool to materialize the
- /// specified immediate.
- void emitLoadConstPool(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- const TargetInstrInfo *TII, DebugLoc dl,
- unsigned DestReg, int Val,
- ARMCC::CondCodes Pred = ARMCC::AL,
- unsigned PredReg = 0) const;
-
- /// Code Generation virtual methods...
- bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
-
- bool requiresRegisterScavenging(const MachineFunction &MF) const;
-
- bool hasReservedCallFrame(MachineFunction &MF) const;
-
- void eliminateCallFramePseudoInstr(MachineFunction &MF,
- MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) const;
-
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
-
- void emitPrologue(MachineFunction &MF) const;
- void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
+ ARMRegisterInfo(const ARMBaseInstrInfo &tii, const ARMSubtarget &STI);
};
} // end namespace llvm
diff --git a/lib/Target/ARM/ARMRegisterInfo.td b/lib/Target/ARM/ARMRegisterInfo.td
index a057e5c..20a7355 100644
--- a/lib/Target/ARM/ARMRegisterInfo.td
+++ b/lib/Target/ARM/ARMRegisterInfo.td
@@ -18,8 +18,8 @@ class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
let SubRegs = subregs;
}
-class ARMFReg<bits<5> num, string n> : Register<n> {
- field bits<5> Num;
+class ARMFReg<bits<6> num, string n> : Register<n> {
+ field bits<6> Num;
let Namespace = "ARM";
}
@@ -58,10 +58,11 @@ def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
+def SDummy : ARMFReg<63, "sINVALID">;
// Aliases of the F* registers used to hold 64-bit fp values (doubles)
def D0 : ARMReg< 0, "d0", [S0, S1]>;
-def D1 : ARMReg< 1, "d1", [S2, S3]>;
+def D1 : ARMReg< 1, "d1", [S2, S3]>;
def D2 : ARMReg< 2, "d2", [S4, S5]>;
def D3 : ARMReg< 3, "d3", [S6, S7]>;
def D4 : ARMReg< 4, "d4", [S8, S9]>;
@@ -78,18 +79,18 @@ def D14 : ARMReg<14, "d14", [S28, S29]>;
def D15 : ARMReg<15, "d15", [S30, S31]>;
// VFP3 defines 16 additional double registers
-def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d16">;
-def D18 : ARMFReg<18, "d16">; def D19 : ARMFReg<19, "d16">;
-def D20 : ARMFReg<20, "d16">; def D21 : ARMFReg<21, "d16">;
-def D22 : ARMFReg<22, "d16">; def D23 : ARMFReg<23, "d16">;
-def D24 : ARMFReg<24, "d16">; def D25 : ARMFReg<25, "d16">;
-def D26 : ARMFReg<26, "d16">; def D27 : ARMFReg<27, "d16">;
-def D28 : ARMFReg<28, "d16">; def D29 : ARMFReg<29, "d16">;
-def D30 : ARMFReg<30, "d16">; def D31 : ARMFReg<31, "d16">;
+def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">;
+def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">;
+def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">;
+def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">;
+def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">;
+def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">;
+def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">;
+def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">;
// Advanced SIMD (NEON) defines 16 quad-word aliases
def Q0 : ARMReg< 0, "q0", [D0, D1]>;
-def Q1 : ARMReg< 1, "q1", [D2, D3]>;
+def Q1 : ARMReg< 1, "q1", [D2, D3]>;
def Q2 : ARMReg< 2, "q2", [D4, D5]>;
def Q3 : ARMReg< 3, "q3", [D6, D7]>;
def Q4 : ARMReg< 4, "q4", [D8, D9]>;
@@ -106,7 +107,9 @@ def Q14 : ARMReg<14, "q14", [D28, D29]>;
def Q15 : ARMReg<15, "q15", [D30, D31]>;
// Current Program Status Register.
-def CPSR : ARMReg<0, "cpsr">;
+def CPSR : ARMReg<0, "cpsr">;
+
+def FPSCR : ARMReg<1, "fpscr">;
// Register classes.
//
@@ -158,6 +161,13 @@ def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R10,ARM::R11,
ARM::R7 };
+ // FP is R7, R9 is available as callee-saved register.
+ // This is used by non-Darwin platform in Thumb mode.
+ static const unsigned ARM_GPR_AO_5[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3,
+ ARM::R12,ARM::LR,
+ ARM::R4, ARM::R5, ARM::R6,
+ ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 };
GPRClass::iterator
GPRClass::allocation_order_begin(const MachineFunction &MF) const {
@@ -171,6 +181,8 @@ def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
} else {
if (Subtarget.isR9Reserved())
return ARM_GPR_AO_2;
+ else if (Subtarget.isThumb())
+ return ARM_GPR_AO_5;
else
return ARM_GPR_AO_1;
}
@@ -191,6 +203,8 @@ def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
} else {
if (Subtarget.isR9Reserved())
I = ARM_GPR_AO_2 + (sizeof(ARM_GPR_AO_2)/sizeof(unsigned));
+ else if (Subtarget.isThumb())
+ I = ARM_GPR_AO_5 + (sizeof(ARM_GPR_AO_5)/sizeof(unsigned));
else
I = ARM_GPR_AO_1 + (sizeof(ARM_GPR_AO_1)/sizeof(unsigned));
}
@@ -240,32 +254,45 @@ def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
S23, S24, S25, S26, S27, S28, S29, S30, S31]>;
+// Subset of SPR which can be used as a source of NEON scalars for 16-bit
+// operations
+def SPR_8 : RegisterClass<"ARM", [f32], 32,
+ [S0, S1, S2, S3, S4, S5, S6, S7,
+ S8, S9, S10, S11, S12, S13, S14, S15]>;
+
+// Dummy f32 regclass to represent impossible subreg indices.
+def SPR_INVALID : RegisterClass<"ARM", [f32], 32, [SDummy]> {
+ let CopyCost = -1;
+}
+
// Scalar double precision floating point / generic 64-bit vector register
// class.
// ARM requires only word alignment for double. It's more performant if it
// is double-word alignment though.
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
[D0, D1, D2, D3, D4, D5, D6, D7,
- D8, D9, D10, D11, D12, D13, D14, D15]> {
- let SubRegClassList = [SPR, SPR];
+ D8, D9, D10, D11, D12, D13, D14, D15,
+ D16, D17, D18, D19, D20, D21, D22, D23,
+ D24, D25, D26, D27, D28, D29, D30, D31]> {
+ let SubRegClassList = [SPR_INVALID, SPR_INVALID];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// VFP2
- static const unsigned ARM_DPR_VFP2[] = {
- ARM::D0, ARM::D1, ARM::D2, ARM::D3,
- ARM::D4, ARM::D5, ARM::D6, ARM::D7,
- ARM::D8, ARM::D9, ARM::D10, ARM::D11,
+ static const unsigned ARM_DPR_VFP2[] = {
+ ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7,
+ ARM::D8, ARM::D9, ARM::D10, ARM::D11,
ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
// VFP3
static const unsigned ARM_DPR_VFP3[] = {
- ARM::D0, ARM::D1, ARM::D2, ARM::D3,
- ARM::D4, ARM::D5, ARM::D6, ARM::D7,
- ARM::D8, ARM::D9, ARM::D10, ARM::D11,
+ ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7,
+ ARM::D8, ARM::D9, ARM::D10, ARM::D11,
ARM::D12, ARM::D13, ARM::D14, ARM::D15,
- ARM::D16, ARM::D17, ARM::D18, ARM::D15,
+ ARM::D16, ARM::D17, ARM::D18, ARM::D19,
ARM::D20, ARM::D21, ARM::D22, ARM::D23,
ARM::D24, ARM::D25, ARM::D26, ARM::D27,
ARM::D28, ARM::D29, ARM::D30, ARM::D31 };
@@ -290,11 +317,34 @@ def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
}];
}
+// Subset of DPR that are accessible with VFP2 (and so that also have
+// 32-bit SPR subregs).
+def DPR_VFP2 : RegisterClass<"ARM", [f64, v2i32, v2f32], 64,
+ [D0, D1, D2, D3, D4, D5, D6, D7,
+ D8, D9, D10, D11, D12, D13, D14, D15]> {
+ let SubRegClassList = [SPR, SPR];
+}
+
+// Subset of DPR which can be used as a source of NEON scalars for 16-bit
+// operations
+def DPR_8 : RegisterClass<"ARM", [f64, v4i16, v2f32], 64,
+ [D0, D1, D2, D3, D4, D5, D6, D7]> {
+ let SubRegClassList = [SPR_8, SPR_8];
+}
+
// Generic 128-bit vector register class.
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15]> {
- let SubRegClassList = [SPR, SPR, SPR, SPR, DPR, DPR];
+ let SubRegClassList = [SPR_INVALID, SPR_INVALID, SPR_INVALID, SPR_INVALID,
+ DPR, DPR];
+}
+
+// Subset of QPR that have 32-bit SPR subregs.
+def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ 128,
+ [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]> {
+ let SubRegClassList = [SPR, SPR, SPR, SPR, DPR_VFP2, DPR_VFP2];
}
// Condition code registers.
@@ -341,4 +391,3 @@ def : SubRegSet<6, [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15],
[D1, D3, D5, D7, D9, D11, D13, D15,
D17, D19, D21, D23, D25, D27, D29, D31]>;
-
diff --git a/lib/Target/ARM/ARMSchedule.td b/lib/Target/ARM/ARMSchedule.td
index 75fa707..fc4c5f5 100644
--- a/lib/Target/ARM/ARMSchedule.td
+++ b/lib/Target/ARM/ARMSchedule.td
@@ -10,26 +10,151 @@
//===----------------------------------------------------------------------===//
// Functional units across ARM processors
//
-def FU_iALU : FuncUnit; // Integer alu unit
-def FU_iLdSt : FuncUnit; // Integer load / store unit
-def FU_FpALU : FuncUnit; // FP alu unit
-def FU_FpLdSt : FuncUnit; // FP load / store unit
-def FU_Br : FuncUnit; // Branch unit
+def FU_Issue : FuncUnit; // issue
+def FU_Pipe0 : FuncUnit; // pipeline 0
+def FU_Pipe1 : FuncUnit; // pipeline 1
+def FU_LdSt0 : FuncUnit; // pipeline 0 load/store
+def FU_LdSt1 : FuncUnit; // pipeline 1 load/store
+def FU_NPipe : FuncUnit; // NEON ALU/MUL pipe
+def FU_NLSPipe : FuncUnit; // NEON LS pipe
//===----------------------------------------------------------------------===//
// Instruction Itinerary classes used for ARM
//
-def IIC_iALU : InstrItinClass;
-def IIC_iLoad : InstrItinClass;
-def IIC_iStore : InstrItinClass;
-def IIC_fpALU : InstrItinClass;
-def IIC_fpLoad : InstrItinClass;
-def IIC_fpStore : InstrItinClass;
-def IIC_Br : InstrItinClass;
+def IIC_iALUx : InstrItinClass;
+def IIC_iALUi : InstrItinClass;
+def IIC_iALUr : InstrItinClass;
+def IIC_iALUsi : InstrItinClass;
+def IIC_iALUsr : InstrItinClass;
+def IIC_iUNAr : InstrItinClass;
+def IIC_iUNAsi : InstrItinClass;
+def IIC_iUNAsr : InstrItinClass;
+def IIC_iCMPi : InstrItinClass;
+def IIC_iCMPr : InstrItinClass;
+def IIC_iCMPsi : InstrItinClass;
+def IIC_iCMPsr : InstrItinClass;
+def IIC_iMOVi : InstrItinClass;
+def IIC_iMOVr : InstrItinClass;
+def IIC_iMOVsi : InstrItinClass;
+def IIC_iMOVsr : InstrItinClass;
+def IIC_iCMOVi : InstrItinClass;
+def IIC_iCMOVr : InstrItinClass;
+def IIC_iCMOVsi : InstrItinClass;
+def IIC_iCMOVsr : InstrItinClass;
+def IIC_iMUL16 : InstrItinClass;
+def IIC_iMAC16 : InstrItinClass;
+def IIC_iMUL32 : InstrItinClass;
+def IIC_iMAC32 : InstrItinClass;
+def IIC_iMUL64 : InstrItinClass;
+def IIC_iMAC64 : InstrItinClass;
+def IIC_iLoadi : InstrItinClass;
+def IIC_iLoadr : InstrItinClass;
+def IIC_iLoadsi : InstrItinClass;
+def IIC_iLoadiu : InstrItinClass;
+def IIC_iLoadru : InstrItinClass;
+def IIC_iLoadsiu : InstrItinClass;
+def IIC_iLoadm : InstrItinClass;
+def IIC_iStorei : InstrItinClass;
+def IIC_iStorer : InstrItinClass;
+def IIC_iStoresi : InstrItinClass;
+def IIC_iStoreiu : InstrItinClass;
+def IIC_iStoreru : InstrItinClass;
+def IIC_iStoresiu : InstrItinClass;
+def IIC_iStorem : InstrItinClass;
+def IIC_Br : InstrItinClass;
+def IIC_fpSTAT : InstrItinClass;
+def IIC_fpUNA32 : InstrItinClass;
+def IIC_fpUNA64 : InstrItinClass;
+def IIC_fpCMP32 : InstrItinClass;
+def IIC_fpCMP64 : InstrItinClass;
+def IIC_fpCVTSD : InstrItinClass;
+def IIC_fpCVTDS : InstrItinClass;
+def IIC_fpCVTIS : InstrItinClass;
+def IIC_fpCVTID : InstrItinClass;
+def IIC_fpCVTSI : InstrItinClass;
+def IIC_fpCVTDI : InstrItinClass;
+def IIC_fpALU32 : InstrItinClass;
+def IIC_fpALU64 : InstrItinClass;
+def IIC_fpMUL32 : InstrItinClass;
+def IIC_fpMUL64 : InstrItinClass;
+def IIC_fpMAC32 : InstrItinClass;
+def IIC_fpMAC64 : InstrItinClass;
+def IIC_fpDIV32 : InstrItinClass;
+def IIC_fpDIV64 : InstrItinClass;
+def IIC_fpSQRT32 : InstrItinClass;
+def IIC_fpSQRT64 : InstrItinClass;
+def IIC_fpLoad32 : InstrItinClass;
+def IIC_fpLoad64 : InstrItinClass;
+def IIC_fpLoadm : InstrItinClass;
+def IIC_fpStore32 : InstrItinClass;
+def IIC_fpStore64 : InstrItinClass;
+def IIC_fpStorem : InstrItinClass;
+def IIC_VLD1 : InstrItinClass;
+def IIC_VLD2 : InstrItinClass;
+def IIC_VLD3 : InstrItinClass;
+def IIC_VLD4 : InstrItinClass;
+def IIC_VST : InstrItinClass;
+def IIC_VUNAD : InstrItinClass;
+def IIC_VUNAQ : InstrItinClass;
+def IIC_VBIND : InstrItinClass;
+def IIC_VBINQ : InstrItinClass;
+def IIC_VMOVImm : InstrItinClass;
+def IIC_VMOVD : InstrItinClass;
+def IIC_VMOVQ : InstrItinClass;
+def IIC_VMOVIS : InstrItinClass;
+def IIC_VMOVID : InstrItinClass;
+def IIC_VMOVISL : InstrItinClass;
+def IIC_VMOVSI : InstrItinClass;
+def IIC_VMOVDI : InstrItinClass;
+def IIC_VPERMD : InstrItinClass;
+def IIC_VPERMQ : InstrItinClass;
+def IIC_VPERMQ3 : InstrItinClass;
+def IIC_VMACD : InstrItinClass;
+def IIC_VMACQ : InstrItinClass;
+def IIC_VRECSD : InstrItinClass;
+def IIC_VRECSQ : InstrItinClass;
+def IIC_VCNTiD : InstrItinClass;
+def IIC_VCNTiQ : InstrItinClass;
+def IIC_VUNAiD : InstrItinClass;
+def IIC_VUNAiQ : InstrItinClass;
+def IIC_VQUNAiD : InstrItinClass;
+def IIC_VQUNAiQ : InstrItinClass;
+def IIC_VBINiD : InstrItinClass;
+def IIC_VBINiQ : InstrItinClass;
+def IIC_VSUBiD : InstrItinClass;
+def IIC_VSUBiQ : InstrItinClass;
+def IIC_VBINi4D : InstrItinClass;
+def IIC_VBINi4Q : InstrItinClass;
+def IIC_VSHLiD : InstrItinClass;
+def IIC_VSHLiQ : InstrItinClass;
+def IIC_VSHLi4D : InstrItinClass;
+def IIC_VSHLi4Q : InstrItinClass;
+def IIC_VPALiD : InstrItinClass;
+def IIC_VPALiQ : InstrItinClass;
+def IIC_VMULi16D : InstrItinClass;
+def IIC_VMULi32D : InstrItinClass;
+def IIC_VMULi16Q : InstrItinClass;
+def IIC_VMULi32Q : InstrItinClass;
+def IIC_VMACi16D : InstrItinClass;
+def IIC_VMACi32D : InstrItinClass;
+def IIC_VMACi16Q : InstrItinClass;
+def IIC_VMACi32Q : InstrItinClass;
+def IIC_VEXTD : InstrItinClass;
+def IIC_VEXTQ : InstrItinClass;
+def IIC_VTB1 : InstrItinClass;
+def IIC_VTB2 : InstrItinClass;
+def IIC_VTB3 : InstrItinClass;
+def IIC_VTB4 : InstrItinClass;
+def IIC_VTBX1 : InstrItinClass;
+def IIC_VTBX2 : InstrItinClass;
+def IIC_VTBX3 : InstrItinClass;
+def IIC_VTBX4 : InstrItinClass;
//===----------------------------------------------------------------------===//
// Processor instruction itineraries.
def GenericItineraries : ProcessorItineraries<[]>;
+
include "ARMScheduleV6.td"
+include "ARMScheduleV7.td"
diff --git a/lib/Target/ARM/ARMScheduleV6.td b/lib/Target/ARM/ARMScheduleV6.td
index 596a57f..1ace718 100644
--- a/lib/Target/ARM/ARMScheduleV6.td
+++ b/lib/Target/ARM/ARMScheduleV6.td
@@ -1,4 +1,4 @@
-//===- ARMSchedule.td - ARM v6 Scheduling Definitions ------*- tablegen -*-===//
+//===- ARMScheduleV6.td - ARM v6 Scheduling Definitions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
@@ -11,12 +11,4 @@
//
//===----------------------------------------------------------------------===//
-def V6Itineraries : ProcessorItineraries<[
- InstrItinData<IIC_iALU , [InstrStage<1, [FU_iALU]>]>,
- InstrItinData<IIC_iLoad , [InstrStage<2, [FU_iLdSt]>]>,
- InstrItinData<IIC_iStore , [InstrStage<1, [FU_iLdSt]>]>,
- InstrItinData<IIC_fpALU , [InstrStage<6, [FU_FpALU]>]>,
- InstrItinData<IIC_fpLoad , [InstrStage<2, [FU_FpLdSt]>]>,
- InstrItinData<IIC_fpStore , [InstrStage<1, [FU_FpLdSt]>]>,
- InstrItinData<IIC_Br , [InstrStage<3, [FU_Br]>]>
-]>;
+// TODO: Add model for an ARM11
diff --git a/lib/Target/ARM/ARMScheduleV7.td b/lib/Target/ARM/ARMScheduleV7.td
new file mode 100644
index 0000000..e565813
--- /dev/null
+++ b/lib/Target/ARM/ARMScheduleV7.td
@@ -0,0 +1,587 @@
+//===- ARMScheduleV7.td - ARM v7 Scheduling Definitions ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the ARM v7 processors.
+//
+//===----------------------------------------------------------------------===//
+
+//
+// Scheduling information derived from "Cortex-A8 Technical Reference Manual".
+//
+// Dual issue pipeline represented by FU_Pipe0 | FU_Pipe1
+//
+def CortexA8Itineraries : ProcessorItineraries<[
+
+ // Two fully-pipelined integer ALU pipelines
+ //
+ // No operand cycles
+ InstrItinData<IIC_iALUx , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
+ //
+ // Binary Instructions that produce a result
+ InstrItinData<IIC_iALUi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iALUr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2, 2]>,
+ InstrItinData<IIC_iALUsi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2, 1]>,
+ InstrItinData<IIC_iALUsr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2, 1, 1]>,
+ //
+ // Unary Instructions that produce a result
+ InstrItinData<IIC_iUNAr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iUNAsi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iUNAsr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1, 1]>,
+ //
+ // Compare instructions
+ InstrItinData<IIC_iCMPi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2]>,
+ InstrItinData<IIC_iCMPr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 2]>,
+ InstrItinData<IIC_iCMPsi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMPsr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1, 1]>,
+ //
+ // Move instructions, unconditional
+ InstrItinData<IIC_iMOVi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [1]>,
+ InstrItinData<IIC_iMOVr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [1, 1]>,
+ InstrItinData<IIC_iMOVsr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [1, 1, 1]>,
+ //
+ // Move instructions, conditional
+ InstrItinData<IIC_iCMOVi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2]>,
+ InstrItinData<IIC_iCMOVr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMOVsi , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1]>,
+ InstrItinData<IIC_iCMOVsr , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>], [2, 1, 1]>,
+
+ // Integer multiply pipeline
+ // Result written in E5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ //
+ InstrItinData<IIC_iMUL16 , [InstrStage<1, [FU_Pipe0]>], [5, 1, 1]>,
+ InstrItinData<IIC_iMAC16 , [InstrStage<1, [FU_Pipe1], 0>,
+ InstrStage<2, [FU_Pipe0]>], [6, 1, 1, 4]>,
+ InstrItinData<IIC_iMUL32 , [InstrStage<1, [FU_Pipe1], 0>,
+ InstrStage<2, [FU_Pipe0]>], [6, 1, 1]>,
+ InstrItinData<IIC_iMAC32 , [InstrStage<1, [FU_Pipe1], 0>,
+ InstrStage<2, [FU_Pipe0]>], [6, 1, 1, 4]>,
+ InstrItinData<IIC_iMUL64 , [InstrStage<2, [FU_Pipe1], 0>,
+ InstrStage<3, [FU_Pipe0]>], [6, 6, 1, 1]>,
+ InstrItinData<IIC_iMAC64 , [InstrStage<2, [FU_Pipe1], 0>,
+ InstrStage<3, [FU_Pipe0]>], [6, 6, 1, 1]>,
+
+ // Integer load pipeline
+ //
+ // loads have an extra cycle of latency, but are fully pipelined
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ //
+ // Immediate offset
+ InstrItinData<IIC_iLoadi , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iLoadr , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ InstrItinData<IIC_iLoadsi , [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [4, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iLoadiu , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 2, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iLoadru , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 2, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iLoadsiu , [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [4, 3, 1, 1]>,
+ //
+ // Load multiple
+ InstrItinData<IIC_iLoadm , [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<2, [FU_Pipe0], 0>,
+ InstrStage<2, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>]>,
+
+ // Integer store pipeline
+ //
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ //
+ // Immediate offset
+ InstrItinData<IIC_iStorei , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 1]>,
+ //
+ // Register offset
+ InstrItinData<IIC_iStorer , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>,
+ //
+ // Scaled register offset, issues over 2 cycles
+ InstrItinData<IIC_iStoresi , [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>,
+ //
+ // Immediate offset with update
+ InstrItinData<IIC_iStoreiu , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [2, 3, 1]>,
+ //
+ // Register offset with update
+ InstrItinData<IIC_iStoreru , [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [2, 3, 1, 1]>,
+ //
+ // Scaled register offset with update, issues over 2 cycles
+ InstrItinData<IIC_iStoresiu, [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>], [3, 3, 1, 1]>,
+ //
+ // Store multiple
+ InstrItinData<IIC_iStorem , [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<2, [FU_Pipe0], 0>,
+ InstrStage<2, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0]>]>,
+
+ // Branch
+ //
+ // no delay slots, so the latency of a branch is unimportant
+ InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>]>,
+
+ // VFP
+ // Issue through integer pipeline, and execute in NEON unit. We assume
+ // RunFast mode so that NFP pipeline is used for single-precision when
+ // possible.
+ //
+ // FP Special Register to Integer Register File Move
+ InstrItinData<IIC_fpSTAT , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP Unary
+ InstrItinData<IIC_fpUNA32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP Unary
+ InstrItinData<IIC_fpUNA64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<4, [FU_NPipe], 0>,
+ InstrStage<4, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP Compare
+ InstrItinData<IIC_fpCMP32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP Compare
+ InstrItinData<IIC_fpCMP64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<4, [FU_NPipe], 0>,
+ InstrStage<4, [FU_NLSPipe]>]>,
+ //
+ // Single to Double FP Convert
+ InstrItinData<IIC_fpCVTSD , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<7, [FU_NPipe], 0>,
+ InstrStage<7, [FU_NLSPipe]>]>,
+ //
+ // Double to Single FP Convert
+ InstrItinData<IIC_fpCVTDS , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<5, [FU_NPipe], 0>,
+ InstrStage<5, [FU_NLSPipe]>]>,
+ //
+ // Single-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTSI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-Precision FP to Integer Convert
+ InstrItinData<IIC_fpCVTDI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<8, [FU_NPipe], 0>,
+ InstrStage<8, [FU_NLSPipe]>]>,
+ //
+ // Integer to Single-Precision FP Convert
+ InstrItinData<IIC_fpCVTIS , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Integer to Double-Precision FP Convert
+ InstrItinData<IIC_fpCVTID , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<8, [FU_NPipe], 0>,
+ InstrStage<8, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP ALU
+ InstrItinData<IIC_fpALU32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP ALU
+ InstrItinData<IIC_fpALU64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<9, [FU_NPipe], 0>,
+ InstrStage<9, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP Multiply
+ InstrItinData<IIC_fpMUL32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP Multiply
+ InstrItinData<IIC_fpMUL64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<11, [FU_NPipe], 0>,
+ InstrStage<11, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP MAC
+ InstrItinData<IIC_fpMAC32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [7, 1]>,
+ //
+ // Double-precision FP MAC
+ InstrItinData<IIC_fpMAC64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<19, [FU_NPipe], 0>,
+ InstrStage<19, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP DIV
+ InstrItinData<IIC_fpDIV32 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<20, [FU_NPipe], 0>,
+ InstrStage<20, [FU_NLSPipe]>]>,
+ //
+ // Double-precision FP DIV
+ InstrItinData<IIC_fpDIV64 , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<29, [FU_NPipe], 0>,
+ InstrStage<29, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP SQRT
+ InstrItinData<IIC_fpSQRT32, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<19, [FU_NPipe], 0>,
+ InstrStage<19, [FU_NLSPipe]>]>,
+ //
+ // Double-precision FP SQRT
+ InstrItinData<IIC_fpSQRT64, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<29, [FU_NPipe], 0>,
+ InstrStage<29, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP Load
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpLoad32, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // Double-precision FP Load
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpLoad64, [InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // FP Load Multiple
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpLoadm, [InstrStage<3, [FU_Issue], 0>,
+ InstrStage<2, [FU_Pipe0], 0>,
+ InstrStage<2, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // Single-precision FP Store
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpStore32,[InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // Double-precision FP Store
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpStore64,[InstrStage<2, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0], 0>,
+ InstrStage<1, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // FP Store Multiple
+ // use FU_Issue to enforce the 1 load/store per cycle limit
+ InstrItinData<IIC_fpStorem, [InstrStage<3, [FU_Issue], 0>,
+ InstrStage<2, [FU_Pipe0], 0>,
+ InstrStage<2, [FU_Pipe1]>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+
+ // NEON
+ // Issue through integer pipeline, and execute in NEON unit.
+ //
+ // VLD1
+ InstrItinData<IIC_VLD1, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // VLD2
+ InstrItinData<IIC_VLD2, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 2, 1]>,
+ //
+ // VLD3
+ InstrItinData<IIC_VLD3, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 2, 2, 1]>,
+ //
+ // VLD4
+ InstrItinData<IIC_VLD4, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 2, 2, 2, 1]>,
+ //
+ // VST
+ InstrItinData<IIC_VST, [InstrStage<1, [FU_Issue], 0>,
+ InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_LdSt0], 0>,
+ InstrStage<1, [FU_NLSPipe]>]>,
+ //
+ // Double-register FP Unary
+ InstrItinData<IIC_VUNAD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [5, 2]>,
+ //
+ // Quad-register FP Unary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ InstrItinData<IIC_VUNAQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [6, 2]>,
+ //
+ // Double-register FP Binary
+ InstrItinData<IIC_VBIND, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [5, 2, 2]>,
+ //
+ // Quad-register FP Binary
+ // Result written in N5, but that is relative to the last cycle of multicycle,
+ // so we use 6 for those cases
+ InstrItinData<IIC_VBINQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [6, 2, 2]>,
+ //
+ // Move Immediate
+ InstrItinData<IIC_VMOVImm, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3]>,
+ //
+ // Double-register Permute Move
+ InstrItinData<IIC_VMOVD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 1]>,
+ //
+ // Quad-register Permute Move
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 3 for those cases
+ InstrItinData<IIC_VMOVQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 1]>,
+ //
+ // Integer to Single-precision Move
+ InstrItinData<IIC_VMOVIS , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 1]>,
+ //
+ // Integer to Double-precision Move
+ InstrItinData<IIC_VMOVID , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 1, 1]>,
+ //
+ // Single-precision to Integer Move
+ InstrItinData<IIC_VMOVSI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [20, 1]>,
+ //
+ // Double-precision to Integer Move
+ InstrItinData<IIC_VMOVDI , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [20, 20, 1]>,
+ //
+ // Integer to Lane Move
+ InstrItinData<IIC_VMOVISL , [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 1, 1]>,
+ //
+ // Double-register Permute
+ InstrItinData<IIC_VPERMD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 2, 1, 1]>,
+ //
+ // Quad-register Permute
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 3 for those cases
+ InstrItinData<IIC_VPERMQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 3, 1, 1]>,
+ //
+ // Quad-register Permute (3 cycle issue)
+ // Result written in N2, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VPERMQ3, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>,
+ InstrStage<1, [FU_NPipe], 0>,
+ InstrStage<2, [FU_NLSPipe]>], [4, 4, 1, 1]>,
+ //
+ // Double-register FP Multiple-Accumulate
+ InstrItinData<IIC_VMACD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [9, 2, 2, 3]>,
+ //
+ // Quad-register FP Multiple-Accumulate
+ // Result written in N9, but that is relative to the last cycle of multicycle,
+ // so we use 10 for those cases
+ InstrItinData<IIC_VMACQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [10, 2, 2, 3]>,
+ //
+ // Double-register Reciprical Step
+ InstrItinData<IIC_VRECSD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [9, 2, 2]>,
+ //
+ // Quad-register Reciprical Step
+ InstrItinData<IIC_VRECSQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [10, 2, 2]>,
+ //
+ // Double-register Integer Count
+ InstrItinData<IIC_VCNTiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 2, 2]>,
+ //
+ // Quad-register Integer Count
+ // Result written in N3, but that is relative to the last cycle of multicycle,
+ // so we use 4 for those cases
+ InstrItinData<IIC_VCNTiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [4, 2, 2]>,
+ //
+ // Double-register Integer Unary
+ InstrItinData<IIC_VUNAiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 2]>,
+ //
+ // Quad-register Integer Unary
+ InstrItinData<IIC_VUNAiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 2]>,
+ //
+ // Double-register Integer Q-Unary
+ InstrItinData<IIC_VQUNAiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 1]>,
+ //
+ // Quad-register Integer CountQ-Unary
+ InstrItinData<IIC_VQUNAiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 1]>,
+ //
+ // Double-register Integer Binary
+ InstrItinData<IIC_VBINiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 2, 2]>,
+ //
+ // Quad-register Integer Binary
+ InstrItinData<IIC_VBINiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 2, 2]>,
+ //
+ // Double-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 2, 1]>,
+ //
+ // Quad-register Integer Binary (4 cycle)
+ InstrItinData<IIC_VBINi4Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 2, 1]>,
+ //
+ // Double-register Integer Subtract
+ InstrItinData<IIC_VSUBiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 2, 1]>,
+ //
+ // Quad-register Integer Subtract
+ InstrItinData<IIC_VSUBiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 2, 1]>,
+ //
+ // Double-register Integer Shift
+ InstrItinData<IIC_VSHLiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [3, 1, 1]>,
+ //
+ // Quad-register Integer Shift
+ InstrItinData<IIC_VSHLiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [4, 1, 1]>,
+ //
+ // Double-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [4, 1, 1]>,
+ //
+ // Quad-register Integer Shift (4 cycle)
+ InstrItinData<IIC_VSHLi4Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [5, 1, 1]>,
+ //
+ // Double-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [6, 3, 2, 1]>,
+ //
+ // Quad-register Integer Pair Add Long
+ InstrItinData<IIC_VPALiQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [7, 3, 2, 1]>,
+ //
+ // Double-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [6, 2, 2]>,
+ //
+ // Double-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [7, 2, 1]>,
+ //
+ // Quad-register Integer Multiply (.8, .16)
+ InstrItinData<IIC_VMULi16Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [7, 2, 2]>,
+ //
+ // Quad-register Integer Multiply (.32)
+ InstrItinData<IIC_VMULi32Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>,
+ InstrStage<2, [FU_NLSPipe], 0>,
+ InstrStage<3, [FU_NPipe]>], [9, 2, 1]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>], [6, 2, 2, 3]>,
+ //
+ // Double-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32D, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [7, 2, 1, 3]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.8, .16)
+ InstrItinData<IIC_VMACi16Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NPipe]>], [7, 2, 2, 3]>,
+ //
+ // Quad-register Integer Multiply-Accumulate (.32)
+ InstrItinData<IIC_VMACi32Q, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NPipe]>,
+ InstrStage<2, [FU_NLSPipe], 0>,
+ InstrStage<3, [FU_NPipe]>], [9, 2, 1, 3]>,
+ //
+ // Double-register VEXT
+ InstrItinData<IIC_VEXTD, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>], [2, 1, 1]>,
+ //
+ // Quad-register VEXT
+ InstrItinData<IIC_VEXTQ, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 1, 1]>,
+ //
+ // VTB
+ InstrItinData<IIC_VTB1, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 2, 1]>,
+ InstrItinData<IIC_VTB2, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 2, 2, 1]>,
+ InstrItinData<IIC_VTB3, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>,
+ InstrStage<1, [FU_NPipe], 0>,
+ InstrStage<2, [FU_NLSPipe]>], [4, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTB4, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>,
+ InstrStage<1, [FU_NPipe], 0>,
+ InstrStage<2, [FU_NLSPipe]>], [4, 2, 2, 3, 3, 1]>,
+ //
+ // VTBX
+ InstrItinData<IIC_VTBX1, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 1, 2, 1]>,
+ InstrItinData<IIC_VTBX2, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<2, [FU_NLSPipe]>], [3, 1, 2, 2, 1]>,
+ InstrItinData<IIC_VTBX3, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>,
+ InstrStage<1, [FU_NPipe], 0>,
+ InstrStage<2, [FU_NLSPipe]>], [4, 1, 2, 2, 3, 1]>,
+ InstrItinData<IIC_VTBX4, [InstrStage<1, [FU_Pipe0, FU_Pipe1]>,
+ InstrStage<1, [FU_NLSPipe]>,
+ InstrStage<1, [FU_NPipe], 0>,
+ InstrStage<2, [FU_NLSPipe]>], [4, 1, 2, 2, 3, 3, 1]>
+]>;
diff --git a/lib/Target/ARM/ARMSubtarget.cpp b/lib/Target/ARM/ARMSubtarget.cpp
index e611088..cf1ee3f 100644
--- a/lib/Target/ARM/ARMSubtarget.cpp
+++ b/lib/Target/ARM/ARMSubtarget.cpp
@@ -13,8 +13,7 @@
#include "ARMSubtarget.h"
#include "ARMGenSubtarget.inc"
-#include "llvm/Module.h"
-#include "llvm/Target/TargetMachine.h"
+#include "llvm/GlobalValue.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
@@ -22,13 +21,19 @@ using namespace llvm;
static cl::opt<bool>
ReserveR9("arm-reserve-r9", cl::Hidden,
cl::desc("Reserve R9, making it unavailable as GPR"));
+static cl::opt<bool>
+UseNEONFP("arm-use-neon-fp",
+ cl::desc("Use NEON for single-precision FP"),
+ cl::init(false), cl::Hidden);
-ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
+ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &FS,
bool isThumb)
: ARMArchVersion(V4T)
, ARMFPUType(None)
+ , UseNEONForSinglePrecisionFP(UseNEONFP)
, IsThumb(isThumb)
, ThumbMode(Thumb1)
+ , PostRAScheduler(false)
, IsR9Reserved(ReserveR9)
, stackAlignment(4)
, CPUString("generic")
@@ -45,7 +50,6 @@ ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
- const std::string& TT = M.getTargetTriple();
unsigned Len = TT.length();
unsigned Idx = 0;
@@ -75,14 +79,14 @@ ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
}
}
+ // Thumb2 implies at least V6T2.
+ if (ARMArchVersion < V6T2 && ThumbMode >= Thumb2)
+ ARMArchVersion = V6T2;
+
if (Len >= 10) {
if (TT.find("-darwin") != std::string::npos)
// arm-darwin
TargetType = isDarwin;
- } else if (TT.empty()) {
-#if defined(__APPLE__)
- TargetType = isDarwin;
-#endif
}
if (TT.find("eabi") != std::string::npos)
@@ -93,4 +97,61 @@ ARMSubtarget::ARMSubtarget(const Module &M, const std::string &FS,
if (isTargetDarwin())
IsR9Reserved = ReserveR9 | (ARMArchVersion < V6);
+
+ // Set CPU specific features.
+ if (CPUString == "cortex-a8") {
+ PostRAScheduler = true;
+ if (UseNEONFP.getPosition() == 0)
+ UseNEONForSinglePrecisionFP = true;
+ }
+}
+
+/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
+bool
+ARMSubtarget::GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) const {
+ if (RelocM == Reloc::Static)
+ return false;
+
+ // GV with ghost linkage (in JIT lazy compilation mode) do not require an
+ // extra load from stub.
+ bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
+
+ if (!isTargetDarwin()) {
+ // Extra load is needed for all externally visible.
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return false;
+ return true;
+ } else {
+ if (RelocM == Reloc::PIC_) {
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return false;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return true;
+
+ // If symbol visibility is hidden, we have a stub for common symbol
+ // references and external declarations.
+ if (isDecl || GV->hasCommonLinkage())
+ // Hidden $non_lazy_ptr reference.
+ return true;
+
+ return false;
+ } else {
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return false;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return true;
+ }
+ }
+
+ return false;
}
diff --git a/lib/Target/ARM/ARMSubtarget.h b/lib/Target/ARM/ARMSubtarget.h
index 5110b31..7098fd4 100644
--- a/lib/Target/ARM/ARMSubtarget.h
+++ b/lib/Target/ARM/ARMSubtarget.h
@@ -15,11 +15,12 @@
#define ARMSUBTARGET_H
#include "llvm/Target/TargetInstrItineraries.h"
+#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtarget.h"
#include <string>
namespace llvm {
-class Module;
+class GlobalValue;
class ARMSubtarget : public TargetSubtarget {
protected:
@@ -43,12 +44,20 @@ protected:
/// ARMFPUType - Floating Point Unit type.
ARMFPEnum ARMFPUType;
+ /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
+ /// specified. Use the method useNEONForSinglePrecisionFP() to
+ /// determine if NEON should actually be used.
+ bool UseNEONForSinglePrecisionFP;
+
/// IsThumb - True if we are in thumb mode, false if in ARM mode.
bool IsThumb;
/// ThumbMode - Indicates supported Thumb version.
ThumbTypeEnum ThumbMode;
+ /// PostRAScheduler - True if using post-register-allocation scheduler.
+ bool PostRAScheduler;
+
/// IsR9Reserved - True if R9 is a not available as general purpose register.
bool IsR9Reserved;
@@ -61,7 +70,7 @@ protected:
/// Selected instruction itineraries (one entry per itinerary class.)
InstrItineraryData InstrItins;
-
+
public:
enum {
isELF, isDarwin
@@ -73,9 +82,9 @@ protected:
} TargetABI;
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- ARMSubtarget(const Module &M, const std::string &FS, bool isThumb);
+ ARMSubtarget(const std::string &TT, const std::string &FS, bool isThumb);
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
@@ -99,6 +108,8 @@ protected:
bool hasVFP2() const { return ARMFPUType >= VFPv2; }
bool hasVFP3() const { return ARMFPUType >= VFPv3; }
bool hasNEON() const { return ARMFPUType >= NEON; }
+ bool useNEONForSinglePrecisionFP() const {
+ return hasNEON() && UseNEONForSinglePrecisionFP; }
bool isTargetDarwin() const { return TargetType == isDarwin; }
bool isTargetELF() const { return TargetType == isELF; }
@@ -108,14 +119,18 @@ protected:
bool isThumb() const { return IsThumb; }
bool isThumb1Only() const { return IsThumb && (ThumbMode == Thumb1); }
- bool isThumb2() const { return IsThumb && (ThumbMode >= Thumb2); }
+ bool isThumb2() const { return IsThumb && (ThumbMode == Thumb2); }
bool hasThumb2() const { return ThumbMode >= Thumb2; }
bool isR9Reserved() const { return IsR9Reserved; }
const std::string & getCPUString() const { return CPUString; }
+
+ /// enablePostRAScheduler - From TargetSubtarget, return true to
+ /// enable post-RA scheduler.
+ bool enablePostRAScheduler() const { return PostRAScheduler; }
- /// getInstrItins - Return the instruction itineraies based on subtarget
+ /// getInstrItins - Return the instruction itineraies based on subtarget
/// selection.
const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
@@ -123,6 +138,10 @@ protected:
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
unsigned getStackAlignment() const { return stackAlignment; }
+
+ /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect
+ /// symbol.
+ bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) const;
};
} // End llvm namespace
diff --git a/lib/Target/ARM/ARMTargetMachine.cpp b/lib/Target/ARM/ARMTargetMachine.cpp
index 2344733..32ddc20 100644
--- a/lib/Target/ARM/ARMTargetMachine.cpp
+++ b/lib/Target/ARM/ARMTargetMachine.cpp
@@ -11,188 +11,122 @@
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
-#include "ARMTargetAsmInfo.h"
+#include "ARMMCAsmInfo.h"
#include "ARMFrameInfo.h"
#include "ARM.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-static cl::opt<bool> DisableLdStOpti("disable-arm-loadstore-opti", cl::Hidden,
- cl::desc("Disable load store optimization pass"));
-static cl::opt<bool> DisableIfConversion("disable-arm-if-conversion",cl::Hidden,
- cl::desc("Disable if-conversion pass"));
-
-/// ARMTargetMachineModule - Note that this is used on hosts that cannot link
-/// in a library unless there are references into the library. In particular,
-/// it seems that it is not possible to get things to work on Win32 without
-/// this. Though it is unused, do not remove it.
-extern "C" int ARMTargetMachineModule;
-int ARMTargetMachineModule = 0;
-
-// Register the target.
-static RegisterTarget<ARMTargetMachine> X("arm", "ARM");
-static RegisterTarget<ThumbTargetMachine> Y("thumb", "Thumb");
-
-// Force static initialization.
-extern "C" void LLVMInitializeARMTarget() { }
-
-// No assembler printer by default
-ARMBaseTargetMachine::AsmPrinterCtorFn ARMBaseTargetMachine::AsmPrinterCtor = 0;
-
-/// ThumbTargetMachine - Create an Thumb architecture model.
-///
-unsigned ThumbTargetMachine::getJITMatchQuality() {
-#if defined(__thumb__)
- return 10;
-#endif
- return 0;
+static const MCAsmInfo *createMCAsmInfo(const Target &T,
+ const StringRef &TT) {
+ Triple TheTriple(TT);
+ switch (TheTriple.getOS()) {
+ case Triple::Darwin:
+ return new ARMMCAsmInfoDarwin();
+ default:
+ return new ARMELFMCAsmInfo();
+ }
}
-unsigned ThumbTargetMachine::getModuleMatchQuality(const Module &M) {
- std::string TT = M.getTargetTriple();
- // Match thumb-foo-bar, as well as things like thumbv5blah-*
- if (TT.size() >= 6 &&
- (TT.substr(0, 6) == "thumb-" || TT.substr(0, 6) == "thumbv"))
- return 20;
- // If the target triple is something non-thumb, we don't match.
- if (!TT.empty()) return 0;
+extern "C" void LLVMInitializeARMTarget() {
+ // Register the target.
+ RegisterTargetMachine<ARMTargetMachine> X(TheARMTarget);
+ RegisterTargetMachine<ThumbTargetMachine> Y(TheThumbTarget);
- if (M.getEndianness() == Module::LittleEndian &&
- M.getPointerSize() == Module::Pointer32)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
-
- return getJITMatchQuality()/2;
+ // Register the target asm info.
+ RegisterAsmInfoFn A(TheARMTarget, createMCAsmInfo);
+ RegisterAsmInfoFn B(TheThumbTarget, createMCAsmInfo);
}
/// TargetMachine ctor - Create an ARM architecture model.
///
-ARMBaseTargetMachine::ARMBaseTargetMachine(const Module &M,
+ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T,
+ const std::string &TT,
const std::string &FS,
bool isThumb)
- : Subtarget(M, FS, isThumb),
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS, isThumb),
FrameInfo(Subtarget),
JITInfo(),
InstrItins(Subtarget.getInstrItineraryData()) {
DefRelocModel = getRelocationModel();
}
-ARMTargetMachine::ARMTargetMachine(const Module &M, const std::string &FS)
- : ARMBaseTargetMachine(M, FS, false), InstrInfo(Subtarget),
+ARMTargetMachine::ARMTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : ARMBaseTargetMachine(T, TT, FS, false), InstrInfo(Subtarget),
DataLayout(Subtarget.isAPCS_ABI() ?
std::string("e-p:32:32-f64:32:32-i64:32:32") :
std::string("e-p:32:32-f64:64:64-i64:64:64")),
TLInfo(*this) {
}
-ThumbTargetMachine::ThumbTargetMachine(const Module &M, const std::string &FS)
- : ARMBaseTargetMachine(M, FS, true),
+ThumbTargetMachine::ThumbTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : ARMBaseTargetMachine(T, TT, FS, true),
+ InstrInfo(Subtarget.hasThumb2()
+ ? ((ARMBaseInstrInfo*)new Thumb2InstrInfo(Subtarget))
+ : ((ARMBaseInstrInfo*)new Thumb1InstrInfo(Subtarget))),
DataLayout(Subtarget.isAPCS_ABI() ?
std::string("e-p:32:32-f64:32:32-i64:32:32-"
"i16:16:32-i8:8:32-i1:8:32-a:0:32") :
std::string("e-p:32:32-f64:64:64-i64:64:64-"
"i16:16:32-i8:8:32-i1:8:32-a:0:32")),
TLInfo(*this) {
- // Create the approriate type of Thumb InstrInfo
- if (Subtarget.hasThumb2())
- InstrInfo = new Thumb2InstrInfo(Subtarget);
- else
- InstrInfo = new Thumb1InstrInfo(Subtarget);
-}
-
-unsigned ARMTargetMachine::getJITMatchQuality() {
-#if defined(__arm__)
- return 10;
-#endif
- return 0;
-}
-
-unsigned ARMTargetMachine::getModuleMatchQuality(const Module &M) {
- std::string TT = M.getTargetTriple();
- // Match arm-foo-bar, as well as things like armv5blah-*
- if (TT.size() >= 4 &&
- (TT.substr(0, 4) == "arm-" || TT.substr(0, 4) == "armv"))
- return 20;
- // If the target triple is something non-arm, we don't match.
- if (!TT.empty()) return 0;
-
- if (M.getEndianness() == Module::LittleEndian &&
- M.getPointerSize() == Module::Pointer32)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
-
- return getJITMatchQuality()/2;
}
-const TargetAsmInfo *ARMBaseTargetMachine::createTargetAsmInfo() const {
- switch (Subtarget.TargetType) {
- case ARMSubtarget::isDarwin:
- return new ARMDarwinTargetAsmInfo(*this);
- case ARMSubtarget::isELF:
- return new ARMELFTargetAsmInfo(*this);
- default:
- return new ARMGenericTargetAsmInfo(*this);
- }
-}
-
// Pass Pipeline Configuration
bool ARMBaseTargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
- PM.add(createARMISelDag(*this));
+ PM.add(createARMISelDag(*this, OptLevel));
return false;
}
bool ARMBaseTargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
- // FIXME: temporarily disabling load / store optimization pass for Thumb mode.
- if (OptLevel != CodeGenOpt::None && !DisableLdStOpti && !Subtarget.isThumb())
+ if (Subtarget.hasNEON())
+ PM.add(createNEONPreAllocPass());
+
+ // FIXME: temporarily disabling load / store optimization pass for Thumb1.
+ if (OptLevel != CodeGenOpt::None && !Subtarget.isThumb1Only())
PM.add(createARMLoadStoreOptimizationPass(true));
return true;
}
-bool ARMBaseTargetMachine::addPreEmitPass(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel) {
- // FIXME: temporarily disabling load / store optimization pass for Thumb mode.
- if (OptLevel != CodeGenOpt::None && !DisableLdStOpti && !Subtarget.isThumb())
+bool ARMBaseTargetMachine::addPreSched2(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel) {
+ // FIXME: temporarily disabling load / store optimization pass for Thumb1.
+ if (OptLevel != CodeGenOpt::None && !Subtarget.isThumb1Only())
PM.add(createARMLoadStoreOptimizationPass());
- if (OptLevel != CodeGenOpt::None &&
- !DisableIfConversion && !Subtarget.isThumb())
- PM.add(createIfConverterPass());
-
- PM.add(createARMConstantIslandPass());
return true;
}
-bool ARMBaseTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // Output assembly language.
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
+bool ARMBaseTargetMachine::addPreEmitPass(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel) {
+ // FIXME: temporarily disabling load / store optimization pass for Thumb1.
+ if (OptLevel != CodeGenOpt::None && !Subtarget.isThumb1Only())
+ PM.add(createIfConverterPass());
+
+ if (Subtarget.isThumb2()) {
+ PM.add(createThumb2ITBlockPass());
+ PM.add(createThumb2SizeReductionPass());
+ }
- return false;
+ PM.add(createARMConstantIslandPass());
+ return true;
}
-
bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
// FIXME: Move this to TargetJITInfo!
if (DefRelocModel == Reloc::Default)
@@ -200,18 +134,11 @@ bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
// Machine code emitter pass for ARM.
PM.add(createARMCodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
// FIXME: Move this to TargetJITInfo!
if (DefRelocModel == Reloc::Default)
@@ -219,43 +146,42 @@ bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
// Machine code emitter pass for ARM.
PM.add(createARMJITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
+ return false;
+}
+
+bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ // FIXME: Move this to TargetJITInfo!
+ if (DefRelocModel == Reloc::Default)
+ setRelocationModel(Reloc::Static);
+ // Machine code emitter pass for ARM.
+ PM.add(createARMObjectCodeEmitterPass(*this, OCE));
return false;
}
bool ARMBaseTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
// Machine code emitter pass for ARM.
PM.add(createARMCodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
bool ARMBaseTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
// Machine code emitter pass for ARM.
PM.add(createARMJITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
+bool ARMBaseTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ // Machine code emitter pass for ARM.
+ PM.add(createARMObjectCodeEmitterPass(*this, OCE));
+ return false;
+}
diff --git a/lib/Target/ARM/ARMTargetMachine.h b/lib/Target/ARM/ARMTargetMachine.h
index a0df54d..71a5348 100644
--- a/lib/Target/ARM/ARMTargetMachine.h
+++ b/lib/Target/ARM/ARMTargetMachine.h
@@ -16,7 +16,6 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetFrameInfo.h"
#include "ARMInstrInfo.h"
#include "ARMFrameInfo.h"
#include "ARMJITInfo.h"
@@ -27,8 +26,6 @@
namespace llvm {
-class Module;
-
class ARMBaseTargetMachine : public LLVMTargetMachine {
protected:
ARMSubtarget Subtarget;
@@ -39,16 +36,9 @@ private:
InstrItineraryData InstrItins;
Reloc::Model DefRelocModel; // Reloc model before it's overridden.
-protected:
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- ARMBaseTargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- ARMBaseTargetMachine(const Module &M, const std::string &FS, bool isThumb);
+ ARMBaseTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool isThumb);
virtual const ARMFrameInfo *getFrameInfo() const { return &FrameInfo; }
virtual ARMJITInfo *getJITInfo() { return &JITInfo; }
@@ -57,34 +47,26 @@ public:
return InstrItins;
}
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
-
- static unsigned getModuleMatchQuality(const Module &M);
- static unsigned getJITMatchQuality();
-
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
+ virtual bool addPreSched2(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ MachineCodeEmitter &MCE);
+ virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
+ JITCodeEmitter &MCE);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &MCE);
+ ObjectCodeEmitter &OCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &MCE);
+ virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE);
};
/// ARMTargetMachine - ARM target machine.
@@ -94,7 +76,8 @@ class ARMTargetMachine : public ARMBaseTargetMachine {
const TargetData DataLayout; // Calculates type size & alignment
ARMTargetLowering TLInfo;
public:
- ARMTargetMachine(const Module &M, const std::string &FS);
+ ARMTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
virtual const ARMRegisterInfo *getRegisterInfo() const {
return &InstrInfo.getRegisterInfo();
@@ -106,9 +89,6 @@ public:
virtual const ARMInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetData *getTargetData() const { return &DataLayout; }
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
};
/// ThumbTargetMachine - Thumb target machine.
@@ -120,7 +100,8 @@ class ThumbTargetMachine : public ARMBaseTargetMachine {
const TargetData DataLayout; // Calculates type size & alignment
ARMTargetLowering TLInfo;
public:
- ThumbTargetMachine(const Module &M, const std::string &FS);
+ ThumbTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
/// returns either Thumb1RegisterInfo of Thumb2RegisterInfo
virtual const ARMBaseRegisterInfo *getRegisterInfo() const {
@@ -134,9 +115,6 @@ public:
/// returns either Thumb1InstrInfo or Thumb2InstrInfo
virtual const ARMBaseInstrInfo *getInstrInfo() const { return InstrInfo; }
virtual const TargetData *getTargetData() const { return &DataLayout; }
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
};
} // end namespace llvm
diff --git a/lib/Target/ARM/ARMTargetObjectFile.h b/lib/Target/ARM/ARMTargetObjectFile.h
new file mode 100644
index 0000000..9703403
--- /dev/null
+++ b/lib/Target/ARM/ARMTargetObjectFile.h
@@ -0,0 +1,39 @@
+//===-- llvm/Target/ARMTargetObjectFile.h - ARM Object Info -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_ARM_TARGETOBJECTFILE_H
+#define LLVM_TARGET_ARM_TARGETOBJECTFILE_H
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/MC/MCSectionELF.h"
+
+namespace llvm {
+
+ class ARMElfTargetObjectFile : public TargetLoweringObjectFileELF {
+ public:
+ ARMElfTargetObjectFile() : TargetLoweringObjectFileELF() {}
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM) {
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+
+ if (TM.getSubtarget<ARMSubtarget>().isAAPCS_ABI()) {
+ StaticCtorSection =
+ getELFSection(".init_array", MCSectionELF::SHT_INIT_ARRAY,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+ StaticDtorSection =
+ getELFSection(".fini_array", MCSectionELF::SHT_FINI_ARRAY,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+ }
+ }
+ };
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/ARM/AsmParser/ARMAsmParser.cpp b/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
new file mode 100644
index 0000000..7438ea9
--- /dev/null
+++ b/lib/Target/ARM/AsmParser/ARMAsmParser.cpp
@@ -0,0 +1,618 @@
+//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmLexer.h"
+#include "llvm/MC/MCAsmParser.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Target/TargetAsmParser.h"
+using namespace llvm;
+
+namespace {
+struct ARMOperand;
+
+// The shift types for register controlled shifts in arm memory addressing
+enum ShiftType {
+ Lsl,
+ Lsr,
+ Asr,
+ Ror,
+ Rrx
+};
+
+class ARMAsmParser : public TargetAsmParser {
+ MCAsmParser &Parser;
+
+private:
+ MCAsmParser &getParser() const { return Parser; }
+
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
+
+ bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+
+ bool ParseRegister(ARMOperand &Op);
+
+ bool ParseRegisterList(ARMOperand &Op);
+
+ bool ParseMemory(ARMOperand &Op);
+
+ bool ParseShift(enum ShiftType *St, const MCExpr *&ShiftAmount);
+
+ bool ParseOperand(ARMOperand &Op);
+
+ bool ParseDirectiveWord(unsigned Size, SMLoc L);
+
+ // TODO - For now hacked versions of the next two are in here in this file to
+ // allow some parser testing until the table gen versions are implemented.
+
+ /// @name Auto-generated Match Functions
+ /// {
+ bool MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
+ MCInst &Inst);
+
+ /// MatchRegisterName - Match the given string to a register name and return
+ /// its register number, or -1 if there is no match. To allow return values
+ /// to be used directly in register lists, arm registers have values between
+ /// 0 and 15.
+ int MatchRegisterName(const StringRef &Name);
+
+ /// }
+
+
+public:
+ ARMAsmParser(const Target &T, MCAsmParser &_Parser)
+ : TargetAsmParser(T), Parser(_Parser) {}
+
+ virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
+
+ virtual bool ParseDirective(AsmToken DirectiveID);
+};
+
+} // end anonymous namespace
+
+namespace {
+
+/// ARMOperand - Instances of this class represent a parsed ARM machine
+/// instruction.
+struct ARMOperand {
+ enum {
+ Token,
+ Register,
+ Immediate,
+ Memory
+ } Kind;
+
+
+ union {
+ struct {
+ const char *Data;
+ unsigned Length;
+ } Tok;
+
+ struct {
+ unsigned RegNum;
+ bool Writeback;
+ } Reg;
+
+ struct {
+ const MCExpr *Val;
+ } Imm;
+
+ // This is for all forms of ARM address expressions
+ struct {
+ unsigned BaseRegNum;
+ bool OffsetIsReg;
+ const MCExpr *Offset; // used when OffsetIsReg is false
+ unsigned OffsetRegNum; // used when OffsetIsReg is true
+ bool OffsetRegShifted; // only used when OffsetIsReg is true
+ enum ShiftType ShiftType; // used when OffsetRegShifted is true
+ const MCExpr *ShiftAmount; // used when OffsetRegShifted is true
+ bool Preindexed;
+ bool Postindexed;
+ bool Negative; // only used when OffsetIsReg is true
+ bool Writeback;
+ } Mem;
+
+ };
+
+ StringRef getToken() const {
+ assert(Kind == Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const {
+ assert(Kind == Register && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ bool isToken() const {return Kind == Token; }
+
+ bool isReg() const { return Kind == Register; }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ static ARMOperand CreateToken(StringRef Str) {
+ ARMOperand Res;
+ Res.Kind = Token;
+ Res.Tok.Data = Str.data();
+ Res.Tok.Length = Str.size();
+ return Res;
+ }
+
+ static ARMOperand CreateReg(unsigned RegNum, bool Writeback) {
+ ARMOperand Res;
+ Res.Kind = Register;
+ Res.Reg.RegNum = RegNum;
+ Res.Reg.Writeback = Writeback;
+ return Res;
+ }
+
+ static ARMOperand CreateImm(const MCExpr *Val) {
+ ARMOperand Res;
+ Res.Kind = Immediate;
+ Res.Imm.Val = Val;
+ return Res;
+ }
+
+ static ARMOperand CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
+ const MCExpr *Offset, unsigned OffsetRegNum,
+ bool OffsetRegShifted, enum ShiftType ShiftType,
+ const MCExpr *ShiftAmount, bool Preindexed,
+ bool Postindexed, bool Negative, bool Writeback) {
+ ARMOperand Res;
+ Res.Kind = Memory;
+ Res.Mem.BaseRegNum = BaseRegNum;
+ Res.Mem.OffsetIsReg = OffsetIsReg;
+ Res.Mem.Offset = Offset;
+ Res.Mem.OffsetRegNum = OffsetRegNum;
+ Res.Mem.OffsetRegShifted = OffsetRegShifted;
+ Res.Mem.ShiftType = ShiftType;
+ Res.Mem.ShiftAmount = ShiftAmount;
+ Res.Mem.Preindexed = Preindexed;
+ Res.Mem.Postindexed = Postindexed;
+ Res.Mem.Negative = Negative;
+ Res.Mem.Writeback = Writeback;
+ return Res;
+ }
+};
+
+} // end anonymous namespace.
+
+// Try to parse a register name. The token must be an Identifier when called,
+// and if it is a register name a Reg operand is created, the token is eaten
+// and false is returned. Else true is returned and no token is eaten.
+// TODO this is likely to change to allow different register types and or to
+// parse for a specific register type.
+bool ARMAsmParser::ParseRegister(ARMOperand &Op) {
+ const AsmToken &Tok = getLexer().getTok();
+ assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
+
+ // FIXME: Validate register for the current architecture; we have to do
+ // validation later, so maybe there is no need for this here.
+ int RegNum;
+
+ RegNum = MatchRegisterName(Tok.getString());
+ if (RegNum == -1)
+ return true;
+ getLexer().Lex(); // Eat identifier token.
+
+ bool Writeback = false;
+ const AsmToken &ExclaimTok = getLexer().getTok();
+ if (ExclaimTok.is(AsmToken::Exclaim)) {
+ Writeback = true;
+ getLexer().Lex(); // Eat exclaim token
+ }
+
+ Op = ARMOperand::CreateReg(RegNum, Writeback);
+
+ return false;
+}
+
+// Try to parse a register list. The first token must be a '{' when called
+// for now.
+bool ARMAsmParser::ParseRegisterList(ARMOperand &Op) {
+ assert(getLexer().getTok().is(AsmToken::LCurly) &&
+ "Token is not an Left Curly Brace");
+ getLexer().Lex(); // Eat left curly brace token.
+
+ const AsmToken &RegTok = getLexer().getTok();
+ SMLoc RegLoc = RegTok.getLoc();
+ if (RegTok.isNot(AsmToken::Identifier))
+ return Error(RegLoc, "register expected");
+ int RegNum = MatchRegisterName(RegTok.getString());
+ if (RegNum == -1)
+ return Error(RegLoc, "register expected");
+ getLexer().Lex(); // Eat identifier token.
+ unsigned RegList = 1 << RegNum;
+
+ int HighRegNum = RegNum;
+ // TODO ranges like "{Rn-Rm}"
+ while (getLexer().getTok().is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat comma token.
+
+ const AsmToken &RegTok = getLexer().getTok();
+ SMLoc RegLoc = RegTok.getLoc();
+ if (RegTok.isNot(AsmToken::Identifier))
+ return Error(RegLoc, "register expected");
+ int RegNum = MatchRegisterName(RegTok.getString());
+ if (RegNum == -1)
+ return Error(RegLoc, "register expected");
+
+ if (RegList & (1 << RegNum))
+ Warning(RegLoc, "register duplicated in register list");
+ else if (RegNum <= HighRegNum)
+ Warning(RegLoc, "register not in ascending order in register list");
+ RegList |= 1 << RegNum;
+ HighRegNum = RegNum;
+
+ getLexer().Lex(); // Eat identifier token.
+ }
+ const AsmToken &RCurlyTok = getLexer().getTok();
+ if (RCurlyTok.isNot(AsmToken::RCurly))
+ return Error(RCurlyTok.getLoc(), "'}' expected");
+ getLexer().Lex(); // Eat left curly brace token.
+
+ return false;
+}
+
+// Try to parse an arm memory expression. It must start with a '[' token.
+// TODO Only preindexing and postindexing addressing are started, unindexed
+// with option, etc are still to do.
+bool ARMAsmParser::ParseMemory(ARMOperand &Op) {
+ assert(getLexer().getTok().is(AsmToken::LBrac) &&
+ "Token is not an Left Bracket");
+ getLexer().Lex(); // Eat left bracket token.
+
+ const AsmToken &BaseRegTok = getLexer().getTok();
+ if (BaseRegTok.isNot(AsmToken::Identifier))
+ return Error(BaseRegTok.getLoc(), "register expected");
+ int BaseRegNum = MatchRegisterName(BaseRegTok.getString());
+ if (BaseRegNum == -1)
+ return Error(BaseRegTok.getLoc(), "register expected");
+ getLexer().Lex(); // Eat identifier token.
+
+ bool Preindexed = false;
+ bool Postindexed = false;
+ bool OffsetIsReg = false;
+ bool Negative = false;
+ bool Writeback = false;
+
+ // First look for preindexed address forms:
+ // [Rn, +/-Rm]
+ // [Rn, #offset]
+ // [Rn, +/-Rm, shift]
+ // that is after the "[Rn" we now have see if the next token is a comma.
+ const AsmToken &Tok = getLexer().getTok();
+ if (Tok.is(AsmToken::Comma)) {
+ Preindexed = true;
+ getLexer().Lex(); // Eat comma token.
+
+ const AsmToken &NextTok = getLexer().getTok();
+ if (NextTok.is(AsmToken::Plus))
+ getLexer().Lex(); // Eat plus token.
+ else if (NextTok.is(AsmToken::Minus)) {
+ Negative = true;
+ getLexer().Lex(); // Eat minus token
+ }
+
+ // See if there is a register following the "[Rn," we have so far.
+ const AsmToken &OffsetRegTok = getLexer().getTok();
+ int OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
+ bool OffsetRegShifted = false;
+ enum ShiftType ShiftType;
+ const MCExpr *ShiftAmount;
+ const MCExpr *Offset;
+ if (OffsetRegNum != -1) {
+ OffsetIsReg = true;
+ getLexer().Lex(); // Eat identifier token for the offset register.
+ // Look for a comma then a shift
+ const AsmToken &Tok = getLexer().getTok();
+ if (Tok.is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat comma token.
+
+ const AsmToken &Tok = getLexer().getTok();
+ if (ParseShift(&ShiftType, ShiftAmount))
+ return Error(Tok.getLoc(), "shift expected");
+ OffsetRegShifted = true;
+ }
+ }
+ else { // "[Rn," we have so far was not followed by "Rm"
+ // Look for #offset following the "[Rn,"
+ const AsmToken &HashTok = getLexer().getTok();
+ if (HashTok.isNot(AsmToken::Hash))
+ return Error(HashTok.getLoc(), "'#' expected");
+ getLexer().Lex(); // Eat hash token.
+
+ if (getParser().ParseExpression(Offset))
+ return true;
+ }
+ const AsmToken &RBracTok = getLexer().getTok();
+ if (RBracTok.isNot(AsmToken::RBrac))
+ return Error(RBracTok.getLoc(), "']' expected");
+ getLexer().Lex(); // Eat right bracket token.
+
+ const AsmToken &ExclaimTok = getLexer().getTok();
+ if (ExclaimTok.is(AsmToken::Exclaim)) {
+ Writeback = true;
+ getLexer().Lex(); // Eat exclaim token
+ }
+ Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
+ OffsetRegShifted, ShiftType, ShiftAmount,
+ Preindexed, Postindexed, Negative, Writeback);
+ return false;
+ }
+ // The "[Rn" we have so far was not followed by a comma.
+ else if (Tok.is(AsmToken::RBrac)) {
+ // This is a post indexing addressing forms:
+ // [Rn], #offset
+ // [Rn], +/-Rm
+ // [Rn], +/-Rm, shift
+ // that is a ']' follows after the "[Rn".
+ Postindexed = true;
+ Writeback = true;
+ getLexer().Lex(); // Eat right bracket token.
+
+ const AsmToken &CommaTok = getLexer().getTok();
+ if (CommaTok.isNot(AsmToken::Comma))
+ return Error(CommaTok.getLoc(), "',' expected");
+ getLexer().Lex(); // Eat comma token.
+
+ const AsmToken &NextTok = getLexer().getTok();
+ if (NextTok.is(AsmToken::Plus))
+ getLexer().Lex(); // Eat plus token.
+ else if (NextTok.is(AsmToken::Minus)) {
+ Negative = true;
+ getLexer().Lex(); // Eat minus token
+ }
+
+ // See if there is a register following the "[Rn]," we have so far.
+ const AsmToken &OffsetRegTok = getLexer().getTok();
+ int OffsetRegNum = MatchRegisterName(OffsetRegTok.getString());
+ bool OffsetRegShifted = false;
+ enum ShiftType ShiftType;
+ const MCExpr *ShiftAmount;
+ const MCExpr *Offset;
+ if (OffsetRegNum != -1) {
+ OffsetIsReg = true;
+ getLexer().Lex(); // Eat identifier token for the offset register.
+ // Look for a comma then a shift
+ const AsmToken &Tok = getLexer().getTok();
+ if (Tok.is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat comma token.
+
+ const AsmToken &Tok = getLexer().getTok();
+ if (ParseShift(&ShiftType, ShiftAmount))
+ return Error(Tok.getLoc(), "shift expected");
+ OffsetRegShifted = true;
+ }
+ }
+ else { // "[Rn]," we have so far was not followed by "Rm"
+ // Look for #offset following the "[Rn],"
+ const AsmToken &HashTok = getLexer().getTok();
+ if (HashTok.isNot(AsmToken::Hash))
+ return Error(HashTok.getLoc(), "'#' expected");
+ getLexer().Lex(); // Eat hash token.
+
+ if (getParser().ParseExpression(Offset))
+ return true;
+ }
+ Op = ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset, OffsetRegNum,
+ OffsetRegShifted, ShiftType, ShiftAmount,
+ Preindexed, Postindexed, Negative, Writeback);
+ return false;
+ }
+
+ return true;
+}
+
+/// ParseShift as one of these two:
+/// ( lsl | lsr | asr | ror ) , # shift_amount
+/// rrx
+/// and returns true if it parses a shift otherwise it returns false.
+bool ARMAsmParser::ParseShift(ShiftType *St, const MCExpr *&ShiftAmount) {
+ const AsmToken &Tok = getLexer().getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return true;
+ const StringRef &ShiftName = Tok.getString();
+ if (ShiftName == "lsl" || ShiftName == "LSL")
+ *St = Lsl;
+ else if (ShiftName == "lsr" || ShiftName == "LSR")
+ *St = Lsr;
+ else if (ShiftName == "asr" || ShiftName == "ASR")
+ *St = Asr;
+ else if (ShiftName == "ror" || ShiftName == "ROR")
+ *St = Ror;
+ else if (ShiftName == "rrx" || ShiftName == "RRX")
+ *St = Rrx;
+ else
+ return true;
+ getLexer().Lex(); // Eat shift type token.
+
+ // For all but a Rotate right there must be a '#' and a shift amount
+ if (*St != Rrx) {
+ // Look for # following the shift type
+ const AsmToken &HashTok = getLexer().getTok();
+ if (HashTok.isNot(AsmToken::Hash))
+ return Error(HashTok.getLoc(), "'#' expected");
+ getLexer().Lex(); // Eat hash token.
+
+ if (getParser().ParseExpression(ShiftAmount))
+ return true;
+ }
+
+ return false;
+}
+
+// A hack to allow some testing
+int ARMAsmParser::MatchRegisterName(const StringRef &Name) {
+ if (Name == "r0" || Name == "R0")
+ return 0;
+ else if (Name == "r1" || Name == "R1")
+ return 1;
+ else if (Name == "r2" || Name == "R2")
+ return 2;
+ else if (Name == "r3" || Name == "R3")
+ return 3;
+ else if (Name == "r3" || Name == "R3")
+ return 3;
+ else if (Name == "r4" || Name == "R4")
+ return 4;
+ else if (Name == "r5" || Name == "R5")
+ return 5;
+ else if (Name == "r6" || Name == "R6")
+ return 6;
+ else if (Name == "r7" || Name == "R7")
+ return 7;
+ else if (Name == "r8" || Name == "R8")
+ return 8;
+ else if (Name == "r9" || Name == "R9")
+ return 9;
+ else if (Name == "r10" || Name == "R10")
+ return 10;
+ else if (Name == "r11" || Name == "R11" || Name == "fp")
+ return 11;
+ else if (Name == "r12" || Name == "R12" || Name == "ip")
+ return 12;
+ else if (Name == "r13" || Name == "R13" || Name == "sp")
+ return 13;
+ else if (Name == "r14" || Name == "R14" || Name == "lr")
+ return 14;
+ else if (Name == "r15" || Name == "R15" || Name == "pc")
+ return 15;
+ return -1;
+}
+
+// A hack to allow some testing
+bool ARMAsmParser::MatchInstruction(SmallVectorImpl<ARMOperand> &Operands,
+ MCInst &Inst) {
+ struct ARMOperand Op0 = Operands[0];
+ assert(Op0.Kind == ARMOperand::Token && "First operand not a Token");
+ const StringRef &Mnemonic = Op0.getToken();
+ if (Mnemonic == "add" ||
+ Mnemonic == "stmfd" ||
+ Mnemonic == "str" ||
+ Mnemonic == "ldmfd" ||
+ Mnemonic == "ldr" ||
+ Mnemonic == "mov" ||
+ Mnemonic == "sub")
+ return false;
+
+ return true;
+}
+
+// TODO - this is a work in progress
+bool ARMAsmParser::ParseOperand(ARMOperand &Op) {
+ switch (getLexer().getKind()) {
+ case AsmToken::Identifier:
+ if (!ParseRegister(Op))
+ return false;
+ // TODO parse other operands that start with an identifier like labels
+ return Error(getLexer().getTok().getLoc(), "labels not yet supported");
+ case AsmToken::LBrac:
+ if (!ParseMemory(Op))
+ return false;
+ case AsmToken::LCurly:
+ if (!ParseRegisterList(Op))
+ return false;
+ case AsmToken::Hash:
+ // #42 -> immediate.
+ // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
+ getLexer().Lex();
+ const MCExpr *Val;
+ if (getParser().ParseExpression(Val))
+ return true;
+ Op = ARMOperand::CreateImm(Val);
+ return false;
+ default:
+ return Error(getLexer().getTok().getLoc(), "unexpected token in operand");
+ }
+}
+
+bool ARMAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
+ SmallVector<ARMOperand, 7> Operands;
+
+ Operands.push_back(ARMOperand::CreateToken(Name));
+
+ SMLoc Loc = getLexer().getTok().getLoc();
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+
+ // Read the first operand.
+ Operands.push_back(ARMOperand());
+ if (ParseOperand(Operands.back()))
+ return true;
+
+ while (getLexer().is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat the comma.
+
+ // Parse and remember the operand.
+ Operands.push_back(ARMOperand());
+ if (ParseOperand(Operands.back()))
+ return true;
+ }
+ }
+ if (!MatchInstruction(Operands, Inst))
+ return false;
+
+ Error(Loc, "ARMAsmParser::ParseInstruction only partly implemented");
+ return true;
+}
+
+bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return ParseDirectiveWord(4, DirectiveID.getLoc());
+ return true;
+}
+
+/// ParseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().ParseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ getLexer().Lex();
+ }
+ }
+
+ getLexer().Lex();
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeARMAsmParser() {
+ RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
+ RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
+}
diff --git a/lib/Target/ARM/AsmParser/CMakeLists.txt b/lib/Target/ARM/AsmParser/CMakeLists.txt
new file mode 100644
index 0000000..308c6cf
--- /dev/null
+++ b/lib/Target/ARM/AsmParser/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMARMAsmParser
+ ARMAsmParser.cpp
+ )
+
diff --git a/lib/Target/ARM/AsmParser/Makefile b/lib/Target/ARM/AsmParser/Makefile
new file mode 100644
index 0000000..97e5612
--- /dev/null
+++ b/lib/Target/ARM/AsmParser/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/ARM/AsmParser/Makefile -------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMARMAsmParser
+
+# Hack: we need to include 'main' ARM target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
index 434a19a..546731b 100644
--- a/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
+++ b/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
@@ -1,5 +1,3 @@
-//===-- ARMAsmPrinter.cpp - ARM LLVM assembly writer ----------------------===//
-//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
@@ -21,23 +19,30 @@
#include "ARMMachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
+#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
#include <cctype>
using namespace llvm;
@@ -45,7 +50,6 @@ STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
class VISIBILITY_HIDDEN ARMAsmPrinter : public AsmPrinter {
- DwarfWriter *DW;
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
@@ -68,22 +72,18 @@ namespace {
/// GVNonLazyPtrs - Keeps the set of GlobalValues that require
/// non-lazy-pointers for indirect access.
- StringSet<> GVNonLazyPtrs;
+ StringMap<std::string> GVNonLazyPtrs;
/// HiddenGVNonLazyPtrs - Keeps the set of GlobalValues with hidden
/// visibility that require non-lazy-pointers for indirect access.
- StringSet<> HiddenGVNonLazyPtrs;
-
- /// FnStubs - Keeps the set of external function GlobalAddresses that the
- /// asm printer should generate stubs for.
- StringSet<> FnStubs;
+ StringMap<std::string> HiddenGVNonLazyPtrs;
/// True if asm printer is printing a series of CONSTPOOL_ENTRY.
bool InCPMode;
public:
- explicit ARMAsmPrinter(raw_ostream &O, TargetMachine &TM,
- const TargetAsmInfo *T, bool V)
- : AsmPrinter(O, TM, T, V), DW(0), AFI(NULL), MCP(NULL),
+ explicit ARMAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
+ : AsmPrinter(O, TM, T, V), AFI(NULL), MCP(NULL),
InCPMode(false) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
@@ -110,6 +110,7 @@ namespace {
const char *Modifier = 0);
void printBitfieldInvMaskImmOperand (const MachineInstr *MI, int OpNum);
+ void printThumbITMask(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum,
unsigned Scale);
@@ -118,10 +119,10 @@ namespace {
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum);
- void printT2SOImmOperand(const MachineInstr *MI, int OpNum);
void printT2SOOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
+ void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
@@ -132,6 +133,9 @@ namespace {
void printCPInstOperand(const MachineInstr *MI, int OpNum,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int OpNum);
+ void printJT2BlockOperand(const MachineInstr *MI, int OpNum);
+ void printTBAddrMode(const MachineInstr *MI, int OpNum);
+ void printNoHashImmediate(const MachineInstr *MI, int OpNum);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode);
@@ -139,12 +143,14 @@ namespace {
unsigned AsmVariant,
const char *ExtraCode);
- void printModuleLevelGV(const GlobalVariable* GVar);
- bool printInstruction(const MachineInstr *MI); // autogenerated.
+ void PrintGlobalVariable(const GlobalVariable* GVar);
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
void printMachineInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
bool doFinalization(Module &M);
+ void EmitStartOfAsmFile(Module &M);
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
@@ -153,24 +159,35 @@ namespace {
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
GlobalValue *GV = ACPV->getGV();
- std::string Name = GV ? Mang->getValueName(GV) : TAI->getGlobalPrefix();
- if (!GV)
- Name += ACPV->getSymbol();
- if (ACPV->isNonLazyPointer()) {
- if (GV->hasHiddenVisibility())
- HiddenGVNonLazyPtrs.insert(Name);
- else
- GVNonLazyPtrs.insert(Name);
- printSuffixedName(Name, "$non_lazy_ptr");
- } else if (ACPV->isStub()) {
- FnStubs.insert(Name);
- printSuffixedName(Name, "$stub");
+ std::string Name;
+
+ if (ACPV->isLSDA()) {
+ SmallString<16> LSDAName;
+ raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
+ "_LSDA_" << getFunctionNumber();
+ Name = LSDAName.str();
+ } else if (GV) {
+ bool isIndirect = Subtarget->isTargetDarwin() &&
+ Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
+ if (!isIndirect)
+ Name = Mang->getMangledName(GV);
+ else {
+ // FIXME: Remove this when Darwin transition to @GOT like syntax.
+ std::string SymName = Mang->getMangledName(GV);
+ Name = Mang->getMangledName(GV, "$non_lazy_ptr", true);
+ if (GV->hasHiddenVisibility())
+ HiddenGVNonLazyPtrs[SymName] = Name;
+ else
+ GVNonLazyPtrs[SymName] = Name;
+ }
} else
- O << Name;
+ Name = Mang->makeNameProper(ACPV->getSymbol());
+ O << Name;
+
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
- O << "-(" << TAI->getPrivateGlobalPrefix() << "PC"
- << utostr(ACPV->getLabelId())
+ O << "-(" << MAI->getPrivateGlobalPrefix() << "PC"
+ << ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
@@ -178,7 +195,7 @@ namespace {
}
O << "\n";
}
-
+
void getAnalysisUsage(AnalysisUsage &AU) const {
AsmPrinter::getAnalysisUsage(AU);
AU.setPreservesAll();
@@ -205,38 +222,39 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// NOTE: we don't print out constant pools here, they are handled as
// instructions.
- O << "\n";
+ O << '\n';
+
// Print out labels for the function.
const Function *F = MF.getFunction();
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+
switch (F->getLinkage()) {
- default: assert(0 && "Unknown linkage type!");
+ default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage:
- SwitchToTextSection("\t.text", F);
break;
case Function::ExternalLinkage:
- SwitchToTextSection("\t.text", F);
O << "\t.globl\t" << CurrentFnName << "\n";
break;
+ case Function::LinkerPrivateLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
if (Subtarget->isTargetDarwin()) {
- SwitchToTextSection(
- ".section __TEXT,__textcoal_nt,coalesced,pure_instructions", F);
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
} else {
- O << TAI->getWeakRefDirective() << CurrentFnName << "\n";
+ O << MAI->getWeakRefDirective() << CurrentFnName << "\n";
}
break;
}
printVisibility(CurrentFnName, F->getVisibility());
+ unsigned FnAlign = 1 << MF.getAlignment(); // MF alignment is log2.
if (AFI->isThumbFunction()) {
- EmitAlignment(MF.getAlignment(), F, AFI->getAlign());
+ EmitAlignment(FnAlign, F, AFI->getAlign());
O << "\t.code\t16\n";
O << "\t.thumb_func";
if (Subtarget->isTargetDarwin())
@@ -244,7 +262,7 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
O << "\n";
InCPMode = false;
} else {
- EmitAlignment(MF.getAlignment(), F);
+ EmitAlignment(FnAlign, F);
}
O << CurrentFnName << ":\n";
@@ -266,8 +284,7 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true, VerboseAsm);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
@@ -276,14 +293,12 @@ bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
}
}
- if (TAI->hasDotTypeDotSizeDirective())
+ if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
// Emit post-function debug information.
DW->EndFunction(&MF);
- O.flush();
-
return false;
}
@@ -298,37 +313,39 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
unsigned DRegLo = TRI->getSubReg(Reg, 5); // arm_dsubreg_0
unsigned DRegHi = TRI->getSubReg(Reg, 6); // arm_dsubreg_1
O << '{'
- << TRI->getAsmName(DRegLo) << "-" << TRI->getAsmName(DRegHi)
+ << getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
<< '}';
+ } else if (Modifier && strcmp(Modifier, "lane") == 0) {
+ unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg);
+ unsigned DReg = TRI->getMatchingSuperReg(Reg, RegNum & 1 ? 2 : 1,
+ &ARM::DPR_VFP2RegClass);
+ O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']';
} else {
- O << TRI->getAsmName(Reg);
+ O << getRegisterName(Reg);
}
} else
- assert(0 && "not implemented");
+ llvm_unreachable("not implemented");
break;
}
case MachineOperand::MO_Immediate: {
- if (!Modifier || strcmp(Modifier, "no_hash") != 0)
- O << "#";
-
- O << MO.getImm();
+ int64_t Imm = MO.getImm();
+ O << '#';
+ if (Modifier) {
+ if (strcmp(Modifier, "lo16") == 0)
+ O << ":lower16:";
+ else if (strcmp(Modifier, "hi16") == 0)
+ O << ":upper16:";
+ }
+ O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
GlobalValue *GV = MO.getGlobal();
- std::string Name = Mang->getValueName(GV);
- bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
- GV->hasLinkOnceLinkage());
- if (isExt && isCallOp && Subtarget->isTargetDarwin() &&
- TM.getRelocationModel() != Reloc::Static) {
- printSuffixedName(Name, "$stub");
- FnStubs.insert(Name);
- } else
- O << Name;
+ O << Mang->getMangledName(GV);
printOffset(MO.getOffset());
@@ -339,25 +356,20 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
- std::string Name(TAI->getGlobalPrefix());
- Name += MO.getSymbolName();
- if (isCallOp && Subtarget->isTargetDarwin() &&
- TM.getRelocationModel() != Reloc::Static) {
- printSuffixedName(Name, "$stub");
- FnStubs.insert(Name);
- } else
- O << Name;
+ std::string Name = Mang->makeNameProper(MO.getSymbolName());
+
+ O << Name;
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
case MachineOperand::MO_JumpTableIndex:
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
default:
@@ -365,9 +377,12 @@ void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
}
}
-static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm,
- const TargetAsmInfo *TAI) {
- assert(V < (1 << 12) && "Not a valid so_imm value!");
+static void printSOImm(formatted_raw_ostream &O, int64_t V, bool VerboseAsm,
+ const MCAsmInfo *MAI) {
+ // Break it up into two parts that make up a shifter immediate.
+ V = ARM_AM::getSOImmVal(V);
+ assert(V != -1 && "Not a valid so_imm value!");
+
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
@@ -377,7 +392,7 @@ static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm,
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
if (VerboseAsm)
- O << ' ' << TAI->getCommentString()
+ O << ' ' << MAI->getCommentString()
<< ' ' << (int)ARM_AM::rotr32(Imm, Rot);
} else {
O << "#" << Imm;
@@ -389,7 +404,7 @@ static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm,
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
- printSOImm(O, MO.getImm(), VerboseAsm, TAI);
+ printSOImm(O, MO.getImm(), VerboseAsm, MAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov'
@@ -399,15 +414,15 @@ void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum) {
assert(MO.isImm() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm());
- printSOImm(O, ARM_AM::getSOImmVal(V1), VerboseAsm, TAI);
+ printSOImm(O, V1, VerboseAsm, MAI);
O << "\n\torr";
printPredicateOperand(MI, 2);
O << " ";
- printOperand(MI, 0);
+ printOperand(MI, 0);
O << ", ";
- printOperand(MI, 0);
+ printOperand(MI, 0);
O << ", ";
- printSOImm(O, ARM_AM::getSOImmVal(V2), VerboseAsm, TAI);
+ printSOImm(O, V2, VerboseAsm, MAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
@@ -420,8 +435,7 @@ void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
- assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
- O << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << getRegisterName(MO1.getReg());
// Print the shift opc.
O << ", "
@@ -429,8 +443,7 @@ void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) {
<< " ";
if (MO2.getReg()) {
- assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
- O << TM.getRegisterInfo()->get(MO2.getReg()).AsmName;
+ O << getRegisterName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
@@ -447,7 +460,7 @@ void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
return;
}
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
@@ -460,8 +473,8 @@ void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
O << ", "
<< (char)ARM_AM::getAM2Op(MO3.getImm())
- << TM.getRegisterInfo()->get(MO2.getReg()).AsmName;
-
+ << getRegisterName(MO2.getReg());
+
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm()))
@@ -483,8 +496,8 @@ void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
}
O << (char)ARM_AM::getAM2Op(MO2.getImm())
- << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
-
+ << getRegisterName(MO1.getReg());
+
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm()))
@@ -495,18 +508,18 @@ void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
-
+
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
- << TM.getRegisterInfo()->get(MO2.getReg()).AsmName
+ << getRegisterName(MO2.getReg())
<< "]";
return;
}
-
+
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< (char)ARM_AM::getAM3Op(MO3.getImm())
@@ -520,7 +533,7 @@ void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
- << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ << getRegisterName(MO1.getReg());
return;
}
@@ -530,7 +543,7 @@ void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
<< (char)ARM_AM::getAM3Op(MO2.getImm())
<< ImmOffs;
}
-
+
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
@@ -538,11 +551,18 @@ void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
if (MO1.getReg() == ARM::SP) {
+ // FIXME
bool isLDM = (MI->getOpcode() == ARM::LDM ||
- MI->getOpcode() == ARM::LDM_RET);
+ MI->getOpcode() == ARM::LDM_RET ||
+ MI->getOpcode() == ARM::t2LDM ||
+ MI->getOpcode() == ARM::t2LDM_RET);
O << ARM_AM::getAMSubModeAltStr(Mode, isLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
+ } else if (Modifier && strcmp(Modifier, "wide") == 0) {
+ ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
+ if (Mode == ARM_AM::ia)
+ O << ".w";
} else {
printOperand(MI, Op);
if (ARM_AM::getAM4WBFlag(MO2.getImm()))
@@ -559,7 +579,7 @@ void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
printOperand(MI, Op);
return;
}
-
+
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
if (Modifier && strcmp(Modifier, "submode") == 0) {
@@ -573,14 +593,14 @@ void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
return;
} else if (Modifier && strcmp(Modifier, "base") == 0) {
// Used for FSTM{D|S} and LSTM{D|S} operations.
- O << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << getRegisterName(MO1.getReg());
if (ARM_AM::getAM5WBFlag(MO2.getImm()))
O << "!";
return;
}
-
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
-
+
+ O << "[" << getRegisterName(MO1.getReg());
+
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< (char)ARM_AM::getAM5Op(MO2.getImm())
@@ -595,13 +615,13 @@ void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO3 = MI->getOperand(Op+2);
// FIXME: No support yet for specifying alignment.
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName << "]";
+ O << "[" << getRegisterName(MO1.getReg()) << "]";
if (ARM_AM::getAM6WBFlag(MO3.getImm())) {
if (MO2.getReg() == 0)
O << "!";
else
- O << ", " << TM.getRegisterInfo()->get(MO2.getReg()).AsmName;
+ O << ", " << getRegisterName(MO2.getReg());
}
}
@@ -614,7 +634,7 @@ void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
- O << "[pc, +" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName << "]";
+ O << "[pc, +" << getRegisterName(MO1.getReg()) << "]";
}
void
@@ -630,11 +650,26 @@ ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op) {
//===--------------------------------------------------------------------===//
void
+ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
+ // (3 - the number of trailing zeros) is the number of then / else.
+ unsigned Mask = MI->getOperand(Op).getImm();
+ unsigned NumTZ = CountTrailingZeros_32(Mask);
+ assert(NumTZ <= 3 && "Invalid IT mask!");
+ for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
+ bool T = (Mask & (1 << Pos)) == 0;
+ if (T)
+ O << 't';
+ else
+ O << 'e';
+ }
+}
+
+void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
- O << ", " << TM.getRegisterInfo()->get(MO2.getReg()).AsmName << "]";
+ O << "[" << getRegisterName(MO1.getReg());
+ O << ", " << getRegisterName(MO2.getReg()) << "]";
}
void
@@ -649,9 +684,9 @@ ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
return;
}
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
if (MO3.getReg())
- O << ", " << TM.getRegisterInfo()->get(MO3.getReg()).AsmName;
+ O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm()) {
O << ", #" << ImmOffs;
if (Scale > 1)
@@ -676,7 +711,7 @@ ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op) {
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs << " * 4";
O << "]";
@@ -684,20 +719,6 @@ void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
//===--------------------------------------------------------------------===//
-/// printT2SOImmOperand - T2SOImm is:
-/// 1. a 4-bit splat control value and 8 bit immediate value
-/// 2. a 5-bit rotate amount and a non-zero 8-bit immediate value
-/// represented by a normalizedin 7-bit value (msb is always 1)
-void ARMAsmPrinter::printT2SOImmOperand(const MachineInstr *MI, int OpNum) {
- const MachineOperand &MO = MI->getOperand(OpNum);
- assert(MO.isImm() && "Not a valid so_imm value!");
-
- unsigned Imm = ARM_AM::getT2SOImmValDecode(MO.getImm());
- // Always print the immediate directly, as the "rotate" form
- // is deprecated in some contexts.
- O << "#" << Imm;
-}
-
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
@@ -708,7 +729,7 @@ void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum) {
unsigned Reg = MO1.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
- O << TM.getRegisterInfo()->getAsmName(Reg);
+ O << getRegisterName(Reg);
// Print the shift opc.
O << ", "
@@ -724,7 +745,7 @@ void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
@@ -737,7 +758,7 @@ void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
// Don't print +0.
@@ -748,6 +769,22 @@ void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
O << "]";
}
+void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
+ int OpNum) {
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ const MachineOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << ", #-" << -OffImm << " * 4";
+ else if (OffImm > 0)
+ O << ", #+" << OffImm << " * 4";
+ O << "]";
+}
+
void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
@@ -765,17 +802,15 @@ void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
const MachineOperand &MO3 = MI->getOperand(OpNum+2);
- O << "[" << TM.getRegisterInfo()->get(MO1.getReg()).AsmName;
+ O << "[" << getRegisterName(MO1.getReg());
- if (MO2.getReg()) {
- O << ", +"
- << TM.getRegisterInfo()->get(MO2.getReg()).AsmName;
+ assert(MO2.getReg() && "Invalid so_reg load / store address!");
+ O << ", " << getRegisterName(MO2.getReg());
- unsigned ShAmt = MO3.getImm();
- if (ShAmt) {
- assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
- O << ", lsl #" << ShAmt;
- }
+ unsigned ShAmt = MO3.getImm();
+ if (ShAmt) {
+ assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
+ O << ", lsl #" << ShAmt;
}
O << "]";
}
@@ -799,14 +834,17 @@ void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum){
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum) {
int Id = (int)MI->getOperand(OpNum).getImm();
- O << TAI->getPrivateGlobalPrefix() << "PC" << Id;
+ O << MAI->getPrivateGlobalPrefix() << "PC" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum) {
O << "{";
- for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
+ // Always skip the first operand, it's the optional (and implicit writeback).
+ for (unsigned i = OpNum+1, e = MI->getNumOperands(); i != e; ++i) {
+ if (MI->getOperand(i).isImplicit())
+ continue;
+ if ((int)i != OpNum+1) O << ", ";
printOperand(MI, i);
- if (i != e-1) O << ", ";
}
O << "}";
}
@@ -818,14 +856,14 @@ void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNum).getImm();
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << ID << ":\n";
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNum).getIndex();
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
-
+
if (MCPE.isMachineConstantPoolEntry()) {
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
} else {
@@ -835,57 +873,119 @@ void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum) {
+ assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!");
+
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ":\n";
- const char *JTEntryDirective = TAI->getJumpTableDirective();
- if (!JTEntryDirective)
- JTEntryDirective = TAI->getData32bitsDirective();
+ const char *JTEntryDirective = MAI->getData32bitsDirective();
const MachineFunction *MF = MI->getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
- bool UseSet= TAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
- std::set<MachineBasicBlock*> JTSets;
+ bool UseSet= MAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
+ SmallPtrSet<MachineBasicBlock*, 8> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
- if (UseSet && JTSets.insert(MBB).second)
+ bool isNew = JTSets.insert(MBB);
+
+ if (UseSet && isNew)
printPICJumpTableSetLabel(JTI, MO2.getImm(), MBB);
O << JTEntryDirective << ' ';
if (UseSet)
- O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm()
<< "_set_" << MBB->getNumber();
else if (TM.getRelocationModel() == Reloc::PIC_) {
- printBasicBlockLabel(MBB, false, false, false);
- // If the arch uses custom Jump Table directives, don't calc relative to JT
- if (!TAI->getJumpTableDirective())
- O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
- << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm();
- } else
- printBasicBlockLabel(MBB, false, false, false);
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
+ << getFunctionNumber() << '_' << JTI << '_' << MO2.getImm();
+ } else {
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ }
+ if (i != e-1)
+ O << '\n';
+ }
+}
+
+void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum) {
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
+ unsigned JTI = MO1.getIndex();
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ << '_' << JTI << '_' << MO2.getImm() << ":\n";
+
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
+ bool ByteOffset = false, HalfWordOffset = false;
+ if (MI->getOpcode() == ARM::t2TBB)
+ ByteOffset = true;
+ else if (MI->getOpcode() == ARM::t2TBH)
+ HalfWordOffset = true;
+
+ for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = JTBBs[i];
+ if (ByteOffset)
+ O << MAI->getData8bitsDirective();
+ else if (HalfWordOffset)
+ O << MAI->getData16bitsDirective();
+ if (ByteOffset || HalfWordOffset) {
+ O << '(';
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ O << "-" << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ << '_' << JTI << '_' << MO2.getImm() << ")/2";
+ } else {
+ O << "\tb.w ";
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ }
if (i != e-1)
O << '\n';
}
+
+ // Make sure the instruction that follows TBB is 2-byte aligned.
+ // FIXME: Constant island pass should insert an "ALIGN" instruction instead.
+ if (ByteOffset && (JTBBs.size() & 1)) {
+ O << '\n';
+ EmitAlignment(1);
+ }
+}
+
+void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum) {
+ O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
+ if (MI->getOpcode() == ARM::t2TBH)
+ O << ", lsl #1";
+ O << ']';
}
+void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum) {
+ O << MI->getOperand(OpNum).getImm();
+}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode){
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
-
+
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
- case 'a': // Don't print "#" before a global var name or constant.
- case 'c': // Don't print "$" before a global var name or constant.
- printOperand(MI, OpNum, "no_hash");
+ case 'a': // Print as a memory address.
+ if (MI->getOperand(OpNum).isReg()) {
+ O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]";
+ return false;
+ }
+ // Fallthrough
+ case 'c': // Don't print "#" before an immediate operand.
+ if (!MI->getOperand(OpNum).isImm())
+ return true;
+ printNoHashImmediate(MI, OpNum);
return false;
case 'P': // Print a VFP double precision register.
printOperand(MI, OpNum);
@@ -898,7 +998,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
if (TM.getTargetData()->isBigEndian())
break;
// Fallthrough
- case 'H': // Write second word of DI / DF reference.
+ case 'H': // Write second word of DI / DF reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNum).isReg() ||
OpNum+1 == MI->getNumOperands() ||
@@ -907,7 +1007,7 @@ bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
++OpNum; // Return the high-part.
}
}
-
+
printOperand(MI, OpNum);
return false;
}
@@ -917,7 +1017,10 @@ bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
- printAddrMode2Operand(MI, OpNum);
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ assert(MO.isReg() && "unexpected inline asm memory operand");
+ O << "[" << getRegisterName(MO.getReg()) << "]";
return false;
}
@@ -938,16 +1041,47 @@ void ARMAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
}}
// Call the autogenerated instruction printer routines.
+ processDebugLoc(MI, true);
printInstruction(MI);
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+ processDebugLoc(MI, false);
}
-bool ARMAsmPrinter::doInitialization(Module &M) {
-
- bool Result = AsmPrinter::doInitialization(M);
- DW = getAnalysisIfAvailable<DwarfWriter>();
+void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (Subtarget->isTargetDarwin()) {
+ Reloc::Model RelocM = TM.getRelocationModel();
+ if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
+ // Declare all the text sections up front (before the DWARF sections
+ // emitted by AsmPrinter::doInitialization) so the assembler will keep
+ // them together at the beginning of the object file. This helps
+ // avoid out-of-range branches that are due a fundamental limitation of
+ // the way symbol offsets are encoded with the current Darwin ARM
+ // relocations.
+ TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
+ OutStreamer.SwitchSection(TLOFMacho.getTextSection());
+ OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
+ OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
+ if (RelocM == Reloc::DynamicNoPIC) {
+ const MCSection *sect =
+ TLOFMacho.getMachOSection("__TEXT", "__symbol_stub4",
+ MCSectionMachO::S_SYMBOL_STUBS,
+ 12, SectionKind::getText());
+ OutStreamer.SwitchSection(sect);
+ } else {
+ const MCSection *sect =
+ TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub4",
+ MCSectionMachO::S_SYMBOL_STUBS,
+ 16, SectionKind::getText());
+ OutStreamer.SwitchSection(sect);
+ }
+ }
+ }
- // Thumb-2 instructions are supported only in unified assembler syntax mode.
- if (Subtarget->hasThumb2())
+ // Use unified assembler syntax mode for Thumb.
+ if (Subtarget->isThumb())
O << "\t.syntax unified\n";
// Emit ARM Build Attributes
@@ -975,22 +1109,16 @@ bool ARMAsmPrinter::doInitialization(Module &M) {
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_needed << ", 1\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_preserved << ", 1\n";
+ // Hard float. Use both S and D registers and conform to AAPCS-VFP.
+ if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard)
+ O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_HardFP_use << ", 3\n"
+ << "\t.eabi_attribute " << ARMBuildAttrs::ABI_VFP_args << ", 1\n";
+
// FIXME: Should we signal R9 usage?
}
-
- return Result;
-}
-
-/// PrintUnmangledNameSafely - Print out the printable characters in the name.
-/// Don't print things like \\n or \\0.
-static void PrintUnmangledNameSafely(const Value *V, raw_ostream &OS) {
- for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
- Name != E; ++Name)
- if (isprint(*Name))
- OS << *Name;
}
-void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void ARMAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer()) // External global require no code
@@ -1009,10 +1137,8 @@ void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
return;
}
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
@@ -1023,14 +1149,16 @@ void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (Subtarget->isTargetELF())
O << "\t.type " << name << ",%object\n";
- if (C->isNullValue() && !GVar->hasSection() && !GVar->isThreadLocal() &&
- !(isDarwin &&
- TAI->SectionKindForGlobal(GVar) == SectionKind::RODataMergeStr)) {
- // FIXME: This seems to be pretty darwin-specific
+ const MCSection *TheSection =
+ getObjFileLowering().SectionForGlobal(GVar, Mang, TM);
+ OutStreamer.SwitchSection(TheSection);
+ // FIXME: get this stuff from section kind flags.
+ if (C->isNullValue() && !GVar->hasSection() && !GVar->isThreadLocal() &&
+ // Don't put things that should go in the cstring section into "comm".
+ !TheSection->getKind().isMergeableCString()) {
if (GVar->hasExternalLinkage()) {
- SwitchToSection(TAI->SectionForGlobal(GVar));
- if (const char *Directive = TAI->getZeroFillDirective()) {
+ if (const char *Directive = MAI->getZeroFillDirective()) {
O << "\t.globl\t" << name << "\n";
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << "\n";
@@ -1043,57 +1171,56 @@ void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (isDarwin) {
if (GVar->hasLocalLinkage()) {
- O << TAI->getLCOMMDirective() << name << "," << Size
+ O << MAI->getLCOMMDirective() << name << "," << Size
<< ',' << Align;
} else if (GVar->hasCommonLinkage()) {
- O << TAI->getCOMMDirective() << name << "," << Size
+ O << MAI->getCOMMDirective() << name << "," << Size
<< ',' << Align;
} else {
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(TheSection);
O << "\t.globl " << name << '\n'
- << TAI->getWeakDefDirective() << name << '\n';
+ << MAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
- O << "\t\t\t\t" << TAI->getCommentString() << ' ';
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t\t\t" << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
return;
}
- } else if (TAI->getLCOMMDirective() != NULL) {
+ } else if (MAI->getLCOMMDirective() != NULL) {
if (GVar->hasLocalLinkage()) {
- O << TAI->getLCOMMDirective() << name << "," << Size;
+ O << MAI->getLCOMMDirective() << name << "," << Size;
} else {
- O << TAI->getCOMMDirective() << name << "," << Size;
- if (TAI->getCOMMDirectiveTakesAlignment())
- O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
+ O << MAI->getCOMMDirective() << name << "," << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
+ O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
} else {
- SwitchToSection(TAI->SectionForGlobal(GVar));
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << "\n";
- O << TAI->getCOMMDirective() << name << "," << Size;
- if (TAI->getCOMMDirectiveTakesAlignment())
- O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
+ O << MAI->getCOMMDirective() << name << "," << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
+ O << "," << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
if (VerboseAsm) {
- O << "\t\t" << TAI->getCommentString() << " ";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t" << MAI->getCommentString() << " ";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << "\n";
return;
}
}
- SwitchToSection(TAI->SectionForGlobal(GVar));
switch (GVar->getLinkage()) {
- case GlobalValue::CommonLinkage:
- case GlobalValue::LinkOnceAnyLinkage:
- case GlobalValue::LinkOnceODRLinkage:
- case GlobalValue::WeakAnyLinkage:
- case GlobalValue::WeakODRLinkage:
+ case GlobalValue::CommonLinkage:
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
if (isDarwin) {
O << "\t.globl " << name << "\n"
<< "\t.weak_definition " << name << "\n";
@@ -1101,28 +1228,27 @@ void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << "\t.weak " << name << "\n";
}
break;
- case GlobalValue::AppendingLinkage:
- // FIXME: appending linkage variables should go into a section of
- // their name or something. For now, just emit them as external.
- case GlobalValue::ExternalLinkage:
+ case GlobalValue::AppendingLinkage:
+ // FIXME: appending linkage variables should go into a section of
+ // their name or something. For now, just emit them as external.
+ case GlobalValue::ExternalLinkage:
O << "\t.globl " << name << "\n";
- // FALL THROUGH
- case GlobalValue::PrivateLinkage:
- case GlobalValue::InternalLinkage:
break;
- default:
- assert(0 && "Unknown linkage type!");
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::InternalLinkage:
break;
+ default:
+ llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
- O << "\t\t\t\t" << TAI->getCommentString() << " ";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t\t\t" << MAI->getCommentString() << " ";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << "\n";
- if (TAI->hasDotTypeDotSizeDirective())
+ if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size " << name << ", " << Size << "\n";
EmitGlobalConstant(C);
@@ -1131,83 +1257,36 @@ void ARMAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
bool ARMAsmPrinter::doFinalization(Module &M) {
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
-
if (Subtarget->isTargetDarwin()) {
- SwitchToDataSection("");
-
- // Output stubs for dynamically-linked functions
- for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end();
- i != e; ++i) {
- if (TM.getRelocationModel() == Reloc::PIC_)
- SwitchToTextSection(".section __TEXT,__picsymbolstub4,symbol_stubs,"
- "none,16", 0);
- else
- SwitchToTextSection(".section __TEXT,__symbol_stub4,symbol_stubs,"
- "none,12", 0);
+ // All darwin targets use mach-o.
+ TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
- EmitAlignment(2);
- O << "\t.code\t32\n";
-
- const char *p = i->getKeyData();
- printSuffixedName(p, "$stub");
- O << ":\n";
- O << "\t.indirect_symbol " << p << "\n";
- O << "\tldr ip, ";
- printSuffixedName(p, "$slp");
- O << "\n";
- if (TM.getRelocationModel() == Reloc::PIC_) {
- printSuffixedName(p, "$scv");
- O << ":\n";
- O << "\tadd ip, pc, ip\n";
- }
- O << "\tldr pc, [ip, #0]\n";
- printSuffixedName(p, "$slp");
- O << ":\n";
- O << "\t.long\t";
- printSuffixedName(p, "$lazy_ptr");
- if (TM.getRelocationModel() == Reloc::PIC_) {
- O << "-(";
- printSuffixedName(p, "$scv");
- O << "+8)\n";
- } else
- O << "\n";
- SwitchToDataSection(".lazy_symbol_pointer", 0);
- printSuffixedName(p, "$lazy_ptr");
- O << ":\n";
- O << "\t.indirect_symbol " << p << "\n";
- O << "\t.long\tdyld_stub_binding_helper\n";
- }
- O << "\n";
+ O << '\n';
// Output non-lazy-pointers for external and common global variables.
if (!GVNonLazyPtrs.empty()) {
- SwitchToDataSection("\t.non_lazy_symbol_pointer", 0);
- for (StringSet<>::iterator i = GVNonLazyPtrs.begin(),
- e = GVNonLazyPtrs.end(); i != e; ++i) {
- const char *p = i->getKeyData();
- printSuffixedName(p, "$non_lazy_ptr");
- O << ":\n";
- O << "\t.indirect_symbol " << p << "\n";
+ // Switch with ".non_lazy_symbol_pointer" directive.
+ OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(2);
+ for (StringMap<std::string>::iterator I = GVNonLazyPtrs.begin(),
+ E = GVNonLazyPtrs.end(); I != E; ++I) {
+ O << I->second << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << "\n";
O << "\t.long\t0\n";
}
}
if (!HiddenGVNonLazyPtrs.empty()) {
- SwitchToSection(TAI->getDataSection());
- for (StringSet<>::iterator i = HiddenGVNonLazyPtrs.begin(),
- e = HiddenGVNonLazyPtrs.end(); i != e; ++i) {
- const char *p = i->getKeyData();
- EmitAlignment(2);
- printSuffixedName(p, "$non_lazy_ptr");
- O << ":\n";
- O << "\t.long " << p << "\n";
+ OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
+ EmitAlignment(2);
+ for (StringMap<std::string>::iterator I = HiddenGVNonLazyPtrs.begin(),
+ E = HiddenGVNonLazyPtrs.end(); I != E; ++I) {
+ O << I->second << ":\n";
+ O << "\t.long " << I->getKeyData() << "\n";
}
}
-
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
@@ -1219,24 +1298,8 @@ bool ARMAsmPrinter::doFinalization(Module &M) {
return AsmPrinter::doFinalization(M);
}
-/// createARMCodePrinterPass - Returns a pass that prints the ARM
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form.
-///
-FunctionPass *llvm::createARMCodePrinterPass(raw_ostream &o,
- ARMBaseTargetMachine &tm,
- bool verbose) {
- return new ARMAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
-}
-
-namespace {
- static struct Register {
- Register() {
- ARMBaseTargetMachine::registerAsmPrinter(createARMCodePrinterPass);
- }
- } Registrator;
-}
-
// Force static initialization.
-extern "C" void LLVMInitializeARMAsmPrinter() { }
+extern "C" void LLVMInitializeARMAsmPrinter() {
+ RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
+ RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
+}
diff --git a/lib/Target/ARM/AsmPrinter/Makefile b/lib/Target/ARM/AsmPrinter/Makefile
index ce36cec..208becc 100644
--- a/lib/Target/ARM/AsmPrinter/Makefile
+++ b/lib/Target/ARM/AsmPrinter/Makefile
@@ -1,4 +1,4 @@
-##===- lib/Target/ARM/Makefile -----------------------------*- Makefile -*-===##
+##===- lib/Target/ARM/AsmPrinter/Makefile ------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
diff --git a/lib/Target/ARM/CMakeLists.txt b/lib/Target/ARM/CMakeLists.txt
index 9c46fe0..6e09eb2 100644
--- a/lib/Target/ARM/CMakeLists.txt
+++ b/lib/Target/ARM/CMakeLists.txt
@@ -12,6 +12,8 @@ tablegen(ARMGenCallingConv.inc -gen-callingconv)
tablegen(ARMGenSubtarget.inc -gen-subtarget)
add_llvm_target(ARMCodeGen
+ ARMBaseInstrInfo.cpp
+ ARMBaseRegisterInfo.cpp
ARMCodeEmitter.cpp
ARMConstantIslandPass.cpp
ARMConstantPoolValue.cpp
@@ -20,14 +22,17 @@ add_llvm_target(ARMCodeGen
ARMISelLowering.cpp
ARMJITInfo.cpp
ARMLoadStoreOptimizer.cpp
+ ARMMCAsmInfo.cpp
ARMRegisterInfo.cpp
ARMSubtarget.cpp
- ARMTargetAsmInfo.cpp
ARMTargetMachine.cpp
+ NEONPreAllocPass.cpp
Thumb1InstrInfo.cpp
Thumb1RegisterInfo.cpp
+ Thumb2ITBlockPass.cpp
Thumb2InstrInfo.cpp
Thumb2RegisterInfo.cpp
+ Thumb2SizeReduction.cpp
)
target_link_libraries (LLVMARMCodeGen LLVMSelectionDAG)
diff --git a/lib/Target/ARM/Makefile b/lib/Target/ARM/Makefile
index 9a3b9be..a8dd38c 100644
--- a/lib/Target/ARM/Makefile
+++ b/lib/Target/ARM/Makefile
@@ -18,6 +18,6 @@ BUILT_SOURCES = ARMGenRegisterInfo.h.inc ARMGenRegisterNames.inc \
ARMGenDAGISel.inc ARMGenSubtarget.inc \
ARMGenCodeEmitter.inc ARMGenCallingConv.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter AsmParser TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/ARM/NEONPreAllocPass.cpp b/lib/Target/ARM/NEONPreAllocPass.cpp
new file mode 100644
index 0000000..821b872
--- /dev/null
+++ b/lib/Target/ARM/NEONPreAllocPass.cpp
@@ -0,0 +1,394 @@
+//===-- NEONPreAllocPass.cpp - Allocate adjacent NEON registers--*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "neon-prealloc"
+#include "ARM.h"
+#include "ARMInstrInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+using namespace llvm;
+
+namespace {
+ class VISIBILITY_HIDDEN NEONPreAllocPass : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+
+ public:
+ static char ID;
+ NEONPreAllocPass() : MachineFunctionPass(&ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "NEON register pre-allocation pass";
+ }
+
+ private:
+ bool PreAllocNEONRegisters(MachineBasicBlock &MBB);
+ };
+
+ char NEONPreAllocPass::ID = 0;
+}
+
+static bool isNEONMultiRegOp(int Opcode, unsigned &FirstOpnd, unsigned &NumRegs,
+ unsigned &Offset, unsigned &Stride) {
+ // Default to unit stride with no offset.
+ Stride = 1;
+ Offset = 0;
+
+ switch (Opcode) {
+ default:
+ break;
+
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2d64:
+ case ARM::VLD2LNd8:
+ case ARM::VLD2LNd16:
+ case ARM::VLD2LNd32:
+ FirstOpnd = 0;
+ NumRegs = 2;
+ return true;
+
+ case ARM::VLD2q8:
+ case ARM::VLD2q16:
+ case ARM::VLD2q32:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ return true;
+
+ case ARM::VLD2LNq16a:
+ case ARM::VLD2LNq32a:
+ FirstOpnd = 0;
+ NumRegs = 2;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD2LNq16b:
+ case ARM::VLD2LNq32b:
+ FirstOpnd = 0;
+ NumRegs = 2;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD3d64:
+ case ARM::VLD3LNd8:
+ case ARM::VLD3LNd16:
+ case ARM::VLD3LNd32:
+ FirstOpnd = 0;
+ NumRegs = 3;
+ return true;
+
+ case ARM::VLD3q8a:
+ case ARM::VLD3q16a:
+ case ARM::VLD3q32a:
+ FirstOpnd = 0;
+ NumRegs = 3;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD3q8b:
+ case ARM::VLD3q16b:
+ case ARM::VLD3q32b:
+ FirstOpnd = 0;
+ NumRegs = 3;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD3LNq16a:
+ case ARM::VLD3LNq32a:
+ FirstOpnd = 0;
+ NumRegs = 3;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD3LNq16b:
+ case ARM::VLD3LNq32b:
+ FirstOpnd = 0;
+ NumRegs = 3;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD4d64:
+ case ARM::VLD4LNd8:
+ case ARM::VLD4LNd16:
+ case ARM::VLD4LNd32:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ return true;
+
+ case ARM::VLD4q8a:
+ case ARM::VLD4q16a:
+ case ARM::VLD4q32a:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD4q8b:
+ case ARM::VLD4q16b:
+ case ARM::VLD4q32b:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD4LNq16a:
+ case ARM::VLD4LNq32a:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VLD4LNq16b:
+ case ARM::VLD4LNq32b:
+ FirstOpnd = 0;
+ NumRegs = 4;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VST2d8:
+ case ARM::VST2d16:
+ case ARM::VST2d32:
+ case ARM::VST2d64:
+ case ARM::VST2LNd8:
+ case ARM::VST2LNd16:
+ case ARM::VST2LNd32:
+ FirstOpnd = 3;
+ NumRegs = 2;
+ return true;
+
+ case ARM::VST2q8:
+ case ARM::VST2q16:
+ case ARM::VST2q32:
+ FirstOpnd = 3;
+ NumRegs = 4;
+ return true;
+
+ case ARM::VST2LNq16a:
+ case ARM::VST2LNq32a:
+ FirstOpnd = 3;
+ NumRegs = 2;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VST2LNq16b:
+ case ARM::VST2LNq32b:
+ FirstOpnd = 3;
+ NumRegs = 2;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VST3d8:
+ case ARM::VST3d16:
+ case ARM::VST3d32:
+ case ARM::VST3d64:
+ case ARM::VST3LNd8:
+ case ARM::VST3LNd16:
+ case ARM::VST3LNd32:
+ FirstOpnd = 3;
+ NumRegs = 3;
+ return true;
+
+ case ARM::VST3q8a:
+ case ARM::VST3q16a:
+ case ARM::VST3q32a:
+ FirstOpnd = 4;
+ NumRegs = 3;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VST3q8b:
+ case ARM::VST3q16b:
+ case ARM::VST3q32b:
+ FirstOpnd = 4;
+ NumRegs = 3;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VST3LNq16a:
+ case ARM::VST3LNq32a:
+ FirstOpnd = 3;
+ NumRegs = 3;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VST3LNq16b:
+ case ARM::VST3LNq32b:
+ FirstOpnd = 3;
+ NumRegs = 3;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VST4d8:
+ case ARM::VST4d16:
+ case ARM::VST4d32:
+ case ARM::VST4d64:
+ case ARM::VST4LNd8:
+ case ARM::VST4LNd16:
+ case ARM::VST4LNd32:
+ FirstOpnd = 3;
+ NumRegs = 4;
+ return true;
+
+ case ARM::VST4q8a:
+ case ARM::VST4q16a:
+ case ARM::VST4q32a:
+ FirstOpnd = 4;
+ NumRegs = 4;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VST4q8b:
+ case ARM::VST4q16b:
+ case ARM::VST4q32b:
+ FirstOpnd = 4;
+ NumRegs = 4;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VST4LNq16a:
+ case ARM::VST4LNq32a:
+ FirstOpnd = 3;
+ NumRegs = 4;
+ Offset = 0;
+ Stride = 2;
+ return true;
+
+ case ARM::VST4LNq16b:
+ case ARM::VST4LNq32b:
+ FirstOpnd = 3;
+ NumRegs = 4;
+ Offset = 1;
+ Stride = 2;
+ return true;
+
+ case ARM::VTBL2:
+ FirstOpnd = 1;
+ NumRegs = 2;
+ return true;
+
+ case ARM::VTBL3:
+ FirstOpnd = 1;
+ NumRegs = 3;
+ return true;
+
+ case ARM::VTBL4:
+ FirstOpnd = 1;
+ NumRegs = 4;
+ return true;
+
+ case ARM::VTBX2:
+ FirstOpnd = 2;
+ NumRegs = 2;
+ return true;
+
+ case ARM::VTBX3:
+ FirstOpnd = 2;
+ NumRegs = 3;
+ return true;
+
+ case ARM::VTBX4:
+ FirstOpnd = 2;
+ NumRegs = 4;
+ return true;
+ }
+
+ return false;
+}
+
+bool NEONPreAllocPass::PreAllocNEONRegisters(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ for (; MBBI != E; ++MBBI) {
+ MachineInstr *MI = &*MBBI;
+ unsigned FirstOpnd, NumRegs, Offset, Stride;
+ if (!isNEONMultiRegOp(MI->getOpcode(), FirstOpnd, NumRegs, Offset, Stride))
+ continue;
+
+ MachineBasicBlock::iterator NextI = next(MBBI);
+ for (unsigned R = 0; R < NumRegs; ++R) {
+ MachineOperand &MO = MI->getOperand(FirstOpnd + R);
+ assert(MO.isReg() && MO.getSubReg() == 0 && "unexpected operand");
+ unsigned VirtReg = MO.getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "expected a virtual register");
+
+ // For now, just assign a fixed set of adjacent registers.
+ // This leaves plenty of room for future improvements.
+ static const unsigned NEONDRegs[] = {
+ ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7
+ };
+ MO.setReg(NEONDRegs[Offset + R * Stride]);
+
+ if (MO.isUse()) {
+ // Insert a copy from VirtReg.
+ TII->copyRegToReg(MBB, MBBI, MO.getReg(), VirtReg,
+ ARM::DPRRegisterClass, ARM::DPRRegisterClass);
+ if (MO.isKill()) {
+ MachineInstr *CopyMI = prior(MBBI);
+ CopyMI->findRegisterUseOperand(VirtReg)->setIsKill();
+ }
+ MO.setIsKill();
+ } else if (MO.isDef() && !MO.isDead()) {
+ // Add a copy to VirtReg.
+ TII->copyRegToReg(MBB, NextI, VirtReg, MO.getReg(),
+ ARM::DPRRegisterClass, ARM::DPRRegisterClass);
+ }
+ }
+ }
+
+ return Modified;
+}
+
+bool NEONPreAllocPass::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getTarget().getInstrInfo();
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = MF.begin(), E = MF.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ Modified |= PreAllocNEONRegisters(MBB);
+ }
+
+ return Modified;
+}
+
+/// createNEONPreAllocPass - returns an instance of the NEON register
+/// pre-allocation pass.
+FunctionPass *llvm::createNEONPreAllocPass() {
+ return new NEONPreAllocPass();
+}
diff --git a/lib/Target/ARM/README-Thumb.txt b/lib/Target/ARM/README-Thumb.txt
index 4d3200b..a961a57 100644
--- a/lib/Target/ARM/README-Thumb.txt
+++ b/lib/Target/ARM/README-Thumb.txt
@@ -226,3 +226,31 @@ etc. Almost all Thumb instructions clobber condition code.
//===---------------------------------------------------------------------===//
Add ldmia, stmia support.
+
+//===---------------------------------------------------------------------===//
+
+Thumb load / store address mode offsets are scaled. The values kept in the
+instruction operands are pre-scale values. This probably ought to be changed
+to avoid extra work when we convert Thumb2 instructions to Thumb1 instructions.
+
+//===---------------------------------------------------------------------===//
+
+We need to make (some of the) Thumb1 instructions predicable. That will allow
+shrinking of predicated Thumb2 instructions. To allow this, we need to be able
+to toggle the 's' bit since they do not set CPSR when they are inside IT blocks.
+
+//===---------------------------------------------------------------------===//
+
+Make use of hi register variants of cmp: tCMPhir / tCMPZhir.
+
+//===---------------------------------------------------------------------===//
+
+Thumb1 immediate field sometimes keep pre-scaled values. See
+Thumb1RegisterInfo::eliminateFrameIndex. This is inconsistent from ARM and
+Thumb2.
+
+//===---------------------------------------------------------------------===//
+
+Rather than having tBR_JTr print a ".align 2" and constant island pass pad it,
+add a target specific ALIGN instruction instead. That way, GetInstSizeInBytes
+won't have to over-estimate. It can also be used for loop alignment pass.
diff --git a/lib/Target/ARM/README-Thumb2.txt b/lib/Target/ARM/README-Thumb2.txt
new file mode 100644
index 0000000..e7c2552
--- /dev/null
+++ b/lib/Target/ARM/README-Thumb2.txt
@@ -0,0 +1,6 @@
+//===---------------------------------------------------------------------===//
+// Random ideas for the ARM backend (Thumb2 specific).
+//===---------------------------------------------------------------------===//
+
+Make sure jumptable destinations are below the jumptable in order to make use
+of tbb / tbh.
diff --git a/lib/Target/ARM/README.txt b/lib/Target/ARM/README.txt
index f3377f9..8fb1da3 100644
--- a/lib/Target/ARM/README.txt
+++ b/lib/Target/ARM/README.txt
@@ -537,3 +537,66 @@ Split out LDR (literal) from normal ARM LDR instruction. Also consider spliting
LDR into imm12 and so_reg forms. This allows us to clean up some code. e.g.
ARMLoadStoreOptimizer does not need to look at LDR (literal) and LDR (so_reg)
while ARMConstantIslandPass only need to worry about LDR (literal).
+
+//===---------------------------------------------------------------------===//
+
+We need to fix constant isel for ARMv6t2 to use MOVT.
+
+//===---------------------------------------------------------------------===//
+
+Constant island pass should make use of full range SoImm values for LEApcrel.
+Be careful though as the last attempt caused infinite looping on lencod.
+
+//===---------------------------------------------------------------------===//
+
+Predication issue. This function:
+
+extern unsigned array[ 128 ];
+int foo( int x ) {
+ int y;
+ y = array[ x & 127 ];
+ if ( x & 128 )
+ y = 123456789 & ( y >> 2 );
+ else
+ y = 123456789 & y;
+ return y;
+}
+
+compiles to:
+
+_foo:
+ and r1, r0, #127
+ ldr r2, LCPI1_0
+ ldr r2, [r2]
+ ldr r1, [r2, +r1, lsl #2]
+ mov r2, r1, lsr #2
+ tst r0, #128
+ moveq r2, r1
+ ldr r0, LCPI1_1
+ and r0, r2, r0
+ bx lr
+
+It would be better to do something like this, to fold the shift into the
+conditional move:
+
+ and r1, r0, #127
+ ldr r2, LCPI1_0
+ ldr r2, [r2]
+ ldr r1, [r2, +r1, lsl #2]
+ tst r0, #128
+ movne r1, r1, lsr #2
+ ldr r0, LCPI1_1
+ and r0, r1, r0
+ bx lr
+
+it saves an instruction and a register.
+
+//===---------------------------------------------------------------------===//
+
+add/sub/and/or + i32 imm can be simplified by folding part of the immediate
+into the operation.
+
+//===---------------------------------------------------------------------===//
+
+It might be profitable to cse MOVi16 if there are lots of 32-bit immediates
+with the same bottom half.
diff --git a/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp b/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp
new file mode 100644
index 0000000..163a0a9
--- /dev/null
+++ b/lib/Target/ARM/TargetInfo/ARMTargetInfo.cpp
@@ -0,0 +1,23 @@
+//===-- ARMTargetInfo.cpp - ARM Target Implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheARMTarget, llvm::TheThumbTarget;
+
+extern "C" void LLVMInitializeARMTargetInfo() {
+ RegisterTarget<Triple::arm, /*HasJIT=*/true>
+ X(TheARMTarget, "arm", "ARM");
+
+ RegisterTarget<Triple::thumb, /*HasJIT=*/true>
+ Y(TheThumbTarget, "thumb", "Thumb");
+}
diff --git a/lib/Target/ARM/TargetInfo/CMakeLists.txt b/lib/Target/ARM/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..3910bb0
--- /dev/null
+++ b/lib/Target/ARM/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMARMInfo
+ ARMTargetInfo.cpp
+ )
+
+add_dependencies(LLVMARMInfo ARMCodeGenTable_gen)
diff --git a/lib/Target/ARM/TargetInfo/Makefile b/lib/Target/ARM/TargetInfo/Makefile
new file mode 100644
index 0000000..6292ab1
--- /dev/null
+++ b/lib/Target/ARM/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/ARM/TargetInfo/Makefile ------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMARMInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/ARM/Thumb1InstrInfo.cpp b/lib/Target/ARM/Thumb1InstrInfo.cpp
index e13a811..7eed30e 100644
--- a/lib/Target/ARM/Thumb1InstrInfo.cpp
+++ b/lib/Target/ARM/Thumb1InstrInfo.cpp
@@ -22,63 +22,29 @@
using namespace llvm;
-Thumb1InstrInfo::Thumb1InstrInfo(const ARMSubtarget &STI)
- : ARMBaseInstrInfo(STI), RI(*this, STI) {
+Thumb1InstrInfo::Thumb1InstrInfo(const ARMSubtarget &STI) : RI(*this, STI) {
}
-bool Thumb1InstrInfo::isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
- SrcSubIdx = DstSubIdx = 0; // No sub-registers.
-
- unsigned oc = MI.getOpcode();
- switch (oc) {
- default:
- return false;
- case ARM::tMOVr:
- case ARM::tMOVhir2lor:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2hir:
- assert(MI.getDesc().getNumOperands() >= 2 &&
- MI.getOperand(0).isReg() &&
- MI.getOperand(1).isReg() &&
- "Invalid Thumb MOV instruction");
- SrcReg = MI.getOperand(1).getReg();
- DstReg = MI.getOperand(0).getReg();
- return true;
- }
-}
-
-unsigned Thumb1InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- case ARM::tRestore:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- }
+unsigned Thumb1InstrInfo::getUnindexedOpcode(unsigned Opc) const {
return 0;
}
-unsigned Thumb1InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- case ARM::tSpill:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
+bool
+Thumb1InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
+ if (MBB.empty()) return false;
+
+ switch (MBB.back().getOpcode()) {
+ case ARM::tBX_RET:
+ case ARM::tBX_RET_vararg:
+ case ARM::tPOP_RET:
+ case ARM::tB:
+ case ARM::tBR_JTr:
+ return true;
+ default:
break;
}
- return 0;
+
+ return false;
}
bool Thumb1InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
@@ -91,15 +57,15 @@ bool Thumb1InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
if (DestRC == ARM::GPRRegisterClass) {
if (SrcRC == ARM::GPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVhir2hir), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(ARM::tMOVgpr2gpr), DestReg).addReg(SrcReg);
return true;
} else if (SrcRC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVlor2hir), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(ARM::tMOVtgpr2gpr), DestReg).addReg(SrcReg);
return true;
}
} else if (DestRC == ARM::tGPRRegisterClass) {
if (SrcRC == ARM::GPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVhir2lor), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, DL, get(ARM::tMOVgpr2tgpr), DestReg).addReg(SrcReg);
return true;
} else if (SrcRC == ARM::tGPRRegisterClass) {
BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg).addReg(SrcReg);
@@ -120,17 +86,19 @@ canFoldMemoryOperand(const MachineInstr *MI,
switch (Opc) {
default: break;
case ARM::tMOVr:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2lor:
- case ARM::tMOVhir2hir: {
+ case ARM::tMOVtgpr2gpr:
+ case ARM::tMOVgpr2tgpr:
+ case ARM::tMOVgpr2gpr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
- if (RI.isPhysicalRegister(SrcReg) && !isARMLowRegister(SrcReg))
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ !isARMLowRegister(SrcReg))
// tSpill cannot take a high register operand.
return false;
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
- if (RI.isPhysicalRegister(DstReg) && !isARMLowRegister(DstReg))
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg) &&
+ !isARMLowRegister(DstReg))
// tRestore cannot target a high register operand.
return false;
}
@@ -148,36 +116,17 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- assert(RC == ARM::tGPRRegisterClass && "Unknown regclass!");
+ assert((RC == ARM::tGPRRegisterClass ||
+ (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ isARMLowRegister(SrcReg))) && "Unknown regclass!");
if (RC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tSpill))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0);
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tSpill))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0));
}
}
-void Thumb1InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const{
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
-
- assert(RC == ARM::GPRRegisterClass && "Unknown regclass!");
- if (RC == ARM::GPRRegisterClass) {
- Opc = Addr[0].isFI() ? ARM::tSpill : ARM::tSTR;
- }
-
- MachineInstrBuilder MIB =
- BuildMI(MF, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
void Thumb1InstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
@@ -185,33 +134,16 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- assert(RC == ARM::tGPRRegisterClass && "Unknown regclass!");
+ assert((RC == ARM::tGPRRegisterClass ||
+ (TargetRegisterInfo::isPhysicalRegister(DestReg) &&
+ isARMLowRegister(DestReg))) && "Unknown regclass!");
if (RC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tRestore), DestReg)
- .addFrameIndex(FI).addImm(0);
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::tRestore), DestReg)
+ .addFrameIndex(FI).addImm(0));
}
}
-void Thumb1InstrInfo::
-loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
-
- if (RC == ARM::GPRRegisterClass) {
- Opc = Addr[0].isFI() ? ARM::tRestore : ARM::tLDR;
- }
-
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
bool Thumb1InstrInfo::
spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
@@ -223,6 +155,8 @@ spillCalleeSavedRegisters(MachineBasicBlock &MBB,
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, get(ARM::tPUSH));
+ AddDefaultPred(MIB);
+ MIB.addReg(0); // No write back.
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
@@ -242,7 +176,12 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
return false;
bool isVarArg = AFI->getVarArgsRegSaveSize() > 0;
- MachineInstr *PopMI = MF.CreateMachineInstr(get(ARM::tPOP),MI->getDebugLoc());
+ DebugLoc DL = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::tPOP));
+ AddDefaultPred(MIB);
+ MIB.addReg(0); // No write back.
+
+ bool NumRegs = 0;
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
if (Reg == ARM::LR) {
@@ -250,15 +189,16 @@ restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
if (isVarArg)
continue;
Reg = ARM::PC;
- PopMI->setDesc(get(ARM::tPOP_RET));
+ (*MIB).setDesc(get(ARM::tPOP_RET));
MI = MBB.erase(MI);
}
- PopMI->addOperand(MachineOperand::CreateReg(Reg, true));
+ MIB.addReg(Reg, getDefRegState(true));
+ ++NumRegs;
}
// It's illegal to emit pop instruction without operands.
- if (PopMI->getNumOperands() > 0)
- MBB.insert(MI, PopMI);
+ if (NumRegs)
+ MBB.insert(MI, &*MIB);
return true;
}
@@ -274,27 +214,30 @@ foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
switch (Opc) {
default: break;
case ARM::tMOVr:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2lor:
- case ARM::tMOVhir2hir: {
+ case ARM::tMOVtgpr2gpr:
+ case ARM::tMOVgpr2tgpr:
+ case ARM::tMOVgpr2gpr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
bool isKill = MI->getOperand(1).isKill();
- if (RI.isPhysicalRegister(SrcReg) && !isARMLowRegister(SrcReg))
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ !isARMLowRegister(SrcReg))
// tSpill cannot take a high register operand.
break;
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::tSpill))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0);
+ NewMI = AddDefaultPred(BuildMI(MF, MI->getDebugLoc(), get(ARM::tSpill))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0));
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
- if (RI.isPhysicalRegister(DstReg) && !isARMLowRegister(DstReg))
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg) &&
+ !isARMLowRegister(DstReg))
// tRestore cannot target a high register operand.
break;
bool isDead = MI->getOperand(0).isDead();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::tRestore))
- .addReg(DstReg, RegState::Define | getDeadRegState(isDead))
- .addFrameIndex(FI).addImm(0);
+ NewMI = AddDefaultPred(BuildMI(MF, MI->getDebugLoc(), get(ARM::tRestore))
+ .addReg(DstReg,
+ RegState::Define | getDeadRegState(isDead))
+ .addFrameIndex(FI).addImm(0));
}
break;
}
diff --git a/lib/Target/ARM/Thumb1InstrInfo.h b/lib/Target/ARM/Thumb1InstrInfo.h
index 1bfa1d0..13cc578 100644
--- a/lib/Target/ARM/Thumb1InstrInfo.h
+++ b/lib/Target/ARM/Thumb1InstrInfo.h
@@ -27,6 +27,13 @@ class Thumb1InstrInfo : public ARMBaseInstrInfo {
public:
explicit Thumb1InstrInfo(const ARMSubtarget &STI);
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const;
+
+ // Return true if the block does not fall through.
+ bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
+
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
@@ -40,14 +47,6 @@ public:
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const;
- bool isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
- unsigned isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
- unsigned isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
-
bool copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SrcReg,
@@ -58,21 +57,11 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
- void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
bool canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const;
@@ -80,7 +69,7 @@ public:
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const;
-
+
MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
diff --git a/lib/Target/ARM/Thumb1RegisterInfo.cpp b/lib/Target/ARM/Thumb1RegisterInfo.cpp
index 92f01d1..3c896da 100644
--- a/lib/Target/ARM/Thumb1RegisterInfo.cpp
+++ b/lib/Target/ARM/Thumb1RegisterInfo.cpp
@@ -13,12 +13,15 @@
#include "ARM.h"
#include "ARMAddressingModes.h"
+#include "ARMBaseInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "Thumb1InstrInfo.h"
#include "Thumb1RegisterInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -30,14 +33,11 @@
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
-static cl::opt<bool>
-ThumbRegScavenging("enable-thumb-reg-scavenging",
- cl::Hidden,
- cl::desc("Enable register scavenging on Thumb"));
-
-Thumb1RegisterInfo::Thumb1RegisterInfo(const TargetInstrInfo &tii,
+Thumb1RegisterInfo::Thumb1RegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMBaseRegisterInfo(tii, sti) {
}
@@ -46,20 +46,24 @@ Thumb1RegisterInfo::Thumb1RegisterInfo(const TargetInstrInfo &tii,
/// specified immediate.
void Thumb1RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Val,
- const TargetInstrInfo *TII,
- DebugLoc dl) const {
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx,
+ int Val,
+ ARMCC::CondCodes Pred,
+ unsigned PredReg) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
- Constant *C = ConstantInt::get(Type::Int32Ty, Val);
+ Constant *C = ConstantInt::get(
+ Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
- BuildMI(MBB, MBBI, dl, TII->get(ARM::tLDRcp), DestReg)
- .addConstantPoolIndex(Idx);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tLDRcp))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx).addImm(Pred).addReg(PredReg);
}
const TargetRegisterClass*
-Thumb1RegisterInfo::getPhysicalRegisterRegClass(unsigned Reg, MVT VT) const {
+Thumb1RegisterInfo::getPhysicalRegisterRegClass(unsigned Reg, EVT VT) const {
if (isARMLowRegister(Reg))
return ARM::tGPRRegisterClass;
switch (Reg) {
@@ -75,9 +79,16 @@ Thumb1RegisterInfo::getPhysicalRegisterRegClass(unsigned Reg, MVT VT) const {
bool
Thumb1RegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
- return ThumbRegScavenging;
+ return true;
+}
+
+bool
+Thumb1RegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF)
+ const {
+ return true;
}
+
bool Thumb1RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
const MachineFrameInfo *FFI = MF.getFrameInfo();
unsigned CFSize = FFI->getMaxCallFrameSize();
@@ -91,6 +102,7 @@ bool Thumb1RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
+
/// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code. Materialize the immediate
/// in a register using mov / mvn sequences or load the immediate from a
@@ -103,6 +115,7 @@ void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
const TargetInstrInfo &TII,
const Thumb1RegisterInfo& MRI,
DebugLoc dl) {
+ MachineFunction &MF = *MBB.getParent();
bool isHigh = !isARMLowRegister(DestReg) ||
(BaseReg != 0 && !isARMLowRegister(BaseReg));
bool isSub = false;
@@ -117,31 +130,31 @@ void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
unsigned LdReg = DestReg;
if (DestReg == ARM::SP) {
assert(BaseReg == ARM::SP && "Unexpected!");
- LdReg = ARM::R3;
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R3, RegState::Kill);
+ LdReg = MF.getRegInfo().createVirtualRegister(ARM::tGPRRegisterClass);
}
if (NumBytes <= 255 && NumBytes >= 0)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
+ .addImm(NumBytes);
else if (NumBytes < 0 && NumBytes >= -255) {
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), LdReg)
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg))
+ .addImm(NumBytes);
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tRSB), LdReg))
.addReg(LdReg, RegState::Kill);
} else
- MRI.emitLoadConstPool(MBB, MBBI, LdReg, NumBytes, &TII, dl);
+ MRI.emitLoadConstPool(MBB, MBBI, dl, LdReg, 0, NumBytes);
// Emit add / sub.
int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
- const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl,
- TII.get(Opc), DestReg);
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (Opc != ARM::tADDhirr)
+ MIB = AddDefaultT1CC(MIB);
if (DestReg == ARM::SP || isSub)
MIB.addReg(BaseReg).addReg(LdReg, RegState::Kill);
else
MIB.addReg(LdReg).addReg(BaseReg, RegState::Kill);
- if (DestReg == ARM::SP)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVhir2lor), ARM::R3)
- .addReg(ARM::R12, RegState::Kill);
+ AddDefaultPred(MIB);
}
/// calcNumMI - Returns the number of instructions required to materialize
@@ -187,6 +200,8 @@ void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
unsigned Scale = 1;
int Opc = 0;
int ExtraOpc = 0;
+ bool NeedCC = false;
+ bool NeedPred = false;
if (DestReg == BaseReg && BaseReg == ARM::SP) {
assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
@@ -213,7 +228,16 @@ void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
if (DestReg != BaseReg)
DstNotEqBase = true;
NumBits = 8;
- Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
+ if (DestReg == ARM::SP) {
+ Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
+ NumBits = 7;
+ Scale = 4;
+ } else {
+ Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
+ NumBits = 8;
+ NeedPred = NeedCC = true;
+ }
isTwoAddr = true;
}
@@ -233,8 +257,10 @@ void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
unsigned Chunk = (1 << 3) - 1;
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
- BuildMI(MBB, MBBI, dl,TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg)
- .addReg(BaseReg, RegState::Kill).addImm(ThisVal);
+ const TargetInstrDesc &TID = TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3);
+ const MachineInstrBuilder MIB =
+ AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TID, DestReg));
+ AddDefaultPred(MIB.addReg(BaseReg, RegState::Kill).addImm(ThisVal));
} else {
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
.addReg(BaseReg, RegState::Kill);
@@ -248,13 +274,22 @@ void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
Bytes -= ThisVal;
ThisVal /= Scale;
// Build the new tADD / tSUB.
- if (isTwoAddr)
- BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
- .addReg(DestReg).addImm(ThisVal);
+ if (isTwoAddr) {
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (NeedCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB .addReg(DestReg).addImm(ThisVal);
+ if (NeedPred)
+ MIB = AddDefaultPred(MIB);
+ }
else {
bool isKill = BaseReg != ARM::SP;
- BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
- .addReg(BaseReg, getKillRegState(isKill)).addImm(ThisVal);
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg);
+ if (NeedCC)
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(BaseReg, getKillRegState(isKill)).addImm(ThisVal);
+ if (NeedPred)
+ MIB = AddDefaultPred(MIB);
BaseReg = DestReg;
if (Opc == ARM::tADDrSPi) {
@@ -265,15 +300,17 @@ void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
Scale = 1;
Chunk = ((1 << NumBits) - 1) * Scale;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
- isTwoAddr = true;
+ NeedPred = NeedCC = isTwoAddr = true;
}
}
}
- if (ExtraOpc)
- BuildMI(MBB, MBBI, dl, TII.get(ExtraOpc), DestReg)
- .addReg(DestReg, RegState::Kill)
- .addImm(((unsigned)NumBytes) & 3);
+ if (ExtraOpc) {
+ const TargetInstrDesc &TID = TII.get(ExtraOpc);
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TID, DestReg))
+ .addReg(DestReg, RegState::Kill)
+ .addImm(((unsigned)NumBytes) & 3));
+ }
}
static void emitSPUpdate(MachineBasicBlock &MBB,
@@ -329,16 +366,64 @@ static void emitThumbConstant(MachineBasicBlock &MBB,
int Chunk = (1 << 8) - 1;
int ThisVal = (Imm > Chunk) ? Chunk : Imm;
Imm -= ThisVal;
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), DestReg).addImm(ThisVal);
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8),
+ DestReg))
+ .addImm(ThisVal));
if (Imm > 0)
emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII, MRI, dl);
- if (isSub)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), DestReg)
- .addReg(DestReg, RegState::Kill);
+ if (isSub) {
+ const TargetInstrDesc &TID = TII.get(ARM::tRSB);
+ AddDefaultPred(AddDefaultT1CC(BuildMI(MBB, MBBI, dl, TID, DestReg))
+ .addReg(DestReg, RegState::Kill));
+ }
}
-void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const{
+static void removeOperands(MachineInstr &MI, unsigned i) {
+ unsigned Op = i;
+ for (unsigned e = MI.getNumOperands(); i != e; ++i)
+ MI.RemoveOperand(Op);
+}
+
+int Thumb1RegisterInfo::
+rewriteFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int Offset,
+ unsigned MOVOpc, unsigned ADDriOpc, unsigned SUBriOpc) const
+{
+ // if/when eliminateFrameIndex() conforms with ARMBaseRegisterInfo
+ // version then can pull out Thumb1 specific parts here
+ return 0;
+}
+
+/// saveScavengerRegister - Save the register so it can be used by the
+/// register scavenger. Return true.
+bool Thumb1RegisterInfo::saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ // Thumb1 can't use the emergency spill slot on the stack because
+ // ldr/str immediate offsets must be positive, and if we're referencing
+ // off the frame pointer (if, for example, there are alloca() calls in
+ // the function, the offset will be negative. Use R12 instead since that's
+ // a call clobbered register that we know won't be used in Thumb1 mode.
+
+ TII.copyRegToReg(MBB, I, ARM::R12, Reg, ARM::GPRRegisterClass, RC);
+ return true;
+}
+
+/// restoreScavengerRegister - restore a registers saved by
+// saveScavengerRegister().
+void Thumb1RegisterInfo::restoreScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const {
+ TII.copyRegToReg(MBB, I, Reg, ARM::R12, RC, ARM::GPRRegisterClass);
+}
+
+unsigned
+Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const{
+ unsigned VReg = 0;
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
@@ -380,7 +465,7 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
unsigned Scale = 1;
if (FrameReg != ARM::SP) {
Opcode = ARM::tADDi3;
- MI.setDesc(TII.get(ARM::tADDi3));
+ MI.setDesc(TII.get(Opcode));
NumBits = 3;
} else {
NumBits = 8;
@@ -391,19 +476,26 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (Offset == 0) {
// Turn it into a move.
- MI.setDesc(TII.get(ARM::tMOVhir2lor));
+ MI.setDesc(TII.get(ARM::tMOVgpr2tgpr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
- return;
+ return 0;
}
// Common case: small offset, fits into instruction.
unsigned Mask = (1 << NumBits) - 1;
if (((Offset / Scale) & ~Mask) == 0) {
// Replace the FrameIndex with sp / fp
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.getOperand(i+1).ChangeToImmediate(Offset / Scale);
- return;
+ if (Opcode == ARM::tADDi3) {
+ removeOperands(MI, i);
+ MachineInstrBuilder MIB(&MI);
+ AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg)
+ .addImm(Offset / Scale));
+ } else {
+ MI.getOperand(i).ChangeToRegister(FrameReg, false);
+ MI.getOperand(i+1).ChangeToImmediate(Offset / Scale);
+ }
+ return 0;
}
unsigned DestReg = MI.getOperand(0).getReg();
@@ -415,15 +507,21 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
emitThumbRegPlusImmediate(MBB, II, DestReg, FrameReg, Offset, TII,
*this, dl);
MBB.erase(II);
- return;
+ return 0;
}
if (Offset > 0) {
// Translate r0 = add sp, imm to
// r0 = add sp, 255*4
// r0 = add r0, (imm - 255*4)
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.getOperand(i+1).ChangeToImmediate(Mask);
+ if (Opcode == ARM::tADDi3) {
+ removeOperands(MI, i);
+ MachineInstrBuilder MIB(&MI);
+ AddDefaultPred(AddDefaultT1CC(MIB).addReg(FrameReg).addImm(Mask));
+ } else {
+ MI.getOperand(i).ChangeToRegister(FrameReg, false);
+ MI.getOperand(i+1).ChangeToImmediate(Mask);
+ }
Offset = (Offset - Mask * Scale);
MachineBasicBlock::iterator NII = next(II);
emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII,
@@ -433,11 +531,16 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// r0 = -imm (this is then translated into a series of instructons)
// r0 = add r0, sp
emitThumbConstant(MBB, II, DestReg, Offset, TII, *this, dl);
+
MI.setDesc(TII.get(ARM::tADDhirr));
MI.getOperand(i).ChangeToRegister(DestReg, false, false, true);
MI.getOperand(i+1).ChangeToRegister(FrameReg, false);
+ if (Opcode == ARM::tADDi3) {
+ MachineInstrBuilder MIB(&MI);
+ AddDefaultPred(MIB);
+ }
}
- return;
+ return 0;
} else {
unsigned ImmIdx = 0;
int InstrOffs = 0;
@@ -452,8 +555,7 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
break;
}
default:
- assert(0 && "Unsupported addressing mode!");
- abort();
+ llvm_unreachable("Unsupported addressing mode!");
break;
}
@@ -468,7 +570,7 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// Replace the FrameIndex with sp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
ImmOp.ChangeToImmediate(ImmedOffset);
- return;
+ return 0;
}
bool isThumSpillRestore = Opcode == ARM::tRestore || Opcode == ARM::tSpill;
@@ -495,6 +597,11 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// SP+LargeImm.
assert(Offset && "This code isn't needed if offset already handled!");
+ // Remove predicate first.
+ int PIdx = MI.findFirstPredOperandIdx();
+ if (PIdx != -1)
+ removeOperands(MI, PIdx);
+
if (Desc.mayLoad()) {
// Use the destination register to materialize sp + offset.
unsigned TmpReg = MI.getOperand(0).getReg();
@@ -504,12 +611,14 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
Offset, false, TII, *this, dl);
else {
- emitLoadConstPool(MBB, II, TmpReg, Offset, &TII, dl);
+ emitLoadConstPool(MBB, II, dl, TmpReg, 0, Offset);
UseRR = true;
}
- } else
+ } else {
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
*this, dl);
+ }
+
MI.setDesc(TII.get(ARM::tLDR));
MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
if (UseRR)
@@ -518,52 +627,37 @@ void Thumb1RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
else // tLDR has an extra register operand.
MI.addOperand(MachineOperand::CreateReg(0, false));
} else if (Desc.mayStore()) {
- // FIXME! This is horrific!!! We need register scavenging.
- // Our temporary workaround has marked r3 unavailable. Of course, r3 is
- // also a ABI register so it's possible that is is the register that is
- // being storing here. If that's the case, we do the following:
- // r12 = r2
- // Use r2 to materialize sp + offset
- // str r3, r2
- // r2 = r12
- unsigned ValReg = MI.getOperand(0).getReg();
- unsigned TmpReg = ARM::R3;
- bool UseRR = false;
- if (ValReg == ARM::R3) {
- BuildMI(MBB, II, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R2, RegState::Kill);
- TmpReg = ARM::R2;
- }
- if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
- BuildMI(MBB, II, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R3, RegState::Kill);
- if (Opcode == ARM::tSpill) {
- if (FrameReg == ARM::SP)
- emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
- Offset, false, TII, *this, dl);
- else {
- emitLoadConstPool(MBB, II, TmpReg, Offset, &TII, dl);
- UseRR = true;
- }
- } else
- emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
- *this, dl);
- MI.setDesc(TII.get(ARM::tSTR));
- MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
- if (UseRR) // Use [reg, reg] addrmode.
- MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
- else // tSTR has an extra register operand.
- MI.addOperand(MachineOperand::CreateReg(0, false));
-
- MachineBasicBlock::iterator NII = next(II);
- if (ValReg == ARM::R3)
- BuildMI(MBB, NII, dl, TII.get(ARM::tMOVhir2lor), ARM::R2)
- .addReg(ARM::R12, RegState::Kill);
- if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
- BuildMI(MBB, NII, dl, TII.get(ARM::tMOVhir2lor), ARM::R3)
- .addReg(ARM::R12, RegState::Kill);
+ VReg = MF.getRegInfo().createVirtualRegister(ARM::tGPRRegisterClass);
+ assert (Value && "Frame index virtual allocated, but Value arg is NULL!");
+ *Value = Offset;
+ bool UseRR = false;
+
+ if (Opcode == ARM::tSpill) {
+ if (FrameReg == ARM::SP)
+ emitThumbRegPlusImmInReg(MBB, II, VReg, FrameReg,
+ Offset, false, TII, *this, dl);
+ else {
+ emitLoadConstPool(MBB, II, dl, VReg, 0, Offset);
+ UseRR = true;
+ }
+ } else
+ emitThumbRegPlusImmediate(MBB, II, VReg, FrameReg, Offset, TII,
+ *this, dl);
+ MI.setDesc(TII.get(ARM::tSTR));
+ MI.getOperand(i).ChangeToRegister(VReg, false, false, true);
+ if (UseRR) // Use [reg, reg] addrmode.
+ MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
+ else // tSTR has an extra register operand.
+ MI.addOperand(MachineOperand::CreateReg(0, false));
} else
assert(false && "Unexpected opcode!");
+
+ // Add predicate back if it's needed.
+ if (MI.getDesc().isPredicable()) {
+ MachineInstrBuilder MIB(&MI);
+ AddDefaultPred(MIB);
+ }
+ return VReg;
}
void Thumb1RegisterInfo::emitPrologue(MachineFunction &MF) const {
@@ -577,15 +671,6 @@ void Thumb1RegisterInfo::emitPrologue(MachineFunction &MF) const {
DebugLoc dl = (MBBI != MBB.end() ?
MBBI->getDebugLoc() : DebugLoc::getUnknownLoc());
- // Check if R3 is live in. It might have to be used as a scratch register.
- for (MachineRegisterInfo::livein_iterator I =MF.getRegInfo().livein_begin(),
- E = MF.getRegInfo().livein_end(); I != E; ++I) {
- if (I->first == ARM::R3) {
- AFI->setR3IsLiveIn(true);
- break;
- }
- }
-
// Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
NumBytes = (NumBytes + 3) & ~3;
MFI->setStackSize(NumBytes);
@@ -647,8 +732,7 @@ void Thumb1RegisterInfo::emitPrologue(MachineFunction &MF) const {
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF)) {
- MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tADDrSPi), FramePtr)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tADDrSPi), FramePtr)
.addFrameIndex(FramePtrSpillFI).addImm(0);
}
@@ -729,7 +813,7 @@ void Thumb1RegisterInfo::emitEpilogue(MachineFunction &MF,
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, FramePtr, -NumBytes,
TII, *this, dl);
else
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVlor2hir), ARM::SP)
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVtgpr2gpr), ARM::SP)
.addReg(FramePtr);
} else {
if (MBBI->getOpcode() == ARM::tBX_RET &&
@@ -745,11 +829,14 @@ void Thumb1RegisterInfo::emitEpilogue(MachineFunction &MF,
if (VARegSaveSize) {
// Epilogue for vararg functions: pop LR to R3 and branch off it.
// FIXME: Verify this is still ok when R3 is no longer being reserved.
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)).addReg(ARM::R3);
+ AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)))
+ .addReg(0) // No write back.
+ .addReg(ARM::R3, RegState::Define);
emitSPUpdate(MBB, MBBI, TII, dl, *this, VARegSaveSize);
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg)).addReg(ARM::R3);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg))
+ .addReg(ARM::R3, RegState::Kill);
MBB.erase(MBBI);
}
}
diff --git a/lib/Target/ARM/Thumb1RegisterInfo.h b/lib/Target/ARM/Thumb1RegisterInfo.h
index 6d4f1f0..bb7a619 100644
--- a/lib/Target/ARM/Thumb1RegisterInfo.h
+++ b/lib/Target/ARM/Thumb1RegisterInfo.h
@@ -20,28 +20,28 @@
namespace llvm {
class ARMSubtarget;
- class TargetInstrInfo;
+ class ARMBaseInstrInfo;
class Type;
struct Thumb1RegisterInfo : public ARMBaseRegisterInfo {
public:
- Thumb1RegisterInfo(const TargetInstrInfo &tii, const ARMSubtarget &STI);
+ Thumb1RegisterInfo(const ARMBaseInstrInfo &tii, const ARMSubtarget &STI);
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
- void emitLoadConstPool(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Val,
- const TargetInstrInfo *TII,
- DebugLoc dl) const;
+ void emitLoadConstPool(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) const;
/// Code Generation virtual methods...
const TargetRegisterClass *
- getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
-
- bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
+ getPhysicalRegisterRegClass(unsigned Reg, EVT VT = MVT::Other) const;
bool requiresRegisterScavenging(const MachineFunction &MF) const;
+ bool requiresFrameIndexScavenging(const MachineFunction &MF) const;
bool hasReservedCallFrame(MachineFunction &MF) const;
@@ -49,8 +49,23 @@ public:
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ // rewrite MI to access 'Offset' bytes from the FP. Return the offset that
+ // could not be handled directly in MI.
+ int rewriteFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int Offset,
+ unsigned MOVOpc, unsigned ADDriOpc, unsigned SUBriOpc) const;
+
+ bool saveScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const;
+ void restoreScavengerRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const TargetRegisterClass *RC,
+ unsigned Reg) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
void emitPrologue(MachineFunction &MF) const;
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
diff --git a/lib/Target/ARM/Thumb2ITBlockPass.cpp b/lib/Target/ARM/Thumb2ITBlockPass.cpp
new file mode 100644
index 0000000..98b5cbd
--- /dev/null
+++ b/lib/Target/ARM/Thumb2ITBlockPass.cpp
@@ -0,0 +1,158 @@
+//===-- Thumb2ITBlockPass.cpp - Insert Thumb IT blocks -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "thumb2-it"
+#include "ARM.h"
+#include "ARMMachineFunctionInfo.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumITs, "Number of IT blocks inserted");
+
+namespace {
+ struct VISIBILITY_HIDDEN Thumb2ITBlockPass : public MachineFunctionPass {
+ static char ID;
+ Thumb2ITBlockPass() : MachineFunctionPass(&ID) {}
+
+ const Thumb2InstrInfo *TII;
+ ARMFunctionInfo *AFI;
+
+ virtual bool runOnMachineFunction(MachineFunction &Fn);
+
+ virtual const char *getPassName() const {
+ return "Thumb IT blocks insertion pass";
+ }
+
+ private:
+ MachineBasicBlock::iterator
+ SplitT2MOV32imm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ MachineInstr *MI, DebugLoc dl,
+ unsigned PredReg, ARMCC::CondCodes CC);
+ bool InsertITBlocks(MachineBasicBlock &MBB);
+ };
+ char Thumb2ITBlockPass::ID = 0;
+}
+
+static ARMCC::CondCodes getPredicate(const MachineInstr *MI, unsigned &PredReg){
+ unsigned Opc = MI->getOpcode();
+ if (Opc == ARM::tBcc || Opc == ARM::t2Bcc)
+ return ARMCC::AL;
+ return llvm::getInstrPredicate(MI, PredReg);
+}
+
+MachineBasicBlock::iterator
+Thumb2ITBlockPass::SplitT2MOV32imm(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ MachineInstr *MI,
+ DebugLoc dl, unsigned PredReg,
+ ARMCC::CondCodes CC) {
+ // Splitting t2MOVi32imm into a pair of t2MOVi16 + t2MOVTi16 here.
+ // The only reason it was a single instruction was so it could be
+ // re-materialized. We want to split it before this and the thumb2
+ // size reduction pass to make sure the IT mask is correct and expose
+ // width reduction opportunities. It doesn't make sense to do this in a
+ // separate pass so here it is.
+ unsigned DstReg = MI->getOperand(0).getReg();
+ bool DstDead = MI->getOperand(0).isDead(); // Is this possible?
+ unsigned Imm = MI->getOperand(1).getImm();
+ unsigned Lo16 = Imm & 0xffff;
+ unsigned Hi16 = (Imm >> 16) & 0xffff;
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::t2MOVi16), DstReg)
+ .addImm(Lo16).addImm(CC).addReg(PredReg);
+ BuildMI(MBB, MBBI, dl, TII->get(ARM::t2MOVTi16))
+ .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstDead))
+ .addReg(DstReg).addImm(Hi16).addImm(CC).addReg(PredReg);
+ --MBBI;
+ --MBBI;
+ MI->eraseFromParent();
+ return MBBI;
+}
+
+bool Thumb2ITBlockPass::InsertITBlocks(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
+ while (MBBI != E) {
+ MachineInstr *MI = &*MBBI;
+ DebugLoc dl = MI->getDebugLoc();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getPredicate(MI, PredReg);
+
+ if (MI->getOpcode() == ARM::t2MOVi32imm) {
+ MBBI = SplitT2MOV32imm(MBB, MBBI, MI, dl, PredReg, CC);
+ continue;
+ }
+
+ if (CC == ARMCC::AL) {
+ ++MBBI;
+ continue;
+ }
+
+ // Insert an IT instruction.
+ MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
+ .addImm(CC);
+ ++MBBI;
+
+ // Finalize IT mask.
+ ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
+ unsigned Mask = 0, Pos = 3;
+ while (MBBI != E && Pos) {
+ MachineInstr *NMI = &*MBBI;
+ DebugLoc ndl = NMI->getDebugLoc();
+ unsigned NPredReg = 0;
+ ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
+ if (NMI->getOpcode() == ARM::t2MOVi32imm) {
+ MBBI = SplitT2MOV32imm(MBB, MBBI, NMI, ndl, NPredReg, NCC);
+ continue;
+ }
+
+ if (NCC == OCC) {
+ Mask |= (1 << Pos);
+ } else if (NCC != CC)
+ break;
+ --Pos;
+ ++MBBI;
+ }
+ Mask |= (1 << Pos);
+ MIB.addImm(Mask);
+ Modified = true;
+ ++NumITs;
+ }
+
+ return Modified;
+}
+
+bool Thumb2ITBlockPass::runOnMachineFunction(MachineFunction &Fn) {
+ const TargetMachine &TM = Fn.getTarget();
+ AFI = Fn.getInfo<ARMFunctionInfo>();
+ TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
+
+ if (!AFI->isThumbFunction())
+ return false;
+
+ bool Modified = false;
+ for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
+ ++MFI) {
+ MachineBasicBlock &MBB = *MFI;
+ Modified |= InsertITBlocks(MBB);
+ }
+
+ return Modified;
+}
+
+/// createThumb2ITBlockPass - Returns an instance of the Thumb2 IT blocks
+/// insertion pass.
+FunctionPass *llvm::createThumb2ITBlockPass() {
+ return new Thumb2ITBlockPass();
+}
diff --git a/lib/Target/ARM/Thumb2InstrInfo.cpp b/lib/Target/ARM/Thumb2InstrInfo.cpp
index 35d09fd..264601b 100644
--- a/lib/Target/ARM/Thumb2InstrInfo.cpp
+++ b/lib/Target/ARM/Thumb2InstrInfo.cpp
@@ -13,6 +13,7 @@
#include "ARMInstrInfo.h"
#include "ARM.h"
+#include "ARMAddressingModes.h"
#include "ARMGenInstrInfo.inc"
#include "ARMMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -22,127 +23,62 @@
using namespace llvm;
-Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI)
- : ARMBaseInstrInfo(STI), RI(*this, STI) {
+Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI) : RI(*this, STI) {
}
-bool Thumb2InstrInfo::isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
- SrcSubIdx = DstSubIdx = 0; // No sub-registers.
-
- unsigned oc = MI.getOpcode();
- switch (oc) {
- default:
- return false;
- // FIXME: Thumb2
- case ARM::tMOVr:
- case ARM::tMOVhir2lor:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2hir:
- assert(MI.getDesc().getNumOperands() >= 2 &&
- MI.getOperand(0).isReg() &&
- MI.getOperand(1).isReg() &&
- "Invalid Thumb MOV instruction");
- SrcReg = MI.getOperand(1).getReg();
- DstReg = MI.getOperand(0).getReg();
- return true;
- }
-}
-
-unsigned Thumb2InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- // FIXME: Thumb2
- case ARM::tRestore:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- }
+unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const {
+ // FIXME
return 0;
}
-unsigned Thumb2InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- // FIXME: Thumb2
- case ARM::tSpill:
- if (MI->getOperand(1).isFI() &&
- MI->getOperand(2).isImm() &&
- MI->getOperand(2).getImm() == 0) {
- FrameIndex = MI->getOperand(1).getIndex();
- return MI->getOperand(0).getReg();
- }
+bool
+Thumb2InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
+ if (MBB.empty()) return false;
+
+ switch (MBB.back().getOpcode()) {
+ case ARM::t2LDM_RET:
+ case ARM::t2B: // Uncond branch.
+ case ARM::t2BR_JT: // Jumptable branch.
+ case ARM::t2TBB: // Table branch byte.
+ case ARM::t2TBH: // Table branch halfword.
+ case ARM::tBR_JTr: // Jumptable branch (16-bit version).
+ case ARM::tBX_RET:
+ case ARM::tBX_RET_vararg:
+ case ARM::tPOP_RET:
+ case ARM::tB:
+ return true;
+ default:
break;
}
- return 0;
+
+ return false;
}
-bool Thumb2InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg, unsigned SrcReg,
- const TargetRegisterClass *DestRC,
- const TargetRegisterClass *SrcRC) const {
+bool
+Thumb2InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const {
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- // FIXME: Thumb2
- if (DestRC == ARM::GPRRegisterClass) {
- if (SrcRC == ARM::GPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVhir2hir), DestReg).addReg(SrcReg);
- return true;
- } else if (SrcRC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVlor2hir), DestReg).addReg(SrcReg);
- return true;
- }
- } else if (DestRC == ARM::tGPRRegisterClass) {
- if (SrcRC == ARM::GPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVhir2lor), DestReg).addReg(SrcReg);
- return true;
- } else if (SrcRC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tMOVr), DestReg).addReg(SrcReg);
- return true;
- }
- }
-
- return false;
-}
-
-bool Thumb2InstrInfo::
-canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const {
- if (Ops.size() != 1) return false;
-
- unsigned OpNum = Ops[0];
- unsigned Opc = MI->getOpcode();
- switch (Opc) {
- default: break;
- case ARM::tMOVr:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2lor:
- case ARM::tMOVhir2hir: {
- if (OpNum == 0) { // move -> store
- unsigned SrcReg = MI->getOperand(1).getReg();
- if (RI.isPhysicalRegister(SrcReg) && !isARMLowRegister(SrcReg))
- // tSpill cannot take a high register operand.
- return false;
- } else { // move -> load
- unsigned DstReg = MI->getOperand(0).getReg();
- if (RI.isPhysicalRegister(DstReg) && !isARMLowRegister(DstReg))
- // tRestore cannot target a high register operand.
- return false;
- }
+ if (DestRC == ARM::GPRRegisterClass &&
+ SrcRC == ARM::GPRRegisterClass) {
+ BuildMI(MBB, I, DL, get(ARM::tMOVgpr2gpr), DestReg).addReg(SrcReg);
+ return true;
+ } else if (DestRC == ARM::GPRRegisterClass &&
+ SrcRC == ARM::tGPRRegisterClass) {
+ BuildMI(MBB, I, DL, get(ARM::tMOVtgpr2gpr), DestReg).addReg(SrcReg);
+ return true;
+ } else if (DestRC == ARM::tGPRRegisterClass &&
+ SrcRC == ARM::GPRRegisterClass) {
+ BuildMI(MBB, I, DL, get(ARM::tMOVgpr2tgpr), DestReg).addReg(SrcReg);
return true;
- }
}
- return false;
+ // Handle SPR, DPR, and QPR copies.
+ return ARMBaseInstrInfo::copyRegToReg(MBB, I, DestReg, SrcReg, DestRC, SrcRC);
}
void Thumb2InstrInfo::
@@ -152,36 +88,14 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- assert(RC == ARM::tGPRRegisterClass && "Unknown regclass!");
-
- // FIXME: Thumb2
- if (RC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tSpill))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0);
- }
-}
-
-void Thumb2InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const{
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
-
- // FIXME: Thumb2. Is GPRRegClass here correct?
- assert(RC == ARM::GPRRegisterClass && "Unknown regclass!");
if (RC == ARM::GPRRegisterClass) {
- Opc = Addr[0].isFI() ? ARM::tSpill : ARM::tSTR;
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0));
+ return;
}
- MachineInstrBuilder MIB =
- BuildMI(MF, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
+ ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC);
}
void Thumb2InstrInfo::
@@ -191,122 +105,381 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- // FIXME: Thumb2
- assert(RC == ARM::tGPRRegisterClass && "Unknown regclass!");
-
- if (RC == ARM::tGPRRegisterClass) {
- BuildMI(MBB, I, DL, get(ARM::tRestore), DestReg)
- .addFrameIndex(FI).addImm(0);
+ if (RC == ARM::GPRRegisterClass) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg)
+ .addFrameIndex(FI).addImm(0));
+ return;
}
+
+ ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC);
}
-void Thumb2InstrInfo::
-loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
- // FIXME: Thumb2. Is GPRRegClass ok here?
- if (RC == ARM::GPRRegisterClass) {
- Opc = Addr[0].isFI() ? ARM::tRestore : ARM::tLDR;
+void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII) {
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ // If profitable, use a movw or movt to materialize the offset.
+ // FIXME: Use the scavenger to grab a scratch register.
+ if (DestReg != ARM::SP && DestReg != BaseReg &&
+ NumBytes >= 4096 &&
+ ARM_AM::getT2SOImmVal(NumBytes) == -1) {
+ bool Fits = false;
+ if (NumBytes < 65536) {
+ // Use a movw to materialize the 16-bit constant.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg)
+ .addImm(NumBytes)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
+ Fits = true;
+ } else if ((NumBytes & 0xffff) == 0) {
+ // Use a movt to materialize the 32-bit constant.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg)
+ .addReg(DestReg)
+ .addImm(NumBytes >> 16)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
+ Fits = true;
+ }
+
+ if (Fits) {
+ if (isSub) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addReg(DestReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
+ } else {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg)
+ .addReg(DestReg, RegState::Kill)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
+ }
+ return;
+ }
}
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
+ while (NumBytes) {
+ unsigned ThisVal = NumBytes;
+ unsigned Opc = 0;
+ if (DestReg == ARM::SP && BaseReg != ARM::SP) {
+ // mov sp, rn. Note t2MOVr cannot be used.
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2gpr),DestReg).addReg(BaseReg);
+ BaseReg = ARM::SP;
+ continue;
+ }
-bool Thumb2InstrInfo::
-spillCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const std::vector<CalleeSavedInfo> &CSI) const {
- if (CSI.empty())
- return false;
+ if (BaseReg == ARM::SP) {
+ // sub sp, sp, #imm7
+ if (DestReg == ARM::SP && (ThisVal < ((1 << 7)-1) * 4)) {
+ assert((ThisVal & 3) == 0 && "Stack update is not multiple of 4?");
+ Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
+ // FIXME: Fix Thumb1 immediate encoding.
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg).addImm(ThisVal/4);
+ NumBytes = 0;
+ continue;
+ }
+
+ // sub rd, sp, so_imm
+ Opc = isSub ? ARM::t2SUBrSPi : ARM::t2ADDrSPi;
+ if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
+ NumBytes = 0;
+ } else {
+ // FIXME: Move this to ARMAddressingModes.h?
+ unsigned RotAmt = CountLeadingZeros_32(ThisVal);
+ ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
+ NumBytes &= ~ThisVal;
+ assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
+ "Bit extraction didn't work?");
+ }
+ } else {
+ assert(DestReg != ARM::SP && BaseReg != ARM::SP);
+ Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri;
+ if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
+ NumBytes = 0;
+ } else if (ThisVal < 4096) {
+ Opc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12;
+ NumBytes = 0;
+ } else {
+ // FIXME: Move this to ARMAddressingModes.h?
+ unsigned RotAmt = CountLeadingZeros_32(ThisVal);
+ ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
+ NumBytes &= ~ThisVal;
+ assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
+ "Bit extraction didn't work?");
+ }
+ }
- DebugLoc DL = DebugLoc::getUnknownLoc();
- if (MI != MBB.end()) DL = MI->getDebugLoc();
-
- MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, get(ARM::tPUSH));
- for (unsigned i = CSI.size(); i != 0; --i) {
- unsigned Reg = CSI[i-1].getReg();
- // Add the callee-saved register as live-in. It's killed at the spill.
- MBB.addLiveIn(Reg);
- MIB.addReg(Reg, RegState::Kill);
+ // Build the new ADD / SUB.
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm(ThisVal)));
+
+ BaseReg = DestReg;
}
- return true;
}
-bool Thumb2InstrInfo::
-restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const std::vector<CalleeSavedInfo> &CSI) const {
- MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- if (CSI.empty())
- return false;
-
- bool isVarArg = AFI->getVarArgsRegSaveSize() > 0;
- MachineInstr *PopMI = MF.CreateMachineInstr(get(ARM::tPOP),MI->getDebugLoc());
- for (unsigned i = CSI.size(); i != 0; --i) {
- unsigned Reg = CSI[i-1].getReg();
- if (Reg == ARM::LR) {
- // Special epilogue for vararg functions. See emitEpilogue
- if (isVarArg)
- continue;
- Reg = ARM::PC;
- PopMI->setDesc(get(ARM::tPOP_RET));
- MI = MBB.erase(MI);
- }
- PopMI->addOperand(MachineOperand::CreateReg(Reg, true));
+static unsigned
+negativeOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRi12: return ARM::t2LDRi8;
+ case ARM::t2LDRHi12: return ARM::t2LDRHi8;
+ case ARM::t2LDRBi12: return ARM::t2LDRBi8;
+ case ARM::t2LDRSHi12: return ARM::t2LDRSHi8;
+ case ARM::t2LDRSBi12: return ARM::t2LDRSBi8;
+ case ARM::t2STRi12: return ARM::t2STRi8;
+ case ARM::t2STRBi12: return ARM::t2STRBi8;
+ case ARM::t2STRHi12: return ARM::t2STRHi8;
+
+ case ARM::t2LDRi8:
+ case ARM::t2LDRHi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSBi8:
+ case ARM::t2STRi8:
+ case ARM::t2STRBi8:
+ case ARM::t2STRHi8:
+ return opcode;
+
+ default:
+ break;
}
- // It's illegal to emit pop instruction without operands.
- if (PopMI->getNumOperands() > 0)
- MBB.insert(MI, PopMI);
+ return 0;
+}
+
+static unsigned
+positiveOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRi8: return ARM::t2LDRi12;
+ case ARM::t2LDRHi8: return ARM::t2LDRHi12;
+ case ARM::t2LDRBi8: return ARM::t2LDRBi12;
+ case ARM::t2LDRSHi8: return ARM::t2LDRSHi12;
+ case ARM::t2LDRSBi8: return ARM::t2LDRSBi12;
+ case ARM::t2STRi8: return ARM::t2STRi12;
+ case ARM::t2STRBi8: return ARM::t2STRBi12;
+ case ARM::t2STRHi8: return ARM::t2STRHi12;
+
+ case ARM::t2LDRi12:
+ case ARM::t2LDRHi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSBi12:
+ case ARM::t2STRi12:
+ case ARM::t2STRBi12:
+ case ARM::t2STRHi12:
+ return opcode;
- return true;
+ default:
+ break;
+ }
+
+ return 0;
}
-MachineInstr *Thumb2InstrInfo::
-foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops, int FI) const {
- if (Ops.size() != 1) return NULL;
-
- unsigned OpNum = Ops[0];
- unsigned Opc = MI->getOpcode();
- MachineInstr *NewMI = NULL;
- switch (Opc) {
- default: break;
- case ARM::tMOVr:
- case ARM::tMOVlor2hir:
- case ARM::tMOVhir2lor:
- case ARM::tMOVhir2hir: {
- if (OpNum == 0) { // move -> store
- unsigned SrcReg = MI->getOperand(1).getReg();
- bool isKill = MI->getOperand(1).isKill();
- if (RI.isPhysicalRegister(SrcReg) && !isARMLowRegister(SrcReg))
- // tSpill cannot take a high register operand.
- break;
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::tSpill))
- .addReg(SrcReg, getKillRegState(isKill))
- .addFrameIndex(FI).addImm(0);
- } else { // move -> load
- unsigned DstReg = MI->getOperand(0).getReg();
- if (RI.isPhysicalRegister(DstReg) && !isARMLowRegister(DstReg))
- // tRestore cannot target a high register operand.
- break;
- bool isDead = MI->getOperand(0).isDead();
- NewMI = BuildMI(MF, MI->getDebugLoc(), get(ARM::tRestore))
- .addReg(DstReg, RegState::Define | getDeadRegState(isDead))
- .addFrameIndex(FI).addImm(0);
- }
+static unsigned
+immediateOffsetOpcode(unsigned opcode)
+{
+ switch (opcode) {
+ case ARM::t2LDRs: return ARM::t2LDRi12;
+ case ARM::t2LDRHs: return ARM::t2LDRHi12;
+ case ARM::t2LDRBs: return ARM::t2LDRBi12;
+ case ARM::t2LDRSHs: return ARM::t2LDRSHi12;
+ case ARM::t2LDRSBs: return ARM::t2LDRSBi12;
+ case ARM::t2STRs: return ARM::t2STRi12;
+ case ARM::t2STRBs: return ARM::t2STRBi12;
+ case ARM::t2STRHs: return ARM::t2STRHi12;
+
+ case ARM::t2LDRi12:
+ case ARM::t2LDRHi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSBi12:
+ case ARM::t2STRi12:
+ case ARM::t2STRBi12:
+ case ARM::t2STRHi12:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRHi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSBi8:
+ case ARM::t2STRi8:
+ case ARM::t2STRBi8:
+ case ARM::t2STRHi8:
+ return opcode;
+
+ default:
break;
}
+
+ return 0;
+}
+
+bool llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const TargetInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrModeT2_i12.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2?
+
+ if (Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+
+ bool isSP = FrameReg == ARM::SP;
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::tMOVgpr2gpr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.RemoveOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ }
+
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(isSP ? ARM::t2SUBrSPi : ARM::t2SUBri));
+ } else {
+ MI.setDesc(TII.get(isSP ? ARM::t2ADDrSPi : ARM::t2ADDri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getT2SOImmVal(Offset) != -1) {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+ // Another common case: imm12.
+ if (Offset < 4096) {
+ unsigned NewOpc = isSP
+ ? (isSub ? ARM::t2SUBrSPi12 : ARM::t2ADDrSPi12)
+ : (isSub ? ARM::t2SUBri12 : ARM::t2ADDri12);
+ MI.setDesc(TII.get(NewOpc));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, extract 8 adjacent bits from the immediate into this
+ // t2ADDri/t2SUBri.
+ unsigned RotAmt = CountLeadingZeros_32(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+
+ // AddrMode4 cannot handle any offset.
+ if (AddrMode == ARMII::AddrMode4)
+ return false;
+
+ // AddrModeT2_so cannot handle any offset. If there is no offset
+ // register then we change to an immediate version.
+ unsigned NewOpc = Opcode;
+ if (AddrMode == ARMII::AddrModeT2_so) {
+ unsigned OffsetReg = MI.getOperand(FrameRegIdx+1).getReg();
+ if (OffsetReg != 0) {
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ return Offset == 0;
+ }
+
+ MI.RemoveOperand(FrameRegIdx+1);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0);
+ NewOpc = immediateOffsetOpcode(Opcode);
+ AddrMode = ARMII::AddrModeT2_i12;
+ }
+
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) {
+ // i8 supports only negative, and i12 supports only positive, so
+ // based on Offset sign convert Opcode to the appropriate
+ // instruction
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset < 0) {
+ NewOpc = negativeOffsetOpcode(Opcode);
+ NumBits = 8;
+ isSub = true;
+ Offset = -Offset;
+ } else {
+ NewOpc = positiveOffsetOpcode(Opcode);
+ NumBits = 12;
+ }
+ } else {
+ // VFP and NEON address modes.
+ int InstrOffs = 0;
+ if (AddrMode == ARMII::AddrMode5) {
+ const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1);
+ InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
+ if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ }
+ NumBits = 8;
+ Scale = 4;
+ Offset += InstrOffs * 4;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+ }
+
+ if (NewOpc != Opcode)
+ MI.setDesc(TII.get(NewOpc));
+
+ MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1);
+
+ // Attempt to fold address computation
+ // Common case: small offset, fits into instruction.
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with fp/sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode5)
+ // FIXME: Not consistent.
+ ImmedOffset |= 1 << NumBits;
+ else
+ ImmedOffset = -ImmedOffset;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, offset doesn't fit. Pull in what we can to simplify
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode5)
+ // FIXME: Not consistent.
+ ImmedOffset |= 1 << NumBits;
+ else {
+ ImmedOffset = -ImmedOffset;
+ if (ImmedOffset == 0)
+ // Change the opcode back if the encoded offset is zero.
+ MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc)));
+ }
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
}
- return NewMI;
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
}
diff --git a/lib/Target/ARM/Thumb2InstrInfo.h b/lib/Target/ARM/Thumb2InstrInfo.h
index 84dcb49..f3688c0 100644
--- a/lib/Target/ARM/Thumb2InstrInfo.h
+++ b/lib/Target/ARM/Thumb2InstrInfo.h
@@ -27,66 +27,34 @@ class Thumb2InstrInfo : public ARMBaseInstrInfo {
public:
explicit Thumb2InstrInfo(const ARMSubtarget &STI);
- /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
- /// such, whenever a client has an instance of instruction info, it should
- /// always be able to get register info as well (through this method).
- ///
- const Thumb2RegisterInfo &getRegisterInfo() const { return RI; }
-
- bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const std::vector<CalleeSavedInfo> &CSI) const;
- bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MI,
- const std::vector<CalleeSavedInfo> &CSI) const;
+ // Return the non-pre/post incrementing version of 'Opc'. Return 0
+ // if there is not such an opcode.
+ unsigned getUnindexedOpcode(unsigned Opc) const;
- bool isMoveInstr(const MachineInstr &MI,
- unsigned &SrcReg, unsigned &DstReg,
- unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
- unsigned isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
- unsigned isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const;
+ // Return true if the block does not fall through.
+ bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
bool copyRegToReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned DestReg, unsigned SrcReg,
- const TargetRegisterClass *DestRC,
- const TargetRegisterClass *SrcRC) const;
- void storeRegToStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned SrcReg, bool isKill, int FrameIndex,
- const TargetRegisterClass *RC) const;
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const;
- void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC) const;
void loadRegFromStackSlot(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, int FrameIndex,
- const TargetRegisterClass *RC) const;
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC) const;
- void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
- bool canFoldMemoryOperand(const MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops) const;
-
- MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- const SmallVectorImpl<unsigned> &Ops,
- int FrameIndex) const;
-
- MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- const SmallVectorImpl<unsigned> &Ops,
- MachineInstr* LoadMI) const {
- return 0;
- }
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const Thumb2RegisterInfo &getRegisterInfo() const { return RI; }
};
}
diff --git a/lib/Target/ARM/Thumb2RegisterInfo.cpp b/lib/Target/ARM/Thumb2RegisterInfo.cpp
index 0f0c0e4..6c4c15d 100644
--- a/lib/Target/ARM/Thumb2RegisterInfo.cpp
+++ b/lib/Target/ARM/Thumb2RegisterInfo.cpp
@@ -13,12 +13,15 @@
#include "ARM.h"
#include "ARMAddressingModes.h"
+#include "ARMBaseInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "Thumb2InstrInfo.h"
#include "Thumb2RegisterInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -30,14 +33,10 @@
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
-static cl::opt<bool>
-Thumb2RegScavenging("enable-thumb2-reg-scavenging",
- cl::Hidden,
- cl::desc("Enable register scavenging on Thumb-2"));
-
-Thumb2RegisterInfo::Thumb2RegisterInfo(const TargetInstrInfo &tii,
+Thumb2RegisterInfo::Thumb2RegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMBaseRegisterInfo(tii, sti) {
}
@@ -46,710 +45,23 @@ Thumb2RegisterInfo::Thumb2RegisterInfo(const TargetInstrInfo &tii,
/// specified immediate.
void Thumb2RegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Val,
- const TargetInstrInfo *TII,
- DebugLoc dl) const {
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx,
+ int Val,
+ ARMCC::CondCodes Pred,
+ unsigned PredReg) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
- Constant *C = ConstantInt::get(Type::Int32Ty, Val);
+ Constant *C = ConstantInt::get(
+ Type::getInt32Ty(MBB.getParent()->getFunction()->getContext()), Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
- BuildMI(MBB, MBBI, dl, TII->get(ARM::tLDRcp), DestReg)
- .addConstantPoolIndex(Idx);
-}
-
-const TargetRegisterClass*
-Thumb2RegisterInfo::getPhysicalRegisterRegClass(unsigned Reg, MVT VT) const {
- if (isARMLowRegister(Reg))
- return ARM::tGPRRegisterClass;
- switch (Reg) {
- default:
- break;
- case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
- case ARM::R12: case ARM::SP: case ARM::LR: case ARM::PC:
- return ARM::GPRRegisterClass;
- }
-
- return TargetRegisterInfo::getPhysicalRegisterRegClass(Reg, VT);
-}
-
-bool
-Thumb2RegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
- return Thumb2RegScavenging;
-}
-
-bool Thumb2RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
- const MachineFrameInfo *FFI = MF.getFrameInfo();
- unsigned CFSize = FFI->getMaxCallFrameSize();
- // It's not always a good idea to include the call frame as part of the
- // stack frame. ARM (especially Thumb) has small immediate offset to
- // address the stack frame. So a large call frame can cause poor codegen
- // and may even makes it impossible to scavenge a register.
- if (CFSize >= ((1 << 8) - 1) * 4 / 2) // Half of imm8 * 4
- return false;
-
- return !MF.getFrameInfo()->hasVarSizedObjects();
-}
-
-/// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize
-/// a destreg = basereg + immediate in Thumb code. Materialize the immediate
-/// in a register using mov / mvn sequences or load the immediate from a
-/// constpool entry.
-static
-void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, unsigned BaseReg,
- int NumBytes, bool CanChangeCC,
- const TargetInstrInfo &TII,
- const Thumb2RegisterInfo& MRI,
- DebugLoc dl) {
- bool isHigh = !isARMLowRegister(DestReg) ||
- (BaseReg != 0 && !isARMLowRegister(BaseReg));
- bool isSub = false;
- // Subtract doesn't have high register version. Load the negative value
- // if either base or dest register is a high register. Also, if do not
- // issue sub as part of the sequence if condition register is to be
- // preserved.
- if (NumBytes < 0 && !isHigh && CanChangeCC) {
- isSub = true;
- NumBytes = -NumBytes;
- }
- unsigned LdReg = DestReg;
- if (DestReg == ARM::SP) {
- assert(BaseReg == ARM::SP && "Unexpected!");
- LdReg = ARM::R3;
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R3, RegState::Kill);
- }
-
- if (NumBytes <= 255 && NumBytes >= 0)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
- else if (NumBytes < 0 && NumBytes >= -255) {
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), LdReg)
- .addReg(LdReg, RegState::Kill);
- } else
- MRI.emitLoadConstPool(MBB, MBBI, LdReg, NumBytes, &TII, dl);
-
- // Emit add / sub.
- int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
- const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl,
- TII.get(Opc), DestReg);
- if (DestReg == ARM::SP || isSub)
- MIB.addReg(BaseReg).addReg(LdReg, RegState::Kill);
- else
- MIB.addReg(LdReg).addReg(BaseReg, RegState::Kill);
- if (DestReg == ARM::SP)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVhir2lor), ARM::R3)
- .addReg(ARM::R12, RegState::Kill);
-}
-
-/// calcNumMI - Returns the number of instructions required to materialize
-/// the specific add / sub r, c instruction.
-static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
- unsigned NumBits, unsigned Scale) {
- unsigned NumMIs = 0;
- unsigned Chunk = ((1 << NumBits) - 1) * Scale;
-
- if (Opc == ARM::tADDrSPi) {
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- NumMIs++;
- NumBits = 8;
- Scale = 1; // Followed by a number of tADDi8.
- Chunk = ((1 << NumBits) - 1) * Scale;
- }
-
- NumMIs += Bytes / Chunk;
- if ((Bytes % Chunk) != 0)
- NumMIs++;
- if (ExtraOpc)
- NumMIs++;
- return NumMIs;
-}
-
-/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
-/// a destreg = basereg + immediate in Thumb code.
-static
-void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, unsigned BaseReg,
- int NumBytes, const TargetInstrInfo &TII,
- const Thumb2RegisterInfo& MRI,
- DebugLoc dl) {
- bool isSub = NumBytes < 0;
- unsigned Bytes = (unsigned)NumBytes;
- if (isSub) Bytes = -NumBytes;
- bool isMul4 = (Bytes & 3) == 0;
- bool isTwoAddr = false;
- bool DstNotEqBase = false;
- unsigned NumBits = 1;
- unsigned Scale = 1;
- int Opc = 0;
- int ExtraOpc = 0;
-
- if (DestReg == BaseReg && BaseReg == ARM::SP) {
- assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
- NumBits = 7;
- Scale = 4;
- Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
- isTwoAddr = true;
- } else if (!isSub && BaseReg == ARM::SP) {
- // r1 = add sp, 403
- // =>
- // r1 = add sp, 100 * 4
- // r1 = add r1, 3
- if (!isMul4) {
- Bytes &= ~3;
- ExtraOpc = ARM::tADDi3;
- }
- NumBits = 8;
- Scale = 4;
- Opc = ARM::tADDrSPi;
- } else {
- // sp = sub sp, c
- // r1 = sub sp, c
- // r8 = sub sp, c
- if (DestReg != BaseReg)
- DstNotEqBase = true;
- NumBits = 8;
- Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
- isTwoAddr = true;
- }
-
- unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
- unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2;
- if (NumMIs > Threshold) {
- // This will expand into too many instructions. Load the immediate from a
- // constpool entry.
- emitThumbRegPlusImmInReg(MBB, MBBI, DestReg, BaseReg, NumBytes, true, TII,
- MRI, dl);
- return;
- }
-
- if (DstNotEqBase) {
- if (isARMLowRegister(DestReg) && isARMLowRegister(BaseReg)) {
- // If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
- unsigned Chunk = (1 << 3) - 1;
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- BuildMI(MBB, MBBI, dl,TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg)
- .addReg(BaseReg, RegState::Kill).addImm(ThisVal);
- } else {
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
- .addReg(BaseReg, RegState::Kill);
- }
- BaseReg = DestReg;
- }
-
- unsigned Chunk = ((1 << NumBits) - 1) * Scale;
- while (Bytes) {
- unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
- Bytes -= ThisVal;
- ThisVal /= Scale;
- // Build the new tADD / tSUB.
- if (isTwoAddr)
- BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
- .addReg(DestReg).addImm(ThisVal);
- else {
- bool isKill = BaseReg != ARM::SP;
- BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
- .addReg(BaseReg, getKillRegState(isKill)).addImm(ThisVal);
- BaseReg = DestReg;
-
- if (Opc == ARM::tADDrSPi) {
- // r4 = add sp, imm
- // r4 = add r4, imm
- // ...
- NumBits = 8;
- Scale = 1;
- Chunk = ((1 << NumBits) - 1) * Scale;
- Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
- isTwoAddr = true;
- }
- }
- }
-
- if (ExtraOpc)
- BuildMI(MBB, MBBI, dl, TII.get(ExtraOpc), DestReg)
- .addReg(DestReg, RegState::Kill)
- .addImm(((unsigned)NumBytes) & 3);
-}
-
-static void emitSPUpdate(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- const TargetInstrInfo &TII, DebugLoc dl,
- const Thumb2RegisterInfo &MRI,
- int NumBytes) {
- emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII,
- MRI, dl);
-}
-
-void Thumb2RegisterInfo::
-eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) const {
- if (!hasReservedCallFrame(MF)) {
- // If we have alloca, convert as follows:
- // ADJCALLSTACKDOWN -> sub, sp, sp, amount
- // ADJCALLSTACKUP -> add, sp, sp, amount
- MachineInstr *Old = I;
- DebugLoc dl = Old->getDebugLoc();
- unsigned Amount = Old->getOperand(0).getImm();
- if (Amount != 0) {
- // We need to keep the stack aligned properly. To do this, we round the
- // amount of space needed for the outgoing arguments up to the next
- // alignment boundary.
- unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
- Amount = (Amount+Align-1)/Align*Align;
-
- // Replace the pseudo instruction with a new instruction...
- unsigned Opc = Old->getOpcode();
- if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
- emitSPUpdate(MBB, I, TII, dl, *this, -Amount);
- } else {
- assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
- emitSPUpdate(MBB, I, TII, dl, *this, Amount);
- }
- }
- }
- MBB.erase(I);
-}
-
-/// emitThumbConstant - Emit a series of instructions to materialize a
-/// constant.
-static void emitThumbConstant(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Imm,
- const TargetInstrInfo &TII,
- const Thumb2RegisterInfo& MRI,
- DebugLoc dl) {
- bool isSub = Imm < 0;
- if (isSub) Imm = -Imm;
-
- int Chunk = (1 << 8) - 1;
- int ThisVal = (Imm > Chunk) ? Chunk : Imm;
- Imm -= ThisVal;
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), DestReg).addImm(ThisVal);
- if (Imm > 0)
- emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII, MRI, dl);
- if (isSub)
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), DestReg)
- .addReg(DestReg, RegState::Kill);
-}
-
-void Thumb2RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const{
- unsigned i = 0;
- MachineInstr &MI = *II;
- MachineBasicBlock &MBB = *MI.getParent();
- MachineFunction &MF = *MBB.getParent();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- DebugLoc dl = MI.getDebugLoc();
-
- while (!MI.getOperand(i).isFI()) {
- ++i;
- assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
- }
-
- unsigned FrameReg = ARM::SP;
- int FrameIndex = MI.getOperand(i).getIndex();
- int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
- MF.getFrameInfo()->getStackSize() + SPAdj;
-
- if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
- Offset -= AFI->getGPRCalleeSavedArea1Offset();
- else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
- Offset -= AFI->getGPRCalleeSavedArea2Offset();
- else if (hasFP(MF)) {
- assert(SPAdj == 0 && "Unexpected");
- // There is alloca()'s in this function, must reference off the frame
- // pointer instead.
- FrameReg = getFrameRegister(MF);
- Offset -= AFI->getFramePtrSpillOffset();
- }
-
- unsigned Opcode = MI.getOpcode();
- const TargetInstrDesc &Desc = MI.getDesc();
- unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
-
- if (Opcode == ARM::tADDrSPi) {
- Offset += MI.getOperand(i+1).getImm();
-
- // Can't use tADDrSPi if it's based off the frame pointer.
- unsigned NumBits = 0;
- unsigned Scale = 1;
- if (FrameReg != ARM::SP) {
- Opcode = ARM::tADDi3;
- MI.setDesc(TII.get(ARM::tADDi3));
- NumBits = 3;
- } else {
- NumBits = 8;
- Scale = 4;
- assert((Offset & 3) == 0 &&
- "Thumb add/sub sp, #imm immediate must be multiple of 4!");
- }
-
- if (Offset == 0) {
- // Turn it into a move.
- MI.setDesc(TII.get(ARM::tMOVhir2lor));
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.RemoveOperand(i+1);
- return;
- }
-
- // Common case: small offset, fits into instruction.
- unsigned Mask = (1 << NumBits) - 1;
- if (((Offset / Scale) & ~Mask) == 0) {
- // Replace the FrameIndex with sp / fp
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.getOperand(i+1).ChangeToImmediate(Offset / Scale);
- return;
- }
-
- unsigned DestReg = MI.getOperand(0).getReg();
- unsigned Bytes = (Offset > 0) ? Offset : -Offset;
- unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale);
- // MI would expand into a large number of instructions. Don't try to
- // simplify the immediate.
- if (NumMIs > 2) {
- emitThumbRegPlusImmediate(MBB, II, DestReg, FrameReg, Offset, TII,
- *this, dl);
- MBB.erase(II);
- return;
- }
-
- if (Offset > 0) {
- // Translate r0 = add sp, imm to
- // r0 = add sp, 255*4
- // r0 = add r0, (imm - 255*4)
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- MI.getOperand(i+1).ChangeToImmediate(Mask);
- Offset = (Offset - Mask * Scale);
- MachineBasicBlock::iterator NII = next(II);
- emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII,
- *this, dl);
- } else {
- // Translate r0 = add sp, -imm to
- // r0 = -imm (this is then translated into a series of instructons)
- // r0 = add r0, sp
- emitThumbConstant(MBB, II, DestReg, Offset, TII, *this, dl);
- MI.setDesc(TII.get(ARM::tADDhirr));
- MI.getOperand(i).ChangeToRegister(DestReg, false, false, true);
- MI.getOperand(i+1).ChangeToRegister(FrameReg, false);
- }
- return;
- } else {
- unsigned ImmIdx = 0;
- int InstrOffs = 0;
- unsigned NumBits = 0;
- unsigned Scale = 1;
- switch (AddrMode) {
- case ARMII::AddrModeT1_s: {
- ImmIdx = i+1;
- InstrOffs = MI.getOperand(ImmIdx).getImm();
- NumBits = (FrameReg == ARM::SP) ? 8 : 5;
- Scale = 4;
- break;
- }
- default:
- assert(0 && "Unsupported addressing mode!");
- abort();
- break;
- }
-
- Offset += InstrOffs * Scale;
- assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
-
- // Common case: small offset, fits into instruction.
- MachineOperand &ImmOp = MI.getOperand(ImmIdx);
- int ImmedOffset = Offset / Scale;
- unsigned Mask = (1 << NumBits) - 1;
- if ((unsigned)Offset <= Mask * Scale) {
- // Replace the FrameIndex with sp
- MI.getOperand(i).ChangeToRegister(FrameReg, false);
- ImmOp.ChangeToImmediate(ImmedOffset);
- return;
- }
-
- bool isThumSpillRestore = Opcode == ARM::tRestore || Opcode == ARM::tSpill;
- if (AddrMode == ARMII::AddrModeT1_s) {
- // Thumb tLDRspi, tSTRspi. These will change to instructions that use
- // a different base register.
- NumBits = 5;
- Mask = (1 << NumBits) - 1;
- }
- // If this is a thumb spill / restore, we will be using a constpool load to
- // materialize the offset.
- if (AddrMode == ARMII::AddrModeT1_s && isThumSpillRestore)
- ImmOp.ChangeToImmediate(0);
- else {
- // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
- ImmedOffset = ImmedOffset & Mask;
- ImmOp.ChangeToImmediate(ImmedOffset);
- Offset &= ~(Mask*Scale);
- }
- }
-
- // If we get here, the immediate doesn't fit into the instruction. We folded
- // as much as possible above, handle the rest, providing a register that is
- // SP+LargeImm.
- assert(Offset && "This code isn't needed if offset already handled!");
-
- if (Desc.mayLoad()) {
- // Use the destination register to materialize sp + offset.
- unsigned TmpReg = MI.getOperand(0).getReg();
- bool UseRR = false;
- if (Opcode == ARM::tRestore) {
- if (FrameReg == ARM::SP)
- emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
- Offset, false, TII, *this, dl);
- else {
- emitLoadConstPool(MBB, II, TmpReg, Offset, &TII, dl);
- UseRR = true;
- }
- } else
- emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
- *this, dl);
- MI.setDesc(TII.get(ARM::tLDR));
- MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
- if (UseRR)
- // Use [reg, reg] addrmode.
- MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
- else // tLDR has an extra register operand.
- MI.addOperand(MachineOperand::CreateReg(0, false));
- } else if (Desc.mayStore()) {
- // FIXME! This is horrific!!! We need register scavenging.
- // Our temporary workaround has marked r3 unavailable. Of course, r3 is
- // also a ABI register so it's possible that is is the register that is
- // being storing here. If that's the case, we do the following:
- // r12 = r2
- // Use r2 to materialize sp + offset
- // str r3, r2
- // r2 = r12
- unsigned ValReg = MI.getOperand(0).getReg();
- unsigned TmpReg = ARM::R3;
- bool UseRR = false;
- if (ValReg == ARM::R3) {
- BuildMI(MBB, II, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R2, RegState::Kill);
- TmpReg = ARM::R2;
- }
- if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
- BuildMI(MBB, II, dl, TII.get(ARM::tMOVlor2hir), ARM::R12)
- .addReg(ARM::R3, RegState::Kill);
- if (Opcode == ARM::tSpill) {
- if (FrameReg == ARM::SP)
- emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
- Offset, false, TII, *this, dl);
- else {
- emitLoadConstPool(MBB, II, TmpReg, Offset, &TII, dl);
- UseRR = true;
- }
- } else
- emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
- *this, dl);
- MI.setDesc(TII.get(ARM::tSTR));
- MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
- if (UseRR) // Use [reg, reg] addrmode.
- MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
- else // tSTR has an extra register operand.
- MI.addOperand(MachineOperand::CreateReg(0, false));
-
- MachineBasicBlock::iterator NII = next(II);
- if (ValReg == ARM::R3)
- BuildMI(MBB, NII, dl, TII.get(ARM::tMOVhir2lor), ARM::R2)
- .addReg(ARM::R12, RegState::Kill);
- if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
- BuildMI(MBB, NII, dl, TII.get(ARM::tMOVhir2lor), ARM::R3)
- .addReg(ARM::R12, RegState::Kill);
- } else
- assert(false && "Unexpected opcode!");
-}
-
-void Thumb2RegisterInfo::emitPrologue(MachineFunction &MF) const {
- MachineBasicBlock &MBB = MF.front();
- MachineBasicBlock::iterator MBBI = MBB.begin();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
- unsigned NumBytes = MFI->getStackSize();
- const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
- DebugLoc dl = (MBBI != MBB.end() ?
- MBBI->getDebugLoc() : DebugLoc::getUnknownLoc());
-
- // Check if R3 is live in. It might have to be used as a scratch register.
- for (MachineRegisterInfo::livein_iterator I =MF.getRegInfo().livein_begin(),
- E = MF.getRegInfo().livein_end(); I != E; ++I) {
- if (I->first == ARM::R3) {
- AFI->setR3IsLiveIn(true);
- break;
- }
- }
-
- // Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
- NumBytes = (NumBytes + 3) & ~3;
- MFI->setStackSize(NumBytes);
-
- // Determine the sizes of each callee-save spill areas and record which frame
- // belongs to which callee-save spill areas.
- unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
- int FramePtrSpillFI = 0;
-
- if (VARegSaveSize)
- emitSPUpdate(MBB, MBBI, TII, dl, *this, -VARegSaveSize);
-
- if (!AFI->hasStackFrame()) {
- if (NumBytes != 0)
- emitSPUpdate(MBB, MBBI, TII, dl, *this, -NumBytes);
- return;
- }
-
- for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
- unsigned Reg = CSI[i].getReg();
- int FI = CSI[i].getFrameIdx();
- switch (Reg) {
- case ARM::R4:
- case ARM::R5:
- case ARM::R6:
- case ARM::R7:
- case ARM::LR:
- if (Reg == FramePtr)
- FramePtrSpillFI = FI;
- AFI->addGPRCalleeSavedArea1Frame(FI);
- GPRCS1Size += 4;
- break;
- case ARM::R8:
- case ARM::R9:
- case ARM::R10:
- case ARM::R11:
- if (Reg == FramePtr)
- FramePtrSpillFI = FI;
- if (STI.isTargetDarwin()) {
- AFI->addGPRCalleeSavedArea2Frame(FI);
- GPRCS2Size += 4;
- } else {
- AFI->addGPRCalleeSavedArea1Frame(FI);
- GPRCS1Size += 4;
- }
- break;
- default:
- AFI->addDPRCalleeSavedAreaFrame(FI);
- DPRCSSize += 8;
- }
- }
-
- if (MBBI != MBB.end() && MBBI->getOpcode() == ARM::tPUSH) {
- ++MBBI;
- if (MBBI != MBB.end())
- dl = MBBI->getDebugLoc();
- }
-
- // Darwin ABI requires FP to point to the stack slot that contains the
- // previous FP.
- if (STI.isTargetDarwin() || hasFP(MF)) {
- MachineInstrBuilder MIB =
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tADDrSPi), FramePtr)
- .addFrameIndex(FramePtrSpillFI).addImm(0);
- }
-
- // Determine starting offsets of spill areas.
- unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
- unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
- unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
- AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes);
- AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
- AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
- AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
-
- NumBytes = DPRCSOffset;
- if (NumBytes) {
- // Insert it after all the callee-save spills.
- emitSPUpdate(MBB, MBBI, TII, dl, *this, -NumBytes);
- }
-
- if (STI.isTargetELF() && hasFP(MF)) {
- MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
- AFI->getFramePtrSpillOffset());
- }
-
- AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
- AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
- AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::t2LDRpci))
+ .addReg(DestReg, getDefRegState(true), SubIdx)
+ .addConstantPoolIndex(Idx).addImm((int64_t)ARMCC::AL).addReg(0);
}
-static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
- for (unsigned i = 0; CSRegs[i]; ++i)
- if (Reg == CSRegs[i])
- return true;
- return false;
-}
-
-static bool isCSRestore(MachineInstr *MI, const unsigned *CSRegs) {
- return (MI->getOpcode() == ARM::tRestore &&
- MI->getOperand(1).isFI() &&
- isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
-}
-
-void Thumb2RegisterInfo::emitEpilogue(MachineFunction &MF,
- MachineBasicBlock &MBB) const {
- MachineBasicBlock::iterator MBBI = prior(MBB.end());
- assert((MBBI->getOpcode() == ARM::tBX_RET ||
- MBBI->getOpcode() == ARM::tPOP_RET) &&
- "Can only insert epilog into returning blocks");
- DebugLoc dl = MBBI->getDebugLoc();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
- int NumBytes = (int)MFI->getStackSize();
-
- if (!AFI->hasStackFrame()) {
- if (NumBytes != 0)
- emitSPUpdate(MBB, MBBI, TII, dl, *this, NumBytes);
- } else {
- // Unwind MBBI to point to first LDR / FLDD.
- const unsigned *CSRegs = getCalleeSavedRegs();
- if (MBBI != MBB.begin()) {
- do
- --MBBI;
- while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs));
- if (!isCSRestore(MBBI, CSRegs))
- ++MBBI;
- }
-
- // Move SP to start of FP callee save spill area.
- NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
- AFI->getGPRCalleeSavedArea2Size() +
- AFI->getDPRCalleeSavedAreaSize());
-
- if (hasFP(MF)) {
- NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
- // Reset SP based on frame pointer only if the stack frame extends beyond
- // frame pointer stack slot or target is ELF and the function has FP.
- if (NumBytes)
- emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, FramePtr, -NumBytes,
- TII, *this, dl);
- else
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVlor2hir), ARM::SP)
- .addReg(FramePtr);
- } else {
- if (MBBI->getOpcode() == ARM::tBX_RET &&
- &MBB.front() != MBBI &&
- prior(MBBI)->getOpcode() == ARM::tPOP) {
- MachineBasicBlock::iterator PMBBI = prior(MBBI);
- emitSPUpdate(MBB, PMBBI, TII, dl, *this, NumBytes);
- } else
- emitSPUpdate(MBB, MBBI, TII, dl, *this, NumBytes);
- }
- }
-
- if (VARegSaveSize) {
- // Epilogue for vararg functions: pop LR to R3 and branch off it.
- // FIXME: Verify this is still ok when R3 is no longer being reserved.
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)).addReg(ARM::R3);
-
- emitSPUpdate(MBB, MBBI, TII, dl, *this, VARegSaveSize);
-
- BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg)).addReg(ARM::R3);
- MBB.erase(MBBI);
- }
+bool Thumb2RegisterInfo::
+requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
}
diff --git a/lib/Target/ARM/Thumb2RegisterInfo.h b/lib/Target/ARM/Thumb2RegisterInfo.h
index d379c31..a63c60b 100644
--- a/lib/Target/ARM/Thumb2RegisterInfo.h
+++ b/lib/Target/ARM/Thumb2RegisterInfo.h
@@ -20,40 +20,23 @@
namespace llvm {
class ARMSubtarget;
- class TargetInstrInfo;
+ class ARMBaseInstrInfo;
class Type;
struct Thumb2RegisterInfo : public ARMBaseRegisterInfo {
public:
- Thumb2RegisterInfo(const TargetInstrInfo &tii, const ARMSubtarget &STI);
+ Thumb2RegisterInfo(const ARMBaseInstrInfo &tii, const ARMSubtarget &STI);
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
- unsigned DestReg, int Val,
- const TargetInstrInfo *TII,
- DebugLoc dl) const;
-
- /// Code Generation virtual methods...
- const TargetRegisterClass *
- getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
-
- bool isReservedReg(const MachineFunction &MF, unsigned Reg) const;
+ DebugLoc dl,
+ unsigned DestReg, unsigned SubIdx, int Val,
+ ARMCC::CondCodes Pred = ARMCC::AL,
+ unsigned PredReg = 0) const;
bool requiresRegisterScavenging(const MachineFunction &MF) const;
-
- bool hasReservedCallFrame(MachineFunction &MF) const;
-
- void eliminateCallFramePseudoInstr(MachineFunction &MF,
- MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) const;
-
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
-
- void emitPrologue(MachineFunction &MF) const;
- void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
};
}
diff --git a/lib/Target/ARM/Thumb2SizeReduction.cpp b/lib/Target/ARM/Thumb2SizeReduction.cpp
new file mode 100644
index 0000000..b8879d2
--- /dev/null
+++ b/lib/Target/ARM/Thumb2SizeReduction.cpp
@@ -0,0 +1,685 @@
+//===-- Thumb2SizeReduction.cpp - Thumb2 code size reduction pass -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "t2-reduce-size"
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMBaseInstrInfo.h"
+#include "Thumb2InstrInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+STATISTIC(NumNarrows, "Number of 32-bit instrs reduced to 16-bit ones");
+STATISTIC(Num2Addrs, "Number of 32-bit instrs reduced to 2addr 16-bit ones");
+STATISTIC(NumLdSts, "Number of 32-bit load / store reduced to 16-bit ones");
+
+static cl::opt<int> ReduceLimit("t2-reduce-limit",
+ cl::init(-1), cl::Hidden);
+static cl::opt<int> ReduceLimit2Addr("t2-reduce-limit2",
+ cl::init(-1), cl::Hidden);
+static cl::opt<int> ReduceLimitLdSt("t2-reduce-limit3",
+ cl::init(-1), cl::Hidden);
+
+namespace {
+ /// ReduceTable - A static table with information on mapping from wide
+ /// opcodes to narrow
+ struct ReduceEntry {
+ unsigned WideOpc; // Wide opcode
+ unsigned NarrowOpc1; // Narrow opcode to transform to
+ unsigned NarrowOpc2; // Narrow opcode when it's two-address
+ uint8_t Imm1Limit; // Limit of immediate field (bits)
+ uint8_t Imm2Limit; // Limit of immediate field when it's two-address
+ unsigned LowRegs1 : 1; // Only possible if low-registers are used
+ unsigned LowRegs2 : 1; // Only possible if low-registers are used (2addr)
+ unsigned PredCC1 : 2; // 0 - If predicated, cc is on and vice versa.
+ // 1 - No cc field.
+ // 2 - Always set CPSR.
+ unsigned PredCC2 : 2;
+ unsigned Special : 1; // Needs to be dealt with specially
+ };
+
+ static const ReduceEntry ReduceTable[] = {
+ // Wide, Narrow1, Narrow2, imm1,imm2, lo1, lo2, P/C, S
+ { ARM::t2ADCrr, 0, ARM::tADC, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2ADDri, ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 0,0, 0 },
+ { ARM::t2ADDrr, ARM::tADDrr, ARM::tADDhirr, 0, 0, 1, 0, 0,1, 0 },
+ // Note: immediate scale is 4.
+ { ARM::t2ADDrSPi,ARM::tADDrSPi,0, 8, 0, 1, 0, 1,0, 0 },
+ { ARM::t2ADDSri,ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 2,2, 1 },
+ { ARM::t2ADDSrr,ARM::tADDrr, 0, 0, 0, 1, 0, 2,0, 1 },
+ { ARM::t2ANDrr, 0, ARM::tAND, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2ASRri, ARM::tASRri, 0, 5, 0, 1, 0, 0,0, 0 },
+ { ARM::t2ASRrr, 0, ARM::tASRrr, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2BICrr, 0, ARM::tBIC, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2CMNrr, ARM::tCMN, 0, 0, 0, 1, 0, 2,0, 0 },
+ { ARM::t2CMPri, ARM::tCMPi8, 0, 8, 0, 1, 0, 2,0, 0 },
+ { ARM::t2CMPrr, ARM::tCMPhir, 0, 0, 0, 0, 0, 2,0, 0 },
+ { ARM::t2CMPzri,ARM::tCMPzi8, 0, 8, 0, 1, 0, 2,0, 0 },
+ { ARM::t2CMPzrr,ARM::tCMPzhir,0, 0, 0, 0, 0, 2,0, 0 },
+ { ARM::t2EORrr, 0, ARM::tEOR, 0, 0, 0, 1, 0,0, 0 },
+ // FIXME: adr.n immediate offset must be multiple of 4.
+ //{ ARM::t2LEApcrelJT,ARM::tLEApcrelJT, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2LSLri, ARM::tLSLri, 0, 5, 0, 1, 0, 0,0, 0 },
+ { ARM::t2LSLrr, 0, ARM::tLSLrr, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2LSRri, ARM::tLSRri, 0, 5, 0, 1, 0, 0,0, 0 },
+ { ARM::t2LSRrr, 0, ARM::tLSRrr, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2MOVi, ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 0 },
+ { ARM::t2MOVi16,ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 0 },
+ // FIXME: Do we need the 16-bit 'S' variant?
+ { ARM::t2MOVr,ARM::tMOVgpr2gpr,0, 0, 0, 0, 0, 1,0, 0 },
+ { ARM::t2MOVCCr,0, ARM::tMOVCCr, 0, 0, 0, 0, 0,1, 0 },
+ { ARM::t2MOVCCi,0, ARM::tMOVCCi, 0, 8, 0, 0, 0,1, 0 },
+ { ARM::t2MUL, 0, ARM::tMUL, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2MVNr, ARM::tMVN, 0, 0, 0, 1, 0, 0,0, 0 },
+ { ARM::t2ORRrr, 0, ARM::tORR, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2REV, ARM::tREV, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2REV16, ARM::tREV16, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2REVSH, ARM::tREVSH, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2RORrr, 0, ARM::tROR, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2RSBri, ARM::tRSB, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2RSBSri,ARM::tRSB, 0, 0, 0, 1, 0, 2,0, 1 },
+ { ARM::t2SBCrr, 0, ARM::tSBC, 0, 0, 0, 1, 0,0, 0 },
+ { ARM::t2SUBri, ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 0,0, 0 },
+ { ARM::t2SUBrr, ARM::tSUBrr, 0, 0, 0, 1, 0, 0,0, 0 },
+ { ARM::t2SUBSri,ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 2,2, 0 },
+ { ARM::t2SUBSrr,ARM::tSUBrr, 0, 0, 0, 1, 0, 2,0, 0 },
+ { ARM::t2SXTBr, ARM::tSXTB, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2SXTHr, ARM::tSXTH, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2TSTrr, ARM::tTST, 0, 0, 0, 1, 0, 2,0, 0 },
+ { ARM::t2UXTBr, ARM::tUXTB, 0, 0, 0, 1, 0, 1,0, 0 },
+ { ARM::t2UXTHr, ARM::tUXTH, 0, 0, 0, 1, 0, 1,0, 0 },
+
+ // FIXME: Clean this up after splitting each Thumb load / store opcode
+ // into multiple ones.
+ { ARM::t2LDRi12,ARM::tLDR, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRs, ARM::tLDR, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRBi12,ARM::tLDRB, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRBs, ARM::tLDRB, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRHi12,ARM::tLDRH, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRHs, ARM::tLDRH, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRSBs,ARM::tLDRSB, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2LDRSHs,ARM::tLDRSH, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRi12,ARM::tSTR, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRs, ARM::tSTR, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRBi12,ARM::tSTRB, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRBs, ARM::tSTRB, 0, 0, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRHi12,ARM::tSTRH, 0, 5, 0, 1, 0, 0,0, 1 },
+ { ARM::t2STRHs, ARM::tSTRH, 0, 0, 0, 1, 0, 0,0, 1 },
+
+ { ARM::t2LDM_RET,0, ARM::tPOP_RET, 0, 0, 1, 1, 1,1, 1 },
+ { ARM::t2LDM, ARM::tLDM, ARM::tPOP, 0, 0, 1, 1, 1,1, 1 },
+ { ARM::t2STM, ARM::tSTM, ARM::tPUSH, 0, 0, 1, 1, 1,1, 1 },
+ };
+
+ class VISIBILITY_HIDDEN Thumb2SizeReduce : public MachineFunctionPass {
+ public:
+ static char ID;
+ Thumb2SizeReduce();
+
+ const Thumb2InstrInfo *TII;
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "Thumb2 instruction size reduction pass";
+ }
+
+ private:
+ /// ReduceOpcodeMap - Maps wide opcode to index of entry in ReduceTable.
+ DenseMap<unsigned, unsigned> ReduceOpcodeMap;
+
+ bool VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
+ bool is2Addr, ARMCC::CondCodes Pred,
+ bool LiveCPSR, bool &HasCC, bool &CCDead);
+
+ bool ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry);
+
+ bool ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry, bool LiveCPSR);
+
+ /// ReduceTo2Addr - Reduce a 32-bit instruction to a 16-bit two-address
+ /// instruction.
+ bool ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR);
+
+ /// ReduceToNarrow - Reduce a 32-bit instruction to a 16-bit
+ /// non-two-address instruction.
+ bool ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR);
+
+ /// ReduceMBB - Reduce width of instructions in the specified basic block.
+ bool ReduceMBB(MachineBasicBlock &MBB);
+ };
+ char Thumb2SizeReduce::ID = 0;
+}
+
+Thumb2SizeReduce::Thumb2SizeReduce() : MachineFunctionPass(&ID) {
+ for (unsigned i = 0, e = array_lengthof(ReduceTable); i != e; ++i) {
+ unsigned FromOpc = ReduceTable[i].WideOpc;
+ if (!ReduceOpcodeMap.insert(std::make_pair(FromOpc, i)).second)
+ assert(false && "Duplicated entries?");
+ }
+}
+
+static bool HasImplicitCPSRDef(const TargetInstrDesc &TID) {
+ for (const unsigned *Regs = TID.ImplicitDefs; *Regs; ++Regs)
+ if (*Regs == ARM::CPSR)
+ return true;
+ return false;
+}
+
+bool
+Thumb2SizeReduce::VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
+ bool is2Addr, ARMCC::CondCodes Pred,
+ bool LiveCPSR, bool &HasCC, bool &CCDead) {
+ if ((is2Addr && Entry.PredCC2 == 0) ||
+ (!is2Addr && Entry.PredCC1 == 0)) {
+ if (Pred == ARMCC::AL) {
+ // Not predicated, must set CPSR.
+ if (!HasCC) {
+ // Original instruction was not setting CPSR, but CPSR is not
+ // currently live anyway. It's ok to set it. The CPSR def is
+ // dead though.
+ if (!LiveCPSR) {
+ HasCC = true;
+ CCDead = true;
+ return true;
+ }
+ return false;
+ }
+ } else {
+ // Predicated, must not set CPSR.
+ if (HasCC)
+ return false;
+ }
+ } else if ((is2Addr && Entry.PredCC2 == 2) ||
+ (!is2Addr && Entry.PredCC1 == 2)) {
+ /// Old opcode has an optional def of CPSR.
+ if (HasCC)
+ return true;
+ // If both old opcode does not implicit CPSR def, then it's not ok since
+ // these new opcodes CPSR def is not meant to be thrown away. e.g. CMP.
+ if (!HasImplicitCPSRDef(MI->getDesc()))
+ return false;
+ HasCC = true;
+ } else {
+ // 16-bit instruction does not set CPSR.
+ if (HasCC)
+ return false;
+ }
+
+ return true;
+}
+
+static bool VerifyLowRegs(MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+ bool isPCOk = (Opc == ARM::t2LDM_RET) || (Opc == ARM::t2LDM);
+ bool isLROk = (Opc == ARM::t2STM);
+ bool isSPOk = isPCOk || isLROk || (Opc == ARM::t2ADDrSPi);
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0 || Reg == ARM::CPSR)
+ continue;
+ if (isPCOk && Reg == ARM::PC)
+ continue;
+ if (isLROk && Reg == ARM::LR)
+ continue;
+ if (isSPOk && Reg == ARM::SP)
+ continue;
+ if (!isARMLowRegister(Reg))
+ return false;
+ }
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry) {
+ if (ReduceLimitLdSt != -1 && ((int)NumLdSts >= ReduceLimitLdSt))
+ return false;
+
+ unsigned Scale = 1;
+ bool HasImmOffset = false;
+ bool HasShift = false;
+ bool isLdStMul = false;
+ unsigned Opc = Entry.NarrowOpc1;
+ unsigned OpNum = 3; // First 'rest' of operands.
+ switch (Entry.WideOpc) {
+ default:
+ llvm_unreachable("Unexpected Thumb2 load / store opcode!");
+ case ARM::t2LDRi12:
+ case ARM::t2STRi12:
+ Scale = 4;
+ HasImmOffset = true;
+ break;
+ case ARM::t2LDRBi12:
+ case ARM::t2STRBi12:
+ HasImmOffset = true;
+ break;
+ case ARM::t2LDRHi12:
+ case ARM::t2STRHi12:
+ Scale = 2;
+ HasImmOffset = true;
+ break;
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSBs:
+ case ARM::t2LDRSHs:
+ case ARM::t2STRs:
+ case ARM::t2STRBs:
+ case ARM::t2STRHs:
+ HasShift = true;
+ OpNum = 4;
+ break;
+ case ARM::t2LDM_RET:
+ case ARM::t2LDM:
+ case ARM::t2STM: {
+ OpNum = 0;
+ unsigned BaseReg = MI->getOperand(0).getReg();
+ unsigned Mode = MI->getOperand(1).getImm();
+ if (BaseReg == ARM::SP && ARM_AM::getAM4WBFlag(Mode)) {
+ Opc = Entry.NarrowOpc2;
+ OpNum = 2;
+ } else if (Entry.WideOpc == ARM::t2LDM_RET ||
+ !isARMLowRegister(BaseReg) ||
+ !ARM_AM::getAM4WBFlag(Mode) ||
+ ARM_AM::getAM4SubMode(Mode) != ARM_AM::ia) {
+ return false;
+ }
+ isLdStMul = true;
+ break;
+ }
+ }
+
+ unsigned OffsetReg = 0;
+ bool OffsetKill = false;
+ if (HasShift) {
+ OffsetReg = MI->getOperand(2).getReg();
+ OffsetKill = MI->getOperand(2).isKill();
+ if (MI->getOperand(3).getImm())
+ // Thumb1 addressing mode doesn't support shift.
+ return false;
+ }
+
+ unsigned OffsetImm = 0;
+ if (HasImmOffset) {
+ OffsetImm = MI->getOperand(2).getImm();
+ unsigned MaxOffset = ((1 << Entry.Imm1Limit) - 1) * Scale;
+ if ((OffsetImm & (Scale-1)) || OffsetImm > MaxOffset)
+ // Make sure the immediate field fits.
+ return false;
+ }
+
+ // Add the 16-bit load / store instruction.
+ // FIXME: Thumb1 addressing mode encode both immediate and register offset.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, *MI, dl, TII->get(Opc));
+ if (!isLdStMul) {
+ MIB.addOperand(MI->getOperand(0)).addOperand(MI->getOperand(1));
+ if (Entry.NarrowOpc1 != ARM::tLDRSB && Entry.NarrowOpc1 != ARM::tLDRSH) {
+ // tLDRSB and tLDRSH do not have an immediate offset field. On the other
+ // hand, it must have an offset register.
+ // FIXME: Remove this special case.
+ MIB.addImm(OffsetImm/Scale);
+ }
+ assert((!HasShift || OffsetReg) && "Invalid so_reg load / store address!");
+
+ MIB.addReg(OffsetReg, getKillRegState(OffsetKill));
+ }
+
+ // Transfer the rest of operands.
+ for (unsigned e = MI->getNumOperands(); OpNum != e; ++OpNum)
+ MIB.addOperand(MI->getOperand(OpNum));
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase(MI);
+ ++NumLdSts;
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR) {
+ if (Entry.LowRegs1 && !VerifyLowRegs(MI))
+ return false;
+
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (TID.mayLoad() || TID.mayStore())
+ return ReduceLoadStore(MBB, MI, Entry);
+
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default: break;
+ case ARM::t2ADDSri:
+ case ARM::t2ADDSrr: {
+ unsigned PredReg = 0;
+ if (getInstrPredicate(MI, PredReg) == ARMCC::AL) {
+ switch (Opc) {
+ default: break;
+ case ARM::t2ADDSri: {
+ if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR))
+ return true;
+ // fallthrough
+ }
+ case ARM::t2ADDSrr:
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR);
+ }
+ }
+ break;
+ }
+ case ARM::t2RSBri:
+ case ARM::t2RSBSri:
+ if (MI->getOperand(2).getImm() == 0)
+ return ReduceToNarrow(MBB, MI, Entry, LiveCPSR);
+ break;
+ }
+ return false;
+}
+
+bool
+Thumb2SizeReduce::ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR) {
+
+ if (ReduceLimit2Addr != -1 && ((int)Num2Addrs >= ReduceLimit2Addr))
+ return false;
+
+ const TargetInstrDesc &TID = MI->getDesc();
+ unsigned Reg0 = MI->getOperand(0).getReg();
+ unsigned Reg1 = MI->getOperand(1).getReg();
+ if (Reg0 != Reg1)
+ return false;
+ if (Entry.LowRegs2 && !isARMLowRegister(Reg0))
+ return false;
+ if (Entry.Imm2Limit) {
+ unsigned Imm = MI->getOperand(2).getImm();
+ unsigned Limit = (1 << Entry.Imm2Limit) - 1;
+ if (Imm > Limit)
+ return false;
+ } else {
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ if (Entry.LowRegs2 && !isARMLowRegister(Reg2))
+ return false;
+ }
+
+ // Check if it's possible / necessary to transfer the predicate.
+ const TargetInstrDesc &NewTID = TII->get(Entry.NarrowOpc2);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ bool SkipPred = false;
+ if (Pred != ARMCC::AL) {
+ if (!NewTID.isPredicable())
+ // Can't transfer predicate, fail.
+ return false;
+ } else {
+ SkipPred = !NewTID.isPredicable();
+ }
+
+ bool HasCC = false;
+ bool CCDead = false;
+ if (TID.hasOptionalDef()) {
+ unsigned NumOps = TID.getNumOperands();
+ HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
+ if (HasCC && MI->getOperand(NumOps-1).isDead())
+ CCDead = true;
+ }
+ if (!VerifyPredAndCC(MI, Entry, true, Pred, LiveCPSR, HasCC, CCDead))
+ return false;
+
+ // Add the 16-bit instruction.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, *MI, dl, NewTID);
+ MIB.addOperand(MI->getOperand(0));
+ if (NewTID.hasOptionalDef()) {
+ if (HasCC)
+ AddDefaultT1CC(MIB, CCDead);
+ else
+ AddNoT1CC(MIB);
+ }
+
+ // Transfer the rest of operands.
+ unsigned NumOps = TID.getNumOperands();
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ if (i < NumOps && TID.OpInfo[i].isOptionalDef())
+ continue;
+ if (SkipPred && TID.OpInfo[i].isPredicate())
+ continue;
+ MIB.addOperand(MI->getOperand(i));
+ }
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase(MI);
+ ++Num2Addrs;
+ return true;
+}
+
+bool
+Thumb2SizeReduce::ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
+ const ReduceEntry &Entry,
+ bool LiveCPSR) {
+ if (ReduceLimit != -1 && ((int)NumNarrows >= ReduceLimit))
+ return false;
+
+ unsigned Limit = ~0U;
+ unsigned Scale = (Entry.WideOpc == ARM::t2ADDrSPi) ? 4 : 1;
+ if (Entry.Imm1Limit)
+ Limit = ((1 << Entry.Imm1Limit) - 1) * Scale;
+
+ const TargetInstrDesc &TID = MI->getDesc();
+ for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+ if (TID.OpInfo[i].isPredicate())
+ continue;
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg || Reg == ARM::CPSR)
+ continue;
+ if (Entry.WideOpc == ARM::t2ADDrSPi && Reg == ARM::SP)
+ continue;
+ if (Entry.LowRegs1 && !isARMLowRegister(Reg))
+ return false;
+ } else if (MO.isImm() &&
+ !TID.OpInfo[i].isPredicate()) {
+ if (((unsigned)MO.getImm()) > Limit || (MO.getImm() & (Scale-1)) != 0)
+ return false;
+ }
+ }
+
+ // Check if it's possible / necessary to transfer the predicate.
+ const TargetInstrDesc &NewTID = TII->get(Entry.NarrowOpc1);
+ unsigned PredReg = 0;
+ ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
+ bool SkipPred = false;
+ if (Pred != ARMCC::AL) {
+ if (!NewTID.isPredicable())
+ // Can't transfer predicate, fail.
+ return false;
+ } else {
+ SkipPred = !NewTID.isPredicable();
+ }
+
+ bool HasCC = false;
+ bool CCDead = false;
+ if (TID.hasOptionalDef()) {
+ unsigned NumOps = TID.getNumOperands();
+ HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
+ if (HasCC && MI->getOperand(NumOps-1).isDead())
+ CCDead = true;
+ }
+ if (!VerifyPredAndCC(MI, Entry, false, Pred, LiveCPSR, HasCC, CCDead))
+ return false;
+
+ // Add the 16-bit instruction.
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(MBB, *MI, dl, NewTID);
+ MIB.addOperand(MI->getOperand(0));
+ if (NewTID.hasOptionalDef()) {
+ if (HasCC)
+ AddDefaultT1CC(MIB, CCDead);
+ else
+ AddNoT1CC(MIB);
+ }
+
+ // Transfer the rest of operands.
+ unsigned NumOps = TID.getNumOperands();
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ if (i < NumOps && TID.OpInfo[i].isOptionalDef())
+ continue;
+ if ((TID.getOpcode() == ARM::t2RSBSri ||
+ TID.getOpcode() == ARM::t2RSBri) && i == 2)
+ // Skip the zero immediate operand, it's now implicit.
+ continue;
+ bool isPred = (i < NumOps && TID.OpInfo[i].isPredicate());
+ if (SkipPred && isPred)
+ continue;
+ const MachineOperand &MO = MI->getOperand(i);
+ if (Scale > 1 && !isPred && MO.isImm())
+ MIB.addImm(MO.getImm() / Scale);
+ else {
+ if (MO.isReg() && MO.isImplicit() && MO.getReg() == ARM::CPSR)
+ // Skip implicit def of CPSR. Either it's modeled as an optional
+ // def now or it's already an implicit def on the new instruction.
+ continue;
+ MIB.addOperand(MO);
+ }
+ }
+ if (!TID.isPredicable() && NewTID.isPredicable())
+ AddDefaultPred(MIB);
+
+ DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
+
+ MBB.erase(MI);
+ ++NumNarrows;
+ return true;
+}
+
+static bool UpdateCPSRDef(MachineInstr &MI, bool LiveCPSR) {
+ bool HasDef = false;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ if (!MO.isDead())
+ HasDef = true;
+ }
+
+ return HasDef || LiveCPSR;
+}
+
+static bool UpdateCPSRUse(MachineInstr &MI, bool LiveCPSR) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isUndef() || MO.isDef())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ assert(LiveCPSR && "CPSR liveness tracking is wrong!");
+ if (MO.isKill()) {
+ LiveCPSR = false;
+ break;
+ }
+ }
+
+ return LiveCPSR;
+}
+
+bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
+ bool Modified = false;
+
+ bool LiveCPSR = false;
+ // Yes, CPSR could be livein.
+ for (MachineBasicBlock::const_livein_iterator I = MBB.livein_begin(),
+ E = MBB.livein_end(); I != E; ++I) {
+ if (*I == ARM::CPSR) {
+ LiveCPSR = true;
+ break;
+ }
+ }
+
+ MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+ MachineBasicBlock::iterator NextMII;
+ for (; MII != E; MII = NextMII) {
+ NextMII = next(MII);
+
+ MachineInstr *MI = &*MII;
+ LiveCPSR = UpdateCPSRUse(*MI, LiveCPSR);
+
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, unsigned>::iterator OPI = ReduceOpcodeMap.find(Opcode);
+ if (OPI != ReduceOpcodeMap.end()) {
+ const ReduceEntry &Entry = ReduceTable[OPI->second];
+ // Ignore "special" cases for now.
+ if (Entry.Special) {
+ if (ReduceSpecial(MBB, MI, Entry, LiveCPSR)) {
+ Modified = true;
+ MachineBasicBlock::iterator I = prior(NextMII);
+ MI = &*I;
+ }
+ goto ProcessNext;
+ }
+
+ // Try to transform to a 16-bit two-address instruction.
+ if (Entry.NarrowOpc2 && ReduceTo2Addr(MBB, MI, Entry, LiveCPSR)) {
+ Modified = true;
+ MachineBasicBlock::iterator I = prior(NextMII);
+ MI = &*I;
+ goto ProcessNext;
+ }
+
+ // Try to transform ro a 16-bit non-two-address instruction.
+ if (Entry.NarrowOpc1 && ReduceToNarrow(MBB, MI, Entry, LiveCPSR)) {
+ Modified = true;
+ MachineBasicBlock::iterator I = prior(NextMII);
+ MI = &*I;
+ }
+ }
+
+ ProcessNext:
+ LiveCPSR = UpdateCPSRDef(*MI, LiveCPSR);
+ }
+
+ return Modified;
+}
+
+bool Thumb2SizeReduce::runOnMachineFunction(MachineFunction &MF) {
+ const TargetMachine &TM = MF.getTarget();
+ TII = static_cast<const Thumb2InstrInfo*>(TM.getInstrInfo());
+
+ bool Modified = false;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Modified |= ReduceMBB(*I);
+ return Modified;
+}
+
+/// createThumb2SizeReductionPass - Returns an instance of the Thumb2 size
+/// reduction pass.
+FunctionPass *llvm::createThumb2SizeReductionPass() {
+ return new Thumb2SizeReduce();
+}
diff --git a/lib/Target/Alpha/Alpha.h b/lib/Target/Alpha/Alpha.h
index 0818e25..b8a0645 100644
--- a/lib/Target/Alpha/Alpha.h
+++ b/lib/Target/Alpha/Alpha.h
@@ -22,20 +22,22 @@ namespace llvm {
class AlphaTargetMachine;
class FunctionPass;
class MachineCodeEmitter;
- class raw_ostream;
+ class ObjectCodeEmitter;
+ class formatted_raw_ostream;
FunctionPass *createAlphaISelDag(AlphaTargetMachine &TM);
- FunctionPass *createAlphaCodePrinterPass(raw_ostream &OS,
- TargetMachine &TM,
- bool Verbose);
FunctionPass *createAlphaPatternInstructionSelector(TargetMachine &TM);
FunctionPass *createAlphaCodeEmitterPass(AlphaTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createAlphaJITCodeEmitterPass(AlphaTargetMachine &TM,
- JITCodeEmitter &JCE);
+ JITCodeEmitter &JCE);
+ FunctionPass *createAlphaObjectCodeEmitterPass(AlphaTargetMachine &TM,
+ ObjectCodeEmitter &OCE);
FunctionPass *createAlphaLLRPPass(AlphaTargetMachine &tm);
FunctionPass *createAlphaBranchSelectionPass();
+ extern Target TheAlphaTarget;
+
} // end namespace llvm;
// Defines symbolic names for Alpha registers. This defines a mapping from
diff --git a/lib/Target/Alpha/Alpha.td b/lib/Target/Alpha/Alpha.td
index e3748c6..6efdf55 100644
--- a/lib/Target/Alpha/Alpha.td
+++ b/lib/Target/Alpha/Alpha.td
@@ -30,6 +30,12 @@ def FeatureCIX : SubtargetFeature<"cix", "HasCT", "true",
include "AlphaRegisterInfo.td"
//===----------------------------------------------------------------------===//
+// Calling Convention Description
+//===----------------------------------------------------------------------===//
+
+include "AlphaCallingConv.td"
+
+//===----------------------------------------------------------------------===//
// Schedule Description
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/Alpha/AlphaBranchSelector.cpp b/lib/Target/Alpha/AlphaBranchSelector.cpp
index aca8ca7..719ffae 100644
--- a/lib/Target/Alpha/AlphaBranchSelector.cpp
+++ b/lib/Target/Alpha/AlphaBranchSelector.cpp
@@ -17,7 +17,7 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
using namespace llvm;
namespace {
diff --git a/lib/Target/Alpha/AlphaCallingConv.td b/lib/Target/Alpha/AlphaCallingConv.td
new file mode 100644
index 0000000..38ada69
--- /dev/null
+++ b/lib/Target/Alpha/AlphaCallingConv.td
@@ -0,0 +1,37 @@
+//===- AlphaCallingConv.td - Calling Conventions for Alpha -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for Alpha architecture.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Alpha Return Value Calling Convention
+//===----------------------------------------------------------------------===//
+def RetCC_Alpha : CallingConv<[
+ // i64 is returned in register R0
+ CCIfType<[i64], CCAssignToReg<[R0]>>,
+
+ // f32 / f64 are returned in F0/F1
+ CCIfType<[f32, f64], CCAssignToReg<[F0, F1]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Alpha Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+def CC_Alpha : CallingConv<[
+ // The first 6 arguments are passed in registers, whether integer or
+ // floating-point
+ CCIfType<[i64], CCAssignToRegWithShadow<[R16, R17, R18, R19, R20, R21],
+ [F16, F17, F18, F19, F20, F21]>>,
+
+ CCIfType<[f32, f64], CCAssignToRegWithShadow<[F16, F17, F18, F19, F20, F21],
+ [R16, R17, R18, R19, R20, R21]>>,
+
+ // Stack slots are 8 bytes in size and 8-byte aligned.
+ CCIfType<[i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
diff --git a/lib/Target/Alpha/AlphaCodeEmitter.cpp b/lib/Target/Alpha/AlphaCodeEmitter.cpp
index f50f007..8023add 100644
--- a/lib/Target/Alpha/AlphaCodeEmitter.cpp
+++ b/lib/Target/Alpha/AlphaCodeEmitter.cpp
@@ -19,16 +19,19 @@
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
-
+
class AlphaCodeEmitter {
MachineCodeEmitter &MCE;
public:
@@ -57,7 +60,7 @@ namespace {
public:
static char ID;
explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
- : MachineFunctionPass(&ID), AlphaCodeEmitter(mce),
+ : MachineFunctionPass(&ID), AlphaCodeEmitter(mce),
II(0), TM(tm), MCE(mce) {}
Emitter(TargetMachine &tm, CodeEmitter &mce, const AlphaInstrInfo& ii)
: MachineFunctionPass(&ID), AlphaCodeEmitter(mce),
@@ -69,8 +72,6 @@ namespace {
return "Alpha Machine Code Emitter";
}
- void emitInstruction(const MachineInstr &MI);
-
private:
void emitBasicBlock(MachineBasicBlock &MBB);
};
@@ -91,6 +92,10 @@ FunctionPass *llvm::createAlphaJITCodeEmitterPass(AlphaTargetMachine &TM,
JITCodeEmitter &JCE) {
return new Emitter<JITCodeEmitter>(TM, JCE);
}
+FunctionPass *llvm::createAlphaObjectCodeEmitterPass(AlphaTargetMachine &TM,
+ ObjectCodeEmitter &OCE) {
+ return new Emitter<ObjectCodeEmitter>(TM, OCE);
+}
template <class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
@@ -111,6 +116,7 @@ void Emitter<CodeEmitter>::emitBasicBlock(MachineBasicBlock &MBB) {
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
const MachineInstr &MI = *I;
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
switch(MI.getOpcode()) {
default:
MCE.emitWordLE(getBinaryCodeForInstr(*I));
@@ -119,8 +125,10 @@ void Emitter<CodeEmitter>::emitBasicBlock(MachineBasicBlock &MBB) {
case Alpha::PCLABEL:
case Alpha::MEMLABEL:
case TargetInstrInfo::IMPLICIT_DEF:
+ case TargetInstrInfo::KILL:
break; //skip these
}
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
}
}
@@ -159,13 +167,12 @@ static unsigned getAlphaRegNumber(unsigned Reg) {
case Alpha::R30 : case Alpha::F30 : return 30;
case Alpha::R31 : case Alpha::F31 : return 31;
default:
- assert(0 && "Unhandled reg");
- abort();
+ llvm_unreachable("Unhandled reg");
}
}
unsigned AlphaCodeEmitter::getMachineOpValue(const MachineInstr &MI,
- const MachineOperand &MO) {
+ const MachineOperand &MO) {
unsigned rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
@@ -175,7 +182,7 @@ unsigned AlphaCodeEmitter::getMachineOpValue(const MachineInstr &MI,
} else if (MO.isImm()) {
rv = MO.getImm();
} else if (MO.isGlobal() || MO.isSymbol() || MO.isCPI()) {
- DOUT << MO << " is a relocated op for " << MI << "\n";
+ DEBUG(errs() << MO << " is a relocated op for " << MI << "\n");
unsigned Reloc = 0;
int Offset = 0;
bool useGOT = false;
@@ -211,8 +218,7 @@ unsigned AlphaCodeEmitter::getMachineOpValue(const MachineInstr &MI,
Offset = MI.getOperand(3).getImm();
break;
default:
- assert(0 && "unknown relocatable instruction");
- abort();
+ llvm_unreachable("unknown relocatable instruction");
}
if (MO.isGlobal())
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
@@ -229,14 +235,14 @@ unsigned AlphaCodeEmitter::getMachineOpValue(const MachineInstr &MI,
} else if (MO.isMBB()) {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Alpha::reloc_bsr, MO.getMBB()));
- }else {
- cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
- abort();
+ } else {
+#ifndef NDEBUG
+ errs() << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
+#endif
+ llvm_unreachable(0);
}
return rv;
}
#include "AlphaGenCodeEmitter.inc"
-
-
diff --git a/lib/Target/Alpha/AlphaISelDAGToDAG.cpp b/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
index e3f631a..e3587fb 100644
--- a/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
+++ b/lib/Target/Alpha/AlphaISelDAGToDAG.cpp
@@ -26,9 +26,12 @@
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
@@ -114,7 +117,7 @@ namespace {
uint64_t complow = 1 << (63 - at);
uint64_t comphigh = 1 << (64 - at);
//cerr << x << ":" << complow << ":" << comphigh << "\n";
- if (abs(complow - x) <= abs(comphigh - x))
+ if (abs64(complow - x) <= abs64(comphigh - x))
return complow;
else
return comphigh;
@@ -208,7 +211,6 @@ private:
/// GOT address into a register.
///
SDNode *AlphaDAGToDAGISel::getGlobalBaseReg() {
- MachineFunction *MF = BB->getParent();
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}
@@ -216,7 +218,6 @@ SDNode *AlphaDAGToDAGISel::getGlobalBaseReg() {
/// getGlobalRetAddr - Grab the return address.
///
SDNode *AlphaDAGToDAGISel::getGlobalRetAddr() {
- MachineFunction *MF = BB->getParent();
unsigned GlobalRetAddr = getInstrInfo()->getGlobalRetAddr(MF);
return CurDAG->getRegister(GlobalRetAddr, TLI.getPointerTy()).getNode();
}
@@ -269,8 +270,8 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R27, N0,
Chain.getValue(1));
SDNode *CNode =
- CurDAG->getTargetNode(Alpha::JSRs, dl, MVT::Other, MVT::Flag,
- Chain, Chain.getValue(1));
+ CurDAG->getMachineNode(Alpha::JSRs, dl, MVT::Other, MVT::Flag,
+ Chain, Chain.getValue(1));
Chain = CurDAG->getCopyFromReg(Chain, dl, Alpha::R27, MVT::i64,
SDValue(CNode, 1));
return CurDAG->SelectNodeTo(N, Alpha::BISr, MVT::i64, Chain, Chain);
@@ -278,8 +279,8 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
case ISD::READCYCLECOUNTER: {
SDValue Chain = N->getOperand(0);
- return CurDAG->getTargetNode(Alpha::RPCC, dl, MVT::i64, MVT::Other,
- Chain);
+ return CurDAG->getMachineNode(Alpha::RPCC, dl, MVT::i64, MVT::Other,
+ Chain);
}
case ISD::Constant: {
@@ -302,10 +303,11 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
// val32 >= IMM_LOW + IMM_LOW * IMM_MULT) //always true
break; //(zext (LDAH (LDA)))
//Else use the constant pool
- ConstantInt *C = ConstantInt::get(Type::Int64Ty, uval);
+ ConstantInt *C = ConstantInt::get(
+ Type::getInt64Ty(*CurDAG->getContext()), uval);
SDValue CPI = CurDAG->getTargetConstantPool(C, MVT::i64);
- SDNode *Tmp = CurDAG->getTargetNode(Alpha::LDAHr, dl, MVT::i64, CPI,
- SDValue(getGlobalBaseReg(), 0));
+ SDNode *Tmp = CurDAG->getMachineNode(Alpha::LDAHr, dl, MVT::i64, CPI,
+ SDValue(getGlobalBaseReg(), 0));
return CurDAG->SelectNodeTo(N, Alpha::LDQr, MVT::i64, MVT::Other,
CPI, SDValue(Tmp, 0), CurDAG->getEntryNode());
}
@@ -313,7 +315,7 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
case ISD::ConstantFP: {
ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
bool isDouble = N->getValueType(0) == MVT::f64;
- MVT T = isDouble ? MVT::f64 : MVT::f32;
+ EVT T = isDouble ? MVT::f64 : MVT::f32;
if (CN->getValueAPF().isPosZero()) {
return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYST : Alpha::CPYSS,
T, CurDAG->getRegister(Alpha::F31, T),
@@ -323,7 +325,7 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
T, CurDAG->getRegister(Alpha::F31, T),
CurDAG->getRegister(Alpha::F31, T));
} else {
- abort();
+ llvm_report_error("Unhandled FP constant type");
}
break;
}
@@ -336,7 +338,7 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
bool rev = false;
bool inv = false;
switch(CC) {
- default: DEBUG(N->dump(CurDAG)); assert(0 && "Unknown FP comparison!");
+ default: DEBUG(N->dump(CurDAG)); llvm_unreachable("Unknown FP comparison!");
case ISD::SETEQ: case ISD::SETOEQ: case ISD::SETUEQ:
Opc = Alpha::CMPTEQ; break;
case ISD::SETLT: case ISD::SETOLT: case ISD::SETULT:
@@ -356,48 +358,29 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
};
SDValue tmp1 = N->getOperand(rev?1:0);
SDValue tmp2 = N->getOperand(rev?0:1);
- SDNode *cmp = CurDAG->getTargetNode(Opc, dl, MVT::f64, tmp1, tmp2);
+ SDNode *cmp = CurDAG->getMachineNode(Opc, dl, MVT::f64, tmp1, tmp2);
if (inv)
- cmp = CurDAG->getTargetNode(Alpha::CMPTEQ, dl,
- MVT::f64, SDValue(cmp, 0),
- CurDAG->getRegister(Alpha::F31, MVT::f64));
+ cmp = CurDAG->getMachineNode(Alpha::CMPTEQ, dl,
+ MVT::f64, SDValue(cmp, 0),
+ CurDAG->getRegister(Alpha::F31, MVT::f64));
switch(CC) {
case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE:
case ISD::SETUNE: case ISD::SETUGT: case ISD::SETUGE:
{
- SDNode* cmp2 = CurDAG->getTargetNode(Alpha::CMPTUN, dl, MVT::f64,
- tmp1, tmp2);
- cmp = CurDAG->getTargetNode(Alpha::ADDT, dl, MVT::f64,
- SDValue(cmp2, 0), SDValue(cmp, 0));
+ SDNode* cmp2 = CurDAG->getMachineNode(Alpha::CMPTUN, dl, MVT::f64,
+ tmp1, tmp2);
+ cmp = CurDAG->getMachineNode(Alpha::ADDT, dl, MVT::f64,
+ SDValue(cmp2, 0), SDValue(cmp, 0));
break;
}
default: break;
}
- SDNode* LD = CurDAG->getTargetNode(Alpha::FTOIT, dl,
- MVT::i64, SDValue(cmp, 0));
- return CurDAG->getTargetNode(Alpha::CMPULT, dl, MVT::i64,
- CurDAG->getRegister(Alpha::R31, MVT::i64),
- SDValue(LD,0));
- }
- break;
-
- case ISD::SELECT:
- if (N->getValueType(0).isFloatingPoint() &&
- (N->getOperand(0).getOpcode() != ISD::SETCC ||
- !N->getOperand(0).getOperand(1).getValueType().isFloatingPoint())) {
- //This should be the condition not covered by the Patterns
- //FIXME: Don't have SelectCode die, but rather return something testable
- // so that things like this can be caught in fall though code
- //move int to fp
- bool isDouble = N->getValueType(0) == MVT::f64;
- SDValue cond = N->getOperand(0);
- SDValue TV = N->getOperand(1);
- SDValue FV = N->getOperand(2);
-
- SDNode* LD = CurDAG->getTargetNode(Alpha::ITOFT, dl, MVT::f64, cond);
- return CurDAG->getTargetNode(isDouble?Alpha::FCMOVNET:Alpha::FCMOVNES,
- dl, MVT::f64, FV, TV, SDValue(LD,0));
+ SDNode* LD = CurDAG->getMachineNode(Alpha::FTOIT, dl,
+ MVT::i64, SDValue(cmp, 0));
+ return CurDAG->getMachineNode(Alpha::CMPULT, dl, MVT::i64,
+ CurDAG->getRegister(Alpha::R31, MVT::i64),
+ SDValue(LD,0));
}
break;
@@ -422,11 +405,11 @@ SDNode *AlphaDAGToDAGISel::Select(SDValue Op) {
if (get_zapImm(mask)) {
SDValue Z =
- SDValue(CurDAG->getTargetNode(Alpha::ZAPNOTi, dl, MVT::i64,
- N->getOperand(0).getOperand(0),
- getI64Imm(get_zapImm(mask))), 0);
- return CurDAG->getTargetNode(Alpha::SRLr, dl, MVT::i64, Z,
- getI64Imm(sval));
+ SDValue(CurDAG->getMachineNode(Alpha::ZAPNOTi, dl, MVT::i64,
+ N->getOperand(0).getOperand(0),
+ getI64Imm(get_zapImm(mask))), 0);
+ return CurDAG->getMachineNode(Alpha::SRLr, dl, MVT::i64, Z,
+ getI64Imm(sval));
}
}
break;
@@ -443,95 +426,26 @@ void AlphaDAGToDAGISel::SelectCALL(SDValue Op) {
SDNode *N = Op.getNode();
SDValue Chain = N->getOperand(0);
SDValue Addr = N->getOperand(1);
- SDValue InFlag(0,0); // Null incoming flag value.
+ SDValue InFlag = N->getOperand(N->getNumOperands() - 1);
DebugLoc dl = N->getDebugLoc();
- std::vector<SDValue> CallOperands;
- std::vector<MVT> TypeOperands;
-
- //grab the arguments
- for(int i = 2, e = N->getNumOperands(); i < e; ++i) {
- TypeOperands.push_back(N->getOperand(i).getValueType());
- CallOperands.push_back(N->getOperand(i));
- }
- int count = N->getNumOperands() - 2;
-
- static const unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
- Alpha::R19, Alpha::R20, Alpha::R21};
- static const unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
- Alpha::F19, Alpha::F20, Alpha::F21};
-
- for (int i = 6; i < count; ++i) {
- unsigned Opc = Alpha::WTF;
- if (TypeOperands[i].isInteger()) {
- Opc = Alpha::STQ;
- } else if (TypeOperands[i] == MVT::f32) {
- Opc = Alpha::STS;
- } else if (TypeOperands[i] == MVT::f64) {
- Opc = Alpha::STT;
- } else
- assert(0 && "Unknown operand");
-
- SDValue Ops[] = { CallOperands[i], getI64Imm((i - 6) * 8),
- CurDAG->getCopyFromReg(Chain, dl, Alpha::R30, MVT::i64),
- Chain };
- Chain = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 4), 0);
- }
- for (int i = 0; i < std::min(6, count); ++i) {
- if (TypeOperands[i].isInteger()) {
- Chain = CurDAG->getCopyToReg(Chain, dl, args_int[i],
- CallOperands[i], InFlag);
- InFlag = Chain.getValue(1);
- } else if (TypeOperands[i] == MVT::f32 || TypeOperands[i] == MVT::f64) {
- Chain = CurDAG->getCopyToReg(Chain, dl, args_float[i],
- CallOperands[i], InFlag);
- InFlag = Chain.getValue(1);
- } else
- assert(0 && "Unknown operand");
- }
-
- // Finally, once everything is in registers to pass to the call, emit the
- // call itself.
if (Addr.getOpcode() == AlphaISD::GPRelLo) {
SDValue GOT = SDValue(getGlobalBaseReg(), 0);
Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R29, GOT, InFlag);
InFlag = Chain.getValue(1);
- Chain = SDValue(CurDAG->getTargetNode(Alpha::BSR, dl, MVT::Other,
- MVT::Flag, Addr.getOperand(0),
- Chain, InFlag), 0);
+ Chain = SDValue(CurDAG->getMachineNode(Alpha::BSR, dl, MVT::Other,
+ MVT::Flag, Addr.getOperand(0),
+ Chain, InFlag), 0);
} else {
Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R27, Addr, InFlag);
InFlag = Chain.getValue(1);
- Chain = SDValue(CurDAG->getTargetNode(Alpha::JSR, dl, MVT::Other,
- MVT::Flag, Chain, InFlag), 0);
+ Chain = SDValue(CurDAG->getMachineNode(Alpha::JSR, dl, MVT::Other,
+ MVT::Flag, Chain, InFlag), 0);
}
InFlag = Chain.getValue(1);
- std::vector<SDValue> CallResults;
-
- switch (N->getValueType(0).getSimpleVT()) {
- default: assert(0 && "Unexpected ret value!");
- case MVT::Other: break;
- case MVT::i64:
- Chain = CurDAG->getCopyFromReg(Chain, dl,
- Alpha::R0, MVT::i64, InFlag).getValue(1);
- CallResults.push_back(Chain.getValue(0));
- break;
- case MVT::f32:
- Chain = CurDAG->getCopyFromReg(Chain, dl,
- Alpha::F0, MVT::f32, InFlag).getValue(1);
- CallResults.push_back(Chain.getValue(0));
- break;
- case MVT::f64:
- Chain = CurDAG->getCopyFromReg(Chain, dl,
- Alpha::F0, MVT::f64, InFlag).getValue(1);
- CallResults.push_back(Chain.getValue(0));
- break;
- }
-
- CallResults.push_back(Chain);
- for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
- ReplaceUses(Op.getValue(i), CallResults[i]);
+ ReplaceUses(Op.getValue(0), Chain);
+ ReplaceUses(Op.getValue(1), InFlag);
}
diff --git a/lib/Target/Alpha/AlphaISelLowering.cpp b/lib/Target/Alpha/AlphaISelLowering.cpp
index fa0b656..b3f865c 100644
--- a/lib/Target/Alpha/AlphaISelLowering.cpp
+++ b/lib/Target/Alpha/AlphaISelLowering.cpp
@@ -13,17 +13,22 @@
#include "AlphaISelLowering.h"
#include "AlphaTargetMachine.h"
+#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// AddLiveIn - This helper function adds the specified physical register to the
@@ -37,14 +42,15 @@ static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
return VReg;
}
-AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM) {
+AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
// Set up the TargetLowering object.
//I am having problems with shr n i8 1
setShiftAmountType(MVT::i64);
setBooleanContents(ZeroOrOneBooleanContent);
-
+
setUsesGlobalOffsetTable(true);
-
+
addRegisterClass(MVT::i64, Alpha::GPRCRegisterClass);
addRegisterClass(MVT::f64, Alpha::F8RCRegisterClass);
addRegisterClass(MVT::f32, Alpha::F4RCRegisterClass);
@@ -54,24 +60,26 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
-
+
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
-
+
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
// setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
- setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
-
+
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
@@ -85,7 +93,7 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
setOperationAction(ISD::BSWAP , MVT::i64, Expand);
setOperationAction(ISD::ROTL , MVT::i64, Expand);
setOperationAction(ISD::ROTR , MVT::i64, Expand);
-
+
setOperationAction(ISD::SREM , MVT::i64, Custom);
setOperationAction(ISD::UREM , MVT::i64, Custom);
setOperationAction(ISD::SDIV , MVT::i64, Custom);
@@ -99,6 +107,9 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
// We don't support sin/cos/sqrt/pow
setOperationAction(ISD::FSIN , MVT::f64, Expand);
@@ -123,7 +134,7 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
// Not implemented yet.
- setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
@@ -141,8 +152,6 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::i32, Custom);
- setOperationAction(ISD::RET, MVT::Other, Custom);
-
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
@@ -159,7 +168,7 @@ AlphaTargetLowering::AlphaTargetLowering(TargetMachine &TM) : TargetLowering(TM)
computeRegisterProperties();
}
-MVT AlphaTargetLowering::getSetCCResultType(MVT VT) const {
+MVT::SimpleValueType AlphaTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i64;
}
@@ -187,13 +196,13 @@ unsigned AlphaTargetLowering::getFunctionAlignment(const Function *F) const {
}
static SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
SDValue Zero = DAG.getConstant(0, PtrVT);
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
-
+
SDValue Hi = DAG.getNode(AlphaISD::GPRelHi, dl, MVT::i64, JTI,
DAG.getGLOBAL_OFFSET_TABLE(MVT::i64));
SDValue Lo = DAG.getNode(AlphaISD::GPRelLo, dl, MVT::i64, JTI, Hi);
@@ -219,43 +228,205 @@ static SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
// //#define GP $29
// //#define SP $30
-static SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG,
- int &VarArgsBase,
- int &VarArgsOffset) {
+#include "AlphaGenCallingConv.inc"
+
+SDValue
+AlphaTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_Alpha);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
+ getPointerTy(), true));
+
+ SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
+ SmallVector<SDValue, 12> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ SDValue Arg = Outs[i].Val;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: assert(0 && "Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at RegsToPass
+ // vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getCopyFromReg(Chain, dl, Alpha::R30, MVT::i64);
+
+ SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ StackPtr,
+ DAG.getIntPtrConstant(VA.getLocMemOffset()));
+
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ PseudoSourceValue::getStack(), 0));
+ }
+ }
+
+ // Transform all store nodes into one single node because all store nodes are
+ // independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain and
+ // flag operands which copy the outgoing args into registers. The InFlag in
+ // necessary since all emited instructions must be stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(AlphaISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, getPointerTy(), true),
+ DAG.getConstant(0, getPointerTy(), true),
+ InFlag);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+AlphaTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Alpha);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ VA.getLocVT(), InFlag).getValue(1);
+ SDValue RetValue = Chain.getValue(0);
+ InFlag = Chain.getValue(2);
+
+ // If this is an 8/16/32-bit value, it is really passed promoted to 64
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ RetValue = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), RetValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ RetValue = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), RetValue,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.getLocInfo() != CCValAssign::Full)
+ RetValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), RetValue);
+
+ InVals.push_back(RetValue);
+ }
+
+ return Chain;
+}
+
+SDValue
+AlphaTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- std::vector<SDValue> ArgValues;
- SDValue Root = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
unsigned args_int[] = {
Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {
Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21};
-
- for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e; ++ArgNo) {
+
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue argt;
- MVT ObjectVT = Op.getValue(ArgNo).getValueType();
+ EVT ObjectVT = Ins[ArgNo].VT;
SDValue ArgVal;
if (ArgNo < 6) {
- switch (ObjectVT.getSimpleVT()) {
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
default:
assert(false && "Invalid value type!");
case MVT::f64:
- args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo],
+ args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo],
&Alpha::F8RCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, args_float[ArgNo], ObjectVT);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, args_float[ArgNo], ObjectVT);
break;
case MVT::f32:
- args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo],
+ args_float[ArgNo] = AddLiveIn(MF, args_float[ArgNo],
&Alpha::F4RCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, args_float[ArgNo], ObjectVT);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, args_float[ArgNo], ObjectVT);
break;
case MVT::i64:
- args_int[ArgNo] = AddLiveIn(MF, args_int[ArgNo],
+ args_int[ArgNo] = AddLiveIn(MF, args_int[ArgNo],
&Alpha::GPRCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, args_int[ArgNo], MVT::i64);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, args_int[ArgNo], MVT::i64);
break;
}
} else { //more args
@@ -265,60 +436,58 @@ static SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG,
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i64);
- ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
}
- ArgValues.push_back(ArgVal);
+ InVals.push_back(ArgVal);
}
// If the functions takes variable number of arguments, copy all regs to stack
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
if (isVarArg) {
- VarArgsOffset = (Op.getNode()->getNumValues()-1) * 8;
+ VarArgsOffset = Ins.size() * 8;
std::vector<SDValue> LS;
for (int i = 0; i < 6; ++i) {
if (TargetRegisterInfo::isPhysicalRegister(args_int[i]))
args_int[i] = AddLiveIn(MF, args_int[i], &Alpha::GPRCRegClass);
- SDValue argt = DAG.getCopyFromReg(Root, dl, args_int[i], MVT::i64);
+ SDValue argt = DAG.getCopyFromReg(Chain, dl, args_int[i], MVT::i64);
int FI = MFI->CreateFixedObject(8, -8 * (6 - i));
if (i == 0) VarArgsBase = FI;
SDValue SDFI = DAG.getFrameIndex(FI, MVT::i64);
- LS.push_back(DAG.getStore(Root, dl, argt, SDFI, NULL, 0));
+ LS.push_back(DAG.getStore(Chain, dl, argt, SDFI, NULL, 0));
if (TargetRegisterInfo::isPhysicalRegister(args_float[i]))
args_float[i] = AddLiveIn(MF, args_float[i], &Alpha::F8RCRegClass);
- argt = DAG.getCopyFromReg(Root, dl, args_float[i], MVT::f64);
+ argt = DAG.getCopyFromReg(Chain, dl, args_float[i], MVT::f64);
FI = MFI->CreateFixedObject(8, - 8 * (12 - i));
SDFI = DAG.getFrameIndex(FI, MVT::i64);
- LS.push_back(DAG.getStore(Root, dl, argt, SDFI, NULL, 0));
+ LS.push_back(DAG.getStore(Chain, dl, argt, SDFI, NULL, 0));
}
//Set up a token factor with all the stack traffic
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LS[0], LS.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &LS[0], LS.size());
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size());
+ return Chain;
}
-static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
- SDValue Copy = DAG.getCopyToReg(Op.getOperand(0), dl, Alpha::R26,
- DAG.getNode(AlphaISD::GlobalRetAddr,
- DebugLoc::getUnknownLoc(),
- MVT::i64),
- SDValue());
- switch (Op.getNumOperands()) {
+SDValue
+AlphaTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
+ SDValue Copy = DAG.getCopyToReg(Chain, dl, Alpha::R26,
+ DAG.getNode(AlphaISD::GlobalRetAddr,
+ DebugLoc::getUnknownLoc(),
+ MVT::i64),
+ SDValue());
+ switch (Outs.size()) {
default:
- assert(0 && "Do not know how to return this many arguments!");
- abort();
- case 1:
+ llvm_unreachable("Do not know how to return this many arguments!");
+ case 0:
break;
//return SDValue(); // ret void is legal
- case 3: {
- MVT ArgVT = Op.getOperand(1).getValueType();
+ case 1: {
+ EVT ArgVT = Outs[0].Val.getValueType();
unsigned ArgReg;
if (ArgVT.isInteger())
ArgReg = Alpha::R0;
@@ -326,14 +495,14 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
assert(ArgVT.isFloatingPoint());
ArgReg = Alpha::F0;
}
- Copy = DAG.getCopyToReg(Copy, dl, ArgReg,
- Op.getOperand(1), Copy.getValue(1));
+ Copy = DAG.getCopyToReg(Copy, dl, ArgReg,
+ Outs[0].Val, Copy.getValue(1));
if (DAG.getMachineFunction().getRegInfo().liveout_empty())
DAG.getMachineFunction().getRegInfo().addLiveOut(ArgReg);
break;
}
- case 5: {
- MVT ArgVT = Op.getOperand(1).getValueType();
+ case 2: {
+ EVT ArgVT = Outs[0].Val.getValueType();
unsigned ArgReg1, ArgReg2;
if (ArgVT.isInteger()) {
ArgReg1 = Alpha::R0;
@@ -343,104 +512,25 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
ArgReg1 = Alpha::F0;
ArgReg2 = Alpha::F1;
}
- Copy = DAG.getCopyToReg(Copy, dl, ArgReg1,
- Op.getOperand(1), Copy.getValue(1));
- if (std::find(DAG.getMachineFunction().getRegInfo().liveout_begin(),
+ Copy = DAG.getCopyToReg(Copy, dl, ArgReg1,
+ Outs[0].Val, Copy.getValue(1));
+ if (std::find(DAG.getMachineFunction().getRegInfo().liveout_begin(),
DAG.getMachineFunction().getRegInfo().liveout_end(), ArgReg1)
== DAG.getMachineFunction().getRegInfo().liveout_end())
DAG.getMachineFunction().getRegInfo().addLiveOut(ArgReg1);
- Copy = DAG.getCopyToReg(Copy, dl, ArgReg2,
- Op.getOperand(3), Copy.getValue(1));
- if (std::find(DAG.getMachineFunction().getRegInfo().liveout_begin(),
+ Copy = DAG.getCopyToReg(Copy, dl, ArgReg2,
+ Outs[1].Val, Copy.getValue(1));
+ if (std::find(DAG.getMachineFunction().getRegInfo().liveout_begin(),
DAG.getMachineFunction().getRegInfo().liveout_end(), ArgReg2)
== DAG.getMachineFunction().getRegInfo().liveout_end())
DAG.getMachineFunction().getRegInfo().addLiveOut(ArgReg2);
break;
}
}
- return DAG.getNode(AlphaISD::RET_FLAG, dl,
+ return DAG.getNode(AlphaISD::RET_FLAG, dl,
MVT::Other, Copy, Copy.getValue(1));
}
-std::pair<SDValue, SDValue>
-AlphaTargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
- bool RetSExt, bool RetZExt, bool isVarArg,
- bool isInreg, unsigned NumFixedArgs,
- unsigned CallingConv,
- bool isTailCall, SDValue Callee,
- ArgListTy &Args, SelectionDAG &DAG,
- DebugLoc dl) {
- int NumBytes = 0;
- if (Args.size() > 6)
- NumBytes = (Args.size() - 6) * 8;
-
- Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
- std::vector<SDValue> args_to_use;
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- {
- switch (getValueType(Args[i].Ty).getSimpleVT()) {
- default: assert(0 && "Unexpected ValueType for argument!");
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- // Promote the integer to 64 bits. If the input type is signed use a
- // sign extend, otherwise use a zero extend.
- if (Args[i].isSExt)
- Args[i].Node = DAG.getNode(ISD::SIGN_EXTEND, dl,
- MVT::i64, Args[i].Node);
- else if (Args[i].isZExt)
- Args[i].Node = DAG.getNode(ISD::ZERO_EXTEND, dl,
- MVT::i64, Args[i].Node);
- else
- Args[i].Node = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, Args[i].Node);
- break;
- case MVT::i64:
- case MVT::f64:
- case MVT::f32:
- break;
- }
- args_to_use.push_back(Args[i].Node);
- }
-
- std::vector<MVT> RetVals;
- MVT RetTyVT = getValueType(RetTy);
- MVT ActualRetTyVT = RetTyVT;
- if (RetTyVT.getSimpleVT() >= MVT::i1 && RetTyVT.getSimpleVT() <= MVT::i32)
- ActualRetTyVT = MVT::i64;
-
- if (RetTyVT != MVT::isVoid)
- RetVals.push_back(ActualRetTyVT);
- RetVals.push_back(MVT::Other);
-
- std::vector<SDValue> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
- Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
- SDValue TheCall = DAG.getNode(AlphaISD::CALL, dl,
- RetVals, &Ops[0], Ops.size());
- Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
- Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(0, true), SDValue());
- SDValue RetVal = TheCall;
-
- if (RetTyVT != ActualRetTyVT) {
- ISD::NodeType AssertKind = ISD::DELETED_NODE;
- if (RetSExt)
- AssertKind = ISD::AssertSext;
- else if (RetZExt)
- AssertKind = ISD::AssertZext;
-
- if (AssertKind != ISD::DELETED_NODE)
- RetVal = DAG.getNode(AssertKind, dl, MVT::i64, RetVal,
- DAG.getValueType(RetTyVT));
-
- RetVal = DAG.getNode(ISD::TRUNCATE, dl, RetTyVT, RetVal);
- }
-
- return std::make_pair(RetVal, Chain);
-}
-
void AlphaTargetLowering::LowerVAARG(SDNode *N, SDValue &Chain,
SDValue &DataPtr, SelectionDAG &DAG) {
Chain = N->getOperand(0);
@@ -475,12 +565,7 @@ void AlphaTargetLowering::LowerVAARG(SDNode *N, SDValue &Chain,
SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
switch (Op.getOpcode()) {
- default: assert(0 && "Wasn't expecting to be able to lower this!");
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
- VarArgsBase,
- VarArgsOffset);
-
- case ISD::RET: return LowerRET(Op,DAG);
+ default: llvm_unreachable("Wasn't expecting to be able to lower this!");
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: {
@@ -488,11 +573,40 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (IntNo) {
default: break; // Don't custom lower most intrinsics.
case Intrinsic::alpha_umulh:
- return DAG.getNode(ISD::MULHU, dl, MVT::i64,
+ return DAG.getNode(ISD::MULHU, dl, MVT::i64,
Op.getOperand(1), Op.getOperand(2));
}
}
+ case ISD::SRL_PARTS: {
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue bm = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(64, MVT::i64), ShAmt);
+ SDValue BMCC = DAG.getSetCC(dl, MVT::i64, bm,
+ DAG.getConstant(0, MVT::i64), ISD::SETLE);
+ // if 64 - shAmt <= 0
+ SDValue Hi_Neg = DAG.getConstant(0, MVT::i64);
+ SDValue ShAmt_Neg = DAG.getNode(ISD::SUB, dl, MVT::i64,
+ DAG.getConstant(0, MVT::i64), bm);
+ SDValue Lo_Neg = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpHi, ShAmt_Neg);
+ // else
+ SDValue carries = DAG.getNode(ISD::SHL, dl, MVT::i64, ShOpHi, bm);
+ SDValue Hi_Pos = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpHi, ShAmt);
+ SDValue Lo_Pos = DAG.getNode(ISD::SRL, dl, MVT::i64, ShOpLo, ShAmt);
+ Lo_Pos = DAG.getNode(ISD::OR, dl, MVT::i64, Lo_Pos, carries);
+ // Merge
+ SDValue Hi = DAG.getNode(ISD::SELECT, dl, MVT::i64, BMCC, Hi_Neg, Hi_Pos);
+ SDValue Lo = DAG.getNode(ISD::SELECT, dl, MVT::i64, BMCC, Lo_Neg, Lo_Pos);
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+ }
+ // case ISD::SRA_PARTS:
+
+ // case ISD::SHL_PARTS:
+
+
case ISD::SINT_TO_FP: {
assert(Op.getOperand(0).getValueType() == MVT::i64 &&
"Unhandled SINT_TO_FP type in custom expander!");
@@ -509,7 +623,7 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
if (!isDouble) //Promote
src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, src);
-
+
src = DAG.getNode(AlphaISD::CVTTQ_, dl, MVT::f64, src);
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, src);
@@ -519,14 +633,14 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
Constant *C = CP->getConstVal();
SDValue CPI = DAG.getTargetConstantPool(C, MVT::i64, CP->getAlignment());
// FIXME there isn't really any debug info here
-
+
SDValue Hi = DAG.getNode(AlphaISD::GPRelHi, dl, MVT::i64, CPI,
DAG.getGLOBAL_OFFSET_TABLE(MVT::i64));
SDValue Lo = DAG.getNode(AlphaISD::GPRelLo, dl, MVT::i64, CPI, Hi);
return Lo;
}
case ISD::GlobalTLSAddress:
- assert(0 && "TLS not implemented for Alpha.");
+ llvm_unreachable("TLS not implemented for Alpha.");
case ISD::GlobalAddress: {
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
GlobalValue *GV = GSDN->getGlobal();
@@ -540,11 +654,11 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
SDValue Lo = DAG.getNode(AlphaISD::GPRelLo, dl, MVT::i64, GA, Hi);
return Lo;
} else
- return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64, GA,
+ return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64, GA,
DAG.getGLOBAL_OFFSET_TABLE(MVT::i64));
}
case ISD::ExternalSymbol: {
- return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64,
+ return DAG.getNode(AlphaISD::RelLit, dl, MVT::i64,
DAG.getTargetExternalSymbol(cast<ExternalSymbolSDNode>(Op)
->getSymbol(), MVT::i64),
DAG.getGLOBAL_OFFSET_TABLE(MVT::i64));
@@ -554,7 +668,7 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::SREM:
//Expand only on constant case
if (Op.getOperand(1).getOpcode() == ISD::Constant) {
- MVT VT = Op.getNode()->getValueType(0);
+ EVT VT = Op.getNode()->getValueType(0);
SDValue Tmp1 = Op.getNode()->getOpcode() == ISD::UREM ?
BuildUDIV(Op.getNode(), DAG, NULL) :
BuildSDIV(Op.getNode(), DAG, NULL);
@@ -567,7 +681,7 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::UDIV:
if (Op.getValueType().isInteger()) {
if (Op.getOperand(1).getOpcode() == ISD::Constant)
- return Op.getOpcode() == ISD::SDIV ? BuildSDIV(Op.getNode(), DAG, NULL)
+ return Op.getOpcode() == ISD::SDIV ? BuildSDIV(Op.getNode(), DAG, NULL)
: BuildUDIV(Op.getNode(), DAG, NULL);
const char* opstr = 0;
switch (Op.getOpcode()) {
@@ -601,12 +715,12 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
SDValue SrcP = Op.getOperand(2);
const Value *DestS = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcS = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
-
+
SDValue Val = DAG.getLoad(getPointerTy(), dl, Chain, SrcP, SrcS, 0);
SDValue Result = DAG.getStore(Val.getValue(1), dl, Val, DestP, DestS, 0);
- SDValue NP = DAG.getNode(ISD::ADD, dl, MVT::i64, SrcP,
+ SDValue NP = DAG.getNode(ISD::ADD, dl, MVT::i64, SrcP,
DAG.getConstant(8, MVT::i64));
- Val = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Result,
+ Val = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Result,
NP, NULL,0, MVT::i32);
SDValue NPD = DAG.getNode(ISD::ADD, dl, MVT::i64, DestP,
DAG.getConstant(8, MVT::i64));
@@ -616,7 +730,7 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
SDValue VAListP = Op.getOperand(1);
const Value *VAListS = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
-
+
// vastart stores the address of the VarArgsBase and VarArgsOffset
SDValue FR = DAG.getFrameIndex(VarArgsBase, MVT::i64);
SDValue S1 = DAG.getStore(Chain, dl, FR, VAListP, VAListS, 0);
@@ -625,13 +739,13 @@ SDValue AlphaTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
return DAG.getTruncStore(S1, dl, DAG.getConstant(VarArgsOffset, MVT::i64),
SA2, NULL, 0, MVT::i32);
}
- case ISD::RETURNADDR:
+ case ISD::RETURNADDR:
return DAG.getNode(AlphaISD::GlobalRetAddr, DebugLoc::getUnknownLoc(),
MVT::i64);
//FIXME: implement
case ISD::FRAMEADDR: break;
}
-
+
return SDValue();
}
@@ -655,7 +769,7 @@ void AlphaTargetLowering::ReplaceNodeResults(SDNode *N,
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
-AlphaTargetLowering::ConstraintType
+AlphaTargetLowering::ConstraintType
AlphaTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
@@ -670,37 +784,37 @@ AlphaTargetLowering::getConstraintType(const std::string &Constraint) const {
std::vector<unsigned> AlphaTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break; // Unknown constriant letter
- case 'f':
+ case 'f':
return make_vector<unsigned>(Alpha::F0 , Alpha::F1 , Alpha::F2 ,
Alpha::F3 , Alpha::F4 , Alpha::F5 ,
- Alpha::F6 , Alpha::F7 , Alpha::F8 ,
- Alpha::F9 , Alpha::F10, Alpha::F11,
- Alpha::F12, Alpha::F13, Alpha::F14,
- Alpha::F15, Alpha::F16, Alpha::F17,
- Alpha::F18, Alpha::F19, Alpha::F20,
- Alpha::F21, Alpha::F22, Alpha::F23,
- Alpha::F24, Alpha::F25, Alpha::F26,
- Alpha::F27, Alpha::F28, Alpha::F29,
+ Alpha::F6 , Alpha::F7 , Alpha::F8 ,
+ Alpha::F9 , Alpha::F10, Alpha::F11,
+ Alpha::F12, Alpha::F13, Alpha::F14,
+ Alpha::F15, Alpha::F16, Alpha::F17,
+ Alpha::F18, Alpha::F19, Alpha::F20,
+ Alpha::F21, Alpha::F22, Alpha::F23,
+ Alpha::F24, Alpha::F25, Alpha::F26,
+ Alpha::F27, Alpha::F28, Alpha::F29,
Alpha::F30, Alpha::F31, 0);
- case 'r':
- return make_vector<unsigned>(Alpha::R0 , Alpha::R1 , Alpha::R2 ,
- Alpha::R3 , Alpha::R4 , Alpha::R5 ,
- Alpha::R6 , Alpha::R7 , Alpha::R8 ,
- Alpha::R9 , Alpha::R10, Alpha::R11,
- Alpha::R12, Alpha::R13, Alpha::R14,
- Alpha::R15, Alpha::R16, Alpha::R17,
- Alpha::R18, Alpha::R19, Alpha::R20,
- Alpha::R21, Alpha::R22, Alpha::R23,
- Alpha::R24, Alpha::R25, Alpha::R26,
- Alpha::R27, Alpha::R28, Alpha::R29,
+ case 'r':
+ return make_vector<unsigned>(Alpha::R0 , Alpha::R1 , Alpha::R2 ,
+ Alpha::R3 , Alpha::R4 , Alpha::R5 ,
+ Alpha::R6 , Alpha::R7 , Alpha::R8 ,
+ Alpha::R9 , Alpha::R10, Alpha::R11,
+ Alpha::R12, Alpha::R13, Alpha::R14,
+ Alpha::R15, Alpha::R16, Alpha::R17,
+ Alpha::R18, Alpha::R19, Alpha::R20,
+ Alpha::R21, Alpha::R22, Alpha::R23,
+ Alpha::R24, Alpha::R25, Alpha::R26,
+ Alpha::R27, Alpha::R28, Alpha::R29,
Alpha::R30, Alpha::R31, 0);
}
}
-
+
return std::vector<unsigned>();
}
//===----------------------------------------------------------------------===//
@@ -709,7 +823,8 @@ getRegClassForInlineAsmConstraint(const std::string &Constraint,
MachineBasicBlock *
AlphaTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
assert((MI->getOpcode() == Alpha::CAS32 ||
MI->getOpcode() == Alpha::CAS64 ||
@@ -719,10 +834,10 @@ AlphaTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MI->getOpcode() == Alpha::SWAP64) &&
"Unexpected instr type to insert");
- bool is32 = MI->getOpcode() == Alpha::CAS32 ||
+ bool is32 = MI->getOpcode() == Alpha::CAS32 ||
MI->getOpcode() == Alpha::LAS32 ||
MI->getOpcode() == Alpha::SWAP32;
-
+
//Load locked store conditional for atomic ops take on the same form
//start:
//ll
@@ -734,30 +849,35 @@ AlphaTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
DebugLoc dl = MI->getDebugLoc();
MachineFunction::iterator It = BB;
++It;
-
+
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *llscMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ // Inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I)
+ EM->insert(std::make_pair(*I, sinkMBB));
+
sinkMBB->transferSuccessors(thisMBB);
F->insert(It, llscMBB);
F->insert(It, sinkMBB);
BuildMI(thisMBB, dl, TII->get(Alpha::BR)).addMBB(llscMBB);
-
+
unsigned reg_res = MI->getOperand(0).getReg(),
reg_ptr = MI->getOperand(1).getReg(),
reg_v2 = MI->getOperand(2).getReg(),
reg_store = F->getRegInfo().createVirtualRegister(&Alpha::GPRCRegClass);
- BuildMI(llscMBB, dl, TII->get(is32 ? Alpha::LDL_L : Alpha::LDQ_L),
+ BuildMI(llscMBB, dl, TII->get(is32 ? Alpha::LDL_L : Alpha::LDQ_L),
reg_res).addImm(0).addReg(reg_ptr);
switch (MI->getOpcode()) {
case Alpha::CAS32:
case Alpha::CAS64: {
- unsigned reg_cmp
+ unsigned reg_cmp
= F->getRegInfo().createVirtualRegister(&Alpha::GPRCRegClass);
BuildMI(llscMBB, dl, TII->get(Alpha::CMPEQ), reg_cmp)
.addReg(reg_v2).addReg(reg_res);
diff --git a/lib/Target/Alpha/AlphaISelLowering.h b/lib/Target/Alpha/AlphaISelLowering.h
index 4925367..b580c9d 100644
--- a/lib/Target/Alpha/AlphaISelLowering.h
+++ b/lib/Target/Alpha/AlphaISelLowering.h
@@ -62,12 +62,11 @@ namespace llvm {
class AlphaTargetLowering : public TargetLowering {
int VarArgsOffset; // What is the offset to the first vaarg
int VarArgsBase; // What is the base FrameIndex
- bool useITOF;
public:
explicit AlphaTargetLowering(TargetMachine &TM);
/// getSetCCResultType - Get the SETCC result ValueType
- virtual MVT getSetCCResultType(MVT VT) const;
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
@@ -82,24 +81,21 @@ namespace llvm {
// Friendly names for dumps
const char *getTargetNodeName(unsigned Opcode) const;
- /// LowerCallTo - This hook lowers an abstract call to a function into an
- /// actual call.
- virtual std::pair<SDValue, SDValue>
- LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
- bool isVarArg, bool isInreg, unsigned NumFixedArgs, unsigned CC,
- bool isTailCall, SDValue Callee, ArgListTy &Args,
- SelectionDAG &DAG, DebugLoc dl);
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
ConstraintType getConstraintType(const std::string &Constraint) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
-
- bool hasITOF() { return useITOF; }
+ EVT VT) const;
MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const;
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
@@ -111,6 +107,26 @@ namespace llvm {
void LowerVAARG(SDNode *N, SDValue &Chain, SDValue &DataPtr,
SelectionDAG &DAG);
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
};
}
diff --git a/lib/Target/Alpha/AlphaInstrInfo.cpp b/lib/Target/Alpha/AlphaInstrInfo.cpp
index 76a594f..86173ff 100644
--- a/lib/Target/Alpha/AlphaInstrInfo.cpp
+++ b/lib/Target/Alpha/AlphaInstrInfo.cpp
@@ -19,6 +19,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
AlphaInstrInfo::AlphaInstrInfo()
@@ -200,29 +201,7 @@ AlphaInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FrameIdx).addReg(Alpha::F31);
else
- abort();
-}
-
-void AlphaInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- unsigned Opc = 0;
- if (RC == Alpha::F4RCRegisterClass)
- Opc = Alpha::STS;
- else if (RC == Alpha::F8RCRegisterClass)
- Opc = Alpha::STT;
- else if (RC == Alpha::GPRCRegisterClass)
- Opc = Alpha::STQ;
- else
- abort();
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB =
- BuildMI(MF, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
+ llvm_unreachable("Unhandled register class");
}
void
@@ -245,28 +224,7 @@ AlphaInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
BuildMI(MBB, MI, DL, get(Alpha::LDQ), DestReg)
.addFrameIndex(FrameIdx).addReg(Alpha::F31);
else
- abort();
-}
-
-void AlphaInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- unsigned Opc = 0;
- if (RC == Alpha::F4RCRegisterClass)
- Opc = Alpha::LDS;
- else if (RC == Alpha::F8RCRegisterClass)
- Opc = Alpha::LDT;
- else if (RC == Alpha::GPRCRegisterClass)
- Opc = Alpha::LDQ;
- else
- abort();
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB =
- BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
+ llvm_unreachable("Unhandled register class");
}
MachineInstr *AlphaInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
@@ -331,7 +289,7 @@ static unsigned AlphaRevCondCode(unsigned Opcode) {
case Alpha::FBLE: return Alpha::FBGT;
case Alpha::FBLT: return Alpha::FBGE;
default:
- assert(0 && "Unknown opcode");
+ llvm_unreachable("Unknown opcode");
}
return 0; // Not reached
}
diff --git a/lib/Target/Alpha/AlphaInstrInfo.h b/lib/Target/Alpha/AlphaInstrInfo.h
index ea09885..274f452 100644
--- a/lib/Target/Alpha/AlphaInstrInfo.h
+++ b/lib/Target/Alpha/AlphaInstrInfo.h
@@ -54,20 +54,10 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
-
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
diff --git a/lib/Target/Alpha/AlphaInstrInfo.td b/lib/Target/Alpha/AlphaInstrInfo.td
index e73bdf9..3b98206 100644
--- a/lib/Target/Alpha/AlphaInstrInfo.td
+++ b/lib/Target/Alpha/AlphaInstrInfo.td
@@ -702,7 +702,7 @@ def FCMOVNET : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RTRUE,$RDEST", [], s_fcmov>;
//misc FP selects
//Select double
-
+
def : Pat<(select (seteq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
(FCMOVNET F8RC:$sf, F8RC:$st, (CMPTEQ F8RC:$RA, F8RC:$RB))>;
def : Pat<(select (setoeq F8RC:$RA, F8RC:$RB), F8RC:$st, F8RC:$sf),
@@ -791,12 +791,14 @@ def : Pat<(select (setule F8RC:$RA, F8RC:$RB), F4RC:$st, F4RC:$sf),
let OutOperandList = (ops GPRC:$RC), InOperandList = (ops F4RC:$RA), Fb = 31 in
-def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",[], s_ftoi>; //Floating to integer move, S_floating
+def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",
+ [(set GPRC:$RC, (bitconvert F4RC:$RA))], s_ftoi>; //Floating to integer move, S_floating
let OutOperandList = (ops GPRC:$RC), InOperandList = (ops F8RC:$RA), Fb = 31 in
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC",
[(set GPRC:$RC, (bitconvert F8RC:$RA))], s_ftoi>; //Floating to integer move
let OutOperandList = (ops F4RC:$RC), InOperandList = (ops GPRC:$RA), Fb = 31 in
-def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",[], s_itof>; //Integer to floating move, S_floating
+def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",
+ [(set F4RC:$RC, (bitconvert GPRC:$RA))], s_itof>; //Integer to floating move, S_floating
let OutOperandList = (ops F8RC:$RC), InOperandList = (ops GPRC:$RA), Fb = 31 in
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC",
[(set F8RC:$RC, (bitconvert GPRC:$RA))], s_itof>; //Integer to floating move
@@ -818,6 +820,10 @@ let OutOperandList = (ops F4RC:$RC), InOperandList = (ops F8RC:$RB), Fa = 31 in
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC",
[(set F4RC:$RC, (fround F8RC:$RB))], s_fadd>;
+def : Pat<(select GPRC:$RC, F8RC:$st, F8RC:$sf),
+ (f64 (FCMOVEQT F8RC:$st, F8RC:$sf, (ITOFT GPRC:$RC)))>;
+def : Pat<(select GPRC:$RC, F4RC:$st, F4RC:$sf),
+ (f32 (FCMOVEQS F4RC:$st, F4RC:$sf, (ITOFT GPRC:$RC)))>;
/////////////////////////////////////////////////////////
//Branching
diff --git a/lib/Target/Alpha/AlphaJITInfo.cpp b/lib/Target/Alpha/AlphaJITInfo.cpp
index ba7478e..d328135 100644
--- a/lib/Target/Alpha/AlphaJITInfo.cpp
+++ b/lib/Target/Alpha/AlphaJITInfo.cpp
@@ -16,8 +16,9 @@
#include "AlphaRelocations.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/Config/alloca.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include <cstdlib>
using namespace llvm;
@@ -57,12 +58,12 @@ static void EmitBranchToAt(void *At, void *To) {
AtI[0] = BUILD_OR(0, 27, 27);
- DOUT << "Stub targeting " << To << "\n";
+ DEBUG(errs() << "Stub targeting " << To << "\n");
for (int x = 1; x <= 8; ++x) {
AtI[2*x - 1] = BUILD_SLLi(27,27,8);
unsigned d = (Fn >> (64 - 8 * x)) & 0x00FF;
- //DOUT << "outputing " << hex << d << dec << "\n";
+ //DEBUG(errs() << "outputing " << hex << d << dec << "\n");
AtI[2*x] = BUILD_ORi(27, 27, d);
}
AtI[17] = BUILD_JMP(31,27,0); //jump, preserving ra, and setting pv
@@ -71,7 +72,7 @@ static void EmitBranchToAt(void *At, void *To) {
void AlphaJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
//FIXME
- assert(0);
+ llvm_unreachable(0);
}
static TargetJITInfo::JITCompilerFn JITCompilerFunction;
@@ -86,12 +87,12 @@ extern "C" {
//rewrite the stub to an unconditional branch
if (((unsigned*)CameFromStub)[18] == 0x00FFFFFF) {
- DOUT << "Came from a stub, rewriting\n";
+ DEBUG(errs() << "Came from a stub, rewriting\n");
EmitBranchToAt(CameFromStub, Target);
} else {
- DOUT << "confused, didn't come from stub at " << CameFromStub
- << " old jump vector " << oldpv
- << " new jump vector " << Target << "\n";
+ DEBUG(errs() << "confused, didn't come from stub at " << CameFromStub
+ << " old jump vector " << oldpv
+ << " new jump vector " << Target << "\n");
}
//Change pv to new Target
@@ -184,8 +185,7 @@ extern "C" {
);
#else
void AlphaCompilationCallback() {
- cerr << "Cannot call AlphaCompilationCallback() on a non-Alpha arch!\n";
- abort();
+ llvm_unreachable("Cannot call AlphaCompilationCallback() on a non-Alpha arch!");
}
#endif
}
@@ -199,7 +199,7 @@ void *AlphaJITInfo::emitFunctionStub(const Function* F, void *Fn,
for (int x = 0; x < 19; ++ x)
JCE.emitWordLE(0);
EmitBranchToAt(Addr, Fn);
- DOUT << "Emitting Stub to " << Fn << " at [" << Addr << "]\n";
+ DEBUG(errs() << "Emitting Stub to " << Fn << " at [" << Addr << "]\n");
return JCE.finishGVStub(F);
}
@@ -241,34 +241,34 @@ void AlphaJITInfo::relocate(void *Function, MachineRelocation *MR,
long idx = 0;
bool doCommon = true;
switch ((Alpha::RelocationType)MR->getRelocationType()) {
- default: assert(0 && "Unknown relocation type!");
+ default: llvm_unreachable("Unknown relocation type!");
case Alpha::reloc_literal:
//This is a LDQl
idx = MR->getGOTIndex();
- DOUT << "Literal relocation to slot " << idx;
+ DEBUG(errs() << "Literal relocation to slot " << idx);
idx = (idx - GOToffset) * 8;
- DOUT << " offset " << idx << "\n";
+ DEBUG(errs() << " offset " << idx << "\n");
break;
case Alpha::reloc_gprellow:
idx = (unsigned char*)MR->getResultPointer() - &GOTBase[GOToffset * 8];
idx = getLower16(idx);
- DOUT << "gprellow relocation offset " << idx << "\n";
- DOUT << " Pointer is " << (void*)MR->getResultPointer()
- << " GOT is " << (void*)&GOTBase[GOToffset * 8] << "\n";
+ DEBUG(errs() << "gprellow relocation offset " << idx << "\n");
+ DEBUG(errs() << " Pointer is " << (void*)MR->getResultPointer()
+ << " GOT is " << (void*)&GOTBase[GOToffset * 8] << "\n");
break;
case Alpha::reloc_gprelhigh:
idx = (unsigned char*)MR->getResultPointer() - &GOTBase[GOToffset * 8];
idx = getUpper16(idx);
- DOUT << "gprelhigh relocation offset " << idx << "\n";
- DOUT << " Pointer is " << (void*)MR->getResultPointer()
- << " GOT is " << (void*)&GOTBase[GOToffset * 8] << "\n";
+ DEBUG(errs() << "gprelhigh relocation offset " << idx << "\n");
+ DEBUG(errs() << " Pointer is " << (void*)MR->getResultPointer()
+ << " GOT is " << (void*)&GOTBase[GOToffset * 8] << "\n");
break;
case Alpha::reloc_gpdist:
switch (*RelocPos >> 26) {
case 0x09: //LDAH
idx = &GOTBase[GOToffset * 8] - (unsigned char*)RelocPos;
idx = getUpper16(idx);
- DOUT << "LDAH: " << idx << "\n";
+ DEBUG(errs() << "LDAH: " << idx << "\n");
//add the relocation to the map
gpdistmap[std::make_pair(Function, MR->getConstantVal())] = RelocPos;
break;
@@ -278,10 +278,10 @@ void AlphaJITInfo::relocate(void *Function, MachineRelocation *MR,
idx = &GOTBase[GOToffset * 8] -
(unsigned char*)gpdistmap[std::make_pair(Function, MR->getConstantVal())];
idx = getLower16(idx);
- DOUT << "LDA: " << idx << "\n";
+ DEBUG(errs() << "LDA: " << idx << "\n");
break;
default:
- assert(0 && "Cannot handle gpdist yet");
+ llvm_unreachable("Cannot handle gpdist yet");
}
break;
case Alpha::reloc_bsr: {
diff --git a/lib/Target/Alpha/AlphaMCAsmInfo.cpp b/lib/Target/Alpha/AlphaMCAsmInfo.cpp
new file mode 100644
index 0000000..b652a53
--- /dev/null
+++ b/lib/Target/Alpha/AlphaMCAsmInfo.cpp
@@ -0,0 +1,22 @@
+//===-- AlphaMCAsmInfo.cpp - Alpha asm properties ---------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the AlphaMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AlphaMCAsmInfo.h"
+using namespace llvm;
+
+AlphaMCAsmInfo::AlphaMCAsmInfo(const Target &T, const StringRef &TT) {
+ AlignmentIsInBytes = false;
+ PrivateGlobalPrefix = "$";
+ PICJumpTableDirective = ".gprel32";
+ WeakRefDirective = "\t.weak\t";
+}
diff --git a/lib/Target/Alpha/AlphaMCAsmInfo.h b/lib/Target/Alpha/AlphaMCAsmInfo.h
new file mode 100644
index 0000000..c27065d
--- /dev/null
+++ b/lib/Target/Alpha/AlphaMCAsmInfo.h
@@ -0,0 +1,29 @@
+//=====-- AlphaMCAsmInfo.h - Alpha asm properties -------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the AlphaMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ALPHATARGETASMINFO_H
+#define ALPHATARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ struct AlphaMCAsmInfo : public MCAsmInfo {
+ explicit AlphaMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/Alpha/AlphaRegisterInfo.cpp b/lib/Target/Alpha/AlphaRegisterInfo.cpp
index 0ff53c7..98e9730 100644
--- a/lib/Target/Alpha/AlphaRegisterInfo.cpp
+++ b/lib/Target/Alpha/AlphaRegisterInfo.cpp
@@ -28,6 +28,8 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <cstdlib>
@@ -149,8 +151,10 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
//variable locals
//<- SP
-void AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const {
+unsigned
+AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
@@ -172,16 +176,16 @@ void AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
// Now add the frame object offset to the offset from the virtual frame index.
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
- DOUT << "FI: " << FrameIndex << " Offset: " << Offset << "\n";
+ DEBUG(errs() << "FI: " << FrameIndex << " Offset: " << Offset << "\n");
Offset += MF.getFrameInfo()->getStackSize();
- DOUT << "Corrected Offset " << Offset
- << " for stack size: " << MF.getFrameInfo()->getStackSize() << "\n";
+ DEBUG(errs() << "Corrected Offset " << Offset
+ << " for stack size: " << MF.getFrameInfo()->getStackSize() << "\n");
if (Offset > IMM_HIGH || Offset < IMM_LOW) {
- DOUT << "Unconditionally using R28 for evil purposes Offset: "
- << Offset << "\n";
+ DEBUG(errs() << "Unconditionally using R28 for evil purposes Offset: "
+ << Offset << "\n");
//so in this case, we need to use a temporary register, and move the
//original inst off the SP/FP
//fix up the old:
@@ -195,6 +199,7 @@ void AlphaRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
} else {
MI.getOperand(i).ChangeToImmediate(Offset);
}
+ return 0;
}
@@ -244,8 +249,10 @@ void AlphaRegisterInfo::emitPrologue(MachineFunction &MF) const {
BuildMI(MBB, MBBI, dl, TII.get(Alpha::LDA), Alpha::R30)
.addImm(getLower16(NumBytes)).addReg(Alpha::R30);
} else {
- cerr << "Too big a stack frame at " << NumBytes << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Too big a stack frame at " + NumBytes;
+ llvm_report_error(Msg.str());
}
//now if we need to, save the old FP and set the new
@@ -294,14 +301,16 @@ void AlphaRegisterInfo::emitEpilogue(MachineFunction &MF,
BuildMI(MBB, MBBI, dl, TII.get(Alpha::LDA), Alpha::R30)
.addImm(getLower16(NumBytes)).addReg(Alpha::R30);
} else {
- cerr << "Too big a stack frame at " << NumBytes << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Too big a stack frame at " + NumBytes;
+ llvm_report_error(Msg.str());
}
}
}
unsigned AlphaRegisterInfo::getRARegister() const {
- assert(0 && "What is the return address register");
+ llvm_unreachable("What is the return address register");
return 0;
}
@@ -310,17 +319,17 @@ unsigned AlphaRegisterInfo::getFrameRegister(MachineFunction &MF) const {
}
unsigned AlphaRegisterInfo::getEHExceptionRegister() const {
- assert(0 && "What is the exception register");
+ llvm_unreachable("What is the exception register");
return 0;
}
unsigned AlphaRegisterInfo::getEHHandlerRegister() const {
- assert(0 && "What is the exception handler register");
+ llvm_unreachable("What is the exception handler register");
return 0;
}
int AlphaRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
- assert(0 && "What is the dwarf register number");
+ llvm_unreachable("What is the dwarf register number");
return -1;
}
diff --git a/lib/Target/Alpha/AlphaRegisterInfo.h b/lib/Target/Alpha/AlphaRegisterInfo.h
index 5012fe8..66f0898 100644
--- a/lib/Target/Alpha/AlphaRegisterInfo.h
+++ b/lib/Target/Alpha/AlphaRegisterInfo.h
@@ -41,8 +41,9 @@ struct AlphaRegisterInfo : public AlphaGenRegisterInfo {
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
//void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
diff --git a/lib/Target/Alpha/AlphaSubtarget.cpp b/lib/Target/Alpha/AlphaSubtarget.cpp
index d5a9365..bda7104 100644
--- a/lib/Target/Alpha/AlphaSubtarget.cpp
+++ b/lib/Target/Alpha/AlphaSubtarget.cpp
@@ -16,7 +16,7 @@
#include "AlphaGenSubtarget.inc"
using namespace llvm;
-AlphaSubtarget::AlphaSubtarget(const Module &M, const std::string &FS)
+AlphaSubtarget::AlphaSubtarget(const std::string &TT, const std::string &FS)
: HasCT(false) {
std::string CPU = "generic";
diff --git a/lib/Target/Alpha/AlphaSubtarget.h b/lib/Target/Alpha/AlphaSubtarget.h
index 0a944cb..f0eb93c 100644
--- a/lib/Target/Alpha/AlphaSubtarget.h
+++ b/lib/Target/Alpha/AlphaSubtarget.h
@@ -20,7 +20,6 @@
#include <string>
namespace llvm {
-class Module;
class AlphaSubtarget : public TargetSubtarget {
protected:
@@ -31,9 +30,9 @@ protected:
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- AlphaSubtarget(const Module &M, const std::string &FS);
+ AlphaSubtarget(const std::string &TT, const std::string &FS);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
diff --git a/lib/Target/Alpha/AlphaTargetMachine.cpp b/lib/Target/Alpha/AlphaTargetMachine.cpp
index 060089c..b8bc13b 100644
--- a/lib/Target/Alpha/AlphaTargetMachine.cpp
+++ b/lib/Target/Alpha/AlphaTargetMachine.cpp
@@ -12,60 +12,26 @@
#include "Alpha.h"
#include "AlphaJITInfo.h"
-#include "AlphaTargetAsmInfo.h"
+#include "AlphaMCAsmInfo.h"
#include "AlphaTargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
-#include "llvm/Support/raw_ostream.h"
-
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-// Register the targets
-static RegisterTarget<AlphaTargetMachine> X("alpha", "Alpha [experimental]");
-
-// No assembler printer by default
-AlphaTargetMachine::AsmPrinterCtorFn AlphaTargetMachine::AsmPrinterCtor = 0;
-
-// Force static initialization.
-extern "C" void LLVMInitializeAlphaTarget() { }
-
-const TargetAsmInfo *AlphaTargetMachine::createTargetAsmInfo() const {
- return new AlphaTargetAsmInfo(*this);
-}
-
-unsigned AlphaTargetMachine::getModuleMatchQuality(const Module &M) {
- // We strongly match "alpha*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 5 && TT[0] == 'a' && TT[1] == 'l' && TT[2] == 'p' &&
- TT[3] == 'h' && TT[4] == 'a')
- return 20;
- // If the target triple is something non-alpha, we don't match.
- if (!TT.empty()) return 0;
-
- if (M.getEndianness() == Module::LittleEndian &&
- M.getPointerSize() == Module::Pointer64)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
-
- return getJITMatchQuality()/2;
-}
-
-unsigned AlphaTargetMachine::getJITMatchQuality() {
-#ifdef __alpha
- return 10;
-#else
- return 0;
-#endif
+extern "C" void LLVMInitializeAlphaTarget() {
+ // Register the target.
+ RegisterTargetMachine<AlphaTargetMachine> X(TheAlphaTarget);
+ RegisterAsmInfo<AlphaMCAsmInfo> Y(TheAlphaTarget);
}
-AlphaTargetMachine::AlphaTargetMachine(const Module &M, const std::string &FS)
- : DataLayout("e-f128:128:128"),
+AlphaTargetMachine::AlphaTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ DataLayout("e-f128:128:128"),
FrameInfo(TargetFrameInfo::StackGrowsDown, 16, 0),
JITInfo(*this),
- Subtarget(M, FS),
+ Subtarget(TT, FS),
TLInfo(*this) {
setRelocationModel(Reloc::PIC_);
}
@@ -84,51 +50,40 @@ bool AlphaTargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Must run branch selection immediately preceding the asm printer
PM.add(createAlphaBranchSelectionPass());
- return false;
-}
-bool AlphaTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
PM.add(createAlphaLLRPPass(*this));
- // Output assembly language.
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
return false;
}
bool AlphaTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE) {
+ MachineCodeEmitter &MCE) {
PM.add(createAlphaCodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
return false;
}
bool AlphaTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE) {
+ JITCodeEmitter &JCE) {
PM.add(createAlphaJITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
+ return false;
+}
+bool AlphaTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ PM.add(createAlphaObjectCodeEmitterPass(*this, OCE));
return false;
}
bool AlphaTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
- return addCodeEmitter(PM, OptLevel, DumpAsm, MCE);
+ return addCodeEmitter(PM, OptLevel, MCE);
}
bool AlphaTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
- return addCodeEmitter(PM, OptLevel, DumpAsm, JCE);
+ return addCodeEmitter(PM, OptLevel, JCE);
+}
+bool AlphaTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ return addCodeEmitter(PM, OptLevel, OCE);
}
diff --git a/lib/Target/Alpha/AlphaTargetMachine.h b/lib/Target/Alpha/AlphaTargetMachine.h
index 26684c7..f03e938 100644
--- a/lib/Target/Alpha/AlphaTargetMachine.h
+++ b/lib/Target/Alpha/AlphaTargetMachine.h
@@ -34,18 +34,9 @@ class AlphaTargetMachine : public LLVMTargetMachine {
AlphaSubtarget Subtarget;
AlphaTargetLowering TLInfo;
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- TargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- AlphaTargetMachine(const Module &M, const std::string &FS);
+ AlphaTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
virtual const AlphaInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
@@ -61,31 +52,24 @@ public:
return &JITInfo;
}
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
-
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ MachineCodeEmitter &MCE);
+ virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
+ JITCodeEmitter &JCE);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE);
+ ObjectCodeEmitter &JCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE);
-
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
+ virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE);
};
} // end namespace llvm
diff --git a/lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp b/lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp
index 982ef5e..d8e8b79 100644
--- a/lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp
+++ b/lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp
@@ -17,16 +17,20 @@
#include "AlphaInstrInfo.h"
#include "AlphaTargetMachine.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -37,21 +41,22 @@ namespace {
/// Unique incrementer for label values for referencing Global values.
///
- explicit AlphaAsmPrinter(raw_ostream &o, TargetMachine &tm,
- const TargetAsmInfo *T, bool V)
+ explicit AlphaAsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
+ const MCAsmInfo *T, bool V)
: AsmPrinter(o, tm, T, V) {}
virtual const char *getPassName() const {
return "Alpha Assembly Printer";
}
- bool printInstruction(const MachineInstr *MI);
+ void printInstruction(const MachineInstr *MI);
+ static const char *getRegisterName(unsigned RegNo);
+
void printOp(const MachineOperand &MO, bool IsCallOp = false);
void printOperand(const MachineInstr *MI, int opNum);
- void printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets=true);
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void printBaseOffsetPair(const MachineInstr *MI, int i, bool brackets=true);
+ void PrintGlobalVariable(const GlobalVariable *GVar);
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- bool doFinalization(Module &M);
+ void EmitStartOfAsmFile(Module &M);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
@@ -62,17 +67,6 @@ namespace {
};
} // end of anonymous namespace
-/// createAlphaCodePrinterPass - Returns a pass that prints the Alpha
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form.
-///
-FunctionPass *llvm::createAlphaCodePrinterPass(raw_ostream &o,
- TargetMachine &tm,
- bool verbose) {
- return new AlphaAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
-}
-
#include "AlphaGenAsmWriter.inc"
void AlphaAsmPrinter::printOperand(const MachineInstr *MI, int opNum)
@@ -81,7 +75,7 @@ void AlphaAsmPrinter::printOperand(const MachineInstr *MI, int opNum)
if (MO.getType() == MachineOperand::MO_Register) {
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Not physreg??");
- O << TM.getRegisterInfo()->get(MO.getReg()).AsmName;
+ O << getRegisterName(MO.getReg());
} else if (MO.isImm()) {
O << MO.getImm();
assert(MO.getImm() < (1 << 30));
@@ -92,24 +86,21 @@ void AlphaAsmPrinter::printOperand(const MachineInstr *MI, int opNum)
void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) {
- const TargetRegisterInfo &RI = *TM.getRegisterInfo();
-
switch (MO.getType()) {
case MachineOperand::MO_Register:
- O << RI.get(MO.getReg()).AsmName;
+ O << getRegisterName(MO.getReg());
return;
case MachineOperand::MO_Immediate:
- cerr << "printOp() does not handle immediate values\n";
- abort();
+ llvm_unreachable("printOp() does not handle immediate values");
return;
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
<< MO.getIndex();
return;
@@ -117,14 +108,12 @@ void AlphaAsmPrinter::printOp(const MachineOperand &MO, bool IsCallOp) {
O << MO.getSymbolName();
return;
- case MachineOperand::MO_GlobalAddress: {
- GlobalValue *GV = MO.getGlobal();
- O << Mang->getValueName(GV);
+ case MachineOperand::MO_GlobalAddress:
+ O << Mang->getMangledName(MO.getGlobal());
return;
- }
case MachineOperand::MO_JumpTableIndex:
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
@@ -151,13 +140,14 @@ bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Print out labels for the function.
const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
EmitAlignment(MF.getAlignment(), F);
switch (F->getLinkage()) {
- default: assert(0 && "Unknown linkage type!");
+ default: llvm_unreachable("Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
case Function::PrivateLinkage:
+ case Function::LinkerPrivateLinkage:
break;
case Function::ExternalLinkage:
O << "\t.globl " << CurrentFnName << "\n";
@@ -166,7 +156,7 @@ bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
- O << TAI->getWeakRefDirective() << CurrentFnName << "\n";
+ O << MAI->getWeakRefDirective() << CurrentFnName << "\n";
break;
}
@@ -180,17 +170,19 @@ bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
++EmittedInsts;
- if (!printInstruction(II)) {
- assert(0 && "Unhandled instruction in asm writer!");
- abort();
- }
+ processDebugLoc(II, true);
+ printInstruction(II);
+
+ if (VerboseAsm && !II->getDebugLoc().isUnknown())
+ EmitComments(*II);
+ O << '\n';
+ processDebugLoc(II, false);
}
}
@@ -200,17 +192,15 @@ bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
return false;
}
-bool AlphaAsmPrinter::doInitialization(Module &M)
-{
- if(TM.getSubtarget<AlphaSubtarget>().hasCT())
+void AlphaAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (TM.getSubtarget<AlphaSubtarget>().hasCT())
O << "\t.arch ev6\n"; //This might need to be ev67, so leave this test here
else
O << "\t.arch ev6\n";
O << "\t.set noat\n";
- return AsmPrinter::doInitialization(M);
}
-void AlphaAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void AlphaAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer()) return; // External global require no code
@@ -219,15 +209,14 @@ void AlphaAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (EmitSpecialLLVMGlobal(GVar))
return;
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
unsigned Size = TD->getTypeAllocSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(GVar);
// 0: Switch to section
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
// 1: Check visibility
printVisibility(name, GVar->getVisibility());
@@ -239,23 +228,22 @@ void AlphaAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::CommonLinkage:
- O << TAI->getWeakRefDirective() << name << '\n';
+ O << MAI->getWeakRefDirective() << name << '\n';
break;
case GlobalValue::AppendingLinkage:
case GlobalValue::ExternalLinkage:
- O << TAI->getGlobalDirective() << name << "\n";
+ O << MAI->getGlobalDirective() << name << "\n";
break;
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
break;
default:
- assert(0 && "Unknown linkage type!");
- cerr << "Unknown linkage type!\n";
- abort();
+ llvm_unreachable("Unknown linkage type!");
}
// 3: Type, Size, Align
- if (TAI->hasDotTypeDotSizeDirective()) {
+ if (MAI->hasDotTypeDotSizeDirective()) {
O << "\t.type\t" << name << ", @object\n";
O << "\t.size\t" << name << ", " << Size << "\n";
}
@@ -268,14 +256,6 @@ void AlphaAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << '\n';
}
-bool AlphaAsmPrinter::doFinalization(Module &M) {
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
-
- return AsmPrinter::doFinalization(M);
-}
-
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool AlphaAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
@@ -298,12 +278,6 @@ bool AlphaAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
}
// Force static initialization.
-extern "C" void LLVMInitializeAlphaAsmPrinter() { }
-
-namespace {
- static struct Register {
- Register() {
- AlphaTargetMachine::registerAsmPrinter(createAlphaCodePrinterPass);
- }
- } Registrator;
+extern "C" void LLVMInitializeAlphaAsmPrinter() {
+ RegisterAsmPrinter<AlphaAsmPrinter> X(TheAlphaTarget);
}
diff --git a/lib/Target/Alpha/AsmPrinter/Makefile b/lib/Target/Alpha/AsmPrinter/Makefile
index c5b3e94..3c64a3c 100644
--- a/lib/Target/Alpha/AsmPrinter/Makefile
+++ b/lib/Target/Alpha/AsmPrinter/Makefile
@@ -1,4 +1,4 @@
-##===- lib/Target/Alpha/Makefile ---------------------------*- Makefile -*-===##
+##===- lib/Target/Alpha/AsmPrinter/Makefile ----------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
diff --git a/lib/Target/Alpha/CMakeLists.txt b/lib/Target/Alpha/CMakeLists.txt
index 2a382d5..b4f41ae 100644
--- a/lib/Target/Alpha/CMakeLists.txt
+++ b/lib/Target/Alpha/CMakeLists.txt
@@ -8,6 +8,7 @@ tablegen(AlphaGenInstrInfo.inc -gen-instr-desc)
tablegen(AlphaGenCodeEmitter.inc -gen-emitter)
tablegen(AlphaGenAsmWriter.inc -gen-asm-writer)
tablegen(AlphaGenDAGISel.inc -gen-dag-isel)
+tablegen(AlphaGenCallingConv.inc -gen-callingconv)
tablegen(AlphaGenSubtarget.inc -gen-subtarget)
add_llvm_target(AlphaCodeGen
@@ -18,9 +19,9 @@ add_llvm_target(AlphaCodeGen
AlphaISelLowering.cpp
AlphaJITInfo.cpp
AlphaLLRP.cpp
+ AlphaMCAsmInfo.cpp
AlphaRegisterInfo.cpp
AlphaSubtarget.cpp
- AlphaTargetAsmInfo.cpp
AlphaTargetMachine.cpp
)
diff --git a/lib/Target/Alpha/Makefile b/lib/Target/Alpha/Makefile
index d6c82c7..d2d7109 100644
--- a/lib/Target/Alpha/Makefile
+++ b/lib/Target/Alpha/Makefile
@@ -15,8 +15,8 @@ BUILT_SOURCES = AlphaGenRegisterInfo.h.inc AlphaGenRegisterNames.inc \
AlphaGenRegisterInfo.inc AlphaGenInstrNames.inc \
AlphaGenInstrInfo.inc AlphaGenCodeEmitter.inc \
AlphaGenAsmWriter.inc AlphaGenDAGISel.inc \
- AlphaGenSubtarget.inc
+ AlphaGenCallingConv.inc AlphaGenSubtarget.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Alpha/TargetInfo/AlphaTargetInfo.cpp b/lib/Target/Alpha/TargetInfo/AlphaTargetInfo.cpp
new file mode 100644
index 0000000..f7099b9
--- /dev/null
+++ b/lib/Target/Alpha/TargetInfo/AlphaTargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- AlphaTargetInfo.cpp - Alpha Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Alpha.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+llvm::Target llvm::TheAlphaTarget;
+
+extern "C" void LLVMInitializeAlphaTargetInfo() {
+ RegisterTarget<Triple::alpha, /*HasJIT=*/true>
+ X(TheAlphaTarget, "alpha", "Alpha [experimental]");
+}
diff --git a/lib/Target/Alpha/TargetInfo/CMakeLists.txt b/lib/Target/Alpha/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..2a7291b
--- /dev/null
+++ b/lib/Target/Alpha/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMAlphaInfo
+ AlphaTargetInfo.cpp
+ )
+
+add_dependencies(LLVMAlphaInfo AlphaCodeGenTable_gen)
diff --git a/lib/Target/Alpha/TargetInfo/Makefile b/lib/Target/Alpha/TargetInfo/Makefile
new file mode 100644
index 0000000..de01d7f
--- /dev/null
+++ b/lib/Target/Alpha/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/Alpha/TargetInfo/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMAlphaInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp b/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp
new file mode 100644
index 0000000..91fd5dd
--- /dev/null
+++ b/lib/Target/Blackfin/AsmPrinter/BlackfinAsmPrinter.cpp
@@ -0,0 +1,242 @@
+//===-- BlackfinAsmPrinter.cpp - Blackfin LLVM assembly writer ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to GAS-format BLACKFIN assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+#include "Blackfin.h"
+#include "BlackfinInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/FormattedStream.h"
+
+using namespace llvm;
+
+STATISTIC(EmittedInsts, "Number of machine instrs printed");
+
+namespace {
+ class VISIBILITY_HIDDEN BlackfinAsmPrinter : public AsmPrinter {
+ public:
+ BlackfinAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *MAI, bool V)
+ : AsmPrinter(O, TM, MAI, V) {}
+
+ virtual const char *getPassName() const {
+ return "Blackfin Assembly Printer";
+ }
+
+ void printOperand(const MachineInstr *MI, int opNum);
+ void printMemoryOperand(const MachineInstr *MI, int opNum);
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
+ void emitLinkage(const std::string &n, GlobalValue::LinkageTypes l);
+ bool runOnMachineFunction(MachineFunction &F);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode);
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode);
+ void PrintGlobalVariable(const GlobalVariable* GVar);
+ };
+} // end of anonymous namespace
+
+#include "BlackfinGenAsmWriter.inc"
+
+extern "C" void LLVMInitializeBlackfinAsmPrinter() {
+ RegisterAsmPrinter<BlackfinAsmPrinter> X(TheBlackfinTarget);
+}
+
+void BlackfinAsmPrinter::emitLinkage(const std::string &name,
+ GlobalValue::LinkageTypes l) {
+ switch (l) {
+ default: llvm_unreachable("Unknown linkage type!");
+ case GlobalValue::InternalLinkage: // Symbols default to internal.
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
+ break;
+ case GlobalValue::ExternalLinkage:
+ O << MAI->getGlobalDirective() << name << "\n";
+ break;
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ O << MAI->getGlobalDirective() << name << "\n";
+ O << MAI->getWeakDefDirective() << name << "\n";
+ break;
+ }
+}
+
+void BlackfinAsmPrinter::PrintGlobalVariable(const GlobalVariable* GV) {
+ const TargetData *TD = TM.getTargetData();
+
+ if (!GV->hasInitializer() || EmitSpecialLLVMGlobal(GV))
+ return;
+
+ std::string name = Mang->getMangledName(GV);
+ Constant *C = GV->getInitializer();
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GV, Mang,
+ TM));
+ emitLinkage(name, GV->getLinkage());
+ EmitAlignment(TD->getPreferredAlignmentLog(GV), GV);
+ printVisibility(name, GV->getVisibility());
+
+ O << "\t.type " << name << ", STT_OBJECT\n";
+ O << "\t.size " << name << ',' << TD->getTypeAllocSize(C->getType()) << '\n';
+ O << name << ":\n";
+ EmitGlobalConstant(C);
+}
+
+/// runOnMachineFunction - This uses the printInstruction()
+/// method to print assembly for each instruction.
+///
+bool BlackfinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SetupMachineFunction(MF);
+ EmitConstantPool(MF.getConstantPool());
+ EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
+
+ const Function *F = MF.getFunction();
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+ EmitAlignment(2, F);
+ emitLinkage(CurrentFnName, F->getLinkage());
+ printVisibility(CurrentFnName, F->getVisibility());
+
+ O << "\t.type\t" << CurrentFnName << ", STT_FUNC\n"
+ << CurrentFnName << ":\n";
+
+ if (DW)
+ DW->BeginFunction(&MF);
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ EmitBasicBlockStart(I);
+
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II) {
+ // Print the assembly for the instruction.
+ processDebugLoc(II, true);
+
+ printInstruction(II);
+ if (VerboseAsm && !II->getDebugLoc().isUnknown())
+ EmitComments(*II);
+ O << '\n';
+
+ processDebugLoc(II, false);
+ ++EmittedInsts;
+ }
+ }
+
+ O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
+
+ if (DW)
+ DW->EndFunction(&MF);
+
+ return false;
+}
+
+void BlackfinAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
+ const MachineOperand &MO = MI->getOperand (opNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ "Virtual registers should be already mapped!");
+ O << getRegisterName(MO.getReg());
+ break;
+
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+ case MachineOperand::MO_GlobalAddress:
+ O << Mang->getMangledName(MO.getGlobal());
+ printOffset(MO.getOffset());
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ O << Mang->makeNameProper(MO.getSymbolName());
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
+ << MO.getIndex();
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ << '_' << MO.getIndex();
+ break;
+ default:
+ llvm_unreachable("<unknown operand type>");
+ break;
+ }
+}
+
+void BlackfinAsmPrinter::printMemoryOperand(const MachineInstr *MI, int opNum) {
+ printOperand(MI, opNum);
+
+ if (MI->getOperand(opNum+1).isImm() && MI->getOperand(opNum+1).getImm() == 0)
+ return;
+
+ O << " + ";
+ printOperand(MI, opNum+1);
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool BlackfinAsmPrinter::PrintAsmOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode) {
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default: return true; // Unknown modifier.
+ case 'r':
+ break;
+ }
+ }
+
+ printOperand(MI, OpNo);
+
+ return false;
+}
+
+bool BlackfinAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode) {
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier
+
+ O << '[';
+ printOperand(MI, OpNo);
+ O << ']';
+
+ return false;
+}
diff --git a/lib/Target/Blackfin/AsmPrinter/CMakeLists.txt b/lib/Target/Blackfin/AsmPrinter/CMakeLists.txt
new file mode 100644
index 0000000..795aebf
--- /dev/null
+++ b/lib/Target/Blackfin/AsmPrinter/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMBlackfinAsmPrinter
+ BlackfinAsmPrinter.cpp
+ )
+add_dependencies(LLVMBlackfinAsmPrinter BlackfinCodeGenTable_gen)
diff --git a/lib/Target/Blackfin/AsmPrinter/Makefile b/lib/Target/Blackfin/AsmPrinter/Makefile
new file mode 100644
index 0000000..091d4df
--- /dev/null
+++ b/lib/Target/Blackfin/AsmPrinter/Makefile
@@ -0,0 +1,16 @@
+##===- lib/Target/Blackfin/AsmPrinter/Makefile -------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMBlackfinAsmPrinter
+
+# Hack: we need to include 'main' Blackfin target directory to grab private
+# headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Blackfin/Blackfin.h b/lib/Target/Blackfin/Blackfin.h
new file mode 100644
index 0000000..ec1fa86
--- /dev/null
+++ b/lib/Target/Blackfin/Blackfin.h
@@ -0,0 +1,38 @@
+//=== Blackfin.h - Top-level interface for Blackfin backend -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// Blackfin back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_BLACKFIN_H
+#define TARGET_BLACKFIN_H
+
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+ class FunctionPass;
+ class BlackfinTargetMachine;
+
+ FunctionPass *createBlackfinISelDag(BlackfinTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+ extern Target TheBlackfinTarget;
+
+} // end namespace llvm
+
+// Defines symbolic names for Blackfin registers. This defines a mapping from
+// register name to register number.
+#include "BlackfinGenRegisterNames.inc"
+
+// Defines symbolic names for the Blackfin instructions.
+#include "BlackfinGenInstrNames.inc"
+
+#endif
diff --git a/lib/Target/Blackfin/Blackfin.td b/lib/Target/Blackfin/Blackfin.td
new file mode 100644
index 0000000..b904638
--- /dev/null
+++ b/lib/Target/Blackfin/Blackfin.td
@@ -0,0 +1,201 @@
+//===- Blackfin.td - Describe the Blackfin Target Machine --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Blackfin Subtarget features.
+//===----------------------------------------------------------------------===//
+
+def FeatureSDRAM : SubtargetFeature<"sdram", "sdram", "true",
+ "Build for SDRAM">;
+
+def FeatureICPLB : SubtargetFeature<"icplb", "icplb", "true",
+ "Assume instruction cache lookaside buffers are enabled at runtime">;
+
+//===----------------------------------------------------------------------===//
+// Bugs in the silicon becomes workarounds in the compiler.
+// See http://www.analog.com/ for the full list of IC anomalies.
+//===----------------------------------------------------------------------===//
+
+def WA_MI_SHIFT : SubtargetFeature<"mi-shift-anomaly","wa_mi_shift", "true",
+ "Work around 05000074 - "
+ "Multi-Issue Instruction with dsp32shiftimm and P-reg Store">;
+
+def WA_CSYNC : SubtargetFeature<"csync-anomaly","wa_csync", "true",
+ "Work around 05000244 - "
+ "If I-Cache Is On, CSYNC/SSYNC/IDLE Around Change of Control">;
+
+def WA_SPECLD : SubtargetFeature<"specld-anomaly","wa_specld", "true",
+ "Work around 05000245 - "
+ "Access in the Shadow of a Conditional Branch">;
+
+def WA_HWLOOP : SubtargetFeature<"hwloop-anomaly","wa_hwloop", "true",
+ "Work around 05000257 - "
+ "Interrupt/Exception During Short Hardware Loop">;
+
+def WA_MMR_STALL : SubtargetFeature<"mmr-stall-anomaly","wa_mmr_stall", "true",
+ "Work around 05000283 - "
+ "System MMR Write Is Stalled Indefinitely when Killed">;
+
+def WA_LCREGS : SubtargetFeature<"lcregs-anomaly","wa_lcregs", "true",
+ "Work around 05000312 - "
+ "SSYNC, CSYNC, or Loads to LT, LB and LC Registers Are Interrupted">;
+
+def WA_KILLED_MMR : SubtargetFeature<"killed-mmr-anomaly",
+ "wa_killed_mmr", "true",
+ "Work around 05000315 - "
+ "Killed System MMR Write Completes Erroneously on Next System MMR Access">;
+
+def WA_RETS : SubtargetFeature<"rets-anomaly", "wa_rets", "true",
+ "Work around 05000371 - "
+ "Possible RETS Register Corruption when Subroutine Is under 5 Cycles">;
+
+def WA_IND_CALL : SubtargetFeature<"ind-call-anomaly", "wa_ind_call", "true",
+ "Work around 05000426 - "
+ "Speculative Fetches of Indirect-Pointer Instructions">;
+
+//===----------------------------------------------------------------------===//
+// Register File, Calling Conv, Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "BlackfinRegisterInfo.td"
+include "BlackfinCallingConv.td"
+include "BlackfinInstrInfo.td"
+
+def BlackfinInstrInfo : InstrInfo {}
+
+//===----------------------------------------------------------------------===//
+// Blackfin processors supported.
+//===----------------------------------------------------------------------===//
+
+class Proc<string Name, string Suffix, list<SubtargetFeature> Features>
+ : Processor<!strconcat(Name, Suffix), NoItineraries, Features>;
+
+def : Proc<"generic", "", []>;
+
+multiclass Core<string Name,string Suffix,
+ list<SubtargetFeature> Features> {
+ def : Proc<Name, Suffix, Features>;
+ def : Proc<Name, "", Features>;
+ def : Proc<Name, "-none", []>;
+}
+
+multiclass CoreEdinburgh<string Name>
+ : Core<Name, "-0.6", [WA_MI_SHIFT, WA_SPECLD, WA_LCREGS]> {
+ def : Proc<Name, "-0.5",
+ [WA_MI_SHIFT, WA_SPECLD, WA_MMR_STALL, WA_LCREGS, WA_KILLED_MMR,
+ WA_RETS]>;
+ def : Proc<Name, "-0.4",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS]>;
+ def : Proc<Name, "-0.3",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS]>;
+ def : Proc<Name, "-any",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS]>;
+}
+multiclass CoreBraemar<string Name>
+ : Core<Name, "-0.3",
+ [WA_MI_SHIFT, WA_SPECLD, WA_LCREGS, WA_RETS, WA_IND_CALL]> {
+ def : Proc<Name, "-0.2",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-any",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS, WA_IND_CALL]>;
+}
+multiclass CoreStirling<string Name>
+ : Core<Name, "-0.5", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]> {
+ def : Proc<Name, "-0.4",
+ [WA_MI_SHIFT, WA_SPECLD, WA_LCREGS, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-0.3",
+ [WA_MI_SHIFT, WA_SPECLD, WA_MMR_STALL, WA_LCREGS, WA_KILLED_MMR,
+ WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-any",
+ [WA_MI_SHIFT, WA_SPECLD, WA_MMR_STALL, WA_LCREGS, WA_KILLED_MMR,
+ WA_RETS, WA_IND_CALL]>;
+}
+multiclass CoreMoab<string Name>
+ : Core<Name, "-0.3", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]> {
+ def : Proc<Name, "-0.2", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]>;
+ def : Proc<Name, "-0.1", [WA_MI_SHIFT, WA_SPECLD, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-0.0",
+ [WA_MI_SHIFT, WA_SPECLD, WA_LCREGS, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-any",
+ [WA_MI_SHIFT, WA_SPECLD, WA_LCREGS, WA_RETS, WA_IND_CALL]>;
+}
+multiclass CoreTeton<string Name>
+ : Core<Name, "-0.5",
+ [WA_MI_SHIFT, WA_SPECLD, WA_MMR_STALL, WA_LCREGS, WA_KILLED_MMR,
+ WA_RETS, WA_IND_CALL]> {
+ def : Proc<Name, "-0.3",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-any",
+ [WA_MI_SHIFT, WA_CSYNC, WA_SPECLD, WA_HWLOOP, WA_MMR_STALL, WA_LCREGS,
+ WA_KILLED_MMR, WA_RETS, WA_IND_CALL]>;
+}
+multiclass CoreKookaburra<string Name>
+ : Core<Name, "-0.2", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]> {
+ def : Proc<Name, "-0.1", [WA_MI_SHIFT, WA_SPECLD, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-0.0", [WA_MI_SHIFT, WA_SPECLD, WA_RETS, WA_IND_CALL]>;
+ def : Proc<Name, "-any", [WA_MI_SHIFT, WA_SPECLD, WA_RETS, WA_IND_CALL]>;
+}
+multiclass CoreMockingbird<string Name>
+ : Core<Name, "-0.1", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]> {
+ def : Proc<Name, "-0.0", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]>;
+ def : Proc<Name, "-any", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]>;
+}
+multiclass CoreBrodie<string Name>
+ : Core<Name, "-0.1", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]> {
+ def : Proc<Name, "-0.0", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]>;
+ def : Proc<Name, "-any", [WA_MI_SHIFT, WA_SPECLD, WA_IND_CALL]>;
+}
+
+defm BF512 : CoreBrodie<"bf512">;
+defm BF514 : CoreBrodie<"bf514">;
+defm BF516 : CoreBrodie<"bf516">;
+defm BF518 : CoreBrodie<"bf518">;
+defm BF522 : CoreMockingbird<"bf522">;
+defm BF523 : CoreKookaburra<"bf523">;
+defm BF524 : CoreMockingbird<"bf524">;
+defm BF525 : CoreKookaburra<"bf525">;
+defm BF526 : CoreMockingbird<"bf526">;
+defm BF527 : CoreKookaburra<"bf527">;
+defm BF531 : CoreEdinburgh<"bf531">;
+defm BF532 : CoreEdinburgh<"bf532">;
+defm BF533 : CoreEdinburgh<"bf533">;
+defm BF534 : CoreBraemar<"bf534">;
+defm BF536 : CoreBraemar<"bf536">;
+defm BF537 : CoreBraemar<"bf537">;
+defm BF538 : CoreStirling<"bf538">;
+defm BF539 : CoreStirling<"bf539">;
+defm BF542 : CoreMoab<"bf542">;
+defm BF544 : CoreMoab<"bf544">;
+defm BF548 : CoreMoab<"bf548">;
+defm BF549 : CoreMoab<"bf549">;
+defm BF561 : CoreTeton<"bf561">;
+
+//===----------------------------------------------------------------------===//
+// Declare the target which we are implementing
+//===----------------------------------------------------------------------===//
+
+def Blackfin : Target {
+ // Pull in Instruction Info:
+ let InstructionSet = BlackfinInstrInfo;
+}
diff --git a/lib/Target/Blackfin/BlackfinCallingConv.td b/lib/Target/Blackfin/BlackfinCallingConv.td
new file mode 100644
index 0000000..0abc84c
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinCallingConv.td
@@ -0,0 +1,30 @@
+//===--- BlackfinCallingConv.td - Calling Conventions ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the Blackfin architectures.
+//
+//===----------------------------------------------------------------------===//
+
+// Blackfin C Calling convention.
+def CC_Blackfin : CallingConv<[
+ CCIfType<[i16], CCPromoteToType<i32>>,
+ CCIfSRet<CCAssignToReg<[P0]>>,
+ CCAssignToReg<[R0, R1, R2]>,
+ CCAssignToStack<4, 4>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// Blackfin C return-value convention.
+def RetCC_Blackfin : CallingConv<[
+ CCIfType<[i16], CCPromoteToType<i32>>,
+ CCAssignToReg<[R0, R1]>
+]>;
diff --git a/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp b/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp
new file mode 100644
index 0000000..fc62a18
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinISelDAGToDAG.cpp
@@ -0,0 +1,191 @@
+//===- BlackfinISelDAGToDAG.cpp - A dag to dag inst selector for Blackfin -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the Blackfin target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Blackfin.h"
+#include "BlackfinISelLowering.h"
+#include "BlackfinTargetMachine.h"
+#include "BlackfinRegisterInfo.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+/// BlackfinDAGToDAGISel - Blackfin specific code to select blackfin machine
+/// instructions for SelectionDAG operations.
+namespace {
+ class BlackfinDAGToDAGISel : public SelectionDAGISel {
+ /// Subtarget - Keep a pointer to the Blackfin Subtarget around so that we
+ /// can make the right decision when generating code for different targets.
+ //const BlackfinSubtarget &Subtarget;
+ public:
+ BlackfinDAGToDAGISel(BlackfinTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel) {}
+
+ virtual void InstructionSelect();
+
+ virtual const char *getPassName() const {
+ return "Blackfin DAG->DAG Pattern Instruction Selection";
+ }
+
+ // Include the pieces autogenerated from the target description.
+#include "BlackfinGenDAGISel.inc"
+
+ private:
+ SDNode *Select(SDValue Op);
+ bool SelectADDRspii(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Offset);
+
+ // Walk the DAG after instruction selection, fixing register class issues.
+ void FixRegisterClasses(SelectionDAG &DAG);
+
+ const BlackfinInstrInfo &getInstrInfo() {
+ return *static_cast<const BlackfinTargetMachine&>(TM).getInstrInfo();
+ }
+ const BlackfinRegisterInfo *getRegisterInfo() {
+ return static_cast<const BlackfinTargetMachine&>(TM).getRegisterInfo();
+ }
+ };
+} // end anonymous namespace
+
+FunctionPass *llvm::createBlackfinISelDag(BlackfinTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new BlackfinDAGToDAGISel(TM, OptLevel);
+}
+
+/// InstructionSelect - This callback is invoked by
+/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+void BlackfinDAGToDAGISel::InstructionSelect() {
+ // Select target instructions for the DAG.
+ SelectRoot(*CurDAG);
+ DEBUG(errs() << "Selected selection DAG before regclass fixup:\n");
+ DEBUG(CurDAG->dump());
+ FixRegisterClasses(*CurDAG);
+}
+
+SDNode *BlackfinDAGToDAGISel::Select(SDValue Op) {
+ SDNode *N = Op.getNode();
+ DebugLoc dl = N->getDebugLoc();
+ if (N->isMachineOpcode())
+ return NULL; // Already selected.
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::FrameIndex: {
+ // Selects to ADDpp FI, 0 which in turn will become ADDimm7 SP, imm or ADDpp
+ // SP, Px
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, MVT::i32);
+ return CurDAG->SelectNodeTo(N, BF::ADDpp, MVT::i32, TFI,
+ CurDAG->getTargetConstant(0, MVT::i32));
+ }
+ }
+
+ return SelectCode(Op);
+}
+
+bool BlackfinDAGToDAGISel::SelectADDRspii(SDValue Op,
+ SDValue Addr,
+ SDValue &Base,
+ SDValue &Offset) {
+ FrameIndexSDNode *FIN = 0;
+ if ((FIN = dyn_cast<FrameIndexSDNode>(Addr))) {
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+ if (Addr.getOpcode() == ISD::ADD) {
+ ConstantSDNode *CN = 0;
+ if ((FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) &&
+ (CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) &&
+ (CN->getSExtValue() % 4 == 0 && CN->getSExtValue() >= 0)) {
+ // Constant positive word offset from frame index
+ Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
+ Offset = CurDAG->getTargetConstant(CN->getSExtValue(), MVT::i32);
+ return true;
+ }
+ }
+ return false;
+}
+
+static inline bool isCC(const TargetRegisterClass *RC) {
+ return RC == &BF::AnyCCRegClass || BF::AnyCCRegClass.hasSubClass(RC);
+}
+
+static inline bool isDCC(const TargetRegisterClass *RC) {
+ return RC == &BF::DRegClass || BF::DRegClass.hasSubClass(RC) || isCC(RC);
+}
+
+static void UpdateNodeOperand(SelectionDAG &DAG,
+ SDNode *N,
+ unsigned Num,
+ SDValue Val) {
+ SmallVector<SDValue, 8> ops(N->op_begin(), N->op_end());
+ ops[Num] = Val;
+ SDValue New = DAG.UpdateNodeOperands(SDValue(N, 0), ops.data(), ops.size());
+ DAG.ReplaceAllUsesWith(N, New.getNode());
+}
+
+// After instruction selection, insert COPY_TO_REGCLASS nodes to help in
+// choosing the proper register classes.
+void BlackfinDAGToDAGISel::FixRegisterClasses(SelectionDAG &DAG) {
+ const BlackfinInstrInfo &TII = getInstrInfo();
+ const BlackfinRegisterInfo *TRI = getRegisterInfo();
+ DAG.AssignTopologicalOrder();
+ HandleSDNode Dummy(DAG.getRoot());
+
+ for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin();
+ NI != DAG.allnodes_end(); ++NI) {
+ if (NI->use_empty() || !NI->isMachineOpcode())
+ continue;
+ const TargetInstrDesc &DefTID = TII.get(NI->getMachineOpcode());
+ for (SDNode::use_iterator UI = NI->use_begin(); !UI.atEnd(); ++UI) {
+ if (!UI->isMachineOpcode())
+ continue;
+
+ if (UI.getUse().getResNo() >= DefTID.getNumDefs())
+ continue;
+ const TargetRegisterClass *DefRC =
+ DefTID.OpInfo[UI.getUse().getResNo()].getRegClass(TRI);
+
+ const TargetInstrDesc &UseTID = TII.get(UI->getMachineOpcode());
+ if (UseTID.getNumDefs()+UI.getOperandNo() >= UseTID.getNumOperands())
+ continue;
+ const TargetRegisterClass *UseRC =
+ UseTID.OpInfo[UseTID.getNumDefs()+UI.getOperandNo()].getRegClass(TRI);
+ if (!DefRC || !UseRC)
+ continue;
+ // We cannot copy CC <-> !(CC/D)
+ if ((isCC(DefRC) && !isDCC(UseRC)) || (isCC(UseRC) && !isDCC(DefRC))) {
+ SDNode *Copy =
+ DAG.getMachineNode(TargetInstrInfo::COPY_TO_REGCLASS,
+ NI->getDebugLoc(),
+ MVT::i32,
+ UI.getUse().get(),
+ DAG.getTargetConstant(BF::DRegClassID, MVT::i32));
+ UpdateNodeOperand(DAG, *UI, UI.getOperandNo(), SDValue(Copy, 0));
+ }
+ }
+ }
+ DAG.setRoot(Dummy.getValue());
+}
+
diff --git a/lib/Target/Blackfin/BlackfinISelLowering.cpp b/lib/Target/Blackfin/BlackfinISelLowering.cpp
new file mode 100644
index 0000000..4b321ec
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinISelLowering.cpp
@@ -0,0 +1,614 @@
+//===- BlackfinISelLowering.cpp - Blackfin DAG Lowering Implementation ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces that Blackfin uses to lower LLVM code
+// into a selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinISelLowering.h"
+#include "BlackfinTargetMachine.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinGenCallingConv.inc"
+
+//===----------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===----------------------------------------------------------------------===//
+
+BlackfinTargetLowering::BlackfinTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
+ setShiftAmountType(MVT::i16);
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setStackPointerRegisterToSaveRestore(BF::SP);
+ setIntDivIsCheap(false);
+
+ // Set up the legal register classes.
+ addRegisterClass(MVT::i32, BF::DRegisterClass);
+ addRegisterClass(MVT::i16, BF::D16RegisterClass);
+
+ computeRegisterProperties();
+
+ // Blackfin doesn't have i1 loads or stores
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+
+ setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::Other, Expand);
+
+ // i16 registers don't do much
+ setOperationAction(ISD::AND, MVT::i16, Promote);
+ setOperationAction(ISD::OR, MVT::i16, Promote);
+ setOperationAction(ISD::XOR, MVT::i16, Promote);
+ setOperationAction(ISD::CTPOP, MVT::i16, Promote);
+ // The expansion of CTLZ/CTTZ uses AND/OR, so we might as well promote
+ // immediately.
+ setOperationAction(ISD::CTLZ, MVT::i16, Promote);
+ setOperationAction(ISD::CTTZ, MVT::i16, Promote);
+ setOperationAction(ISD::SETCC, MVT::i16, Promote);
+
+ // Blackfin has no division
+ setOperationAction(ISD::SDIV, MVT::i16, Expand);
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i16, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i16, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i16, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+
+ // No carry-in operations.
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+
+ // Blackfin has no intrinsics for these particular operations.
+ setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ // i32 has native CTPOP, but not CTLZ/CTTZ
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+
+ // READCYCLECOUNTER needs special type legalization.
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
+
+ // We don't have line number support yet.
+ setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
+ setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
+ setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+}
+
+const char *BlackfinTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case BFISD::CALL: return "BFISD::CALL";
+ case BFISD::RET_FLAG: return "BFISD::RET_FLAG";
+ case BFISD::Wrapper: return "BFISD::Wrapper";
+ }
+}
+
+MVT::SimpleValueType BlackfinTargetLowering::getSetCCResultType(EVT VT) const {
+ // SETCC always sets the CC register. Technically that is an i1 register, but
+ // that type is not legal, so we treat it as an i32 register.
+ return MVT::i32;
+}
+
+SDValue BlackfinTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) {
+ DebugLoc DL = Op.getDebugLoc();
+ GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+
+ Op = DAG.getTargetGlobalAddress(GV, MVT::i32);
+ return DAG.getNode(BFISD::Wrapper, DL, MVT::i32, Op);
+}
+
+SDValue BlackfinTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
+ DebugLoc DL = Op.getDebugLoc();
+ int JTI = cast<JumpTableSDNode>(Op)->getIndex();
+
+ Op = DAG.getTargetJumpTable(JTI, MVT::i32);
+ return DAG.getNode(BFISD::Wrapper, DL, MVT::i32, Op);
+}
+
+SDValue
+BlackfinTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AllocateStack(12, 4); // ABI requires 12 bytes stack space
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Blackfin);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ TargetRegisterClass *RC = VA.getLocReg() == BF::P0 ?
+ BF::PRegisterClass : BF::DRegisterClass;
+ assert(RC->contains(VA.getLocReg()) && "Unexpected regclass in CCState");
+ assert(RC->hasType(RegVT) && "Unexpected regclass in CCState");
+
+ unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
+ MF.getRegInfo().addLiveIn(VA.getLocReg(), Reg);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it is really passed promoted to 32
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.getLocInfo() != CCValAssign::Full)
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+
+ InVals.push_back(ArgValue);
+ } else {
+ assert(VA.isMemLoc() && "CCValAssign must be RegLoc or MemLoc");
+ unsigned ObjSize = VA.getLocVT().getStoreSize();
+ int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset());
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
+ }
+ }
+
+ return Chain;
+}
+
+SDValue
+BlackfinTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getTarget(),
+ RVLocs, *DAG.getContext());
+
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Blackfin);
+
+ // If this is the first return lowered for this function, add the regs to the
+ // liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDValue Flag;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue Opi = Outs[i].Val;
+
+ // Expand to i32 if necessary
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Opi = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Opi);
+ break;
+ case CCValAssign::ZExt:
+ Opi = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Opi);
+ break;
+ case CCValAssign::AExt:
+ Opi = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Opi);
+ break;
+ }
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Opi, SDValue());
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ }
+
+ if (Flag.getNode()) {
+ return DAG.getNode(BFISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
+ } else {
+ return DAG.getNode(BFISD::RET_FLAG, dl, MVT::Other, Chain);
+ }
+}
+
+SDValue
+BlackfinTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getTarget(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AllocateStack(12, 4); // ABI requires 12 bytes stack space
+ CCInfo.AnalyzeCallOperands(Outs, CC_Blackfin);
+
+ // Get the size of the outgoing arguments stack space requirement.
+ unsigned ArgsSize = CCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true));
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = Outs[i].Val;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc() && "CCValAssign must be RegLoc or MemLoc");
+ int Offset = VA.getLocMemOffset();
+ assert(Offset%4 == 0 && "Unaligned LocMemOffset");
+ assert(VA.getLocVT()==MVT::i32 && "Illegal CCValAssign type");
+ SDValue SPN = DAG.getCopyFromReg(Chain, dl, BF::SP, MVT::i32);
+ SDValue OffsetN = DAG.getIntPtrConstant(Offset);
+ OffsetN = DAG.getNode(ISD::ADD, dl, MVT::i32, SPN, OffsetN);
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, OffsetN,
+ PseudoSourceValue::getStack(),
+ Offset));
+ }
+ }
+
+ // Transform all store nodes into one single node because
+ // all store nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emited instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
+
+ std::vector<EVT> NodeTys;
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+ SDValue Ops[] = { Chain, Callee, InFlag };
+ Chain = DAG.getNode(BFISD::CALL, dl, NodeTys, Ops,
+ InFlag.getNode() ? 3 : 2);
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ InFlag = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RVInfo(CallConv, isVarArg, DAG.getTarget(), RVLocs,
+ *DAG.getContext());
+
+ RVInfo.AnalyzeCallResult(Ins, RetCC_Blackfin);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &RV = RVLocs[i];
+ unsigned Reg = RV.getLocReg();
+
+ Chain = DAG.getCopyFromReg(Chain, dl, Reg,
+ RVLocs[i].getLocVT(), InFlag);
+ SDValue Val = Chain.getValue(0);
+ InFlag = Chain.getValue(2);
+ Chain = Chain.getValue(1);
+
+ // Callee is responsible for extending any i16 return values.
+ switch (RV.getLocInfo()) {
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, dl, RV.getLocVT(), Val,
+ DAG.getValueType(RV.getValVT()));
+ break;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, dl, RV.getLocVT(), Val,
+ DAG.getValueType(RV.getValVT()));
+ break;
+ default:
+ break;
+ }
+
+ // Truncate to valtype
+ if (RV.getLocInfo() != CCValAssign::Full)
+ Val = DAG.getNode(ISD::TRUNCATE, dl, RV.getValVT(), Val);
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+// Expansion of ADDE / SUBE. This is a bit involved since blackfin doesn't have
+// add-with-carry instructions.
+SDValue BlackfinTargetLowering::LowerADDE(SDValue Op, SelectionDAG &DAG) {
+ // Operands: lhs, rhs, carry-in (AC0 flag)
+ // Results: sum, carry-out (AC0 flag)
+ DebugLoc dl = Op.getDebugLoc();
+
+ unsigned Opcode = Op.getOpcode()==ISD::ADDE ? BF::ADD : BF::SUB;
+
+ // zext incoming carry flag in AC0 to 32 bits
+ SDNode* CarryIn = DAG.getMachineNode(BF::MOVE_cc_ac0, dl, MVT::i32,
+ /* flag= */ Op.getOperand(2));
+ CarryIn = DAG.getMachineNode(BF::MOVECC_zext, dl, MVT::i32,
+ SDValue(CarryIn, 0));
+
+ // Add operands, produce sum and carry flag
+ SDNode *Sum = DAG.getMachineNode(Opcode, dl, MVT::i32, MVT::Flag,
+ Op.getOperand(0), Op.getOperand(1));
+
+ // Store intermediate carry from Sum
+ SDNode* Carry1 = DAG.getMachineNode(BF::MOVE_cc_ac0, dl, MVT::i32,
+ /* flag= */ SDValue(Sum, 1));
+
+ // Add incoming carry, again producing an output flag
+ Sum = DAG.getMachineNode(Opcode, dl, MVT::i32, MVT::Flag,
+ SDValue(Sum, 0), SDValue(CarryIn, 0));
+
+ // Update AC0 with the intermediate carry, producing a flag.
+ SDNode *CarryOut = DAG.getMachineNode(BF::OR_ac0_cc, dl, MVT::Flag,
+ SDValue(Carry1, 0));
+
+ // Compose (i32, flag) pair
+ SDValue ops[2] = { SDValue(Sum, 0), SDValue(CarryOut, 0) };
+ return DAG.getMergeValues(ops, 2, dl);
+}
+
+SDValue BlackfinTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
+ switch (Op.getOpcode()) {
+ default:
+ Op.getNode()->dump();
+ llvm_unreachable("Should not custom lower this!");
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress:
+ llvm_unreachable("TLS not implemented for Blackfin.");
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ // Frame & Return address. Currently unimplemented
+ case ISD::FRAMEADDR: return SDValue();
+ case ISD::RETURNADDR: return SDValue();
+ case ISD::ADDE:
+ case ISD::SUBE: return LowerADDE(Op, DAG);
+ }
+}
+
+void
+BlackfinTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ DebugLoc dl = N->getDebugLoc();
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ return;
+ case ISD::READCYCLECOUNTER: {
+ // The low part of the cycle counter is in CYCLES, the high part in
+ // CYCLES2. Reading CYCLES will latch the value of CYCLES2, so we must read
+ // CYCLES2 last.
+ SDValue TheChain = N->getOperand(0);
+ SDValue lo = DAG.getCopyFromReg(TheChain, dl, BF::CYCLES, MVT::i32);
+ SDValue hi = DAG.getCopyFromReg(lo.getValue(1), dl, BF::CYCLES2, MVT::i32);
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, lo, hi));
+ // Outgoing chain. If we were to use the chain from lo instead, it would be
+ // possible to entirely eliminate the CYCLES2 read in (i32 (trunc
+ // readcyclecounter)). Unfortunately this could possibly delay the CYCLES2
+ // read beyond the next CYCLES read, leading to invalid results.
+ Results.push_back(hi.getValue(1));
+ return;
+ }
+ }
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned BlackfinTargetLowering::getFunctionAlignment(const Function *F) const {
+ return 2;
+}
+
+//===----------------------------------------------------------------------===//
+// Blackfin Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+BlackfinTargetLowering::ConstraintType
+BlackfinTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() != 1)
+ return TargetLowering::getConstraintType(Constraint);
+
+ switch (Constraint[0]) {
+ // Standard constraints
+ case 'r':
+ return C_RegisterClass;
+
+ // Blackfin-specific constraints
+ case 'a':
+ case 'd':
+ case 'z':
+ case 'D':
+ case 'W':
+ case 'e':
+ case 'b':
+ case 'v':
+ case 'f':
+ case 'c':
+ case 't':
+ case 'u':
+ case 'k':
+ case 'x':
+ case 'y':
+ case 'w':
+ return C_RegisterClass;
+ case 'A':
+ case 'B':
+ case 'C':
+ case 'Z':
+ case 'Y':
+ return C_Register;
+ }
+
+ // Not implemented: q0-q7, qA. Use {R2} etc instead
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// getRegForInlineAsmConstraint - Return register no and class for a C_Register
+/// constraint.
+std::pair<unsigned, const TargetRegisterClass*> BlackfinTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
+ typedef std::pair<unsigned, const TargetRegisterClass*> Pair;
+ using namespace BF;
+
+ if (Constraint.size() != 1)
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ switch (Constraint[0]) {
+ // Standard constraints
+ case 'r':
+ return Pair(0U, VT == MVT::i16 ? D16RegisterClass : DPRegisterClass);
+
+ // Blackfin-specific constraints
+ case 'a': return Pair(0U, PRegisterClass);
+ case 'd': return Pair(0U, DRegisterClass);
+ case 'e': return Pair(0U, AccuRegisterClass);
+ case 'A': return Pair(A0, AccuRegisterClass);
+ case 'B': return Pair(A1, AccuRegisterClass);
+ case 'b': return Pair(0U, IRegisterClass);
+ case 'v': return Pair(0U, BRegisterClass);
+ case 'f': return Pair(0U, MRegisterClass);
+ case 'C': return Pair(CC, JustCCRegisterClass);
+ case 'x': return Pair(0U, GRRegisterClass);
+ case 'w': return Pair(0U, ALLRegisterClass);
+ case 'Z': return Pair(P3, PRegisterClass);
+ case 'Y': return Pair(P1, PRegisterClass);
+ }
+
+ // Not implemented: q0-q7, qA. Use {R2} etc instead.
+ // Constraints z, D, W, c, t, u, k, and y use non-existing classes, defer to
+ // getRegClassForInlineAsmConstraint()
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+std::vector<unsigned> BlackfinTargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint, EVT VT) const {
+ using namespace BF;
+
+ if (Constraint.size() != 1)
+ return std::vector<unsigned>();
+
+ switch (Constraint[0]) {
+ case 'z': return make_vector<unsigned>(P0, P1, P2, 0);
+ case 'D': return make_vector<unsigned>(R0, R2, R4, R6, 0);
+ case 'W': return make_vector<unsigned>(R1, R3, R5, R7, 0);
+ case 'c': return make_vector<unsigned>(I0, I1, I2, I3,
+ B0, B1, B2, B3,
+ L0, L1, L2, L3, 0);
+ case 't': return make_vector<unsigned>(LT0, LT1, 0);
+ case 'u': return make_vector<unsigned>(LB0, LB1, 0);
+ case 'k': return make_vector<unsigned>(LC0, LC1, 0);
+ case 'y': return make_vector<unsigned>(RETS, RETN, RETI, RETX, RETE,
+ ASTAT, SEQSTAT, USP, 0);
+ }
+
+ return std::vector<unsigned>();
+}
+
+bool BlackfinTargetLowering::
+isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Blackfin target isn't yet aware of offsets.
+ return false;
+}
diff --git a/lib/Target/Blackfin/BlackfinISelLowering.h b/lib/Target/Blackfin/BlackfinISelLowering.h
new file mode 100644
index 0000000..cdbc7d2
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinISelLowering.h
@@ -0,0 +1,81 @@
+//===- BlackfinISelLowering.h - Blackfin DAG Lowering Interface -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Blackfin uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFIN_ISELLOWERING_H
+#define BLACKFIN_ISELLOWERING_H
+
+#include "llvm/Target/TargetLowering.h"
+#include "Blackfin.h"
+
+namespace llvm {
+
+ namespace BFISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+ CALL, // A call instruction.
+ RET_FLAG, // Return with a flag operand.
+ Wrapper // Address wrapper
+ };
+ }
+
+ class BlackfinTargetLowering : public TargetLowering {
+ int VarArgsFrameOffset; // Frame offset to start of varargs area.
+ public:
+ BlackfinTargetLowering(TargetMachine &TM);
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
+ virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
+ virtual void ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG);
+
+ int getVarArgsFrameOffset() const { return VarArgsFrameOffset; }
+
+ ConstraintType getConstraintType(const std::string &Constraint) const;
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
+ std::vector<unsigned>
+ getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const;
+ virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
+ const char *getTargetNodeName(unsigned Opcode) const;
+ unsigned getFunctionAlignment(const Function *F) const;
+
+ private:
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerADDE(SDValue Op, SelectionDAG &DAG);
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+ };
+} // end namespace llvm
+
+#endif // BLACKFIN_ISELLOWERING_H
diff --git a/lib/Target/Blackfin/BlackfinInstrFormats.td b/lib/Target/Blackfin/BlackfinInstrFormats.td
new file mode 100644
index 0000000..d8e6e25
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinInstrFormats.td
@@ -0,0 +1,34 @@
+//===--- BlackfinInstrFormats.td ---------------------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+class InstBfin<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : Instruction {
+ field bits<32> Inst;
+
+ let Namespace = "BF";
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+ let AsmString = asmstr;
+ let Pattern = pattern;
+}
+
+// Single-word (16-bit) instructions
+class F1<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstBfin<outs, ins, asmstr, pattern> {
+}
+
+// Double-word (32-bit) instructions
+class F2<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstBfin<outs, ins, asmstr, pattern> {
+}
diff --git a/lib/Target/Blackfin/BlackfinInstrInfo.cpp b/lib/Target/Blackfin/BlackfinInstrInfo.cpp
new file mode 100644
index 0000000..3fd5d4d
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinInstrInfo.cpp
@@ -0,0 +1,280 @@
+//===- BlackfinInstrInfo.cpp - Blackfin Instruction Information -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Blackfin implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinInstrInfo.h"
+#include "BlackfinSubtarget.h"
+#include "Blackfin.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "BlackfinGenInstrInfo.inc"
+
+using namespace llvm;
+
+BlackfinInstrInfo::BlackfinInstrInfo(BlackfinSubtarget &ST)
+ : TargetInstrInfoImpl(BlackfinInsts, array_lengthof(BlackfinInsts)),
+ RI(ST, *this),
+ Subtarget(ST) {}
+
+/// Return true if the instruction is a register to register move and
+/// leave the source and dest operands in the passed parameters.
+bool BlackfinInstrInfo::isMoveInstr(const MachineInstr &MI,
+ unsigned &SrcReg,
+ unsigned &DstReg,
+ unsigned &SrcSR,
+ unsigned &DstSR) const {
+ SrcSR = DstSR = 0; // No sub-registers.
+ switch (MI.getOpcode()) {
+ case BF::MOVE:
+ case BF::MOVE_ncccc:
+ case BF::MOVE_ccncc:
+ case BF::MOVECC_zext:
+ case BF::MOVECC_nz:
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+ return true;
+ case BF::SLL16i:
+ if (MI.getOperand(2).getImm()!=0)
+ return false;
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned BlackfinInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case BF::LOAD32fi:
+ case BF::LOAD16fi:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned BlackfinInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case BF::STORE32fi:
+ case BF::STORE16fi:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned BlackfinInstrInfo::
+InsertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ // FIXME this should probably have a DebugLoc operand
+ DebugLoc dl = DebugLoc::getUnknownLoc();
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "Branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, dl, get(BF::JUMPa)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ llvm_unreachable("Implement conditional branches!");
+}
+
+static bool inClass(const TargetRegisterClass &Test,
+ unsigned Reg,
+ const TargetRegisterClass *RC) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return Test.contains(Reg);
+ else
+ return &Test==RC || Test.hasSubClass(RC);
+}
+
+bool BlackfinInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg,
+ unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const {
+ DebugLoc dl = DebugLoc::getUnknownLoc();
+
+ if (inClass(BF::ALLRegClass, DestReg, DestRC) &&
+ inClass(BF::ALLRegClass, SrcReg, SrcRC)) {
+ BuildMI(MBB, I, dl, get(BF::MOVE), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ if (inClass(BF::D16RegClass, DestReg, DestRC) &&
+ inClass(BF::D16RegClass, SrcReg, SrcRC)) {
+ BuildMI(MBB, I, dl, get(BF::SLL16i), DestReg).addReg(SrcReg).addImm(0);
+ return true;
+ }
+
+ if (inClass(BF::AnyCCRegClass, SrcReg, SrcRC) &&
+ inClass(BF::DRegClass, DestReg, DestRC)) {
+ if (inClass(BF::NotCCRegClass, SrcReg, SrcRC)) {
+ BuildMI(MBB, I, dl, get(BF::MOVENCC_z), DestReg).addReg(SrcReg);
+ BuildMI(MBB, I, dl, get(BF::BITTGL), DestReg).addReg(DestReg).addImm(0);
+ } else {
+ BuildMI(MBB, I, dl, get(BF::MOVECC_zext), DestReg).addReg(SrcReg);
+ }
+ return true;
+ }
+
+ if (inClass(BF::AnyCCRegClass, DestReg, DestRC) &&
+ inClass(BF::DRegClass, SrcReg, SrcRC)) {
+ if (inClass(BF::NotCCRegClass, DestReg, DestRC))
+ BuildMI(MBB, I, dl, get(BF::SETEQri_not), DestReg).addReg(SrcReg);
+ else
+ BuildMI(MBB, I, dl, get(BF::MOVECC_nz), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ if (inClass(BF::NotCCRegClass, DestReg, DestRC) &&
+ inClass(BF::JustCCRegClass, SrcReg, SrcRC)) {
+ BuildMI(MBB, I, dl, get(BF::MOVE_ncccc), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ if (inClass(BF::JustCCRegClass, DestReg, DestRC) &&
+ inClass(BF::NotCCRegClass, SrcReg, SrcRC)) {
+ BuildMI(MBB, I, dl, get(BF::MOVE_ccncc), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ llvm_unreachable((std::string("Bad regclasses for reg-to-reg copy: ")+
+ SrcRC->getName() + " -> " + DestRC->getName()).c_str());
+ return false;
+}
+
+void
+BlackfinInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg,
+ bool isKill,
+ int FI,
+ const TargetRegisterClass *RC) const {
+ DebugLoc DL = I != MBB.end() ?
+ I->getDebugLoc() : DebugLoc::getUnknownLoc();
+
+ if (inClass(BF::DPRegClass, SrcReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::STORE32fi))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ if (inClass(BF::D16RegClass, SrcReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::STORE16fi))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ if (inClass(BF::AnyCCRegClass, SrcReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::STORE8fi))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ llvm_unreachable((std::string("Cannot store regclass to stack slot: ")+
+ RC->getName()).c_str());
+}
+
+void BlackfinInstrInfo::
+storeRegToAddr(MachineFunction &MF,
+ unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ llvm_unreachable("storeRegToAddr not implemented");
+}
+
+void
+BlackfinInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg,
+ int FI,
+ const TargetRegisterClass *RC) const {
+ DebugLoc DL = I != MBB.end() ?
+ I->getDebugLoc() : DebugLoc::getUnknownLoc();
+ if (inClass(BF::DPRegClass, DestReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::LOAD32fi), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ if (inClass(BF::D16RegClass, DestReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::LOAD16fi), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ if (inClass(BF::AnyCCRegClass, DestReg, RC)) {
+ BuildMI(MBB, I, DL, get(BF::LOAD8fi), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0);
+ return;
+ }
+
+ llvm_unreachable("Cannot load regclass from stack slot");
+}
+
+void BlackfinInstrInfo::
+loadRegFromAddr(MachineFunction &MF,
+ unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ llvm_unreachable("loadRegFromAddr not implemented");
+}
diff --git a/lib/Target/Blackfin/BlackfinInstrInfo.h b/lib/Target/Blackfin/BlackfinInstrInfo.h
new file mode 100644
index 0000000..ea3429c
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinInstrInfo.h
@@ -0,0 +1,80 @@
+//===- BlackfinInstrInfo.h - Blackfin Instruction Information ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Blackfin implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFININSTRUCTIONINFO_H
+#define BLACKFININSTRUCTIONINFO_H
+
+#include "llvm/Target/TargetInstrInfo.h"
+#include "BlackfinRegisterInfo.h"
+
+namespace llvm {
+
+ class BlackfinInstrInfo : public TargetInstrInfoImpl {
+ const BlackfinRegisterInfo RI;
+ const BlackfinSubtarget& Subtarget;
+ public:
+ explicit BlackfinInstrInfo(BlackfinSubtarget &ST);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ virtual const BlackfinRegisterInfo &getRegisterInfo() const { return RI; }
+
+ virtual bool isMoveInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
+
+ virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const;
+
+ virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const;
+
+ virtual unsigned
+ InsertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const;
+
+ virtual bool copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const;
+
+ virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual void storeRegToAddr(MachineFunction &MF,
+ unsigned SrcReg, bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC) const;
+
+ virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/Blackfin/BlackfinInstrInfo.td b/lib/Target/Blackfin/BlackfinInstrInfo.td
new file mode 100644
index 0000000..934b188
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinInstrInfo.td
@@ -0,0 +1,873 @@
+//===- BlackfinInstrInfo.td - Target Description for Blackfin Target ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Blackfin instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "BlackfinInstrFormats.td"
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_BfinCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_BfinCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def BfinCallseqStart : SDNode<"ISD::CALLSEQ_START", SDT_BfinCallSeqStart,
+ [SDNPHasChain, SDNPOutFlag]>;
+def BfinCallseqEnd : SDNode<"ISD::CALLSEQ_END", SDT_BfinCallSeqEnd,
+ [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
+
+def SDT_BfinCall : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
+def BfinCall : SDNode<"BFISD::CALL", SDT_BfinCall,
+ [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
+
+def BfinRet: SDNode<"BFISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInFlag]>;
+
+def BfinWrapper: SDNode<"BFISD::Wrapper", SDTIntUnaryOp>;
+
+//===----------------------------------------------------------------------===//
+// Transformations
+//===----------------------------------------------------------------------===//
+
+def trailingZeros_xform : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getAPIntValue().countTrailingZeros(),
+ MVT::i32);
+}]>;
+
+def trailingOnes_xform : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(N->getAPIntValue().countTrailingOnes(),
+ MVT::i32);
+}]>;
+
+def LO16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((unsigned short)N->getZExtValue(), MVT::i16);
+}]>;
+
+def HI16 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 16, MVT::i16);
+}]>;
+
+//===----------------------------------------------------------------------===//
+// Immediates
+//===----------------------------------------------------------------------===//
+
+def imm3 : PatLeaf<(imm), [{return isInt<3>(N->getSExtValue());}]>;
+def uimm3 : PatLeaf<(imm), [{return isUint<3>(N->getZExtValue());}]>;
+def uimm4 : PatLeaf<(imm), [{return isUint<4>(N->getZExtValue());}]>;
+def uimm5 : PatLeaf<(imm), [{return isUint<5>(N->getZExtValue());}]>;
+
+def uimm5m2 : PatLeaf<(imm), [{
+ uint64_t value = N->getZExtValue();
+ return value % 2 == 0 && isUint<5>(value);
+}]>;
+
+def uimm6m4 : PatLeaf<(imm), [{
+ uint64_t value = N->getZExtValue();
+ return value % 4 == 0 && isUint<6>(value);
+}]>;
+
+def imm7 : PatLeaf<(imm), [{return isInt<7>(N->getSExtValue());}]>;
+def imm16 : PatLeaf<(imm), [{return isInt<16>(N->getSExtValue());}]>;
+def uimm16 : PatLeaf<(imm), [{return isUint<16>(N->getZExtValue());}]>;
+
+def ximm16 : PatLeaf<(imm), [{
+ int64_t value = N->getSExtValue();
+ return value < (1<<16) && value >= -(1<<15);
+}]>;
+
+def imm17m2 : PatLeaf<(imm), [{
+ int64_t value = N->getSExtValue();
+ return value % 2 == 0 && isInt<17>(value);
+}]>;
+
+def imm18m4 : PatLeaf<(imm), [{
+ int64_t value = N->getSExtValue();
+ return value % 4 == 0 && isInt<18>(value);
+}]>;
+
+// 32-bit bitmask transformed to a bit number
+def uimm5mask : Operand<i32>, PatLeaf<(imm), [{
+ return isPowerOf2_32(N->getZExtValue());
+}], trailingZeros_xform>;
+
+// 32-bit inverse bitmask transformed to a bit number
+def uimm5imask : Operand<i32>, PatLeaf<(imm), [{
+ return isPowerOf2_32(~N->getZExtValue());
+}], trailingOnes_xform>;
+
+//===----------------------------------------------------------------------===//
+// Operands
+//===----------------------------------------------------------------------===//
+
+def calltarget : Operand<iPTR>;
+
+def brtarget : Operand<OtherVT>;
+
+// Addressing modes
+def ADDRspii : ComplexPattern<i32, 2, "SelectADDRspii", [add, frameindex], []>;
+
+// Address operands
+def MEMii : Operand<i32> {
+ let PrintMethod = "printMemoryOperand";
+ let MIOperandInfo = (ops i32imm, i32imm);
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstBfin<outs, ins, asmstr, pattern>;
+
+let Defs = [SP], Uses = [SP] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "${:comment}ADJCALLSTACKDOWN $amt",
+ [(BfinCallseqStart timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "${:comment}ADJCALLSTACKUP $amt1 $amt2",
+ [(BfinCallseqEnd timm:$amt1, timm:$amt2)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Table C-9. Program Flow Control Instructions
+//===----------------------------------------------------------------------===//
+
+let isBranch = 1, isTerminator = 1 in {
+
+let isIndirectBranch = 1 in
+def JUMPp : F1<(outs), (ins P:$target),
+ "JUMP ($target);",
+ [(brind P:$target)]>;
+
+// TODO JUMP (PC-P)
+
+// NOTE: assembler chooses between JUMP.S and JUMP.L
+def JUMPa : F1<(outs), (ins brtarget:$target),
+ "jump $target;",
+ [(br bb:$target)]>;
+
+def JUMPcc : F1<(outs), (ins AnyCC:$cc, brtarget:$target),
+ "if $cc jump $target;",
+ [(brcond AnyCC:$cc, bb:$target)]>;
+}
+
+let isCall = 1,
+ Defs = [R0, R1, R2, R3, P0, P1, P2, LB0, LB1, LC0, LC1, RETS, ASTAT] in {
+def CALLa: F1<(outs), (ins calltarget:$func, variable_ops),
+ "call $func;", []>;
+def CALLp: F1<(outs), (ins P:$func, variable_ops),
+ "call ($func);", [(BfinCall P:$func)]>;
+}
+
+let isReturn = 1,
+ isTerminator = 1,
+ Uses = [RETS] in
+def RTS: F1<(outs), (ins), "rts;", [(BfinRet)]>;
+
+//===----------------------------------------------------------------------===//
+// Table C-10. Load / Store Instructions
+//===----------------------------------------------------------------------===//
+
+// Immediate constant loads
+
+// sext immediate, i32 D/P regs
+def LOADimm7: F1<(outs DP:$dst), (ins i32imm:$src),
+ "$dst = $src (x);",
+ [(set DP:$dst, imm7:$src)]>;
+
+// zext immediate, i32 reg groups 0-3
+def LOADuimm16: F2<(outs GR:$dst), (ins i32imm:$src),
+ "$dst = $src (z);",
+ [(set GR:$dst, uimm16:$src)]>;
+
+// sext immediate, i32 reg groups 0-3
+def LOADimm16: F2<(outs GR:$dst), (ins i32imm:$src),
+ "$dst = $src (x);",
+ [(set GR:$dst, imm16:$src)]>;
+
+// Pseudo-instruction for loading a general 32-bit constant.
+def LOAD32imm: Pseudo<(outs GR:$dst), (ins i32imm:$src),
+ "$dst.h = ($src >> 16); $dst.l = ($src & 0xffff);",
+ [(set GR:$dst, imm:$src)]>;
+
+def LOAD32sym: Pseudo<(outs GR:$dst), (ins i32imm:$src),
+ "$dst.h = $src; $dst.l = $src;", []>;
+
+
+// 16-bit immediate, i16 reg groups 0-3
+def LOAD16i: F2<(outs GR16:$dst), (ins i16imm:$src),
+ "$dst = $src;", []>;
+
+def : Pat<(BfinWrapper (i32 tglobaladdr:$addr)),
+ (LOAD32sym tglobaladdr:$addr)>;
+
+def : Pat<(BfinWrapper (i32 tjumptable:$addr)),
+ (LOAD32sym tjumptable:$addr)>;
+
+// We cannot copy from GR16 to D16, and codegen wants to insert copies if we
+// emit GR16 instructions. As a hack, we use this fake instruction instead.
+def LOAD16i_d16: F2<(outs D16:$dst), (ins i16imm:$src),
+ "$dst = $src;",
+ [(set D16:$dst, ximm16:$src)]>;
+
+// Memory loads with patterns
+
+def LOAD32p: F1<(outs DP:$dst), (ins P:$ptr),
+ "$dst = [$ptr];",
+ [(set DP:$dst, (load P:$ptr))]>;
+
+// Pseudo-instruction for loading a stack slot
+def LOAD32fi: Pseudo<(outs DP:$dst), (ins MEMii:$mem),
+ "${:comment}FI $dst = [$mem];",
+ [(set DP:$dst, (load ADDRspii:$mem))]>;
+
+// Note: Expands to multiple insns
+def LOAD16fi: Pseudo<(outs D16:$dst), (ins MEMii:$mem),
+ "${:comment}FI $dst = [$mem];",
+ [(set D16:$dst, (load ADDRspii:$mem))]>;
+
+// Pseudo-instruction for loading a stack slot, used for AnyCC regs.
+// Replaced with Load D + CC=D
+def LOAD8fi: Pseudo<(outs AnyCC:$dst), (ins MEMii:$mem),
+ "${:comment}FI $dst = B[$mem];",
+ [(set AnyCC:$dst, (load ADDRspii:$mem))]>;
+
+def LOAD32p_uimm6m4: F1<(outs DP:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = [$ptr + $off];",
+ [(set DP:$dst, (load (add P:$ptr, uimm6m4:$off)))]>;
+
+def LOAD32p_imm18m4: F2<(outs DP:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = [$ptr + $off];",
+ [(set DP:$dst, (load (add P:$ptr, imm18m4:$off)))]>;
+
+def LOAD32p_16z: F1<(outs D:$dst), (ins P:$ptr),
+ "$dst = W[$ptr] (z);",
+ [(set D:$dst, (zextloadi16 P:$ptr))]>;
+
+def : Pat<(i32 (extloadi16 P:$ptr)),(LOAD32p_16z P:$ptr)>;
+
+def LOAD32p_uimm5m2_16z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = w[$ptr + $off] (z);",
+ [(set D:$dst, (zextloadi16 (add P:$ptr,
+ uimm5m2:$off)))]>;
+
+def : Pat<(i32 (extloadi16 (add P:$ptr, uimm5m2:$off))),
+ (LOAD32p_uimm5m2_16z P:$ptr, imm:$off)>;
+
+def LOAD32p_imm17m2_16z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = w[$ptr + $off] (z);",
+ [(set D:$dst,
+ (zextloadi16 (add P:$ptr, imm17m2:$off)))]>;
+
+def : Pat<(i32 (extloadi16 (add P:$ptr, imm17m2:$off))),
+ (LOAD32p_imm17m2_16z P:$ptr, imm:$off)>;
+
+def LOAD32p_16s: F1<(outs D:$dst), (ins P:$ptr),
+ "$dst = w[$ptr] (x);",
+ [(set D:$dst, (sextloadi16 P:$ptr))]>;
+
+def LOAD32p_uimm5m2_16s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = w[$ptr + $off] (x);",
+ [(set D:$dst,
+ (sextloadi16 (add P:$ptr, uimm5m2:$off)))]>;
+
+def LOAD32p_imm17m2_16s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = w[$ptr + $off] (x);",
+ [(set D:$dst,
+ (sextloadi16 (add P:$ptr, imm17m2:$off)))]>;
+
+def LOAD16pi: F1<(outs D16:$dst), (ins PI:$ptr),
+ "$dst = w[$ptr];",
+ [(set D16:$dst, (load PI:$ptr))]>;
+
+def LOAD32p_8z: F1<(outs D:$dst), (ins P:$ptr),
+ "$dst = B[$ptr] (z);",
+ [(set D:$dst, (zextloadi8 P:$ptr))]>;
+
+def : Pat<(i32 (extloadi8 P:$ptr)), (LOAD32p_8z P:$ptr)>;
+def : Pat<(i16 (extloadi8 P:$ptr)),
+ (EXTRACT_SUBREG (LOAD32p_8z P:$ptr), bfin_subreg_lo16)>;
+def : Pat<(i16 (zextloadi8 P:$ptr)),
+ (EXTRACT_SUBREG (LOAD32p_8z P:$ptr), bfin_subreg_lo16)>;
+
+def LOAD32p_imm16_8z: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = b[$ptr + $off] (z);",
+ [(set D:$dst, (zextloadi8 (add P:$ptr, imm16:$off)))]>;
+
+def : Pat<(i32 (extloadi8 (add P:$ptr, imm16:$off))),
+ (LOAD32p_imm16_8z P:$ptr, imm:$off)>;
+def : Pat<(i16 (extloadi8 (add P:$ptr, imm16:$off))),
+ (EXTRACT_SUBREG (LOAD32p_imm16_8z P:$ptr, imm:$off),
+ bfin_subreg_lo16)>;
+def : Pat<(i16 (zextloadi8 (add P:$ptr, imm16:$off))),
+ (EXTRACT_SUBREG (LOAD32p_imm16_8z P:$ptr, imm:$off),
+ bfin_subreg_lo16)>;
+
+def LOAD32p_8s: F1<(outs D:$dst), (ins P:$ptr),
+ "$dst = b[$ptr] (x);",
+ [(set D:$dst, (sextloadi8 P:$ptr))]>;
+
+def : Pat<(i16 (sextloadi8 P:$ptr)),
+ (EXTRACT_SUBREG (LOAD32p_8s P:$ptr), bfin_subreg_lo16)>;
+
+def LOAD32p_imm16_8s: F1<(outs D:$dst), (ins P:$ptr, i32imm:$off),
+ "$dst = b[$ptr + $off] (x);",
+ [(set D:$dst, (sextloadi8 (add P:$ptr, imm16:$off)))]>;
+
+def : Pat<(i16 (sextloadi8 (add P:$ptr, imm16:$off))),
+ (EXTRACT_SUBREG (LOAD32p_imm16_8s P:$ptr, imm:$off),
+ bfin_subreg_lo16)>;
+// Memory loads without patterns
+
+let mayLoad = 1 in {
+
+multiclass LOAD_incdec<RegisterClass drc, RegisterClass prc,
+ string mem="", string suf=";"> {
+ def _inc : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr),
+ !strconcat(!subst("M", mem, "$dst = M[$ptr++]"), suf), []>;
+ def _dec : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr),
+ !strconcat(!subst("M", mem, "$dst = M[$ptr--]"), suf), []>;
+}
+multiclass LOAD_incdecpost<RegisterClass drc, RegisterClass prc,
+ string mem="", string suf=";">
+ : LOAD_incdec<drc, prc, mem, suf> {
+ def _post : F1<(outs drc:$dst, prc:$ptr_wb), (ins prc:$ptr, prc:$off),
+ !strconcat(!subst("M", mem, "$dst = M[$ptr++$off]"), suf), []>;
+}
+
+defm LOAD32p: LOAD_incdec<DP, P>;
+defm LOAD32i: LOAD_incdec<D, I>;
+defm LOAD8z32p: LOAD_incdec<D, P, "b", " (z);">;
+defm LOAD8s32p: LOAD_incdec<D, P, "b", " (x);">;
+defm LOADhi: LOAD_incdec<D16, I, "w">;
+defm LOAD16z32p: LOAD_incdecpost<D, P, "w", " (z);">;
+defm LOAD16s32p: LOAD_incdecpost<D, P, "w", " (x);">;
+
+def LOAD32p_post: F1<(outs D:$dst, P:$ptr_wb), (ins P:$ptr, P:$off),
+ "$dst = [$ptr ++ $off];", []>;
+
+// Note: $fp MUST be FP
+def LOAD32fp_nimm7m4: F1<(outs DP:$dst), (ins P:$fp, i32imm:$off),
+ "$dst = [$fp - $off];", []>;
+
+def LOAD32i: F1<(outs D:$dst), (ins I:$ptr),
+ "$dst = [$ptr];", []>;
+def LOAD32i_post: F1<(outs D:$dst, I:$ptr_wb), (ins I:$ptr, M:$off),
+ "$dst = [$ptr ++ $off];", []>;
+
+
+
+def LOADhp_post: F1<(outs D16:$dst, P:$ptr_wb), (ins P:$ptr, P:$off),
+ "$dst = w[$ptr ++ $off];", []>;
+
+
+}
+
+// Memory stores with patterns
+def STORE32p: F1<(outs), (ins DP:$val, P:$ptr),
+ "[$ptr] = $val;",
+ [(store DP:$val, P:$ptr)]>;
+
+// Pseudo-instructions for storing to a stack slot
+def STORE32fi: Pseudo<(outs), (ins DP:$val, MEMii:$mem),
+ "${:comment}FI [$mem] = $val;",
+ [(store DP:$val, ADDRspii:$mem)]>;
+
+// Note: This stack-storing pseudo-instruction is expanded to multiple insns
+def STORE16fi: Pseudo<(outs), (ins D16:$val, MEMii:$mem),
+ "${:comment}FI [$mem] = $val;",
+ [(store D16:$val, ADDRspii:$mem)]>;
+
+// Pseudo-instructions for storing AnyCC register to a stack slot.
+// Replaced with D=CC + STORE byte
+def STORE8fi: Pseudo<(outs), (ins AnyCC:$val, MEMii:$mem),
+ "${:comment}FI b[$mem] = $val;",
+ [(store AnyCC:$val, ADDRspii:$mem)]>;
+
+def STORE32p_uimm6m4: F1<(outs), (ins DP:$val, P:$ptr, i32imm:$off),
+ "[$ptr + $off] = $val;",
+ [(store DP:$val, (add P:$ptr, uimm6m4:$off))]>;
+
+def STORE32p_imm18m4: F1<(outs), (ins DP:$val, P:$ptr, i32imm:$off),
+ "[$ptr + $off] = $val;",
+ [(store DP:$val, (add P:$ptr, imm18m4:$off))]>;
+
+def STORE16pi: F1<(outs), (ins D16:$val, PI:$ptr),
+ "w[$ptr] = $val;",
+ [(store D16:$val, PI:$ptr)]>;
+
+def STORE8p: F1<(outs), (ins D:$val, P:$ptr),
+ "b[$ptr] = $val;",
+ [(truncstorei8 D:$val, P:$ptr)]>;
+
+def STORE8p_imm16: F1<(outs), (ins D:$val, P:$ptr, i32imm:$off),
+ "b[$ptr + $off] = $val;",
+ [(truncstorei8 D:$val, (add P:$ptr, imm16:$off))]>;
+
+let Constraints = "$ptr = $ptr_wb" in {
+
+multiclass STORE_incdec<RegisterClass drc, RegisterClass prc,
+ int off=4, string pre=""> {
+ def _inc : F1<(outs prc:$ptr_wb), (ins drc:$val, prc:$ptr),
+ !strconcat(pre, "[$ptr++] = $val;"),
+ [(set prc:$ptr_wb, (post_store drc:$val, prc:$ptr, off))]>;
+ def _dec : F1<(outs prc:$ptr_wb), (ins drc:$val, prc:$ptr),
+ !strconcat(pre, "[$ptr--] = $val;"),
+ [(set prc:$ptr_wb, (post_store drc:$val, prc:$ptr,
+ (ineg off)))]>;
+}
+
+defm STORE32p: STORE_incdec<DP, P>;
+defm STORE16i: STORE_incdec<D16, I, 2, "w">;
+defm STORE8p: STORE_incdec<D, P, 1, "b">;
+
+def STORE32p_post: F1<(outs P:$ptr_wb), (ins D:$val, P:$ptr, P:$off),
+ "[$ptr ++ $off] = $val;",
+ [(set P:$ptr_wb, (post_store D:$val, P:$ptr, P:$off))]>;
+
+def STORE16p_post: F1<(outs P:$ptr_wb), (ins D16:$val, P:$ptr, P:$off),
+ "w[$ptr ++ $off] = $val;",
+ [(set P:$ptr_wb, (post_store D16:$val, P:$ptr, P:$off))]>;
+}
+
+// Memory stores without patterns
+
+let mayStore = 1 in {
+
+// Note: only works for $fp == FP
+def STORE32fp_nimm7m4: F1<(outs), (ins DP:$val, P:$fp, i32imm:$off),
+ "[$fp - $off] = $val;", []>;
+
+def STORE32i: F1<(outs), (ins D:$val, I:$ptr),
+ "[$ptr] = $val;", []>;
+
+def STORE32i_inc: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr),
+ "[$ptr++] = $val;", []>;
+
+def STORE32i_dec: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr),
+ "[$ptr--] = $val;", []>;
+
+def STORE32i_post: F1<(outs I:$ptr_wb), (ins D:$val, I:$ptr, M:$off),
+ "[$ptr ++ $off] = $val;", []>;
+}
+
+def : Pat<(truncstorei16 D:$val, PI:$ptr),
+ (STORE16pi (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$val, D),
+ bfin_subreg_lo16), PI:$ptr)>;
+
+def : Pat<(truncstorei16 (srl D:$val, (i16 16)), PI:$ptr),
+ (STORE16pi (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$val, D),
+ bfin_subreg_hi16), PI:$ptr)>;
+
+def : Pat<(truncstorei8 D16L:$val, P:$ptr),
+ (STORE8p (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS D16L:$val, D16L),
+ bfin_subreg_lo16),
+ P:$ptr)>;
+
+//===----------------------------------------------------------------------===//
+// Table C-11. Move Instructions.
+//===----------------------------------------------------------------------===//
+
+def MOVE: F1<(outs ALL:$dst), (ins ALL:$src),
+ "$dst = $src;",
+ []>;
+
+let isTwoAddress = 1 in
+def MOVEcc: F1<(outs DP:$dst), (ins DP:$src1, DP:$src2, AnyCC:$cc),
+ "if $cc $dst = $src2;",
+ [(set DP:$dst, (select AnyCC:$cc, DP:$src2, DP:$src1))]>;
+
+let Defs = [AZ, AN, AC0, V] in {
+def MOVEzext: F1<(outs D:$dst), (ins D16L:$src),
+ "$dst = $src (z);",
+ [(set D:$dst, (zext D16L:$src))]>;
+
+def MOVEsext: F1<(outs D:$dst), (ins D16L:$src),
+ "$dst = $src (x);",
+ [(set D:$dst, (sext D16L:$src))]>;
+
+def MOVEzext8: F1<(outs D:$dst), (ins D:$src),
+ "$dst = $src.b (z);",
+ [(set D:$dst, (and D:$src, 0xff))]>;
+
+def MOVEsext8: F1<(outs D:$dst), (ins D:$src),
+ "$dst = $src.b (x);",
+ [(set D:$dst, (sext_inreg D:$src, i8))]>;
+
+}
+
+def : Pat<(sext_inreg D16L:$src, i8),
+ (EXTRACT_SUBREG (MOVEsext8
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ D16L:$src,
+ bfin_subreg_lo16)),
+ bfin_subreg_lo16)>;
+
+def : Pat<(sext_inreg D:$src, i16),
+ (MOVEsext (EXTRACT_SUBREG D:$src, bfin_subreg_lo16))>;
+
+def : Pat<(and D:$src, 0xffff),
+ (MOVEzext (EXTRACT_SUBREG D:$src, bfin_subreg_lo16))>;
+
+def : Pat<(i32 (anyext D16L:$src)),
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ (COPY_TO_REGCLASS D16L:$src, D16L),
+ bfin_subreg_lo16)>;
+
+// TODO Dreg = Dreg_byte (X/Z)
+
+// TODO Accumulator moves
+
+//===----------------------------------------------------------------------===//
+// Table C-12. Stack Control Instructions
+//===----------------------------------------------------------------------===//
+
+let Uses = [SP], Defs = [SP] in {
+def PUSH: F1<(outs), (ins ALL:$src),
+ "[--sp] = $src;", []> { let mayStore = 1; }
+
+// NOTE: POP does not work for DP regs, use LOAD instead
+def POP: F1<(outs ALL:$dst), (ins),
+ "$dst = [sp++];", []> { let mayLoad = 1; }
+}
+
+// TODO: push/pop multiple
+
+def LINK: F2<(outs), (ins i32imm:$amount),
+ "link $amount;", []>;
+
+def UNLINK: F2<(outs), (ins),
+ "unlink;", []>;
+
+//===----------------------------------------------------------------------===//
+// Table C-13. Control Code Bit Management Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass SETCC<PatFrag opnode, PatFrag invnode, string cond, string suf=";"> {
+ def dd : F1<(outs JustCC:$cc), (ins D:$a, D:$b),
+ !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf),
+ [(set JustCC:$cc, (opnode D:$a, D:$b))]>;
+
+ def ri : F1<(outs JustCC:$cc), (ins DP:$a, i32imm:$b),
+ !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf),
+ [(set JustCC:$cc, (opnode DP:$a, imm3:$b))]>;
+
+ def pp : F1<(outs JustCC:$cc), (ins P:$a, P:$b),
+ !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf),
+ []>;
+
+ def ri_not : F1<(outs NotCC:$cc), (ins DP:$a, i32imm:$b),
+ !strconcat(!subst("XX", cond, "cc = $a XX $b"), suf),
+ [(set NotCC:$cc, (invnode DP:$a, imm3:$b))]>;
+}
+
+defm SETEQ : SETCC<seteq, setne, "==">;
+defm SETLT : SETCC<setlt, setge, "<">;
+defm SETLE : SETCC<setle, setgt, "<=">;
+defm SETULT : SETCC<setult, setuge, "<", " (iu);">;
+defm SETULE : SETCC<setule, setugt, "<=", " (iu);">;
+
+def SETNEdd : F1<(outs NotCC:$cc), (ins D:$a, D:$b),
+ "cc = $a == $b;",
+ [(set NotCC:$cc, (setne D:$a, D:$b))]>;
+
+def : Pat<(setgt D:$a, D:$b), (SETLTdd D:$b, D:$a)>;
+def : Pat<(setge D:$a, D:$b), (SETLEdd D:$b, D:$a)>;
+def : Pat<(setugt D:$a, D:$b), (SETULTdd D:$b, D:$a)>;
+def : Pat<(setuge D:$a, D:$b), (SETULEdd D:$b, D:$a)>;
+
+// TODO: compare pointer for P-P comparisons
+// TODO: compare accumulator
+
+let Defs = [AC0] in
+def OR_ac0_cc : F1<(outs), (ins JustCC:$cc),
+ "ac0 \\|= cc;", []>;
+
+let Uses = [AC0] in
+def MOVE_cc_ac0 : F1<(outs JustCC:$cc), (ins),
+ "cc = ac0;", []>;
+
+def MOVE_ccncc : F1<(outs JustCC:$cc), (ins NotCC:$sb),
+ "cc = !cc;", []>;
+
+def MOVE_ncccc : F1<(outs NotCC:$cc), (ins JustCC:$sb),
+ "cc = !cc;", []>;
+
+def MOVECC_zext : F1<(outs D:$dst), (ins JustCC:$cc),
+ "$dst = $cc;",
+ [(set D:$dst, (zext JustCC:$cc))]>;
+
+def MOVENCC_z : F1<(outs D:$dst), (ins NotCC:$cc),
+ "$dst = cc;", []>;
+
+def MOVECC_nz : F1<(outs AnyCC:$cc), (ins D:$src),
+ "cc = $src;",
+ [(set AnyCC:$cc, (setne D:$src, 0))]>;
+
+//===----------------------------------------------------------------------===//
+// Table C-14. Logical Operations Instructions
+//===----------------------------------------------------------------------===//
+
+def AND: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 & $src2;",
+ [(set D:$dst, (and D:$src1, D:$src2))]>;
+
+def NOT: F1<(outs D:$dst), (ins D:$src),
+ "$dst = ~$src;",
+ [(set D:$dst, (not D:$src))]>;
+
+def OR: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 \\| $src2;",
+ [(set D:$dst, (or D:$src1, D:$src2))]>;
+
+def XOR: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 ^ $src2;",
+ [(set D:$dst, (xor D:$src1, D:$src2))]>;
+
+// missing: BXOR, BXORSHIFT
+
+//===----------------------------------------------------------------------===//
+// Table C-15. Bit Operations Instructions
+//===----------------------------------------------------------------------===//
+
+let isTwoAddress = 1 in {
+def BITCLR: F1<(outs D:$dst), (ins D:$src1, uimm5imask:$src2),
+ "bitclr($dst, $src2);",
+ [(set D:$dst, (and D:$src1, uimm5imask:$src2))]>;
+
+def BITSET: F1<(outs D:$dst), (ins D:$src1, uimm5mask:$src2),
+ "bitset($dst, $src2);",
+ [(set D:$dst, (or D:$src1, uimm5mask:$src2))]>;
+
+def BITTGL: F1<(outs D:$dst), (ins D:$src1, uimm5mask:$src2),
+ "bittgl($dst, $src2);",
+ [(set D:$dst, (xor D:$src1, uimm5mask:$src2))]>;
+}
+
+def BITTST: F1<(outs JustCC:$cc), (ins D:$src1, uimm5mask:$src2),
+ "cc = bittst($src1, $src2);",
+ [(set JustCC:$cc, (setne (and D:$src1, uimm5mask:$src2),
+ (i32 0)))]>;
+
+def NBITTST: F1<(outs JustCC:$cc), (ins D:$src1, uimm5mask:$src2),
+ "cc = !bittst($src1, $src2);",
+ [(set JustCC:$cc, (seteq (and D:$src1, uimm5mask:$src2),
+ (i32 0)))]>;
+
+// TODO: DEPOSIT, EXTRACT, BITMUX
+
+def ONES: F2<(outs D16L:$dst), (ins D:$src),
+ "$dst = ones $src;",
+ [(set D16L:$dst, (trunc (ctpop D:$src)))]>;
+
+def : Pat<(ctpop D:$src), (MOVEzext (ONES D:$src))>;
+
+//===----------------------------------------------------------------------===//
+// Table C-16. Shift / Rotate Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass SHIFT32<SDNode opnode, string ops> {
+ def i : F1<(outs D:$dst), (ins D:$src, i16imm:$amount),
+ !subst("XX", ops, "$dst XX= $amount;"),
+ [(set D:$dst, (opnode D:$src, (i16 uimm5:$amount)))]>;
+ def r : F1<(outs D:$dst), (ins D:$src, D:$amount),
+ !subst("XX", ops, "$dst XX= $amount;"),
+ [(set D:$dst, (opnode D:$src, D:$amount))]>;
+}
+
+let Defs = [AZ, AN, V, VS],
+ isTwoAddress = 1 in {
+defm SRA : SHIFT32<sra, ">>>">;
+defm SRL : SHIFT32<srl, ">>">;
+defm SLL : SHIFT32<shl, "<<">;
+}
+
+// TODO: automatic switching between 2-addr and 3-addr (?)
+
+let Defs = [AZ, AN, V, VS] in {
+def SLLr16: F2<(outs D:$dst), (ins D:$src, D16L:$amount),
+ "$dst = lshift $src by $amount;",
+ [(set D:$dst, (shl D:$src, D16L:$amount))]>;
+
+// Arithmetic left-shift = saturing overflow.
+def SLAr16: F2<(outs D:$dst), (ins D:$src, D16L:$amount),
+ "$dst = ashift $src by $amount;",
+ [(set D:$dst, (sra D:$src, (ineg D16L:$amount)))]>;
+
+def SRA16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount),
+ "$dst = $src >>> $amount;",
+ [(set D16:$dst, (sra D16:$src, (i16 uimm4:$amount)))]>;
+
+def SRL16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount),
+ "$dst = $src >> $amount;",
+ [(set D16:$dst, (srl D16:$src, (i16 uimm4:$amount)))]>;
+
+// Arithmetic left-shift = saturing overflow.
+def SLA16r: F1<(outs D16:$dst), (ins D16:$src, D16L:$amount),
+ "$dst = ashift $src BY $amount;",
+ [(set D16:$dst, (srl D16:$src, (ineg D16L:$amount)))]>;
+
+def SLL16i: F1<(outs D16:$dst), (ins D16:$src, i16imm:$amount),
+ "$dst = $src << $amount;",
+ [(set D16:$dst, (shl D16:$src, (i16 uimm4:$amount)))]>;
+
+def SLL16r: F1<(outs D16:$dst), (ins D16:$src, D16L:$amount),
+ "$dst = lshift $src by $amount;",
+ [(set D16:$dst, (shl D16:$src, D16L:$amount))]>;
+
+}
+
+//===----------------------------------------------------------------------===//
+// Table C-17. Arithmetic Operations Instructions
+//===----------------------------------------------------------------------===//
+
+// TODO: ABS
+
+let Defs = [AZ, AN, AC0, V, VS] in {
+
+def ADD: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 + $src2;",
+ [(set D:$dst, (add D:$src1, D:$src2))]>;
+
+def ADD16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 + $src2;",
+ [(set D16:$dst, (add D16:$src1, D16:$src2))]>;
+
+let isTwoAddress = 1 in
+def ADDimm7: F1<(outs D:$dst), (ins D:$src1, i32imm:$src2),
+ "$dst += $src2;",
+ [(set D:$dst, (add D:$src1, imm7:$src2))]>;
+
+def SUB: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 - $src2;",
+ [(set D:$dst, (sub D:$src1, D:$src2))]>;
+
+def SUB16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 - $src2;",
+ [(set D16:$dst, (sub D16:$src1, D16:$src2))]>;
+
+}
+
+def : Pat<(addc D:$src1, D:$src2), (ADD D:$src1, D:$src2)>;
+def : Pat<(subc D:$src1, D:$src2), (SUB D:$src1, D:$src2)>;
+
+let Defs = [AZ, AN, V, VS] in
+def NEG: F1<(outs D:$dst), (ins D:$src),
+ "$dst = -$src;",
+ [(set D:$dst, (ineg D:$src))]>;
+
+// No pattern, it would confuse isel to have two i32 = i32+i32 patterns
+def ADDpp: F1<(outs P:$dst), (ins P:$src1, P:$src2),
+ "$dst = $src1 + $src2;", []>;
+
+let isTwoAddress = 1 in
+def ADDpp_imm7: F1<(outs P:$dst), (ins P:$src1, i32imm:$src2),
+ "$dst += $src2;", []>;
+
+let Defs = [AZ, AN, V] in
+def ADD_RND20: F2<(outs D16:$dst), (ins D:$src1, D:$src2),
+ "$dst = $src1 + $src2 (rnd20);", []>;
+
+let Defs = [V, VS] in {
+def MUL16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 * $src2 (is);",
+ [(set D16:$dst, (mul D16:$src1, D16:$src2))]>;
+
+def MULHS16: F2<(outs D16:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 * $src2 (ih);",
+ [(set D16:$dst, (mulhs D16:$src1, D16:$src2))]>;
+
+def MULhh32s: F2<(outs D:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 * $src2 (is);",
+ [(set D:$dst, (mul (sext D16:$src1), (sext D16:$src2)))]>;
+
+def MULhh32u: F2<(outs D:$dst), (ins D16:$src1, D16:$src2),
+ "$dst = $src1 * $src2 (is);",
+ [(set D:$dst, (mul (zext D16:$src1), (zext D16:$src2)))]>;
+}
+
+
+let isTwoAddress = 1 in
+def MUL32: F1<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst *= $src2;",
+ [(set D:$dst, (mul D:$src1, D:$src2))]>;
+
+//===----------------------------------------------------------------------===//
+// Table C-18. External Exent Management Instructions
+//===----------------------------------------------------------------------===//
+
+def IDLE : F1<(outs), (ins), "idle;", [(int_bfin_idle)]>;
+def CSYNC : F1<(outs), (ins), "csync;", [(int_bfin_csync)]>;
+def SSYNC : F1<(outs), (ins), "ssync;", [(int_bfin_ssync)]>;
+def EMUEXCPT : F1<(outs), (ins), "emuexcpt;", []>;
+def CLI : F1<(outs D:$mask), (ins), "cli $mask;", []>;
+def STI : F1<(outs), (ins D:$mask), "sti $mask;", []>;
+def RAISE : F1<(outs), (ins i32imm:$itr), "raise $itr;", []>;
+def EXCPT : F1<(outs), (ins i32imm:$exc), "excpt $exc;", []>;
+def NOP : F1<(outs), (ins), "nop;", []>;
+def MNOP : F2<(outs), (ins), "mnop;", []>;
+def ABORT : F1<(outs), (ins), "abort;", []>;
+
+//===----------------------------------------------------------------------===//
+// Table C-19. Cache Control Instructions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Table C-20. Video Pixel Operations Instructions
+//===----------------------------------------------------------------------===//
+
+def ALIGN8 : F2<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = align8($src1, $src2);",
+ [(set D:$dst, (or (shl D:$src1, (i32 24)),
+ (srl D:$src2, (i32 8))))]>;
+
+def ALIGN16 : F2<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = align16($src1, $src2);",
+ [(set D:$dst, (or (shl D:$src1, (i32 16)),
+ (srl D:$src2, (i32 16))))]>;
+
+def ALIGN24 : F2<(outs D:$dst), (ins D:$src1, D:$src2),
+ "$dst = align16($src1, $src2);",
+ [(set D:$dst, (or (shl D:$src1, (i32 8)),
+ (srl D:$src2, (i32 24))))]>;
+
+def DISALGNEXCPT : F2<(outs), (ins), "disalignexcpt;", []>;
+
+// TODO: BYTEOP3P, BYTEOP16P, BYTEOP1P, BYTEOP2P, BYTEOP16M, SAA,
+// BYTEPACK, BYTEUNPACK
+
+// Table C-21. Vector Operations Instructions
+
+// Patterns
+def : Pat<(BfinCall (i32 tglobaladdr:$dst)),
+ (CALLa tglobaladdr:$dst)>;
+def : Pat<(BfinCall (i32 texternalsym:$dst)),
+ (CALLa texternalsym:$dst)>;
+
+def : Pat<(sext JustCC:$cc),
+ (NEG (MOVECC_zext JustCC:$cc))>;
+def : Pat<(anyext JustCC:$cc),
+ (MOVECC_zext JustCC:$cc)>;
+def : Pat<(i16 (zext JustCC:$cc)),
+ (EXTRACT_SUBREG (MOVECC_zext JustCC:$cc), bfin_subreg_lo16)>;
+def : Pat<(i16 (sext JustCC:$cc)),
+ (EXTRACT_SUBREG (NEG (MOVECC_zext JustCC:$cc)), bfin_subreg_lo16)>;
+def : Pat<(i16 (anyext JustCC:$cc)),
+ (EXTRACT_SUBREG (MOVECC_zext JustCC:$cc), bfin_subreg_lo16)>;
+
+def : Pat<(i16 (trunc D:$src)),
+ (EXTRACT_SUBREG (COPY_TO_REGCLASS D:$src, D), bfin_subreg_lo16)>;
diff --git a/lib/Target/Blackfin/BlackfinMCAsmInfo.cpp b/lib/Target/Blackfin/BlackfinMCAsmInfo.cpp
new file mode 100644
index 0000000..6d0f66c
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinMCAsmInfo.cpp
@@ -0,0 +1,21 @@
+//===-- BlackfinMCAsmInfo.cpp - Blackfin asm properties -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the BlackfinMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinMCAsmInfo.h"
+
+using namespace llvm;
+
+BlackfinMCAsmInfo::BlackfinMCAsmInfo(const Target &T, const StringRef &TT) {
+ GlobalPrefix = "_";
+ CommentString = "//";
+}
diff --git a/lib/Target/Blackfin/BlackfinMCAsmInfo.h b/lib/Target/Blackfin/BlackfinMCAsmInfo.h
new file mode 100644
index 0000000..0efc295
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinMCAsmInfo.h
@@ -0,0 +1,29 @@
+//===-- BlackfinMCAsmInfo.h - Blackfin asm properties ---------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the BlackfinMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFINTARGETASMINFO_H
+#define BLACKFINTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ struct BlackfinMCAsmInfo : public MCAsmInfo {
+ explicit BlackfinMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/Blackfin/BlackfinRegisterInfo.cpp b/lib/Target/Blackfin/BlackfinRegisterInfo.cpp
new file mode 100644
index 0000000..8c0a58a
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinRegisterInfo.cpp
@@ -0,0 +1,472 @@
+//===- BlackfinRegisterInfo.cpp - Blackfin Register Information -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Blackfin implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Blackfin.h"
+#include "BlackfinRegisterInfo.h"
+#include "BlackfinSubtarget.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineLocation.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Type.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace llvm;
+
+BlackfinRegisterInfo::BlackfinRegisterInfo(BlackfinSubtarget &st,
+ const TargetInstrInfo &tii)
+ : BlackfinGenRegisterInfo(BF::ADJCALLSTACKDOWN, BF::ADJCALLSTACKUP),
+ Subtarget(st),
+ TII(tii) {}
+
+const unsigned*
+BlackfinRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ using namespace BF;
+ static const unsigned CalleeSavedRegs[] = {
+ FP,
+ R4, R5, R6, R7,
+ P3, P4, P5,
+ 0 };
+ return CalleeSavedRegs;
+}
+
+const TargetRegisterClass* const *BlackfinRegisterInfo::
+getCalleeSavedRegClasses(const MachineFunction *MF) const {
+ using namespace BF;
+ static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
+ &PRegClass,
+ &DRegClass, &DRegClass, &DRegClass, &DRegClass,
+ &PRegClass, &PRegClass, &PRegClass,
+ 0 };
+ return CalleeSavedRegClasses;
+}
+
+BitVector
+BlackfinRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ using namespace BF;
+ BitVector Reserved(getNumRegs());
+ Reserved.set(AZ);
+ Reserved.set(AN);
+ Reserved.set(AQ);
+ Reserved.set(AC0);
+ Reserved.set(AC1);
+ Reserved.set(AV0);
+ Reserved.set(AV0S);
+ Reserved.set(AV1);
+ Reserved.set(AV1S);
+ Reserved.set(V);
+ Reserved.set(VS);
+ Reserved.set(CYCLES).set(CYCLES2);
+ Reserved.set(L0);
+ Reserved.set(L1);
+ Reserved.set(L2);
+ Reserved.set(L3);
+ Reserved.set(SP);
+ Reserved.set(RETS);
+ if (hasFP(MF))
+ Reserved.set(FP);
+ return Reserved;
+}
+
+const TargetRegisterClass*
+BlackfinRegisterInfo::getPhysicalRegisterRegClass(unsigned reg, EVT VT) const {
+ assert(isPhysicalRegister(reg) && "reg must be a physical register");
+
+ // Pick the smallest register class of the right type that contains
+ // this physreg.
+ const TargetRegisterClass* BestRC = 0;
+ for (regclass_iterator I = regclass_begin(), E = regclass_end();
+ I != E; ++I) {
+ const TargetRegisterClass* RC = *I;
+ if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
+ (!BestRC || RC->getNumRegs() < BestRC->getNumRegs()))
+ BestRC = RC;
+ }
+
+ assert(BestRC && "Couldn't find the register class");
+ return BestRC;
+}
+
+// hasFP - Return true if the specified function should have a dedicated frame
+// pointer register. This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+bool BlackfinRegisterInfo::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ return NoFramePointerElim || MFI->hasCalls() || MFI->hasVarSizedObjects();
+}
+
+bool BlackfinRegisterInfo::
+requiresRegisterScavenging(const MachineFunction &MF) const {
+ return true;
+}
+
+// Emit instructions to add delta to D/P register. ScratchReg must be of the
+// same class as Reg (P).
+void BlackfinRegisterInfo::adjustRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ DebugLoc DL,
+ unsigned Reg,
+ unsigned ScratchReg,
+ int delta) const {
+ if (!delta)
+ return;
+ if (isInt<7>(delta)) {
+ BuildMI(MBB, I, DL, TII.get(BF::ADDpp_imm7), Reg)
+ .addReg(Reg) // No kill on two-addr operand
+ .addImm(delta);
+ return;
+ }
+
+ // We must load delta into ScratchReg and add that.
+ loadConstant(MBB, I, DL, ScratchReg, delta);
+ if (BF::PRegClass.contains(Reg)) {
+ assert(BF::PRegClass.contains(ScratchReg) &&
+ "ScratchReg must be a P register");
+ BuildMI(MBB, I, DL, TII.get(BF::ADDpp), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addReg(ScratchReg, RegState::Kill);
+ } else {
+ assert(BF::DRegClass.contains(Reg) && "Reg must be a D or P register");
+ assert(BF::DRegClass.contains(ScratchReg) &&
+ "ScratchReg must be a D register");
+ BuildMI(MBB, I, DL, TII.get(BF::ADD), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addReg(ScratchReg, RegState::Kill);
+ }
+}
+
+// Emit instructions to load a constant into D/P register
+void BlackfinRegisterInfo::loadConstant(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ DebugLoc DL,
+ unsigned Reg,
+ int value) const {
+ if (isInt<7>(value)) {
+ BuildMI(MBB, I, DL, TII.get(BF::LOADimm7), Reg).addImm(value);
+ return;
+ }
+
+ if (isUint<16>(value)) {
+ BuildMI(MBB, I, DL, TII.get(BF::LOADuimm16), Reg).addImm(value);
+ return;
+ }
+
+ if (isInt<16>(value)) {
+ BuildMI(MBB, I, DL, TII.get(BF::LOADimm16), Reg).addImm(value);
+ return;
+ }
+
+ // We must split into halves
+ BuildMI(MBB, I, DL,
+ TII.get(BF::LOAD16i), getSubReg(Reg, bfin_subreg_hi16))
+ .addImm((value >> 16) & 0xffff)
+ .addReg(Reg, RegState::ImplicitDefine);
+ BuildMI(MBB, I, DL,
+ TII.get(BF::LOAD16i), getSubReg(Reg, bfin_subreg_lo16))
+ .addImm(value & 0xffff)
+ .addReg(Reg, RegState::ImplicitKill)
+ .addReg(Reg, RegState::ImplicitDefine);
+}
+
+void BlackfinRegisterInfo::
+eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ if (!hasReservedCallFrame(MF)) {
+ int64_t Amount = I->getOperand(0).getImm();
+ if (Amount != 0) {
+ assert(Amount%4 == 0 && "Unaligned call frame size");
+ if (I->getOpcode() == BF::ADJCALLSTACKDOWN) {
+ adjustRegister(MBB, I, I->getDebugLoc(), BF::SP, BF::P1, -Amount);
+ } else {
+ assert(I->getOpcode() == BF::ADJCALLSTACKUP &&
+ "Unknown call frame pseudo instruction");
+ adjustRegister(MBB, I, I->getDebugLoc(), BF::SP, BF::P1, Amount);
+ }
+ }
+ }
+ MBB.erase(I);
+}
+
+/// findScratchRegister - Find a 'free' register. Try for a call-clobbered
+/// register first and then a spilled callee-saved register if that fails.
+static unsigned findScratchRegister(MachineBasicBlock::iterator II,
+ RegScavenger *RS,
+ const TargetRegisterClass *RC,
+ int SPAdj) {
+ assert(RS && "Register scavenging must be on");
+ unsigned Reg = RS->FindUnusedReg(RC);
+ if (Reg == 0)
+ Reg = RS->scavengeRegister(RC, II, SPAdj);
+ return Reg;
+}
+
+unsigned
+BlackfinRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
+ MachineInstr &MI = *II;
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned FIPos;
+ for (FIPos=0; !MI.getOperand(FIPos).isFI(); ++FIPos) {
+ assert(FIPos < MI.getNumOperands() &&
+ "Instr doesn't have FrameIndex operand!");
+ }
+ int FrameIndex = MI.getOperand(FIPos).getIndex();
+ assert(FIPos+1 < MI.getNumOperands() && MI.getOperand(FIPos+1).isImm());
+ int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex)
+ + MI.getOperand(FIPos+1).getImm();
+ unsigned BaseReg = BF::FP;
+ if (hasFP(MF)) {
+ assert(SPAdj==0 && "Unexpected SP adjust in function with frame pointer");
+ } else {
+ BaseReg = BF::SP;
+ Offset += MF.getFrameInfo()->getStackSize() + SPAdj;
+ }
+
+ bool isStore = false;
+
+ switch (MI.getOpcode()) {
+ case BF::STORE32fi:
+ isStore = true;
+ case BF::LOAD32fi: {
+ assert(Offset%4 == 0 && "Unaligned i32 stack access");
+ assert(FIPos==1 && "Bad frame index operand");
+ MI.getOperand(FIPos).ChangeToRegister(BaseReg, false);
+ MI.getOperand(FIPos+1).setImm(Offset);
+ if (isUint<6>(Offset)) {
+ MI.setDesc(TII.get(isStore
+ ? BF::STORE32p_uimm6m4
+ : BF::LOAD32p_uimm6m4));
+ return 0;
+ }
+ if (BaseReg == BF::FP && isUint<7>(-Offset)) {
+ MI.setDesc(TII.get(isStore
+ ? BF::STORE32fp_nimm7m4
+ : BF::LOAD32fp_nimm7m4));
+ MI.getOperand(FIPos+1).setImm(-Offset);
+ return 0;
+ }
+ if (isInt<18>(Offset)) {
+ MI.setDesc(TII.get(isStore
+ ? BF::STORE32p_imm18m4
+ : BF::LOAD32p_imm18m4));
+ return 0;
+ }
+ // Use RegScavenger to calculate proper offset...
+ MI.dump();
+ llvm_unreachable("Stack frame offset too big");
+ break;
+ }
+ case BF::ADDpp: {
+ assert(MI.getOperand(0).isReg() && "ADD instruction needs a register");
+ unsigned DestReg = MI.getOperand(0).getReg();
+ // We need to produce a stack offset in a P register. We emit:
+ // P0 = offset;
+ // P0 = BR + P0;
+ assert(FIPos==1 && "Bad frame index operand");
+ loadConstant(MBB, II, DL, DestReg, Offset);
+ MI.getOperand(1).ChangeToRegister(DestReg, false, false, true);
+ MI.getOperand(2).ChangeToRegister(BaseReg, false);
+ break;
+ }
+ case BF::STORE16fi:
+ isStore = true;
+ case BF::LOAD16fi: {
+ assert(Offset%2 == 0 && "Unaligned i16 stack access");
+ assert(FIPos==1 && "Bad frame index operand");
+ // We need a P register to use as an address
+ unsigned ScratchReg = findScratchRegister(II, RS, &BF::PRegClass, SPAdj);
+ assert(ScratchReg && "Could not scavenge register");
+ loadConstant(MBB, II, DL, ScratchReg, Offset);
+ BuildMI(MBB, II, DL, TII.get(BF::ADDpp), ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addReg(BaseReg);
+ MI.setDesc(TII.get(isStore ? BF::STORE16pi : BF::LOAD16pi));
+ MI.getOperand(1).ChangeToRegister(ScratchReg, false, false, true);
+ MI.RemoveOperand(2);
+ break;
+ }
+ case BF::STORE8fi: {
+ // This is an AnyCC spill, we need a scratch register.
+ assert(FIPos==1 && "Bad frame index operand");
+ MachineOperand SpillReg = MI.getOperand(0);
+ unsigned ScratchReg = findScratchRegister(II, RS, &BF::DRegClass, SPAdj);
+ assert(ScratchReg && "Could not scavenge register");
+ if (SpillReg.getReg()==BF::NCC) {
+ BuildMI(MBB, II, DL, TII.get(BF::MOVENCC_z), ScratchReg)
+ .addOperand(SpillReg);
+ BuildMI(MBB, II, DL, TII.get(BF::BITTGL), ScratchReg)
+ .addReg(ScratchReg).addImm(0);
+ } else {
+ BuildMI(MBB, II, DL, TII.get(BF::MOVECC_zext), ScratchReg)
+ .addOperand(SpillReg);
+ }
+ // STORE D
+ MI.setDesc(TII.get(BF::STORE8p_imm16));
+ MI.getOperand(0).ChangeToRegister(ScratchReg, false, false, true);
+ MI.getOperand(FIPos).ChangeToRegister(BaseReg, false);
+ MI.getOperand(FIPos+1).setImm(Offset);
+ break;
+ }
+ case BF::LOAD8fi: {
+ // This is an restore, we need a scratch register.
+ assert(FIPos==1 && "Bad frame index operand");
+ MachineOperand SpillReg = MI.getOperand(0);
+ unsigned ScratchReg = findScratchRegister(II, RS, &BF::DRegClass, SPAdj);
+ assert(ScratchReg && "Could not scavenge register");
+ MI.setDesc(TII.get(BF::LOAD32p_imm16_8z));
+ MI.getOperand(0).ChangeToRegister(ScratchReg, true);
+ MI.getOperand(FIPos).ChangeToRegister(BaseReg, false);
+ MI.getOperand(FIPos+1).setImm(Offset);
+ ++II;
+ if (SpillReg.getReg()==BF::CC) {
+ // CC = D
+ BuildMI(MBB, II, DL, TII.get(BF::MOVECC_nz), BF::CC)
+ .addReg(ScratchReg, RegState::Kill);
+ } else {
+ // Restore NCC (CC = D==0)
+ BuildMI(MBB, II, DL, TII.get(BF::SETEQri_not), BF::NCC)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(0);
+ }
+ break;
+ }
+ default:
+ llvm_unreachable("Cannot eliminate frame index");
+ break;
+ }
+ return 0;
+}
+
+void BlackfinRegisterInfo::
+processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetRegisterClass *RC = BF::DPRegisterClass;
+ if (requiresRegisterScavenging(MF)) {
+ // Reserve a slot close to SP or frame pointer.
+ RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
+ RC->getAlignment()));
+ }
+}
+
+void BlackfinRegisterInfo::
+processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
+}
+
+// Emit a prologue that sets up a stack frame.
+// On function entry, R0-R2 and P0 may hold arguments.
+// R3, P1, and P2 may be used as scratch registers
+void BlackfinRegisterInfo::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ DebugLoc dl = (MBBI != MBB.end()
+ ? MBBI->getDebugLoc()
+ : DebugLoc::getUnknownLoc());
+
+ int FrameSize = MFI->getStackSize();
+ if (FrameSize%4) {
+ FrameSize = (FrameSize+3) & ~3;
+ MFI->setStackSize(FrameSize);
+ }
+
+ if (!hasFP(MF)) {
+ assert(!MFI->hasCalls() &&
+ "FP elimination on a non-leaf function is not supported");
+ adjustRegister(MBB, MBBI, dl, BF::SP, BF::P1, -FrameSize);
+ return;
+ }
+
+ // emit a LINK instruction
+ if (FrameSize <= 0x3ffff) {
+ BuildMI(MBB, MBBI, dl, TII.get(BF::LINK)).addImm(FrameSize);
+ return;
+ }
+
+ // Frame is too big, do a manual LINK:
+ // [--SP] = RETS;
+ // [--SP] = FP;
+ // FP = SP;
+ // P1 = -FrameSize;
+ // SP = SP + P1;
+ BuildMI(MBB, MBBI, dl, TII.get(BF::PUSH))
+ .addReg(BF::RETS, RegState::Kill);
+ BuildMI(MBB, MBBI, dl, TII.get(BF::PUSH))
+ .addReg(BF::FP, RegState::Kill);
+ BuildMI(MBB, MBBI, dl, TII.get(BF::MOVE), BF::FP)
+ .addReg(BF::SP);
+ loadConstant(MBB, MBBI, dl, BF::P1, -FrameSize);
+ BuildMI(MBB, MBBI, dl, TII.get(BF::ADDpp), BF::SP)
+ .addReg(BF::SP, RegState::Kill)
+ .addReg(BF::P1, RegState::Kill);
+
+}
+
+void BlackfinRegisterInfo::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineBasicBlock::iterator MBBI = prior(MBB.end());
+ DebugLoc dl = MBBI->getDebugLoc();
+
+ int FrameSize = MFI->getStackSize();
+ assert(FrameSize%4 == 0 && "Misaligned frame size");
+
+ if (!hasFP(MF)) {
+ assert(!MFI->hasCalls() &&
+ "FP elimination on a non-leaf function is not supported");
+ adjustRegister(MBB, MBBI, dl, BF::SP, BF::P1, FrameSize);
+ return;
+ }
+
+ // emit an UNLINK instruction
+ BuildMI(MBB, MBBI, dl, TII.get(BF::UNLINK));
+}
+
+unsigned BlackfinRegisterInfo::getRARegister() const {
+ return BF::RETS;
+}
+
+unsigned BlackfinRegisterInfo::getFrameRegister(MachineFunction &MF) const {
+ return hasFP(MF) ? BF::FP : BF::SP;
+}
+
+unsigned BlackfinRegisterInfo::getEHExceptionRegister() const {
+ llvm_unreachable("What is the exception register");
+ return 0;
+}
+
+unsigned BlackfinRegisterInfo::getEHHandlerRegister() const {
+ llvm_unreachable("What is the exception handler register");
+ return 0;
+}
+
+int BlackfinRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
+ llvm_unreachable("What is the dwarf register number");
+ return -1;
+}
+
+#include "BlackfinGenRegisterInfo.inc"
+
diff --git a/lib/Target/Blackfin/BlackfinRegisterInfo.h b/lib/Target/Blackfin/BlackfinRegisterInfo.h
new file mode 100644
index 0000000..501f504
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinRegisterInfo.h
@@ -0,0 +1,104 @@
+//===- BlackfinRegisterInfo.h - Blackfin Register Information ..-*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Blackfin implementation of the TargetRegisterInfo
+// class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFINREGISTERINFO_H
+#define BLACKFINREGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "BlackfinGenRegisterInfo.h.inc"
+
+namespace llvm {
+
+ class BlackfinSubtarget;
+ class TargetInstrInfo;
+ class Type;
+
+ // Subregister indices, keep in sync with BlackfinRegisterInfo.td
+ enum BfinSubregIdx {
+ bfin_subreg_lo16 = 1,
+ bfin_subreg_hi16 = 2,
+ bfin_subreg_lo32 = 3
+ };
+
+ struct BlackfinRegisterInfo : public BlackfinGenRegisterInfo {
+ BlackfinSubtarget &Subtarget;
+ const TargetInstrInfo &TII;
+
+ BlackfinRegisterInfo(BlackfinSubtarget &st, const TargetInstrInfo &tii);
+
+ /// Code Generation virtual methods...
+ const unsigned *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
+
+ const TargetRegisterClass* const*
+ getCalleeSavedRegClasses(const MachineFunction *MF = 0) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const;
+
+ // getSubReg implemented by tablegen
+
+ const TargetRegisterClass *getPointerRegClass(unsigned Kind = 0) const {
+ return &BF::PRegClass;
+ }
+
+ const TargetRegisterClass *getPhysicalRegisterRegClass(unsigned reg,
+ EVT VT) const;
+
+ bool hasFP(const MachineFunction &MF) const;
+
+ // bool hasReservedCallFrame(MachineFunction &MF) const;
+
+ bool requiresRegisterScavenging(const MachineFunction &MF) const;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const;
+
+ void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
+
+ void emitPrologue(MachineFunction &MF) const;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
+
+ unsigned getFrameRegister(MachineFunction &MF) const;
+ unsigned getRARegister() const;
+
+ // Exception handling queries.
+ unsigned getEHExceptionRegister() const;
+ unsigned getEHHandlerRegister() const;
+
+ int getDwarfRegNum(unsigned RegNum, bool isEH) const;
+
+ // Utility functions
+ void adjustRegister(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ DebugLoc DL,
+ unsigned Reg,
+ unsigned ScratchReg,
+ int delta) const;
+ void loadConstant(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ DebugLoc DL,
+ unsigned Reg,
+ int value) const;
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/Blackfin/BlackfinRegisterInfo.td b/lib/Target/Blackfin/BlackfinRegisterInfo.td
new file mode 100644
index 0000000..642d10f
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinRegisterInfo.td
@@ -0,0 +1,385 @@
+//===- BlackfinRegisterInfo.td - Blackfin Register defs ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Declarations that describe the Blackfin register file
+//===----------------------------------------------------------------------===//
+
+// Registers are identified with 3-bit group and 3-bit ID numbers.
+
+class BlackfinReg<string n> : Register<n> {
+ field bits<3> Group;
+ field bits<3> Num;
+ let Namespace = "BF";
+}
+
+// Rc - 1-bit registers
+class Rc<bits<5> bitno, string n> : BlackfinReg<n> {
+ field bits<5> BitNum = bitno;
+}
+
+// Rs - 16-bit integer registers
+class Rs<bits<3> group, bits<3> num, bits<1> hi, string n> : BlackfinReg<n> {
+ let Group = group;
+ let Num = num;
+ field bits<1> High = hi;
+}
+
+// Ri - 32-bit integer registers with subregs
+class Ri<bits<3> group, bits<3> num, string n> : BlackfinReg<n> {
+ let Group = group;
+ let Num = num;
+}
+
+// Ra 40-bit accumulator registers
+class Ra<bits<3> num, string n, list<Register> subs> : BlackfinReg<n> {
+ let SubRegs = subs;
+ let Group = 4;
+ let Num = num;
+}
+
+// Ywo halves of 32-bit register
+multiclass Rss<bits<3> group, bits<3> num, string n> {
+ def H : Rs<group, num, 1, !strconcat(n, ".h")>;
+ def L : Rs<group, num, 0, !strconcat(n, ".l")>;
+}
+
+// Rii - 32-bit integer registers with subregs
+class Rii<bits<3> group, bits<3> num, string n, list<Register> subs>
+ : BlackfinReg<n> {
+ let SubRegs = subs;
+ let Group = group;
+ let Num = num;
+}
+
+// Status bits are all part of ASTAT
+def AZ : Rc<0, "az">;
+def AN : Rc<1, "an">;
+def CC : Rc<5, "cc">, DwarfRegNum<[34]>;
+def NCC : Rc<5, "!cc"> { let Aliases = [CC]; }
+def AQ : Rc<6, "aq">;
+def AC0 : Rc<12, "ac0">;
+def AC1 : Rc<13, "ac1">;
+def AV0 : Rc<16, "av0">;
+def AV0S : Rc<17, "av0s">;
+def AV1 : Rc<18, "av1">;
+def AV1S : Rc<19, "av1s">;
+def V : Rc<24, "v">;
+def VS : Rc<25, "vs">;
+// Skipped non-status bits: AC0_COPY, V_COPY, RND_MOD
+
+// Group 0: Integer registers
+defm R0 : Rss<0, 0, "r0">;
+def R0 : Rii<0, 0, "r0", [R0H, R0L]>, DwarfRegNum<[0]>;
+defm R1 : Rss<0, 1, "r1">;
+def R1 : Rii<0, 1, "r1", [R1H, R1L]>, DwarfRegNum<[1]>;
+defm R2 : Rss<0, 2, "r2">;
+def R2 : Rii<0, 2, "r2", [R2H, R2L]>, DwarfRegNum<[2]>;
+defm R3 : Rss<0, 3, "r3">;
+def R3 : Rii<0, 3, "r3", [R3H, R3L]>, DwarfRegNum<[3]>;
+defm R4 : Rss<0, 4, "r4">;
+def R4 : Rii<0, 4, "r4", [R4H, R4L]>, DwarfRegNum<[4]>;
+defm R5 : Rss<0, 5, "r5">;
+def R5 : Rii<0, 5, "r5", [R5H, R5L]>, DwarfRegNum<[5]>;
+defm R6 : Rss<0, 6, "r6">;
+def R6 : Rii<0, 6, "r6", [R6H, R6L]>, DwarfRegNum<[6]>;
+defm R7 : Rss<0, 7, "r7">;
+def R7 : Rii<0, 7, "r7", [R7H, R7L]>, DwarfRegNum<[7]>;
+
+// Group 1: Pointer registers
+defm P0 : Rss<1, 0, "p0">;
+def P0 : Rii<1, 0, "p0", [P0H, P0L]>, DwarfRegNum<[8]>;
+defm P1 : Rss<1, 1, "p1">;
+def P1 : Rii<1, 1, "p1", [P1H, P1L]>, DwarfRegNum<[9]>;
+defm P2 : Rss<1, 2, "p2">;
+def P2 : Rii<1, 2, "p2", [P2H, P2L]>, DwarfRegNum<[10]>;
+defm P3 : Rss<1, 3, "p3">;
+def P3 : Rii<1, 3, "p3", [P3H, P3L]>, DwarfRegNum<[11]>;
+defm P4 : Rss<1, 4, "p4">;
+def P4 : Rii<1, 4, "p4", [P4H, P4L]>, DwarfRegNum<[12]>;
+defm P5 : Rss<1, 5, "p5">;
+def P5 : Rii<1, 5, "p5", [P5H, P5L]>, DwarfRegNum<[13]>;
+defm SP : Rss<1, 6, "sp">;
+def SP : Rii<1, 6, "sp", [SPH, SPL]>, DwarfRegNum<[14]>;
+defm FP : Rss<1, 7, "fp">;
+def FP : Rii<1, 7, "fp", [FPH, FPL]>, DwarfRegNum<[15]>;
+
+// Group 2: Index registers
+defm I0 : Rss<2, 0, "i0">;
+def I0 : Rii<2, 0, "i0", [I0H, I0L]>, DwarfRegNum<[16]>;
+defm I1 : Rss<2, 1, "i1">;
+def I1 : Rii<2, 1, "i1", [I1H, I1L]>, DwarfRegNum<[17]>;
+defm I2 : Rss<2, 2, "i2">;
+def I2 : Rii<2, 2, "i2", [I2H, I2L]>, DwarfRegNum<[18]>;
+defm I3 : Rss<2, 3, "i3">;
+def I3 : Rii<2, 3, "i3", [I3H, I3L]>, DwarfRegNum<[19]>;
+defm M0 : Rss<2, 4, "m0">;
+def M0 : Rii<2, 4, "m0", [M0H, M0L]>, DwarfRegNum<[20]>;
+defm M1 : Rss<2, 5, "m1">;
+def M1 : Rii<2, 5, "m1", [M1H, M1L]>, DwarfRegNum<[21]>;
+defm M2 : Rss<2, 6, "m2">;
+def M2 : Rii<2, 6, "m2", [M2H, M2L]>, DwarfRegNum<[22]>;
+defm M3 : Rss<2, 7, "m3">;
+def M3 : Rii<2, 7, "m3", [M3H, M3L]>, DwarfRegNum<[23]>;
+
+// Group 3: Cyclic indexing registers
+defm B0 : Rss<3, 0, "b0">;
+def B0 : Rii<3, 0, "b0", [B0H, B0L]>, DwarfRegNum<[24]>;
+defm B1 : Rss<3, 1, "b1">;
+def B1 : Rii<3, 1, "b1", [B1H, B1L]>, DwarfRegNum<[25]>;
+defm B2 : Rss<3, 2, "b2">;
+def B2 : Rii<3, 2, "b2", [B2H, B2L]>, DwarfRegNum<[26]>;
+defm B3 : Rss<3, 3, "b3">;
+def B3 : Rii<3, 3, "b3", [B3H, B3L]>, DwarfRegNum<[27]>;
+defm L0 : Rss<3, 4, "l0">;
+def L0 : Rii<3, 4, "l0", [L0H, L0L]>, DwarfRegNum<[28]>;
+defm L1 : Rss<3, 5, "l1">;
+def L1 : Rii<3, 5, "l1", [L1H, L1L]>, DwarfRegNum<[29]>;
+defm L2 : Rss<3, 6, "l2">;
+def L2 : Rii<3, 6, "l2", [L2H, L2L]>, DwarfRegNum<[30]>;
+defm L3 : Rss<3, 7, "l3">;
+def L3 : Rii<3, 7, "l3", [L3H, L3L]>, DwarfRegNum<[31]>;
+
+// Accumulators
+def A0X : Ri <4, 0, "a0.x">;
+defm A0 : Rss<4, 1, "a0">;
+def A0W : Rii<4, 1, "a0.w", [A0H, A0L]>, DwarfRegNum<[32]>;
+def A0 : Ra <0, "a0", [A0X, A0W]>;
+
+def A1X : Ri <4, 2, "a1.x">;
+defm A1 : Rss<4, 3, "a1">;
+def A1W : Rii<4, 3, "a1.w", [A1H, A1L]>, DwarfRegNum<[33]>;
+def A1 : Ra <2, "a1", [A1X, A1W]>;
+
+def RETS : Ri<4, 7, "rets">, DwarfRegNum<[35]>;
+def RETI : Ri<7, 3, "reti">, DwarfRegNum<[36]>;
+def RETX : Ri<7, 4, "retx">, DwarfRegNum<[37]>;
+def RETN : Ri<7, 5, "retn">, DwarfRegNum<[38]>;
+def RETE : Ri<7, 6, "rete">, DwarfRegNum<[39]>;
+
+def ASTAT : Ri<4, 6, "astat">, DwarfRegNum<[40]> {
+ let SubRegs = [AZ, AN, CC, NCC, AQ, AC0, AC1, AV0, AV0S, AV1, AV1S, V, VS];
+}
+
+def SEQSTAT : Ri<7, 1, "seqstat">, DwarfRegNum<[41]>;
+def USP : Ri<7, 0, "usp">, DwarfRegNum<[42]>;
+def EMUDAT : Ri<7, 7, "emudat">, DwarfRegNum<[43]>;
+def SYSCFG : Ri<7, 2, "syscfg">;
+def CYCLES : Ri<6, 6, "cycles">;
+def CYCLES2 : Ri<6, 7, "cycles2">;
+
+// Hardware loops
+def LT0 : Ri<6, 1, "lt0">, DwarfRegNum<[44]>;
+def LT1 : Ri<6, 4, "lt1">, DwarfRegNum<[45]>;
+def LC0 : Ri<6, 0, "lc0">, DwarfRegNum<[46]>;
+def LC1 : Ri<6, 3, "lc1">, DwarfRegNum<[47]>;
+def LB0 : Ri<6, 2, "lb0">, DwarfRegNum<[48]>;
+def LB1 : Ri<6, 5, "lb1">, DwarfRegNum<[49]>;
+
+// Subregs are:
+// 1: .L
+// 2: .H
+// 3: .W (32 low bits of 40-bit accu)
+// Keep in sync with enum in BlackfinRegisterInfo.h
+def bfin_subreg_lo16 : PatLeaf<(i32 1)>;
+def bfin_subreg_hi16 : PatLeaf<(i32 2)>;
+def bfin_subreg_32bit : PatLeaf<(i32 3)>;
+
+def : SubRegSet<1,
+ [R0, R1, R2, R3, R4, R5, R6, R7,
+ P0, P1, P2, P3, P4, P5, SP, FP,
+ I0, I1, I2, I3, M0, M1, M2, M3,
+ B0, B1, B2, B3, L0, L1, L2, L3],
+ [R0L, R1L, R2L, R3L, R4L, R5L, R6L, R7L,
+ P0L, P1L, P2L, P3L, P4L, P5L, SPL, FPL,
+ I0L, I1L, I2L, I3L, M0L, M1L, M2L, M3L,
+ B0L, B1L, B2L, B3L, L0L, L1L, L2L, L3L]>;
+
+def : SubRegSet<2,
+ [R0, R1, R2, R3, R4, R5, R6, R7,
+ P0, P1, P2, P3, P4, P5, SP, FP,
+ I0, I1, I2, I3, M0, M1, M2, M3,
+ B0, B1, B2, B3, L0, L1, L2, L3],
+ [R0H, R1H, R2H, R3H, R4H, R5H, R6H, R7H,
+ P0H, P1H, P2H, P3H, P4H, P5H, SPH, FPH,
+ I0H, I1H, I2H, I3H, M0H, M1H, M2H, M3H,
+ B0H, B1H, B2H, B3H, L0H, L1H, L2H, L3H]>;
+
+def : SubRegSet<1, [A0, A0W, A1, A1W], [A0L, A0L, A1L, A1L]>;
+def : SubRegSet<2, [A0, A0W, A1, A1W], [A0H, A0H, A1H, A1H]>;
+
+// Register classes.
+def D16 : RegisterClass<"BF", [i16], 16,
+ [R0H, R0L, R1H, R1L, R2H, R2L, R3H, R3L,
+ R4H, R4L, R5H, R5L, R6H, R6L, R7H, R7L]>;
+
+def D16L : RegisterClass<"BF", [i16], 16,
+ [R0L, R1L, R2L, R3L, R4L, R5L, R6L, R7L]>;
+
+def D16H : RegisterClass<"BF", [i16], 16,
+ [R0H, R1H, R2H, R3H, R4H, R5H, R6H, R7H]>;
+
+def P16 : RegisterClass<"BF", [i16], 16,
+ [P0H, P0L, P1H, P1L, P2H, P2L, P3H, P3L,
+ P4H, P4L, P5H, P5L, SPH, SPL, FPH, FPL]>;
+
+def P16L : RegisterClass<"BF", [i16], 16,
+ [P0L, P1L, P2L, P3L, P4L, P5L, SPL, FPL]>;
+
+def P16H : RegisterClass<"BF", [i16], 16,
+ [P0H, P1H, P2H, P3H, P4H, P5H, SPH, FPH]>;
+
+def DP16 : RegisterClass<"BF", [i16], 16,
+ [R0H, R0L, R1H, R1L, R2H, R2L, R3H, R3L,
+ R4H, R4L, R5H, R5L, R6H, R6L, R7H, R7L,
+ P0H, P0L, P1H, P1L, P2H, P2L, P3H, P3L,
+ P4H, P4L, P5H, P5L, SPH, SPL, FPH, FPL]>;
+
+def DP16L : RegisterClass<"BF", [i16], 16,
+ [R0L, R1L, R2L, R3L, R4L, R5L, R6L, R7L,
+ P0L, P1L, P2L, P3L, P4L, P5L, SPL, FPL]>;
+
+def DP16H : RegisterClass<"BF", [i16], 16,
+ [R0H, R1H, R2H, R3H, R4H, R5H, R6H, R7H,
+ P0H, P1H, P2H, P3H, P4H, P5H, SPH, FPH]>;
+
+def GR16 : RegisterClass<"BF", [i16], 16,
+ [R0H, R0L, R1H, R1L, R2H, R2L, R3H, R3L,
+ R4H, R4L, R5H, R5L, R6H, R6L, R7H, R7L,
+ P0H, P0L, P1H, P1L, P2H, P2L, P3H, P3L,
+ P4H, P4L, P5H, P5L, SPH, SPL, FPH, FPL,
+ I0H, I0L, I1H, I1L, I2H, I2L, I3H, I3L,
+ M0H, M0L, M1H, M1L, M2H, M2L, M3H, M3L,
+ B0H, B0L, B1H, B1L, B2H, B2L, B3H, B3L,
+ L0H, L0L, L1H, L1L, L2H, L2L, L3H, L3L]>;
+
+def D : RegisterClass<"BF", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {
+ let SubRegClassList = [D16L, D16H];
+}
+
+def P : RegisterClass<"BF", [i32], 32, [P0, P1, P2, P3, P4, P5, FP, SP]> {
+ let SubRegClassList = [P16L, P16H];
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ PClass::iterator
+ PClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ return allocation_order_begin(MF)
+ + (RI->hasFP(MF) ? 7 : 6);
+ }
+ }];
+}
+
+def I : RegisterClass<"BF", [i32], 32, [I0, I1, I2, I3]>;
+def M : RegisterClass<"BF", [i32], 32, [M0, M1, M2, M3]>;
+def B : RegisterClass<"BF", [i32], 32, [B0, B1, B2, B3]>;
+def L : RegisterClass<"BF", [i32], 32, [L0, L1, L2, L3]>;
+
+def DP : RegisterClass<"BF", [i32], 32,
+ [R0, R1, R2, R3, R4, R5, R6, R7,
+ P0, P1, P2, P3, P4, P5, FP, SP]> {
+ let SubRegClassList = [DP16L, DP16H];
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ DPClass::iterator
+ DPClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ return allocation_order_begin(MF)
+ + (RI->hasFP(MF) ? 15 : 14);
+ }
+ }];
+}
+
+def GR : RegisterClass<"BF", [i32], 32,
+ [R0, R1, R2, R3, R4, R5, R6, R7,
+ P0, P1, P2, P3, P4, P5,
+ I0, I1, I2, I3, M0, M1, M2, M3,
+ B0, B1, B2, B3, L0, L1, L2, L3,
+ FP, SP]> {
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ GRClass::iterator
+ GRClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ return allocation_order_begin(MF)
+ + (RI->hasFP(MF) ? 31 : 30);
+ }
+ }];
+}
+
+def ALL : RegisterClass<"BF", [i32], 32,
+ [R0, R1, R2, R3, R4, R5, R6, R7,
+ P0, P1, P2, P3, P4, P5,
+ I0, I1, I2, I3, M0, M1, M2, M3,
+ B0, B1, B2, B3, L0, L1, L2, L3,
+ FP, SP,
+ A0X, A0W, A1X, A1W, ASTAT, RETS,
+ LC0, LT0, LB0, LC1, LT1, LB1, CYCLES, CYCLES2,
+ USP, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, EMUDAT]> {
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ ALLClass::iterator
+ ALLClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ return allocation_order_begin(MF)
+ + (RI->hasFP(MF) ? 31 : 30);
+ }
+ }];
+}
+
+def PI : RegisterClass<"BF", [i32], 32,
+ [P0, P1, P2, P3, P4, P5, I0, I1, I2, I3, FP, SP]> {
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ PIClass::iterator
+ PIClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ return allocation_order_begin(MF)
+ + (RI->hasFP(MF) ? 11 : 10);
+ }
+ }];
+}
+
+// We are going to pretend that CC and !CC are 32-bit registers, even though
+// they only can hold 1 bit.
+let CopyCost = -1, Size = 8 in {
+def JustCC : RegisterClass<"BF", [i32], 8, [CC]>;
+def NotCC : RegisterClass<"BF", [i32], 8, [NCC]>;
+def AnyCC : RegisterClass<"BF", [i32], 8, [CC, NCC]> {
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ AnyCCClass::iterator
+ AnyCCClass::allocation_order_end(const MachineFunction &MF) const {
+ return allocation_order_begin(MF)+1;
+ }
+ }];
+}
+def StatBit : RegisterClass<"BF", [i1], 8,
+ [AZ, AN, CC, AQ, AC0, AC1, AV0, AV0S, AV1, AV1S, V, VS]>;
+}
+
+// Should be i40, but that isn't defined. It is not a legal type yet anyway.
+def Accu : RegisterClass<"BF", [i64], 64, [A0, A1]>;
diff --git a/lib/Target/Blackfin/BlackfinSubtarget.cpp b/lib/Target/Blackfin/BlackfinSubtarget.cpp
new file mode 100644
index 0000000..e104c52
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinSubtarget.cpp
@@ -0,0 +1,36 @@
+//===- BlackfinSubtarget.cpp - BLACKFIN Subtarget Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the blackfin specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinSubtarget.h"
+#include "BlackfinGenSubtarget.inc"
+
+using namespace llvm;
+
+BlackfinSubtarget::BlackfinSubtarget(const std::string &TT,
+ const std::string &FS)
+ : sdram(false),
+ icplb(false),
+ wa_mi_shift(false),
+ wa_csync(false),
+ wa_specld(false),
+ wa_mmr_stall(false),
+ wa_lcregs(false),
+ wa_hwloop(false),
+ wa_ind_call(false),
+ wa_killed_mmr(false),
+ wa_rets(false)
+{
+ std::string CPU = "generic";
+ // Parse features string.
+ ParseSubtargetFeatures(FS, CPU);
+}
diff --git a/lib/Target/Blackfin/BlackfinSubtarget.h b/lib/Target/Blackfin/BlackfinSubtarget.h
new file mode 100644
index 0000000..d667fe2
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinSubtarget.h
@@ -0,0 +1,45 @@
+//===- BlackfinSubtarget.h - Define Subtarget for the Blackfin -*- C++ -*-====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the BLACKFIN specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFIN_SUBTARGET_H
+#define BLACKFIN_SUBTARGET_H
+
+#include "llvm/Target/TargetSubtarget.h"
+#include <string>
+
+namespace llvm {
+
+ class BlackfinSubtarget : public TargetSubtarget {
+ bool sdram;
+ bool icplb;
+ bool wa_mi_shift;
+ bool wa_csync;
+ bool wa_specld;
+ bool wa_mmr_stall;
+ bool wa_lcregs;
+ bool wa_hwloop;
+ bool wa_ind_call;
+ bool wa_killed_mmr;
+ bool wa_rets;
+ public:
+ BlackfinSubtarget(const std::string &TT, const std::string &FS);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ std::string ParseSubtargetFeatures(const std::string &FS,
+ const std::string &CPU);
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/Blackfin/BlackfinTargetMachine.cpp b/lib/Target/Blackfin/BlackfinTargetMachine.cpp
new file mode 100644
index 0000000..47ba2fe
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinTargetMachine.cpp
@@ -0,0 +1,42 @@
+//===-- BlackfinTargetMachine.cpp - Define TargetMachine for Blackfin -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "BlackfinTargetMachine.h"
+#include "Blackfin.h"
+#include "BlackfinMCAsmInfo.h"
+#include "llvm/PassManager.h"
+#include "llvm/Target/TargetRegistry.h"
+
+using namespace llvm;
+
+extern "C" void LLVMInitializeBlackfinTarget() {
+ RegisterTargetMachine<BlackfinTargetMachine> X(TheBlackfinTarget);
+ RegisterAsmInfo<BlackfinMCAsmInfo> Y(TheBlackfinTarget);
+
+}
+
+BlackfinTargetMachine::BlackfinTargetMachine(const Target &T,
+ const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ DataLayout("e-p:32:32-i64:32-f64:32"),
+ Subtarget(TT, FS),
+ TLInfo(*this),
+ InstrInfo(Subtarget),
+ FrameInfo(TargetFrameInfo::StackGrowsDown, 4, 0) {
+}
+
+bool BlackfinTargetMachine::addInstSelector(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel) {
+ PM.add(createBlackfinISelDag(*this, OptLevel));
+ return false;
+}
diff --git a/lib/Target/Blackfin/BlackfinTargetMachine.h b/lib/Target/Blackfin/BlackfinTargetMachine.h
new file mode 100644
index 0000000..73ed314
--- /dev/null
+++ b/lib/Target/Blackfin/BlackfinTargetMachine.h
@@ -0,0 +1,54 @@
+//===-- BlackfinTargetMachine.h - TargetMachine for Blackfin ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the Blackfin specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef BLACKFINTARGETMACHINE_H
+#define BLACKFINTARGETMACHINE_H
+
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "BlackfinInstrInfo.h"
+#include "BlackfinSubtarget.h"
+#include "BlackfinISelLowering.h"
+
+namespace llvm {
+
+ class BlackfinTargetMachine : public LLVMTargetMachine {
+ const TargetData DataLayout;
+ BlackfinSubtarget Subtarget;
+ BlackfinTargetLowering TLInfo;
+ BlackfinInstrInfo InstrInfo;
+ TargetFrameInfo FrameInfo;
+ public:
+ BlackfinTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
+
+ virtual const BlackfinInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
+ virtual const BlackfinSubtarget *getSubtargetImpl() const {
+ return &Subtarget;
+ }
+ virtual const BlackfinRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+ virtual BlackfinTargetLowering* getTargetLowering() const {
+ return const_cast<BlackfinTargetLowering*>(&TLInfo);
+ }
+ virtual const TargetData *getTargetData() const { return &DataLayout; }
+ virtual bool addInstSelector(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel);
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/Blackfin/CMakeLists.txt b/lib/Target/Blackfin/CMakeLists.txt
new file mode 100644
index 0000000..6c3b244
--- /dev/null
+++ b/lib/Target/Blackfin/CMakeLists.txt
@@ -0,0 +1,21 @@
+set(LLVM_TARGET_DEFINITIONS Blackfin.td)
+
+tablegen(BlackfinGenRegisterInfo.h.inc -gen-register-desc-header)
+tablegen(BlackfinGenRegisterNames.inc -gen-register-enums)
+tablegen(BlackfinGenRegisterInfo.inc -gen-register-desc)
+tablegen(BlackfinGenInstrNames.inc -gen-instr-enums)
+tablegen(BlackfinGenInstrInfo.inc -gen-instr-desc)
+tablegen(BlackfinGenAsmWriter.inc -gen-asm-writer)
+tablegen(BlackfinGenDAGISel.inc -gen-dag-isel)
+tablegen(BlackfinGenSubtarget.inc -gen-subtarget)
+tablegen(BlackfinGenCallingConv.inc -gen-callingconv)
+
+add_llvm_target(BlackfinCodeGen
+ BlackfinInstrInfo.cpp
+ BlackfinISelDAGToDAG.cpp
+ BlackfinISelLowering.cpp
+ BlackfinMCAsmInfo.cpp
+ BlackfinRegisterInfo.cpp
+ BlackfinSubtarget.cpp
+ BlackfinTargetMachine.cpp
+ )
diff --git a/lib/Target/Blackfin/Makefile b/lib/Target/Blackfin/Makefile
new file mode 100644
index 0000000..c0c1bce
--- /dev/null
+++ b/lib/Target/Blackfin/Makefile
@@ -0,0 +1,23 @@
+##===- lib/Target/Blackfin/Makefile ------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../..
+LIBRARYNAME = LLVMBlackfinCodeGen
+TARGET = Blackfin
+
+# Make sure that tblgen is run, first thing.
+BUILT_SOURCES = BlackfinGenRegisterInfo.h.inc BlackfinGenRegisterNames.inc \
+ BlackfinGenRegisterInfo.inc BlackfinGenInstrNames.inc \
+ BlackfinGenInstrInfo.inc BlackfinGenAsmWriter.inc \
+ BlackfinGenDAGISel.inc BlackfinGenSubtarget.inc \
+ BlackfinGenCallingConv.inc
+
+DIRS = AsmPrinter TargetInfo
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/Blackfin/README.txt b/lib/Target/Blackfin/README.txt
new file mode 100644
index 0000000..b4c8227
--- /dev/null
+++ b/lib/Target/Blackfin/README.txt
@@ -0,0 +1,244 @@
+//===-- README.txt - Notes for Blackfin Target ------------------*- org -*-===//
+
+* Condition codes
+** DONE Problem with asymmetric SETCC operations
+The instruction
+
+ CC = R0 < 2
+
+is not symmetric - there is no R0 > 2 instruction. On the other hand, IF CC
+JUMP can take both CC and !CC as a condition. We cannot pattern-match (brcond
+(not cc), target), the DAG optimizer removes that kind of thing.
+
+This is handled by creating a pseudo-register NCC that aliases CC. Register
+classes JustCC and NotCC are used to control the inversion of CC.
+
+** DONE CC as an i32 register
+The AnyCC register class pretends to hold i32 values. It can only represent the
+values 0 and 1, but we can copy to and from the D class. This hack makes it
+possible to represent the setcc instruction without having i1 as a legal type.
+
+In most cases, the CC register is set by a "CC = .." or BITTST instruction, and
+then used in a conditional branch or move. The code generator thinks it is
+moving 32 bits, but the value stays in CC. In other cases, the result of a
+comparison is actually used as am i32 number, and CC will be copied to a D
+register.
+
+* Stack frames
+** TODO Use Push/Pop instructions
+We should use the push/pop instructions when saving callee-saved
+registers. The are smaller, and we may even use push multiple instructions.
+
+** TODO requiresRegisterScavenging
+We need more intelligence in determining when the scavenger is needed. We
+should keep track of:
+- Spilling D16 registers
+- Spilling AnyCC registers
+
+* Assembler
+** TODO Implement PrintGlobalVariable
+** TODO Remove LOAD32sym
+It's a hack combining two instructions by concatenation.
+
+* Inline Assembly
+
+These are the GCC constraints from bfin/constraints.md:
+
+| Code | Register class | LLVM |
+|-------+-------------------------------------------+------|
+| a | P | C |
+| d | D | C |
+| z | Call clobbered P (P0, P1, P2) | X |
+| D | EvenD | X |
+| W | OddD | X |
+| e | Accu | C |
+| A | A0 | S |
+| B | A1 | S |
+| b | I | C |
+| v | B | C |
+| f | M | C |
+| c | Circular I, B, L | X |
+| C | JustCC | S |
+| t | LoopTop | X |
+| u | LoopBottom | X |
+| k | LoopCount | X |
+| x | GR | C |
+| y | RET*, ASTAT, SEQSTAT, USP | X |
+| w | ALL | C |
+| Z | The FD-PIC GOT pointer (P3) | S |
+| Y | The FD-PIC function pointer register (P1) | S |
+| q0-q7 | R0-R7 individually | |
+| qA | P0 | |
+|-------+-------------------------------------------+------|
+| Code | Constant | |
+|-------+-------------------------------------------+------|
+| J | 1<<N, N<32 | |
+| Ks3 | imm3 | |
+| Ku3 | uimm3 | |
+| Ks4 | imm4 | |
+| Ku4 | uimm4 | |
+| Ks5 | imm5 | |
+| Ku5 | uimm5 | |
+| Ks7 | imm7 | |
+| KN7 | -imm7 | |
+| Ksh | imm16 | |
+| Kuh | uimm16 | |
+| L | ~(1<<N) | |
+| M1 | 0xff | |
+| M2 | 0xffff | |
+| P0-P4 | 0-4 | |
+| PA | Macflag, not M | |
+| PB | Macflag, only M | |
+| Q | Symbol | |
+
+** TODO Support all register classes
+* DAG combiner
+** Create test case for each Illegal SETCC case
+The DAG combiner may someimes produce illegal i16 SETCC instructions.
+
+*** TODO SETCC (ctlz x), 5) == const
+*** TODO SETCC (and load, const) == const
+*** DONE SETCC (zext x) == const
+*** TODO SETCC (sext x) == const
+
+* Instruction selection
+** TODO Better imediate constants
+Like ARM, build constants as small imm + shift.
+
+** TODO Implement cycle counter
+We have CYCLES and CYCLES2 registers, but the readcyclecounter intrinsic wants
+to return i64, and the code generator doesn't know how to legalize that.
+
+** TODO Instruction alternatives
+Some instructions come in different variants for example:
+
+ D = D + D
+ P = P + P
+
+Cross combinations are not allowed:
+
+ P = D + D (bad)
+
+Similarly for the subreg pseudo-instructions:
+
+ D16L = EXTRACT_SUBREG D16, bfin_subreg_lo16
+ P16L = EXTRACT_SUBREG P16, bfin_subreg_lo16
+
+We want to take advantage of the alternative instructions. This could be done by
+changing the DAG after instruction selection.
+
+
+** Multipatterns for load/store
+We should try to identify multipatterns for load and store instructions. The
+available instruction matrix is a bit irregular.
+
+Loads:
+
+| Addr | D | P | D 16z | D 16s | D16 | D 8z | D 8s |
+|------------+---+---+-------+-------+-----+------+------|
+| P | * | * | * | * | * | * | * |
+| P++ | * | * | * | * | | * | * |
+| P-- | * | * | * | * | | * | * |
+| P+uimm5m2 | | | * | * | | | |
+| P+uimm6m4 | * | * | | | | | |
+| P+imm16 | | | | | | * | * |
+| P+imm17m2 | | | * | * | | | |
+| P+imm18m4 | * | * | | | | | |
+| P++P | * | | * | * | * | | |
+| FP-uimm7m4 | * | * | | | | | |
+| I | * | | | | * | | |
+| I++ | * | | | | * | | |
+| I-- | * | | | | * | | |
+| I++M | * | | | | | | |
+
+Stores:
+
+| Addr | D | P | D16H | D16L | D 8 |
+|------------+---+---+------+------+-----|
+| P | * | * | * | * | * |
+| P++ | * | * | | * | * |
+| P-- | * | * | | * | * |
+| P+uimm5m2 | | | | * | |
+| P+uimm6m4 | * | * | | | |
+| P+imm16 | | | | | * |
+| P+imm17m2 | | | | * | |
+| P+imm18m4 | * | * | | | |
+| P++P | * | | * | * | |
+| FP-uimm7m4 | * | * | | | |
+| I | * | | * | * | |
+| I++ | * | | * | * | |
+| I-- | * | | * | * | |
+| I++M | * | | | | |
+
+* Workarounds and features
+Blackfin CPUs have bugs. Each model comes in a number of silicon revisions with
+different bugs. We learn about the CPU model from the -mcpu switch.
+
+** Interpretation of -mcpu value
+- -mcpu=bf527 refers to the latest known BF527 revision
+- -mcpu=bf527-0.2 refers to silicon rev. 0.2
+- -mcpu=bf527-any refers to all known revisions
+- -mcpu=bf527-none disables all workarounds
+
+The -mcpu setting affects the __SILICON_REVISION__ macro and enabled workarounds:
+
+| -mcpu | __SILICON_REVISION__ | Workarounds |
+|------------+----------------------+--------------------|
+| bf527 | Def Latest | Specific to latest |
+| bf527-1.3 | Def 0x0103 | Specific to 1.3 |
+| bf527-any | Def 0xffff | All bf527-x.y |
+| bf527-none | Undefined | None |
+
+These are the known cores and revisions:
+
+| Core | Silicon | Processors |
+|-------------+--------------------+-------------------------|
+| Edinburgh | 0.3, 0.4, 0.5, 0.6 | BF531 BF532 BF533 |
+| Braemar | 0.2, 0.3 | BF534 BF536 BF537 |
+| Stirling | 0.3, 0.4, 0.5 | BF538 BF539 |
+| Moab | 0.0, 0.1, 0.2 | BF542 BF544 BF548 BF549 |
+| Teton | 0.3, 0.5 | BF561 |
+| Kookaburra | 0.0, 0.1, 0.2 | BF523 BF525 BF527 |
+| Mockingbird | 0.0, 0.1 | BF522 BF524 BF526 |
+| Brodie | 0.0, 0.1 | BF512 BF514 BF516 BF518 |
+
+
+** Compiler implemented workarounds
+Most workarounds are implemented in header files and source code using the
+__ADSPBF527__ macros. A few workarounds require compiler support.
+
+| Anomaly | Macro | GCC Switch |
+|----------+--------------------------------+------------------|
+| Any | __WORKAROUNDS_ENABLED | |
+| 05000074 | WA_05000074 | |
+| 05000244 | __WORKAROUND_SPECULATIVE_SYNCS | -mcsync-anomaly |
+| 05000245 | __WORKAROUND_SPECULATIVE_LOADS | -mspecld-anomaly |
+| 05000257 | WA_05000257 | |
+| 05000283 | WA_05000283 | |
+| 05000312 | WA_LOAD_LCREGS | |
+| 05000315 | WA_05000315 | |
+| 05000371 | __WORKAROUND_RETS | |
+| 05000426 | __WORKAROUND_INDIRECT_CALLS | Not -micplb |
+
+** GCC feature switches
+| Switch | Description |
+|---------------------------+----------------------------------------|
+| -msim | Use simulator runtime |
+| -momit-leaf-frame-pointer | Omit frame pointer for leaf functions |
+| -mlow64k | |
+| -mcsync-anomaly | |
+| -mspecld-anomaly | |
+| -mid-shared-library | |
+| -mleaf-id-shared-library | |
+| -mshared-library-id= | |
+| -msep-data | Enable separate data segment |
+| -mlong-calls | Use indirect calls |
+| -mfast-fp | |
+| -mfdpic | |
+| -minline-plt | |
+| -mstack-check-l1 | Do stack checking in L1 scratch memory |
+| -mmulticore | Enable multicore support |
+| -mcorea | Build for Core A |
+| -mcoreb | Build for Core B |
+| -msdram | Build for SDRAM |
+| -micplb | Assume ICPLBs are enabled at runtime. |
diff --git a/lib/Target/Blackfin/TargetInfo/BlackfinTargetInfo.cpp b/lib/Target/Blackfin/TargetInfo/BlackfinTargetInfo.cpp
new file mode 100644
index 0000000..402e0af
--- /dev/null
+++ b/lib/Target/Blackfin/TargetInfo/BlackfinTargetInfo.cpp
@@ -0,0 +1,21 @@
+//===-- BlackfinTargetInfo.cpp - Blackfin Target Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Blackfin.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+
+using namespace llvm;
+
+Target llvm::TheBlackfinTarget;
+
+extern "C" void LLVMInitializeBlackfinTargetInfo() {
+ RegisterTarget<Triple::bfin> X(TheBlackfinTarget, "bfin",
+ "Analog Devices Blackfin [experimental]");
+}
diff --git a/lib/Target/Blackfin/TargetInfo/CMakeLists.txt b/lib/Target/Blackfin/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..5ca8060
--- /dev/null
+++ b/lib/Target/Blackfin/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMBlackfinInfo
+ BlackfinTargetInfo.cpp
+ )
+
+add_dependencies(LLVMBlackfinInfo BlackfinCodeGenTable_gen)
diff --git a/lib/Target/Blackfin/TargetInfo/Makefile b/lib/Target/Blackfin/TargetInfo/Makefile
new file mode 100644
index 0000000..c49cfbe
--- /dev/null
+++ b/lib/Target/Blackfin/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/Blackfin/TargetInfo/Makefile -------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMBlackfinInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
index 294c6d3..fe63edf 100644
--- a/lib/Target/CBackend/CBackend.cpp
+++ b/lib/Target/CBackend/CBackend.cpp
@@ -24,43 +24,36 @@
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Target/TargetMachineRegistry.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/MathExtras.h"
+#include "llvm/System/Host.h"
#include "llvm/Config/config.h"
#include <algorithm>
#include <sstream>
using namespace llvm;
-/// CBackendTargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int CBackendTargetMachineModule;
-int CBackendTargetMachineModule = 0;
-
-// Register the target.
-static RegisterTarget<CTargetMachine> X("c", "C backend");
-
-// Force static initialization.
-extern "C" void LLVMInitializeCBackendTarget() { }
+extern "C" void LLVMInitializeCBackendTarget() {
+ // Register the target.
+ RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
+}
namespace {
/// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
@@ -88,12 +81,12 @@ namespace {
/// CWriter - This class is the main chunk of code that converts an LLVM
/// module to a C translation unit.
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
- raw_ostream &Out;
+ formatted_raw_ostream &Out;
IntrinsicLowering *IL;
Mangler *Mang;
LoopInfo *LI;
const Module *TheModule;
- const TargetAsmInfo* TAsm;
+ const MCAsmInfo* TAsm;
const TargetData* TD;
std::map<const Type *, std::string> TypeNames;
std::map<const ConstantFP *, unsigned> FPConstantMap;
@@ -101,12 +94,14 @@ namespace {
std::set<const Argument*> ByValParams;
unsigned FPCounter;
unsigned OpaqueCounter;
+ DenseMap<const Value*, unsigned> AnonValueNumbers;
+ unsigned NextAnonValueNumber;
public:
static char ID;
- explicit CWriter(raw_ostream &o)
+ explicit CWriter(formatted_raw_ostream &o)
: FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
- TheModule(0), TAsm(0), TD(0), OpaqueCounter(0) {
+ TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
FPCounter = 0;
}
@@ -149,24 +144,26 @@ namespace {
return false;
}
- raw_ostream &printType(raw_ostream &Out, const Type *Ty,
- bool isSigned = false,
- const std::string &VariableName = "",
- bool IgnoreName = false,
- const AttrListPtr &PAL = AttrListPtr());
+ raw_ostream &printType(formatted_raw_ostream &Out,
+ const Type *Ty,
+ bool isSigned = false,
+ const std::string &VariableName = "",
+ bool IgnoreName = false,
+ const AttrListPtr &PAL = AttrListPtr());
std::ostream &printType(std::ostream &Out, const Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false,
const AttrListPtr &PAL = AttrListPtr());
- raw_ostream &printSimpleType(raw_ostream &Out, const Type *Ty,
- bool isSigned,
- const std::string &NameSoFar = "");
+ raw_ostream &printSimpleType(formatted_raw_ostream &Out,
+ const Type *Ty,
+ bool isSigned,
+ const std::string &NameSoFar = "");
std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
- void printStructReturnPointerFunctionType(raw_ostream &Out,
+ void printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *Ty);
@@ -239,7 +236,7 @@ namespace {
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
- if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
+ if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
isa<InsertValueInst>(I))
@@ -286,11 +283,11 @@ namespace {
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitInvokeInst(InvokeInst &I) {
- assert(0 && "Lowerinvoke pass didn't work!");
+ llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnwindInst(UnwindInst &I) {
- assert(0 && "Lowerinvoke pass didn't work!");
+ llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnreachableInst(UnreachableInst &I);
@@ -321,8 +318,10 @@ namespace {
void visitExtractValueInst(ExtractValueInst &I);
void visitInstruction(Instruction &I) {
- cerr << "C Writer does not know about " << I;
- abort();
+#ifndef NDEBUG
+ errs() << "C Writer does not know about " << I;
+#endif
+ llvm_unreachable(0);
}
void outputLValue(Instruction *I) {
@@ -430,7 +429,7 @@ bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
/// printStructReturnPointerFunctionType - This is like printType for a struct
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
/// print it as "Struct (*)(...)", for struct return functions.
-void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
+void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *TheTy) {
const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
@@ -466,7 +465,8 @@ void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
}
raw_ostream &
-CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
+CWriter::printSimpleType(formatted_raw_ostream &Out, const Type *Ty,
+ bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
"Invalid type for printSimpleType");
@@ -505,8 +505,10 @@ CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
}
default:
- cerr << "Unknown primitive type: " << *Ty << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Unknown primitive type: " << *Ty << "\n";
+#endif
+ llvm_unreachable(0);
}
}
@@ -550,17 +552,20 @@ CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
}
default:
- cerr << "Unknown primitive type: " << *Ty << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Unknown primitive type: " << *Ty << "\n";
+#endif
+ llvm_unreachable(0);
}
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
-raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
- bool isSigned, const std::string &NameSoFar,
- bool IgnoreName, const AttrListPtr &PAL) {
+raw_ostream &CWriter::printType(formatted_raw_ostream &Out,
+ const Type *Ty,
+ bool isSigned, const std::string &NameSoFar,
+ bool IgnoreName, const AttrListPtr &PAL) {
if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
@@ -652,8 +657,7 @@ raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
return Out << TyName << ' ' << NameSoFar;
}
default:
- assert(0 && "Unhandled case in getTypeProps!");
- abort();
+ llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
@@ -756,8 +760,7 @@ std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
return Out << TyName << ' ' << NameSoFar;
}
default:
- assert(0 && "Unhandled case in getTypeProps!");
- abort();
+ llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
@@ -769,7 +772,8 @@ void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CPA->getType()->getElementType();
- bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
+ bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
+ ETy == Type::getInt8Ty(CPA->getContext()));
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
@@ -855,10 +859,11 @@ void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
bool ignored;
// Do long doubles in hex for now.
- if (CFP->getType() != Type::FloatTy && CFP->getType() != Type::DoubleTy)
+ if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
+ CFP->getType() != Type::getDoubleTy(CFP->getContext()))
return false;
APFloat APF = APFloat(CFP->getValueAPF()); // copy
- if (CFP->getType() == Type::FloatTy)
+ if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
@@ -916,7 +921,7 @@ void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
Out << ')';
break;
default:
- assert(0 && "Invalid cast opcode");
+ llvm_unreachable("Invalid cast opcode");
}
// Print the source type cast
@@ -946,7 +951,7 @@ void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
case Instruction::FPToUI:
break; // These don't need a source cast.
default:
- assert(0 && "Invalid cast opcode");
+ llvm_unreachable("Invalid cast opcode");
break;
}
}
@@ -970,12 +975,12 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
Out << "(";
printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
if (CE->getOpcode() == Instruction::SExt &&
- CE->getOperand(0)->getType() == Type::Int1Ty) {
+ CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
// Make sure we really sext from bool here by subtracting from 0
Out << "0-";
}
printConstant(CE->getOperand(0), Static);
- if (CE->getType() == Type::Int1Ty &&
+ if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
(CE->getOpcode() == Instruction::Trunc ||
CE->getOpcode() == Instruction::FPToUI ||
CE->getOpcode() == Instruction::FPToSI ||
@@ -1055,10 +1060,10 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
case ICmpInst::ICMP_UGT: Out << " > "; break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE: Out << " >= "; break;
- default: assert(0 && "Illegal ICmp predicate");
+ default: llvm_unreachable("Illegal ICmp predicate");
}
break;
- default: assert(0 && "Illegal opcode here!");
+ default: llvm_unreachable("Illegal opcode here!");
}
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
if (NeedsClosingParens)
@@ -1076,7 +1081,7 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
else {
const char* op = 0;
switch (CE->getPredicate()) {
- default: assert(0 && "Illegal FCmp predicate");
+ default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
@@ -1104,9 +1109,11 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
return;
}
default:
- cerr << "CWriter Error: Unhandled constant expression: "
+#ifndef NDEBUG
+ errs() << "CWriter Error: Unhandled constant expression: "
<< *CE << "\n";
- abort();
+#endif
+ llvm_unreachable(0);
}
} else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Out << "((";
@@ -1122,9 +1129,9 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
const Type* Ty = CI->getType();
- if (Ty == Type::Int1Ty)
+ if (Ty == Type::getInt1Ty(CPV->getContext()))
Out << (CI->getZExtValue() ? '1' : '0');
- else if (Ty == Type::Int32Ty)
+ else if (Ty == Type::getInt32Ty(CPV->getContext()))
Out << CI->getZExtValue() << 'u';
else if (Ty->getPrimitiveSizeInBits() > 32)
Out << CI->getZExtValue() << "ull";
@@ -1151,15 +1158,17 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
- Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
- FPC->getType() == Type::DoubleTy ? "double" :
+ Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
+ "float" :
+ FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
+ "double" :
"long double")
<< "*)&FPConstant" << I->second << ')';
} else {
double V;
- if (FPC->getType() == Type::FloatTy)
+ if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
V = FPC->getValueAPF().convertToFloat();
- else if (FPC->getType() == Type::DoubleTy)
+ else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
V = FPC->getValueAPF().convertToDouble();
else {
// Long double. Convert the number to double, discarding precision.
@@ -1189,7 +1198,7 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
std::string Num(&Buffer[0], &Buffer[6]);
unsigned long Val = strtoul(Num.c_str(), 0, 16);
- if (FPC->getType() == Type::FloatTy)
+ if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
<< Buffer << "\") /*nan*/ ";
else
@@ -1198,7 +1207,8 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
} else if (IsInf(V)) {
// The value is Inf
if (V < 0) Out << '-';
- Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
+ Out << "LLVM_INF" <<
+ (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
<< " /*inf*/ ";
} else {
std::string Num;
@@ -1312,8 +1322,10 @@ void CWriter::printConstant(Constant *CPV, bool Static) {
}
// FALL THROUGH
default:
- cerr << "Unknown constant type: " << *CPV << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Unknown constant type: " << *CPV << "\n";
+#endif
+ llvm_unreachable(0);
}
}
@@ -1359,7 +1371,7 @@ bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
}
if (NeedsExplicitCast) {
Out << "((";
- if (Ty->isInteger() && Ty != Type::Int1Ty)
+ if (Ty->isInteger() && Ty != Type::getInt1Ty(Ty->getContext()))
printSimpleType(Out, Ty, TypeIsSigned);
else
printType(Out, Ty); // not integer, sign doesn't matter
@@ -1419,33 +1431,36 @@ void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
}
std::string CWriter::GetValueName(const Value *Operand) {
- std::string Name;
-
- if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
- std::string VarName;
-
- Name = Operand->getName();
- VarName.reserve(Name.capacity());
-
- for (std::string::iterator I = Name.begin(), E = Name.end();
- I != E; ++I) {
- char ch = *I;
+ // Mangle globals with the standard mangler interface for LLC compatibility.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
+ return Mang->getMangledName(GV);
+
+ std::string Name = Operand->getName();
+
+ if (Name.empty()) { // Assign unique names to local temporaries.
+ unsigned &No = AnonValueNumbers[Operand];
+ if (No == 0)
+ No = ++NextAnonValueNumber;
+ Name = "tmp__" + utostr(No);
+ }
+
+ std::string VarName;
+ VarName.reserve(Name.capacity());
- if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
- (ch >= '0' && ch <= '9') || ch == '_')) {
- char buffer[5];
- sprintf(buffer, "_%x_", ch);
- VarName += buffer;
- } else
- VarName += ch;
- }
+ for (std::string::iterator I = Name.begin(), E = Name.end();
+ I != E; ++I) {
+ char ch = *I;
- Name = "llvm_cbe_" + VarName;
- } else {
- Name = Mang->getValueName(Operand);
+ if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
+ (ch >= '0' && ch <= '9') || ch == '_')) {
+ char buffer[5];
+ sprintf(buffer, "_%x_", ch);
+ VarName += buffer;
+ } else
+ VarName += ch;
}
- return Name;
+ return "llvm_cbe_" + VarName;
}
/// writeInstComputationInline - Emit the computation for the specified
@@ -1454,19 +1469,22 @@ void CWriter::writeInstComputationInline(Instruction &I) {
// We can't currently support integer types other than 1, 8, 16, 32, 64.
// Validate this.
const Type *Ty = I.getType();
- if (Ty->isInteger() && (Ty!=Type::Int1Ty && Ty!=Type::Int8Ty &&
- Ty!=Type::Int16Ty && Ty!=Type::Int32Ty && Ty!=Type::Int64Ty)) {
- cerr << "The C backend does not currently support integer "
- << "types of widths other than 1, 8, 16, 32, 64.\n";
- cerr << "This is being tracked as PR 4158.\n";
- abort();
+ if (Ty->isInteger() && (Ty!=Type::getInt1Ty(I.getContext()) &&
+ Ty!=Type::getInt8Ty(I.getContext()) &&
+ Ty!=Type::getInt16Ty(I.getContext()) &&
+ Ty!=Type::getInt32Ty(I.getContext()) &&
+ Ty!=Type::getInt64Ty(I.getContext()))) {
+ llvm_report_error("The C backend does not currently support integer "
+ "types of widths other than 1, 8, 16, 32, 64.\n"
+ "This is being tracked as PR 4158.");
}
// If this is a non-trivial bool computation, make sure to truncate down to
// a 1 bit value. This is important because we want "add i1 x, y" to return
// "0" when x and y are true, not "2" for example.
bool NeedBoolTrunc = false;
- if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
+ if (I.getType() == Type::getInt1Ty(I.getContext()) &&
+ !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
NeedBoolTrunc = true;
if (NeedBoolTrunc)
@@ -1615,7 +1633,7 @@ void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
// If the operand was a pointer, convert to a large integer type.
const Type* OpTy = Operand->getType();
if (isa<PointerType>(OpTy))
- OpTy = TD->getIntPtrType();
+ OpTy = TD->getIntPtrType(Operand->getContext());
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
@@ -1627,13 +1645,13 @@ void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
-static void generateCompilerSpecificCode(raw_ostream& Out,
+static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
const TargetData *TD) {
// Alloca is hard to get, and we don't want to include stdlib.h here.
Out << "/* get a declaration for alloca */\n"
<< "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
<< "#define alloca(x) __builtin_alloca((x))\n"
- << "#define _alloca(x) __builtin_alloca((x))\n"
+ << "#define _alloca(x) __builtin_alloca((x))\n"
<< "#elif defined(__APPLE__)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
@@ -1646,7 +1664,7 @@ static void generateCompilerSpecificCode(raw_ostream& Out,
<< "extern void *__builtin_alloca(unsigned int);\n"
<< "#endif\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
- << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
+ << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(_MSC_VER)\n"
<< "#define inline _inline\n"
@@ -1803,8 +1821,34 @@ static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
return NotSpecial;
}
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+static void PrintEscapedString(const char *Str, unsigned Length,
+ raw_ostream &Out) {
+ for (unsigned i = 0; i != Length; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '\\' && C != '"')
+ Out << C;
+ else if (C == '\\')
+ Out << "\\\\";
+ else if (C == '\"')
+ Out << "\\\"";
+ else if (C == '\t')
+ Out << "\\t";
+ else
+ Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
+ }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
+ PrintEscapedString(Str.c_str(), Str.size(), Out);
+}
bool CWriter::doInitialization(Module &M) {
+ FunctionPass::doInitialization(M);
+
// Initialize
TheModule = &M;
@@ -1855,6 +1899,29 @@ bool CWriter::doInitialization(Module &M) {
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
+ if (!M.getModuleInlineAsm().empty()) {
+ Out << "/* Module asm statements */\n"
+ << "asm(";
+
+ // Split the string into lines, to make it easier to read the .ll file.
+ std::string Asm = M.getModuleInlineAsm();
+ size_t CurPos = 0;
+ size_t NewLine = Asm.find_first_of('\n', CurPos);
+ while (NewLine != std::string::npos) {
+ // We found a newline, print the portion of the asm string from the
+ // last newline up to this newline.
+ Out << "\"";
+ PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
+ Out);
+ Out << "\\n\"\n";
+ CurPos = NewLine+1;
+ NewLine = Asm.find_first_of('\n', CurPos);
+ }
+ Out << "\"";
+ PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
+ Out << "\");\n"
+ << "/* End Module asm statements */\n";
+ }
// Loop over the symbol table, emitting all named constants...
printModuleTypes(M.getTypeSymbolTable());
@@ -1910,7 +1977,7 @@ bool CWriter::doInitialization(Module &M) {
Out << " __HIDDEN__";
if (I->hasName() && I->getName()[0] == 1)
- Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
+ Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
Out << ";\n";
}
@@ -2085,20 +2152,20 @@ void CWriter::printFloatingPointConstants(const Constant *C) {
FPConstantMap[FPC] = FPCounter; // Number the FP constants
- if (FPC->getType() == Type::DoubleTy) {
+ if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
double Val = FPC->getValueAPF().convertToDouble();
uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "ULL; /* " << Val << " */\n";
- } else if (FPC->getType() == Type::FloatTy) {
+ } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
float Val = FPC->getValueAPF().convertToFloat();
uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
getZExtValue();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "U; /* " << Val << " */\n";
- } else if (FPC->getType() == Type::X86_FP80Ty) {
+ } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
// api needed to prevent premature destruction
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
@@ -2106,7 +2173,8 @@ void CWriter::printFloatingPointConstants(const Constant *C) {
<< " = { 0x" << utohexstr(p[0])
<< "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
<< "}; /* Long double constant */\n";
- } else if (FPC->getType() == Type::PPC_FP128Ty) {
+ } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
+ FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
@@ -2115,7 +2183,7 @@ void CWriter::printFloatingPointConstants(const Constant *C) {
<< "}; /* Long double constant */\n";
} else {
- assert(0 && "Unknown float type!");
+ llvm_unreachable("Unknown float type!");
}
}
@@ -2215,6 +2283,8 @@ void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
case CallingConv::X86_FastCall:
Out << "__attribute__((fastcall)) ";
break;
+ default:
+ break;
}
// Loop over the arguments, printing them...
@@ -2351,7 +2421,8 @@ void CWriter::printFunction(Function &F) {
printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
Out << "; /* Address-exposed local */\n";
PrintedVar = true;
- } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
+ } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
+ !isInlinableInst(*I)) {
Out << " ";
printType(Out, I->getType(), false, GetValueName(&*I));
Out << ";\n";
@@ -2428,7 +2499,8 @@ void CWriter::printBasicBlock(BasicBlock *BB) {
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
++II) {
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
- if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
+ if (II->getType() != Type::getVoidTy(BB->getContext()) &&
+ !isInlineAsm(*II))
outputLValue(II);
else
Out << " ";
@@ -2603,8 +2675,9 @@ void CWriter::visitBinaryOperator(Instruction &I) {
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
- if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
- || (I.getType() == Type::FloatTy)) {
+ if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
+ (I.getType() == Type::getInt16Ty(I.getContext()))
+ || (I.getType() == Type::getFloatTy(I.getContext()))) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), false);
@@ -2623,9 +2696,9 @@ void CWriter::visitBinaryOperator(Instruction &I) {
Out << ")";
} else if (I.getOpcode() == Instruction::FRem) {
// Output a call to fmod/fmodf instead of emitting a%b
- if (I.getType() == Type::FloatTy)
+ if (I.getType() == Type::getFloatTy(I.getContext()))
Out << "fmodf(";
- else if (I.getType() == Type::DoubleTy)
+ else if (I.getType() == Type::getDoubleTy(I.getContext()))
Out << "fmod(";
else // all 3 flavors of long double
Out << "fmodl(";
@@ -2663,7 +2736,11 @@ void CWriter::visitBinaryOperator(Instruction &I) {
case Instruction::Shl : Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
- default: cerr << "Invalid operator type!" << I; abort();
+ default:
+#ifndef NDEBUG
+ errs() << "Invalid operator type!" << I;
+#endif
+ llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I.getOpcode());
@@ -2700,7 +2777,11 @@ void CWriter::visitICmpInst(ICmpInst &I) {
case ICmpInst::ICMP_SLT: Out << " < "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: Out << " > "; break;
- default: cerr << "Invalid icmp predicate!" << I; abort();
+ default:
+#ifndef NDEBUG
+ errs() << "Invalid icmp predicate!" << I;
+#endif
+ llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I);
@@ -2724,7 +2805,7 @@ void CWriter::visitFCmpInst(FCmpInst &I) {
const char* op = 0;
switch (I.getPredicate()) {
- default: assert(0 && "Illegal FCmp predicate");
+ default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
@@ -2752,7 +2833,7 @@ void CWriter::visitFCmpInst(FCmpInst &I) {
static const char * getFloatBitCastField(const Type *Ty) {
switch (Ty->getTypeID()) {
- default: assert(0 && "Invalid Type");
+ default: llvm_unreachable("Invalid Type");
case Type::FloatTyID: return "Float";
case Type::DoubleTyID: return "Double";
case Type::IntegerTyID: {
@@ -2784,12 +2865,13 @@ void CWriter::visitCastInst(CastInst &I) {
printCast(I.getOpcode(), SrcTy, DstTy);
// Make a sext from i1 work by subtracting the i1 from 0 (an int).
- if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
+ if (SrcTy == Type::getInt1Ty(I.getContext()) &&
+ I.getOpcode() == Instruction::SExt)
Out << "0-";
writeOperand(I.getOperand(0));
- if (DstTy == Type::Int1Ty &&
+ if (DstTy == Type::getInt1Ty(I.getContext()) &&
(I.getOpcode() == Instruction::Trunc ||
I.getOpcode() == Instruction::FPToUI ||
I.getOpcode() == Instruction::FPToSI ||
@@ -3020,10 +3102,12 @@ bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
Out << ", ";
// Output the last argument to the enclosing function.
if (I.getParent()->getParent()->arg_empty()) {
- cerr << "The C backend does not currently support zero "
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "The C backend does not currently support zero "
<< "argument varargs functions, such as '"
- << I.getParent()->getParent()->getName() << "'!\n";
- abort();
+ << I.getParent()->getParent()->getName() << "'!";
+ llvm_report_error(Msg.str());
}
writeOperand(--I.getParent()->getParent()->arg_end());
Out << ')';
@@ -3092,16 +3176,15 @@ bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
case Intrinsic::dbg_stoppoint: {
// If we use writeOperand directly we get a "u" suffix which is rejected
// by gcc.
- std::stringstream SPIStr;
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
- SPI.getDirectory()->print(SPIStr);
+ std::string dir;
+ GetConstantStringInfo(SPI.getDirectory(), dir);
+ std::string file;
+ GetConstantStringInfo(SPI.getFileName(), file);
Out << "\n#line "
<< SPI.getLine()
- << " \"";
- Out << SPIStr.str();
- SPIStr.clear();
- SPI.getFileName()->print(SPIStr);
- Out << SPIStr.str() << "\"\n";
+ << " \""
+ << dir << '/' << file << "\"\n";
return true;
}
case Intrinsic::x86_sse_cmp_ss:
@@ -3113,7 +3196,7 @@ bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
Out << ')';
// Multiple GCC builtins multiplex onto this intrinsic.
switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
- default: assert(0 && "Invalid llvm.x86.sse.cmp!");
+ default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
case 0: Out << "__builtin_ia32_cmpeq"; break;
case 1: Out << "__builtin_ia32_cmplt"; break;
case 2: Out << "__builtin_ia32_cmple"; break;
@@ -3159,27 +3242,25 @@ std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
const char *const *table = 0;
- //Grab the translation table from TargetAsmInfo if it exists
+ // Grab the translation table from MCAsmInfo if it exists.
if (!TAsm) {
+ std::string Triple = TheModule->getTargetTriple();
+ if (Triple.empty())
+ Triple = llvm::sys::getHostTriple();
+
std::string E;
- const TargetMachineRegistry::entry* Match =
- TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
- if (Match) {
- //Per platform Target Machines don't exist, so create it
- // this must be done only once
- const TargetMachine* TM = Match->CtorFn(*TheModule, "");
- TAsm = TM->getTargetAsmInfo();
- }
+ if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
+ TAsm = Match->createAsmInfo(Triple);
}
if (TAsm)
table = TAsm->getAsmCBE();
- //Search the translation table if it exists
+ // Search the translation table if it exists.
for (int i = 0; table && table[i]; i += 2)
if (c.Codes[0] == table[i])
return table[i+1];
- //default is identity
+ // Default is identity.
return c.Codes[0];
}
@@ -3215,7 +3296,7 @@ void CWriter::visitInlineAsm(CallInst &CI) {
std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
std::vector<std::pair<Value*, int> > ResultVals;
- if (CI.getType() == Type::VoidTy)
+ if (CI.getType() == Type::getVoidTy(CI.getContext()))
;
else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
@@ -3325,7 +3406,7 @@ void CWriter::visitInlineAsm(CallInst &CI) {
}
void CWriter::visitMallocInst(MallocInst &I) {
- assert(0 && "lowerallocations pass didn't work!");
+ llvm_unreachable("lowerallocations pass didn't work!");
}
void CWriter::visitAllocaInst(AllocaInst &I) {
@@ -3342,7 +3423,7 @@ void CWriter::visitAllocaInst(AllocaInst &I) {
}
void CWriter::visitFreeInst(FreeInst &I) {
- assert(0 && "lowerallocations pass didn't work!");
+ llvm_unreachable("lowerallocations pass didn't work!");
}
void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
@@ -3603,7 +3684,7 @@ void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
//===----------------------------------------------------------------------===//
bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
- raw_ostream &o,
+ formatted_raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel) {
if (FileType != TargetMachine::AssemblyFile) return true;
diff --git a/lib/Target/CBackend/CTargetMachine.h b/lib/Target/CBackend/CTargetMachine.h
index 8b26245..715bbda 100644
--- a/lib/Target/CBackend/CTargetMachine.h
+++ b/lib/Target/CBackend/CTargetMachine.h
@@ -20,23 +20,20 @@
namespace llvm {
struct CTargetMachine : public TargetMachine {
- const TargetData DataLayout; // Calculates type size & alignment
-
- CTargetMachine(const Module &M, const std::string &FS)
- : DataLayout(&M) {}
+ CTargetMachine(const Target &T, const std::string &TT, const std::string &FS)
+ : TargetMachine(T) {}
virtual bool WantsWholeFile() const { return true; }
- virtual bool addPassesToEmitWholeFile(PassManager &PM, raw_ostream &Out,
+ virtual bool addPassesToEmitWholeFile(PassManager &PM,
+ formatted_raw_ostream &Out,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel);
-
- // This class always works, but must be requested explicitly on
- // llc command line.
- static unsigned getModuleMatchQuality(const Module &M) { return 0; }
- virtual const TargetData *getTargetData() const { return &DataLayout; }
+ virtual const TargetData *getTargetData() const { return 0; }
};
+extern Target TheCBackendTarget;
+
} // End llvm namespace
diff --git a/lib/Target/CBackend/Makefile b/lib/Target/CBackend/Makefile
index 336de0c..3b5ef0f 100644
--- a/lib/Target/CBackend/Makefile
+++ b/lib/Target/CBackend/Makefile
@@ -9,6 +9,9 @@
LEVEL = ../../..
LIBRARYNAME = LLVMCBackend
+
+DIRS = TargetInfo
+
include $(LEVEL)/Makefile.common
CompileCommonOpts += -Wno-format
diff --git a/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp b/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp
new file mode 100644
index 0000000..f7e8ff2
--- /dev/null
+++ b/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- CBackendTargetInfo.cpp - CBackend Target Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CTargetMachine.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheCBackendTarget;
+
+extern "C" void LLVMInitializeCBackendTargetInfo() {
+ RegisterTarget<> X(TheCBackendTarget, "c", "C backend");
+}
diff --git a/lib/Target/CBackend/TargetInfo/CMakeLists.txt b/lib/Target/CBackend/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..5b35fa7
--- /dev/null
+++ b/lib/Target/CBackend/TargetInfo/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMCBackendInfo
+ CBackendTargetInfo.cpp
+ )
+
diff --git a/lib/Target/CBackend/TargetInfo/Makefile b/lib/Target/CBackend/TargetInfo/Makefile
new file mode 100644
index 0000000..d4d5e15
--- /dev/null
+++ b/lib/Target/CBackend/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/CBackend/TargetInfo/Makefile -------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMCBackendInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/CMakeLists.txt b/lib/Target/CMakeLists.txt
index 7cffd0e..8769ee2 100644
--- a/lib/Target/CMakeLists.txt
+++ b/lib/Target/CMakeLists.txt
@@ -1,18 +1,14 @@
add_llvm_library(LLVMTarget
- DarwinTargetAsmInfo.cpp
- ELFTargetAsmInfo.cpp
SubtargetFeature.cpp
Target.cpp
- TargetAsmInfo.cpp
TargetData.cpp
TargetELFWriterInfo.cpp
TargetFrameInfo.cpp
TargetInstrInfo.cpp
+ TargetIntrinsicInfo.cpp
+ TargetLoweringObjectFile.cpp
TargetMachOWriterInfo.cpp
TargetMachine.cpp
- TargetMachineRegistry.cpp
TargetRegisterInfo.cpp
TargetSubtarget.cpp
)
-
-# TODO: Support other targets besides X86. See Makefile.
diff --git a/lib/Target/CellSPU/AsmPrinter/CMakeLists.txt b/lib/Target/CellSPU/AsmPrinter/CMakeLists.txt
index 9684e63..1e508fe 100644
--- a/lib/Target/CellSPU/AsmPrinter/CMakeLists.txt
+++ b/lib/Target/CellSPU/AsmPrinter/CMakeLists.txt
@@ -4,6 +4,6 @@ include_directories(
)
add_llvm_library(LLVMCellSPUAsmPrinter
- SPUAsmPrinter.cpp
+ SPUAsmPrinter.cpp
)
add_dependencies(LLVMCellSPUAsmPrinter CellSPUCodeGenTable_gen) \ No newline at end of file
diff --git a/lib/Target/CellSPU/AsmPrinter/Makefile b/lib/Target/CellSPU/AsmPrinter/Makefile
index dd56df7..69639ef 100644
--- a/lib/Target/CellSPU/AsmPrinter/Makefile
+++ b/lib/Target/CellSPU/AsmPrinter/Makefile
@@ -1,4 +1,4 @@
-##===- lib/Target/CellSPU/Makefile -------------------------*- Makefile -*-===##
+##===- lib/Target/CellSPU/AsmPrinter/Makefile --------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
diff --git a/lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp b/lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp
index 2847d0b..0f8d539 100644
--- a/lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp
+++ b/lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp
@@ -19,25 +19,29 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Support/Mangler.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/MathExtras.h"
#include <set>
using namespace llvm;
@@ -49,8 +53,8 @@ namespace {
class VISIBILITY_HIDDEN SPUAsmPrinter : public AsmPrinter {
std::set<std::string> FnStubs, GVStubs;
public:
- explicit SPUAsmPrinter(raw_ostream &O, TargetMachine &TM,
- const TargetAsmInfo *T, bool V) :
+ explicit SPUAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V) :
AsmPrinter(O, TM, T, V) {}
virtual const char *getPassName() const {
@@ -62,10 +66,10 @@ namespace {
}
/// printInstruction - This method is automatically generated by tablegen
- /// from the instruction set description. This method returns true if the
- /// machine instruction was sufficiently described to print it, otherwise it
- /// returns false.
- bool printInstruction(const MachineInstr *MI);
+ /// from the instruction set description.
+ void printInstruction(const MachineInstr *MI);
+ static const char *getRegisterName(unsigned RegNo);
+
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO);
@@ -76,14 +80,13 @@ namespace {
unsigned RegNo = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(RegNo) &&
"Not physreg??");
- O << TM.getRegisterInfo()->get(RegNo).AsmName;
+ O << getRegisterName(RegNo);
}
void printOperand(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.isReg()) {
- assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physreg??");
- O << TM.getRegisterInfo()->get(MO.getReg()).AsmName;
+ O << getRegisterName(MO.getReg());
} else if (MO.isImm()) {
O << MO.getImm();
} else {
@@ -150,8 +153,7 @@ namespace {
// the value contained in the register. For this reason, the darwin
// assembler requires that we print r0 as 0 (no r) when used as the base.
const MachineOperand &MO = MI->getOperand(OpNo);
- O << TM.getRegisterInfo()->get(MO.getReg()).AsmName;
- O << ", ";
+ O << getRegisterName(MO.getReg()) << ", ";
printOperand(MI, OpNo+1);
}
@@ -264,7 +266,7 @@ namespace {
&& "Invalid negated immediate rotate 7-bit argument");
O << -value;
} else {
- assert(0 &&"Invalid/non-immediate rotate amount in printRotateNeg7Imm");
+ llvm_unreachable("Invalid/non-immediate rotate amount in printRotateNeg7Imm");
}
}
@@ -275,31 +277,25 @@ namespace {
&& "Invalid negated immediate rotate 7-bit argument");
O << -value;
} else {
- assert(0 &&"Invalid/non-immediate rotate amount in printRotateNeg7Imm");
+ llvm_unreachable("Invalid/non-immediate rotate amount in printRotateNeg7Imm");
}
}
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
- //! Assembly printer cleanup after function has been emitted
- virtual bool doFinalization(Module &M) = 0;
};
/// LinuxAsmPrinter - SPU assembly printer, customized for Linux
class VISIBILITY_HIDDEN LinuxAsmPrinter : public SPUAsmPrinter {
- DwarfWriter *DW;
public:
- explicit LinuxAsmPrinter(raw_ostream &O, SPUTargetMachine &TM,
- const TargetAsmInfo *T, bool V)
- : SPUAsmPrinter(O, TM, T, V), DW(0) {}
+ explicit LinuxAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
+ : SPUAsmPrinter(O, TM, T, V) {}
virtual const char *getPassName() const {
return "STI CBEA SPU Assembly Printer";
}
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- //! Dump globals, perform cleanup after function emission
- bool doFinalization(Module &M);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -309,7 +305,7 @@ namespace {
}
//! Emit a global variable according to its section and type
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void PrintGlobalVariable(const GlobalVariable* GVar);
};
} // end of anonymous namespace
@@ -319,35 +315,34 @@ namespace {
void SPUAsmPrinter::printOp(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
- cerr << "printOp() does not handle immediate values\n";
- abort();
+ llvm_report_error("printOp() does not handle immediate values");
return;
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_JumpTableIndex:
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_ExternalSymbol:
// Computing the address of an external symbol, not calling it.
if (TM.getRelocationModel() != Reloc::Static) {
- std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName();
+ std::string Name(MAI->getGlobalPrefix()); Name += MO.getSymbolName();
GVStubs.insert(Name);
O << "L" << Name << "$non_lazy_ptr";
return;
}
- O << TAI->getGlobalPrefix() << MO.getSymbolName();
+ O << MAI->getGlobalPrefix() << MO.getSymbolName();
return;
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
GlobalValue *GV = MO.getGlobal();
- std::string Name = Mang->getValueName(GV);
+ std::string Name = Mang->getMangledName(GV);
// External or weakly linked global variables need non-lazily-resolved
// stubs
@@ -410,15 +405,18 @@ bool SPUAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
///
void SPUAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
+ processDebugLoc(MI, true);
printInstruction(MI);
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ processDebugLoc(MI, false);
+ O << '\n';
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
-bool
-LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF)
-{
+bool LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
SetupMachineFunction(MF);
@@ -430,12 +428,13 @@ LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF)
// Print out labels for the function.
const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
EmitAlignment(MF.getAlignment(), F);
switch (F->getLinkage()) {
- default: assert(0 && "Unknown linkage type!");
+ default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
+ case Function::LinkerPrivateLinkage:
case Function::InternalLinkage: // Symbols default to internal.
break;
case Function::ExternalLinkage:
@@ -460,8 +459,7 @@ LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF)
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
@@ -483,29 +481,13 @@ LinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF)
}
-bool LinuxAsmPrinter::doInitialization(Module &M) {
- bool Result = AsmPrinter::doInitialization(M);
- DW = getAnalysisIfAvailable<DwarfWriter>();
- SwitchToTextSection("\t.text");
- return Result;
-}
-
-/// PrintUnmangledNameSafely - Print out the printable characters in the name.
-/// Don't print things like \\n or \\0.
-static void PrintUnmangledNameSafely(const Value *V, raw_ostream &OS) {
- for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
- Name != E; ++Name)
- if (isprint(*Name))
- OS << *Name;
-}
-
/*!
Emit a global variable according to its section, alignment, etc.
\note This code was shamelessly copied from the PowerPC's assembly printer,
which sort of screams for some kind of refactorization of common code.
*/
-void LinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void LinuxAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
@@ -515,18 +497,17 @@ void LinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (EmitSpecialLLVMGlobal(GVar))
return;
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
printVisibility(name, GVar->getVisibility());
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
if (C->isNullValue() && /* FIXME: Verify correct */
!GVar->hasSection() &&
@@ -540,12 +521,12 @@ void LinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << name << ":\n";
O << "\t.zero " << Size << '\n';
} else if (GVar->hasLocalLinkage()) {
- O << TAI->getLCOMMDirective() << name << ',' << Size;
+ O << MAI->getLCOMMDirective() << name << ',' << Size;
} else {
O << ".comm " << name << ',' << Size;
}
- O << "\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'\n";
return;
}
@@ -570,48 +551,23 @@ void LinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
<< "\t.type " << name << ", @object\n";
// FALL THROUGH
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::InternalLinkage:
break;
default:
- cerr << "Unknown linkage type!";
- abort();
+ llvm_report_error("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
- O << name << ":\t\t\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << name << ":\t\t\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'\n";
EmitGlobalConstant(C);
O << '\n';
}
-bool LinuxAsmPrinter::doFinalization(Module &M) {
- // Print out module-level global variables here.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
-
- return AsmPrinter::doFinalization(M);
-}
-
-/// createSPUCodePrinterPass - Returns a pass that prints the Cell SPU
-/// assembly code for a MachineFunction to the given output stream, in a format
-/// that the Linux SPU assembler can deal with.
-///
-FunctionPass *llvm::createSPUAsmPrinterPass(raw_ostream &o,
- SPUTargetMachine &tm,
- bool verbose) {
- return new LinuxAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
-}
-
// Force static initialization.
-extern "C" void LLVMInitializeCellSPUAsmPrinter() { }
-
-namespace {
- static struct Register {
- Register() {
- SPUTargetMachine::registerAsmPrinter(createSPUAsmPrinterPass);
- }
- } Registrator;
+extern "C" void LLVMInitializeCellSPUAsmPrinter() {
+ RegisterAsmPrinter<LinuxAsmPrinter> X(TheCellSPUTarget);
}
diff --git a/lib/Target/CellSPU/CMakeLists.txt b/lib/Target/CellSPU/CMakeLists.txt
index 8a55845..0cb6676 100644
--- a/lib/Target/CellSPU/CMakeLists.txt
+++ b/lib/Target/CellSPU/CMakeLists.txt
@@ -17,9 +17,9 @@ add_llvm_target(CellSPUCodeGen
SPUInstrInfo.cpp
SPUISelDAGToDAG.cpp
SPUISelLowering.cpp
+ SPUMCAsmInfo.cpp
SPURegisterInfo.cpp
SPUSubtarget.cpp
- SPUTargetAsmInfo.cpp
SPUTargetMachine.cpp
)
diff --git a/lib/Target/CellSPU/Makefile b/lib/Target/CellSPU/Makefile
index a460db3..8415168 100644
--- a/lib/Target/CellSPU/Makefile
+++ b/lib/Target/CellSPU/Makefile
@@ -17,6 +17,6 @@ BUILT_SOURCES = SPUGenInstrNames.inc SPUGenRegisterNames.inc \
SPUGenInstrInfo.inc SPUGenDAGISel.inc \
SPUGenSubtarget.inc SPUGenCallingConv.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/CellSPU/SPU.h b/lib/Target/CellSPU/SPU.h
index 10d1110..02713b5 100644
--- a/lib/Target/CellSPU/SPU.h
+++ b/lib/Target/CellSPU/SPU.h
@@ -21,12 +21,9 @@
namespace llvm {
class SPUTargetMachine;
class FunctionPass;
- class raw_ostream;
+ class formatted_raw_ostream;
FunctionPass *createSPUISelDag(SPUTargetMachine &TM);
- FunctionPass *createSPUAsmPrinterPass(raw_ostream &o,
- SPUTargetMachine &tm,
- bool verbose);
/*--== Utility functions/predicates/etc used all over the place: --==*/
//! Predicate test for a signed 10-bit value
@@ -92,6 +89,9 @@ namespace llvm {
inline bool isU10Constant(uint64_t Value) {
return (Value == (Value & 0x3ff));
}
+
+ extern Target TheCellSPUTarget;
+
}
// Defines symbolic names for the SPU instructions.
diff --git a/lib/Target/CellSPU/SPUHazardRecognizers.cpp b/lib/Target/CellSPU/SPUHazardRecognizers.cpp
index caaa71a..9dbab1d 100644
--- a/lib/Target/CellSPU/SPUHazardRecognizers.cpp
+++ b/lib/Target/CellSPU/SPUHazardRecognizers.cpp
@@ -20,7 +20,7 @@
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/Support/Debug.h"
-
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -115,7 +115,8 @@ SPUHazardRecognizer::getHazardType(SUnit *SU)
if (mustBeOdd && !EvenOdd)
retval = Hazard;
- DOUT << "SPUHazardRecognizer EvenOdd " << EvenOdd << " Hazard " << retval << "\n";
+ DEBUG(errs() << "SPUHazardRecognizer EvenOdd " << EvenOdd << " Hazard "
+ << retval << "\n");
EvenOdd ^= 1;
return retval;
#else
@@ -129,7 +130,7 @@ void SPUHazardRecognizer::EmitInstruction(SUnit *SU)
void SPUHazardRecognizer::AdvanceCycle()
{
- DOUT << "SPUHazardRecognizer::AdvanceCycle\n";
+ DEBUG(errs() << "SPUHazardRecognizer::AdvanceCycle\n");
}
void SPUHazardRecognizer::EmitNoop()
diff --git a/lib/Target/CellSPU/SPUISelDAGToDAG.cpp b/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
index 779d75d..1f9e5fc 100644
--- a/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
+++ b/lib/Target/CellSPU/SPUISelDAGToDAG.cpp
@@ -30,9 +30,12 @@
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -100,7 +103,7 @@ namespace {
bool
isIntS16Immediate(ConstantSDNode *CN, short &Imm)
{
- MVT vt = CN->getValueType(0);
+ EVT vt = CN->getValueType(0);
Imm = (short) CN->getZExtValue();
if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
return true;
@@ -129,7 +132,7 @@ namespace {
static bool
isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
{
- MVT vt = FPN->getValueType(0);
+ EVT vt = FPN->getValueType(0);
if (vt == MVT::f32) {
int val = FloatToBits(FPN->getValueAPF().convertToFloat());
int sval = (int) ((val << 16) >> 16);
@@ -151,10 +154,10 @@ namespace {
}
//===------------------------------------------------------------------===//
- //! MVT to "useful stuff" mapping structure:
+ //! EVT to "useful stuff" mapping structure:
struct valtype_map_s {
- MVT VT;
+ EVT VT;
unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
bool ldresult_imm; /// LDRESULT instruction requires immediate?
unsigned lrinst; /// LR instruction
@@ -178,7 +181,7 @@ namespace {
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
- const valtype_map_s *getValueTypeMapEntry(MVT VT)
+ const valtype_map_s *getValueTypeMapEntry(EVT VT)
{
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
@@ -191,10 +194,11 @@ namespace {
#ifndef NDEBUG
if (retval == 0) {
- cerr << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
- << VT.getMVTString()
- << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
+ << VT.getEVTString();
+ llvm_report_error(Msg.str());
}
#endif
@@ -249,10 +253,10 @@ namespace {
SPUtli(*tm.getTargetLowering())
{ }
- virtual bool runOnFunction(Function &Fn) {
+ virtual bool runOnMachineFunction(MachineFunction &MF) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
- SelectionDAGISel::runOnFunction(Fn);
+ SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
@@ -274,8 +278,8 @@ namespace {
}
SDNode *emitBuildVector(SDValue build_vec) {
- MVT vecVT = build_vec.getValueType();
- MVT eltVT = vecVT.getVectorElementType();
+ EVT vecVT = build_vec.getValueType();
+ EVT eltVT = vecVT.getVectorElementType();
SDNode *bvNode = build_vec.getNode();
DebugLoc dl = bvNode->getDebugLoc();
@@ -319,19 +323,19 @@ namespace {
SDNode *Select(SDValue Op);
//! Emit the instruction sequence for i64 shl
- SDNode *SelectSHLi64(SDValue &Op, MVT OpVT);
+ SDNode *SelectSHLi64(SDValue &Op, EVT OpVT);
//! Emit the instruction sequence for i64 srl
- SDNode *SelectSRLi64(SDValue &Op, MVT OpVT);
+ SDNode *SelectSRLi64(SDValue &Op, EVT OpVT);
//! Emit the instruction sequence for i64 sra
- SDNode *SelectSRAi64(SDValue &Op, MVT OpVT);
+ SDNode *SelectSRAi64(SDValue &Op, EVT OpVT);
//! Emit the necessary sequence for loading i64 constants:
- SDNode *SelectI64Constant(SDValue &Op, MVT OpVT, DebugLoc dl);
+ SDNode *SelectI64Constant(SDValue &Op, EVT OpVT, DebugLoc dl);
//! Alternate instruction emit sequence for loading i64 constants
- SDNode *SelectI64Constant(uint64_t i64const, MVT OpVT, DebugLoc dl);
+ SDNode *SelectI64Constant(uint64_t i64const, EVT OpVT, DebugLoc dl);
//! Returns true if the address N is an A-form (local store) address
bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
@@ -375,7 +379,7 @@ namespace {
break;
case 'v': // not offsetable
#if 1
- assert(0 && "InlineAsmMemoryOperand 'v' constraint not handled.");
+ llvm_unreachable("InlineAsmMemoryOperand 'v' constraint not handled.");
#else
SelectAddrIdxOnly(Op, Op, Op0, Op1);
#endif
@@ -430,23 +434,21 @@ bool
SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index) {
// These match the addr256k operand type:
- MVT OffsVT = MVT::i16;
+ EVT OffsVT = MVT::i16;
SDValue Zero = CurDAG->getTargetConstant(0, OffsVT);
switch (N.getOpcode()) {
case ISD::Constant:
case ISD::ConstantPool:
case ISD::GlobalAddress:
- cerr << "SPU SelectAFormAddr: Constant/Pool/Global not lowered.\n";
- abort();
+ llvm_report_error("SPU SelectAFormAddr: Constant/Pool/Global not lowered.");
/*NOTREACHED*/
case ISD::TargetConstant:
case ISD::TargetGlobalAddress:
case ISD::TargetJumpTable:
- cerr << "SPUSelectAFormAddr: Target Constant/Pool/Global not wrapped as "
- << "A-form address.\n";
- abort();
+ llvm_report_error("SPUSelectAFormAddr: Target Constant/Pool/Global "
+ "not wrapped as A-form address.");
/*NOTREACHED*/
case SPUISD::AFormAddr:
@@ -512,13 +514,13 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
SDValue &Index, int minOffset,
int maxOffset) {
unsigned Opc = N.getOpcode();
- MVT PtrTy = SPUtli.getPointerTy();
+ EVT PtrTy = SPUtli.getPointerTy();
if (Opc == ISD::FrameIndex) {
// Stack frame index must be less than 512 (divided by 16):
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N);
int FI = int(FIN->getIndex());
- DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
+ DEBUG(errs() << "SelectDFormAddr: ISD::FrameIndex = "
<< FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
Base = CurDAG->getTargetConstant(0, PtrTy);
@@ -543,7 +545,7 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
if (Op0.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0);
int FI = int(FIN->getIndex());
- DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
+ DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
@@ -564,7 +566,7 @@ SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
if (Op1.getOpcode() == ISD::FrameIndex) {
FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1);
int FI = int(FIN->getIndex());
- DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
+ DEBUG(errs() << "SelectDFormAddr: ISD::ADD offset = " << offset
<< " frame index = " << FI << "\n");
if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
@@ -690,7 +692,7 @@ SPUDAGToDAGISel::Select(SDValue Op) {
unsigned Opc = N->getOpcode();
int n_ops = -1;
unsigned NewOpc;
- MVT OpVT = Op.getValueType();
+ EVT OpVT = Op.getValueType();
SDValue Ops[8];
DebugLoc dl = N->getDebugLoc();
@@ -711,8 +713,9 @@ SPUDAGToDAGISel::Select(SDValue Op) {
} else {
NewOpc = SPU::Ar32;
Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType());
- Ops[1] = SDValue(CurDAG->getTargetNode(SPU::ILAr32, dl, Op.getValueType(),
- TFI, Imm0), 0);
+ Ops[1] = SDValue(CurDAG->getMachineNode(SPU::ILAr32, dl,
+ Op.getValueType(), TFI, Imm0),
+ 0);
n_ops = 2;
}
} else if (Opc == ISD::Constant && OpVT == MVT::i64) {
@@ -723,17 +726,17 @@ SPUDAGToDAGISel::Select(SDValue Op) {
} else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
&& OpVT == MVT::i64) {
SDValue Op0 = Op.getOperand(0);
- MVT Op0VT = Op0.getValueType();
- MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits()));
- MVT OpVecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
+ EVT Op0VT = Op0.getValueType();
+ EVT Op0VecVT = EVT::getVectorVT(*CurDAG->getContext(),
+ Op0VT, (128 / Op0VT.getSizeInBits()));
+ EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(),
+ OpVT, (128 / OpVT.getSizeInBits()));
SDValue shufMask;
- switch (Op0VT.getSimpleVT()) {
+ switch (Op0VT.getSimpleVT().SimpleTy) {
default:
- cerr << "CellSPU Select: Unhandled zero/any extend MVT\n";
- abort();
+ llvm_report_error("CellSPU Select: Unhandled zero/any extend EVT");
/*NOTREACHED*/
- break;
case MVT::i32:
shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
CurDAG->getConstant(0x80808080, MVT::i32),
@@ -811,8 +814,8 @@ SPUDAGToDAGISel::Select(SDValue Op) {
if (shift_amt >= 32) {
SDNode *hi32 =
- CurDAG->getTargetNode(SPU::ORr32_r64, dl, OpVT,
- Op0.getOperand(0));
+ CurDAG->getMachineNode(SPU::ORr32_r64, dl, OpVT,
+ Op0.getOperand(0));
shift_amt -= 32;
if (shift_amt > 0) {
@@ -823,8 +826,8 @@ SPUDAGToDAGISel::Select(SDValue Op) {
if (Op0.getOpcode() == ISD::SRL)
Opc = SPU::ROTMr32;
- hi32 = CurDAG->getTargetNode(Opc, dl, OpVT, SDValue(hi32, 0),
- shift);
+ hi32 = CurDAG->getMachineNode(Opc, dl, OpVT, SDValue(hi32, 0),
+ shift);
}
return hi32;
@@ -856,10 +859,10 @@ SPUDAGToDAGISel::Select(SDValue Op) {
if (OpVT == MVT::v2f64)
Opc = SPU::DFNMSv2f64;
- return CurDAG->getTargetNode(Opc, dl, OpVT,
- Op00.getOperand(0),
- Op00.getOperand(1),
- Op0.getOperand(1));
+ return CurDAG->getMachineNode(Opc, dl, OpVT,
+ Op00.getOperand(0),
+ Op00.getOperand(1),
+ Op0.getOperand(1));
}
}
@@ -876,43 +879,44 @@ SPUDAGToDAGISel::Select(SDValue Op) {
negConst, negConst));
}
- return CurDAG->getTargetNode(Opc, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ return CurDAG->getMachineNode(Opc, dl, OpVT,
+ Op.getOperand(0), SDValue(signMask, 0));
} else if (Opc == ISD::FABS) {
if (OpVT == MVT::f64) {
SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
- return CurDAG->getTargetNode(SPU::ANDfabs64, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ return CurDAG->getMachineNode(SPU::ANDfabs64, dl, OpVT,
+ Op.getOperand(0), SDValue(signMask, 0));
} else if (OpVT == MVT::v2f64) {
SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
absConst, absConst);
SDNode *signMask = emitBuildVector(absVec);
- return CurDAG->getTargetNode(SPU::ANDfabsvec, dl, OpVT,
- Op.getOperand(0), SDValue(signMask, 0));
+ return CurDAG->getMachineNode(SPU::ANDfabsvec, dl, OpVT,
+ Op.getOperand(0), SDValue(signMask, 0));
}
} else if (Opc == SPUISD::LDRESULT) {
// Custom select instructions for LDRESULT
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
SDValue Arg = N->getOperand(0);
SDValue Chain = N->getOperand(1);
SDNode *Result;
const valtype_map_s *vtm = getValueTypeMapEntry(VT);
if (vtm->ldresult_ins == 0) {
- cerr << "LDRESULT for unsupported type: "
- << VT.getMVTString()
- << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "LDRESULT for unsupported type: "
+ << VT.getEVTString();
+ llvm_report_error(Msg.str());
}
Opc = vtm->ldresult_ins;
if (vtm->ldresult_imm) {
SDValue Zero = CurDAG->getTargetConstant(0, VT);
- Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain);
+ Result = CurDAG->getMachineNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain);
} else {
- Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain);
+ Result = CurDAG->getMachineNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain);
}
return Result;
@@ -923,7 +927,7 @@ SPUDAGToDAGISel::Select(SDValue Op) {
// SPUInstrInfo catches the following patterns:
// (SPUindirect (SPUhi ...), (SPUlo ...))
// (SPUindirect $sp, imm)
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
RegisterSDNode *RN;
@@ -948,7 +952,7 @@ SPUDAGToDAGISel::Select(SDValue Op) {
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
else
- return CurDAG->getTargetNode(NewOpc, dl, OpVT, Ops, n_ops);
+ return CurDAG->getMachineNode(NewOpc, dl, OpVT, Ops, n_ops);
} else
return SelectCode(Op);
}
@@ -966,24 +970,25 @@ SPUDAGToDAGISel::Select(SDValue Op) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) {
+SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, EVT OpVT) {
SDValue Op0 = Op.getOperand(0);
- MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
+ EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
+ OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
- MVT ShiftAmtVT = ShiftAmt.getValueType();
+ EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
SDValue SelMaskVal;
DebugLoc dl = Op.getDebugLoc();
- VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
+ VecOp0 = CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
- SelMask = CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
- ZeroFill = CurDAG->getTargetNode(SPU::ILv2i64, dl, VecVT,
- CurDAG->getTargetConstant(0, OpVT));
- VecOp0 = CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
- SDValue(ZeroFill, 0),
- SDValue(VecOp0, 0),
- SDValue(SelMask, 0));
+ SelMask = CurDAG->getMachineNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
+ ZeroFill = CurDAG->getMachineNode(SPU::ILv2i64, dl, VecVT,
+ CurDAG->getTargetConstant(0, OpVT));
+ VecOp0 = CurDAG->getMachineNode(SPU::SELBv2i64, dl, VecVT,
+ SDValue(ZeroFill, 0),
+ SDValue(VecOp0, 0),
+ SDValue(SelMask, 0));
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
@@ -991,35 +996,35 @@ SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) {
if (bytes > 0) {
Shift =
- CurDAG->getTargetNode(SPU::SHLQBYIv2i64, dl, VecVT,
- SDValue(VecOp0, 0),
- CurDAG->getTargetConstant(bytes, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::SHLQBYIv2i64, dl, VecVT,
+ SDValue(VecOp0, 0),
+ CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
Shift =
- CurDAG->getTargetNode(SPU::SHLQBIIv2i64, dl, VecVT,
- SDValue((Shift != 0 ? Shift : VecOp0), 0),
- CurDAG->getTargetConstant(bits, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::SHLQBIIv2i64, dl, VecVT,
+ SDValue((Shift != 0 ? Shift : VecOp0), 0),
+ CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *Bytes =
- CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
- ShiftAmt,
- CurDAG->getTargetConstant(3, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTMIr32, dl, ShiftAmtVT,
+ ShiftAmt,
+ CurDAG->getTargetConstant(3, ShiftAmtVT));
SDNode *Bits =
- CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
- ShiftAmt,
- CurDAG->getTargetConstant(7, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ANDIr32, dl, ShiftAmtVT,
+ ShiftAmt,
+ CurDAG->getTargetConstant(7, ShiftAmtVT));
Shift =
- CurDAG->getTargetNode(SPU::SHLQBYv2i64, dl, VecVT,
- SDValue(VecOp0, 0), SDValue(Bytes, 0));
+ CurDAG->getMachineNode(SPU::SHLQBYv2i64, dl, VecVT,
+ SDValue(VecOp0, 0), SDValue(Bytes, 0));
Shift =
- CurDAG->getTargetNode(SPU::SHLQBIv2i64, dl, VecVT,
- SDValue(Shift, 0), SDValue(Bits, 0));
+ CurDAG->getMachineNode(SPU::SHLQBIv2i64, dl, VecVT,
+ SDValue(Shift, 0), SDValue(Bits, 0));
}
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
@@ -1031,15 +1036,16 @@ SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) {
+SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, EVT OpVT) {
SDValue Op0 = Op.getOperand(0);
- MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
+ EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
+ OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
- MVT ShiftAmtVT = ShiftAmt.getValueType();
+ EVT ShiftAmtVT = ShiftAmt.getValueType();
SDNode *VecOp0, *Shift = 0;
DebugLoc dl = Op.getDebugLoc();
- VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
+ VecOp0 = CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
@@ -1047,45 +1053,45 @@ SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) {
if (bytes > 0) {
Shift =
- CurDAG->getTargetNode(SPU::ROTQMBYIv2i64, dl, VecVT,
- SDValue(VecOp0, 0),
- CurDAG->getTargetConstant(bytes, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTQMBYIv2i64, dl, VecVT,
+ SDValue(VecOp0, 0),
+ CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
Shift =
- CurDAG->getTargetNode(SPU::ROTQMBIIv2i64, dl, VecVT,
- SDValue((Shift != 0 ? Shift : VecOp0), 0),
- CurDAG->getTargetConstant(bits, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTQMBIIv2i64, dl, VecVT,
+ SDValue((Shift != 0 ? Shift : VecOp0), 0),
+ CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *Bytes =
- CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
- ShiftAmt,
- CurDAG->getTargetConstant(3, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTMIr32, dl, ShiftAmtVT,
+ ShiftAmt,
+ CurDAG->getTargetConstant(3, ShiftAmtVT));
SDNode *Bits =
- CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
- ShiftAmt,
- CurDAG->getTargetConstant(7, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ANDIr32, dl, ShiftAmtVT,
+ ShiftAmt,
+ CurDAG->getTargetConstant(7, ShiftAmtVT));
// Ensure that the shift amounts are negated!
- Bytes = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
- SDValue(Bytes, 0),
- CurDAG->getTargetConstant(0, ShiftAmtVT));
+ Bytes = CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
+ SDValue(Bytes, 0),
+ CurDAG->getTargetConstant(0, ShiftAmtVT));
- Bits = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
- SDValue(Bits, 0),
- CurDAG->getTargetConstant(0, ShiftAmtVT));
+ Bits = CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
+ SDValue(Bits, 0),
+ CurDAG->getTargetConstant(0, ShiftAmtVT));
Shift =
- CurDAG->getTargetNode(SPU::ROTQMBYv2i64, dl, VecVT,
- SDValue(VecOp0, 0), SDValue(Bytes, 0));
+ CurDAG->getMachineNode(SPU::ROTQMBYv2i64, dl, VecVT,
+ SDValue(VecOp0, 0), SDValue(Bytes, 0));
Shift =
- CurDAG->getTargetNode(SPU::ROTQMBIv2i64, dl, VecVT,
- SDValue(Shift, 0), SDValue(Bits, 0));
+ CurDAG->getMachineNode(SPU::ROTQMBIv2i64, dl, VecVT,
+ SDValue(Shift, 0), SDValue(Bits, 0));
}
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
@@ -1097,33 +1103,34 @@ SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) {
* @return The SDNode with the entire instruction sequence
*/
SDNode *
-SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, MVT OpVT) {
+SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, EVT OpVT) {
// Promote Op0 to vector
- MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
+ EVT VecVT = EVT::getVectorVT(*CurDAG->getContext(),
+ OpVT, (128 / OpVT.getSizeInBits()));
SDValue ShiftAmt = Op.getOperand(1);
- MVT ShiftAmtVT = ShiftAmt.getValueType();
+ EVT ShiftAmtVT = ShiftAmt.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDNode *VecOp0 =
- CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
+ CurDAG->getMachineNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
SDNode *SignRot =
- CurDAG->getTargetNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
- SDValue(VecOp0, 0), SignRotAmt);
+ CurDAG->getMachineNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
+ SDValue(VecOp0, 0), SignRotAmt);
SDNode *UpperHalfSign =
- CurDAG->getTargetNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0));
+ CurDAG->getMachineNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0));
SDNode *UpperHalfSignMask =
- CurDAG->getTargetNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
+ CurDAG->getMachineNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
SDNode *UpperLowerMask =
- CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT,
- CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
+ CurDAG->getMachineNode(SPU::FSMBIv2i64, dl, VecVT,
+ CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
SDNode *UpperLowerSelect =
- CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
- SDValue(UpperHalfSignMask, 0),
- SDValue(VecOp0, 0),
- SDValue(UpperLowerMask, 0));
+ CurDAG->getMachineNode(SPU::SELBv2i64, dl, VecVT,
+ SDValue(UpperHalfSignMask, 0),
+ SDValue(VecOp0, 0),
+ SDValue(UpperLowerMask, 0));
SDNode *Shift = 0;
@@ -1134,46 +1141,46 @@ SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, MVT OpVT) {
if (bytes > 0) {
bytes = 31 - bytes;
Shift =
- CurDAG->getTargetNode(SPU::ROTQBYIv2i64, dl, VecVT,
- SDValue(UpperLowerSelect, 0),
- CurDAG->getTargetConstant(bytes, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTQBYIv2i64, dl, VecVT,
+ SDValue(UpperLowerSelect, 0),
+ CurDAG->getTargetConstant(bytes, ShiftAmtVT));
}
if (bits > 0) {
bits = 8 - bits;
Shift =
- CurDAG->getTargetNode(SPU::ROTQBIIv2i64, dl, VecVT,
- SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
- CurDAG->getTargetConstant(bits, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::ROTQBIIv2i64, dl, VecVT,
+ SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
+ CurDAG->getTargetConstant(bits, ShiftAmtVT));
}
} else {
SDNode *NegShift =
- CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
- ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
+ CurDAG->getMachineNode(SPU::SFIr32, dl, ShiftAmtVT,
+ ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
Shift =
- CurDAG->getTargetNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
- SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
+ CurDAG->getMachineNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
+ SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
Shift =
- CurDAG->getTargetNode(SPU::ROTQBIv2i64, dl, VecVT,
- SDValue(Shift, 0), SDValue(NegShift, 0));
+ CurDAG->getMachineNode(SPU::ROTQBIv2i64, dl, VecVT,
+ SDValue(Shift, 0), SDValue(NegShift, 0));
}
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
}
/*!
Do the necessary magic necessary to load a i64 constant
*/
-SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, MVT OpVT,
+SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, EVT OpVT,
DebugLoc dl) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
}
-SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT,
+SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, EVT OpVT,
DebugLoc dl) {
- MVT OpVecVT = MVT::getVectorVT(OpVT, 2);
+ EVT OpVecVT = EVT::getVectorVT(*CurDAG->getContext(), OpVT, 2);
SDValue i64vec =
SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl);
@@ -1186,8 +1193,8 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT,
SDValue Op0 = i64vec.getOperand(0);
ReplaceUses(i64vec, Op0);
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
- SDValue(emitBuildVector(Op0), 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
+ SDValue(emitBuildVector(Op0), 0));
} else if (i64vec.getOpcode() == SPUISD::SHUFB) {
SDValue lhs = i64vec.getOperand(0);
SDValue rhs = i64vec.getOperand(1);
@@ -1225,14 +1232,14 @@ SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT,
SDValue(lhsNode, 0), SDValue(rhsNode, 0),
SDValue(shufMaskNode, 0)));
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
- SDValue(shufNode, 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
+ SDValue(shufNode, 0));
} else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
- return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
- SDValue(emitBuildVector(i64vec), 0));
+ return CurDAG->getMachineNode(SPU::ORi64_v2i64, dl, OpVT,
+ SDValue(emitBuildVector(i64vec), 0));
} else {
- cerr << "SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec condition\n";
- abort();
+ llvm_report_error("SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec"
+ "condition");
}
}
diff --git a/lib/Target/CellSPU/SPUISelLowering.cpp b/lib/Target/CellSPU/SPUISelLowering.cpp
index d8a7776..aaf0783 100644
--- a/lib/Target/CellSPU/SPUISelLowering.cpp
+++ b/lib/Target/CellSPU/SPUISelLowering.cpp
@@ -15,8 +15,9 @@
#include "SPUISelLowering.h"
#include "SPUTargetMachine.h"
#include "SPUFrameInfo.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -24,13 +25,13 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/VectorExtras.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Target/TargetOptions.h"
-
+#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
@@ -39,10 +40,10 @@ using namespace llvm;
namespace {
std::map<unsigned, const char *> node_names;
- //! MVT mapping to useful data for Cell SPU
+ //! EVT mapping to useful data for Cell SPU
struct valtype_map_s {
- const MVT valtype;
- const int prefslot_byte;
+ EVT valtype;
+ int prefslot_byte;
};
const valtype_map_s valtype_map[] = {
@@ -58,7 +59,7 @@ namespace {
const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
- const valtype_map_s *getValueTypeMapEntry(MVT VT) {
+ const valtype_map_s *getValueTypeMapEntry(EVT VT) {
const valtype_map_s *retval = 0;
for (size_t i = 0; i < n_valtype_map; ++i) {
@@ -70,10 +71,11 @@ namespace {
#ifndef NDEBUG
if (retval == 0) {
- cerr << "getValueTypeMapEntry returns NULL for "
- << VT.getMVTString()
- << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "getValueTypeMapEntry returns NULL for "
+ << VT.getEVTString();
+ llvm_report_error(Msg.str());
}
#endif
@@ -98,8 +100,8 @@ namespace {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
- MVT ArgVT = Op.getOperand(i).getValueType();
- const Type *ArgTy = ArgVT.getTypeForMVT();
+ EVT ArgVT = Op.getOperand(i).getValueType();
+ const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op.getOperand(i);
Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
@@ -110,10 +112,13 @@ namespace {
TLI.getPointerTy());
// Splice the libcall in wherever FindInputOutputChains tells us to.
- const Type *RetTy = Op.getNode()->getValueType(0).getTypeForMVT();
+ const Type *RetTy =
+ Op.getNode()->getValueType(0).getTypeForEVT(*DAG.getContext());
std::pair<SDValue, SDValue> CallInfo =
TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
- 0, CallingConv::C, false, Callee, Args, DAG,
+ 0, TLI.getLibcallCallingConv(LC), false,
+ /*isReturnValueUsed=*/true,
+ Callee, Args, DAG,
Op.getDebugLoc());
return CallInfo.first;
@@ -121,9 +126,8 @@ namespace {
}
SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
- : TargetLowering(TM),
- SPUTM(TM)
-{
+ : TargetLowering(TM, new TargetLoweringObjectFileELF()),
+ SPUTM(TM) {
// Fold away setcc operations if possible.
setPow2DivIsCheap();
@@ -151,6 +155,13 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+ setTruncStoreAction(MVT::i128, MVT::i64, Expand);
+ setTruncStoreAction(MVT::i128, MVT::i32, Expand);
+ setTruncStoreAction(MVT::i128, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i128, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
// SPU constant load actions are custom lowered:
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
@@ -158,7 +169,7 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
// SPU's loads and stores have to be custom lowered:
for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::i128;
++sctype) {
- MVT VT = (MVT::SimpleValueType)sctype;
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)sctype;
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
@@ -167,20 +178,20 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
setLoadExtAction(ISD::SEXTLOAD, VT, Custom);
for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::i8; --stype) {
- MVT StoreVT = (MVT::SimpleValueType) stype;
+ MVT::SimpleValueType StoreVT = (MVT::SimpleValueType) stype;
setTruncStoreAction(VT, StoreVT, Expand);
}
}
for (unsigned sctype = (unsigned) MVT::f32; sctype < (unsigned) MVT::f64;
++sctype) {
- MVT VT = (MVT::SimpleValueType) sctype;
+ MVT::SimpleValueType VT = (MVT::SimpleValueType) sctype;
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
for (unsigned stype = sctype - 1; stype >= (unsigned) MVT::f32; --stype) {
- MVT StoreVT = (MVT::SimpleValueType) stype;
+ MVT::SimpleValueType StoreVT = (MVT::SimpleValueType) stype;
setTruncStoreAction(VT, StoreVT, Expand);
}
}
@@ -199,11 +210,37 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
// SPU has no intrinsics for these particular operations:
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
- // SPU has no SREM/UREM instructions
- setOperationAction(ISD::SREM, MVT::i32, Expand);
- setOperationAction(ISD::UREM, MVT::i32, Expand);
- setOperationAction(ISD::SREM, MVT::i64, Expand);
- setOperationAction(ISD::UREM, MVT::i64, Expand);
+ // SPU has no division/remainder instructions
+ setOperationAction(ISD::SREM, MVT::i8, Expand);
+ setOperationAction(ISD::UREM, MVT::i8, Expand);
+ setOperationAction(ISD::SDIV, MVT::i8, Expand);
+ setOperationAction(ISD::UDIV, MVT::i8, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i8, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i8, Expand);
+ setOperationAction(ISD::SREM, MVT::i16, Expand);
+ setOperationAction(ISD::UREM, MVT::i16, Expand);
+ setOperationAction(ISD::SDIV, MVT::i16, Expand);
+ setOperationAction(ISD::UDIV, MVT::i16, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+ setOperationAction(ISD::SDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i128, Expand);
+ setOperationAction(ISD::UREM, MVT::i128, Expand);
+ setOperationAction(ISD::SDIV, MVT::i128, Expand);
+ setOperationAction(ISD::UDIV, MVT::i128, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i128, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i128, Expand);
// We don't support sin/cos/sqrt/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
@@ -283,11 +320,19 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
setOperationAction(ISD::CTPOP, MVT::i16, Custom);
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i128, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i8, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i16, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ , MVT::i128, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i8, Promote);
+ setOperationAction(ISD::CTLZ , MVT::i16, Promote);
setOperationAction(ISD::CTLZ , MVT::i32, Legal);
+ setOperationAction(ISD::CTLZ , MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ , MVT::i128, Expand);
// SPU has a version of select that implements (a&~c)|(b&c), just like
// select ought to work:
@@ -305,10 +350,21 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
// Custom lower i128 -> i64 truncates
setOperationAction(ISD::TRUNCATE, MVT::i64, Custom);
+ // Custom lower i32/i64 -> i128 sign extend
+ setOperationAction(ISD::SIGN_EXTEND, MVT::i128, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
// SPU has a legal FP -> signed INT instruction for f32, but for f64, need
// to expand to a libcall, hence the custom lowering:
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i128, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i128, Expand);
// FDIV on SPU requires custom lowering
setOperationAction(ISD::FDIV, MVT::f64, Expand); // to libcall
@@ -339,16 +395,13 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
// appropriate instructions to materialize the address.
for (unsigned sctype = (unsigned) MVT::i8; sctype < (unsigned) MVT::f128;
++sctype) {
- MVT VT = (MVT::SimpleValueType)sctype;
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)sctype;
setOperationAction(ISD::GlobalAddress, VT, Custom);
setOperationAction(ISD::ConstantPool, VT, Custom);
setOperationAction(ISD::JumpTable, VT, Custom);
}
- // RET must be custom lowered, to meet ABI requirements
- setOperationAction(ISD::RET, MVT::Other, Custom);
-
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
@@ -385,7 +438,7 @@ SPUTargetLowering::SPUTargetLowering(SPUTargetMachine &TM)
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD, VT, Legal);
@@ -461,9 +514,6 @@ SPUTargetLowering::getTargetNodeName(unsigned Opcode) const
node_names[(unsigned) SPUISD::VEC2PREFSLOT] = "SPUISD::VEC2PREFSLOT";
node_names[(unsigned) SPUISD::SHLQUAD_L_BITS] = "SPUISD::SHLQUAD_L_BITS";
node_names[(unsigned) SPUISD::SHLQUAD_L_BYTES] = "SPUISD::SHLQUAD_L_BYTES";
- node_names[(unsigned) SPUISD::VEC_SHL] = "SPUISD::VEC_SHL";
- node_names[(unsigned) SPUISD::VEC_SRL] = "SPUISD::VEC_SRL";
- node_names[(unsigned) SPUISD::VEC_SRA] = "SPUISD::VEC_SRA";
node_names[(unsigned) SPUISD::VEC_ROTL] = "SPUISD::VEC_ROTL";
node_names[(unsigned) SPUISD::VEC_ROTR] = "SPUISD::VEC_ROTR";
node_names[(unsigned) SPUISD::ROTBYTES_LEFT] = "SPUISD::ROTBYTES_LEFT";
@@ -490,9 +540,11 @@ unsigned SPUTargetLowering::getFunctionAlignment(const Function *) const {
// Return the Cell SPU's SETCC result type
//===----------------------------------------------------------------------===//
-MVT SPUTargetLowering::getSetCCResultType(MVT VT) const {
+MVT::SimpleValueType SPUTargetLowering::getSetCCResultType(EVT VT) const {
// i16 and i32 are valid SETCC result types
- return ((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) ? VT : MVT::i32);
+ return ((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) ?
+ VT.getSimpleVT().SimpleTy :
+ MVT::i32);
}
//===----------------------------------------------------------------------===//
@@ -525,9 +577,9 @@ static SDValue
LowerLOAD(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
LoadSDNode *LN = cast<LoadSDNode>(Op);
SDValue the_chain = LN->getChain();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
- MVT InVT = LN->getMemoryVT();
- MVT OutVT = Op.getValueType();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT InVT = LN->getMemoryVT();
+ EVT OutVT = Op.getValueType();
ISD::LoadExtType ExtType = LN->getExtensionType();
unsigned alignment = LN->getAlignment();
const valtype_map_s *vtm = getValueTypeMapEntry(InVT);
@@ -632,7 +684,8 @@ LowerLOAD(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
// Convert the loaded v16i8 vector to the appropriate vector type
// specified by the operand:
- MVT vecVT = MVT::getVectorVT(InVT, (128 / InVT.getSizeInBits()));
+ EVT vecVT = EVT::getVectorVT(*DAG.getContext(),
+ InVT, (128 / InVT.getSizeInBits()));
result = DAG.getNode(SPUISD::VEC2PREFSLOT, dl, InVT,
DAG.getNode(ISD::BIT_CONVERT, dl, vecVT, result));
@@ -665,11 +718,15 @@ LowerLOAD(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
case ISD::POST_INC:
case ISD::POST_DEC:
case ISD::LAST_INDEXED_MODE:
- cerr << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
+ {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
"UNINDEXED\n";
- cerr << (unsigned) LN->getAddressingMode() << "\n";
- abort();
- /*NOTREACHED*/
+ Msg << (unsigned) LN->getAddressingMode();
+ llvm_report_error(Msg.str());
+ /*NOTREACHED*/
+ }
}
return SDValue();
@@ -685,17 +742,19 @@ static SDValue
LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
StoreSDNode *SN = cast<StoreSDNode>(Op);
SDValue Value = SN->getValue();
- MVT VT = Value.getValueType();
- MVT StVT = (!SN->isTruncatingStore() ? VT : SN->getMemoryVT());
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT VT = Value.getValueType();
+ EVT StVT = (!SN->isTruncatingStore() ? VT : SN->getMemoryVT());
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
DebugLoc dl = Op.getDebugLoc();
unsigned alignment = SN->getAlignment();
switch (SN->getAddressingMode()) {
case ISD::UNINDEXED: {
// The vector type we really want to load from the 16-byte chunk.
- MVT vecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits())),
- stVecVT = MVT::getVectorVT(StVT, (128 / StVT.getSizeInBits()));
+ EVT vecVT = EVT::getVectorVT(*DAG.getContext(),
+ VT, (128 / VT.getSizeInBits())),
+ stVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT, (128 / StVT.getSizeInBits()));
SDValue alignLoadVec;
SDValue basePtr = SN->getBasePtr();
@@ -790,9 +849,9 @@ LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
// to the stack pointer, which is always aligned.
#if !defined(NDEBUG)
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
- cerr << "CellSPU LowerSTORE: basePtr = ";
+ errs() << "CellSPU LowerSTORE: basePtr = ";
basePtr.getNode()->dump(&DAG);
- cerr << "\n";
+ errs() << "\n";
}
#endif
@@ -815,9 +874,9 @@ LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
const SDValue &currentRoot = DAG.getRoot();
DAG.setRoot(result);
- cerr << "------- CellSPU:LowerStore result:\n";
+ errs() << "------- CellSPU:LowerStore result:\n";
DAG.dump();
- cerr << "-------\n";
+ errs() << "-------\n";
DAG.setRoot(currentRoot);
}
#endif
@@ -830,20 +889,24 @@ LowerSTORE(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
case ISD::POST_INC:
case ISD::POST_DEC:
case ISD::LAST_INDEXED_MODE:
- cerr << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
+ {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "LowerLOAD: Got a LoadSDNode with an addr mode other than "
"UNINDEXED\n";
- cerr << (unsigned) SN->getAddressingMode() << "\n";
- abort();
- /*NOTREACHED*/
+ Msg << (unsigned) SN->getAddressingMode();
+ llvm_report_error(Msg.str());
+ /*NOTREACHED*/
+ }
}
return SDValue();
}
//! Generate the address of a constant pool entry.
-SDValue
+static SDValue
LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Constant *C = CP->getConstVal();
SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
@@ -863,9 +926,8 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
}
}
- assert(0 &&
- "LowerConstantPool: Relocation model other than static"
- " not supported.");
+ llvm_unreachable("LowerConstantPool: Relocation model other than static"
+ " not supported.");
return SDValue();
}
@@ -877,7 +939,7 @@ SPU::LowerConstantPool(SDValue Op, SelectionDAG &DAG, const SPUTargetMachine &TM
static SDValue
LowerJumpTable(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
SDValue Zero = DAG.getConstant(0, PtrVT);
@@ -895,14 +957,14 @@ LowerJumpTable(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
}
}
- assert(0 &&
- "LowerJumpTable: Relocation model other than static not supported.");
+ llvm_unreachable("LowerJumpTable: Relocation model other than static"
+ " not supported.");
return SDValue();
}
static SDValue
LowerGlobalAddress(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
GlobalValue *GV = GSDN->getGlobal();
SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
@@ -920,9 +982,8 @@ LowerGlobalAddress(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
return DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, Hi, Lo);
}
} else {
- cerr << "LowerGlobalAddress: Relocation model other than static not "
- << "supported.\n";
- abort();
+ llvm_report_error("LowerGlobalAddress: Relocation model other than static"
+ "not supported.");
/*NOTREACHED*/
}
@@ -932,7 +993,7 @@ LowerGlobalAddress(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
//! Custom lower double precision floating point constants
static SDValue
LowerConstantFP(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
// FIXME there is no actual debug info here
DebugLoc dl = Op.getDebugLoc();
@@ -952,16 +1013,17 @@ LowerConstantFP(SDValue Op, SelectionDAG &DAG) {
return SDValue();
}
-static SDValue
-LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
-{
+SDValue
+SPUTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- SmallVector<SDValue, 48> ArgValues;
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- DebugLoc dl = Op.getDebugLoc();
const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
@@ -970,24 +1032,24 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
unsigned ArgRegIdx = 0;
unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Add DAG nodes to load the arguments or copy them out of registers.
- for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
- ArgNo != e; ++ArgNo) {
- MVT ObjectVT = Op.getValue(ArgNo).getValueType();
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
+ EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
SDValue ArgVal;
if (ArgRegIdx < NumArgRegs) {
const TargetRegisterClass *ArgRegClass;
- switch (ObjectVT.getSimpleVT()) {
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
default: {
- cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
- << ObjectVT.getMVTString()
- << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "LowerFormalArguments Unhandled argument type: "
+ << ObjectVT.getEVTString();
+ llvm_report_error(Msg.str());
}
case MVT::i8:
ArgRegClass = &SPU::R8CRegClass;
@@ -1022,7 +1084,7 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
unsigned VReg = RegInfo.createVirtualRegister(ArgRegClass);
RegInfo.addLiveIn(ArgRegs[ArgRegIdx], VReg);
- ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++ArgRegIdx;
} else {
// We need to load the argument to a virtual register if we determined
@@ -1030,13 +1092,13 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
// or we're forced to do vararg
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
ArgOffset += StackSlotSize;
}
- ArgValues.push_back(ArgVal);
+ InVals.push_back(ArgVal);
// Update the chain
- Root = ArgVal.getOperand(0);
+ Chain = ArgVal.getOperand(0);
}
// vararg handling:
@@ -1051,23 +1113,19 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG, int &VarArgsFrameIndex)
VarArgsFrameIndex = MFI->CreateFixedObject(StackSlotSize, ArgOffset);
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
SDValue ArgVal = DAG.getRegister(ArgRegs[ArgRegIdx], MVT::v16i8);
- SDValue Store = DAG.getStore(Root, dl, ArgVal, FIN, NULL, 0);
- Root = Store.getOperand(0);
+ SDValue Store = DAG.getStore(Chain, dl, ArgVal, FIN, NULL, 0);
+ Chain = Store.getOperand(0);
MemOps.push_back(Store);
// Increment address by stack slot size for the next stored argument
ArgOffset += StackSlotSize;
}
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &MemOps[0], MemOps.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size());
+ return Chain;
}
/// isLSAAddress - Return the immediate to use if the specified
@@ -1084,19 +1142,23 @@ static SDNode *isLSAAddress(SDValue Op, SelectionDAG &DAG) {
return DAG.getConstant((int)C->getZExtValue() >> 2, MVT::i32).getNode();
}
-static SDValue
-LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- unsigned NumOps = TheCall->getNumArgs();
+SDValue
+SPUTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ const SPUSubtarget *ST = SPUTM.getSubtargetImpl();
+ unsigned NumOps = Outs.size();
unsigned StackSlotSize = SPUFrameInfo::stackSlotSize();
const unsigned *ArgRegs = SPURegisterInfo::getArgRegs();
const unsigned NumArgRegs = SPURegisterInfo::getNumArgRegs();
- DebugLoc dl = TheCall->getDebugLoc();
// Handy pointer type
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Accumulate how many bytes are to be pushed on the stack, including the
// linkage area, and parameter passing area. According to the SPU ABI,
@@ -1119,15 +1181,15 @@ LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = TheCall->getArg(i);
+ SDValue Arg = Outs[i].Val;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
- switch (Arg.getValueType().getSimpleVT()) {
- default: assert(0 && "Unexpected ValueType for argument!");
+ switch (Arg.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i8:
case MVT::i16:
case MVT::i32:
@@ -1193,7 +1255,7 @@ LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
// node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
GlobalValue *GV = G->getGlobal();
- MVT CalleeVT = Callee.getValueType();
+ EVT CalleeVT = Callee.getValueType();
SDValue Zero = DAG.getConstant(0, PtrVT);
SDValue GA = DAG.getTargetGlobalAddress(GV, CalleeVT);
@@ -1217,7 +1279,7 @@ LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
Callee = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT, GA, Zero);
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
- MVT CalleeVT = Callee.getValueType();
+ EVT CalleeVT = Callee.getValueType();
SDValue Zero = DAG.getConstant(0, PtrVT);
SDValue ExtSym = DAG.getTargetExternalSymbol(S->getSymbol(),
Callee.getValueType());
@@ -1251,50 +1313,46 @@ LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumStackBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
- if (TheCall->getValueType(0) != MVT::Other)
+ if (!Ins.empty())
InFlag = Chain.getValue(1);
- SDValue ResultVals[3];
- unsigned NumResults = 0;
+ // If the function returns void, just return the chain.
+ if (Ins.empty())
+ return Chain;
// If the call has results, copy the values out of the ret val registers.
- switch (TheCall->getValueType(0).getSimpleVT()) {
- default: assert(0 && "Unexpected ret value!");
+ switch (Ins[0].VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected ret value!");
case MVT::Other: break;
case MVT::i32:
- if (TheCall->getValueType(1) == MVT::i32) {
+ if (Ins.size() > 1 && Ins[1].VT == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, dl, SPU::R4,
MVT::i32, InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
+ InVals.push_back(Chain.getValue(0));
Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i32,
Chain.getValue(2)).getValue(1);
- ResultVals[1] = Chain.getValue(0);
- NumResults = 2;
+ InVals.push_back(Chain.getValue(0));
} else {
Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i32,
InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
- NumResults = 1;
+ InVals.push_back(Chain.getValue(0));
}
break;
case MVT::i64:
Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i64,
InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
- NumResults = 1;
+ InVals.push_back(Chain.getValue(0));
break;
case MVT::i128:
Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, MVT::i128,
InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
- NumResults = 1;
+ InVals.push_back(Chain.getValue(0));
break;
case MVT::f32:
case MVT::f64:
- Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, TheCall->getValueType(0),
+ Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, Ins[0].VT,
InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
- NumResults = 1;
+ InVals.push_back(Chain.getValue(0));
break;
case MVT::v2f64:
case MVT::v2i64:
@@ -1302,31 +1360,25 @@ LowerCALL(SDValue Op, SelectionDAG &DAG, const SPUSubtarget *ST) {
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
- Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, TheCall->getValueType(0),
+ Chain = DAG.getCopyFromReg(Chain, dl, SPU::R3, Ins[0].VT,
InFlag).getValue(1);
- ResultVals[0] = Chain.getValue(0);
- NumResults = 1;
+ InVals.push_back(Chain.getValue(0));
break;
}
- // If the function returns void, just return the chain.
- if (NumResults == 0)
- return Chain;
-
- // Otherwise, merge everything together with a MERGE_VALUES node.
- ResultVals[NumResults++] = Chain;
- SDValue Res = DAG.getMergeValues(ResultVals, NumResults, dl);
- return Res.getValue(Op.getResNo());
+ return Chain;
}
-static SDValue
-LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM) {
+SDValue
+SPUTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
- CCState CCInfo(CC, isVarArg, TM, RVLocs);
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_SPU);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_SPU);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
@@ -1335,7 +1387,6 @@ LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM) {
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- SDValue Chain = Op.getOperand(0);
SDValue Flag;
// Copy the result values into the output registers.
@@ -1343,7 +1394,7 @@ LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
Flag = Chain.getValue(1);
}
@@ -1384,7 +1435,7 @@ getVecImm(SDNode *N) {
/// and the value fits into an unsigned 18-bit constant, and if so, return the
/// constant
SDValue SPU::get_vec_u18imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType) {
+ EVT ValueType) {
if (ConstantSDNode *CN = getVecImm(N)) {
uint64_t Value = CN->getZExtValue();
if (ValueType == MVT::i64) {
@@ -1406,7 +1457,7 @@ SDValue SPU::get_vec_u18imm(SDNode *N, SelectionDAG &DAG,
/// and the value fits into a signed 16-bit constant, and if so, return the
/// constant
SDValue SPU::get_vec_i16imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType) {
+ EVT ValueType) {
if (ConstantSDNode *CN = getVecImm(N)) {
int64_t Value = CN->getSExtValue();
if (ValueType == MVT::i64) {
@@ -1429,7 +1480,7 @@ SDValue SPU::get_vec_i16imm(SDNode *N, SelectionDAG &DAG,
/// and the value fits into a signed 10-bit constant, and if so, return the
/// constant
SDValue SPU::get_vec_i10imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType) {
+ EVT ValueType) {
if (ConstantSDNode *CN = getVecImm(N)) {
int64_t Value = CN->getSExtValue();
if (ValueType == MVT::i64) {
@@ -1455,7 +1506,7 @@ SDValue SPU::get_vec_i10imm(SDNode *N, SelectionDAG &DAG,
/// constant vectors. Thus, we test to see if the upper and lower bytes are the
/// same value.
SDValue SPU::get_vec_i8imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType) {
+ EVT ValueType) {
if (ConstantSDNode *CN = getVecImm(N)) {
int Value = (int) CN->getZExtValue();
if (ValueType == MVT::i16
@@ -1474,7 +1525,7 @@ SDValue SPU::get_vec_i8imm(SDNode *N, SelectionDAG &DAG,
/// and the value fits into a signed 16-bit constant, and if so, return the
/// constant
SDValue SPU::get_ILHUvec_imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType) {
+ EVT ValueType) {
if (ConstantSDNode *CN = getVecImm(N)) {
uint64_t Value = CN->getZExtValue();
if ((ValueType == MVT::i32
@@ -1505,10 +1556,10 @@ SDValue SPU::get_v2i64_imm(SDNode *N, SelectionDAG &DAG) {
}
//! Lower a BUILD_VECTOR instruction creatively:
-SDValue
+static SDValue
LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
- MVT EltVT = VT.getVectorElementType();
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
BuildVectorSDNode *BCN = dyn_cast<BuildVectorSDNode>(Op.getNode());
assert(BCN != 0 && "Expected BuildVectorSDNode in SPU LowerBUILD_VECTOR");
@@ -1528,13 +1579,15 @@ LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
uint64_t SplatBits = APSplatBits.getZExtValue();
- switch (VT.getSimpleVT()) {
- default:
- cerr << "CellSPU: Unhandled VT in LowerBUILD_VECTOR, VT = "
- << VT.getMVTString()
- << "\n";
- abort();
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "CellSPU: Unhandled VT in LowerBUILD_VECTOR, VT = "
+ << VT.getEVTString();
+ llvm_report_error(Msg.str());
/*NOTREACHED*/
+ }
case MVT::v4f32: {
uint32_t Value32 = uint32_t(SplatBits);
assert(SplatBitSize == 32
@@ -1591,7 +1644,7 @@ LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
/*!
*/
SDValue
-SPU::LowerV2I64Splat(MVT OpVT, SelectionDAG& DAG, uint64_t SplatVal,
+SPU::LowerV2I64Splat(EVT OpVT, SelectionDAG& DAG, uint64_t SplatVal,
DebugLoc dl) {
uint32_t upper = uint32_t(SplatVal >> 32);
uint32_t lower = uint32_t(SplatVal);
@@ -1704,8 +1757,8 @@ static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
// If we have a single element being moved from V1 to V2, this can be handled
// using the C*[DX] compute mask instructions, but the vector elements have
// to be monotonically increasing with one exception element.
- MVT VecVT = V1.getValueType();
- MVT EltVT = VecVT.getVectorElementType();
+ EVT VecVT = V1.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
unsigned EltsFromV2 = 0;
unsigned V2Elt = 0;
unsigned V2EltIdx0 = 0;
@@ -1725,7 +1778,7 @@ static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
} else if (EltVT == MVT::i64 || EltVT == MVT::f64) {
V2EltIdx0 = 2;
} else
- assert(0 && "Unhandled vector type in LowerVECTOR_SHUFFLE");
+ llvm_unreachable("Unhandled vector type in LowerVECTOR_SHUFFLE");
for (unsigned i = 0; i != MaxElts; ++i) {
if (SVN->getMaskElt(i) < 0)
@@ -1770,7 +1823,7 @@ static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
unsigned VReg = RegInfo.createVirtualRegister(&SPU::R32CRegClass);
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Initialize temporary register to 0
SDValue InitTempReg =
DAG.getCopyToReg(DAG.getEntryNode(), dl, VReg, DAG.getConstant(0, PtrVT));
@@ -1816,13 +1869,13 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
ConstantSDNode *CN = cast<ConstantSDNode>(Op0.getNode());
SmallVector<SDValue, 16> ConstVecValues;
- MVT VT;
+ EVT VT;
size_t n_copies;
// Create a constant vector:
- switch (Op.getValueType().getSimpleVT()) {
- default: assert(0 && "Unexpected constant value type in "
- "LowerSCALAR_TO_VECTOR");
+ switch (Op.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected constant value type in "
+ "LowerSCALAR_TO_VECTOR");
case MVT::v16i8: n_copies = 16; VT = MVT::i8; break;
case MVT::v8i16: n_copies = 8; VT = MVT::i16; break;
case MVT::v4i32: n_copies = 4; VT = MVT::i32; break;
@@ -1839,8 +1892,8 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
&ConstVecValues[0], ConstVecValues.size());
} else {
// Otherwise, copy the value from one register to another:
- switch (Op0.getValueType().getSimpleVT()) {
- default: assert(0 && "Unexpected value type in LowerSCALAR_TO_VECTOR");
+ switch (Op0.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected value type in LowerSCALAR_TO_VECTOR");
case MVT::i8:
case MVT::i16:
case MVT::i32:
@@ -1855,7 +1908,7 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue N = Op.getOperand(0);
SDValue Elt = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
@@ -1867,13 +1920,13 @@ static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
// sanity checks:
if (VT == MVT::i8 && EltNo >= 16)
- assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i8 extraction slot > 15");
+ llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i8 extraction slot > 15");
else if (VT == MVT::i16 && EltNo >= 8)
- assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i16 extraction slot > 7");
+ llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i16 extraction slot > 7");
else if (VT == MVT::i32 && EltNo >= 4)
- assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i32 extraction slot > 4");
+ llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i32 extraction slot > 4");
else if (VT == MVT::i64 && EltNo >= 2)
- assert(0 && "SPU LowerEXTRACT_VECTOR_ELT: i64 extraction slot > 2");
+ llvm_unreachable("SPU LowerEXTRACT_VECTOR_ELT: i64 extraction slot > 2");
if (EltNo == 0 && (VT == MVT::i32 || VT == MVT::i64)) {
// i32 and i64: Element 0 is the preferred slot
@@ -1884,7 +1937,7 @@ static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
int prefslot_begin = -1, prefslot_end = -1;
int elt_byte = EltNo * VT.getSizeInBits() / 8;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default:
assert(false && "Invalid value type!");
case MVT::i8: {
@@ -1910,7 +1963,9 @@ static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
assert(prefslot_begin != -1 && prefslot_end != -1 &&
"LowerEXTRACT_VECTOR_ELT: preferred slots uninitialized");
- unsigned int ShufBytes[16];
+ unsigned int ShufBytes[16] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
for (int i = 0; i < 16; ++i) {
// zero fill uppper part of preferred slot, don't care about the
// other slots:
@@ -1946,10 +2001,10 @@ static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
} else {
// Variable index: Rotate the requested element into slot 0, then replicate
// slot 0 across the vector
- MVT VecVT = N.getValueType();
+ EVT VecVT = N.getValueType();
if (!VecVT.isSimple() || !VecVT.isVector() || !VecVT.is128BitVector()) {
- cerr << "LowerEXTRACT_VECTOR_ELT: Must have a simple, 128-bit vector type!\n";
- abort();
+ llvm_report_error("LowerEXTRACT_VECTOR_ELT: Must have a simple, 128-bit"
+ "vector type!");
}
// Make life easier by making sure the index is zero-extended to i32
@@ -1974,10 +2029,10 @@ static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
// consistency with the notion of a unified register set)
SDValue replicate;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default:
- cerr << "LowerEXTRACT_VECTOR_ELT(varable): Unhandled vector type\n";
- abort();
+ llvm_report_error("LowerEXTRACT_VECTOR_ELT(varable): Unhandled vector"
+ "type");
/*NOTREACHED*/
case MVT::i8: {
SDValue factor = DAG.getConstant(0x00000000, MVT::i32);
@@ -2021,12 +2076,12 @@ static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
SDValue ValOp = Op.getOperand(1);
SDValue IdxOp = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
ConstantSDNode *CN = cast<ConstantSDNode>(IdxOp);
assert(CN != 0 && "LowerINSERT_VECTOR_ELT: Index is not constant!");
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Use $sp ($1) because it's always 16-byte aligned and it's available:
SDValue Pointer = DAG.getNode(SPUISD::IndirectAddr, dl, PtrVT,
DAG.getRegister(SPU::R1, PtrVT),
@@ -2047,12 +2102,12 @@ static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
{
SDValue N0 = Op.getOperand(0); // Everything has at least one operand
DebugLoc dl = Op.getDebugLoc();
- MVT ShiftVT = TLI.getShiftAmountTy();
+ EVT ShiftVT = TLI.getShiftAmountTy();
assert(Op.getValueType() == MVT::i8);
switch (Opc) {
default:
- assert(0 && "Unhandled i8 math operator");
+ llvm_unreachable("Unhandled i8 math operator");
/*NOTREACHED*/
break;
case ISD::ADD: {
@@ -2078,7 +2133,7 @@ static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
case ISD::ROTR:
case ISD::ROTL: {
SDValue N1 = Op.getOperand(1);
- MVT N1VT = N1.getValueType();
+ EVT N1VT = N1.getValueType();
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, N0);
if (!N1VT.bitsEq(ShiftVT)) {
@@ -2101,7 +2156,7 @@ static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
case ISD::SRL:
case ISD::SHL: {
SDValue N1 = Op.getOperand(1);
- MVT N1VT = N1.getValueType();
+ EVT N1VT = N1.getValueType();
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, N0);
if (!N1VT.bitsEq(ShiftVT)) {
@@ -2118,7 +2173,7 @@ static SDValue LowerI8Math(SDValue Op, SelectionDAG &DAG, unsigned Opc,
}
case ISD::SRA: {
SDValue N1 = Op.getOperand(1);
- MVT N1VT = N1.getValueType();
+ EVT N1VT = N1.getValueType();
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i16, N0);
if (!N1VT.bitsEq(ShiftVT)) {
@@ -2151,7 +2206,7 @@ static SDValue
LowerByteImmed(SDValue Op, SelectionDAG &DAG) {
SDValue ConstVec;
SDValue Arg;
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
ConstVec = Op.getOperand(0);
@@ -2202,11 +2257,12 @@ LowerByteImmed(SDValue Op, SelectionDAG &DAG) {
ones per byte, which then have to be accumulated.
*/
static SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
- MVT vecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits()));
+ EVT VT = Op.getValueType();
+ EVT vecVT = EVT::getVectorVT(*DAG.getContext(),
+ VT, (128 / VT.getSizeInBits()));
DebugLoc dl = Op.getDebugLoc();
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default:
assert(false && "Invalid value type!");
case MVT::i8: {
@@ -2312,9 +2368,9 @@ static SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) {
*/
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
SPUTargetLowering &TLI) {
- MVT OpVT = Op.getValueType();
+ EVT OpVT = Op.getValueType();
SDValue Op0 = Op.getOperand(0);
- MVT Op0VT = Op0.getValueType();
+ EVT Op0VT = Op0.getValueType();
if ((OpVT == MVT::i32 && Op0VT == MVT::f64)
|| OpVT == MVT::i64) {
@@ -2338,9 +2394,9 @@ static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
*/
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
SPUTargetLowering &TLI) {
- MVT OpVT = Op.getValueType();
+ EVT OpVT = Op.getValueType();
SDValue Op0 = Op.getOperand(0);
- MVT Op0VT = Op0.getValueType();
+ EVT Op0VT = Op0.getValueType();
if ((OpVT == MVT::f64 && Op0VT == MVT::i32)
|| Op0VT == MVT::i64) {
@@ -2369,12 +2425,12 @@ static SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG,
SDValue lhs = Op.getOperand(0);
SDValue rhs = Op.getOperand(1);
- MVT lhsVT = lhs.getValueType();
+ EVT lhsVT = lhs.getValueType();
assert(lhsVT == MVT::f64 && "LowerSETCC: type other than MVT::64\n");
- MVT ccResultVT = TLI.getSetCCResultType(lhs.getValueType());
+ EVT ccResultVT = TLI.getSetCCResultType(lhs.getValueType());
APInt ccResultOnes = APInt::getAllOnesValue(ccResultVT.getSizeInBits());
- MVT IntVT(MVT::i64);
+ EVT IntVT(MVT::i64);
// Take advantage of the fact that (truncate (sra arg, 32)) is efficiently
// selected to a NOP:
@@ -2458,9 +2514,7 @@ static SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG,
case ISD::SETONE:
compareOp = ISD::SETNE; break;
default:
- cerr << "CellSPU ISel Select: unimplemented f64 condition\n";
- abort();
- break;
+ llvm_report_error("CellSPU ISel Select: unimplemented f64 condition");
}
SDValue result =
@@ -2497,7 +2551,7 @@ static SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG,
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
const TargetLowering &TLI) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue lhs = Op.getOperand(0);
SDValue rhs = Op.getOperand(1);
SDValue trueval = Op.getOperand(2);
@@ -2526,14 +2580,15 @@ static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
static SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG)
{
// Type to truncate to
- MVT VT = Op.getValueType();
- MVT::SimpleValueType simpleVT = VT.getSimpleVT();
- MVT VecVT = MVT::getVectorVT(VT, (128 / VT.getSizeInBits()));
+ EVT VT = Op.getValueType();
+ MVT simpleVT = VT.getSimpleVT();
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(),
+ VT, (128 / VT.getSizeInBits()));
DebugLoc dl = Op.getDebugLoc();
// Type to truncate from
SDValue Op0 = Op.getOperand(0);
- MVT Op0VT = Op0.getValueType();
+ EVT Op0VT = Op0.getValueType();
if (Op0VT.getSimpleVT() == MVT::i128 && simpleVT == MVT::i64) {
// Create shuffle mask, least significant doubleword of quadword
@@ -2555,6 +2610,61 @@ static SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG)
return SDValue(); // Leave the truncate unmolested
}
+/*!
+ * Emit the instruction sequence for i64/i32 -> i128 sign extend. The basic
+ * algorithm is to duplicate the sign bit using rotmai to generate at
+ * least one byte full of sign bits. Then propagate the "sign-byte" into
+ * the leftmost words and the i64/i32 into the rightmost words using shufb.
+ *
+ * @param Op The sext operand
+ * @param DAG The current DAG
+ * @return The SDValue with the entire instruction sequence
+ */
+static SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG)
+{
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Type to extend to
+ MVT OpVT = Op.getValueType().getSimpleVT();
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(),
+ OpVT, (128 / OpVT.getSizeInBits()));
+
+ // Type to extend from
+ SDValue Op0 = Op.getOperand(0);
+ MVT Op0VT = Op0.getValueType().getSimpleVT();
+
+ // The type to extend to needs to be a i128 and
+ // the type to extend from needs to be i64 or i32.
+ assert((OpVT == MVT::i128 && (Op0VT == MVT::i64 || Op0VT == MVT::i32)) &&
+ "LowerSIGN_EXTEND: input and/or output operand have wrong size");
+
+ // Create shuffle mask
+ unsigned mask1 = 0x10101010; // byte 0 - 3 and 4 - 7
+ unsigned mask2 = Op0VT == MVT::i64 ? 0x00010203 : 0x10101010; // byte 8 - 11
+ unsigned mask3 = Op0VT == MVT::i64 ? 0x04050607 : 0x00010203; // byte 12 - 15
+ SDValue shufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
+ DAG.getConstant(mask1, MVT::i32),
+ DAG.getConstant(mask1, MVT::i32),
+ DAG.getConstant(mask2, MVT::i32),
+ DAG.getConstant(mask3, MVT::i32));
+
+ // Word wise arithmetic right shift to generate at least one byte
+ // that contains sign bits.
+ MVT mvt = Op0VT == MVT::i64 ? MVT::v2i64 : MVT::v4i32;
+ SDValue sraVal = DAG.getNode(ISD::SRA,
+ dl,
+ mvt,
+ DAG.getNode(SPUISD::PREFSLOT2VEC, dl, mvt, Op0, Op0),
+ DAG.getConstant(31, MVT::i32));
+
+ // Shuffle bytes - Copy the sign bits into the upper 64 bits
+ // and the input value into the lower 64 bits.
+ SDValue extShuffle = DAG.getNode(SPUISD::SHUFB, dl, mvt,
+ DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i128, Op0), sraVal, shufMask);
+
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i128, extShuffle);
+}
+
//! Custom (target-specific) lowering entry point
/*!
This is where LLVM's DAG selection process calls to do target-specific
@@ -2564,15 +2674,17 @@ SDValue
SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
{
unsigned Opc = (unsigned) Op.getOpcode();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
switch (Opc) {
default: {
- cerr << "SPUTargetLowering::LowerOperation(): need to lower this!\n";
- cerr << "Op.getOpcode() = " << Opc << "\n";
- cerr << "*Op.getNode():\n";
+#ifndef NDEBUG
+ errs() << "SPUTargetLowering::LowerOperation(): need to lower this!\n";
+ errs() << "Op.getOpcode() = " << Opc << "\n";
+ errs() << "*Op.getNode():\n";
Op.getNode()->dump();
- abort();
+#endif
+ llvm_unreachable(0);
}
case ISD::LOAD:
case ISD::EXTLOAD:
@@ -2589,12 +2701,6 @@ SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
return LowerJumpTable(Op, DAG, SPUTM.getSubtargetImpl());
case ISD::ConstantFP:
return LowerConstantFP(Op, DAG);
- case ISD::FORMAL_ARGUMENTS:
- return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
- case ISD::CALL:
- return LowerCALL(Op, DAG, SPUTM.getSubtargetImpl());
- case ISD::RET:
- return LowerRET(Op, DAG, getTargetMachine());
// i8, i64 math ops:
case ISD::ADD:
@@ -2651,6 +2757,9 @@ SPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
case ISD::TRUNCATE:
return LowerTRUNCATE(Op, DAG);
+
+ case ISD::SIGN_EXTEND:
+ return LowerSIGN_EXTEND(Op, DAG);
}
return SDValue();
@@ -2662,13 +2771,13 @@ void SPUTargetLowering::ReplaceNodeResults(SDNode *N,
{
#if 0
unsigned Opc = (unsigned) N->getOpcode();
- MVT OpVT = N->getValueType(0);
+ EVT OpVT = N->getValueType(0);
switch (Opc) {
default: {
- cerr << "SPUTargetLowering::ReplaceNodeResults(): need to fix this!\n";
- cerr << "Op.getOpcode() = " << Opc << "\n";
- cerr << "*Op.getNode():\n";
+ errs() << "SPUTargetLowering::ReplaceNodeResults(): need to fix this!\n";
+ errs() << "Op.getOpcode() = " << Opc << "\n";
+ errs() << "*Op.getNode():\n";
N->dump();
abort();
/*NOTREACHED*/
@@ -2692,8 +2801,8 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
const SPUSubtarget *ST = SPUTM.getSubtargetImpl();
SelectionDAG &DAG = DCI.DAG;
SDValue Op0 = N->getOperand(0); // everything has at least one operand
- MVT NodeVT = N->getValueType(0); // The node's value type
- MVT Op0VT = Op0.getValueType(); // The first operand's result
+ EVT NodeVT = N->getValueType(0); // The node's value type
+ EVT Op0VT = Op0.getValueType(); // The first operand's result
SDValue Result; // Initially, empty result
DebugLoc dl = N->getDebugLoc();
@@ -2722,7 +2831,7 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
#if !defined(NDEBUG)
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
- cerr << "\n"
+ errs() << "\n"
<< "Replace: (add (SPUindirect <arg>, <arg>), 0)\n"
<< "With: (SPUindirect <arg>, <arg>)\n";
}
@@ -2738,7 +2847,7 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
#if !defined(NDEBUG)
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
- cerr << "\n"
+ errs() << "\n"
<< "Replace: (add (SPUindirect <arg>, " << CN1->getSExtValue()
<< "), " << CN0->getSExtValue() << ")\n"
<< "With: (SPUindirect <arg>, "
@@ -2762,11 +2871,11 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
// Types must match, however...
#if !defined(NDEBUG)
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
- cerr << "\nReplace: ";
+ errs() << "\nReplace: ";
N->dump(&DAG);
- cerr << "\nWith: ";
+ errs() << "\nWith: ";
Op0.getNode()->dump(&DAG);
- cerr << "\n";
+ errs() << "\n";
}
#endif
@@ -2781,11 +2890,11 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
// (SPUindirect (SPUaform <addr>, 0), 0) ->
// (SPUaform <addr>, 0)
- DEBUG(cerr << "Replace: ");
+ DEBUG(errs() << "Replace: ");
DEBUG(N->dump(&DAG));
- DEBUG(cerr << "\nWith: ");
+ DEBUG(errs() << "\nWith: ");
DEBUG(Op0.getNode()->dump(&DAG));
- DEBUG(cerr << "\n");
+ DEBUG(errs() << "\n");
return Op0;
}
@@ -2798,7 +2907,7 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
#if !defined(NDEBUG)
if (DebugFlag && isCurrentDebugType(DEBUG_TYPE)) {
- cerr << "\n"
+ errs() << "\n"
<< "Replace: (SPUindirect (add <arg>, <arg>), 0)\n"
<< "With: (SPUindirect <arg>, <arg>)\n";
}
@@ -2813,9 +2922,6 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
}
case SPUISD::SHLQUAD_L_BITS:
case SPUISD::SHLQUAD_L_BYTES:
- case SPUISD::VEC_SHL:
- case SPUISD::VEC_SRL:
- case SPUISD::VEC_SRA:
case SPUISD::ROTBYTES_LEFT: {
SDValue Op1 = N->getOperand(1);
@@ -2860,11 +2966,11 @@ SPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
// Otherwise, return unchanged.
#ifndef NDEBUG
if (Result.getNode()) {
- DEBUG(cerr << "\nReplace.SPU: ");
+ DEBUG(errs() << "\nReplace.SPU: ");
DEBUG(N->dump(&DAG));
- DEBUG(cerr << "\nWith: ");
+ DEBUG(errs() << "\nWith: ");
DEBUG(Result.getNode()->dump(&DAG));
- DEBUG(cerr << "\n");
+ DEBUG(errs() << "\n");
}
#endif
@@ -2895,7 +3001,7 @@ SPUTargetLowering::getConstraintType(const std::string &ConstraintLetter) const
std::pair<unsigned, const TargetRegisterClass*>
SPUTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const
+ EVT VT) const
{
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
@@ -2943,9 +3049,6 @@ SPUTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
case SPUISD::VEC2PREFSLOT:
case SPUISD::SHLQUAD_L_BITS:
case SPUISD::SHLQUAD_L_BYTES:
- case SPUISD::VEC_SHL:
- case SPUISD::VEC_SRL:
- case SPUISD::VEC_SRA:
case SPUISD::VEC_ROTL:
case SPUISD::VEC_ROTR:
case SPUISD::ROTBYTES_LEFT:
@@ -2963,7 +3066,7 @@ SPUTargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
return 1;
case ISD::SETCC: {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
if (VT != MVT::i8 && VT != MVT::i16 && VT != MVT::i32) {
VT = MVT::i32;
diff --git a/lib/Target/CellSPU/SPUISelLowering.h b/lib/Target/CellSPU/SPUISelLowering.h
index b1583f4..ab349bb 100644
--- a/lib/Target/CellSPU/SPUISelLowering.h
+++ b/lib/Target/CellSPU/SPUISelLowering.h
@@ -43,9 +43,6 @@ namespace llvm {
VEC2PREFSLOT, ///< Extract element 0
SHLQUAD_L_BITS, ///< Rotate quad left, by bits
SHLQUAD_L_BYTES, ///< Rotate quad left, by bytes
- VEC_SHL, ///< Vector shift left
- VEC_SRL, ///< Vector shift right (logical)
- VEC_SRA, ///< Vector shift right (arithmetic)
VEC_ROTL, ///< Vector rotate left
VEC_ROTR, ///< Vector rotate right
ROTBYTES_LEFT, ///< Rotate bytes (loads -> ROTQBYI)
@@ -64,22 +61,22 @@ namespace llvm {
//! Utility functions specific to CellSPU:
namespace SPU {
SDValue get_vec_u18imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType);
+ EVT ValueType);
SDValue get_vec_i16imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType);
+ EVT ValueType);
SDValue get_vec_i10imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType);
+ EVT ValueType);
SDValue get_vec_i8imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType);
+ EVT ValueType);
SDValue get_ILHUvec_imm(SDNode *N, SelectionDAG &DAG,
- MVT ValueType);
+ EVT ValueType);
SDValue get_v4i32_imm(SDNode *N, SelectionDAG &DAG);
SDValue get_v2i64_imm(SDNode *N, SelectionDAG &DAG);
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG,
const SPUTargetMachine &TM);
- //! Simplify a MVT::v2i64 constant splat to CellSPU-ready form
- SDValue LowerV2I64Splat(MVT OpVT, SelectionDAG &DAG, uint64_t splat,
+ //! Simplify a EVT::v2i64 constant splat to CellSPU-ready form
+ SDValue LowerV2I64Splat(EVT OpVT, SelectionDAG &DAG, uint64_t splat,
DebugLoc dl);
}
@@ -109,7 +106,7 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the ValueType for ISD::SETCC
- virtual MVT getSetCCResultType(MVT VT) const;
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
//! Custom lowering hooks
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
@@ -134,7 +131,7 @@ namespace llvm {
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
bool hasMemory,
@@ -150,6 +147,28 @@ namespace llvm {
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
};
}
diff --git a/lib/Target/CellSPU/SPUInstrInfo.cpp b/lib/Target/CellSPU/SPUInstrInfo.cpp
index e629c8d..ecce8e3 100644
--- a/lib/Target/CellSPU/SPUInstrInfo.cpp
+++ b/lib/Target/CellSPU/SPUInstrInfo.cpp
@@ -17,8 +17,9 @@
#include "SPUTargetMachine.h"
#include "SPUGenInstrInfo.inc"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/Support/Streams.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -313,8 +314,7 @@ SPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
} else if (RC == SPU::VECREGRegisterClass) {
opc = (isValidFrameIdx) ? SPU::STQDv16i8 : SPU::STQXv16i8;
} else {
- assert(0 && "Unknown regclass!");
- abort();
+ llvm_unreachable("Unknown regclass!");
}
DebugLoc DL = DebugLoc::getUnknownLoc();
@@ -323,43 +323,6 @@ SPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
.addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
}
-void SPUInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- cerr << "storeRegToAddr() invoked!\n";
- abort();
-
- if (Addr[0].isFI()) {
- /* do what storeRegToStackSlot does here */
- } else {
- unsigned Opc = 0;
- if (RC == SPU::GPRCRegisterClass) {
- /* Opc = PPC::STW; */
- } else if (RC == SPU::R16CRegisterClass) {
- /* Opc = PPC::STD; */
- } else if (RC == SPU::R32CRegisterClass) {
- /* Opc = PPC::STFD; */
- } else if (RC == SPU::R32FPRegisterClass) {
- /* Opc = PPC::STFD; */
- } else if (RC == SPU::R64FPRegisterClass) {
- /* Opc = PPC::STFS; */
- } else if (RC == SPU::VECREGRegisterClass) {
- /* Opc = PPC::STVX; */
- } else {
- assert(0 && "Unknown regclass!");
- abort();
- }
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc))
- .addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- }
-}
-
void
SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
@@ -385,8 +348,7 @@ SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
} else if (RC == SPU::VECREGRegisterClass) {
opc = (isValidFrameIdx) ? SPU::LQDv16i8 : SPU::LQXv16i8;
} else {
- assert(0 && "Unknown regclass in loadRegFromStackSlot!");
- abort();
+ llvm_unreachable("Unknown regclass in loadRegFromStackSlot!");
}
DebugLoc DL = DebugLoc::getUnknownLoc();
@@ -394,47 +356,6 @@ SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
addFrameReference(BuildMI(MBB, MI, DL, get(opc), DestReg), FrameIdx);
}
-/*!
- \note We are really pessimistic here about what kind of a load we're doing.
- */
-void SPUInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs)
- const {
- cerr << "loadRegToAddr() invoked!\n";
- abort();
-
- if (Addr[0].isFI()) {
- /* do what loadRegFromStackSlot does here... */
- } else {
- unsigned Opc = 0;
- if (RC == SPU::R8CRegisterClass) {
- /* do brilliance here */
- } else if (RC == SPU::R16CRegisterClass) {
- /* Opc = PPC::LWZ; */
- } else if (RC == SPU::R32CRegisterClass) {
- /* Opc = PPC::LD; */
- } else if (RC == SPU::R32FPRegisterClass) {
- /* Opc = PPC::LFD; */
- } else if (RC == SPU::R64FPRegisterClass) {
- /* Opc = PPC::LFS; */
- } else if (RC == SPU::VECREGRegisterClass) {
- /* Opc = PPC::LVX; */
- } else if (RC == SPU::GPRCRegisterClass) {
- /* Opc = something else! */
- } else {
- assert(0 && "Unknown regclass!");
- abort();
- }
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- }
-}
-
//! Return true if the specified load or store can be folded
bool
SPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
@@ -543,7 +464,7 @@ SPUInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
} else if (isCondBranch(LastInst)) {
// Block ends with fall-through condbranch.
TBB = LastInst->getOperand(1).getMBB();
- DEBUG(cerr << "Pushing LastInst: ");
+ DEBUG(errs() << "Pushing LastInst: ");
DEBUG(LastInst->dump());
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
@@ -564,7 +485,7 @@ SPUInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
// If the block ends with a conditional and unconditional branch, handle it.
if (isCondBranch(SecondLastInst) && isUncondBranch(LastInst)) {
TBB = SecondLastInst->getOperand(1).getMBB();
- DEBUG(cerr << "Pushing SecondLastInst: ");
+ DEBUG(errs() << "Pushing SecondLastInst: ");
DEBUG(SecondLastInst->dump());
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
@@ -596,7 +517,7 @@ SPUInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
return 0;
// Remove the first branch.
- DEBUG(cerr << "Removing branch: ");
+ DEBUG(errs() << "Removing branch: ");
DEBUG(I->dump());
I->eraseFromParent();
I = MBB.end();
@@ -608,7 +529,7 @@ SPUInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
return 1;
// Remove the second branch.
- DEBUG(cerr << "Removing second branch: ");
+ DEBUG(errs() << "Removing second branch: ");
DEBUG(I->dump());
I->eraseFromParent();
return 2;
@@ -632,14 +553,14 @@ SPUInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(SPU::BR));
MIB.addMBB(TBB);
- DEBUG(cerr << "Inserted one-way uncond branch: ");
+ DEBUG(errs() << "Inserted one-way uncond branch: ");
DEBUG((*MIB).dump());
} else {
// Conditional branch
MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(Cond[0].getImm()));
MIB.addReg(Cond[1].getReg()).addMBB(TBB);
- DEBUG(cerr << "Inserted one-way cond branch: ");
+ DEBUG(errs() << "Inserted one-way cond branch: ");
DEBUG((*MIB).dump());
}
return 1;
@@ -651,9 +572,9 @@ SPUInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MIB.addReg(Cond[1].getReg()).addMBB(TBB);
MIB2.addMBB(FBB);
- DEBUG(cerr << "Inserted conditional branch: ");
+ DEBUG(errs() << "Inserted conditional branch: ");
DEBUG((*MIB).dump());
- DEBUG(cerr << "part 2: ");
+ DEBUG(errs() << "part 2: ");
DEBUG((*MIB2).dump());
return 2;
}
diff --git a/lib/Target/CellSPU/SPUInstrInfo.h b/lib/Target/CellSPU/SPUInstrInfo.h
index ffb4087..c644a11 100644
--- a/lib/Target/CellSPU/SPUInstrInfo.h
+++ b/lib/Target/CellSPU/SPUInstrInfo.h
@@ -68,24 +68,12 @@ namespace llvm {
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- //! Store a register to an address, based on its register class
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
//! Load a register from a stack slot, based on its register class.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
- //! Loqad a register from an address, based on its register class
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
//! Return true if the specified load or store can be folded
virtual
bool canFoldMemoryOperand(const MachineInstr *MI,
diff --git a/lib/Target/CellSPU/SPUInstrInfo.td b/lib/Target/CellSPU/SPUInstrInfo.td
index 63eb85a..09849da 100644
--- a/lib/Target/CellSPU/SPUInstrInfo.td
+++ b/lib/Target/CellSPU/SPUInstrInfo.td
@@ -4431,13 +4431,6 @@ def : Pat<(i8 imm:$imm),
(ILHr8 imm:$imm)>;
//===----------------------------------------------------------------------===//
-// Call instruction patterns:
-//===----------------------------------------------------------------------===//
-// Return void
-def : Pat<(ret),
- (RET)>;
-
-//===----------------------------------------------------------------------===//
// Zero/Any/Sign extensions
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/CellSPU/SPUMCAsmInfo.cpp b/lib/Target/CellSPU/SPUMCAsmInfo.cpp
new file mode 100644
index 0000000..1c921ab
--- /dev/null
+++ b/lib/Target/CellSPU/SPUMCAsmInfo.cpp
@@ -0,0 +1,40 @@
+//===-- SPUMCAsmInfo.cpp - Cell SPU asm properties ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the SPUMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SPUMCAsmInfo.h"
+using namespace llvm;
+
+SPULinuxMCAsmInfo::SPULinuxMCAsmInfo(const Target &T, const StringRef &TT) {
+ ZeroDirective = "\t.space\t";
+ SetDirective = "\t.set";
+ Data64bitsDirective = "\t.quad\t";
+ AlignmentIsInBytes = false;
+ LCOMMDirective = "\t.lcomm\t";
+
+ PCSymbol = ".";
+ CommentString = "#";
+ GlobalPrefix = "";
+ PrivateGlobalPrefix = ".L";
+
+ // Has leb128, .loc and .file
+ HasLEB128 = true;
+ HasDotLocAndDotFile = true;
+
+ SupportsDebugInformation = true;
+ NeedsSet = true;
+
+ // Exception handling is not supported on CellSPU (think about it: you only
+ // have 256K for code+data. Would you support exception handling?)
+ ExceptionsType = ExceptionHandling::None;
+}
+
diff --git a/lib/Target/CellSPU/SPUMCAsmInfo.h b/lib/Target/CellSPU/SPUMCAsmInfo.h
new file mode 100644
index 0000000..8d75ea8
--- /dev/null
+++ b/lib/Target/CellSPU/SPUMCAsmInfo.h
@@ -0,0 +1,28 @@
+//===-- SPUMCAsmInfo.h - Cell SPU asm properties ---------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the SPUMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPUTARGETASMINFO_H
+#define SPUTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ struct SPULinuxMCAsmInfo : public MCAsmInfo {
+ explicit SPULinuxMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+} // namespace llvm
+
+#endif /* SPUTARGETASMINFO_H */
diff --git a/lib/Target/CellSPU/SPUNodes.td b/lib/Target/CellSPU/SPUNodes.td
index 87c4115..c722e4b 100644
--- a/lib/Target/CellSPU/SPUNodes.td
+++ b/lib/Target/CellSPU/SPUNodes.td
@@ -87,9 +87,9 @@ def SPUshlquad_l_bits: SDNode<"SPUISD::SHLQUAD_L_BITS", SPUvecshift_type, []>;
def SPUshlquad_l_bytes: SDNode<"SPUISD::SHLQUAD_L_BYTES", SPUvecshift_type, []>;
// Vector shifts (ISD::SHL,SRL,SRA are for _integers_ only):
-def SPUvec_shl: SDNode<"SPUISD::VEC_SHL", SPUvecshift_type, []>;
-def SPUvec_srl: SDNode<"SPUISD::VEC_SRL", SPUvecshift_type, []>;
-def SPUvec_sra: SDNode<"SPUISD::VEC_SRA", SPUvecshift_type, []>;
+def SPUvec_shl: SDNode<"ISD::SHL", SPUvecshift_type, []>;
+def SPUvec_srl: SDNode<"ISD::SRL", SPUvecshift_type, []>;
+def SPUvec_sra: SDNode<"ISD::SRA", SPUvecshift_type, []>;
def SPUvec_rotl: SDNode<"SPUISD::VEC_ROTL", SPUvecshift_type, []>;
def SPUvec_rotr: SDNode<"SPUISD::VEC_ROTR", SPUvecshift_type, []>;
diff --git a/lib/Target/CellSPU/SPURegisterInfo.cpp b/lib/Target/CellSPU/SPURegisterInfo.cpp
index e031048..8412006 100644
--- a/lib/Target/CellSPU/SPURegisterInfo.cpp
+++ b/lib/Target/CellSPU/SPURegisterInfo.cpp
@@ -35,7 +35,9 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <cstdlib>
@@ -176,8 +178,7 @@ unsigned SPURegisterInfo::getRegisterNumbering(unsigned RegEnum) {
case SPU::R126: return 126;
case SPU::R127: return 127;
default:
- cerr << "Unhandled reg in SPURegisterInfo::getRegisterNumbering!\n";
- abort();
+ llvm_report_error("Unhandled reg in SPURegisterInfo::getRegisterNumbering");
}
}
@@ -218,8 +219,8 @@ SPURegisterInfo::getNumArgRegs()
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
-const TargetRegisterClass * SPURegisterInfo::getPointerRegClass() const
-{
+const TargetRegisterClass *
+SPURegisterInfo::getPointerRegClass(unsigned Kind) const {
return &SPU::R32CRegClass;
}
@@ -325,9 +326,9 @@ SPURegisterInfo::eliminateCallFramePseudoInstr(MachineFunction &MF,
MBB.erase(I);
}
-void
+unsigned
SPURegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
- RegScavenger *RS) const
+ int *Value, RegScavenger *RS) const
{
unsigned i = 0;
MachineInstr &MI = *II;
@@ -364,12 +365,13 @@ SPURegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
SPOp.ChangeToRegister(SPU::R1, false);
if (Offset > SPUFrameInfo::maxFrameOffset()
|| Offset < SPUFrameInfo::minFrameOffset()) {
- cerr << "Large stack adjustment ("
+ errs() << "Large stack adjustment ("
<< Offset
<< ") in SPURegisterInfo::eliminateFrameIndex.";
} else {
MO.ChangeToImmediate(Offset);
}
+ return 0;
}
/// determineFrameLayout - Determine the size of the frame and maximum call
@@ -485,8 +487,10 @@ void SPURegisterInfo::emitPrologue(MachineFunction &MF) const
.addReg(SPU::R2)
.addReg(SPU::R1);
} else {
- cerr << "Unhandled frame size: " << FrameSize << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Unhandled frame size: " << FrameSize;
+ llvm_report_error(Msg.str());
}
if (hasDebugInfo) {
@@ -577,8 +581,10 @@ SPURegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const
.addReg(SPU::R2)
.addReg(SPU::R1);
} else {
- cerr << "Unhandled frame size: " << FrameSize << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Unhandled frame size: " << FrameSize;
+ llvm_report_error(Msg.str());
}
}
}
diff --git a/lib/Target/CellSPU/SPURegisterInfo.h b/lib/Target/CellSPU/SPURegisterInfo.h
index 5b6e9ec..1d9d07e 100644
--- a/lib/Target/CellSPU/SPURegisterInfo.h
+++ b/lib/Target/CellSPU/SPURegisterInfo.h
@@ -43,7 +43,8 @@ namespace llvm {
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
- virtual const TargetRegisterClass *getPointerRegClass() const;
+ virtual const TargetRegisterClass *
+ getPointerRegClass(unsigned Kind = 0) const;
//! Return the array of callee-saved registers
virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF) const;
@@ -62,8 +63,9 @@ namespace llvm {
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
//! Convert frame indicies into machine operands
- void eliminateFrameIndex(MachineBasicBlock::iterator II, int,
- RegScavenger *RS) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
+ int *Value = NULL,
+ RegScavenger *RS = NULL) const;
//! Determine the frame's layour
void determineFrameLayout(MachineFunction &MF) const;
diff --git a/lib/Target/CellSPU/SPUSubtarget.cpp b/lib/Target/CellSPU/SPUSubtarget.cpp
index 0a1c2f7..0f18b7f 100644
--- a/lib/Target/CellSPU/SPUSubtarget.cpp
+++ b/lib/Target/CellSPU/SPUSubtarget.cpp
@@ -13,15 +13,11 @@
#include "SPUSubtarget.h"
#include "SPU.h"
-#include "llvm/Module.h"
-#include "llvm/Target/TargetMachine.h"
#include "SPUGenSubtarget.inc"
using namespace llvm;
-SPUSubtarget::SPUSubtarget(const TargetMachine &tm, const Module &M,
- const std::string &FS) :
- TM(tm),
+SPUSubtarget::SPUSubtarget(const std::string &TT, const std::string &FS) :
StackAlignment(16),
ProcDirective(SPU::DEFAULT_PROC),
UseLargeMem(false)
diff --git a/lib/Target/CellSPU/SPUSubtarget.h b/lib/Target/CellSPU/SPUSubtarget.h
index b6a3409..94ac73c 100644
--- a/lib/Target/CellSPU/SPUSubtarget.h
+++ b/lib/Target/CellSPU/SPUSubtarget.h
@@ -20,9 +20,7 @@
#include <string>
namespace llvm {
- class Module;
class GlobalValue;
- class TargetMachine;
namespace SPU {
enum {
@@ -33,8 +31,6 @@ namespace llvm {
class SPUSubtarget : public TargetSubtarget {
protected:
- const TargetMachine &TM;
-
/// stackAlignment - The minimum alignment known to hold of the stack frame
/// on entry to the function and which must be maintained by every function.
unsigned StackAlignment;
@@ -52,10 +48,9 @@ namespace llvm {
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- SPUSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS);
+ SPUSubtarget(const std::string &TT, const std::string &FS);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
diff --git a/lib/Target/CellSPU/SPUTargetMachine.cpp b/lib/Target/CellSPU/SPUTargetMachine.cpp
index 2470972..6500067 100644
--- a/lib/Target/CellSPU/SPUTargetMachine.cpp
+++ b/lib/Target/CellSPU/SPUTargetMachine.cpp
@@ -13,62 +13,36 @@
#include "SPU.h"
#include "SPURegisterNames.h"
-#include "SPUTargetAsmInfo.h"
+#include "SPUMCAsmInfo.h"
#include "SPUTargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-namespace {
- // Register the targets
- RegisterTarget<SPUTargetMachine>
- CELLSPU("cellspu", "STI CBEA Cell SPU [experimental]");
+extern "C" void LLVMInitializeCellSPUTarget() {
+ // Register the target.
+ RegisterTargetMachine<SPUTargetMachine> X(TheCellSPUTarget);
+ RegisterAsmInfo<SPULinuxMCAsmInfo> Y(TheCellSPUTarget);
}
-// No assembler printer by default
-SPUTargetMachine::AsmPrinterCtorFn SPUTargetMachine::AsmPrinterCtor = 0;
-
-// Force static initialization.
-extern "C" void LLVMInitializeCellSPUTarget() { }
-
const std::pair<unsigned, int> *
SPUFrameInfo::getCalleeSaveSpillSlots(unsigned &NumEntries) const {
NumEntries = 1;
return &LR[0];
}
-const TargetAsmInfo *
-SPUTargetMachine::createTargetAsmInfo() const
-{
- return new SPULinuxTargetAsmInfo(*this);
-}
-
-unsigned
-SPUTargetMachine::getModuleMatchQuality(const Module &M)
-{
- // We strongly match "spu-*" or "cellspu-*".
- std::string TT = M.getTargetTriple();
- if ((TT.size() == 3 && std::string(TT.begin(), TT.begin()+3) == "spu")
- || (TT.size() == 7 && std::string(TT.begin(), TT.begin()+7) == "cellspu")
- || (TT.size() >= 4 && std::string(TT.begin(), TT.begin()+4) == "spu-")
- || (TT.size() >= 8 && std::string(TT.begin(), TT.begin()+8) == "cellspu-"))
- return 20;
-
- return 0; // No match at all...
-}
-
-SPUTargetMachine::SPUTargetMachine(const Module &M, const std::string &FS)
- : Subtarget(*this, M, FS),
+SPUTargetMachine::SPUTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS),
DataLayout(Subtarget.getTargetDataString()),
InstrInfo(*this),
FrameInfo(*this),
TLInfo(*this),
- InstrItins(Subtarget.getInstrItineraryData())
-{
+ InstrItins(Subtarget.getInstrItineraryData()) {
// For the time being, use static relocations, since there's really no
// support for PIC yet.
setRelocationModel(Reloc::Static);
@@ -78,22 +52,9 @@ SPUTargetMachine::SPUTargetMachine(const Module &M, const std::string &FS)
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
-bool
-SPUTargetMachine::addInstSelector(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel)
-{
+bool SPUTargetMachine::addInstSelector(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createSPUISelDag(*this));
return false;
}
-
-bool SPUTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // Output assembly language.
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
- return false;
-}
diff --git a/lib/Target/CellSPU/SPUTargetMachine.h b/lib/Target/CellSPU/SPUTargetMachine.h
index 4c28521..9fdcfe9 100644
--- a/lib/Target/CellSPU/SPUTargetMachine.h
+++ b/lib/Target/CellSPU/SPUTargetMachine.h
@@ -35,19 +35,9 @@ class SPUTargetMachine : public LLVMTargetMachine {
SPUFrameInfo FrameInfo;
SPUTargetLowering TLInfo;
InstrItineraryData InstrItins;
-
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- SPUTargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- SPUTargetMachine(const Module &M, const std::string &FS);
+ SPUTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
/// Return the subtarget implementation object
virtual const SPUSubtarget *getSubtargetImpl() const {
@@ -66,12 +56,6 @@ public:
virtual TargetJITInfo *getJITInfo() {
return NULL;
}
-
- //! Module match function
- /*!
- Module matching function called by TargetMachineRegistry().
- */
- static unsigned getModuleMatchQuality(const Module &M);
virtual SPUTargetLowering *getTargetLowering() const {
return const_cast<SPUTargetLowering*>(&TLInfo);
@@ -92,13 +76,6 @@ public:
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
-
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
};
} // end namespace llvm
diff --git a/lib/Target/CellSPU/TargetInfo/CMakeLists.txt b/lib/Target/CellSPU/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..928d0fe
--- /dev/null
+++ b/lib/Target/CellSPU/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMCellSPUInfo
+ CellSPUTargetInfo.cpp
+ )
+
+add_dependencies(LLVMCellSPUInfo CellSPUCodeGenTable_gen)
diff --git a/lib/Target/CellSPU/TargetInfo/CellSPUTargetInfo.cpp b/lib/Target/CellSPU/TargetInfo/CellSPUTargetInfo.cpp
new file mode 100644
index 0000000..049ea23
--- /dev/null
+++ b/lib/Target/CellSPU/TargetInfo/CellSPUTargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- CellSPUTargetInfo.cpp - CellSPU Target Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SPU.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheCellSPUTarget;
+
+extern "C" void LLVMInitializeCellSPUTargetInfo() {
+ RegisterTarget<Triple::cellspu>
+ X(TheCellSPUTarget, "cellspu", "STI CBEA Cell SPU [experimental]");
+}
diff --git a/lib/Target/CellSPU/TargetInfo/Makefile b/lib/Target/CellSPU/TargetInfo/Makefile
new file mode 100644
index 0000000..9cb6827
--- /dev/null
+++ b/lib/Target/CellSPU/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/CellSPU/TargetInfo/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMCellSPUInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/CppBackend/CPPBackend.cpp b/lib/Target/CppBackend/CPPBackend.cpp
index 28f58e8..14ad451 100644
--- a/lib/Target/CppBackend/CPPBackend.cpp
+++ b/lib/Target/CppBackend/CPPBackend.cpp
@@ -23,13 +23,12 @@
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
-#include "llvm/Target/TargetMachineRegistry.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/config.h"
#include <algorithm>
#include <set>
@@ -71,19 +70,10 @@ static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
cl::desc("Specify the name of the thing to generate"),
cl::init("!bad!"));
-/// CppBackendTargetMachineModule - Note that this is used on hosts
-/// that cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int CppBackendTargetMachineModule;
-int CppBackendTargetMachineModule = 0;
-
-// Register the target.
-static RegisterTarget<CPPTargetMachine> X("cpp", "C++ backend");
-
-// Force static initialization.
-extern "C" void LLVMInitializeCppBackendTarget() { }
+extern "C" void LLVMInitializeCppBackendTarget() {
+ // Register the target.
+ RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
+}
namespace {
typedef std::vector<const Type*> TypeList;
@@ -97,7 +87,7 @@ namespace {
/// CppWriter - This class is the main chunk of code that converts an LLVM
/// module to a C++ translation unit.
class CppWriter : public ModulePass {
- raw_ostream &Out;
+ formatted_raw_ostream &Out;
const Module *TheModule;
uint64_t uniqueNum;
TypeMap TypeNames;
@@ -112,7 +102,7 @@ namespace {
public:
static char ID;
- explicit CppWriter(raw_ostream &o) :
+ explicit CppWriter(formatted_raw_ostream &o) :
ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
virtual const char *getPassName() const { return "C++ backend"; }
@@ -133,7 +123,7 @@ namespace {
private:
void printLinkageType(GlobalValue::LinkageTypes LT);
void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
- void printCallingConv(unsigned cc);
+ void printCallingConv(CallingConv::ID cc);
void printEscapedString(const std::string& str);
void printCFP(const ConstantFP* CFP);
@@ -165,7 +155,7 @@ namespace {
};
static unsigned indent_level = 0;
- inline raw_ostream& nl(raw_ostream& Out, int delta = 0) {
+ inline formatted_raw_ostream& nl(formatted_raw_ostream& Out, int delta = 0) {
Out << "\n";
if (delta >= 0 || indent_level >= unsigned(-delta))
indent_level += delta;
@@ -220,8 +210,7 @@ namespace {
}
void CppWriter::error(const std::string& msg) {
- cerr << msg << "\n";
- exit(2);
+ llvm_report_error(msg);
}
// printCFP - Print a floating point constant .. very carefully :)
@@ -230,9 +219,9 @@ namespace {
void CppWriter::printCFP(const ConstantFP *CFP) {
bool ignored;
APFloat APF = APFloat(CFP->getValueAPF()); // copy
- if (CFP->getType() == Type::FloatTy)
+ if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
- Out << "ConstantFP::get(";
+ Out << "ConstantFP::get(getGlobalContext(), ";
Out << "APFloat(";
#if HAVE_PRINTF_A
char Buffer[100];
@@ -241,7 +230,7 @@ namespace {
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3)) &&
APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
- if (CFP->getType() == Type::DoubleTy)
+ if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
Out << "BitsToDouble(" << Buffer << ")";
else
Out << "BitsToFloat((float)" << Buffer << ")";
@@ -259,11 +248,11 @@ namespace {
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
(CFP->isExactlyValue(atof(StrVal.c_str())))) {
- if (CFP->getType() == Type::DoubleTy)
+ if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
Out << StrVal;
else
Out << StrVal << "f";
- } else if (CFP->getType() == Type::DoubleTy)
+ } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
Out << "BitsToDouble(0x"
<< utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
<< "ULL) /* " << StrVal << " */";
@@ -279,7 +268,7 @@ namespace {
Out << ")";
}
- void CppWriter::printCallingConv(unsigned cc){
+ void CppWriter::printCallingConv(CallingConv::ID cc){
// Print the calling convention.
switch (cc) {
case CallingConv::C: Out << "CallingConv::C"; break;
@@ -296,6 +285,8 @@ namespace {
Out << "GlobalValue::InternalLinkage"; break;
case GlobalValue::PrivateLinkage:
Out << "GlobalValue::PrivateLinkage"; break;
+ case GlobalValue::LinkerPrivateLinkage:
+ Out << "GlobalValue::LinkerPrivateLinkage"; break;
case GlobalValue::AvailableExternallyLinkage:
Out << "GlobalValue::AvailableExternallyLinkage "; break;
case GlobalValue::LinkOnceAnyLinkage:
@@ -325,7 +316,7 @@ namespace {
void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
switch (VisType) {
- default: assert(0 && "Unknown GVar visibility");
+ default: llvm_unreachable("Unknown GVar visibility");
case GlobalValue::DefaultVisibility:
Out << "GlobalValue::DefaultVisibility";
break;
@@ -357,20 +348,21 @@ namespace {
// First, handle the primitive types .. easy
if (Ty->isPrimitiveType() || Ty->isInteger()) {
switch (Ty->getTypeID()) {
- case Type::VoidTyID: return "Type::VoidTy";
+ case Type::VoidTyID: return "Type::getVoidTy(getGlobalContext())";
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
- return "IntegerType::get(" + utostr(BitWidth) + ")";
+ return "IntegerType::get(getGlobalContext(), " + utostr(BitWidth) + ")";
}
- case Type::X86_FP80TyID: return "Type::X86_FP80Ty";
- case Type::FloatTyID: return "Type::FloatTy";
- case Type::DoubleTyID: return "Type::DoubleTy";
- case Type::LabelTyID: return "Type::LabelTy";
+ case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(getGlobalContext())";
+ case Type::FloatTyID: return "Type::getFloatTy(getGlobalContext())";
+ case Type::DoubleTyID: return "Type::getDoubleTy(getGlobalContext())";
+ case Type::LabelTyID: return "Type::getLabelTy(getGlobalContext())";
default:
error("Invalid primitive type");
break;
}
- return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+ // shouldn't be returned, but make it sensible
+ return "Type::getVoidTy(getGlobalContext())";
}
// Now, see if we've seen the type before and return that
@@ -436,7 +428,10 @@ namespace {
} else {
name = getTypePrefix(val->getType());
}
- name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
+ if (val->hasName())
+ name += val->getName();
+ else
+ name += utostr(uniqueNum++);
sanitize(name);
NameSet::iterator NI = UsedNames.find(name);
if (NI != UsedNames.end())
@@ -477,6 +472,7 @@ namespace {
HANDLE_ATTR(Nest);
HANDLE_ATTR(ReadNone);
HANDLE_ATTR(ReadOnly);
+ HANDLE_ATTR(InlineHint);
HANDLE_ATTR(NoInline);
HANDLE_ATTR(AlwaysInline);
HANDLE_ATTR(OptimizeForSize);
@@ -519,7 +515,8 @@ namespace {
if (TI != TypeStack.end()) {
TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
if (I == UnresolvedTypes.end()) {
- Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
+ Out << "PATypeHolder " << typeName;
+ Out << "_fwd = OpaqueType::get(getGlobalContext());";
nl(Out);
UnresolvedTypes[Ty] = typeName;
}
@@ -579,6 +576,7 @@ namespace {
nl(Out);
}
Out << "StructType* " << typeName << " = StructType::get("
+ << "mod->getContext(), "
<< typeName << "_fields, /*isPacked=*/"
<< (ST->isPacked() ? "true" : "false") << ");";
nl(Out);
@@ -618,7 +616,8 @@ namespace {
break;
}
case Type::OpaqueTyID: {
- Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
+ Out << "OpaqueType* " << typeName;
+ Out << " = OpaqueType::get(getGlobalContext());";
nl(Out);
break;
}
@@ -753,9 +752,10 @@ namespace {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
std::string constValue = CI->getValue().toString(10, true);
- Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
- << cast<IntegerType>(CI->getType())->getBitWidth() << ", \""
- << constValue << "\", " << constValue.length() << ", 10));";
+ Out << "ConstantInt* " << constName
+ << " = ConstantInt::get(getGlobalContext(), APInt("
+ << cast<IntegerType>(CI->getType())->getBitWidth()
+ << ", StringRef(\"" << constValue << "\"), 10));";
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "ConstantAggregateZero* " << constName
<< " = ConstantAggregateZero::get(" << typeName << ");";
@@ -767,8 +767,11 @@ namespace {
printCFP(CFP);
Out << ";";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
- if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
- Out << "Constant* " << constName << " = ConstantArray::get(\"";
+ if (CA->isString() &&
+ CA->getType()->getElementType() ==
+ Type::getInt8Ty(CA->getContext())) {
+ Out << "Constant* " << constName <<
+ " = ConstantArray::get(getGlobalContext(), \"";
std::string tmp = CA->getAsString();
bool nullTerminate = false;
if (tmp[tmp.length()-1] == 0) {
@@ -839,12 +842,12 @@ namespace {
<< getCppName(CE->getOperand(0)) << ", "
<< "&" << constName << "_indices[0], "
<< constName << "_indices.size()"
- << " );";
+ << ");";
} else if (CE->isCast()) {
printConstant(CE->getOperand(0));
Out << "Constant* " << constName << " = ConstantExpr::getCast(";
switch (CE->getOpcode()) {
- default: assert(0 && "Invalid cast opcode");
+ default: llvm_unreachable("Invalid cast opcode");
case Instruction::Trunc: Out << "Instruction::Trunc"; break;
case Instruction::ZExt: Out << "Instruction::ZExt"; break;
case Instruction::SExt: Out << "Instruction::SExt"; break;
@@ -995,13 +998,13 @@ namespace {
void CppWriter::printVariableHead(const GlobalVariable *GV) {
nl(Out) << "GlobalVariable* " << getCppName(GV);
if (is_inline) {
- Out << " = mod->getGlobalVariable(";
+ Out << " = mod->getGlobalVariable(getGlobalContext(), ";
printEscapedString(GV->getName());
Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
nl(Out) << "if (!" << getCppName(GV) << ") {";
in(); nl(Out) << getCppName(GV);
}
- Out << " = new GlobalVariable(";
+ Out << " = new GlobalVariable(/*Module=*/*mod, ";
nl(Out) << "/*Type=*/";
printCppName(GV->getType()->getElementType());
Out << ",";
@@ -1016,8 +1019,7 @@ namespace {
}
nl(Out) << "/*Name=*/\"";
printEscapedString(GV->getName());
- Out << "\",";
- nl(Out) << "mod);";
+ Out << "\");";
nl(Out);
if (GV->hasSection()) {
@@ -1095,7 +1097,7 @@ namespace {
case Instruction::Ret: {
const ReturnInst* ret = cast<ReturnInst>(I);
- Out << "ReturnInst::Create("
+ Out << "ReturnInst::Create(getGlobalContext(), "
<< (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
break;
}
@@ -1159,8 +1161,9 @@ namespace {
<< bbname << ");";
break;
}
- case Instruction::Unreachable:{
+ case Instruction::Unreachable: {
Out << "new UnreachableInst("
+ << "getGlobalContext(), "
<< bbname << ");";
break;
}
@@ -1210,7 +1213,7 @@ namespace {
break;
}
case Instruction::FCmp: {
- Out << "FCmpInst* " << iName << " = new FCmpInst(";
+ Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
switch (cast<FCmpInst>(I)->getPredicate()) {
case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
@@ -1232,11 +1235,11 @@ namespace {
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
- Out << "\", " << bbname << ");";
+ Out << "\");";
break;
}
case Instruction::ICmp: {
- Out << "ICmpInst* " << iName << " = new ICmpInst(";
+ Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
switch (cast<ICmpInst>(I)->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
@@ -1252,7 +1255,7 @@ namespace {
}
Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
printEscapedString(I->getName());
- Out << "\", " << bbname << ");";
+ Out << "\");";
break;
}
case Instruction::Malloc: {
@@ -1680,7 +1683,8 @@ namespace {
for (Function::const_iterator BI = F->begin(), BE = F->end();
BI != BE; ++BI) {
std::string bbname(getCppName(BI));
- Out << "BasicBlock* " << bbname << " = BasicBlock::Create(\"";
+ Out << "BasicBlock* " << bbname <<
+ " = BasicBlock::Create(getGlobalContext(), \"";
if (BI->hasName())
printEscapedString(BI->getName());
Out << "\"," << getCppName(BI->getParent()) << ",0);";
@@ -1799,6 +1803,7 @@ namespace {
void CppWriter::printProgram(const std::string& fname,
const std::string& mName) {
+ Out << "#include <llvm/LLVMContext.h>\n";
Out << "#include <llvm/Module.h>\n";
Out << "#include <llvm/DerivedTypes.h>\n";
Out << "#include <llvm/Constants.h>\n";
@@ -1808,8 +1813,8 @@ namespace {
Out << "#include <llvm/BasicBlock.h>\n";
Out << "#include <llvm/Instructions.h>\n";
Out << "#include <llvm/InlineAsm.h>\n";
+ Out << "#include <llvm/Support/FormattedStream.h>\n";
Out << "#include <llvm/Support/MathExtras.h>\n";
- Out << "#include <llvm/Support/raw_ostream.h>\n";
Out << "#include <llvm/Pass.h>\n";
Out << "#include <llvm/PassManager.h>\n";
Out << "#include <llvm/ADT/SmallVector.h>\n";
@@ -1821,7 +1826,6 @@ namespace {
Out << "int main(int argc, char**argv) {\n";
Out << " Module* Mod = " << fname << "();\n";
Out << " verifyModule(*Mod, PrintMessageAction);\n";
- Out << " outs().flush();\n";
Out << " PassManager PM;\n";
Out << " PM.add(createPrintModulePass(&outs()));\n";
Out << " PM.run(*Mod);\n";
@@ -1836,7 +1840,7 @@ namespace {
nl(Out,1) << "// Module Construction";
nl(Out) << "Module* mod = new Module(\"";
printEscapedString(mName);
- Out << "\");";
+ Out << "\", getGlobalContext());";
if (!TheModule->getTargetTriple().empty()) {
nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
}
@@ -2014,7 +2018,7 @@ char CppWriter::ID = 0;
//===----------------------------------------------------------------------===//
bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
- raw_ostream &o,
+ formatted_raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel) {
if (FileType != TargetMachine::AssemblyFile) return true;
diff --git a/lib/Target/CppBackend/CPPTargetMachine.h b/lib/Target/CppBackend/CPPTargetMachine.h
index db4bc0e..1f74f76 100644
--- a/lib/Target/CppBackend/CPPTargetMachine.h
+++ b/lib/Target/CppBackend/CPPTargetMachine.h
@@ -19,25 +19,24 @@
namespace llvm {
-class raw_ostream;
+class formatted_raw_ostream;
struct CPPTargetMachine : public TargetMachine {
- const TargetData DataLayout; // Calculates type size & alignment
-
- CPPTargetMachine(const Module &M, const std::string &FS)
- : DataLayout(&M) {}
+ CPPTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : TargetMachine(T) {}
virtual bool WantsWholeFile() const { return true; }
- virtual bool addPassesToEmitWholeFile(PassManager &PM, raw_ostream &Out,
+ virtual bool addPassesToEmitWholeFile(PassManager &PM,
+ formatted_raw_ostream &Out,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel);
- // This class always works, but shouldn't be the default in most cases.
- static unsigned getModuleMatchQuality(const Module &M) { return 1; }
-
- virtual const TargetData *getTargetData() const { return &DataLayout; }
+ virtual const TargetData *getTargetData() const { return 0; }
};
+extern Target TheCppBackendTarget;
+
} // End llvm namespace
diff --git a/lib/Target/CppBackend/Makefile b/lib/Target/CppBackend/Makefile
index ca7e1a8..dc9cf48 100644
--- a/lib/Target/CppBackend/Makefile
+++ b/lib/Target/CppBackend/Makefile
@@ -9,6 +9,9 @@
LEVEL = ../../..
LIBRARYNAME = LLVMCppBackend
+
+DIRS = TargetInfo
+
include $(LEVEL)/Makefile.common
CompileCommonOpts += -Wno-format
diff --git a/lib/Target/CppBackend/TargetInfo/CMakeLists.txt b/lib/Target/CppBackend/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..edaf5d3
--- /dev/null
+++ b/lib/Target/CppBackend/TargetInfo/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMCppBackendInfo
+ CppBackendTargetInfo.cpp
+ )
+
diff --git a/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp b/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp
new file mode 100644
index 0000000..d0aeb12
--- /dev/null
+++ b/lib/Target/CppBackend/TargetInfo/CppBackendTargetInfo.cpp
@@ -0,0 +1,26 @@
+//===-- CppBackendTargetInfo.cpp - CppBackend Target Implementation -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CPPTargetMachine.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheCppBackendTarget;
+
+static unsigned CppBackend_TripleMatchQuality(const std::string &TT) {
+ // This class always works, but shouldn't be the default in most cases.
+ return 1;
+}
+
+extern "C" void LLVMInitializeCppBackendTargetInfo() {
+ TargetRegistry::RegisterTarget(TheCppBackendTarget, "cpp",
+ "C++ backend",
+ &CppBackend_TripleMatchQuality);
+}
diff --git a/lib/Target/CppBackend/TargetInfo/Makefile b/lib/Target/CppBackend/TargetInfo/Makefile
new file mode 100644
index 0000000..6e68283
--- /dev/null
+++ b/lib/Target/CppBackend/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/CppBackend/TargetInfo/Makefile -----------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMCppBackendInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/MSIL/MSILWriter.cpp b/lib/Target/MSIL/MSILWriter.cpp
index ee73c38..26d637b 100644
--- a/lib/Target/MSIL/MSILWriter.cpp
+++ b/lib/Target/MSIL/MSILWriter.cpp
@@ -19,44 +19,35 @@
#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/Passes.h"
+using namespace llvm;
-namespace {
+namespace llvm {
// TargetMachine for the MSIL
struct VISIBILITY_HIDDEN MSILTarget : public TargetMachine {
- const TargetData DataLayout; // Calculates type size & alignment
-
- MSILTarget(const Module &M, const std::string &FS)
- : DataLayout(&M) {}
+ MSILTarget(const Target &T, const std::string &TT, const std::string &FS)
+ : TargetMachine(T) {}
virtual bool WantsWholeFile() const { return true; }
- virtual bool addPassesToEmitWholeFile(PassManager &PM, raw_ostream &Out,
+ virtual bool addPassesToEmitWholeFile(PassManager &PM,
+ formatted_raw_ostream &Out,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel);
- // This class always works, but shouldn't be the default in most cases.
- static unsigned getModuleMatchQuality(const Module &M) { return 1; }
-
- virtual const TargetData *getTargetData() const { return &DataLayout; }
+ virtual const TargetData *getTargetData() const { return 0; }
};
}
-/// MSILTargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int MSILTargetMachineModule;
-int MSILTargetMachineModule = 0;
-
-static RegisterTarget<MSILTarget> X("msil", "MSIL backend");
-
-// Force static initialization.
-extern "C" void LLVMInitializeMSILTarget() { }
+extern "C" void LLVMInitializeMSILTarget() {
+ // Register the target.
+ RegisterTargetMachine<MSILTarget> X(TheMSILTarget);
+}
bool MSILModule::runOnModule(Module &M) {
ModulePtr = &M;
@@ -239,8 +230,17 @@ bool MSILWriter::isZeroValue(const Value* V) {
std::string MSILWriter::getValueName(const Value* V) {
+ std::string Name;
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ Name = Mang->getMangledName(GV);
+ else {
+ unsigned &No = AnonValueNumbers[V];
+ if (No == 0) No = ++NextAnonValueNumber;
+ Name = "tmp" + utostr(No);
+ }
+
// Name into the quotes allow control and space characters.
- return "'"+Mang->getValueName(V)+"'";
+ return "'"+Name+"'";
}
@@ -257,11 +257,20 @@ std::string MSILWriter::getLabelName(const std::string& Name) {
std::string MSILWriter::getLabelName(const Value* V) {
- return getLabelName(Mang->getValueName(V));
+ std::string Name;
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ Name = Mang->getMangledName(GV);
+ else {
+ unsigned &No = AnonValueNumbers[V];
+ if (No == 0) No = ++NextAnonValueNumber;
+ Name = "tmp" + utostr(No);
+ }
+
+ return getLabelName(Name);
}
-std::string MSILWriter::getConvModopt(unsigned CallingConvID) {
+std::string MSILWriter::getConvModopt(CallingConv::ID CallingConvID) {
switch (CallingConvID) {
case CallingConv::C:
case CallingConv::Cold:
@@ -272,8 +281,8 @@ std::string MSILWriter::getConvModopt(unsigned CallingConvID) {
case CallingConv::X86_StdCall:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvStdcall) ";
default:
- cerr << "CallingConvID = " << CallingConvID << '\n';
- assert(0 && "Unsupported calling convention");
+ errs() << "CallingConvID = " << CallingConvID << '\n';
+ llvm_unreachable("Unsupported calling convention");
}
return ""; // Not reached
}
@@ -318,8 +327,8 @@ std::string MSILWriter::getPrimitiveTypeName(const Type* Ty, bool isSigned) {
case Type::DoubleTyID:
return "float64 ";
default:
- cerr << "Type = " << *Ty << '\n';
- assert(0 && "Invalid primitive type");
+ errs() << "Type = " << *Ty << '\n';
+ llvm_unreachable("Invalid primitive type");
}
return ""; // Not reached
}
@@ -346,8 +355,8 @@ std::string MSILWriter::getTypeName(const Type* Ty, bool isSigned,
return getArrayTypeName(Ty->getTypeID(),Ty);
return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
default:
- cerr << "Type = " << *Ty << '\n';
- assert(0 && "Invalid type in getTypeName()");
+ errs() << "Type = " << *Ty << '\n';
+ llvm_unreachable("Invalid type in getTypeName()");
}
return ""; // Not reached
}
@@ -390,8 +399,8 @@ std::string MSILWriter::getTypePostfix(const Type* Ty, bool Expand,
case Type::PointerTyID:
return "i"+utostr(TD->getTypeAllocSize(Ty));
default:
- cerr << "TypeID = " << Ty->getTypeID() << '\n';
- assert(0 && "Invalid type in TypeToPostfix()");
+ errs() << "TypeID = " << Ty->getTypeID() << '\n';
+ llvm_unreachable("Invalid type in TypeToPostfix()");
}
return ""; // Not reached
}
@@ -406,7 +415,7 @@ void MSILWriter::printConvToPtr() {
printSimpleInstruction("conv.u8");
break;
default:
- assert(0 && "Module use not supporting pointer size");
+ llvm_unreachable("Module use not supporting pointer size");
}
}
@@ -417,15 +426,15 @@ void MSILWriter::printPtrLoad(uint64_t N) {
printSimpleInstruction("ldc.i4",utostr(N).c_str());
// FIXME: Need overflow test?
if (!isUInt32(N)) {
- cerr << "Value = " << utostr(N) << '\n';
- assert(0 && "32-bit pointer overflowed");
+ errs() << "Value = " << utostr(N) << '\n';
+ llvm_unreachable("32-bit pointer overflowed");
}
break;
case Module::Pointer64:
printSimpleInstruction("ldc.i8",utostr(N).c_str());
break;
default:
- assert(0 && "Module use not supporting pointer size");
+ llvm_unreachable("Module use not supporting pointer size");
}
}
@@ -460,8 +469,8 @@ void MSILWriter::printConstLoad(const Constant* C) {
// Undefined constant value = NULL.
printPtrLoad(0);
} else {
- cerr << "Constant = " << *C << '\n';
- assert(0 && "Invalid constant value");
+ errs() << "Constant = " << *C << '\n';
+ llvm_unreachable("Invalid constant value");
}
Out << '\n';
}
@@ -509,8 +518,8 @@ void MSILWriter::printValueLoad(const Value* V) {
printConstantExpr(cast<ConstantExpr>(V));
break;
default:
- cerr << "Value = " << *V << '\n';
- assert(0 && "Invalid value location");
+ errs() << "Value = " << *V << '\n';
+ llvm_unreachable("Invalid value location");
}
}
@@ -524,8 +533,8 @@ void MSILWriter::printValueSave(const Value* V) {
printSimpleInstruction("stloc",getValueName(V).c_str());
break;
default:
- cerr << "Value = " << *V << '\n';
- assert(0 && "Invalid value location");
+ errs() << "Value = " << *V << '\n';
+ llvm_unreachable("Invalid value location");
}
}
@@ -651,12 +660,19 @@ void MSILWriter::printIndirectSave(const Type* Ty) {
void MSILWriter::printCastInstruction(unsigned int Op, const Value* V,
- const Type* Ty) {
+ const Type* Ty, const Type* SrcTy) {
std::string Tmp("");
printValueLoad(V);
switch (Op) {
// Signed
case Instruction::SExt:
+ // If sign extending int, convert first from unsigned to signed
+ // with the same bit size - because otherwise we will loose the sign.
+ if (SrcTy) {
+ Tmp = "conv."+getTypePostfix(SrcTy,false,true);
+ printSimpleInstruction(Tmp.c_str());
+ }
+ // FALLTHROUGH
case Instruction::SIToFP:
case Instruction::FPToSI:
Tmp = "conv."+getTypePostfix(Ty,false,true);
@@ -679,8 +695,8 @@ void MSILWriter::printCastInstruction(unsigned int Op, const Value* V,
// FIXME: meaning that ld*/st* instruction do not change data format.
break;
default:
- cerr << "Opcode = " << Op << '\n';
- assert(0 && "Invalid conversion instruction");
+ errs() << "Opcode = " << Op << '\n';
+ llvm_unreachable("Invalid conversion instruction");
}
}
@@ -770,8 +786,8 @@ void MSILWriter::printFunctionCall(const Value* FnVal,
else if (const InvokeInst* Invoke = dyn_cast<InvokeInst>(Inst))
Name = getConvModopt(Invoke->getCallingConv());
else {
- cerr << "Instruction = " << Inst->getName() << '\n';
- assert(0 && "Need \"Invoke\" or \"Call\" instruction only");
+ errs() << "Instruction = " << Inst->getName() << '\n';
+ llvm_unreachable("Need \"Invoke\" or \"Call\" instruction only");
}
if (const Function* F = dyn_cast<Function>(FnVal)) {
// Direct call.
@@ -804,7 +820,8 @@ void MSILWriter::printIntrinsicCall(const IntrinsicInst* Inst) {
// Save as pointer type "void*"
printValueLoad(Inst->getOperand(1));
printSimpleInstruction("ldloca",Name.c_str());
- printIndirectSave(PointerType::getUnqual(IntegerType::get(8)));
+ printIndirectSave(PointerType::getUnqual(
+ IntegerType::get(Inst->getContext(), 8)));
break;
case Intrinsic::vaend:
// Close argument list handle.
@@ -818,8 +835,8 @@ void MSILWriter::printIntrinsicCall(const IntrinsicInst* Inst) {
printSimpleInstruction("cpobj","[mscorlib]System.ArgIterator");
break;
default:
- cerr << "Intrinsic ID = " << Inst->getIntrinsicID() << '\n';
- assert(0 && "Invalid intrinsic function");
+ errs() << "Intrinsic ID = " << Inst->getIntrinsicID() << '\n';
+ llvm_unreachable("Invalid intrinsic function");
}
}
@@ -877,12 +894,13 @@ void MSILWriter::printICmpInstruction(unsigned Predicate, const Value* Left,
break;
case ICmpInst::ICMP_UGT:
printBinaryInstruction("cgt.un",Left,Right);
+ break;
case ICmpInst::ICMP_SGT:
printBinaryInstruction("cgt",Left,Right);
break;
default:
- cerr << "Predicate = " << Predicate << '\n';
- assert(0 && "Invalid icmp predicate");
+ errs() << "Predicate = " << Predicate << '\n';
+ llvm_unreachable("Invalid icmp predicate");
}
}
@@ -976,7 +994,7 @@ void MSILWriter::printFCmpInstruction(unsigned Predicate, const Value* Left,
printSimpleInstruction("or");
break;
default:
- assert(0 && "Illegal FCmp predicate");
+ llvm_unreachable("Illegal FCmp predicate");
}
}
@@ -1024,7 +1042,8 @@ void MSILWriter::printVAArgInstruction(const VAArgInst* Inst) {
"instance typedref [mscorlib]System.ArgIterator::GetNextArg()");
printSimpleInstruction("refanyval","void*");
std::string Name =
- "ldind."+getTypePostfix(PointerType::getUnqual(IntegerType::get(8)),false);
+ "ldind."+getTypePostfix(PointerType::getUnqual(
+ IntegerType::get(Inst->getContext(), 8)),false);
printSimpleInstruction(Name.c_str());
}
@@ -1132,9 +1151,13 @@ void MSILWriter::printInstruction(const Instruction* Inst) {
case Instruction::Store:
printIndirectSave(Inst->getOperand(1), Inst->getOperand(0));
break;
+ case Instruction::SExt:
+ printCastInstruction(Inst->getOpcode(),Left,
+ cast<CastInst>(Inst)->getDestTy(),
+ cast<CastInst>(Inst)->getSrcTy());
+ break;
case Instruction::Trunc:
case Instruction::ZExt:
- case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
@@ -1169,10 +1192,10 @@ void MSILWriter::printInstruction(const Instruction* Inst) {
printAllocaInstruction(cast<AllocaInst>(Inst));
break;
case Instruction::Malloc:
- assert(0 && "LowerAllocationsPass used");
+ llvm_unreachable("LowerAllocationsPass used");
break;
case Instruction::Free:
- assert(0 && "LowerAllocationsPass used");
+ llvm_unreachable("LowerAllocationsPass used");
break;
case Instruction::Unreachable:
printSimpleInstruction("ldstr", "\"Unreachable instruction\"");
@@ -1184,8 +1207,8 @@ void MSILWriter::printInstruction(const Instruction* Inst) {
printVAArgInstruction(cast<VAArgInst>(Inst));
break;
default:
- cerr << "Instruction = " << Inst->getName() << '\n';
- assert(0 && "Unsupported instruction");
+ errs() << "Instruction = " << Inst->getName() << '\n';
+ llvm_unreachable("Unsupported instruction");
}
}
@@ -1216,7 +1239,7 @@ void MSILWriter::printBasicBlock(const BasicBlock* BB) {
// Print instruction
printInstruction(Inst);
// Save result
- if (Inst->getType()!=Type::VoidTy) {
+ if (Inst->getType()!=Type::getVoidTy(BB->getContext())) {
// Do not save value after invoke, it done in "try" block
if (Inst->getOpcode()==Instruction::Invoke) continue;
printValueSave(Inst);
@@ -1245,7 +1268,7 @@ void MSILWriter::printLocalVariables(const Function& F) {
Ty = PointerType::getUnqual(AI->getAllocatedType());
Name = getValueName(AI);
Out << "\t.locals (" << getTypeName(Ty) << Name << ")\n";
- } else if (I->getType()!=Type::VoidTy) {
+ } else if (I->getType()!=Type::getVoidTy(F.getContext())) {
// Operation result.
Ty = I->getType();
Name = getValueName(&*I);
@@ -1372,8 +1395,8 @@ void MSILWriter::printConstantExpr(const ConstantExpr* CE) {
printBinaryInstruction("shr",left,right);
break;
default:
- cerr << "Expression = " << *CE << "\n";
- assert(0 && "Invalid constant expression");
+ errs() << "Expression = " << *CE << "\n";
+ llvm_unreachable("Invalid constant expression");
}
}
@@ -1406,8 +1429,8 @@ void MSILWriter::printStaticInitializerList() {
postfix = "stind."+postfix;
printSimpleInstruction(postfix.c_str());
} else {
- cerr << "Constant = " << *I->constant << '\n';
- assert(0 && "Invalid static initializer");
+ errs() << "Constant = " << *I->constant << '\n';
+ llvm_unreachable("Invalid static initializer");
}
}
}
@@ -1470,8 +1493,8 @@ unsigned int MSILWriter::getBitWidth(const Type* Ty) {
case 64:
return N;
default:
- cerr << "Bits = " << N << '\n';
- assert(0 && "Unsupported integer width");
+ errs() << "Bits = " << N << '\n';
+ llvm_unreachable("Unsupported integer width");
}
return 0; // Not reached
}
@@ -1528,12 +1551,12 @@ void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
// Null pointer initialization
if (TySize==4) Out << "int32 (0)";
else if (TySize==8) Out << "int64 (0)";
- else assert(0 && "Invalid pointer size");
+ else llvm_unreachable("Invalid pointer size");
}
break;
default:
- cerr << "TypeID = " << Ty->getTypeID() << '\n';
- assert(0 && "Invalid type in printStaticConstant()");
+ errs() << "TypeID = " << Ty->getTypeID() << '\n';
+ llvm_unreachable("Invalid type in printStaticConstant()");
}
// Increase offset.
Offset += TySize;
@@ -1555,8 +1578,8 @@ void MSILWriter::printStaticInitializer(const Constant* C,
Out << getTypeName(C->getType());
break;
default:
- cerr << "Type = " << *C << "\n";
- assert(0 && "Invalid constant type");
+ errs() << "Type = " << *C << "\n";
+ llvm_unreachable("Invalid constant type");
}
// Print initializer
std::string label = Name;
@@ -1595,17 +1618,18 @@ void MSILWriter::printGlobalVariables() {
const char* MSILWriter::getLibraryName(const Function* F) {
- return getLibraryForSymbol(F->getName().c_str(), true, F->getCallingConv());
+ return getLibraryForSymbol(F->getName(), true, F->getCallingConv());
}
const char* MSILWriter::getLibraryName(const GlobalVariable* GV) {
- return getLibraryForSymbol(Mang->getValueName(GV).c_str(), false, 0);
+ return getLibraryForSymbol(Mang->getMangledName(GV), false, CallingConv::C);
}
-const char* MSILWriter::getLibraryForSymbol(const char* Name, bool isFunction,
- unsigned CallingConv) {
+const char* MSILWriter::getLibraryForSymbol(const StringRef &Name,
+ bool isFunction,
+ CallingConv::ID CallingConv) {
// TODO: Read *.def file with function and libraries definitions.
return "MSVCRT.DLL";
}
@@ -1654,11 +1678,10 @@ void MSILWriter::printExternals() {
E = ModulePtr->global_end(); I!=E; ++I) {
if (!I->isDeclaration() || !I->hasDLLImportLinkage()) continue;
// Use "LoadLibrary"/"GetProcAddress" to recive variable address.
- std::string Label = "not_null$_"+utostr(getUniqID());
std::string Tmp = getTypeName(I->getType())+getValueName(&*I);
printSimpleInstruction("ldsflda",Tmp.c_str());
Out << "\tldstr\t\"" << getLibraryName(&*I) << "\"\n";
- Out << "\tldstr\t\"" << Mang->getValueName(&*I) << "\"\n";
+ Out << "\tldstr\t\"" << Mang->getMangledName(&*I) << "\"\n";
printSimpleInstruction("call","void* $MSIL_Import(string,string)");
printIndirectSave(I->getType());
}
@@ -1671,7 +1694,8 @@ void MSILWriter::printExternals() {
// External Interface declaration
//===----------------------------------------------------------------------===//
-bool MSILTarget::addPassesToEmitWholeFile(PassManager &PM, raw_ostream &o,
+bool MSILTarget::addPassesToEmitWholeFile(PassManager &PM,
+ formatted_raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel)
{
diff --git a/lib/Target/MSIL/MSILWriter.h b/lib/Target/MSIL/MSILWriter.h
index 45f5579..2280a3b 100644
--- a/lib/Target/MSIL/MSILWriter.h
+++ b/lib/Target/MSIL/MSILWriter.h
@@ -13,24 +13,24 @@
#ifndef MSILWRITER_H
#define MSILWRITER_H
+#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Support/Mangler.h"
-#include <ios>
-using namespace llvm;
-namespace {
+namespace llvm {
+ extern Target TheMSILTarget;
class MSILModule : public ModulePass {
Module *ModulePtr;
@@ -56,7 +56,7 @@ namespace {
};
- class MSILWriter : public FunctionPass {
+ class MSILWriter : public FunctionPass {
struct StaticInitializer {
const Constant* constant;
uint64_t offset;
@@ -75,7 +75,7 @@ namespace {
}
public:
- raw_ostream &Out;
+ formatted_raw_ostream &Out;
Module* ModulePtr;
const TargetData* TD;
Mangler* Mang;
@@ -85,7 +85,11 @@ namespace {
StaticInitList;
const std::set<const Type *>* UsedTypes;
static char ID;
- MSILWriter(raw_ostream &o) : FunctionPass(&ID), Out(o) {
+ DenseMap<const Value*, unsigned> AnonValueNumbers;
+ unsigned NextAnonValueNumber;
+
+ MSILWriter(formatted_raw_ostream &o) : FunctionPass(&ID), Out(o),
+ NextAnonValueNumber(0) {
UniqID = 0;
}
@@ -130,7 +134,7 @@ namespace {
std::string getLabelName(const std::string& Name);
- std::string getConvModopt(unsigned CallingConvID);
+ std::string getConvModopt(CallingConv::ID CallingConvID);
std::string getArrayTypeName(Type::TypeID TyID, const Type* Ty);
@@ -183,7 +187,7 @@ namespace {
void printIndirectSave(const Type* Ty);
void printCastInstruction(unsigned int Op, const Value* V,
- const Type* Ty);
+ const Type* Ty, const Type* SrcTy=0);
void printGepInstruction(const Value* V, gep_type_iterator I,
gep_type_iterator E);
@@ -244,11 +248,12 @@ namespace {
const char* getLibraryName(const GlobalVariable* GV);
- const char* getLibraryForSymbol(const char* Name, bool isFunction,
- unsigned CallingConv);
+ const char* getLibraryForSymbol(const StringRef &Name, bool isFunction,
+ CallingConv::ID CallingConv);
void printExternals();
};
+
}
#endif
diff --git a/lib/Target/MSIL/Makefile b/lib/Target/MSIL/Makefile
index 94265ed..8057cc7 100644
--- a/lib/Target/MSIL/Makefile
+++ b/lib/Target/MSIL/Makefile
@@ -9,6 +9,9 @@
LEVEL = ../../..
LIBRARYNAME = LLVMMSIL
+
+DIRS = TargetInfo
+
include $(LEVEL)/Makefile.common
CompileCommonOpts := $(CompileCommonOpts) -Wno-format
diff --git a/lib/Target/MSIL/TargetInfo/CMakeLists.txt b/lib/Target/MSIL/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..9f0c3a0
--- /dev/null
+++ b/lib/Target/MSIL/TargetInfo/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMMSILInfo
+ MSILTargetInfo.cpp
+ )
+
diff --git a/lib/Target/MSIL/TargetInfo/MSILTargetInfo.cpp b/lib/Target/MSIL/TargetInfo/MSILTargetInfo.cpp
new file mode 100644
index 0000000..dfd4281
--- /dev/null
+++ b/lib/Target/MSIL/TargetInfo/MSILTargetInfo.cpp
@@ -0,0 +1,26 @@
+//===-- MSILTargetInfo.cpp - MSIL Target Implementation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSILWriter.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheMSILTarget;
+
+static unsigned MSIL_TripleMatchQuality(const std::string &TT) {
+ // This class always works, but shouldn't be the default in most cases.
+ return 1;
+}
+
+extern "C" void LLVMInitializeMSILTargetInfo() {
+ TargetRegistry::RegisterTarget(TheMSILTarget, "msil",
+ "MSIL backend",
+ &MSIL_TripleMatchQuality);
+}
diff --git a/lib/Target/MSIL/TargetInfo/Makefile b/lib/Target/MSIL/TargetInfo/Makefile
new file mode 100644
index 0000000..30b0950
--- /dev/null
+++ b/lib/Target/MSIL/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/MSIL/TargetInfo/Makefile -----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMMSILInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/MSP430/AsmPrinter/CMakeLists.txt b/lib/Target/MSP430/AsmPrinter/CMakeLists.txt
new file mode 100644
index 0000000..6e66887
--- /dev/null
+++ b/lib/Target/MSP430/AsmPrinter/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMMSP430AsmPrinter
+ MSP430AsmPrinter.cpp
+ )
+add_dependencies(LLVMMSP430AsmPrinter MSP430CodeGenTable_gen)
diff --git a/lib/Target/MSP430/AsmPrinter/MSP430AsmPrinter.cpp b/lib/Target/MSP430/AsmPrinter/MSP430AsmPrinter.cpp
new file mode 100644
index 0000000..852019f
--- /dev/null
+++ b/lib/Target/MSP430/AsmPrinter/MSP430AsmPrinter.cpp
@@ -0,0 +1,281 @@
+//===-- MSP430AsmPrinter.cpp - MSP430 LLVM assembly writer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the MSP430 assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+#include "MSP430.h"
+#include "MSP430InstrInfo.h"
+#include "MSP430MCAsmInfo.h"
+#include "MSP430TargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace llvm;
+
+STATISTIC(EmittedInsts, "Number of machine instrs printed");
+
+namespace {
+ class VISIBILITY_HIDDEN MSP430AsmPrinter : public AsmPrinter {
+ public:
+ MSP430AsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *MAI, bool V)
+ : AsmPrinter(O, TM, MAI, V) {}
+
+ virtual const char *getPassName() const {
+ return "MSP430 Assembly Printer";
+ }
+
+ void printOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier = 0);
+ void printSrcMemOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier = 0);
+ void printCCOperand(const MachineInstr *MI, int OpNum);
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printMachineInstruction(const MachineInstr * MI);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode);
+ bool PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode);
+
+ void emitFunctionHeader(const MachineFunction &MF);
+ bool runOnMachineFunction(MachineFunction &F);
+
+ virtual void PrintGlobalVariable(const GlobalVariable *GV) {
+ // FIXME: No support for global variables?
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AsmPrinter::getAnalysisUsage(AU);
+ AU.setPreservesAll();
+ }
+ };
+} // end of anonymous namespace
+
+#include "MSP430GenAsmWriter.inc"
+
+
+void MSP430AsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
+ const Function *F = MF.getFunction();
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+
+ unsigned FnAlign = MF.getAlignment();
+ EmitAlignment(FnAlign, F);
+
+ switch (F->getLinkage()) {
+ default: llvm_unreachable("Unknown linkage type!");
+ case Function::InternalLinkage: // Symbols default to internal.
+ case Function::PrivateLinkage:
+ case Function::LinkerPrivateLinkage:
+ break;
+ case Function::ExternalLinkage:
+ O << "\t.globl\t" << CurrentFnName << '\n';
+ break;
+ case Function::LinkOnceAnyLinkage:
+ case Function::LinkOnceODRLinkage:
+ case Function::WeakAnyLinkage:
+ case Function::WeakODRLinkage:
+ O << "\t.weak\t" << CurrentFnName << '\n';
+ break;
+ }
+
+ printVisibility(CurrentFnName, F->getVisibility());
+
+ O << "\t.type\t" << CurrentFnName << ",@function\n"
+ << CurrentFnName << ":\n";
+}
+
+bool MSP430AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SetupMachineFunction(MF);
+ O << "\n\n";
+
+ // Print the 'header' of function
+ emitFunctionHeader(MF);
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ EmitBasicBlockStart(I);
+
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II)
+ // Print the assembly for the instruction.
+ printMachineInstruction(II);
+ }
+
+ if (MAI->hasDotTypeDotSizeDirective())
+ O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
+
+ // We didn't modify anything
+ return false;
+}
+
+void MSP430AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
+ ++EmittedInsts;
+
+ processDebugLoc(MI, true);
+
+ // Call the autogenerated instruction printer routines.
+ printInstruction(MI);
+
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+
+ processDebugLoc(MI, false);
+}
+
+void MSP430AsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << getRegisterName(MO.getReg());
+ return;
+ case MachineOperand::MO_Immediate:
+ if (!Modifier || strcmp(Modifier, "nohash"))
+ O << '#';
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+ case MachineOperand::MO_GlobalAddress: {
+ bool isMemOp = Modifier && !strcmp(Modifier, "mem");
+ std::string Name = Mang->getMangledName(MO.getGlobal());
+ uint64_t Offset = MO.getOffset();
+
+ O << (isMemOp ? '&' : '#');
+ if (Offset)
+ O << '(' << Offset << '+';
+
+ O << Name;
+ if (Offset)
+ O << ')';
+
+ return;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ bool isMemOp = Modifier && !strcmp(Modifier, "mem");
+ std::string Name(MAI->getGlobalPrefix());
+ Name += MO.getSymbolName();
+
+ O << (isMemOp ? '&' : '#') << Name;
+
+ return;
+ }
+ default:
+ llvm_unreachable("Not implemented yet!");
+ }
+}
+
+void MSP430AsmPrinter::printSrcMemOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier) {
+ const MachineOperand &Base = MI->getOperand(OpNum);
+ const MachineOperand &Disp = MI->getOperand(OpNum+1);
+
+ if (Base.isGlobal())
+ printOperand(MI, OpNum, "mem");
+ else if (Disp.isImm() && !Base.getReg())
+ printOperand(MI, OpNum);
+ else if (Base.getReg()) {
+ if (Disp.getImm()) {
+ printOperand(MI, OpNum + 1, "nohash");
+ O << '(';
+ printOperand(MI, OpNum);
+ O << ')';
+ } else {
+ O << '@';
+ printOperand(MI, OpNum);
+ }
+ } else
+ llvm_unreachable("Unsupported memory operand");
+}
+
+void MSP430AsmPrinter::printCCOperand(const MachineInstr *MI, int OpNum) {
+ unsigned CC = MI->getOperand(OpNum).getImm();
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported CC code");
+ break;
+ case MSP430::COND_E:
+ O << "eq";
+ break;
+ case MSP430::COND_NE:
+ O << "ne";
+ break;
+ case MSP430::COND_HS:
+ O << "hs";
+ break;
+ case MSP430::COND_LO:
+ O << "lo";
+ break;
+ case MSP430::COND_GE:
+ O << "ge";
+ break;
+ case MSP430::COND_L:
+ O << 'l';
+ break;
+ }
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool MSP430AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0])
+ return true; // Unknown modifier.
+
+ printOperand(MI, OpNo);
+ return false;
+}
+
+bool MSP430AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode) {
+ if (ExtraCode && ExtraCode[0]) {
+ return true; // Unknown modifier.
+ }
+ printSrcMemOperand(MI, OpNo);
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeMSP430AsmPrinter() {
+ RegisterAsmPrinter<MSP430AsmPrinter> X(TheMSP430Target);
+}
diff --git a/lib/Target/MSP430/AsmPrinter/Makefile b/lib/Target/MSP430/AsmPrinter/Makefile
new file mode 100644
index 0000000..4f340c6
--- /dev/null
+++ b/lib/Target/MSP430/AsmPrinter/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/MSP430/AsmPrinter/Makefile ---------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMMSP430AsmPrinter
+
+# Hack: we need to include 'main' MSP430 target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/MSP430/CMakeLists.txt b/lib/Target/MSP430/CMakeLists.txt
index 6701773..60e0bb1 100644
--- a/lib/Target/MSP430/CMakeLists.txt
+++ b/lib/Target/MSP430/CMakeLists.txt
@@ -10,14 +10,14 @@ tablegen(MSP430GenDAGISel.inc -gen-dag-isel)
tablegen(MSP430GenCallingConv.inc -gen-callingconv)
tablegen(MSP430GenSubtarget.inc -gen-subtarget)
-add_llvm_target(MSP430
- MSP430AsmPrinter.cpp
- MSP430FrameInfo.cpp
+add_llvm_target(MSP430CodeGen
MSP430InstrInfo.cpp
MSP430ISelDAGToDAG.cpp
MSP430ISelLowering.cpp
+ MSP430MCAsmInfo.cpp
MSP430RegisterInfo.cpp
MSP430Subtarget.cpp
- MSP430TargetAsmInfo.cpp
MSP430TargetMachine.cpp
)
+
+target_link_libraries (LLVMMSP430CodeGen LLVMSelectionDAG)
diff --git a/lib/Target/MSP430/MSP430.h b/lib/Target/MSP430/MSP430.h
index fc13c9e..d9f5f86 100644
--- a/lib/Target/MSP430/MSP430.h
+++ b/lib/Target/MSP430/MSP430.h
@@ -20,13 +20,13 @@
namespace llvm {
class MSP430TargetMachine;
class FunctionPass;
- class raw_ostream;
+ class formatted_raw_ostream;
FunctionPass *createMSP430ISelDag(MSP430TargetMachine &TM,
CodeGenOpt::Level OptLevel);
- FunctionPass *createMSP430CodePrinterPass(raw_ostream &o,
- MSP430TargetMachine &tm,
- bool verbose);
+
+ extern Target TheMSP430Target;
+
} // end namespace llvm;
// Defines symbolic names for MSP430 registers.
diff --git a/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp b/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
index bf49ec0..4195a88 100644
--- a/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
+++ b/lib/Target/MSP430/MSP430ISelDAGToDAG.cpp
@@ -28,8 +28,14 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/Statistic.h"
+
using namespace llvm;
+STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
+
/// MSP430DAGToDAGISel - MSP430 specific code to select MSP430 machine
/// instructions for SelectionDAG operations.
///
@@ -50,10 +56,15 @@ namespace {
return "MSP430 DAG->DAG Pattern Instruction Selection";
}
+ virtual bool
+ SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps);
+
// Include the pieces autogenerated from the target description.
#include "MSP430GenDAGISel.inc"
private:
+ void PreprocessForRMW();
SDNode *Select(SDValue Op);
bool SelectAddr(SDValue Op, SDValue Addr, SDValue &Base, SDValue &Disp);
@@ -120,21 +131,155 @@ bool MSP430DAGToDAGISel::SelectAddr(SDValue Op, SDValue Addr,
}
+bool MSP430DAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ SDValue Op0, Op1;
+ switch (ConstraintCode) {
+ default: return true;
+ case 'm': // memory
+ if (!SelectAddr(Op, Op, Op0, Op1))
+ return true;
+ break;
+ }
+
+ OutOps.push_back(Op0);
+ OutOps.push_back(Op1);
+ return false;
+}
+
+/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
+/// and move load below the TokenFactor. Replace store's chain operand with
+/// load's chain result.
+/// Shamelessly stolen from X86.
+static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
+ SDValue Store, SDValue TF) {
+ SmallVector<SDValue, 4> Ops;
+ bool isRMW = false;
+ SDValue TF0, TF1, NewTF;
+ for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
+ if (Load.getNode() == TF.getOperand(i).getNode()) {
+ TF0 = Load.getOperand(0);
+ Ops.push_back(TF0);
+ } else {
+ TF1 = TF.getOperand(i);
+ Ops.push_back(TF1);
+ if (LoadSDNode* LD = dyn_cast<LoadSDNode>(TF1))
+ isRMW = !LD->isVolatile();
+ }
+
+ if (isRMW && TF1.getOperand(0).getNode() == TF0.getNode())
+ NewTF = TF0;
+ else
+ NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
+
+ SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
+ Load.getOperand(1),
+ Load.getOperand(2));
+ CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
+ Store.getOperand(2), Store.getOperand(3));
+}
+
+/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The chain
+/// produced by the load must only be used by the store's chain operand,
+/// otherwise this may produce a cycle in the DAG.
+/// Shamelessly stolen from X86. FIXME: Should we make this function common?
+static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
+ SDValue &Load) {
+ if (N.getOpcode() == ISD::BIT_CONVERT)
+ N = N.getOperand(0);
+
+ LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
+ if (!LD || LD->isVolatile())
+ return false;
+ if (LD->getAddressingMode() != ISD::UNINDEXED)
+ return false;
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
+ return false;
+
+ if (N.hasOneUse() &&
+ LD->hasNUsesOfValue(1, 1) &&
+ N.getOperand(1) == Address &&
+ LD->isOperandOf(Chain.getNode())) {
+ Load = N;
+ return true;
+ }
+ return false;
+}
+
+/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
+/// Shamelessly stolen from X86.
+void MSP430DAGToDAGISel::PreprocessForRMW() {
+ for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
+ E = CurDAG->allnodes_end(); I != E; ++I) {
+ if (!ISD::isNON_TRUNCStore(I))
+ continue;
+
+ SDValue Chain = I->getOperand(0);
+ if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
+ continue;
+
+ SDValue N1 = I->getOperand(1); // Value to store
+ SDValue N2 = I->getOperand(2); // Address of store
+
+ if (!N1.hasOneUse())
+ continue;
+
+ bool RModW = false;
+ SDValue Load;
+ unsigned Opcode = N1.getNode()->getOpcode();
+ switch (Opcode) {
+ case ISD::ADD:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::ADDC:
+ case ISD::ADDE: {
+ SDValue N10 = N1.getOperand(0);
+ SDValue N11 = N1.getOperand(1);
+ RModW = isRMWLoad(N10, Chain, N2, Load);
+
+ if (!RModW && isRMWLoad(N11, Chain, N2, Load)) {
+ // Swap the operands, making the RMW load the first operand seems
+ // to help selection and prevent token chain loops.
+ N1 = CurDAG->UpdateNodeOperands(N1, N11, N10);
+ RModW = true;
+ }
+ break;
+ }
+ case ISD::SUB:
+ case ISD::SUBC:
+ case ISD::SUBE: {
+ SDValue N10 = N1.getOperand(0);
+ RModW = isRMWLoad(N10, Chain, N2, Load);
+ break;
+ }
+ }
+
+ if (RModW) {
+ MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
+ ++NumLoadMoved;
+ }
+ }
+}
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void MSP430DAGToDAGISel::InstructionSelect() {
+ PreprocessForRMW();
+
+ DEBUG(errs() << "Selection DAG after RMW preprocessing:\n");
+ DEBUG(CurDAG->dump());
+
DEBUG(BB->dump());
// Codegen the basic block.
-#ifndef NDEBUG
- DOUT << "===== Instruction selection begins:\n";
- Indent = 0;
-#endif
+ DEBUG(errs() << "===== Instruction selection begins:\n");
+ DEBUG(Indent = 0);
SelectRoot(*CurDAG);
-#ifndef NDEBUG
- DOUT << "===== Instruction selection ends:\n";
-#endif
+ DEBUG(errs() << "===== Instruction selection ends:\n");
CurDAG->RemoveDeadNodes();
}
@@ -144,21 +289,17 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
DebugLoc dl = Op.getDebugLoc();
// Dump information about the Node being selected
- #ifndef NDEBUG
- DOUT << std::string(Indent, ' ') << "Selecting: ";
+ DEBUG(errs().indent(Indent) << "Selecting: ");
DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
- Indent += 2;
- #endif
+ DEBUG(errs() << "\n");
+ DEBUG(Indent += 2);
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
- #ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "== ";
- DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
- Indent -= 2;
- #endif
+ DEBUG(errs().indent(Indent-2) << "== ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent -= 2);
return NULL;
}
@@ -172,23 +313,21 @@ SDNode *MSP430DAGToDAGISel::Select(SDValue Op) {
if (Node->hasOneUse())
return CurDAG->SelectNodeTo(Node, MSP430::ADD16ri, MVT::i16,
TFI, CurDAG->getTargetConstant(0, MVT::i16));
- return CurDAG->getTargetNode(MSP430::ADD16ri, dl, MVT::i16,
- TFI, CurDAG->getTargetConstant(0, MVT::i16));
+ return CurDAG->getMachineNode(MSP430::ADD16ri, dl, MVT::i16,
+ TFI, CurDAG->getTargetConstant(0, MVT::i16));
}
}
// Select the default instruction
SDNode *ResNode = SelectCode(Op);
- #ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
+ DEBUG(errs() << std::string(Indent-2, ' ') << "=> ");
if (ResNode == NULL || ResNode == Op.getNode())
DEBUG(Op.getNode()->dump(CurDAG));
else
DEBUG(ResNode->dump(CurDAG));
- DOUT << "\n";
- Indent -= 2;
- #endif
+ DEBUG(errs() << "\n");
+ DEBUG(Indent -= 2);
return ResNode;
}
diff --git a/lib/Target/MSP430/MSP430ISelLowering.cpp b/lib/Target/MSP430/MSP430ISelLowering.cpp
index 91a8663..b56f069 100644
--- a/lib/Target/MSP430/MSP430ISelLowering.cpp
+++ b/lib/Target/MSP430/MSP430ISelLowering.cpp
@@ -31,12 +31,16 @@
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/VectorExtras.h"
using namespace llvm;
MSP430TargetLowering::MSP430TargetLowering(MSP430TargetMachine &tm) :
- TargetLowering(tm), Subtarget(*tm.getSubtargetImpl()), TM(tm) {
+ TargetLowering(tm, new TargetLoweringObjectFileELF()),
+ Subtarget(*tm.getSubtargetImpl()), TM(tm) {
// Set up the register classes.
addRegisterClass(MVT::i8, MSP430::GR8RegisterClass);
@@ -77,7 +81,6 @@ MSP430TargetLowering::MSP430TargetLowering(MSP430TargetMachine &tm) :
setOperationAction(ISD::ROTR, MVT::i8, Expand);
setOperationAction(ISD::ROTL, MVT::i16, Expand);
setOperationAction(ISD::ROTR, MVT::i16, Expand);
- setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
@@ -92,6 +95,24 @@ MSP430TargetLowering::MSP430TargetLowering(MSP430TargetMachine &tm) :
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
+
+ setOperationAction(ISD::CTTZ, MVT::i8, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i16, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i8, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i16, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i8, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i16, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// FIXME: Implement efficiently multiplication by a constant
setOperationAction(ISD::MUL, MVT::i16, Expand);
@@ -110,19 +131,16 @@ MSP430TargetLowering::MSP430TargetLowering(MSP430TargetMachine &tm) :
SDValue MSP430TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::SHL: // FALLTHROUGH
case ISD::SRL:
case ISD::SRA: return LowerShifts(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
- case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
default:
- assert(0 && "unimplemented operand");
+ llvm_unreachable("unimplemented operand");
return SDValue();
}
}
@@ -133,32 +151,84 @@ unsigned MSP430TargetLowering::getFunctionAlignment(const Function *F) const {
}
//===----------------------------------------------------------------------===//
+// MSP430 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+TargetLowering::ConstraintType
+MSP430TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ return C_RegisterClass;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+MSP430TargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': // GENERAL_REGS
+ if (VT == MVT::i8)
+ return std::make_pair(0U, MSP430::GR8RegisterClass);
+
+ return std::make_pair(0U, MSP430::GR16RegisterClass);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "MSP430GenCallingConv.inc"
-SDValue MSP430TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
- SelectionDAG &DAG) {
- unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- switch (CC) {
+SDValue
+MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ switch (CallConv) {
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
- return LowerCCCArguments(Op, DAG);
+ return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
}
}
-SDValue MSP430TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- unsigned CallingConv = TheCall->getCallingConv();
- switch (CallingConv) {
+SDValue
+MSP430TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ switch (CallConv) {
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
- return LowerCCCCallTo(Op, DAG, CallingConv);
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, Ins, dl, DAG, InVals);
}
}
@@ -166,40 +236,46 @@ SDValue MSP430TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
/// generate load operations for arguments places on the stack.
// FIXME: struct return stuff
// FIXME: varargs
-SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op,
- SelectionDAG &DAG) {
+SDValue
+MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- unsigned CC = MF.getFunction()->getCallingConv();
- DebugLoc dl = Op.getDebugLoc();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MSP430);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_MSP430);
assert(!isVarArg && "Varargs not supported yet");
- SmallVector<SDValue, 16> ArgValues;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// Arguments passed in registers
- MVT RegVT = VA.getLocVT();
- switch (RegVT.getSimpleVT()) {
- default:
- cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
- << RegVT.getSimpleVT()
- << "\n";
- abort();
+ EVT RegVT = VA.getLocVT();
+ switch (RegVT.getSimpleVT().SimpleTy) {
+ default:
+ {
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << RegVT.getSimpleVT().SimpleTy << "\n";
+#endif
+ llvm_unreachable(0);
+ }
case MVT::i16:
unsigned VReg =
RegInfo.createVirtualRegister(MSP430::GR16RegisterClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
- SDValue ArgValue = DAG.getCopyFromReg(Root, dl, VReg, RegVT);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
// If this is an 8-bit value, it is really passed promoted to 16
// bits. Insert an assert[sz]ext to capture this, then truncate to the
@@ -214,7 +290,7 @@ SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op,
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
- ArgValues.push_back(ArgValue);
+ InVals.push_back(ArgValue);
}
} else {
// Sanity check
@@ -222,8 +298,8 @@ SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op,
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > 2) {
- cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
- << VA.getLocVT().getSimpleVT()
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << VA.getLocVT().getSimpleVT().SimpleTy
<< "\n";
}
// Create the frame index object for this incoming parameter...
@@ -232,30 +308,29 @@ SDValue MSP430TargetLowering::LowerCCCArguments(SDValue Op,
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
- ArgValues.push_back(DAG.getLoad(VA.getLocVT(), dl, Root, FIN,
- PseudoSourceValue::getFixedStack(FI), 0));
+ InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0));
}
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
-SDValue MSP430TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
+SDValue
+MSP430TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- // Analize return values of ISD::RET
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_MSP430);
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_MSP430);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
@@ -265,8 +340,6 @@ SDValue MSP430TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- // The chain is always operand #0
- SDValue Chain = Op.getOperand(0);
SDValue Flag;
// Copy the result values into the output registers.
@@ -274,10 +347,8 @@ SDValue MSP430TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- // ISD::RET => ret chain, (regnum1,val1), ...
- // So i*2+1 index only the regnums
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
@@ -294,19 +365,21 @@ SDValue MSP430TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: sret.
-SDValue MSP430TargetLowering::LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
- unsigned CC) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
-
+SDValue
+MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
- CCInfo.AnalyzeCallOperands(TheCall, CC_MSP430);
+ CCInfo.AnalyzeCallOperands(Outs, CC_MSP430);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
@@ -322,12 +395,11 @@ SDValue MSP430TargetLowering::LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
- // Arguments start after the 5 first operands of ISD::CALL
- SDValue Arg = TheCall->getArg(i);
+ SDValue Arg = Outs[i].Val;
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
@@ -412,50 +484,43 @@ SDValue MSP430TargetLowering::LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
// Handle result values, copying them out of physregs into vregs that we
// return.
- return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
- Op.getResNo());
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
+ DAG, InVals);
}
-/// LowerCallResult - Lower the result values of an ISD::CALL into the
-/// appropriate copies out of appropriate physical registers. This assumes that
-/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
-/// being lowered. Returns a SDNode with the same number of values as the
-/// ISD::CALL.
-SDNode*
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
- CallSDNode *TheCall,
- unsigned CallingConv,
- SelectionDAG &DAG) {
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = TheCall->getDebugLoc();
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- CCInfo.AnalyzeCallResult(TheCall, RetCC_MSP430);
- SmallVector<SDValue, 8> ResultVals;
+ CCInfo.AnalyzeCallResult(Ins, RetCC_MSP430);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
- ResultVals.push_back(Chain.getValue(0));
+ InVals.push_back(Chain.getValue(0));
}
- ResultVals.push_back(Chain);
-
- // Merge everything together with a MERGE_VALUES node.
- return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size()).getNode();
+ return Chain;
}
SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
SelectionDAG &DAG) {
unsigned Opc = Op.getOpcode();
SDNode* N = Op.getNode();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = N->getDebugLoc();
// We currently only lower shifts of constant argument.
@@ -511,7 +576,7 @@ static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, unsigned &TargetCC,
// FIXME: Handle jump negative someday
TargetCC = MSP430::COND_INVALID;
switch (CC) {
- default: assert(0 && "Invalid integer condition!");
+ default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
TargetCC = MSP430::COND_E; // aka COND_Z
break;
@@ -585,7 +650,7 @@ SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
SelectionDAG &DAG) {
SDValue Val = Op.getOperand(0);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
assert(VT == MVT::i16 && "Only support i16 for now!");
@@ -616,7 +681,8 @@ const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
MachineBasicBlock*
MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == MSP430::Select16 ||
@@ -646,6 +712,10 @@ MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
.addImm(MI->getOperand(3).getImm());
F->insert(I, copy0MBB);
F->insert(I, copy1MBB);
+ // Inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI)
+ EM->insert(std::make_pair(*SI, copy1MBB));
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
copy1MBB->transferSuccessors(BB);
diff --git a/lib/Target/MSP430/MSP430ISelLowering.h b/lib/Target/MSP430/MSP430ISelLowering.h
index 4a90a0e..fdbc384 100644
--- a/lib/Target/MSP430/MSP430ISelLowering.h
+++ b/lib/Target/MSP430/MSP430ISelLowering.h
@@ -33,7 +33,7 @@ namespace llvm {
/// Y = RRC X, rotate right via carry
RRC,
- /// CALL/TAILCALL - These operations represent an abstract call
+ /// CALL - These operations represent an abstract call
/// instruction, which includes a bunch of information.
CALL,
@@ -77,10 +77,6 @@ namespace llvm {
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCCCArguments(SDValue Op, SelectionDAG &DAG);
SDValue LowerShifts(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
@@ -88,16 +84,58 @@ namespace llvm {
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCCCCallTo(SDValue Op, SelectionDAG &DAG,
- unsigned CC);
- SDNode* LowerCallResult(SDValue Chain, SDValue InFlag,
- CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG);
+ TargetLowering::ConstraintType
+ getConstraintType(const std::string &Constraint) const;
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
MachineBasicBlock* EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const;
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
private:
+ SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ SDValue LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
const MSP430Subtarget &Subtarget;
const MSP430TargetMachine &TM;
};
diff --git a/lib/Target/MSP430/MSP430InstrInfo.cpp b/lib/Target/MSP430/MSP430InstrInfo.cpp
index 91112c3..37fbb6d 100644
--- a/lib/Target/MSP430/MSP430InstrInfo.cpp
+++ b/lib/Target/MSP430/MSP430InstrInfo.cpp
@@ -21,6 +21,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -44,7 +45,7 @@ void MSP430InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
.addFrameIndex(FrameIdx).addImm(0)
.addReg(SrcReg, getKillRegState(isKill));
else
- assert(0 && "Cannot store this register to stack slot!");
+ llvm_unreachable("Cannot store this register to stack slot!");
}
void MSP430InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
@@ -61,7 +62,7 @@ void MSP430InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
BuildMI(MBB, MI, DL, get(MSP430::MOV8rm))
.addReg(DestReg).addFrameIndex(FrameIdx).addImm(0);
else
- assert(0 && "Cannot store this register to stack slot!");
+ llvm_unreachable("Cannot store this register to stack slot!");
}
bool MSP430InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
@@ -171,7 +172,7 @@ MSP430InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
// Conditional branch.
unsigned Count = 0;
- assert(0 && "Implement conditional branches!");
+ llvm_unreachable("Implement conditional branches!");
return Count;
}
diff --git a/lib/Target/MSP430/MSP430InstrInfo.td b/lib/Target/MSP430/MSP430InstrInfo.td
index 39c08e4..f7e0d2b 100644
--- a/lib/Target/MSP430/MSP430InstrInfo.td
+++ b/lib/Target/MSP430/MSP430InstrInfo.td
@@ -155,7 +155,7 @@ let isCall = 1 in
let Defs = [R12W, R13W, R14W, R15W, SRW],
Uses = [SPW] in {
def CALLi : Pseudo<(outs), (ins i16imm:$dst, variable_ops),
- "call\t${dst:call}", [(MSP430call imm:$dst)]>;
+ "call\t$dst", [(MSP430call imm:$dst)]>;
def CALLr : Pseudo<(outs), (ins GR16:$dst, variable_ops),
"call\t$dst", [(MSP430call GR16:$dst)]>;
def CALLm : Pseudo<(outs), (ins memsrc:$dst, variable_ops),
@@ -243,6 +243,13 @@ def MOV16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"mov.w\t{$src, $dst}",
[(store GR16:$src, addr:$dst)]>;
+def MOV8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
+ "mov.b\t{$src, $dst}",
+ [(store (i8 (load addr:$src)), addr:$dst)]>;
+def MOV16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
+ "mov.w\t{$src, $dst}",
+ [(store (i16 (load addr:$src)), addr:$dst)]>;
+
//===----------------------------------------------------------------------===//
// Arithmetic Instructions
@@ -671,30 +678,26 @@ def OR16rm : Pseudo<(outs GR16:$dst), (ins GR16:$src1, memsrc:$src2),
let isTwoAddress = 0 in {
def OR8mr : Pseudo<(outs), (ins memdst:$dst, GR8:$src),
"bis.b\t{$src, $dst}",
- [(store (or (load addr:$dst), GR8:$src), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (load addr:$dst), GR8:$src), addr:$dst)]>;
def OR16mr : Pseudo<(outs), (ins memdst:$dst, GR16:$src),
"bis.w\t{$src, $dst}",
- [(store (or (load addr:$dst), GR16:$src), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (load addr:$dst), GR16:$src), addr:$dst)]>;
def OR8mi : Pseudo<(outs), (ins memdst:$dst, i8imm:$src),
"bis.b\t{$src, $dst}",
- [(store (or (load addr:$dst), (i8 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (load addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def OR16mi : Pseudo<(outs), (ins memdst:$dst, i16imm:$src),
"bis.w\t{$src, $dst}",
- [(store (or (load addr:$dst), (i16 imm:$src)), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (load addr:$dst), (i16 imm:$src)), addr:$dst)]>;
def OR8mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"bis.b\t{$src, $dst}",
- [(store (or (load addr:$dst), (i8 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (i8 (load addr:$dst)),
+ (i8 (load addr:$src))), addr:$dst)]>;
def OR16mm : Pseudo<(outs), (ins memdst:$dst, memsrc:$src),
"bis.w\t{$src, $dst}",
- [(store (or (load addr:$dst), (i16 (load addr:$src))), addr:$dst),
- (implicit SRW)]>;
+ [(store (or (i16 (load addr:$dst)),
+ (i16 (load addr:$src))), addr:$dst)]>;
}
} // isTwoAddress = 1
@@ -722,59 +725,6 @@ def CMP16im : Pseudo<(outs), (ins i16imm:$src1, memsrc:$src2),
"cmp.w\t{$src1, $src2}",
[(MSP430cmp (i16 imm:$src1), (load addr:$src2)), (implicit SRW)]>;
-// FIXME: imm is allowed only on src operand, not on dst.
-
-//def CMP8ri : Pseudo<(outs), (ins GR8:$src1, i8imm:$src2),
-// "cmp.b\t{$src1, $src2}",
-// [(MSP430cmp GR8:$src1, imm:$src2), (implicit SRW)]>;
-//def CMP16ri : Pseudo<(outs), (ins GR16:$src1, i16imm:$src2),
-// "cmp.w\t{$src1, $src2}",
-// [(MSP430cmp GR16:$src1, imm:$src2), (implicit SRW)]>;
-
-//def CMP8mi : Pseudo<(outs), (ins memsrc:$src1, i8imm:$src2),
-// "cmp.b\t{$src1, $src2}",
-// [(MSP430cmp (load addr:$src1), (i8 imm:$src2)), (implicit SRW)]>;
-//def CMP16mi : Pseudo<(outs), (ins memsrc:$src1, i16imm:$src2),
-// "cmp.w\t{$src1, $src2}",
-// [(MSP430cmp (load addr:$src1), (i16 imm:$src2)), (implicit SRW)]>;
-
-
-// Imm 0, +1, +2, +4, +8 are encoded via constant generator registers.
-// That's why we can use them as dest operands.
-// We don't define new class for them, since they would need special encoding
-// in the future.
-
-def CMP8ri0 : Pseudo<(outs), (ins GR8:$src1),
- "cmp.b\t{$src1, #0}",
- [(MSP430cmp GR8:$src1, 0), (implicit SRW)]>;
-def CMP16ri0: Pseudo<(outs), (ins GR16:$src1),
- "cmp.w\t{$src1, #0}",
- [(MSP430cmp GR16:$src1, 0), (implicit SRW)]>;
-def CMP8ri1 : Pseudo<(outs), (ins GR8:$src1),
- "cmp.b\t{$src1, #1}",
- [(MSP430cmp GR8:$src1, 1), (implicit SRW)]>;
-def CMP16ri1: Pseudo<(outs), (ins GR16:$src1),
- "cmp.w\t{$src1, #1}",
- [(MSP430cmp GR16:$src1, 1), (implicit SRW)]>;
-def CMP8ri2 : Pseudo<(outs), (ins GR8:$src1),
- "cmp.b\t{$src1, #2}",
- [(MSP430cmp GR8:$src1, 2), (implicit SRW)]>;
-def CMP16ri2: Pseudo<(outs), (ins GR16:$src1),
- "cmp.w\t{$src1, #2}",
- [(MSP430cmp GR16:$src1, 2), (implicit SRW)]>;
-def CMP8ri4 : Pseudo<(outs), (ins GR8:$src1),
- "cmp.b\t{$src1, #4}",
- [(MSP430cmp GR8:$src1, 4), (implicit SRW)]>;
-def CMP16ri4: Pseudo<(outs), (ins GR16:$src1),
- "cmp.w\t{$src1, #4}",
- [(MSP430cmp GR16:$src1, 4), (implicit SRW)]>;
-def CMP8ri8 : Pseudo<(outs), (ins GR8:$src1),
- "cmp.b\t{$src1, #8}",
- [(MSP430cmp GR8:$src1, 8), (implicit SRW)]>;
-def CMP16ri8: Pseudo<(outs), (ins GR16:$src1),
- "cmp.w\t{$src1, #8}",
- [(MSP430cmp GR16:$src1, 8), (implicit SRW)]>;
-
def CMP8rm : Pseudo<(outs), (ins GR8:$src1, memsrc:$src2),
"cmp.b\t{$src1, $src2}",
[(MSP430cmp GR8:$src1, (load addr:$src2)), (implicit SRW)]>;
diff --git a/lib/Target/MSP430/MSP430MCAsmInfo.cpp b/lib/Target/MSP430/MSP430MCAsmInfo.cpp
new file mode 100644
index 0000000..069313e
--- /dev/null
+++ b/lib/Target/MSP430/MSP430MCAsmInfo.cpp
@@ -0,0 +1,20 @@
+//===-- MSP430MCAsmInfo.cpp - MSP430 asm properties -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MSP430MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430MCAsmInfo.h"
+using namespace llvm;
+
+MSP430MCAsmInfo::MSP430MCAsmInfo(const Target &T, const StringRef &TT) {
+ AlignmentIsInBytes = false;
+ AllowNameToStartWithDigit = true;
+}
diff --git a/lib/Target/MSP430/MSP430MCAsmInfo.h b/lib/Target/MSP430/MSP430MCAsmInfo.h
new file mode 100644
index 0000000..8318029
--- /dev/null
+++ b/lib/Target/MSP430/MSP430MCAsmInfo.h
@@ -0,0 +1,28 @@
+//=====-- MSP430MCAsmInfo.h - MSP430 asm properties -----------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MSP430MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MSP430TARGETASMINFO_H
+#define MSP430TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+ struct MSP430MCAsmInfo : public MCAsmInfo {
+ explicit MSP430MCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/MSP430/MSP430RegisterInfo.cpp b/lib/Target/MSP430/MSP430RegisterInfo.cpp
index d40bac7..1a5893e 100644
--- a/lib/Target/MSP430/MSP430RegisterInfo.cpp
+++ b/lib/Target/MSP430/MSP430RegisterInfo.cpp
@@ -23,6 +23,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -45,7 +46,7 @@ MSP430RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
return CalleeSavedRegs;
}
-const TargetRegisterClass* const*
+const TargetRegisterClass *const *
MSP430RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
&MSP430::GR16RegClass, &MSP430::GR16RegClass,
@@ -58,8 +59,7 @@ MSP430RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
return CalleeSavedRegClasses;
}
-BitVector
-MSP430RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+BitVector MSP430RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
// Mark 4 special registers as reserved.
@@ -75,7 +75,8 @@ MSP430RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
return Reserved;
}
-const TargetRegisterClass* MSP430RegisterInfo::getPointerRegClass() const {
+const TargetRegisterClass *
+MSP430RegisterInfo::getPointerRegClass(unsigned Kind) const {
return &MSP430::GR16RegClass;
}
@@ -146,9 +147,10 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MBB.erase(I);
}
-void
+unsigned
MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const {
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
@@ -186,7 +188,7 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MI.getOperand(i).ChangeToRegister(BasePtr, false);
if (Offset == 0)
- return;
+ return 0;
// We need to materialize the offset via add instruction.
unsigned DstReg = MI.getOperand(0).getReg();
@@ -197,11 +199,12 @@ MSP430RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
BuildMI(MBB, next(II), dl, TII.get(MSP430::ADD16ri), DstReg)
.addReg(DstReg).addImm(Offset);
- return;
+ return 0;
}
MI.getOperand(i).ChangeToRegister(BasePtr, false);
MI.getOperand(i+1).ChangeToImmediate(Offset);
+ return 0;
}
void
@@ -291,7 +294,7 @@ void MSP430RegisterInfo::emitEpilogue(MachineFunction &MF,
switch (RetOpcode) {
case MSP430::RET: break; // These are ok
default:
- assert(0 && "Can only insert epilog into returning blocks");
+ llvm_unreachable("Can only insert epilog into returning blocks");
}
// Get the number of bytes to allocate from the FrameInfo
@@ -310,7 +313,6 @@ void MSP430RegisterInfo::emitEpilogue(MachineFunction &MF,
NumBytes = StackSize - CSSize;
// Skip the callee-saved pop instructions.
- MachineBasicBlock::iterator LastCSPop = MBBI;
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
@@ -327,7 +329,16 @@ void MSP430RegisterInfo::emitEpilogue(MachineFunction &MF,
// mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
if (MFI->hasVarSizedObjects()) {
- assert(0 && "Not implemented yet!");
+ BuildMI(MBB, MBBI, DL,
+ TII.get(MSP430::MOV16rr), MSP430::SPW).addReg(MSP430::FPW);
+ if (CSSize) {
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL,
+ TII.get(MSP430::SUB16ri), MSP430::SPW)
+ .addReg(MSP430::SPW).addImm(CSSize);
+ // The SRW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ }
} else {
// adjust stack pointer back: SPW += numbytes
if (NumBytes) {
@@ -349,7 +360,7 @@ unsigned MSP430RegisterInfo::getFrameRegister(MachineFunction &MF) const {
}
int MSP430RegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
- assert(0 && "Not implemented yet!");
+ llvm_unreachable("Not implemented yet!");
return 0;
}
diff --git a/lib/Target/MSP430/MSP430RegisterInfo.h b/lib/Target/MSP430/MSP430RegisterInfo.h
index a210e36..5f3a216 100644
--- a/lib/Target/MSP430/MSP430RegisterInfo.h
+++ b/lib/Target/MSP430/MSP430RegisterInfo.h
@@ -40,7 +40,7 @@ public:
getCalleeSavedRegClasses(const MachineFunction *MF = 0) const;
BitVector getReservedRegs(const MachineFunction &MF) const;
- const TargetRegisterClass* getPointerRegClass() const;
+ const TargetRegisterClass* getPointerRegClass(unsigned Kind = 0) const;
bool hasFP(const MachineFunction &MF) const;
bool hasReservedCallFrame(MachineFunction &MF) const;
@@ -49,8 +49,9 @@ public:
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
void emitPrologue(MachineFunction &MF) const;
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
diff --git a/lib/Target/MSP430/MSP430Subtarget.cpp b/lib/Target/MSP430/MSP430Subtarget.cpp
index ef9e103..1346cb9 100644
--- a/lib/Target/MSP430/MSP430Subtarget.cpp
+++ b/lib/Target/MSP430/MSP430Subtarget.cpp
@@ -14,12 +14,10 @@
#include "MSP430Subtarget.h"
#include "MSP430.h"
#include "MSP430GenSubtarget.inc"
-#include "llvm/Target/TargetMachine.h"
using namespace llvm;
-MSP430Subtarget::MSP430Subtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS) {
+MSP430Subtarget::MSP430Subtarget(const std::string &TT, const std::string &FS) {
std::string CPU = "generic";
// Parse features string.
diff --git a/lib/Target/MSP430/MSP430Subtarget.h b/lib/Target/MSP430/MSP430Subtarget.h
index 96c8108..1070544 100644
--- a/lib/Target/MSP430/MSP430Subtarget.h
+++ b/lib/Target/MSP430/MSP430Subtarget.h
@@ -19,17 +19,14 @@
#include <string>
namespace llvm {
-class Module;
-class TargetMachine;
class MSP430Subtarget : public TargetSubtarget {
bool ExtendedInsts;
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- MSP430Subtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS);
+ MSP430Subtarget(const std::string &TT, const std::string &FS);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
diff --git a/lib/Target/MSP430/MSP430TargetMachine.cpp b/lib/Target/MSP430/MSP430TargetMachine.cpp
index dd09d43..5e21f8e 100644
--- a/lib/Target/MSP430/MSP430TargetMachine.cpp
+++ b/lib/Target/MSP430/MSP430TargetMachine.cpp
@@ -12,43 +12,30 @@
//===----------------------------------------------------------------------===//
#include "MSP430.h"
-#include "MSP430TargetAsmInfo.h"
+#include "MSP430MCAsmInfo.h"
#include "MSP430TargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/Passes.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetMachineRegistry.h"
-
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-/// MSP430TargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int MSP430TargetMachineModule;
-int MSP430TargetMachineModule = 0;
-
-
-// Register the targets
-static RegisterTarget<MSP430TargetMachine>
-X("msp430", "MSP430 [experimental]");
-
-// Force static initialization.
-extern "C" void LLVMInitializeMSP430Target() { }
+extern "C" void LLVMInitializeMSP430Target() {
+ // Register the target.
+ RegisterTargetMachine<MSP430TargetMachine> X(TheMSP430Target);
+ RegisterAsmInfo<MSP430MCAsmInfo> Z(TheMSP430Target);
+}
-MSP430TargetMachine::MSP430TargetMachine(const Module &M,
+MSP430TargetMachine::MSP430TargetMachine(const Target &T,
+ const std::string &TT,
const std::string &FS) :
- Subtarget(*this, M, FS),
+ LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS),
// FIXME: Check TargetData string.
DataLayout("e-p:16:8:8-i8:8:8-i16:8:8-i32:8:8"),
InstrInfo(*this), TLInfo(*this),
FrameInfo(TargetFrameInfo::StackGrowsDown, 2, -2) { }
-const TargetAsmInfo *MSP430TargetMachine::createTargetAsmInfo() const {
- return new MSP430TargetAsmInfo(*this);
-}
bool MSP430TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
@@ -57,23 +44,3 @@ bool MSP430TargetMachine::addInstSelector(PassManagerBase &PM,
return false;
}
-bool MSP430TargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // Output assembly language.
- PM.add(createMSP430CodePrinterPass(Out, *this, Verbose));
- return false;
-}
-
-unsigned MSP430TargetMachine::getModuleMatchQuality(const Module &M) {
- std::string TT = M.getTargetTriple();
-
- // We strongly match msp430
- if (TT.size() >= 6 && TT[0] == 'm' && TT[1] == 's' && TT[2] == 'p' &&
- TT[3] == '4' && TT[4] == '3' && TT[5] == '0')
- return 20;
-
- return 0;
-}
-
diff --git a/lib/Target/MSP430/MSP430TargetMachine.h b/lib/Target/MSP430/MSP430TargetMachine.h
index d9ffa2b..d386140 100644
--- a/lib/Target/MSP430/MSP430TargetMachine.h
+++ b/lib/Target/MSP430/MSP430TargetMachine.h
@@ -37,11 +37,9 @@ class MSP430TargetMachine : public LLVMTargetMachine {
// any MSP430 specific FrameInfo class.
TargetFrameInfo FrameInfo;
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
public:
- MSP430TargetMachine(const Module &M, const std::string &FS);
+ MSP430TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
virtual const MSP430InstrInfo *getInstrInfo() const { return &InstrInfo; }
@@ -57,10 +55,6 @@ public:
}
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel, bool Verbose,
- raw_ostream &Out);
- static unsigned getModuleMatchQuality(const Module &M);
}; // MSP430TargetMachine.
} // end namespace llvm
diff --git a/lib/Target/MSP430/Makefile b/lib/Target/MSP430/Makefile
index 45cb3aa..4b18bc9 100644
--- a/lib/Target/MSP430/Makefile
+++ b/lib/Target/MSP430/Makefile
@@ -7,7 +7,7 @@
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
-LIBRARYNAME = LLVMMSP430
+LIBRARYNAME = LLVMMSP430CodeGen
TARGET = MSP430
# Make sure that tblgen is run, first thing.
@@ -17,5 +17,7 @@ BUILT_SOURCES = MSP430GenRegisterInfo.h.inc MSP430GenRegisterNames.inc \
MSP430GenDAGISel.inc MSP430GenCallingConv.inc \
MSP430GenSubtarget.inc
+DIRS = AsmPrinter TargetInfo
+
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/MSP430/TargetInfo/CMakeLists.txt b/lib/Target/MSP430/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..1d408d0
--- /dev/null
+++ b/lib/Target/MSP430/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMMSP430Info
+ MSP430TargetInfo.cpp
+ )
+
+add_dependencies(LLVMMSP430Info MSP430Table_gen)
diff --git a/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp b/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp
new file mode 100644
index 0000000..f9ca5c4
--- /dev/null
+++ b/lib/Target/MSP430/TargetInfo/MSP430TargetInfo.cpp
@@ -0,0 +1,20 @@
+//===-- MSP430TargetInfo.cpp - MSP430 Target Implementation ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MSP430.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheMSP430Target;
+
+extern "C" void LLVMInitializeMSP430TargetInfo() {
+ RegisterTarget<Triple::msp430>
+ X(TheMSP430Target, "msp430", "MSP430 [experimental]");
+}
diff --git a/lib/Target/MSP430/TargetInfo/Makefile b/lib/Target/MSP430/TargetInfo/Makefile
new file mode 100644
index 0000000..abb08f2
--- /dev/null
+++ b/lib/Target/MSP430/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/MSP430/TargetInfo/Makefile ---------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMMSP430Info
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Mips/AsmPrinter/CMakeLists.txt b/lib/Target/Mips/AsmPrinter/CMakeLists.txt
index 197cc29..56c68a6 100644
--- a/lib/Target/Mips/AsmPrinter/CMakeLists.txt
+++ b/lib/Target/Mips/AsmPrinter/CMakeLists.txt
@@ -4,6 +4,6 @@ include_directories(
)
add_llvm_library(LLVMMipsAsmPrinter
- MipsAsmPrinter.cpp
+ MipsAsmPrinter.cpp
)
add_dependencies(LLVMMipsAsmPrinter MipsCodeGenTable_gen) \ No newline at end of file
diff --git a/lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp b/lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp
index cb40479..ccf9ee5 100644
--- a/lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp
+++ b/lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp
@@ -22,24 +22,28 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
@@ -50,8 +54,8 @@ namespace {
class VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter {
const MipsSubtarget *Subtarget;
public:
- explicit MipsAsmPrinter(raw_ostream &O, MipsTargetMachine &TM,
- const TargetAsmInfo *T, bool V)
+ explicit MipsAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V) {
Subtarget = &TM.getSubtarget<MipsSubtarget>();
}
@@ -68,34 +72,25 @@ namespace {
const char *Modifier = 0);
void printFCCOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void PrintGlobalVariable(const GlobalVariable *GVar);
void printSavedRegsBitmask(MachineFunction &MF);
void printHex32(unsigned int Value);
- const char *emitCurrentABIString(void);
+ const char *emitCurrentABIString();
void emitFunctionStart(MachineFunction &MF);
void emitFunctionEnd(MachineFunction &MF);
void emitFrameDirective(MachineFunction &MF);
- bool printInstruction(const MachineInstr *MI); // autogenerated.
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- bool doFinalization(Module &M);
+ void EmitStartOfAsmFile(Module &M);
};
} // end of anonymous namespace
#include "MipsGenAsmWriter.inc"
-/// createMipsCodePrinterPass - Returns a pass that prints the MIPS
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form.
-FunctionPass *llvm::createMipsCodePrinterPass(raw_ostream &o,
- MipsTargetMachine &tm,
- bool verbose) {
- return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
-}
-
//===----------------------------------------------------------------------===//
//
// Mips Asm Directives
@@ -186,9 +181,7 @@ printHex32(unsigned int Value)
//===----------------------------------------------------------------------===//
/// Frame Directive
-void MipsAsmPrinter::
-emitFrameDirective(MachineFunction &MF)
-{
+void MipsAsmPrinter::emitFrameDirective(MachineFunction &MF) {
const TargetRegisterInfo &RI = *TM.getRegisterInfo();
unsigned stackReg = RI.getFrameRegister(MF);
@@ -196,16 +189,14 @@ emitFrameDirective(MachineFunction &MF)
unsigned stackSize = MF.getFrameInfo()->getStackSize();
- O << "\t.frame\t" << '$' << LowercaseString(RI.get(stackReg).AsmName)
+ O << "\t.frame\t" << '$' << LowercaseString(getRegisterName(stackReg))
<< ',' << stackSize << ','
- << '$' << LowercaseString(RI.get(returnReg).AsmName)
+ << '$' << LowercaseString(getRegisterName(returnReg))
<< '\n';
}
/// Emit Set directives.
-const char * MipsAsmPrinter::
-emitCurrentABIString(void)
-{
+const char *MipsAsmPrinter::emitCurrentABIString() {
switch(Subtarget->getTargetABI()) {
case MipsSubtarget::O32: return "abi32";
case MipsSubtarget::O64: return "abiO64";
@@ -215,17 +206,15 @@ emitCurrentABIString(void)
default: break;
}
- assert(0 && "Unknown Mips ABI");
+ llvm_unreachable("Unknown Mips ABI");
return NULL;
}
/// Emit the directives used by GAS on the start of functions
-void MipsAsmPrinter::
-emitFunctionStart(MachineFunction &MF)
-{
+void MipsAsmPrinter::emitFunctionStart(MachineFunction &MF) {
// Print out the label for the function.
const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
// 2 bits aligned
EmitAlignment(MF.getAlignment(), F);
@@ -235,7 +224,7 @@ emitFunctionStart(MachineFunction &MF)
printVisibility(CurrentFnName, F->getVisibility());
- if ((TAI->hasDotTypeDotSizeDirective()) && Subtarget->isLinux())
+ if ((MAI->hasDotTypeDotSizeDirective()) && Subtarget->isLinux())
O << "\t.type\t" << CurrentFnName << ", @function\n";
O << CurrentFnName << ":\n";
@@ -247,9 +236,7 @@ emitFunctionStart(MachineFunction &MF)
}
/// Emit the directives used by GAS on the end of functions
-void MipsAsmPrinter::
-emitFunctionEnd(MachineFunction &MF)
-{
+void MipsAsmPrinter::emitFunctionEnd(MachineFunction &MF) {
// There are instruction for this macros, but they must
// always be at the function end, and we can't emit and
// break with BB logic.
@@ -257,15 +244,13 @@ emitFunctionEnd(MachineFunction &MF)
O << "\t.set\treorder\n";
O << "\t.end\t" << CurrentFnName << '\n';
- if (TAI->hasDotTypeDotSizeDirective() && !Subtarget->isLinux())
+ if (MAI->hasDotTypeDotSizeDirective() && !Subtarget->isLinux())
O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
-bool MipsAsmPrinter::
-runOnMachineFunction(MachineFunction &MF)
-{
+bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
SetupMachineFunction(MF);
@@ -287,14 +272,21 @@ runOnMachineFunction(MachineFunction &MF)
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
+ processDebugLoc(II, true);
+
// Print the assembly for the instruction.
printInstruction(II);
+
+ if (VerboseAsm && !II->getDebugLoc().isUnknown())
+ EmitComments(*II);
+ O << '\n';
+
+ processDebugLoc(II, false);
++EmittedInsts;
}
@@ -310,10 +302,8 @@ runOnMachineFunction(MachineFunction &MF)
}
// Print out an operand for an inline asm expression.
-bool MipsAsmPrinter::
-PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
- unsigned AsmVariant, const char *ExtraCode)
-{
+bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,const char *ExtraCode){
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
@@ -322,57 +312,33 @@ PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
return false;
}
-void MipsAsmPrinter::
-printOperand(const MachineInstr *MI, int opNum)
-{
+void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
const MachineOperand &MO = MI->getOperand(opNum);
- const TargetRegisterInfo &RI = *TM.getRegisterInfo();
bool closeP = false;
- bool isPIC = (TM.getRelocationModel() == Reloc::PIC_);
- bool isCodeLarge = (TM.getCodeModel() == CodeModel::Large);
-
- // %hi and %lo used on mips gas to load global addresses on
- // static code. %got is used to load global addresses when
- // using PIC_. %call16 is used to load direct call targets
- // on PIC_ and small code size. %call_lo and %call_hi load
- // direct call targets on PIC_ and large code size.
- if (MI->getOpcode() == Mips::LUi && !MO.isReg() && !MO.isImm()) {
- if ((isPIC) && (isCodeLarge))
- O << "%call_hi(";
- else
- O << "%hi(";
+
+ if (MO.getTargetFlags())
closeP = true;
- } else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isReg() && !MO.isImm()) {
- const MachineOperand &firstMO = MI->getOperand(opNum-1);
- if (firstMO.getReg() == Mips::GP)
- O << "%gp_rel(";
+
+ switch(MO.getTargetFlags()) {
+ case MipsII::MO_GPREL: O << "%gp_rel("; break;
+ case MipsII::MO_GOT_CALL: O << "%call16("; break;
+ case MipsII::MO_GOT:
+ if (MI->getOpcode() == Mips::LW)
+ O << "%got(";
else
O << "%lo(";
- closeP = true;
- } else if ((isPIC) && (MI->getOpcode() == Mips::LW) &&
- (!MO.isReg()) && (!MO.isImm())) {
- const MachineOperand &firstMO = MI->getOperand(opNum-1);
- const MachineOperand &lastMO = MI->getOperand(opNum+1);
- if ((firstMO.isReg()) && (lastMO.isReg())) {
- if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() == Mips::GP)
- && (!isCodeLarge))
- O << "%call16(";
- else if ((firstMO.getReg() != Mips::T9) && (lastMO.getReg() == Mips::GP))
- O << "%got(";
- else if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() != Mips::GP)
- && (isCodeLarge))
- O << "%call_lo(";
- closeP = true;
- }
+ break;
+ case MipsII::MO_ABS_HILO:
+ if (MI->getOpcode() == Mips::LUi)
+ O << "%hi(";
+ else
+ O << "%lo(";
+ break;
}
-
- switch (MO.getType())
- {
+
+ switch (MO.getType()) {
case MachineOperand::MO_Register:
- if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
- O << '$' << LowercaseString (RI.get(MO.getReg()).AsmName);
- else
- O << '$' << MO.getReg();
+ O << '$' << LowercaseString(getRegisterName(MO.getReg()));
break;
case MachineOperand::MO_Immediate:
@@ -380,14 +346,11 @@ printOperand(const MachineInstr *MI, int opNum)
break;
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress:
- {
- const GlobalValue *GV = MO.getGlobal();
- O << Mang->getValueName(GV);
- }
+ O << Mang->getMangledName(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol:
@@ -395,25 +358,23 @@ printOperand(const MachineInstr *MI, int opNum)
break;
case MachineOperand::MO_JumpTableIndex:
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI"
+ O << MAI->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getIndex();
break;
default:
- O << "<unknown operand type>"; abort (); break;
+ llvm_unreachable("<unknown operand type>");
}
if (closeP) O << ")";
}
-void MipsAsmPrinter::
-printUnsignedImm(const MachineInstr *MI, int opNum)
-{
+void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum) {
const MachineOperand &MO = MI->getOperand(opNum);
if (MO.getType() == MachineOperand::MO_Immediate)
O << (unsigned short int)MO.getImm();
@@ -422,8 +383,7 @@ printUnsignedImm(const MachineInstr *MI, int opNum)
}
void MipsAsmPrinter::
-printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier)
-{
+printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier) {
// when using stack locations for not load/store instructions
// print the same way as all normal 3 operand instructions.
if (Modifier && !strcmp(Modifier, "stackloc")) {
@@ -443,17 +403,14 @@ printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier)
}
void MipsAsmPrinter::
-printFCCOperand(const MachineInstr *MI, int opNum, const char *Modifier)
-{
+printFCCOperand(const MachineInstr *MI, int opNum, const char *Modifier) {
const MachineOperand& MO = MI->getOperand(opNum);
O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
}
-bool MipsAsmPrinter::
-doInitialization(Module &M)
-{
- Mang = new Mangler(M, "", TAI->getPrivateGlobalPrefix());
-
+void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ // FIXME: Use SwitchSection.
+
// Tell the assembler which ABI we are using
O << "\t.section .mdebug." << emitCurrentABIString() << '\n';
@@ -464,12 +421,9 @@ doInitialization(Module &M)
// return to previous section
O << "\t.previous" << '\n';
-
- return false; // success
}
-void MipsAsmPrinter::
-printModuleLevelGV(const GlobalVariable* GVar) {
+void MipsAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
@@ -480,10 +434,8 @@ printModuleLevelGV(const GlobalVariable* GVar) {
return;
O << "\n\n";
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
const Type *CTy = C->getType();
unsigned Size = TD->getTypeAllocSize(CTy);
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
@@ -503,7 +455,8 @@ printModuleLevelGV(const GlobalVariable* GVar) {
printVisibility(name, GVar->getVisibility());
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
if (C->isNullValue() && !GVar->hasSection()) {
if (!GVar->isThreadLocal() &&
@@ -513,8 +466,8 @@ printModuleLevelGV(const GlobalVariable* GVar) {
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << '\n';
- O << TAI->getCOMMDirective() << name << ',' << Size;
- if (TAI->getCOMMDirectiveTakesAlignment())
+ O << MAI->getCOMMDirective() << name << ',' << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
O << ',' << (1 << Align);
O << '\n';
@@ -536,29 +489,27 @@ printModuleLevelGV(const GlobalVariable* GVar) {
// or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
- O << TAI->getGlobalDirective() << name << '\n';
+ O << MAI->getGlobalDirective() << name << '\n';
// Fall Through
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::InternalLinkage:
if (CVA && CVA->isCString())
printSizeAndType = false;
break;
case GlobalValue::GhostLinkage:
- cerr << "Should not have any unmaterialized functions!\n";
- abort();
+ llvm_unreachable("Should not have any unmaterialized functions!");
case GlobalValue::DLLImportLinkage:
- cerr << "DLLImport linkage is not supported by this target!\n";
- abort();
+ llvm_unreachable("DLLImport linkage is not supported by this target!");
case GlobalValue::DLLExportLinkage:
- cerr << "DLLExport linkage is not supported by this target!\n";
- abort();
+ llvm_unreachable("DLLExport linkage is not supported by this target!");
default:
- assert(0 && "Unknown linkage type!");
+ llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
- if (TAI->hasDotTypeDotSizeDirective() && printSizeAndType) {
+ if (MAI->hasDotTypeDotSizeDirective() && printSizeAndType) {
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << ',' << Size << '\n';
}
@@ -567,26 +518,9 @@ printModuleLevelGV(const GlobalVariable* GVar) {
EmitGlobalConstant(C);
}
-bool MipsAsmPrinter::
-doFinalization(Module &M)
-{
- // Print out module-level global variables here.
- for (Module::const_global_iterator I = M.global_begin(),
- E = M.global_end(); I != E; ++I)
- printModuleLevelGV(I);
-
- O << '\n';
-
- return AsmPrinter::doFinalization(M);
-}
-
-namespace {
- static struct Register {
- Register() {
- MipsTargetMachine::registerAsmPrinter(createMipsCodePrinterPass);
- }
- } Registrator;
-}
// Force static initialization.
-extern "C" void LLVMInitializeMipsAsmPrinter() { }
+extern "C" void LLVMInitializeMipsAsmPrinter() {
+ RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
+ RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
+}
diff --git a/lib/Target/Mips/CMakeLists.txt b/lib/Target/Mips/CMakeLists.txt
index d27e6f1..0e3bf5a 100644
--- a/lib/Target/Mips/CMakeLists.txt
+++ b/lib/Target/Mips/CMakeLists.txt
@@ -15,10 +15,11 @@ add_llvm_target(MipsCodeGen
MipsInstrInfo.cpp
MipsISelDAGToDAG.cpp
MipsISelLowering.cpp
+ MipsMCAsmInfo.cpp
MipsRegisterInfo.cpp
MipsSubtarget.cpp
- MipsTargetAsmInfo.cpp
MipsTargetMachine.cpp
+ MipsTargetObjectFile.cpp
)
target_link_libraries (LLVMMipsCodeGen LLVMSelectionDAG)
diff --git a/lib/Target/Mips/Makefile b/lib/Target/Mips/Makefile
index 48ab5f9..0780345 100644
--- a/lib/Target/Mips/Makefile
+++ b/lib/Target/Mips/Makefile
@@ -17,7 +17,7 @@ BUILT_SOURCES = MipsGenRegisterInfo.h.inc MipsGenRegisterNames.inc \
MipsGenDAGISel.inc MipsGenCallingConv.inc \
MipsGenSubtarget.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Mips/Mips.h b/lib/Target/Mips/Mips.h
index 9b22a91..a9ab050 100644
--- a/lib/Target/Mips/Mips.h
+++ b/lib/Target/Mips/Mips.h
@@ -21,13 +21,14 @@ namespace llvm {
class MipsTargetMachine;
class FunctionPass;
class MachineCodeEmitter;
- class raw_ostream;
+ class formatted_raw_ostream;
FunctionPass *createMipsISelDag(MipsTargetMachine &TM);
FunctionPass *createMipsDelaySlotFillerPass(MipsTargetMachine &TM);
- FunctionPass *createMipsCodePrinterPass(raw_ostream &OS,
- MipsTargetMachine &TM,
- bool Verbose);
+
+ extern Target TheMipsTarget;
+ extern Target TheMipselTarget;
+
} // end namespace llvm;
// Defines symbolic names for Mips registers. This defines a mapping from
diff --git a/lib/Target/Mips/MipsISelDAGToDAG.cpp b/lib/Target/Mips/MipsISelDAGToDAG.cpp
index 53de1bb..cc20dd7 100644
--- a/lib/Target/Mips/MipsISelDAGToDAG.cpp
+++ b/lib/Target/Mips/MipsISelDAGToDAG.cpp
@@ -32,6 +32,8 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -106,22 +108,16 @@ private:
/// InstructionSelect - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
-void MipsDAGToDAGISel::
-InstructionSelect()
-{
+void MipsDAGToDAGISel::InstructionSelect() {
DEBUG(BB->dump());
// Codegen the basic block.
- #ifndef NDEBUG
- DOUT << "===== Instruction selection begins:\n";
- Indent = 0;
- #endif
+ DEBUG(errs() << "===== Instruction selection begins:\n");
+ DEBUG(Indent = 0);
// Select target instructions for the DAG.
SelectRoot(*CurDAG);
- #ifndef NDEBUG
- DOUT << "===== Instruction selection ends:\n";
- #endif
+ DEBUG(errs() << "===== Instruction selection ends:\n");
CurDAG->RemoveDeadNodes();
}
@@ -129,7 +125,6 @@ InstructionSelect()
/// getGlobalBaseReg - Output the instructions required to put the
/// GOT address into a register.
SDNode *MipsDAGToDAGISel::getGlobalBaseReg() {
- MachineFunction *MF = BB->getParent();
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}
@@ -186,29 +181,23 @@ SelectAddr(SDValue Op, SDValue Addr, SDValue &Offset, SDValue &Base)
/// Select instructions not customized! Used for
/// expanded, promoted and normal instructions
-SDNode* MipsDAGToDAGISel::
-Select(SDValue N)
-{
+SDNode* MipsDAGToDAGISel::Select(SDValue N) {
SDNode *Node = N.getNode();
unsigned Opcode = Node->getOpcode();
DebugLoc dl = Node->getDebugLoc();
// Dump information about the Node being selected
- #ifndef NDEBUG
- DOUT << std::string(Indent, ' ') << "Selecting: ";
- DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
- Indent += 2;
- #endif
+ DEBUG(errs().indent(Indent) << "Selecting: ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent += 2);
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
- #ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "== ";
- DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
- Indent -= 2;
- #endif
+ DEBUG(errs().indent(Indent-2) << "== ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent -= 2);
return NULL;
}
@@ -242,10 +231,10 @@ Select(SDValue N)
SDValue LHS = Node->getOperand(0);
SDValue RHS = Node->getOperand(1);
- MVT VT = LHS.getValueType();
- SDNode *Carry = CurDAG->getTargetNode(Mips::SLTu, dl, VT, Ops, 2);
- SDNode *AddCarry = CurDAG->getTargetNode(Mips::ADDu, dl, VT,
- SDValue(Carry,0), RHS);
+ EVT VT = LHS.getValueType();
+ SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, dl, VT, Ops, 2);
+ SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, dl, VT,
+ SDValue(Carry,0), RHS);
return CurDAG->SelectNodeTo(N.getNode(), MOp, VT, MVT::Flag,
LHS, SDValue(AddCarry,0));
@@ -265,13 +254,13 @@ Select(SDValue N)
else
Op = (Opcode == ISD::UDIVREM ? Mips::DIVu : Mips::DIV);
- SDNode *Node = CurDAG->getTargetNode(Op, dl, MVT::Flag, Op1, Op2);
+ SDNode *Node = CurDAG->getMachineNode(Op, dl, MVT::Flag, Op1, Op2);
SDValue InFlag = SDValue(Node, 0);
- SDNode *Lo = CurDAG->getTargetNode(Mips::MFLO, dl, MVT::i32,
- MVT::Flag, InFlag);
+ SDNode *Lo = CurDAG->getMachineNode(Mips::MFLO, dl, MVT::i32,
+ MVT::Flag, InFlag);
InFlag = SDValue(Lo,1);
- SDNode *Hi = CurDAG->getTargetNode(Mips::MFHI, dl, MVT::i32, InFlag);
+ SDNode *Hi = CurDAG->getMachineNode(Mips::MFHI, dl, MVT::i32, InFlag);
if (!N.getValue(0).use_empty())
ReplaceUses(N.getValue(0), SDValue(Lo,0));
@@ -290,15 +279,15 @@ Select(SDValue N)
SDValue MulOp2 = Node->getOperand(1);
unsigned MulOp = (Opcode == ISD::MULHU ? Mips::MULTu : Mips::MULT);
- SDNode *MulNode = CurDAG->getTargetNode(MulOp, dl,
- MVT::Flag, MulOp1, MulOp2);
+ SDNode *MulNode = CurDAG->getMachineNode(MulOp, dl,
+ MVT::Flag, MulOp1, MulOp2);
SDValue InFlag = SDValue(MulNode, 0);
if (MulOp == ISD::MUL)
- return CurDAG->getTargetNode(Mips::MFLO, dl, MVT::i32, InFlag);
+ return CurDAG->getMachineNode(Mips::MFLO, dl, MVT::i32, InFlag);
else
- return CurDAG->getTargetNode(Mips::MFHI, dl, MVT::i32, InFlag);
+ return CurDAG->getMachineNode(Mips::MFHI, dl, MVT::i32, InFlag);
}
/// Div/Rem operations
@@ -317,10 +306,10 @@ Select(SDValue N)
Op = (Opcode == ISD::SREM ? Mips::DIV : Mips::DIVu);
MOp = Mips::MFHI;
}
- SDNode *Node = CurDAG->getTargetNode(Op, dl, MVT::Flag, Op1, Op2);
+ SDNode *Node = CurDAG->getMachineNode(Op, dl, MVT::Flag, Op1, Op2);
SDValue InFlag = SDValue(Node, 0);
- return CurDAG->getTargetNode(MOp, dl, MVT::i32, InFlag);
+ return CurDAG->getMachineNode(MOp, dl, MVT::i32, InFlag);
}
// Get target GOT address.
@@ -333,7 +322,6 @@ Select(SDValue N)
/// be loaded with 3 instructions.
case MipsISD::JmpLink: {
if (TM.getRelocationModel() == Reloc::PIC_) {
- //bool isCodeLarge = (TM.getCodeModel() == CodeModel::Large);
SDValue Chain = Node->getOperand(0);
SDValue Callee = Node->getOperand(1);
SDValue T9Reg = CurDAG->getRegister(Mips::T9, MVT::i32);
@@ -347,7 +335,7 @@ Select(SDValue N)
// Use load to get GOT target
SDValue Ops[] = { Callee, GPReg, Chain };
- SDValue Load = SDValue(CurDAG->getTargetNode(Mips::LW, dl, MVT::i32,
+ SDValue Load = SDValue(CurDAG->getMachineNode(Mips::LW, dl, MVT::i32,
MVT::Other, Ops, 3), 0);
Chain = Load.getValue(1);
@@ -358,7 +346,7 @@ Select(SDValue N)
Chain = CurDAG->getCopyToReg(Chain, dl, T9Reg, Callee, InFlag);
// Emit Jump and Link Register
- SDNode *ResNode = CurDAG->getTargetNode(Mips::JALR, dl, MVT::Other,
+ SDNode *ResNode = CurDAG->getMachineNode(Mips::JALR, dl, MVT::Other,
MVT::Flag, T9Reg, Chain);
Chain = SDValue(ResNode, 0);
InFlag = SDValue(ResNode, 1);
@@ -372,15 +360,13 @@ Select(SDValue N)
// Select the default instruction
SDNode *ResNode = SelectCode(N);
- #ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
+ DEBUG(errs().indent(Indent-2) << "=> ");
if (ResNode == NULL || ResNode == N.getNode())
DEBUG(N.getNode()->dump(CurDAG));
else
DEBUG(ResNode->dump(CurDAG));
- DOUT << "\n";
- Indent -= 2;
- #endif
+ DEBUG(errs() << "\n");
+ DEBUG(Indent -= 2);
return ResNode;
}
diff --git a/lib/Target/Mips/MipsISelLowering.cpp b/lib/Target/Mips/MipsISelLowering.cpp
index 3d2e2b7..ab8790a 100644
--- a/lib/Target/Mips/MipsISelLowering.cpp
+++ b/lib/Target/Mips/MipsISelLowering.cpp
@@ -13,10 +13,10 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
-
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
+#include "MipsTargetObjectFile.h"
#include "MipsSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
@@ -31,13 +31,11 @@
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
-const char *MipsTargetLowering::
-getTargetNodeName(unsigned Opcode) const
-{
- switch (Opcode)
- {
+const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
case MipsISD::JmpLink : return "MipsISD::JmpLink";
case MipsISD::Hi : return "MipsISD::Hi";
case MipsISD::Lo : return "MipsISD::Lo";
@@ -54,8 +52,8 @@ getTargetNodeName(unsigned Opcode) const
}
MipsTargetLowering::
-MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
-{
+MipsTargetLowering(MipsTargetMachine &TM)
+ : TargetLowering(TM, new MipsTargetObjectFile()) {
Subtarget = &TM.getSubtarget<MipsSubtarget>();
// Mips does not have i1 type, so use i32 for
@@ -82,6 +80,10 @@ MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ // MIPS doesn't have extending float->double load/store
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
// Used by legalize types to correctly generate the setcc result.
// Without this, every float setcc comes with a AND/OR with the result,
// we don't want this, since the fpcmp result goes to a flag register,
@@ -91,7 +93,6 @@ MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
// Mips Custom Operations
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
- setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
@@ -119,11 +120,20 @@ MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::f32, Expand);
// We don't have line number support yet.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
@@ -154,7 +164,7 @@ MipsTargetLowering(MipsTargetMachine &TM): TargetLowering(TM)
computeRegisterProperties();
}
-MVT MipsTargetLowering::getSetCCResultType(MVT VT) const {
+MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i32;
}
@@ -170,16 +180,13 @@ LowerOperation(SDValue Op, SelectionDAG &DAG)
{
case ISD::AND: return LowerANDOR(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
- case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::OR: return LowerANDOR(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
}
@@ -202,37 +209,6 @@ AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
return VReg;
}
-// A address must be loaded from a small section if its size is less than the
-// small section size threshold. Data in this section must be addressed using
-// gp_rel operator.
-bool MipsTargetLowering::IsInSmallSection(unsigned Size) {
- return (Size > 0 && (Size <= Subtarget->getSSectionThreshold()));
-}
-
-// Discover if this global address can be placed into small data/bss section.
-bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue *GV)
-{
- const TargetData *TD = getTargetData();
- const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
-
- if (!GVA)
- return false;
-
- const Type *Ty = GV->getType()->getElementType();
- unsigned Size = TD->getTypeAllocSize(Ty);
-
- // if this is a internal constant string, there is a special
- // section for it, but not in small data/bss.
- if (GVA->hasInitializer() && GV->hasLocalLinkage()) {
- Constant *C = GVA->getInitializer();
- const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
- if (CVA && CVA->isCString())
- return false;
- }
-
- return IsInSmallSection(Size);
-}
-
// Get fp branch code (not opcode) from condition code.
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
@@ -247,7 +223,7 @@ static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
switch(BC) {
default:
- assert(0 && "Unknown branch code");
+ llvm_unreachable("Unknown branch code");
case Mips::BRANCH_T : return Mips::BC1T;
case Mips::BRANCH_F : return Mips::BC1F;
case Mips::BRANCH_TL : return Mips::BC1TL;
@@ -257,7 +233,7 @@ static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
- default: assert(0 && "Unknown fp condition code!");
+ default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return Mips::FCOND_EQ;
case ISD::SETUNE: return Mips::FCOND_OGL;
@@ -283,7 +259,8 @@ static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
bool isFPCmp = false;
DebugLoc dl = MI->getDebugLoc();
@@ -331,9 +308,12 @@ MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
F->insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
+ // Also inform sdisel of the edge changes.
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
- e = BB->succ_end(); i != e; ++i)
+ e = BB->succ_end(); i != e; ++i) {
+ EM->insert(std::make_pair(*i, sinkMBB));
sinkMBB->addSuccessor(*i);
+ }
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while(!BB->succ_empty())
@@ -508,29 +488,34 @@ LowerSELECT(SDValue Op, SelectionDAG &DAG)
Cond, True, False, CCNode);
}
-SDValue MipsTargetLowering::
-LowerGlobalAddress(SDValue Op, SelectionDAG &DAG)
-{
+SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
- SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
- if (!Subtarget->hasABICall()) {
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
SDVTList VTs = DAG.getVTList(MVT::i32);
- SDValue Ops[] = { GA };
+
+ MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
+
// %gp_rel relocation
- if (!isa<Function>(GV) && IsGlobalInSmallSection(GV)) {
- SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, Ops, 1);
+ if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_GPREL);
+ SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
}
// %hi/%lo relocation
- SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1);
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_ABS_HILO);
+ SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GA, 1);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
- } else { // Abicall relocations, TODO: make this cleaner.
+ } else {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_GOT);
SDValue ResNode = DAG.getLoad(MVT::i32, dl,
DAG.getEntryNode(), GA, NULL, 0);
// On functions and global targets not internal linked only
@@ -541,14 +526,14 @@ LowerGlobalAddress(SDValue Op, SelectionDAG &DAG)
return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
}
- assert(0 && "Dont know how to handle GlobalAddress");
+ llvm_unreachable("Dont know how to handle GlobalAddress");
return SDValue(0,0);
}
SDValue MipsTargetLowering::
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG)
{
- assert(0 && "TLS not implemented for MIPS.");
+ llvm_unreachable("TLS not implemented for MIPS.");
return SDValue(); // Not reached
}
@@ -559,15 +544,17 @@ LowerJumpTable(SDValue Op, SelectionDAG &DAG)
SDValue HiPart;
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
+ bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+ unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HILO;
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
- SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
- if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
- SDVTList VTs = DAG.getVTList(MVT::i32);
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
+
+ if (IsPIC) {
SDValue Ops[] = { JTI };
- HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, Ops, 1);
+ HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
} else // Emit Load from Global Pointer
HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, NULL, 0);
@@ -583,7 +570,8 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG)
SDValue ResNode;
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
Constant *C = N->getConstVal();
- SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
+ SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
+ MipsII::MO_ABS_HILO);
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
@@ -592,8 +580,7 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG)
// but the asm printer currently doens't support this feature without
// hacking it. This feature should come soon so we can uncomment the
// stuff below.
- //if (!Subtarget->hasABICall() &&
- // IsInSmallSection(getTargetData()->getTypeAllocSize(C->getType()))) {
+ //if (IsInSmallSection(C->getType())) {
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
@@ -608,13 +595,6 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG)
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
-//
-// The lower operations present on calling convention works on this order:
-// LowerCALL (virt regs --> phys regs, virt regs --> stack)
-// LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
-// LowerRET (virt regs --> phys regs)
-// LowerCALL (phys regs --> virt regs)
-//
//===----------------------------------------------------------------------===//
#include "MipsGenCallingConv.inc"
@@ -632,8 +612,8 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG)
// go to stack.
//===----------------------------------------------------------------------===//
-static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
- MVT LocVT, CCValAssign::LocInfo LocInfo,
+static bool CC_MipsO32(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const unsigned IntRegsSize=4, FloatRegsSize=2;
@@ -699,38 +679,38 @@ static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
}
//===----------------------------------------------------------------------===//
-// CALL Calling Convention Implementation
+// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
-/// LowerCALL - functions arguments are copied from virtual regs to
+/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: isVarArg, isTailCall.
-SDValue MipsTargetLowering::
-LowerCALL(SDValue Op, SelectionDAG &DAG)
-{
- MachineFunction &MF = DAG.getMachineFunction();
-
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- bool isVarArg = TheCall->isVarArg();
- unsigned CC = TheCall->getCallingConv();
- DebugLoc dl = TheCall->getDebugLoc();
+SDValue
+MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
// To meet O32 ABI, Mips must always allocate 16 bytes on
// the stack (even if less than 4 are used as arguments)
if (Subtarget->isABI_O32()) {
- int VTsize = MVT(MVT::i32).getSizeInBits()/8;
+ int VTsize = EVT(MVT::i32).getSizeInBits()/8;
MFI->CreateFixedObject(VTsize, (VTsize*3));
- CCInfo.AnalyzeCallOperands(TheCall, CC_MipsO32);
+ CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
} else
- CCInfo.AnalyzeCallOperands(TheCall, CC_Mips);
+ CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
@@ -747,12 +727,12 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
- SDValue Arg = TheCall->getArg(i);
+ SDValue Arg = Outs[i].Val;
CCValAssign &VA = ArgLocs[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (Subtarget->isABI_O32() && VA.isRegLoc()) {
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
@@ -825,10 +805,13 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
+ unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
- Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(),
+ getPointerTy(), 0, OpFlag);
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
- Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
+ getPointerTy(), OpFlag);
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
@@ -859,7 +842,7 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
// Create a stack location to hold GP when PIC is used. This stack
// location is used on function prologue to save GP and also after all
// emited CALL's to restore GP.
- if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ if (IsPIC) {
// Function can have an arbitrary number of calls, so
// hold the LastArgStackLoc with the biggest offset.
int FI;
@@ -887,75 +870,69 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
// Handle result values, copying them out of physregs into vregs that we
// return.
- return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG), Op.getResNo());
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
}
-/// LowerCallResult - Lower the result values of an ISD::CALL into the
-/// appropriate copies out of appropriate physical registers. This assumes that
-/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
-/// being lowered. Returns a SDNode with the same number of values as the
-/// ISD::CALL.
-SDNode *MipsTargetLowering::
-LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG) {
-
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = TheCall->getDebugLoc();
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- CCInfo.AnalyzeCallResult(TheCall, RetCC_Mips);
- SmallVector<SDValue, 8> ResultVals;
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
- RVLocs[i].getValVT(), InFlag).getValue(1);
+ RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
- ResultVals.push_back(Chain.getValue(0));
+ InVals.push_back(Chain.getValue(0));
}
-
- ResultVals.push_back(Chain);
- // Merge everything together with a MERGE_VALUES node.
- return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size()).getNode();
+ return Chain;
}
//===----------------------------------------------------------------------===//
-// FORMAL_ARGUMENTS Calling Convention Implementation
+// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
-/// LowerFORMAL_ARGUMENTS - transform physical registers into
+/// LowerFormalArguments - transform physical registers into
/// virtual registers and generate load operations for
/// arguments places on the stack.
/// TODO: isVarArg
-SDValue MipsTargetLowering::
-LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
-{
- SDValue Root = Op.getOperand(0);
+SDValue
+MipsTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
- DebugLoc dl = Op.getDebugLoc();
-
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
if (Subtarget->isABI_O32())
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_MipsO32);
+ CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
else
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_Mips);
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
- SmallVector<SDValue, 16> ArgValues;
SDValue StackPtr;
unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
@@ -965,7 +942,7 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
// Arguments stored on registers
if (VA.isRegLoc()) {
- MVT RegVT = VA.getLocVT();
+ EVT RegVT = VA.getLocVT();
TargetRegisterClass *RC = 0;
if (RegVT == MVT::i32)
@@ -976,12 +953,12 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
if (!Subtarget->isSingleFloat())
RC = Mips::AFGR64RegisterClass;
} else
- assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering");
+ llvm_unreachable("RegVT not supported by LowerFormalArguments Lowering");
// Transform the arguments stored on
// physical registers into virtual ones
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
- SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
@@ -1005,14 +982,14 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
VA.getLocReg()+1, RC);
- SDValue ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg2, RegVT);
+ SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
SDValue Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
SDValue Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue2);
ArgValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::f64, Lo, Hi);
}
}
- ArgValues.push_back(ArgValue);
+ InVals.push_back(ArgValue);
// To meet ABI, when VARARGS are passed on registers, the registers
// must have their values written to the caller stack frame.
@@ -1034,7 +1011,7 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
// emit ISD::STORE whichs stores the
// parameter value to a stack Location
- ArgValues.push_back(DAG.getStore(Root, dl, ArgValue, PtrOff, NULL, 0));
+ InVals.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, NULL, 0));
}
} else { // VA.isRegLoc()
@@ -1057,7 +1034,7 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
// Create load nodes to retrieve arguments from the stack
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
- ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
}
}
@@ -1070,36 +1047,33 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
MipsFI->setSRetReturnReg(Reg);
}
- SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
-SDValue MipsTargetLowering::
-LowerRET(SDValue Op, SelectionDAG &DAG)
-{
+SDValue
+MipsTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- // Analize return values of ISD::RET
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Mips);
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
@@ -1109,8 +1083,6 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- // The chain is always operand #0
- SDValue Chain = Op.getOperand(0);
SDValue Flag;
// Copy the result values into the output registers.
@@ -1118,10 +1090,8 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- // ISD::RET => ret chain, (regnum1,val1), ...
- // So i*2+1 index only the regnums
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
@@ -1138,7 +1108,7 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg)
- assert(0 && "sret virtual register not created in the entry block");
+ llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
@@ -1188,7 +1158,7 @@ getConstraintType(const std::string &Constraint) const
/// return a list of registers that can be used to satisfy the constraint.
/// This should only be used for C_RegisterClass constraints.
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
-getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
+getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
{
if (Constraint.size() == 1) {
switch (Constraint[0]) {
@@ -1210,7 +1180,7 @@ getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
/// pointer.
std::vector<unsigned> MipsTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const
+ EVT VT) const
{
if (Constraint.size() != 1)
return std::vector<unsigned>();
diff --git a/lib/Target/Mips/MipsISelLowering.h b/lib/Target/Mips/MipsISelLowering.h
index 9ad4895..dddba42 100644
--- a/lib/Target/Mips/MipsISelLowering.h
+++ b/lib/Target/Mips/MipsISelLowering.h
@@ -66,8 +66,8 @@ namespace llvm {
//===--------------------------------------------------------------------===//
// TargetLowering Implementation
//===--------------------------------------------------------------------===//
- class MipsTargetLowering : public TargetLowering
- {
+
+ class MipsTargetLowering : public TargetLowering {
public:
explicit MipsTargetLowering(MipsTargetMachine &TM);
@@ -80,7 +80,7 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - get the ISD::SETCC result ValueType
- MVT getSetCCResultType(MVT VT) const;
+ MVT::SimpleValueType getSetCCResultType(EVT VT) const;
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
@@ -88,40 +88,62 @@ namespace llvm {
// Subtarget Info
const MipsSubtarget *Subtarget;
+
// Lower Operand helpers
- SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG);
- bool IsGlobalInSmallSection(GlobalValue *GV);
- bool IsInSmallSection(unsigned Size);
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
// Lower Operand specifics
SDValue LowerANDOR(SDValue Op, SelectionDAG &DAG);
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
// Inline asm support
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
};
diff --git a/lib/Target/Mips/MipsInstrInfo.cpp b/lib/Target/Mips/MipsInstrInfo.cpp
index e16fd8e..9159904 100644
--- a/lib/Target/Mips/MipsInstrInfo.cpp
+++ b/lib/Target/Mips/MipsInstrInfo.cpp
@@ -17,6 +17,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
#include "MipsGenInstrInfo.inc"
using namespace llvm;
@@ -208,29 +209,6 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
.addImm(0).addFrameIndex(FI);
}
-void MipsInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill, SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC, SmallVectorImpl<MachineInstr*> &NewMIs) const
-{
- unsigned Opc;
- if (RC == Mips::CPURegsRegisterClass)
- Opc = Mips::SW;
- else if (RC == Mips::FGR32RegisterClass)
- Opc = Mips::SWC1;
- else {
- assert(RC == Mips::AFGR64RegisterClass);
- Opc = Mips::SDC1;
- }
-
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc))
- .addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
void MipsInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
@@ -251,28 +229,6 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0).addFrameIndex(FI);
}
-void MipsInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- unsigned Opc;
- if (RC == Mips::CPURegsRegisterClass)
- Opc = Mips::LW;
- else if (RC == Mips::FGR32RegisterClass)
- Opc = Mips::LWC1;
- else {
- assert(RC == Mips::AFGR64RegisterClass);
- Opc = Mips::LDC1;
- }
-
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
MachineInstr *MipsInstrInfo::
foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
@@ -372,7 +328,7 @@ static Mips::CondCode GetCondFromBranchOpc(unsigned BrOpc)
unsigned Mips::GetCondBranchFromCond(Mips::CondCode CC)
{
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case Mips::COND_E : return Mips::BEQ;
case Mips::COND_NE : return Mips::BNE;
case Mips::COND_GZ : return Mips::BGTZ;
@@ -421,7 +377,7 @@ unsigned Mips::GetCondBranchFromCond(Mips::CondCode CC)
Mips::CondCode Mips::GetOppositeBranchCondition(Mips::CondCode CC)
{
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case Mips::COND_E : return Mips::COND_NE;
case Mips::COND_NE : return Mips::COND_E;
case Mips::COND_GZ : return Mips::COND_LEZ;
diff --git a/lib/Target/Mips/MipsInstrInfo.h b/lib/Target/Mips/MipsInstrInfo.h
index 6655c67..249d3de 100644
--- a/lib/Target/Mips/MipsInstrInfo.h
+++ b/lib/Target/Mips/MipsInstrInfo.h
@@ -15,6 +15,7 @@
#define MIPSINSTRUCTIONINFO_H
#include "Mips.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "MipsRegisterInfo.h"
@@ -92,7 +93,7 @@ namespace Mips {
inline static const char *MipsFCCToString(Mips::CondCode CC)
{
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case FCOND_F:
case FCOND_T: return "f";
case FCOND_UN:
@@ -129,6 +130,38 @@ namespace Mips {
}
}
+/// MipsII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace MipsII {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // Mips Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ /// MO_GOT - Represents the offset into the global offset table at which
+ /// the address the relocation entry symbol resides during execution.
+ MO_GOT,
+
+ /// MO_GOT_CALL - Represents the offset into the global offset table at
+ /// which the address of a call site relocation entry symbol resides
+ /// during execution. This is different from the above since this flag
+ /// can only be present in call instructions.
+ MO_GOT_CALL,
+
+ /// MO_GPREL - Represents the offset from the current gp value to be used
+ /// for the relocatable object file being produced.
+ MO_GPREL,
+
+ /// MO_ABS_HILO - Represents the hi or low part of an absolute symbol
+ /// address.
+ MO_ABS_HILO
+
+ };
+}
+
class MipsInstrInfo : public TargetInstrInfoImpl {
MipsTargetMachine &TM;
const MipsRegisterInfo RI;
@@ -182,21 +215,11 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
diff --git a/lib/Target/Mips/MipsMCAsmInfo.cpp b/lib/Target/Mips/MipsMCAsmInfo.cpp
new file mode 100644
index 0000000..60ef1c9
--- /dev/null
+++ b/lib/Target/Mips/MipsMCAsmInfo.cpp
@@ -0,0 +1,27 @@
+//===-- MipsMCAsmInfo.cpp - Mips asm properties ---------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MipsMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsMCAsmInfo.h"
+using namespace llvm;
+
+MipsMCAsmInfo::MipsMCAsmInfo(const Target &T, const StringRef &TT) {
+ AlignmentIsInBytes = false;
+ COMMDirectiveTakesAlignment = true;
+ Data16bitsDirective = "\t.half\t";
+ Data32bitsDirective = "\t.word\t";
+ Data64bitsDirective = 0;
+ PrivateGlobalPrefix = "$";
+ CommentString = "#";
+ ZeroDirective = "\t.space\t";
+ PICJumpTableDirective = "\t.gpword\t";
+}
diff --git a/lib/Target/Mips/MipsMCAsmInfo.h b/lib/Target/Mips/MipsMCAsmInfo.h
new file mode 100644
index 0000000..33a4b5e
--- /dev/null
+++ b/lib/Target/Mips/MipsMCAsmInfo.h
@@ -0,0 +1,30 @@
+//=====-- MipsMCAsmInfo.h - Mips asm properties ---------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MipsMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MIPSTARGETASMINFO_H
+#define MIPSTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ class MipsMCAsmInfo : public MCAsmInfo {
+ public:
+ explicit MipsMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/Mips/MipsMachineFunction.h b/lib/Target/Mips/MipsMachineFunction.h
index ac3cdfd..949c78a 100644
--- a/lib/Target/Mips/MipsMachineFunction.h
+++ b/lib/Target/Mips/MipsMachineFunction.h
@@ -57,7 +57,7 @@ private:
/// to be used on emitPrologue and processFunctionBeforeFrameFinalized.
MipsFIHolder GPHolder;
- /// On LowerFORMAL_ARGUMENTS the stack size is unknown, so the Stack
+ /// On LowerFormalArguments the stack size is unknown, so the Stack
/// Pointer Offset calculation of "not in register arguments" must be
/// postponed to emitPrologue.
SmallVector<MipsFIHolder, 16> FnLoadArgs;
@@ -65,7 +65,7 @@ private:
// When VarArgs, we must write registers back to caller stack, preserving
// on register arguments. Since the stack size is unknown on
- // LowerFORMAL_ARGUMENTS, the Stack Pointer Offset calculation must be
+ // LowerFormalArguments, the Stack Pointer Offset calculation must be
// postponed to emitPrologue.
SmallVector<MipsFIHolder, 4> FnStoreVarArgs;
bool HasStoreVarArgs;
diff --git a/lib/Target/Mips/MipsRegisterInfo.cpp b/lib/Target/Mips/MipsRegisterInfo.cpp
index 579d4db..d2289e9 100644
--- a/lib/Target/Mips/MipsRegisterInfo.cpp
+++ b/lib/Target/Mips/MipsRegisterInfo.cpp
@@ -31,6 +31,8 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
@@ -79,12 +81,12 @@ getRegisterNumbering(unsigned RegEnum)
case Mips::SP : case Mips::F29: return 29;
case Mips::FP : case Mips::F30: case Mips::D15: return 30;
case Mips::RA : case Mips::F31: return 31;
- default: assert(0 && "Unknown register number!");
+ default: llvm_unreachable("Unknown register number!");
}
return 0; // Not reached
}
-unsigned MipsRegisterInfo::getPICCallReg(void) { return Mips::T9; }
+unsigned MipsRegisterInfo::getPICCallReg() { return Mips::T9; }
//===----------------------------------------------------------------------===//
// Callee Saved Registers methods
@@ -210,7 +212,7 @@ getReservedRegs(const MachineFunction &MF) const
// The emitted instruction will be something like:
// lw REGX, 16+StackSize(SP)
//
-// Since the total stack size is unknown on LowerFORMAL_ARGUMENTS, all
+// Since the total stack size is unknown on LowerFormalArguments, all
// stack references (ObjectOffset) created to reference the function
// arguments, are negative numbers. This way, on eliminateFrameIndex it's
// possible to detect those references and the offsets are adjusted to
@@ -232,7 +234,7 @@ void MipsRegisterInfo::adjustMipsStackFrame(MachineFunction &MF) const
int TopCPUSavedRegOff = -1, TopFPUSavedRegOff = -1;
// Replace the dummy '0' SPOffset by the negative offsets, as explained on
- // LowerFORMAL_ARGUMENTS. Leaving '0' for while is necessary to avoid
+ // LowerFormalArguments. Leaving '0' for while is necessary to avoid
// the approach done by calculateFrameObjectOffsets to the stack frame.
MipsFI->adjustLoadArgsFI(MFI);
MipsFI->adjustStoreVarArgsFI(MFI);
@@ -346,9 +348,9 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
// FrameIndex represent objects inside a abstract stack.
// We must replace FrameIndex with an stack/frame pointer
// direct reference.
-void MipsRegisterInfo::
-eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
- RegScavenger *RS) const
+unsigned MipsRegisterInfo::
+eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
+ int *Value, RegScavenger *RS) const
{
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
@@ -360,34 +362,27 @@ eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
"Instr doesn't have FrameIndex operand!");
}
- #ifndef NDEBUG
- DOUT << "\nFunction : " << MF.getFunction()->getName() << "\n";
- DOUT << "<--------->\n";
- MI.print(DOUT);
- #endif
+ DEBUG(errs() << "\nFunction : " << MF.getFunction()->getName() << "\n";
+ errs() << "<--------->\n" << MI);
int FrameIndex = MI.getOperand(i).getIndex();
int stackSize = MF.getFrameInfo()->getStackSize();
int spOffset = MF.getFrameInfo()->getObjectOffset(FrameIndex);
- #ifndef NDEBUG
- DOUT << "FrameIndex : " << FrameIndex << "\n";
- DOUT << "spOffset : " << spOffset << "\n";
- DOUT << "stackSize : " << stackSize << "\n";
- #endif
+ DEBUG(errs() << "FrameIndex : " << FrameIndex << "\n"
+ << "spOffset : " << spOffset << "\n"
+ << "stackSize : " << stackSize << "\n");
- // as explained on LowerFORMAL_ARGUMENTS, detect negative offsets
+ // as explained on LowerFormalArguments, detect negative offsets
// and adjust SPOffsets considering the final stack size.
int Offset = ((spOffset < 0) ? (stackSize + (-(spOffset+4))) : (spOffset));
Offset += MI.getOperand(i-1).getImm();
- #ifndef NDEBUG
- DOUT << "Offset : " << Offset << "\n";
- DOUT << "<--------->\n";
- #endif
+ DEBUG(errs() << "Offset : " << Offset << "\n" << "<--------->\n");
MI.getOperand(i-1).ChangeToImmediate(Offset);
MI.getOperand(i).ChangeToRegister(getFrameRegister(MF), false);
+ return 0;
}
void MipsRegisterInfo::
@@ -515,19 +510,19 @@ getFrameRegister(MachineFunction &MF) const {
unsigned MipsRegisterInfo::
getEHExceptionRegister() const {
- assert(0 && "What is the exception register");
+ llvm_unreachable("What is the exception register");
return 0;
}
unsigned MipsRegisterInfo::
getEHHandlerRegister() const {
- assert(0 && "What is the exception handler register");
+ llvm_unreachable("What is the exception handler register");
return 0;
}
int MipsRegisterInfo::
getDwarfRegNum(unsigned RegNum, bool isEH) const {
- assert(0 && "What is the dwarf register number");
+ llvm_unreachable("What is the dwarf register number");
return -1;
}
diff --git a/lib/Target/Mips/MipsRegisterInfo.h b/lib/Target/Mips/MipsRegisterInfo.h
index 808e995..122f786 100644
--- a/lib/Target/Mips/MipsRegisterInfo.h
+++ b/lib/Target/Mips/MipsRegisterInfo.h
@@ -34,7 +34,7 @@ struct MipsRegisterInfo : public MipsGenRegisterInfo {
static unsigned getRegisterNumbering(unsigned RegEnum);
/// Get PIC indirect call register
- static unsigned getPICCallReg(void);
+ static unsigned getPICCallReg();
/// Adjust the Mips stack frame.
void adjustMipsStackFrame(MachineFunction &MF) const;
@@ -54,8 +54,9 @@ struct MipsRegisterInfo : public MipsGenRegisterInfo {
MachineBasicBlock::iterator I) const;
/// Stack Frame Processing Methods
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
diff --git a/lib/Target/Mips/MipsSubtarget.cpp b/lib/Target/Mips/MipsSubtarget.cpp
index 4245f27..db114da 100644
--- a/lib/Target/Mips/MipsSubtarget.cpp
+++ b/lib/Target/Mips/MipsSubtarget.cpp
@@ -14,37 +14,20 @@
#include "MipsSubtarget.h"
#include "Mips.h"
#include "MipsGenSubtarget.inc"
-#include "llvm/Module.h"
-#include "llvm/Support/CommandLine.h"
using namespace llvm;
-static cl::opt<bool>
-NotABICall("disable-mips-abicall", cl::Hidden,
- cl::desc("Disable code for SVR4-style dynamic objects"));
-static cl::opt<bool>
-AbsoluteCall("enable-mips-absolute-call", cl::Hidden,
- cl::desc("Enable absolute call within abicall"));
-static cl::opt<unsigned>
-SSThreshold("mips-ssection-threshold", cl::Hidden,
- cl::desc("Small data and bss section threshold size (default=8)"),
- cl::init(8));
-
-MipsSubtarget::MipsSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS, bool little) :
+MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &FS,
+ bool little) :
MipsArchVersion(Mips1), MipsABI(O32), IsLittle(little), IsSingleFloat(false),
- IsFP64bit(false), IsGP64bit(false), HasVFPU(false), HasABICall(true),
- HasAbsoluteCall(false), IsLinux(true), HasSEInReg(false), HasCondMov(false),
- HasMulDivAdd(false), HasMinMax(false), HasSwap(false), HasBitCount(false)
+ IsFP64bit(false), IsGP64bit(false), HasVFPU(false), IsLinux(true),
+ HasSEInReg(false), HasCondMov(false), HasMulDivAdd(false), HasMinMax(false),
+ HasSwap(false), HasBitCount(false)
{
std::string CPU = "mips1";
MipsArchVersion = Mips1;
// Parse features string.
ParseSubtargetFeatures(FS, CPU);
- const std::string& TT = M.getTargetTriple();
-
- // Small section size threshold
- SSectionThreshold = SSThreshold;
// Is the target system Linux ?
if (TT.find("linux") == std::string::npos)
@@ -65,13 +48,4 @@ MipsSubtarget::MipsSubtarget(const TargetMachine &TM, const Module &M,
HasSwap = true;
HasCondMov = true;
}
-
- // Abicall is the default for O32 ABI, but is disabled within EABI and in
- // static code.
- if (NotABICall || isABI_EABI() || (TM.getRelocationModel() == Reloc::Static))
- HasABICall = false;
-
- // TODO: disable when handling 64 bit symbols in the future.
- if (HasABICall && AbsoluteCall)
- HasAbsoluteCall = true;
}
diff --git a/lib/Target/Mips/MipsSubtarget.h b/lib/Target/Mips/MipsSubtarget.h
index 61c37c1..1d6f87d 100644
--- a/lib/Target/Mips/MipsSubtarget.h
+++ b/lib/Target/Mips/MipsSubtarget.h
@@ -20,7 +20,6 @@
#include <string>
namespace llvm {
-class Module;
class MipsSubtarget : public TargetSubtarget {
@@ -58,20 +57,9 @@ protected:
// HasVFPU - Processor has a vector floating point unit.
bool HasVFPU;
- // IsABICall - Enable SRV4 code for SVR4-style dynamic objects
- bool HasABICall;
-
- // HasAbsoluteCall - Enable code that is not fully position-independent.
- // Only works with HasABICall enabled.
- bool HasAbsoluteCall;
-
// isLinux - Target system is Linux. Is false we consider ELFOS for now.
bool IsLinux;
- // Put global and static items less than or equal to SSectionThreshold
- // bytes into the small data or bss section. The default is 8.
- unsigned SSectionThreshold;
-
/// Features related to the presence of specific instructions.
// HasSEInReg - SEB and SEH (signext in register) instructions.
@@ -103,9 +91,8 @@ public:
unsigned getTargetABI() const { return MipsABI; }
/// This constructor initializes the data members to match that
- /// of the specified module.
- MipsSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS, bool little);
+ /// of the specified triple.
+ MipsSubtarget(const std::string &TT, const std::string &FS, bool little);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
@@ -121,10 +108,7 @@ public:
bool isSingleFloat() const { return IsSingleFloat; };
bool isNotSingleFloat() const { return !IsSingleFloat; };
bool hasVFPU() const { return HasVFPU; };
- bool hasABICall() const { return HasABICall; };
- bool hasAbsoluteCall() const { return HasAbsoluteCall; };
bool isLinux() const { return IsLinux; };
- unsigned getSSectionThreshold() const { return SSectionThreshold; }
/// Features related to the presence of specific instructions.
bool hasSEInReg() const { return HasSEInReg; };
diff --git a/lib/Target/Mips/MipsTargetMachine.cpp b/lib/Target/Mips/MipsTargetMachine.cpp
index 4675536..4fa5450 100644
--- a/lib/Target/Mips/MipsTargetMachine.cpp
+++ b/lib/Target/Mips/MipsTargetMachine.cpp
@@ -12,35 +12,18 @@
//===----------------------------------------------------------------------===//
#include "Mips.h"
-#include "MipsTargetAsmInfo.h"
+#include "MipsMCAsmInfo.h"
#include "MipsTargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-/// MipsTargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int MipsTargetMachineModule;
-int MipsTargetMachineModule = 0;
-
-// Register the target.
-static RegisterTarget<MipsTargetMachine> X("mips", "Mips");
-static RegisterTarget<MipselTargetMachine> Y("mipsel", "Mipsel");
-
-MipsTargetMachine::AsmPrinterCtorFn MipsTargetMachine::AsmPrinterCtor = 0;
-
-
-// Force static initialization.
-extern "C" void LLVMInitializeMipsTarget() { }
-
-const TargetAsmInfo *MipsTargetMachine::
-createTargetAsmInfo() const
-{
- return new MipsTargetAsmInfo(*this);
+extern "C" void LLVMInitializeMipsTarget() {
+ // Register the target.
+ RegisterTargetMachine<MipsTargetMachine> X(TheMipsTarget);
+ RegisterTargetMachine<MipselTargetMachine> Y(TheMipselTarget);
+ RegisterAsmInfo<MipsMCAsmInfo> A(TheMipsTarget);
+ RegisterAsmInfo<MipsMCAsmInfo> B(TheMipselTarget);
}
// DataLayout --> Big-endian, 32-bit pointer/ABI/alignment
@@ -51,17 +34,22 @@ createTargetAsmInfo() const
// an easier handling.
// Using CodeModel::Large enables different CALL behavior.
MipsTargetMachine::
-MipsTargetMachine(const Module &M, const std::string &FS, bool isLittle=false):
- Subtarget(*this, M, FS, isLittle),
+MipsTargetMachine(const Target &T, const std::string &TT, const std::string &FS,
+ bool isLittle=false):
+ LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS, isLittle),
DataLayout(isLittle ? std::string("e-p:32:32:32-i8:8:32-i16:16:32") :
std::string("E-p:32:32:32-i8:8:32-i16:16:32")),
InstrInfo(*this),
FrameInfo(TargetFrameInfo::StackGrowsUp, 8, 0),
- TLInfo(*this)
-{
+ TLInfo(*this) {
// Abicall enables PIC by default
- if (Subtarget.hasABICall())
- setRelocationModel(Reloc::PIC_);
+ if (getRelocationModel() == Reloc::Default) {
+ if (Subtarget.isABI_O32())
+ setRelocationModel(Reloc::PIC_);
+ else
+ setRelocationModel(Reloc::Static);
+ }
// TODO: create an option to enable long calls, like -mlong-calls,
// that would be our CodeModel::Large. It must not work with Abicall.
@@ -70,43 +58,9 @@ MipsTargetMachine(const Module &M, const std::string &FS, bool isLittle=false):
}
MipselTargetMachine::
-MipselTargetMachine(const Module &M, const std::string &FS) :
- MipsTargetMachine(M, FS, true) {}
-
-// return 0 and must specify -march to gen MIPS code.
-unsigned MipsTargetMachine::
-getModuleMatchQuality(const Module &M)
-{
- // We strongly match "mips*-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 5 && std::string(TT.begin(), TT.begin()+5) == "mips-")
- return 20;
-
- if (TT.size() >= 13 && std::string(TT.begin(),
- TT.begin()+13) == "mipsallegrex-")
- return 20;
-
- return 0;
-}
-
-// return 0 and must specify -march to gen MIPSEL code.
-unsigned MipselTargetMachine::
-getModuleMatchQuality(const Module &M)
-{
- // We strongly match "mips*el-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 7 && std::string(TT.begin(), TT.begin()+7) == "mipsel-")
- return 20;
-
- if (TT.size() >= 15 && std::string(TT.begin(),
- TT.begin()+15) == "mipsallegrexel-")
- return 20;
-
- if (TT.size() == 3 && std::string(TT.begin(), TT.begin()+3) == "psp")
- return 20;
-
- return 0;
-}
+MipselTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS) :
+ MipsTargetMachine(T, TT, FS, true) {}
// Install an instruction selector pass using
// the ISelDag to gen Mips code.
@@ -126,14 +80,3 @@ addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel)
PM.add(createMipsDelaySlotFillerPass(*this));
return true;
}
-
-// Implements the AssemblyEmitter for the target. Must return
-// true if AssemblyEmitter is supported
-bool MipsTargetMachine::
-addAssemblyEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out) {
- // Output assembly language.
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
- return false;
-}
diff --git a/lib/Target/Mips/MipsTargetMachine.h b/lib/Target/Mips/MipsTargetMachine.h
index 95e5be4..c3428be 100644
--- a/lib/Target/Mips/MipsTargetMachine.h
+++ b/lib/Target/Mips/MipsTargetMachine.h
@@ -22,7 +22,7 @@
#include "llvm/Target/TargetFrameInfo.h"
namespace llvm {
- class raw_ostream;
+ class formatted_raw_ostream;
class MipsTargetMachine : public LLVMTargetMachine {
MipsSubtarget Subtarget;
@@ -30,24 +30,9 @@ namespace llvm {
MipsInstrInfo InstrInfo;
TargetFrameInfo FrameInfo;
MipsTargetLowering TLInfo;
-
- protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
- protected:
- // To avoid having target depend on the asmprinter stuff libraries,
- // asmprinter set this functions to ctor pointer at startup time if they are
- // linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- MipsTargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- MipsTargetMachine(const Module &M, const std::string &FS, bool isLittle);
-
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
+ MipsTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool isLittle);
virtual const MipsInstrInfo *getInstrInfo() const
{ return &InstrInfo; }
@@ -66,25 +51,19 @@ namespace llvm {
return const_cast<MipsTargetLowering*>(&TLInfo);
}
- static unsigned getModuleMatchQuality(const Module &M);
-
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
};
/// MipselTargetMachine - Mipsel target machine.
///
class MipselTargetMachine : public MipsTargetMachine {
public:
- MipselTargetMachine(const Module &M, const std::string &FS);
-
- static unsigned getModuleMatchQuality(const Module &M);
+ MipselTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
};
} // End llvm namespace
diff --git a/lib/Target/Mips/MipsTargetObjectFile.cpp b/lib/Target/Mips/MipsTargetObjectFile.cpp
new file mode 100644
index 0000000..85e9d65
--- /dev/null
+++ b/lib/Target/Mips/MipsTargetObjectFile.cpp
@@ -0,0 +1,93 @@
+//===-- MipsTargetObjectFile.cpp - Mips object files ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsTargetObjectFile.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+static cl::opt<unsigned>
+SSThreshold("mips-ssection-threshold", cl::Hidden,
+ cl::desc("Small data and bss section threshold size (default=8)"),
+ cl::init(8));
+
+void MipsTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+
+ SmallDataSection =
+ getELFSection(".sdata", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+
+ SmallBSSSection =
+ getELFSection(".sbss", MCSectionELF::SHT_NOBITS,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getBSS());
+
+}
+
+// A address must be loaded from a small section if its size is less than the
+// small section size threshold. Data in this section must be addressed using
+// gp_rel operator.
+static bool IsInSmallSection(uint64_t Size) {
+ return Size > 0 && Size <= SSThreshold;
+}
+
+bool MipsTargetObjectFile::IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const {
+ if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage())
+ return false;
+
+ return IsGlobalInSmallSection(GV, TM, getKindForGlobal(GV, TM));
+}
+
+/// IsGlobalInSmallSection - Return true if this global address should be
+/// placed into small data/bss section.
+bool MipsTargetObjectFile::
+IsGlobalInSmallSection(const GlobalValue *GV, const TargetMachine &TM,
+ SectionKind Kind) const {
+ // Only global variables, not functions.
+ const GlobalVariable *GVA = dyn_cast<GlobalVariable>(GV);
+ if (!GVA)
+ return false;
+
+ // We can only do this for datarel or BSS objects for now.
+ if (!Kind.isBSS() && !Kind.isDataRel())
+ return false;
+
+ // If this is a internal constant string, there is a special
+ // section for it, but not in small data/bss.
+ if (Kind.isMergeable1ByteCString())
+ return false;
+
+ const Type *Ty = GV->getType()->getElementType();
+ return IsInSmallSection(TM.getTargetData()->getTypeAllocSize(Ty));
+}
+
+
+
+const MCSection *MipsTargetObjectFile::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ // TODO: Could also support "weak" symbols as well with ".gnu.linkonce.s.*"
+ // sections?
+
+ // Handle Small Section classification here.
+ if (Kind.isBSS() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallBSSSection;
+ if (Kind.isDataNoRel() && IsGlobalInSmallSection(GV, TM, Kind))
+ return SmallDataSection;
+
+ // Otherwise, we work the same as ELF.
+ return TargetLoweringObjectFileELF::SelectSectionForGlobal(GV, Kind, Mang,TM);
+}
diff --git a/lib/Target/Mips/MipsTargetObjectFile.h b/lib/Target/Mips/MipsTargetObjectFile.h
new file mode 100644
index 0000000..32e0436
--- /dev/null
+++ b/lib/Target/Mips/MipsTargetObjectFile.h
@@ -0,0 +1,41 @@
+//===-- llvm/Target/MipsTargetObjectFile.h - Mips Object Info ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
+#define LLVM_TARGET_MIPS_TARGETOBJECTFILE_H
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+namespace llvm {
+
+ class MipsTargetObjectFile : public TargetLoweringObjectFileELF {
+ const MCSection *SmallDataSection;
+ const MCSection *SmallBSSSection;
+ public:
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM);
+
+
+ /// IsGlobalInSmallSection - Return true if this global address should be
+ /// placed into small data/bss section.
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM, SectionKind Kind)const;
+ bool IsGlobalInSmallSection(const GlobalValue *GV,
+ const TargetMachine &TM) const;
+
+ const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind,
+ Mangler *Mang,
+ const TargetMachine &TM) const;
+
+ // TODO: Classify globals as mips wishes.
+ };
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/Mips/TargetInfo/CMakeLists.txt b/lib/Target/Mips/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..6e5d56b
--- /dev/null
+++ b/lib/Target/Mips/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMMipsInfo
+ MipsTargetInfo.cpp
+ )
+
+add_dependencies(LLVMMipsInfo MipsCodeGenTable_gen)
diff --git a/lib/Target/Mips/TargetInfo/Makefile b/lib/Target/Mips/TargetInfo/Makefile
new file mode 100644
index 0000000..32f4e16
--- /dev/null
+++ b/lib/Target/Mips/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/Mips/TargetInfo/Makefile -----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMMipsInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp b/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp
new file mode 100644
index 0000000..cc3d61e
--- /dev/null
+++ b/lib/Target/Mips/TargetInfo/MipsTargetInfo.cpp
@@ -0,0 +1,21 @@
+//===-- MipsTargetInfo.cpp - Mips Target Implementation -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Mips.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheMipsTarget, llvm::TheMipselTarget;
+
+extern "C" void LLVMInitializeMipsTargetInfo() {
+ RegisterTarget<Triple::mips> X(TheMipsTarget, "mips", "Mips");
+
+ RegisterTarget<Triple::mipsel> Y(TheMipselTarget, "mipsel", "Mipsel");
+}
diff --git a/lib/Target/PIC16/AsmPrinter/CMakeLists.txt b/lib/Target/PIC16/AsmPrinter/CMakeLists.txt
new file mode 100644
index 0000000..2e1b809
--- /dev/null
+++ b/lib/Target/PIC16/AsmPrinter/CMakeLists.txt
@@ -0,0 +1,9 @@
+include_directories(
+ ${CMAKE_CURRENT_BINARY_DIR}/..
+ ${CMAKE_CURRENT_SOURCE_DIR}/..
+ )
+
+add_llvm_library(LLVMPIC16AsmPrinter
+ PIC16AsmPrinter.cpp
+ )
+add_dependencies(LLVMPIC16AsmPrinter PIC16CodeGenTable_gen)
diff --git a/lib/Target/PIC16/AsmPrinter/Makefile b/lib/Target/PIC16/AsmPrinter/Makefile
new file mode 100644
index 0000000..f4db57e
--- /dev/null
+++ b/lib/Target/PIC16/AsmPrinter/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/PIC16/AsmPrinter/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMPIC16AsmPrinter
+
+# Hack: we need to include 'main' pic16 target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.cpp b/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.cpp
new file mode 100644
index 0000000..3f415af
--- /dev/null
+++ b/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.cpp
@@ -0,0 +1,484 @@
+//===-- PIC16AsmPrinter.cpp - PIC16 LLVM assembly writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to PIC16 assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PIC16AsmPrinter.h"
+#include "MCSectionPIC16.h"
+#include "PIC16MCAsmInfo.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include <cstring>
+using namespace llvm;
+
+#include "PIC16GenAsmWriter.inc"
+
+PIC16AsmPrinter::PIC16AsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
+: AsmPrinter(O, TM, T, V), DbgInfo(O, T) {
+ PTLI = static_cast<PIC16TargetLowering*>(TM.getTargetLowering());
+ PMAI = static_cast<const PIC16MCAsmInfo*>(T);
+ PTOF = (PIC16TargetObjectFile*)&PTLI->getObjFileLowering();
+}
+
+bool PIC16AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
+ processDebugLoc(MI, true);
+ printInstruction(MI);
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+ processDebugLoc(MI, false);
+ return true;
+}
+
+/// runOnMachineFunction - This emits the frame section, autos section and
+/// assembly for each instruction. Also takes care of function begin debug
+/// directive and file begin debug directive (if required) for the function.
+///
+bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ this->MF = &MF;
+
+ // This calls the base class function required to be called at beginning
+ // of runOnMachineFunction.
+ SetupMachineFunction(MF);
+
+ // Get the mangled name.
+ const Function *F = MF.getFunction();
+ CurrentFnName = Mang->getMangledName(F);
+
+ // Emit the function frame (args and temps).
+ EmitFunctionFrame(MF);
+
+ DbgInfo.BeginFunction(MF);
+
+ // Emit the autos section of function.
+ EmitAutos(CurrentFnName);
+
+ // Now emit the instructions of function in its code section.
+ const MCSection *fCodeSection =
+ getObjFileLowering().getSectionForFunction(CurrentFnName);
+ // Start the Code Section.
+ O << "\n";
+ OutStreamer.SwitchSection(fCodeSection);
+
+ // Emit the frame address of the function at the beginning of code.
+ O << "\tretlw low(" << PAN::getFrameLabel(CurrentFnName) << ")\n";
+ O << "\tretlw high(" << PAN::getFrameLabel(CurrentFnName) << ")\n";
+
+ // Emit function start label.
+ O << CurrentFnName << ":\n";
+
+ DebugLoc CurDL;
+ O << "\n";
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+
+ // Print a label for the basic block.
+ if (I != MF.begin()) {
+ EmitBasicBlockStart(I);
+ }
+
+ // Print a basic block.
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II) {
+
+ // Emit the line directive if source line changed.
+ const DebugLoc DL = II->getDebugLoc();
+ if (!DL.isUnknown() && DL != CurDL) {
+ DbgInfo.ChangeDebugLoc(MF, DL);
+ CurDL = DL;
+ }
+
+ // Print the assembly for the instruction.
+ printMachineInstruction(II);
+ }
+ }
+
+ // Emit function end debug directives.
+ DbgInfo.EndFunction(MF);
+
+ return false; // we didn't modify anything.
+}
+
+
+// printOperand - print operand of insn.
+void PIC16AsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << getRegisterName(MO.getReg());
+ return;
+
+ case MachineOperand::MO_Immediate:
+ O << (int)MO.getImm();
+ return;
+
+ case MachineOperand::MO_GlobalAddress: {
+ std::string Sname = Mang->getMangledName(MO.getGlobal());
+ // FIXME: currently we do not have a memcpy def coming in the module
+ // by any chance, as we do not link in those as .bc lib. So these calls
+ // are always external and it is safe to emit an extern.
+ if (PAN::isMemIntrinsic(Sname)) {
+ LibcallDecls.push_back(createESName(Sname));
+ }
+
+ O << Sname;
+ break;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ const char *Sname = MO.getSymbolName();
+
+ // If its a libcall name, record it to decls section.
+ if (PAN::getSymbolTag(Sname) == PAN::LIBCALL) {
+ LibcallDecls.push_back(Sname);
+ }
+
+ // Record a call to intrinsic to print the extern declaration for it.
+ std::string Sym = Sname;
+ if (PAN::isMemIntrinsic(Sym)) {
+ Sym = PAN::addPrefix(Sym);
+ LibcallDecls.push_back(createESName(Sym));
+ }
+
+ O << Sym;
+ break;
+ }
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+
+ default:
+ llvm_unreachable(" Operand type not supported.");
+ }
+}
+
+/// printCCOperand - Print the cond code operand.
+///
+void PIC16AsmPrinter::printCCOperand(const MachineInstr *MI, int opNum) {
+ int CC = (int)MI->getOperand(opNum).getImm();
+ O << PIC16CondCodeToString((PIC16CC::CondCodes)CC);
+}
+
+// This function is used to sort the decls list.
+// should return true if s1 should come before s2.
+static bool is_before(const char *s1, const char *s2) {
+ return strcmp(s1, s2) <= 0;
+}
+
+// This is used by list::unique below.
+// unique will filter out duplicates if it knows them.
+static bool is_duplicate(const char *s1, const char *s2) {
+ return !strcmp(s1, s2);
+}
+
+/// printLibcallDecls - print the extern declarations for compiler
+/// intrinsics.
+///
+void PIC16AsmPrinter::printLibcallDecls() {
+ // If no libcalls used, return.
+ if (LibcallDecls.empty()) return;
+
+ O << MAI->getCommentString() << "External decls for libcalls - BEGIN." <<"\n";
+ // Remove duplicate entries.
+ LibcallDecls.sort(is_before);
+ LibcallDecls.unique(is_duplicate);
+
+ for (std::list<const char*>::const_iterator I = LibcallDecls.begin();
+ I != LibcallDecls.end(); I++) {
+ O << MAI->getExternDirective() << *I << "\n";
+ O << MAI->getExternDirective() << PAN::getArgsLabel(*I) << "\n";
+ O << MAI->getExternDirective() << PAN::getRetvalLabel(*I) << "\n";
+ }
+ O << MAI->getCommentString() << "External decls for libcalls - END." <<"\n";
+}
+
+/// doInitialization - Perform Module level initializations here.
+/// One task that we do here is to sectionize all global variables.
+/// The MemSelOptimizer pass depends on the sectionizing.
+///
+bool PIC16AsmPrinter::doInitialization(Module &M) {
+ bool Result = AsmPrinter::doInitialization(M);
+
+ // FIXME:: This is temporary solution to generate the include file.
+ // The processor should be passed to llc as in input and the header file
+ // should be generated accordingly.
+ O << "\n\t#include P16F1937.INC\n";
+
+ // Set the section names for all globals.
+ for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage()) {
+ const MCSection *S = getObjFileLowering().SectionForGlobal(I, Mang, TM);
+
+ I->setSection(((const MCSectionPIC16*)S)->getName());
+ }
+
+ DbgInfo.BeginModule(M);
+ EmitFunctionDecls(M);
+ EmitUndefinedVars(M);
+ EmitDefinedVars(M);
+ EmitIData(M);
+ EmitUData(M);
+ EmitRomData(M);
+ return Result;
+}
+
+/// Emit extern decls for functions imported from other modules, and emit
+/// global declarations for function defined in this module and which are
+/// available to other modules.
+///
+void PIC16AsmPrinter::EmitFunctionDecls(Module &M) {
+ // Emit declarations for external functions.
+ O <<"\n"<<MAI->getCommentString() << "Function Declarations - BEGIN." <<"\n";
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; I++) {
+ if (I->isIntrinsic())
+ continue;
+
+ std::string Name = Mang->getMangledName(I);
+ if (Name.compare("@abort") == 0)
+ continue;
+
+ if (!I->isDeclaration() && !I->hasExternalLinkage())
+ continue;
+
+ // Do not emit memcpy, memset, and memmove here.
+ // Calls to these routines can be generated in two ways,
+ // 1. User calling the standard lib function
+ // 2. Codegen generating these calls for llvm intrinsics.
+ // In the first case a prototype is alread availale, while in
+ // second case the call is via and externalsym and the prototype is missing.
+ // So declarations for these are currently always getting printing by
+ // tracking both kind of references in printInstrunction.
+ if (I->isDeclaration() && PAN::isMemIntrinsic(Name)) continue;
+
+ const char *directive = I->isDeclaration() ? MAI->getExternDirective() :
+ MAI->getGlobalDirective();
+
+ O << directive << Name << "\n";
+ O << directive << PAN::getRetvalLabel(Name) << "\n";
+ O << directive << PAN::getArgsLabel(Name) << "\n";
+ }
+
+ O << MAI->getCommentString() << "Function Declarations - END." <<"\n";
+}
+
+// Emit variables imported from other Modules.
+void PIC16AsmPrinter::EmitUndefinedVars(Module &M) {
+ std::vector<const GlobalVariable*> Items = PTOF->ExternalVarDecls->Items;
+ if (!Items.size()) return;
+
+ O << "\n" << MAI->getCommentString() << "Imported Variables - BEGIN" << "\n";
+ for (unsigned j = 0; j < Items.size(); j++) {
+ O << MAI->getExternDirective() << Mang->getMangledName(Items[j]) << "\n";
+ }
+ O << MAI->getCommentString() << "Imported Variables - END" << "\n";
+}
+
+// Emit variables defined in this module and are available to other modules.
+void PIC16AsmPrinter::EmitDefinedVars(Module &M) {
+ std::vector<const GlobalVariable*> Items = PTOF->ExternalVarDefs->Items;
+ if (!Items.size()) return;
+
+ O << "\n" << MAI->getCommentString() << "Exported Variables - BEGIN" << "\n";
+ for (unsigned j = 0; j < Items.size(); j++) {
+ O << MAI->getGlobalDirective() << Mang->getMangledName(Items[j]) << "\n";
+ }
+ O << MAI->getCommentString() << "Exported Variables - END" << "\n";
+}
+
+// Emit initialized data placed in ROM.
+void PIC16AsmPrinter::EmitRomData(Module &M) {
+ // Print ROM Data section.
+ const std::vector<PIC16Section*> &ROSections = PTOF->ROSections;
+ for (unsigned i = 0; i < ROSections.size(); i++) {
+ const std::vector<const GlobalVariable*> &Items = ROSections[i]->Items;
+ if (!Items.size()) continue;
+ O << "\n";
+ OutStreamer.SwitchSection(PTOF->ROSections[i]->S_);
+ for (unsigned j = 0; j < Items.size(); j++) {
+ O << Mang->getMangledName(Items[j]);
+ Constant *C = Items[j]->getInitializer();
+ int AddrSpace = Items[j]->getType()->getAddressSpace();
+ EmitGlobalConstant(C, AddrSpace);
+ }
+ }
+}
+
+bool PIC16AsmPrinter::doFinalization(Module &M) {
+ printLibcallDecls();
+ EmitRemainingAutos();
+ DbgInfo.EndModule(M);
+ O << "\n\t" << "END\n";
+ return AsmPrinter::doFinalization(M);
+}
+
+void PIC16AsmPrinter::EmitFunctionFrame(MachineFunction &MF) {
+ const Function *F = MF.getFunction();
+ std::string FuncName = Mang->getMangledName(F);
+ const TargetData *TD = TM.getTargetData();
+ // Emit the data section name.
+ O << "\n";
+
+ const MCSection *fPDataSection =
+ getObjFileLowering().getSectionForFunctionFrame(CurrentFnName);
+ OutStreamer.SwitchSection(fPDataSection);
+
+ // Emit function frame label
+ O << PAN::getFrameLabel(CurrentFnName) << ":\n";
+
+ const Type *RetType = F->getReturnType();
+ unsigned RetSize = 0;
+ if (RetType->getTypeID() != Type::VoidTyID)
+ RetSize = TD->getTypeAllocSize(RetType);
+
+ //Emit function return value space
+ // FIXME: Do not emit RetvalLable when retsize is zero. To do this
+ // we will need to avoid printing a global directive for Retval label
+ // in emitExternandGloblas.
+ if(RetSize > 0)
+ O << PAN::getRetvalLabel(CurrentFnName) << " RES " << RetSize << "\n";
+ else
+ O << PAN::getRetvalLabel(CurrentFnName) << ": \n";
+
+ // Emit variable to hold the space for function arguments
+ unsigned ArgSize = 0;
+ for (Function::const_arg_iterator argi = F->arg_begin(),
+ arge = F->arg_end(); argi != arge ; ++argi) {
+ const Type *Ty = argi->getType();
+ ArgSize += TD->getTypeAllocSize(Ty);
+ }
+
+ O << PAN::getArgsLabel(CurrentFnName) << " RES " << ArgSize << "\n";
+
+ // Emit temporary space
+ int TempSize = PTLI->GetTmpSize();
+ if (TempSize > 0)
+ O << PAN::getTempdataLabel(CurrentFnName) << " RES " << TempSize << '\n';
+}
+
+void PIC16AsmPrinter::EmitIData(Module &M) {
+
+ // Print all IDATA sections.
+ const std::vector<PIC16Section*> &IDATASections = PTOF->IDATASections;
+ for (unsigned i = 0; i < IDATASections.size(); i++) {
+ O << "\n";
+ if (IDATASections[i]->S_->getName().find("llvm.") != std::string::npos)
+ continue;
+ OutStreamer.SwitchSection(IDATASections[i]->S_);
+ std::vector<const GlobalVariable*> Items = IDATASections[i]->Items;
+ for (unsigned j = 0; j < Items.size(); j++) {
+ std::string Name = Mang->getMangledName(Items[j]);
+ Constant *C = Items[j]->getInitializer();
+ int AddrSpace = Items[j]->getType()->getAddressSpace();
+ O << Name;
+ EmitGlobalConstant(C, AddrSpace);
+ }
+ }
+}
+
+void PIC16AsmPrinter::EmitUData(Module &M) {
+ const TargetData *TD = TM.getTargetData();
+
+ // Print all BSS sections.
+ const std::vector<PIC16Section*> &BSSSections = PTOF->BSSSections;
+ for (unsigned i = 0; i < BSSSections.size(); i++) {
+ O << "\n";
+ OutStreamer.SwitchSection(BSSSections[i]->S_);
+ std::vector<const GlobalVariable*> Items = BSSSections[i]->Items;
+ for (unsigned j = 0; j < Items.size(); j++) {
+ std::string Name = Mang->getMangledName(Items[j]);
+ Constant *C = Items[j]->getInitializer();
+ const Type *Ty = C->getType();
+ unsigned Size = TD->getTypeAllocSize(Ty);
+
+ O << Name << " RES " << Size << "\n";
+ }
+ }
+}
+
+void PIC16AsmPrinter::EmitAutos(std::string FunctName) {
+ // Section names for all globals are already set.
+ const TargetData *TD = TM.getTargetData();
+
+ // Now print Autos section for this function.
+ std::string SectionName = PAN::getAutosSectionName(FunctName);
+ const std::vector<PIC16Section*> &AutosSections = PTOF->AutosSections;
+ for (unsigned i = 0; i < AutosSections.size(); i++) {
+ O << "\n";
+ if (AutosSections[i]->S_->getName() == SectionName) {
+ // Set the printing status to true
+ AutosSections[i]->setPrintedStatus(true);
+ OutStreamer.SwitchSection(AutosSections[i]->S_);
+ const std::vector<const GlobalVariable*> &Items = AutosSections[i]->Items;
+ for (unsigned j = 0; j < Items.size(); j++) {
+ std::string VarName = Mang->getMangledName(Items[j]);
+ Constant *C = Items[j]->getInitializer();
+ const Type *Ty = C->getType();
+ unsigned Size = TD->getTypeAllocSize(Ty);
+ // Emit memory reserve directive.
+ O << VarName << " RES " << Size << "\n";
+ }
+ break;
+ }
+ }
+}
+
+// Print autos that were not printed during the code printing of functions.
+// As the functions might themselves would have got deleted by the optimizer.
+void PIC16AsmPrinter::EmitRemainingAutos() {
+ const TargetData *TD = TM.getTargetData();
+
+ // Now print Autos section for this function.
+ std::vector <PIC16Section *>AutosSections = PTOF->AutosSections;
+ for (unsigned i = 0; i < AutosSections.size(); i++) {
+
+ // if the section is already printed then don't print again
+ if (AutosSections[i]->isPrinted())
+ continue;
+
+ // Set status as printed
+ AutosSections[i]->setPrintedStatus(true);
+
+ O << "\n";
+ OutStreamer.SwitchSection(AutosSections[i]->S_);
+ const std::vector<const GlobalVariable*> &Items = AutosSections[i]->Items;
+ for (unsigned j = 0; j < Items.size(); j++) {
+ std::string VarName = Mang->getMangledName(Items[j]);
+ Constant *C = Items[j]->getInitializer();
+ const Type *Ty = C->getType();
+ unsigned Size = TD->getTypeAllocSize(Ty);
+ // Emit memory reserve directive.
+ O << VarName << " RES " << Size << "\n";
+ }
+ }
+}
+
+
+extern "C" void LLVMInitializePIC16AsmPrinter() {
+ RegisterAsmPrinter<PIC16AsmPrinter> X(ThePIC16Target);
+}
+
+
diff --git a/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.h b/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.h
new file mode 100644
index 0000000..2dd4600
--- /dev/null
+++ b/lib/Target/PIC16/AsmPrinter/PIC16AsmPrinter.h
@@ -0,0 +1,80 @@
+//===-- PIC16AsmPrinter.h - PIC16 LLVM assembly writer ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to PIC16 assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PIC16ASMPRINTER_H
+#define PIC16ASMPRINTER_H
+
+#include "PIC16.h"
+#include "PIC16TargetMachine.h"
+#include "PIC16DebugInfo.h"
+#include "PIC16MCAsmInfo.h"
+#include "PIC16TargetObjectFile.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetMachine.h"
+#include <list>
+#include <string>
+
+namespace llvm {
+ class VISIBILITY_HIDDEN PIC16AsmPrinter : public AsmPrinter {
+ public:
+ explicit PIC16AsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V);
+ private:
+ virtual const char *getPassName() const {
+ return "PIC16 Assembly Printer";
+ }
+
+ PIC16TargetObjectFile &getObjFileLowering() const {
+ return (PIC16TargetObjectFile &)AsmPrinter::getObjFileLowering();
+ }
+
+ bool runOnMachineFunction(MachineFunction &F);
+ void printOperand(const MachineInstr *MI, int opNum);
+ void printCCOperand(const MachineInstr *MI, int opNum);
+ void printInstruction(const MachineInstr *MI); // definition autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
+ bool printMachineInstruction(const MachineInstr *MI);
+ void EmitFunctionDecls (Module &M);
+ void EmitUndefinedVars (Module &M);
+ void EmitDefinedVars (Module &M);
+ void EmitIData (Module &M);
+ void EmitUData (Module &M);
+ void EmitAutos (std::string FunctName);
+ void EmitRemainingAutos ();
+ void EmitRomData (Module &M);
+ void EmitFunctionFrame(MachineFunction &MF);
+ void printLibcallDecls();
+ protected:
+ bool doInitialization(Module &M);
+ bool doFinalization(Module &M);
+
+ /// PrintGlobalVariable - Emit the specified global variable and its
+ /// initializer to the output stream.
+ virtual void PrintGlobalVariable(const GlobalVariable *GV) {
+ // PIC16 doesn't use normal hooks for this.
+ }
+
+ private:
+ PIC16TargetObjectFile *PTOF;
+ PIC16TargetLowering *PTLI;
+ PIC16DbgInfo DbgInfo;
+ const PIC16MCAsmInfo *PMAI;
+ std::list<const char *> LibcallDecls; // List of extern decls.
+ };
+} // end of namespace
+
+#endif
diff --git a/lib/Target/PIC16/CMakeLists.txt b/lib/Target/PIC16/CMakeLists.txt
index 00d737a..0ee88f9 100644
--- a/lib/Target/PIC16/CMakeLists.txt
+++ b/lib/Target/PIC16/CMakeLists.txt
@@ -11,14 +11,14 @@ tablegen(PIC16GenCallingConv.inc -gen-callingconv)
tablegen(PIC16GenSubtarget.inc -gen-subtarget)
add_llvm_target(PIC16
- PIC16AsmPrinter.cpp
PIC16DebugInfo.cpp
PIC16InstrInfo.cpp
PIC16ISelDAGToDAG.cpp
PIC16ISelLowering.cpp
PIC16MemSelOpt.cpp
+ PIC16MCAsmInfo.cpp
PIC16RegisterInfo.cpp
PIC16Subtarget.cpp
- PIC16TargetAsmInfo.cpp
PIC16TargetMachine.cpp
+ PIC16TargetObjectFile.cpp
)
diff --git a/lib/Target/PIC16/MCSectionPIC16.h b/lib/Target/PIC16/MCSectionPIC16.h
new file mode 100644
index 0000000..352be99
--- /dev/null
+++ b/lib/Target/PIC16/MCSectionPIC16.h
@@ -0,0 +1,88 @@
+//===- MCSectionPIC16.h - PIC16-specific section representation -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the MCSectionPIC16 class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_PIC16SECTION_H
+#define LLVM_PIC16SECTION_H
+
+#include "llvm/MC/MCSection.h"
+
+namespace llvm {
+
+ /// MCSectionPIC16 - Represents a physical section in PIC16 COFF.
+ /// Contains data objects.
+ ///
+ class MCSectionPIC16 : public MCSection {
+ /// Name of the section to uniquely identify it.
+ std::string Name;
+
+ /// User can specify an address at which a section should be placed.
+ /// Negative value here means user hasn't specified any.
+ int Address;
+
+ /// Overlay information - Sections with same color can be overlaid on
+ /// one another.
+ int Color;
+
+ /// Conatined data objects.
+ std::vector<const GlobalVariable *>Items;
+
+ /// Total size of all data objects contained here.
+ unsigned Size;
+
+ MCSectionPIC16(const StringRef &name, SectionKind K, int addr, int color)
+ : MCSection(K), Name(name), Address(addr), Color(color) {
+ }
+
+ public:
+ /// Return the name of the section.
+ const std::string &getName() const { return Name; }
+
+ /// Return the Address of the section.
+ int getAddress() const { return Address; }
+
+ /// Return the Color of the section.
+ int getColor() const { return Color; }
+
+ /// PIC16 Terminology for section kinds is as below.
+ /// UDATA - BSS
+ /// IDATA - initialized data (equiv to Metadata)
+ /// ROMDATA - ReadOnly.
+ /// UDATA_OVR - Sections that can be overlaid. Section of such type is
+ /// used to contain function autos an frame. We can think of
+ /// it as equiv to llvm ThreadBSS)
+ /// So, let's have some convenience functions to Map PIC16 Section types
+ /// to SectionKind just for the sake of better readability.
+ static SectionKind UDATA_Kind() { return SectionKind::getBSS(); }
+ static SectionKind IDATA_Kind() { return SectionKind::getMetadata(); }
+ static SectionKind ROMDATA_Kind() { return SectionKind::getReadOnly(); }
+ static SectionKind UDATA_OVR_Kind() { return SectionKind::getThreadBSS(); }
+
+ // If we could just do getKind() == UDATA_Kind() ?
+ bool isUDATA_Kind() { return getKind().isBSS(); }
+ bool isIDATA_Kind() { return getKind().isMetadata(); }
+ bool isROMDATA_Kind() { return getKind().isMetadata(); }
+ bool isUDATA_OVR_Kind() { return getKind().isThreadBSS(); }
+
+ /// This would be the only way to create a section.
+ static MCSectionPIC16 *Create(const StringRef &Name, SectionKind K,
+ int Address, int Color, MCContext &Ctx);
+
+ /// Override this as PIC16 has its own way of printing switching
+ /// to a section.
+ virtual void PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS) const;
+ };
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/PIC16/Makefile b/lib/Target/PIC16/Makefile
index c429324..f913675 100644
--- a/lib/Target/PIC16/Makefile
+++ b/lib/Target/PIC16/Makefile
@@ -7,7 +7,7 @@
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
-LIBRARYNAME = LLVMPIC16
+LIBRARYNAME = LLVMPIC16CodeGen
TARGET = PIC16
# Make sure that tblgen is run, first thing.
@@ -17,5 +17,7 @@ BUILT_SOURCES = PIC16GenRegisterInfo.h.inc PIC16GenRegisterNames.inc \
PIC16GenDAGISel.inc PIC16GenCallingConv.inc \
PIC16GenSubtarget.inc
+DIRS = AsmPrinter TargetInfo
+
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/PIC16/PIC16.h b/lib/Target/PIC16/PIC16.h
index 7940648..8a3704d 100644
--- a/lib/Target/PIC16/PIC16.h
+++ b/lib/Target/PIC16/PIC16.h
@@ -15,8 +15,8 @@
#ifndef LLVM_TARGET_PIC16_H
#define LLVM_TARGET_PIC16_H
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
-#include <iosfwd>
#include <cassert>
#include <sstream>
#include <cstring>
@@ -26,7 +26,7 @@ namespace llvm {
class PIC16TargetMachine;
class FunctionPass;
class MachineCodeEmitter;
- class raw_ostream;
+ class formatted_raw_ostream;
namespace PIC16CC {
enum CondCodes {
@@ -83,7 +83,7 @@ namespace PIC16CC {
// initialized globals - @idata.<num>.#
// Function frame - @<func>.frame_section.
// Function autos - @<func>.autos_section.
- // Declarations - @section.0
+ // Declarations - Enclosed in comments. No section for them.
//----------------------------------------------------------
// Tags used to mangle different names.
@@ -221,17 +221,29 @@ namespace PIC16CC {
return Func1 + tag + "# CODE";
}
- // udata and idata section names are generated by a given number.
+ // udata, romdata and idata section names are generated by a given number.
// @udata.<num>.#
- static std::string getUdataSectionName(unsigned num) {
+ static std::string getUdataSectionName(unsigned num,
+ std::string prefix = "") {
std::ostringstream o;
- o << getTagName(PREFIX_SYMBOL) << "udata." << num << ".# UDATA";
+ o << getTagName(PREFIX_SYMBOL) << prefix << "udata." << num
+ << ".# UDATA";
return o.str();
}
- static std::string getIdataSectionName(unsigned num) {
+ static std::string getRomdataSectionName(unsigned num,
+ std::string prefix = "") {
std::ostringstream o;
- o << getTagName(PREFIX_SYMBOL) << "idata." << num << ".# IDATA";
+ o << getTagName(PREFIX_SYMBOL) << prefix << "romdata." << num
+ << ".# ROMDATA";
+ return o.str();
+ }
+
+ static std::string getIdataSectionName(unsigned num,
+ std::string prefix = "") {
+ std::ostringstream o;
+ o << getTagName(PREFIX_SYMBOL) << prefix << "idata." << num
+ << ".# IDATA";
return o.str();
}
@@ -242,6 +254,15 @@ namespace PIC16CC {
return false;
}
+ inline static bool isMemIntrinsic (const std::string &Name) {
+ if (Name.compare("@memcpy") == 0 || Name.compare("@memset") == 0 ||
+ Name.compare("@memmove") == 0) {
+ return true;
+ }
+
+ return false;
+ }
+
inline static bool isLocalToFunc (std::string &Func, std::string &Var) {
if (! isLocalName(Var)) return false;
@@ -295,7 +316,7 @@ namespace PIC16CC {
inline static const char *PIC16CondCodeToString(PIC16CC::CondCodes CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case PIC16CC::NE: return "ne";
case PIC16CC::EQ: return "eq";
case PIC16CC::LT: return "lt";
@@ -311,7 +332,7 @@ namespace PIC16CC {
inline static bool isSignedComparison(PIC16CC::CondCodes CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case PIC16CC::NE:
case PIC16CC::EQ:
case PIC16CC::LT:
@@ -330,11 +351,12 @@ namespace PIC16CC {
FunctionPass *createPIC16ISelDag(PIC16TargetMachine &TM);
- FunctionPass *createPIC16CodePrinterPass(raw_ostream &OS,
- PIC16TargetMachine &TM,
- bool Verbose);
- // Banksel optimzer pass.
+ // Banksel optimizer pass.
FunctionPass *createPIC16MemSelOptimizerPass();
+
+ extern Target ThePIC16Target;
+ extern Target TheCooperTarget;
+
} // end namespace llvm;
// Defines symbolic names for PIC16 registers. This defines a mapping from
diff --git a/lib/Target/PIC16/PIC16DebugInfo.cpp b/lib/Target/PIC16/PIC16DebugInfo.cpp
index 4300588..961caed 100644
--- a/lib/Target/PIC16/PIC16DebugInfo.cpp
+++ b/lib/Target/PIC16/PIC16DebugInfo.cpp
@@ -1,3 +1,4 @@
+
//===-- PIC16DebugInfo.cpp - Implementation for PIC16 Debug Information ======//
//
// The LLVM Compiler Infrastructure
@@ -15,8 +16,10 @@
#include "PIC16DebugInfo.h"
#include "llvm/GlobalVariable.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/DebugLoc.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/ADT/SmallString.h"
using namespace llvm;
@@ -25,11 +28,11 @@ using namespace llvm;
void PIC16DbgInfo::PopulateDebugInfo (DIType Ty, unsigned short &TypeNo,
bool &HasAux, int Aux[],
std::string &TagName) {
- if (Ty.isBasicType(Ty.getTag()))
+ if (Ty.isBasicType())
PopulateBasicTypeInfo (Ty, TypeNo);
- else if (Ty.isDerivedType(Ty.getTag()))
+ else if (Ty.isDerivedType())
PopulateDerivedTypeInfo (Ty, TypeNo, HasAux, Aux, TagName);
- else if (Ty.isCompositeType(Ty.getTag()))
+ else if (Ty.isCompositeType())
PopulateCompositeTypeInfo (Ty, TypeNo, HasAux, Aux, TagName);
else {
TypeNo = PIC16Dbg::T_NULL;
@@ -41,8 +44,7 @@ void PIC16DbgInfo::PopulateDebugInfo (DIType Ty, unsigned short &TypeNo,
/// PopulateBasicTypeInfo- Populate TypeNo for basic type from Ty.
///
void PIC16DbgInfo::PopulateBasicTypeInfo (DIType Ty, unsigned short &TypeNo) {
- std::string Name = "";
- Ty.getName(Name);
+ std::string Name = Ty.getName();
unsigned short BaseTy = GetTypeDebugNumber(Name);
TypeNo = TypeNo << PIC16Dbg::S_BASIC;
TypeNo = TypeNo | (0xffff & BaseTy);
@@ -67,7 +69,7 @@ void PIC16DbgInfo::PopulateDerivedTypeInfo (DIType Ty, unsigned short &TypeNo,
// We also need to encode the the information about the base type of
// pointer in TypeNo.
- DIType BaseType = DIDerivedType(Ty.getGV()).getTypeDerivedFrom();
+ DIType BaseType = DIDerivedType(Ty.getNode()).getTypeDerivedFrom();
PopulateDebugInfo(BaseType, TypeNo, HasAux, Aux, TagName);
}
@@ -76,7 +78,7 @@ void PIC16DbgInfo::PopulateArrayTypeInfo (DIType Ty, unsigned short &TypeNo,
bool &HasAux, int Aux[],
std::string &TagName) {
- DICompositeType CTy = DICompositeType(Ty.getGV());
+ DICompositeType CTy = DICompositeType(Ty.getNode());
DIArray Elements = CTy.getTypeArray();
unsigned short size = 1;
unsigned short Dimension[4]={0,0,0,0};
@@ -85,7 +87,7 @@ void PIC16DbgInfo::PopulateArrayTypeInfo (DIType Ty, unsigned short &TypeNo,
if (Element.getTag() == dwarf::DW_TAG_subrange_type) {
TypeNo = TypeNo << PIC16Dbg::S_DERIVED;
TypeNo = TypeNo | PIC16Dbg::DT_ARY;
- DISubrange SubRange = DISubrange(Element.getGV());
+ DISubrange SubRange = DISubrange(Element.getNode());
Dimension[i] = SubRange.getHi() - SubRange.getLo() + 1;
// Each dimension is represented by 2 bytes starting at byte 9.
Aux[8+i*2+0] = Dimension[i];
@@ -108,16 +110,20 @@ void PIC16DbgInfo::PopulateStructOrUnionTypeInfo (DIType Ty,
unsigned short &TypeNo,
bool &HasAux, int Aux[],
std::string &TagName) {
- DICompositeType CTy = DICompositeType(Ty.getGV());
+ DICompositeType CTy = DICompositeType(Ty.getNode());
TypeNo = TypeNo << PIC16Dbg::S_BASIC;
if (Ty.getTag() == dwarf::DW_TAG_structure_type)
TypeNo = TypeNo | PIC16Dbg::T_STRUCT;
else
TypeNo = TypeNo | PIC16Dbg::T_UNION;
- CTy.getName(TagName);
+ TagName = CTy.getName();
// UniqueSuffix is .number where number is obtained from
// llvm.dbg.composite<number>.
- std::string UniqueSuffix = "." + Ty.getGV()->getName().substr(18);
+ // FIXME: This will break when composite type is not represented by
+ // llvm.dbg.composite* global variable. Since we need to revisit
+ // PIC16DebugInfo implementation anyways after the MDNodes based
+ // framework is done, let us continue with the way it is.
+ std::string UniqueSuffix = "." + Ty.getNode()->getNameStr().substr(18);
TagName += UniqueSuffix;
unsigned short size = CTy.getSizeInBits()/8;
// 7th and 8th byte represent size.
@@ -200,12 +206,14 @@ short PIC16DbgInfo::getStorageClass(DIGlobalVariable DIGV) {
/// required initializations.
void PIC16DbgInfo::BeginModule(Module &M) {
// Emit file directive for module.
- GlobalVariable *CU = M.getNamedGlobal("llvm.dbg.compile_unit");
- if (CU) {
+ DebugInfoFinder DbgFinder;
+ DbgFinder.processModule(M);
+ if (DbgFinder.compile_unit_count() != 0) {
+ // FIXME : What if more then one CUs are present in a module ?
+ MDNode *CU = *DbgFinder.compile_unit_begin();
EmitDebugDirectives = true;
SwitchToCU(CU);
}
-
// Emit debug info for decls of composite types.
EmitCompositeTypeDecls(M);
}
@@ -233,10 +241,11 @@ void PIC16DbgInfo::BeginFunction(const MachineFunction &MF) {
// Retreive the first valid debug Loc and process it.
const DebugLoc &DL = GetDebugLocForFunction(MF);
- ChangeDebugLoc(MF, DL, true);
-
- EmitFunctBeginDI(MF.getFunction());
-
+ // Emit debug info only if valid debug info is available.
+ if (!DL.isUnknown()) {
+ ChangeDebugLoc(MF, DL, true);
+ EmitFunctBeginDI(MF.getFunction());
+ }
// Set current line to 0 so that.line directive is genearted after .bf.
CurLine = 0;
}
@@ -249,7 +258,7 @@ void PIC16DbgInfo::ChangeDebugLoc(const MachineFunction &MF,
if (! EmitDebugDirectives) return;
assert (! DL.isUnknown() && "can't change to invalid debug loc");
- GlobalVariable *CU = MF.getDebugLocTuple(DL).CompileUnit;
+ MDNode *CU = MF.getDebugLocTuple(DL).Scope;
unsigned line = MF.getDebugLocTuple(DL).Line;
SwitchToCU(CU);
@@ -268,7 +277,10 @@ void PIC16DbgInfo::SwitchToLine(unsigned Line, bool IsInBeginFunction) {
///
void PIC16DbgInfo::EndFunction(const MachineFunction &MF) {
if (! EmitDebugDirectives) return;
- EmitFunctEndDI(MF.getFunction(), CurLine);
+ const DebugLoc &DL = GetDebugLocForFunction(MF);
+ // Emit debug info only if valid debug info is available.
+ if (!DL.isUnknown())
+ EmitFunctEndDI(MF.getFunction(), CurLine);
}
/// EndModule - Emit .eof for end of module.
@@ -283,7 +295,7 @@ void PIC16DbgInfo::EndModule(Module &M) {
/// composite type.
///
void PIC16DbgInfo::EmitCompositeTypeElements (DICompositeType CTy,
- std::string UniqueSuffix) {
+ std::string SuffixNo) {
unsigned long Value = 0;
DIArray Elements = CTy.getTypeArray();
for (unsigned i = 0, N = Elements.getNumElements(); i < N; i++) {
@@ -292,24 +304,22 @@ void PIC16DbgInfo::EmitCompositeTypeElements (DICompositeType CTy,
bool HasAux = false;
int ElementAux[PIC16Dbg::AuxSize] = { 0 };
std::string TagName = "";
- std::string ElementName;
- GlobalVariable *GV = Element.getGV();
- DIDerivedType DITy(GV);
- DITy.getName(ElementName);
+ DIDerivedType DITy(Element.getNode());
+ const char *ElementName = DITy.getName();
unsigned short ElementSize = DITy.getSizeInBits()/8;
// Get mangleddd name for this structure/union element.
- std::string MangMemName = ElementName + UniqueSuffix;
+ std::string MangMemName = ElementName + SuffixNo;
PopulateDebugInfo(DITy, TypeNo, HasAux, ElementAux, TagName);
short Class = 0;
if( CTy.getTag() == dwarf::DW_TAG_union_type)
Class = PIC16Dbg::C_MOU;
else if (CTy.getTag() == dwarf::DW_TAG_structure_type)
Class = PIC16Dbg::C_MOS;
- EmitSymbol(MangMemName, Class, TypeNo, Value);
+ EmitSymbol(MangMemName.c_str(), Class, TypeNo, Value);
if (CTy.getTag() == dwarf::DW_TAG_structure_type)
Value += ElementSize;
if (HasAux)
- EmitAuxEntry(MangMemName, ElementAux, PIC16Dbg::AuxSize, TagName);
+ EmitAuxEntry(MangMemName.c_str(), ElementAux, PIC16Dbg::AuxSize, TagName);
}
}
@@ -317,48 +327,48 @@ void PIC16DbgInfo::EmitCompositeTypeElements (DICompositeType CTy,
/// and union declarations.
///
void PIC16DbgInfo::EmitCompositeTypeDecls(Module &M) {
- for(iplist<GlobalVariable>::iterator I = M.getGlobalList().begin(),
- E = M.getGlobalList().end(); I != E; I++) {
- // Structures and union declaration's debug info has llvm.dbg.composite
- // in its name.
- if(I->getName().find("llvm.dbg.composite") != std::string::npos) {
- GlobalVariable *GV = cast<GlobalVariable >(I);
- DICompositeType CTy(GV);
- if (CTy.getTag() == dwarf::DW_TAG_union_type ||
- CTy.getTag() == dwarf::DW_TAG_structure_type ) {
- std::string name;
- CTy.getName(name);
- std::string DIVar = I->getName();
- // Get the number after llvm.dbg.composite and make UniqueSuffix from
- // it.
- std::string UniqueSuffix = "." + DIVar.substr(18);
- std::string MangledCTyName = name + UniqueSuffix;
- unsigned short size = CTy.getSizeInBits()/8;
- int Aux[PIC16Dbg::AuxSize] = {0};
- // 7th and 8th byte represent size of structure/union.
- Aux[6] = size & 0xff;
- Aux[7] = size >> 8;
- // Emit .def for structure/union tag.
- if( CTy.getTag() == dwarf::DW_TAG_union_type)
- EmitSymbol(MangledCTyName, PIC16Dbg::C_UNTAG);
- else if (CTy.getTag() == dwarf::DW_TAG_structure_type)
- EmitSymbol(MangledCTyName, PIC16Dbg::C_STRTAG);
-
- // Emit auxiliary debug information for structure/union tag.
- EmitAuxEntry(MangledCTyName, Aux, PIC16Dbg::AuxSize);
-
- // Emit members.
- EmitCompositeTypeElements (CTy, UniqueSuffix);
-
- // Emit mangled Symbol for end of structure/union.
- std::string EOSSymbol = ".eos" + UniqueSuffix;
- EmitSymbol(EOSSymbol, PIC16Dbg::C_EOS);
- EmitAuxEntry(EOSSymbol, Aux, PIC16Dbg::AuxSize, MangledCTyName);
- }
+ DebugInfoFinder DbgFinder;
+ DbgFinder.processModule(M);
+ for (DebugInfoFinder::iterator I = DbgFinder.type_begin(),
+ E = DbgFinder.type_end(); I != E; ++I) {
+ DICompositeType CTy(*I);
+ if (CTy.isNull())
+ continue;
+ if (CTy.getTag() == dwarf::DW_TAG_union_type ||
+ CTy.getTag() == dwarf::DW_TAG_structure_type ) {
+ const char *Name = CTy.getName();
+ // Get the number after llvm.dbg.composite and make UniqueSuffix from
+ // it.
+ std::string DIVar = CTy.getNode()->getNameStr();
+ std::string UniqueSuffix = "." + DIVar.substr(18);
+ std::string MangledCTyName = Name + UniqueSuffix;
+ unsigned short size = CTy.getSizeInBits()/8;
+ int Aux[PIC16Dbg::AuxSize] = {0};
+ // 7th and 8th byte represent size of structure/union.
+ Aux[6] = size & 0xff;
+ Aux[7] = size >> 8;
+ // Emit .def for structure/union tag.
+ if( CTy.getTag() == dwarf::DW_TAG_union_type)
+ EmitSymbol(MangledCTyName.c_str(), PIC16Dbg::C_UNTAG);
+ else if (CTy.getTag() == dwarf::DW_TAG_structure_type)
+ EmitSymbol(MangledCTyName.c_str(), PIC16Dbg::C_STRTAG);
+
+ // Emit auxiliary debug information for structure/union tag.
+ EmitAuxEntry(MangledCTyName.c_str(), Aux, PIC16Dbg::AuxSize);
+
+ // Emit members.
+ EmitCompositeTypeElements (CTy, UniqueSuffix);
+
+ // Emit mangled Symbol for end of structure/union.
+ std::string EOSSymbol = ".eos" + UniqueSuffix;
+ EmitSymbol(EOSSymbol.c_str(), PIC16Dbg::C_EOS);
+ EmitAuxEntry(EOSSymbol.c_str(), Aux, PIC16Dbg::AuxSize,
+ MangledCTyName.c_str());
}
}
}
+
/// EmitFunctBeginDI - Emit .bf for function.
///
void PIC16DbgInfo::EmitFunctBeginDI(const Function *F) {
@@ -425,31 +435,26 @@ void PIC16DbgInfo::EmitSymbol(std::string Name, short Class, unsigned short
/// EmitVarDebugInfo - Emit debug information for all variables.
///
void PIC16DbgInfo::EmitVarDebugInfo(Module &M) {
- GlobalVariable *Root = M.getGlobalVariable("llvm.dbg.global_variables");
- if (!Root)
- return;
-
- Constant *RootC = cast<Constant>(*Root->use_begin());
- for (Value::use_iterator UI = RootC->use_begin(), UE = Root->use_end();
- UI != UE; ++UI) {
- for (Value::use_iterator UUI = UI->use_begin(), UUE = UI->use_end();
- UUI != UUE; ++UUI) {
- DIGlobalVariable DIGV(cast<GlobalVariable>(*UUI));
- DIType Ty = DIGV.getType();
- unsigned short TypeNo = 0;
- bool HasAux = false;
- int Aux[PIC16Dbg::AuxSize] = { 0 };
- std::string TagName = "";
- std::string VarName = TAI->getGlobalPrefix()+DIGV.getGlobal()->getName();
- PopulateDebugInfo(Ty, TypeNo, HasAux, Aux, TagName);
- // Emit debug info only if type information is availaible.
- if (TypeNo != PIC16Dbg::T_NULL) {
- O << "\n\t.type " << VarName << ", " << TypeNo;
- short ClassNo = getStorageClass(DIGV);
- O << "\n\t.class " << VarName << ", " << ClassNo;
- if (HasAux)
- EmitAuxEntry(VarName, Aux, PIC16Dbg::AuxSize, TagName);
- }
+ DebugInfoFinder DbgFinder;
+ DbgFinder.processModule(M);
+
+ for (DebugInfoFinder::iterator I = DbgFinder.global_variable_begin(),
+ E = DbgFinder.global_variable_end(); I != E; ++I) {
+ DIGlobalVariable DIGV(*I);
+ DIType Ty = DIGV.getType();
+ unsigned short TypeNo = 0;
+ bool HasAux = false;
+ int Aux[PIC16Dbg::AuxSize] = { 0 };
+ std::string TagName = "";
+ std::string VarName = MAI->getGlobalPrefix()+DIGV.getGlobal()->getNameStr();
+ PopulateDebugInfo(Ty, TypeNo, HasAux, Aux, TagName);
+ // Emit debug info only if type information is availaible.
+ if (TypeNo != PIC16Dbg::T_NULL) {
+ O << "\n\t.type " << VarName << ", " << TypeNo;
+ short ClassNo = getStorageClass(DIGV);
+ O << "\n\t.class " << VarName << ", " << ClassNo;
+ if (HasAux)
+ EmitAuxEntry(VarName, Aux, PIC16Dbg::AuxSize, TagName);
}
}
O << "\n";
@@ -457,12 +462,12 @@ void PIC16DbgInfo::EmitVarDebugInfo(Module &M) {
/// SwitchToCU - Switch to a new compilation unit.
///
-void PIC16DbgInfo::SwitchToCU(GlobalVariable *CU) {
+void PIC16DbgInfo::SwitchToCU(MDNode *CU) {
// Get the file path from CU.
DICompileUnit cu(CU);
- std::string DirName, FileName;
- std::string FilePath = cu.getDirectory(DirName) + "/" +
- cu.getFilename(FileName);
+ std::string DirName = cu.getDirectory();
+ std::string FileName = cu.getFilename();
+ std::string FilePath = DirName + "/" + FileName;
// Nothing to do if source file is still same.
if ( FilePath == CurFile ) return;
diff --git a/lib/Target/PIC16/PIC16DebugInfo.h b/lib/Target/PIC16/PIC16DebugInfo.h
index d126d85..54e27c7 100644
--- a/lib/Target/PIC16/PIC16DebugInfo.h
+++ b/lib/Target/PIC16/PIC16DebugInfo.h
@@ -16,8 +16,6 @@
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Module.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include <map>
namespace llvm {
class MachineFunction;
@@ -90,11 +88,11 @@ namespace llvm {
};
}
- class raw_ostream;
+ class formatted_raw_ostream;
class PIC16DbgInfo {
- raw_ostream &O;
- const TargetAsmInfo *TAI;
+ formatted_raw_ostream &O;
+ const MCAsmInfo *MAI;
std::string CurFile;
unsigned CurLine;
@@ -103,7 +101,8 @@ namespace llvm {
bool EmitDebugDirectives;
public:
- PIC16DbgInfo(raw_ostream &o, const TargetAsmInfo *T) : O(o), TAI(T) {
+ PIC16DbgInfo(formatted_raw_ostream &o, const MCAsmInfo *T)
+ : O(o), MAI(T) {
CurFile = "";
CurLine = 0;
EmitDebugDirectives = false;
@@ -118,7 +117,7 @@ namespace llvm {
private:
- void SwitchToCU (GlobalVariable *CU);
+ void SwitchToCU (MDNode *CU);
void SwitchToLine (unsigned Line, bool IsInBeginFunction = false);
void PopulateDebugInfo (DIType Ty, unsigned short &TypeNo, bool &HasAux,
@@ -144,8 +143,7 @@ namespace llvm {
short getStorageClass(DIGlobalVariable DIGV);
void EmitFunctBeginDI(const Function *F);
void EmitCompositeTypeDecls(Module &M);
- void EmitCompositeTypeElements (DICompositeType CTy,
- std::string UniqueSuffix);
+ void EmitCompositeTypeElements (DICompositeType CTy, std::string Suffix);
void EmitFunctEndDI(const Function *F, unsigned Line);
void EmitAuxEntry(const std::string VarName, int Aux[],
int num = PIC16Dbg::AuxSize, std::string TagName = "");
diff --git a/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp b/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
index 6c2b8ec..cc57d12 100644
--- a/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
+++ b/lib/Target/PIC16/PIC16ISelDAGToDAG.cpp
@@ -13,6 +13,8 @@
#define DEBUG_TYPE "pic16-isel"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "PIC16ISelDAGToDAG.h"
#include "llvm/Support/Debug.h"
diff --git a/lib/Target/PIC16/PIC16ISelDAGToDAG.h b/lib/Target/PIC16/PIC16ISelDAGToDAG.h
index 83abed3..3a2f6b4 100644
--- a/lib/Target/PIC16/PIC16ISelDAGToDAG.h
+++ b/lib/Target/PIC16/PIC16ISelDAGToDAG.h
@@ -31,7 +31,7 @@ class VISIBILITY_HIDDEN PIC16DAGToDAGISel : public SelectionDAGISel {
/// PIC16Lowering - This object fully describes how to lower LLVM code to an
/// PIC16-specific SelectionDAG.
- PIC16TargetLowering PIC16Lowering;
+ PIC16TargetLowering &PIC16Lowering;
public:
explicit PIC16DAGToDAGISel(PIC16TargetMachine &tm) :
diff --git a/lib/Target/PIC16/PIC16ISelLowering.cpp b/lib/Target/PIC16/PIC16ISelLowering.cpp
index 0d24f61..bf986b1 100644
--- a/lib/Target/PIC16/PIC16ISelLowering.cpp
+++ b/lib/Target/PIC16/PIC16ISelLowering.cpp
@@ -12,8 +12,8 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pic16-lower"
-
#include "PIC16ISelLowering.h"
+#include "PIC16TargetObjectFile.h"
#include "PIC16TargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
@@ -23,6 +23,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -30,7 +31,7 @@ using namespace llvm;
static const char *getIntrinsicName(unsigned opcode) {
std::string Basename;
switch(opcode) {
- default: assert (0 && "do not know intrinsic name");
+ default: llvm_unreachable("do not know intrinsic name");
// Arithmetic Right shift for integer types.
case PIC16ISD::SRA_I8: Basename = "sra.i8"; break;
case RTLIB::SRA_I16: Basename = "sra.i16"; break;
@@ -114,22 +115,48 @@ static const char *getIntrinsicName(unsigned opcode) {
std::string Fullname = prefix + tagname + Basename;
// The name has to live through program life.
- char *tmp = new char[Fullname.size() + 1];
- strcpy (tmp, Fullname.c_str());
-
- return tmp;
+ return createESName(Fullname);
+}
+
+// getStdLibCallName - Get the name for the standard library function.
+static const char *getStdLibCallName(unsigned opcode) {
+ std::string BaseName;
+ switch(opcode) {
+ case RTLIB::COS_F32: BaseName = "cos";
+ break;
+ case RTLIB::SIN_F32: BaseName = "sin";
+ break;
+ case RTLIB::MEMCPY: BaseName = "memcpy";
+ break;
+ case RTLIB::MEMSET: BaseName = "memset";
+ break;
+ case RTLIB::MEMMOVE: BaseName = "memmove";
+ break;
+ default: llvm_unreachable("do not know std lib call name");
+ }
+ std::string prefix = PAN::getTagName(PAN::PREFIX_SYMBOL);
+ std::string LibCallName = prefix + BaseName;
+
+ // The name has to live through program life.
+ return createESName(LibCallName);
}
// PIC16TargetLowering Constructor.
PIC16TargetLowering::PIC16TargetLowering(PIC16TargetMachine &TM)
- : TargetLowering(TM), TmpSize(0) {
+ : TargetLowering(TM, new PIC16TargetObjectFile()), TmpSize(0) {
Subtarget = &TM.getSubtarget<PIC16Subtarget>();
addRegisterClass(MVT::i8, PIC16::GPRRegisterClass);
setShiftAmountType(MVT::i8);
- setShiftAmountFlavor(Extend);
+
+ // Std lib call names
+ setLibcallName(RTLIB::COS_F32, getStdLibCallName(RTLIB::COS_F32));
+ setLibcallName(RTLIB::SIN_F32, getStdLibCallName(RTLIB::SIN_F32));
+ setLibcallName(RTLIB::MEMCPY, getStdLibCallName(RTLIB::MEMCPY));
+ setLibcallName(RTLIB::MEMSET, getStdLibCallName(RTLIB::MEMSET));
+ setLibcallName(RTLIB::MEMMOVE, getStdLibCallName(RTLIB::MEMMOVE));
// SRA library call names
setPIC16LibcallName(PIC16ISD::SRA_I8, getIntrinsicName(PIC16ISD::SRA_I8));
@@ -226,6 +253,7 @@ PIC16TargetLowering::PIC16TargetLowering(PIC16TargetMachine &TM)
setOperationAction(ISD::STORE, MVT::i8, Legal);
setOperationAction(ISD::STORE, MVT::i16, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i64, Custom);
setOperationAction(ISD::ADDE, MVT::i8, Custom);
setOperationAction(ISD::ADDC, MVT::i8, Custom);
@@ -240,46 +268,27 @@ PIC16TargetLowering::PIC16TargetLowering(PIC16TargetMachine &TM)
setOperationAction(ISD::XOR, MVT::i8, Custom);
setOperationAction(ISD::FrameIndex, MVT::i16, Custom);
- setOperationAction(ISD::CALL, MVT::i16, Custom);
- setOperationAction(ISD::RET, MVT::Other, Custom);
- setOperationAction(ISD::MUL, MVT::i8, Custom);
- setOperationAction(ISD::MUL, MVT::i16, Expand);
- setOperationAction(ISD::MUL, MVT::i32, Expand);
+ setOperationAction(ISD::MUL, MVT::i8, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
- setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
- setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
- setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i8, Expand);
- setOperationAction(ISD::MULHU, MVT::i16, Expand);
- setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i8, Expand);
- setOperationAction(ISD::MULHS, MVT::i16, Expand);
- setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::SRA, MVT::i8, Custom);
- setOperationAction(ISD::SRA, MVT::i16, Expand);
- setOperationAction(ISD::SRA, MVT::i32, Expand);
setOperationAction(ISD::SHL, MVT::i8, Custom);
- setOperationAction(ISD::SHL, MVT::i16, Expand);
- setOperationAction(ISD::SHL, MVT::i32, Expand);
setOperationAction(ISD::SRL, MVT::i8, Custom);
- setOperationAction(ISD::SRL, MVT::i16, Expand);
- setOperationAction(ISD::SRL, MVT::i32, Expand);
+
+ setOperationAction(ISD::ROTL, MVT::i8, Expand);
+ setOperationAction(ISD::ROTR, MVT::i8, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// PIC16 does not support shift parts
- setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
- setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
- setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
- setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
- setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
- setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
- setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// PIC16 does not have a SETCC, expand it to SELECT_CC.
@@ -356,7 +365,8 @@ static void PopulateResults(SDValue N, SmallVectorImpl<SDValue>&Results) {
Results.push_back(N);
}
-MVT PIC16TargetLowering::getSetCCResultType(MVT ValType) const {
+MVT::SimpleValueType
+PIC16TargetLowering::getSetCCResultType(EVT ValType) const {
return MVT::i8;
}
@@ -379,7 +389,7 @@ PIC16TargetLowering::getPIC16LibcallName(PIC16ISD::PIC16Libcall Call) {
SDValue
PIC16TargetLowering::MakePIC16Libcall(PIC16ISD::PIC16Libcall Call,
- MVT RetVT, const SDValue *Ops,
+ EVT RetVT, const SDValue *Ops,
unsigned NumOps, bool isSigned,
SelectionDAG &DAG, DebugLoc dl) {
@@ -389,17 +399,20 @@ PIC16TargetLowering::MakePIC16Libcall(PIC16ISD::PIC16Libcall Call,
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
- Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
+ Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
- SDValue Callee = DAG.getExternalSymbol(getPIC16LibcallName(Call), MVT::i8);
- const Type *RetTy = RetVT.getTypeForMVT();
+ SDValue Callee = DAG.getExternalSymbol(getPIC16LibcallName(Call), MVT::i16);
+
+ const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
std::pair<SDValue,SDValue> CallInfo =
LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
- false, 0, CallingConv::C, false, Callee, Args, DAG, dl);
+ false, 0, CallingConv::C, false,
+ /*isReturnValueUsed=*/true,
+ Callee, Args, DAG, dl);
return CallInfo.first;
}
@@ -429,6 +442,7 @@ const char *PIC16TargetLowering::getTargetNodeName(unsigned Opcode) const {
case PIC16ISD::SUBCC: return "PIC16ISD::SUBCC";
case PIC16ISD::SELECT_ICC: return "PIC16ISD::SELECT_ICC";
case PIC16ISD::BRCOND: return "PIC16ISD::BRCOND";
+ case PIC16ISD::RET: return "PIC16ISD::RET";
case PIC16ISD::Dummy: return "PIC16ISD::Dummy";
}
}
@@ -502,7 +516,7 @@ SDValue PIC16TargetLowering::ExpandStore(SDNode *N, SelectionDAG &DAG) {
SDValue Chain = St->getChain();
SDValue Src = St->getValue();
SDValue Ptr = St->getBasePtr();
- MVT ValueType = Src.getValueType();
+ EVT ValueType = Src.getValueType();
unsigned StoreOffset = 0;
DebugLoc dl = N->getDebugLoc();
@@ -519,6 +533,10 @@ SDValue PIC16TargetLowering::ExpandStore(SDNode *N, SelectionDAG &DAG) {
SDValue SrcLo, SrcHi;
GetExpandedParts(Src, DAG, SrcLo, SrcHi);
SDValue ChainLo = Chain, ChainHi = Chain;
+ // FIXME: This makes unsafe assumptions. The Chain may be a TokenFactor
+ // created for an unrelated purpose, in which case it may not have
+ // exactly two operands. Also, even if it does have two operands, they
+ // may not be the low and high parts of an aligned load that was split.
if (Chain.getOpcode() == ISD::TokenFactor) {
ChainLo = Chain.getOperand(0);
ChainHi = Chain.getOperand(1);
@@ -546,16 +564,19 @@ SDValue PIC16TargetLowering::ExpandStore(SDNode *N, SelectionDAG &DAG) {
GetExpandedParts(SrcHi, DAG, SrcHi1, SrcHi2);
SDValue ChainLo = Chain, ChainHi = Chain;
+ // FIXME: This makes unsafe assumptions; see the FIXME above.
if (Chain.getOpcode() == ISD::TokenFactor) {
ChainLo = Chain.getOperand(0);
ChainHi = Chain.getOperand(1);
}
SDValue ChainLo1 = ChainLo, ChainLo2 = ChainLo, ChainHi1 = ChainHi,
ChainHi2 = ChainHi;
+ // FIXME: This makes unsafe assumptions; see the FIXME above.
if (ChainLo.getOpcode() == ISD::TokenFactor) {
ChainLo1 = ChainLo.getOperand(0);
ChainLo2 = ChainLo.getOperand(1);
}
+ // FIXME: This makes unsafe assumptions; see the FIXME above.
if (ChainHi.getOpcode() == ISD::TokenFactor) {
ChainHi1 = ChainHi.getOperand(0);
ChainHi2 = ChainHi.getOperand(1);
@@ -583,8 +604,26 @@ SDValue PIC16TargetLowering::ExpandStore(SDNode *N, SelectionDAG &DAG) {
getChain(Store3), getChain(Store4));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, RetLo, RetHi);
- }
- else {
+ } else if (ValueType == MVT::i64) {
+ SDValue SrcLo, SrcHi;
+ GetExpandedParts(Src, DAG, SrcLo, SrcHi);
+ SDValue ChainLo = Chain, ChainHi = Chain;
+ // FIXME: This makes unsafe assumptions; see the FIXME above.
+ if (Chain.getOpcode() == ISD::TokenFactor) {
+ ChainLo = Chain.getOperand(0);
+ ChainHi = Chain.getOperand(1);
+ }
+ SDValue Store1 = DAG.getStore(ChainLo, dl, SrcLo, Ptr, NULL,
+ 0 + StoreOffset);
+
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(4, Ptr.getValueType()));
+ SDValue Store2 = DAG.getStore(ChainHi, dl, SrcHi, Ptr, NULL,
+ 1 + StoreOffset);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1,
+ Store2);
+ } else {
assert (0 && "value type not supported");
return SDValue();
}
@@ -660,7 +699,7 @@ void PIC16TargetLowering::GetExpandedParts(SDValue Op, SelectionDAG &DAG,
SDValue &Lo, SDValue &Hi) {
SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
- MVT NewVT = getTypeToTransformTo(N->getValueType(0));
+ EVT NewVT = getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
// Extract the lo component.
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NewVT, Op,
@@ -808,7 +847,7 @@ SDValue PIC16TargetLowering::ExpandLoad(SDNode *N, SelectionDAG &DAG) {
SDValue Load, Offset;
SDVTList Tys;
- MVT VT, NewVT;
+ EVT VT, NewVT;
SDValue PtrLo, PtrHi;
unsigned LoadOffset;
@@ -821,7 +860,7 @@ SDValue PIC16TargetLowering::ExpandLoad(SDNode *N, SelectionDAG &DAG) {
unsigned NumLoads = VT.getSizeInBits() / 8;
std::vector<SDValue> PICLoads;
unsigned iter;
- MVT MemVT = LD->getMemoryVT();
+ EVT MemVT = LD->getMemoryVT();
if(ISD::isNON_EXTLoad(N)) {
for (iter=0; iter<NumLoads ; ++iter) {
// Add the pointer offset if any
@@ -839,7 +878,7 @@ SDValue PIC16TargetLowering::ExpandLoad(SDNode *N, SelectionDAG &DAG) {
// For extended loads this is the memory value type
// i.e. without any extension
- MVT MemVT = LD->getMemoryVT();
+ EVT MemVT = LD->getMemoryVT();
unsigned MemBytes = MemVT.getSizeInBits() / 8;
// if MVT::i1 is extended to MVT::i8 then MemBytes will be zero
// So set it to one
@@ -945,6 +984,19 @@ SDValue PIC16TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
return Call;
}
+SDValue PIC16TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
+ // We should have handled larger operands in type legalizer itself.
+ assert (Op.getValueType() == MVT::i8 && "illegal multiply to lower");
+
+ SDNode *N = Op.getNode();
+ SmallVector<SDValue, 2> Ops(2);
+ Ops[0] = N->getOperand(0);
+ Ops[1] = N->getOperand(1);
+ SDValue Call = MakePIC16Libcall(PIC16ISD::MUL_I8, N->getValueType(0),
+ &Ops[0], 2, true, DAG, N->getDebugLoc());
+ return Call;
+}
+
void
PIC16TargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue>&Results,
@@ -953,12 +1005,8 @@ PIC16TargetLowering::LowerOperationWrapper(SDNode *N,
SDValue Res;
unsigned i;
switch (Op.getOpcode()) {
- case ISD::FORMAL_ARGUMENTS:
- Res = LowerFORMAL_ARGUMENTS(Op, DAG); break;
case ISD::LOAD:
Res = ExpandLoad(Op.getNode(), DAG); break;
- case ISD::CALL:
- Res = LowerCALL(Op, DAG); break;
default: {
// All other operations are handled in LowerOperation.
Res = LowerOperation(Op, DAG);
@@ -978,8 +1026,6 @@ PIC16TargetLowering::LowerOperationWrapper(SDNode *N,
SDValue PIC16TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- case ISD::FORMAL_ARGUMENTS:
- return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
@@ -992,6 +1038,8 @@ SDValue PIC16TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
return ExpandLoad(Op.getNode(), DAG);
case ISD::STORE:
return ExpandStore(Op.getNode(), DAG);
+ case ISD::MUL:
+ return LowerMUL(Op, DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
@@ -1000,10 +1048,6 @@ SDValue PIC16TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::AND:
case ISD::XOR:
return LowerBinOp(Op, DAG);
- case ISD::CALL:
- return LowerCALL(Op, DAG);
- case ISD::RET:
- return LowerRET(Op, DAG);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC:
@@ -1048,12 +1092,12 @@ SDValue PIC16TargetLowering::ConvertToMemOperand(SDValue Op,
}
SDValue PIC16TargetLowering::
-LowerIndirectCallArguments(SDValue Op, SDValue Chain, SDValue InFlag,
+LowerIndirectCallArguments(SDValue Chain, SDValue InFlag,
SDValue DataAddr_Lo, SDValue DataAddr_Hi,
- SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- unsigned NumOps = TheCall->getNumArgs();
- DebugLoc dl = TheCall->getDebugLoc();
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG) {
+ unsigned NumOps = Outs.size();
// If call has no arguments then do nothing and return.
if (NumOps == 0)
@@ -1064,10 +1108,10 @@ LowerIndirectCallArguments(SDValue Op, SDValue Chain, SDValue InFlag,
SDValue Arg, StoreRet;
// For PIC16 ABI the arguments come after the return value.
- unsigned RetVals = TheCall->getNumRetVals();
+ unsigned RetVals = Ins.size();
for (unsigned i = 0, ArgOffset = RetVals; i < NumOps; i++) {
// Get the arguments
- Arg = TheCall->getArg(i);
+ Arg = Outs[i].Val;
Ops.clear();
Ops.push_back(Chain);
@@ -1087,16 +1131,14 @@ LowerIndirectCallArguments(SDValue Op, SDValue Chain, SDValue InFlag,
}
SDValue PIC16TargetLowering::
-LowerDirectCallArguments(SDValue Op, SDValue Chain, SDValue ArgLabel,
- SDValue InFlag, SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- unsigned NumOps = TheCall->getNumArgs();
- DebugLoc dl = TheCall->getDebugLoc();
+LowerDirectCallArguments(SDValue ArgLabel, SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+ unsigned NumOps = Outs.size();
std::string Name;
SDValue Arg, StoreAt;
- MVT ArgVT;
+ EVT ArgVT;
unsigned Size=0;
- unsigned ArgCount=0;
// If call has no arguments then do nothing and return.
if (NumOps == 0)
@@ -1114,9 +1156,9 @@ LowerDirectCallArguments(SDValue Op, SDValue Chain, SDValue ArgLabel,
std::vector<SDValue> Ops;
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
- for (unsigned i=ArgCount, Offset = 0; i<NumOps; i++) {
+ for (unsigned i=0, Offset = 0; i<NumOps; i++) {
// Get the argument
- Arg = TheCall->getArg(i);
+ Arg = Outs[i].Val;
StoreOffset = (Offset + AddressOffset);
// Store the argument on frame
@@ -1144,12 +1186,12 @@ LowerDirectCallArguments(SDValue Op, SDValue Chain, SDValue ArgLabel,
}
SDValue PIC16TargetLowering::
-LowerIndirectCallReturn (SDValue Op, SDValue Chain, SDValue InFlag,
- SDValue DataAddr_Lo, SDValue DataAddr_Hi,
- SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- DebugLoc dl = TheCall->getDebugLoc();
- unsigned RetVals = TheCall->getNumRetVals();
+LowerIndirectCallReturn(SDValue Chain, SDValue InFlag,
+ SDValue DataAddr_Lo, SDValue DataAddr_Hi,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ unsigned RetVals = Ins.size();
// If call does not have anything to return
// then do nothing and go back.
@@ -1157,7 +1199,6 @@ LowerIndirectCallReturn (SDValue Op, SDValue Chain, SDValue InFlag,
return Chain;
// Call has something to return
- std::vector<SDValue> ResultVals;
SDValue LoadRet;
SDVTList Tys = DAG.getVTList(MVT::i8, MVT::Other, MVT::Flag);
@@ -1167,23 +1208,20 @@ LowerIndirectCallReturn (SDValue Op, SDValue Chain, SDValue InFlag,
InFlag);
InFlag = getOutFlag(LoadRet);
Chain = getChain(LoadRet);
- ResultVals.push_back(LoadRet);
+ InVals.push_back(LoadRet);
}
- ResultVals.push_back(Chain);
- SDValue Res = DAG.getMergeValues(&ResultVals[0], ResultVals.size(), dl);
- return Res;
+ return Chain;
}
SDValue PIC16TargetLowering::
-LowerDirectCallReturn(SDValue Op, SDValue Chain, SDValue RetLabel,
- SDValue InFlag, SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- DebugLoc dl = TheCall->getDebugLoc();
+LowerDirectCallReturn(SDValue RetLabel, SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
// Currently handling primitive types only. They will come in
// i8 parts
- unsigned RetVals = TheCall->getNumRetVals();
-
- std::vector<SDValue> ResultVals;
+ unsigned RetVals = Ins.size();
// Return immediately if the return type is void
if (RetVals == 0)
@@ -1209,30 +1247,20 @@ LowerDirectCallReturn(SDValue Op, SDValue Chain, SDValue RetLabel,
Chain = getChain(LoadRet);
Offset++;
- ResultVals.push_back(LoadRet);
+ InVals.push_back(LoadRet);
}
- // To return use MERGE_VALUES
- ResultVals.push_back(Chain);
- SDValue Res = DAG.getMergeValues(&ResultVals[0], ResultVals.size(), dl);
- return Res;
+ return Chain;
}
-SDValue PIC16TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
- SDValue Chain = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
-
- if (Op.getNumOperands() == 1) // return void
- return Op;
+SDValue
+PIC16TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
- // return should have odd number of operands
- if ((Op.getNumOperands() % 2) == 0 ) {
- assert(0 && "Do not know how to return this many arguments!");
- abort();
- }
-
// Number of values to return
- unsigned NumRet = (Op.getNumOperands() / 2);
+ unsigned NumRet = Outs.size();
// Function returns value always on stack with the offset starting
// from 0
@@ -1246,68 +1274,13 @@ SDValue PIC16TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
SDValue BS = DAG.getConstant(1, MVT::i8);
SDValue RetVal;
for(unsigned i=0;i<NumRet; ++i) {
- RetVal = Op.getNode()->getOperand(2*i + 1);
+ RetVal = Outs[i].Val;
Chain = DAG.getNode (PIC16ISD::PIC16Store, dl, MVT::Other, Chain, RetVal,
ES, BS,
DAG.getConstant (i, MVT::i8));
}
- return DAG.getNode(ISD::RET, dl, MVT::Other, Chain);
-}
-
-// CALL node may have some operands non-legal to PIC16. Generate new CALL
-// node with all the operands legal.
-// Currently only Callee operand of the CALL node is non-legal. This function
-// legalizes the Callee operand and uses all other operands as are to generate
-// new CALL node.
-
-SDValue PIC16TargetLowering::LegalizeCALL(SDValue Op, SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- DebugLoc dl = TheCall->getDebugLoc();
- unsigned i =0;
-
- assert(Callee.getValueType() == MVT::i16 &&
- "Don't know how to legalize this call node!!!");
- assert(Callee.getOpcode() == ISD::BUILD_PAIR &&
- "Don't know how to legalize this call node!!!");
-
- if (isDirectAddress(Callee)) {
- // Come here for direct calls
- Callee = Callee.getOperand(0).getOperand(0);
- } else {
- // Come here for indirect calls
- SDValue Lo, Hi;
- // Indirect addresses. Get the hi and lo parts of ptr.
- GetExpandedParts(Callee, DAG, Lo, Hi);
- // Connect Lo and Hi parts of the callee with the PIC16Connect
- Callee = DAG.getNode(PIC16ISD::PIC16Connect, dl, MVT::i8, Lo, Hi);
- }
- std::vector<SDValue> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
-
- // Add the call arguments and their flags
- unsigned NumArgs = TheCall->getNumArgs();
- for(i=0;i<NumArgs;i++) {
- Ops.push_back(TheCall->getArg(i));
- Ops.push_back(TheCall->getArgFlagsVal(i));
- }
- std::vector<MVT> NodeTys;
- unsigned NumRets = TheCall->getNumRetVals();
- for(i=0;i<NumRets;i++)
- NodeTys.push_back(TheCall->getRetValType(i));
-
- // Return a Chain as well
- NodeTys.push_back(MVT::Other);
-
- SDVTList VTs = DAG.getVTList(&NodeTys[0], NodeTys.size());
- // Generate new call with all the operands legal
- return DAG.getCall(TheCall->getCallingConv(), dl,
- TheCall->isVarArg(), TheCall->isTailCall(),
- TheCall->isInreg(), VTs, &Ops[0], Ops.size(),
- TheCall->getNumFixedArgs());
+ return DAG.getNode(PIC16ISD::RET, dl, MVT::Other, Chain);
}
void PIC16TargetLowering::
@@ -1372,36 +1345,40 @@ GetDataAddress(DebugLoc dl, SDValue Callee, SDValue &Chain,
DataAddr_Hi = DAG.getNode(PIC16ISD::MTHI, dl, MVT::i8, Call, OperFlag);
}
+SDValue
+PIC16TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
-SDValue PIC16TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
- CallSDNode *TheCall = dyn_cast<CallSDNode>(Op);
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- DebugLoc dl = TheCall->getDebugLoc();
- if (Callee.getValueType() == MVT::i16 &&
- Callee.getOpcode() == ISD::BUILD_PAIR) {
- // Control should come here only from TypeLegalizer for lowering
-
- // Legalize the non-legal arguments of call and return the
- // new call with legal arguments.
- return LegalizeCALL(Op, DAG);
- }
- // Control should come here from Legalize DAG.
- // Here all the operands of CALL node should be legal.
-
- // If this is an indirect call then to pass the arguments
- // and read the return value back, we need the data address
- // of the function being called.
- // To get the data address two more calls need to be made.
+ assert(Callee.getValueType() == MVT::i16 &&
+ "Don't know how to legalize this call node!!!");
// The flag to track if this is a direct or indirect call.
bool IsDirectCall = true;
- unsigned RetVals = TheCall->getNumRetVals();
- unsigned NumArgs = TheCall->getNumArgs();
+ unsigned RetVals = Ins.size();
+ unsigned NumArgs = Outs.size();
SDValue DataAddr_Lo, DataAddr_Hi;
- if (Callee.getOpcode() == PIC16ISD::PIC16Connect) {
+ if (!isa<GlobalAddressSDNode>(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee)) {
IsDirectCall = false; // This is indirect call
+
+ // If this is an indirect call then to pass the arguments
+ // and read the return value back, we need the data address
+ // of the function being called.
+ // To get the data address two more calls need to be made.
+
+ // Come here for indirect calls
+ SDValue Lo, Hi;
+ // Indirect addresses. Get the hi and lo parts of ptr.
+ GetExpandedParts(Callee, DAG, Lo, Hi);
+ // Connect Lo and Hi parts of the callee with the PIC16Connect
+ Callee = DAG.getNode(PIC16ISD::PIC16Connect, dl, MVT::i8, Lo, Hi);
+
// Read DataAddress only if we have to pass arguments or
// read return value.
if ((RetVals > 0) || (NumArgs > 0))
@@ -1457,12 +1434,13 @@ SDValue PIC16TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Pass the argument to function before making the call.
SDValue CallArgs;
if (IsDirectCall) {
- CallArgs = LowerDirectCallArguments(Op, Chain, ArgLabel, OperFlag, DAG);
+ CallArgs = LowerDirectCallArguments(ArgLabel, Chain, OperFlag,
+ Outs, dl, DAG);
Chain = getChain(CallArgs);
OperFlag = getOutFlag(CallArgs);
} else {
- CallArgs = LowerIndirectCallArguments(Op, Chain, OperFlag, DataAddr_Lo,
- DataAddr_Hi, DAG);
+ CallArgs = LowerIndirectCallArguments(Chain, OperFlag, DataAddr_Lo,
+ DataAddr_Hi, Outs, Ins, dl, DAG);
Chain = getChain(CallArgs);
OperFlag = getOutFlag(CallArgs);
}
@@ -1483,10 +1461,11 @@ SDValue PIC16TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Lower the return value reading after the call.
if (IsDirectCall)
- return LowerDirectCallReturn(Op, Chain, RetLabel, OperFlag, DAG);
+ return LowerDirectCallReturn(RetLabel, Chain, OperFlag,
+ Ins, dl, DAG, InVals);
else
- return LowerIndirectCallReturn(Op, Chain, OperFlag, DataAddr_Lo,
- DataAddr_Hi, DAG);
+ return LowerIndirectCallReturn(Chain, OperFlag, DataAddr_Lo,
+ DataAddr_Hi, Ins, dl, DAG, InVals);
}
bool PIC16TargetLowering::isDirectLoad(const SDValue Op) {
@@ -1591,11 +1570,20 @@ SDValue PIC16TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) {
SDValue NewVal = ConvertToMemOperand (Op.getOperand(0), DAG, dl);
SDVTList Tys = DAG.getVTList(MVT::i8, MVT::Flag);
- if (Op.getOpcode() == ISD::SUBE)
- return DAG.getNode(Op.getOpcode(), dl, Tys, NewVal, Op.getOperand(1),
- Op.getOperand(2));
- else
- return DAG.getNode(Op.getOpcode(), dl, Tys, NewVal, Op.getOperand(1));
+ switch (Op.getOpcode()) {
+ default:
+ assert (0 && "Opcode unknown.");
+ case ISD::SUBE:
+ return DAG.getNode(Op.getOpcode(), dl, Tys, NewVal, Op.getOperand(1),
+ Op.getOperand(2));
+ break;
+ case ISD::SUBC:
+ return DAG.getNode(Op.getOpcode(), dl, Tys, NewVal, Op.getOperand(1));
+ break;
+ case ISD::SUB:
+ return DAG.getNode(Op.getOpcode(), dl, MVT::i8, NewVal, Op.getOperand(1));
+ break;
+ }
}
void PIC16TargetLowering::InitReservedFrameCount(const Function *F) {
@@ -1609,17 +1597,19 @@ void PIC16TargetLowering::InitReservedFrameCount(const Function *F) {
ReservedFrameCount = NumArgs + 1;
}
-// LowerFORMAL_ARGUMENTS - Argument values are loaded from the
+// LowerFormalArguments - Argument values are loaded from the
// <fname>.args + offset. All arguments are already broken to leaglized
// types, so the offset just runs from 0 to NumArgVals - 1.
-SDValue PIC16TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
- SelectionDAG &DAG) {
- SmallVector<SDValue, 8> ArgValues;
- unsigned NumArgVals = Op.getNode()->getNumValues() - 1;
- DebugLoc dl = Op.getDebugLoc();
- SDValue Chain = Op.getOperand(0); // Formal arguments' chain
-
+SDValue
+PIC16TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ unsigned NumArgVals = Ins.size();
// Get the callee's name to create the <fname>.args label to pass args.
MachineFunction &MF = DAG.getMachineFunction();
@@ -1643,13 +1633,10 @@ SDValue PIC16TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
SDValue PICLoad = DAG.getNode(PIC16ISD::PIC16LdArg, dl, VTs, Chain, ES, BS,
Offset);
Chain = getChain(PICLoad);
- ArgValues.push_back(PICLoad);
+ InVals.push_back(PICLoad);
}
- // Return a MERGE_VALUE node.
- ArgValues.push_back(Op.getOperand(0));
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
// Perform DAGCombine of PIC16Load.
@@ -1697,7 +1684,7 @@ SDValue PIC16TargetLowering::PerformDAGCombine(SDNode *N,
static PIC16CC::CondCodes IntCCToPIC16CC(ISD::CondCode CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code!");
+ default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return PIC16CC::NE;
case ISD::SETEQ: return PIC16CC::EQ;
case ISD::SETGT: return PIC16CC::GT;
@@ -1826,7 +1813,8 @@ SDValue PIC16TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
MachineBasicBlock *
PIC16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
unsigned CC = (PIC16CC::CondCodes)MI->getOperand(3).getImm();
DebugLoc dl = MI->getDebugLoc();
@@ -1852,9 +1840,18 @@ PIC16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
- // Update machine-CFG edges by transferring all successors of the current
+ // Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
- sinkMBB->transferSuccessors(BB);
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
diff --git a/lib/Target/PIC16/PIC16ISelLowering.h b/lib/Target/PIC16/PIC16ISelLowering.h
index b40ea12..286ed24 100644
--- a/lib/Target/PIC16/PIC16ISelLowering.h
+++ b/lib/Target/PIC16/PIC16ISelLowering.h
@@ -52,6 +52,7 @@ namespace llvm {
SUBCC, // Compare for equality or inequality.
SELECT_ICC, // Psuedo to be caught in schedular and expanded to brcond.
BRCOND, // Conditional branch.
+ RET, // Return.
Dummy
};
@@ -81,39 +82,45 @@ namespace llvm {
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the ISD::SETCC ValueType
- virtual MVT getSetCCResultType(MVT ValType) const;
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
+ virtual MVT::SimpleValueType getSetCCResultType(EVT ValType) const;
SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
SDValue LowerADD(SDValue Op, SelectionDAG &DAG);
SDValue LowerSUB(SDValue Op, SelectionDAG &DAG);
SDValue LowerBinOp(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
// Call returns
SDValue
- LowerDirectCallReturn(SDValue Op, SDValue Chain, SDValue FrameAddress,
- SDValue InFlag, SelectionDAG &DAG);
+ LowerDirectCallReturn(SDValue RetLabel, SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
SDValue
- LowerIndirectCallReturn(SDValue Op, SDValue Chain, SDValue InFlag,
- SDValue DataAddr_Lo, SDValue DataAddr_Hi,
- SelectionDAG &DAG);
+ LowerIndirectCallReturn(SDValue Chain, SDValue InFlag,
+ SDValue DataAddr_Lo, SDValue DataAddr_Hi,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
// Call arguments
SDValue
- LowerDirectCallArguments(SDValue Op, SDValue Chain, SDValue FrameAddress,
- SDValue InFlag, SelectionDAG &DAG);
+ LowerDirectCallArguments(SDValue ArgLabel, SDValue Chain, SDValue InFlag,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
SDValue
- LowerIndirectCallArguments(SDValue Op, SDValue Chain, SDValue InFlag,
+ LowerIndirectCallArguments(SDValue Chain, SDValue InFlag,
SDValue DataAddr_Lo, SDValue DataAddr_Hi,
- SelectionDAG &DAG);
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG);
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG);
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
SDValue getPIC16Cmp(SDValue LHS, SDValue RHS, unsigned OrigCC, SDValue &CC,
SelectionDAG &DAG, DebugLoc dl);
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
@@ -124,6 +131,28 @@ namespace llvm {
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG);
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
SDValue ExpandStore(SDNode *N, SelectionDAG &DAG);
SDValue ExpandLoad(SDNode *N, SelectionDAG &DAG);
SDValue ExpandGlobalAddress(SDNode *N, SelectionDAG &DAG);
@@ -174,12 +203,6 @@ namespace llvm {
void LegalizeFrameIndex(SDValue Op, SelectionDAG &DAG, SDValue &ES,
int &Offset);
-
- // CALL node should have all legal operands only. Legalize all non-legal
- // operands of CALL node and then return the new call will all operands
- // legal.
- SDValue LegalizeCALL(SDValue Op, SelectionDAG &DAG);
-
// For indirect calls data address of the callee frame need to be
// extracted. This function fills the arguments DataAddr_Lo and
// DataAddr_Hi with the address of the callee frame.
@@ -209,7 +232,7 @@ namespace llvm {
const char *getPIC16LibcallName(PIC16ISD::PIC16Libcall Call);
// Make PIC16 Libcall.
- SDValue MakePIC16Libcall(PIC16ISD::PIC16Libcall Call, MVT RetVT,
+ SDValue MakePIC16Libcall(PIC16ISD::PIC16Libcall Call, EVT RetVT,
const SDValue *Ops, unsigned NumOps, bool isSigned,
SelectionDAG &DAG, DebugLoc dl);
diff --git a/lib/Target/PIC16/PIC16InstrInfo.cpp b/lib/Target/PIC16/PIC16InstrInfo.cpp
index 8418423..cb0c41b 100644
--- a/lib/Target/PIC16/PIC16InstrInfo.cpp
+++ b/lib/Target/PIC16/PIC16InstrInfo.cpp
@@ -20,6 +20,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cstdio>
@@ -104,7 +105,7 @@ void PIC16InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
.addImm(1); // Emit banksel for it.
}
else
- assert(0 && "Can't store this register to stack slot");
+ llvm_unreachable("Can't store this register to stack slot");
}
void PIC16InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
@@ -144,7 +145,7 @@ void PIC16InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
.addImm(1); // Emit banksel for it.
}
else
- assert(0 && "Can't load this register from stack slot");
+ llvm_unreachable("Can't load this register from stack slot");
}
bool PIC16InstrInfo::copyRegToReg (MachineBasicBlock &MBB,
diff --git a/lib/Target/PIC16/PIC16InstrInfo.td b/lib/Target/PIC16/PIC16InstrInfo.td
index a054bdc..250ca0a 100644
--- a/lib/Target/PIC16/PIC16InstrInfo.td
+++ b/lib/Target/PIC16/PIC16InstrInfo.td
@@ -115,6 +115,8 @@ def PIC16Brcond : SDNode<"PIC16ISD::BRCOND", SDT_PIC16Brcond,
def PIC16Selecticc : SDNode<"PIC16ISD::SELECT_ICC", SDT_PIC16Selecticc,
[SDNPInFlag]>;
+def PIC16ret : SDNode<"PIC16ISD::RET", SDTNone, [SDNPHasChain]>;
+
//===----------------------------------------------------------------------===//
// PIC16 Operand Definitions.
//===----------------------------------------------------------------------===//
@@ -375,8 +377,9 @@ def subfw_2: SUBFW<0, "subwf", subc>;
let Uses = [STATUS] in
def subfwb: SUBFW<0, "subwfb", sube>; // With Borrow.
-def subfw_cc: SUBFW<0, "subwf", PIC16Subcc>;
}
+let Defs = [STATUS], isTerminator = 1 in
+def subfw_cc: SUBFW<0, "subwf", PIC16Subcc>;
// [F] -= W ;
let mayStore = 1 in
@@ -425,8 +428,9 @@ class SUBLW<bits<6> opcode, SDNode OpNode> :
let Defs = [STATUS] in {
def sublw_1 : SUBLW<0, sub>;
def sublw_2 : SUBLW<0, subc>;
-def sublw_cc : SUBLW<0, PIC16Subcc>;
}
+let Defs = [STATUS], isTerminator = 1 in
+def sublw_cc : SUBLW<0, PIC16Subcc>;
// Call instruction.
let isCall = 1,
@@ -489,8 +493,9 @@ def pagesel :
// Return insn.
+let isTerminator = 1, isBarrier = 1, isReturn = 1 in
def Return :
- ControlFormat<0, (outs), (ins), "return", [(ret)]>;
+ ControlFormat<0, (outs), (ins), "return", [(PIC16ret)]>;
//===----------------------------------------------------------------------===//
// PIC16 Replacment Patterns.
diff --git a/lib/Target/PIC16/PIC16MCAsmInfo.cpp b/lib/Target/PIC16/PIC16MCAsmInfo.cpp
new file mode 100644
index 0000000..a17d1a8
--- /dev/null
+++ b/lib/Target/PIC16/PIC16MCAsmInfo.cpp
@@ -0,0 +1,58 @@
+//===-- PIC16MCAsmInfo.cpp - PIC16 asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the PIC16MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PIC16MCAsmInfo.h"
+
+// FIXME: Layering violation to get enums and static function, should be moved
+// to separate headers.
+#include "PIC16.h"
+#include "PIC16ISelLowering.h"
+using namespace llvm;
+
+PIC16MCAsmInfo::PIC16MCAsmInfo(const Target &T, const StringRef &TT) {
+ CommentString = ";";
+ GlobalPrefix = PAN::getTagName(PAN::PREFIX_SYMBOL);
+ GlobalDirective = "\tglobal\t";
+ ExternDirective = "\textern\t";
+
+ Data8bitsDirective = " db ";
+ Data16bitsDirective = " dw ";
+ Data32bitsDirective = " dl ";
+ Data64bitsDirective = NULL;
+ ZeroDirective = NULL;
+ AsciiDirective = " dt ";
+ AscizDirective = NULL;
+
+ RomData8bitsDirective = " dw ";
+ RomData16bitsDirective = " rom_di ";
+ RomData32bitsDirective = " rom_dl ";
+
+
+ // Set it to false because we weed to generate c file name and not bc file
+ // name.
+ HasSingleParameterDotFile = false;
+}
+
+const char *PIC16MCAsmInfo::getDataASDirective(unsigned Size,
+ unsigned AS) const {
+ if (AS != PIC16ISD::ROM_SPACE)
+ return 0;
+
+ switch (Size) {
+ case 8: return RomData8bitsDirective;
+ case 16: return RomData16bitsDirective;
+ case 32: return RomData32bitsDirective;
+ default: return NULL;
+ }
+}
+
diff --git a/lib/Target/PIC16/PIC16MCAsmInfo.h b/lib/Target/PIC16/PIC16MCAsmInfo.h
new file mode 100644
index 0000000..e84db85
--- /dev/null
+++ b/lib/Target/PIC16/PIC16MCAsmInfo.h
@@ -0,0 +1,35 @@
+//=====-- PIC16MCAsmInfo.h - PIC16 asm properties -------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the PIC16MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PIC16TARGETASMINFO_H
+#define PIC16TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ class PIC16MCAsmInfo : public MCAsmInfo {
+ const char *RomData8bitsDirective;
+ const char *RomData16bitsDirective;
+ const char *RomData32bitsDirective;
+ public:
+ PIC16MCAsmInfo(const Target &T, const StringRef &TT);
+
+ virtual const char *getDataASDirective(unsigned size, unsigned AS) const;
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/PIC16/PIC16MemSelOpt.cpp b/lib/Target/PIC16/PIC16MemSelOpt.cpp
index 43d47ae..c9ebb57 100644
--- a/lib/Target/PIC16/PIC16MemSelOpt.cpp
+++ b/lib/Target/PIC16/PIC16MemSelOpt.cpp
@@ -22,7 +22,7 @@
#define DEBUG_TYPE "pic16-codegen"
#include "PIC16.h"
#include "PIC16InstrInfo.h"
-#include "PIC16TargetAsmInfo.h"
+#include "PIC16MCAsmInfo.h"
#include "PIC16TargetMachine.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
diff --git a/lib/Target/PIC16/PIC16RegisterInfo.cpp b/lib/Target/PIC16/PIC16RegisterInfo.cpp
index eb758d8..47087ab 100644
--- a/lib/Target/PIC16/PIC16RegisterInfo.cpp
+++ b/lib/Target/PIC16/PIC16RegisterInfo.cpp
@@ -16,7 +16,7 @@
#include "PIC16.h"
#include "PIC16RegisterInfo.h"
#include "llvm/ADT/BitVector.h"
-
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -51,10 +51,13 @@ bool PIC16RegisterInfo::hasFP(const MachineFunction &MF) const {
return false;
}
-void PIC16RegisterInfo::
+unsigned PIC16RegisterInfo::
eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj,
- RegScavenger *RS) const
-{ /* NOT YET IMPLEMENTED */ }
+ int *Value, RegScavenger *RS) const
+{
+ /* NOT YET IMPLEMENTED */
+ return 0;
+}
void PIC16RegisterInfo::emitPrologue(MachineFunction &MF) const
{ /* NOT YET IMPLEMENTED */ }
@@ -65,17 +68,17 @@ emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const
int PIC16RegisterInfo::
getDwarfRegNum(unsigned RegNum, bool isEH) const {
- assert(0 && "Not keeping track of debug information yet!!");
+ llvm_unreachable("Not keeping track of debug information yet!!");
return -1;
}
unsigned PIC16RegisterInfo::getFrameRegister(MachineFunction &MF) const {
- assert(0 && "PIC16 Does not have any frame register");
+ llvm_unreachable("PIC16 Does not have any frame register");
return 0;
}
unsigned PIC16RegisterInfo::getRARegister() const {
- assert(0 && "PIC16 Does not have any return address register");
+ llvm_unreachable("PIC16 Does not have any return address register");
return 0;
}
diff --git a/lib/Target/PIC16/PIC16RegisterInfo.h b/lib/Target/PIC16/PIC16RegisterInfo.h
index 83689d0..8aa5a10 100644
--- a/lib/Target/PIC16/PIC16RegisterInfo.h
+++ b/lib/Target/PIC16/PIC16RegisterInfo.h
@@ -48,8 +48,9 @@ class PIC16RegisterInfo : public PIC16GenRegisterInfo {
virtual BitVector getReservedRegs(const MachineFunction &MF) const;
virtual bool hasFP(const MachineFunction &MF) const;
- virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
- int SPAdj, RegScavenger *RS=NULL) const;
+ virtual unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS=NULL) const;
void eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
diff --git a/lib/Target/PIC16/PIC16Subtarget.cpp b/lib/Target/PIC16/PIC16Subtarget.cpp
index db8a5d8..33fc3fb 100644
--- a/lib/Target/PIC16/PIC16Subtarget.cpp
+++ b/lib/Target/PIC16/PIC16Subtarget.cpp
@@ -16,7 +16,7 @@
using namespace llvm;
-PIC16Subtarget::PIC16Subtarget(const Module &M, const std::string &FS,
+PIC16Subtarget::PIC16Subtarget(const std::string &TT, const std::string &FS,
bool Cooper)
:IsCooper(Cooper)
{
diff --git a/lib/Target/PIC16/PIC16Subtarget.h b/lib/Target/PIC16/PIC16Subtarget.h
index e5147a0..81e3783 100644
--- a/lib/Target/PIC16/PIC16Subtarget.h
+++ b/lib/Target/PIC16/PIC16Subtarget.h
@@ -19,7 +19,6 @@
#include <string>
namespace llvm {
-class Module;
class PIC16Subtarget : public TargetSubtarget {
@@ -28,9 +27,9 @@ class PIC16Subtarget : public TargetSubtarget {
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- PIC16Subtarget(const Module &M, const std::string &FS, bool Cooper);
+ PIC16Subtarget(const std::string &TT, const std::string &FS, bool Cooper);
/// isCooper - Returns true if the target ISA is Cooper.
bool isCooper() const { return IsCooper; }
diff --git a/lib/Target/PIC16/PIC16TargetMachine.cpp b/lib/Target/PIC16/PIC16TargetMachine.cpp
index 77ad188..08307e7 100644
--- a/lib/Target/PIC16/PIC16TargetMachine.cpp
+++ b/lib/Target/PIC16/PIC16TargetMachine.cpp
@@ -12,51 +12,32 @@
//===----------------------------------------------------------------------===//
#include "PIC16.h"
-#include "PIC16TargetAsmInfo.h"
+#include "PIC16MCAsmInfo.h"
#include "PIC16TargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/Passes.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-/// PIC16TargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int PIC16TargetMachineModule;
-int PIC16TargetMachineModule = 0;
-
-
-// Register the targets
-static RegisterTarget<PIC16TargetMachine>
-X("pic16", "PIC16 14-bit [experimental].");
-static RegisterTarget<CooperTargetMachine>
-Y("cooper", "PIC16 Cooper [experimental].");
+extern "C" void LLVMInitializePIC16Target() {
+ // Register the target. Curretnly the codegen works for
+ // enhanced pic16 mid-range.
+ RegisterTargetMachine<PIC16TargetMachine> X(ThePIC16Target);
+ RegisterAsmInfo<PIC16MCAsmInfo> A(ThePIC16Target);
+}
-// Force static initialization.
-extern "C" void LLVMInitializePIC16Target() { }
-// PIC16TargetMachine - Traditional PIC16 Machine.
-PIC16TargetMachine::PIC16TargetMachine(const Module &M, const std::string &FS,
- bool Cooper)
-: Subtarget(M, FS, Cooper),
+// PIC16TargetMachine - Enhanced PIC16 mid-range Machine. May also represent
+// a Traditional Machine if 'Trad' is true.
+PIC16TargetMachine::PIC16TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool Trad)
+: LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS, Trad),
DataLayout("e-p:16:8:8-i8:8:8-i16:8:8-i32:8:8"),
InstrInfo(*this), TLInfo(*this),
FrameInfo(TargetFrameInfo::StackGrowsUp, 8, 0) { }
-// CooperTargetMachine - Uses the same PIC16TargetMachine, but makes IsCooper
-// as true.
-CooperTargetMachine::CooperTargetMachine(const Module &M, const std::string &FS)
- : PIC16TargetMachine(M, FS, true) {}
-
-
-const TargetAsmInfo *PIC16TargetMachine::createTargetAsmInfo() const {
- return new PIC16TargetAsmInfo(*this);
-}
bool PIC16TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
@@ -65,15 +46,7 @@ bool PIC16TargetMachine::addInstSelector(PassManagerBase &PM,
return false;
}
-bool PIC16TargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out) {
- // Output assembly language.
- PM.add(createPIC16CodePrinterPass(Out, *this, Verbose));
- return false;
-}
-
-bool PIC16TargetMachine::addPostRegAlloc(PassManagerBase &PM,
+bool PIC16TargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createPIC16MemSelOptimizerPass());
return true; // -print-machineinstr should print after this.
diff --git a/lib/Target/PIC16/PIC16TargetMachine.h b/lib/Target/PIC16/PIC16TargetMachine.h
index 7f62d5c..b11fdd5 100644
--- a/lib/Target/PIC16/PIC16TargetMachine.h
+++ b/lib/Target/PIC16/PIC16TargetMachine.h
@@ -37,12 +37,9 @@ class PIC16TargetMachine : public LLVMTargetMachine {
// any PIC16 specific FrameInfo class.
TargetFrameInfo FrameInfo;
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
public:
- PIC16TargetMachine(const Module &M, const std::string &FS,
- bool Cooper = false);
+ PIC16TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool Cooper = false);
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
virtual const PIC16InstrInfo *getInstrInfo() const { return &InstrInfo; }
@@ -59,18 +56,9 @@ public:
virtual bool addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
- virtual bool addPostRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
+ virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
}; // PIC16TargetMachine.
-/// CooperTargetMachine
-class CooperTargetMachine : public PIC16TargetMachine {
-public:
- CooperTargetMachine(const Module &M, const std::string &FS);
-}; // CooperTargetMachine.
-
} // end namespace llvm
#endif
diff --git a/lib/Target/PIC16/PIC16TargetObjectFile.cpp b/lib/Target/PIC16/PIC16TargetObjectFile.cpp
new file mode 100644
index 0000000..a2a4c09
--- /dev/null
+++ b/lib/Target/PIC16/PIC16TargetObjectFile.cpp
@@ -0,0 +1,440 @@
+//===-- PIC16TargetObjectFile.cpp - PIC16 object files --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PIC16TargetObjectFile.h"
+#include "MCSectionPIC16.h"
+#include "PIC16ISelLowering.h"
+#include "PIC16TargetMachine.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+
+MCSectionPIC16 *MCSectionPIC16::Create(const StringRef &Name, SectionKind K,
+ int Address, int Color, MCContext &Ctx) {
+ return new (Ctx) MCSectionPIC16(Name, K, Address, Color);
+}
+
+
+void MCSectionPIC16::PrintSwitchToSection(const MCAsmInfo &MAI,
+ raw_ostream &OS) const {
+ OS << getName() << '\n';
+}
+
+
+
+
+PIC16TargetObjectFile::PIC16TargetObjectFile()
+ : ExternalVarDecls(0), ExternalVarDefs(0) {
+}
+
+const MCSectionPIC16 *PIC16TargetObjectFile::
+getPIC16Section(const char *Name, SectionKind Kind,
+ int Address, int Color) const {
+ MCSectionPIC16 *&Entry = SectionsByName[Name];
+ if (Entry)
+ return Entry;
+
+ return Entry = MCSectionPIC16::Create(Name, Kind, Address, Color,
+ getContext());
+}
+
+
+void PIC16TargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &tm){
+ TargetLoweringObjectFile::Initialize(Ctx, tm);
+ TM = &tm;
+
+ BSSSection = getPIC16Section("udata.# UDATA", MCSectionPIC16::UDATA_Kind());
+ ReadOnlySection = getPIC16Section("romdata.# ROMDATA",
+ MCSectionPIC16::ROMDATA_Kind());
+ DataSection = getPIC16Section("idata.# IDATA", MCSectionPIC16::IDATA_Kind());
+
+ // Need because otherwise a .text symbol is emitted by DwarfWriter
+ // in BeginModule, and gpasm cribbs for that .text symbol.
+ TextSection = getPIC16Section("", SectionKind::getText());
+
+ ROSections.push_back(new PIC16Section((MCSectionPIC16*)ReadOnlySection));
+
+ // FIXME: I don't know what the classification of these sections really is.
+ // These aren't really objects belonging to any section. Just emit them
+ // in AsmPrinter and remove this code from here.
+ ExternalVarDecls = new PIC16Section(getPIC16Section("ExternalVarDecls",
+ SectionKind::getMetadata()));
+ ExternalVarDefs = new PIC16Section(getPIC16Section("ExternalVarDefs",
+ SectionKind::getMetadata()));
+}
+
+const MCSection *PIC16TargetObjectFile::
+getSectionForFunction(const std::string &FnName) const {
+ std::string T = PAN::getCodeSectionName(FnName);
+ return getPIC16Section(T.c_str(), SectionKind::getText());
+}
+
+
+const MCSection *PIC16TargetObjectFile::
+getSectionForFunctionFrame(const std::string &FnName) const {
+ std::string T = PAN::getFrameSectionName(FnName);
+ return getPIC16Section(T.c_str(), SectionKind::getDataRel());
+}
+
+const MCSection *
+PIC16TargetObjectFile::getBSSSectionForGlobal(const GlobalVariable *GV) const {
+ assert(GV->hasInitializer() && "This global doesn't need space");
+ Constant *C = GV->getInitializer();
+ assert(C->isNullValue() && "Unitialized globals has non-zero initializer");
+
+ // Find how much space this global needs.
+ const TargetData *TD = TM->getTargetData();
+ const Type *Ty = C->getType();
+ unsigned ValSize = TD->getTypeAllocSize(Ty);
+
+ // Go through all BSS Sections and assign this variable
+ // to the first available section having enough space.
+ PIC16Section *FoundBSS = NULL;
+ for (unsigned i = 0; i < BSSSections.size(); i++) {
+ if (DataBankSize - BSSSections[i]->Size >= ValSize) {
+ FoundBSS = BSSSections[i];
+ break;
+ }
+ }
+
+ // No BSS section spacious enough was found. Crate a new one.
+ if (!FoundBSS) {
+ std::string name = PAN::getUdataSectionName(BSSSections.size());
+ const MCSectionPIC16 *NewSection
+ = getPIC16Section(name.c_str(), MCSectionPIC16::UDATA_Kind());
+
+ FoundBSS = new PIC16Section(NewSection);
+
+ // Add this newly created BSS section to the list of BSSSections.
+ BSSSections.push_back(FoundBSS);
+ }
+
+ // Insert the GV into this BSS.
+ FoundBSS->Items.push_back(GV);
+ FoundBSS->Size += ValSize;
+ return FoundBSS->S_;
+}
+
+const MCSection *
+PIC16TargetObjectFile::getIDATASectionForGlobal(const GlobalVariable *GV) const{
+ assert(GV->hasInitializer() && "This global doesn't need space");
+ Constant *C = GV->getInitializer();
+ assert(!C->isNullValue() && "initialized globals has zero initializer");
+ assert(GV->getType()->getAddressSpace() == PIC16ISD::RAM_SPACE &&
+ "can split initialized RAM data only");
+
+ // Find how much space this global needs.
+ const TargetData *TD = TM->getTargetData();
+ const Type *Ty = C->getType();
+ unsigned ValSize = TD->getTypeAllocSize(Ty);
+
+ // Go through all IDATA Sections and assign this variable
+ // to the first available section having enough space.
+ PIC16Section *FoundIDATA = NULL;
+ for (unsigned i = 0; i < IDATASections.size(); i++) {
+ if (DataBankSize - IDATASections[i]->Size >= ValSize) {
+ FoundIDATA = IDATASections[i];
+ break;
+ }
+ }
+
+ // No IDATA section spacious enough was found. Crate a new one.
+ if (!FoundIDATA) {
+ std::string name = PAN::getIdataSectionName(IDATASections.size());
+ const MCSectionPIC16 *NewSection =
+ getPIC16Section(name.c_str(), MCSectionPIC16::IDATA_Kind());
+
+ FoundIDATA = new PIC16Section(NewSection);
+
+ // Add this newly created IDATA section to the list of IDATASections.
+ IDATASections.push_back(FoundIDATA);
+ }
+
+ // Insert the GV into this IDATA.
+ FoundIDATA->Items.push_back(GV);
+ FoundIDATA->Size += ValSize;
+ return FoundIDATA->S_;
+}
+
+// Get the section for an automatic variable of a function.
+// For PIC16 they are globals only with mangled names.
+const MCSection *
+PIC16TargetObjectFile::getSectionForAuto(const GlobalVariable *GV) const {
+
+ const std::string name = PAN::getSectionNameForSym(GV->getName());
+
+ // Go through all Auto Sections and assign this variable
+ // to the appropriate section.
+ PIC16Section *FoundAutoSec = NULL;
+ for (unsigned i = 0; i < AutosSections.size(); i++) {
+ if (AutosSections[i]->S_->getName() == name) {
+ FoundAutoSec = AutosSections[i];
+ break;
+ }
+ }
+
+ // No Auto section was found. Crate a new one.
+ if (!FoundAutoSec) {
+ const MCSectionPIC16 *NewSection =
+ getPIC16Section(name.c_str(), MCSectionPIC16::UDATA_OVR_Kind());
+
+ FoundAutoSec = new PIC16Section(NewSection);
+
+ // Add this newly created autos section to the list of AutosSections.
+ AutosSections.push_back(FoundAutoSec);
+ }
+
+ // Insert the auto into this section.
+ FoundAutoSec->Items.push_back(GV);
+
+ return FoundAutoSec->S_;
+}
+
+
+// Override default implementation to put the true globals into
+// multiple data sections if required.
+const MCSection *
+PIC16TargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV1,
+ SectionKind Kind,
+ Mangler *Mang,
+ const TargetMachine &TM) const {
+ // We select the section based on the initializer here, so it really
+ // has to be a GlobalVariable.
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(GV1);
+ if (!GV)
+ return TargetLoweringObjectFile::SelectSectionForGlobal(GV1, Kind, Mang,TM);
+
+ // Record External Var Decls.
+ if (GV->isDeclaration()) {
+ ExternalVarDecls->Items.push_back(GV);
+ return ExternalVarDecls->S_;
+ }
+
+ assert(GV->hasInitializer() && "A def without initializer?");
+
+ // First, if this is an automatic variable for a function, get the section
+ // name for it and return.
+ std::string name = GV->getName();
+ if (PAN::isLocalName(name))
+ return getSectionForAuto(GV);
+
+ // Record Exteranl Var Defs.
+ if (GV->hasExternalLinkage() || GV->hasCommonLinkage())
+ ExternalVarDefs->Items.push_back(GV);
+
+ // See if this is an uninitialized global.
+ const Constant *C = GV->getInitializer();
+ if (C->isNullValue())
+ return getBSSSectionForGlobal(GV);
+
+ // If this is initialized data in RAM. Put it in the correct IDATA section.
+ if (GV->getType()->getAddressSpace() == PIC16ISD::RAM_SPACE)
+ return getIDATASectionForGlobal(GV);
+
+ // This is initialized data in rom, put it in the readonly section.
+ if (GV->getType()->getAddressSpace() == PIC16ISD::ROM_SPACE)
+ return getROSectionForGlobal(GV);
+
+ // Else let the default implementation take care of it.
+ return TargetLoweringObjectFile::SelectSectionForGlobal(GV, Kind, Mang,TM);
+}
+
+PIC16TargetObjectFile::~PIC16TargetObjectFile() {
+ for (unsigned i = 0; i < BSSSections.size(); i++)
+ delete BSSSections[i];
+ for (unsigned i = 0; i < IDATASections.size(); i++)
+ delete IDATASections[i];
+ for (unsigned i = 0; i < AutosSections.size(); i++)
+ delete AutosSections[i];
+ for (unsigned i = 0; i < ROSections.size(); i++)
+ delete ROSections[i];
+ delete ExternalVarDecls;
+ delete ExternalVarDefs;
+}
+
+
+/// getSpecialCasedSectionGlobals - Allow the target to completely override
+/// section assignment of a global.
+const MCSection *PIC16TargetObjectFile::
+getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ assert(GV->hasSection());
+
+ if (const GlobalVariable *GVar = cast<GlobalVariable>(GV)) {
+ std::string SectName = GVar->getSection();
+ // If address for a variable is specified, get the address and create
+ // section.
+ std::string AddrStr = "Address=";
+ if (SectName.compare(0, AddrStr.length(), AddrStr) == 0) {
+ std::string SectAddr = SectName.substr(AddrStr.length());
+ return CreateSectionForGlobal(GVar, Mang, SectAddr);
+ }
+
+ // Create the section specified with section attribute.
+ return CreateSectionForGlobal(GVar, Mang);
+ }
+
+ return getPIC16Section(GV->getSection().c_str(), Kind);
+}
+
+// Create a new section for global variable. If Addr is given then create
+// section at that address else create by name.
+const MCSection *
+PIC16TargetObjectFile::CreateSectionForGlobal(const GlobalVariable *GV,
+ Mangler *Mang,
+ const std::string &Addr) const {
+ // See if this is an uninitialized global.
+ const Constant *C = GV->getInitializer();
+ if (C->isNullValue())
+ return CreateBSSSectionForGlobal(GV, Addr);
+
+ // If this is initialized data in RAM. Put it in the correct IDATA section.
+ if (GV->getType()->getAddressSpace() == PIC16ISD::RAM_SPACE)
+ return CreateIDATASectionForGlobal(GV, Addr);
+
+ // This is initialized data in rom, put it in the readonly section.
+ if (GV->getType()->getAddressSpace() == PIC16ISD::ROM_SPACE)
+ return CreateROSectionForGlobal(GV, Addr);
+
+ // Else let the default implementation take care of it.
+ return TargetLoweringObjectFile::SectionForGlobal(GV, Mang, *TM);
+}
+
+// Create uninitialized section for a variable.
+const MCSection *
+PIC16TargetObjectFile::CreateBSSSectionForGlobal(const GlobalVariable *GV,
+ std::string Addr) const {
+ assert(GV->hasInitializer() && "This global doesn't need space");
+ assert(GV->getInitializer()->isNullValue() &&
+ "Unitialized global has non-zero initializer");
+ std::string Name;
+ // If address is given then create a section at that address else create a
+ // section by section name specified in GV.
+ PIC16Section *FoundBSS = NULL;
+ if (Addr.empty()) {
+ Name = GV->getSection() + " UDATA";
+ for (unsigned i = 0; i < BSSSections.size(); i++) {
+ if (BSSSections[i]->S_->getName() == Name) {
+ FoundBSS = BSSSections[i];
+ break;
+ }
+ }
+ } else {
+ std::string Prefix = GV->getNameStr() + "." + Addr + ".";
+ Name = PAN::getUdataSectionName(BSSSections.size(), Prefix) + " " + Addr;
+ }
+
+ PIC16Section *NewBSS = FoundBSS;
+ if (NewBSS == NULL) {
+ const MCSectionPIC16 *NewSection =
+ getPIC16Section(Name.c_str(), MCSectionPIC16::UDATA_Kind());
+ NewBSS = new PIC16Section(NewSection);
+ BSSSections.push_back(NewBSS);
+ }
+
+ // Insert the GV into this BSS.
+ NewBSS->Items.push_back(GV);
+
+ // We do not want to put any GV without explicit section into this section
+ // so set its size to DatabankSize.
+ NewBSS->Size = DataBankSize;
+ return NewBSS->S_;
+}
+
+// Get rom section for a variable. Currently there can be only one rom section
+// unless a variable explicitly requests a section.
+const MCSection *
+PIC16TargetObjectFile::getROSectionForGlobal(const GlobalVariable *GV) const {
+ ROSections[0]->Items.push_back(GV);
+ return ROSections[0]->S_;
+}
+
+// Create initialized data section for a variable.
+const MCSection *
+PIC16TargetObjectFile::CreateIDATASectionForGlobal(const GlobalVariable *GV,
+ std::string Addr) const {
+ assert(GV->hasInitializer() && "This global doesn't need space");
+ assert(!GV->getInitializer()->isNullValue() &&
+ "initialized global has zero initializer");
+ assert(GV->getType()->getAddressSpace() == PIC16ISD::RAM_SPACE &&
+ "can be used for initialized RAM data only");
+
+ std::string Name;
+ // If address is given then create a section at that address else create a
+ // section by section name specified in GV.
+ PIC16Section *FoundIDATASec = NULL;
+ if (Addr.empty()) {
+ Name = GV->getSection() + " IDATA";
+ for (unsigned i = 0; i < IDATASections.size(); i++) {
+ if (IDATASections[i]->S_->getName() == Name) {
+ FoundIDATASec = IDATASections[i];
+ break;
+ }
+ }
+ } else {
+ std::string Prefix = GV->getNameStr() + "." + Addr + ".";
+ Name = PAN::getIdataSectionName(IDATASections.size(), Prefix) + " " + Addr;
+ }
+
+ PIC16Section *NewIDATASec = FoundIDATASec;
+ if (NewIDATASec == NULL) {
+ const MCSectionPIC16 *NewSection =
+ getPIC16Section(Name.c_str(), MCSectionPIC16::IDATA_Kind());
+ NewIDATASec = new PIC16Section(NewSection);
+ IDATASections.push_back(NewIDATASec);
+ }
+ // Insert the GV into this IDATA Section.
+ NewIDATASec->Items.push_back(GV);
+ // We do not want to put any GV without explicit section into this section
+ // so set its size to DatabankSize.
+ NewIDATASec->Size = DataBankSize;
+ return NewIDATASec->S_;
+}
+
+// Create a section in rom for a variable.
+const MCSection *
+PIC16TargetObjectFile::CreateROSectionForGlobal(const GlobalVariable *GV,
+ std::string Addr) const {
+ assert(GV->getType()->getAddressSpace() == PIC16ISD::ROM_SPACE &&
+ "can be used for ROM data only");
+
+ std::string Name;
+ // If address is given then create a section at that address else create a
+ // section by section name specified in GV.
+ PIC16Section *FoundROSec = NULL;
+ if (Addr.empty()) {
+ Name = GV->getSection() + " ROMDATA";
+ for (unsigned i = 1; i < ROSections.size(); i++) {
+ if (ROSections[i]->S_->getName() == Name) {
+ FoundROSec = ROSections[i];
+ break;
+ }
+ }
+ } else {
+ std::string Prefix = GV->getNameStr() + "." + Addr + ".";
+ Name = PAN::getRomdataSectionName(ROSections.size(), Prefix) + " " + Addr;
+ }
+
+ PIC16Section *NewRomSec = FoundROSec;
+ if (NewRomSec == NULL) {
+ const MCSectionPIC16 *NewSection =
+ getPIC16Section(Name.c_str(), MCSectionPIC16::ROMDATA_Kind());
+ NewRomSec = new PIC16Section(NewSection);
+ ROSections.push_back(NewRomSec);
+ }
+
+ // Insert the GV into this ROM Section.
+ NewRomSec->Items.push_back(GV);
+ return NewRomSec->S_;
+}
+
diff --git a/lib/Target/PIC16/PIC16TargetObjectFile.h b/lib/Target/PIC16/PIC16TargetObjectFile.h
new file mode 100644
index 0000000..75f6cce
--- /dev/null
+++ b/lib/Target/PIC16/PIC16TargetObjectFile.h
@@ -0,0 +1,120 @@
+//===-- PIC16TargetObjectFile.h - PIC16 Object Info -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_PIC16_TARGETOBJECTFILE_H
+#define LLVM_TARGET_PIC16_TARGETOBJECTFILE_H
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/ADT/StringMap.h"
+#include <vector>
+#include <string>
+
+namespace llvm {
+ class GlobalVariable;
+ class Module;
+ class PIC16TargetMachine;
+ class MCSectionPIC16;
+
+ enum { DataBankSize = 80 };
+
+ /// PIC16 Splits the global data into mulitple udata and idata sections.
+ /// Each udata and idata section needs to contain a list of globals that
+ /// they contain, in order to avoid scanning over all the global values
+ /// again and printing only those that match the current section.
+ /// Keeping values inside the sections make printing a section much easier.
+ ///
+ /// FIXME: MOVE ALL THIS STUFF TO MCSectionPIC16.
+ ///
+ struct PIC16Section {
+ const MCSectionPIC16 *S_; // Connection to actual Section.
+ unsigned Size; // Total size of the objects contained.
+ bool SectionPrinted;
+ std::vector<const GlobalVariable*> Items;
+
+ PIC16Section(const MCSectionPIC16 *s) {
+ S_ = s;
+ Size = 0;
+ SectionPrinted = false;
+ }
+ bool isPrinted() const { return SectionPrinted; }
+ void setPrintedStatus(bool status) { SectionPrinted = status; }
+ };
+
+ class PIC16TargetObjectFile : public TargetLoweringObjectFile {
+ /// SectionsByName - Bindings of names to allocated sections.
+ mutable StringMap<MCSectionPIC16*> SectionsByName;
+
+ const TargetMachine *TM;
+
+ const MCSectionPIC16 *getPIC16Section(const char *Name,
+ SectionKind K,
+ int Address = -1,
+ int Color = -1) const;
+ public:
+ mutable std::vector<PIC16Section*> BSSSections;
+ mutable std::vector<PIC16Section*> IDATASections;
+ mutable std::vector<PIC16Section*> AutosSections;
+ mutable std::vector<PIC16Section*> ROSections;
+ mutable PIC16Section *ExternalVarDecls;
+ mutable PIC16Section *ExternalVarDefs;
+
+ PIC16TargetObjectFile();
+ ~PIC16TargetObjectFile();
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM);
+
+
+ virtual const MCSection *
+ getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const;
+
+ virtual const MCSection *SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind,
+ Mangler *Mang,
+ const TargetMachine&) const;
+
+ const MCSection *getSectionForFunction(const std::string &FnName) const;
+ const MCSection *getSectionForFunctionFrame(const std::string &FnName)const;
+
+
+ private:
+ std::string getSectionNameForSym(const std::string &Sym) const;
+
+ const MCSection *getBSSSectionForGlobal(const GlobalVariable *GV) const;
+ const MCSection *getIDATASectionForGlobal(const GlobalVariable *GV) const;
+ const MCSection *getSectionForAuto(const GlobalVariable *GV) const;
+ const MCSection *CreateBSSSectionForGlobal(const GlobalVariable *GV,
+ std::string Addr = "") const;
+ const MCSection *CreateIDATASectionForGlobal(const GlobalVariable *GV,
+ std::string Addr = "") const;
+ const MCSection *getROSectionForGlobal(const GlobalVariable *GV) const;
+ const MCSection *CreateROSectionForGlobal(const GlobalVariable *GV,
+ std::string Addr = "") const;
+ const MCSection *CreateSectionForGlobal(const GlobalVariable *GV,
+ Mangler *Mang,
+ const std::string &Addr = "") const;
+ public:
+ void SetSectionForGVs(Module &M);
+ const std::vector<PIC16Section*> &getBSSSections() const {
+ return BSSSections;
+ }
+ const std::vector<PIC16Section*> &getIDATASections() const {
+ return IDATASections;
+ }
+ const std::vector<PIC16Section*> &getAutosSections() const {
+ return AutosSections;
+ }
+ const std::vector<PIC16Section*> &getROSections() const {
+ return ROSections;
+ }
+
+ };
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/PIC16/TargetInfo/CMakeLists.txt b/lib/Target/PIC16/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..bfc6ff4
--- /dev/null
+++ b/lib/Target/PIC16/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMPIC16Info
+ PIC16TargetInfo.cpp
+ )
+
+add_dependencies(LLVMPIC16Info PIC16Table_gen)
diff --git a/lib/Target/PIC16/TargetInfo/Makefile b/lib/Target/PIC16/TargetInfo/Makefile
new file mode 100644
index 0000000..76609f6
--- /dev/null
+++ b/lib/Target/PIC16/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/PIC16/TargetInfo/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMPIC16Info
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/PIC16/TargetInfo/PIC16TargetInfo.cpp b/lib/Target/PIC16/TargetInfo/PIC16TargetInfo.cpp
new file mode 100644
index 0000000..46cc819
--- /dev/null
+++ b/lib/Target/PIC16/TargetInfo/PIC16TargetInfo.cpp
@@ -0,0 +1,21 @@
+//===-- PIC16TargetInfo.cpp - PIC16 Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PIC16.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::ThePIC16Target, llvm::TheCooperTarget;
+
+extern "C" void LLVMInitializePIC16TargetInfo() {
+ RegisterTarget<> X(ThePIC16Target, "pic16", "PIC16 14-bit [experimental]");
+
+ RegisterTarget<> Y(TheCooperTarget, "cooper", "PIC16 Cooper [experimental]");
+}
diff --git a/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp b/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
index 7f1673c..a0fba86 100644
--- a/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
+++ b/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
@@ -24,7 +24,6 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
@@ -32,16 +31,22 @@
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
@@ -52,13 +57,40 @@ STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
class VISIBILITY_HIDDEN PPCAsmPrinter : public AsmPrinter {
protected:
- StringSet<> FnStubs, GVStubs, HiddenGVStubs;
+ struct FnStubInfo {
+ std::string Stub, LazyPtr, AnonSymbol;
+
+ FnStubInfo() {}
+
+ void Init(const GlobalValue *GV, Mangler *Mang) {
+ // Already initialized.
+ if (!Stub.empty()) return;
+ Stub = Mang->getMangledName(GV, "$stub", true);
+ LazyPtr = Mang->getMangledName(GV, "$lazy_ptr", true);
+ AnonSymbol = Mang->getMangledName(GV, "$stub$tmp", true);
+ }
+
+ void Init(const std::string &GV, Mangler *Mang) {
+ // Already initialized.
+ if (!Stub.empty()) return;
+ Stub = Mang->makeNameProper(GV + "$stub",
+ Mangler::Private);
+ LazyPtr = Mang->makeNameProper(GV + "$lazy_ptr",
+ Mangler::Private);
+ AnonSymbol = Mang->makeNameProper(GV + "$stub$tmp",
+ Mangler::Private);
+ }
+ };
+
+ StringMap<FnStubInfo> FnStubs;
+ StringMap<std::string> GVStubs, HiddenGVStubs, TOC;
const PPCSubtarget &Subtarget;
+ uint64_t LabelID;
public:
- explicit PPCAsmPrinter(raw_ostream &O, TargetMachine &TM,
- const TargetAsmInfo *T, bool V)
+ explicit PPCAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V),
- Subtarget(TM.getSubtarget<PPCSubtarget>()) {}
+ Subtarget(TM.getSubtarget<PPCSubtarget>()), LabelID(0) {}
virtual const char *getPassName() const {
return "PowerPC Assembly Printer";
@@ -70,7 +102,7 @@ namespace {
unsigned enumRegToMachineReg(unsigned enumReg) {
switch (enumReg) {
- default: assert(0 && "Unhandled register!"); break;
+ default: llvm_unreachable("Unhandled register!");
case PPC::CR0: return 0;
case PPC::CR1: return 1;
case PPC::CR2: return 2;
@@ -80,14 +112,16 @@ namespace {
case PPC::CR6: return 6;
case PPC::CR7: return 7;
}
- abort();
+ llvm_unreachable(0);
}
/// printInstruction - This method is automatically generated by tablegen
/// from the instruction set description. This method returns true if the
/// machine instruction was sufficiently described to print it, otherwise it
/// returns false.
- bool printInstruction(const MachineInstr *MI);
+ void printInstruction(const MachineInstr *MI);
+ static const char *getRegisterName(unsigned RegNo);
+
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO);
@@ -117,7 +151,7 @@ namespace {
return;
}
- const char *RegName = TM.getRegisterInfo()->get(RegNo).AsmName;
+ const char *RegName = getRegisterName(RegNo);
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
@@ -190,16 +224,16 @@ namespace {
GlobalValue *GV = MO.getGlobal();
if (GV->isDeclaration() || GV->isWeakForLinker()) {
// Dynamically-resolved functions need a stub for the function.
- std::string Name = Mang->getValueName(GV);
- FnStubs.insert(Name);
- printSuffixedName(Name, "$stub");
+ FnStubInfo &FnInfo = FnStubs[Mang->getMangledName(GV)];
+ FnInfo.Init(GV, Mang);
+ O << FnInfo.Stub;
return;
}
}
if (MO.getType() == MachineOperand::MO_ExternalSymbol) {
- std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName();
- FnStubs.insert(Name);
- printSuffixedName(Name, "$stub");
+ FnStubInfo &FnInfo =FnStubs[Mang->makeNameProper(MO.getSymbolName())];
+ FnInfo.Init(MO.getSymbolName(), Mang);
+ O << FnInfo.Stub;
return;
}
}
@@ -281,20 +315,39 @@ namespace {
printOperand(MI, OpNo+1);
}
+ void printTOCEntryLabel(const MachineInstr *MI, unsigned OpNo) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+
+ assert(MO.getType() == MachineOperand::MO_GlobalAddress);
+
+ GlobalValue *GV = MO.getGlobal();
+
+ std::string Name = Mang->getMangledName(GV);
+
+ // Map symbol -> label of TOC entry.
+ if (TOC.count(Name) == 0) {
+ std::string Label;
+ Label += MAI->getPrivateGlobalPrefix();
+ Label += "C";
+ Label += utostr(LabelID++);
+
+ TOC[Name] = Label;
+ }
+
+ O << TOC[Name] << "@toc";
+ }
+
void printPredicateOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier);
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
- virtual bool doFinalization(Module &M) = 0;
-
- virtual void EmitExternalGlobal(const GlobalVariable *GV);
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class VISIBILITY_HIDDEN PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
- explicit PPCLinuxAsmPrinter(raw_ostream &O, PPCTargetMachine &TM,
- const TargetAsmInfo *T, bool V)
+ explicit PPCLinuxAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
: PPCAsmPrinter(O, TM, T, V){}
virtual const char *getPassName() const {
@@ -311,16 +364,16 @@ namespace {
PPCAsmPrinter::getAnalysisUsage(AU);
}
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void PrintGlobalVariable(const GlobalVariable *GVar);
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
/// OS X
class VISIBILITY_HIDDEN PPCDarwinAsmPrinter : public PPCAsmPrinter {
- raw_ostream &OS;
+ formatted_raw_ostream &OS;
public:
- explicit PPCDarwinAsmPrinter(raw_ostream &O, PPCTargetMachine &TM,
- const TargetAsmInfo *T, bool V)
+ explicit PPCDarwinAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
: PPCAsmPrinter(O, TM, T, V), OS(O) {}
virtual const char *getPassName() const {
@@ -328,8 +381,8 @@ namespace {
}
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
bool doFinalization(Module &M);
+ void EmitStartOfAsmFile(Module &M);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
@@ -338,7 +391,7 @@ namespace {
PPCAsmPrinter::getAnalysisUsage(AU);
}
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void PrintGlobalVariable(const GlobalVariable *GVar);
};
} // end of anonymous namespace
@@ -348,54 +401,52 @@ namespace {
void PPCAsmPrinter::printOp(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
- cerr << "printOp() does not handle immediate values\n";
- abort();
- return;
+ llvm_unreachable("printOp() does not handle immediate values");
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_JumpTableIndex:
- O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
// FIXME: PIC relocation model
return;
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
- case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_ExternalSymbol: {
// Computing the address of an external symbol, not calling it.
+ std::string Name(MAI->getGlobalPrefix());
+ Name += MO.getSymbolName();
+
if (TM.getRelocationModel() != Reloc::Static) {
- std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName();
- GVStubs.insert(Name);
- printSuffixedName(Name, "$non_lazy_ptr");
- return;
+ GVStubs[Name] = Name+"$non_lazy_ptr";
+ Name += "$non_lazy_ptr";
}
- O << TAI->getGlobalPrefix() << MO.getSymbolName();
+ O << Name;
return;
+ }
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
GlobalValue *GV = MO.getGlobal();
- std::string Name = Mang->getValueName(GV);
+ std::string Name;
// External or weakly linked global variables need non-lazily-resolved stubs
- if (TM.getRelocationModel() != Reloc::Static) {
- if (GV->isDeclaration() || GV->isWeakForLinker()) {
- if (GV->hasHiddenVisibility()) {
- if (GV->isDeclaration() || GV->hasCommonLinkage() ||
- GV->hasAvailableExternallyLinkage()) {
- HiddenGVStubs.insert(Name);
- printSuffixedName(Name, "$non_lazy_ptr");
- } else {
- O << Name;
- }
- } else {
- GVStubs.insert(Name);
- printSuffixedName(Name, "$non_lazy_ptr");
- }
- return;
+ if (TM.getRelocationModel() != Reloc::Static &&
+ (GV->isDeclaration() || GV->isWeakForLinker())) {
+ if (!GV->hasHiddenVisibility()) {
+ Name = Mang->getMangledName(GV, "$non_lazy_ptr", true);
+ GVStubs[Mang->getMangledName(GV)] = Name;
+ } else if (GV->isDeclaration() || GV->hasCommonLinkage() ||
+ GV->hasAvailableExternallyLinkage()) {
+ Name = Mang->getMangledName(GV, "$non_lazy_ptr", true);
+ HiddenGVStubs[Mang->getMangledName(GV)] = Name;
+ } else {
+ Name = Mang->getMangledName(GV);
}
+ } else {
+ Name = Mang->getMangledName(GV);
}
O << Name;
@@ -409,22 +460,6 @@ void PPCAsmPrinter::printOp(const MachineOperand &MO) {
}
}
-/// EmitExternalGlobal - In this case we need to use the indirect symbol.
-///
-void PPCAsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
- std::string Name;
- getGlobalLinkName(GV, Name);
- if (TM.getRelocationModel() != Reloc::Static) {
- if (GV->hasHiddenVisibility())
- HiddenGVStubs.insert(Name);
- else
- GVStubs.insert(Name);
- printSuffixedName(Name, "$non_lazy_ptr");
- return;
- }
- O << Name;
-}
-
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
@@ -461,15 +496,19 @@ bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
return false;
}
+// At the moment, all inline asm memory operands are a single register.
+// In any case, the output of this routine should always be just one
+// assembler operand.
+
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
- if (MI->getOperand(OpNo).isReg())
- printMemRegReg(MI, OpNo);
- else
- printMemRegImm(MI, OpNo);
+ assert (MI->getOperand(OpNo).isReg());
+ O << "0(";
+ printOperand(MI, OpNo);
+ O << ")";
return false;
}
@@ -505,6 +544,8 @@ void PPCAsmPrinter::printPredicateOperand(const MachineInstr *MI, unsigned OpNo,
///
void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
+
+ processDebugLoc(MI, true);
// Check for slwi/srwi mnemonics.
if (MI->getOpcode() == PPC::RLWINM) {
@@ -549,12 +590,13 @@ void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
}
}
- if (printInstruction(MI))
- return; // Printer was automatically generated
+ printInstruction(MI);
+
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
- assert(0 && "Unhandled instruction in asm writer!");
- abort();
- return;
+ processDebugLoc(MI, false);
}
/// runOnMachineFunction - This uses the printMachineInstruction()
@@ -571,10 +613,10 @@ bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Print out labels for the function.
const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
- default: assert(0 && "Unknown linkage type!");
+ default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage: // Symbols default to internal.
break;
@@ -582,6 +624,7 @@ bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
O << "\t.global\t" << CurrentFnName << '\n'
<< "\t.type\t" << CurrentFnName << ", @function\n";
break;
+ case Function::LinkerPrivateLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
@@ -594,7 +637,19 @@ bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
printVisibility(CurrentFnName, F->getVisibility());
EmitAlignment(MF.getAlignment(), F);
- O << CurrentFnName << ":\n";
+
+ if (Subtarget.isPPC64()) {
+ // Emit an official procedure descriptor.
+ // FIXME 64-bit SVR4: Use MCSection here?
+ O << "\t.section\t\".opd\",\"aw\"\n";
+ O << "\t.align 3\n";
+ O << CurrentFnName << ":\n";
+ O << "\t.quad .L." << CurrentFnName << ",.TOC.@tocbase\n";
+ O << "\t.previous\n";
+ O << ".L." << CurrentFnName << ":\n";
+ } else {
+ O << CurrentFnName << ":\n";
+ }
// Emit pre-function debug information.
DW->BeginFunction(&MF);
@@ -604,8 +659,7 @@ bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
@@ -619,27 +673,16 @@ bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
// Emit post-function debug information.
DW->EndFunction(&MF);
- O.flush();
-
// We didn't modify anything.
return false;
}
-/// PrintUnmangledNameSafely - Print out the printable characters in the name.
-/// Don't print things like \\n or \\0.
-static void PrintUnmangledNameSafely(const Value *V, raw_ostream &OS) {
- for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
- Name != E; ++Name)
- if (isprint(*Name))
- OS << *Name;
-}
-
-void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void PPCLinuxAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
@@ -649,18 +692,17 @@ void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (EmitSpecialLLVMGlobal(GVar))
return;
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
printVisibility(name, GVar->getVisibility());
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
if (C->isNullValue() && /* FIXME: Verify correct */
!GVar->hasSection() &&
@@ -674,13 +716,13 @@ void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << name << ":\n";
O << "\t.zero " << Size << '\n';
} else if (GVar->hasLocalLinkage()) {
- O << TAI->getLCOMMDirective() << name << ',' << Size;
+ O << MAI->getLCOMMDirective() << name << ',' << Size;
} else {
O << ".comm " << name << ',' << Size;
}
if (VerboseAsm) {
- O << "\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
@@ -693,6 +735,7 @@ void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::CommonLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
O << "\t.global " << name << '\n'
<< "\t.type " << name << ", @object\n"
<< "\t.weak " << name << '\n';
@@ -709,15 +752,14 @@ void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
case GlobalValue::PrivateLinkage:
break;
default:
- cerr << "Unknown linkage type!";
- abort();
+ llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
- O << "\t\t\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
@@ -727,10 +769,20 @@ void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
}
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
- // Print out module-level global variables here.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
+ const TargetData *TD = TM.getTargetData();
+
+ bool isPPC64 = TD->getPointerSizeInBits() == 64;
+
+ if (isPPC64 && !TOC.empty()) {
+ // FIXME 64-bit SVR4: Use MCSection here?
+ O << "\t.section\t\".toc\",\"aw\"\n";
+
+ for (StringMap<std::string>::iterator I = TOC.begin(), E = TOC.end();
+ I != E; ++I) {
+ O << I->second << ":\n";
+ O << "\t.tc " << I->getKeyData() << "[TC]," << I->getKeyData() << '\n';
+ }
+ }
return AsmPrinter::doFinalization(M);
}
@@ -749,10 +801,10 @@ bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// Print out labels for the function.
const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
- default: assert(0 && "Unknown linkage type!");
+ default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage: // Symbols default to internal.
break;
@@ -763,6 +815,7 @@ bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
+ case Function::LinkerPrivateLinkage:
O << "\t.globl\t" << CurrentFnName << '\n';
O << "\t.weak_definition\t" << CurrentFnName << '\n';
break;
@@ -789,8 +842,7 @@ bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true, VerboseAsm);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
@@ -810,7 +862,7 @@ bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
}
-bool PPCDarwinAsmPrinter::doInitialization(Module &M) {
+void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
static const char *const CPUDirectives[] = {
"",
"ppc",
@@ -833,26 +885,28 @@ bool PPCDarwinAsmPrinter::doInitialization(Module &M) {
assert(Directive <= PPC::DIR_64 && "Directive out of range.");
O << "\t.machine " << CPUDirectives[Directive] << '\n';
- bool Result = AsmPrinter::doInitialization(M);
- assert(MMI);
-
// Prime text sections so they are adjacent. This reduces the likelihood a
// large data or debug section causes a branch to exceed 16M limit.
- SwitchToTextSection("\t.section __TEXT,__textcoal_nt,coalesced,"
- "pure_instructions");
+ TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
+ OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
if (TM.getRelocationModel() == Reloc::PIC_) {
- SwitchToTextSection("\t.section __TEXT,__picsymbolstub1,symbol_stubs,"
- "pure_instructions,32");
+ OutStreamer.SwitchSection(
+ TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1",
+ MCSectionMachO::S_SYMBOL_STUBS |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ 32, SectionKind::getText()));
} else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
- SwitchToTextSection("\t.section __TEXT,__symbol_stub1,symbol_stubs,"
- "pure_instructions,16");
+ OutStreamer.SwitchSection(
+ TLOFMacho.getMachOSection("__TEXT","__symbol_stub1",
+ MCSectionMachO::S_SYMBOL_STUBS |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ 16, SectionKind::getText()));
}
- SwitchToSection(TAI->getTextSection());
-
- return Result;
+ OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
}
-void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void PPCDarwinAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
@@ -869,8 +923,7 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
return;
}
- std::string name = Mang->getValueName(GVar);
-
+ std::string name = Mang->getMangledName(GVar);
printVisibility(name, GVar->getVisibility());
Constant *C = GVar->getInitializer();
@@ -878,13 +931,17 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ const MCSection *TheSection =
+ getObjFileLowering().SectionForGlobal(GVar, Mang, TM);
+ OutStreamer.SwitchSection(TheSection);
+ /// FIXME: Drive this off the section!
if (C->isNullValue() && /* FIXME: Verify correct */
!GVar->hasSection() &&
(GVar->hasLocalLinkage() || GVar->hasExternalLinkage() ||
GVar->isWeakForLinker()) &&
- TAI->SectionKindForGlobal(GVar) != SectionKind::RODataMergeStr) {
+ // Don't put things that should go in the cstring section into "comm".
+ !TheSection->getKind().isMergeableCString()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (GVar->hasExternalLinkage()) {
@@ -892,15 +949,15 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << "\t.zerofill __DATA, __common, " << name << ", "
<< Size << ", " << Align;
} else if (GVar->hasLocalLinkage()) {
- O << TAI->getLCOMMDirective() << name << ',' << Size << ',' << Align;
+ O << MAI->getLCOMMDirective() << name << ',' << Size << ',' << Align;
} else if (!GVar->hasCommonLinkage()) {
O << "\t.globl " << name << '\n'
- << TAI->getWeakDefDirective() << name << '\n';
+ << MAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
- O << "\t\t\t\t" << TAI->getCommentString() << " ";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t\t\t" << MAI->getCommentString() << " ";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
@@ -912,8 +969,8 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
O << ',' << Align;
}
if (VerboseAsm) {
- O << "\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
@@ -926,6 +983,7 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::CommonLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
O << "\t.globl " << name << '\n'
<< "\t.weak_definition " << name << '\n';
break;
@@ -940,15 +998,14 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
case GlobalValue::PrivateLinkage:
break;
default:
- cerr << "Unknown linkage type!";
- abort();
+ llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
- O << "\t\t\t\t" << TAI->getCommentString() << " '";
- PrintUnmangledNameSafely(GVar, O);
+ O << "\t\t\t\t" << MAI->getCommentString() << " '";
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
@@ -960,141 +1017,110 @@ void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
- // Print out module-level global variables here.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
-
bool isPPC64 = TD->getPointerSizeInBits() == 64;
+ // Darwin/PPC always uses mach-o.
+ TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
+
+
+ const MCSection *LSPSection = 0;
+ if (!FnStubs.empty()) // .lazy_symbol_pointer
+ LSPSection = TLOFMacho.getLazySymbolPointerSection();
+
+
// Output stubs for dynamically-linked functions
- if (TM.getRelocationModel() == Reloc::PIC_) {
- for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end();
- i != e; ++i) {
- SwitchToTextSection("\t.section __TEXT,__picsymbolstub1,symbol_stubs,"
- "pure_instructions,32");
+ if (TM.getRelocationModel() == Reloc::PIC_ && !FnStubs.empty()) {
+ const MCSection *StubSection =
+ TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1",
+ MCSectionMachO::S_SYMBOL_STUBS |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ 32, SectionKind::getText());
+ for (StringMap<FnStubInfo>::iterator I = FnStubs.begin(), E = FnStubs.end();
+ I != E; ++I) {
+ OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
- const char *p = i->getKeyData();
- bool hasQuote = p[0]=='\"';
- printSuffixedName(p, "$stub");
- O << ":\n";
- O << "\t.indirect_symbol " << p << '\n';
+ const FnStubInfo &Info = I->second;
+ O << Info.Stub << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << '\n';
O << "\tmflr r0\n";
- O << "\tbcl 20,31,";
- if (hasQuote)
- O << "\"L0$" << &p[1];
- else
- O << "L0$" << p;
- O << '\n';
- if (hasQuote)
- O << "\"L0$" << &p[1];
- else
- O << "L0$" << p;
- O << ":\n";
+ O << "\tbcl 20,31," << Info.AnonSymbol << '\n';
+ O << Info.AnonSymbol << ":\n";
O << "\tmflr r11\n";
- O << "\taddis r11,r11,ha16(";
- printSuffixedName(p, "$lazy_ptr");
- O << "-";
- if (hasQuote)
- O << "\"L0$" << &p[1];
- else
- O << "L0$" << p;
+ O << "\taddis r11,r11,ha16(" << Info.LazyPtr << "-" << Info.AnonSymbol;
O << ")\n";
O << "\tmtlr r0\n";
- if (isPPC64)
- O << "\tldu r12,lo16(";
- else
- O << "\tlwzu r12,lo16(";
- printSuffixedName(p, "$lazy_ptr");
- O << "-";
- if (hasQuote)
- O << "\"L0$" << &p[1];
- else
- O << "L0$" << p;
- O << ")(r11)\n";
+ O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
+ O << Info.LazyPtr << "-" << Info.AnonSymbol << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
- SwitchToDataSection(".lazy_symbol_pointer");
- printSuffixedName(p, "$lazy_ptr");
- O << ":\n";
- O << "\t.indirect_symbol " << p << '\n';
- if (isPPC64)
- O << "\t.quad dyld_stub_binding_helper\n";
- else
- O << "\t.long dyld_stub_binding_helper\n";
+
+ OutStreamer.SwitchSection(LSPSection);
+ O << Info.LazyPtr << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << '\n';
+ O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
- } else {
- for (StringSet<>::iterator i = FnStubs.begin(), e = FnStubs.end();
- i != e; ++i) {
- SwitchToTextSection("\t.section __TEXT,__symbol_stub1,symbol_stubs,"
- "pure_instructions,16");
+ } else if (!FnStubs.empty()) {
+ const MCSection *StubSection =
+ TLOFMacho.getMachOSection("__TEXT","__symbol_stub1",
+ MCSectionMachO::S_SYMBOL_STUBS |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ 16, SectionKind::getText());
+
+ for (StringMap<FnStubInfo>::iterator I = FnStubs.begin(), E = FnStubs.end();
+ I != E; ++I) {
+ OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
- const char *p = i->getKeyData();
- printSuffixedName(p, "$stub");
- O << ":\n";
- O << "\t.indirect_symbol " << p << '\n';
- O << "\tlis r11,ha16(";
- printSuffixedName(p, "$lazy_ptr");
- O << ")\n";
- if (isPPC64)
- O << "\tldu r12,lo16(";
- else
- O << "\tlwzu r12,lo16(";
- printSuffixedName(p, "$lazy_ptr");
- O << ")(r11)\n";
+ const FnStubInfo &Info = I->second;
+ O << Info.Stub << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << '\n';
+ O << "\tlis r11,ha16(" << Info.LazyPtr << ")\n";
+ O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
+ O << Info.LazyPtr << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
- SwitchToDataSection(".lazy_symbol_pointer");
- printSuffixedName(p, "$lazy_ptr");
- O << ":\n";
- O << "\t.indirect_symbol " << p << '\n';
- if (isPPC64)
- O << "\t.quad dyld_stub_binding_helper\n";
- else
- O << "\t.long dyld_stub_binding_helper\n";
+ OutStreamer.SwitchSection(LSPSection);
+ O << Info.LazyPtr << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << '\n';
+ O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
}
O << '\n';
- if (TAI->doesSupportExceptionHandling() && MMI) {
+ if (MAI->doesSupportExceptionHandling() && MMI) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
const std::vector<Function *> &Personalities = MMI->getPersonalities();
for (std::vector<Function *>::const_iterator I = Personalities.begin(),
- E = Personalities.end(); I != E; ++I)
- if (*I) GVStubs.insert("_" + (*I)->getName());
+ E = Personalities.end(); I != E; ++I) {
+ if (*I)
+ GVStubs[Mang->getMangledName(*I)] =
+ Mang->getMangledName(*I, "$non_lazy_ptr", true);
+ }
}
- // Output stubs for external and common global variables.
+ // Output macho stubs for external and common global variables.
if (!GVStubs.empty()) {
- SwitchToDataSection(".non_lazy_symbol_pointer");
- for (StringSet<>::iterator i = GVStubs.begin(), e = GVStubs.end();
- i != e; ++i) {
- std::string p = i->getKeyData();
- printSuffixedName(p, "$non_lazy_ptr");
- O << ":\n";
- O << "\t.indirect_symbol " << p << '\n';
- if (isPPC64)
- O << "\t.quad\t0\n";
- else
- O << "\t.long\t0\n";
+ // Switch with ".non_lazy_symbol_pointer" directive.
+ OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+
+ for (StringMap<std::string>::iterator I = GVStubs.begin(),
+ E = GVStubs.end(); I != E; ++I) {
+ O << I->second << ":\n";
+ O << "\t.indirect_symbol " << I->getKeyData() << '\n';
+ O << (isPPC64 ? "\t.quad\t0\n" : "\t.long\t0\n");
}
}
if (!HiddenGVStubs.empty()) {
- SwitchToSection(TAI->getDataSection());
- for (StringSet<>::iterator i = HiddenGVStubs.begin(), e = HiddenGVStubs.end();
- i != e; ++i) {
- std::string p = i->getKeyData();
- EmitAlignment(isPPC64 ? 3 : 2);
- printSuffixedName(p, "$non_lazy_ptr");
- O << ":\n";
- if (isPPC64)
- O << "\t.quad\t";
- else
- O << "\t.long\t";
- O << p << '\n';
+ OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
+ EmitAlignment(isPPC64 ? 3 : 2);
+ for (StringMap<std::string>::iterator I = HiddenGVStubs.begin(),
+ E = HiddenGVStubs.end(); I != E; ++I) {
+ O << I->second << ":\n";
+ O << (isPPC64 ? "\t.quad\t" : "\t.long\t") << I->getKeyData() << '\n';
}
}
@@ -1114,28 +1140,19 @@ bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
/// for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
-FunctionPass *llvm::createPPCAsmPrinterPass(raw_ostream &o,
- PPCTargetMachine &tm,
- bool verbose) {
+static AsmPrinter *createPPCAsmPrinterPass(formatted_raw_ostream &o,
+ TargetMachine &tm,
+ const MCAsmInfo *tai,
+ bool verbose) {
const PPCSubtarget *Subtarget = &tm.getSubtarget<PPCSubtarget>();
- if (Subtarget->isDarwin()) {
- return new PPCDarwinAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
- } else {
- return new PPCLinuxAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
- }
-}
-
-namespace {
- static struct Register {
- Register() {
- PPCTargetMachine::registerAsmPrinter(createPPCAsmPrinterPass);
- }
- } Registrator;
+ if (Subtarget->isDarwin())
+ return new PPCDarwinAsmPrinter(o, tm, tai, verbose);
+ return new PPCLinuxAsmPrinter(o, tm, tai, verbose);
}
-extern "C" int PowerPCAsmPrinterForceLink;
-int PowerPCAsmPrinterForceLink = 0;
-
// Force static initialization.
-extern "C" void LLVMInitializePowerPCAsmPrinter() { }
+extern "C" void LLVMInitializePowerPCAsmPrinter() {
+ TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass);
+}
diff --git a/lib/Target/PowerPC/CMakeLists.txt b/lib/Target/PowerPC/CMakeLists.txt
index a6479d8..bdd6d36 100644
--- a/lib/Target/PowerPC/CMakeLists.txt
+++ b/lib/Target/PowerPC/CMakeLists.txt
@@ -20,10 +20,10 @@ add_llvm_target(PowerPCCodeGen
PPCISelLowering.cpp
PPCJITInfo.cpp
PPCMachOWriterInfo.cpp
+ PPCMCAsmInfo.cpp
PPCPredicates.cpp
PPCRegisterInfo.cpp
PPCSubtarget.cpp
- PPCTargetAsmInfo.cpp
PPCTargetMachine.cpp
)
diff --git a/lib/Target/PowerPC/Makefile b/lib/Target/PowerPC/Makefile
index db68897..4015d4a 100644
--- a/lib/Target/PowerPC/Makefile
+++ b/lib/Target/PowerPC/Makefile
@@ -17,6 +17,6 @@ BUILT_SOURCES = PPCGenInstrNames.inc PPCGenRegisterNames.inc \
PPCGenInstrInfo.inc PPCGenDAGISel.inc \
PPCGenSubtarget.inc PPCGenCallingConv.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
index f6c3469..7b98268 100644
--- a/lib/Target/PowerPC/PPC.h
+++ b/lib/Target/PowerPC/PPC.h
@@ -24,16 +24,21 @@ namespace llvm {
class PPCTargetMachine;
class FunctionPass;
class MachineCodeEmitter;
- class raw_ostream;
+ class ObjectCodeEmitter;
+ class formatted_raw_ostream;
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPCISelDag(PPCTargetMachine &TM);
-FunctionPass *createPPCAsmPrinterPass(raw_ostream &OS, PPCTargetMachine &TM,
- bool Verbose);
FunctionPass *createPPCCodeEmitterPass(PPCTargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
- JITCodeEmitter &MCE);
+ JITCodeEmitter &MCE);
+FunctionPass *createPPCObjectCodeEmitterPass(PPCTargetMachine &TM,
+ ObjectCodeEmitter &OCE);
+
+extern Target ThePPC32Target;
+extern Target ThePPC64Target;
+
} // end namespace llvm;
// Defines symbolic names for PowerPC registers. This defines a mapping from
diff --git a/lib/Target/PowerPC/PPCCodeEmitter.cpp b/lib/Target/PowerPC/PPCCodeEmitter.cpp
index cd6018d..0675293 100644
--- a/lib/Target/PowerPC/PPCCodeEmitter.cpp
+++ b/lib/Target/PowerPC/PPCCodeEmitter.cpp
@@ -19,12 +19,15 @@
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
@@ -55,8 +58,7 @@ namespace {
template <class CodeEmitter>
class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass,
- public PPCCodeEmitter
- {
+ public PPCCodeEmitter {
TargetMachine &TM;
CodeEmitter &MCE;
@@ -88,9 +90,10 @@ namespace {
template <class CodeEmitter>
char Emitter<CodeEmitter>::ID = 0;
}
-
+
/// createPPCCodeEmitterPass - Return a pass that emits the collected PPC code
/// to the specified MCE object.
+
FunctionPass *llvm::createPPCCodeEmitterPass(PPCTargetMachine &TM,
MachineCodeEmitter &MCE) {
return new Emitter<MachineCodeEmitter>(TM, MCE);
@@ -101,6 +104,11 @@ FunctionPass *llvm::createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
return new Emitter<JITCodeEmitter>(TM, JCE);
}
+FunctionPass *llvm::createPPCObjectCodeEmitterPass(PPCTargetMachine &TM,
+ ObjectCodeEmitter &OCE) {
+ return new Emitter<ObjectCodeEmitter>(TM, OCE);
+}
+
template <class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
@@ -121,9 +129,10 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
template <class CodeEmitter>
void Emitter<CodeEmitter>::emitBasicBlock(MachineBasicBlock &MBB) {
MCE.StartMachineBasicBlock(&MBB);
-
+
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
const MachineInstr &MI = *I;
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
switch (MI.getOpcode()) {
default:
MCE.emitWordBE(getBinaryCodeForInstr(MI));
@@ -133,6 +142,7 @@ void Emitter<CodeEmitter>::emitBasicBlock(MachineBasicBlock &MBB) {
MCE.emitLabel(MI.getOperand(0).getImm());
break;
case TargetInstrInfo::IMPLICIT_DEF:
+ case TargetInstrInfo::KILL:
break; // pseudo opcode, no side effects
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8:
@@ -141,6 +151,7 @@ void Emitter<CodeEmitter>::emitBasicBlock(MachineBasicBlock &MBB) {
MCE.emitWordBE(0x48000005); // bl 1
break;
}
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
}
}
@@ -172,7 +183,7 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
assert(MovePCtoLROffset && "MovePCtoLR not seen yet?");
}
switch (MI.getOpcode()) {
- default: MI.dump(); assert(0 && "Unknown instruction for relocation!");
+ default: MI.dump(); llvm_unreachable("Unknown instruction for relocation!");
case PPC::LIS:
case PPC::LIS8:
case PPC::ADDIS:
@@ -193,7 +204,7 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
case PPC::LWZ8:
case PPC::LFS:
case PPC::LFD:
-
+
// Stores.
case PPC::STB:
case PPC::STB8:
@@ -214,7 +225,7 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
break;
}
}
-
+
MachineRelocation R;
if (MO.isGlobal()) {
R = MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
@@ -231,7 +242,7 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
R = MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, MO.getIndex(), 0);
}
-
+
// If in PIC mode, we need to encode the negated address of the
// 'movepctolr' into the unrelocated field. After relocation, we'll have
// &gv-&movepctolr-4 in the imm field. Once &movepctolr is added to the imm
@@ -242,7 +253,7 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
R.setConstantVal(-(intptr_t)MovePCtoLROffset - 4);
}
MCE.addRelocation(R);
-
+
} else if (MO.isMBB()) {
unsigned Reloc = 0;
unsigned Opcode = MI.getOpcode();
@@ -252,15 +263,17 @@ unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
Reloc = PPC::reloc_pcrel_bx;
else // BCC instruction
Reloc = PPC::reloc_pcrel_bcx;
+
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc, MO.getMBB()));
} else {
- cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
+#endif
+ llvm_unreachable(0);
}
return rv;
}
#include "PPCGenCodeEmitter.inc"
-
diff --git a/lib/Target/PowerPC/PPCFrameInfo.h b/lib/Target/PowerPC/PPCFrameInfo.h
index 770a560..65f113e 100644
--- a/lib/Target/PowerPC/PPCFrameInfo.h
+++ b/lib/Target/PowerPC/PPCFrameInfo.h
@@ -31,33 +31,32 @@ public:
/// getReturnSaveOffset - Return the previous frame offset to save the
/// return address.
- static unsigned getReturnSaveOffset(bool LP64, bool isDarwinABI) {
+ static unsigned getReturnSaveOffset(bool isPPC64, bool isDarwinABI) {
if (isDarwinABI)
- return LP64 ? 16 : 8;
+ return isPPC64 ? 16 : 8;
// SVR4 ABI:
- return 4;
+ return isPPC64 ? 16 : 4;
}
/// getFramePointerSaveOffset - Return the previous frame offset to save the
/// frame pointer.
- static unsigned getFramePointerSaveOffset(bool LP64, bool isDarwinABI) {
+ static unsigned getFramePointerSaveOffset(bool isPPC64, bool isDarwinABI) {
// For the Darwin ABI:
// Use the TOC save slot in the PowerPC linkage area for saving the frame
// pointer (if needed.) LLVM does not generate code that uses the TOC (R2
// is treated as a caller saved register.)
if (isDarwinABI)
- return LP64 ? 40 : 20;
+ return isPPC64 ? 40 : 20;
- // SVR4 ABI:
- // Save it right before the link register
+ // SVR4 ABI: First slot in the general register save area.
return -4U;
}
/// getLinkageSize - Return the size of the PowerPC ABI linkage area.
///
- static unsigned getLinkageSize(bool LP64, bool isDarwinABI) {
- if (isDarwinABI)
- return 6 * (LP64 ? 8 : 4);
+ static unsigned getLinkageSize(bool isPPC64, bool isDarwinABI) {
+ if (isDarwinABI || isPPC64)
+ return 6 * (isPPC64 ? 8 : 4);
// SVR4 ABI:
return 8;
@@ -65,118 +64,222 @@ public:
/// getMinCallArgumentsSize - Return the size of the minium PowerPC ABI
/// argument area.
- static unsigned getMinCallArgumentsSize(bool LP64, bool isDarwinABI) {
- // For the Darwin ABI:
+ static unsigned getMinCallArgumentsSize(bool isPPC64, bool isDarwinABI) {
+ // For the Darwin ABI / 64-bit SVR4 ABI:
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
- if (isDarwinABI)
- return 8 * (LP64 ? 8 : 4);
+ if (isDarwinABI || isPPC64)
+ return 8 * (isPPC64 ? 8 : 4);
- // SVR4 ABI:
+ // 32-bit SVR4 ABI:
// There is no default stack allocated for the 8 first GPR arguments.
return 0;
}
/// getMinCallFrameSize - Return the minimum size a call frame can be using
/// the PowerPC ABI.
- static unsigned getMinCallFrameSize(bool LP64, bool isDarwinABI) {
+ static unsigned getMinCallFrameSize(bool isPPC64, bool isDarwinABI) {
// The call frame needs to be at least big enough for linkage and 8 args.
- return getLinkageSize(LP64, isDarwinABI) +
- getMinCallArgumentsSize(LP64, isDarwinABI);
+ return getLinkageSize(isPPC64, isDarwinABI) +
+ getMinCallArgumentsSize(isPPC64, isDarwinABI);
}
// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
- const std::pair<unsigned, int> *
+ const SpillSlot *
getCalleeSavedSpillSlots(unsigned &NumEntries) const {
// Early exit if not using the SVR4 ABI.
if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()) {
NumEntries = 0;
return 0;
}
-
- static const std::pair<unsigned, int> Offsets[] = {
+
+ static const SpillSlot Offsets[] = {
// Floating-point register save area offsets.
- std::pair<unsigned, int>(PPC::F31, -8),
- std::pair<unsigned, int>(PPC::F30, -16),
- std::pair<unsigned, int>(PPC::F29, -24),
- std::pair<unsigned, int>(PPC::F28, -32),
- std::pair<unsigned, int>(PPC::F27, -40),
- std::pair<unsigned, int>(PPC::F26, -48),
- std::pair<unsigned, int>(PPC::F25, -56),
- std::pair<unsigned, int>(PPC::F24, -64),
- std::pair<unsigned, int>(PPC::F23, -72),
- std::pair<unsigned, int>(PPC::F22, -80),
- std::pair<unsigned, int>(PPC::F21, -88),
- std::pair<unsigned, int>(PPC::F20, -96),
- std::pair<unsigned, int>(PPC::F19, -104),
- std::pair<unsigned, int>(PPC::F18, -112),
- std::pair<unsigned, int>(PPC::F17, -120),
- std::pair<unsigned, int>(PPC::F16, -128),
- std::pair<unsigned, int>(PPC::F15, -136),
- std::pair<unsigned, int>(PPC::F14, -144),
-
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
// General register save area offsets.
- std::pair<unsigned, int>(PPC::R31, -4),
- std::pair<unsigned, int>(PPC::R30, -8),
- std::pair<unsigned, int>(PPC::R29, -12),
- std::pair<unsigned, int>(PPC::R28, -16),
- std::pair<unsigned, int>(PPC::R27, -20),
- std::pair<unsigned, int>(PPC::R26, -24),
- std::pair<unsigned, int>(PPC::R25, -28),
- std::pair<unsigned, int>(PPC::R24, -32),
- std::pair<unsigned, int>(PPC::R23, -36),
- std::pair<unsigned, int>(PPC::R22, -40),
- std::pair<unsigned, int>(PPC::R21, -44),
- std::pair<unsigned, int>(PPC::R20, -48),
- std::pair<unsigned, int>(PPC::R19, -52),
- std::pair<unsigned, int>(PPC::R18, -56),
- std::pair<unsigned, int>(PPC::R17, -60),
- std::pair<unsigned, int>(PPC::R16, -64),
- std::pair<unsigned, int>(PPC::R15, -68),
- std::pair<unsigned, int>(PPC::R14, -72),
+ {PPC::R31, -4},
+ {PPC::R30, -8},
+ {PPC::R29, -12},
+ {PPC::R28, -16},
+ {PPC::R27, -20},
+ {PPC::R26, -24},
+ {PPC::R25, -28},
+ {PPC::R24, -32},
+ {PPC::R23, -36},
+ {PPC::R22, -40},
+ {PPC::R21, -44},
+ {PPC::R20, -48},
+ {PPC::R19, -52},
+ {PPC::R18, -56},
+ {PPC::R17, -60},
+ {PPC::R16, -64},
+ {PPC::R15, -68},
+ {PPC::R14, -72},
// CR save area offset.
// FIXME SVR4: Disable CR save area for now.
-// std::pair<unsigned, int>(PPC::CR2, -4),
-// std::pair<unsigned, int>(PPC::CR3, -4),
-// std::pair<unsigned, int>(PPC::CR4, -4),
-// std::pair<unsigned, int>(PPC::CR2LT, -4),
-// std::pair<unsigned, int>(PPC::CR2GT, -4),
-// std::pair<unsigned, int>(PPC::CR2EQ, -4),
-// std::pair<unsigned, int>(PPC::CR2UN, -4),
-// std::pair<unsigned, int>(PPC::CR3LT, -4),
-// std::pair<unsigned, int>(PPC::CR3GT, -4),
-// std::pair<unsigned, int>(PPC::CR3EQ, -4),
-// std::pair<unsigned, int>(PPC::CR3UN, -4),
-// std::pair<unsigned, int>(PPC::CR4LT, -4),
-// std::pair<unsigned, int>(PPC::CR4GT, -4),
-// std::pair<unsigned, int>(PPC::CR4EQ, -4),
-// std::pair<unsigned, int>(PPC::CR4UN, -4),
+// {PPC::CR2, -4},
+// {PPC::CR3, -4},
+// {PPC::CR4, -4},
+// {PPC::CR2LT, -4},
+// {PPC::CR2GT, -4},
+// {PPC::CR2EQ, -4},
+// {PPC::CR2UN, -4},
+// {PPC::CR3LT, -4},
+// {PPC::CR3GT, -4},
+// {PPC::CR3EQ, -4},
+// {PPC::CR3UN, -4},
+// {PPC::CR4LT, -4},
+// {PPC::CR4GT, -4},
+// {PPC::CR4EQ, -4},
+// {PPC::CR4UN, -4},
// VRSAVE save area offset.
- std::pair<unsigned, int>(PPC::VRSAVE, -4),
-
+ {PPC::VRSAVE, -4},
+
// Vector register save area
- std::pair<unsigned, int>(PPC::V31, -16),
- std::pair<unsigned, int>(PPC::V30, -32),
- std::pair<unsigned, int>(PPC::V29, -48),
- std::pair<unsigned, int>(PPC::V28, -64),
- std::pair<unsigned, int>(PPC::V27, -80),
- std::pair<unsigned, int>(PPC::V26, -96),
- std::pair<unsigned, int>(PPC::V25, -112),
- std::pair<unsigned, int>(PPC::V24, -128),
- std::pair<unsigned, int>(PPC::V23, -144),
- std::pair<unsigned, int>(PPC::V22, -160),
- std::pair<unsigned, int>(PPC::V21, -176),
- std::pair<unsigned, int>(PPC::V20, -192)
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192}
};
-
- NumEntries = array_lengthof(Offsets);
-
- return Offsets;
+
+ static const SpillSlot Offsets64[] = {
+ // Floating-point register save area offsets.
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
+ // General register save area offsets.
+ // FIXME 64-bit SVR4: Are 32-bit registers actually allocated in 64-bit
+ // mode?
+ {PPC::R31, -4},
+ {PPC::R30, -12},
+ {PPC::R29, -20},
+ {PPC::R28, -28},
+ {PPC::R27, -36},
+ {PPC::R26, -44},
+ {PPC::R25, -52},
+ {PPC::R24, -60},
+ {PPC::R23, -68},
+ {PPC::R22, -76},
+ {PPC::R21, -84},
+ {PPC::R20, -92},
+ {PPC::R19, -100},
+ {PPC::R18, -108},
+ {PPC::R17, -116},
+ {PPC::R16, -124},
+ {PPC::R15, -132},
+ {PPC::R14, -140},
+
+ {PPC::X31, -8},
+ {PPC::X30, -16},
+ {PPC::X29, -24},
+ {PPC::X28, -32},
+ {PPC::X27, -40},
+ {PPC::X26, -48},
+ {PPC::X25, -56},
+ {PPC::X24, -64},
+ {PPC::X23, -72},
+ {PPC::X22, -80},
+ {PPC::X21, -88},
+ {PPC::X20, -96},
+ {PPC::X19, -104},
+ {PPC::X18, -112},
+ {PPC::X17, -120},
+ {PPC::X16, -128},
+ {PPC::X15, -136},
+ {PPC::X14, -144},
+
+ // CR save area offset.
+ // FIXME SVR4: Disable CR save area for now.
+// {PPC::CR2, -4},
+// {PPC::CR3, -4},
+// {PPC::CR4, -4},
+// {PPC::CR2LT, -4},
+// {PPC::CR2GT, -4},
+// {PPC::CR2EQ, -4},
+// {PPC::CR2UN, -4},
+// {PPC::CR3LT, -4},
+// {PPC::CR3GT, -4},
+// {PPC::CR3EQ, -4},
+// {PPC::CR3UN, -4},
+// {PPC::CR4LT, -4},
+// {PPC::CR4GT, -4},
+// {PPC::CR4EQ, -4},
+// {PPC::CR4UN, -4},
+
+ // VRSAVE save area offset.
+ {PPC::VRSAVE, -4},
+
+ // Vector register save area
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192}
+ };
+
+ if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
+ NumEntries = array_lengthof(Offsets64);
+
+ return Offsets64;
+ } else {
+ NumEntries = array_lengthof(Offsets);
+
+ return Offsets;
+ }
}
};
diff --git a/lib/Target/PowerPC/PPCHazardRecognizers.cpp b/lib/Target/PowerPC/PPCHazardRecognizers.cpp
index ec3e757..6af7e0f 100644
--- a/lib/Target/PowerPC/PPCHazardRecognizers.cpp
+++ b/lib/Target/PowerPC/PPCHazardRecognizers.cpp
@@ -17,6 +17,8 @@
#include "PPCInstrInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -51,7 +53,7 @@ PPCHazardRecognizer970::PPCHazardRecognizer970(const TargetInstrInfo &tii)
}
void PPCHazardRecognizer970::EndDispatchGroup() {
- DOUT << "=== Start of dispatch group\n";
+ DEBUG(errs() << "=== Start of dispatch group\n");
NumIssued = 0;
// Structural hazard info.
@@ -141,7 +143,7 @@ getHazardType(SUnit *SU) {
return Hazard;
switch (InstrType) {
- default: assert(0 && "Unknown instruction type!");
+ default: llvm_unreachable("Unknown instruction type!");
case PPCII::PPC970_FXU:
case PPCII::PPC970_LSU:
case PPCII::PPC970_FPU:
@@ -167,7 +169,7 @@ getHazardType(SUnit *SU) {
if (isLoad && NumStores) {
unsigned LoadSize;
switch (Opcode) {
- default: assert(0 && "Unknown load!");
+ default: llvm_unreachable("Unknown load!");
case PPC::LBZ: case PPC::LBZU:
case PPC::LBZX:
case PPC::LBZ8: case PPC::LBZU8:
@@ -235,7 +237,7 @@ void PPCHazardRecognizer970::EmitInstruction(SUnit *SU) {
if (isStore) {
unsigned ThisStoreSize;
switch (Opcode) {
- default: assert(0 && "Unknown store instruction!");
+ default: llvm_unreachable("Unknown store instruction!");
case PPC::STB: case PPC::STB8:
case PPC::STBU: case PPC::STBU8:
case PPC::STBX: case PPC::STBX8:
diff --git a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
index 823e316..8fa6a66 100644
--- a/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ b/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -20,6 +20,7 @@
#include "PPCHazardRecognizers.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
@@ -31,6 +32,8 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
@@ -49,17 +52,12 @@ namespace {
PPCLowering(*TM.getTargetLowering()),
PPCSubTarget(*TM.getSubtargetImpl()) {}
- virtual bool runOnFunction(Function &Fn) {
- // Do not codegen any 'available_externally' functions at all, they have
- // definitions outside the translation unit.
- if (Fn.hasAvailableExternallyLinkage())
- return false;
-
+ virtual bool runOnMachineFunction(MachineFunction &MF) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
- SelectionDAGISel::runOnFunction(Fn);
+ SelectionDAGISel::runOnMachineFunction(MF);
- InsertVRSaveCode(Fn);
+ InsertVRSaveCode(MF);
return true;
}
@@ -145,30 +143,14 @@ namespace {
}
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
- /// inline asm expressions.
- virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ /// inline asm expressions. It is always correct to compute the value into
+ /// a register. The case of adding a (possibly relocatable) constant to a
+ /// register can be improved, but it is wrong to substitute Reg+Reg for
+ /// Reg in an asm, because the load or store opcode would have to change.
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
- SDValue Op0, Op1;
- switch (ConstraintCode) {
- default: return true;
- case 'm': // memory
- if (!SelectAddrIdx(Op, Op, Op0, Op1))
- SelectAddrImm(Op, Op, Op0, Op1);
- break;
- case 'o': // offsetable
- if (!SelectAddrImm(Op, Op, Op0, Op1)) {
- Op0 = Op;
- Op1 = getSmallIPtrImm(0);
- }
- break;
- case 'v': // not offsetable
- SelectAddrIdxOnly(Op, Op, Op0, Op1);
- break;
- }
-
- OutOps.push_back(Op0);
- OutOps.push_back(Op1);
+ OutOps.push_back(Op);
return false;
}
@@ -179,7 +161,7 @@ namespace {
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelect();
- void InsertVRSaveCode(Function &Fn);
+ void InsertVRSaveCode(MachineFunction &MF);
virtual const char *getPassName() const {
return "PowerPC DAG->DAG Pattern Instruction Selection";
@@ -216,13 +198,12 @@ void PPCDAGToDAGISel::InstructionSelect() {
/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
/// check to see if we need to save/restore VRSAVE. If so, do it.
-void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
+void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
// Check to see if this function uses vector registers, which means we have to
// save and restore the VRSAVE register and update it with the regs we use.
//
// In this case, there will be virtual registers of vector type type created
// by the scheduler. Detect them now.
- MachineFunction &Fn = MachineFunction::get(&F);
bool HasVectorVReg = false;
for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
e = RegInfo->getLastVirtReg()+1; i != e; ++i)
@@ -285,7 +266,7 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
const TargetInstrInfo &TII = *TM.getInstrInfo();
// Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = BB->getParent()->front();
+ MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc dl = DebugLoc::getUnknownLoc();
@@ -488,7 +469,7 @@ SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
SH &= 31;
SDValue Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
getI32Imm(ME) };
- return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
}
}
return 0;
@@ -507,12 +488,12 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
if (isInt32Immediate(RHS, Imm)) {
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
if (isUInt16(Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
// If this is a 16-bit signed immediate, fold it.
if (isInt16((int)Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
// For non-equality comparisons, the default code would materialize the
// constant, then compare against it, like this:
@@ -523,22 +504,22 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
// xoris r0,r3,0x1234
// cmplwi cr0,r0,0x5678
// beq cr0,L6
- SDValue Xor(CurDAG->getTargetNode(PPC::XORIS, dl, MVT::i32, LHS,
- getI32Imm(Imm >> 16)), 0);
- return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, Xor,
- getI32Imm(Imm & 0xFFFF)), 0);
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
+ getI32Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
+ getI32Imm(Imm & 0xFFFF)), 0);
}
Opc = PPC::CMPLW;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPLWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
Opc = PPC::CMPLW;
} else {
short SImm;
if (isIntS16Immediate(RHS, SImm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPWI, dl, MVT::i32, LHS,
- getI32Imm((int)SImm & 0xFFFF)),
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm((int)SImm & 0xFFFF)),
0);
Opc = PPC::CMPW;
}
@@ -548,12 +529,12 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
if (isInt64Immediate(RHS.getNode(), Imm)) {
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
if (isUInt16(Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
// If this is a 16-bit signed immediate, fold it.
if (isInt16(Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
// For non-equality comparisons, the default code would materialize the
// constant, then compare against it, like this:
@@ -565,23 +546,23 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
// cmpldi cr0,r0,0x5678
// beq cr0,L6
if (isUInt32(Imm)) {
- SDValue Xor(CurDAG->getTargetNode(PPC::XORIS8, dl, MVT::i64, LHS,
- getI64Imm(Imm >> 16)), 0);
- return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, Xor,
- getI64Imm(Imm & 0xFFFF)), 0);
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
+ getI64Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
+ getI64Imm(Imm & 0xFFFF)), 0);
}
}
Opc = PPC::CMPLD;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt64Immediate(RHS.getNode(), Imm) && isUInt16(Imm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPLDI, dl, MVT::i64, LHS,
- getI64Imm(Imm & 0xFFFF)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI64Imm(Imm & 0xFFFF)), 0);
Opc = PPC::CMPLD;
} else {
short SImm;
if (isIntS16Immediate(RHS, SImm))
- return SDValue(CurDAG->getTargetNode(PPC::CMPDI, dl, MVT::i64, LHS,
- getI64Imm(SImm & 0xFFFF)),
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI64Imm(SImm & 0xFFFF)),
0);
Opc = PPC::CMPD;
}
@@ -591,7 +572,7 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
Opc = PPC::FCMPUD;
}
- return SDValue(CurDAG->getTargetNode(Opc, dl, MVT::i32, LHS, RHS), 0);
+ return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
}
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
@@ -600,8 +581,8 @@ static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
case ISD::SETONE:
case ISD::SETOLE:
case ISD::SETOGE:
- assert(0 && "Should be lowered by legalize!");
- default: assert(0 && "Unknown condition!"); abort();
+ llvm_unreachable("Should be lowered by legalize!");
+ default: llvm_unreachable("Unknown condition!");
case ISD::SETOEQ:
case ISD::SETEQ: return PPC::PRED_EQ;
case ISD::SETUNE:
@@ -632,7 +613,7 @@ static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
Invert = false;
Other = -1;
switch (CC) {
- default: assert(0 && "Unknown condition!"); abort();
+ default: llvm_unreachable("Unknown condition!");
case ISD::SETOLT:
case ISD::SETLT: return 0; // Bit #0 = SETOLT
case ISD::SETOGT:
@@ -651,7 +632,7 @@ static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
case ISD::SETOGE:
case ISD::SETOLE:
case ISD::SETONE:
- assert(0 && "Invalid branch code: should be expanded by legalize");
+ llvm_unreachable("Invalid branch code: should be expanded by legalize");
// These are invalid for floating point. Assume integer.
case ISD::SETULT: return 0;
case ISD::SETUGT: return 1;
@@ -673,14 +654,14 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
switch (CC) {
default: break;
case ISD::SETEQ: {
- Op = SDValue(CurDAG->getTargetNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
+ Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
case ISD::SETNE: {
SDValue AD =
- SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
- Op, getI32Imm(~0U)), 0);
+ SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
+ Op, getI32Imm(~0U)), 0);
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
AD.getValue(1));
}
@@ -690,8 +671,8 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
}
case ISD::SETGT: {
SDValue T =
- SDValue(CurDAG->getTargetNode(PPC::NEG, dl, MVT::i32, Op), 0);
- T = SDValue(CurDAG->getTargetNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
+ SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
+ T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
@@ -701,31 +682,31 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
switch (CC) {
default: break;
case ISD::SETEQ:
- Op = SDValue(CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
- Op, getI32Imm(1)), 0);
+ Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
+ Op, getI32Imm(1)), 0);
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDValue(CurDAG->getTargetNode(PPC::LI, dl,
- MVT::i32,
- getI32Imm(0)), 0),
+ SDValue(CurDAG->getMachineNode(PPC::LI, dl,
+ MVT::i32,
+ getI32Imm(0)), 0),
Op.getValue(1));
case ISD::SETNE: {
- Op = SDValue(CurDAG->getTargetNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
- SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
- Op, getI32Imm(~0U));
+ Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
+ SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
+ Op, getI32Imm(~0U));
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
Op, SDValue(AD, 1));
}
case ISD::SETLT: {
- SDValue AD = SDValue(CurDAG->getTargetNode(PPC::ADDI, dl, MVT::i32, Op,
- getI32Imm(1)), 0);
- SDValue AN = SDValue(CurDAG->getTargetNode(PPC::AND, dl, MVT::i32, AD,
- Op), 0);
+ SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
+ getI32Imm(1)), 0);
+ SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
+ Op), 0);
SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
case ISD::SETGT: {
SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
- Op = SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
+ Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
0);
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
getI32Imm(1));
@@ -748,10 +729,10 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
InFlag).getValue(1);
if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
- IntCR = SDValue(CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
- CCReg), 0);
+ IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
+ CCReg), 0);
else
- IntCR = SDValue(CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, CCReg), 0);
+ IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCR, dl, MVT::i32, CCReg), 0);
SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
getI32Imm(31), getI32Imm(31) };
@@ -760,7 +741,7 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
// Get the specified bit.
SDValue Tmp =
- SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
+ SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
if (Inv) {
assert(OtherCondIdx == -1 && "Can't have split plus negation");
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
@@ -772,7 +753,7 @@ SDNode *PPCDAGToDAGISel::SelectSETCC(SDValue Op) {
// Get the other bit of the comparison.
Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
SDValue OtherCond =
- SDValue(CurDAG->getTargetNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
+ SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
}
@@ -825,17 +806,17 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
// Simple value.
if (isInt16(Imm)) {
// Just the Lo bits.
- Result = CurDAG->getTargetNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
+ Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
} else if (Lo) {
// Handle the Hi bits.
unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getTargetNode(OpC, dl, MVT::i64, getI32Imm(Hi));
+ Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
// And Lo bits.
- Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Lo));
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
} else {
// Just the Hi bits.
- Result = CurDAG->getTargetNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
+ Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
}
// If no shift, we're done.
@@ -843,19 +824,20 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
// Shift for next step if the upper 32-bits were not zero.
if (Imm) {
- Result = CurDAG->getTargetNode(PPC::RLDICR, dl, MVT::i64,
- SDValue(Result, 0),
- getI32Imm(Shift), getI32Imm(63 - Shift));
+ Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
+ SDValue(Result, 0),
+ getI32Imm(Shift),
+ getI32Imm(63 - Shift));
}
// Add in the last bits as required.
if ((Hi = (Remainder >> 16) & 0xFFFF)) {
- Result = CurDAG->getTargetNode(PPC::ORIS8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Hi));
+ Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Hi));
}
if ((Lo = Remainder & 0xFFFF)) {
- Result = CurDAG->getTargetNode(PPC::ORI8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Lo));
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
}
return Result;
@@ -875,18 +857,18 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
getSmallIPtrImm(0));
- return CurDAG->getTargetNode(Opc, dl, Op.getValueType(), TFI,
- getSmallIPtrImm(0));
+ return CurDAG->getMachineNode(Opc, dl, Op.getValueType(), TFI,
+ getSmallIPtrImm(0));
}
case PPCISD::MFCR: {
SDValue InFlag = N->getOperand(1);
// Use MFOCRF if supported.
if (PPCSubTarget.isGigaProcessor())
- return CurDAG->getTargetNode(PPC::MFOCRF, dl, MVT::i32,
- N->getOperand(0), InFlag);
+ return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
+ N->getOperand(0), InFlag);
else
- return CurDAG->getTargetNode(PPC::MFCR, dl, MVT::i32, InFlag);
+ return CurDAG->getMachineNode(PPC::MFCR, dl, MVT::i32, InFlag);
}
case ISD::SDIV: {
@@ -900,17 +882,17 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
SDValue N0 = N->getOperand(0);
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
SDNode *Op =
- CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
- N0, getI32Imm(Log2_32(Imm)));
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
+ N0, getI32Imm(Log2_32(Imm)));
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
SDValue(Op, 0), SDValue(Op, 1));
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
SDNode *Op =
- CurDAG->getTargetNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
- N0, getI32Imm(Log2_32(-Imm)));
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
+ N0, getI32Imm(Log2_32(-Imm)));
SDValue PT =
- SDValue(CurDAG->getTargetNode(PPC::ADDZE, dl, MVT::i32,
- SDValue(Op, 0), SDValue(Op, 1)),
+ SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1)),
0);
return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
}
@@ -923,7 +905,7 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
case ISD::LOAD: {
// Handle preincrement loads.
LoadSDNode *LD = cast<LoadSDNode>(Op);
- MVT LoadedVT = LD->getMemoryVT();
+ EVT LoadedVT = LD->getMemoryVT();
// Normal loads are handled by code generated from the .td file.
if (LD->getAddressingMode() != ISD::PRE_INC)
@@ -938,8 +920,8 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
if (LD->getValueType(0) != MVT::i64) {
// Handle PPC32 integer and normal FP loads.
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT.getSimpleVT()) {
- default: assert(0 && "Invalid PPC load type!");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
case MVT::f64: Opcode = PPC::LFDU; break;
case MVT::f32: Opcode = PPC::LFSU; break;
case MVT::i32: Opcode = PPC::LWZU; break;
@@ -950,8 +932,8 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
} else {
assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT.getSimpleVT()) {
- default: assert(0 && "Invalid PPC load type!");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
case MVT::i64: Opcode = PPC::LDU; break;
case MVT::i32: Opcode = PPC::LWZU8; break;
case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
@@ -964,11 +946,11 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
SDValue Base = LD->getBasePtr();
SDValue Ops[] = { Offset, Base, Chain };
// FIXME: PPC64
- return CurDAG->getTargetNode(Opcode, dl, LD->getValueType(0),
- PPCLowering.getPointerTy(),
- MVT::Other, Ops, 3);
+ return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
+ PPCLowering.getPointerTy(),
+ MVT::Other, Ops, 3);
} else {
- assert(0 && "R+R preindex loads not supported yet!");
+ llvm_unreachable("R+R preindex loads not supported yet!");
}
}
@@ -1008,7 +990,7 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
SDValue Ops[] = { N->getOperand(0).getOperand(0),
N->getOperand(0).getOperand(1),
getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
- return CurDAG->getTargetNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
}
}
@@ -1058,8 +1040,8 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
// FIXME: Implement this optzn for PPC64.
N->getValueType(0) == MVT::i32) {
SDNode *Tmp =
- CurDAG->getTargetNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
- N->getOperand(0), getI32Imm(~0U));
+ CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
+ N->getOperand(0), getI32Imm(~0U));
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
SDValue(Tmp, 0), N->getOperand(0),
SDValue(Tmp, 1));
@@ -1109,51 +1091,10 @@ SDNode *PPCDAGToDAGISel::Select(SDValue Op) {
SDValue Chain = N->getOperand(0);
SDValue Target = N->getOperand(1);
unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
- Chain = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Target,
- Chain), 0);
+ Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target,
+ Chain), 0);
return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
}
- case ISD::DECLARE: {
- SDValue Chain = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
- SDValue N2 = N->getOperand(2);
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
-
- // FIXME: We need to handle this for VLAs.
- if (!FINode) {
- ReplaceUses(Op.getValue(0), Chain);
- return NULL;
- }
-
- if (N2.getOpcode() == ISD::ADD) {
- if (N2.getOperand(0).getOpcode() == ISD::ADD &&
- N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
- N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Hi &&
- N2.getOperand(1).getOpcode() == PPCISD::Lo)
- N2 = N2.getOperand(0).getOperand(1).getOperand(0);
- else if (N2.getOperand(0).getOpcode() == ISD::ADD &&
- N2.getOperand(0).getOperand(0).getOpcode() == PPCISD::GlobalBaseReg &&
- N2.getOperand(0).getOperand(1).getOpcode() == PPCISD::Lo &&
- N2.getOperand(1).getOpcode() == PPCISD::Hi)
- N2 = N2.getOperand(0).getOperand(1).getOperand(0);
- else if (N2.getOperand(0).getOpcode() == PPCISD::Hi &&
- N2.getOperand(1).getOpcode() == PPCISD::Lo)
- N2 = N2.getOperand(0).getOperand(0);
- }
-
- // If we don't have a global address here, the debug info is mangled, just
- // drop it.
- if (!isa<GlobalAddressSDNode>(N2)) {
- ReplaceUses(Op.getValue(0), Chain);
- return NULL;
- }
- int FI = cast<FrameIndexSDNode>(N1)->getIndex();
- GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();
- SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
- SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
- return CurDAG->SelectNodeTo(N, TargetInstrInfo::DECLARE,
- MVT::Other, Tmp1, Tmp2, Chain);
- }
}
return SelectCode(Op);
diff --git a/lib/Target/PowerPC/PPCISelLowering.cpp b/lib/Target/PowerPC/PPCISelLowering.cpp
index 1c6b287..3920b38 100644
--- a/lib/Target/PowerPC/PPCISelLowering.cpp
+++ b/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -31,21 +31,24 @@
#include "llvm/Intrinsics.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/DerivedTypes.h"
using namespace llvm;
-static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
+ EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
-static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
+ EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
@@ -54,8 +57,15 @@ static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
cl::desc("enable preincrement load/store generation on PPC (experimental)"),
cl::Hidden);
+static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
+ if (TM.getSubtargetImpl()->isDarwin())
+ return new TargetLoweringObjectFileMachO();
+ return new TargetLoweringObjectFileELF();
+}
+
+
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
- : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
+ : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
setPow2DivIsCheap();
@@ -193,9 +203,6 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
- // RET must be custom lowered, to meet ABI requirements.
- setOperationAction(ISD::RET , MVT::Other, Custom);
-
// TRAP is legal.
setOperationAction(ISD::TRAP, MVT::Other, Legal);
@@ -205,8 +212,9 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
- // VAARG is custom lowered with the SVR4 ABI
- if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI())
+ // VAARG is custom lowered with the 32-bit SVR4 ABI.
+ if ( TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
+ && !TM.getSubtarget<PPCSubtarget>().isPPC64())
setOperationAction(ISD::VAARG, MVT::Other, Custom);
else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
@@ -276,7 +284,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , VT, Legal);
@@ -412,6 +420,7 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::VPERM: return "PPCISD::VPERM";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
+ case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
case PPCISD::SRL: return "PPCISD::SRL";
@@ -421,6 +430,7 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::STD_32: return "PPCISD::STD_32";
case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4";
case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin";
+ case PPCISD::NOP: return "PPCISD::NOP";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin";
case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4";
@@ -438,12 +448,11 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
case PPCISD::MTFSF: return "PPCISD::MTFSF";
- case PPCISD::TAILCALL: return "PPCISD::TAILCALL";
case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
}
}
-MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
+MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i32;
}
@@ -900,7 +909,7 @@ bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
- Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
+ Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
return true;
}
}
@@ -1012,7 +1021,7 @@ bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
- Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
+ Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
return true;
}
}
@@ -1038,7 +1047,7 @@ bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
if (!EnablePPCPreinc) return false;
SDValue Ptr;
- MVT VT;
+ EVT VT;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
@@ -1086,7 +1095,7 @@ bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Constant *C = CP->getConstVal();
SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
@@ -1120,7 +1129,7 @@ SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
}
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
SDValue Zero = DAG.getConstant(0, PtrVT);
@@ -1154,13 +1163,13 @@ SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) {
- assert(0 && "TLS not implemented for PPC.");
+ llvm_unreachable("TLS not implemented for PPC.");
return SDValue(); // Not reached
}
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) {
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
GlobalValue *GV = GSDN->getGlobal();
SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
@@ -1170,6 +1179,13 @@ SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
const TargetMachine &TM = DAG.getTarget();
+ // 64-bit SVR4 ABI code is always position-independent.
+ // The actual address of the GlobalValue is stored in the TOC.
+ if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
+ DAG.getRegister(PPC::X2, MVT::i64));
+ }
+
SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
@@ -1191,7 +1207,7 @@ SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
- if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
+ if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
return Lo;
// If the global is weak or external, we have to go through the lazy
@@ -1208,7 +1224,7 @@ SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
// fold the new nodes.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (C->isNullValue() && CC == ISD::SETEQ) {
- MVT VT = Op.getOperand(0).getValueType();
+ EVT VT = Op.getOperand(0).getValueType();
SDValue Zext = Op.getOperand(0);
if (VT.bitsLT(MVT::i32)) {
VT = MVT::i32;
@@ -1232,9 +1248,9 @@ SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
// condition register, reading it back out, and masking the correct bit. The
// normal approach here uses sub to do this instead of xor. Using xor exposes
// the result to other bit-twiddling opportunities.
- MVT LHSVT = Op.getOperand(0).getValueType();
+ EVT LHSVT = Op.getOperand(0).getValueType();
if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
@@ -1249,7 +1265,7 @@ SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
unsigned VarArgsNumFPR,
const PPCSubtarget &Subtarget) {
- assert(0 && "VAARG not yet implemented for the SVR4 ABI!");
+ llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
return SDValue(); // Not reached
}
@@ -1260,10 +1276,11 @@ SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
DebugLoc dl = Op.getDebugLoc();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = (PtrVT == MVT::i64);
const Type *IntPtrTy =
- DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
+ DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
+ *DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
@@ -1281,8 +1298,9 @@ SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
// Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
std::pair<SDValue, SDValue> CallResult =
- LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
- false, false, 0, CallingConv::C, false,
+ LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
+ false, false, false, false, 0, CallingConv::C, false,
+ /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__trampoline_setup", PtrVT),
Args, DAG, dl);
@@ -1300,16 +1318,16 @@ SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) {
DebugLoc dl = Op.getDebugLoc();
- if (Subtarget.isDarwinABI()) {
+ if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
}
- // For the SVR4 ABI we follow the layout of the va_list struct.
+ // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
// We suppose the given va_list is already allocated.
//
// typedef struct {
@@ -1338,7 +1356,7 @@ SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
@@ -1380,15 +1398,15 @@ SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
#include "PPCGenCallingConv.inc"
-static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
return true;
}
-static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
+ EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -1414,8 +1432,8 @@ static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
return false;
}
-static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
- MVT &LocVT,
+static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
+ EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
@@ -1442,29 +1460,20 @@ static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
}
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
-/// depending on which subtarget is selected.
-static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
- if (Subtarget.isDarwinABI()) {
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
- };
- return FPR;
- }
-
-
+/// on Darwin.
+static const unsigned *GetFPR() {
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
+
return FPR;
}
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
/// the stack.
-static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
+static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
unsigned PtrByteSize) {
- MVT ArgVT = Arg.getValueType();
unsigned ArgSize = ArgVT.getSizeInBits()/8;
if (Flags.isByVal())
ArgSize = Flags.getByValSize();
@@ -1474,14 +1483,31 @@ static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
}
SDValue
-PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
- SelectionDAG &DAG,
- int &VarArgsFrameIndex,
- int &VarArgsStackOffset,
- unsigned &VarArgsNumGPR,
- unsigned &VarArgsNumFPR,
- const PPCSubtarget &Subtarget) {
- // SVR4 ABI Stack Frame Layout:
+PPCTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
+ return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ } else {
+ return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+ }
+}
+
+SDValue
+PPCTargetLowering::LowerFormalArguments_SVR4(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ // 32-bit SVR4 ABI Stack Frame Layout:
// +-----------------------------------+
// +--> | Back chain |
// | +-----------------------------------+
@@ -1512,25 +1538,21 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- SmallVector<SDValue, 8> ArgValues;
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- DebugLoc dl = Op.getDebugLoc();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Potential tail calls could cause overwriting of argument stack slots.
- unsigned CC = MF.getFunction()->getCallingConv();
- bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
+ bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
unsigned PtrByteSize = 4;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_PPC_SVR4);
+ CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
@@ -1538,11 +1560,11 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Arguments stored in registers.
if (VA.isRegLoc()) {
TargetRegisterClass *RC;
- MVT ValVT = VA.getValVT();
+ EVT ValVT = VA.getValVT();
- switch (ValVT.getSimpleVT()) {
+ switch (ValVT.getSimpleVT().SimpleTy) {
default:
- assert(0 && "ValVT not supported by FORMAL_ARGUMENTS Lowering");
+ llvm_unreachable("ValVT not supported by formal arguments Lowering");
case MVT::i32:
RC = PPC::GPRCRegisterClass;
break;
@@ -1562,9 +1584,9 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
- SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, ValVT);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
- ArgValues.push_back(ArgValue);
+ InVals.push_back(ArgValue);
} else {
// Argument stored in memory.
assert(VA.isMemLoc());
@@ -1575,7 +1597,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
}
}
@@ -1583,12 +1605,13 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Aggregates passed by value are stored in the local variable space of the
// caller's stack frame, right above the parameter list area.
SmallVector<CCValAssign, 16> ByValArgLocs;
- CCState CCByValInfo(CC, isVarArg, getTargetMachine(), ByValArgLocs);
+ CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
+ ByValArgLocs, *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
- CCByValInfo.AnalyzeFormalArguments(Op.getNode(), CC_PPC_SVR4_ByVal);
+ CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
@@ -1632,7 +1655,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
// Make room for NumGPArgRegs and NumFPArgRegs.
int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
- NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
+ NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
CCInfo.getNextStackOffset());
@@ -1645,7 +1668,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
unsigned GPRIndex = 0;
for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
- SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
+ SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
@@ -1658,7 +1681,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
@@ -1666,18 +1689,18 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
- // FIXME SVR4: We only need to save FP argument registers if CR bit 6 is
- // set.
+ // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
+ // is set.
// The double arguments are stored to the VarArgsFrameIndex
// on the stack.
unsigned FPRIndex = 0;
for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
- SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
+ SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
- SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
+ SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
@@ -1685,47 +1708,40 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4(SDValue Op,
for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
// Increment the address by eight for the next argument to store
- SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
+ SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
PtrVT);
FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
}
}
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl,
- MVT::Other, &MemOps[0], MemOps.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl,
+ MVT::Other, &MemOps[0], MemOps.size());
-
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
SDValue
-PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
- SelectionDAG &DAG,
- int &VarArgsFrameIndex,
- const PPCSubtarget &Subtarget) {
+PPCTargetLowering::LowerFormalArguments_Darwin(
+ SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
- SmallVector<SDValue, 8> ArgValues;
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- DebugLoc dl = Op.getDebugLoc();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
// Potential tail calls could cause overwriting of argument stack slots.
- unsigned CC = MF.getFunction()->getCallingConv();
- bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
+ bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
unsigned PtrByteSize = isPPC64 ? 8 : 4;
unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
@@ -1741,7 +1757,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
- static const unsigned *FPR = GetFPR(Subtarget);
+ static const unsigned *FPR = GetFPR();
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
@@ -1765,12 +1781,11 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
// entire point of the following loop.
unsigned VecArgOffset = ArgOffset;
if (!isVarArg && !isPPC64) {
- for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
++ArgNo) {
- MVT ObjectVT = Op.getValue(ArgNo).getValueType();
+ EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
- ISD::ArgFlagsTy Flags =
- cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
if (Flags.isByVal()) {
// ObjSize is the true size, ArgSize rounded up to multiple of regs.
@@ -1781,8 +1796,8 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
continue;
}
- switch(ObjectVT.getSimpleVT()) {
- default: assert(0 && "Unhandled argument type!");
+ switch(ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
case MVT::f32:
VecArgOffset += isPPC64 ? 8 : 4;
@@ -1811,15 +1826,13 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
SmallVector<SDValue, 8> MemOps;
unsigned nAltivecParamsAtEnd = 0;
- for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
- ArgNo != e; ++ArgNo) {
+ for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
SDValue ArgVal;
bool needsLoad = false;
- MVT ObjectVT = Op.getValue(ArgNo).getValueType();
+ EVT ObjectVT = Ins[ArgNo].VT;
unsigned ObjSize = ObjectVT.getSizeInBits()/8;
unsigned ArgSize = ObjSize;
- ISD::ArgFlagsTy Flags =
- cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
+ ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
unsigned CurArgOffset = ArgOffset;
@@ -1828,13 +1841,13 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
if (isVarArg || isPPC64) {
MinReservedArea = ((MinReservedArea+15)/16)*16;
- MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
+ MinReservedArea += CalculateStackSlotSize(ObjectVT,
Flags,
PtrByteSize);
} else nAltivecParamsAtEnd++;
} else
// Calculate min reserved area.
- MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
+ MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
Flags,
PtrByteSize);
@@ -1852,11 +1865,11 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
// The value of the object is its address.
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgValues.push_back(FIN);
+ InVals.push_back(FIN);
if (ObjSize==1 || ObjSize==2) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
MemOps.push_back(Store);
@@ -1875,7 +1888,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
++GPR_idx;
@@ -1888,13 +1901,13 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
continue;
}
- switch (ObjectVT.getSimpleVT()) {
- default: assert(0 && "Unhandled argument type!");
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
if (!isPPC64) {
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
++GPR_idx;
} else {
needsLoad = true;
@@ -1908,7 +1921,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
case MVT::i64: // PPC64
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
if (ObjectVT == MVT::i32) {
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
@@ -1949,7 +1962,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
else
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
@@ -1966,7 +1979,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
// except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
- ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
+ ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
if (isVarArg) {
while ((ArgOffset % 16) != 0) {
ArgOffset += PtrByteSize;
@@ -1974,7 +1987,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
GPR_idx++;
}
ArgOffset += 16;
- GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
+ GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
}
++VR_idx;
} else {
@@ -2000,10 +2013,10 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
CurArgOffset + (ArgSize - ObjSize),
isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
- ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
+ ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
}
- ArgValues.push_back(ArgVal);
+ InVals.push_back(ArgVal);
}
// Set the size that is at least reserved in caller of this function. Tail
@@ -2045,7 +2058,7 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
else
VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
@@ -2055,14 +2068,10 @@ PPCTargetLowering::LowerFORMAL_ARGUMENTS_Darwin(SDValue Op,
}
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl,
- MVT::Other, &MemOps[0], MemOps.size());
-
- ArgValues.push_back(Root);
+ Chain = DAG.getNode(ISD::TokenFactor, dl,
+ MVT::Other, &MemOps[0], MemOps.size());
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size());
+ return Chain;
}
/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
@@ -2072,13 +2081,14 @@ CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
bool isPPC64,
bool isVarArg,
unsigned CC,
- CallSDNode *TheCall,
+ const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
unsigned &nAltivecParamsAtEnd) {
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
- unsigned NumOps = TheCall->getNumArgs();
+ unsigned NumOps = Outs.size();
unsigned PtrByteSize = isPPC64 ? 8 : 4;
// Add up all the space actually used.
@@ -2089,9 +2099,9 @@ CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
// 16-byte aligned.
nAltivecParamsAtEnd = 0;
for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = TheCall->getArg(i);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
- MVT ArgVT = Arg.getValueType();
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Arg.getValueType();
// Varargs Altivec parameters are padded to a 16 byte boundary.
if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
@@ -2104,7 +2114,7 @@ CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
// Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
NumBytes = ((NumBytes+15)/16)*16;
}
- NumBytes += CalculateStackSlotSize(Arg, Flags, PtrByteSize);
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
}
// Allow for Altivec parameters at the end, if needed.
@@ -2149,40 +2159,37 @@ static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
return SPDiff;
}
-/// IsEligibleForTailCallElimination - Check to see whether the next instruction
-/// following the call is a return. A function is eligible if caller/callee
-/// calling conventions match, currently only fastcc supports tail calls, and
-/// the function CALL is immediatly followed by a RET.
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
bool
-PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
- SDValue Ret,
+PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
// Variable argument functions are not supported.
- if (!PerformTailCallOpt || TheCall->isVarArg())
+ if (isVarArg)
return false;
- if (CheckTailCallReturnConstraints(TheCall, Ret)) {
- MachineFunction &MF = DAG.getMachineFunction();
- unsigned CallerCC = MF.getFunction()->getCallingConv();
- unsigned CalleeCC = TheCall->getCallingConv();
- if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
- // Functions containing by val parameters are not supported.
- for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
- if (Flags.isByVal()) return false;
- }
+ MachineFunction &MF = DAG.getMachineFunction();
+ CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
+ if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
+ // Functions containing by val parameters are not supported.
+ for (unsigned i = 0; i != Ins.size(); i++) {
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ if (Flags.isByVal()) return false;
+ }
- SDValue Callee = TheCall->getCallee();
- // Non PIC/GOT tail calls are supported.
- if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
- return true;
+ // Non PIC/GOT tail calls are supported.
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return true;
- // At the moment we can only do local tail calls (in same module, hidden
- // or protected) if we are generating PIC.
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
- return G->getGlobal()->hasHiddenVisibility()
- || G->getGlobal()->hasProtectedVisibility();
- }
+ // At the moment we can only do local tail calls (in same module, hidden
+ // or protected) if we are generating PIC.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ return G->getGlobal()->hasHiddenVisibility()
+ || G->getGlobal()->hasProtectedVisibility();
}
return false;
@@ -2251,13 +2258,13 @@ static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
isDarwinABI);
int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
NewRetAddrLoc);
- MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
PseudoSourceValue::getFixedStack(NewRetAddr), 0);
- // When using the SVR4 ABI there is no need to move the FP stack slot
- // as the FP is never overwritten.
+ // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
+ // slot as the FP is never overwritten.
if (isDarwinABI) {
int NewFPLoc =
SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
@@ -2279,7 +2286,7 @@ CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
int Offset = ArgOffset + SPDiff;
uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
- MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
+ EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
SDValue FIN = DAG.getFrameIndex(FI, VT);
TailCallArgumentInfo Info;
Info.Arg = Arg;
@@ -2300,13 +2307,13 @@ SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
DebugLoc dl) {
if (SPDiff) {
// Load the LR and FP stack slot for later adjusting.
- MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
+ EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
LROpOut = getReturnAddrFrameIndex(DAG);
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
Chain = SDValue(LROpOut.getNode(), 1);
- // When using the SVR4 ABI there is no need to load the FP stack slot
- // as the FP is never overwritten.
+ // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
+ // slot as the FP is never overwritten.
if (isDarwinABI) {
FPOpOut = getFramePointerFrameIndex(DAG);
FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
@@ -2340,7 +2347,7 @@ LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
bool isVector, SmallVector<SDValue, 8> &MemOpChains,
SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
DebugLoc dl) {
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
if (!isTailCall) {
if (isVector) {
SDValue StackPtr;
@@ -2389,9 +2396,9 @@ static
unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
- SmallVector<SDValue, 8> &Ops, std::vector<MVT> &NodeTys,
+ SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
bool isSVR4ABI) {
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
@@ -2444,102 +2451,145 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
return CallOpc;
}
-static SDValue LowerCallReturn(SDValue Op, SelectionDAG &DAG, TargetMachine &TM,
- CallSDNode *TheCall, SDValue Chain,
- SDValue InFlag) {
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = TheCall->getDebugLoc();
- SmallVector<SDValue, 16> ResultVals;
+SDValue
+PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
- CCState CCRetInfo(CallerCC, isVarArg, TM, RVLocs);
- CCRetInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
+ CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
- MVT VT = VA.getValVT();
+ EVT VT = VA.getValVT();
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyFromReg(Chain, dl,
VA.getLocReg(), VT, InFlag).getValue(1);
- ResultVals.push_back(Chain.getValue(0));
+ InVals.push_back(Chain.getValue(0));
InFlag = Chain.getValue(2);
}
- // If the function returns void, just return the chain.
- if (RVLocs.empty())
- return Chain;
-
- // Otherwise, merge everything together with a MERGE_VALUES node.
- ResultVals.push_back(Chain);
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size());
- return Res.getValue(Op.getResNo());
+ return Chain;
}
-static
-SDValue FinishCall(SelectionDAG &DAG, CallSDNode *TheCall, TargetMachine &TM,
- SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
- SDValue Op, SDValue InFlag, SDValue Chain, SDValue &Callee,
- int SPDiff, unsigned NumBytes) {
- unsigned CC = TheCall->getCallingConv();
- DebugLoc dl = TheCall->getDebugLoc();
- bool isTailCall = TheCall->isTailCall()
- && CC == CallingConv::Fast && PerformTailCallOpt;
-
- std::vector<MVT> NodeTys;
+SDValue
+PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
+ bool isTailCall, bool isVarArg,
+ SelectionDAG &DAG,
+ SmallVector<std::pair<unsigned, SDValue>, 8>
+ &RegsToPass,
+ SDValue InFlag, SDValue Chain,
+ SDValue &Callee,
+ int SPDiff, unsigned NumBytes,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<SDValue> &InVals) {
+ std::vector<EVT> NodeTys;
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
isTailCall, RegsToPass, Ops, NodeTys,
- TM.getSubtarget<PPCSubtarget>().isSVR4ABI());
+ PPCSubTarget.isSVR4ABI());
// When performing tail call optimization the callee pops its arguments off
// the stack. Account for this here so these bytes can be pushed back on in
// PPCRegisterInfo::eliminateCallFramePseudoInstr.
int BytesCalleePops =
- (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
+ (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
if (InFlag.getNode())
Ops.push_back(InFlag);
// Emit tail call.
if (isTailCall) {
- assert(InFlag.getNode() &&
- "Flag must be set. Depend on flag being set in LowerRET");
- Chain = DAG.getNode(PPCISD::TAILCALL, dl,
- TheCall->getVTList(), &Ops[0], Ops.size());
- return SDValue(Chain.getNode(), Op.getResNo());
+ // If this is the first return lowered for this function, add the regs
+ // to the liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ assert(((Callee.getOpcode() == ISD::Register &&
+ cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
+ Callee.getOpcode() == ISD::TargetExternalSymbol ||
+ Callee.getOpcode() == ISD::TargetGlobalAddress ||
+ isa<ConstantSDNode>(Callee)) &&
+ "Expecting an global address, external symbol, absolute value or register");
+
+ return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
}
Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
+ // Add a NOP immediately after the branch instruction when using the 64-bit
+ // SVR4 ABI. At link time, if caller and callee are in a different module and
+ // thus have a different TOC, the call will be replaced with a call to a stub
+ // function which saves the current TOC, loads the TOC of the callee and
+ // branches to the callee. The NOP will be replaced with a load instruction
+ // which restores the TOC of the caller from the TOC save slot of the current
+ // stack frame. If caller and callee belong to the same module (and have the
+ // same TOC), the NOP will remain unchanged.
+ if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
+ // Insert NOP.
+ InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
+ }
+
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(BytesCalleePops, true),
InFlag);
- if (TheCall->getValueType(0) != MVT::Other)
+ if (!Ins.empty())
InFlag = Chain.getValue(1);
- return LowerCallReturn(Op, DAG, TM, TheCall, Chain, InFlag);
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+SDValue
+PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
+ return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, Ins,
+ dl, DAG, InVals);
+ } else {
+ return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
+ isTailCall, Outs, Ins,
+ dl, DAG, InVals);
+ }
}
-SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
- const PPCSubtarget &Subtarget,
- TargetMachine &TM) {
- // See PPCTargetLowering::LowerFORMAL_ARGUMENTS_SVR4() for a description
- // of the SVR4 ABI stack frame layout.
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- bool isVarArg = TheCall->isVarArg();
- unsigned CC = TheCall->getCallingConv();
- assert((CC == CallingConv::C ||
- CC == CallingConv::Fast) && "Unknown calling convention!");
- bool isTailCall = TheCall->isTailCall()
- && CC == CallingConv::Fast && PerformTailCallOpt;
- SDValue Callee = TheCall->getCallee();
- DebugLoc dl = TheCall->getDebugLoc();
-
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+SDValue
+PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
+ // of the 32-bit SVR4 ABI stack frame layout.
+
+ assert((!isTailCall ||
+ (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
+ "IsEligibleForTailCallOptimization missed a case!");
+
+ assert((CallConv == CallingConv::C ||
+ CallConv == CallingConv::Fast) && "Unknown calling convention!");
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
unsigned PtrByteSize = 4;
MachineFunction &MF = DAG.getMachineFunction();
@@ -2549,7 +2599,7 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
- if (PerformTailCallOpt && CC==CallingConv::Fast)
+ if (PerformTailCallOpt && CallConv==CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
// Count how many bytes are to be pushed on the stack, including the linkage
@@ -2558,7 +2608,8 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// Assign locations to all of the outgoing arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
@@ -2567,15 +2618,14 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// Handle fixed and variable vector arguments differently.
// Fixed vector arguments go into registers as long as registers are
// available. Variable vector arguments always go into memory.
- unsigned NumArgs = TheCall->getNumArgs();
- unsigned NumFixedArgs = TheCall->getNumFixedArgs();
+ unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; ++i) {
- MVT ArgVT = TheCall->getArg(i).getValueType();
- ISD::ArgFlagsTy ArgFlags = TheCall->getArgFlags(i);
+ EVT ArgVT = Outs[i].Val.getValueType();
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
bool Result;
- if (i < NumFixedArgs) {
+ if (Outs[i].IsFixed) {
Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
CCInfo);
} else {
@@ -2584,24 +2634,27 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
}
if (Result) {
- cerr << "Call operand #" << i << " has unhandled type "
- << ArgVT.getMVTString() << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT.getEVTString() << "\n";
+#endif
+ llvm_unreachable(0);
}
}
} else {
// All arguments are treated the same.
- CCInfo.AnalyzeCallOperands(TheCall, CC_PPC_SVR4);
+ CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
}
// Assign locations to all of the outgoing aggregate by value arguments.
SmallVector<CCValAssign, 16> ByValArgLocs;
- CCState CCByValInfo(CC, isVarArg, getTargetMachine(), ByValArgLocs);
+ CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
+ *DAG.getContext());
// Reserve stack space for the allocations in CCInfo.
CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
- CCByValInfo.AnalyzeCallOperands(TheCall, CC_PPC_SVR4_ByVal);
+ CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
// Size of the linkage area, parameter list area and the part of the local
// space variable where copies of aggregates which are passed by value are
@@ -2637,8 +2690,8 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
i != e;
++i) {
CCValAssign &VA = ArgLocs[i];
- SDValue Arg = TheCall->getArg(i);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
// Argument is an aggregate which is passed by value, thus we need to
@@ -2712,7 +2765,7 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
// Set CR6 to true if this is a vararg call.
if (isVarArg) {
- SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
+ SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
InFlag = Chain.getValue(1);
}
@@ -2722,24 +2775,23 @@ SDValue PPCTargetLowering::LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
false, TailCallArguments);
}
- return FinishCall(DAG, TheCall, TM, RegsToPass, Op, InFlag, Chain, Callee,
- SPDiff, NumBytes);
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
}
-SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
- const PPCSubtarget &Subtarget,
- TargetMachine &TM) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- bool isVarArg = TheCall->isVarArg();
- unsigned CC = TheCall->getCallingConv();
- bool isTailCall = TheCall->isTailCall()
- && CC == CallingConv::Fast && PerformTailCallOpt;
- SDValue Callee = TheCall->getCallee();
- unsigned NumOps = TheCall->getNumArgs();
- DebugLoc dl = TheCall->getDebugLoc();
-
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+SDValue
+PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ unsigned NumOps = Outs.size();
+
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
@@ -2750,7 +2802,7 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
// and restoring the callers stack pointer in this functions epilog. This is
// done because by tail calling the called function might overwrite the value
// in this function's (MF) stack pointer stack slot 0(SP).
- if (PerformTailCallOpt && CC==CallingConv::Fast)
+ if (PerformTailCallOpt && CallConv==CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
unsigned nAltivecParamsAtEnd = 0;
@@ -2759,13 +2811,19 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned NumBytes =
- CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CC, TheCall,
+ CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
+ Outs,
nAltivecParamsAtEnd);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
+ // To protect arguments on the stack from being clobbered in a tail call,
+ // force all the loads to happen before doing any other lowering.
+ if (isTailCall)
+ Chain = DAG.getStackArgumentTokenFactor(Chain);
+
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
@@ -2801,7 +2859,7 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
- static const unsigned *FPR = GetFPR(Subtarget);
+ static const unsigned *FPR = GetFPR();
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
@@ -2818,9 +2876,8 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
- bool inMem = false;
- SDValue Arg = TheCall->getArg(i);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
@@ -2843,7 +2900,7 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
if (Size==1 || Size==2) {
// Very small objects are passed right-justified.
// Everything else is passed left-justified.
- MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
+ EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
if (GPR_idx != NumGPRs) {
SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
NULL, 0, VT);
@@ -2895,8 +2952,8 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
continue;
}
- switch (Arg.getValueType().getSimpleVT()) {
- default: assert(0 && "Unexpected ValueType for argument!");
+ switch (Arg.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected ValueType for argument!");
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
@@ -2905,7 +2962,6 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
- inMem = true;
}
ArgOffset += PtrByteSize;
break;
@@ -2945,7 +3001,6 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
isPPC64, isTailCall, false, MemOpChains,
TailCallArguments, dl);
- inMem = true;
}
if (isPPC64)
ArgOffset += 8;
@@ -3017,8 +3072,8 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
ArgOffset = ((ArgOffset+15)/16)*16;
ArgOffset += 12*16;
for (unsigned i = 0; i != NumOps; ++i) {
- SDValue Arg = TheCall->getArg(i);
- MVT ArgType = Arg.getValueType();
+ SDValue Arg = Outs[i].Val;
+ EVT ArgType = Arg.getValueType();
if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
if (++j > NumVRs) {
@@ -3051,18 +3106,21 @@ SDValue PPCTargetLowering::LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
FPOp, true, TailCallArguments);
}
- return FinishCall(DAG, TheCall, TM, RegsToPass, Op, InFlag, Chain, Callee,
- SPDiff, NumBytes);
+ return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
+ RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
+ Ins, InVals);
}
-SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
- TargetMachine &TM) {
+SDValue
+PPCTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
- CCState CCInfo(CC, isVarArg, TM, RVLocs);
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
@@ -3071,37 +3129,6 @@ SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- SDValue Chain = Op.getOperand(0);
-
- Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
- if (Chain.getOpcode() == PPCISD::TAILCALL) {
- SDValue TailCall = Chain;
- SDValue TargetAddress = TailCall.getOperand(1);
- SDValue StackAdjustment = TailCall.getOperand(2);
-
- assert(((TargetAddress.getOpcode() == ISD::Register &&
- cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
- TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
- TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
- isa<ConstantSDNode>(TargetAddress)) &&
- "Expecting an global address, external symbol, absolute value or register");
-
- assert(StackAdjustment.getOpcode() == ISD::Constant &&
- "Expecting a const value");
-
- SmallVector<SDValue,8> Operands;
- Operands.push_back(Chain.getOperand(0));
- Operands.push_back(TargetAddress);
- Operands.push_back(StackAdjustment);
- // Copy registers used by the call. Last operand is a flag so it is not
- // copied.
- for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
- Operands.push_back(Chain.getOperand(i));
- }
- return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
- Operands.size());
- }
-
SDValue Flag;
// Copy the result values into the output registers.
@@ -3109,7 +3136,7 @@ SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
Flag = Chain.getValue(1);
}
@@ -3125,7 +3152,7 @@ SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
DebugLoc dl = Op.getDebugLoc();
// Get the corect type for pointers.
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Construct the stack pointer operand.
bool IsPPC64 = Subtarget.isPPC64();
@@ -3153,7 +3180,7 @@ PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool IsPPC64 = PPCSubTarget.isPPC64();
bool isDarwinABI = PPCSubTarget.isDarwinABI();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
@@ -3177,7 +3204,7 @@ PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool IsPPC64 = PPCSubTarget.isPPC64();
bool isDarwinABI = PPCSubTarget.isDarwinABI();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
// primarily DYNALLOC instructions.
@@ -3207,7 +3234,7 @@ SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
DebugLoc dl = Op.getDebugLoc();
// Get the corect type for pointers.
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Negate the size.
SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
DAG.getConstant(0, PtrVT), Size);
@@ -3232,8 +3259,8 @@ SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
// Cannot handle SETEQ/SETNE.
if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
- MVT ResVT = Op.getValueType();
- MVT CmpVT = Op.getOperand(0).getValueType();
+ EVT ResVT = Op.getValueType();
+ EVT CmpVT = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
DebugLoc dl = Op.getDebugLoc();
@@ -3302,8 +3329,8 @@ SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
SDValue Tmp;
- switch (Op.getValueType().getSimpleVT()) {
- default: assert(0 && "Unhandled FP_TO_INT type in custom expander!");
+ switch (Op.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
PPCISD::FCTIDZ,
@@ -3350,20 +3377,23 @@ SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
// 64-bit registers. In particular, sign extend the input value into the
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
// then lfd it and fcfid it.
- MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *FrameInfo = MF.getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(8, 8);
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
Op.getOperand(0));
// STD the extended value into the stack slot.
- MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
- MachineMemOperand::MOStore, 0, 8, 8);
- SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
- DAG.getEntryNode(), Ext64, FIdx,
- DAG.getMemOperand(MO));
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
+ MachineMemOperand::MOStore, 0, 8, 8);
+ SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
+ SDValue Store =
+ DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
+ Ops, 4, MVT::i64, MMO);
// Load the value as a double.
SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
@@ -3396,9 +3426,9 @@ SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
*/
MachineFunction &MF = DAG.getMachineFunction();
- MVT VT = Op.getValueType();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
- std::vector<MVT> NodeTys;
+ EVT VT = Op.getValueType();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ std::vector<EVT> NodeTys;
SDValue MFFSreg, InFlag;
// Save FP Control Word to register
@@ -3437,7 +3467,7 @@ SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
}
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
assert(Op.getNumOperands() == 3 &&
@@ -3449,7 +3479,7 @@ SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
- MVT AmtVT = Amt.getValueType();
+ EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
@@ -3466,7 +3496,7 @@ SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
}
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
@@ -3478,7 +3508,7 @@ SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
- MVT AmtVT = Amt.getValueType();
+ EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
@@ -3496,7 +3526,7 @@ SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
assert(Op.getNumOperands() == 3 &&
VT == Op.getOperand(1).getValueType() &&
@@ -3506,7 +3536,7 @@ SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
SDValue Lo = Op.getOperand(0);
SDValue Hi = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
- MVT AmtVT = Amt.getValueType();
+ EVT AmtVT = Amt.getValueType();
SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
DAG.getConstant(BitWidth, AmtVT), Amt);
@@ -3529,21 +3559,21 @@ SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
/// BuildSplatI - Build a canonical splati of Val with an element size of
/// SplatSize. Cast the result to VT.
-static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
+static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
SelectionDAG &DAG, DebugLoc dl) {
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
- static const MVT VTys[] = { // canonical VT to use for each size.
+ static const EVT VTys[] = { // canonical VT to use for each size.
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
};
- MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
+ EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
// Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
if (Val == -1)
SplatSize = 1;
- MVT CanonicalVT = VTys[SplatSize-1];
+ EVT CanonicalVT = VTys[SplatSize-1];
// Build a canonical splat for this value.
SDValue Elt = DAG.getConstant(Val, MVT::i32);
@@ -3558,7 +3588,7 @@ static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
SelectionDAG &DAG, DebugLoc dl,
- MVT DestVT = MVT::Other) {
+ EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), LHS, RHS);
@@ -3568,7 +3598,7 @@ static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
/// specified intrinsic ID.
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
SDValue Op2, SelectionDAG &DAG,
- DebugLoc dl, MVT DestVT = MVT::Other) {
+ DebugLoc dl, EVT DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
@@ -3578,7 +3608,7 @@ static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount. The result has the specified value type.
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
- MVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ EVT VT, SelectionDAG &DAG, DebugLoc dl) {
// Force LHS/RHS to be the right type.
LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
@@ -3789,7 +3819,7 @@ static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
int ShufIdxs[16];
switch (OpNum) {
- default: assert(0 && "Unknown i32 permute!");
+ default: llvm_unreachable("Unknown i32 permute!");
case OP_VMRGHW:
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
@@ -3825,7 +3855,7 @@ static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
case OP_VSLDOI12:
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
}
- MVT VT = OpLHS.getValueType();
+ EVT VT = OpLHS.getValueType();
OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
@@ -3842,7 +3872,7 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
@@ -3939,7 +3969,7 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
- MVT EltVT = V1.getValueType().getVectorElementType();
+ EVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
SmallVector<SDValue, 16> ResultMask;
@@ -4026,7 +4056,7 @@ SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
Op.getOperand(3), // RHS
DAG.getConstant(CompareOpc, MVT::i32)
};
- std::vector<MVT> VTs;
+ std::vector<EVT> VTs;
VTs.push_back(Op.getOperand(2).getValueType());
VTs.push_back(MVT::Flag);
SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
@@ -4076,7 +4106,7 @@ SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
// Create a stack slot that is 16-byte aligned.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16);
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
// Store the input value into Value#0 of the stack slot.
@@ -4141,8 +4171,7 @@ SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
}
return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
} else {
- assert(0 && "Unknown mul to lower!");
- abort();
+ llvm_unreachable("Unknown mul to lower!");
}
}
@@ -4150,7 +4179,7 @@ SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
///
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- default: assert(0 && "Wasn't expecting to be able to lower this!");
+ default: llvm_unreachable("Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
@@ -4165,24 +4194,6 @@ SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
- case ISD::FORMAL_ARGUMENTS:
- if (PPCSubTarget.isSVR4ABI()) {
- return LowerFORMAL_ARGUMENTS_SVR4(Op, DAG, VarArgsFrameIndex,
- VarArgsStackOffset, VarArgsNumGPR,
- VarArgsNumFPR, PPCSubTarget);
- } else {
- return LowerFORMAL_ARGUMENTS_Darwin(Op, DAG, VarArgsFrameIndex,
- PPCSubTarget);
- }
-
- case ISD::CALL:
- if (PPCSubTarget.isSVR4ABI()) {
- return LowerCALL_SVR4(Op, DAG, PPCSubTarget, getTargetMachine());
- } else {
- return LowerCALL_Darwin(Op, DAG, PPCSubTarget, getTargetMachine());
- }
-
- case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
case ISD::DYNAMIC_STACKALLOC:
return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
@@ -4234,7 +4245,7 @@ void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
// This sequence changes FPSCR to do round-to-zero, adds the two halves
// of the long double, and puts FPSCR back the way it was. We do not
// actually model FPSCR.
- std::vector<MVT> NodeTys;
+ std::vector<EVT> NodeTys;
SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
NodeTys.push_back(MVT::f64); // Return register
@@ -4480,7 +4491,8 @@ PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
// To "insert" these instructions we actually have to insert their
@@ -4516,9 +4528,18 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
.addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
- // Update machine-CFG edges by transferring all successors of the current
+ // Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
- sinkMBB->transferSuccessors(BB);
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
@@ -4812,7 +4833,7 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
BB = exitMBB;
BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
} else {
- assert(0 && "Unexpected instr type to insert");
+ llvm_unreachable("Unexpected instr type to insert");
}
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
@@ -4903,7 +4924,8 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
}
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
- if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
+ if (cast<StoreSDNode>(N)->isUnindexed() &&
+ N->getOperand(1).getOpcode() == ISD::BSWAP &&
N->getOperand(1).getNode()->hasOneUse() &&
(N->getOperand(1).getValueType() == MVT::i32 ||
N->getOperand(1).getValueType() == MVT::i16)) {
@@ -4912,9 +4934,15 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
- return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
- BSwapOp, N->getOperand(2), N->getOperand(3),
- DAG.getValueType(N->getOperand(1).getValueType()));
+ SDValue Ops[] = {
+ N->getOperand(0), BSwapOp, N->getOperand(2),
+ DAG.getValueType(N->getOperand(1).getValueType())
+ };
+ return
+ DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
+ Ops, array_lengthof(Ops),
+ cast<StoreSDNode>(N)->getMemoryVT(),
+ cast<StoreSDNode>(N)->getMemOperand());
}
break;
case ISD::BSWAP:
@@ -4925,17 +4953,15 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
SDValue Load = N->getOperand(0);
LoadSDNode *LD = cast<LoadSDNode>(Load);
// Create the byte-swapping load.
- std::vector<MVT> VTs;
- VTs.push_back(MVT::i32);
- VTs.push_back(MVT::Other);
- SDValue MO = DAG.getMemOperand(LD->getMemOperand());
SDValue Ops[] = {
LD->getChain(), // Chain
LD->getBasePtr(), // Ptr
- MO, // MemOperand
DAG.getValueType(N->getValueType(0)) // VT
};
- SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
+ SDValue BSLoad =
+ DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
+ DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
+ LD->getMemoryVT(), LD->getMemOperand());
// If this is an i16 load, insert the truncate.
SDValue ResVal = BSLoad;
@@ -5035,7 +5061,7 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
// Create the PPCISD altivec 'dot' comparison node.
- std::vector<MVT> VTs;
+ std::vector<EVT> VTs;
SDValue Ops[] = {
LHS.getOperand(2), // LHS of compare
LHS.getOperand(3), // RHS of compare
@@ -5090,7 +5116,7 @@ void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
default: break;
case PPCISD::LBRX: {
// lhbrx is known to have the top bits cleared out.
- if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
+ if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
KnownZero = 0xFFFF0000;
break;
}
@@ -5138,7 +5164,7 @@ PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
std::pair<unsigned, const TargetRegisterClass*>
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() == 1) {
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
@@ -5187,7 +5213,7 @@ void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
if (!CST) return; // Must be an immediate to match.
unsigned Value = CST->getZExtValue();
switch (Letter) {
- default: assert(0 && "Unknown constraint letter!");
+ default: llvm_unreachable("Unknown constraint letter!");
case 'I': // "I" is a signed 16-bit constant.
if ((short)Value == (int)Value)
Result = DAG.getTargetConstant(Value, Op.getValueType());
@@ -5304,7 +5330,7 @@ SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
return SDValue();
- MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
MachineFunction &MF = DAG.getMachineFunction();
@@ -5326,7 +5352,7 @@ PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
return false;
}
-MVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
+EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr,
SelectionDAG &DAG) const {
if (this->PPCSubTarget.isPPC64()) {
diff --git a/lib/Target/PowerPC/PPCISelLowering.h b/lib/Target/PowerPC/PPCISelLowering.h
index 962bbb1..ac72d87 100644
--- a/lib/Target/PowerPC/PPCISelLowering.h
+++ b/lib/Target/PowerPC/PPCISelLowering.h
@@ -41,8 +41,7 @@ namespace llvm {
FCTIDZ, FCTIWZ,
/// STFIWX - The STFIWX instruction. The first operand is an input token
- /// chain, then an f64 value to store, then an address to store it to,
- /// then a SRCVALUE for the address.
+ /// chain, then an f64 value to store, then an address to store it to.
STFIWX,
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
@@ -60,6 +59,8 @@ namespace llvm {
/// though these are usually folded into other nodes.
Hi, Lo,
+ TOC_ENTRY,
+
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an allocation on the stack.
@@ -78,12 +79,12 @@ namespace llvm {
/// registers.
EXTSW_32,
- /// STD_32 - This is the STD instruction for use with "32-bit" registers.
- STD_32,
-
/// CALL - A direct function call.
CALL_Darwin, CALL_SVR4,
+ /// NOP - Special NOP which follows 64-bit SVR4 calls.
+ NOP,
+
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
/// MTCTR instruction.
MTCTR,
@@ -119,18 +120,6 @@ namespace llvm {
/// an optional input flag argument.
COND_BRANCH,
- /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
- /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
- /// the GPRC input, then stores it through Ptr. Type can be either i16 or
- /// i32.
- STBRX,
-
- /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
- /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
- /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
- /// or i32.
- LBRX,
-
// The following 5 instructions are used only as part of the
// long double-to-int conversion sequence.
@@ -160,14 +149,27 @@ namespace llvm {
/// indexed. This is used to implement atomic operations.
STCX,
- /// TAILCALL - Indicates a tail call should be taken.
- TAILCALL,
/// TC_RETURN - A tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
- TC_RETURN
+ TC_RETURN,
+
+ /// STD_32 - This is the STD instruction for use with "32-bit" registers.
+ STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
+
+ /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
+ /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
+ /// the GPRC input, then stores it through Ptr. Type can be either i16 or
+ /// i32.
+ STBRX,
+
+ /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
+ /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
+ /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
+ /// or i32.
+ LBRX
};
}
@@ -232,7 +234,7 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the ISD::SETCC ValueType
- virtual MVT getSetCCResultType(MVT VT) const;
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
@@ -286,7 +288,8 @@ namespace llvm {
unsigned Depth = 0) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB, bool is64Bit,
unsigned BinOpcode) const;
@@ -297,7 +300,7 @@ namespace llvm {
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
@@ -327,16 +330,16 @@ namespace llvm {
/// the offset of the target addressing mode.
virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
- /// IsEligibleForTailCallOptimization - Check whether the call is eligible
- /// for tail call optimization. Target which want to do tail call
- /// optimization should implement this function.
- virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
- SDValue Ret,
- SelectionDAG &DAG) const;
+ virtual bool
+ IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
- virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
+ virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr,
SelectionDAG &DAG) const;
@@ -370,20 +373,6 @@ namespace llvm {
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
int VarArgsStackOffset, unsigned VarArgsNumGPR,
unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
- SDValue LowerFORMAL_ARGUMENTS_SVR4(SDValue Op, SelectionDAG &DAG,
- int &VarArgsFrameIndex,
- int &VarArgsStackOffset,
- unsigned &VarArgsNumGPR,
- unsigned &VarArgsNumFPR,
- const PPCSubtarget &Subtarget);
- SDValue LowerFORMAL_ARGUMENTS_Darwin(SDValue Op, SelectionDAG &DAG,
- int &VarArgsFrameIndex,
- const PPCSubtarget &Subtarget);
- SDValue LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
- const PPCSubtarget &Subtarget, TargetMachine &TM);
- SDValue LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
- const PPCSubtarget &Subtarget, TargetMachine &TM);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM);
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget);
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
@@ -400,6 +389,71 @@ namespace llvm {
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
+ bool isVarArg,
+ SelectionDAG &DAG,
+ SmallVector<std::pair<unsigned, SDValue>, 8>
+ &RegsToPass,
+ SDValue InFlag, SDValue Chain,
+ SDValue &Callee,
+ int SPDiff, unsigned NumBytes,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
+ SDValue
+ LowerFormalArguments_Darwin(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue
+ LowerFormalArguments_SVR4(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ SDValue
+ LowerCall_Darwin(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue
+ LowerCall_SVR4(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
};
}
diff --git a/lib/Target/PowerPC/PPCInstr64Bit.td b/lib/Target/PowerPC/PPCInstr64Bit.td
index 3823e53..0f68fb9 100644
--- a/lib/Target/PowerPC/PPCInstr64Bit.td
+++ b/lib/Target/PowerPC/PPCInstr64Bit.td
@@ -68,7 +68,7 @@ let isCall = 1, PPC970_Unit = 7,
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,
V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V19,
LR8,CTR8,
- CR0,CR1,CR5,CR6,CR7] in {
+ CR0,CR1,CR5,CR6,CR7,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL8_Darwin : IForm<18, 0, 1,
@@ -94,7 +94,7 @@ let isCall = 1, PPC970_Unit = 7,
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,
V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15,V16,V17,V18,V19,
LR8,CTR8,
- CR0,CR1,CR5,CR6,CR7] in {
+ CR0,CR1,CR5,CR6,CR7,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL8_ELF : IForm<18, 0, 1,
@@ -123,6 +123,8 @@ def : Pat<(PPCcall_SVR4 (i64 tglobaladdr:$dst)),
(BL8_ELF tglobaladdr:$dst)>;
def : Pat<(PPCcall_SVR4 (i64 texternalsym:$dst)),
(BL8_ELF texternalsym:$dst)>;
+def : Pat<(PPCnop),
+ (NOP)>;
// Atomic operations
let usesCustomDAGSchedInserter = 1 in {
@@ -327,14 +329,15 @@ def ADD8 : XOForm_1<31, 266, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
"add $rT, $rA, $rB", IntGeneral,
[(set G8RC:$rT, (add G8RC:$rA, G8RC:$rB))]>;
+let Defs = [CARRY] in {
def ADDC8 : XOForm_1<31, 10, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
"addc $rT, $rA, $rB", IntGeneral,
[(set G8RC:$rT, (addc G8RC:$rA, G8RC:$rB))]>,
PPC970_DGroup_Cracked;
-def ADDE8 : XOForm_1<31, 138, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
- "adde $rT, $rA, $rB", IntGeneral,
- [(set G8RC:$rT, (adde G8RC:$rA, G8RC:$rB))]>;
-
+def ADDIC8 : DForm_2<12, (outs G8RC:$rD), (ins G8RC:$rA, s16imm64:$imm),
+ "addic $rD, $rA, $imm", IntGeneral,
+ [(set G8RC:$rD, (addc G8RC:$rA, immSExt16:$imm))]>;
+}
def ADDI8 : DForm_2<14, (outs G8RC:$rD), (ins G8RC:$rA, s16imm64:$imm),
"addi $rD, $rA, $imm", IntGeneral,
[(set G8RC:$rD, (add G8RC:$rA, immSExt16:$imm))]>;
@@ -342,36 +345,41 @@ def ADDIS8 : DForm_2<15, (outs G8RC:$rD), (ins G8RC:$rA, symbolHi64:$imm),
"addis $rD, $rA, $imm", IntGeneral,
[(set G8RC:$rD, (add G8RC:$rA, imm16ShiftedSExt:$imm))]>;
+let Defs = [CARRY] in {
def SUBFIC8: DForm_2< 8, (outs G8RC:$rD), (ins G8RC:$rA, s16imm64:$imm),
"subfic $rD, $rA, $imm", IntGeneral,
[(set G8RC:$rD, (subc immSExt16:$imm, G8RC:$rA))]>;
-def SUBF8 : XOForm_1<31, 40, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
- "subf $rT, $rA, $rB", IntGeneral,
- [(set G8RC:$rT, (sub G8RC:$rB, G8RC:$rA))]>;
def SUBFC8 : XOForm_1<31, 8, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
"subfc $rT, $rA, $rB", IntGeneral,
[(set G8RC:$rT, (subc G8RC:$rB, G8RC:$rA))]>,
PPC970_DGroup_Cracked;
-
-def SUBFE8 : XOForm_1<31, 136, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
- "subfe $rT, $rA, $rB", IntGeneral,
- [(set G8RC:$rT, (sube G8RC:$rB, G8RC:$rA))]>;
+}
+def SUBF8 : XOForm_1<31, 40, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
+ "subf $rT, $rA, $rB", IntGeneral,
+ [(set G8RC:$rT, (sub G8RC:$rB, G8RC:$rA))]>;
+def NEG8 : XOForm_3<31, 104, 0, (outs G8RC:$rT), (ins G8RC:$rA),
+ "neg $rT, $rA", IntGeneral,
+ [(set G8RC:$rT, (ineg G8RC:$rA))]>;
+let Uses = [CARRY], Defs = [CARRY] in {
+def ADDE8 : XOForm_1<31, 138, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
+ "adde $rT, $rA, $rB", IntGeneral,
+ [(set G8RC:$rT, (adde G8RC:$rA, G8RC:$rB))]>;
def ADDME8 : XOForm_3<31, 234, 0, (outs G8RC:$rT), (ins G8RC:$rA),
"addme $rT, $rA", IntGeneral,
[(set G8RC:$rT, (adde G8RC:$rA, immAllOnes))]>;
def ADDZE8 : XOForm_3<31, 202, 0, (outs G8RC:$rT), (ins G8RC:$rA),
"addze $rT, $rA", IntGeneral,
[(set G8RC:$rT, (adde G8RC:$rA, 0))]>;
-def NEG8 : XOForm_3<31, 104, 0, (outs G8RC:$rT), (ins G8RC:$rA),
- "neg $rT, $rA", IntGeneral,
- [(set G8RC:$rT, (ineg G8RC:$rA))]>;
+def SUBFE8 : XOForm_1<31, 136, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
+ "subfe $rT, $rA, $rB", IntGeneral,
+ [(set G8RC:$rT, (sube G8RC:$rB, G8RC:$rA))]>;
def SUBFME8 : XOForm_3<31, 232, 0, (outs G8RC:$rT), (ins G8RC:$rA),
"subfme $rT, $rA", IntGeneral,
[(set G8RC:$rT, (sube immAllOnes, G8RC:$rA))]>;
def SUBFZE8 : XOForm_3<31, 200, 0, (outs G8RC:$rT), (ins G8RC:$rA),
"subfze $rT, $rA", IntGeneral,
[(set G8RC:$rT, (sube 0, G8RC:$rA))]>;
-
+}
def MULHD : XOForm_1<31, 73, 0, (outs G8RC:$rT), (ins G8RC:$rA, G8RC:$rB),
@@ -396,9 +404,11 @@ def SLD : XForm_6<31, 27, (outs G8RC:$rA), (ins G8RC:$rS, GPRC:$rB),
def SRD : XForm_6<31, 539, (outs G8RC:$rA), (ins G8RC:$rS, GPRC:$rB),
"srd $rA, $rS, $rB", IntRotateD,
[(set G8RC:$rA, (PPCsrl G8RC:$rS, GPRC:$rB))]>, isPPC64;
+let Defs = [CARRY] in {
def SRAD : XForm_6<31, 794, (outs G8RC:$rA), (ins G8RC:$rS, GPRC:$rB),
"srad $rA, $rS, $rB", IntRotateD,
[(set G8RC:$rA, (PPCsra G8RC:$rS, GPRC:$rB))]>, isPPC64;
+}
def EXTSB8 : XForm_11<31, 954, (outs G8RC:$rA), (ins G8RC:$rS),
"extsb $rA, $rS", IntGeneral,
@@ -418,9 +428,11 @@ def EXTSW_32_64 : XForm_11<31, 986, (outs G8RC:$rA), (ins GPRC:$rS),
"extsw $rA, $rS", IntGeneral,
[(set G8RC:$rA, (sext GPRC:$rS))]>, isPPC64;
+let Defs = [CARRY] in {
def SRADI : XSForm_1<31, 413, (outs G8RC:$rA), (ins G8RC:$rS, u6imm:$SH),
"sradi $rA, $rS, $SH", IntRotateD,
[(set G8RC:$rA, (sra G8RC:$rS, (i32 imm:$SH)))]>, isPPC64;
+}
def CNTLZD : XForm_11<31, 58, (outs G8RC:$rA), (ins G8RC:$rS),
"cntlzd $rA, $rS", IntGeneral,
[(set G8RC:$rA, (ctlz G8RC:$rS))]>;
@@ -543,6 +555,10 @@ let canFoldAsLoad = 1, PPC970_Unit = 2 in {
def LD : DSForm_1<58, 0, (outs G8RC:$rD), (ins memrix:$src),
"ld $rD, $src", LdStLD,
[(set G8RC:$rD, (load ixaddr:$src))]>, isPPC64;
+def LDtoc: DSForm_1<58, 0, (outs G8RC:$rD), (ins tocentry:$disp, G8RC:$reg),
+ "ld $rD, $disp($reg)", LdStLD,
+ [(set G8RC:$rD,
+ (PPCtoc_entry tglobaladdr:$disp, G8RC:$reg))]>, isPPC64;
def LDX : XForm_1<31, 21, (outs G8RC:$rD), (ins memrr:$src),
"ldx $rD, $src", LdStLD,
[(set G8RC:$rD, (load xaddr:$src))]>, isPPC64;
diff --git a/lib/Target/PowerPC/PPCInstrBuilder.h b/lib/Target/PowerPC/PPCInstrBuilder.h
index 1de6911..b424d11 100644
--- a/lib/Target/PowerPC/PPCInstrBuilder.h
+++ b/lib/Target/PowerPC/PPCInstrBuilder.h
@@ -29,7 +29,7 @@ namespace llvm {
/// reference has base register as the FrameIndex offset until it is resolved.
/// This allows a constant offset to be specified as well...
///
-inline const MachineInstrBuilder&
+static inline const MachineInstrBuilder&
addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0,
bool mem = true) {
if (mem)
diff --git a/lib/Target/PowerPC/PPCInstrInfo.cpp b/lib/Target/PowerPC/PPCInstrInfo.cpp
index 87c612a..0083598 100644
--- a/lib/Target/PowerPC/PPCInstrInfo.cpp
+++ b/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -20,7 +20,9 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/MC/MCAsmInfo.h"
using namespace llvm;
extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp.
@@ -485,8 +487,7 @@ PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
.addReg(PPC::R0)
.addReg(PPC::R0));
} else {
- assert(0 && "Unknown regclass!");
- abort();
+ llvm_unreachable("Unknown regclass!");
}
return false;
@@ -509,45 +510,6 @@ PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MBB.insert(MI, NewMIs[i]);
}
-void PPCInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const{
- if (Addr[0].isFI()) {
- if (StoreRegToStackSlot(MF, SrcReg, isKill,
- Addr[0].getIndex(), RC, NewMIs)) {
- PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
- FuncInfo->setSpillsCR();
- }
-
- return;
- }
-
- DebugLoc DL = DebugLoc::getUnknownLoc();
- unsigned Opc = 0;
- if (RC == PPC::GPRCRegisterClass) {
- Opc = PPC::STW;
- } else if (RC == PPC::G8RCRegisterClass) {
- Opc = PPC::STD;
- } else if (RC == PPC::F8RCRegisterClass) {
- Opc = PPC::STFD;
- } else if (RC == PPC::F4RCRegisterClass) {
- Opc = PPC::STFS;
- } else if (RC == PPC::VRRCRegisterClass) {
- Opc = PPC::STVX;
- } else {
- assert(0 && "Unknown regclass!");
- abort();
- }
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc))
- .addReg(SrcReg, getKillRegState(isKill));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
void
PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
unsigned DestReg, int FrameIdx,
@@ -634,8 +596,7 @@ PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0)
.addReg(PPC::R0));
} else {
- assert(0 && "Unknown regclass!");
- abort();
+ llvm_unreachable("Unknown regclass!");
}
}
@@ -653,41 +614,6 @@ PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MBB.insert(MI, NewMIs[i]);
}
-void PPCInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs)const{
- if (Addr[0].isFI()) {
- LoadRegFromStackSlot(MF, DebugLoc::getUnknownLoc(),
- DestReg, Addr[0].getIndex(), RC, NewMIs);
- return;
- }
-
- unsigned Opc = 0;
- if (RC == PPC::GPRCRegisterClass) {
- assert(DestReg != PPC::LR && "Can't handle this yet!");
- Opc = PPC::LWZ;
- } else if (RC == PPC::G8RCRegisterClass) {
- assert(DestReg != PPC::LR8 && "Can't handle this yet!");
- Opc = PPC::LD;
- } else if (RC == PPC::F8RCRegisterClass) {
- Opc = PPC::LFD;
- } else if (RC == PPC::F4RCRegisterClass) {
- Opc = PPC::LFS;
- } else if (RC == PPC::VRRCRegisterClass) {
- Opc = PPC::LVX;
- } else {
- assert(0 && "Unknown regclass!");
- abort();
- }
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
-}
-
/// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into
/// copy instructions, turning them into load/store instructions.
MachineInstr *PPCInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
@@ -842,7 +768,7 @@ unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
case PPC::INLINEASM: { // Inline Asm: Variable size.
const MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
- return MF->getTarget().getTargetAsmInfo()->getInlineAsmLength(AsmStr);
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
}
case PPC::DBG_LABEL:
case PPC::EH_LABEL:
diff --git a/lib/Target/PowerPC/PPCInstrInfo.h b/lib/Target/PowerPC/PPCInstrInfo.h
index 492634c..bb0dc15a 100644
--- a/lib/Target/PowerPC/PPCInstrInfo.h
+++ b/lib/Target/PowerPC/PPCInstrInfo.h
@@ -121,20 +121,10 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
-
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
/// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into
/// copy instructions, turning them into load/store instructions.
diff --git a/lib/Target/PowerPC/PPCInstrInfo.td b/lib/Target/PowerPC/PPCInstrInfo.td
index 7af59a2..dc5db6f 100644
--- a/lib/Target/PowerPC/PPCInstrInfo.td
+++ b/lib/Target/PowerPC/PPCInstrInfo.td
@@ -35,11 +35,11 @@ def SDT_PPCcondbr : SDTypeProfile<0, 3, [
SDTCisVT<0, i32>, SDTCisVT<2, OtherVT>
]>;
-def SDT_PPClbrx : SDTypeProfile<1, 3, [
- SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>
+def SDT_PPClbrx : SDTypeProfile<1, 2, [
+ SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
]>;
-def SDT_PPCstbrx : SDTypeProfile<0, 4, [
- SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>
+def SDT_PPCstbrx : SDTypeProfile<0, 3, [
+ SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>
]>;
def SDT_PPClarx : SDTypeProfile<1, 1, [
@@ -53,6 +53,8 @@ def SDT_PPCTC_ret : SDTypeProfile<0, 2, [
SDTCisPtrTy<0>, SDTCisVT<1, i32>
]>;
+def SDT_PPCnop : SDTypeProfile<0, 0, []>;
+
//===----------------------------------------------------------------------===//
// PowerPC specific DAG Nodes.
//
@@ -85,6 +87,7 @@ def PPCfsel : SDNode<"PPCISD::FSEL",
def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>;
def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>;
+def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>;
def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>;
def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>;
@@ -111,6 +114,7 @@ def PPCcall_Darwin : SDNode<"PPCISD::CALL_Darwin", SDT_PPCCall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def PPCcall_SVR4 : SDNode<"PPCISD::CALL_SVR4", SDT_PPCCall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
+def PPCnop : SDNode<"PPCISD::NOP", SDT_PPCnop, [SDNPInFlag, SDNPOutFlag]>;
def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def PPCbctrl_Darwin : SDNode<"PPCISD::BCTRL_Darwin", SDTNone,
@@ -125,9 +129,6 @@ def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone,
def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret,
[SDNPHasChain, SDNPOptInFlag]>;
-def PPCtailcall : SDNode<"PPCISD::TAILCALL", SDT_PPCCall,
- [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
-
def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>;
def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutFlag]>;
@@ -309,6 +310,10 @@ def memrix : Operand<iPTR> { // memri where the imm is shifted 2 bits.
let PrintMethod = "printMemRegImmShifted";
let MIOperandInfo = (ops i32imm:$imm, ptr_rc:$reg);
}
+def tocentry : Operand<iPTR> {
+ let PrintMethod = "printTOCEntryLabel";
+ let MIOperandInfo = (ops i32imm:$imm);
+}
// PowerPC Predicate operand. 20 = (0<<5)|20 = always, CR0 is a dummy reg
// that doesn't matter.
@@ -421,7 +426,7 @@ let isCall = 1, PPC970_Unit = 7,
LR,CTR,
CR0,CR1,CR5,CR6,CR7,
CR0LT,CR0GT,CR0EQ,CR0UN,CR1LT,CR1GT,CR1EQ,CR1UN,CR5LT,CR5GT,CR5EQ,
- CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN] in {
+ CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_Darwin : IForm<18, 0, 1,
@@ -448,7 +453,7 @@ let isCall = 1, PPC970_Unit = 7,
LR,CTR,
CR0,CR1,CR5,CR6,CR7,
CR0LT,CR0GT,CR0EQ,CR0UN,CR1LT,CR1GT,CR1EQ,CR1UN,CR5LT,CR5GT,CR5EQ,
- CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN] in {
+ CR5UN,CR6LT,CR6GT,CR6EQ,CR6UN,CR7LT,CR7GT,CR7EQ,CR7UN,CARRY] in {
// Convenient aliases for call instructions
let Uses = [RM] in {
def BL_SVR4 : IForm<18, 0, 1,
@@ -736,10 +741,10 @@ def LWZX : XForm_1<31, 23, (outs GPRC:$rD), (ins memrr:$src),
def LHBRX : XForm_1<31, 790, (outs GPRC:$rD), (ins memrr:$src),
"lhbrx $rD, $src", LdStGeneral,
- [(set GPRC:$rD, (PPClbrx xoaddr:$src, srcvalue:$sv, i16))]>;
+ [(set GPRC:$rD, (PPClbrx xoaddr:$src, i16))]>;
def LWBRX : XForm_1<31, 534, (outs GPRC:$rD), (ins memrr:$src),
"lwbrx $rD, $src", LdStGeneral,
- [(set GPRC:$rD, (PPClbrx xoaddr:$src, srcvalue:$sv, i32))]>;
+ [(set GPRC:$rD, (PPClbrx xoaddr:$src, i32))]>;
def LFSX : XForm_25<31, 535, (outs F4RC:$frD), (ins memrr:$src),
"lfsx $frD, $src", LdStLFDU,
@@ -832,11 +837,11 @@ def STWUX : XForm_8<31, 183, (outs), (ins GPRC:$rS, GPRC:$rA, GPRC:$rB),
}
def STHBRX: XForm_8<31, 918, (outs), (ins GPRC:$rS, memrr:$dst),
"sthbrx $rS, $dst", LdStGeneral,
- [(PPCstbrx GPRC:$rS, xoaddr:$dst, srcvalue:$dummy, i16)]>,
+ [(PPCstbrx GPRC:$rS, xoaddr:$dst, i16)]>,
PPC970_DGroup_Cracked;
def STWBRX: XForm_8<31, 662, (outs), (ins GPRC:$rS, memrr:$dst),
"stwbrx $rS, $dst", LdStGeneral,
- [(PPCstbrx GPRC:$rS, xoaddr:$dst, srcvalue:$dummy, i32)]>,
+ [(PPCstbrx GPRC:$rS, xoaddr:$dst, i32)]>,
PPC970_DGroup_Cracked;
def STFIWX: XForm_28<31, 983, (outs), (ins F8RC:$frS, memrr:$dst),
@@ -864,6 +869,7 @@ let PPC970_Unit = 1 in { // FXU Operations.
def ADDI : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addi $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>;
+let Defs = [CARRY] in {
def ADDIC : DForm_2<12, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addic $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (addc GPRC:$rA, immSExt16:$imm))]>,
@@ -871,6 +877,7 @@ def ADDIC : DForm_2<12, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
def ADDICo : DForm_2<13, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"addic. $rD, $rA, $imm", IntGeneral,
[]>;
+}
def ADDIS : DForm_2<15, (outs GPRC:$rD), (ins GPRC:$rA, symbolHi:$imm),
"addis $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (add GPRC:$rA, imm16ShiftedSExt:$imm))]>;
@@ -881,9 +888,11 @@ def LA : DForm_2<14, (outs GPRC:$rD), (ins GPRC:$rA, symbolLo:$sym),
def MULLI : DForm_2< 7, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"mulli $rD, $rA, $imm", IntMulLI,
[(set GPRC:$rD, (mul GPRC:$rA, immSExt16:$imm))]>;
+let Defs = [CARRY] in {
def SUBFIC : DForm_2< 8, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"subfic $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (subc immSExt16:$imm, GPRC:$rA))]>;
+}
let isReMaterializable = 1 in {
def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm),
@@ -956,15 +965,19 @@ def SLW : XForm_6<31, 24, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
def SRW : XForm_6<31, 536, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"srw $rA, $rS, $rB", IntGeneral,
[(set GPRC:$rA, (PPCsrl GPRC:$rS, GPRC:$rB))]>;
+let Defs = [CARRY] in {
def SRAW : XForm_6<31, 792, (outs GPRC:$rA), (ins GPRC:$rS, GPRC:$rB),
"sraw $rA, $rS, $rB", IntShift,
[(set GPRC:$rA, (PPCsra GPRC:$rS, GPRC:$rB))]>;
}
+}
let PPC970_Unit = 1 in { // FXU Operations.
+let Defs = [CARRY] in {
def SRAWI : XForm_10<31, 824, (outs GPRC:$rA), (ins GPRC:$rS, u5imm:$SH),
"srawi $rA, $rS, $SH", IntShift,
[(set GPRC:$rA, (sra GPRC:$rS, (i32 imm:$SH)))]>;
+}
def CNTLZW : XForm_11<31, 26, (outs GPRC:$rA), (ins GPRC:$rS),
"cntlzw $rA, $rS", IntGeneral,
[(set GPRC:$rA, (ctlz GPRC:$rS))]>;
@@ -1159,13 +1172,12 @@ let PPC970_Unit = 1 in { // FXU Operations.
def ADD4 : XOForm_1<31, 266, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"add $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (add GPRC:$rA, GPRC:$rB))]>;
+let Defs = [CARRY] in {
def ADDC : XOForm_1<31, 10, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"addc $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (addc GPRC:$rA, GPRC:$rB))]>,
PPC970_DGroup_Cracked;
-def ADDE : XOForm_1<31, 138, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
- "adde $rT, $rA, $rB", IntGeneral,
- [(set GPRC:$rT, (adde GPRC:$rA, GPRC:$rB))]>;
+}
def DIVW : XOForm_1<31, 491, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"divw $rT, $rA, $rB", IntDivW,
[(set GPRC:$rT, (sdiv GPRC:$rA, GPRC:$rB))]>,
@@ -1186,22 +1198,28 @@ def MULLW : XOForm_1<31, 235, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
def SUBF : XOForm_1<31, 40, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"subf $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (sub GPRC:$rB, GPRC:$rA))]>;
+let Defs = [CARRY] in {
def SUBFC : XOForm_1<31, 8, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"subfc $rT, $rA, $rB", IntGeneral,
[(set GPRC:$rT, (subc GPRC:$rB, GPRC:$rA))]>,
PPC970_DGroup_Cracked;
-def SUBFE : XOForm_1<31, 136, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
- "subfe $rT, $rA, $rB", IntGeneral,
- [(set GPRC:$rT, (sube GPRC:$rB, GPRC:$rA))]>;
+}
+def NEG : XOForm_3<31, 104, 0, (outs GPRC:$rT), (ins GPRC:$rA),
+ "neg $rT, $rA", IntGeneral,
+ [(set GPRC:$rT, (ineg GPRC:$rA))]>;
+let Uses = [CARRY], Defs = [CARRY] in {
+def ADDE : XOForm_1<31, 138, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
+ "adde $rT, $rA, $rB", IntGeneral,
+ [(set GPRC:$rT, (adde GPRC:$rA, GPRC:$rB))]>;
def ADDME : XOForm_3<31, 234, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"addme $rT, $rA", IntGeneral,
[(set GPRC:$rT, (adde GPRC:$rA, immAllOnes))]>;
def ADDZE : XOForm_3<31, 202, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"addze $rT, $rA", IntGeneral,
[(set GPRC:$rT, (adde GPRC:$rA, 0))]>;
-def NEG : XOForm_3<31, 104, 0, (outs GPRC:$rT), (ins GPRC:$rA),
- "neg $rT, $rA", IntGeneral,
- [(set GPRC:$rT, (ineg GPRC:$rA))]>;
+def SUBFE : XOForm_1<31, 136, 0, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
+ "subfe $rT, $rA, $rB", IntGeneral,
+ [(set GPRC:$rT, (sube GPRC:$rB, GPRC:$rA))]>;
def SUBFME : XOForm_3<31, 232, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"subfme $rT, $rA", IntGeneral,
[(set GPRC:$rT, (sube immAllOnes, GPRC:$rA))]>;
@@ -1209,6 +1227,7 @@ def SUBFZE : XOForm_3<31, 200, 0, (outs GPRC:$rT), (ins GPRC:$rA),
"subfze $rT, $rA", IntGeneral,
[(set GPRC:$rT, (sube 0, GPRC:$rA))]>;
}
+}
// A-Form instructions. Most of the instructions executed in the FPU are of
// this type.
diff --git a/lib/Target/PowerPC/PPCJITInfo.cpp b/lib/Target/PowerPC/PPCJITInfo.cpp
index 7486d74..ef25d92 100644
--- a/lib/Target/PowerPC/PPCJITInfo.cpp
+++ b/lib/Target/PowerPC/PPCJITInfo.cpp
@@ -18,6 +18,8 @@
#include "llvm/Function.h"
#include "llvm/System/Memory.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static TargetJITInfo::JITCompilerFn JITCompilerFunction;
@@ -197,8 +199,7 @@ asm(
);
#else
void PPC32CompilationCallback() {
- assert(0 && "This is not a power pc, you can't execute this!");
- abort();
+ llvm_unreachable("This is not a power pc, you can't execute this!");
}
#endif
@@ -264,8 +265,7 @@ asm(
);
#else
void PPC64CompilationCallback() {
- assert(0 && "This is not a power pc, you can't execute this!");
- abort();
+ llvm_unreachable("This is not a power pc, you can't execute this!");
}
#endif
@@ -383,7 +383,7 @@ void PPCJITInfo::relocate(void *Function, MachineRelocation *MR,
unsigned *RelocPos = (unsigned*)Function + MR->getMachineCodeOffset()/4;
intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
switch ((PPC::RelocationType)MR->getRelocationType()) {
- default: assert(0 && "Unknown relocation type!");
+ default: llvm_unreachable("Unknown relocation type!");
case PPC::reloc_pcrel_bx:
// PC-relative relocation for b and bl instructions.
ResultPtr = (ResultPtr-(intptr_t)RelocPos) >> 2;
diff --git a/lib/Target/PowerPC/PPCMCAsmInfo.cpp b/lib/Target/PowerPC/PPCMCAsmInfo.cpp
new file mode 100644
index 0000000..c87879b
--- /dev/null
+++ b/lib/Target/PowerPC/PPCMCAsmInfo.cpp
@@ -0,0 +1,58 @@
+//===-- PPCMCAsmInfo.cpp - PPC asm properties -------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the MCAsmInfoDarwin properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCMCAsmInfo.h"
+using namespace llvm;
+
+PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit) {
+ PCSymbol = ".";
+ CommentString = ";";
+ ExceptionsType = ExceptionHandling::Dwarf;
+
+ if (!is64Bit)
+ Data64bitsDirective = 0; // We can't emit a 64-bit unit in PPC32 mode.
+ AssemblerDialect = 1; // New-Style mnemonics.
+}
+
+PPCLinuxMCAsmInfo::PPCLinuxMCAsmInfo(bool is64Bit) {
+ CommentString = "#";
+ GlobalPrefix = "";
+ PrivateGlobalPrefix = ".L";
+ UsedDirective = "\t# .no_dead_strip\t";
+ WeakRefDirective = "\t.weak\t";
+
+ // Uses '.section' before '.bss' directive
+ UsesELFSectionDirectiveForBSS = true;
+
+ // Debug Information
+ AbsoluteDebugSectionOffsets = true;
+ SupportsDebugInformation = true;
+
+ PCSymbol = ".";
+
+ // Set up DWARF directives
+ HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
+
+ // Exceptions handling
+ if (!is64Bit)
+ ExceptionsType = ExceptionHandling::Dwarf;
+ AbsoluteEHSectionOffsets = false;
+
+ ZeroDirective = "\t.space\t";
+ SetDirective = "\t.set";
+ Data64bitsDirective = is64Bit ? "\t.quad\t" : 0;
+ AlignmentIsInBytes = false;
+ LCOMMDirective = "\t.lcomm\t";
+ AssemblerDialect = 0; // Old-Style mnemonics.
+}
+
diff --git a/lib/Target/PowerPC/PPCMCAsmInfo.h b/lib/Target/PowerPC/PPCMCAsmInfo.h
new file mode 100644
index 0000000..96ae6fb
--- /dev/null
+++ b/lib/Target/PowerPC/PPCMCAsmInfo.h
@@ -0,0 +1,31 @@
+//=====-- PPCMCAsmInfo.h - PPC asm properties -----------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MCAsmInfoDarwin class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCTARGETASMINFO_H
+#define PPCTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfoDarwin.h"
+
+namespace llvm {
+
+ struct PPCMCAsmInfoDarwin : public MCAsmInfoDarwin {
+ explicit PPCMCAsmInfoDarwin(bool is64Bit);
+ };
+
+ struct PPCLinuxMCAsmInfo : public MCAsmInfo {
+ explicit PPCLinuxMCAsmInfo(bool is64Bit);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/PowerPC/PPCMachOWriterInfo.cpp b/lib/Target/PowerPC/PPCMachOWriterInfo.cpp
index 3bfa6d7..4c14454 100644
--- a/lib/Target/PowerPC/PPCMachOWriterInfo.cpp
+++ b/lib/Target/PowerPC/PPCMachOWriterInfo.cpp
@@ -16,6 +16,7 @@
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachORelocation.h"
#include "llvm/Support/OutputBuffer.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cstdio>
using namespace llvm;
@@ -46,9 +47,9 @@ unsigned PPCMachOWriterInfo::GetTargetRelocation(MachineRelocation &MR,
Addr = (uintptr_t)MR.getResultPointer() + ToAddr;
switch ((PPC::RelocationType)MR.getRelocationType()) {
- default: assert(0 && "Unknown PPC relocation type!");
+ default: llvm_unreachable("Unknown PPC relocation type!");
case PPC::reloc_absolute_low_ix:
- assert(0 && "Unhandled PPC relocation type!");
+ llvm_unreachable("Unhandled PPC relocation type!");
break;
case PPC::reloc_vanilla:
{
diff --git a/lib/Target/PowerPC/PPCPredicates.cpp b/lib/Target/PowerPC/PPCPredicates.cpp
index 08a2812..12bb0a1 100644
--- a/lib/Target/PowerPC/PPCPredicates.cpp
+++ b/lib/Target/PowerPC/PPCPredicates.cpp
@@ -12,12 +12,13 @@
//===----------------------------------------------------------------------===//
#include "PPCPredicates.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cassert>
using namespace llvm;
PPC::Predicate PPC::InvertPredicate(PPC::Predicate Opcode) {
switch (Opcode) {
- default: assert(0 && "Unknown PPC branch opcode!");
+ default: llvm_unreachable("Unknown PPC branch opcode!");
case PPC::PRED_EQ: return PPC::PRED_NE;
case PPC::PRED_NE: return PPC::PRED_EQ;
case PPC::PRED_LT: return PPC::PRED_GE;
diff --git a/lib/Target/PowerPC/PPCRegisterInfo.cpp b/lib/Target/PowerPC/PPCRegisterInfo.cpp
index 97b1c57..cf5c7c0 100644
--- a/lib/Target/PowerPC/PPCRegisterInfo.cpp
+++ b/lib/Target/PowerPC/PPCRegisterInfo.cpp
@@ -37,7 +37,9 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <cstdlib>
@@ -111,8 +113,7 @@ unsigned PPCRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
case R30: case X30: case F30: case V30: case CR7EQ: return 30;
case R31: case X31: case F31: case V31: case CR7UN: return 31;
default:
- cerr << "Unhandled reg in PPCRegisterInfo::getRegisterNumbering!\n";
- abort();
+ llvm_unreachable("Unhandled reg in PPCRegisterInfo::getRegisterNumbering!");
}
}
@@ -139,11 +140,11 @@ PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST,
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
-const TargetRegisterClass *PPCRegisterInfo::getPointerRegClass() const {
+const TargetRegisterClass *
+PPCRegisterInfo::getPointerRegClass(unsigned Kind) const {
if (Subtarget.isPPC64())
return &PPC::G8RCRegClass;
- else
- return &PPC::GPRCRegClass;
+ return &PPC::GPRCRegClass;
}
const unsigned*
@@ -173,7 +174,8 @@ PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
PPC::LR, 0
};
-
+
+ // 32-bit SVR4 calling convention.
static const unsigned SVR4_CalleeSavedRegs[] = {
PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
@@ -199,7 +201,7 @@ PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
- PPC::LR, 0
+ 0
};
// 64-bit Darwin calling convention.
static const unsigned Darwin64_CalleeSavedRegs[] = {
@@ -226,12 +228,41 @@ PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
PPC::LR8, 0
};
+
+ // 64-bit SVR4 calling convention.
+ static const unsigned SVR4_64_CalleeSavedRegs[] = {
+ PPC::X14, PPC::X15,
+ PPC::X16, PPC::X17, PPC::X18, PPC::X19,
+ PPC::X20, PPC::X21, PPC::X22, PPC::X23,
+ PPC::X24, PPC::X25, PPC::X26, PPC::X27,
+ PPC::X28, PPC::X29, PPC::X30, PPC::X31,
+
+ PPC::F14, PPC::F15, PPC::F16, PPC::F17,
+ PPC::F18, PPC::F19, PPC::F20, PPC::F21,
+ PPC::F22, PPC::F23, PPC::F24, PPC::F25,
+ PPC::F26, PPC::F27, PPC::F28, PPC::F29,
+ PPC::F30, PPC::F31,
+
+ PPC::CR2, PPC::CR3, PPC::CR4,
+
+ PPC::VRSAVE,
+
+ PPC::V20, PPC::V21, PPC::V22, PPC::V23,
+ PPC::V24, PPC::V25, PPC::V26, PPC::V27,
+ PPC::V28, PPC::V29, PPC::V30, PPC::V31,
+
+ PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN,
+ PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN,
+ PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN,
+
+ 0
+ };
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? Darwin64_CalleeSavedRegs :
Darwin32_CalleeSavedRegs;
-
- return SVR4_CalleeSavedRegs;
+
+ return Subtarget.isPPC64() ? SVR4_64_CalleeSavedRegs : SVR4_CalleeSavedRegs;
}
const TargetRegisterClass* const*
@@ -266,6 +297,7 @@ PPCRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
&PPC::GPRCRegClass, 0
};
+ // 32-bit SVR4 calling convention.
static const TargetRegisterClass * const SVR4_CalleeSavedRegClasses[] = {
&PPC::GPRCRegClass,&PPC::GPRCRegClass,
&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,
@@ -294,7 +326,7 @@ PPCRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,
&PPC::CRBITRCRegClass,
- &PPC::GPRCRegClass, 0
+ 0
};
// 64-bit Darwin calling convention.
@@ -326,12 +358,45 @@ PPCRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
&PPC::G8RCRegClass, 0
};
+
+ // 64-bit SVR4 calling convention.
+ static const TargetRegisterClass * const SVR4_64_CalleeSavedRegClasses[] = {
+ &PPC::G8RCRegClass,&PPC::G8RCRegClass,
+ &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,
+ &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,
+ &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,
+ &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,
+
+ &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,
+ &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,
+ &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,
+ &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,
+ &PPC::F8RCRegClass,&PPC::F8RCRegClass,
+
+ &PPC::CRRCRegClass,&PPC::CRRCRegClass,&PPC::CRRCRegClass,
+
+ &PPC::VRSAVERCRegClass,
+
+ &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,
+ &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,
+ &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,
+
+ &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,
+ &PPC::CRBITRCRegClass,
+ &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,
+ &PPC::CRBITRCRegClass,
+ &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,
+ &PPC::CRBITRCRegClass,
+
+ 0
+ };
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? Darwin64_CalleeSavedRegClasses :
Darwin32_CalleeSavedRegClasses;
- return SVR4_CalleeSavedRegClasses;
+ return Subtarget.isPPC64() ? SVR4_64_CalleeSavedRegClasses
+ : SVR4_CalleeSavedRegClasses;
}
// needsFP - Return true if the specified function should have a dedicated frame
@@ -363,9 +428,9 @@ BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(PPC::R13); // Small Data Area pointer register
}
- // On PPC64, r13 is the thread pointer. Never allocate this register. Note
- // that this is over conservative, as it also prevents allocation of R31 when
- // the FP is not needed.
+ // On PPC64, r13 is the thread pointer. Never allocate this register.
+ // Note that this is over conservative, as it also prevents allocation of R31
+ // when the FP is not needed.
if (Subtarget.isPPC64()) {
Reserved.set(PPC::R13);
Reserved.set(PPC::R31);
@@ -377,6 +442,11 @@ BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(PPC::X1);
Reserved.set(PPC::X13);
Reserved.set(PPC::X31);
+
+ // The 64-bit SVR4 ABI reserves r2 for the TOC pointer.
+ if (Subtarget.isSVR4ABI()) {
+ Reserved.set(PPC::X2);
+ }
}
if (needsFP(MF))
@@ -457,7 +527,7 @@ static
unsigned findScratchRegister(MachineBasicBlock::iterator II, RegScavenger *RS,
const TargetRegisterClass *RC, int SPAdj) {
assert(RS && "Register scavenging must be on");
- unsigned Reg = RS->FindUnusedReg(RC, true);
+ unsigned Reg = RS->FindUnusedReg(RC);
// FIXME: move ARM callee-saved reg scan to target independent code, then
// search for already spilled CS register here.
if (Reg == 0)
@@ -629,8 +699,10 @@ void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
MBB.erase(II);
}
-void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const {
+unsigned
+PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
// Get the instruction.
@@ -669,14 +741,14 @@ void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
lowerDynamicAlloc(II, SPAdj, RS);
- return;
+ return 0;
}
// Special case for pseudo-op SPILL_CR.
if (EnableRegisterScavenging) // FIXME (64-bit): Enable by default.
if (OpC == PPC::SPILL_CR) {
lowerCRSpilling(II, FrameIndex, SPAdj, RS);
- return;
+ return 0;
}
// Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
@@ -718,7 +790,7 @@ void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (isIXAddr)
Offset >>= 2; // The actual encoded value has the low two bits zero.
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
- return;
+ return 0;
}
// The offset doesn't fit into a single register, scavenge one to build the
@@ -758,6 +830,7 @@ void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
unsigned StackReg = MI.getOperand(FIOperandNo).getReg();
MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false);
+ return 0;
}
/// VRRegNo - Map from a numbered VR register to its enum value.
@@ -910,7 +983,7 @@ void PPCRegisterInfo::determineFrameLayout(MachineFunction &MF) const {
// don't have a frame pointer, calls, or dynamic alloca then we do not need
// to adjust the stack pointer (we fit in the Red Zone).
bool DisableRedZone = MF.getFunction()->hasFnAttr(Attribute::NoRedZone);
- // FIXME SVR4 The SVR4 ABI has no red zone.
+ // FIXME SVR4 The 32-bit SVR4 ABI has no red zone.
if (!DisableRedZone &&
FrameSize <= 224 && // Fits in red zone.
!MFI->hasVarSizedObjects() && // No dynamic alloca.
@@ -1005,7 +1078,7 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
if (!Subtarget.isSVR4ABI()) {
return;
}
-
+
// Get callee saved register information.
MachineFrameInfo *FFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo();
@@ -1016,16 +1089,19 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
}
unsigned MinGPR = PPC::R31;
+ unsigned MinG8R = PPC::X31;
unsigned MinFPR = PPC::F31;
unsigned MinVR = PPC::V31;
bool HasGPSaveArea = false;
+ bool HasG8SaveArea = false;
bool HasFPSaveArea = false;
bool HasCRSaveArea = false;
bool HasVRSAVESaveArea = false;
bool HasVRSaveArea = false;
SmallVector<CalleeSavedInfo, 18> GPRegs;
+ SmallVector<CalleeSavedInfo, 18> G8Regs;
SmallVector<CalleeSavedInfo, 18> FPRegs;
SmallVector<CalleeSavedInfo, 18> VRegs;
@@ -1041,6 +1117,14 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
if (Reg < MinGPR) {
MinGPR = Reg;
}
+ } else if (RC == PPC::G8RCRegisterClass) {
+ HasG8SaveArea = true;
+
+ G8Regs.push_back(CSI[i]);
+
+ if (Reg < MinG8R) {
+ MinG8R = Reg;
+ }
} else if (RC == PPC::F8RCRegisterClass) {
HasFPSaveArea = true;
@@ -1064,7 +1148,7 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
MinVR = Reg;
}
} else {
- assert(0 && "Unknown RegisterClass!");
+ llvm_unreachable("Unknown RegisterClass!");
}
}
@@ -1103,7 +1187,7 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
// General register save area starts right below the Floating-point
// register save area.
- if (HasGPSaveArea) {
+ if (HasGPSaveArea || HasG8SaveArea) {
// Move general register save area spill slots down, taking into account
// the size of the Floating-point register save area.
for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
@@ -1112,7 +1196,22 @@ PPCRegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF)
FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
}
- LowerBound -= (31 - getRegisterNumbering(MinGPR) + 1) * 4;
+ // Move general register save area spill slots down, taking into account
+ // the size of the Floating-point register save area.
+ for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
+ int FI = G8Regs[i].getFrameIdx();
+
+ FFI->setObjectOffset(FI, LowerBound + FFI->getObjectOffset(FI));
+ }
+
+ unsigned MinReg = std::min<unsigned>(getRegisterNumbering(MinGPR),
+ getRegisterNumbering(MinG8R));
+
+ if (Subtarget.isPPC64()) {
+ LowerBound -= (31 - MinReg + 1) * 8;
+ } else {
+ LowerBound -= (31 - MinReg + 1) * 4;
+ }
}
// The CR save area is below the general register save area.
diff --git a/lib/Target/PowerPC/PPCRegisterInfo.h b/lib/Target/PowerPC/PPCRegisterInfo.h
index ddaefdd..1689bc2 100644
--- a/lib/Target/PowerPC/PPCRegisterInfo.h
+++ b/lib/Target/PowerPC/PPCRegisterInfo.h
@@ -37,7 +37,7 @@ public:
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
- virtual const TargetRegisterClass *getPointerRegClass() const;
+ virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const;
/// Code Generation virtual methods...
const unsigned *getCalleeSavedRegs(const MachineFunction* MF = 0) const;
@@ -66,8 +66,9 @@ public:
int SPAdj, RegScavenger *RS) const;
void lowerCRSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex,
int SPAdj, RegScavenger *RS) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
/// determineFrameLayout - Determine the size of the frame and maximum call
/// frame size.
diff --git a/lib/Target/PowerPC/PPCRegisterInfo.td b/lib/Target/PowerPC/PPCRegisterInfo.td
index bac8e3a..049e893 100644
--- a/lib/Target/PowerPC/PPCRegisterInfo.td
+++ b/lib/Target/PowerPC/PPCRegisterInfo.td
@@ -255,6 +255,11 @@ def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66]>;
// VRsave register
def VRSAVE: SPR<256, "VRsave">, DwarfRegNum<[107]>;
+// Carry bit. In the architecture this is really bit 0 of the XER register
+// (which really is SPR register 1); this is the only bit interesting to a
+// compiler.
+def CARRY: SPR<1, "ca">, DwarfRegNum<[0]>;
+
// FP rounding mode: bits 30 and 31 of the FP status and control register
// This is not allocated as a normal register; it appears only in
// Uses and Defs. The ABI says it needs to be preserved by a function,
@@ -280,7 +285,8 @@ def GPRC : RegisterClass<"PPC", [i32], 32,
let MethodBodies = [{
GPRCClass::iterator
GPRCClass::allocation_order_begin(const MachineFunction &MF) const {
- // In Linux, r2 is reserved for the OS.
+ // 32-bit SVR4 ABI: r2 is reserved for the OS.
+ // 64-bit SVR4 ABI: r2 is reserved for the TOC pointer.
if (!MF.getTarget().getSubtarget<PPCSubtarget>().isDarwin())
return begin()+1;
@@ -291,7 +297,7 @@ def GPRC : RegisterClass<"PPC", [i32], 32,
// On PPC64, r13 is the thread pointer. Never allocate this register.
// Note that this is overconservative, as it also prevents allocation of
// R31 when the FP is not needed.
- // When using the SVR4 ABI, r13 is reserved for the Small Data Area
+ // When using the 32-bit SVR4 ABI, r13 is reserved for the Small Data Area
// pointer.
const PPCSubtarget &Subtarget
= MF.getTarget().getSubtarget<PPCSubtarget>();
@@ -318,6 +324,10 @@ def G8RC : RegisterClass<"PPC", [i64], 64,
let MethodBodies = [{
G8RCClass::iterator
G8RCClass::allocation_order_begin(const MachineFunction &MF) const {
+ // 64-bit SVR4 ABI: r2 is reserved for the TOC pointer.
+ if (!MF.getTarget().getSubtarget<PPCSubtarget>().isDarwin())
+ return begin()+1;
+
return begin();
}
G8RCClass::iterator
@@ -372,4 +382,6 @@ def CRRC : RegisterClass<"PPC", [i32], 32, [CR0, CR1, CR5, CR6, CR7, CR2,
def CTRRC : RegisterClass<"PPC", [i32], 32, [CTR]>;
def CTRRC8 : RegisterClass<"PPC", [i64], 64, [CTR8]>;
def VRSAVERC : RegisterClass<"PPC", [i32], 32, [VRSAVE]>;
-
+def CARRYRC : RegisterClass<"PPC", [i32], 32, [CARRY]> {
+ let CopyCost = -1;
+}
diff --git a/lib/Target/PowerPC/PPCSubtarget.cpp b/lib/Target/PowerPC/PPCSubtarget.cpp
index 425d8e6..f75e781 100644
--- a/lib/Target/PowerPC/PPCSubtarget.cpp
+++ b/lib/Target/PowerPC/PPCSubtarget.cpp
@@ -13,7 +13,7 @@
#include "PPCSubtarget.h"
#include "PPC.h"
-#include "llvm/Module.h"
+#include "llvm/GlobalValue.h"
#include "llvm/Target/TargetMachine.h"
#include "PPCGenSubtarget.inc"
#include <cstdlib>
@@ -57,10 +57,9 @@ static const char *GetCurrentPowerPCCPU() {
#endif
-PPCSubtarget::PPCSubtarget(const TargetMachine &tm, const Module &M,
- const std::string &FS, bool is64Bit)
- : TM(tm)
- , StackAlignment(16)
+PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &FS,
+ bool is64Bit)
+ : StackAlignment(16)
, DarwinDirective(PPC::DIR_NONE)
, IsGigaProcessor(false)
, Has64BitSupport(false)
@@ -95,7 +94,6 @@ PPCSubtarget::PPCSubtarget(const TargetMachine &tm, const Module &M,
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
- const std::string &TT = M.getTargetTriple();
if (TT.length() > 7) {
// Determine which version of darwin this is.
size_t DarwinPos = TT.find("-darwin");
@@ -105,24 +103,11 @@ PPCSubtarget::PPCSubtarget(const TargetMachine &tm, const Module &M,
else
DarwinVers = 8; // Minimum supported darwin is Tiger.
}
- } else if (TT.empty()) {
- // Try to autosense the subtarget from the host compiler.
-#if defined(__APPLE__)
-#if __APPLE_CC__ > 5400
- DarwinVers = 9; // GCC 5400+ is Leopard.
-#else
- DarwinVers = 8; // Minimum supported darwin is Tiger.
-#endif
-#endif
}
// Set up darwin-specific properties.
- if (isDarwin()) {
+ if (isDarwin())
HasLazyResolverStubs = true;
- AsmFlavor = NewMnemonic;
- } else {
- AsmFlavor = OldMnemonic;
- }
}
/// SetJITMode - This is called to inform the subtarget info that we are
@@ -138,7 +123,8 @@ void PPCSubtarget::SetJITMode() {
/// hasLazyResolverStub - Return true if accesses to the specified global have
/// to go through a dyld lazy resolution stub. This means that an extra load
/// is required to get the address of the global.
-bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV) const {
+bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV,
+ const TargetMachine &TM) const {
// We never hae stubs if HasLazyResolverStubs=false or if in static mode.
if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static)
return false;
diff --git a/lib/Target/PowerPC/PPCSubtarget.h b/lib/Target/PowerPC/PPCSubtarget.h
index f633cc6..02c8ad7 100644
--- a/lib/Target/PowerPC/PPCSubtarget.h
+++ b/lib/Target/PowerPC/PPCSubtarget.h
@@ -39,18 +39,11 @@ namespace PPC {
};
}
-class Module;
class GlobalValue;
class TargetMachine;
class PPCSubtarget : public TargetSubtarget {
-public:
- enum AsmWriterFlavorTy {
- OldMnemonic, NewMnemonic, Unset
- };
protected:
- const TargetMachine &TM;
-
/// stackAlignment - The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
unsigned StackAlignment;
@@ -61,9 +54,6 @@ protected:
/// Which cpu directive was used.
unsigned DarwinDirective;
- /// AsmFlavor - Which PPC asm dialect to use.
- AsmWriterFlavorTy AsmFlavor;
-
/// Used by the ISel to turn in optimizations for POWER4-derived architectures
bool IsGigaProcessor;
bool Has64BitSupport;
@@ -79,10 +69,9 @@ protected:
unsigned char DarwinVers; // Is any darwin-ppc platform.
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- PPCSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS, bool is64Bit);
+ PPCSubtarget(const std::string &TT, const std::string &FS, bool is64Bit);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
@@ -132,7 +121,8 @@ public:
/// hasLazyResolverStub - Return true if accesses to the specified global have
/// to go through a dyld lazy resolution stub. This means that an extra load
/// is required to get the address of the global.
- bool hasLazyResolverStub(const GlobalValue *GV) const;
+ bool hasLazyResolverStub(const GlobalValue *GV,
+ const TargetMachine &TM) const;
// Specific obvious features.
bool hasFSQRT() const { return HasFSQRT; }
@@ -148,12 +138,9 @@ public:
/// getDarwinVers - Return the darwin version number, 8 = tiger, 9 = leopard.
unsigned getDarwinVers() const { return DarwinVers; }
- bool isDarwinABI() const { return isDarwin() || IsPPC64; }
- bool isSVR4ABI() const { return !isDarwin() && !IsPPC64; }
+ bool isDarwinABI() const { return isDarwin(); }
+ bool isSVR4ABI() const { return !isDarwin(); }
- unsigned getAsmFlavor() const {
- return AsmFlavor != Unset ? unsigned(AsmFlavor) : 0;
- }
};
} // End llvm namespace
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
index e9073d6..3371954 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -12,96 +12,38 @@
//===----------------------------------------------------------------------===//
#include "PPC.h"
-#include "PPCTargetAsmInfo.h"
+#include "PPCMCAsmInfo.h"
#include "PPCTargetMachine.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Target/TargetOptions.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Support/FormattedStream.h"
using namespace llvm;
-/// PowerPCTargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int PowerPCTargetMachineModule;
-int PowerPCTargetMachineModule = 0;
-
-// Register the targets
-static RegisterTarget<PPC32TargetMachine>
-X("ppc32", "PowerPC 32");
-static RegisterTarget<PPC64TargetMachine>
-Y("ppc64", "PowerPC 64");
-
-// Force static initialization.
-extern "C" void LLVMInitializePowerPCTarget() { }
-
-// No assembler printer by default
-PPCTargetMachine::AsmPrinterCtorFn PPCTargetMachine::AsmPrinterCtor = 0;
-
-const TargetAsmInfo *PPCTargetMachine::createTargetAsmInfo() const {
- if (Subtarget.isDarwin())
- return new PPCDarwinTargetAsmInfo(*this);
- else
- return new PPCLinuxTargetAsmInfo(*this);
-}
-
-unsigned PPC32TargetMachine::getJITMatchQuality() {
-#if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER) || defined(__PPC__)
- if (sizeof(void*) == 4)
- return 10;
-#endif
- return 0;
-}
-unsigned PPC64TargetMachine::getJITMatchQuality() {
-#if defined(__POWERPC__) || defined (__ppc__) || defined(_POWER) || defined(__PPC__)
- if (sizeof(void*) == 8)
- return 10;
-#endif
- return 0;
-}
-
-unsigned PPC32TargetMachine::getModuleMatchQuality(const Module &M) {
- // We strongly match "powerpc-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 8 && std::string(TT.begin(), TT.begin()+8) == "powerpc-")
- return 20;
-
- // If the target triple is something non-powerpc, we don't match.
- if (!TT.empty()) return 0;
+static const MCAsmInfo *createMCAsmInfo(const Target &T,
+ const StringRef &TT) {
+ Triple TheTriple(TT);
+ bool isPPC64 = TheTriple.getArch() == Triple::ppc64;
+ if (TheTriple.getOS() == Triple::Darwin)
+ return new PPCMCAsmInfoDarwin(isPPC64);
+ return new PPCLinuxMCAsmInfo(isPPC64);
- if (M.getEndianness() == Module::BigEndian &&
- M.getPointerSize() == Module::Pointer32)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
-
- return getJITMatchQuality()/2;
}
-unsigned PPC64TargetMachine::getModuleMatchQuality(const Module &M) {
- // We strongly match "powerpc64-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 10 && std::string(TT.begin(), TT.begin()+10) == "powerpc64-")
- return 20;
-
- if (M.getEndianness() == Module::BigEndian &&
- M.getPointerSize() == Module::Pointer64)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
+extern "C" void LLVMInitializePowerPCTarget() {
+ // Register the targets
+ RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target);
+ RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target);
- return getJITMatchQuality()/2;
+ RegisterAsmInfoFn C(ThePPC32Target, createMCAsmInfo);
+ RegisterAsmInfoFn D(ThePPC64Target, createMCAsmInfo);
}
-PPCTargetMachine::PPCTargetMachine(const Module &M, const std::string &FS,
- bool is64Bit)
- : Subtarget(*this, M, FS, is64Bit),
+PPCTargetMachine::PPCTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool is64Bit)
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS, is64Bit),
DataLayout(Subtarget.getTargetDataString()), InstrInfo(*this),
FrameInfo(*this, is64Bit), JITInfo(*this, is64Bit), TLInfo(*this),
InstrItins(Subtarget.getInstrItineraryData()), MachOWriterInfo(*this) {
@@ -118,13 +60,15 @@ PPCTargetMachine::PPCTargetMachine(const Module &M, const std::string &FS,
/// groups, which typically degrades performance.
bool PPCTargetMachine::getEnableTailMergeDefault() const { return false; }
-PPC32TargetMachine::PPC32TargetMachine(const Module &M, const std::string &FS)
- : PPCTargetMachine(M, FS, false) {
+PPC32TargetMachine::PPC32TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : PPCTargetMachine(T, TT, FS, false) {
}
-PPC64TargetMachine::PPC64TargetMachine(const Module &M, const std::string &FS)
- : PPCTargetMachine(M, FS, true) {
+PPC64TargetMachine::PPC64TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : PPCTargetMachine(T, TT, FS, true) {
}
@@ -146,20 +90,36 @@ bool PPCTargetMachine::addPreEmitPass(PassManagerBase &PM,
return false;
}
-bool PPCTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
+bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ MachineCodeEmitter &MCE) {
+ // The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
+ // FIXME: This should be moved to TargetJITInfo!!
+ if (Subtarget.isPPC64()) {
+ // We use PIC codegen in ppc64 mode, because otherwise we'd have to use many
+ // instructions to materialize arbitrary global variable + function +
+ // constant pool addresses.
+ setRelocationModel(Reloc::PIC_);
+ // Temporary workaround for the inability of PPC64 JIT to handle jump
+ // tables.
+ DisableJumpTables = true;
+ } else {
+ setRelocationModel(Reloc::Static);
+ }
+
+ // Inform the subtarget that we are in JIT mode. FIXME: does this break macho
+ // writing?
+ Subtarget.SetJITMode();
+
+ // Machine code emitter pass for PowerPC.
+ PM.add(createPPCCodeEmitterPass(*this, MCE));
return false;
}
bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE) {
+ JITCodeEmitter &JCE) {
// The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
// FIXME: This should be moved to TargetJITInfo!!
if (Subtarget.isPPC64()) {
@@ -179,19 +139,14 @@ bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
Subtarget.SetJITMode();
// Machine code emitter pass for PowerPC.
- PM.add(createPPCCodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
+ PM.add(createPPCJITCodeEmitterPass(*this, JCE));
return false;
}
bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE) {
+ ObjectCodeEmitter &OCE) {
// The JIT should use the static relocation model in ppc32 mode, PIC in ppc64.
// FIXME: This should be moved to TargetJITInfo!!
if (Subtarget.isPPC64()) {
@@ -211,43 +166,33 @@ bool PPCTargetMachine::addCodeEmitter(PassManagerBase &PM,
Subtarget.SetJITMode();
// Machine code emitter pass for PowerPC.
- PM.add(createPPCJITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
+ PM.add(createPPCObjectCodeEmitterPass(*this, OCE));
return false;
}
bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
// Machine code emitter pass for PowerPC.
PM.add(createPPCCodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
// Machine code emitter pass for PowerPC.
PM.add(createPPCJITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
+ return false;
+}
+bool PPCTargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ // Machine code emitter pass for PowerPC.
+ PM.add(createPPCObjectCodeEmitterPass(*this, OCE));
return false;
}
+
diff --git a/lib/Target/PowerPC/PPCTargetMachine.h b/lib/Target/PowerPC/PPCTargetMachine.h
index c693bf4..3399ac8 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.h
+++ b/lib/Target/PowerPC/PPCTargetMachine.h
@@ -39,18 +39,9 @@ class PPCTargetMachine : public LLVMTargetMachine {
InstrItineraryData InstrItins;
PPCMachOWriterInfo MachOWriterInfo;
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- PPCTargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- PPCTargetMachine(const Module &M, const std::string &FS, bool is64Bit);
+ PPCTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool is64Bit);
virtual const PPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const PPCFrameInfo *getFrameInfo() const { return &FrameInfo; }
@@ -71,26 +62,24 @@ public:
return &MachOWriterInfo;
}
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
-
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ MachineCodeEmitter &MCE);
+ virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
+ JITCodeEmitter &JCE);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE);
+ ObjectCodeEmitter &OCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ MachineCodeEmitter &MCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE);
+ JITCodeEmitter &JCE);
+ virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE);
virtual bool getEnableTailMergeDefault() const;
};
@@ -98,20 +87,16 @@ public:
///
class PPC32TargetMachine : public PPCTargetMachine {
public:
- PPC32TargetMachine(const Module &M, const std::string &FS);
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
+ PPC32TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
};
/// PPC64TargetMachine - PowerPC 64-bit target machine.
///
class PPC64TargetMachine : public PPCTargetMachine {
public:
- PPC64TargetMachine(const Module &M, const std::string &FS);
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
+ PPC64TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
};
} // end namespace llvm
diff --git a/lib/Target/PowerPC/README.txt b/lib/Target/PowerPC/README.txt
index 6e9e6c7..f5e50fc 100644
--- a/lib/Target/PowerPC/README.txt
+++ b/lib/Target/PowerPC/README.txt
@@ -149,7 +149,7 @@ http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
Implement Newton-Rhapson method for improving estimate instructions to the
correct accuracy, and implementing divide as multiply by reciprocal when it has
-more than one use. Itanium will want this too.
+more than one use. Itanium would want this too.
===-------------------------------------------------------------------------===
diff --git a/lib/Target/PowerPC/TargetInfo/CMakeLists.txt b/lib/Target/PowerPC/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..058d599
--- /dev/null
+++ b/lib/Target/PowerPC/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMPowerPCInfo
+ PowerPCTargetInfo.cpp
+ )
+
+add_dependencies(LLVMPowerPCInfo PowerPCCodeGenTable_gen)
diff --git a/lib/Target/PowerPC/TargetInfo/Makefile b/lib/Target/PowerPC/TargetInfo/Makefile
new file mode 100644
index 0000000..a101aa4
--- /dev/null
+++ b/lib/Target/PowerPC/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/PowerPC/TargetInfo/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMPowerPCInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp b/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp
new file mode 100644
index 0000000..ad607d0
--- /dev/null
+++ b/lib/Target/PowerPC/TargetInfo/PowerPCTargetInfo.cpp
@@ -0,0 +1,23 @@
+//===-- PowerPCTargetInfo.cpp - PowerPC Target Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::ThePPC32Target, llvm::ThePPC64Target;
+
+extern "C" void LLVMInitializePowerPCTargetInfo() {
+ RegisterTarget<Triple::ppc, /*HasJIT=*/true>
+ X(ThePPC32Target, "ppc32", "PowerPC 32");
+
+ RegisterTarget<Triple::ppc64, /*HasJIT=*/true>
+ Y(ThePPC64Target, "ppc64", "PowerPC 64");
+}
diff --git a/lib/Target/README.txt b/lib/Target/README.txt
index f68cf0e..89ea9d0 100644
--- a/lib/Target/README.txt
+++ b/lib/Target/README.txt
@@ -197,13 +197,6 @@ _bar: addic r3,r3,-1
//===---------------------------------------------------------------------===//
-Legalize should lower ctlz like this:
- ctlz(x) = popcnt((x-1) & ~x)
-
-on targets that have popcnt but not ctlz. itanium, what else?
-
-//===---------------------------------------------------------------------===//
-
quantum_sigma_x in 462.libquantum contains the following loop:
for(i=0; i<reg->size; i++)
@@ -227,7 +220,20 @@ so cool to turn it into something like:
... which would only do one 32-bit XOR per loop iteration instead of two.
It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
-alas...
+alas.
+
+//===---------------------------------------------------------------------===//
+
+This should be optimized to one 'and' and one 'or', from PR4216:
+
+define i32 @test_bitfield(i32 %bf.prev.low) nounwind ssp {
+entry:
+ %bf.prev.lo.cleared10 = or i32 %bf.prev.low, 32962 ; <i32> [#uses=1]
+ %0 = and i32 %bf.prev.low, -65536 ; <i32> [#uses=1]
+ %1 = and i32 %bf.prev.lo.cleared10, 40186 ; <i32> [#uses=1]
+ %2 = or i32 %1, %0 ; <i32> [#uses=1]
+ ret i32 %2
+}
//===---------------------------------------------------------------------===//
@@ -335,11 +341,6 @@ when it is declared U32.
//===---------------------------------------------------------------------===//
-Promote for i32 bswap can use i64 bswap + shr. Useful on targets with 64-bit
-regs and bswap, like itanium.
-
-//===---------------------------------------------------------------------===//
-
LSR should know what GPR types a target has. This code:
volatile short X, Y; // globals
@@ -349,24 +350,22 @@ void foo(int N) {
for (i = 0; i < N; i++) { X = i; Y = i*4; }
}
-produces two identical IV's (after promotion) on PPC/ARM:
+produces two near identical IV's (after promotion) on PPC/ARM:
-LBB1_1: @bb.preheader
- mov r3, #0
- mov r2, r3
- mov r1, r3
-LBB1_2: @bb
- ldr r12, LCPI1_0
- ldr r12, [r12]
- strh r2, [r12]
- ldr r12, LCPI1_1
- ldr r12, [r12]
- strh r3, [r12]
- add r1, r1, #1 <- [0,+,1]
- add r3, r3, #4
- add r2, r2, #1 <- [0,+,1]
- cmp r1, r0
- bne LBB1_2 @bb
+LBB1_2:
+ ldr r3, LCPI1_0
+ ldr r3, [r3]
+ strh r2, [r3]
+ ldr r3, LCPI1_1
+ ldr r3, [r3]
+ strh r1, [r3]
+ add r1, r1, #4
+ add r2, r2, #1 <- [0,+,1]
+ sub r0, r0, #1 <- [0,-,1]
+ cmp r0, #0
+ bne LBB1_2
+
+LSR should reuse the "+" IV for the exit test.
//===---------------------------------------------------------------------===//
@@ -600,25 +599,6 @@ implementations of ceil/floor/rint.
//===---------------------------------------------------------------------===//
-This GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34043
-contains a testcase that compiles down to:
-
- %struct.XMM128 = type { <4 x float> }
-..
- %src = alloca %struct.XMM128
-..
- %tmp6263 = bitcast %struct.XMM128* %src to <2 x i64>*
- %tmp65 = getelementptr %struct.XMM128* %src, i32 0, i32 0
- store <2 x i64> %tmp5899, <2 x i64>* %tmp6263, align 16
- %tmp66 = load <4 x float>* %tmp65, align 16
- %tmp71 = add <4 x float> %tmp66, %tmp66
-
-If the mid-level optimizer turned the bitcast of pointer + store of tmp5899
-into a bitcast of the vector value and a store to the pointer, then the
-store->load could be easily removed.
-
-//===---------------------------------------------------------------------===//
-
Consider:
int test() {
@@ -1123,16 +1103,6 @@ optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
//===---------------------------------------------------------------------===//
-We would like to do the following transform in the instcombiner:
-
- -X/C -> X/-C
-
-However, this isn't valid if (-X) overflows. We can implement this when we
-have the concept of a "C signed subtraction" operator that which is undefined
-on overflow.
-
-//===---------------------------------------------------------------------===//
-
This was noticed in the entryblock for grokdeclarator in 403.gcc:
%tmp = icmp eq i32 %decl_context, 4
@@ -1311,6 +1281,8 @@ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=35287 [LPRE crit edge splitting]
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34677 (licm does this, LPRE crit edge)
llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | opt -mem2reg -simplifycfg -gvn | llvm-dis
+http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16799 [BITCAST PHI TRANS]
+
//===---------------------------------------------------------------------===//
Type based alias analysis:
@@ -1318,31 +1290,25 @@ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
//===---------------------------------------------------------------------===//
-When GVN/PRE finds a store of float* to a must aliases pointer when expecting
-an int*, it should turn it into a bitcast. This is a nice generalization of
-the SROA hack that would apply to other cases, e.g.:
-
-int foo(int C, int *P, float X) {
- if (C) {
- bar();
- *P = 42;
- } else
- *(float*)P = X;
-
- return *P;
-}
-
-
-One example (that requires crazy phi translation) is:
-http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16799 [BITCAST PHI TRANS]
-
-//===---------------------------------------------------------------------===//
-
A/B get pinned to the stack because we turn an if/then into a select instead
of PRE'ing the load/store. This may be fixable in instcombine:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37892
+struct X { int i; };
+int foo (int x) {
+ struct X a;
+ struct X b;
+ struct X *p;
+ a.i = 1;
+ b.i = 2;
+ if (x)
+ p = &a;
+ else
+ p = &b;
+ return p->i;
+}
+//===---------------------------------------------------------------------===//
Interesting missed case because of control flow flattening (should be 2 loads):
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
@@ -1675,5 +1641,6 @@ entry:
Instcombine should be able to optimize away the loads (and thus the globals).
+See also PR4973
//===---------------------------------------------------------------------===//
diff --git a/lib/Target/Sparc/AsmPrinter/Makefile b/lib/Target/Sparc/AsmPrinter/Makefile
index f12a6ac..a856828 100644
--- a/lib/Target/Sparc/AsmPrinter/Makefile
+++ b/lib/Target/Sparc/AsmPrinter/Makefile
@@ -1,4 +1,4 @@
-##===- lib/Target/Sparc/Makefile ---------------------------*- Makefile -*-===##
+##===- lib/Target/Sparc/AsmPrinter/Makefile ----------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
diff --git a/lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp b/lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp
index 71bd0de..a3e5fba 100644
--- a/lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp
+++ b/lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp
@@ -19,18 +19,22 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
-#include "llvm/MDNode.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Support/Mangler.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include <cctype>
#include <cstring>
@@ -49,45 +53,36 @@ namespace {
ValueMapTy NumberForBB;
unsigned BBNumber;
public:
- explicit SparcAsmPrinter(raw_ostream &O, TargetMachine &TM,
- const TargetAsmInfo *T, bool V)
+ explicit SparcAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V), BBNumber(0) {}
virtual const char *getPassName() const {
return "Sparc Assembly Printer";
}
- void printModuleLevelGV(const GlobalVariable* GVar);
+ void PrintGlobalVariable(const GlobalVariable *GVar);
void printOperand(const MachineInstr *MI, int opNum);
void printMemOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
void printCCOperand(const MachineInstr *MI, int opNum);
- bool printInstruction(const MachineInstr *MI); // autogenerated.
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
bool runOnMachineFunction(MachineFunction &F);
- bool doInitialization(Module &M);
- bool doFinalization(Module &M);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
+
+ void emitFunctionHeader(const MachineFunction &MF);
+ bool printGetPCX(const MachineInstr *MI, unsigned OpNo);
};
} // end of anonymous namespace
#include "SparcGenAsmWriter.inc"
-/// createSparcCodePrinterPass - Returns a pass that prints the SPARC
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description. This should work
-/// regardless of whether the function is in SSA form.
-///
-FunctionPass *llvm::createSparcCodePrinterPass(raw_ostream &o,
- TargetMachine &tm,
- bool verbose) {
- return new SparcAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
-}
-
-
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
@@ -103,17 +98,11 @@ bool SparcAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// BBs the same name. (If you have a better way, please let me know!)
O << "\n\n";
-
- // Print out the label for the function.
- const Function *F = MF.getFunction();
- SwitchToSection(TAI->SectionForGlobal(F));
- EmitAlignment(MF.getAlignment(), F);
- O << "\t.globl\t" << CurrentFnName << '\n';
-
- printVisibility(CurrentFnName, F->getVisibility());
-
- O << "\t.type\t" << CurrentFnName << ", #function\n";
- O << CurrentFnName << ":\n";
+ emitFunctionHeader(MF);
+
+
+ // Emit pre-function debug information.
+ DW->BeginFunction(&MF);
// Number each basic block so that we can consistently refer to them
// in PC-relative references.
@@ -129,24 +118,65 @@ bool SparcAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
- printBasicBlockLabel(I, true, true);
- O << '\n';
+ EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
+ processDebugLoc(II, true);
printInstruction(II);
+
+ if (VerboseAsm && !II->getDebugLoc().isUnknown())
+ EmitComments(*II);
+ O << '\n';
+ processDebugLoc(II, false);
++EmittedInsts;
}
}
+ // Emit post-function debug information.
+ DW->EndFunction(&MF);
+
// We didn't modify anything.
+ O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
return false;
}
+void SparcAsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
+ const Function *F = MF.getFunction();
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+ EmitAlignment(MF.getAlignment(), F);
+
+ switch (F->getLinkage()) {
+ default: llvm_unreachable("Unknown linkage type");
+ case Function::PrivateLinkage:
+ case Function::InternalLinkage:
+ // Function is internal.
+ break;
+ case Function::DLLExportLinkage:
+ case Function::ExternalLinkage:
+ // Function is externally visible
+ O << "\t.global\t" << CurrentFnName << '\n';
+ break;
+ case Function::LinkerPrivateLinkage:
+ case Function::LinkOnceAnyLinkage:
+ case Function::LinkOnceODRLinkage:
+ case Function::WeakAnyLinkage:
+ case Function::WeakODRLinkage:
+ // Function is weak
+ O << "\t.weak\t" << CurrentFnName << '\n' ;
+ break;
+ }
+
+ printVisibility(CurrentFnName, F->getVisibility());
+
+ O << "\t.type\t" << CurrentFnName << ", #function\n";
+ O << CurrentFnName << ":\n";
+}
+
+
void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
const MachineOperand &MO = MI->getOperand (opNum);
- const TargetRegisterInfo &RI = *TM.getRegisterInfo();
bool CloseParen = false;
if (MI->getOpcode() == SP::SETHIi && !MO.isReg() && !MO.isImm()) {
O << "%hi(";
@@ -158,33 +188,27 @@ void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
}
switch (MO.getType()) {
case MachineOperand::MO_Register:
- if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
- O << "%" << LowercaseString (RI.get(MO.getReg()).AsmName);
- else
- O << "%reg" << MO.getReg();
+ O << "%" << LowercaseString(getRegisterName(MO.getReg()));
break;
case MachineOperand::MO_Immediate:
O << (int)MO.getImm();
break;
case MachineOperand::MO_MachineBasicBlock:
- printBasicBlockLabel(MO.getMBB());
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress:
- {
- const GlobalValue *GV = MO.getGlobal();
- O << Mang->getValueName(GV);
- }
+ O << Mang->getMangledName(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
break;
case MachineOperand::MO_ConstantPoolIndex:
- O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_"
<< MO.getIndex();
break;
default:
- O << "<unknown operand type>"; abort (); break;
+ llvm_unreachable("<unknown operand type>");
}
if (CloseParen) O << ")";
}
@@ -218,28 +242,42 @@ void SparcAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
}
}
-void SparcAsmPrinter::printCCOperand(const MachineInstr *MI, int opNum) {
- int CC = (int)MI->getOperand(opNum).getImm();
- O << SPARCCondCodeToString((SPCC::CondCodes)CC);
-}
+bool SparcAsmPrinter::printGetPCX(const MachineInstr *MI, unsigned opNum) {
+ std::string operand = "";
+ const MachineOperand &MO = MI->getOperand(opNum);
+ switch (MO.getType()) {
+ default: assert(0 && "Operand is not a register ");
+ case MachineOperand::MO_Register:
+ assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ "Operand is not a physical register ");
+ operand = "%" + LowercaseString(getRegisterName(MO.getReg()));
+ break;
+ }
-bool SparcAsmPrinter::doInitialization(Module &M) {
- Mang = new Mangler(M, "", TAI->getPrivateGlobalPrefix());
- return false; // success
-}
+ unsigned bbNum = NumberForBB[MI->getParent()->getBasicBlock()];
-bool SparcAsmPrinter::doFinalization(Module &M) {
- // Print out module-level global variables here.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- printModuleLevelGV(I);
+ O << '\n' << ".LLGETPCH" << bbNum << ":\n";
+ O << "\tcall\t.LLGETPC" << bbNum << '\n' ;
- O << '\n';
+ O << "\t sethi\t"
+ << "%hi(_GLOBAL_OFFSET_TABLE_+(.-.LLGETPCH" << bbNum << ")), "
+ << operand << '\n' ;
+
+ O << ".LLGETPC" << bbNum << ":\n" ;
+ O << "\tor\t" << operand
+ << ", %lo(_GLOBAL_OFFSET_TABLE_+(.-.LLGETPCH" << bbNum << ")), "
+ << operand << '\n';
+ O << "\tadd\t" << operand << ", %o7, " << operand << '\n';
+
+ return true;
+}
- return AsmPrinter::doFinalization(M);
+void SparcAsmPrinter::printCCOperand(const MachineInstr *MI, int opNum) {
+ int CC = (int)MI->getOperand(opNum).getImm();
+ O << SPARCCondCodeToString((SPCC::CondCodes)CC);
}
-void SparcAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
+void SparcAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
@@ -250,16 +288,15 @@ void SparcAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
return;
O << "\n\n";
- std::string name = Mang->getValueName(GVar);
+ std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
- if (isa<MDNode>(C) || isa<MDString>(C))
- return;
unsigned Size = TD->getTypeAllocSize(C->getType());
unsigned Align = TD->getPreferredAlignment(GVar);
printVisibility(name, GVar->getVisibility());
- SwitchToSection(TAI->SectionForGlobal(GVar));
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
if (C->isNullValue() && !GVar->hasSection()) {
if (!GVar->isThreadLocal() &&
@@ -269,8 +306,8 @@ void SparcAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
if (GVar->hasLocalLinkage())
O << "\t.local " << name << '\n';
- O << TAI->getCOMMDirective() << name << ',' << Size;
- if (TAI->getCOMMDirectiveTakesAlignment())
+ O << MAI->getCOMMDirective() << name << ',' << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
O << ',' << (1 << Align);
O << '\n';
@@ -292,27 +329,25 @@ void SparcAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
- O << TAI->getGlobalDirective() << name << '\n';
+ O << MAI->getGlobalDirective() << name << '\n';
// FALL THROUGH
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
case GlobalValue::InternalLinkage:
break;
case GlobalValue::GhostLinkage:
- cerr << "Should not have any unmaterialized functions!\n";
- abort();
+ llvm_unreachable("Should not have any unmaterialized functions!");
case GlobalValue::DLLImportLinkage:
- cerr << "DLLImport linkage is not supported by this target!\n";
- abort();
+ llvm_unreachable("DLLImport linkage is not supported by this target!");
case GlobalValue::DLLExportLinkage:
- cerr << "DLLExport linkage is not supported by this target!\n";
- abort();
+ llvm_unreachable("DLLExport linkage is not supported by this target!");
default:
- assert(0 && "Unknown linkage type!");
+ llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
- if (TAI->hasDotTypeDotSizeDirective()) {
+ if (MAI->hasDotTypeDotSizeDirective()) {
O << "\t.type " << name << ",#object\n";
O << "\t.size " << name << ',' << Size << '\n';
}
@@ -355,13 +390,7 @@ bool SparcAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
return false;
}
-namespace {
- static struct Register {
- Register() {
- SparcTargetMachine::registerAsmPrinter(createSparcCodePrinterPass);
- }
- } Registrator;
-}
-
// Force static initialization.
-extern "C" void LLVMInitializeSparcAsmPrinter() { }
+extern "C" void LLVMInitializeSparcAsmPrinter() {
+ RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
+}
diff --git a/lib/Target/Sparc/CMakeLists.txt b/lib/Target/Sparc/CMakeLists.txt
index eb045e2..74f320a 100644
--- a/lib/Target/Sparc/CMakeLists.txt
+++ b/lib/Target/Sparc/CMakeLists.txt
@@ -16,9 +16,9 @@ add_llvm_target(SparcCodeGen
SparcInstrInfo.cpp
SparcISelDAGToDAG.cpp
SparcISelLowering.cpp
+ SparcMCAsmInfo.cpp
SparcRegisterInfo.cpp
SparcSubtarget.cpp
- SparcTargetAsmInfo.cpp
SparcTargetMachine.cpp
)
diff --git a/lib/Target/Sparc/FPMover.cpp b/lib/Target/Sparc/FPMover.cpp
index f72a4c4..88b0927 100644
--- a/lib/Target/Sparc/FPMover.cpp
+++ b/lib/Target/Sparc/FPMover.cpp
@@ -20,6 +20,8 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumFpDs , "Number of instructions translated");
@@ -75,7 +77,7 @@ static void getDoubleRegPair(unsigned DoubleReg, unsigned &EvenReg,
OddReg = OddHalvesOfPairs[i];
return;
}
- assert(0 && "Can't find reg");
+ llvm_unreachable("Can't find reg");
}
/// runOnMachineBasicBlock - Fixup FpMOVD instructions in this MBB.
@@ -108,16 +110,16 @@ bool FPMover::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
else if (MI->getOpcode() == SP::FpABSD)
MI->setDesc(TII->get(SP::FABSS));
else
- assert(0 && "Unknown opcode!");
+ llvm_unreachable("Unknown opcode!");
MI->getOperand(0).setReg(EvenDestReg);
MI->getOperand(1).setReg(EvenSrcReg);
- DOUT << "FPMover: the modified instr is: " << *MI;
+ DEBUG(errs() << "FPMover: the modified instr is: " << *MI);
// Insert copy for the other half of the double.
if (DestDReg != SrcDReg) {
MI = BuildMI(MBB, I, dl, TM.getInstrInfo()->get(SP::FMOVS), OddDestReg)
.addReg(OddSrcReg);
- DOUT << "FPMover: the inserted instr is: " << *MI;
+ DEBUG(errs() << "FPMover: the inserted instr is: " << *MI);
}
++NumFpDs;
}
diff --git a/lib/Target/Sparc/Makefile b/lib/Target/Sparc/Makefile
index fdf6afa..6714b4d 100644
--- a/lib/Target/Sparc/Makefile
+++ b/lib/Target/Sparc/Makefile
@@ -16,7 +16,7 @@ BUILT_SOURCES = SparcGenRegisterInfo.h.inc SparcGenRegisterNames.inc \
SparcGenInstrInfo.inc SparcGenAsmWriter.inc \
SparcGenDAGISel.inc SparcGenSubtarget.inc SparcGenCallingConv.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Sparc/Sparc.h b/lib/Target/Sparc/Sparc.h
index c7d0ca8..bb5155e1 100644
--- a/lib/Target/Sparc/Sparc.h
+++ b/lib/Target/Sparc/Sparc.h
@@ -15,19 +15,21 @@
#ifndef TARGET_SPARC_H
#define TARGET_SPARC_H
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
namespace llvm {
class FunctionPass;
class SparcTargetMachine;
- class raw_ostream;
+ class formatted_raw_ostream;
FunctionPass *createSparcISelDag(SparcTargetMachine &TM);
- FunctionPass *createSparcCodePrinterPass(raw_ostream &OS, TargetMachine &TM,
- bool Verbose);
FunctionPass *createSparcDelaySlotFillerPass(TargetMachine &TM);
FunctionPass *createSparcFPMoverPass(TargetMachine &TM);
+
+ extern Target TheSparcTarget;
+
} // end namespace llvm;
// Defines symbolic names for Sparc registers. This defines a mapping from
@@ -83,7 +85,7 @@ namespace llvm {
inline static const char *SPARCCondCodeToString(SPCC::CondCodes CC) {
switch (CC) {
- default: assert(0 && "Unknown condition code");
+ default: llvm_unreachable("Unknown condition code");
case SPCC::ICC_NE: return "ne";
case SPCC::ICC_E: return "e";
case SPCC::ICC_G: return "g";
diff --git a/lib/Target/Sparc/SparcISelDAGToDAG.cpp b/lib/Target/Sparc/SparcISelDAGToDAG.cpp
index c9bd62d..a1a4a8e 100644
--- a/lib/Target/Sparc/SparcISelDAGToDAG.cpp
+++ b/lib/Target/Sparc/SparcISelDAGToDAG.cpp
@@ -17,6 +17,8 @@
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -32,10 +34,13 @@ class SparcDAGToDAGISel : public SelectionDAGISel {
/// Subtarget - Keep a pointer to the Sparc Subtarget around so that we can
/// make the right decision when generating code for different targets.
const SparcSubtarget &Subtarget;
+ SparcTargetMachine& TM;
+ MachineBasicBlock *CurBB;
public:
- explicit SparcDAGToDAGISel(SparcTargetMachine &TM)
- : SelectionDAGISel(TM),
- Subtarget(TM.getSubtarget<SparcSubtarget>()) {
+ explicit SparcDAGToDAGISel(SparcTargetMachine &tm)
+ : SelectionDAGISel(tm),
+ Subtarget(tm.getSubtarget<SparcSubtarget>()),
+ TM(tm) {
}
SDNode *Select(SDValue Op);
@@ -61,6 +66,9 @@ public:
// Include the pieces autogenerated from the target description.
#include "SparcGenDAGISel.inc"
+
+private:
+ SDNode* getGlobalBaseReg();
};
} // end anonymous namespace
@@ -68,12 +76,18 @@ public:
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void SparcDAGToDAGISel::InstructionSelect() {
DEBUG(BB->dump());
-
+ CurBB = BB;
// Select target instructions for the DAG.
SelectRoot(*CurDAG);
CurDAG->RemoveDeadNodes();
}
+SDNode* SparcDAGToDAGISel::getGlobalBaseReg() {
+ MachineFunction *MF = CurBB->getParent();
+ unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
+ return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
+}
+
bool SparcDAGToDAGISel::SelectADDRri(SDValue Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
@@ -147,6 +161,9 @@ SDNode *SparcDAGToDAGISel::Select(SDValue Op) {
switch (N->getOpcode()) {
default: break;
+ case SPISD::GLOBAL_BASE_REG:
+ return getGlobalBaseReg();
+
case ISD::SDIV:
case ISD::UDIV: {
// FIXME: should use a custom expander to expose the SRA to the dag.
@@ -156,12 +173,12 @@ SDNode *SparcDAGToDAGISel::Select(SDValue Op) {
// Set the Y register to the high-part.
SDValue TopPart;
if (N->getOpcode() == ISD::SDIV) {
- TopPart = SDValue(CurDAG->getTargetNode(SP::SRAri, dl, MVT::i32, DivLHS,
+ TopPart = SDValue(CurDAG->getMachineNode(SP::SRAri, dl, MVT::i32, DivLHS,
CurDAG->getTargetConstant(31, MVT::i32)), 0);
} else {
TopPart = CurDAG->getRegister(SP::G0, MVT::i32);
}
- TopPart = SDValue(CurDAG->getTargetNode(SP::WRYrr, dl, MVT::Flag, TopPart,
+ TopPart = SDValue(CurDAG->getMachineNode(SP::WRYrr, dl, MVT::Flag, TopPart,
CurDAG->getRegister(SP::G0, MVT::i32)), 0);
// FIXME: Handle div by immediate.
@@ -175,8 +192,8 @@ SDNode *SparcDAGToDAGISel::Select(SDValue Op) {
SDValue MulLHS = N->getOperand(0);
SDValue MulRHS = N->getOperand(1);
unsigned Opcode = N->getOpcode() == ISD::MULHU ? SP::UMULrr : SP::SMULrr;
- SDNode *Mul = CurDAG->getTargetNode(Opcode, dl, MVT::i32, MVT::Flag,
- MulLHS, MulRHS);
+ SDNode *Mul = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Flag,
+ MulLHS, MulRHS);
// The high part is in the Y register.
return CurDAG->SelectNodeTo(N, SP::RDY, MVT::i32, SDValue(Mul, 1));
return NULL;
diff --git a/lib/Target/Sparc/SparcISelLowering.cpp b/lib/Target/Sparc/SparcISelLowering.cpp
index 4c3efde..164770d 100644
--- a/lib/Target/Sparc/SparcISelLowering.cpp
+++ b/lib/Target/Sparc/SparcISelLowering.cpp
@@ -21,7 +21,9 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -31,18 +33,21 @@ using namespace llvm;
#include "SparcGenCallingConv.inc"
-static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
+SDValue
+SparcTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CC, isVarArg, DAG.getTarget(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, DAG.getTarget(),
+ RVLocs, *DAG.getContext());
- // Analize return values of ISD::RET
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_Sparc32);
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
@@ -52,7 +57,6 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- SDValue Chain = Op.getOperand(0);
SDValue Flag;
// Copy the result values into the output registers.
@@ -60,10 +64,8 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- // ISD::RET => ret chain, (regnum1,val1), ...
- // So i*2+1 index only the regnums.
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
@@ -74,55 +76,64 @@ static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, Chain);
}
-/// LowerArguments - V8 uses a very simple ABI, where all values are passed in
-/// either one or two GPRs, including FP values. TODO: we should pass FP values
-/// in FP registers for fastcc functions.
-void
-SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &ArgValues,
- DebugLoc dl) {
+/// LowerFormalArguments - V8 uses a very simple ABI, where all values are
+/// passed in either one or two GPRs, including FP values. TODO: we should
+/// pass FP values in FP registers for fastcc functions.
+SDValue
+SparcTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
+
static const unsigned ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
-
const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = 68;
- SDValue Root = DAG.getRoot();
- std::vector<SDValue> OutChains;
-
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
- MVT ObjectVT = getValueType(I->getType());
-
- switch (ObjectVT.getSimpleVT()) {
- default: assert(0 && "Unhandled argument type!");
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ SDValue ArgValue;
+ CCValAssign &VA = ArgLocs[i];
+ // FIXME: We ignore the register assignments of AnalyzeFormalArguments
+ // because it doesn't know how to split a double into two i32 registers.
+ EVT ObjectVT = VA.getValVT();
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
- if (I->use_empty()) { // Argument is dead.
+ if (!Ins[i].Used) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
- ArgValues.push_back(DAG.getUNDEF(ObjectVT));
+ InVals.push_back(DAG.getUNDEF(ObjectVT));
} else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
- SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
+ SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (ObjectVT != MVT::i32) {
unsigned AssertOp = ISD::AssertSext;
Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg,
DAG.getValueType(ObjectVT));
Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg);
}
- ArgValues.push_back(Arg);
+ InVals.push_back(Arg);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDValue Load;
if (ObjectVT == MVT::i32) {
- Load = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
+ Load = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0);
} else {
ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
@@ -130,63 +141,63 @@ SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8);
FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
DAG.getConstant(Offset, MVT::i32));
- Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Root, FIPtr,
+ Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
NULL, 0, ObjectVT);
Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load);
}
- ArgValues.push_back(Load);
+ InVals.push_back(Load);
}
ArgOffset += 4;
break;
case MVT::f32:
- if (I->use_empty()) { // Argument is dead.
+ if (!Ins[i].Used) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
- ArgValues.push_back(DAG.getUNDEF(ObjectVT));
+ InVals.push_back(DAG.getUNDEF(ObjectVT));
} else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
// FP value is passed in an integer register.
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
- SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
+ SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg);
- ArgValues.push_back(Arg);
+ InVals.push_back(Arg);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
- SDValue Load = DAG.getLoad(MVT::f32, dl, Root, FIPtr, NULL, 0);
- ArgValues.push_back(Load);
+ SDValue Load = DAG.getLoad(MVT::f32, dl, Chain, FIPtr, NULL, 0);
+ InVals.push_back(Load);
}
ArgOffset += 4;
break;
case MVT::i64:
case MVT::f64:
- if (I->use_empty()) { // Argument is dead.
+ if (!Ins[i].Used) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
if (CurArgReg < ArgRegEnd) ++CurArgReg;
- ArgValues.push_back(DAG.getUNDEF(ObjectVT));
+ InVals.push_back(DAG.getUNDEF(ObjectVT));
} else {
SDValue HiVal;
if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi);
- HiVal = DAG.getCopyFromReg(Root, dl, VRegHi, MVT::i32);
+ HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
- HiVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
+ HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0);
}
SDValue LoVal;
if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo);
- LoVal = DAG.getCopyFromReg(Root, dl, VRegLo, MVT::i32);
+ LoVal = DAG.getCopyFromReg(Chain, dl, VRegLo, MVT::i32);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
- LoVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
+ LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0);
}
// Compose the two halves together into an i64 unit.
@@ -197,7 +208,7 @@ SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
if (ObjectVT == MVT::f64)
WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue);
- ArgValues.push_back(WholeValue);
+ InVals.push_back(WholeValue);
}
ArgOffset += 8;
break;
@@ -205,10 +216,12 @@ SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
}
// Store remaining ArgRegs to the stack if this is a varargs function.
- if (F.isVarArg()) {
+ if (isVarArg) {
// Remember the vararg offset for the va_start implementation.
VarArgsFrameOffset = ArgOffset;
+ std::vector<SDValue> OutChains;
+
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
@@ -220,26 +233,31 @@ SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, NULL, 0));
ArgOffset += 4;
}
+
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &OutChains[0], OutChains.size());
+ }
}
- if (!OutChains.empty())
- DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size()));
+ return Chain;
}
-static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- unsigned CallingConv = TheCall->getCallingConv();
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = TheCall->getDebugLoc();
+SDValue
+SparcTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
#if 0
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CallingConv, isVarArg, DAG.getTarget(), ArgLocs);
- CCInfo.AnalyzeCallOperands(Op.getNode(), CC_Sparc32);
+ CCState CCInfo(CallConv, isVarArg, DAG.getTarget(), ArgLocs);
+ CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
@@ -249,9 +267,9 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Count the size of the outgoing arguments.
unsigned ArgsSize = 0;
- for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
- switch (TheCall->getArg(i).getValueType().getSimpleVT()) {
- default: assert(0 && "Unknown value type!");
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ switch (Outs[i].Val.getValueType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unknown value type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
@@ -283,13 +301,11 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
-
- // Arguments start after the 5 first operands of ISD::CALL
- SDValue Arg = TheCall->getArg(i);
+ SDValue Arg = Outs[i].Val;
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
@@ -325,13 +341,13 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
};
unsigned ArgOffset = 68;
- for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
- SDValue Val = TheCall->getArg(i);
- MVT ObjectVT = Val.getValueType();
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ SDValue Val = Outs[i].Val;
+ EVT ObjectVT = Val.getValueType();
SDValue ValToStore(0, 0);
unsigned ObjSize;
- switch (ObjectVT.getSimpleVT()) {
- default: assert(0 && "Unhandled argument type!");
+ switch (ObjectVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unhandled argument type!");
case MVT::i32:
ObjSize = 4;
@@ -446,7 +462,7 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
- std::vector<MVT> NodeTys;
+ std::vector<EVT> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
SDValue Ops[] = { Chain, Callee, InFlag };
@@ -459,10 +475,10 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState RVInfo(CallingConv, isVarArg, DAG.getTarget(), RVLocs);
+ CCState RVInfo(CallConv, isVarArg, DAG.getTarget(),
+ RVLocs, *DAG.getContext());
- RVInfo.AnalyzeCallResult(TheCall, RetCC_Sparc32);
- SmallVector<SDValue, 8> ResultVals;
+ RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
@@ -475,15 +491,10 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
Chain = DAG.getCopyFromReg(Chain, dl, Reg,
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
- ResultVals.push_back(Chain.getValue(0));
+ InVals.push_back(Chain.getValue(0));
}
- ResultVals.push_back(Chain);
-
- // Merge everything together with a MERGE_VALUES node.
- return DAG.getNode(ISD::MERGE_VALUES, dl,
- TheCall->getVTList(), &ResultVals[0],
- ResultVals.size());
+ return Chain;
}
@@ -496,7 +507,7 @@ static SDValue LowerCALL(SDValue Op, SelectionDAG &DAG) {
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
@@ -514,7 +525,7 @@ static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
- default: assert(0 && "Unknown fp condition code!");
+ default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
@@ -538,9 +549,8 @@ static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
}
}
-
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
- : TargetLowering(TM) {
+ : TargetLowering(TM, new TargetLoweringObjectFileELF()) {
// Set up the register classes.
addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
@@ -635,9 +645,6 @@ SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
- // RET must be custom lowered, to meet ABI requirements
- setOperationAction(ISD::RET , MVT::Other, Custom);
-
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
@@ -654,7 +661,6 @@ SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
- setOperationAction(ISD::DECLARE, MVT::Other, Expand);
setStackPointerRegisterToSaveRestore(SP::O6);
@@ -734,17 +740,29 @@ static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
}
}
-static SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) {
+SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) {
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, GA);
SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, GA);
- return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+
+ SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl,
+ getPointerTy());
+ SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+ SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ GlobalBase, RelAddr);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ AbsAddr, NULL, 0);
}
-static SDValue LowerCONSTANTPOOL(SDValue Op, SelectionDAG &DAG) {
+SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) {
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
@@ -752,7 +770,16 @@ static SDValue LowerCONSTANTPOOL(SDValue Op, SelectionDAG &DAG) {
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, CP);
SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, CP);
- return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+
+ SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl,
+ getPointerTy());
+ SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
+ SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ GlobalBase, RelAddr);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ AbsAddr, NULL, 0);
}
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
@@ -787,7 +814,7 @@ static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
// Get the condition flag.
SDValue CompareFlag;
if (LHS.getValueType() == MVT::i32) {
- std::vector<MVT> VTs;
+ std::vector<EVT> VTs;
VTs.push_back(MVT::i32);
VTs.push_back(MVT::Flag);
SDValue Ops[2] = { LHS, RHS };
@@ -818,7 +845,7 @@ static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
SDValue CompareFlag;
if (LHS.getValueType() == MVT::i32) {
- std::vector<MVT> VTs;
+ std::vector<EVT> VTs;
VTs.push_back(LHS.getValueType()); // subcc returns a value
VTs.push_back(MVT::Flag);
SDValue Ops[2] = { LHS, RHS };
@@ -849,7 +876,7 @@ static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
@@ -900,14 +927,14 @@ static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
SDValue SparcTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- default: assert(0 && "Should not custom lower this!");
+ default: llvm_unreachable("Should not custom lower this!");
// Frame & Return address. Currently unimplemented
case ISD::RETURNADDR: return SDValue();
case ISD::FRAMEADDR: return SDValue();
case ISD::GlobalTLSAddress:
- assert(0 && "TLS not implemented for Sparc.");
- case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
- case ISD::ConstantPool: return LowerCONSTANTPOOL(Op, DAG);
+ llvm_unreachable("TLS not implemented for Sparc.");
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
@@ -915,21 +942,20 @@ LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
- case ISD::CALL: return LowerCALL(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
}
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
unsigned BROpcode;
unsigned CC;
DebugLoc dl = MI->getDebugLoc();
// Figure out the conditional branch opcode to use for this select_cc.
switch (MI->getOpcode()) {
- default: assert(0 && "Unknown SELECT_CC!");
+ default: llvm_unreachable("Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
@@ -964,9 +990,18 @@ SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
- // Update machine-CFG edges by transferring all successors of the current
+ // Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
- sinkMBB->transferSuccessors(BB);
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
@@ -1011,7 +1046,7 @@ SparcTargetLowering::getConstraintType(const std::string &Constraint) const {
std::pair<unsigned, const TargetRegisterClass*>
SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
@@ -1024,7 +1059,7 @@ SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
std::vector<unsigned> SparcTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() != 1)
return std::vector<unsigned>();
@@ -1050,5 +1085,5 @@ SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned SparcTargetLowering::getFunctionAlignment(const Function *) const {
- return 4;
+ return 2;
}
diff --git a/lib/Target/Sparc/SparcISelLowering.h b/lib/Target/Sparc/SparcISelLowering.h
index 27ce1b7..55781be 100644
--- a/lib/Target/Sparc/SparcISelLowering.h
+++ b/lib/Target/Sparc/SparcISelLowering.h
@@ -35,7 +35,8 @@ namespace llvm {
ITOF, // Int to FP within a FP register.
CALL, // A call instruction.
- RET_FLAG // Return with a flag operand.
+ RET_FLAG, // Return with a flag operand.
+ GLOBAL_BASE_REG // Global base reg for PIC
};
}
@@ -57,25 +58,49 @@ namespace llvm {
const SelectionDAG &DAG,
unsigned Depth = 0) const;
- virtual void LowerArguments(Function &F, SelectionDAG &DAG,
- SmallVectorImpl<SDValue> &ArgValues,
- DebugLoc dl);
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
virtual const char *getTargetNodeName(unsigned Opcode) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
- getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const;
+ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
};
} // end namespace llvm
diff --git a/lib/Target/Sparc/SparcInstrInfo.cpp b/lib/Target/Sparc/SparcInstrInfo.cpp
index 12c286a..8667bca 100644
--- a/lib/Target/Sparc/SparcInstrInfo.cpp
+++ b/lib/Target/Sparc/SparcInstrInfo.cpp
@@ -17,7 +17,10 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
#include "SparcGenInstrInfo.inc"
+#include "SparcMachineFunctionInfo.h"
using namespace llvm;
SparcInstrInfo::SparcInstrInfo(SparcSubtarget &ST)
@@ -160,30 +163,7 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
BuildMI(MBB, I, DL, get(SP::STDFri)).addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill));
else
- assert(0 && "Can't store this register to stack slot");
-}
-
-void SparcInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- unsigned Opc = 0;
- DebugLoc DL = DebugLoc::getUnknownLoc();
- if (RC == SP::IntRegsRegisterClass)
- Opc = SP::STri;
- else if (RC == SP::FPRegsRegisterClass)
- Opc = SP::STFri;
- else if (RC == SP::DFPRegsRegisterClass)
- Opc = SP::STDFri;
- else
- assert(0 && "Can't load this register");
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- MIB.addReg(SrcReg, getKillRegState(isKill));
- NewMIs.push_back(MIB);
- return;
+ llvm_unreachable("Can't store this register to stack slot");
}
void SparcInstrInfo::
@@ -200,28 +180,7 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
else if (RC == SP::DFPRegsRegisterClass)
BuildMI(MBB, I, DL, get(SP::LDDFri), DestReg).addFrameIndex(FI).addImm(0);
else
- assert(0 && "Can't load this register from stack slot");
-}
-
-void SparcInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- unsigned Opc = 0;
- if (RC == SP::IntRegsRegisterClass)
- Opc = SP::LDri;
- else if (RC == SP::FPRegsRegisterClass)
- Opc = SP::LDFri;
- else if (RC == SP::DFPRegsRegisterClass)
- Opc = SP::LDDFri;
- else
- assert(0 && "Can't load this register");
- DebugLoc DL = DebugLoc::getUnknownLoc();
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
- for (unsigned i = 0, e = Addr.size(); i != e; ++i)
- MIB.addOperand(Addr[i]);
- NewMIs.push_back(MIB);
- return;
+ llvm_unreachable("Can't load this register from stack slot");
}
MachineInstr *SparcInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
@@ -278,3 +237,25 @@ MachineInstr *SparcInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
return NewMI;
}
+
+unsigned SparcInstrInfo::getGlobalBaseReg(MachineFunction *MF) const
+{
+ SparcMachineFunctionInfo *SparcFI = MF->getInfo<SparcMachineFunctionInfo>();
+ unsigned GlobalBaseReg = SparcFI->getGlobalBaseReg();
+ if (GlobalBaseReg != 0)
+ return GlobalBaseReg;
+
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+
+ GlobalBaseReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
+
+
+ DebugLoc dl = DebugLoc::getUnknownLoc();
+
+ BuildMI(FirstMBB, MBBI, dl, get(SP::GETPCX), GlobalBaseReg);
+ SparcFI->setGlobalBaseReg(GlobalBaseReg);
+ return GlobalBaseReg;
+}
diff --git a/lib/Target/Sparc/SparcInstrInfo.h b/lib/Target/Sparc/SparcInstrInfo.h
index ab661b9..345674b 100644
--- a/lib/Target/Sparc/SparcInstrInfo.h
+++ b/lib/Target/Sparc/SparcInstrInfo.h
@@ -81,20 +81,10 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
-
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
@@ -107,6 +97,8 @@ public:
MachineInstr* LoadMI) const {
return 0;
}
+
+ unsigned getGlobalBaseReg(MachineFunction *MF) const;
};
}
diff --git a/lib/Target/Sparc/SparcInstrInfo.td b/lib/Target/Sparc/SparcInstrInfo.td
index 2d6c920..44821b8 100644
--- a/lib/Target/Sparc/SparcInstrInfo.td
+++ b/lib/Target/Sparc/SparcInstrInfo.td
@@ -117,7 +117,7 @@ def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
-// These are target-independent nodes, but have target-specific formats.
+// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
@@ -134,6 +134,10 @@ def call : SDNode<"SPISD::CALL", SDT_SPCall,
def retflag : SDNode<"SPISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
+def getPCX : Operand<i32> {
+ let PrintMethod = "printGetPCX";
+}
+
//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//
@@ -207,6 +211,11 @@ multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSP<outs, ins, asmstr, pattern>;
+// GETPCX for PIC
+let Defs = [O7], Uses = [O7] in {
+ def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
+}
+
let Defs = [O6], Uses = [O6] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
"!ADJCALLSTACKDOWN $amt",
@@ -431,18 +440,23 @@ def LEA_ADDri : F3_2<2, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"add ${addr:arith}, $dst",
[(set IntRegs:$dst, ADDRri:$addr)]>;
-
-defm ADDCC : F3_12<"addcc", 0b010000, addc>;
+
+let Defs = [ICC] in
+ defm ADDCC : F3_12<"addcc", 0b010000, addc>;
+
defm ADDX : F3_12<"addx", 0b001000, adde>;
// Section B.15 - Subtract Instructions, p. 110
defm SUB : F3_12 <"sub" , 0b000100, sub>;
defm SUBX : F3_12 <"subx" , 0b001100, sube>;
-defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
-def SUBXCCrr: F3_1<2, 0b011100,
- (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
- "subxcc $b, $c, $dst", []>;
+let Defs = [ICC] in {
+ defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
+
+ def SUBXCCrr: F3_1<2, 0b011100,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ "subxcc $b, $c, $dst", []>;
+}
// Section B.18 - Multiply Instructions, p. 113
defm UMUL : F3_12np<"umul", 0b001010>;
@@ -471,11 +485,12 @@ let isBarrier = 1 in
def BA : BranchSP<0b1000, (ins brtarget:$dst),
"ba $dst",
[(br bb:$dst)]>;
-
+
// FIXME: the encoding for the JIT should look at the condition field.
-def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
- "b$cc $dst",
- [(SPbricc bb:$dst, imm:$cc)]>;
+let Uses = [ICC] in
+ def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
+ "b$cc $dst",
+ [(SPbricc bb:$dst, imm:$cc)]>;
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
@@ -489,9 +504,10 @@ class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
}
// FIXME: the encoding for the JIT should look at the condition field.
-def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
- "fb$cc $dst",
- [(SPbrfcc bb:$dst, imm:$cc)]>;
+let Uses = [FCC] in
+ def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
+ "fb$cc $dst",
+ [(SPbrfcc bb:$dst, imm:$cc)]>;
// Section B.24 - Call and Link Instruction, p. 125
@@ -633,15 +649,16 @@ def FDIVD : F3_3<2, 0b110100, 0b001001110,
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
-def FCMPS : F3_3<2, 0b110101, 0b001010001,
- (outs), (ins FPRegs:$src1, FPRegs:$src2),
- "fcmps $src1, $src2\n\tnop",
- [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
-def FCMPD : F3_3<2, 0b110101, 0b001010010,
- (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
- "fcmpd $src1, $src2\n\tnop",
- [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
-
+let Defs = [FCC] in {
+ def FCMPS : F3_3<2, 0b110101, 0b001010001,
+ (outs), (ins FPRegs:$src1, FPRegs:$src2),
+ "fcmps $src1, $src2\n\tnop",
+ [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
+ def FCMPD : F3_3<2, 0b110101, 0b001010010,
+ (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "fcmpd $src1, $src2\n\tnop",
+ [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
+}
//===----------------------------------------------------------------------===//
// V9 Instructions
@@ -754,8 +771,6 @@ def : Pat<(call tglobaladdr:$dst),
def : Pat<(call texternalsym:$dst),
(CALL texternalsym:$dst)>;
-def : Pat<(ret), (RETL)>;
-
// Map integer extload's to zextloads.
def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
diff --git a/lib/Target/Sparc/SparcMCAsmInfo.cpp b/lib/Target/Sparc/SparcMCAsmInfo.cpp
new file mode 100644
index 0000000..b67537c
--- /dev/null
+++ b/lib/Target/Sparc/SparcMCAsmInfo.cpp
@@ -0,0 +1,38 @@
+//===-- SparcMCAsmInfo.cpp - Sparc asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the SparcMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SparcMCAsmInfo.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace llvm;
+
+SparcELFMCAsmInfo::SparcELFMCAsmInfo(const Target &T, const StringRef &TT) {
+ Data16bitsDirective = "\t.half\t";
+ Data32bitsDirective = "\t.word\t";
+ Data64bitsDirective = 0; // .xword is only supported by V9.
+ ZeroDirective = "\t.skip\t";
+ CommentString = "!";
+ COMMDirectiveTakesAlignment = true;
+ HasLEB128 = true;
+ AbsoluteDebugSectionOffsets = true;
+ SupportsDebugInformation = true;
+
+ SunStyleELFSectionSwitchSyntax = true;
+ UsesELFSectionDirectiveForBSS = true;
+
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+
+ PrivateGlobalPrefix = ".L";
+}
+
+
diff --git a/lib/Target/Sparc/SparcMCAsmInfo.h b/lib/Target/Sparc/SparcMCAsmInfo.h
new file mode 100644
index 0000000..12d6ef4
--- /dev/null
+++ b/lib/Target/Sparc/SparcMCAsmInfo.h
@@ -0,0 +1,28 @@
+//=====-- SparcMCAsmInfo.h - Sparc asm properties -------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the SparcMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SPARCTARGETASMINFO_H
+#define SPARCTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+ struct SparcELFMCAsmInfo : public MCAsmInfo {
+ explicit SparcELFMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/Sparc/SparcMachineFunctionInfo.h b/lib/Target/Sparc/SparcMachineFunctionInfo.h
new file mode 100644
index 0000000..e457235
--- /dev/null
+++ b/lib/Target/Sparc/SparcMachineFunctionInfo.h
@@ -0,0 +1,32 @@
+//===- SparcMachineFunctionInfo.h - Sparc Machine Function Info -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares Sparc specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+#ifndef SPARCMACHINEFUNCTIONINFO_H
+#define SPARCMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+ class SparcMachineFunctionInfo : public MachineFunctionInfo {
+ private:
+ unsigned GlobalBaseReg;
+ public:
+ SparcMachineFunctionInfo() : GlobalBaseReg(0) {}
+ SparcMachineFunctionInfo(MachineFunction &MF) : GlobalBaseReg(0) {}
+
+ unsigned getGlobalBaseReg() const { return GlobalBaseReg; }
+ void setGlobalBaseReg(unsigned Reg) { GlobalBaseReg = Reg; }
+ };
+}
+
+#endif
diff --git a/lib/Target/Sparc/SparcRegisterInfo.cpp b/lib/Target/Sparc/SparcRegisterInfo.cpp
index 59efb19..7883260 100644
--- a/lib/Target/Sparc/SparcRegisterInfo.cpp
+++ b/lib/Target/Sparc/SparcRegisterInfo.cpp
@@ -18,6 +18,7 @@
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Type.h"
#include "llvm/ADT/BitVector.h"
@@ -75,8 +76,10 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MBB.erase(I);
}
-void SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const {
+unsigned
+SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
@@ -112,6 +115,7 @@ void SparcRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
MI.getOperand(i).ChangeToRegister(SP::G1, false);
MI.getOperand(i+1).ChangeToImmediate(Offset & ((1 << 10)-1));
}
+ return 0;
}
void SparcRegisterInfo::
@@ -168,28 +172,25 @@ void SparcRegisterInfo::emitEpilogue(MachineFunction &MF,
}
unsigned SparcRegisterInfo::getRARegister() const {
- assert(0 && "What is the return address register");
- return 0;
+ return SP::I7;
}
unsigned SparcRegisterInfo::getFrameRegister(MachineFunction &MF) const {
- assert(0 && "What is the frame register");
- return SP::G1;
+ return SP::I6;
}
unsigned SparcRegisterInfo::getEHExceptionRegister() const {
- assert(0 && "What is the exception register");
+ llvm_unreachable("What is the exception register");
return 0;
}
unsigned SparcRegisterInfo::getEHHandlerRegister() const {
- assert(0 && "What is the exception handler register");
+ llvm_unreachable("What is the exception handler register");
return 0;
}
int SparcRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
- assert(0 && "What is the dwarf register number");
- return -1;
+ return SparcGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
}
#include "SparcGenRegisterInfo.inc"
diff --git a/lib/Target/Sparc/SparcRegisterInfo.h b/lib/Target/Sparc/SparcRegisterInfo.h
index fc863f3..753b1c0 100644
--- a/lib/Target/Sparc/SparcRegisterInfo.h
+++ b/lib/Target/Sparc/SparcRegisterInfo.h
@@ -43,8 +43,9 @@ struct SparcRegisterInfo : public SparcGenRegisterInfo {
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
diff --git a/lib/Target/Sparc/SparcRegisterInfo.td b/lib/Target/Sparc/SparcRegisterInfo.td
index e3a50ca..2b05c19 100644
--- a/lib/Target/Sparc/SparcRegisterInfo.td
+++ b/lib/Target/Sparc/SparcRegisterInfo.td
@@ -16,6 +16,10 @@ class SparcReg<string n> : Register<n> {
let Namespace = "SP";
}
+class SparcCtrlReg<string n>: Register<n> {
+ let Namespace = "SP";
+}
+
// Registers are identified with 5-bit ID numbers.
// Ri - 32-bit integer registers
class Ri<bits<5> num, string n> : SparcReg<n> {
@@ -31,6 +35,10 @@ class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
let SubRegs = subregs;
}
+// Control Registers
+def ICC : SparcCtrlReg<"ICC">;
+def FCC : SparcCtrlReg<"FCC">;
+
// Integer registers
def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
@@ -46,7 +54,7 @@ def O2 : Ri<10, "O2">, DwarfRegNum<[10]>;
def O3 : Ri<11, "O3">, DwarfRegNum<[11]>;
def O4 : Ri<12, "O4">, DwarfRegNum<[12]>;
def O5 : Ri<13, "O5">, DwarfRegNum<[13]>;
-def O6 : Ri<14, "O6">, DwarfRegNum<[14]>;
+def O6 : Ri<14, "SP">, DwarfRegNum<[14]>;
def O7 : Ri<15, "O7">, DwarfRegNum<[15]>;
def L0 : Ri<16, "L0">, DwarfRegNum<[16]>;
def L1 : Ri<17, "L1">, DwarfRegNum<[17]>;
@@ -62,7 +70,7 @@ def I2 : Ri<26, "I2">, DwarfRegNum<[26]>;
def I3 : Ri<27, "I3">, DwarfRegNum<[27]>;
def I4 : Ri<28, "I4">, DwarfRegNum<[28]>;
def I5 : Ri<29, "I5">, DwarfRegNum<[29]>;
-def I6 : Ri<30, "I6">, DwarfRegNum<[30]>;
+def I6 : Ri<30, "FP">, DwarfRegNum<[30]>;
def I7 : Ri<31, "I7">, DwarfRegNum<[31]>;
// Floating-point registers
diff --git a/lib/Target/Sparc/SparcSubtarget.cpp b/lib/Target/Sparc/SparcSubtarget.cpp
index aaddbff..8a88cc0 100644
--- a/lib/Target/Sparc/SparcSubtarget.cpp
+++ b/lib/Target/Sparc/SparcSubtarget.cpp
@@ -22,7 +22,7 @@ namespace {
cl::desc("Enable V9 instructions in the V8 target"));
}
-SparcSubtarget::SparcSubtarget(const Module &M, const std::string &FS) {
+SparcSubtarget::SparcSubtarget(const std::string &TT, const std::string &FS) {
// Set the default features.
IsV9 = false;
V8DeprecatedInsts = false;
diff --git a/lib/Target/Sparc/SparcSubtarget.h b/lib/Target/Sparc/SparcSubtarget.h
index e5a5ba4..4377034 100644
--- a/lib/Target/Sparc/SparcSubtarget.h
+++ b/lib/Target/Sparc/SparcSubtarget.h
@@ -18,14 +18,13 @@
#include <string>
namespace llvm {
- class Module;
-
+
class SparcSubtarget : public TargetSubtarget {
bool IsV9;
bool V8DeprecatedInsts;
bool IsVIS;
public:
- SparcSubtarget(const Module &M, const std::string &FS);
+ SparcSubtarget(const std::string &TT, const std::string &FS);
bool isV9() const { return IsV9; }
bool isVIS() const { return IsVIS; }
diff --git a/lib/Target/Sparc/SparcTargetMachine.cpp b/lib/Target/Sparc/SparcTargetMachine.cpp
index 1343bcc..3a38115 100644
--- a/lib/Target/Sparc/SparcTargetMachine.cpp
+++ b/lib/Target/Sparc/SparcTargetMachine.cpp
@@ -10,63 +10,30 @@
//
//===----------------------------------------------------------------------===//
-#include "SparcTargetAsmInfo.h"
+#include "SparcMCAsmInfo.h"
#include "SparcTargetMachine.h"
#include "Sparc.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-// Register the target.
-static RegisterTarget<SparcTargetMachine> X("sparc", "SPARC");
+extern "C" void LLVMInitializeSparcTarget() {
+ // Register the target.
+ RegisterTargetMachine<SparcTargetMachine> X(TheSparcTarget);
+ RegisterAsmInfo<SparcELFMCAsmInfo> Y(TheSparcTarget);
-// No assembler printer by default
-SparcTargetMachine::AsmPrinterCtorFn SparcTargetMachine::AsmPrinterCtor = 0;
-
-
-// Force static initialization.
-extern "C" void LLVMInitializeSparcTarget() { }
-
-const TargetAsmInfo *SparcTargetMachine::createTargetAsmInfo() const {
- // FIXME: Handle Solaris subtarget someday :)
- return new SparcELFTargetAsmInfo(*this);
}
/// SparcTargetMachine ctor - Create an ILP32 architecture model
///
-SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
- : DataLayout("E-p:32:32-f128:128:128"),
- Subtarget(M, FS), TLInfo(*this), InstrInfo(Subtarget),
+SparcTargetMachine::SparcTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ DataLayout("E-p:32:32-f128:128:128"),
+ Subtarget(TT, FS), TLInfo(*this), InstrInfo(Subtarget),
FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
}
-unsigned SparcTargetMachine::getModuleMatchQuality(const Module &M) {
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 6 && std::string(TT.begin(), TT.begin()+6) == "sparc-")
- return 20;
-
- // If the target triple is something non-sparc, we don't match.
- if (!TT.empty()) return 0;
-
- if (M.getEndianness() == Module::BigEndian &&
- M.getPointerSize() == Module::Pointer32)
-#ifdef __sparc__
- return 20; // BE/32 ==> Prefer sparc on sparc
-#else
- return 5; // BE/32 ==> Prefer ppc elsewhere
-#endif
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
-
-#if defined(__sparc__)
- return 10;
-#else
- return 0;
-#endif
-}
-
bool SparcTargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createSparcISelDag(*this));
@@ -82,14 +49,3 @@ bool SparcTargetMachine::addPreEmitPass(PassManagerBase &PM,
PM.add(createSparcDelaySlotFillerPass(*this));
return true;
}
-
-bool SparcTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // Output assembly language.
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
- return false;
-}
diff --git a/lib/Target/Sparc/SparcTargetMachine.h b/lib/Target/Sparc/SparcTargetMachine.h
index ee55d3c..cce5510 100644
--- a/lib/Target/Sparc/SparcTargetMachine.h
+++ b/lib/Target/Sparc/SparcTargetMachine.h
@@ -23,27 +23,15 @@
namespace llvm {
-class Module;
-
class SparcTargetMachine : public LLVMTargetMachine {
const TargetData DataLayout; // Calculates type size & alignment
SparcSubtarget Subtarget;
SparcTargetLowering TLInfo;
SparcInstrInfo InstrInfo;
TargetFrameInfo FrameInfo;
-
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- TargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- SparcTargetMachine(const Module &M, const std::string &FS);
+ SparcTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
virtual const SparcInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
@@ -55,18 +43,10 @@ public:
return const_cast<SparcTargetLowering*>(&TLInfo);
}
virtual const TargetData *getTargetData() const { return &DataLayout; }
- static unsigned getModuleMatchQuality(const Module &M);
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreEmitPass(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
-
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
};
} // end namespace llvm
diff --git a/lib/Target/Sparc/TargetInfo/CMakeLists.txt b/lib/Target/Sparc/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..870b56a
--- /dev/null
+++ b/lib/Target/Sparc/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSparcInfo
+ SparcTargetInfo.cpp
+ )
+
+add_dependencies(LLVMSparcInfo SparcCodeGenTable_gen)
diff --git a/lib/Target/Sparc/TargetInfo/Makefile b/lib/Target/Sparc/TargetInfo/Makefile
new file mode 100644
index 0000000..641ed87
--- /dev/null
+++ b/lib/Target/Sparc/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/Sparc/TargetInfo/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSparcInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp b/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp
new file mode 100644
index 0000000..5d697bd
--- /dev/null
+++ b/lib/Target/Sparc/TargetInfo/SparcTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- SparcTargetInfo.cpp - Sparc Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sparc.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheSparcTarget;
+
+extern "C" void LLVMInitializeSparcTargetInfo() {
+ RegisterTarget<Triple::sparc> X(TheSparcTarget, "sparc", "Sparc");
+}
diff --git a/lib/Target/SubtargetFeature.cpp b/lib/Target/SubtargetFeature.cpp
index f937025..664a43c 100644
--- a/lib/Target/SubtargetFeature.cpp
+++ b/lib/Target/SubtargetFeature.cpp
@@ -12,10 +12,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/SubtargetFeature.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/Support/Streams.h"
#include <algorithm>
-#include <ostream>
#include <cassert>
#include <cctype>
using namespace llvm;
@@ -145,22 +144,22 @@ static void Help(const SubtargetFeatureKV *CPUTable, size_t CPUTableSize,
unsigned MaxFeatLen = getLongestEntryLength(FeatTable, FeatTableSize);
// Print the CPU table.
- cerr << "Available CPUs for this target:\n\n";
+ errs() << "Available CPUs for this target:\n\n";
for (size_t i = 0; i != CPUTableSize; i++)
- cerr << " " << CPUTable[i].Key
+ errs() << " " << CPUTable[i].Key
<< std::string(MaxCPULen - std::strlen(CPUTable[i].Key), ' ')
<< " - " << CPUTable[i].Desc << ".\n";
- cerr << "\n";
+ errs() << "\n";
// Print the Feature table.
- cerr << "Available features for this target:\n\n";
+ errs() << "Available features for this target:\n\n";
for (size_t i = 0; i != FeatTableSize; i++)
- cerr << " " << FeatTable[i].Key
+ errs() << " " << FeatTable[i].Key
<< std::string(MaxFeatLen - std::strlen(FeatTable[i].Key), ' ')
<< " - " << FeatTable[i].Desc << ".\n";
- cerr << "\n";
+ errs() << "\n";
- cerr << "Use +feature to enable a feature, or -feature to disable it.\n"
+ errs() << "Use +feature to enable a feature, or -feature to disable it.\n"
<< "For example, llc -mcpu=mycpu -mattr=+feature1,-feature2\n";
exit(1);
}
@@ -283,10 +282,9 @@ uint32_t SubtargetFeatures::getBits(const SubtargetFeatureKV *CPUTable,
SetImpliedBits(Bits, &FE, FeatureTable, FeatureTableSize);
}
} else {
- cerr << "'" << Features[0]
- << "' is not a recognized processor for this target"
- << " (ignoring processor)"
- << "\n";
+ errs() << "'" << Features[0]
+ << "' is not a recognized processor for this target"
+ << " (ignoring processor)\n";
}
// Iterate through each feature
for (size_t i = 1; i < Features.size(); i++) {
@@ -314,10 +312,9 @@ uint32_t SubtargetFeatures::getBits(const SubtargetFeatureKV *CPUTable,
ClearImpliedBits(Bits, FeatureEntry, FeatureTable, FeatureTableSize);
}
} else {
- cerr << "'" << Feature
- << "' is not a recognized feature for this target"
- << " (ignoring feature)"
- << "\n";
+ errs() << "'" << Feature
+ << "' is not a recognized feature for this target"
+ << " (ignoring feature)\n";
}
}
@@ -340,25 +337,23 @@ void *SubtargetFeatures::getInfo(const SubtargetInfoKV *Table,
if (Entry) {
return Entry->Value;
} else {
- cerr << "'" << Features[0]
- << "' is not a recognized processor for this target"
- << " (ignoring processor)"
- << "\n";
+ errs() << "'" << Features[0]
+ << "' is not a recognized processor for this target"
+ << " (ignoring processor)\n";
return NULL;
}
}
/// print - Print feature string.
///
-void SubtargetFeatures::print(std::ostream &OS) const {
- for (size_t i = 0; i < Features.size(); i++) {
+void SubtargetFeatures::print(raw_ostream &OS) const {
+ for (size_t i = 0, e = Features.size(); i != e; ++i)
OS << Features[i] << " ";
- }
OS << "\n";
}
/// dump - Dump feature info.
///
void SubtargetFeatures::dump() const {
- print(*cerr.stream());
+ print(errs());
}
diff --git a/lib/Target/SystemZ/AsmPrinter/CMakeLists.txt b/lib/Target/SystemZ/AsmPrinter/CMakeLists.txt
new file mode 100644
index 0000000..c6be83a
--- /dev/null
+++ b/lib/Target/SystemZ/AsmPrinter/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSystemZAsmPrinter
+ SystemZAsmPrinter.cpp
+ )
+add_dependencies(LLVMSystemZAsmPrinter SystemZCodeGenTable_gen)
diff --git a/lib/Target/SystemZ/AsmPrinter/Makefile b/lib/Target/SystemZ/AsmPrinter/Makefile
new file mode 100644
index 0000000..9a350df
--- /dev/null
+++ b/lib/Target/SystemZ/AsmPrinter/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/SystemZ/AsmPrinter/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZAsmPrinter
+
+# Hack: we need to include 'main' SystemZ target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/AsmPrinter/SystemZAsmPrinter.cpp b/lib/Target/SystemZ/AsmPrinter/SystemZAsmPrinter.cpp
new file mode 100644
index 0000000..a128992
--- /dev/null
+++ b/lib/Target/SystemZ/AsmPrinter/SystemZAsmPrinter.cpp
@@ -0,0 +1,391 @@
+//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly writer ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the SystemZ assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+#include "SystemZ.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+
+using namespace llvm;
+
+STATISTIC(EmittedInsts, "Number of machine instrs printed");
+
+namespace {
+ class VISIBILITY_HIDDEN SystemZAsmPrinter : public AsmPrinter {
+ public:
+ SystemZAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *MAI, bool V)
+ : AsmPrinter(O, TM, MAI, V) {}
+
+ virtual const char *getPassName() const {
+ return "SystemZ Assembly Printer";
+ }
+
+ void printOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier = 0);
+ void printPCRelImmOperand(const MachineInstr *MI, int OpNum);
+ void printRIAddrOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier = 0);
+ void printRRIAddrOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier = 0);
+ void printS16ImmOperand(const MachineInstr *MI, int OpNum) {
+ O << (int16_t)MI->getOperand(OpNum).getImm();
+ }
+ void printS32ImmOperand(const MachineInstr *MI, int OpNum) {
+ O << (int32_t)MI->getOperand(OpNum).getImm();
+ }
+
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printMachineInstruction(const MachineInstr * MI);
+
+ void emitFunctionHeader(const MachineFunction &MF);
+ bool runOnMachineFunction(MachineFunction &F);
+ void PrintGlobalVariable(const GlobalVariable* GVar);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AsmPrinter::getAnalysisUsage(AU);
+ AU.setPreservesAll();
+ }
+ };
+} // end of anonymous namespace
+
+#include "SystemZGenAsmWriter.inc"
+
+void SystemZAsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
+ unsigned FnAlign = MF.getAlignment();
+ const Function *F = MF.getFunction();
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+
+ EmitAlignment(FnAlign, F);
+
+ switch (F->getLinkage()) {
+ default: assert(0 && "Unknown linkage type!");
+ case Function::InternalLinkage: // Symbols default to internal.
+ case Function::PrivateLinkage:
+ case Function::LinkerPrivateLinkage:
+ break;
+ case Function::ExternalLinkage:
+ O << "\t.globl\t" << CurrentFnName << '\n';
+ break;
+ case Function::LinkOnceAnyLinkage:
+ case Function::LinkOnceODRLinkage:
+ case Function::WeakAnyLinkage:
+ case Function::WeakODRLinkage:
+ O << "\t.weak\t" << CurrentFnName << '\n';
+ break;
+ }
+
+ printVisibility(CurrentFnName, F->getVisibility());
+
+ O << "\t.type\t" << CurrentFnName << ",@function\n"
+ << CurrentFnName << ":\n";
+}
+
+bool SystemZAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ SetupMachineFunction(MF);
+ O << "\n\n";
+
+ // Print out constants referenced by the function
+ EmitConstantPool(MF.getConstantPool());
+
+ // Print the 'header' of function
+ emitFunctionHeader(MF);
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ EmitBasicBlockStart(I);
+
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II)
+ // Print the assembly for the instruction.
+ printMachineInstruction(II);
+ }
+
+ if (MAI->hasDotTypeDotSizeDirective())
+ O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
+
+ // Print out jump tables referenced by the function.
+ EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
+
+ // We didn't modify anything
+ return false;
+}
+
+void SystemZAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
+ ++EmittedInsts;
+
+ processDebugLoc(MI, true);
+
+ // Call the autogenerated instruction printer routines.
+ printInstruction(MI);
+
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+
+ processDebugLoc(MI, false);
+}
+
+void SystemZAsmPrinter::printPCRelImmOperand(const MachineInstr *MI, int OpNum){
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+ std::string Name = Mang->getMangledName(GV);
+
+ O << Name;
+
+ // Assemble calls via PLT for externally visible symbols if PIC.
+ if (TM.getRelocationModel() == Reloc::PIC_ &&
+ !GV->hasHiddenVisibility() && !GV->hasProtectedVisibility() &&
+ !GV->hasLocalLinkage())
+ O << "@PLT";
+
+ printOffset(MO.getOffset());
+ return;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ std::string Name(MAI->getGlobalPrefix());
+ Name += MO.getSymbolName();
+ O << Name;
+
+ if (TM.getRelocationModel() == Reloc::PIC_)
+ O << "@PLT";
+
+ return;
+ }
+ default:
+ assert(0 && "Not implemented yet!");
+ }
+}
+
+
+void SystemZAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier) {
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register: {
+ assert (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ "Virtual registers should be already mapped!");
+ unsigned Reg = MO.getReg();
+ if (Modifier && strncmp(Modifier, "subreg", 6) == 0) {
+ if (strncmp(Modifier + 7, "even", 4) == 0)
+ Reg = TRI->getSubReg(Reg, SystemZ::SUBREG_EVEN);
+ else if (strncmp(Modifier + 7, "odd", 3) == 0)
+ Reg = TRI->getSubReg(Reg, SystemZ::SUBREG_ODD);
+ else
+ assert(0 && "Invalid subreg modifier");
+ }
+
+ O << '%' << getRegisterName(Reg);
+ return;
+ }
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+ case MachineOperand::MO_JumpTableIndex:
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
+ << MO.getIndex();
+
+ return;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
+ << MO.getIndex();
+
+ printOffset(MO.getOffset());
+ break;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+ std::string Name = Mang->getMangledName(GV);
+
+ O << Name;
+ break;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ std::string Name(MAI->getGlobalPrefix());
+ Name += MO.getSymbolName();
+ O << Name;
+ break;
+ }
+ default:
+ assert(0 && "Not implemented yet!");
+ }
+
+ switch (MO.getTargetFlags()) {
+ default:
+ llvm_unreachable("Unknown target flag on GV operand");
+ case SystemZII::MO_NO_FLAG:
+ break;
+ case SystemZII::MO_GOTENT: O << "@GOTENT"; break;
+ case SystemZII::MO_PLT: O << "@PLT"; break;
+ }
+
+ printOffset(MO.getOffset());
+}
+
+void SystemZAsmPrinter::printRIAddrOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier) {
+ const MachineOperand &Base = MI->getOperand(OpNum);
+
+ // Print displacement operand.
+ printOperand(MI, OpNum+1);
+
+ // Print base operand (if any)
+ if (Base.getReg()) {
+ O << '(';
+ printOperand(MI, OpNum);
+ O << ')';
+ }
+}
+
+void SystemZAsmPrinter::printRRIAddrOperand(const MachineInstr *MI, int OpNum,
+ const char* Modifier) {
+ const MachineOperand &Base = MI->getOperand(OpNum);
+ const MachineOperand &Index = MI->getOperand(OpNum+2);
+
+ // Print displacement operand.
+ printOperand(MI, OpNum+1);
+
+ // Print base operand (if any)
+ if (Base.getReg()) {
+ O << '(';
+ printOperand(MI, OpNum);
+ if (Index.getReg()) {
+ O << ',';
+ printOperand(MI, OpNum+2);
+ }
+ O << ')';
+ } else
+ assert(!Index.getReg() && "Should allocate base register first!");
+}
+
+void SystemZAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
+ const TargetData *TD = TM.getTargetData();
+
+ if (!GVar->hasInitializer())
+ return; // External global require no code
+
+ // Check to see if this is a special global used by LLVM, if so, emit it.
+ if (EmitSpecialLLVMGlobal(GVar))
+ return;
+
+ std::string name = Mang->getMangledName(GVar);
+ Constant *C = GVar->getInitializer();
+ unsigned Size = TD->getTypeAllocSize(C->getType());
+ unsigned Align = std::max(1U, TD->getPreferredAlignmentLog(GVar));
+
+ printVisibility(name, GVar->getVisibility());
+
+ O << "\t.type\t" << name << ",@object\n";
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
+ TM));
+
+ if (C->isNullValue() && !GVar->hasSection() &&
+ !GVar->isThreadLocal() &&
+ (GVar->hasLocalLinkage() || GVar->isWeakForLinker())) {
+
+ if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
+
+ if (GVar->hasLocalLinkage())
+ O << "\t.local\t" << name << '\n';
+
+ O << MAI->getCOMMDirective() << name << ',' << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
+ O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
+
+ if (VerboseAsm) {
+ O << "\t\t" << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
+ }
+ O << '\n';
+ return;
+ }
+
+ switch (GVar->getLinkage()) {
+ case GlobalValue::CommonLinkage:
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ O << "\t.weak\t" << name << '\n';
+ break;
+ case GlobalValue::DLLExportLinkage:
+ case GlobalValue::AppendingLinkage:
+ // FIXME: appending linkage variables should go into a section of
+ // their name or something. For now, just emit them as external.
+ case GlobalValue::ExternalLinkage:
+ // If external or appending, declare as a global symbol
+ O << "\t.globl " << name << '\n';
+ // FALL THROUGH
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
+ case GlobalValue::InternalLinkage:
+ break;
+ default:
+ assert(0 && "Unknown linkage type!");
+ }
+
+ // Use 16-bit alignment by default to simplify bunch of stuff
+ EmitAlignment(Align, GVar, 1);
+ O << name << ":";
+ if (VerboseAsm) {
+ O << "\t\t\t\t" << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
+ }
+ O << '\n';
+ if (MAI->hasDotTypeDotSizeDirective())
+ O << "\t.size\t" << name << ", " << Size << '\n';
+
+ EmitGlobalConstant(C);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeSystemZAsmPrinter() {
+ RegisterAsmPrinter<SystemZAsmPrinter> X(TheSystemZTarget);
+}
diff --git a/lib/Target/SystemZ/CMakeLists.txt b/lib/Target/SystemZ/CMakeLists.txt
new file mode 100644
index 0000000..81e51d8
--- /dev/null
+++ b/lib/Target/SystemZ/CMakeLists.txt
@@ -0,0 +1,23 @@
+set(LLVM_TARGET_DEFINITIONS SystemZ.td)
+
+tablegen(SystemZGenRegisterInfo.h.inc -gen-register-desc-header)
+tablegen(SystemZGenRegisterNames.inc -gen-register-enums)
+tablegen(SystemZGenRegisterInfo.inc -gen-register-desc)
+tablegen(SystemZGenInstrNames.inc -gen-instr-enums)
+tablegen(SystemZGenInstrInfo.inc -gen-instr-desc)
+tablegen(SystemZGenAsmWriter.inc -gen-asm-writer)
+tablegen(SystemZGenDAGISel.inc -gen-dag-isel)
+tablegen(SystemZGenCallingConv.inc -gen-callingconv)
+tablegen(SystemZGenSubtarget.inc -gen-subtarget)
+
+add_llvm_target(SystemZCodeGen
+ SystemZISelDAGToDAG.cpp
+ SystemZISelLowering.cpp
+ SystemZInstrInfo.cpp
+ SystemZMCAsmInfo.cpp
+ SystemZRegisterInfo.cpp
+ SystemZSubtarget.cpp
+ SystemZTargetMachine.cpp
+ )
+
+target_link_libraries (LLVMSystemZCodeGen LLVMSelectionDAG)
diff --git a/lib/Target/SystemZ/Makefile b/lib/Target/SystemZ/Makefile
new file mode 100644
index 0000000..f1097eb
--- /dev/null
+++ b/lib/Target/SystemZ/Makefile
@@ -0,0 +1,22 @@
+##===- lib/Target/SystemZ/Makefile ---------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../..
+LIBRARYNAME = LLVMSystemZCodeGen
+TARGET = SystemZ
+
+# Make sure that tblgen is run, first thing.
+BUILT_SOURCES = SystemZGenRegisterInfo.h.inc SystemZGenRegisterNames.inc \
+ SystemZGenRegisterInfo.inc SystemZGenInstrNames.inc \
+ SystemZGenInstrInfo.inc SystemZGenAsmWriter.inc \
+ SystemZGenDAGISel.inc SystemZGenSubtarget.inc SystemZGenCallingConv.inc
+
+DIRS = AsmPrinter TargetInfo
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/SystemZ/SystemZ.h b/lib/Target/SystemZ/SystemZ.h
new file mode 100644
index 0000000..ea5240a
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZ.h
@@ -0,0 +1,61 @@
+//=-- SystemZ.h - Top-level interface for SystemZ representation -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in
+// the LLVM SystemZ backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SystemZ_H
+#define LLVM_TARGET_SystemZ_H
+
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+ class SystemZTargetMachine;
+ class FunctionPass;
+ class formatted_raw_ostream;
+
+ namespace SystemZCC {
+ // SystemZ specific condition code. These correspond to SYSTEMZ_*_COND in
+ // SystemZInstrInfo.td. They must be kept in synch.
+ enum CondCodes {
+ O = 0,
+ H = 1,
+ NLE = 2,
+ L = 3,
+ NHE = 4,
+ LH = 5,
+ NE = 6,
+ E = 7,
+ NLH = 8,
+ HE = 9,
+ NL = 10,
+ LE = 11,
+ NH = 12,
+ NO = 13,
+ INVALID = -1
+ };
+ }
+
+ FunctionPass *createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel);
+
+ extern Target TheSystemZTarget;
+
+} // end namespace llvm;
+
+// Defines symbolic names for SystemZ registers.
+// This defines a mapping from register name to register number.
+#include "SystemZGenRegisterNames.inc"
+
+// Defines symbolic names for the SystemZ instructions.
+#include "SystemZGenInstrNames.inc"
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZ.td b/lib/Target/SystemZ/SystemZ.td
new file mode 100644
index 0000000..4c08c08
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZ.td
@@ -0,0 +1,61 @@
+//===- SystemZ.td - Describe the SystemZ Target Machine ------*- tblgen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This is the top level entry point for the SystemZ target.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Subtarget Features.
+//===----------------------------------------------------------------------===//
+def FeatureZ10 : SubtargetFeature<"z10", "HasZ10Insts", "true",
+ "Support Z10 instructions">;
+
+//===----------------------------------------------------------------------===//
+// SystemZ supported processors.
+//===----------------------------------------------------------------------===//
+class Proc<string Name, list<SubtargetFeature> Features>
+ : Processor<Name, NoItineraries, Features>;
+
+def : Proc<"z9", []>;
+def : Proc<"z10", [FeatureZ10]>;
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "SystemZRegisterInfo.td"
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Description
+//===----------------------------------------------------------------------===//
+
+include "SystemZCallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction Descriptions
+//===----------------------------------------------------------------------===//
+
+include "SystemZInstrInfo.td"
+include "SystemZInstrFP.td"
+
+def SystemZInstrInfo : InstrInfo {}
+
+//===----------------------------------------------------------------------===//
+// Target Declaration
+//===----------------------------------------------------------------------===//
+
+def SystemZ : Target {
+ let InstructionSet = SystemZInstrInfo;
+}
+
diff --git a/lib/Target/SystemZ/SystemZCallingConv.td b/lib/Target/SystemZ/SystemZCallingConv.td
new file mode 100644
index 0000000..c799a9e
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZCallingConv.td
@@ -0,0 +1,46 @@
+//=- SystemZCallingConv.td - Calling Conventions for SystemZ -*- tablegen -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for SystemZ architecture.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SystemZ Return Value Calling Convention
+//===----------------------------------------------------------------------===//
+def RetCC_SystemZ : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // i64 is returned in register R2
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>,
+
+ // f32 / f64 are returned in F0
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0L, F2L, F4L, F6L]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// SystemZ Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+def CC_SystemZ : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // The first 5 integer arguments of non-varargs functions are passed in
+ // integer registers.
+ CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>,
+
+ // The first 4 floating point arguments of non-varargs functions are passed
+ // in FP registers.
+ CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
+ CCIfType<[f64], CCAssignToReg<[F0L, F2L, F4L, F6L]>>,
+
+ // Integer values get stored in stack slots that are 8 bytes in
+ // size and 8-byte aligned.
+ CCIfType<[i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
diff --git a/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
new file mode 100644
index 0000000..028ee89
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
@@ -0,0 +1,829 @@
+//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the SystemZ target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "SystemZISelLowering.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+static const unsigned subreg_even32 = 1;
+static const unsigned subreg_odd32 = 2;
+static const unsigned subreg_even = 3;
+static const unsigned subreg_odd = 4;
+
+namespace {
+ /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
+ /// instead of register numbers for the leaves of the matched tree.
+ struct SystemZRRIAddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ struct { // This is really a union, discriminated by BaseType!
+ SDValue Reg;
+ int FrameIndex;
+ } Base;
+
+ SDValue IndexReg;
+ int64_t Disp;
+ bool isRI;
+
+ SystemZRRIAddressMode(bool RI = false)
+ : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
+ }
+
+ void dump() {
+ errs() << "SystemZRRIAddressMode " << this << '\n';
+ if (BaseType == RegBase) {
+ errs() << "Base.Reg ";
+ if (Base.Reg.getNode() != 0)
+ Base.Reg.getNode()->dump();
+ else
+ errs() << "nul";
+ errs() << '\n';
+ } else {
+ errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
+ }
+ if (!isRI) {
+ errs() << "IndexReg ";
+ if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
+ else errs() << "nul";
+ }
+ errs() << " Disp " << Disp << '\n';
+ }
+ };
+}
+
+/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+ class SystemZDAGToDAGISel : public SelectionDAGISel {
+ SystemZTargetLowering &Lowering;
+ const SystemZSubtarget &Subtarget;
+
+ void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp);
+ void getAddressOperands(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp,
+ SDValue &Index);
+
+ public:
+ SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(TM, OptLevel),
+ Lowering(*TM.getTargetLowering()),
+ Subtarget(*TM.getSubtargetImpl()) { }
+
+ virtual void InstructionSelect();
+
+ virtual const char *getPassName() const {
+ return "SystemZ DAG->DAG Pattern Instruction Selection";
+ }
+
+ /// getI8Imm - Return a target constant with the specified value, of type
+ /// i8.
+ inline SDValue getI8Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i8);
+ }
+
+ /// getI16Imm - Return a target constant with the specified value, of type
+ /// i16.
+ inline SDValue getI16Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i16);
+ }
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ // Include the pieces autogenerated from the target description.
+ #include "SystemZGenDAGISel.inc"
+
+ private:
+ bool SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp);
+ bool SelectAddrRI12(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp,
+ bool is12BitOnly = false);
+ bool SelectAddrRI(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp);
+ bool SelectAddrRRI12(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+ bool SelectAddrRRI20(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+ bool SelectLAAddr(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ SDNode *Select(SDValue Op);
+
+ bool TryFoldLoad(SDValue P, SDValue N,
+ SDValue &Base, SDValue &Disp, SDValue &Index);
+
+ bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit, unsigned Depth = 0);
+ bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
+ bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit);
+
+ #ifndef NDEBUG
+ unsigned Indent;
+ #endif
+ };
+} // end anonymous namespace
+
+/// createSystemZISelDag - This pass converts a legalized DAG into a
+/// SystemZ-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new SystemZDAGToDAGISel(TM, OptLevel);
+}
+
+/// isImmSExt20 - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 20-bit value. If so, this returns true and the
+/// immediate.
+static bool isImmSExt20(int64_t Val, int64_t &Imm) {
+ if (Val >= -524288 && Val <= 524287) {
+ Imm = Val;
+ return true;
+ }
+ return false;
+}
+
+/// isImmZExt12 - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// zero extension from a 12-bit value. If so, this returns true and the
+/// immediate.
+static bool isImmZExt12(int64_t Val, int64_t &Imm) {
+ if (Val >= 0 && Val <= 0xFFF) {
+ Imm = Val;
+ return true;
+ }
+ return false;
+}
+
+/// MatchAddress - Add the specified node to the specified addressing mode,
+/// returning true if it cannot be done. This just pattern matches for the
+/// addressing mode.
+bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
+ bool is12Bit, unsigned Depth) {
+ DebugLoc dl = N.getDebugLoc();
+ DEBUG(errs() << "MatchAddress: "; AM.dump());
+ // Limit recursion.
+ if (Depth > 5)
+ return MatchAddressBase(N, AM);
+
+ // FIXME: We can perform better here. If we have something like
+ // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
+ // imm into addressing mode.
+ switch (N.getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ int64_t Imm = 0;
+ bool Match = (is12Bit ?
+ isImmZExt12(AM.Disp + Val, Imm) :
+ isImmSExt20(AM.Disp + Val, Imm));
+ if (Match) {
+ AM.Disp = Imm;
+ return false;
+ }
+ break;
+ }
+
+ case ISD::FrameIndex:
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ AM.Base.Reg.getNode() == 0) {
+ AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
+ return false;
+ }
+ break;
+
+ case ISD::SUB: {
+ // Given A-B, if A can be completely folded into the address and
+ // the index field with the index field unused, use -B as the index.
+ // This is a win if a has multiple parts that can be folded into
+ // the address. Also, this saves a mov if the base register has
+ // other uses, since it avoids a two-address sub instruction, however
+ // it costs an additional mov if the index register has other uses.
+
+ // Test if the LHS of the sub can be folded.
+ SystemZRRIAddressMode Backup = AM;
+ if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
+ AM = Backup;
+ break;
+ }
+ // Test if the index field is free for use.
+ if (AM.IndexReg.getNode() || AM.isRI) {
+ AM = Backup;
+ break;
+ }
+
+ // If the base is a register with multiple uses, this transformation may
+ // save a mov. Otherwise it's probably better not to do it.
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
+ AM = Backup;
+ break;
+ }
+
+ // Ok, the transformation is legal and appears profitable. Go for it.
+ SDValue RHS = N.getNode()->getOperand(1);
+ SDValue Zero = CurDAG->getConstant(0, N.getValueType());
+ SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
+ AM.IndexReg = Neg;
+
+ // Insert the new nodes into the topological ordering.
+ if (Zero.getNode()->getNodeId() == -1 ||
+ Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
+ CurDAG->RepositionNode(N.getNode(), Zero.getNode());
+ Zero.getNode()->setNodeId(N.getNode()->getNodeId());
+ }
+ if (Neg.getNode()->getNodeId() == -1 ||
+ Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
+ CurDAG->RepositionNode(N.getNode(), Neg.getNode());
+ Neg.getNode()->setNodeId(N.getNode()->getNodeId());
+ }
+ return false;
+ }
+
+ case ISD::ADD: {
+ SystemZRRIAddressMode Backup = AM;
+ if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
+ !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
+ return false;
+ AM = Backup;
+ if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
+ !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
+ return false;
+ AM = Backup;
+
+ // If we couldn't fold both operands into the address at the same time,
+ // see if we can just put each operand into a register and fold at least
+ // the add.
+ if (!AM.isRI &&
+ AM.BaseType == SystemZRRIAddressMode::RegBase &&
+ !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
+ AM.Base.Reg = N.getNode()->getOperand(0);
+ AM.IndexReg = N.getNode()->getOperand(1);
+ return false;
+ }
+ break;
+ }
+
+ case ISD::OR:
+ // Handle "X | C" as "X + C" iff X is known to have C bits clear.
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ SystemZRRIAddressMode Backup = AM;
+ int64_t Offset = CN->getSExtValue();
+ int64_t Imm = 0;
+ bool MatchOffset = (is12Bit ?
+ isImmZExt12(AM.Disp + Offset, Imm) :
+ isImmSExt20(AM.Disp + Offset, Imm));
+ // The resultant disp must fit in 12 or 20-bits.
+ if (MatchOffset &&
+ // LHS should be an addr mode.
+ !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
+ // Check to see if the LHS & C is zero.
+ CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
+ AM.Disp = Imm;
+ return false;
+ }
+ AM = Backup;
+ }
+ break;
+ }
+
+ return MatchAddressBase(N, AM);
+}
+
+/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
+/// specified addressing mode without any further recursion.
+bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
+ SystemZRRIAddressMode &AM) {
+ // Is the base register already occupied?
+ if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
+ // If so, check to see if the index register is set.
+ if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
+ AM.IndexReg = N;
+ return false;
+ }
+
+ // Otherwise, we cannot select it.
+ return true;
+ }
+
+ // Default, generate it as a register.
+ AM.BaseType = SystemZRRIAddressMode::RegBase;
+ AM.Base.Reg = N;
+ return false;
+}
+
+void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp) {
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase)
+ Base = AM.Base.Reg;
+ else
+ Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
+ Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
+}
+
+void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
+ SDValue &Base, SDValue &Disp,
+ SDValue &Index) {
+ getAddressOperandsRI(AM, Base, Disp);
+ Index = AM.IndexReg;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// an unsigned 12-bit displacement [r+imm].
+bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp) {
+ return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
+}
+
+bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp,
+ bool is12BitOnly) {
+ SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM12);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
+ return false;
+
+ // Check, whether we can match stuff using 20-bit displacements
+ if (!Done && !is12BitOnly &&
+ !MatchAddress(Addr, AM20, /* is12Bit */ false))
+ if (AM12.Disp == 0 && AM20.Disp != 0)
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM12.Base.Reg.getNode())
+ AM12.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
+
+ getAddressOperandsRI(AM12, Base, Disp);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// a signed 20-bit displacement [r+imm].
+bool SystemZDAGToDAGISel::SelectAddrRI(SDValue Op, SDValue& Addr,
+ SDValue &Base, SDValue &Disp) {
+ SystemZRRIAddressMode AM(/*isRI*/true);
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM.Base.Reg.getNode())
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
+
+ getAddressOperandsRI(AM, Base, Disp);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// index register plus an unsigned 12-bit displacement [base + idx + imm].
+bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM20, AM12;
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM12);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
+ return false;
+
+ // Check, whether we can match stuff using 20-bit displacements
+ if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
+ if (AM12.Disp == 0 && AM20.Disp != 0)
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM12.Base.Reg.getNode())
+ AM12.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ if (!AM12.IndexReg.getNode())
+ AM12.IndexReg = CurDAG->getRegister(0, VT);
+
+ getAddressOperands(AM12, Base, Disp, Index);
+
+ return true;
+}
+
+/// Returns true if the address can be represented by a base register plus
+/// index register plus a signed 20-bit displacement [base + idx + imm].
+bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM;
+ bool Done = false;
+
+ if (!Addr.hasOneUse()) {
+ unsigned Opcode = Addr.getOpcode();
+ if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
+ // If we are able to fold N into addressing mode, then we'll allow it even
+ // if N has multiple uses. In general, addressing computation is used as
+ // addresses by all of its uses. But watch out for CopyToReg uses, that
+ // means the address computation is liveout. It will be computed by a LA
+ // so we want to avoid computing the address twice.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ MatchAddressBase(Addr, AM);
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+ if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
+ return false;
+
+ DEBUG(errs() << "MatchAddress (final): "; AM.dump());
+
+ EVT VT = Addr.getValueType();
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
+ if (!AM.Base.Reg.getNode())
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ }
+
+ if (!AM.IndexReg.getNode())
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ getAddressOperands(AM, Base, Disp, Index);
+
+ return true;
+}
+
+/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
+/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
+bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Op, SDValue Addr,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ SystemZRRIAddressMode AM;
+
+ if (MatchAddress(Addr, AM, false))
+ return false;
+
+ EVT VT = Addr.getValueType();
+ unsigned Complexity = 0;
+ if (AM.BaseType == SystemZRRIAddressMode::RegBase)
+ if (AM.Base.Reg.getNode())
+ Complexity = 1;
+ else
+ AM.Base.Reg = CurDAG->getRegister(0, VT);
+ else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
+ Complexity = 4;
+
+ if (AM.IndexReg.getNode())
+ Complexity += 1;
+ else
+ AM.IndexReg = CurDAG->getRegister(0, VT);
+
+ if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
+ Complexity += 1;
+
+ if (Complexity > 2) {
+ getAddressOperands(AM, Base, Disp, Index);
+ return true;
+ }
+
+ return false;
+}
+
+bool SystemZDAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
+ SDValue &Base, SDValue &Disp, SDValue &Index) {
+ if (ISD::isNON_EXTLoad(N.getNode()) &&
+ N.hasOneUse() &&
+ IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
+ return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
+ return false;
+}
+
+/// InstructionSelect - This callback is invoked by
+/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+void SystemZDAGToDAGISel::InstructionSelect() {
+ DEBUG(BB->dump());
+
+ // Codegen the basic block.
+ DEBUG(errs() << "===== Instruction selection begins:\n");
+ DEBUG(Indent = 0);
+ SelectRoot(*CurDAG);
+ DEBUG(errs() << "===== Instruction selection ends:\n");
+
+ CurDAG->RemoveDeadNodes();
+}
+
+SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
+ SDNode *Node = Op.getNode();
+ EVT NVT = Node->getValueType(0);
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opcode = Node->getOpcode();
+
+ // Dump information about the Node being selected
+ DEBUG(errs().indent(Indent) << "Selecting: ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent += 2);
+
+ // If we have a custom node, we already have selected!
+ if (Node->isMachineOpcode()) {
+ DEBUG(errs().indent(Indent-2) << "== ";
+ Node->dump(CurDAG);
+ errs() << "\n");
+ DEBUG(Indent -= 2);
+ return NULL; // Already selected.
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::SDIVREM: {
+ unsigned Opc, MOpc;
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ EVT ResVT;
+ bool is32Bit = false;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
+ ResVT = MVT::v2i64;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
+ ResVT = MVT::v2i64;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2;
+ bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+
+ // Prepare the dividend
+ SDNode *Dividend;
+ if (is32Bit)
+ Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
+ else
+ Dividend = N0.getNode();
+
+ // Insert prepared dividend into suitable 'subreg'
+ SDNode *Tmp = CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, ResVT);
+ Dividend =
+ CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
+ SDValue(Tmp, 0), SDValue(Dividend, 0),
+ CurDAG->getTargetConstant(subreg_odd, MVT::i32));
+
+ SDNode *Result;
+ SDValue DivVal = SDValue(Dividend, 0);
+ if (foldedLoad) {
+ SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
+ Result = CurDAG->getMachineNode(MOpc, dl, ResVT,
+ Ops, array_lengthof(Ops));
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ } else {
+ Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
+ }
+
+ // Copy the division (odd subreg) result, if it is needed.
+ if (!Op.getValue(0).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+
+ ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+ // Copy the remainder (even subreg) result, if it is needed.
+ if (!Op.getValue(1).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
+ SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+
+ ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+#ifndef NDEBUG
+ Indent -= 2;
+#endif
+
+ return NULL;
+ }
+ case ISD::UDIVREM: {
+ unsigned Opc, MOpc, ClrOpc;
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+ EVT ResVT;
+
+ bool is32Bit = false;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: assert(0 && "Unsupported VT!");
+ case MVT::i32:
+ Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
+ ClrOpc = SystemZ::MOV64Pr0_even;
+ ResVT = MVT::v2i32;
+ is32Bit = true;
+ break;
+ case MVT::i64:
+ Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
+ ClrOpc = SystemZ::MOV128r0_even;
+ ResVT = MVT::v2i64;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2;
+ bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
+
+ // Prepare the dividend
+ SDNode *Dividend = N0.getNode();
+
+ // Insert prepared dividend into suitable 'subreg'
+ SDNode *Tmp = CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, ResVT);
+ {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ Dividend =
+ CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
+ SDValue(Tmp, 0), SDValue(Dividend, 0),
+ CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
+ }
+
+ // Zero out even subreg
+ Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
+
+ SDValue DivVal = SDValue(Dividend, 0);
+ SDNode *Result;
+ if (foldedLoad) {
+ SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
+ Result = CurDAG->getMachineNode(MOpc, dl,ResVT,
+ Ops, array_lengthof(Ops));
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(Result, 0));
+ } else {
+ Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
+ }
+
+ // Copy the division (odd subreg) result, if it is needed.
+ if (!Op.getValue(0).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
+ SDNode *Div = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+ ReplaceUses(Op.getValue(0), SDValue(Div, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+ // Copy the remainder (even subreg) result, if it is needed.
+ if (!Op.getValue(1).use_empty()) {
+ unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
+ SDNode *Rem = CurDAG->getMachineNode(TargetInstrInfo::EXTRACT_SUBREG,
+ dl, NVT,
+ SDValue(Result, 0),
+ CurDAG->getTargetConstant(SubRegIdx,
+ MVT::i32));
+ ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ Result->dump(CurDAG);
+ errs() << "\n");
+ }
+
+#ifndef NDEBUG
+ Indent -= 2;
+#endif
+
+ return NULL;
+ }
+ }
+
+ // Select the default instruction
+ SDNode *ResNode = SelectCode(Op);
+
+ DEBUG(errs().indent(Indent-2) << "=> ";
+ if (ResNode == NULL || ResNode == Op.getNode())
+ Op.getNode()->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ errs() << "\n";
+ );
+ DEBUG(Indent -= 2);
+
+ return ResNode;
+}
diff --git a/lib/Target/SystemZ/SystemZISelLowering.cpp b/lib/Target/SystemZ/SystemZISelLowering.cpp
new file mode 100644
index 0000000..07e0d83
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelLowering.cpp
@@ -0,0 +1,843 @@
+//===-- SystemZISelLowering.cpp - SystemZ DAG Lowering Implementation -----==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZTargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "systemz-lower"
+
+#include "SystemZISelLowering.h"
+#include "SystemZ.h"
+#include "SystemZTargetMachine.h"
+#include "SystemZSubtarget.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/CallingConv.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/VectorExtras.h"
+using namespace llvm;
+
+SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) :
+ TargetLowering(tm, new TargetLoweringObjectFileELF()),
+ Subtarget(*tm.getSubtargetImpl()), TM(tm) {
+
+ RegInfo = TM.getRegisterInfo();
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i32, SystemZ::GR32RegisterClass);
+ addRegisterClass(MVT::i64, SystemZ::GR64RegisterClass);
+ addRegisterClass(MVT::v2i32,SystemZ::GR64PRegisterClass);
+ addRegisterClass(MVT::v2i64,SystemZ::GR128RegisterClass);
+
+ if (!UseSoftFloat) {
+ addRegisterClass(MVT::f32, SystemZ::FP32RegisterClass);
+ addRegisterClass(MVT::f64, SystemZ::FP64RegisterClass);
+
+ addLegalFPImmediate(APFloat(+0.0)); // lzer
+ addLegalFPImmediate(APFloat(+0.0f)); // lzdr
+ addLegalFPImmediate(APFloat(-0.0)); // lzer + lner
+ addLegalFPImmediate(APFloat(-0.0f)); // lzdr + lndr
+ }
+
+ // Compute derived properties from the register classes
+ computeRegisterProperties();
+
+ // Set shifts properties
+ setShiftAmountType(MVT::i64);
+
+ // Provide all sorts of operation actions
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::f64, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
+
+ setStackPointerRegisterToSaveRestore(SystemZ::R15D);
+ setSchedulingPreference(SchedulingForLatency);
+ setBooleanContents(ZeroOrOneBooleanContent);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::i64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i64, Expand);
+ setOperationAction(ISD::CTLZ, MVT::i32, Promote);
+ setOperationAction(ISD::CTLZ, MVT::i64, Legal);
+
+ // FIXME: Can we lower these 2 efficiently?
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
+
+ // FIXME: Can we support these natively?
+ setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
+
+ // Lower some FP stuff
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+
+ // We have only 64-bit bitconverts
+ setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
+ setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+}
+
+SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
+ switch (Op.getOpcode()) {
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ default:
+ llvm_unreachable("Should not custom lower this!");
+ return SDValue();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// SystemZ Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+TargetLowering::ConstraintType
+SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ return C_RegisterClass;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+SystemZTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': // GENERAL_REGS
+ if (VT == MVT::i32)
+ return std::make_pair(0U, SystemZ::GR32RegisterClass);
+ else if (VT == MVT::i128)
+ return std::make_pair(0U, SystemZ::GR128RegisterClass);
+
+ return std::make_pair(0U, SystemZ::GR64RegisterClass);
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "SystemZGenCallingConv.inc"
+
+SDValue
+SystemZTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ switch (CallConv) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
+ }
+}
+
+SDValue
+SystemZTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ switch (CallConv) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::Fast:
+ case CallingConv::C:
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, Ins, dl, DAG, InVals);
+ }
+}
+
+/// LowerCCCArguments - transform physical registers into virtual registers and
+/// generate load operations for arguments places on the stack.
+// FIXME: struct return stuff
+// FIXME: varargs
+SDValue
+SystemZTargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
+
+ if (isVarArg)
+ llvm_report_error("Varargs not supported yet");
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ SDValue ArgValue;
+ CCValAssign &VA = ArgLocs[i];
+ EVT LocVT = VA.getLocVT();
+ if (VA.isRegLoc()) {
+ // Arguments passed in registers
+ TargetRegisterClass *RC;
+ switch (LocVT.getSimpleVT().SimpleTy) {
+ default:
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << LocVT.getSimpleVT().SimpleTy
+ << "\n";
+#endif
+ llvm_unreachable(0);
+ case MVT::i64:
+ RC = SystemZ::GR64RegisterClass;
+ break;
+ case MVT::f32:
+ RC = SystemZ::FP32RegisterClass;
+ break;
+ case MVT::f64:
+ RC = SystemZ::FP64RegisterClass;
+ break;
+ }
+
+ unsigned VReg = RegInfo.createVirtualRegister(RC);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
+ } else {
+ // Sanity check
+ assert(VA.isMemLoc());
+
+ // Create the nodes corresponding to a load from this parameter slot.
+ // Create the frame index object for this incoming parameter...
+ int FI = MFI->CreateFixedObject(LocVT.getSizeInBits()/8,
+ VA.getLocMemOffset());
+
+ // Create the SelectionDAG nodes corresponding to a load
+ // from this parameter
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue = DAG.getLoad(LocVT, dl, Chain, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0);
+ }
+
+ // If this is an 8/16/32-bit value, it is really passed promoted to 64
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.getLocInfo() != CCValAssign::Full)
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+
+ InVals.push_back(ArgValue);
+ }
+
+ return Chain;
+}
+
+/// LowerCCCCallTo - functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+/// TODO: sret.
+SDValue
+SystemZTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg>
+ &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Offset to first argument stack slot.
+ const unsigned FirstArgOffset = 160;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
+ getPointerTy(), true));
+
+ SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
+ SmallVector<SDValue, 12> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ SDValue Arg = Outs[i].Val;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: assert(0 && "Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at RegsToPass
+ // vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ if (StackPtr.getNode() == 0)
+ StackPtr =
+ DAG.getCopyFromReg(Chain, dl,
+ (RegInfo->hasFP(MF) ?
+ SystemZ::R11D : SystemZ::R15D),
+ getPointerTy());
+
+ unsigned Offset = FirstArgOffset + VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ StackPtr,
+ DAG.getIntPtrConstant(Offset));
+
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
+ PseudoSourceValue::getStack(), Offset));
+ }
+ }
+
+ // Transform all store nodes into one single node because all store nodes are
+ // independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain and
+ // flag operands which copy the outgoing args into registers. The InFlag in
+ // necessary since all emited instructions must be stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress node (quite common, every direct call is)
+ // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+ // Likewise ExternalSymbol -> TargetExternalSymbol.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
+ else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy());
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(SystemZISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getConstant(NumBytes, getPointerTy(), true),
+ DAG.getConstant(0, getPointerTy(), true),
+ InFlag);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
+ DAG, InVals);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+SystemZTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ VA.getLocVT(), InFlag).getValue(1);
+ SDValue RetValue = Chain.getValue(0);
+ InFlag = Chain.getValue(2);
+
+ // If this is an 8/16/32-bit value, it is really passed promoted to 64
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ RetValue = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), RetValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ RetValue = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), RetValue,
+ DAG.getValueType(VA.getValVT()));
+
+ if (VA.getLocInfo() != CCValAssign::Full)
+ RetValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), RetValue);
+
+ InVals.push_back(RetValue);
+ }
+
+ return Chain;
+}
+
+
+SDValue
+SystemZTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
+ // CCValAssign - represent the assignment of the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
+
+ // If this is the first return lowered for this function, add the regs to the
+ // liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDValue Flag;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ SDValue ResValue = Outs[i].Val;
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ // If this is an 8/16/32-bit value, it is really should be passed promoted
+ // to 64 bits.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ResValue = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ResValue);
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ResValue = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ResValue);
+ else if (VA.getLocInfo() == CCValAssign::AExt)
+ ResValue = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ResValue);
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ResValue, Flag);
+
+ // Guarantee that all emitted copies are stuck together,
+ // avoiding something bad.
+ Flag = Chain.getValue(1);
+ }
+
+ if (Flag.getNode())
+ return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
+
+ // Return Void
+ return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain);
+}
+
+SDValue SystemZTargetLowering::EmitCmp(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, SDValue &SystemZCC,
+ SelectionDAG &DAG) {
+ // FIXME: Emit a test if RHS is zero
+
+ bool isUnsigned = false;
+ SystemZCC::CondCodes TCC;
+ switch (CC) {
+ default:
+ llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ TCC = SystemZCC::E;
+ break;
+ case ISD::SETUEQ:
+ TCC = SystemZCC::NLH;
+ break;
+ case ISD::SETNE:
+ case ISD::SETONE:
+ TCC = SystemZCC::NE;
+ break;
+ case ISD::SETUNE:
+ TCC = SystemZCC::LH;
+ break;
+ case ISD::SETO:
+ TCC = SystemZCC::O;
+ break;
+ case ISD::SETUO:
+ TCC = SystemZCC::NO;
+ break;
+ case ISD::SETULE:
+ if (LHS.getValueType().isFloatingPoint()) {
+ TCC = SystemZCC::NH;
+ break;
+ }
+ isUnsigned = true; // FALLTHROUGH
+ case ISD::SETLE:
+ case ISD::SETOLE:
+ TCC = SystemZCC::LE;
+ break;
+ case ISD::SETUGE:
+ if (LHS.getValueType().isFloatingPoint()) {
+ TCC = SystemZCC::NL;
+ break;
+ }
+ isUnsigned = true; // FALLTHROUGH
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ TCC = SystemZCC::HE;
+ break;
+ case ISD::SETUGT:
+ if (LHS.getValueType().isFloatingPoint()) {
+ TCC = SystemZCC::NLE;
+ break;
+ }
+ isUnsigned = true; // FALLTHROUGH
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ TCC = SystemZCC::H;
+ break;
+ case ISD::SETULT:
+ if (LHS.getValueType().isFloatingPoint()) {
+ TCC = SystemZCC::NHE;
+ break;
+ }
+ isUnsigned = true; // FALLTHROUGH
+ case ISD::SETLT:
+ case ISD::SETOLT:
+ TCC = SystemZCC::L;
+ break;
+ }
+
+ SystemZCC = DAG.getConstant(TCC, MVT::i32);
+
+ DebugLoc dl = LHS.getDebugLoc();
+ return DAG.getNode((isUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
+ dl, MVT::Flag, LHS, RHS);
+}
+
+
+SDValue SystemZTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ DebugLoc dl = Op.getDebugLoc();
+
+ SDValue SystemZCC;
+ SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
+ return DAG.getNode(SystemZISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, SystemZCC, Flag);
+}
+
+SDValue SystemZTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue TrueV = Op.getOperand(2);
+ SDValue FalseV = Op.getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ DebugLoc dl = Op.getDebugLoc();
+
+ SDValue SystemZCC;
+ SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(TrueV);
+ Ops.push_back(FalseV);
+ Ops.push_back(SystemZCC);
+ Ops.push_back(Flag);
+
+ return DAG.getNode(SystemZISD::SELECT, dl, VTs, &Ops[0], Ops.size());
+}
+
+SDValue SystemZTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) {
+ DebugLoc dl = Op.getDebugLoc();
+ GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+
+ bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+ bool ExtraLoadRequired =
+ Subtarget.GVRequiresExtraLoad(GV, getTargetMachine(), false);
+
+ SDValue Result;
+ if (!IsPic && !ExtraLoadRequired) {
+ Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
+ Offset = 0;
+ } else {
+ unsigned char OpFlags = 0;
+ if (ExtraLoadRequired)
+ OpFlags = SystemZII::MO_GOTENT;
+
+ Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
+ }
+
+ Result = DAG.getNode(SystemZISD::PCRelativeWrapper, dl,
+ getPointerTy(), Result);
+
+ if (ExtraLoadRequired)
+ Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
+ PseudoSourceValue::getGOT(), 0);
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
+ DAG.getConstant(Offset, getPointerTy()));
+
+ return Result;
+}
+
+// FIXME: PIC here
+SDValue SystemZTargetLowering::LowerJumpTable(SDValue Op,
+ SelectionDAG &DAG) {
+ DebugLoc dl = Op.getDebugLoc();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
+
+ return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
+}
+
+
+// FIXME: PIC here
+// FIXME: This is just dirty hack. We need to lower cpool properly
+SDValue SystemZTargetLowering::LowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) {
+ DebugLoc dl = Op.getDebugLoc();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+
+ SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
+ CP->getAlignment(),
+ CP->getOffset());
+
+ return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
+}
+
+const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ case SystemZISD::RET_FLAG: return "SystemZISD::RET_FLAG";
+ case SystemZISD::CALL: return "SystemZISD::CALL";
+ case SystemZISD::BRCOND: return "SystemZISD::BRCOND";
+ case SystemZISD::CMP: return "SystemZISD::CMP";
+ case SystemZISD::UCMP: return "SystemZISD::UCMP";
+ case SystemZISD::SELECT: return "SystemZISD::SELECT";
+ case SystemZISD::PCRelativeWrapper: return "SystemZISD::PCRelativeWrapper";
+ default: return NULL;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Code
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock*
+SystemZTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
+ const SystemZInstrInfo &TII = *TM.getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ assert((MI->getOpcode() == SystemZ::Select32 ||
+ MI->getOpcode() == SystemZ::SelectF32 ||
+ MI->getOpcode() == SystemZ::Select64 ||
+ MI->getOpcode() == SystemZ::SelectF64) &&
+ "Unexpected instr type to insert");
+
+ // To "insert" a SELECT instruction, we actually have to insert the diamond
+ // control-flow pattern. The incoming instruction knows the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator I = BB;
+ ++I;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // jCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ SystemZCC::CondCodes CC = (SystemZCC::CondCodes)MI->getOperand(3).getImm();
+ BuildMI(BB, dl, TII.getBrCond(CC)).addMBB(copy1MBB);
+ F->insert(I, copy0MBB);
+ F->insert(I, copy1MBB);
+ // Inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI)
+ EM->insert(std::make_pair(*SI, copy1MBB));
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ copy1MBB->transferSuccessors(BB);
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(copy1MBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to copy1MBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(copy1MBB);
+
+ // copy1MBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = copy1MBB;
+ BuildMI(BB, dl, TII.get(SystemZ::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+}
diff --git a/lib/Target/SystemZ/SystemZISelLowering.h b/lib/Target/SystemZ/SystemZISelLowering.h
new file mode 100644
index 0000000..c2c24bc
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZISelLowering.h
@@ -0,0 +1,141 @@
+//==-- SystemZISelLowering.h - SystemZ DAG Lowering Interface ----*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that SystemZ uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
+#define LLVM_TARGET_SystemZ_ISELLOWERING_H
+
+#include "SystemZ.h"
+#include "SystemZRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+
+namespace llvm {
+ namespace SystemZISD {
+ enum {
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// Return with a flag operand. Operand 0 is the chain operand.
+ RET_FLAG,
+
+ /// CALL - These operations represent an abstract call
+ /// instruction, which includes a bunch of information.
+ CALL,
+
+ /// PCRelativeWrapper - PC relative address
+ PCRelativeWrapper,
+
+ /// CMP, UCMP - Compare instruction
+ CMP,
+ UCMP,
+
+ /// BRCOND - Conditional branch. Operand 0 is chain operand, operand 1 is
+ /// the block to branch if condition is true, operand 2 is condition code
+ /// and operand 3 is the flag operand produced by a CMP instruction.
+ BRCOND,
+
+ /// SELECT - Operands 0 and 1 are selection variables, operand 2 is
+ /// condition code and operand 3 is the flag operand.
+ SELECT
+ };
+ }
+
+ class SystemZSubtarget;
+ class SystemZTargetMachine;
+
+ class SystemZTargetLowering : public TargetLowering {
+ public:
+ explicit SystemZTargetLowering(SystemZTargetMachine &TM);
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ /// DAG node.
+ virtual const char *getTargetNodeName(unsigned Opcode) const;
+
+ /// getFunctionAlignment - Return the Log2 alignment of this function.
+ virtual unsigned getFunctionAlignment(const Function *F) const {
+ return 1;
+ }
+
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
+ TargetLowering::ConstraintType
+ getConstraintType(const std::string &Constraint) const;
+
+ SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
+
+ SDValue EmitCmp(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, SDValue &SystemZCC,
+ SelectionDAG &DAG);
+
+
+ MachineBasicBlock* EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
+
+ private:
+ SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ SDValue LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
+ const SystemZSubtarget &Subtarget;
+ const SystemZTargetMachine &TM;
+ const SystemZRegisterInfo *RegInfo;
+ };
+} // namespace llvm
+
+#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H
diff --git a/lib/Target/SystemZ/SystemZInstrBuilder.h b/lib/Target/SystemZ/SystemZInstrBuilder.h
new file mode 100644
index 0000000..b69d2f6
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrBuilder.h
@@ -0,0 +1,128 @@
+//===- SystemZInstrBuilder.h - Functions to aid building insts -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to handle SystemZ'isms in a clean way.
+//
+// The BuildMem function may be used with the BuildMI function to add entire
+// memory references in a single, typed, function call.
+//
+// For reference, the order of operands for memory references is:
+// (Operand), Base, Displacement, Index.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZINSTRBUILDER_H
+#define SYSTEMZINSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+
+namespace llvm {
+
+/// SystemZAddressMode - This struct holds a generalized full x86 address mode.
+/// The base register can be a frame index, which will eventually be replaced
+/// with R15 or R11 and Disp being offsetted accordingly.
+struct SystemZAddressMode {
+ enum {
+ RegBase,
+ FrameIndexBase
+ } BaseType;
+
+ union {
+ unsigned Reg;
+ int FrameIndex;
+ } Base;
+
+ unsigned IndexReg;
+ int32_t Disp;
+ GlobalValue *GV;
+
+ SystemZAddressMode() : BaseType(RegBase), IndexReg(0), Disp(0) {
+ Base.Reg = 0;
+ }
+};
+
+/// addDirectMem - This function is used to add a direct memory reference to the
+/// current instruction -- that is, a dereference of an address in a register,
+/// with no index or displacement.
+///
+static inline const MachineInstrBuilder &
+addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg) {
+ // Because memory references are always represented with 3
+ // values, this adds: Reg, [0, NoReg] to the instruction.
+ return MIB.addReg(Reg).addImm(0).addReg(0);
+}
+
+static inline const MachineInstrBuilder &
+addOffset(const MachineInstrBuilder &MIB, int Offset) {
+ return MIB.addImm(Offset).addReg(0);
+}
+
+/// addRegOffset - This function is used to add a memory reference of the form
+/// [Reg + Offset], i.e., one with no or index, but with a
+/// displacement. An example is: 10(%r15).
+///
+static inline const MachineInstrBuilder &
+addRegOffset(const MachineInstrBuilder &MIB,
+ unsigned Reg, bool isKill, int Offset) {
+ return addOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset);
+}
+
+/// addRegReg - This function is used to add a memory reference of the form:
+/// [Reg + Reg].
+static inline const MachineInstrBuilder &
+addRegReg(const MachineInstrBuilder &MIB,
+ unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2) {
+ return MIB.addReg(Reg1, getKillRegState(isKill1)).addImm(0)
+ .addReg(Reg2, getKillRegState(isKill2));
+}
+
+static inline const MachineInstrBuilder &
+addFullAddress(const MachineInstrBuilder &MIB, const SystemZAddressMode &AM) {
+ if (AM.BaseType == SystemZAddressMode::RegBase)
+ MIB.addReg(AM.Base.Reg);
+ else if (AM.BaseType == SystemZAddressMode::FrameIndexBase)
+ MIB.addFrameIndex(AM.Base.FrameIndex);
+ else
+ assert(0);
+
+ return MIB.addImm(AM.Disp).addReg(AM.IndexReg);
+}
+
+/// addFrameReference - This function is used to add a reference to the base of
+/// an abstract object on the stack frame of the current function. This
+/// reference has base register as the FrameIndex offset until it is resolved.
+/// This allows a constant offset to be specified as well...
+///
+static inline const MachineInstrBuilder &
+addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
+ MachineInstr *MI = MIB;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ const TargetInstrDesc &TID = MI->getDesc();
+ unsigned Flags = 0;
+ if (TID.mayLoad())
+ Flags |= MachineMemOperand::MOLoad;
+ if (TID.mayStore())
+ Flags |= MachineMemOperand::MOStore;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
+ Flags, Offset,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
+ return addOffset(MIB.addFrameIndex(FI), Offset)
+ .addMemOperand(MMO);
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZInstrFP.td b/lib/Target/SystemZ/SystemZInstrFP.td
new file mode 100644
index 0000000..8a202d4
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrFP.td
@@ -0,0 +1,340 @@
+//===- SystemZInstrFP.td - SystemZ FP Instruction defs --------*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the SystemZ (binary) floating point instructions in
+// TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+// FIXME: multiclassify!
+
+//===----------------------------------------------------------------------===//
+// FP Pattern fragments
+
+def fpimm0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(+0.0);
+}]>;
+
+def fpimmneg0 : PatLeaf<(fpimm), [{
+ return N->isExactlyValue(-0.0);
+}]>;
+
+let usesCustomDAGSchedInserter = 1 in {
+ def SelectF32 : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, i8imm:$cc),
+ "# SelectF32 PSEUDO",
+ [(set FP32:$dst,
+ (SystemZselect FP32:$src1, FP32:$src2, imm:$cc))]>;
+ def SelectF64 : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, i8imm:$cc),
+ "# SelectF64 PSEUDO",
+ [(set FP64:$dst,
+ (SystemZselect FP64:$src1, FP64:$src2, imm:$cc))]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Move Instructions
+
+// Floating point constant loads.
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+def LD_Fp032 : Pseudo<(outs FP32:$dst), (ins),
+ "lzer\t{$dst}",
+ [(set FP32:$dst, fpimm0)]>;
+def LD_Fp064 : Pseudo<(outs FP64:$dst), (ins),
+ "lzdr\t{$dst}",
+ [(set FP64:$dst, fpimm0)]>;
+}
+
+let neverHasSideEffects = 1 in {
+def FMOV32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
+ "ler\t{$dst, $src}",
+ []>;
+def FMOV64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
+ "ldr\t{$dst, $src}",
+ []>;
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
+def FMOV32rm : Pseudo<(outs FP32:$dst), (ins rriaddr12:$src),
+ "le\t{$dst, $src}",
+ [(set FP32:$dst, (load rriaddr12:$src))]>;
+def FMOV32rmy : Pseudo<(outs FP32:$dst), (ins rriaddr:$src),
+ "ley\t{$dst, $src}",
+ [(set FP32:$dst, (load rriaddr:$src))]>;
+def FMOV64rm : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
+ "ld\t{$dst, $src}",
+ [(set FP64:$dst, (load rriaddr12:$src))]>;
+def FMOV64rmy : Pseudo<(outs FP64:$dst), (ins rriaddr:$src),
+ "ldy\t{$dst, $src}",
+ [(set FP64:$dst, (load rriaddr:$src))]>;
+}
+
+def FMOV32mr : Pseudo<(outs), (ins rriaddr12:$dst, FP32:$src),
+ "ste\t{$src, $dst}",
+ [(store FP32:$src, rriaddr12:$dst)]>;
+def FMOV32mry : Pseudo<(outs), (ins rriaddr:$dst, FP32:$src),
+ "stey\t{$src, $dst}",
+ [(store FP32:$src, rriaddr:$dst)]>;
+def FMOV64mr : Pseudo<(outs), (ins rriaddr12:$dst, FP64:$src),
+ "std\t{$src, $dst}",
+ [(store FP64:$src, rriaddr12:$dst)]>;
+def FMOV64mry : Pseudo<(outs), (ins rriaddr:$dst, FP64:$src),
+ "stdy\t{$src, $dst}",
+ [(store FP64:$src, rriaddr:$dst)]>;
+
+def FCOPYSIGN32 : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
+ "cpsdr\t{$dst, $src2, $src1}",
+ [(set FP32:$dst, (fcopysign FP32:$src1, FP32:$src2))]>;
+def FCOPYSIGN64 : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
+ "cpsdr\t{$dst, $src2, $src1}",
+ [(set FP64:$dst, (fcopysign FP64:$src1, FP64:$src2))]>;
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions
+
+
+let Defs = [PSW] in {
+def FNEG32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
+ "lcebr\t{$dst, $src}",
+ [(set FP32:$dst, (fneg FP32:$src)),
+ (implicit PSW)]>;
+def FNEG64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
+ "lcdbr\t{$dst, $src}",
+ [(set FP64:$dst, (fneg FP64:$src)),
+ (implicit PSW)]>;
+
+def FABS32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
+ "lpebr\t{$dst, $src}",
+ [(set FP32:$dst, (fabs FP32:$src)),
+ (implicit PSW)]>;
+def FABS64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
+ "lpdbr\t{$dst, $src}",
+ [(set FP64:$dst, (fabs FP64:$src)),
+ (implicit PSW)]>;
+
+def FNABS32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
+ "lnebr\t{$dst, $src}",
+ [(set FP32:$dst, (fneg(fabs FP32:$src))),
+ (implicit PSW)]>;
+def FNABS64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
+ "lndbr\t{$dst, $src}",
+ [(set FP64:$dst, (fneg(fabs FP64:$src))),
+ (implicit PSW)]>;
+}
+
+let isTwoAddress = 1 in {
+let Defs = [PSW] in {
+let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
+def FADD32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
+ "aebr\t{$dst, $src2}",
+ [(set FP32:$dst, (fadd FP32:$src1, FP32:$src2)),
+ (implicit PSW)]>;
+def FADD64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
+ "adbr\t{$dst, $src2}",
+ [(set FP64:$dst, (fadd FP64:$src1, FP64:$src2)),
+ (implicit PSW)]>;
+}
+
+def FADD32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
+ "aeb\t{$dst, $src2}",
+ [(set FP32:$dst, (fadd FP32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def FADD64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
+ "adb\t{$dst, $src2}",
+ [(set FP64:$dst, (fadd FP64:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+
+def FSUB32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
+ "sebr\t{$dst, $src2}",
+ [(set FP32:$dst, (fsub FP32:$src1, FP32:$src2)),
+ (implicit PSW)]>;
+def FSUB64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
+ "sdbr\t{$dst, $src2}",
+ [(set FP64:$dst, (fsub FP64:$src1, FP64:$src2)),
+ (implicit PSW)]>;
+
+def FSUB32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
+ "seb\t{$dst, $src2}",
+ [(set FP32:$dst, (fsub FP32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def FSUB64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
+ "sdb\t{$dst, $src2}",
+ [(set FP64:$dst, (fsub FP64:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+} // Defs = [PSW]
+
+let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
+def FMUL32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
+ "meebr\t{$dst, $src2}",
+ [(set FP32:$dst, (fmul FP32:$src1, FP32:$src2))]>;
+def FMUL64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
+ "mdbr\t{$dst, $src2}",
+ [(set FP64:$dst, (fmul FP64:$src1, FP64:$src2))]>;
+}
+
+def FMUL32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
+ "meeb\t{$dst, $src2}",
+ [(set FP32:$dst, (fmul FP32:$src1, (load rriaddr12:$src2)))]>;
+def FMUL64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
+ "mdb\t{$dst, $src2}",
+ [(set FP64:$dst, (fmul FP64:$src1, (load rriaddr12:$src2)))]>;
+
+def FMADD32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, FP32:$src3),
+ "maebr\t{$dst, $src3, $src2}",
+ [(set FP32:$dst, (fadd (fmul FP32:$src2, FP32:$src3),
+ FP32:$src1))]>;
+def FMADD32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2, FP32:$src3),
+ "maeb\t{$dst, $src3, $src2}",
+ [(set FP32:$dst, (fadd (fmul (load rriaddr12:$src2),
+ FP32:$src3),
+ FP32:$src1))]>;
+
+def FMADD64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, FP64:$src3),
+ "madbr\t{$dst, $src3, $src2}",
+ [(set FP64:$dst, (fadd (fmul FP64:$src2, FP64:$src3),
+ FP64:$src1))]>;
+def FMADD64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2, FP64:$src3),
+ "madb\t{$dst, $src3, $src2}",
+ [(set FP64:$dst, (fadd (fmul (load rriaddr12:$src2),
+ FP64:$src3),
+ FP64:$src1))]>;
+
+def FMSUB32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, FP32:$src3),
+ "msebr\t{$dst, $src3, $src2}",
+ [(set FP32:$dst, (fsub (fmul FP32:$src2, FP32:$src3),
+ FP32:$src1))]>;
+def FMSUB32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2, FP32:$src3),
+ "mseb\t{$dst, $src3, $src2}",
+ [(set FP32:$dst, (fsub (fmul (load rriaddr12:$src2),
+ FP32:$src3),
+ FP32:$src1))]>;
+
+def FMSUB64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, FP64:$src3),
+ "msdbr\t{$dst, $src3, $src2}",
+ [(set FP64:$dst, (fsub (fmul FP64:$src2, FP64:$src3),
+ FP64:$src1))]>;
+def FMSUB64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2, FP64:$src3),
+ "msdb\t{$dst, $src3, $src2}",
+ [(set FP64:$dst, (fsub (fmul (load rriaddr12:$src2),
+ FP64:$src3),
+ FP64:$src1))]>;
+
+def FDIV32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
+ "debr\t{$dst, $src2}",
+ [(set FP32:$dst, (fdiv FP32:$src1, FP32:$src2))]>;
+def FDIV64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
+ "ddbr\t{$dst, $src2}",
+ [(set FP64:$dst, (fdiv FP64:$src1, FP64:$src2))]>;
+
+def FDIV32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
+ "deb\t{$dst, $src2}",
+ [(set FP32:$dst, (fdiv FP32:$src1, (load rriaddr12:$src2)))]>;
+def FDIV64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
+ "ddb\t{$dst, $src2}",
+ [(set FP64:$dst, (fdiv FP64:$src1, (load rriaddr12:$src2)))]>;
+
+} // isTwoAddress = 1
+
+def FSQRT32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
+ "sqebr\t{$dst, $src}",
+ [(set FP32:$dst, (fsqrt FP32:$src))]>;
+def FSQRT64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
+ "sqdbr\t{$dst, $src}",
+ [(set FP64:$dst, (fsqrt FP64:$src))]>;
+
+def FSQRT32rm : Pseudo<(outs FP32:$dst), (ins rriaddr12:$src),
+ "sqeb\t{$dst, $src}",
+ [(set FP32:$dst, (fsqrt (load rriaddr12:$src)))]>;
+def FSQRT64rm : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
+ "sqdb\t{$dst, $src}",
+ [(set FP64:$dst, (fsqrt (load rriaddr12:$src)))]>;
+
+def FROUND64r32 : Pseudo<(outs FP32:$dst), (ins FP64:$src),
+ "ledbr\t{$dst, $src}",
+ [(set FP32:$dst, (fround FP64:$src))]>;
+
+def FEXT32r64 : Pseudo<(outs FP64:$dst), (ins FP32:$src),
+ "ldebr\t{$dst, $src}",
+ [(set FP64:$dst, (fextend FP32:$src))]>;
+def FEXT32m64 : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
+ "ldeb\t{$dst, $src}",
+ [(set FP64:$dst, (fextend (load rriaddr12:$src)))]>;
+
+let Defs = [PSW] in {
+def FCONVFP32 : Pseudo<(outs FP32:$dst), (ins GR32:$src),
+ "cefbr\t{$dst, $src}",
+ [(set FP32:$dst, (sint_to_fp GR32:$src)),
+ (implicit PSW)]>;
+def FCONVFP32r64: Pseudo<(outs FP32:$dst), (ins GR64:$src),
+ "cegbr\t{$dst, $src}",
+ [(set FP32:$dst, (sint_to_fp GR64:$src)),
+ (implicit PSW)]>;
+
+def FCONVFP64r32: Pseudo<(outs FP64:$dst), (ins GR32:$src),
+ "cdfbr\t{$dst, $src}",
+ [(set FP64:$dst, (sint_to_fp GR32:$src)),
+ (implicit PSW)]>;
+def FCONVFP64 : Pseudo<(outs FP64:$dst), (ins GR64:$src),
+ "cdgbr\t{$dst, $src}",
+ [(set FP64:$dst, (sint_to_fp GR64:$src)),
+ (implicit PSW)]>;
+
+def FCONVGR32 : Pseudo<(outs GR32:$dst), (ins FP32:$src),
+ "cfebr\t{$dst, 5, $src}",
+ [(set GR32:$dst, (fp_to_sint FP32:$src)),
+ (implicit PSW)]>;
+def FCONVGR32r64: Pseudo<(outs GR32:$dst), (ins FP64:$src),
+ "cfdbr\t{$dst, 5, $src}",
+ [(set GR32:$dst, (fp_to_sint FP64:$src)),
+ (implicit PSW)]>;
+
+def FCONVGR64r32: Pseudo<(outs GR64:$dst), (ins FP32:$src),
+ "cgebr\t{$dst, 5, $src}",
+ [(set GR64:$dst, (fp_to_sint FP32:$src)),
+ (implicit PSW)]>;
+def FCONVGR64 : Pseudo<(outs GR64:$dst), (ins FP64:$src),
+ "cgdbr\t{$dst, 5, $src}",
+ [(set GR64:$dst, (fp_to_sint FP64:$src)),
+ (implicit PSW)]>;
+} // Defs = [PSW]
+
+def FBCONVG64 : Pseudo<(outs GR64:$dst), (ins FP64:$src),
+ "lgdr\t{$dst, $src}",
+ [(set GR64:$dst, (bitconvert FP64:$src))]>;
+def FBCONVF64 : Pseudo<(outs FP64:$dst), (ins GR64:$src),
+ "ldgr\t{$dst, $src}",
+ [(set FP64:$dst, (bitconvert GR64:$src))]>;
+
+//===----------------------------------------------------------------------===//
+// Test instructions (like AND but do not produce any result)
+
+// Integer comparisons
+let Defs = [PSW] in {
+def FCMP32rr : Pseudo<(outs), (ins FP32:$src1, FP32:$src2),
+ "cebr\t$src1, $src2",
+ [(SystemZcmp FP32:$src1, FP32:$src2), (implicit PSW)]>;
+def FCMP64rr : Pseudo<(outs), (ins FP64:$src1, FP64:$src2),
+ "cdbr\t$src1, $src2",
+ [(SystemZcmp FP64:$src1, FP64:$src2), (implicit PSW)]>;
+
+def FCMP32rm : Pseudo<(outs), (ins FP32:$src1, rriaddr12:$src2),
+ "ceb\t$src1, $src2",
+ [(SystemZcmp FP32:$src1, (load rriaddr12:$src2)),
+ (implicit PSW)]>;
+def FCMP64rm : Pseudo<(outs), (ins FP64:$src1, rriaddr12:$src2),
+ "cdb\t$src1, $src2",
+ [(SystemZcmp FP64:$src1, (load rriaddr12:$src2)),
+ (implicit PSW)]>;
+} // Defs = [PSW]
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Floating point constant -0.0
+def : Pat<(f32 fpimmneg0), (FNEG32rr (LD_Fp032))>;
+def : Pat<(f64 fpimmneg0), (FNEG64rr (LD_Fp064))>;
diff --git a/lib/Target/SystemZ/SystemZInstrFormats.td b/lib/Target/SystemZ/SystemZInstrFormats.td
new file mode 100644
index 0000000..b4a8993
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrFormats.td
@@ -0,0 +1,133 @@
+//===- SystemZInstrFormats.td - SystemZ Instruction Formats ----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// Format specifies the encoding used by the instruction. This is part of the
+// ad-hoc solution used to emit machine instruction encodings by our machine
+// code emitter.
+class Format<bits<5> val> {
+ bits<5> Value = val;
+}
+
+def Pseudo : Format<0>;
+def EForm : Format<1>;
+def IForm : Format<2>;
+def RIForm : Format<3>;
+def RIEForm : Format<4>;
+def RILForm : Format<5>;
+def RISForm : Format<6>;
+def RRForm : Format<7>;
+def RREForm : Format<8>;
+def RRFForm : Format<9>;
+def RRRForm : Format<10>;
+def RRSForm : Format<11>;
+def RSForm : Format<12>;
+def RSIForm : Format<13>;
+def RSILForm : Format<14>;
+def RSYForm : Format<15>;
+def RXForm : Format<16>;
+def RXEForm : Format<17>;
+def RXFForm : Format<18>;
+def RXYForm : Format<19>;
+def SForm : Format<20>;
+def SIForm : Format<21>;
+def SILForm : Format<22>;
+def SIYForm : Format<23>;
+def SSForm : Format<24>;
+def SSEForm : Format<25>;
+def SSFForm : Format<26>;
+
+class InstSystemZ<bits<16> op, Format f, dag outs, dag ins> : Instruction {
+ let Namespace = "SystemZ";
+
+ bits<16> Opcode = op;
+
+ Format Form = f;
+ bits<5> FormBits = Form.Value;
+
+ dag OutOperandList = outs;
+ dag InOperandList = ins;
+}
+
+class I8<bits<8> op, Format f, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : InstSystemZ<0, f, outs, ins> {
+ let Opcode{0-7} = op;
+ let Opcode{8-15} = 0;
+
+ let Pattern = pattern;
+ let AsmString = asmstr;
+}
+
+class I12<bits<12> op, Format f, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : InstSystemZ<0, f, outs, ins> {
+ let Opcode{0-11} = op;
+ let Opcode{12-15} = 0;
+
+ let Pattern = pattern;
+ let AsmString = asmstr;
+}
+
+class I16<bits<16> op, Format f, dag outs, dag ins, string asmstr,
+ list<dag> pattern>
+ : InstSystemZ<op, f, outs, ins> {
+ let Pattern = pattern;
+ let AsmString = asmstr;
+}
+
+class RRI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I8<op, RRForm, outs, ins, asmstr, pattern>;
+
+class RII<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I12<op, RIForm, outs, ins, asmstr, pattern>;
+
+class RILI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I12<op, RILForm, outs, ins, asmstr, pattern>;
+
+class RREI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I16<op, RREForm, outs, ins, asmstr, pattern>;
+
+class RXI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I8<op, RXForm, outs, ins, asmstr, pattern> {
+ let AddedComplexity = 1;
+}
+
+class RXYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I16<op, RXYForm, outs, ins, asmstr, pattern>;
+
+class RSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I8<op, RSForm, outs, ins, asmstr, pattern> {
+ let AddedComplexity = 1;
+}
+
+class RSYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I16<op, RSYForm, outs, ins, asmstr, pattern>;
+
+class SII<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I8<op, SIForm, outs, ins, asmstr, pattern> {
+ let AddedComplexity = 1;
+}
+
+class SIYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I16<op, SIYForm, outs, ins, asmstr, pattern>;
+
+class SILI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
+ : I16<op, SILForm, outs, ins, asmstr, pattern>;
+
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions
+//===----------------------------------------------------------------------===//
+
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSystemZ<0, Pseudo, outs, ins> {
+
+ let Pattern = pattern;
+ let AsmString = asmstr;
+}
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.cpp b/lib/Target/SystemZ/SystemZInstrInfo.cpp
new file mode 100644
index 0000000..236711c
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.cpp
@@ -0,0 +1,648 @@
+//===- SystemZInstrInfo.cpp - SystemZ Instruction Information --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "SystemZInstrBuilder.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZTargetMachine.h"
+#include "SystemZGenInstrInfo.inc"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+
+using namespace llvm;
+
+SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
+ : TargetInstrInfoImpl(SystemZInsts, array_lengthof(SystemZInsts)),
+ RI(tm, *this), TM(tm) {
+ // Fill the spill offsets map
+ static const unsigned SpillOffsTab[][2] = {
+ { SystemZ::R2D, 0x10 },
+ { SystemZ::R3D, 0x18 },
+ { SystemZ::R4D, 0x20 },
+ { SystemZ::R5D, 0x28 },
+ { SystemZ::R6D, 0x30 },
+ { SystemZ::R7D, 0x38 },
+ { SystemZ::R8D, 0x40 },
+ { SystemZ::R9D, 0x48 },
+ { SystemZ::R10D, 0x50 },
+ { SystemZ::R11D, 0x58 },
+ { SystemZ::R12D, 0x60 },
+ { SystemZ::R13D, 0x68 },
+ { SystemZ::R14D, 0x70 },
+ { SystemZ::R15D, 0x78 }
+ };
+
+ RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
+
+ for (unsigned i = 0, e = array_lengthof(SpillOffsTab); i != e; ++i)
+ RegSpillOffsets[SpillOffsTab[i][0]] = SpillOffsTab[i][1];
+}
+
+/// isGVStub - Return true if the GV requires an extra load to get the
+/// real address.
+static inline bool isGVStub(GlobalValue *GV, SystemZTargetMachine &TM) {
+ return TM.getSubtarget<SystemZSubtarget>().GVRequiresExtraLoad(GV, TM, false);
+}
+
+void SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC) const {
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ unsigned Opc = 0;
+ if (RC == &SystemZ::GR32RegClass ||
+ RC == &SystemZ::ADDR32RegClass)
+ Opc = SystemZ::MOV32mr;
+ else if (RC == &SystemZ::GR64RegClass ||
+ RC == &SystemZ::ADDR64RegClass) {
+ Opc = SystemZ::MOV64mr;
+ } else if (RC == &SystemZ::FP32RegClass) {
+ Opc = SystemZ::FMOV32mr;
+ } else if (RC == &SystemZ::FP64RegClass) {
+ Opc = SystemZ::FMOV64mr;
+ } else if (RC == &SystemZ::GR64PRegClass) {
+ Opc = SystemZ::MOV64Pmr;
+ } else if (RC == &SystemZ::GR128RegClass) {
+ Opc = SystemZ::MOV128mr;
+ } else
+ llvm_unreachable("Unsupported regclass to store");
+
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
+ .addReg(SrcReg, getKillRegState(isKill));
+}
+
+void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC) const{
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ unsigned Opc = 0;
+ if (RC == &SystemZ::GR32RegClass ||
+ RC == &SystemZ::ADDR32RegClass)
+ Opc = SystemZ::MOV32rm;
+ else if (RC == &SystemZ::GR64RegClass ||
+ RC == &SystemZ::ADDR64RegClass) {
+ Opc = SystemZ::MOV64rm;
+ } else if (RC == &SystemZ::FP32RegClass) {
+ Opc = SystemZ::FMOV32rm;
+ } else if (RC == &SystemZ::FP64RegClass) {
+ Opc = SystemZ::FMOV64rm;
+ } else if (RC == &SystemZ::GR64PRegClass) {
+ Opc = SystemZ::MOV64Prm;
+ } else if (RC == &SystemZ::GR128RegClass) {
+ Opc = SystemZ::MOV128rm;
+ } else
+ llvm_unreachable("Unsupported regclass to load");
+
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
+}
+
+bool SystemZInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const {
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (I != MBB.end()) DL = I->getDebugLoc();
+
+ // Determine if DstRC and SrcRC have a common superclass.
+ const TargetRegisterClass *CommonRC = DestRC;
+ if (DestRC == SrcRC)
+ /* Same regclass for source and dest */;
+ else if (CommonRC->hasSuperClass(SrcRC))
+ CommonRC = SrcRC;
+ else if (!CommonRC->hasSubClass(SrcRC))
+ CommonRC = 0;
+
+ if (CommonRC) {
+ if (CommonRC == &SystemZ::GR64RegClass ||
+ CommonRC == &SystemZ::ADDR64RegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV64rr), DestReg).addReg(SrcReg);
+ } else if (CommonRC == &SystemZ::GR32RegClass ||
+ CommonRC == &SystemZ::ADDR32RegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV32rr), DestReg).addReg(SrcReg);
+ } else if (CommonRC == &SystemZ::GR64PRegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV64rrP), DestReg).addReg(SrcReg);
+ } else if (CommonRC == &SystemZ::GR128RegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV128rr), DestReg).addReg(SrcReg);
+ } else if (CommonRC == &SystemZ::FP32RegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::FMOV32rr), DestReg).addReg(SrcReg);
+ } else if (CommonRC == &SystemZ::FP64RegClass) {
+ BuildMI(MBB, I, DL, get(SystemZ::FMOV64rr), DestReg).addReg(SrcReg);
+ } else {
+ return false;
+ }
+
+ return true;
+ }
+
+ if ((SrcRC == &SystemZ::GR64RegClass &&
+ DestRC == &SystemZ::ADDR64RegClass) ||
+ (DestRC == &SystemZ::GR64RegClass &&
+ SrcRC == &SystemZ::ADDR64RegClass)) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV64rr), DestReg).addReg(SrcReg);
+ return true;
+ } else if ((SrcRC == &SystemZ::GR32RegClass &&
+ DestRC == &SystemZ::ADDR32RegClass) ||
+ (DestRC == &SystemZ::GR32RegClass &&
+ SrcRC == &SystemZ::ADDR32RegClass)) {
+ BuildMI(MBB, I, DL, get(SystemZ::MOV32rr), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ return false;
+}
+
+bool
+SystemZInstrInfo::isMoveInstr(const MachineInstr& MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case SystemZ::MOV32rr:
+ case SystemZ::MOV64rr:
+ case SystemZ::MOV64rrP:
+ case SystemZ::MOV128rr:
+ case SystemZ::FMOV32rr:
+ case SystemZ::FMOV64rr:
+ assert(MI.getNumOperands() >= 2 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ "invalid register-register move instruction");
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SrcSubIdx = MI.getOperand(1).getSubReg();
+ DstSubIdx = MI.getOperand(0).getSubReg();
+ return true;
+ }
+}
+
+unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case SystemZ::MOV32rm:
+ case SystemZ::MOV32rmy:
+ case SystemZ::MOV64rm:
+ case SystemZ::MOVSX32rm8:
+ case SystemZ::MOVSX32rm16y:
+ case SystemZ::MOVSX64rm8:
+ case SystemZ::MOVSX64rm16:
+ case SystemZ::MOVSX64rm32:
+ case SystemZ::MOVZX32rm8:
+ case SystemZ::MOVZX32rm16:
+ case SystemZ::MOVZX64rm8:
+ case SystemZ::MOVZX64rm16:
+ case SystemZ::MOVZX64rm32:
+ case SystemZ::FMOV32rm:
+ case SystemZ::FMOV32rmy:
+ case SystemZ::FMOV64rm:
+ case SystemZ::FMOV64rmy:
+ case SystemZ::MOV64Prm:
+ case SystemZ::MOV64Prmy:
+ case SystemZ::MOV128rm:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
+ MI->getOperand(2).getImm() == 0 && MI->getOperand(3).getReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case SystemZ::MOV32mr:
+ case SystemZ::MOV32mry:
+ case SystemZ::MOV64mr:
+ case SystemZ::MOV32m8r:
+ case SystemZ::MOV32m8ry:
+ case SystemZ::MOV32m16r:
+ case SystemZ::MOV32m16ry:
+ case SystemZ::MOV64m8r:
+ case SystemZ::MOV64m8ry:
+ case SystemZ::MOV64m16r:
+ case SystemZ::MOV64m16ry:
+ case SystemZ::MOV64m32r:
+ case SystemZ::MOV64m32ry:
+ case SystemZ::FMOV32mr:
+ case SystemZ::FMOV32mry:
+ case SystemZ::FMOV64mr:
+ case SystemZ::FMOV64mry:
+ case SystemZ::MOV64Pmr:
+ case SystemZ::MOV64Pmry:
+ case SystemZ::MOV128mr:
+ if (MI->getOperand(0).isFI() &&
+ MI->getOperand(1).isImm() && MI->getOperand(2).isReg() &&
+ MI->getOperand(1).getImm() == 0 && MI->getOperand(2).getReg() == 0) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(3).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+bool
+SystemZInstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
+ unsigned CalleeFrameSize = 0;
+
+ // Scan the callee-saved and find the bounds of register spill area.
+ unsigned LowReg = 0, HighReg = 0, StartOffset = -1U, EndOffset = 0;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RegClass = CSI[i].getRegClass();
+ if (RegClass != &SystemZ::FP64RegClass) {
+ unsigned Offset = RegSpillOffsets[Reg];
+ CalleeFrameSize += 8;
+ if (StartOffset > Offset) {
+ LowReg = Reg; StartOffset = Offset;
+ }
+ if (EndOffset < Offset) {
+ HighReg = Reg; EndOffset = RegSpillOffsets[Reg];
+ }
+ }
+ }
+
+ // Save information for epilogue inserter.
+ MFI->setCalleeSavedFrameSize(CalleeFrameSize);
+ MFI->setLowReg(LowReg); MFI->setHighReg(HighReg);
+
+ // Save GPRs
+ if (StartOffset) {
+ // Build a store instruction. Use STORE MULTIPLE instruction if there are many
+ // registers to store, otherwise - just STORE.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MI, DL, get((LowReg == HighReg ?
+ SystemZ::MOV64mr : SystemZ::MOV64mrm)));
+
+ // Add store operands.
+ MIB.addReg(SystemZ::R15D).addImm(StartOffset);
+ if (LowReg == HighReg)
+ MIB.addReg(0);
+ MIB.addReg(LowReg, RegState::Kill);
+ if (LowReg != HighReg)
+ MIB.addReg(HighReg, RegState::Kill);
+
+ // Do a second scan adding regs as being killed by instruction
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ if (Reg != LowReg && Reg != HighReg)
+ MIB.addReg(Reg, RegState::ImplicitKill);
+ }
+ }
+
+ // Save FPRs
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RegClass = CSI[i].getRegClass();
+ if (RegClass == &SystemZ::FP64RegClass) {
+ MBB.addLiveIn(Reg);
+ storeRegToStackSlot(MBB, MI, Reg, true, CSI[i].getFrameIdx(), RegClass);
+ }
+ }
+
+ return true;
+}
+
+bool
+SystemZInstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = DebugLoc::getUnknownLoc();
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+
+ MachineFunction &MF = *MBB.getParent();
+ const TargetRegisterInfo *RegInfo= MF.getTarget().getRegisterInfo();
+ SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
+
+ // Restore FP registers
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RegClass = CSI[i].getRegClass();
+ if (RegClass == &SystemZ::FP64RegClass)
+ loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
+ }
+
+ // Restore GP registers
+ unsigned LowReg = MFI->getLowReg(), HighReg = MFI->getHighReg();
+ unsigned StartOffset = RegSpillOffsets[LowReg];
+
+ if (StartOffset) {
+ // Build a load instruction. Use LOAD MULTIPLE instruction if there are many
+ // registers to load, otherwise - just LOAD.
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MI, DL, get((LowReg == HighReg ?
+ SystemZ::MOV64rm : SystemZ::MOV64rmm)));
+ // Add store operands.
+ MIB.addReg(LowReg, RegState::Define);
+ if (LowReg != HighReg)
+ MIB.addReg(HighReg, RegState::Define);
+
+ MIB.addReg((RegInfo->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D));
+ MIB.addImm(StartOffset);
+ if (LowReg == HighReg)
+ MIB.addReg(0);
+
+ // Do a second scan adding regs as being defined by instruction
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (Reg != LowReg && Reg != HighReg)
+ MIB.addReg(Reg, RegState::ImplicitDefine);
+ }
+ }
+
+ return true;
+}
+
+bool SystemZInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid Xbranch condition!");
+
+ SystemZCC::CondCodes CC = static_cast<SystemZCC::CondCodes>(Cond[0].getImm());
+ Cond[0].setImm(getOppositeCondition(CC));
+ return false;
+}
+
+bool SystemZInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB)const{
+ if (MBB.empty()) return false;
+
+ switch (MBB.back().getOpcode()) {
+ case SystemZ::RET: // Return.
+ case SystemZ::JMP: // Uncond branch.
+ case SystemZ::JMPr: // Indirect branch.
+ return true;
+ default: return false;
+ }
+}
+
+bool SystemZInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (!TID.isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (TID.isBranch() && !TID.isBarrier())
+ return true;
+ if (!TID.isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ // Working from the bottom, when we see a non-terminator
+ // instruction, we're done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled
+ // by this analysis.
+ if (!I->getDesc().isBranch())
+ return true;
+
+ // Handle unconditional branches.
+ if (I->getOpcode() == SystemZ::JMP) {
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (next(I) != MBB.end())
+ next(I)->eraseFromParent();
+ Cond.clear();
+ FBB = 0;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = 0;
+ I->eraseFromParent();
+ I = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditinal destination.
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // Handle conditional branches.
+ SystemZCC::CondCodes BranchCode = getCondFromBranchOpc(I->getOpcode());
+ if (BranchCode == SystemZCC::INVALID)
+ return true; // Can't handle indirect branch.
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+
+ // Handle subsequent conditional branches. Only handle the case where all
+ // conditional branches branch to the same destination.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to
+ // the same destination.
+ if (TBB != I->getOperand(0).getMBB())
+ return true;
+
+ SystemZCC::CondCodes OldBranchCode = (SystemZCC::CondCodes)Cond[0].getImm();
+ // If the conditions are the same, we can leave them alone.
+ if (OldBranchCode == BranchCode)
+ continue;
+
+ return true;
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->getOpcode() != SystemZ::JMP &&
+ getCondFromBranchOpc(I->getOpcode()) == SystemZCC::INVALID)
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+unsigned
+SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ // FIXME: this should probably have a DebugLoc operand
+ DebugLoc dl = DebugLoc::getUnknownLoc();
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "SystemZ branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, dl, get(SystemZ::JMP)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ SystemZCC::CondCodes CC = (SystemZCC::CondCodes)Cond[0].getImm();
+ BuildMI(&MBB, dl, getBrCond(CC)).addMBB(TBB);
+ ++Count;
+
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, dl, get(SystemZ::JMP)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+const TargetInstrDesc&
+SystemZInstrInfo::getBrCond(SystemZCC::CondCodes CC) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unknown condition code!");
+ case SystemZCC::O: return get(SystemZ::JO);
+ case SystemZCC::H: return get(SystemZ::JH);
+ case SystemZCC::NLE: return get(SystemZ::JNLE);
+ case SystemZCC::L: return get(SystemZ::JL);
+ case SystemZCC::NHE: return get(SystemZ::JNHE);
+ case SystemZCC::LH: return get(SystemZ::JLH);
+ case SystemZCC::NE: return get(SystemZ::JNE);
+ case SystemZCC::E: return get(SystemZ::JE);
+ case SystemZCC::NLH: return get(SystemZ::JNLH);
+ case SystemZCC::HE: return get(SystemZ::JHE);
+ case SystemZCC::NL: return get(SystemZ::JNL);
+ case SystemZCC::LE: return get(SystemZ::JLE);
+ case SystemZCC::NH: return get(SystemZ::JNH);
+ case SystemZCC::NO: return get(SystemZ::JNO);
+ }
+}
+
+SystemZCC::CondCodes
+SystemZInstrInfo::getCondFromBranchOpc(unsigned Opc) const {
+ switch (Opc) {
+ default: return SystemZCC::INVALID;
+ case SystemZ::JO: return SystemZCC::O;
+ case SystemZ::JH: return SystemZCC::H;
+ case SystemZ::JNLE: return SystemZCC::NLE;
+ case SystemZ::JL: return SystemZCC::L;
+ case SystemZ::JNHE: return SystemZCC::NHE;
+ case SystemZ::JLH: return SystemZCC::LH;
+ case SystemZ::JNE: return SystemZCC::NE;
+ case SystemZ::JE: return SystemZCC::E;
+ case SystemZ::JNLH: return SystemZCC::NLH;
+ case SystemZ::JHE: return SystemZCC::HE;
+ case SystemZ::JNL: return SystemZCC::NL;
+ case SystemZ::JLE: return SystemZCC::LE;
+ case SystemZ::JNH: return SystemZCC::NH;
+ case SystemZ::JNO: return SystemZCC::NO;
+ }
+}
+
+SystemZCC::CondCodes
+SystemZInstrInfo::getOppositeCondition(SystemZCC::CondCodes CC) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Invalid condition!");
+ case SystemZCC::O: return SystemZCC::NO;
+ case SystemZCC::H: return SystemZCC::NH;
+ case SystemZCC::NLE: return SystemZCC::LE;
+ case SystemZCC::L: return SystemZCC::NL;
+ case SystemZCC::NHE: return SystemZCC::HE;
+ case SystemZCC::LH: return SystemZCC::NLH;
+ case SystemZCC::NE: return SystemZCC::E;
+ case SystemZCC::E: return SystemZCC::NE;
+ case SystemZCC::NLH: return SystemZCC::LH;
+ case SystemZCC::HE: return SystemZCC::NHE;
+ case SystemZCC::NL: return SystemZCC::L;
+ case SystemZCC::LE: return SystemZCC::NLE;
+ case SystemZCC::NH: return SystemZCC::H;
+ case SystemZCC::NO: return SystemZCC::O;
+ }
+}
+
+const TargetInstrDesc&
+SystemZInstrInfo::getLongDispOpc(unsigned Opc) const {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Don't have long disp version of this instruction");
+ case SystemZ::MOV32mr: return get(SystemZ::MOV32mry);
+ case SystemZ::MOV32rm: return get(SystemZ::MOV32rmy);
+ case SystemZ::MOVSX32rm16: return get(SystemZ::MOVSX32rm16y);
+ case SystemZ::MOV32m8r: return get(SystemZ::MOV32m8ry);
+ case SystemZ::MOV32m16r: return get(SystemZ::MOV32m16ry);
+ case SystemZ::MOV64m8r: return get(SystemZ::MOV64m8ry);
+ case SystemZ::MOV64m16r: return get(SystemZ::MOV64m16ry);
+ case SystemZ::MOV64m32r: return get(SystemZ::MOV64m32ry);
+ case SystemZ::MOV8mi: return get(SystemZ::MOV8miy);
+ case SystemZ::MUL32rm: return get(SystemZ::MUL32rmy);
+ case SystemZ::CMP32rm: return get(SystemZ::CMP32rmy);
+ case SystemZ::UCMP32rm: return get(SystemZ::UCMP32rmy);
+ case SystemZ::FMOV32mr: return get(SystemZ::FMOV32mry);
+ case SystemZ::FMOV64mr: return get(SystemZ::FMOV64mry);
+ case SystemZ::FMOV32rm: return get(SystemZ::FMOV32rmy);
+ case SystemZ::FMOV64rm: return get(SystemZ::FMOV64rmy);
+ case SystemZ::MOV64Pmr: return get(SystemZ::MOV64Pmry);
+ case SystemZ::MOV64Prm: return get(SystemZ::MOV64Prmy);
+ }
+}
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.h b/lib/Target/SystemZ/SystemZInstrInfo.h
new file mode 100644
index 0000000..e16d704
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.h
@@ -0,0 +1,119 @@
+//===- SystemZInstrInfo.h - SystemZ Instruction Information -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
+#define LLVM_TARGET_SYSTEMZINSTRINFO_H
+
+#include "SystemZ.h"
+#include "SystemZRegisterInfo.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+namespace llvm {
+
+class SystemZTargetMachine;
+
+/// SystemZII - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace SystemZII {
+ enum {
+ //===------------------------------------------------------------------===//
+ // SystemZ Specific MachineOperand flags.
+
+ MO_NO_FLAG = 0,
+
+ /// MO_GOTENT - On a symbol operand this indicates that the immediate is
+ /// the offset to the location of the symbol name from the base of the GOT.
+ ///
+ /// SYMBOL_LABEL @GOTENT
+ MO_GOTENT = 1,
+
+ /// MO_PLT - On a symbol operand this indicates that the immediate is
+ /// offset to the PLT entry of symbol name from the current code location.
+ ///
+ /// SYMBOL_LABEL @PLT
+ MO_PLT = 2
+ };
+}
+
+class SystemZInstrInfo : public TargetInstrInfoImpl {
+ const SystemZRegisterInfo RI;
+ SystemZTargetMachine &TM;
+ IndexedMap<unsigned> RegSpillOffsets;
+public:
+ explicit SystemZInstrInfo(SystemZTargetMachine &TM);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ virtual const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
+
+ bool copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC) const;
+
+ bool isMoveInstr(const MachineInstr& MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
+ unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
+ unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
+
+ virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill,
+ int FrameIndex,
+ const TargetRegisterClass *RC) const;
+ virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC) const;
+
+ virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const;
+ virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI) const;
+
+ bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
+ virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
+ virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
+ virtual bool AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const;
+ virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const;
+ virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
+
+ SystemZCC::CondCodes getOppositeCondition(SystemZCC::CondCodes CC) const;
+ SystemZCC::CondCodes getCondFromBranchOpc(unsigned Opc) const;
+ const TargetInstrDesc& getBrCond(SystemZCC::CondCodes CC) const;
+ const TargetInstrDesc& getLongDispOpc(unsigned Opc) const;
+
+ const TargetInstrDesc& getMemoryInstr(unsigned Opc, int64_t Offset = 0) const {
+ if (Offset < 0 || Offset >= 4096)
+ return getLongDispOpc(Opc);
+ else
+ return get(Opc);
+ }
+};
+
+}
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZInstrInfo.td b/lib/Target/SystemZ/SystemZInstrInfo.td
new file mode 100644
index 0000000..56d75dd
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZInstrInfo.td
@@ -0,0 +1,1155 @@
+//===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the SystemZ instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SystemZ Instruction Predicate Definitions.
+def IsZ10 : Predicate<"Subtarget.isZ10()">;
+
+include "SystemZInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Type Constraints.
+//===----------------------------------------------------------------------===//
+class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
+class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
+class SDTCisI32<int OpNum> : SDTCisVT<OpNum, i32>;
+class SDTCisI64<int OpNum> : SDTCisVT<OpNum, i64>;
+
+//===----------------------------------------------------------------------===//
+// Type Profiles.
+//===----------------------------------------------------------------------===//
+def SDT_SystemZCall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
+def SDT_SystemZCallSeqStart : SDCallSeqStart<[SDTCisI64<0>]>;
+def SDT_SystemZCallSeqEnd : SDCallSeqEnd<[SDTCisI64<0>, SDTCisI64<1>]>;
+def SDT_CmpTest : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+def SDT_BrCond : SDTypeProfile<0, 2,
+ [SDTCisVT<0, OtherVT>,
+ SDTCisI8<1>]>;
+def SDT_SelectCC : SDTypeProfile<1, 3,
+ [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
+ SDTCisI8<3>]>;
+def SDT_Address : SDTypeProfile<1, 1,
+ [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+
+//===----------------------------------------------------------------------===//
+// SystemZ Specific Node Definitions.
+//===----------------------------------------------------------------------===//
+def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInFlag]>;
+def SystemZcall : SDNode<"SystemZISD::CALL", SDT_SystemZCall,
+ [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
+def SystemZcallseq_start :
+ SDNode<"ISD::CALLSEQ_START", SDT_SystemZCallSeqStart,
+ [SDNPHasChain, SDNPOutFlag]>;
+def SystemZcallseq_end :
+ SDNode<"ISD::CALLSEQ_END", SDT_SystemZCallSeqEnd,
+ [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
+def SystemZcmp : SDNode<"SystemZISD::CMP", SDT_CmpTest, [SDNPOutFlag]>;
+def SystemZucmp : SDNode<"SystemZISD::UCMP", SDT_CmpTest, [SDNPOutFlag]>;
+def SystemZbrcond : SDNode<"SystemZISD::BRCOND", SDT_BrCond,
+ [SDNPHasChain, SDNPInFlag]>;
+def SystemZselect : SDNode<"SystemZISD::SELECT", SDT_SelectCC, [SDNPInFlag]>;
+def SystemZpcrelwrapper : SDNode<"SystemZISD::PCRelativeWrapper", SDT_Address, []>;
+
+
+include "SystemZOperands.td"
+
+//===----------------------------------------------------------------------===//
+// Instruction list..
+
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
+ "#ADJCALLSTACKDOWN",
+ [(SystemZcallseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(SystemZcallseq_end timm:$amt1, timm:$amt2)]>;
+
+let usesCustomDAGSchedInserter = 1 in {
+ def Select32 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cc),
+ "# Select32 PSEUDO",
+ [(set GR32:$dst,
+ (SystemZselect GR32:$src1, GR32:$src2, imm:$cc))]>;
+ def Select64 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$cc),
+ "# Select64 PSEUDO",
+ [(set GR64:$dst,
+ (SystemZselect GR64:$src1, GR64:$src2, imm:$cc))]>;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Control Flow Instructions...
+//
+
+// FIXME: Provide proper encoding!
+let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in {
+ def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>;
+}
+
+let isBranch = 1, isTerminator = 1 in {
+ let isBarrier = 1 in {
+ def JMP : Pseudo<(outs), (ins brtarget:$dst), "j\t{$dst}", [(br bb:$dst)]>;
+
+ let isIndirectBranch = 1 in
+ def JMPr : Pseudo<(outs), (ins GR64:$dst), "br\t{$dst}", [(brind GR64:$dst)]>;
+ }
+
+ let Uses = [PSW] in {
+ def JO : Pseudo<(outs), (ins brtarget:$dst),
+ "jo\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_O)]>;
+ def JH : Pseudo<(outs), (ins brtarget:$dst),
+ "jh\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_H)]>;
+ def JNLE: Pseudo<(outs), (ins brtarget:$dst),
+ "jnle\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NLE)]>;
+ def JL : Pseudo<(outs), (ins brtarget:$dst),
+ "jl\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_L)]>;
+ def JNHE: Pseudo<(outs), (ins brtarget:$dst),
+ "jnhe\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NHE)]>;
+ def JLH : Pseudo<(outs), (ins brtarget:$dst),
+ "jlh\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_LH)]>;
+ def JNE : Pseudo<(outs), (ins brtarget:$dst),
+ "jne\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NE)]>;
+ def JE : Pseudo<(outs), (ins brtarget:$dst),
+ "je\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_E)]>;
+ def JNLH: Pseudo<(outs), (ins brtarget:$dst),
+ "jnlh\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NLH)]>;
+ def JHE : Pseudo<(outs), (ins brtarget:$dst),
+ "jhe\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_HE)]>;
+ def JNL : Pseudo<(outs), (ins brtarget:$dst),
+ "jnl\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NL)]>;
+ def JLE : Pseudo<(outs), (ins brtarget:$dst),
+ "jle\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_LE)]>;
+ def JNH : Pseudo<(outs), (ins brtarget:$dst),
+ "jnh\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NH)]>;
+ def JNO : Pseudo<(outs), (ins brtarget:$dst),
+ "jno\t$dst",
+ [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NO)]>;
+ } // Uses = [PSW]
+} // isBranch = 1
+
+//===----------------------------------------------------------------------===//
+// Call Instructions...
+//
+
+let isCall = 1 in
+ // All calls clobber the non-callee saved registers. Uses for argument
+ // registers are added manually.
+ let Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
+ F0L, F1L, F2L, F3L, F4L, F5L, F6L, F7L] in {
+ def CALLi : Pseudo<(outs), (ins imm_pcrel:$dst, variable_ops),
+ "brasl\t%r14, $dst", [(SystemZcall imm:$dst)]>;
+ def CALLr : Pseudo<(outs), (ins ADDR64:$dst, variable_ops),
+ "basr\t%r14, $dst", [(SystemZcall ADDR64:$dst)]>;
+ }
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instructions.
+//
+
+let isReMaterializable = 1 in
+// FIXME: Provide imm12 variant
+// FIXME: Address should be halfword aligned...
+def LA64r : RXI<0x47,
+ (outs GR64:$dst), (ins laaddr:$src),
+ "lay\t{$dst, $src}",
+ [(set GR64:$dst, laaddr:$src)]>;
+def LA64rm : RXYI<0x71E3,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "larl\t{$dst, $src}",
+ [(set GR64:$dst,
+ (SystemZpcrelwrapper tglobaladdr:$src))]>;
+
+let neverHasSideEffects = 1 in
+def NOP : Pseudo<(outs), (ins), "# no-op", []>;
+
+//===----------------------------------------------------------------------===//
+// Move Instructions
+
+let neverHasSideEffects = 1 in {
+def MOV32rr : RRI<0x18,
+ (outs GR32:$dst), (ins GR32:$src),
+ "lr\t{$dst, $src}",
+ []>;
+def MOV64rr : RREI<0xB904,
+ (outs GR64:$dst), (ins GR64:$src),
+ "lgr\t{$dst, $src}",
+ []>;
+def MOV128rr : Pseudo<(outs GR128:$dst), (ins GR128:$src),
+ "# MOV128 PSEUDO!\n"
+ "\tlgr\t${dst:subreg_odd}, ${src:subreg_odd}\n"
+ "\tlgr\t${dst:subreg_even}, ${src:subreg_even}",
+ []>;
+def MOV64rrP : Pseudo<(outs GR64P:$dst), (ins GR64P:$src),
+ "# MOV64P PSEUDO!\n"
+ "\tlr\t${dst:subreg_odd}, ${src:subreg_odd}\n"
+ "\tlr\t${dst:subreg_even}, ${src:subreg_even}",
+ []>;
+}
+
+def MOVSX64rr32 : RREI<0xB914,
+ (outs GR64:$dst), (ins GR32:$src),
+ "lgfr\t{$dst, $src}",
+ [(set GR64:$dst, (sext GR32:$src))]>;
+def MOVZX64rr32 : RREI<0xB916,
+ (outs GR64:$dst), (ins GR32:$src),
+ "llgfr\t{$dst, $src}",
+ [(set GR64:$dst, (zext GR32:$src))]>;
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+def MOV32ri16 : RII<0x8A7,
+ (outs GR32:$dst), (ins s16imm:$src),
+ "lhi\t{$dst, $src}",
+ [(set GR32:$dst, immSExt16:$src)]>;
+def MOV64ri16 : RII<0x9A7,
+ (outs GR64:$dst), (ins s16imm64:$src),
+ "lghi\t{$dst, $src}",
+ [(set GR64:$dst, immSExt16:$src)]>;
+
+def MOV64rill16 : RII<0xFA5,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "llill\t{$dst, $src}",
+ [(set GR64:$dst, i64ll16:$src)]>;
+def MOV64rilh16 : RII<0xEA5,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "llilh\t{$dst, $src}",
+ [(set GR64:$dst, i64lh16:$src)]>;
+def MOV64rihl16 : RII<0xDA5,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "llihl\t{$dst, $src}",
+ [(set GR64:$dst, i64hl16:$src)]>;
+def MOV64rihh16 : RII<0xCA5,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "llihh\t{$dst, $src}",
+ [(set GR64:$dst, i64hh16:$src)]>;
+
+def MOV64ri32 : RILI<0x1C0,
+ (outs GR64:$dst), (ins s32imm64:$src),
+ "lgfi\t{$dst, $src}",
+ [(set GR64:$dst, immSExt32:$src)]>;
+def MOV64rilo32 : RILI<0xFC0,
+ (outs GR64:$dst), (ins i64imm:$src),
+ "llilf\t{$dst, $src}",
+ [(set GR64:$dst, i64lo32:$src)]>;
+def MOV64rihi32 : RILI<0xEC0, (outs GR64:$dst), (ins i64imm:$src),
+ "llihf\t{$dst, $src}",
+ [(set GR64:$dst, i64hi32:$src)]>;
+}
+
+let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
+def MOV32rm : RXI<0x58,
+ (outs GR32:$dst), (ins rriaddr12:$src),
+ "l\t{$dst, $src}",
+ [(set GR32:$dst, (load rriaddr12:$src))]>;
+def MOV32rmy : RXYI<0x58E3,
+ (outs GR32:$dst), (ins rriaddr:$src),
+ "ly\t{$dst, $src}",
+ [(set GR32:$dst, (load rriaddr:$src))]>;
+def MOV64rm : RXYI<0x04E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "lg\t{$dst, $src}",
+ [(set GR64:$dst, (load rriaddr:$src))]>;
+def MOV64Prm : Pseudo<(outs GR64P:$dst), (ins rriaddr12:$src),
+ "# MOV64P PSEUDO!\n"
+ "\tl\t${dst:subreg_odd}, $src\n"
+ "\tl\t${dst:subreg_even}, 4+$src",
+ [(set GR64P:$dst, (load rriaddr12:$src))]>;
+def MOV64Prmy : Pseudo<(outs GR64P:$dst), (ins rriaddr:$src),
+ "# MOV64P PSEUDO!\n"
+ "\tly\t${dst:subreg_odd}, $src\n"
+ "\tly\t${dst:subreg_even}, 4+$src",
+ [(set GR64P:$dst, (load rriaddr:$src))]>;
+def MOV128rm : Pseudo<(outs GR128:$dst), (ins rriaddr:$src),
+ "# MOV128 PSEUDO!\n"
+ "\tlg\t${dst:subreg_odd}, $src\n"
+ "\tlg\t${dst:subreg_even}, 8+$src",
+ [(set GR128:$dst, (load rriaddr:$src))]>;
+}
+
+def MOV32mr : RXI<0x50,
+ (outs), (ins rriaddr12:$dst, GR32:$src),
+ "st\t{$src, $dst}",
+ [(store GR32:$src, rriaddr12:$dst)]>;
+def MOV32mry : RXYI<0x50E3,
+ (outs), (ins rriaddr:$dst, GR32:$src),
+ "sty\t{$src, $dst}",
+ [(store GR32:$src, rriaddr:$dst)]>;
+def MOV64mr : RXYI<0x24E3,
+ (outs), (ins rriaddr:$dst, GR64:$src),
+ "stg\t{$src, $dst}",
+ [(store GR64:$src, rriaddr:$dst)]>;
+def MOV64Pmr : Pseudo<(outs), (ins rriaddr12:$dst, GR64P:$src),
+ "# MOV64P PSEUDO!\n"
+ "\tst\t${src:subreg_odd}, $dst\n"
+ "\tst\t${src:subreg_even}, 4+$dst",
+ [(store GR64P:$src, rriaddr12:$dst)]>;
+def MOV64Pmry : Pseudo<(outs), (ins rriaddr:$dst, GR64P:$src),
+ "# MOV64P PSEUDO!\n"
+ "\tsty\t${src:subreg_odd}, $dst\n"
+ "\tsty\t${src:subreg_even}, 4+$dst",
+ [(store GR64P:$src, rriaddr:$dst)]>;
+def MOV128mr : Pseudo<(outs), (ins rriaddr:$dst, GR128:$src),
+ "# MOV128 PSEUDO!\n"
+ "\tstg\t${src:subreg_odd}, $dst\n"
+ "\tstg\t${src:subreg_even}, 8+$dst",
+ [(store GR128:$src, rriaddr:$dst)]>;
+
+def MOV8mi : SII<0x92,
+ (outs), (ins riaddr12:$dst, i32i8imm:$src),
+ "mvi\t{$dst, $src}",
+ [(truncstorei8 (i32 i32immSExt8:$src), riaddr12:$dst)]>;
+def MOV8miy : SIYI<0x52EB,
+ (outs), (ins riaddr:$dst, i32i8imm:$src),
+ "mviy\t{$dst, $src}",
+ [(truncstorei8 (i32 i32immSExt8:$src), riaddr:$dst)]>;
+
+let AddedComplexity = 2 in {
+def MOV16mi : SILI<0xE544,
+ (outs), (ins riaddr12:$dst, s16imm:$src),
+ "mvhhi\t{$dst, $src}",
+ [(truncstorei16 (i32 i32immSExt16:$src), riaddr12:$dst)]>,
+ Requires<[IsZ10]>;
+def MOV32mi16 : SILI<0xE54C,
+ (outs), (ins riaddr12:$dst, s32imm:$src),
+ "mvhi\t{$dst, $src}",
+ [(store (i32 immSExt16:$src), riaddr12:$dst)]>,
+ Requires<[IsZ10]>;
+def MOV64mi16 : SILI<0xE548,
+ (outs), (ins riaddr12:$dst, s32imm64:$src),
+ "mvghi\t{$dst, $src}",
+ [(store (i64 immSExt16:$src), riaddr12:$dst)]>,
+ Requires<[IsZ10]>;
+}
+
+// sexts
+def MOVSX32rr8 : RREI<0xB926,
+ (outs GR32:$dst), (ins GR32:$src),
+ "lbr\t{$dst, $src}",
+ [(set GR32:$dst, (sext_inreg GR32:$src, i8))]>;
+def MOVSX64rr8 : RREI<0xB906,
+ (outs GR64:$dst), (ins GR64:$src),
+ "lgbr\t{$dst, $src}",
+ [(set GR64:$dst, (sext_inreg GR64:$src, i8))]>;
+def MOVSX32rr16 : RREI<0xB927,
+ (outs GR32:$dst), (ins GR32:$src),
+ "lhr\t{$dst, $src}",
+ [(set GR32:$dst, (sext_inreg GR32:$src, i16))]>;
+def MOVSX64rr16 : RREI<0xB907,
+ (outs GR64:$dst), (ins GR64:$src),
+ "lghr\t{$dst, $src}",
+ [(set GR64:$dst, (sext_inreg GR64:$src, i16))]>;
+
+// extloads
+def MOVSX32rm8 : RXYI<0x76E3,
+ (outs GR32:$dst), (ins rriaddr:$src),
+ "lb\t{$dst, $src}",
+ [(set GR32:$dst, (sextloadi32i8 rriaddr:$src))]>;
+def MOVSX32rm16 : RXI<0x48,
+ (outs GR32:$dst), (ins rriaddr12:$src),
+ "lh\t{$dst, $src}",
+ [(set GR32:$dst, (sextloadi32i16 rriaddr12:$src))]>;
+def MOVSX32rm16y : RXYI<0x78E3,
+ (outs GR32:$dst), (ins rriaddr:$src),
+ "lhy\t{$dst, $src}",
+ [(set GR32:$dst, (sextloadi32i16 rriaddr:$src))]>;
+def MOVSX64rm8 : RXYI<0x77E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "lgb\t{$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i8 rriaddr:$src))]>;
+def MOVSX64rm16 : RXYI<0x15E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "lgh\t{$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i16 rriaddr:$src))]>;
+def MOVSX64rm32 : RXYI<0x14E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "lgf\t{$dst, $src}",
+ [(set GR64:$dst, (sextloadi64i32 rriaddr:$src))]>;
+
+def MOVZX32rm8 : RXYI<0x94E3,
+ (outs GR32:$dst), (ins rriaddr:$src),
+ "llc\t{$dst, $src}",
+ [(set GR32:$dst, (zextloadi32i8 rriaddr:$src))]>;
+def MOVZX32rm16 : RXYI<0x95E3,
+ (outs GR32:$dst), (ins rriaddr:$src),
+ "llh\t{$dst, $src}",
+ [(set GR32:$dst, (zextloadi32i16 rriaddr:$src))]>;
+def MOVZX64rm8 : RXYI<0x90E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "llgc\t{$dst, $src}",
+ [(set GR64:$dst, (zextloadi64i8 rriaddr:$src))]>;
+def MOVZX64rm16 : RXYI<0x91E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "llgh\t{$dst, $src}",
+ [(set GR64:$dst, (zextloadi64i16 rriaddr:$src))]>;
+def MOVZX64rm32 : RXYI<0x16E3,
+ (outs GR64:$dst), (ins rriaddr:$src),
+ "llgf\t{$dst, $src}",
+ [(set GR64:$dst, (zextloadi64i32 rriaddr:$src))]>;
+
+// truncstores
+def MOV32m8r : RXI<0x42,
+ (outs), (ins rriaddr12:$dst, GR32:$src),
+ "stc\t{$src, $dst}",
+ [(truncstorei8 GR32:$src, rriaddr12:$dst)]>;
+
+def MOV32m8ry : RXYI<0x72E3,
+ (outs), (ins rriaddr:$dst, GR32:$src),
+ "stcy\t{$src, $dst}",
+ [(truncstorei8 GR32:$src, rriaddr:$dst)]>;
+
+def MOV32m16r : RXI<0x40,
+ (outs), (ins rriaddr12:$dst, GR32:$src),
+ "sth\t{$src, $dst}",
+ [(truncstorei16 GR32:$src, rriaddr12:$dst)]>;
+
+def MOV32m16ry : RXYI<0x70E3,
+ (outs), (ins rriaddr:$dst, GR32:$src),
+ "sthy\t{$src, $dst}",
+ [(truncstorei16 GR32:$src, rriaddr:$dst)]>;
+
+def MOV64m8r : RXI<0x42,
+ (outs), (ins rriaddr12:$dst, GR64:$src),
+ "stc\t{$src, $dst}",
+ [(truncstorei8 GR64:$src, rriaddr12:$dst)]>;
+
+def MOV64m8ry : RXYI<0x72E3,
+ (outs), (ins rriaddr:$dst, GR64:$src),
+ "stcy\t{$src, $dst}",
+ [(truncstorei8 GR64:$src, rriaddr:$dst)]>;
+
+def MOV64m16r : RXI<0x40,
+ (outs), (ins rriaddr12:$dst, GR64:$src),
+ "sth\t{$src, $dst}",
+ [(truncstorei16 GR64:$src, rriaddr12:$dst)]>;
+
+def MOV64m16ry : RXYI<0x70E3,
+ (outs), (ins rriaddr:$dst, GR64:$src),
+ "sthy\t{$src, $dst}",
+ [(truncstorei16 GR64:$src, rriaddr:$dst)]>;
+
+def MOV64m32r : RXI<0x50,
+ (outs), (ins rriaddr12:$dst, GR64:$src),
+ "st\t{$src, $dst}",
+ [(truncstorei32 GR64:$src, rriaddr12:$dst)]>;
+
+def MOV64m32ry : RXYI<0x50E3,
+ (outs), (ins rriaddr:$dst, GR64:$src),
+ "sty\t{$src, $dst}",
+ [(truncstorei32 GR64:$src, rriaddr:$dst)]>;
+
+// multiple regs moves
+// FIXME: should we use multiple arg nodes?
+def MOV32mrm : RSYI<0x90EB,
+ (outs), (ins riaddr:$dst, GR32:$from, GR32:$to),
+ "stmy\t{$from, $to, $dst}",
+ []>;
+def MOV64mrm : RSYI<0x24EB,
+ (outs), (ins riaddr:$dst, GR64:$from, GR64:$to),
+ "stmg\t{$from, $to, $dst}",
+ []>;
+def MOV32rmm : RSYI<0x90EB,
+ (outs GR32:$from, GR32:$to), (ins riaddr:$dst),
+ "lmy\t{$from, $to, $dst}",
+ []>;
+def MOV64rmm : RSYI<0x04EB,
+ (outs GR64:$from, GR64:$to), (ins riaddr:$dst),
+ "lmg\t{$from, $to, $dst}",
+ []>;
+
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isTwoAddress = 1 in {
+def MOV64Pr0_even : Pseudo<(outs GR64P:$dst), (ins GR64P:$src),
+ "lhi\t${dst:subreg_even}, 0",
+ []>;
+def MOV128r0_even : Pseudo<(outs GR128:$dst), (ins GR128:$src),
+ "lghi\t${dst:subreg_even}, 0",
+ []>;
+}
+
+// Byte swaps
+def BSWAP32rr : RREI<0xB91F,
+ (outs GR32:$dst), (ins GR32:$src),
+ "lrvr\t{$dst, $src}",
+ [(set GR32:$dst, (bswap GR32:$src))]>;
+def BSWAP64rr : RREI<0xB90F,
+ (outs GR64:$dst), (ins GR64:$src),
+ "lrvgr\t{$dst, $src}",
+ [(set GR64:$dst, (bswap GR64:$src))]>;
+
+// FIXME: this is invalid pattern for big-endian
+//def BSWAP16rm : RXYI<0x1FE3, (outs GR32:$dst), (ins rriaddr:$src),
+// "lrvh\t{$dst, $src}",
+// [(set GR32:$dst, (bswap (extloadi32i16 rriaddr:$src)))]>;
+def BSWAP32rm : RXYI<0x1EE3, (outs GR32:$dst), (ins rriaddr:$src),
+ "lrv\t{$dst, $src}",
+ [(set GR32:$dst, (bswap (load rriaddr:$src)))]>;
+def BSWAP64rm : RXYI<0x0FE3, (outs GR64:$dst), (ins rriaddr:$src),
+ "lrvg\t{$dst, $src}",
+ [(set GR64:$dst, (bswap (load rriaddr:$src)))]>;
+
+//def BSWAP16mr : RXYI<0xE33F, (outs), (ins rriaddr:$dst, GR32:$src),
+// "strvh\t{$src, $dst}",
+// [(truncstorei16 (bswap GR32:$src), rriaddr:$dst)]>;
+def BSWAP32mr : RXYI<0xE33E, (outs), (ins rriaddr:$dst, GR32:$src),
+ "strv\t{$src, $dst}",
+ [(store (bswap GR32:$src), rriaddr:$dst)]>;
+def BSWAP64mr : RXYI<0xE32F, (outs), (ins rriaddr:$dst, GR64:$src),
+ "strvg\t{$src, $dst}",
+ [(store (bswap GR64:$src), rriaddr:$dst)]>;
+
+//===----------------------------------------------------------------------===//
+// Arithmetic Instructions
+
+let Defs = [PSW] in {
+def NEG32rr : RRI<0x13,
+ (outs GR32:$dst), (ins GR32:$src),
+ "lcr\t{$dst, $src}",
+ [(set GR32:$dst, (ineg GR32:$src)),
+ (implicit PSW)]>;
+def NEG64rr : RREI<0xB903, (outs GR64:$dst), (ins GR64:$src),
+ "lcgr\t{$dst, $src}",
+ [(set GR64:$dst, (ineg GR64:$src)),
+ (implicit PSW)]>;
+def NEG64rr32 : RREI<0xB913, (outs GR64:$dst), (ins GR32:$src),
+ "lcgfr\t{$dst, $src}",
+ [(set GR64:$dst, (ineg (sext GR32:$src))),
+ (implicit PSW)]>;
+}
+
+let isTwoAddress = 1 in {
+
+let Defs = [PSW] in {
+
+let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
+def ADD32rr : RRI<0x1A, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "ar\t{$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
+ (implicit PSW)]>;
+def ADD64rr : RREI<0xB908, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "agr\t{$dst, $src2}",
+ [(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
+ (implicit PSW)]>;
+}
+
+def ADD32rm : RXI<0x5A, (outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "a\t{$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def ADD32rmy : RXYI<0xE35A, (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "ay\t{$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+def ADD64rm : RXYI<0xE308, (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "ag\t{$dst, $src2}",
+ [(set GR64:$dst, (add GR64:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+
+
+def ADD32ri16 : RII<0xA7A,
+ (outs GR32:$dst), (ins GR32:$src1, s16imm:$src2),
+ "ahi\t{$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)),
+ (implicit PSW)]>;
+def ADD32ri : RILI<0xC29,
+ (outs GR32:$dst), (ins GR32:$src1, s32imm:$src2),
+ "afi\t{$dst, $src2}",
+ [(set GR32:$dst, (add GR32:$src1, imm:$src2)),
+ (implicit PSW)]>;
+def ADD64ri16 : RILI<0xA7B,
+ (outs GR64:$dst), (ins GR64:$src1, s16imm64:$src2),
+ "aghi\t{$dst, $src2}",
+ [(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)),
+ (implicit PSW)]>;
+def ADD64ri32 : RILI<0xC28,
+ (outs GR64:$dst), (ins GR64:$src1, s32imm64:$src2),
+ "agfi\t{$dst, $src2}",
+ [(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)),
+ (implicit PSW)]>;
+
+let isCommutable = 1 in { // X = ADC Y, Z == X = ADC Z, Y
+def ADC32rr : RRI<0x1E, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "alr\t{$dst, $src2}",
+ [(set GR32:$dst, (addc GR32:$src1, GR32:$src2))]>;
+def ADC64rr : RREI<0xB90A, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "algr\t{$dst, $src2}",
+ [(set GR64:$dst, (addc GR64:$src1, GR64:$src2))]>;
+}
+
+def ADC32ri : RILI<0xC2B,
+ (outs GR32:$dst), (ins GR32:$src1, s32imm:$src2),
+ "alfi\t{$dst, $src2}",
+ [(set GR32:$dst, (addc GR32:$src1, imm:$src2))]>;
+def ADC64ri32 : RILI<0xC2A,
+ (outs GR64:$dst), (ins GR64:$src1, s32imm64:$src2),
+ "algfi\t{$dst, $src2}",
+ [(set GR64:$dst, (addc GR64:$src1, immSExt32:$src2))]>;
+
+let Uses = [PSW] in {
+def ADDE32rr : RREI<0xB998, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "alcr\t{$dst, $src2}",
+ [(set GR32:$dst, (adde GR32:$src1, GR32:$src2)),
+ (implicit PSW)]>;
+def ADDE64rr : RREI<0xB988, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "alcgr\t{$dst, $src2}",
+ [(set GR64:$dst, (adde GR64:$src1, GR64:$src2)),
+ (implicit PSW)]>;
+}
+
+let isCommutable = 1 in { // X = AND Y, Z == X = AND Z, Y
+def AND32rr : RRI<0x14,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "nr\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>;
+def AND64rr : RREI<0xB980,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "ngr\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
+}
+
+def AND32rm : RXI<0x54, (outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "n\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def AND32rmy : RXYI<0xE354, (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "ny\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+def AND64rm : RXYI<0xE360, (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "ng\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+
+def AND32rill16 : RII<0xA57,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "nill\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, i32ll16c:$src2))]>;
+def AND64rill16 : RII<0xA57,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nill\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64ll16c:$src2))]>;
+
+def AND32rilh16 : RII<0xA56,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "nilh\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, i32lh16c:$src2))]>;
+def AND64rilh16 : RII<0xA56,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nilh\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64lh16c:$src2))]>;
+
+def AND64rihl16 : RII<0xA55,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nihl\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64hl16c:$src2))]>;
+def AND64rihh16 : RII<0xA54,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nihh\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64hh16c:$src2))]>;
+
+def AND32ri : RILI<0xC0B,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "nilf\t{$dst, $src2}",
+ [(set GR32:$dst, (and GR32:$src1, imm:$src2))]>;
+def AND64rilo32 : RILI<0xC0B,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nilf\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64lo32c:$src2))]>;
+def AND64rihi32 : RILI<0xC0A,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "nihf\t{$dst, $src2}",
+ [(set GR64:$dst, (and GR64:$src1, i64hi32c:$src2))]>;
+
+let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
+def OR32rr : RRI<0x16,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "or\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>;
+def OR64rr : RREI<0xB981,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "ogr\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
+}
+
+def OR32rm : RXI<0x56, (outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "o\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def OR32rmy : RXYI<0xE356, (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "oy\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+def OR64rm : RXYI<0xE381, (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "og\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+
+ // FIXME: Provide proper encoding!
+def OR32ri16 : RII<0xA5B,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "oill\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, i32ll16:$src2))]>;
+def OR32ri16h : RII<0xA5A,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "oilh\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, i32lh16:$src2))]>;
+def OR32ri : RILI<0xC0D,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "oilf\t{$dst, $src2}",
+ [(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
+
+def OR64rill16 : RII<0xA5B,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oill\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>;
+def OR64rilh16 : RII<0xA5A,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oilh\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>;
+def OR64rihl16 : RII<0xA59,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oihl\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>;
+def OR64rihh16 : RII<0xA58,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oihh\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>;
+
+def OR64rilo32 : RILI<0xC0D,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oilf\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>;
+def OR64rihi32 : RILI<0xC0C,
+ (outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
+ "oihf\t{$dst, $src2}",
+ [(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>;
+
+def SUB32rr : RRI<0x1B,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "sr\t{$dst, $src2}",
+ [(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>;
+def SUB64rr : RREI<0xB909,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "sgr\t{$dst, $src2}",
+ [(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
+
+def SUB32rm : RXI<0x5B, (outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "s\t{$dst, $src2}",
+ [(set GR32:$dst, (sub GR32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def SUB32rmy : RXYI<0xE35B, (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "sy\t{$dst, $src2}",
+ [(set GR32:$dst, (sub GR32:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+def SUB64rm : RXYI<0xE309, (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "sg\t{$dst, $src2}",
+ [(set GR64:$dst, (sub GR64:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+
+def SBC32rr : RRI<0x1F,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "slr\t{$dst, $src2}",
+ [(set GR32:$dst, (subc GR32:$src1, GR32:$src2))]>;
+def SBC64rr : RREI<0xB90B,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "slgr\t{$dst, $src2}",
+ [(set GR64:$dst, (subc GR64:$src1, GR64:$src2))]>;
+
+def SBC32ri : RILI<0xC25,
+ (outs GR32:$dst), (ins GR32:$src1, s32imm:$src2),
+ "sllfi\t{$dst, $src2}",
+ [(set GR32:$dst, (subc GR32:$src1, imm:$src2))]>;
+def SBC64ri32 : RILI<0xC24,
+ (outs GR64:$dst), (ins GR64:$src1, s32imm64:$src2),
+ "slgfi\t{$dst, $src2}",
+ [(set GR64:$dst, (subc GR64:$src1, immSExt32:$src2))]>;
+
+let Uses = [PSW] in {
+def SUBE32rr : RREI<0xB999, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "slbr\t{$dst, $src2}",
+ [(set GR32:$dst, (sube GR32:$src1, GR32:$src2)),
+ (implicit PSW)]>;
+def SUBE64rr : RREI<0xB989, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "slbgr\t{$dst, $src2}",
+ [(set GR64:$dst, (sube GR64:$src1, GR64:$src2)),
+ (implicit PSW)]>;
+}
+
+let isCommutable = 1 in { // X = XOR Y, Z == X = XOR Z, Y
+def XOR32rr : RRI<0x17,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "xr\t{$dst, $src2}",
+ [(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>;
+def XOR64rr : RREI<0xB982,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "xgr\t{$dst, $src2}",
+ [(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
+}
+
+def XOR32rm : RXI<0x57,(outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "x\t{$dst, $src2}",
+ [(set GR32:$dst, (xor GR32:$src1, (load rriaddr12:$src2))),
+ (implicit PSW)]>;
+def XOR32rmy : RXYI<0xE357, (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "xy\t{$dst, $src2}",
+ [(set GR32:$dst, (xor GR32:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+def XOR64rm : RXYI<0xE382, (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "xg\t{$dst, $src2}",
+ [(set GR64:$dst, (xor GR64:$src1, (load rriaddr:$src2))),
+ (implicit PSW)]>;
+
+def XOR32ri : RILI<0xC07,
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "xilf\t{$dst, $src2}",
+ [(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
+
+} // Defs = [PSW]
+
+let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
+def MUL32rr : RREI<0xB252,
+ (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "msr\t{$dst, $src2}",
+ [(set GR32:$dst, (mul GR32:$src1, GR32:$src2))]>;
+def MUL64rr : RREI<0xB90C,
+ (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "msgr\t{$dst, $src2}",
+ [(set GR64:$dst, (mul GR64:$src1, GR64:$src2))]>;
+}
+
+def MUL64rrP : RRI<0x1C,
+ (outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
+ "mr\t{$dst, $src2}",
+ []>;
+def UMUL64rrP : RREI<0xB996,
+ (outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
+ "mlr\t{$dst, $src2}",
+ []>;
+def UMUL128rrP : RREI<0xB986,
+ (outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
+ "mlgr\t{$dst, $src2}",
+ []>;
+
+def MUL32ri16 : RII<0xA7C,
+ (outs GR32:$dst), (ins GR32:$src1, s16imm:$src2),
+ "mhi\t{$dst, $src2}",
+ [(set GR32:$dst, (mul GR32:$src1, i32immSExt16:$src2))]>;
+def MUL64ri16 : RII<0xA7D,
+ (outs GR64:$dst), (ins GR64:$src1, s16imm64:$src2),
+ "mghi\t{$dst, $src2}",
+ [(set GR64:$dst, (mul GR64:$src1, immSExt16:$src2))]>;
+
+let AddedComplexity = 2 in {
+def MUL32ri : RILI<0xC21,
+ (outs GR32:$dst), (ins GR32:$src1, s32imm:$src2),
+ "msfi\t{$dst, $src2}",
+ [(set GR32:$dst, (mul GR32:$src1, imm:$src2))]>,
+ Requires<[IsZ10]>;
+def MUL64ri32 : RILI<0xC20,
+ (outs GR64:$dst), (ins GR64:$src1, s32imm64:$src2),
+ "msgfi\t{$dst, $src2}",
+ [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2))]>,
+ Requires<[IsZ10]>;
+}
+
+def MUL32rm : RXI<0x71,
+ (outs GR32:$dst), (ins GR32:$src1, rriaddr12:$src2),
+ "ms\t{$dst, $src2}",
+ [(set GR32:$dst, (mul GR32:$src1, (load rriaddr12:$src2)))]>;
+def MUL32rmy : RXYI<0xE351,
+ (outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
+ "msy\t{$dst, $src2}",
+ [(set GR32:$dst, (mul GR32:$src1, (load rriaddr:$src2)))]>;
+def MUL64rm : RXYI<0xE30C,
+ (outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
+ "msg\t{$dst, $src2}",
+ [(set GR64:$dst, (mul GR64:$src1, (load rriaddr:$src2)))]>;
+
+def MULSX64rr32 : RREI<0xB91C,
+ (outs GR64:$dst), (ins GR64:$src1, GR32:$src2),
+ "msgfr\t{$dst, $src2}",
+ [(set GR64:$dst, (mul GR64:$src1, (sext GR32:$src2)))]>;
+
+def SDIVREM32r : RREI<0xB91D,
+ (outs GR128:$dst), (ins GR128:$src1, GR32:$src2),
+ "dsgfr\t{$dst, $src2}",
+ []>;
+def SDIVREM64r : RREI<0xB90D,
+ (outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
+ "dsgr\t{$dst, $src2}",
+ []>;
+
+def UDIVREM32r : RREI<0xB997,
+ (outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
+ "dlr\t{$dst, $src2}",
+ []>;
+def UDIVREM64r : RREI<0xB987,
+ (outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
+ "dlgr\t{$dst, $src2}",
+ []>;
+let mayLoad = 1 in {
+def SDIVREM32m : RXYI<0xE31D,
+ (outs GR128:$dst), (ins GR128:$src1, rriaddr:$src2),
+ "dsgf\t{$dst, $src2}",
+ []>;
+def SDIVREM64m : RXYI<0xE30D,
+ (outs GR128:$dst), (ins GR128:$src1, rriaddr:$src2),
+ "dsg\t{$dst, $src2}",
+ []>;
+
+def UDIVREM32m : RXYI<0xE397, (outs GR64P:$dst), (ins GR64P:$src1, rriaddr:$src2),
+ "dl\t{$dst, $src2}",
+ []>;
+def UDIVREM64m : RXYI<0xE387, (outs GR128:$dst), (ins GR128:$src1, rriaddr:$src2),
+ "dlg\t{$dst, $src2}",
+ []>;
+} // mayLoad
+} // isTwoAddress = 1
+
+//===----------------------------------------------------------------------===//
+// Shifts
+
+let isTwoAddress = 1 in
+def SRL32rri : RSI<0x88,
+ (outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
+ "srl\t{$src, $amt}",
+ [(set GR32:$dst, (srl GR32:$src, riaddr32:$amt))]>;
+def SRL64rri : RSYI<0xEB0C,
+ (outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
+ "srlg\t{$dst, $src, $amt}",
+ [(set GR64:$dst, (srl GR64:$src, riaddr:$amt))]>;
+
+let isTwoAddress = 1 in
+def SHL32rri : RSI<0x89,
+ (outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
+ "sll\t{$src, $amt}",
+ [(set GR32:$dst, (shl GR32:$src, riaddr32:$amt))]>;
+def SHL64rri : RSYI<0xEB0D,
+ (outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
+ "sllg\t{$dst, $src, $amt}",
+ [(set GR64:$dst, (shl GR64:$src, riaddr:$amt))]>;
+
+let Defs = [PSW] in {
+let isTwoAddress = 1 in
+def SRA32rri : RSI<0x8A,
+ (outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
+ "sra\t{$src, $amt}",
+ [(set GR32:$dst, (sra GR32:$src, riaddr32:$amt)),
+ (implicit PSW)]>;
+
+def SRA64rri : RSYI<0xEB0A,
+ (outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
+ "srag\t{$dst, $src, $amt}",
+ [(set GR64:$dst, (sra GR64:$src, riaddr:$amt)),
+ (implicit PSW)]>;
+} // Defs = [PSW]
+
+def ROTL32rri : RSYI<0xEB1D,
+ (outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
+ "rll\t{$dst, $src, $amt}",
+ [(set GR32:$dst, (rotl GR32:$src, riaddr32:$amt))]>;
+def ROTL64rri : RSYI<0xEB1C,
+ (outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
+ "rllg\t{$dst, $src, $amt}",
+ [(set GR64:$dst, (rotl GR64:$src, riaddr:$amt))]>;
+
+//===----------------------------------------------------------------------===//
+// Test instructions (like AND but do not produce any result)
+
+// Integer comparisons
+let Defs = [PSW] in {
+def CMP32rr : RRI<0x19,
+ (outs), (ins GR32:$src1, GR32:$src2),
+ "cr\t$src1, $src2",
+ [(SystemZcmp GR32:$src1, GR32:$src2),
+ (implicit PSW)]>;
+def CMP64rr : RREI<0xB920,
+ (outs), (ins GR64:$src1, GR64:$src2),
+ "cgr\t$src1, $src2",
+ [(SystemZcmp GR64:$src1, GR64:$src2),
+ (implicit PSW)]>;
+
+def CMP32ri : RILI<0xC2D,
+ (outs), (ins GR32:$src1, s32imm:$src2),
+ "cfi\t$src1, $src2",
+ [(SystemZcmp GR32:$src1, imm:$src2),
+ (implicit PSW)]>;
+def CMP64ri32 : RILI<0xC2C,
+ (outs), (ins GR64:$src1, s32imm64:$src2),
+ "cgfi\t$src1, $src2",
+ [(SystemZcmp GR64:$src1, i64immSExt32:$src2),
+ (implicit PSW)]>;
+
+def CMP32rm : RXI<0x59,
+ (outs), (ins GR32:$src1, rriaddr12:$src2),
+ "c\t$src1, $src2",
+ [(SystemZcmp GR32:$src1, (load rriaddr12:$src2)),
+ (implicit PSW)]>;
+def CMP32rmy : RXYI<0xE359,
+ (outs), (ins GR32:$src1, rriaddr:$src2),
+ "cy\t$src1, $src2",
+ [(SystemZcmp GR32:$src1, (load rriaddr:$src2)),
+ (implicit PSW)]>;
+def CMP64rm : RXYI<0xE320,
+ (outs), (ins GR64:$src1, rriaddr:$src2),
+ "cg\t$src1, $src2",
+ [(SystemZcmp GR64:$src1, (load rriaddr:$src2)),
+ (implicit PSW)]>;
+
+def UCMP32rr : RRI<0x15,
+ (outs), (ins GR32:$src1, GR32:$src2),
+ "clr\t$src1, $src2",
+ [(SystemZucmp GR32:$src1, GR32:$src2),
+ (implicit PSW)]>;
+def UCMP64rr : RREI<0xB921,
+ (outs), (ins GR64:$src1, GR64:$src2),
+ "clgr\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, GR64:$src2),
+ (implicit PSW)]>;
+
+def UCMP32ri : RILI<0xC2F,
+ (outs), (ins GR32:$src1, i32imm:$src2),
+ "clfi\t$src1, $src2",
+ [(SystemZucmp GR32:$src1, imm:$src2),
+ (implicit PSW)]>;
+def UCMP64ri32 : RILI<0xC2E,
+ (outs), (ins GR64:$src1, i64i32imm:$src2),
+ "clgfi\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, i64immZExt32:$src2),
+ (implicit PSW)]>;
+
+def UCMP32rm : RXI<0x55,
+ (outs), (ins GR32:$src1, rriaddr12:$src2),
+ "cl\t$src1, $src2",
+ [(SystemZucmp GR32:$src1, (load rriaddr12:$src2)),
+ (implicit PSW)]>;
+def UCMP32rmy : RXYI<0xE355,
+ (outs), (ins GR32:$src1, rriaddr:$src2),
+ "cly\t$src1, $src2",
+ [(SystemZucmp GR32:$src1, (load rriaddr:$src2)),
+ (implicit PSW)]>;
+def UCMP64rm : RXYI<0xE351,
+ (outs), (ins GR64:$src1, rriaddr:$src2),
+ "clg\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, (load rriaddr:$src2)),
+ (implicit PSW)]>;
+
+def CMPSX64rr32 : RREI<0xB930,
+ (outs), (ins GR64:$src1, GR32:$src2),
+ "cgfr\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, (sext GR32:$src2)),
+ (implicit PSW)]>;
+def UCMPZX64rr32 : RREI<0xB931,
+ (outs), (ins GR64:$src1, GR32:$src2),
+ "clgfr\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, (zext GR32:$src2)),
+ (implicit PSW)]>;
+
+def CMPSX64rm32 : RXYI<0xE330,
+ (outs), (ins GR64:$src1, rriaddr:$src2),
+ "cgf\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, (sextloadi64i32 rriaddr:$src2)),
+ (implicit PSW)]>;
+def UCMPZX64rm32 : RXYI<0xE331,
+ (outs), (ins GR64:$src1, rriaddr:$src2),
+ "clgf\t$src1, $src2",
+ [(SystemZucmp GR64:$src1, (zextloadi64i32 rriaddr:$src2)),
+ (implicit PSW)]>;
+
+// FIXME: Add other crazy ucmp forms
+
+} // Defs = [PSW]
+
+//===----------------------------------------------------------------------===//
+// Other crazy stuff
+let Defs = [PSW] in {
+def FLOGR64 : RREI<0xB983,
+ (outs GR128:$dst), (ins GR64:$src),
+ "flogr\t{$dst, $src}",
+ []>;
+} // Defs = [PSW]
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns.
+//===----------------------------------------------------------------------===//
+
+// ConstPools, JumpTables
+def : Pat<(SystemZpcrelwrapper tjumptable:$src), (LA64rm tjumptable:$src)>;
+def : Pat<(SystemZpcrelwrapper tconstpool:$src), (LA64rm tconstpool:$src)>;
+
+// anyext
+def : Pat<(i64 (anyext GR32:$src)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
+
+// calls
+def : Pat<(SystemZcall (i64 tglobaladdr:$dst)), (CALLi tglobaladdr:$dst)>;
+def : Pat<(SystemZcall (i64 texternalsym:$dst)), (CALLi texternalsym:$dst)>;
+
+//===----------------------------------------------------------------------===//
+// Peepholes.
+//===----------------------------------------------------------------------===//
+
+// FIXME: use add/sub tricks with 32678/-32768
+
+// Arbitrary immediate support.
+def : Pat<(i32 imm:$src),
+ (EXTRACT_SUBREG (MOV64ri32 (i64 imm:$src)), subreg_32bit)>;
+
+// Implement in terms of LLIHF/OILF.
+def : Pat<(i64 imm:$imm),
+ (OR64rilo32 (MOV64rihi32 (HI32 imm:$imm)), (LO32 imm:$imm))>;
+
+// trunc patterns
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
+
+// sext_inreg patterns
+def : Pat<(sext_inreg GR64:$src, i32),
+ (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
+
+// extload patterns
+def : Pat<(extloadi32i8 rriaddr:$src), (MOVZX32rm8 rriaddr:$src)>;
+def : Pat<(extloadi32i16 rriaddr:$src), (MOVZX32rm16 rriaddr:$src)>;
+def : Pat<(extloadi64i8 rriaddr:$src), (MOVZX64rm8 rriaddr:$src)>;
+def : Pat<(extloadi64i16 rriaddr:$src), (MOVZX64rm16 rriaddr:$src)>;
+def : Pat<(extloadi64i32 rriaddr:$src), (MOVZX64rm32 rriaddr:$src)>;
+
+// muls
+def : Pat<(mulhs GR32:$src1, GR32:$src2),
+ (EXTRACT_SUBREG (MUL64rrP (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
+ GR32:$src1, subreg_odd32),
+ GR32:$src2),
+ subreg_even32)>;
+
+def : Pat<(mulhu GR32:$src1, GR32:$src2),
+ (EXTRACT_SUBREG (UMUL64rrP (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
+ GR32:$src1, subreg_odd32),
+ GR32:$src2),
+ subreg_even32)>;
+def : Pat<(mulhu GR64:$src1, GR64:$src2),
+ (EXTRACT_SUBREG (UMUL128rrP (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
+ GR64:$src1, subreg_odd),
+ GR64:$src2),
+ subreg_even)>;
+
+def : Pat<(ctlz GR64:$src),
+ (EXTRACT_SUBREG (FLOGR64 GR64:$src), subreg_even)>;
diff --git a/lib/Target/SystemZ/SystemZMCAsmInfo.cpp b/lib/Target/SystemZ/SystemZMCAsmInfo.cpp
new file mode 100644
index 0000000..8ea11c9
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMCAsmInfo.cpp
@@ -0,0 +1,26 @@
+//===-- SystemZMCAsmInfo.cpp - SystemZ asm properties ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the SystemZMCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCAsmInfo.h"
+using namespace llvm;
+
+SystemZMCAsmInfo::SystemZMCAsmInfo(const Target &T, const StringRef &TT) {
+ AlignmentIsInBytes = true;
+
+ PrivateGlobalPrefix = ".L";
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+ PCSymbol = ".";
+
+ NonexecutableStackDirective = "\t.section\t.note.GNU-stack,\"\",@progbits";
+}
diff --git a/lib/Target/SystemZ/SystemZMCAsmInfo.h b/lib/Target/SystemZ/SystemZMCAsmInfo.h
new file mode 100644
index 0000000..3bebcb7
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMCAsmInfo.h
@@ -0,0 +1,29 @@
+//====-- SystemZMCAsmInfo.h - SystemZ asm properties -----------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the SystemZMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZTARGETASMINFO_H
+#define SystemZTARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+
+ struct SystemZMCAsmInfo : public MCAsmInfo {
+ explicit SystemZMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZMachineFunctionInfo.h b/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
new file mode 100644
index 0000000..e47d419
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZMachineFunctionInfo.h
@@ -0,0 +1,50 @@
+//==- SystemZMachineFuctionInfo.h - SystemZ machine function info -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares SystemZ-specific per-machine-function information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SYSTEMZMACHINEFUNCTIONINFO_H
+#define SYSTEMZMACHINEFUNCTIONINFO_H
+
+#include "llvm/CodeGen/MachineFunction.h"
+
+namespace llvm {
+
+/// SystemZMachineFunctionInfo - This class is derived from MachineFunction and
+/// contains private SystemZ target-specific information for each MachineFunction.
+class SystemZMachineFunctionInfo : public MachineFunctionInfo {
+ /// CalleeSavedFrameSize - Size of the callee-saved register portion of the
+ /// stack frame in bytes.
+ unsigned CalleeSavedFrameSize;
+
+ /// LowReg - Low register of range of callee-saved registers to store.
+ unsigned LowReg;
+
+ /// HighReg - High register of range of callee-saved registers to store.
+ unsigned HighReg;
+public:
+ SystemZMachineFunctionInfo() : CalleeSavedFrameSize(0) {}
+
+ SystemZMachineFunctionInfo(MachineFunction &MF) : CalleeSavedFrameSize(0) {}
+
+ unsigned getCalleeSavedFrameSize() const { return CalleeSavedFrameSize; }
+ void setCalleeSavedFrameSize(unsigned bytes) { CalleeSavedFrameSize = bytes; }
+
+ unsigned getLowReg() const { return LowReg; }
+ void setLowReg(unsigned Reg) { LowReg = Reg; }
+
+ unsigned getHighReg() const { return HighReg; }
+ void setHighReg(unsigned Reg) { HighReg = Reg; }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZOperands.td b/lib/Target/SystemZ/SystemZOperands.td
new file mode 100644
index 0000000..156cace
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZOperands.td
@@ -0,0 +1,306 @@
+//=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the various SystemZ instruction operands.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction Pattern Stuff.
+//===----------------------------------------------------------------------===//
+
+// SystemZ specific condition code. These correspond to CondCode in
+// SystemZ.h. They must be kept in synch.
+def SYSTEMZ_COND_O : PatLeaf<(i8 0)>;
+def SYSTEMZ_COND_H : PatLeaf<(i8 1)>;
+def SYSTEMZ_COND_NLE : PatLeaf<(i8 2)>;
+def SYSTEMZ_COND_L : PatLeaf<(i8 3)>;
+def SYSTEMZ_COND_NHE : PatLeaf<(i8 4)>;
+def SYSTEMZ_COND_LH : PatLeaf<(i8 5)>;
+def SYSTEMZ_COND_NE : PatLeaf<(i8 6)>;
+def SYSTEMZ_COND_E : PatLeaf<(i8 7)>;
+def SYSTEMZ_COND_NLH : PatLeaf<(i8 8)>;
+def SYSTEMZ_COND_HE : PatLeaf<(i8 9)>;
+def SYSTEMZ_COND_NL : PatLeaf<(i8 10)>;
+def SYSTEMZ_COND_LE : PatLeaf<(i8 11)>;
+def SYSTEMZ_COND_NH : PatLeaf<(i8 12)>;
+def SYSTEMZ_COND_NO : PatLeaf<(i8 13)>;
+
+def LO8 : SDNodeXForm<imm, [{
+ // Transformation function: return low 8 bits.
+ return getI8Imm(N->getZExtValue() & 0x00000000000000FFULL);
+}]>;
+
+def LL16 : SDNodeXForm<imm, [{
+ // Transformation function: return low 16 bits.
+ return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
+}]>;
+
+def LH16 : SDNodeXForm<imm, [{
+ // Transformation function: return bits 16-31.
+ return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
+}]>;
+
+def HL16 : SDNodeXForm<imm, [{
+ // Transformation function: return bits 32-47.
+ return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
+}]>;
+
+def HH16 : SDNodeXForm<imm, [{
+ // Transformation function: return bits 48-63.
+ return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
+}]>;
+
+def LO32 : SDNodeXForm<imm, [{
+ // Transformation function: return low 32 bits.
+ return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
+}]>;
+
+def HI32 : SDNodeXForm<imm, [{
+ // Transformation function: return bits 32-63.
+ return getI32Imm(N->getZExtValue() >> 32);
+}]>;
+
+def i32ll16 : PatLeaf<(i32 imm), [{
+ // i32ll16 predicate - true if the 32-bit immediate has only rightmost 16
+ // bits set.
+ return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
+}], LL16>;
+
+def i32lh16 : PatLeaf<(i32 imm), [{
+ // i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set.
+ return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
+}], LH16>;
+
+def i32ll16c : PatLeaf<(i32 imm), [{
+ // i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set.
+ return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue());
+}], LL16>;
+
+def i32lh16c : PatLeaf<(i32 imm), [{
+ // i32lh16c predicate - true if the 32-bit immediate has all rightmost 16
+ // bits set.
+ return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue());
+}], LH16>;
+
+def i64ll16 : PatLeaf<(i64 imm), [{
+ // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
+ // bits set.
+ return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
+}], LL16>;
+
+def i64lh16 : PatLeaf<(i64 imm), [{
+ // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
+ return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
+}], LH16>;
+
+def i64hl16 : PatLeaf<(i64 imm), [{
+ // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
+ return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
+}], HL16>;
+
+def i64hh16 : PatLeaf<(i64 imm), [{
+ // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
+ return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
+}], HH16>;
+
+def i64ll16c : PatLeaf<(i64 imm), [{
+ // i64ll16c predicate - true if the 64-bit immediate has only rightmost 16
+ // bits set.
+ return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue());
+}], LL16>;
+
+def i64lh16c : PatLeaf<(i64 imm), [{
+ // i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set.
+ return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue());
+}], LH16>;
+
+def i64hl16c : PatLeaf<(i64 imm), [{
+ // i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set.
+ return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue());
+}], HL16>;
+
+def i64hh16c : PatLeaf<(i64 imm), [{
+ // i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set.
+ return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue());
+}], HH16>;
+
+def immSExt16 : PatLeaf<(imm), [{
+ // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
+ // field.
+ if (N->getValueType(0) == MVT::i64) {
+ uint64_t val = N->getZExtValue();
+ return ((int64_t)val == (int16_t)val);
+ } else if (N->getValueType(0) == MVT::i32) {
+ uint32_t val = N->getZExtValue();
+ return ((int32_t)val == (int16_t)val);
+ }
+
+ return false;
+}], LL16>;
+
+def immSExt32 : PatLeaf<(i64 imm), [{
+ // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
+ // field.
+ uint64_t val = N->getZExtValue();
+ return ((int64_t)val == (int32_t)val);
+}], LO32>;
+
+def i64lo32 : PatLeaf<(i64 imm), [{
+ // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
+ // bits set.
+ return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
+}], LO32>;
+
+def i64hi32 : PatLeaf<(i64 imm), [{
+ // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
+ return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
+}], HI32>;
+
+def i64lo32c : PatLeaf<(i64 imm), [{
+ // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
+ // bits set.
+ return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue());
+}], LO32>;
+
+def i64hi32c : PatLeaf<(i64 imm), [{
+ // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
+ return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue());
+}], HI32>;
+
+def i32immSExt8 : PatLeaf<(i32 imm), [{
+ // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
+ // sign extended field.
+ return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
+}], LO8>;
+
+def i32immSExt16 : PatLeaf<(i32 imm), [{
+ // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
+ // sign extended field.
+ return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
+}], LL16>;
+
+def i64immSExt32 : PatLeaf<(i64 imm), [{
+ // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
+ // sign extended field.
+ return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
+}], LO32>;
+
+def i64immZExt32 : PatLeaf<(i64 imm), [{
+ // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
+ // zero extended field.
+ return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
+}], LO32>;
+
+// extloads
+def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
+def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
+def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
+def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
+def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
+
+def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
+def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
+def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
+def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
+def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
+
+def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
+def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
+def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
+def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
+def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
+
+// A couple of more descriptive operand definitions.
+// 32-bits but only 8 bits are significant.
+def i32i8imm : Operand<i32>;
+// 32-bits but only 16 bits are significant.
+def i32i16imm : Operand<i32>;
+// 64-bits but only 32 bits are significant.
+def i64i32imm : Operand<i64>;
+// Branch targets have OtherVT type.
+def brtarget : Operand<OtherVT>;
+
+// Unsigned i12
+def u12imm : Operand<i32> {
+ let PrintMethod = "printU12ImmOperand";
+}
+def u12imm64 : Operand<i64> {
+ let PrintMethod = "printU12ImmOperand";
+}
+
+// Signed i16
+def s16imm : Operand<i32> {
+ let PrintMethod = "printS16ImmOperand";
+}
+def s16imm64 : Operand<i64> {
+ let PrintMethod = "printS16ImmOperand";
+}
+// Signed i20
+def s20imm : Operand<i32> {
+ let PrintMethod = "printS20ImmOperand";
+}
+def s20imm64 : Operand<i64> {
+ let PrintMethod = "printS20ImmOperand";
+}
+// Signed i32
+def s32imm : Operand<i32> {
+ let PrintMethod = "printS32ImmOperand";
+}
+def s32imm64 : Operand<i64> {
+ let PrintMethod = "printS32ImmOperand";
+}
+
+def imm_pcrel : Operand<i64> {
+ let PrintMethod = "printPCRelImmOperand";
+}
+
+//===----------------------------------------------------------------------===//
+// SystemZ Operand Definitions.
+//===----------------------------------------------------------------------===//
+
+// Address operands
+
+// riaddr := reg + imm
+def riaddr32 : Operand<i64>,
+ ComplexPattern<i64, 2, "SelectAddrRI12Only", []> {
+ let PrintMethod = "printRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, u12imm:$disp);
+}
+
+def riaddr12 : Operand<i64>,
+ ComplexPattern<i64, 2, "SelectAddrRI12", []> {
+ let PrintMethod = "printRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp);
+}
+
+def riaddr : Operand<i64>,
+ ComplexPattern<i64, 2, "SelectAddrRI", []> {
+ let PrintMethod = "printRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp);
+}
+
+//===----------------------------------------------------------------------===//
+
+// rriaddr := reg + reg + imm
+def rriaddr12 : Operand<i64>,
+ ComplexPattern<i64, 3, "SelectAddrRRI12", [], []> {
+ let PrintMethod = "printRRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp, ADDR64:$index);
+}
+def rriaddr : Operand<i64>,
+ ComplexPattern<i64, 3, "SelectAddrRRI20", [], []> {
+ let PrintMethod = "printRRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
+}
+def laaddr : Operand<i64>,
+ ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
+ let PrintMethod = "printRRIAddrOperand";
+ let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
+}
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.cpp b/lib/Target/SystemZ/SystemZRegisterInfo.cpp
new file mode 100644
index 0000000..38460a6
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.cpp
@@ -0,0 +1,343 @@
+//===- SystemZRegisterInfo.cpp - SystemZ Register Information -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "SystemZInstrInfo.h"
+#include "SystemZMachineFunctionInfo.h"
+#include "SystemZRegisterInfo.h"
+#include "SystemZSubtarget.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/BitVector.h"
+using namespace llvm;
+
+SystemZRegisterInfo::SystemZRegisterInfo(SystemZTargetMachine &tm,
+ const SystemZInstrInfo &tii)
+ : SystemZGenRegisterInfo(SystemZ::ADJCALLSTACKUP, SystemZ::ADJCALLSTACKDOWN),
+ TM(tm), TII(tii) {
+}
+
+const unsigned*
+SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
+ static const unsigned CalleeSavedRegs[] = {
+ SystemZ::R6D, SystemZ::R7D, SystemZ::R8D, SystemZ::R9D,
+ SystemZ::R10D, SystemZ::R11D, SystemZ::R12D, SystemZ::R13D,
+ SystemZ::R14D, SystemZ::R15D,
+ SystemZ::F8L, SystemZ::F9L, SystemZ::F10L, SystemZ::F11L,
+ SystemZ::F12L, SystemZ::F13L, SystemZ::F14L, SystemZ::F15L,
+ 0
+ };
+
+ return CalleeSavedRegs;
+}
+
+const TargetRegisterClass* const*
+SystemZRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
+ static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
+ &SystemZ::GR64RegClass, &SystemZ::GR64RegClass,
+ &SystemZ::GR64RegClass, &SystemZ::GR64RegClass,
+ &SystemZ::GR64RegClass, &SystemZ::GR64RegClass,
+ &SystemZ::GR64RegClass, &SystemZ::GR64RegClass,
+ &SystemZ::GR64RegClass, &SystemZ::GR64RegClass,
+ &SystemZ::FP64RegClass, &SystemZ::FP64RegClass,
+ &SystemZ::FP64RegClass, &SystemZ::FP64RegClass,
+ &SystemZ::FP64RegClass, &SystemZ::FP64RegClass,
+ &SystemZ::FP64RegClass, &SystemZ::FP64RegClass, 0
+ };
+ return CalleeSavedRegClasses;
+}
+
+BitVector SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
+ BitVector Reserved(getNumRegs());
+ if (hasFP(MF))
+ Reserved.set(SystemZ::R11D);
+ Reserved.set(SystemZ::R14D);
+ Reserved.set(SystemZ::R15D);
+ return Reserved;
+}
+
+/// needsFP - Return true if the specified function should have a dedicated
+/// frame pointer register. This is true if the function has variable sized
+/// allocas or if frame pointer elimination is disabled.
+bool SystemZRegisterInfo::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ return NoFramePointerElim || MFI->hasVarSizedObjects();
+}
+
+void SystemZRegisterInfo::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ MBB.erase(I);
+}
+
+int SystemZRegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
+ const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ SystemZMachineFunctionInfo *SystemZMFI =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ int Offset = MFI->getObjectOffset(FI) + MFI->getOffsetAdjustment();
+ uint64_t StackSize = MFI->getStackSize();
+
+ // Fixed objects are really located in the "previous" frame.
+ if (FI < 0)
+ StackSize -= SystemZMFI->getCalleeSavedFrameSize();
+
+ Offset += StackSize - TFI.getOffsetOfLocalArea();
+
+ // Skip the register save area if we generated the stack frame.
+ if (StackSize || MFI->hasCalls())
+ Offset -= TFI.getOffsetOfLocalArea();
+
+ return Offset;
+}
+
+unsigned
+SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
+ assert(SPAdj == 0 && "Unxpected");
+
+ unsigned i = 0;
+ MachineInstr &MI = *II;
+ MachineFunction &MF = *MI.getParent()->getParent();
+ while (!MI.getOperand(i).isFI()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+ }
+
+ int FrameIndex = MI.getOperand(i).getIndex();
+
+ unsigned BasePtr = (hasFP(MF) ? SystemZ::R11D : SystemZ::R15D);
+
+ // This must be part of a rri or ri operand memory reference. Replace the
+ // FrameIndex with base register with BasePtr. Add an offset to the
+ // displacement field.
+ MI.getOperand(i).ChangeToRegister(BasePtr, false);
+
+ // Offset is a either 12-bit unsigned or 20-bit signed integer.
+ // FIXME: handle "too long" displacements.
+ int Offset = getFrameIndexOffset(MF, FrameIndex) + MI.getOperand(i+1).getImm();
+
+ // Check whether displacement is too long to fit into 12 bit zext field.
+ MI.setDesc(TII.getMemoryInstr(MI.getOpcode(), Offset));
+
+ MI.getOperand(i+1).ChangeToImmediate(Offset);
+ return 0;
+}
+
+void
+SystemZRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // Determine whether R15/R14 will ever be clobbered inside the function. And
+ // if yes - mark it as 'callee' saved.
+ MachineFrameInfo *FFI = MF.getFrameInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Check whether high FPRs are ever used, if yes - we need to save R15 as
+ // well.
+ static const unsigned HighFPRs[] = {
+ SystemZ::F8L, SystemZ::F9L, SystemZ::F10L, SystemZ::F11L,
+ SystemZ::F12L, SystemZ::F13L, SystemZ::F14L, SystemZ::F15L,
+ SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
+ SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S,
+ };
+
+ bool HighFPRsUsed = false;
+ for (unsigned i = 0, e = array_lengthof(HighFPRs); i != e; ++i)
+ HighFPRsUsed |= MRI.isPhysRegUsed(HighFPRs[i]);
+
+ if (FFI->hasCalls())
+ /* FIXME: function is varargs */
+ /* FIXME: function grabs RA */
+ /* FIXME: function calls eh_return */
+ MRI.setPhysRegUsed(SystemZ::R14D);
+
+ if (HighFPRsUsed ||
+ FFI->hasCalls() ||
+ FFI->getObjectIndexEnd() != 0 || // Contains automatic variables
+ FFI->hasVarSizedObjects() // Function calls dynamic alloca's
+ /* FIXME: function is varargs */)
+ MRI.setPhysRegUsed(SystemZ::R15D);
+}
+
+/// emitSPUpdate - Emit a series of instructions to increment / decrement the
+/// stack pointer by a constant value.
+static
+void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
+ int64_t NumBytes, const TargetInstrInfo &TII) {
+ unsigned Opc; uint64_t Chunk;
+ bool isSub = NumBytes < 0;
+ uint64_t Offset = isSub ? -NumBytes : NumBytes;
+
+ if (Offset >= (1LL << 15) - 1) {
+ Opc = SystemZ::ADD64ri32;
+ Chunk = (1LL << 31) - 1;
+ } else {
+ Opc = SystemZ::ADD64ri16;
+ Chunk = (1LL << 15) - 1;
+ }
+
+ DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
+ DebugLoc::getUnknownLoc());
+
+ while (Offset) {
+ uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
+ MachineInstr *MI =
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), SystemZ::R15D)
+ .addReg(SystemZ::R15D).addImm((isSub ? -(int64_t)ThisVal : ThisVal));
+ // The PSW implicit def is dead.
+ MI->getOperand(3).setIsDead();
+ Offset -= ThisVal;
+ }
+}
+
+void SystemZRegisterInfo::emitPrologue(MachineFunction &MF) const {
+ MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ SystemZMachineFunctionInfo *SystemZMFI =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
+ DebugLoc::getUnknownLoc());
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ // Note that area for callee-saved stuff is already allocated, thus we need to
+ // 'undo' the stack movement.
+ uint64_t StackSize = MFI->getStackSize();
+ StackSize -= SystemZMFI->getCalleeSavedFrameSize();
+
+ uint64_t NumBytes = StackSize - TFI.getOffsetOfLocalArea();
+
+ // Skip the callee-saved push instructions.
+ while (MBBI != MBB.end() &&
+ (MBBI->getOpcode() == SystemZ::MOV64mr ||
+ MBBI->getOpcode() == SystemZ::MOV64mrm))
+ ++MBBI;
+
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+
+ // adjust stack pointer: R15 -= numbytes
+ if (StackSize || MFI->hasCalls()) {
+ assert(MF.getRegInfo().isPhysRegUsed(SystemZ::R15D) &&
+ "Invalid stack frame calculation!");
+ emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, TII);
+ }
+
+ if (hasFP(MF)) {
+ // Update R11 with the new base value...
+ BuildMI(MBB, MBBI, DL, TII.get(SystemZ::MOV64rr), SystemZ::R11D)
+ .addReg(SystemZ::R15D);
+
+ // Mark the FramePtr as live-in in every block except the entry.
+ for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
+ I != E; ++I)
+ I->addLiveIn(SystemZ::R11D);
+
+ }
+}
+
+void SystemZRegisterInfo::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
+ MachineBasicBlock::iterator MBBI = prior(MBB.end());
+ SystemZMachineFunctionInfo *SystemZMFI =
+ MF.getInfo<SystemZMachineFunctionInfo>();
+ unsigned RetOpcode = MBBI->getOpcode();
+
+ switch (RetOpcode) {
+ case SystemZ::RET: break; // These are ok
+ default:
+ assert(0 && "Can only insert epilog into returning blocks");
+ }
+
+ // Get the number of bytes to allocate from the FrameInfo
+ // Note that area for callee-saved stuff is already allocated, thus we need to
+ // 'undo' the stack movement.
+ uint64_t StackSize =
+ MFI->getStackSize() - SystemZMFI->getCalleeSavedFrameSize();
+ uint64_t NumBytes = StackSize - TFI.getOffsetOfLocalArea();
+
+ // Skip the final terminator instruction.
+ while (MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator PI = prior(MBBI);
+ --MBBI;
+ if (!PI->getDesc().isTerminator())
+ break;
+ }
+
+ // During callee-saved restores emission stack frame was not yet finialized
+ // (and thus - the stack size was unknown). Tune the offset having full stack
+ // size in hands.
+ if (StackSize || MFI->hasCalls()) {
+ assert((MBBI->getOpcode() == SystemZ::MOV64rmm ||
+ MBBI->getOpcode() == SystemZ::MOV64rm) &&
+ "Expected to see callee-save register restore code");
+ assert(MF.getRegInfo().isPhysRegUsed(SystemZ::R15D) &&
+ "Invalid stack frame calculation!");
+
+ unsigned i = 0;
+ MachineInstr &MI = *MBBI;
+ while (!MI.getOperand(i).isImm()) {
+ ++i;
+ assert(i < MI.getNumOperands() && "Unexpected restore code!");
+ }
+
+ uint64_t Offset = NumBytes + MI.getOperand(i).getImm();
+ // If Offset does not fit into 20-bit signed displacement field we need to
+ // emit some additional code...
+ if (Offset > 524287) {
+ // Fold the displacement into load instruction as much as possible.
+ NumBytes = Offset - 524287;
+ Offset = 524287;
+ emitSPUpdate(MBB, MBBI, NumBytes, TII);
+ }
+
+ MI.getOperand(i).ChangeToImmediate(Offset);
+ }
+}
+
+unsigned SystemZRegisterInfo::getRARegister() const {
+ assert(0 && "What is the return address register");
+ return 0;
+}
+
+unsigned SystemZRegisterInfo::getFrameRegister(MachineFunction &MF) const {
+ assert(0 && "What is the frame register");
+ return 0;
+}
+
+unsigned SystemZRegisterInfo::getEHExceptionRegister() const {
+ assert(0 && "What is the exception register");
+ return 0;
+}
+
+unsigned SystemZRegisterInfo::getEHHandlerRegister() const {
+ assert(0 && "What is the exception handler register");
+ return 0;
+}
+
+int SystemZRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
+ assert(0 && "What is the dwarf register number");
+ return -1;
+}
+
+#include "SystemZGenRegisterInfo.inc"
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.h b/lib/Target/SystemZ/SystemZRegisterInfo.h
new file mode 100644
index 0000000..b22b05d
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.h
@@ -0,0 +1,82 @@
+//===- SystemZRegisterInfo.h - SystemZ Register Information Impl ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SystemZREGISTERINFO_H
+#define SystemZREGISTERINFO_H
+
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "SystemZGenRegisterInfo.h.inc"
+
+namespace llvm {
+
+namespace SystemZ {
+ /// SubregIndex - The index of various sized subregister classes. Note that
+ /// these indices must be kept in sync with the class indices in the
+ /// SystemZRegisterInfo.td file.
+ enum SubregIndex {
+ SUBREG_32BIT = 1, SUBREG_EVEN = 1, SUBREG_ODD = 2
+ };
+}
+
+class SystemZSubtarget;
+class SystemZInstrInfo;
+class Type;
+
+struct SystemZRegisterInfo : public SystemZGenRegisterInfo {
+ SystemZTargetMachine &TM;
+ const SystemZInstrInfo &TII;
+
+ SystemZRegisterInfo(SystemZTargetMachine &tm, const SystemZInstrInfo &tii);
+
+ /// Code Generation virtual methods...
+ const unsigned *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
+
+ const TargetRegisterClass* const* getCalleeSavedRegClasses(
+ const MachineFunction *MF = 0) const;
+
+ BitVector getReservedRegs(const MachineFunction &MF) const;
+
+ bool hasReservedCallFrame(MachineFunction &MF) const { return true; }
+ bool hasFP(const MachineFunction &MF) const;
+
+ int getFrameIndexOffset(MachineFunction &MF, int FI) const;
+
+ void eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
+
+
+ void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
+ RegScavenger *RS) const;
+
+ void emitPrologue(MachineFunction &MF) const;
+ void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
+
+ // Debug information queries.
+ unsigned getRARegister() const;
+ unsigned getFrameRegister(MachineFunction &MF) const;
+
+ // Exception handling queries.
+ unsigned getEHExceptionRegister() const;
+ unsigned getEHHandlerRegister() const;
+
+ int getDwarfRegNum(unsigned RegNum, bool isEH) const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/SystemZ/SystemZRegisterInfo.td b/lib/Target/SystemZ/SystemZRegisterInfo.td
new file mode 100644
index 0000000..8795847
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZRegisterInfo.td
@@ -0,0 +1,490 @@
+//===- SystemZRegisterInfo.td - The PowerPC Register File ------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+class SystemZReg<string n> : Register<n> {
+ let Namespace = "SystemZ";
+}
+
+class SystemZRegWithSubregs<string n, list<Register> subregs>
+ : RegisterWithSubRegs<n, subregs> {
+ let Namespace = "SystemZ";
+}
+
+// We identify all our registers with a 4-bit ID, for consistency's sake.
+
+// GPR32 - Lower 32 bits of one of the 16 64-bit general-purpose registers
+class GPR32<bits<4> num, string n> : SystemZReg<n> {
+ field bits<4> Num = num;
+}
+
+// GPR64 - One of the 16 64-bit general-purpose registers
+class GPR64<bits<4> num, string n, list<Register> subregs,
+ list<Register> aliases = []>
+ : SystemZRegWithSubregs<n, subregs> {
+ field bits<4> Num = num;
+ let Aliases = aliases;
+}
+
+// GPR128 - 8 even-odd register pairs
+class GPR128<bits<4> num, string n, list<Register> subregs,
+ list<Register> aliases = []>
+ : SystemZRegWithSubregs<n, subregs> {
+ field bits<4> Num = num;
+ let Aliases = aliases;
+}
+
+// FPRS - Lower 32 bits of one of the 16 64-bit floating-point registers
+class FPRS<bits<4> num, string n> : SystemZReg<n> {
+ field bits<4> Num = num;
+}
+
+// FPRL - One of the 16 64-bit floating-point registers
+class FPRL<bits<4> num, string n, list<Register> subregs>
+ : SystemZRegWithSubregs<n, subregs> {
+ field bits<4> Num = num;
+}
+
+// General-purpose registers
+def R0W : GPR32< 0, "r0">, DwarfRegNum<[0]>;
+def R1W : GPR32< 1, "r1">, DwarfRegNum<[1]>;
+def R2W : GPR32< 2, "r2">, DwarfRegNum<[2]>;
+def R3W : GPR32< 3, "r3">, DwarfRegNum<[3]>;
+def R4W : GPR32< 4, "r4">, DwarfRegNum<[4]>;
+def R5W : GPR32< 5, "r5">, DwarfRegNum<[5]>;
+def R6W : GPR32< 6, "r6">, DwarfRegNum<[6]>;
+def R7W : GPR32< 7, "r7">, DwarfRegNum<[7]>;
+def R8W : GPR32< 8, "r8">, DwarfRegNum<[8]>;
+def R9W : GPR32< 9, "r9">, DwarfRegNum<[9]>;
+def R10W : GPR32<10, "r10">, DwarfRegNum<[10]>;
+def R11W : GPR32<11, "r11">, DwarfRegNum<[11]>;
+def R12W : GPR32<12, "r12">, DwarfRegNum<[12]>;
+def R13W : GPR32<13, "r13">, DwarfRegNum<[13]>;
+def R14W : GPR32<14, "r14">, DwarfRegNum<[14]>;
+def R15W : GPR32<15, "r15">, DwarfRegNum<[15]>;
+
+def R0D : GPR64< 0, "r0", [R0W]>, DwarfRegNum<[0]>;
+def R1D : GPR64< 1, "r1", [R1W]>, DwarfRegNum<[1]>;
+def R2D : GPR64< 2, "r2", [R2W]>, DwarfRegNum<[2]>;
+def R3D : GPR64< 3, "r3", [R3W]>, DwarfRegNum<[3]>;
+def R4D : GPR64< 4, "r4", [R4W]>, DwarfRegNum<[4]>;
+def R5D : GPR64< 5, "r5", [R5W]>, DwarfRegNum<[5]>;
+def R6D : GPR64< 6, "r6", [R6W]>, DwarfRegNum<[6]>;
+def R7D : GPR64< 7, "r7", [R7W]>, DwarfRegNum<[7]>;
+def R8D : GPR64< 8, "r8", [R8W]>, DwarfRegNum<[8]>;
+def R9D : GPR64< 9, "r9", [R9W]>, DwarfRegNum<[9]>;
+def R10D : GPR64<10, "r10", [R10W]>, DwarfRegNum<[10]>;
+def R11D : GPR64<11, "r11", [R11W]>, DwarfRegNum<[11]>;
+def R12D : GPR64<12, "r12", [R12W]>, DwarfRegNum<[12]>;
+def R13D : GPR64<13, "r13", [R13W]>, DwarfRegNum<[13]>;
+def R14D : GPR64<14, "r14", [R14W]>, DwarfRegNum<[14]>;
+def R15D : GPR64<15, "r15", [R15W]>, DwarfRegNum<[15]>;
+
+// Register pairs
+def R0P : GPR64< 0, "r0", [R0W, R1W], [R0D, R1D]>, DwarfRegNum<[0]>;
+def R2P : GPR64< 2, "r2", [R2W, R3W], [R2D, R3D]>, DwarfRegNum<[2]>;
+def R4P : GPR64< 4, "r4", [R4W, R5W], [R4D, R5D]>, DwarfRegNum<[4]>;
+def R6P : GPR64< 6, "r6", [R6W, R7W], [R6D, R7D]>, DwarfRegNum<[6]>;
+def R8P : GPR64< 8, "r8", [R8W, R9W], [R8D, R9D]>, DwarfRegNum<[8]>;
+def R10P : GPR64<10, "r10", [R10W, R11W], [R10D, R11D]>, DwarfRegNum<[10]>;
+def R12P : GPR64<12, "r12", [R12W, R13W], [R12D, R13D]>, DwarfRegNum<[12]>;
+def R14P : GPR64<14, "r14", [R14W, R15W], [R14D, R15D]>, DwarfRegNum<[14]>;
+
+def R0Q : GPR128< 0, "r0", [R0D, R1D], [R0P]>, DwarfRegNum<[0]>;
+def R2Q : GPR128< 2, "r2", [R2D, R3D], [R2P]>, DwarfRegNum<[2]>;
+def R4Q : GPR128< 4, "r4", [R4D, R5D], [R4P]>, DwarfRegNum<[4]>;
+def R6Q : GPR128< 6, "r6", [R6D, R7D], [R6P]>, DwarfRegNum<[6]>;
+def R8Q : GPR128< 8, "r8", [R8D, R9D], [R8P]>, DwarfRegNum<[8]>;
+def R10Q : GPR128<10, "r10", [R10D, R11D], [R10P]>, DwarfRegNum<[10]>;
+def R12Q : GPR128<12, "r12", [R12D, R13D], [R12P]>, DwarfRegNum<[12]>;
+def R14Q : GPR128<14, "r14", [R14D, R15D], [R14P]>, DwarfRegNum<[14]>;
+
+// Floating-point registers
+def F0S : FPRS< 0, "f0">, DwarfRegNum<[16]>;
+def F1S : FPRS< 1, "f1">, DwarfRegNum<[17]>;
+def F2S : FPRS< 2, "f2">, DwarfRegNum<[18]>;
+def F3S : FPRS< 3, "f3">, DwarfRegNum<[19]>;
+def F4S : FPRS< 4, "f4">, DwarfRegNum<[20]>;
+def F5S : FPRS< 5, "f5">, DwarfRegNum<[21]>;
+def F6S : FPRS< 6, "f6">, DwarfRegNum<[22]>;
+def F7S : FPRS< 7, "f7">, DwarfRegNum<[23]>;
+def F8S : FPRS< 8, "f8">, DwarfRegNum<[24]>;
+def F9S : FPRS< 9, "f9">, DwarfRegNum<[25]>;
+def F10S : FPRS<10, "f10">, DwarfRegNum<[26]>;
+def F11S : FPRS<11, "f11">, DwarfRegNum<[27]>;
+def F12S : FPRS<12, "f12">, DwarfRegNum<[28]>;
+def F13S : FPRS<13, "f13">, DwarfRegNum<[29]>;
+def F14S : FPRS<14, "f14">, DwarfRegNum<[30]>;
+def F15S : FPRS<15, "f15">, DwarfRegNum<[31]>;
+
+def F0L : FPRL< 0, "f0", [F0S]>, DwarfRegNum<[16]>;
+def F1L : FPRL< 1, "f1", [F1S]>, DwarfRegNum<[17]>;
+def F2L : FPRL< 2, "f2", [F2S]>, DwarfRegNum<[18]>;
+def F3L : FPRL< 3, "f3", [F3S]>, DwarfRegNum<[19]>;
+def F4L : FPRL< 4, "f4", [F4S]>, DwarfRegNum<[20]>;
+def F5L : FPRL< 5, "f5", [F5S]>, DwarfRegNum<[21]>;
+def F6L : FPRL< 6, "f6", [F6S]>, DwarfRegNum<[22]>;
+def F7L : FPRL< 7, "f7", [F7S]>, DwarfRegNum<[23]>;
+def F8L : FPRL< 8, "f8", [F8S]>, DwarfRegNum<[24]>;
+def F9L : FPRL< 9, "f9", [F9S]>, DwarfRegNum<[25]>;
+def F10L : FPRL<10, "f10", [F10S]>, DwarfRegNum<[26]>;
+def F11L : FPRL<11, "f11", [F11S]>, DwarfRegNum<[27]>;
+def F12L : FPRL<12, "f12", [F12S]>, DwarfRegNum<[28]>;
+def F13L : FPRL<13, "f13", [F13S]>, DwarfRegNum<[29]>;
+def F14L : FPRL<14, "f14", [F14S]>, DwarfRegNum<[30]>;
+def F15L : FPRL<15, "f15", [F15S]>, DwarfRegNum<[31]>;
+
+// Status register
+def PSW : SystemZReg<"psw">;
+
+def subreg_32bit : PatLeaf<(i32 1)>;
+def subreg_even32 : PatLeaf<(i32 1)>;
+def subreg_odd32 : PatLeaf<(i32 2)>;
+def subreg_even : PatLeaf<(i32 3)>;
+def subreg_odd : PatLeaf<(i32 4)>;
+
+def : SubRegSet<1, [R0D, R1D, R2D, R3D, R4D, R5D, R6D, R7D,
+ R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D],
+ [R0W, R1W, R2W, R3W, R4W, R5W, R6W, R7W,
+ R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>;
+
+def : SubRegSet<3, [R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q],
+ [R0D, R2D, R4D, R6D, R8D, R10D, R12D, R14D]>;
+
+def : SubRegSet<4, [R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q],
+ [R1D, R3D, R5D, R7D, R9D, R11D, R13D, R15D]>;
+
+def : SubRegSet<1, [R0P, R2P, R4P, R6P, R8P, R10P, R12P, R14P],
+ [R0W, R2W, R4W, R6W, R8W, R10W, R12W, R14W]>;
+
+def : SubRegSet<2, [R0P, R2P, R4P, R6P, R8P, R10P, R12P, R14P],
+ [R1W, R3W, R5W, R7W, R9W, R11W, R13W, R15W]>;
+
+def : SubRegSet<1, [R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q],
+ [R0W, R2W, R4W, R6W, R8W, R10W, R12W, R14W]>;
+
+def : SubRegSet<2, [R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q],
+ [R1W, R3W, R5W, R7W, R9W, R11W, R13W, R15W]>;
+
+/// Register classes
+def GR32 : RegisterClass<"SystemZ", [i32], 32,
+ // Volatile registers
+ [R0W, R1W, R2W, R3W, R4W, R5W, R6W, R7W, R8W, R9W, R10W, R12W, R13W,
+ // Frame pointer, sometimes allocable
+ R11W,
+ // Volatile, but not allocable
+ R14W, R15W]>
+{
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REG32[] = {
+ SystemZ::R1W, SystemZ::R2W, SystemZ::R3W, SystemZ::R4W,
+ SystemZ::R5W, SystemZ::R0W, SystemZ::R12W, SystemZ::R11W,
+ SystemZ::R10W, SystemZ::R9W, SystemZ::R8W, SystemZ::R7W,
+ SystemZ::R6W, SystemZ::R14W, SystemZ::R13W
+ };
+ static const unsigned SystemZ_REG32_nofp[] = {
+ SystemZ::R1W, SystemZ::R2W, SystemZ::R3W, SystemZ::R4W,
+ SystemZ::R5W, SystemZ::R0W, SystemZ::R12W, /* No R11W */
+ SystemZ::R10W, SystemZ::R9W, SystemZ::R8W, SystemZ::R7W,
+ SystemZ::R6W, SystemZ::R14W, SystemZ::R13W
+ };
+ GR32Class::iterator
+ GR32Class::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG32_nofp;
+ else
+ return SystemZ_REG32;
+ }
+ GR32Class::iterator
+ GR32Class::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG32_nofp + (sizeof(SystemZ_REG32_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_REG32 + (sizeof(SystemZ_REG32) / sizeof(unsigned));
+ }
+ }];
+}
+
+/// Registers used to generate address. Everything except R0.
+def ADDR32 : RegisterClass<"SystemZ", [i32], 32,
+ // Volatile registers
+ [R1W, R2W, R3W, R4W, R5W, R6W, R7W, R8W, R9W, R10W, R12W, R13W,
+ // Frame pointer, sometimes allocable
+ R11W,
+ // Volatile, but not allocable
+ R14W, R15W]>
+{
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_ADDR32[] = {
+ SystemZ::R1W, SystemZ::R2W, SystemZ::R3W, SystemZ::R4W,
+ SystemZ::R5W, /* No R0W */ SystemZ::R12W, SystemZ::R11W,
+ SystemZ::R10W, SystemZ::R9W, SystemZ::R8W, SystemZ::R7W,
+ SystemZ::R6W, SystemZ::R14W, SystemZ::R13W
+ };
+ static const unsigned SystemZ_ADDR32_nofp[] = {
+ SystemZ::R1W, SystemZ::R2W, SystemZ::R3W, SystemZ::R4W,
+ SystemZ::R5W, /* No R0W */ SystemZ::R12W, /* No R11W */
+ SystemZ::R10W, SystemZ::R9W, SystemZ::R8W, SystemZ::R7W,
+ SystemZ::R6W, SystemZ::R14W, SystemZ::R13W
+ };
+ ADDR32Class::iterator
+ ADDR32Class::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_ADDR32_nofp;
+ else
+ return SystemZ_ADDR32;
+ }
+ ADDR32Class::iterator
+ ADDR32Class::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_ADDR32_nofp + (sizeof(SystemZ_ADDR32_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_ADDR32 + (sizeof(SystemZ_ADDR32) / sizeof(unsigned));
+ }
+ }];
+}
+
+def GR64 : RegisterClass<"SystemZ", [i64], 64,
+ // Volatile registers
+ [R0D, R1D, R2D, R3D, R4D, R5D, R6D, R7D, R8D, R9D, R10D, R12D, R13D,
+ // Frame pointer, sometimes allocable
+ R11D,
+ // Volatile, but not allocable
+ R14D, R15D]>
+{
+ let SubRegClassList = [GR32];
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REG64[] = {
+ SystemZ::R1D, SystemZ::R2D, SystemZ::R3D, SystemZ::R4D,
+ SystemZ::R5D, SystemZ::R0D, SystemZ::R12D, SystemZ::R11D,
+ SystemZ::R10D, SystemZ::R9D, SystemZ::R8D, SystemZ::R7D,
+ SystemZ::R6D, SystemZ::R14D, SystemZ::R13D
+ };
+ static const unsigned SystemZ_REG64_nofp[] = {
+ SystemZ::R1D, SystemZ::R2D, SystemZ::R3D, SystemZ::R4D,
+ SystemZ::R5D, SystemZ::R0D, SystemZ::R12D, /* No R11D */
+ SystemZ::R10D, SystemZ::R9D, SystemZ::R8D, SystemZ::R7D,
+ SystemZ::R6D, SystemZ::R14D, SystemZ::R13D
+ };
+ GR64Class::iterator
+ GR64Class::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG64_nofp;
+ else
+ return SystemZ_REG64;
+ }
+ GR64Class::iterator
+ GR64Class::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG64_nofp + (sizeof(SystemZ_REG64_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_REG64 + (sizeof(SystemZ_REG64) / sizeof(unsigned));
+ }
+ }];
+}
+
+def ADDR64 : RegisterClass<"SystemZ", [i64], 64,
+ // Volatile registers
+ [R1D, R2D, R3D, R4D, R5D, R6D, R7D, R8D, R9D, R10D, R12D, R13D,
+ // Frame pointer, sometimes allocable
+ R11D,
+ // Volatile, but not allocable
+ R14D, R15D]>
+{
+ let SubRegClassList = [ADDR32];
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_ADDR64[] = {
+ SystemZ::R1D, SystemZ::R2D, SystemZ::R3D, SystemZ::R4D,
+ SystemZ::R5D, /* No R0D */ SystemZ::R12D, SystemZ::R11D,
+ SystemZ::R10D, SystemZ::R9D, SystemZ::R8D, SystemZ::R7D,
+ SystemZ::R6D, SystemZ::R14D, SystemZ::R13D
+ };
+ static const unsigned SystemZ_ADDR64_nofp[] = {
+ SystemZ::R1D, SystemZ::R2D, SystemZ::R3D, SystemZ::R4D,
+ SystemZ::R5D, /* No R0D */ SystemZ::R12D, /* No R11D */
+ SystemZ::R10D, SystemZ::R9D, SystemZ::R8D, SystemZ::R7D,
+ SystemZ::R6D, SystemZ::R14D, SystemZ::R13D
+ };
+ ADDR64Class::iterator
+ ADDR64Class::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_ADDR64_nofp;
+ else
+ return SystemZ_ADDR64;
+ }
+ ADDR64Class::iterator
+ ADDR64Class::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_ADDR64_nofp + (sizeof(SystemZ_ADDR64_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_ADDR64 + (sizeof(SystemZ_ADDR64) / sizeof(unsigned));
+ }
+ }];
+}
+
+// Even-odd register pairs
+def GR64P : RegisterClass<"SystemZ", [v2i32], 64,
+ [R0P, R2P, R4P, R6P, R8P, R10P, R12P, R14P]>
+{
+ let SubRegClassList = [GR32, GR32];
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REG64P[] = {
+ SystemZ::R0P, SystemZ::R2P, SystemZ::R4P, SystemZ::R10P,
+ SystemZ::R8P, SystemZ::R6P };
+ static const unsigned SystemZ_REG64P_nofp[] = {
+ SystemZ::R0P, SystemZ::R2P, SystemZ::R4P, /* NO R10P */
+ SystemZ::R8P, SystemZ::R6P };
+ GR64PClass::iterator
+ GR64PClass::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG64P_nofp;
+ else
+ return SystemZ_REG64P;
+ }
+ GR64PClass::iterator
+ GR64PClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG64P_nofp + (sizeof(SystemZ_REG64P_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_REG64P + (sizeof(SystemZ_REG64P) / sizeof(unsigned));
+ }
+ }];
+}
+
+def GR128 : RegisterClass<"SystemZ", [v2i64], 128,
+ [R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q]>
+{
+ let SubRegClassList = [GR32, GR32, GR64, GR64];
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REG128[] = {
+ SystemZ::R0Q, SystemZ::R2Q, SystemZ::R4Q, SystemZ::R10Q,
+ SystemZ::R8Q, SystemZ::R6Q };
+ static const unsigned SystemZ_REG128_nofp[] = {
+ SystemZ::R0Q, SystemZ::R2Q, SystemZ::R4Q, /* NO R10Q */
+ SystemZ::R8Q, SystemZ::R6Q };
+ GR128Class::iterator
+ GR128Class::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG128_nofp;
+ else
+ return SystemZ_REG128;
+ }
+ GR128Class::iterator
+ GR128Class::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ if (RI->hasFP(MF))
+ return SystemZ_REG128_nofp + (sizeof(SystemZ_REG128_nofp) / sizeof(unsigned));
+ else
+ return SystemZ_REG128 + (sizeof(SystemZ_REG128) / sizeof(unsigned));
+ }
+ }];
+}
+
+def FP32 : RegisterClass<"SystemZ", [f32], 32,
+ [F0S, F1S, F2S, F3S, F4S, F5S, F6S, F7S,
+ F8S, F9S, F10S, F11S, F12S, F13S, F14S, F15S]> {
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REGFP32[] = {
+ SystemZ::F0S, SystemZ::F2S, SystemZ::F4S, SystemZ::F6S,
+ SystemZ::F1S, SystemZ::F3S, SystemZ::F5S, SystemZ::F7S,
+ SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
+ SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S };
+ FP32Class::iterator
+ FP32Class::allocation_order_begin(const MachineFunction &MF) const {
+ return SystemZ_REGFP32;
+ }
+ FP32Class::iterator
+ FP32Class::allocation_order_end(const MachineFunction &MF) const {
+ return SystemZ_REGFP32 + (sizeof(SystemZ_REGFP32) / sizeof(unsigned));
+ }
+ }];
+}
+
+def FP64 : RegisterClass<"SystemZ", [f64], 64,
+ [F0L, F1L, F2L, F3L, F4L, F5L, F6L, F7L,
+ F8L, F9L, F10L, F11L, F12L, F13L, F14L, F15L]> {
+ let SubRegClassList = [FP32];
+ let MethodProtos = [{
+ iterator allocation_order_begin(const MachineFunction &MF) const;
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ static const unsigned SystemZ_REGFP64[] = {
+ SystemZ::F0L, SystemZ::F2L, SystemZ::F4L, SystemZ::F6L,
+ SystemZ::F1L, SystemZ::F3L, SystemZ::F5L, SystemZ::F7L,
+ SystemZ::F8L, SystemZ::F9L, SystemZ::F10L, SystemZ::F11L,
+ SystemZ::F12L, SystemZ::F13L, SystemZ::F14L, SystemZ::F15L };
+ FP64Class::iterator
+ FP64Class::allocation_order_begin(const MachineFunction &MF) const {
+ return SystemZ_REGFP64;
+ }
+ FP64Class::iterator
+ FP64Class::allocation_order_end(const MachineFunction &MF) const {
+ return SystemZ_REGFP64 + (sizeof(SystemZ_REGFP64) / sizeof(unsigned));
+ }
+ }];
+}
+
+// Status flags registers.
+def CCR : RegisterClass<"SystemZ", [i64], 64, [PSW]> {
+ let CopyCost = -1; // Don't allow copying of status registers.
+}
diff --git a/lib/Target/SystemZ/SystemZSubtarget.cpp b/lib/Target/SystemZ/SystemZSubtarget.cpp
new file mode 100644
index 0000000..a8b5e1f
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZSubtarget.cpp
@@ -0,0 +1,47 @@
+//===- SystemZSubtarget.cpp - SystemZ Subtarget Information -------*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SystemZ specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZSubtarget.h"
+#include "SystemZ.h"
+#include "SystemZGenSubtarget.inc"
+#include "llvm/GlobalValue.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+SystemZSubtarget::SystemZSubtarget(const std::string &TT,
+ const std::string &FS):
+ HasZ10Insts(false) {
+ std::string CPU = "z9";
+
+ // Parse features string.
+ ParseSubtargetFeatures(FS, CPU);
+}
+
+/// True if accessing the GV requires an extra load.
+bool SystemZSubtarget::GVRequiresExtraLoad(const GlobalValue* GV,
+ const TargetMachine& TM,
+ bool isDirectCall) const {
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ // Extra load is needed for all externally visible.
+ if (isDirectCall)
+ return false;
+
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return false;
+
+ return true;
+ }
+
+ return false;
+}
diff --git a/lib/Target/SystemZ/SystemZSubtarget.h b/lib/Target/SystemZ/SystemZSubtarget.h
new file mode 100644
index 0000000..405d6e9
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZSubtarget.h
@@ -0,0 +1,45 @@
+//==-- SystemZSubtarget.h - Define Subtarget for the SystemZ ---*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_SystemZ_SUBTARGET_H
+#define LLVM_TARGET_SystemZ_SUBTARGET_H
+
+#include "llvm/Target/TargetSubtarget.h"
+
+#include <string>
+
+namespace llvm {
+class GlobalValue;
+class TargetMachine;
+
+class SystemZSubtarget : public TargetSubtarget {
+ bool HasZ10Insts;
+public:
+ /// This constructor initializes the data members to match that
+ /// of the specified triple.
+ ///
+ SystemZSubtarget(const std::string &TT, const std::string &FS);
+
+ /// ParseSubtargetFeatures - Parses features string setting specified
+ /// subtarget options. Definition of function is auto generated by tblgen.
+ std::string ParseSubtargetFeatures(const std::string &FS,
+ const std::string &CPU);
+
+ bool isZ10() const { return HasZ10Insts; }
+
+ bool GVRequiresExtraLoad(const GlobalValue* GV, const TargetMachine& TM,
+ bool isDirectCall) const;
+};
+} // End llvm namespace
+
+#endif // LLVM_TARGET_SystemZ_SUBTARGET_H
diff --git a/lib/Target/SystemZ/SystemZTargetMachine.cpp b/lib/Target/SystemZ/SystemZTargetMachine.cpp
new file mode 100644
index 0000000..990e003
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZTargetMachine.cpp
@@ -0,0 +1,44 @@
+//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZMCAsmInfo.h"
+#include "SystemZTargetMachine.h"
+#include "SystemZ.h"
+#include "llvm/PassManager.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+extern "C" void LLVMInitializeSystemZTarget() {
+ // Register the target.
+ RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
+ RegisterAsmInfo<SystemZMCAsmInfo> Y(TheSystemZTarget);
+}
+
+/// SystemZTargetMachine ctor - Create an ILP64 architecture model
+///
+SystemZTargetMachine::SystemZTargetMachine(const Target &T,
+ const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS),
+ DataLayout("E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32"
+ "-f64:64:64-f128:128:128-a0:16:16"),
+ InstrInfo(*this), TLInfo(*this),
+ FrameInfo(TargetFrameInfo::StackGrowsDown, 8, -160) {
+
+ if (getRelocationModel() == Reloc::Default)
+ setRelocationModel(Reloc::Static);
+}
+
+bool SystemZTargetMachine::addInstSelector(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel) {
+ // Install an instruction selector.
+ PM.add(createSystemZISelDag(*this, OptLevel));
+ return false;
+}
diff --git a/lib/Target/SystemZ/SystemZTargetMachine.h b/lib/Target/SystemZ/SystemZTargetMachine.h
new file mode 100644
index 0000000..551aeb5
--- /dev/null
+++ b/lib/Target/SystemZ/SystemZTargetMachine.h
@@ -0,0 +1,61 @@
+//==- SystemZTargetMachine.h - Define TargetMachine for SystemZ ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SystemZ specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef LLVM_TARGET_SYSTEMZ_TARGETMACHINE_H
+#define LLVM_TARGET_SYSTEMZ_TARGETMACHINE_H
+
+#include "SystemZInstrInfo.h"
+#include "SystemZISelLowering.h"
+#include "SystemZRegisterInfo.h"
+#include "SystemZSubtarget.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+
+/// SystemZTargetMachine
+///
+class SystemZTargetMachine : public LLVMTargetMachine {
+ SystemZSubtarget Subtarget;
+ const TargetData DataLayout; // Calculates type size & alignment
+ SystemZInstrInfo InstrInfo;
+ SystemZTargetLowering TLInfo;
+
+ // SystemZ does not have any call stack frame, therefore not having
+ // any SystemZ specific FrameInfo class.
+ TargetFrameInfo FrameInfo;
+public:
+ SystemZTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
+
+ virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
+ virtual const SystemZInstrInfo *getInstrInfo() const { return &InstrInfo; }
+ virtual const TargetData *getTargetData() const { return &DataLayout;}
+ virtual const SystemZSubtarget *getSubtargetImpl() const { return &Subtarget; }
+
+ virtual const SystemZRegisterInfo *getRegisterInfo() const {
+ return &InstrInfo.getRegisterInfo();
+ }
+
+ virtual SystemZTargetLowering *getTargetLowering() const {
+ return const_cast<SystemZTargetLowering*>(&TLInfo);
+ }
+
+ virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
+}; // SystemZTargetMachine.
+
+} // end namespace llvm
+
+#endif // LLVM_TARGET_SystemZ_TARGETMACHINE_H
diff --git a/lib/Target/SystemZ/TargetInfo/CMakeLists.txt b/lib/Target/SystemZ/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..743d8d3
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMSystemZInfo
+ SystemZTargetInfo.cpp
+ )
+
+add_dependencies(LLVMSystemZInfo SystemZCodeGenTable_gen)
diff --git a/lib/Target/SystemZ/TargetInfo/Makefile b/lib/Target/SystemZ/TargetInfo/Makefile
new file mode 100644
index 0000000..0be80eb
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/SystemZ/TargetInfo/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMSystemZInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp b/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
new file mode 100644
index 0000000..8272b11
--- /dev/null
+++ b/lib/Target/SystemZ/TargetInfo/SystemZTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- SystemZTargetInfo.cpp - SystemZ Target Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZ.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheSystemZTarget;
+
+extern "C" void LLVMInitializeSystemZTargetInfo() {
+ RegisterTarget<Triple::systemz> X(TheSystemZTarget, "systemz", "SystemZ");
+}
diff --git a/lib/Target/Target.cpp b/lib/Target/Target.cpp
index ed544b7..cc6be9f 100644
--- a/lib/Target/Target.cpp
+++ b/lib/Target/Target.cpp
@@ -41,7 +41,7 @@ unsigned LLVMPointerSize(LLVMTargetDataRef TD) {
}
LLVMTypeRef LLVMIntPtrType(LLVMTargetDataRef TD) {
- return wrap(unwrap(TD)->getIntPtrType());
+ return wrap(unwrap(TD)->getIntPtrType(getGlobalContext()));
}
unsigned long long LLVMSizeOfTypeInBits(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp
index 7b843df..5bcd658 100644
--- a/lib/Target/TargetData.cpp
+++ b/lib/Target/TargetData.cpp
@@ -23,6 +23,7 @@
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/Mutex.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
@@ -155,13 +156,13 @@ const TargetAlignElem TargetData::InvalidAlignmentElem =
<br><br>
<i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type
alignment. Type is
- one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
- packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits.
+ one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector, or
+ aggregate. Size indicates the size, e.g., 32 or 64 bits.
\p
- The default string, fully specified is:
+ The default string, fully specified, is:
<br><br>
- "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
- "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
+ "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64"
+ "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64"
"-v64:64:64-v128:128:128"
<br><br>
Note that in the case of aggregates, 0 is the default ABI and preferred
@@ -171,6 +172,7 @@ const TargetAlignElem TargetData::InvalidAlignmentElem =
void TargetData::init(const std::string &TargetDescription) {
std::string temp = TargetDescription;
+ LayoutMap = 0;
LittleEndian = false;
PointerMemSize = 8;
PointerABIAlign = 8;
@@ -184,9 +186,9 @@ void TargetData::init(const std::string &TargetDescription) {
setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
- setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32
+ setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
- setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ...
+ setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
while (!temp.empty()) {
std::string token = getToken(temp, "-");
@@ -316,61 +318,30 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
: Alignments[BestMatchIdx].PrefAlign;
}
-namespace {
-
-/// LayoutInfo - The lazy cache of structure layout information maintained by
-/// TargetData. Note that the struct types must have been free'd before
-/// llvm_shutdown is called (and thus this is deallocated) because all the
-/// targets with cached elements should have been destroyed.
-///
-typedef std::pair<const TargetData*,const StructType*> LayoutKey;
-
-struct DenseMapLayoutKeyInfo {
- static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); }
- static inline LayoutKey getTombstoneKey() {
- return LayoutKey((TargetData*)(intptr_t)-1, 0);
- }
- static unsigned getHashValue(const LayoutKey &Val) {
- return DenseMapInfo<void*>::getHashValue(Val.first) ^
- DenseMapInfo<void*>::getHashValue(Val.second);
- }
- static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) {
- return LHS == RHS;
- }
-
- static bool isPod() { return true; }
-};
-
-typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
-
-}
-
-static ManagedStatic<LayoutInfoTy> LayoutInfo;
-static ManagedStatic<sys::SmartMutex<true> > LayoutLock;
+typedef DenseMap<const StructType*, StructLayout*>LayoutInfoTy;
TargetData::~TargetData() {
- if (!LayoutInfo.isConstructed())
+ if (!LayoutMap)
return;
- sys::SmartScopedLock<true> Lock(&*LayoutLock);
// Remove any layouts for this TD.
- LayoutInfoTy &TheMap = *LayoutInfo;
+ LayoutInfoTy &TheMap = *static_cast<LayoutInfoTy*>(LayoutMap);
for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) {
- if (I->first.first == this) {
- I->second->~StructLayout();
- free(I->second);
- TheMap.erase(I++);
- } else {
- ++I;
- }
+ I->second->~StructLayout();
+ free(I->second);
+ TheMap.erase(I++);
}
+
+ delete static_cast<LayoutInfoTy*>(LayoutMap);
}
const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
- LayoutInfoTy &TheMap = *LayoutInfo;
+ if (!LayoutMap)
+ LayoutMap = static_cast<void*>(new LayoutInfoTy());
+
+ LayoutInfoTy &TheMap = *static_cast<LayoutInfoTy*>(LayoutMap);
- sys::SmartScopedLock<true> Lock(&*LayoutLock);
- StructLayout *&SL = TheMap[LayoutKey(this, Ty)];
+ StructLayout *&SL = TheMap[Ty];
if (SL) return SL;
// Otherwise, create the struct layout. Because it is variable length, we
@@ -392,10 +363,10 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
/// removed, this method must be called whenever a StructType is removed to
/// avoid a dangling pointer in this cache.
void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
- if (!LayoutInfo.isConstructed()) return; // No cache.
+ if (!LayoutMap) return; // No cache.
- sys::SmartScopedLock<true> Lock(&*LayoutLock);
- LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
+ LayoutInfoTy* LayoutInfo = static_cast<LayoutInfoTy*>(LayoutMap);
+ LayoutInfoTy::iterator I = LayoutInfo->find(Ty);
if (I == LayoutInfo->end()) return;
I->second->~StructLayout();
@@ -453,7 +424,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
case Type::VectorTyID:
return cast<VectorType>(Ty)->getBitWidth();
default:
- assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type");
+ llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
break;
}
return 0;
@@ -508,7 +479,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
AlignType = VECTOR_ALIGN;
break;
default:
- assert(0 && "Bad type for getAlignment!!!");
+ llvm_unreachable("Bad type for getAlignment!!!");
break;
}
@@ -540,8 +511,8 @@ unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
/// getIntPtrType - Return an unsigned integer type that is the same size or
/// greater to the host pointer size.
-const IntegerType *TargetData::getIntPtrType() const {
- return IntegerType::get(getPointerSizeInBits());
+const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
+ return IntegerType::get(C, getPointerSizeInBits());
}
@@ -555,7 +526,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
if (const StructType *STy = dyn_cast<StructType>(*TI)) {
- assert(Indices[CurIDX]->getType() == Type::Int32Ty &&
+ assert(Indices[CurIDX]->getType() ==
+ Type::getInt32Ty(ptrTy->getContext()) &&
"Illegal struct idx");
unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
diff --git a/lib/Target/TargetInstrInfo.cpp b/lib/Target/TargetInstrInfo.cpp
index ceaea0c..094a57e 100644
--- a/lib/Target/TargetInstrInfo.cpp
+++ b/lib/Target/TargetInstrInfo.cpp
@@ -12,11 +12,29 @@
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Constant.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
+//===----------------------------------------------------------------------===//
+// TargetOperandInfo
+//===----------------------------------------------------------------------===//
+
+/// getRegClass - Get the register class for the operand, handling resolution
+/// of "symbolic" pointer register classes etc. If this is not a register
+/// operand, this returns null.
+const TargetRegisterClass *
+TargetOperandInfo::getRegClass(const TargetRegisterInfo *TRI) const {
+ if (isLookupPtrRegClass())
+ return TRI->getPointerRegClass(RegClass);
+ return TRI->getRegClass(RegClass);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetInstrInfo
+//===----------------------------------------------------------------------===//
+
TargetInstrInfo::TargetInstrInfo(const TargetInstrDesc* Desc,
unsigned numOpcodes)
: Descriptors(Desc), NumOpcodes(numOpcodes) {
@@ -25,6 +43,14 @@ TargetInstrInfo::TargetInstrInfo(const TargetInstrDesc* Desc,
TargetInstrInfo::~TargetInstrInfo() {
}
+/// insertNoop - Insert a noop into the instruction stream at the specified
+/// point.
+void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ llvm_unreachable("Target didn't implement insertNoop!");
+}
+
+
bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isTerminator()) return false;
@@ -37,14 +63,33 @@ bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
return !isPredicated(MI);
}
-/// getInstrOperandRegClass - Return register class of the operand of an
-/// instruction of the specified TargetInstrDesc.
-const TargetRegisterClass*
-llvm::getInstrOperandRegClass(const TargetRegisterInfo *TRI,
- const TargetInstrDesc &II, unsigned Op) {
- if (Op >= II.getNumOperands())
- return NULL;
- if (II.OpInfo[Op].isLookupPtrRegClass())
- return TRI->getPointerRegClass();
- return TRI->getRegClass(II.OpInfo[Op].RegClass);
+
+/// Measure the specified inline asm to determine an approximation of its
+/// length.
+/// Comments (which run till the next SeparatorChar or newline) do not
+/// count as an instruction.
+/// Any other non-whitespace text is considered an instruction, with
+/// multiple instructions separated by SeparatorChar or newlines.
+/// Variable-length instructions are not handled here; this function
+/// may be overloaded in the target code to do that.
+unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
+ const MCAsmInfo &MAI) const {
+
+
+ // Count the number of instructions in the asm.
+ bool atInsnStart = true;
+ unsigned Length = 0;
+ for (; *Str; ++Str) {
+ if (*Str == '\n' || *Str == MAI.getSeparatorChar())
+ atInsnStart = true;
+ if (atInsnStart && !isspace(*Str)) {
+ Length += MAI.getMaxInstLength();
+ atInsnStart = false;
+ }
+ if (atInsnStart && strncmp(Str, MAI.getCommentString(),
+ strlen(MAI.getCommentString())) == 0)
+ atInsnStart = false;
+ }
+
+ return Length;
}
diff --git a/lib/Target/TargetLoweringObjectFile.cpp b/lib/Target/TargetLoweringObjectFile.cpp
new file mode 100644
index 0000000..c1aab99
--- /dev/null
+++ b/lib/Target/TargetLoweringObjectFile.cpp
@@ -0,0 +1,1089 @@
+//===-- llvm/Target/TargetLoweringObjectFile.cpp - Object File Info -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements classes used to handle lowerings specific to common
+// object file formats.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Generic Code
+//===----------------------------------------------------------------------===//
+
+TargetLoweringObjectFile::TargetLoweringObjectFile() : Ctx(0) {
+ TextSection = 0;
+ DataSection = 0;
+ BSSSection = 0;
+ ReadOnlySection = 0;
+ StaticCtorSection = 0;
+ StaticDtorSection = 0;
+ LSDASection = 0;
+ EHFrameSection = 0;
+
+ DwarfAbbrevSection = 0;
+ DwarfInfoSection = 0;
+ DwarfLineSection = 0;
+ DwarfFrameSection = 0;
+ DwarfPubNamesSection = 0;
+ DwarfPubTypesSection = 0;
+ DwarfDebugInlineSection = 0;
+ DwarfStrSection = 0;
+ DwarfLocSection = 0;
+ DwarfARangesSection = 0;
+ DwarfRangesSection = 0;
+ DwarfMacroInfoSection = 0;
+}
+
+TargetLoweringObjectFile::~TargetLoweringObjectFile() {
+}
+
+static bool isSuitableForBSS(const GlobalVariable *GV) {
+ Constant *C = GV->getInitializer();
+
+ // Must have zero initializer.
+ if (!C->isNullValue())
+ return false;
+
+ // Leave constant zeros in readonly constant sections, so they can be shared.
+ if (GV->isConstant())
+ return false;
+
+ // If the global has an explicit section specified, don't put it in BSS.
+ if (!GV->getSection().empty())
+ return false;
+
+ // If -nozero-initialized-in-bss is specified, don't ever use BSS.
+ if (NoZerosInBSS)
+ return false;
+
+ // Otherwise, put it in BSS!
+ return true;
+}
+
+/// IsNullTerminatedString - Return true if the specified constant (which is
+/// known to have a type that is an array of 1/2/4 byte elements) ends with a
+/// nul value and contains no other nuls in it.
+static bool IsNullTerminatedString(const Constant *C) {
+ const ArrayType *ATy = cast<ArrayType>(C->getType());
+
+ // First check: is we have constant array of i8 terminated with zero
+ if (const ConstantArray *CVA = dyn_cast<ConstantArray>(C)) {
+ if (ATy->getNumElements() == 0) return false;
+
+ ConstantInt *Null =
+ dyn_cast<ConstantInt>(CVA->getOperand(ATy->getNumElements()-1));
+ if (Null == 0 || Null->getZExtValue() != 0)
+ return false; // Not null terminated.
+
+ // Verify that the null doesn't occur anywhere else in the string.
+ for (unsigned i = 0, e = ATy->getNumElements()-1; i != e; ++i)
+ // Reject constantexpr elements etc.
+ if (!isa<ConstantInt>(CVA->getOperand(i)) ||
+ CVA->getOperand(i) == Null)
+ return false;
+ return true;
+ }
+
+ // Another possibility: [1 x i8] zeroinitializer
+ if (isa<ConstantAggregateZero>(C))
+ return ATy->getNumElements() == 1;
+
+ return false;
+}
+
+/// getKindForGlobal - This is a top-level target-independent classifier for
+/// a global variable. Given an global variable and information from TM, it
+/// classifies the global in a variety of ways that make various target
+/// implementations simpler. The target implementation is free to ignore this
+/// extra info of course.
+SectionKind TargetLoweringObjectFile::getKindForGlobal(const GlobalValue *GV,
+ const TargetMachine &TM){
+ assert(!GV->isDeclaration() && !GV->hasAvailableExternallyLinkage() &&
+ "Can only be used for global definitions");
+
+ Reloc::Model ReloModel = TM.getRelocationModel();
+
+ // Early exit - functions should be always in text sections.
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (GVar == 0)
+ return SectionKind::getText();
+
+ // Handle thread-local data first.
+ if (GVar->isThreadLocal()) {
+ if (isSuitableForBSS(GVar))
+ return SectionKind::getThreadBSS();
+ return SectionKind::getThreadData();
+ }
+
+ // Variable can be easily put to BSS section.
+ if (isSuitableForBSS(GVar))
+ return SectionKind::getBSS();
+
+ Constant *C = GVar->getInitializer();
+
+ // If the global is marked constant, we can put it into a mergable section,
+ // a mergable string section, or general .data if it contains relocations.
+ if (GVar->isConstant()) {
+ // If the initializer for the global contains something that requires a
+ // relocation, then we may have to drop this into a wriable data section
+ // even though it is marked const.
+ switch (C->getRelocationInfo()) {
+ default: llvm_unreachable("unknown relocation info kind");
+ case Constant::NoRelocation:
+ // If initializer is a null-terminated string, put it in a "cstring"
+ // section of the right width.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
+ if (const IntegerType *ITy =
+ dyn_cast<IntegerType>(ATy->getElementType())) {
+ if ((ITy->getBitWidth() == 8 || ITy->getBitWidth() == 16 ||
+ ITy->getBitWidth() == 32) &&
+ IsNullTerminatedString(C)) {
+ if (ITy->getBitWidth() == 8)
+ return SectionKind::getMergeable1ByteCString();
+ if (ITy->getBitWidth() == 16)
+ return SectionKind::getMergeable2ByteCString();
+
+ assert(ITy->getBitWidth() == 32 && "Unknown width");
+ return SectionKind::getMergeable4ByteCString();
+ }
+ }
+ }
+
+ // Otherwise, just drop it into a mergable constant section. If we have
+ // a section for this size, use it, otherwise use the arbitrary sized
+ // mergable section.
+ switch (TM.getTargetData()->getTypeAllocSize(C->getType())) {
+ case 4: return SectionKind::getMergeableConst4();
+ case 8: return SectionKind::getMergeableConst8();
+ case 16: return SectionKind::getMergeableConst16();
+ default: return SectionKind::getMergeableConst();
+ }
+
+ case Constant::LocalRelocation:
+ // In static relocation model, the linker will resolve all addresses, so
+ // the relocation entries will actually be constants by the time the app
+ // starts up. However, we can't put this into a mergable section, because
+ // the linker doesn't take relocations into consideration when it tries to
+ // merge entries in the section.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getReadOnly();
+
+ // Otherwise, the dynamic linker needs to fix it up, put it in the
+ // writable data.rel.local section.
+ return SectionKind::getReadOnlyWithRelLocal();
+
+ case Constant::GlobalRelocations:
+ // In static relocation model, the linker will resolve all addresses, so
+ // the relocation entries will actually be constants by the time the app
+ // starts up. However, we can't put this into a mergable section, because
+ // the linker doesn't take relocations into consideration when it tries to
+ // merge entries in the section.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getReadOnly();
+
+ // Otherwise, the dynamic linker needs to fix it up, put it in the
+ // writable data.rel section.
+ return SectionKind::getReadOnlyWithRel();
+ }
+ }
+
+ // Okay, this isn't a constant. If the initializer for the global is going
+ // to require a runtime relocation by the dynamic linker, put it into a more
+ // specific section to improve startup time of the app. This coalesces these
+ // globals together onto fewer pages, improving the locality of the dynamic
+ // linker.
+ if (ReloModel == Reloc::Static)
+ return SectionKind::getDataNoRel();
+
+ switch (C->getRelocationInfo()) {
+ default: llvm_unreachable("unknown relocation info kind");
+ case Constant::NoRelocation:
+ return SectionKind::getDataNoRel();
+ case Constant::LocalRelocation:
+ return SectionKind::getDataRelLocal();
+ case Constant::GlobalRelocations:
+ return SectionKind::getDataRel();
+ }
+}
+
+/// SectionForGlobal - This method computes the appropriate section to emit
+/// the specified global variable or function definition. This should not
+/// be passed external (or available externally) globals.
+const MCSection *TargetLoweringObjectFile::
+SectionForGlobal(const GlobalValue *GV, SectionKind Kind, Mangler *Mang,
+ const TargetMachine &TM) const {
+ // Select section name.
+ if (GV->hasSection())
+ return getExplicitSectionGlobal(GV, Kind, Mang, TM);
+
+
+ // Use default section depending on the 'type' of global
+ return SelectSectionForGlobal(GV, Kind, Mang, TM);
+}
+
+
+// Lame default implementation. Calculate the section name for global.
+const MCSection *
+TargetLoweringObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
+ SectionKind Kind,
+ Mangler *Mang,
+ const TargetMachine &TM) const{
+ assert(!Kind.isThreadLocal() && "Doesn't support TLS");
+
+ if (Kind.isText())
+ return getTextSection();
+
+ if (Kind.isBSS() && BSSSection != 0)
+ return BSSSection;
+
+ if (Kind.isReadOnly() && ReadOnlySection != 0)
+ return ReadOnlySection;
+
+ return getDataSection();
+}
+
+/// getSectionForConstant - Given a mergable constant with the
+/// specified size and relocation information, return a section that it
+/// should be placed in.
+const MCSection *
+TargetLoweringObjectFile::getSectionForConstant(SectionKind Kind) const {
+ if (Kind.isReadOnly() && ReadOnlySection != 0)
+ return ReadOnlySection;
+
+ return DataSection;
+}
+
+/// getSymbolForDwarfGlobalReference - Return an MCExpr to use for a
+/// pc-relative reference to the specified global variable from exception
+/// handling information. In addition to the symbol, this returns
+/// by-reference:
+///
+/// IsIndirect - True if the returned symbol is actually a stub that contains
+/// the address of the symbol, false if the symbol is the global itself.
+///
+/// IsPCRel - True if the symbol reference is already pc-relative, false if
+/// the caller needs to subtract off the address of the reference from the
+/// symbol.
+///
+const MCExpr *TargetLoweringObjectFile::
+getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const {
+ // The generic implementation of this just returns a direct reference to the
+ // symbol.
+ IsIndirect = false;
+ IsPCRel = false;
+
+ SmallString<128> Name;
+ Mang->getNameWithPrefix(Name, GV, false);
+ return MCSymbolRefExpr::Create(Name.str(), getContext());
+}
+
+
+//===----------------------------------------------------------------------===//
+// ELF
+//===----------------------------------------------------------------------===//
+typedef StringMap<const MCSectionELF*> ELFUniqueMapTy;
+
+TargetLoweringObjectFileELF::~TargetLoweringObjectFileELF() {
+ // If we have the section uniquing map, free it.
+ delete (ELFUniqueMapTy*)UniquingMap;
+}
+
+const MCSection *TargetLoweringObjectFileELF::
+getELFSection(StringRef Section, unsigned Type, unsigned Flags,
+ SectionKind Kind, bool IsExplicit) const {
+ if (UniquingMap == 0)
+ UniquingMap = new ELFUniqueMapTy();
+ ELFUniqueMapTy &Map = *(ELFUniqueMapTy*)UniquingMap;
+
+ // Do the lookup, if we have a hit, return it.
+ const MCSectionELF *&Entry = Map[Section];
+ if (Entry) return Entry;
+
+ return Entry = MCSectionELF::Create(Section, Type, Flags, Kind, IsExplicit,
+ getContext());
+}
+
+void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ if (UniquingMap != 0)
+ ((ELFUniqueMapTy*)UniquingMap)->clear();
+ TargetLoweringObjectFile::Initialize(Ctx, TM);
+
+ BSSSection =
+ getELFSection(".bss", MCSectionELF::SHT_NOBITS,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getBSS());
+
+ TextSection =
+ getELFSection(".text", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_EXECINSTR | MCSectionELF::SHF_ALLOC,
+ SectionKind::getText());
+
+ DataSection =
+ getELFSection(".data", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_WRITE | MCSectionELF::SHF_ALLOC,
+ SectionKind::getDataRel());
+
+ ReadOnlySection =
+ getELFSection(".rodata", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC,
+ SectionKind::getReadOnly());
+
+ TLSDataSection =
+ getELFSection(".tdata", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_TLS |
+ MCSectionELF::SHF_WRITE, SectionKind::getThreadData());
+
+ TLSBSSSection =
+ getELFSection(".tbss", MCSectionELF::SHT_NOBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_TLS |
+ MCSectionELF::SHF_WRITE, SectionKind::getThreadBSS());
+
+ DataRelSection =
+ getELFSection(".data.rel", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getDataRel());
+
+ DataRelLocalSection =
+ getELFSection(".data.rel.local", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getDataRelLocal());
+
+ DataRelROSection =
+ getELFSection(".data.rel.ro", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getReadOnlyWithRel());
+
+ DataRelROLocalSection =
+ getELFSection(".data.rel.ro.local", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getReadOnlyWithRelLocal());
+
+ MergeableConst4Section =
+ getELFSection(".rodata.cst4", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE,
+ SectionKind::getMergeableConst4());
+
+ MergeableConst8Section =
+ getELFSection(".rodata.cst8", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE,
+ SectionKind::getMergeableConst8());
+
+ MergeableConst16Section =
+ getELFSection(".rodata.cst16", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE,
+ SectionKind::getMergeableConst16());
+
+ StaticCtorSection =
+ getELFSection(".ctors", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getDataRel());
+
+ StaticDtorSection =
+ getELFSection(".dtors", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getDataRel());
+
+ // Exception Handling Sections.
+
+ // FIXME: We're emitting LSDA info into a readonly section on ELF, even though
+ // it contains relocatable pointers. In PIC mode, this is probably a big
+ // runtime hit for C++ apps. Either the contents of the LSDA need to be
+ // adjusted or this should be a data section.
+ LSDASection =
+ getELFSection(".gcc_except_table", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC, SectionKind::getReadOnly());
+ EHFrameSection =
+ getELFSection(".eh_frame", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE,
+ SectionKind::getDataRel());
+
+ // Debug Info Sections.
+ DwarfAbbrevSection =
+ getELFSection(".debug_abbrev", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfInfoSection =
+ getELFSection(".debug_info", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfLineSection =
+ getELFSection(".debug_line", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfFrameSection =
+ getELFSection(".debug_frame", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfPubNamesSection =
+ getELFSection(".debug_pubnames", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfPubTypesSection =
+ getELFSection(".debug_pubtypes", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfStrSection =
+ getELFSection(".debug_str", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfLocSection =
+ getELFSection(".debug_loc", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfARangesSection =
+ getELFSection(".debug_aranges", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfRangesSection =
+ getELFSection(".debug_ranges", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+ DwarfMacroInfoSection =
+ getELFSection(".debug_macinfo", MCSectionELF::SHT_PROGBITS, 0,
+ SectionKind::getMetadata());
+}
+
+
+static SectionKind
+getELFKindForNamedSection(const char *Name, SectionKind K) {
+ if (Name[0] != '.') return K;
+
+ // Some lame default implementation based on some magic section names.
+ if (strcmp(Name, ".bss") == 0 ||
+ strncmp(Name, ".bss.", 5) == 0 ||
+ strncmp(Name, ".gnu.linkonce.b.", 16) == 0 ||
+ strncmp(Name, ".llvm.linkonce.b.", 17) == 0 ||
+ strcmp(Name, ".sbss") == 0 ||
+ strncmp(Name, ".sbss.", 6) == 0 ||
+ strncmp(Name, ".gnu.linkonce.sb.", 17) == 0 ||
+ strncmp(Name, ".llvm.linkonce.sb.", 18) == 0)
+ return SectionKind::getBSS();
+
+ if (strcmp(Name, ".tdata") == 0 ||
+ strncmp(Name, ".tdata.", 7) == 0 ||
+ strncmp(Name, ".gnu.linkonce.td.", 17) == 0 ||
+ strncmp(Name, ".llvm.linkonce.td.", 18) == 0)
+ return SectionKind::getThreadData();
+
+ if (strcmp(Name, ".tbss") == 0 ||
+ strncmp(Name, ".tbss.", 6) == 0 ||
+ strncmp(Name, ".gnu.linkonce.tb.", 17) == 0 ||
+ strncmp(Name, ".llvm.linkonce.tb.", 18) == 0)
+ return SectionKind::getThreadBSS();
+
+ return K;
+}
+
+
+static unsigned
+getELFSectionType(const char *Name, SectionKind K) {
+
+ if (strcmp(Name, ".init_array") == 0)
+ return MCSectionELF::SHT_INIT_ARRAY;
+
+ if (strcmp(Name, ".fini_array") == 0)
+ return MCSectionELF::SHT_FINI_ARRAY;
+
+ if (strcmp(Name, ".preinit_array") == 0)
+ return MCSectionELF::SHT_PREINIT_ARRAY;
+
+ if (K.isBSS() || K.isThreadBSS())
+ return MCSectionELF::SHT_NOBITS;
+
+ return MCSectionELF::SHT_PROGBITS;
+}
+
+
+static unsigned
+getELFSectionFlags(SectionKind K) {
+ unsigned Flags = 0;
+
+ if (!K.isMetadata())
+ Flags |= MCSectionELF::SHF_ALLOC;
+
+ if (K.isText())
+ Flags |= MCSectionELF::SHF_EXECINSTR;
+
+ if (K.isWriteable())
+ Flags |= MCSectionELF::SHF_WRITE;
+
+ if (K.isThreadLocal())
+ Flags |= MCSectionELF::SHF_TLS;
+
+ // K.isMergeableConst() is left out to honour PR4650
+ if (K.isMergeableCString() || K.isMergeableConst4() ||
+ K.isMergeableConst8() || K.isMergeableConst16())
+ Flags |= MCSectionELF::SHF_MERGE;
+
+ if (K.isMergeableCString())
+ Flags |= MCSectionELF::SHF_STRINGS;
+
+ return Flags;
+}
+
+
+const MCSection *TargetLoweringObjectFileELF::
+getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ const char *SectionName = GV->getSection().c_str();
+
+ // Infer section flags from the section name if we can.
+ Kind = getELFKindForNamedSection(SectionName, Kind);
+
+ return getELFSection(SectionName,
+ getELFSectionType(SectionName, Kind),
+ getELFSectionFlags(Kind), Kind, true);
+}
+
+static const char *getSectionPrefixForUniqueGlobal(SectionKind Kind) {
+ if (Kind.isText()) return ".gnu.linkonce.t.";
+ if (Kind.isReadOnly()) return ".gnu.linkonce.r.";
+
+ if (Kind.isThreadData()) return ".gnu.linkonce.td.";
+ if (Kind.isThreadBSS()) return ".gnu.linkonce.tb.";
+
+ if (Kind.isBSS()) return ".gnu.linkonce.b.";
+ if (Kind.isDataNoRel()) return ".gnu.linkonce.d.";
+ if (Kind.isDataRelLocal()) return ".gnu.linkonce.d.rel.local.";
+ if (Kind.isDataRel()) return ".gnu.linkonce.d.rel.";
+ if (Kind.isReadOnlyWithRelLocal()) return ".gnu.linkonce.d.rel.ro.local.";
+
+ assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
+ return ".gnu.linkonce.d.rel.ro.";
+}
+
+const MCSection *TargetLoweringObjectFileELF::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+
+ // If this global is linkonce/weak and the target handles this by emitting it
+ // into a 'uniqued' section name, create and return the section now.
+ if (GV->isWeakForLinker()) {
+ const char *Prefix = getSectionPrefixForUniqueGlobal(Kind);
+ std::string Name = Mang->makeNameProper(GV->getNameStr());
+
+ return getELFSection((Prefix+Name).c_str(),
+ getELFSectionType((Prefix+Name).c_str(), Kind),
+ getELFSectionFlags(Kind),
+ Kind);
+ }
+
+ if (Kind.isText()) return TextSection;
+
+ if (Kind.isMergeable1ByteCString() ||
+ Kind.isMergeable2ByteCString() ||
+ Kind.isMergeable4ByteCString()) {
+
+ // We also need alignment here.
+ // FIXME: this is getting the alignment of the character, not the
+ // alignment of the global!
+ unsigned Align =
+ TM.getTargetData()->getPreferredAlignment(cast<GlobalVariable>(GV));
+
+ const char *SizeSpec = ".rodata.str1.";
+ if (Kind.isMergeable2ByteCString())
+ SizeSpec = ".rodata.str2.";
+ else if (Kind.isMergeable4ByteCString())
+ SizeSpec = ".rodata.str4.";
+ else
+ assert(Kind.isMergeable1ByteCString() && "unknown string width");
+
+
+ std::string Name = SizeSpec + utostr(Align);
+ return getELFSection(Name.c_str(), MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC |
+ MCSectionELF::SHF_MERGE |
+ MCSectionELF::SHF_STRINGS,
+ Kind);
+ }
+
+ if (Kind.isMergeableConst()) {
+ if (Kind.isMergeableConst4() && MergeableConst4Section)
+ return MergeableConst4Section;
+ if (Kind.isMergeableConst8() && MergeableConst8Section)
+ return MergeableConst8Section;
+ if (Kind.isMergeableConst16() && MergeableConst16Section)
+ return MergeableConst16Section;
+ return ReadOnlySection; // .const
+ }
+
+ if (Kind.isReadOnly()) return ReadOnlySection;
+
+ if (Kind.isThreadData()) return TLSDataSection;
+ if (Kind.isThreadBSS()) return TLSBSSSection;
+
+ if (Kind.isBSS()) return BSSSection;
+
+ if (Kind.isDataNoRel()) return DataSection;
+ if (Kind.isDataRelLocal()) return DataRelLocalSection;
+ if (Kind.isDataRel()) return DataRelSection;
+ if (Kind.isReadOnlyWithRelLocal()) return DataRelROLocalSection;
+
+ assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
+ return DataRelROSection;
+}
+
+/// getSectionForConstant - Given a mergeable constant with the
+/// specified size and relocation information, return a section that it
+/// should be placed in.
+const MCSection *TargetLoweringObjectFileELF::
+getSectionForConstant(SectionKind Kind) const {
+ if (Kind.isMergeableConst4() && MergeableConst4Section)
+ return MergeableConst4Section;
+ if (Kind.isMergeableConst8() && MergeableConst8Section)
+ return MergeableConst8Section;
+ if (Kind.isMergeableConst16() && MergeableConst16Section)
+ return MergeableConst16Section;
+ if (Kind.isReadOnly())
+ return ReadOnlySection;
+
+ if (Kind.isReadOnlyWithRelLocal()) return DataRelROLocalSection;
+ assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
+ return DataRelROSection;
+}
+
+//===----------------------------------------------------------------------===//
+// MachO
+//===----------------------------------------------------------------------===//
+
+typedef StringMap<const MCSectionMachO*> MachOUniqueMapTy;
+
+TargetLoweringObjectFileMachO::~TargetLoweringObjectFileMachO() {
+ // If we have the MachO uniquing map, free it.
+ delete (MachOUniqueMapTy*)UniquingMap;
+}
+
+
+const MCSectionMachO *TargetLoweringObjectFileMachO::
+getMachOSection(const StringRef &Segment, const StringRef &Section,
+ unsigned TypeAndAttributes,
+ unsigned Reserved2, SectionKind Kind) const {
+ // We unique sections by their segment/section pair. The returned section
+ // may not have the same flags as the requested section, if so this should be
+ // diagnosed by the client as an error.
+
+ // Create the map if it doesn't already exist.
+ if (UniquingMap == 0)
+ UniquingMap = new MachOUniqueMapTy();
+ MachOUniqueMapTy &Map = *(MachOUniqueMapTy*)UniquingMap;
+
+ // Form the name to look up.
+ SmallString<64> Name;
+ Name += Segment;
+ Name.push_back(',');
+ Name += Section;
+
+ // Do the lookup, if we have a hit, return it.
+ const MCSectionMachO *&Entry = Map[Name.str()];
+ if (Entry) return Entry;
+
+ // Otherwise, return a new section.
+ return Entry = MCSectionMachO::Create(Segment, Section, TypeAndAttributes,
+ Reserved2, Kind, getContext());
+}
+
+
+void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ if (UniquingMap != 0)
+ ((MachOUniqueMapTy*)UniquingMap)->clear();
+ TargetLoweringObjectFile::Initialize(Ctx, TM);
+
+ TextSection // .text
+ = getMachOSection("__TEXT", "__text",
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ SectionKind::getText());
+ DataSection // .data
+ = getMachOSection("__DATA", "__data", 0, SectionKind::getDataRel());
+
+ CStringSection // .cstring
+ = getMachOSection("__TEXT", "__cstring", MCSectionMachO::S_CSTRING_LITERALS,
+ SectionKind::getMergeable1ByteCString());
+ UStringSection
+ = getMachOSection("__TEXT","__ustring", 0,
+ SectionKind::getMergeable2ByteCString());
+ FourByteConstantSection // .literal4
+ = getMachOSection("__TEXT", "__literal4", MCSectionMachO::S_4BYTE_LITERALS,
+ SectionKind::getMergeableConst4());
+ EightByteConstantSection // .literal8
+ = getMachOSection("__TEXT", "__literal8", MCSectionMachO::S_8BYTE_LITERALS,
+ SectionKind::getMergeableConst8());
+
+ // ld_classic doesn't support .literal16 in 32-bit mode, and ld64 falls back
+ // to using it in -static mode.
+ SixteenByteConstantSection = 0;
+ if (TM.getRelocationModel() != Reloc::Static &&
+ TM.getTargetData()->getPointerSize() == 32)
+ SixteenByteConstantSection = // .literal16
+ getMachOSection("__TEXT", "__literal16",MCSectionMachO::S_16BYTE_LITERALS,
+ SectionKind::getMergeableConst16());
+
+ ReadOnlySection // .const
+ = getMachOSection("__TEXT", "__const", 0, SectionKind::getReadOnly());
+
+ TextCoalSection
+ = getMachOSection("__TEXT", "__textcoal_nt",
+ MCSectionMachO::S_COALESCED |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ SectionKind::getText());
+ ConstTextCoalSection
+ = getMachOSection("__TEXT", "__const_coal", MCSectionMachO::S_COALESCED,
+ SectionKind::getText());
+ ConstDataCoalSection
+ = getMachOSection("__DATA","__const_coal", MCSectionMachO::S_COALESCED,
+ SectionKind::getText());
+ ConstDataSection // .const_data
+ = getMachOSection("__DATA", "__const", 0,
+ SectionKind::getReadOnlyWithRel());
+ DataCoalSection
+ = getMachOSection("__DATA","__datacoal_nt", MCSectionMachO::S_COALESCED,
+ SectionKind::getDataRel());
+
+
+ LazySymbolPointerSection
+ = getMachOSection("__DATA", "__la_symbol_ptr",
+ MCSectionMachO::S_LAZY_SYMBOL_POINTERS,
+ SectionKind::getMetadata());
+ NonLazySymbolPointerSection
+ = getMachOSection("__DATA", "__nl_symbol_ptr",
+ MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS,
+ SectionKind::getMetadata());
+
+ if (TM.getRelocationModel() == Reloc::Static) {
+ StaticCtorSection
+ = getMachOSection("__TEXT", "__constructor", 0,SectionKind::getDataRel());
+ StaticDtorSection
+ = getMachOSection("__TEXT", "__destructor", 0, SectionKind::getDataRel());
+ } else {
+ StaticCtorSection
+ = getMachOSection("__DATA", "__mod_init_func",
+ MCSectionMachO::S_MOD_INIT_FUNC_POINTERS,
+ SectionKind::getDataRel());
+ StaticDtorSection
+ = getMachOSection("__DATA", "__mod_term_func",
+ MCSectionMachO::S_MOD_TERM_FUNC_POINTERS,
+ SectionKind::getDataRel());
+ }
+
+ // Exception Handling.
+ LSDASection = getMachOSection("__DATA", "__gcc_except_tab", 0,
+ SectionKind::getDataRel());
+ EHFrameSection =
+ getMachOSection("__TEXT", "__eh_frame",
+ MCSectionMachO::S_COALESCED |
+ MCSectionMachO::S_ATTR_NO_TOC |
+ MCSectionMachO::S_ATTR_STRIP_STATIC_SYMS |
+ MCSectionMachO::S_ATTR_LIVE_SUPPORT,
+ SectionKind::getReadOnly());
+
+ // Debug Information.
+ DwarfAbbrevSection =
+ getMachOSection("__DWARF", "__debug_abbrev", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfInfoSection =
+ getMachOSection("__DWARF", "__debug_info", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfLineSection =
+ getMachOSection("__DWARF", "__debug_line", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfFrameSection =
+ getMachOSection("__DWARF", "__debug_frame", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfPubNamesSection =
+ getMachOSection("__DWARF", "__debug_pubnames", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfPubTypesSection =
+ getMachOSection("__DWARF", "__debug_pubtypes", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfStrSection =
+ getMachOSection("__DWARF", "__debug_str", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfLocSection =
+ getMachOSection("__DWARF", "__debug_loc", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfARangesSection =
+ getMachOSection("__DWARF", "__debug_aranges", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfRangesSection =
+ getMachOSection("__DWARF", "__debug_ranges", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfMacroInfoSection =
+ getMachOSection("__DWARF", "__debug_macinfo", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+ DwarfDebugInlineSection =
+ getMachOSection("__DWARF", "__debug_inlined", MCSectionMachO::S_ATTR_DEBUG,
+ SectionKind::getMetadata());
+}
+
+const MCSection *TargetLoweringObjectFileMachO::
+getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ // Parse the section specifier and create it if valid.
+ StringRef Segment, Section;
+ unsigned TAA, StubSize;
+ std::string ErrorCode =
+ MCSectionMachO::ParseSectionSpecifier(GV->getSection(), Segment, Section,
+ TAA, StubSize);
+ if (!ErrorCode.empty()) {
+ // If invalid, report the error with llvm_report_error.
+ llvm_report_error("Global variable '" + GV->getNameStr() +
+ "' has an invalid section specifier '" + GV->getSection()+
+ "': " + ErrorCode + ".");
+ // Fall back to dropping it into the data section.
+ return DataSection;
+ }
+
+ // Get the section.
+ const MCSectionMachO *S =
+ getMachOSection(Segment, Section, TAA, StubSize, Kind);
+
+ // Okay, now that we got the section, verify that the TAA & StubSize agree.
+ // If the user declared multiple globals with different section flags, we need
+ // to reject it here.
+ if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
+ // If invalid, report the error with llvm_report_error.
+ llvm_report_error("Global variable '" + GV->getNameStr() +
+ "' section type or attributes does not match previous"
+ " section specifier");
+ }
+
+ return S;
+}
+
+const MCSection *TargetLoweringObjectFileMachO::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ assert(!Kind.isThreadLocal() && "Darwin doesn't support TLS");
+
+ if (Kind.isText())
+ return GV->isWeakForLinker() ? TextCoalSection : TextSection;
+
+ // If this is weak/linkonce, put this in a coalescable section, either in text
+ // or data depending on if it is writable.
+ if (GV->isWeakForLinker()) {
+ if (Kind.isReadOnly())
+ return ConstTextCoalSection;
+ return DataCoalSection;
+ }
+
+ // FIXME: Alignment check should be handled by section classifier.
+ if (Kind.isMergeable1ByteCString() ||
+ Kind.isMergeable2ByteCString()) {
+ if (TM.getTargetData()->getPreferredAlignment(
+ cast<GlobalVariable>(GV)) < 32) {
+ if (Kind.isMergeable1ByteCString())
+ return CStringSection;
+ assert(Kind.isMergeable2ByteCString());
+ return UStringSection;
+ }
+ }
+
+ if (Kind.isMergeableConst()) {
+ if (Kind.isMergeableConst4())
+ return FourByteConstantSection;
+ if (Kind.isMergeableConst8())
+ return EightByteConstantSection;
+ if (Kind.isMergeableConst16() && SixteenByteConstantSection)
+ return SixteenByteConstantSection;
+ }
+
+ // Otherwise, if it is readonly, but not something we can specially optimize,
+ // just drop it in .const.
+ if (Kind.isReadOnly())
+ return ReadOnlySection;
+
+ // If this is marked const, put it into a const section. But if the dynamic
+ // linker needs to write to it, put it in the data segment.
+ if (Kind.isReadOnlyWithRel())
+ return ConstDataSection;
+
+ // Otherwise, just drop the variable in the normal data section.
+ return DataSection;
+}
+
+const MCSection *
+TargetLoweringObjectFileMachO::getSectionForConstant(SectionKind Kind) const {
+ // If this constant requires a relocation, we have to put it in the data
+ // segment, not in the text segment.
+ if (Kind.isDataRel())
+ return ConstDataSection;
+
+ if (Kind.isMergeableConst4())
+ return FourByteConstantSection;
+ if (Kind.isMergeableConst8())
+ return EightByteConstantSection;
+ if (Kind.isMergeableConst16() && SixteenByteConstantSection)
+ return SixteenByteConstantSection;
+ return ReadOnlySection; // .const
+}
+
+/// shouldEmitUsedDirectiveFor - This hook allows targets to selectively decide
+/// not to emit the UsedDirective for some symbols in llvm.used.
+// FIXME: REMOVE this (rdar://7071300)
+bool TargetLoweringObjectFileMachO::
+shouldEmitUsedDirectiveFor(const GlobalValue *GV, Mangler *Mang) const {
+ /// On Darwin, internally linked data beginning with "L" or "l" does not have
+ /// the directive emitted (this occurs in ObjC metadata).
+ if (!GV) return false;
+
+ // Check whether the mangled name has the "Private" or "LinkerPrivate" prefix.
+ if (GV->hasLocalLinkage() && !isa<Function>(GV)) {
+ // FIXME: ObjC metadata is currently emitted as internal symbols that have
+ // \1L and \0l prefixes on them. Fix them to be Private/LinkerPrivate and
+ // this horrible hack can go away.
+ const std::string &Name = Mang->getMangledName(GV);
+ if (Name[0] == 'L' || Name[0] == 'l')
+ return false;
+ }
+
+ return true;
+}
+
+const MCExpr *TargetLoweringObjectFileMachO::
+getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const {
+ // The mach-o version of this method defaults to returning a stub reference.
+ IsIndirect = true;
+ IsPCRel = false;
+
+ SmallString<128> Name;
+ Mang->getNameWithPrefix(Name, GV, true);
+ Name += "$non_lazy_ptr";
+ return MCSymbolRefExpr::Create(Name.str(), getContext());
+}
+
+
+//===----------------------------------------------------------------------===//
+// COFF
+//===----------------------------------------------------------------------===//
+
+typedef StringMap<const MCSectionCOFF*> COFFUniqueMapTy;
+
+TargetLoweringObjectFileCOFF::~TargetLoweringObjectFileCOFF() {
+ delete (COFFUniqueMapTy*)UniquingMap;
+}
+
+
+const MCSection *TargetLoweringObjectFileCOFF::
+getCOFFSection(const char *Name, bool isDirective, SectionKind Kind) const {
+ // Create the map if it doesn't already exist.
+ if (UniquingMap == 0)
+ UniquingMap = new MachOUniqueMapTy();
+ COFFUniqueMapTy &Map = *(COFFUniqueMapTy*)UniquingMap;
+
+ // Do the lookup, if we have a hit, return it.
+ const MCSectionCOFF *&Entry = Map[Name];
+ if (Entry) return Entry;
+
+ return Entry = MCSectionCOFF::Create(Name, isDirective, Kind, getContext());
+}
+
+void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
+ const TargetMachine &TM) {
+ if (UniquingMap != 0)
+ ((COFFUniqueMapTy*)UniquingMap)->clear();
+ TargetLoweringObjectFile::Initialize(Ctx, TM);
+ TextSection = getCOFFSection("\t.text", true, SectionKind::getText());
+ DataSection = getCOFFSection("\t.data", true, SectionKind::getDataRel());
+ StaticCtorSection =
+ getCOFFSection(".ctors", false, SectionKind::getDataRel());
+ StaticDtorSection =
+ getCOFFSection(".dtors", false, SectionKind::getDataRel());
+
+ // FIXME: We're emitting LSDA info into a readonly section on COFF, even
+ // though it contains relocatable pointers. In PIC mode, this is probably a
+ // big runtime hit for C++ apps. Either the contents of the LSDA need to be
+ // adjusted or this should be a data section.
+ LSDASection =
+ getCOFFSection(".gcc_except_table", false, SectionKind::getReadOnly());
+ EHFrameSection =
+ getCOFFSection(".eh_frame", false, SectionKind::getDataRel());
+
+ // Debug info.
+ // FIXME: Don't use 'directive' mode here.
+ DwarfAbbrevSection =
+ getCOFFSection("\t.section\t.debug_abbrev,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfInfoSection =
+ getCOFFSection("\t.section\t.debug_info,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfLineSection =
+ getCOFFSection("\t.section\t.debug_line,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfFrameSection =
+ getCOFFSection("\t.section\t.debug_frame,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfPubNamesSection =
+ getCOFFSection("\t.section\t.debug_pubnames,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfPubTypesSection =
+ getCOFFSection("\t.section\t.debug_pubtypes,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfStrSection =
+ getCOFFSection("\t.section\t.debug_str,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfLocSection =
+ getCOFFSection("\t.section\t.debug_loc,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfARangesSection =
+ getCOFFSection("\t.section\t.debug_aranges,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfRangesSection =
+ getCOFFSection("\t.section\t.debug_ranges,\"dr\"",
+ true, SectionKind::getMetadata());
+ DwarfMacroInfoSection =
+ getCOFFSection("\t.section\t.debug_macinfo,\"dr\"",
+ true, SectionKind::getMetadata());
+}
+
+const MCSection *TargetLoweringObjectFileCOFF::
+getExplicitSectionGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ return getCOFFSection(GV->getSection().c_str(), false, Kind);
+}
+
+static const char *getCOFFSectionPrefixForUniqueGlobal(SectionKind Kind) {
+ if (Kind.isText())
+ return ".text$linkonce";
+ if (Kind.isWriteable())
+ return ".data$linkonce";
+ return ".rdata$linkonce";
+}
+
+
+const MCSection *TargetLoweringObjectFileCOFF::
+SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
+ Mangler *Mang, const TargetMachine &TM) const {
+ assert(!Kind.isThreadLocal() && "Doesn't support TLS");
+
+ // If this global is linkonce/weak and the target handles this by emitting it
+ // into a 'uniqued' section name, create and return the section now.
+ if (GV->isWeakForLinker()) {
+ const char *Prefix = getCOFFSectionPrefixForUniqueGlobal(Kind);
+ std::string Name = Mang->makeNameProper(GV->getNameStr());
+ return getCOFFSection((Prefix+Name).c_str(), false, Kind);
+ }
+
+ if (Kind.isText())
+ return getTextSection();
+
+ return getDataSection();
+}
+
diff --git a/lib/Target/TargetMachine.cpp b/lib/Target/TargetMachine.cpp
index c487cb8..fec59b5 100644
--- a/lib/Target/TargetMachine.cpp
+++ b/lib/Target/TargetMachine.cpp
@@ -11,7 +11,7 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
@@ -33,7 +33,10 @@ namespace llvm {
FloatABI::ABIType FloatABIType;
bool NoImplicitFloat;
bool NoZerosInBSS;
- bool ExceptionHandling;
+ bool DwarfExceptionHandling;
+ bool SjLjExceptionHandling;
+ bool JITEmitDebugInfo;
+ bool JITEmitDebugInfoToDisk;
bool UnwindTablesMandatory;
Reloc::Model RelocationModel;
CodeModel::Model CMModel;
@@ -104,9 +107,32 @@ DontPlaceZerosInBSS("nozero-initialized-in-bss",
cl::location(NoZerosInBSS),
cl::init(false));
static cl::opt<bool, true>
-EnableExceptionHandling("enable-eh",
+EnableDwarfExceptionHandling("enable-eh",
cl::desc("Emit DWARF exception handling (default if target supports)"),
- cl::location(ExceptionHandling),
+ cl::location(DwarfExceptionHandling),
+ cl::init(false));
+static cl::opt<bool, true>
+EnableSjLjExceptionHandling("enable-sjlj-eh",
+ cl::desc("Emit SJLJ exception handling (default if target supports)"),
+ cl::location(SjLjExceptionHandling),
+ cl::init(false));
+// In debug builds, make this default to true.
+#ifdef NDEBUG
+#define EMIT_DEBUG false
+#else
+#define EMIT_DEBUG true
+#endif
+static cl::opt<bool, true>
+EmitJitDebugInfo("jit-emit-debug",
+ cl::desc("Emit debug information to debugger"),
+ cl::location(JITEmitDebugInfo),
+ cl::init(EMIT_DEBUG));
+#undef EMIT_DEBUG
+static cl::opt<bool, true>
+EmitJitDebugInfoToDisk("jit-emit-debug-to-disk",
+ cl::Hidden,
+ cl::desc("Emit debug info objfiles to disk"),
+ cl::location(JITEmitDebugInfoToDisk),
cl::init(false));
static cl::opt<bool, true>
EnableUnwindTables("unwind-tables",
@@ -176,8 +202,8 @@ EnableStrongPHIElim(cl::Hidden, "strong-phi-elim",
// TargetMachine Class
//
-TargetMachine::TargetMachine()
- : AsmInfo(0) {
+TargetMachine::TargetMachine(const Target &T)
+ : TheTarget(T), AsmInfo(0) {
// Typically it will be subtargets that will adjust FloatABIType from Default
// to Soft or Hard.
if (UseSoftFloat)
@@ -237,4 +263,3 @@ namespace llvm {
return !UnsafeFPMath && HonorSignDependentRoundingFPMathOption;
}
}
-
diff --git a/lib/Target/TargetRegisterInfo.cpp b/lib/Target/TargetRegisterInfo.cpp
index a84fdaa..fac67e2 100644
--- a/lib/Target/TargetRegisterInfo.cpp
+++ b/lib/Target/TargetRegisterInfo.cpp
@@ -40,10 +40,10 @@ TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
TargetRegisterInfo::~TargetRegisterInfo() {}
/// getPhysicalRegisterRegClass - Returns the Register Class of a physical
-/// register of the given type. If type is MVT::Other, then just return any
+/// register of the given type. If type is EVT::Other, then just return any
/// register class the register belongs to.
const TargetRegisterClass *
-TargetRegisterInfo::getPhysicalRegisterRegClass(unsigned reg, MVT VT) const {
+TargetRegisterInfo::getPhysicalRegisterRegClass(unsigned reg, EVT VT) const {
assert(isPhysicalRegister(reg) && "reg must be a physical register");
// Pick the most super register class of the right type that contains
@@ -62,14 +62,14 @@ TargetRegisterInfo::getPhysicalRegisterRegClass(unsigned reg, MVT VT) const {
/// getAllocatableSetForRC - Toggle the bits that represent allocatable
/// registers for the specific register class.
-static void getAllocatableSetForRC(MachineFunction &MF,
+static void getAllocatableSetForRC(const MachineFunction &MF,
const TargetRegisterClass *RC, BitVector &R){
for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
E = RC->allocation_order_end(MF); I != E; ++I)
R.set(*I);
}
-BitVector TargetRegisterInfo::getAllocatableSet(MachineFunction &MF,
+BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC) const {
BitVector Allocatable(NumRegs);
if (RC) {
@@ -85,7 +85,7 @@ BitVector TargetRegisterInfo::getAllocatableSet(MachineFunction &MF,
/// getFrameIndexOffset - Returns the displacement from the frame register to
/// the stack frame of the specified index. This is the default implementation
-/// which is likely incorrect for the target.
+/// which is overridden for some targets.
int TargetRegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
MachineFrameInfo *MFI = MF.getFrameInfo();
diff --git a/lib/Target/X86/AsmParser/CMakeLists.txt b/lib/Target/X86/AsmParser/CMakeLists.txt
new file mode 100644
index 0000000..034d5ab
--- /dev/null
+++ b/lib/Target/X86/AsmParser/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMX86AsmParser
+ X86AsmParser.cpp
+ )
+add_dependencies(LLVMX86AsmParser X86CodeGenTable_gen)
diff --git a/lib/Target/X86/AsmParser/Makefile b/lib/Target/X86/AsmParser/Makefile
new file mode 100644
index 0000000..25fb0a2
--- /dev/null
+++ b/lib/Target/X86/AsmParser/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/X86/AsmParser/Makefile -------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMX86AsmParser
+
+# Hack: we need to include 'main' x86 target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/X86/AsmParser/X86AsmParser.cpp b/lib/Target/X86/AsmParser/X86AsmParser.cpp
new file mode 100644
index 0000000..c357b4d
--- /dev/null
+++ b/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -0,0 +1,479 @@
+//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCAsmLexer.h"
+#include "llvm/MC/MCAsmParser.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Target/TargetAsmParser.h"
+using namespace llvm;
+
+namespace {
+struct X86Operand;
+
+class X86ATTAsmParser : public TargetAsmParser {
+ MCAsmParser &Parser;
+
+private:
+ MCAsmParser &getParser() const { return Parser; }
+
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
+
+ bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+
+ bool ParseRegister(X86Operand &Op);
+
+ bool ParseOperand(X86Operand &Op);
+
+ bool ParseMemOperand(X86Operand &Op);
+
+ bool ParseDirectiveWord(unsigned Size, SMLoc L);
+
+ /// @name Auto-generated Match Functions
+ /// {
+
+ bool MatchInstruction(SmallVectorImpl<X86Operand> &Operands,
+ MCInst &Inst);
+
+ /// MatchRegisterName - Match the given string to a register name, or 0 if
+ /// there is no match.
+ unsigned MatchRegisterName(const StringRef &Name);
+
+ /// }
+
+public:
+ X86ATTAsmParser(const Target &T, MCAsmParser &_Parser)
+ : TargetAsmParser(T), Parser(_Parser) {}
+
+ virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst);
+
+ virtual bool ParseDirective(AsmToken DirectiveID);
+};
+
+} // end anonymous namespace
+
+
+namespace {
+
+/// X86Operand - Instances of this class represent a parsed X86 machine
+/// instruction.
+struct X86Operand {
+ enum {
+ Token,
+ Register,
+ Immediate,
+ Memory
+ } Kind;
+
+ union {
+ struct {
+ const char *Data;
+ unsigned Length;
+ } Tok;
+
+ struct {
+ unsigned RegNo;
+ } Reg;
+
+ struct {
+ const MCExpr *Val;
+ } Imm;
+
+ struct {
+ unsigned SegReg;
+ const MCExpr *Disp;
+ unsigned BaseReg;
+ unsigned IndexReg;
+ unsigned Scale;
+ } Mem;
+ };
+
+ StringRef getToken() const {
+ assert(Kind == Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ unsigned getReg() const {
+ assert(Kind == Register && "Invalid access!");
+ return Reg.RegNo;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ const MCExpr *getMemDisp() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.Disp;
+ }
+ unsigned getMemSegReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.SegReg;
+ }
+ unsigned getMemBaseReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.BaseReg;
+ }
+ unsigned getMemIndexReg() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.IndexReg;
+ }
+ unsigned getMemScale() const {
+ assert(Kind == Memory && "Invalid access!");
+ return Mem.Scale;
+ }
+
+ bool isToken() const {return Kind == Token; }
+
+ bool isImm() const { return Kind == Immediate; }
+
+ bool isImmSExt8() const {
+ // Accept immediates which fit in 8 bits when sign extended, and
+ // non-absolute immediates.
+ if (!isImm())
+ return false;
+
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
+ int64_t Value = CE->getValue();
+ return Value == (int64_t) (int8_t) Value;
+ }
+
+ return true;
+ }
+
+ bool isMem() const { return Kind == Memory; }
+
+ bool isReg() const { return Kind == Register; }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(getReg()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ }
+
+ void addImmSExt8Operands(MCInst &Inst, unsigned N) const {
+ // FIXME: Support user customization of the render method.
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateExpr(getImm()));
+ }
+
+ void addMemOperands(MCInst &Inst, unsigned N) const {
+ assert((N == 4 || N == 5) && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
+ Inst.addOperand(MCOperand::CreateImm(getMemScale()));
+ Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
+ Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
+
+ // FIXME: What a hack.
+ if (N == 5)
+ Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
+ }
+
+ static X86Operand CreateToken(StringRef Str) {
+ X86Operand Res;
+ Res.Kind = Token;
+ Res.Tok.Data = Str.data();
+ Res.Tok.Length = Str.size();
+ return Res;
+ }
+
+ static X86Operand CreateReg(unsigned RegNo) {
+ X86Operand Res;
+ Res.Kind = Register;
+ Res.Reg.RegNo = RegNo;
+ return Res;
+ }
+
+ static X86Operand CreateImm(const MCExpr *Val) {
+ X86Operand Res;
+ Res.Kind = Immediate;
+ Res.Imm.Val = Val;
+ return Res;
+ }
+
+ static X86Operand CreateMem(unsigned SegReg, const MCExpr *Disp,
+ unsigned BaseReg, unsigned IndexReg,
+ unsigned Scale) {
+ // We should never just have a displacement, that would be an immediate.
+ assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
+
+ // The scale should always be one of {1,2,4,8}.
+ assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
+ "Invalid scale!");
+ X86Operand Res;
+ Res.Kind = Memory;
+ Res.Mem.SegReg = SegReg;
+ Res.Mem.Disp = Disp;
+ Res.Mem.BaseReg = BaseReg;
+ Res.Mem.IndexReg = IndexReg;
+ Res.Mem.Scale = Scale;
+ return Res;
+ }
+};
+
+} // end anonymous namespace.
+
+
+bool X86ATTAsmParser::ParseRegister(X86Operand &Op) {
+ const AsmToken &TokPercent = getLexer().getTok();
+ (void)TokPercent; // Avoid warning when assertions are disabled.
+ assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
+ getLexer().Lex(); // Eat percent token.
+
+ const AsmToken &Tok = getLexer().getTok();
+ if (Tok.isNot(AsmToken::Identifier))
+ return Error(Tok.getLoc(), "invalid register name");
+
+ // FIXME: Validate register for the current architecture; we have to do
+ // validation later, so maybe there is no need for this here.
+ unsigned RegNo;
+
+ RegNo = MatchRegisterName(Tok.getString());
+ if (RegNo == 0)
+ return Error(Tok.getLoc(), "invalid register name");
+
+ Op = X86Operand::CreateReg(RegNo);
+ getLexer().Lex(); // Eat identifier token.
+
+ return false;
+}
+
+bool X86ATTAsmParser::ParseOperand(X86Operand &Op) {
+ switch (getLexer().getKind()) {
+ default:
+ return ParseMemOperand(Op);
+ case AsmToken::Percent:
+ // FIXME: if a segment register, this could either be just the seg reg, or
+ // the start of a memory operand.
+ return ParseRegister(Op);
+ case AsmToken::Dollar: {
+ // $42 -> immediate.
+ getLexer().Lex();
+ const MCExpr *Val;
+ if (getParser().ParseExpression(Val))
+ return true;
+ Op = X86Operand::CreateImm(Val);
+ return false;
+ }
+ }
+}
+
+/// ParseMemOperand: segment: disp(basereg, indexreg, scale)
+bool X86ATTAsmParser::ParseMemOperand(X86Operand &Op) {
+ // FIXME: If SegReg ':' (e.g. %gs:), eat and remember.
+ unsigned SegReg = 0;
+
+ // We have to disambiguate a parenthesized expression "(4+5)" from the start
+ // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
+ // only way to do this without lookahead is to eat the ( and see what is after
+ // it.
+ const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
+ if (getLexer().isNot(AsmToken::LParen)) {
+ if (getParser().ParseExpression(Disp)) return true;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg)
+ Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1);
+ else
+ Op = X86Operand::CreateImm(Disp);
+ return false;
+ }
+
+ // Eat the '('.
+ getLexer().Lex();
+ } else {
+ // Okay, we have a '('. We don't know if this is an expression or not, but
+ // so we have to eat the ( to see beyond it.
+ getLexer().Lex(); // Eat the '('.
+
+ if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
+ // Nothing to do here, fall into the code below with the '(' part of the
+ // memory operand consumed.
+ } else {
+ // It must be an parenthesized expression, parse it now.
+ if (getParser().ParseParenExpression(Disp))
+ return true;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg)
+ Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1);
+ else
+ Op = X86Operand::CreateImm(Disp);
+ return false;
+ }
+
+ // Eat the '('.
+ getLexer().Lex();
+ }
+ }
+
+ // If we reached here, then we just ate the ( of the memory operand. Process
+ // the rest of the memory operand.
+ unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
+
+ if (getLexer().is(AsmToken::Percent)) {
+ if (ParseRegister(Op))
+ return true;
+ BaseReg = Op.getReg();
+ }
+
+ if (getLexer().is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat the comma.
+
+ // Following the comma we should have either an index register, or a scale
+ // value. We don't support the later form, but we want to parse it
+ // correctly.
+ //
+ // Not that even though it would be completely consistent to support syntax
+ // like "1(%eax,,1)", the assembler doesn't.
+ if (getLexer().is(AsmToken::Percent)) {
+ if (ParseRegister(Op))
+ return true;
+ IndexReg = Op.getReg();
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ // Parse the scale amount:
+ // ::= ',' [scale-expression]
+ if (getLexer().isNot(AsmToken::Comma))
+ return true;
+ getLexer().Lex(); // Eat the comma.
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ SMLoc Loc = getLexer().getTok().getLoc();
+
+ int64_t ScaleVal;
+ if (getParser().ParseAbsoluteExpression(ScaleVal))
+ return true;
+
+ // Validate the scale amount.
+ if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8)
+ return Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
+ Scale = (unsigned)ScaleVal;
+ }
+ }
+ } else if (getLexer().isNot(AsmToken::RParen)) {
+ // Otherwise we have the unsupported form of a scale amount without an
+ // index.
+ SMLoc Loc = getLexer().getTok().getLoc();
+
+ int64_t Value;
+ if (getParser().ParseAbsoluteExpression(Value))
+ return true;
+
+ return Error(Loc, "cannot have scale factor without index register");
+ }
+ }
+
+ // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
+ if (getLexer().isNot(AsmToken::RParen))
+ return Error(getLexer().getTok().getLoc(),
+ "unexpected token in memory operand");
+ getLexer().Lex(); // Eat the ')'.
+
+ Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale);
+ return false;
+}
+
+bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) {
+ SmallVector<X86Operand, 8> Operands;
+
+ Operands.push_back(X86Operand::CreateToken(Name));
+
+ SMLoc Loc = getLexer().getTok().getLoc();
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+
+ // Parse '*' modifier.
+ if (getLexer().is(AsmToken::Star)) {
+ getLexer().Lex(); // Eat the star.
+ Operands.push_back(X86Operand::CreateToken("*"));
+ }
+
+ // Read the first operand.
+ Operands.push_back(X86Operand());
+ if (ParseOperand(Operands.back()))
+ return true;
+
+ while (getLexer().is(AsmToken::Comma)) {
+ getLexer().Lex(); // Eat the comma.
+
+ // Parse and remember the operand.
+ Operands.push_back(X86Operand());
+ if (ParseOperand(Operands.back()))
+ return true;
+ }
+ }
+
+ if (!MatchInstruction(Operands, Inst))
+ return false;
+
+ // FIXME: We should give nicer diagnostics about the exact failure.
+
+ Error(Loc, "unrecognized instruction");
+ return true;
+}
+
+bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return ParseDirectiveWord(2, DirectiveID.getLoc());
+ return true;
+}
+
+/// ParseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().ParseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token in directive");
+ getLexer().Lex();
+ }
+ }
+
+ getLexer().Lex();
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86AsmParser() {
+ RegisterAsmParser<X86ATTAsmParser> X(TheX86_32Target);
+ RegisterAsmParser<X86ATTAsmParser> Y(TheX86_64Target);
+}
+
+#include "X86GenAsmMatcher.inc"
diff --git a/lib/Target/X86/AsmPrinter/CMakeLists.txt b/lib/Target/X86/AsmPrinter/CMakeLists.txt
index a28c826..b70a587 100644
--- a/lib/Target/X86/AsmPrinter/CMakeLists.txt
+++ b/lib/Target/X86/AsmPrinter/CMakeLists.txt
@@ -1,9 +1,9 @@
include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
add_llvm_library(LLVMX86AsmPrinter
- X86ATTAsmPrinter.cpp
X86ATTInstPrinter.cpp
X86AsmPrinter.cpp
- X86IntelAsmPrinter.cpp
+ X86IntelInstPrinter.cpp
+ X86MCInstLower.cpp
)
-add_dependencies(LLVMX86AsmPrinter X86CodeGenTable_gen) \ No newline at end of file
+add_dependencies(LLVMX86AsmPrinter X86CodeGenTable_gen)
diff --git a/lib/Target/X86/AsmPrinter/Makefile b/lib/Target/X86/AsmPrinter/Makefile
index ba89ac6..2368761 100644
--- a/lib/Target/X86/AsmPrinter/Makefile
+++ b/lib/Target/X86/AsmPrinter/Makefile
@@ -1,4 +1,4 @@
-##===- lib/Target/X86/Makefile -----------------------------*- Makefile -*-===##
+##===- lib/Target/X86/AsmPrinter/Makefile ------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
diff --git a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp
index fa0ee75..bc70ffe 100644
--- a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp
+++ b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.cpp
@@ -13,10 +13,13 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
+#include "X86ATTInstPrinter.h"
#include "llvm/MC/MCInst.h"
-#include "X86ATTAsmPrinter.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "X86GenInstrNames.inc"
using namespace llvm;
// Include the auto-generated portion of the assembly writer.
@@ -25,9 +28,11 @@ using namespace llvm;
#include "X86GenAsmWriter.inc"
#undef MachineInstr
-void X86ATTAsmPrinter::printSSECC(const MCInst *MI, unsigned Op) {
+void X86ATTInstPrinter::printInst(const MCInst *MI) { printInstruction(MI); }
+
+void X86ATTInstPrinter::printSSECC(const MCInst *MI, unsigned Op) {
switch (MI->getOperand(Op).getImm()) {
- default: assert(0 && "Invalid ssecc argument!");
+ default: llvm_unreachable("Invalid ssecc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
@@ -39,61 +44,36 @@ void X86ATTAsmPrinter::printSSECC(const MCInst *MI, unsigned Op) {
}
}
-
-void X86ATTAsmPrinter::printPICLabel(const MCInst *MI, unsigned Op) {
- assert(0 &&
- "This is only used for MOVPC32r, should lower before asm printing!");
-}
-
-
/// print_pcrel_imm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value. These print slightly differently, for
/// example, a $ is not emitted.
-void X86ATTAsmPrinter::print_pcrel_imm(const MCInst *MI, unsigned OpNo) {
+void X86ATTInstPrinter::print_pcrel_imm(const MCInst *MI, unsigned OpNo) {
const MCOperand &Op = MI->getOperand(OpNo);
-
if (Op.isImm())
O << Op.getImm();
- else if (Op.isMBBLabel())
- // FIXME: Keep in sync with printBasicBlockLabel. printBasicBlockLabel
- // should eventually call into this code, not the other way around.
- O << TAI->getPrivateGlobalPrefix() << "BB" << Op.getMBBLabelFunction()
- << '_' << Op.getMBBLabelBlock();
- else
- assert(0 && "Unknown pcrel immediate operand");
+ else {
+ assert(Op.isExpr() && "unknown pcrel immediate operand");
+ Op.getExpr()->print(O, &MAI);
+ }
}
-
-void X86ATTAsmPrinter::printOperand(const MCInst *MI, unsigned OpNo,
- const char *Modifier) {
+void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ const char *Modifier) {
assert(Modifier == 0 && "Modifiers should not be used");
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
- O << '%';
- unsigned Reg = Op.getReg();
-#if 0
- if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
- MVT VT = (strcmp(Modifier+6,"64") == 0) ?
- MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
- ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
- Reg = getX86SubSuperRegister(Reg, VT);
- }
-#endif
- O << TRI->getAsmName(Reg);
- return;
+ O << '%' << getRegisterName(Op.getReg());
} else if (Op.isImm()) {
- //if (!Modifier || (strcmp(Modifier, "debug") && strcmp(Modifier, "mem")))
+ O << '$' << Op.getImm();
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
O << '$';
- O << Op.getImm();
- return;
+ Op.getExpr()->print(O, &MAI);
}
-
- O << "<<UNKNOWN OPERAND KIND>>";
}
-void X86ATTAsmPrinter::printLeaMemReference(const MCInst *MI, unsigned Op) {
-
+void X86ATTInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op) {
const MCOperand &BaseReg = MI->getOperand(Op);
const MCOperand &IndexReg = MI->getOperand(Op+2);
const MCOperand &DispSpec = MI->getOperand(Op+3);
@@ -103,19 +83,11 @@ void X86ATTAsmPrinter::printLeaMemReference(const MCInst *MI, unsigned Op) {
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
O << DispVal;
} else {
- abort();
- //assert(DispSpec.isGlobal() || DispSpec.isCPI() ||
- // DispSpec.isJTI() || DispSpec.isSymbol());
- //printOperand(MI, Op+3, "mem");
+ assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
+ DispSpec.getExpr()->print(O, &MAI);
}
if (IndexReg.getReg() || BaseReg.getReg()) {
- // There are cases where we can end up with ESP/RSP in the indexreg slot.
- // If this happens, swap the base/index register to support assemblers that
- // don't work when the index is *SP.
- // FIXME: REMOVE THIS.
- assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP);
-
O << '(';
if (BaseReg.getReg())
printOperand(MI, Op);
@@ -131,9 +103,9 @@ void X86ATTAsmPrinter::printLeaMemReference(const MCInst *MI, unsigned Op) {
}
}
-void X86ATTAsmPrinter::printMemReference(const MCInst *MI, unsigned Op) {
- const MCOperand &Segment = MI->getOperand(Op+4);
- if (Segment.getReg()) {
+void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op) {
+ // If this has a segment register, print it.
+ if (MI->getOperand(Op+4).getReg()) {
printOperand(MI, Op+4);
O << ':';
}
diff --git a/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h
new file mode 100644
index 0000000..5f28fa4
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86ATTInstPrinter.h
@@ -0,0 +1,86 @@
+//===-- X86ATTInstPrinter.h - Convert X86 MCInst to assembly syntax -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an X86 MCInst to AT&T style .s file syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_ATT_INST_PRINTER_H
+#define X86_ATT_INST_PRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+
+namespace llvm {
+ class MCOperand;
+
+class X86ATTInstPrinter : public MCInstPrinter {
+public:
+ X86ATTInstPrinter(raw_ostream &O, const MCAsmInfo &MAI)
+ : MCInstPrinter(O, MAI) {}
+
+
+ virtual void printInst(const MCInst *MI);
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI);
+ static const char *getRegisterName(unsigned RegNo);
+
+
+ void printOperand(const MCInst *MI, unsigned OpNo,
+ const char *Modifier = 0);
+ void printMemReference(const MCInst *MI, unsigned Op);
+ void printLeaMemReference(const MCInst *MI, unsigned Op);
+ void printSSECC(const MCInst *MI, unsigned Op);
+ void print_pcrel_imm(const MCInst *MI, unsigned OpNo);
+
+ void printopaquemem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+
+ void printi8mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi16mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi32mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi64mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi128mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf32mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf64mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf80mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf128mem(const MCInst *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printlea32mem(const MCInst *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64mem(const MCInst *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64_32mem(const MCInst *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo);
+ }
+};
+
+}
+
+#endif
diff --git a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
index e5d80a4..2a0290d 100644
--- a/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
+++ b/lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp
@@ -1,4 +1,4 @@
-//===-- X86AsmPrinter.cpp - Convert X86 LLVM IR to X86 assembly -----------===//
+//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===//
//
// The LLVM Compiler Infrastructure
//
@@ -7,42 +7,937 @@
//
//===----------------------------------------------------------------------===//
//
-// This file the shared super class printer that converts from our internal
-// representation of machine-dependent LLVM code to Intel and AT&T format
-// assembly language.
-// This printer is the output mechanism used by `llc'.
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to AT&T format assembly
+// language. This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
-#include "X86ATTAsmPrinter.h"
-#include "X86IntelAsmPrinter.h"
-#include "X86Subtarget.h"
+#define DEBUG_TYPE "asm-printer"
+#include "X86AsmPrinter.h"
+#include "X86ATTInstPrinter.h"
+#include "X86IntelInstPrinter.h"
+#include "X86MCInstLower.h"
+#include "X86.h"
+#include "X86COFF.h"
+#include "X86COFFMachineModuleInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86TargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Type.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
using namespace llvm;
-/// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code
-/// for a MachineFunction to the given output stream, using the given target
-/// machine description.
+STATISTIC(EmittedInsts, "Number of machine instrs printed");
+
+//===----------------------------------------------------------------------===//
+// Primitive Helper Functions.
+//===----------------------------------------------------------------------===//
+
+void X86AsmPrinter::printMCInst(const MCInst *MI) {
+ if (MAI->getAssemblerDialect() == 0)
+ X86ATTInstPrinter(O, *MAI).printInstruction(MI);
+ else
+ X86IntelInstPrinter(O, *MAI).printInstruction(MI);
+}
+
+void X86AsmPrinter::PrintPICBaseSymbol() const {
+ // FIXME: Gross const cast hack.
+ X86AsmPrinter *AP = const_cast<X86AsmPrinter*>(this);
+ X86MCInstLower(OutContext, 0, *AP).GetPICBaseSymbol()->print(O, MAI);
+}
+
+void X86AsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
+ unsigned FnAlign = MF.getAlignment();
+ const Function *F = MF.getFunction();
+
+ if (Subtarget->isTargetCygMing()) {
+ X86COFFMachineModuleInfo &COFFMMI =
+ MMI->getObjFileInfo<X86COFFMachineModuleInfo>();
+ COFFMMI.DecorateCygMingName(CurrentFnName, F, *TM.getTargetData());
+ }
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+ EmitAlignment(FnAlign, F);
+
+ switch (F->getLinkage()) {
+ default: llvm_unreachable("Unknown linkage type!");
+ case Function::InternalLinkage: // Symbols default to internal.
+ case Function::PrivateLinkage:
+ break;
+ case Function::DLLExportLinkage:
+ case Function::ExternalLinkage:
+ O << "\t.globl\t" << CurrentFnName << '\n';
+ break;
+ case Function::LinkerPrivateLinkage:
+ case Function::LinkOnceAnyLinkage:
+ case Function::LinkOnceODRLinkage:
+ case Function::WeakAnyLinkage:
+ case Function::WeakODRLinkage:
+ if (Subtarget->isTargetDarwin()) {
+ O << "\t.globl\t" << CurrentFnName << '\n';
+ O << MAI->getWeakDefDirective() << CurrentFnName << '\n';
+ } else if (Subtarget->isTargetCygMing()) {
+ O << "\t.globl\t" << CurrentFnName << "\n"
+ "\t.linkonce discard\n";
+ } else {
+ O << "\t.weak\t" << CurrentFnName << '\n';
+ }
+ break;
+ }
+
+ printVisibility(CurrentFnName, F->getVisibility());
+
+ if (Subtarget->isTargetELF())
+ O << "\t.type\t" << CurrentFnName << ",@function\n";
+ else if (Subtarget->isTargetCygMing()) {
+ O << "\t.def\t " << CurrentFnName
+ << ";\t.scl\t" <<
+ (F->hasInternalLinkage() ? COFF::C_STAT : COFF::C_EXT)
+ << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
+ << ";\t.endef\n";
+ }
+
+ O << CurrentFnName << ':';
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, F, /*PrintType=*/false, F->getParent());
+ }
+ O << '\n';
+
+ // Add some workaround for linkonce linkage on Cygwin\MinGW
+ if (Subtarget->isTargetCygMing() &&
+ (F->hasLinkOnceLinkage() || F->hasWeakLinkage()))
+ O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n";
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ const Function *F = MF.getFunction();
+ this->MF = &MF;
+ CallingConv::ID CC = F->getCallingConv();
+
+ SetupMachineFunction(MF);
+ O << "\n\n";
+
+ if (Subtarget->isTargetCOFF()) {
+ X86COFFMachineModuleInfo &COFFMMI =
+ MMI->getObjFileInfo<X86COFFMachineModuleInfo>();
+
+ // Populate function information map. Don't want to populate
+ // non-stdcall or non-fastcall functions' information right now.
+ if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
+ COFFMMI.AddFunctionInfo(F, *MF.getInfo<X86MachineFunctionInfo>());
+ }
+
+ // Print out constants referenced by the function
+ EmitConstantPool(MF.getConstantPool());
+
+ // Print the 'header' of function
+ emitFunctionHeader(MF);
+
+ // Emit pre-function debug and/or EH information.
+ if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
+ DW->BeginFunction(&MF);
+
+ // Print out code for the function.
+ bool hasAnyRealCode = false;
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+ // Print a label for the basic block.
+ EmitBasicBlockStart(I);
+ for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
+ II != IE; ++II) {
+ // Print the assembly for the instruction.
+ if (!II->isLabel())
+ hasAnyRealCode = true;
+ printMachineInstruction(II);
+ }
+ }
+
+ if (Subtarget->isTargetDarwin() && !hasAnyRealCode) {
+ // If the function is empty, then we need to emit *something*. Otherwise,
+ // the function's label might be associated with something that it wasn't
+ // meant to be associated with. We emit a noop in this situation.
+ // We are assuming inline asms are code.
+ O << "\tnop\n";
+ }
+
+ if (MAI->hasDotTypeDotSizeDirective())
+ O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
+
+ // Emit post-function debug information.
+ if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
+ DW->EndFunction(&MF);
+
+ // Print out jump tables referenced by the function.
+ EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
+
+ // We didn't modify anything.
+ return false;
+}
+
+/// printSymbolOperand - Print a raw symbol reference operand. This handles
+/// jump tables, constant pools, global address and external symbols, all of
+/// which print to a label with various suffixes for relocation types etc.
+void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO) {
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown symbol type!");
+ case MachineOperand::MO_JumpTableIndex:
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
+ << MO.getIndex();
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
+ << MO.getIndex();
+ printOffset(MO.getOffset());
+ break;
+ case MachineOperand::MO_GlobalAddress: {
+ const GlobalValue *GV = MO.getGlobal();
+
+ const char *Suffix = "";
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
+ Suffix = "$stub";
+ else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
+ Suffix = "$non_lazy_ptr";
+
+ std::string Name = Mang->getMangledName(GV, Suffix, Suffix[0] != '\0');
+ if (Subtarget->isTargetCygMing()) {
+ X86COFFMachineModuleInfo &COFFMMI =
+ MMI->getObjFileInfo<X86COFFMachineModuleInfo>();
+ COFFMMI.DecorateCygMingName(Name, GV, *TM.getTargetData());
+ }
+
+ // Handle dllimport linkage.
+ if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
+ Name = "__imp_" + Name;
+
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
+ SmallString<128> NameStr;
+ Mang->getNameWithPrefix(NameStr, GV, true);
+ NameStr += "$non_lazy_ptr";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+
+ const MCSymbol *&StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
+ if (StubSym == 0) {
+ NameStr.clear();
+ Mang->getNameWithPrefix(NameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ }
+ } else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){
+ SmallString<128> NameStr;
+ Mang->getNameWithPrefix(NameStr, GV, true);
+ NameStr += "$non_lazy_ptr";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+ const MCSymbol *&StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(Sym);
+ if (StubSym == 0) {
+ NameStr.clear();
+ Mang->getNameWithPrefix(NameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ }
+ } else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
+ SmallString<128> NameStr;
+ Mang->getNameWithPrefix(NameStr, GV, true);
+ NameStr += "$stub";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(NameStr.str());
+ const MCSymbol *&StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
+ if (StubSym == 0) {
+ NameStr.clear();
+ Mang->getNameWithPrefix(NameStr, GV, false);
+ StubSym = OutContext.GetOrCreateSymbol(NameStr.str());
+ }
+ }
+
+ // If the name begins with a dollar-sign, enclose it in parens. We do this
+ // to avoid having it look like an integer immediate to the assembler.
+ if (Name[0] == '$')
+ O << '(' << Name << ')';
+ else
+ O << Name;
+
+ printOffset(MO.getOffset());
+ break;
+ }
+ case MachineOperand::MO_ExternalSymbol: {
+ std::string Name = Mang->makeNameProper(MO.getSymbolName());
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
+ Name += "$stub";
+ MCSymbol *Sym = OutContext.GetOrCreateSymbol(Name);
+ const MCSymbol *&StubSym =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
+ if (StubSym == 0) {
+ Name.erase(Name.end()-5, Name.end());
+ StubSym = OutContext.GetOrCreateSymbol(Name);
+ }
+ }
+
+ // If the name begins with a dollar-sign, enclose it in parens. We do this
+ // to avoid having it look like an integer immediate to the assembler.
+ if (Name[0] == '$')
+ O << '(' << Name << ')';
+ else
+ O << Name;
+ break;
+ }
+ }
+
+ switch (MO.getTargetFlags()) {
+ default:
+ llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DLLIMPORT:
+ case X86II::MO_DARWIN_STUB:
+ // These affect the name of the symbol, not any suffix.
+ break;
+ case X86II::MO_GOT_ABSOLUTE_ADDRESS:
+ O << " + [.-";
+ PrintPICBaseSymbol();
+ O << ']';
+ break;
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ O << '-';
+ PrintPICBaseSymbol();
+ break;
+ case X86II::MO_TLSGD: O << "@TLSGD"; break;
+ case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: O << "@TPOFF"; break;
+ case X86II::MO_NTPOFF: O << "@NTPOFF"; break;
+ case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break;
+ case X86II::MO_GOT: O << "@GOT"; break;
+ case X86II::MO_GOTOFF: O << "@GOTOFF"; break;
+ case X86II::MO_PLT: O << "@PLT"; break;
+ }
+}
+
+/// print_pcrel_imm - This is used to print an immediate value that ends up
+/// being encoded as a pc-relative value. These print slightly differently, for
+/// example, a $ is not emitted.
+void X86AsmPrinter::print_pcrel_imm(const MachineInstr *MI, unsigned OpNo) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ switch (MO.getType()) {
+ default: llvm_unreachable("Unknown pcrel immediate operand");
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ return;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ return;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ printSymbolOperand(MO);
+ return;
+ }
+}
+
+
+void X86AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
+ const char *Modifier) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ switch (MO.getType()) {
+ default: llvm_unreachable("unknown operand type!");
+ case MachineOperand::MO_Register: {
+ O << '%';
+ unsigned Reg = MO.getReg();
+ if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
+ EVT VT = (strcmp(Modifier+6,"64") == 0) ?
+ MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
+ ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
+ Reg = getX86SubSuperRegister(Reg, VT);
+ }
+ O << X86ATTInstPrinter::getRegisterName(Reg);
+ return;
+ }
+
+ case MachineOperand::MO_Immediate:
+ O << '$' << MO.getImm();
+ return;
+
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol: {
+ O << '$';
+ printSymbolOperand(MO);
+ break;
+ }
+ }
+}
+
+void X86AsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
+ unsigned char value = MI->getOperand(Op).getImm();
+ assert(value <= 7 && "Invalid ssecc argument!");
+ switch (value) {
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ }
+}
+
+void X86AsmPrinter::printLeaMemReference(const MachineInstr *MI, unsigned Op,
+ const char *Modifier) {
+ const MachineOperand &BaseReg = MI->getOperand(Op);
+ const MachineOperand &IndexReg = MI->getOperand(Op+2);
+ const MachineOperand &DispSpec = MI->getOperand(Op+3);
+
+ // If we really don't want to print out (rip), don't.
+ bool HasBaseReg = BaseReg.getReg() != 0;
+ if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") &&
+ BaseReg.getReg() == X86::RIP)
+ HasBaseReg = false;
+
+ // HasParenPart - True if we will print out the () part of the mem ref.
+ bool HasParenPart = IndexReg.getReg() || HasBaseReg;
+
+ if (DispSpec.isImm()) {
+ int DispVal = DispSpec.getImm();
+ if (DispVal || !HasParenPart)
+ O << DispVal;
+ } else {
+ assert(DispSpec.isGlobal() || DispSpec.isCPI() ||
+ DispSpec.isJTI() || DispSpec.isSymbol());
+ printSymbolOperand(MI->getOperand(Op+3));
+ }
+
+ if (HasParenPart) {
+ assert(IndexReg.getReg() != X86::ESP &&
+ "X86 doesn't allow scaling by ESP");
+
+ O << '(';
+ if (HasBaseReg)
+ printOperand(MI, Op, Modifier);
+
+ if (IndexReg.getReg()) {
+ O << ',';
+ printOperand(MI, Op+2, Modifier);
+ unsigned ScaleVal = MI->getOperand(Op+1).getImm();
+ if (ScaleVal != 1)
+ O << ',' << ScaleVal;
+ }
+ O << ')';
+ }
+}
+
+void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
+ const char *Modifier) {
+ assert(isMem(MI, Op) && "Invalid memory reference!");
+ const MachineOperand &Segment = MI->getOperand(Op+4);
+ if (Segment.getReg()) {
+ printOperand(MI, Op+4, Modifier);
+ O << ':';
+ }
+ printLeaMemReference(MI, Op, Modifier);
+}
+
+void X86AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
+ const MachineBasicBlock *MBB) const {
+ if (!MAI->getSetDirective())
+ return;
+
+ // We don't need .set machinery if we have GOT-style relocations
+ if (Subtarget->isPICStyleGOT())
+ return;
+
+ O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
+ << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
+
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+
+ if (Subtarget->isPICStyleRIPRel())
+ O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ << '_' << uid << '\n';
+ else {
+ O << '-';
+ PrintPICBaseSymbol();
+ O << '\n';
+ }
+}
+
+
+void X86AsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
+ PrintPICBaseSymbol();
+ O << '\n';
+ PrintPICBaseSymbol();
+ O << ':';
+}
+
+void X86AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid) const {
+ const char *JTEntryDirective = MJTI->getEntrySize() == 4 ?
+ MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
+
+ O << JTEntryDirective << ' ';
+
+ if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStubPIC()) {
+ O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
+ << '_' << uid << "_set_" << MBB->getNumber();
+ } else if (Subtarget->isPICStyleGOT()) {
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+ O << "@GOTOFF";
+ } else
+ GetMBBSymbol(MBB->getNumber())->print(O, MAI);
+}
+
+bool X86AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode) {
+ unsigned Reg = MO.getReg();
+ switch (Mode) {
+ default: return true; // Unknown mode.
+ case 'b': // Print QImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i8);
+ break;
+ case 'h': // Print QImode high register
+ Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
+ break;
+ case 'w': // Print HImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i16);
+ break;
+ case 'k': // Print SImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i32);
+ break;
+ case 'q': // Print DImode register
+ Reg = getX86SubSuperRegister(Reg, MVT::i64);
+ break;
+ }
+
+ O << '%' << X86ATTInstPrinter::getRegisterName(Reg);
+ return false;
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
-FunctionPass *llvm::createX86CodePrinterPass(raw_ostream &o,
- X86TargetMachine &tm,
- bool verbose) {
- const X86Subtarget *Subtarget = &tm.getSubtarget<X86Subtarget>();
+bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode) {
+ // Does this asm operand have a single letter operand modifier?
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ const MachineOperand &MO = MI->getOperand(OpNo);
+
+ switch (ExtraCode[0]) {
+ default: return true; // Unknown modifier.
+ case 'a': // This is an address. Currently only 'i' and 'r' are expected.
+ if (MO.isImm()) {
+ O << MO.getImm();
+ return false;
+ }
+ if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol()) {
+ printSymbolOperand(MO);
+ return false;
+ }
+ if (MO.isReg()) {
+ O << '(';
+ printOperand(MI, OpNo);
+ O << ')';
+ return false;
+ }
+ return true;
+
+ case 'c': // Don't print "$" before a global var name or constant.
+ if (MO.isImm())
+ O << MO.getImm();
+ else if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol())
+ printSymbolOperand(MO);
+ else
+ printOperand(MI, OpNo);
+ return false;
+
+ case 'A': // Print '*' before a register (it must be a register)
+ if (MO.isReg()) {
+ O << '*';
+ printOperand(MI, OpNo);
+ return false;
+ }
+ return true;
+
+ case 'b': // Print QImode register
+ case 'h': // Print QImode high register
+ case 'w': // Print HImode register
+ case 'k': // Print SImode register
+ case 'q': // Print DImode register
+ if (MO.isReg())
+ return printAsmMRegister(MO, ExtraCode[0]);
+ printOperand(MI, OpNo);
+ return false;
+
+ case 'P': // This is the operand of a call, treat specially.
+ print_pcrel_imm(MI, OpNo);
+ return false;
+
+ case 'n': // Negate the immediate or print a '-' before the operand.
+ // Note: this is a temporary solution. It should be handled target
+ // independently as part of the 'MC' work.
+ if (MO.isImm()) {
+ O << -MO.getImm();
+ return false;
+ }
+ O << '-';
+ }
+ }
- if (Subtarget->isFlavorIntel())
- return new X86IntelAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
- return new X86ATTAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose);
+ printOperand(MI, OpNo);
+ return false;
}
-namespace {
- static struct Register {
- Register() {
- X86TargetMachine::registerAsmPrinter(createX86CodePrinterPass);
+bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
+ unsigned OpNo, unsigned AsmVariant,
+ const char *ExtraCode) {
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0) return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ default: return true; // Unknown modifier.
+ case 'b': // Print QImode register
+ case 'h': // Print QImode high register
+ case 'w': // Print HImode register
+ case 'k': // Print SImode register
+ case 'q': // Print SImode register
+ // These only apply to registers, ignore on mem.
+ break;
+ case 'P': // Don't print @PLT, but do print as memory.
+ printMemReference(MI, OpNo, "no-rip");
+ return false;
}
- } Registrator;
+ }
+ printMemReference(MI, OpNo);
+ return false;
+}
+
+
+
+/// printMachineInstruction -- Print out a single X86 LLVM instruction MI in
+/// AT&T syntax to the current output stream.
+///
+void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
+ ++EmittedInsts;
+
+ processDebugLoc(MI, true);
+
+ printInstructionThroughMCStreamer(MI);
+
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+
+ processDebugLoc(MI, false);
}
-extern "C" int X86AsmPrinterForceLink;
-int X86AsmPrinterForceLink = 0;
+void X86AsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
+ if (!GVar->hasInitializer())
+ return; // External global require no code
+
+ // Check to see if this is a special global used by LLVM, if so, emit it.
+ if (EmitSpecialLLVMGlobal(GVar)) {
+ if (Subtarget->isTargetDarwin() &&
+ TM.getRelocationModel() == Reloc::Static) {
+ if (GVar->getName() == "llvm.global_ctors")
+ O << ".reference .constructors_used\n";
+ else if (GVar->getName() == "llvm.global_dtors")
+ O << ".reference .destructors_used\n";
+ }
+ return;
+ }
+
+ const TargetData *TD = TM.getTargetData();
+
+ std::string name = Mang->getMangledName(GVar);
+ Constant *C = GVar->getInitializer();
+ const Type *Type = C->getType();
+ unsigned Size = TD->getTypeAllocSize(Type);
+ unsigned Align = TD->getPreferredAlignmentLog(GVar);
+
+ printVisibility(name, GVar->getVisibility());
+
+ if (Subtarget->isTargetELF())
+ O << "\t.type\t" << name << ",@object\n";
+
+
+ SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GVar, TM);
+ const MCSection *TheSection =
+ getObjFileLowering().SectionForGlobal(GVar, GVKind, Mang, TM);
+ OutStreamer.SwitchSection(TheSection);
+
+ // FIXME: get this stuff from section kind flags.
+ if (C->isNullValue() && !GVar->hasSection() &&
+ // Don't put things that should go in the cstring section into "comm".
+ !TheSection->getKind().isMergeableCString()) {
+ if (GVar->hasExternalLinkage()) {
+ if (const char *Directive = MAI->getZeroFillDirective()) {
+ O << "\t.globl " << name << '\n';
+ O << Directive << "__DATA, __common, " << name << ", "
+ << Size << ", " << Align << '\n';
+ return;
+ }
+ }
+
+ if (!GVar->isThreadLocal() &&
+ (GVar->hasLocalLinkage() || GVar->isWeakForLinker())) {
+ if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
+
+ if (MAI->getLCOMMDirective() != NULL) {
+ if (GVar->hasLocalLinkage()) {
+ O << MAI->getLCOMMDirective() << name << ',' << Size;
+ if (Subtarget->isTargetDarwin())
+ O << ',' << Align;
+ } else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) {
+ O << "\t.globl " << name << '\n'
+ << MAI->getWeakDefDirective() << name << '\n';
+ EmitAlignment(Align, GVar);
+ O << name << ":";
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
+ }
+ O << '\n';
+ EmitGlobalConstant(C);
+ return;
+ } else {
+ O << MAI->getCOMMDirective() << name << ',' << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
+ O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
+ }
+ } else {
+ if (!Subtarget->isTargetCygMing()) {
+ if (GVar->hasLocalLinkage())
+ O << "\t.local\t" << name << '\n';
+ }
+ O << MAI->getCOMMDirective() << name << ',' << Size;
+ if (MAI->getCOMMDirectiveTakesAlignment())
+ O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
+ }
+ if (VerboseAsm) {
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
+ }
+ O << '\n';
+ return;
+ }
+ }
+
+ switch (GVar->getLinkage()) {
+ case GlobalValue::CommonLinkage:
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
+ if (Subtarget->isTargetDarwin()) {
+ O << "\t.globl " << name << '\n'
+ << MAI->getWeakDefDirective() << name << '\n';
+ } else if (Subtarget->isTargetCygMing()) {
+ O << "\t.globl\t" << name << "\n"
+ "\t.linkonce same_size\n";
+ } else {
+ O << "\t.weak\t" << name << '\n';
+ }
+ break;
+ case GlobalValue::DLLExportLinkage:
+ case GlobalValue::AppendingLinkage:
+ // FIXME: appending linkage variables should go into a section of
+ // their name or something. For now, just emit them as external.
+ case GlobalValue::ExternalLinkage:
+ // If external or appending, declare as a global symbol
+ O << "\t.globl " << name << '\n';
+ // FALL THROUGH
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::InternalLinkage:
+ break;
+ default:
+ llvm_unreachable("Unknown linkage type!");
+ }
+
+ EmitAlignment(Align, GVar);
+ O << name << ":";
+ if (VerboseAsm){
+ O.PadToColumn(MAI->getCommentColumn());
+ O << MAI->getCommentString() << ' ';
+ WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
+ }
+ O << '\n';
+
+ EmitGlobalConstant(C);
+
+ if (MAI->hasDotTypeDotSizeDirective())
+ O << "\t.size\t" << name << ", " << Size << '\n';
+}
+
+void X86AsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (Subtarget->isTargetDarwin()) {
+ // All darwin targets use mach-o.
+ TargetLoweringObjectFileMachO &TLOFMacho =
+ static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
+
+ MachineModuleInfoMachO &MMIMacho =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ // Output stubs for dynamically-linked functions.
+ MachineModuleInfoMachO::SymbolListTy Stubs;
+
+ Stubs = MMIMacho.GetFnStubList();
+ if (!Stubs.empty()) {
+ const MCSection *TheSection =
+ TLOFMacho.getMachOSection("__IMPORT", "__jump_table",
+ MCSectionMachO::S_SYMBOL_STUBS |
+ MCSectionMachO::S_ATTR_SELF_MODIFYING_CODE |
+ MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
+ 5, SectionKind::getMetadata());
+ OutStreamer.SwitchSection(TheSection);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ Stubs[i].first->print(O, MAI);
+ O << ":\n" << "\t.indirect_symbol ";
+ // Get the MCSymbol without the $stub suffix.
+ Stubs[i].second->print(O, MAI);
+ O << "\n\thlt ; hlt ; hlt ; hlt ; hlt\n";
+ }
+ O << '\n';
+
+ Stubs.clear();
+ }
+
+ // Output stubs for external and common global variables.
+ Stubs = MMIMacho.GetGVStubList();
+ if (!Stubs.empty()) {
+ const MCSection *TheSection =
+ TLOFMacho.getMachOSection("__IMPORT", "__pointers",
+ MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS,
+ SectionKind::getMetadata());
+ OutStreamer.SwitchSection(TheSection);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ Stubs[i].first->print(O, MAI);
+ O << ":\n\t.indirect_symbol ";
+ Stubs[i].second->print(O, MAI);
+ O << "\n\t.long\t0\n";
+ }
+ Stubs.clear();
+ }
+
+ Stubs = MMIMacho.GetHiddenGVStubList();
+ if (!Stubs.empty()) {
+ OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
+ EmitAlignment(2);
+
+ for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
+ Stubs[i].first->print(O, MAI);
+ O << ":\n" << MAI->getData32bitsDirective();
+ Stubs[i].second->print(O, MAI);
+ O << '\n';
+ }
+ Stubs.clear();
+ }
+
+ // Funny Darwin hack: This flag tells the linker that no global symbols
+ // contain code that falls through to other global symbols (e.g. the obvious
+ // implementation of multiple entry points). If this doesn't occur, the
+ // linker can safely perform dead code stripping. Since LLVM never
+ // generates code that does this, it is always safe to set.
+ O << "\t.subsections_via_symbols\n";
+ }
+
+ if (Subtarget->isTargetCOFF()) {
+ // Necessary for dllexport support
+ std::vector<std::string> DLLExportedFns, DLLExportedGlobals;
+
+ X86COFFMachineModuleInfo &COFFMMI =
+ MMI->getObjFileInfo<X86COFFMachineModuleInfo>();
+ TargetLoweringObjectFileCOFF &TLOFCOFF =
+ static_cast<TargetLoweringObjectFileCOFF&>(getObjFileLowering());
+
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (I->hasDLLExportLinkage())
+ DLLExportedFns.push_back(Mang->getMangledName(I));
+
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ if (I->hasDLLExportLinkage())
+ DLLExportedGlobals.push_back(Mang->getMangledName(I));
+
+ if (Subtarget->isTargetCygMing()) {
+ // Emit type information for external functions
+ for (X86COFFMachineModuleInfo::stub_iterator I = COFFMMI.stub_begin(),
+ E = COFFMMI.stub_end(); I != E; ++I) {
+ O << "\t.def\t " << I->getKeyData()
+ << ";\t.scl\t" << COFF::C_EXT
+ << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
+ << ";\t.endef\n";
+ }
+ }
+
+ // Output linker support code for dllexported globals on windows.
+ if (!DLLExportedGlobals.empty() || !DLLExportedFns.empty()) {
+ OutStreamer.SwitchSection(TLOFCOFF.getCOFFSection(".section .drectve",
+ true,
+ SectionKind::getMetadata()));
+
+ for (unsigned i = 0, e = DLLExportedGlobals.size(); i != e; ++i)
+ O << "\t.ascii \" -export:" << DLLExportedGlobals[i] << ",data\"\n";
+
+ for (unsigned i = 0, e = DLLExportedFns.size(); i != e; ++i)
+ O << "\t.ascii \" -export:" << DLLExportedFns[i] << "\"\n";
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Target Registry Stuff
+//===----------------------------------------------------------------------===//
+
+static MCInstPrinter *createX86MCInstPrinter(const Target &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ raw_ostream &O) {
+ if (SyntaxVariant == 0)
+ return new X86ATTInstPrinter(O, MAI);
+ if (SyntaxVariant == 1)
+ return new X86IntelInstPrinter(O, MAI);
+ return 0;
+}
// Force static initialization.
-extern "C" void LLVMInitializeX86AsmPrinter() { }
+extern "C" void LLVMInitializeX86AsmPrinter() {
+ RegisterAsmPrinter<X86AsmPrinter> X(TheX86_32Target);
+ RegisterAsmPrinter<X86AsmPrinter> Y(TheX86_64Target);
+
+ TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,createX86MCInstPrinter);
+ TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,createX86MCInstPrinter);
+}
diff --git a/lib/Target/X86/AsmPrinter/X86AsmPrinter.h b/lib/Target/X86/AsmPrinter/X86AsmPrinter.h
new file mode 100644
index 0000000..0351829
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86AsmPrinter.h
@@ -0,0 +1,150 @@
+//===-- X86AsmPrinter.h - Convert X86 LLVM code to assembly -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// AT&T assembly code printer class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86ASMPRINTER_H
+#define X86ASMPRINTER_H
+
+#include "../X86.h"
+#include "../X86MachineFunctionInfo.h"
+#include "../X86TargetMachine.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+
+class MachineJumpTableInfo;
+class MCContext;
+class MCInst;
+class MCStreamer;
+class MCSymbol;
+
+class VISIBILITY_HIDDEN X86AsmPrinter : public AsmPrinter {
+ const X86Subtarget *Subtarget;
+ public:
+ explicit X86AsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
+ : AsmPrinter(O, TM, T, V) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ }
+
+ virtual const char *getPassName() const {
+ return "X86 AT&T-Style Assembly Printer";
+ }
+
+ const X86Subtarget &getSubtarget() const { return *Subtarget; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<MachineModuleInfo>();
+ AU.addRequired<DwarfWriter>();
+ AsmPrinter::getAnalysisUsage(AU);
+ }
+
+
+ virtual void EmitEndOfAsmFile(Module &M);
+
+ void printInstructionThroughMCStreamer(const MachineInstr *MI);
+
+
+ void printMCInst(const MCInst *MI);
+
+ void printSymbolOperand(const MachineOperand &MO);
+
+
+
+ // These methods are used by the tablegen'erated instruction printer.
+ void printOperand(const MachineInstr *MI, unsigned OpNo,
+ const char *Modifier = 0);
+ void print_pcrel_imm(const MachineInstr *MI, unsigned OpNo);
+
+ void printopaquemem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+
+ void printi8mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi16mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi32mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi64mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printi128mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf32mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf64mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf80mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printf128mem(const MachineInstr *MI, unsigned OpNo) {
+ printMemReference(MI, OpNo);
+ }
+ void printlea32mem(const MachineInstr *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64mem(const MachineInstr *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64_32mem(const MachineInstr *MI, unsigned OpNo) {
+ printLeaMemReference(MI, OpNo, "subreg64");
+ }
+
+ bool printAsmMRegister(const MachineOperand &MO, char Mode);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode);
+ bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode);
+
+ void printMachineInstruction(const MachineInstr *MI);
+ void printSSECC(const MachineInstr *MI, unsigned Op);
+ void printMemReference(const MachineInstr *MI, unsigned Op,
+ const char *Modifier=NULL);
+ void printLeaMemReference(const MachineInstr *MI, unsigned Op,
+ const char *Modifier=NULL);
+ void printPICJumpTableSetLabel(unsigned uid,
+ const MachineBasicBlock *MBB) const;
+ void printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
+ const MachineBasicBlock *MBB) const {
+ AsmPrinter::printPICJumpTableSetLabel(uid, uid2, MBB);
+ }
+ void printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid) const;
+
+ void printPICLabel(const MachineInstr *MI, unsigned Op);
+ void PrintGlobalVariable(const GlobalVariable* GVar);
+
+ void PrintPICBaseSymbol() const;
+
+ bool runOnMachineFunction(MachineFunction &F);
+
+ void emitFunctionHeader(const MachineFunction &MF);
+
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp
new file mode 100644
index 0000000..fde5902
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.cpp
@@ -0,0 +1,131 @@
+//===-- X86IntelInstPrinter.cpp - AT&T assembly instruction printing ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes code for rendering MCInst instances as AT&T-style
+// assembly.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+#include "X86IntelInstPrinter.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "X86GenInstrNames.inc"
+using namespace llvm;
+
+// Include the auto-generated portion of the assembly writer.
+#define MachineInstr MCInst
+#define NO_ASM_WRITER_BOILERPLATE
+#include "X86GenAsmWriter1.inc"
+#undef MachineInstr
+
+void X86IntelInstPrinter::printInst(const MCInst *MI) { printInstruction(MI); }
+
+void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op) {
+ switch (MI->getOperand(Op).getImm()) {
+ default: llvm_unreachable("Invalid ssecc argument!");
+ case 0: O << "eq"; break;
+ case 1: O << "lt"; break;
+ case 2: O << "le"; break;
+ case 3: O << "unord"; break;
+ case 4: O << "neq"; break;
+ case 5: O << "nlt"; break;
+ case 6: O << "nle"; break;
+ case 7: O << "ord"; break;
+ }
+}
+
+/// print_pcrel_imm - This is used to print an immediate value that ends up
+/// being encoded as a pc-relative value.
+void X86IntelInstPrinter::print_pcrel_imm(const MCInst *MI, unsigned OpNo) {
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isImm())
+ O << Op.getImm();
+ else {
+ assert(Op.isExpr() && "unknown pcrel immediate operand");
+ Op.getExpr()->print(O, &MAI);
+ }
+}
+
+static void PrintRegName(raw_ostream &O, StringRef RegName) {
+ for (unsigned i = 0, e = RegName.size(); i != e; ++i)
+ O << (char)toupper(RegName[i]);
+}
+
+void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
+ const char *Modifier) {
+ assert(Modifier == 0 && "Modifiers should not be used");
+
+ const MCOperand &Op = MI->getOperand(OpNo);
+ if (Op.isReg()) {
+ PrintRegName(O, getRegisterName(Op.getReg()));
+ } else if (Op.isImm()) {
+ O << Op.getImm();
+ } else {
+ assert(Op.isExpr() && "unknown operand kind in printOperand");
+ Op.getExpr()->print(O, &MAI);
+ }
+}
+
+void X86IntelInstPrinter::printLeaMemReference(const MCInst *MI, unsigned Op) {
+ const MCOperand &BaseReg = MI->getOperand(Op);
+ unsigned ScaleVal = MI->getOperand(Op+1).getImm();
+ const MCOperand &IndexReg = MI->getOperand(Op+2);
+ const MCOperand &DispSpec = MI->getOperand(Op+3);
+
+ O << '[';
+
+ bool NeedPlus = false;
+ if (BaseReg.getReg()) {
+ printOperand(MI, Op);
+ NeedPlus = true;
+ }
+
+ if (IndexReg.getReg()) {
+ if (NeedPlus) O << " + ";
+ if (ScaleVal != 1)
+ O << ScaleVal << '*';
+ printOperand(MI, Op+2);
+ NeedPlus = true;
+ }
+
+
+ if (!DispSpec.isImm()) {
+ if (NeedPlus) O << " + ";
+ assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
+ DispSpec.getExpr()->print(O, &MAI);
+ } else {
+ int64_t DispVal = DispSpec.getImm();
+ if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
+ if (NeedPlus) {
+ if (DispVal > 0)
+ O << " + ";
+ else {
+ O << " - ";
+ DispVal = -DispVal;
+ }
+ }
+ O << DispVal;
+ }
+ }
+
+ O << ']';
+}
+
+void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op) {
+ // If this has a segment register, print it.
+ if (MI->getOperand(Op+4).getReg()) {
+ printOperand(MI, Op+4);
+ O << ':';
+ }
+ printLeaMemReference(MI, Op);
+}
diff --git a/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h
new file mode 100644
index 0000000..1976177
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86IntelInstPrinter.h
@@ -0,0 +1,99 @@
+//===-- X86IntelInstPrinter.h - Convert X86 MCInst to assembly syntax -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class prints an X86 MCInst to intel style .s file syntax.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_INTEL_INST_PRINTER_H
+#define X86_INTEL_INST_PRINTER_H
+
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+ class MCOperand;
+
+class X86IntelInstPrinter : public MCInstPrinter {
+public:
+ X86IntelInstPrinter(raw_ostream &O, const MCAsmInfo &MAI)
+ : MCInstPrinter(O, MAI) {}
+
+ virtual void printInst(const MCInst *MI);
+
+ // Autogenerated by tblgen.
+ void printInstruction(const MCInst *MI);
+ static const char *getRegisterName(unsigned RegNo);
+
+
+ void printOperand(const MCInst *MI, unsigned OpNo,
+ const char *Modifier = 0);
+ void printMemReference(const MCInst *MI, unsigned Op);
+ void printLeaMemReference(const MCInst *MI, unsigned Op);
+ void printSSECC(const MCInst *MI, unsigned Op);
+ void print_pcrel_imm(const MCInst *MI, unsigned OpNo);
+
+ void printopaquemem(const MCInst *MI, unsigned OpNo) {
+ O << "OPAQUE PTR ";
+ printMemReference(MI, OpNo);
+ }
+
+ void printi8mem(const MCInst *MI, unsigned OpNo) {
+ O << "BYTE PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printi16mem(const MCInst *MI, unsigned OpNo) {
+ O << "WORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printi32mem(const MCInst *MI, unsigned OpNo) {
+ O << "DWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printi64mem(const MCInst *MI, unsigned OpNo) {
+ O << "QWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printi128mem(const MCInst *MI, unsigned OpNo) {
+ O << "XMMWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printf32mem(const MCInst *MI, unsigned OpNo) {
+ O << "DWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printf64mem(const MCInst *MI, unsigned OpNo) {
+ O << "QWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printf80mem(const MCInst *MI, unsigned OpNo) {
+ O << "XWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printf128mem(const MCInst *MI, unsigned OpNo) {
+ O << "XMMWORD PTR ";
+ printMemReference(MI, OpNo);
+ }
+ void printlea32mem(const MCInst *MI, unsigned OpNo) {
+ O << "DWORD PTR ";
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64mem(const MCInst *MI, unsigned OpNo) {
+ O << "QWORD PTR ";
+ printLeaMemReference(MI, OpNo);
+ }
+ void printlea64_32mem(const MCInst *MI, unsigned OpNo) {
+ O << "QWORD PTR ";
+ printLeaMemReference(MI, OpNo);
+ }
+};
+
+}
+
+#endif
diff --git a/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp
new file mode 100644
index 0000000..5ccddf5
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86MCInstLower.cpp
@@ -0,0 +1,485 @@
+//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower X86 MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MCInstLower.h"
+#include "X86AsmPrinter.h"
+#include "X86MCAsmInfo.h"
+#include "X86COFFMachineModuleInfo.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/ADT/SmallString.h"
+using namespace llvm;
+
+
+const X86Subtarget &X86MCInstLower::getSubtarget() const {
+ return AsmPrinter.getSubtarget();
+}
+
+MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
+ assert(getSubtarget().isTargetDarwin() &&"Can only get MachO info on darwin");
+ return AsmPrinter.MMI->getObjFileInfo<MachineModuleInfoMachO>();
+}
+
+
+MCSymbol *X86MCInstLower::GetPICBaseSymbol() const {
+ SmallString<60> Name;
+ raw_svector_ostream(Name) << AsmPrinter.MAI->getPrivateGlobalPrefix()
+ << AsmPrinter.getFunctionNumber() << "$pb";
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+
+/// LowerGlobalAddressOperand - Lower an MO_GlobalAddress operand to an
+/// MCOperand.
+MCSymbol *X86MCInstLower::
+GetGlobalAddressSymbol(const MachineOperand &MO) const {
+ const GlobalValue *GV = MO.getGlobal();
+
+ bool isImplicitlyPrivate = false;
+ if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
+ MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
+ isImplicitlyPrivate = true;
+
+ SmallString<128> Name;
+ Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
+
+ if (getSubtarget().isTargetCygMing()) {
+ X86COFFMachineModuleInfo &COFFMMI =
+ AsmPrinter.MMI->getObjFileInfo<X86COFFMachineModuleInfo>();
+ COFFMMI.DecorateCygMingName(Name, GV, *AsmPrinter.TM.getTargetData());
+ }
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ case X86II::MO_PIC_BASE_OFFSET: // Doesn't modify symbol name.
+ break;
+ case X86II::MO_DLLIMPORT: {
+ // Handle dllimport linkage.
+ const char *Prefix = "__imp_";
+ Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
+ break;
+ }
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
+ Name += "$non_lazy_ptr";
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
+
+ const MCSymbol *&StubSym = getMachOMMI().getGVStubEntry(Sym);
+ if (StubSym == 0) {
+ Name.clear();
+ Mang->getNameWithPrefix(Name, GV, false);
+ StubSym = Ctx.GetOrCreateSymbol(Name.str());
+ }
+ return Sym;
+ }
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
+ Name += "$non_lazy_ptr";
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
+ const MCSymbol *&StubSym = getMachOMMI().getHiddenGVStubEntry(Sym);
+ if (StubSym == 0) {
+ Name.clear();
+ Mang->getNameWithPrefix(Name, GV, false);
+ StubSym = Ctx.GetOrCreateSymbol(Name.str());
+ }
+ return Sym;
+ }
+ case X86II::MO_DARWIN_STUB: {
+ Name += "$stub";
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
+ const MCSymbol *&StubSym = getMachOMMI().getFnStubEntry(Sym);
+ if (StubSym == 0) {
+ Name.clear();
+ Mang->getNameWithPrefix(Name, GV, false);
+ StubSym = Ctx.GetOrCreateSymbol(Name.str());
+ }
+ return Sym;
+ }
+ // FIXME: These probably should be a modifier on the symbol or something??
+ case X86II::MO_TLSGD: Name += "@TLSGD"; break;
+ case X86II::MO_GOTTPOFF: Name += "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: Name += "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: Name += "@TPOFF"; break;
+ case X86II::MO_NTPOFF: Name += "@NTPOFF"; break;
+ case X86II::MO_GOTPCREL: Name += "@GOTPCREL"; break;
+ case X86II::MO_GOT: Name += "@GOT"; break;
+ case X86II::MO_GOTOFF: Name += "@GOTOFF"; break;
+ case X86II::MO_PLT: Name += "@PLT"; break;
+ }
+
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+MCSymbol *X86MCInstLower::
+GetExternalSymbolSymbol(const MachineOperand &MO) const {
+ SmallString<128> Name;
+ Name += AsmPrinter.MAI->getGlobalPrefix();
+ Name += MO.getSymbolName();
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ case X86II::MO_GOT_ABSOLUTE_ADDRESS: // Doesn't modify symbol name.
+ case X86II::MO_PIC_BASE_OFFSET: // Doesn't modify symbol name.
+ break;
+ case X86II::MO_DLLIMPORT: {
+ // Handle dllimport linkage.
+ const char *Prefix = "__imp_";
+ Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
+ break;
+ }
+ case X86II::MO_DARWIN_STUB: {
+ Name += "$stub";
+ MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
+ const MCSymbol *&StubSym = getMachOMMI().getFnStubEntry(Sym);
+
+ if (StubSym == 0) {
+ Name.erase(Name.end()-5, Name.end());
+ StubSym = Ctx.GetOrCreateSymbol(Name.str());
+ }
+ return Sym;
+ }
+ // FIXME: These probably should be a modifier on the symbol or something??
+ case X86II::MO_TLSGD: Name += "@TLSGD"; break;
+ case X86II::MO_GOTTPOFF: Name += "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: Name += "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: Name += "@TPOFF"; break;
+ case X86II::MO_NTPOFF: Name += "@NTPOFF"; break;
+ case X86II::MO_GOTPCREL: Name += "@GOTPCREL"; break;
+ case X86II::MO_GOT: Name += "@GOT"; break;
+ case X86II::MO_GOTOFF: Name += "@GOTOFF"; break;
+ case X86II::MO_PLT: Name += "@PLT"; break;
+ }
+
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+MCSymbol *X86MCInstLower::GetJumpTableSymbol(const MachineOperand &MO) const {
+ SmallString<256> Name;
+ raw_svector_ostream(Name) << AsmPrinter.MAI->getPrivateGlobalPrefix() << "JTI"
+ << AsmPrinter.getFunctionNumber() << '_' << MO.getIndex();
+
+ switch (MO.getTargetFlags()) {
+ default:
+ llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ break;
+ // FIXME: These probably should be a modifier on the symbol or something??
+ case X86II::MO_TLSGD: Name += "@TLSGD"; break;
+ case X86II::MO_GOTTPOFF: Name += "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: Name += "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: Name += "@TPOFF"; break;
+ case X86II::MO_NTPOFF: Name += "@NTPOFF"; break;
+ case X86II::MO_GOTPCREL: Name += "@GOTPCREL"; break;
+ case X86II::MO_GOT: Name += "@GOT"; break;
+ case X86II::MO_GOTOFF: Name += "@GOTOFF"; break;
+ case X86II::MO_PLT: Name += "@PLT"; break;
+ }
+
+ // Create a symbol for the name.
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+
+MCSymbol *X86MCInstLower::
+GetConstantPoolIndexSymbol(const MachineOperand &MO) const {
+ SmallString<256> Name;
+ raw_svector_ostream(Name) << AsmPrinter.MAI->getPrivateGlobalPrefix() << "CPI"
+ << AsmPrinter.getFunctionNumber() << '_' << MO.getIndex();
+
+ switch (MO.getTargetFlags()) {
+ default:
+ llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ break;
+ // FIXME: These probably should be a modifier on the symbol or something??
+ case X86II::MO_TLSGD: Name += "@TLSGD"; break;
+ case X86II::MO_GOTTPOFF: Name += "@GOTTPOFF"; break;
+ case X86II::MO_INDNTPOFF: Name += "@INDNTPOFF"; break;
+ case X86II::MO_TPOFF: Name += "@TPOFF"; break;
+ case X86II::MO_NTPOFF: Name += "@NTPOFF"; break;
+ case X86II::MO_GOTPCREL: Name += "@GOTPCREL"; break;
+ case X86II::MO_GOT: Name += "@GOT"; break;
+ case X86II::MO_GOTOFF: Name += "@GOTOFF"; break;
+ case X86II::MO_PLT: Name += "@PLT"; break;
+ }
+
+ // Create a symbol for the name.
+ return Ctx.GetOrCreateSymbol(Name.str());
+}
+
+MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ const MCExpr *Expr = MCSymbolRefExpr::Create(Sym, Ctx);
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+
+ // These affect the name of the symbol, not any suffix.
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DLLIMPORT:
+ case X86II::MO_DARWIN_STUB:
+ case X86II::MO_TLSGD:
+ case X86II::MO_GOTTPOFF:
+ case X86II::MO_INDNTPOFF:
+ case X86II::MO_TPOFF:
+ case X86II::MO_NTPOFF:
+ case X86II::MO_GOTPCREL:
+ case X86II::MO_GOT:
+ case X86II::MO_GOTOFF:
+ case X86II::MO_PLT:
+ break;
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ // Subtract the pic base.
+ Expr = MCBinaryExpr::CreateSub(Expr,
+ MCSymbolRefExpr::Create(GetPICBaseSymbol(), Ctx),
+ Ctx);
+ break;
+ }
+
+ if (!MO.isJTI() && MO.getOffset())
+ Expr = MCBinaryExpr::CreateAdd(Expr,
+ MCConstantExpr::Create(MO.getOffset(), Ctx),
+ Ctx);
+ return MCOperand::CreateExpr(Expr);
+}
+
+
+
+static void lower_subreg32(MCInst *MI, unsigned OpNo) {
+ // Convert registers in the addr mode according to subreg32.
+ unsigned Reg = MI->getOperand(OpNo).getReg();
+ if (Reg != 0)
+ MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
+}
+
+static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
+ // Convert registers in the addr mode according to subreg64.
+ for (unsigned i = 0; i != 4; ++i) {
+ if (!MI->getOperand(OpNo+i).isReg()) continue;
+
+ unsigned Reg = MI->getOperand(OpNo+i).getReg();
+ if (Reg == 0) continue;
+
+ MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
+ }
+}
+
+
+
+void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ MCOperand MCOp;
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ MCOp = MCOperand::CreateReg(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ MCOp = MCOperand::CreateImm(MO.getImm());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
+ AsmPrinter.GetMBBSymbol(MO.getMBB()->getNumber()), Ctx));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ MCOp = LowerSymbolOperand(MO, GetGlobalAddressSymbol(MO));
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ MCOp = LowerSymbolOperand(MO, GetExternalSymbolSymbol(MO));
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ MCOp = LowerSymbolOperand(MO, GetJumpTableSymbol(MO));
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ MCOp = LowerSymbolOperand(MO, GetConstantPoolIndexSymbol(MO));
+ break;
+ }
+
+ OutMI.addOperand(MCOp);
+ }
+
+ // Handle a few special cases to eliminate operand modifiers.
+ switch (OutMI.getOpcode()) {
+ case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
+ lower_lea64_32mem(&OutMI, 1);
+ break;
+ case X86::MOV16r0:
+ OutMI.setOpcode(X86::MOV32r0);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX16rr8:
+ OutMI.setOpcode(X86::MOVZX32rr8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX16rm8:
+ OutMI.setOpcode(X86::MOVZX32rm8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVSX16rr8:
+ OutMI.setOpcode(X86::MOVSX32rr8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVSX16rm8:
+ OutMI.setOpcode(X86::MOVSX32rm8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rr32:
+ OutMI.setOpcode(X86::MOV32rr);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rm32:
+ OutMI.setOpcode(X86::MOV32rm);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOV64ri64i32:
+ OutMI.setOpcode(X86::MOV32ri);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rr8:
+ OutMI.setOpcode(X86::MOVZX32rr8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rm8:
+ OutMI.setOpcode(X86::MOVZX32rm8);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rr16:
+ OutMI.setOpcode(X86::MOVZX32rr16);
+ lower_subreg32(&OutMI, 0);
+ break;
+ case X86::MOVZX64rm16:
+ OutMI.setOpcode(X86::MOVZX32rm16);
+ lower_subreg32(&OutMI, 0);
+ break;
+ }
+}
+
+
+
+void X86AsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) {
+ X86MCInstLower MCInstLowering(OutContext, Mang, *this);
+ switch (MI->getOpcode()) {
+ case TargetInstrInfo::DBG_LABEL:
+ case TargetInstrInfo::EH_LABEL:
+ case TargetInstrInfo::GC_LABEL:
+ printLabel(MI);
+ return;
+ case TargetInstrInfo::INLINEASM:
+ O << '\t';
+ printInlineAsm(MI);
+ return;
+ case TargetInstrInfo::IMPLICIT_DEF:
+ printImplicitDef(MI);
+ return;
+ case TargetInstrInfo::KILL:
+ return;
+ case X86::MOVPC32r: {
+ MCInst TmpInst;
+ // This is a pseudo op for a two instruction sequence with a label, which
+ // looks like:
+ // call "L1$pb"
+ // "L1$pb":
+ // popl %esi
+
+ // Emit the call.
+ MCSymbol *PICBase = MCInstLowering.GetPICBaseSymbol();
+ TmpInst.setOpcode(X86::CALLpcrel32);
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
+ OutContext)));
+ printMCInst(&TmpInst);
+ O << '\n';
+
+ // Emit the label.
+ OutStreamer.EmitLabel(PICBase);
+
+ // popl $reg
+ TmpInst.setOpcode(X86::POP32r);
+ TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
+ printMCInst(&TmpInst);
+ return;
+ }
+
+ case X86::ADD32ri: {
+ // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
+ if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ break;
+
+ // Okay, we have something like:
+ // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
+
+ // For this, we want to print something like:
+ // MYGLOBAL + (. - PICBASE)
+ // However, we can't generate a ".", so just emit a new label here and refer
+ // to it. We know that this operand flag occurs at most once per function.
+ SmallString<64> Name;
+ raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
+ << "picbaseref" << getFunctionNumber();
+ MCSymbol *DotSym = OutContext.GetOrCreateSymbol(Name.str());
+ OutStreamer.EmitLabel(DotSym);
+
+ // Now that we have emitted the label, lower the complex operand expression.
+ MCSymbol *OpSym = MCInstLowering.GetExternalSymbolSymbol(MI->getOperand(2));
+
+ const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
+ const MCExpr *PICBase =
+ MCSymbolRefExpr::Create(MCInstLowering.GetPICBaseSymbol(), OutContext);
+ DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
+
+ DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
+ DotExpr, OutContext);
+
+ MCInst TmpInst;
+ TmpInst.setOpcode(X86::ADD32ri);
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
+ TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
+ TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
+ printMCInst(&TmpInst);
+ return;
+ }
+ }
+
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+
+
+ printMCInst(&TmpInst);
+}
+
diff --git a/lib/Target/X86/AsmPrinter/X86MCInstLower.h b/lib/Target/X86/AsmPrinter/X86MCInstLower.h
new file mode 100644
index 0000000..fa25b90
--- /dev/null
+++ b/lib/Target/X86/AsmPrinter/X86MCInstLower.h
@@ -0,0 +1,54 @@
+//===-- X86MCInstLower.h - Lower MachineInstr to MCInst -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86_MCINSTLOWER_H
+#define X86_MCINSTLOWER_H
+
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+ class MCContext;
+ class MCInst;
+ class MCOperand;
+ class MCSymbol;
+ class MachineInstr;
+ class MachineModuleInfoMachO;
+ class MachineOperand;
+ class Mangler;
+ class X86AsmPrinter;
+ class X86Subtarget;
+
+/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
+class VISIBILITY_HIDDEN X86MCInstLower {
+ MCContext &Ctx;
+ Mangler *Mang;
+ X86AsmPrinter &AsmPrinter;
+
+ const X86Subtarget &getSubtarget() const;
+public:
+ X86MCInstLower(MCContext &ctx, Mangler *mang, X86AsmPrinter &asmprinter)
+ : Ctx(ctx), Mang(mang), AsmPrinter(asmprinter) {}
+
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ MCSymbol *GetPICBaseSymbol() const;
+
+ MCSymbol *GetGlobalAddressSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetExternalSymbolSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetJumpTableSymbol(const MachineOperand &MO) const;
+ MCSymbol *GetConstantPoolIndexSymbol(const MachineOperand &MO) const;
+ MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
+
+private:
+ MachineModuleInfoMachO &getMachOMMI() const;
+};
+
+}
+
+#endif
diff --git a/lib/Target/X86/CMakeLists.txt b/lib/Target/X86/CMakeLists.txt
index 7ea0e51..3ad65fb 100644
--- a/lib/Target/X86/CMakeLists.txt
+++ b/lib/Target/X86/CMakeLists.txt
@@ -7,13 +7,15 @@ tablegen(X86GenInstrNames.inc -gen-instr-enums)
tablegen(X86GenInstrInfo.inc -gen-instr-desc)
tablegen(X86GenAsmWriter.inc -gen-asm-writer)
tablegen(X86GenAsmWriter1.inc -gen-asm-writer -asmwriternum=1)
+tablegen(X86GenAsmMatcher.inc -gen-asm-matcher)
tablegen(X86GenDAGISel.inc -gen-dag-isel)
tablegen(X86GenFastISel.inc -gen-fast-isel)
tablegen(X86GenCallingConv.inc -gen-callingconv)
tablegen(X86GenSubtarget.inc -gen-subtarget)
-add_llvm_target(X86CodeGen
+set(sources
X86CodeEmitter.cpp
+ X86COFFMachineModuleInfo.cpp
X86ELFWriterInfo.cpp
X86FloatingPoint.cpp
X86FloatingPointRegKill.cpp
@@ -21,11 +23,19 @@ add_llvm_target(X86CodeGen
X86ISelLowering.cpp
X86InstrInfo.cpp
X86JITInfo.cpp
+ X86MCAsmInfo.cpp
X86RegisterInfo.cpp
X86Subtarget.cpp
- X86TargetAsmInfo.cpp
X86TargetMachine.cpp
+ X86TargetObjectFile.cpp
X86FastISel.cpp
)
+if( CMAKE_CL_64 )
+ enable_language(ASM_MASM)
+ set(sources ${sources} X86CompilationCallback_Win64.asm)
+endif()
+
+add_llvm_target(X86CodeGen ${sources})
+
target_link_libraries (LLVMX86CodeGen LLVMSelectionDAG)
diff --git a/lib/Target/X86/Makefile b/lib/Target/X86/Makefile
index 44f1c5d..220831d 100644
--- a/lib/Target/X86/Makefile
+++ b/lib/Target/X86/Makefile
@@ -13,11 +13,11 @@ TARGET = X86
# Make sure that tblgen is run, first thing.
BUILT_SOURCES = X86GenRegisterInfo.h.inc X86GenRegisterNames.inc \
X86GenRegisterInfo.inc X86GenInstrNames.inc \
- X86GenInstrInfo.inc X86GenAsmWriter.inc \
+ X86GenInstrInfo.inc X86GenAsmWriter.inc X86GenAsmMatcher.inc \
X86GenAsmWriter1.inc X86GenDAGISel.inc \
X86GenFastISel.inc \
X86GenCallingConv.inc X86GenSubtarget.inc
-DIRS = AsmPrinter
+DIRS = AsmPrinter AsmParser TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/X86/README-X86-64.txt b/lib/Target/X86/README-X86-64.txt
index ad12137..e8f7c5d 100644
--- a/lib/Target/X86/README-X86-64.txt
+++ b/lib/Target/X86/README-X86-64.txt
@@ -249,3 +249,52 @@ lowered return value, and it would free non-C frontends from a
complication only required by a C-based ABI.
//===---------------------------------------------------------------------===//
+
+We get a redundant zero extension for code like this:
+
+int mask[1000];
+int foo(unsigned x) {
+ if (x < 10)
+ x = x * 45;
+ else
+ x = x * 78;
+ return mask[x];
+}
+
+_foo:
+LBB1_0: ## entry
+ cmpl $9, %edi
+ jbe LBB1_3 ## bb
+LBB1_1: ## bb1
+ imull $78, %edi, %eax
+LBB1_2: ## bb2
+ movl %eax, %eax <----
+ movq _mask@GOTPCREL(%rip), %rcx
+ movl (%rcx,%rax,4), %eax
+ ret
+LBB1_3: ## bb
+ imull $45, %edi, %eax
+ jmp LBB1_2 ## bb2
+
+Before regalloc, we have:
+
+ %reg1025<def> = IMUL32rri8 %reg1024, 45, %EFLAGS<imp-def>
+ JMP mbb<bb2,0x203afb0>
+ Successors according to CFG: 0x203afb0 (#3)
+
+bb1: 0x203af60, LLVM BB @0x1e02310, ID#2:
+ Predecessors according to CFG: 0x203aec0 (#0)
+ %reg1026<def> = IMUL32rri8 %reg1024, 78, %EFLAGS<imp-def>
+ Successors according to CFG: 0x203afb0 (#3)
+
+bb2: 0x203afb0, LLVM BB @0x1e02340, ID#3:
+ Predecessors according to CFG: 0x203af10 (#1) 0x203af60 (#2)
+ %reg1027<def> = PHI %reg1025, mbb<bb,0x203af10>,
+ %reg1026, mbb<bb1,0x203af60>
+ %reg1029<def> = MOVZX64rr32 %reg1027
+
+so we'd have to know that IMUL32rri8 leaves the high word zero extended and to
+be able to recognize the zero extend. This could also presumably be implemented
+if we have whole-function selectiondags.
+
+//===---------------------------------------------------------------------===//
diff --git a/lib/Target/X86/README.txt b/lib/Target/X86/README.txt
index 4464878..046d35c 100644
--- a/lib/Target/X86/README.txt
+++ b/lib/Target/X86/README.txt
@@ -1932,3 +1932,23 @@ Replacing an icmp+select with a shift should always be considered profitable in
instcombine.
//===---------------------------------------------------------------------===//
+
+Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
+properly.
+
+When the return value is not used (i.e. only care about the value in the
+memory), x86 does not have to use add to implement these. Instead, it can use
+add, sub, inc, dec instructions with the "lock" prefix.
+
+This is currently implemented using a bit of instruction selection trick. The
+issue is the target independent pattern produces one output and a chain and we
+want to map it into one that just output a chain. The current trick is to select
+it into a MERGE_VALUES with the first definition being an implicit_def. The
+proper solution is to add new ISD opcodes for the no-output variant. DAG
+combiner can then transform the node before it gets to target node selection.
+
+Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
+fact these instructions are identical to the non-lock versions. We need a way to
+add target specific information to target nodes and have this information
+carried over to machine instructions. Asm printer (or JIT) can use this
+information to add the "lock" prefix.
diff --git a/lib/Target/X86/TargetInfo/CMakeLists.txt b/lib/Target/X86/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..90be9f5
--- /dev/null
+++ b/lib/Target/X86/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMX86Info
+ X86TargetInfo.cpp
+ )
+
+add_dependencies(LLVMX86Info X86CodeGenTable_gen)
diff --git a/lib/Target/X86/TargetInfo/Makefile b/lib/Target/X86/TargetInfo/Makefile
new file mode 100644
index 0000000..6677d4b
--- /dev/null
+++ b/lib/Target/X86/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/X86/TargetInfo/Makefile ------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMX86Info
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/X86/TargetInfo/X86TargetInfo.cpp b/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
new file mode 100644
index 0000000..08d4d84
--- /dev/null
+++ b/lib/Target/X86/TargetInfo/X86TargetInfo.cpp
@@ -0,0 +1,23 @@
+//===-- X86TargetInfo.cpp - X86 Target Implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheX86_32Target, llvm::TheX86_64Target;
+
+extern "C" void LLVMInitializeX86TargetInfo() {
+ RegisterTarget<Triple::x86, /*HasJIT=*/true>
+ X(TheX86_32Target, "x86", "32-bit X86: Pentium-Pro and above");
+
+ RegisterTarget<Triple::x86_64, /*HasJIT=*/true>
+ Y(TheX86_64Target, "x86-64", "64-bit X86: EM64T and AMD64");
+}
diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h
index 22de3f6..a167118 100644
--- a/lib/Target/X86/X86.h
+++ b/lib/Target/X86/X86.h
@@ -22,8 +22,10 @@ namespace llvm {
class X86TargetMachine;
class FunctionPass;
class MachineCodeEmitter;
+class MCCodeEmitter;
class JITCodeEmitter;
-class raw_ostream;
+class Target;
+class formatted_raw_ostream;
/// createX86ISelDag - This pass converts a legalized DAG into a
/// X86-specific DAG, ready for instruction scheduling.
@@ -42,13 +44,6 @@ FunctionPass *createX86FloatingPointStackifierPass();
///
FunctionPass *createX87FPRegKillInserterPass();
-/// createX86CodePrinterPass - Returns a pass that prints the X86
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description.
-///
-FunctionPass *createX86CodePrinterPass(raw_ostream &o, X86TargetMachine &tm,
- bool Verbose);
-
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
/// to the specified MCE object.
@@ -56,6 +51,10 @@ FunctionPass *createX86CodeEmitterPass(X86TargetMachine &TM,
MachineCodeEmitter &MCE);
FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
JITCodeEmitter &JCE);
+FunctionPass *createX86ObjectCodeEmitterPass(X86TargetMachine &TM,
+ ObjectCodeEmitter &OCE);
+
+MCCodeEmitter *createX86MCCodeEmitter(const Target &, TargetMachine &TM);
/// createX86EmitCodeToMemory - Returns a pass that converts a register
/// allocated function into raw machine code in a dynamically
@@ -68,6 +67,8 @@ FunctionPass *createEmitX86CodeToMemory();
///
FunctionPass *createX86MaxStackAlignmentCalculatorPass();
+extern Target TheX86_32Target, TheX86_64Target;
+
} // End llvm namespace
// Defines symbolic names for X86 registers. This defines a mapping from
diff --git a/lib/Target/X86/X86.td b/lib/Target/X86/X86.td
index 47861d5..da467fe 100644
--- a/lib/Target/X86/X86.td
+++ b/lib/Target/X86/X86.td
@@ -19,12 +19,17 @@ include "llvm/Target/Target.td"
//===----------------------------------------------------------------------===//
// X86 Subtarget features.
//===----------------------------------------------------------------------===//
-
+
+def FeatureCMOV : SubtargetFeature<"cmov","HasCMov", "true",
+ "Enable conditional move instructions">;
+
def FeatureMMX : SubtargetFeature<"mmx","X86SSELevel", "MMX",
"Enable MMX instructions">;
def FeatureSSE1 : SubtargetFeature<"sse", "X86SSELevel", "SSE1",
"Enable SSE instructions",
- [FeatureMMX]>;
+ // SSE codegen depends on cmovs, and all
+ // SSE1+ processors support them.
+ [FeatureMMX, FeatureCMOV]>;
def FeatureSSE2 : SubtargetFeature<"sse2", "X86SSELevel", "SSE2",
"Enable SSE2 instructions",
[FeatureSSE1]>;
@@ -76,8 +81,8 @@ def : Proc<"i586", []>;
def : Proc<"pentium", []>;
def : Proc<"pentium-mmx", [FeatureMMX]>;
def : Proc<"i686", []>;
-def : Proc<"pentiumpro", []>;
-def : Proc<"pentium2", [FeatureMMX]>;
+def : Proc<"pentiumpro", [FeatureCMOV]>;
+def : Proc<"pentium2", [FeatureMMX, FeatureCMOV]>;
def : Proc<"pentium3", [FeatureSSE1]>;
def : Proc<"pentium-m", [FeatureSSE2, FeatureSlowBTMem]>;
def : Proc<"pentium4", [FeatureSSE2]>;
@@ -178,21 +183,34 @@ include "X86CallingConv.td"
// Assembly Printers
//===----------------------------------------------------------------------===//
+// Currently the X86 assembly parser only supports ATT syntax.
+def ATTAsmParser : AsmParser {
+ string AsmParserClassName = "ATTAsmParser";
+ int Variant = 0;
+
+ // Discard comments in assembly strings.
+ string CommentDelimiter = "#";
+
+ // Recognize hard coded registers.
+ string RegisterPrefix = "%";
+}
+
// The X86 target supports two different syntaxes for emitting machine code.
// This is controlled by the -x86-asm-syntax={att|intel}
def ATTAsmWriter : AsmWriter {
- string AsmWriterClassName = "ATTAsmPrinter";
+ string AsmWriterClassName = "ATTInstPrinter";
int Variant = 0;
}
def IntelAsmWriter : AsmWriter {
- string AsmWriterClassName = "IntelAsmPrinter";
+ string AsmWriterClassName = "IntelInstPrinter";
int Variant = 1;
}
-
def X86 : Target {
// Information about the instructions...
let InstructionSet = X86InstrInfo;
+ let AssemblyParsers = [ATTAsmParser];
+
let AssemblyWriters = [ATTAsmWriter, IntelAsmWriter];
}
diff --git a/lib/Target/X86/X86COFFMachineModuleInfo.cpp b/lib/Target/X86/X86COFFMachineModuleInfo.cpp
new file mode 100644
index 0000000..01c4fcf
--- /dev/null
+++ b/lib/Target/X86/X86COFFMachineModuleInfo.cpp
@@ -0,0 +1,123 @@
+//===-- llvm/CodeGen/X86COFFMachineModuleInfo.cpp -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is an MMI implementation for X86 COFF (windows) targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86COFFMachineModuleInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+X86COFFMachineModuleInfo::X86COFFMachineModuleInfo(const MachineModuleInfo &) {
+}
+X86COFFMachineModuleInfo::~X86COFFMachineModuleInfo() {
+
+}
+
+void X86COFFMachineModuleInfo::AddFunctionInfo(const Function *F,
+ const X86MachineFunctionInfo &Val) {
+ FunctionInfoMap[F] = Val;
+}
+
+
+
+static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
+ const TargetData &TD) {
+ X86MachineFunctionInfo Info;
+ uint64_t Size = 0;
+
+ switch (F->getCallingConv()) {
+ case CallingConv::X86_StdCall:
+ Info.setDecorationStyle(StdCall);
+ break;
+ case CallingConv::X86_FastCall:
+ Info.setDecorationStyle(FastCall);
+ break;
+ default:
+ return Info;
+ }
+
+ unsigned argNum = 1;
+ for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ AI != AE; ++AI, ++argNum) {
+ const Type* Ty = AI->getType();
+
+ // 'Dereference' type in case of byval parameter attribute
+ if (F->paramHasAttr(argNum, Attribute::ByVal))
+ Ty = cast<PointerType>(Ty)->getElementType();
+
+ // Size should be aligned to DWORD boundary
+ Size += ((TD.getTypeAllocSize(Ty) + 3)/4)*4;
+ }
+
+ // We're not supporting tooooo huge arguments :)
+ Info.setBytesToPopOnReturn((unsigned int)Size);
+ return Info;
+}
+
+
+/// DecorateCygMingName - Query FunctionInfoMap and use this information for
+/// various name decorations for Cygwin and MingW.
+void X86COFFMachineModuleInfo::DecorateCygMingName(SmallVectorImpl<char> &Name,
+ const GlobalValue *GV,
+ const TargetData &TD) {
+ const Function *F = dyn_cast<Function>(GV);
+ if (!F) return;
+
+ // Save function name for later type emission.
+ if (F->isDeclaration())
+ CygMingStubs.insert(StringRef(Name.data(), Name.size()));
+
+ // We don't want to decorate non-stdcall or non-fastcall functions right now
+ CallingConv::ID CC = F->getCallingConv();
+ if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
+ return;
+
+ const X86MachineFunctionInfo *Info;
+
+ FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
+ if (info_item == FunctionInfoMap.end()) {
+ // Calculate apropriate function info and populate map
+ FunctionInfoMap[F] = calculateFunctionInfo(F, TD);
+ Info = &FunctionInfoMap[F];
+ } else {
+ Info = &info_item->second;
+ }
+
+ if (Info->getDecorationStyle() == None) return;
+ const FunctionType *FT = F->getFunctionType();
+
+ // "Pure" variadic functions do not receive @0 suffix.
+ if (!FT->isVarArg() || FT->getNumParams() == 0 ||
+ (FT->getNumParams() == 1 && F->hasStructRetAttr()))
+ raw_svector_ostream(Name) << '@' << Info->getBytesToPopOnReturn();
+
+ if (Info->getDecorationStyle() == FastCall) {
+ if (Name[0] == '_')
+ Name[0] = '@';
+ else
+ Name.insert(Name.begin(), '@');
+ }
+}
+
+/// DecorateCygMingName - Query FunctionInfoMap and use this information for
+/// various name decorations for Cygwin and MingW.
+void X86COFFMachineModuleInfo::DecorateCygMingName(std::string &Name,
+ const GlobalValue *GV,
+ const TargetData &TD) {
+ SmallString<128> NameStr(Name.begin(), Name.end());
+ DecorateCygMingName(NameStr, GV, TD);
+ Name.assign(NameStr.begin(), NameStr.end());
+}
diff --git a/lib/Target/X86/X86COFFMachineModuleInfo.h b/lib/Target/X86/X86COFFMachineModuleInfo.h
new file mode 100644
index 0000000..afd5525
--- /dev/null
+++ b/lib/Target/X86/X86COFFMachineModuleInfo.h
@@ -0,0 +1,67 @@
+//===-- llvm/CodeGen/X86COFFMachineModuleInfo.h -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is an MMI implementation for X86 COFF (windows) targets.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86COFF_MACHINEMODULEINFO_H
+#define X86COFF_MACHINEMODULEINFO_H
+
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/ADT/StringSet.h"
+
+namespace llvm {
+ class X86MachineFunctionInfo;
+ class TargetData;
+
+/// X86COFFMachineModuleInfo - This is a MachineModuleInfoImpl implementation
+/// for X86 COFF targets.
+class X86COFFMachineModuleInfo : public MachineModuleInfoImpl {
+ StringSet<> CygMingStubs;
+
+ // We have to propagate some information about MachineFunction to
+ // AsmPrinter. It's ok, when we're printing the function, since we have
+ // access to MachineFunction and can get the appropriate MachineFunctionInfo.
+ // Unfortunately, this is not possible when we're printing reference to
+ // Function (e.g. calling it and so on). Even more, there is no way to get the
+ // corresponding MachineFunctions: it can even be not created at all. That's
+ // why we should use additional structure, when we're collecting all necessary
+ // information.
+ //
+ // This structure is using e.g. for name decoration for stdcall & fastcall'ed
+ // function, since we have to use arguments' size for decoration.
+ typedef std::map<const Function*, X86MachineFunctionInfo> FMFInfoMap;
+ FMFInfoMap FunctionInfoMap;
+
+public:
+ X86COFFMachineModuleInfo(const MachineModuleInfo &);
+ ~X86COFFMachineModuleInfo();
+
+
+ void DecorateCygMingName(std::string &Name, const GlobalValue *GV,
+ const TargetData &TD);
+ void DecorateCygMingName(SmallVectorImpl<char> &Name, const GlobalValue *GV,
+ const TargetData &TD);
+
+ void AddFunctionInfo(const Function *F, const X86MachineFunctionInfo &Val);
+
+
+ typedef StringSet<>::const_iterator stub_iterator;
+ stub_iterator stub_begin() const { return CygMingStubs.begin(); }
+ stub_iterator stub_end() const { return CygMingStubs.end(); }
+
+
+};
+
+
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/X86/X86CallingConv.td b/lib/Target/X86/X86CallingConv.td
index e9fcbd5..d77f039 100644
--- a/lib/Target/X86/X86CallingConv.td
+++ b/lib/Target/X86/X86CallingConv.td
@@ -89,7 +89,7 @@ def RetCC_X86_64_C : CallingConv<[
// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
// The X86-Win64 calling convention always returns __m64 values in RAX.
- CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RAX]>>,
+ CCIfType<[v8i8, v4i16, v2i32, v1i64], CCBitConvertToType<i64>>,
// And FP in XMM0 only.
CCIfType<[f32], CCAssignToReg<[XMM0]>>,
@@ -137,26 +137,26 @@ def CC_X86_64_C : CallingConv<[
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
+ // The first 6 v1i64 vector arguments are passed in GPRs on Darwin.
+ CCIfType<[v1i64],
+ CCIfSubtarget<"isTargetDarwin()",
+ CCBitConvertToType<i64>>>,
+
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
-
- // The first 8 FP/Vector arguments are passed in XMM registers.
- CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
- CCIfSubtarget<"hasSSE1()",
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.
CCIfType<[v8i8, v4i16, v2i32, v2f32],
CCIfSubtarget<"isTargetDarwin()",
CCIfSubtarget<"hasSSE2()",
- CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>>,
+ CCPromoteToType<v2i64>>>>,
- // The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
- CCIfType<[v1i64],
- CCIfSubtarget<"isTargetDarwin()",
- CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
+ // The first 8 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
@@ -184,6 +184,13 @@ def CC_X86_Win64_C : CallingConv<[
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
+ // 128 bit vectors are passed by pointer
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
+
+ // The first 4 MMX vector arguments are passed in GPRs.
+ CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32],
+ CCBitConvertToType<i64>>,
+
// The first 4 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>,
@@ -195,24 +202,16 @@ def CC_X86_Win64_C : CallingConv<[
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
[RCX , RDX , R8 , R9 ]>>,
- // The first 4 MMX vector arguments are passed in GPRs.
- CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32],
- CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
- [XMM0, XMM1, XMM2, XMM3]>>,
-
// Integer/FP values get stored in stack slots that are 8 bytes in size and
- // 16-byte aligned if there are no more registers to hold them.
- CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 16>>,
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
- // Vectors get 16-byte stack slots that are 16-byte aligned.
- CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
-
- // __m64 vectors get 8-byte stack slots that are 16-byte aligned.
- CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 16>>
+ // __m64 vectors get 8-byte stack slots that are 8-byte aligned.
+ CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index d5846a0..f942f3f 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -22,21 +22,27 @@
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
STATISTIC(NumEmitted, "Number of machine instructions emitted");
namespace {
-template<class CodeEmitter>
+ template<class CodeEmitter>
class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
const X86InstrInfo *II;
const TargetData *TD;
@@ -67,6 +73,7 @@ template<class CodeEmitter>
const TargetInstrDesc *Desc);
void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -83,7 +90,7 @@ template<class CodeEmitter>
intptr_t PCAdj = 0);
void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
- intptr_t PCAdj = 0);
+ intptr_t Adj = 0, bool IsPCRel = true);
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
void emitRegModRMByte(unsigned RegOpcodeField);
@@ -95,29 +102,27 @@ template<class CodeEmitter>
intptr_t PCAdj = 0);
unsigned getX86RegNum(unsigned RegNo) const;
-
- bool gvNeedsNonLazyPtr(const GlobalValue *GV);
};
template<class CodeEmitter>
char Emitter<CodeEmitter>::ID = 0;
-}
+} // end anonymous namespace.
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
/// to the specified templated MachineCodeEmitter object.
-namespace llvm {
-
-FunctionPass *createX86CodeEmitterPass(X86TargetMachine &TM,
- MachineCodeEmitter &MCE) {
+FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
+ MachineCodeEmitter &MCE) {
return new Emitter<MachineCodeEmitter>(TM, MCE);
}
-FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
- JITCodeEmitter &JCE) {
+FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
+ JITCodeEmitter &JCE) {
return new Emitter<JITCodeEmitter>(TM, JCE);
}
-
-} // end namespace llvm
+FunctionPass *llvm::createX86ObjectCodeEmitterPass(X86TargetMachine &TM,
+ ObjectCodeEmitter &OCE) {
+ return new Emitter<ObjectCodeEmitter>(TM, OCE);
+}
template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
@@ -130,7 +135,8 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
do {
- DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
+ DEBUG(errs() << "JITTing function '"
+ << MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
@@ -172,7 +178,7 @@ void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
intptr_t PCAdj /* = 0 */,
bool NeedStub /* = false */,
bool Indirect /* = false */) {
- intptr_t RelocCST = 0;
+ intptr_t RelocCST = Disp;
if (Reloc == X86::reloc_picrel_word)
RelocCST = PICBaseOffset;
else if (Reloc == X86::reloc_pcrel_word)
@@ -291,53 +297,61 @@ static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
-template<class CodeEmitter>
-bool Emitter<CodeEmitter>::gvNeedsNonLazyPtr(const GlobalValue *GV) {
- // For Darwin, simulate the linktime GOT by using the same non-lazy-pointer
+static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
+ const TargetMachine &TM) {
+ // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
// mechanism as 32-bit mode.
- return (!Is64BitMode || TM.getSubtarget<X86Subtarget>().isTargetDarwin()) &&
- TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
+ if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
+ !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
+ return false;
+
+ // Return true if this is a reference to a stub containing the address of the
+ // global, not the global itself.
+ return isGlobalStubReference(GVOp.getTargetFlags());
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
- int DispVal, intptr_t PCAdj) {
+ int DispVal,
+ intptr_t Adj /* = 0 */,
+ bool IsPCRel /* = true */) {
// If this is a simple integer displacement that doesn't require a relocation,
// emit it now.
if (!RelocOp) {
emitConstant(DispVal, 4);
return;
}
-
+
// Otherwise, this is something that requires a relocation. Emit it as such
// now.
+ unsigned RelocType = Is64BitMode ?
+ (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (RelocOp->isGlobal()) {
// In 64-bit static small code model, we could potentially emit absolute.
- // But it's probably not beneficial.
+ // But it's probably not beneficial. If the MCE supports using RIP directly
+ // do it, otherwise fallback to absolute (this is determined by IsPCRel).
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
bool NeedStub = isa<Function>(RelocOp->getGlobal());
- bool Indirect = gvNeedsNonLazyPtr(RelocOp->getGlobal());
- emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
- PCAdj, NeedStub, Indirect);
+ bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
+ emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
+ Adj, NeedStub, Indirect);
+ } else if (RelocOp->isSymbol()) {
+ emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
} else if (RelocOp->isCPI()) {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
- emitConstPoolAddress(RelocOp->getIndex(), rt,
- RelocOp->getOffset(), PCAdj);
- } else if (RelocOp->isJTI()) {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
- emitJumpTableAddress(RelocOp->getIndex(), rt, PCAdj);
+ emitConstPoolAddress(RelocOp->getIndex(), RelocType,
+ RelocOp->getOffset(), Adj);
} else {
- assert(0 && "Unknown value to relocate!");
+ assert(RelocOp->isJTI() && "Unexpected machine operand!");
+ emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
}
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
- unsigned Op, unsigned RegOpcodeField,
- intptr_t PCAdj) {
+ unsigned Op,unsigned RegOpcodeField,
+ intptr_t PCAdj) {
const MachineOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MachineOperand *DispForReloc = 0;
@@ -345,15 +359,17 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
// Figure out what sort of displacement we have to handle here.
if (Op3.isGlobal()) {
DispForReloc = &Op3;
+ } else if (Op3.isSymbol()) {
+ DispForReloc = &Op3;
} else if (Op3.isCPI()) {
- if (Is64BitMode || IsPIC) {
+ if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
DispVal += Op3.getOffset();
}
} else if (Op3.isJTI()) {
- if (Is64BitMode || IsPIC) {
+ if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
@@ -368,17 +384,23 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
unsigned BaseReg = Base.getReg();
+ // Indicate that the displacement will use an pcrel or absolute reference
+ // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
+ // while others, unless explicit asked to use RIP, use absolute references.
+ bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
+
// Is a SIB byte needed?
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
+ // 2-7) and absolute references.
if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
- IndexReg.getReg() == 0 &&
- (BaseReg == 0 || BaseReg == X86::RIP ||
- getX86RegNum(BaseReg) != N86::ESP)) {
- if (BaseReg == 0 ||
- BaseReg == X86::RIP) { // Just a displacement?
+ IndexReg.getReg() == 0 &&
+ ((BaseReg == 0 && MCE.earlyResolveAddresses()) || BaseReg == X86::RIP ||
+ (BaseReg != 0 && getX86RegNum(BaseReg) != N86::ESP))) {
+ if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
// Emit special case [disp32] encoding
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
-
- emitDisplacementField(DispForReloc, DispVal, PCAdj);
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
@@ -391,7 +413,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
- emitDisplacementField(DispForReloc, DispVal, PCAdj);
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
}
}
@@ -427,13 +449,13 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base. The
- // displacement has already been output.
+ // Handle the SIB byte for the case where there is no base, see Intel
+ // Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
- else
- IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
+ else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
+ IndexRegNo = 4;
emitSIBByte(SS, IndexRegNo, 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg);
@@ -449,21 +471,23 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
if (ForceDisp8) {
emitConstant(DispVal, 1);
} else if (DispVal != 0 || ForceDisp32) {
- emitDisplacementField(DispForReloc, DispVal, PCAdj);
+ emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
}
}
}
template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitInstruction(
- const MachineInstr &MI,
- const TargetInstrDesc *Desc) {
- DOUT << MI;
+void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
+ const TargetInstrDesc *Desc) {
+ DEBUG(errs() << MI);
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
unsigned Opcode = Desc->Opcode;
// Emit the lock opcode prefix as needed.
- if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0);
+ if (Desc->TSFlags & X86II::LOCK)
+ MCE.emitByte(0xF0);
// Emit segment override opcode prefix as needed.
switch (Desc->TSFlags & X86II::SegOvrMask) {
@@ -473,18 +497,21 @@ void Emitter<CodeEmitter>::emitInstruction(
case X86II::GS:
MCE.emitByte(0x65);
break;
- default: assert(0 && "Invalid segment!");
+ default: llvm_unreachable("Invalid segment!");
case 0: break; // No segment override!
}
// Emit the repeat opcode prefix as needed.
- if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
+ if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
+ MCE.emitByte(0xF3);
// Emit the operand size opcode prefix as needed.
- if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
+ if (Desc->TSFlags & X86II::OpSize)
+ MCE.emitByte(0x66);
// Emit the address size opcode prefix as needed.
- if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
+ if (Desc->TSFlags & X86II::AdSize)
+ MCE.emitByte(0x67);
bool Need0FPrefix = false;
switch (Desc->TSFlags & X86II::Op0Mask) {
@@ -493,6 +520,10 @@ void Emitter<CodeEmitter>::emitInstruction(
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
+ case X86II::TF: // F2 0F 38
+ MCE.emitByte(0xF2);
+ Need0FPrefix = true;
+ break;
case X86II::REP: break; // already handled.
case X86II::XS: // F3 0F
MCE.emitByte(0xF3);
@@ -508,14 +539,13 @@ void Emitter<CodeEmitter>::emitInstruction(
(((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
>> X86II::Op0Shift));
break; // Two-byte opcode prefix
- default: assert(0 && "Invalid prefix!");
+ default: llvm_unreachable("Invalid prefix!");
case 0: break; // No prefix!
}
+ // Handle REX prefix.
if (Is64BitMode) {
- // REX prefix
- unsigned REX = X86InstrInfo::determineREX(MI);
- if (REX)
+ if (unsigned REX = X86InstrInfo::determineREX(MI))
MCE.emitByte(0x40 | REX);
}
@@ -524,7 +554,8 @@ void Emitter<CodeEmitter>::emitInstruction(
MCE.emitByte(0x0F);
switch (Desc->TSFlags & X86II::Op0Mask) {
- case X86II::T8: // 0F 38
+ case X86II::TF: // F2 0F 38
+ case X86II::T8: // 0F 38
MCE.emitByte(0x38);
break;
case X86II::TA: // 0F 3A
@@ -543,29 +574,29 @@ void Emitter<CodeEmitter>::emitInstruction(
unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
switch (Desc->TSFlags & X86II::FormMask) {
- default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
+ default:
+ llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
// Remember the current PC offset, this is the PIC relocation
// base address.
switch (Opcode) {
default:
- assert(0 && "psuedo instructions should be removed before code emission");
+ llvm_unreachable("psuedo instructions should be removed before code"
+ " emission");
break;
- case TargetInstrInfo::INLINEASM: {
+ case TargetInstrInfo::INLINEASM:
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
- if (MI.getOperand(0).getSymbolName()[0]) {
- assert(0 && "JIT does not support inline asm!\n");
- abort();
- }
+ if (MI.getOperand(0).getSymbolName()[0])
+ llvm_report_error("JIT does not support inline asm!");
break;
- }
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
+ case TargetInstrInfo::GC_LABEL:
MCE.emitLabel(MI.getOperand(0).getImm());
break;
case TargetInstrInfo::IMPLICIT_DEF:
- case TargetInstrInfo::DECLARE:
+ case TargetInstrInfo::KILL:
case X86::DWARF_LOC:
case X86::FP_REG_KILL:
break;
@@ -582,73 +613,86 @@ void Emitter<CodeEmitter>::emitInstruction(
}
CurOp = NumOps;
break;
- case X86II::RawFrm:
+ case X86II::RawFrm: {
MCE.emitByte(BaseOpcode);
- if (CurOp != NumOps) {
- const MachineOperand &MO = MI.getOperand(CurOp++);
-
- DOUT << "RawFrm CurOp " << CurOp << "\n";
- DOUT << "isMBB " << MO.isMBB() << "\n";
- DOUT << "isGlobal " << MO.isGlobal() << "\n";
- DOUT << "isSymbol " << MO.isSymbol() << "\n";
- DOUT << "isImm " << MO.isImm() << "\n";
-
- if (MO.isMBB()) {
- emitPCRelativeBlockAddress(MO.getMBB());
- } else if (MO.isGlobal()) {
- // Assume undefined functions may be outside the Small codespace.
- bool NeedStub =
- (Is64BitMode &&
- (TM.getCodeModel() == CodeModel::Large ||
- TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
- Opcode == X86::TAILJMPd;
- emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
- MO.getOffset(), 0, NeedStub);
- } else if (MO.isSymbol()) {
- emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
- } else if (MO.isImm()) {
- if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
- // Fix up immediate operand for pc relative calls.
- intptr_t Imm = (intptr_t)MO.getImm();
- Imm = Imm - MCE.getCurrentPCValue() - 4;
- emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
- } else
- emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
- } else {
- assert(0 && "Unknown RawFrm operand!");
- }
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+
+ DEBUG(errs() << "RawFrm CurOp " << CurOp << "\n");
+ DEBUG(errs() << "isMBB " << MO.isMBB() << "\n");
+ DEBUG(errs() << "isGlobal " << MO.isGlobal() << "\n");
+ DEBUG(errs() << "isSymbol " << MO.isSymbol() << "\n");
+ DEBUG(errs() << "isImm " << MO.isImm() << "\n");
+
+ if (MO.isMBB()) {
+ emitPCRelativeBlockAddress(MO.getMBB());
+ break;
}
+
+ if (MO.isGlobal()) {
+ // Assume undefined functions may be outside the Small codespace.
+ bool NeedStub =
+ (Is64BitMode &&
+ (TM.getCodeModel() == CodeModel::Large ||
+ TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
+ Opcode == X86::TAILJMPd;
+ emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
+ MO.getOffset(), 0, NeedStub);
+ break;
+ }
+
+ if (MO.isSymbol()) {
+ emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
+ break;
+ }
+
+ assert(MO.isImm() && "Unknown RawFrm operand!");
+ if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
+ // Fix up immediate operand for pc relative calls.
+ intptr_t Imm = (intptr_t)MO.getImm();
+ Imm = Imm - MCE.getCurrentPCValue() - 4;
+ emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
+ } else
+ emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
break;
-
- case X86II::AddRegFrm:
+ }
+
+ case X86II::AddRegFrm: {
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
- if (CurOp != NumOps) {
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86InstrInfo::sizeOfImm(Desc);
- if (MO1.isImm())
- emitConstant(MO1.getImm(), Size);
- else {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- // This should not occur on Darwin for relocatable objects.
- if (Opcode == X86::MOV64ri)
- rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool NeedStub = isa<Function>(MO1.getGlobal());
- bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- NeedStub, Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- }
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86InstrInfo::sizeOfImm(Desc);
+ if (MO1.isImm()) {
+ emitConstant(MO1.getImm(), Size);
+ break;
}
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV64ri64i32)
+ rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
+ // This should not occur on Darwin for relocatable objects.
+ if (Opcode == X86::MOV64ri)
+ rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
+ if (MO1.isGlobal()) {
+ bool NeedStub = isa<Function>(MO1.getGlobal());
+ bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
+ emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+ NeedStub, Indirect);
+ } else if (MO1.isSymbol())
+ emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+ else if (MO1.isCPI())
+ emitConstPoolAddress(MO1.getIndex(), rt);
+ else if (MO1.isJTI())
+ emitJumpTableAddress(MO1.getIndex(), rt);
break;
+ }
case X86II::MRMDestReg: {
MCE.emitByte(BaseOpcode);
@@ -656,7 +700,8 @@ void Emitter<CodeEmitter>::emitInstruction(
getX86RegNum(MI.getOperand(CurOp+1).getReg()));
CurOp += 2;
if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
+ emitConstant(MI.getOperand(CurOp++).getImm(),
+ X86InstrInfo::sizeOfImm(Desc));
break;
}
case X86II::MRMDestMem: {
@@ -666,7 +711,8 @@ void Emitter<CodeEmitter>::emitInstruction(
.getReg()));
CurOp += X86AddrNumOperands + 1;
if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
+ emitConstant(MI.getOperand(CurOp++).getImm(),
+ X86InstrInfo::sizeOfImm(Desc));
break;
}
@@ -729,29 +775,31 @@ void Emitter<CodeEmitter>::emitInstruction(
(Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
}
- if (CurOp != NumOps) {
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86InstrInfo::sizeOfImm(Desc);
- if (MO1.isImm())
- emitConstant(MO1.getImm(), Size);
- else {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64ri32)
- rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool NeedStub = isa<Function>(MO1.getGlobal());
- bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- NeedStub, Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- }
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86InstrInfo::sizeOfImm(Desc);
+ if (MO1.isImm()) {
+ emitConstant(MO1.getImm(), Size);
+ break;
}
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV64ri32)
+ rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
+ if (MO1.isGlobal()) {
+ bool NeedStub = isa<Function>(MO1.getGlobal());
+ bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
+ emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
+ NeedStub, Indirect);
+ } else if (MO1.isSymbol())
+ emitExternalSymbolAddress(MO1.getSymbolName(), rt);
+ else if (MO1.isCPI())
+ emitConstPoolAddress(MO1.getIndex(), rt);
+ else if (MO1.isJTI())
+ emitJumpTableAddress(MO1.getIndex(), rt);
break;
}
@@ -768,29 +816,31 @@ void Emitter<CodeEmitter>::emitInstruction(
PCAdj);
CurOp += X86AddrNumOperands;
- if (CurOp != NumOps) {
- const MachineOperand &MO = MI.getOperand(CurOp++);
- unsigned Size = X86InstrInfo::sizeOfImm(Desc);
- if (MO.isImm())
- emitConstant(MO.getImm(), Size);
- else {
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64mi32)
- rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
- if (MO.isGlobal()) {
- bool NeedStub = isa<Function>(MO.getGlobal());
- bool Indirect = gvNeedsNonLazyPtr(MO.getGlobal());
- emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
- NeedStub, Indirect);
- } else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), rt);
- else if (MO.isCPI())
- emitConstPoolAddress(MO.getIndex(), rt);
- else if (MO.isJTI())
- emitJumpTableAddress(MO.getIndex(), rt);
- }
+ if (CurOp == NumOps)
+ break;
+
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+ unsigned Size = X86InstrInfo::sizeOfImm(Desc);
+ if (MO.isImm()) {
+ emitConstant(MO.getImm(), Size);
+ break;
}
+
+ unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
+ : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
+ if (Opcode == X86::MOV64mi32)
+ rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
+ if (MO.isGlobal()) {
+ bool NeedStub = isa<Function>(MO.getGlobal());
+ bool Indirect = gvNeedsNonLazyPtr(MO, TM);
+ emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
+ NeedStub, Indirect);
+ } else if (MO.isSymbol())
+ emitExternalSymbolAddress(MO.getSymbolName(), rt);
+ else if (MO.isCPI())
+ emitConstPoolAddress(MO.getIndex(), rt);
+ else if (MO.isJTI())
+ emitJumpTableAddress(MO.getIndex(), rt);
break;
}
@@ -804,10 +854,264 @@ void Emitter<CodeEmitter>::emitInstruction(
}
if (!Desc->isVariadic() && CurOp != NumOps) {
- cerr << "Cannot encode: ";
- MI.dump();
- cerr << '\n';
- abort();
+#ifndef NDEBUG
+ errs() << "Cannot encode all operands of: " << MI << "\n";
+#endif
+ llvm_unreachable(0);
+ }
+
+ MCE.processDebugLoc(MI.getDebugLoc(), false);
+}
+
+// Adapt the Emitter / CodeEmitter interfaces to MCCodeEmitter.
+//
+// FIXME: This is a total hack designed to allow work on llvm-mc to proceed
+// without being blocked on various cleanups needed to support a clean interface
+// to instruction encoding.
+//
+// Look away!
+
+#include "llvm/DerivedTypes.h"
+
+namespace {
+class MCSingleInstructionCodeEmitter : public MachineCodeEmitter {
+ uint8_t Data[256];
+
+public:
+ MCSingleInstructionCodeEmitter() { reset(); }
+
+ void reset() {
+ BufferBegin = Data;
+ BufferEnd = array_endof(Data);
+ CurBufferPtr = Data;
+ }
+
+ StringRef str() {
+ return StringRef(reinterpret_cast<char*>(BufferBegin),
+ CurBufferPtr - BufferBegin);
+ }
+
+ virtual void startFunction(MachineFunction &F) {}
+ virtual bool finishFunction(MachineFunction &F) { return false; }
+ virtual void emitLabel(uint64_t LabelID) {}
+ virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {}
+ virtual bool earlyResolveAddresses() const { return false; }
+ virtual void addRelocation(const MachineRelocation &MR) { }
+ virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const {
+ return 0;
+ }
+ virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const {
+ return 0;
+ }
+ virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
+ return 0;
+ }
+ virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
+ return 0;
+ }
+ virtual void setModuleInfo(MachineModuleInfo* Info) {}
+};
+
+class X86MCCodeEmitter : public MCCodeEmitter {
+ X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
+ void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
+
+private:
+ X86TargetMachine &TM;
+ llvm::Function *DummyF;
+ TargetData *DummyTD;
+ mutable llvm::MachineFunction *DummyMF;
+ llvm::MachineBasicBlock *DummyMBB;
+
+ MCSingleInstructionCodeEmitter *InstrEmitter;
+ Emitter<MachineCodeEmitter> *Emit;
+
+public:
+ X86MCCodeEmitter(X86TargetMachine &_TM) : TM(_TM) {
+ // Verily, thou shouldst avert thine eyes.
+ const llvm::FunctionType *FTy =
+ FunctionType::get(llvm::Type::getVoidTy(getGlobalContext()), false);
+ DummyF = Function::Create(FTy, GlobalValue::InternalLinkage);
+ DummyTD = new TargetData("");
+ DummyMF = new MachineFunction(DummyF, TM);
+ DummyMBB = DummyMF->CreateMachineBasicBlock();
+
+ InstrEmitter = new MCSingleInstructionCodeEmitter();
+ Emit = new Emitter<MachineCodeEmitter>(TM, *InstrEmitter,
+ *TM.getInstrInfo(),
+ *DummyTD, false);
+ }
+ ~X86MCCodeEmitter() {
+ delete Emit;
+ delete InstrEmitter;
+ delete DummyMF;
+ delete DummyF;
+ }
+
+ bool AddRegToInstr(const MCInst &MI, MachineInstr *Instr,
+ unsigned Start) const {
+ if (Start + 1 > MI.getNumOperands())
+ return false;
+
+ const MCOperand &Op = MI.getOperand(Start);
+ if (!Op.isReg()) return false;
+
+ Instr->addOperand(MachineOperand::CreateReg(Op.getReg(), false));
+ return true;
+ }
+
+ bool AddImmToInstr(const MCInst &MI, MachineInstr *Instr,
+ unsigned Start) const {
+ if (Start + 1 > MI.getNumOperands())
+ return false;
+
+ const MCOperand &Op = MI.getOperand(Start);
+ if (Op.isImm()) {
+ Instr->addOperand(MachineOperand::CreateImm(Op.getImm()));
+ return true;
+ }
+ if (!Op.isExpr())
+ return false;
+
+ const MCExpr *Expr = Op.getExpr();
+ if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) {
+ Instr->addOperand(MachineOperand::CreateImm(CE->getValue()));
+ return true;
+ }
+
+ // FIXME: Relocation / fixup.
+ Instr->addOperand(MachineOperand::CreateImm(0));
+ return true;
+ }
+
+ bool AddLMemToInstr(const MCInst &MI, MachineInstr *Instr,
+ unsigned Start) const {
+ return (AddRegToInstr(MI, Instr, Start + 0) &&
+ AddImmToInstr(MI, Instr, Start + 1) &&
+ AddRegToInstr(MI, Instr, Start + 2) &&
+ AddImmToInstr(MI, Instr, Start + 3));
+ }
+
+ bool AddMemToInstr(const MCInst &MI, MachineInstr *Instr,
+ unsigned Start) const {
+ return (AddRegToInstr(MI, Instr, Start + 0) &&
+ AddImmToInstr(MI, Instr, Start + 1) &&
+ AddRegToInstr(MI, Instr, Start + 2) &&
+ AddImmToInstr(MI, Instr, Start + 3) &&
+ AddRegToInstr(MI, Instr, Start + 4));
+ }
+
+ void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
+ // Don't look yet!
+
+ // Convert the MCInst to a MachineInstr so we can (ab)use the regular
+ // emitter.
+ const X86InstrInfo &II = *TM.getInstrInfo();
+ const TargetInstrDesc &Desc = II.get(MI.getOpcode());
+ MachineInstr *Instr = DummyMF->CreateMachineInstr(Desc, DebugLoc());
+ DummyMBB->push_back(Instr);
+
+ unsigned Opcode = MI.getOpcode();
+ unsigned NumOps = MI.getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) {
+ Instr->addOperand(MachineOperand::CreateReg(0, false));
+ ++CurOp;
+ } else if (NumOps > 2 &&
+ Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
+ // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
+ --NumOps;
+
+ bool OK = true;
+ switch (Desc.TSFlags & X86II::FormMask) {
+ case X86II::MRMDestReg:
+ case X86II::MRMSrcReg:
+ // Matching doesn't fill this in completely, we have to choose operand 0
+ // for a tied register.
+ OK &= AddRegToInstr(MI, Instr, 0); CurOp++;
+ OK &= AddRegToInstr(MI, Instr, CurOp++);
+ if (CurOp < NumOps)
+ OK &= AddImmToInstr(MI, Instr, CurOp);
+ break;
+
+ case X86II::RawFrm:
+ if (CurOp < NumOps) {
+ // Hack to make branches work.
+ if (!(Desc.TSFlags & X86II::ImmMask) &&
+ MI.getOperand(0).isExpr() &&
+ isa<MCSymbolRefExpr>(MI.getOperand(0).getExpr()))
+ Instr->addOperand(MachineOperand::CreateMBB(DummyMBB));
+ else
+ OK &= AddImmToInstr(MI, Instr, CurOp);
+ }
+ break;
+
+ case X86II::AddRegFrm:
+ OK &= AddRegToInstr(MI, Instr, CurOp++);
+ if (CurOp < NumOps)
+ OK &= AddImmToInstr(MI, Instr, CurOp);
+ break;
+
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ // Matching doesn't fill this in completely, we have to choose operand 0
+ // for a tied register.
+ OK &= AddRegToInstr(MI, Instr, 0); CurOp++;
+ if (CurOp < NumOps)
+ OK &= AddImmToInstr(MI, Instr, CurOp);
+ break;
+
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
+ if (CurOp < NumOps)
+ OK &= AddImmToInstr(MI, Instr, CurOp);
+ break;
+
+ case X86II::MRMSrcMem:
+ OK &= AddRegToInstr(MI, Instr, CurOp++);
+ if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
+ Opcode == X86::LEA16r || Opcode == X86::LEA32r)
+ OK &= AddLMemToInstr(MI, Instr, CurOp);
+ else
+ OK &= AddMemToInstr(MI, Instr, CurOp);
+ break;
+
+ case X86II::MRMDestMem:
+ OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
+ OK &= AddRegToInstr(MI, Instr, CurOp);
+ break;
+
+ default:
+ case X86II::MRMInitReg:
+ case X86II::Pseudo:
+ OK = false;
+ break;
+ }
+
+ if (!OK) {
+ errs() << "couldn't convert inst '";
+ MI.dump();
+ errs() << "' to machine instr:\n";
+ Instr->dump();
+ }
+
+ InstrEmitter->reset();
+ if (OK)
+ Emit->emitInstruction(*Instr, &Desc);
+ OS << InstrEmitter->str();
+
+ Instr->eraseFromParent();
}
+};
}
+// Ok, now you can look.
+MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
+ TargetMachine &TM) {
+ return new X86MCCodeEmitter(static_cast<X86TargetMachine&>(TM));
+}
diff --git a/lib/Target/X86/X86CompilationCallback_Win64.asm b/lib/Target/X86/X86CompilationCallback_Win64.asm
index 8002f98..f321778 100644
--- a/lib/Target/X86/X86CompilationCallback_Win64.asm
+++ b/lib/Target/X86/X86CompilationCallback_Win64.asm
@@ -17,10 +17,11 @@ extrn X86CompilationCallback2: PROC
X86CompilationCallback proc
push rbp
- ; Save RSP
+ ; Save RSP.
mov rbp, rsp
; Save all int arg registers
+ ; WARNING: We cannot use register spill area - we're generating stubs by hands!
push rcx
push rdx
push r8
@@ -29,27 +30,27 @@ X86CompilationCallback proc
; Align stack on 16-byte boundary.
and rsp, -16
- ; Save all XMM arg registers
- sub rsp, 64
- movaps [rsp], xmm0
- movaps [rsp+16], xmm1
- movaps [rsp+32], xmm2
- movaps [rsp+48], xmm3
+ ; Save all XMM arg registers. Also allocate reg spill area.
+ sub rsp, 96
+ movaps [rsp +32], xmm0
+ movaps [rsp+16+32], xmm1
+ movaps [rsp+32+32], xmm2
+ movaps [rsp+48+32], xmm3
; JIT callee
- ; Pass prev frame and return address
+ ; Pass prev frame and return address.
mov rcx, rbp
mov rdx, qword ptr [rbp+8]
call X86CompilationCallback2
- ; Restore all XMM arg registers
- movaps xmm3, [rsp+48]
- movaps xmm2, [rsp+32]
- movaps xmm1, [rsp+16]
- movaps xmm0, [rsp]
+ ; Restore all XMM arg registers.
+ movaps xmm3, [rsp+48+32]
+ movaps xmm2, [rsp+32+32]
+ movaps xmm1, [rsp+16+32]
+ movaps xmm0, [rsp +32]
- ; Restore RSP
+ ; Restore RSP.
mov rsp, rbp
; Restore all int arg registers
@@ -59,7 +60,7 @@ X86CompilationCallback proc
pop rdx
pop rcx
- ; Restore RBP
+ ; Restore RBP.
pop rbp
ret
X86CompilationCallback endp
diff --git a/lib/Target/X86/X86ELFWriterInfo.cpp b/lib/Target/X86/X86ELFWriterInfo.cpp
index 912ab0e..1597d2b3 100644
--- a/lib/Target/X86/X86ELFWriterInfo.cpp
+++ b/lib/Target/X86/X86ELFWriterInfo.cpp
@@ -14,6 +14,7 @@
#include "X86ELFWriterInfo.h"
#include "X86Relocations.h"
#include "llvm/Function.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
@@ -38,11 +39,13 @@ unsigned X86ELFWriterInfo::getRelocationType(unsigned MachineRelTy) const {
return R_X86_64_PC32;
case X86::reloc_absolute_word:
return R_X86_64_32;
+ case X86::reloc_absolute_word_sext:
+ return R_X86_64_32S;
case X86::reloc_absolute_dword:
return R_X86_64_64;
case X86::reloc_picrel_word:
default:
- assert(0 && "unknown relocation type");
+ llvm_unreachable("unknown x86_64 machine relocation type");
}
} else {
switch(MachineRelTy) {
@@ -50,23 +53,101 @@ unsigned X86ELFWriterInfo::getRelocationType(unsigned MachineRelTy) const {
return R_386_PC32;
case X86::reloc_absolute_word:
return R_386_32;
+ case X86::reloc_absolute_word_sext:
case X86::reloc_absolute_dword:
case X86::reloc_picrel_word:
default:
- assert(0 && "unknown relocation type");
+ llvm_unreachable("unknown x86 machine relocation type");
}
}
return 0;
}
-long int X86ELFWriterInfo::getAddendForRelTy(unsigned RelTy) const {
+long int X86ELFWriterInfo::getDefaultAddendForRelTy(unsigned RelTy,
+ long int Modifier) const {
if (is64Bit) {
switch(RelTy) {
- case R_X86_64_PC32: return -4;
- break;
+ case R_X86_64_PC32: return Modifier - 4;
+ case R_X86_64_32:
+ case R_X86_64_32S:
+ case R_X86_64_64:
+ return Modifier;
default:
- assert(0 && "unknown x86 relocation type");
+ llvm_unreachable("unknown x86_64 relocation type");
+ }
+ } else {
+ switch(RelTy) {
+ case R_386_PC32: return Modifier - 4;
+ case R_386_32: return Modifier;
+ default:
+ llvm_unreachable("unknown x86 relocation type");
+ }
+ }
+ return 0;
+}
+
+unsigned X86ELFWriterInfo::getRelocationTySize(unsigned RelTy) const {
+ if (is64Bit) {
+ switch(RelTy) {
+ case R_X86_64_PC32:
+ case R_X86_64_32:
+ case R_X86_64_32S:
+ return 32;
+ case R_X86_64_64:
+ return 64;
+ default:
+ llvm_unreachable("unknown x86_64 relocation type");
+ }
+ } else {
+ switch(RelTy) {
+ case R_386_PC32:
+ case R_386_32:
+ return 32;
+ default:
+ llvm_unreachable("unknown x86 relocation type");
}
}
return 0;
}
+
+bool X86ELFWriterInfo::isPCRelativeRel(unsigned RelTy) const {
+ if (is64Bit) {
+ switch(RelTy) {
+ case R_X86_64_PC32:
+ return true;
+ case R_X86_64_32:
+ case R_X86_64_32S:
+ case R_X86_64_64:
+ return false;
+ default:
+ llvm_unreachable("unknown x86_64 relocation type");
+ }
+ } else {
+ switch(RelTy) {
+ case R_386_PC32:
+ return true;
+ case R_386_32:
+ return false;
+ default:
+ llvm_unreachable("unknown x86 relocation type");
+ }
+ }
+ return 0;
+}
+
+unsigned X86ELFWriterInfo::getAbsoluteLabelMachineRelTy() const {
+ return is64Bit ?
+ X86::reloc_absolute_dword : X86::reloc_absolute_word;
+}
+
+long int X86ELFWriterInfo::computeRelocation(unsigned SymOffset,
+ unsigned RelOffset,
+ unsigned RelTy) const {
+
+ if (RelTy == R_X86_64_PC32 || RelTy == R_386_PC32)
+ return SymOffset - (RelOffset + 4);
+ else
+ assert("computeRelocation unknown for this relocation type");
+
+ return 0;
+}
diff --git a/lib/Target/X86/X86ELFWriterInfo.h b/lib/Target/X86/X86ELFWriterInfo.h
index 2ba1a0b..342e6e6 100644
--- a/lib/Target/X86/X86ELFWriterInfo.h
+++ b/lib/Target/X86/X86ELFWriterInfo.h
@@ -49,9 +49,26 @@ namespace llvm {
/// ELF relocation entry.
virtual bool hasRelocationAddend() const { return is64Bit ? true : false; }
- /// getAddendForRelTy - Gets the addend value for an ELF relocation entry
- /// based on the target relocation type
- virtual long int getAddendForRelTy(unsigned RelTy) const;
+ /// getDefaultAddendForRelTy - Gets the default addend value for a
+ /// relocation entry based on the target ELF relocation type.
+ virtual long int getDefaultAddendForRelTy(unsigned RelTy,
+ long int Modifier = 0) const;
+
+ /// getRelTySize - Returns the size of relocatable field in bits
+ virtual unsigned getRelocationTySize(unsigned RelTy) const;
+
+ /// isPCRelativeRel - True if the relocation type is pc relative
+ virtual bool isPCRelativeRel(unsigned RelTy) const;
+
+ /// getJumpTableRelocationTy - Returns the machine relocation type used
+ /// to reference a jumptable.
+ virtual unsigned getAbsoluteLabelMachineRelTy() const;
+
+ /// computeRelocation - Some relocatable fields could be relocated
+ /// directly, avoiding the relocation symbol emission, compute the
+ /// final relocation value for this symbol.
+ virtual long int computeRelocation(unsigned SymOffset, unsigned RelOffset,
+ unsigned RelTy) const;
};
} // end llvm namespace
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index b336d78..3401df0 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -29,6 +29,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
@@ -78,19 +79,20 @@ public:
#include "X86GenFastISel.inc"
private:
- bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
+ bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
- bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
+ bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
- bool X86FastEmitStore(MVT VT, Value *Val,
+ bool X86FastEmitStore(EVT VT, Value *Val,
const X86AddressMode &AM);
- bool X86FastEmitStore(MVT VT, unsigned Val,
+ bool X86FastEmitStore(EVT VT, unsigned Val,
const X86AddressMode &AM);
- bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
+ bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
unsigned &ResultReg);
- bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
+ bool X86SelectAddress(Value *V, X86AddressMode &AM);
+ bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
bool X86SelectLoad(Instruction *I);
@@ -116,7 +118,7 @@ private:
bool X86VisitIntrinsicCall(IntrinsicInst &I);
bool X86SelectCall(Instruction *I);
- CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
+ CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo();
@@ -131,17 +133,17 @@ private:
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
- bool isScalarFPTypeInSSEReg(MVT VT) const {
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
- bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
+ bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
};
} // end anonymous namespace.
-bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
+bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
@@ -167,7 +169,8 @@ bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
/// convention.
-CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
+CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
+ bool isTaillCall) {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
@@ -186,13 +189,14 @@ CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible.
-bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
+bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
unsigned &ResultReg) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
+ case MVT::i1:
case MVT::i8:
Opc = X86::MOV8rm;
RC = X86::GR8RegisterClass;
@@ -243,13 +247,21 @@ bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
/// and a displacement offset, or a GlobalAddress,
/// i.e. V. Return true if it is possible.
bool
-X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
+X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
const X86AddressMode &AM) {
// Get opcode and regclass of the output for the given store instruction.
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
case MVT::f80: // No f80 support yet.
default: return false;
+ case MVT::i1: {
+ // Mask out all but lowest bit.
+ unsigned AndResult = createResultReg(X86::GR8RegisterClass);
+ BuildMI(MBB, DL,
+ TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
+ Val = AndResult;
+ }
+ // FALLTHROUGH, handling i1 as i8.
case MVT::i8: Opc = X86::MOV8mr; break;
case MVT::i16: Opc = X86::MOV16mr; break;
case MVT::i32: Opc = X86::MOV32mr; break;
@@ -266,17 +278,19 @@ X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
return true;
}
-bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
+bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
const X86AddressMode &AM) {
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Val))
- Val = Constant::getNullValue(TD.getIntPtrType());
+ Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
// If this is a store of a simple constant, fold the constant into the store.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
unsigned Opc = 0;
- switch (VT.getSimpleVT()) {
+ bool Signed = true;
+ switch (VT.getSimpleVT().SimpleTy) {
default: break;
+ case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
case MVT::i8: Opc = X86::MOV8mi; break;
case MVT::i16: Opc = X86::MOV16mi; break;
case MVT::i32: Opc = X86::MOV32mi; break;
@@ -289,7 +303,8 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
if (Opc) {
addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
- .addImm(CI->getSExtValue());
+ .addImm(Signed ? CI->getSExtValue() :
+ CI->getZExtValue());
return true;
}
}
@@ -304,8 +319,8 @@ bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
/// ISD::SIGN_EXTEND).
-bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
- unsigned Src, MVT SrcVT,
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+ unsigned Src, EVT SrcVT,
unsigned &ResultReg) {
unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
@@ -318,7 +333,7 @@ bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
/// X86SelectAddress - Attempt to fill in an address from the given value.
///
-bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
+bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
User *U = NULL;
unsigned Opcode = Instruction::UserOp1;
if (Instruction *I = dyn_cast<Instruction>(V)) {
@@ -333,22 +348,21 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
default: break;
case Instruction::BitCast:
// Look past bitcasts.
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
case Instruction::IntToPtr:
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
break;
case Instruction::PtrToInt:
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
break;
case Instruction::Alloca: {
- if (isCall) break;
// Do static allocas.
const AllocaInst *A = cast<AllocaInst>(V);
DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
@@ -361,21 +375,19 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
}
case Instruction::Add: {
- if (isCall) break;
// Adds of constants are common and easy enough.
if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
// They have to fit in the 32-bit signed displacement field though.
if (isInt32(Disp)) {
AM.Disp = (uint32_t)Disp;
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
}
}
break;
}
case Instruction::GetElementPtr: {
- if (isCall) break;
// Pattern-match simple GEPs.
uint64_t Disp = (int32_t)AM.Disp;
unsigned IndexReg = AM.IndexReg;
@@ -416,7 +428,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
AM.IndexReg = IndexReg;
AM.Scale = Scale;
AM.Disp = (uint32_t)Disp;
- return X86SelectAddress(U->getOperand(0), AM, isCall);
+ return X86SelectAddress(U->getOperand(0), AM);
unsupported_gep:
// Ok, the GEP indices weren't all covered.
break;
@@ -426,8 +438,7 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
// Handle constant address.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Can't handle alternate code models yet.
- if (TM.getCodeModel() != CodeModel::Default &&
- TM.getCodeModel() != CodeModel::Small)
+ if (TM.getCodeModel() != CodeModel::Small)
return false;
// RIP-relative addresses can't have additional register operands.
@@ -440,63 +451,149 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
if (GVar->isThreadLocal())
return false;
- // Set up the basic address.
+ // Okay, we've committed to selecting this global. Set up the basic address.
AM.GV = GV;
- if (!isCall &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- !Subtarget->is64Bit())
- AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
- // Emit an extra load if the ABI requires it.
- if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
- // Check to see if we've already materialized this
- // value in a register in this block.
- DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
- if (I != LocalValueMap.end() && I->second != 0) {
- AM.Base.Reg = I->second;
- AM.GV = 0;
- return true;
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
+ }
+
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
}
-
+ AM.GVOpFlags = GVFlags;
+ return true;
+ }
+
+ // Ok, we need to do a load from a stub. If we've already loaded from this
+ // stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
+ } else {
// Issue load from stub.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
X86AddressMode StubAM;
StubAM.Base.Reg = AM.Base.Reg;
- StubAM.GV = AM.GV;
-
- if (TLI.getPointerTy() == MVT::i32) {
- Opc = X86::MOV32rm;
- RC = X86::GR32RegisterClass;
-
- if (Subtarget->isPICStyleGOT() &&
- TM.getRelocationModel() == Reloc::PIC_)
- StubAM.GVOpFlags = X86II::MO_GOT;
-
- } else {
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ if (TLI.getPointerTy() == MVT::i64) {
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
- if (TM.getRelocationModel() != Reloc::Static) {
- StubAM.GVOpFlags = X86II::MO_GOTPCREL;
+ if (Subtarget->isPICStyleRIPRel())
StubAM.Base.Reg = X86::RIP;
- }
+ } else {
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
}
+
+ LoadReg = createResultReg(RC);
+ addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
+
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
+
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = 0;
+ return true;
+ }
- unsigned ResultReg = createResultReg(RC);
- addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), StubAM);
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
- // Now construct the final address. Note that the Disp, Scale,
- // and Index values may already be set here.
- AM.Base.Reg = ResultReg;
- AM.GV = 0;
+ return false;
+}
- // Prevent loading GV stub multiple times in same MBB.
- LocalValueMap[V] = AM.Base.Reg;
- } else if (Subtarget->isPICStyleRIPRel()) {
- // Use rip-relative addressing if we can.
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
+ User *U = NULL;
+ unsigned Opcode = Instruction::UserOp1;
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ Opcode = I->getOpcode();
+ U = I;
+ } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectCallAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+ }
+
+ // Handle constant address.
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // RIP-relative addresses can't have additional register operands.
+ if (Subtarget->isPICStyleRIPRel() &&
+ (AM.Base.Reg != 0 || AM.IndexReg != 0))
+ return false;
+
+ // Can't handle TLS or DLLImport.
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
+ return false;
+
+ // Okay, we've committed to selecting this global. Set up the basic address.
+ AM.GV = GV;
+
+ // No ABI requires an extra load for anything other than DLLImport, which
+ // we rejected above. Return a direct reference to the global.
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
AM.Base.Reg = X86::RIP;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+ } else if (Subtarget->isPICStyleGOT()) {
+ AM.GVOpFlags = X86II::MO_GOTOFF;
}
return true;
@@ -518,14 +615,15 @@ bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
return false;
}
+
/// X86SelectStore - Select and emit code to implement store instructions.
bool X86FastISel::X86SelectStore(Instruction* I) {
- MVT VT;
- if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+ EVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
return false;
X86AddressMode AM;
- if (!X86SelectAddress(I->getOperand(1), AM, false))
+ if (!X86SelectAddress(I->getOperand(1), AM))
return false;
return X86FastEmitStore(VT, I->getOperand(0), AM);
@@ -534,12 +632,12 @@ bool X86FastISel::X86SelectStore(Instruction* I) {
/// X86SelectLoad - Select and emit code to implement load instructions.
///
bool X86FastISel::X86SelectLoad(Instruction *I) {
- MVT VT;
- if (!isTypeLegal(I->getType(), VT))
+ EVT VT;
+ if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
return false;
X86AddressMode AM;
- if (!X86SelectAddress(I->getOperand(0), AM, false))
+ if (!X86SelectAddress(I->getOperand(0), AM))
return false;
unsigned ResultReg = 0;
@@ -550,8 +648,8 @@ bool X86FastISel::X86SelectLoad(Instruction *I) {
return false;
}
-static unsigned X86ChooseCmpOpcode(MVT VT) {
- switch (VT.getSimpleVT()) {
+static unsigned X86ChooseCmpOpcode(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return 0;
case MVT::i8: return X86::CMP8rr;
case MVT::i16: return X86::CMP16rr;
@@ -565,8 +663,8 @@ static unsigned X86ChooseCmpOpcode(MVT VT) {
/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
/// of the comparison, return an opcode that works for the compare (e.g.
/// CMP32ri) otherwise return 0.
-static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
- switch (VT.getSimpleVT()) {
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
+ switch (VT.getSimpleVT().SimpleTy) {
// Otherwise, we can't fold the immediate into this comparison.
default: return 0;
case MVT::i8: return X86::CMP8ri;
@@ -581,13 +679,13 @@ static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
}
}
-bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
+bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
unsigned Op0Reg = getRegForValue(Op0);
if (Op0Reg == 0) return false;
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Op1))
- Op1 = Constant::getNullValue(TD.getIntPtrType());
+ Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
// We have two options: compare with register or immediate. If the RHS of
// the compare is an immediate that we can fold into this compare, use
@@ -613,7 +711,7 @@ bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
bool X86FastISel::X86SelectCmp(Instruction *I) {
CmpInst *CI = cast<CmpInst>(I);
- MVT VT;
+ EVT VT;
if (!isTypeLegal(I->getOperand(0)->getType(), VT))
return false;
@@ -688,8 +786,8 @@ bool X86FastISel::X86SelectCmp(Instruction *I) {
bool X86FastISel::X86SelectZExt(Instruction *I) {
// Handle zero-extension from i1 to i8, which is common.
- if (I->getType() == Type::Int8Ty &&
- I->getOperand(0)->getType() == Type::Int1Ty) {
+ if (I->getType() == Type::getInt8Ty(I->getContext()) &&
+ I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext())) {
unsigned ResultReg = getRegForValue(I->getOperand(0));
if (ResultReg == 0) return false;
// Set the high bits to zero.
@@ -713,7 +811,7 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
// Fold the common case of a conditional branch with a comparison.
if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse()) {
- MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
+ EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
// Try to take advantage of fallthrough opportunities.
CmpInst::Predicate Predicate = CI->getPredicate();
@@ -850,7 +948,7 @@ bool X86FastISel::X86SelectBranch(Instruction *I) {
bool X86FastISel::X86SelectShift(Instruction *I) {
unsigned CReg = 0, OpReg = 0, OpImm = 0;
const TargetRegisterClass *RC = NULL;
- if (I->getType() == Type::Int8Ty) {
+ if (I->getType() == Type::getInt8Ty(I->getContext())) {
CReg = X86::CL;
RC = &X86::GR8RegClass;
switch (I->getOpcode()) {
@@ -859,7 +957,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int16Ty) {
+ } else if (I->getType() == Type::getInt16Ty(I->getContext())) {
CReg = X86::CX;
RC = &X86::GR16RegClass;
switch (I->getOpcode()) {
@@ -868,7 +966,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int32Ty) {
+ } else if (I->getType() == Type::getInt32Ty(I->getContext())) {
CReg = X86::ECX;
RC = &X86::GR32RegClass;
switch (I->getOpcode()) {
@@ -877,7 +975,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
default: return false;
}
- } else if (I->getType() == Type::Int64Ty) {
+ } else if (I->getType() == Type::getInt64Ty(I->getContext())) {
CReg = X86::RCX;
RC = &X86::GR64RegClass;
switch (I->getOpcode()) {
@@ -890,7 +988,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
return false;
}
- MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
+ EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
return false;
@@ -924,7 +1022,7 @@ bool X86FastISel::X86SelectShift(Instruction *I) {
}
bool X86FastISel::X86SelectSelect(Instruction *I) {
- MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
+ EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
return false;
@@ -959,9 +1057,10 @@ bool X86FastISel::X86SelectSelect(Instruction *I) {
bool X86FastISel::X86SelectFPExt(Instruction *I) {
// fpext from float to double.
- if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
+ if (Subtarget->hasSSE2() &&
+ I->getType()->isDoubleTy()) {
Value *V = I->getOperand(0);
- if (V->getType() == Type::FloatTy) {
+ if (V->getType()->isFloatTy()) {
unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
@@ -976,9 +1075,9 @@ bool X86FastISel::X86SelectFPExt(Instruction *I) {
bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
if (Subtarget->hasSSE2()) {
- if (I->getType() == Type::FloatTy) {
+ if (I->getType()->isFloatTy()) {
Value *V = I->getOperand(0);
- if (V->getType() == Type::DoubleTy) {
+ if (V->getType()->isDoubleTy()) {
unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
@@ -996,8 +1095,8 @@ bool X86FastISel::X86SelectTrunc(Instruction *I) {
if (Subtarget->is64Bit())
// All other cases should be handled by the tblgen generated code.
return false;
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
// This code only handles truncation to byte right now.
if (DstVT != MVT::i8 && DstVT != MVT::i1)
@@ -1065,7 +1164,7 @@ bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
const Type *RetTy =
cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
- MVT VT;
+ EVT VT;
if (!isTypeLegal(RetTy, VT))
return false;
@@ -1125,7 +1224,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Handle only C and fastcc calling conventions for now.
CallSite CS(CI);
- unsigned CC = CS.getCallingConv();
+ CallingConv::ID CC = CS.getCallingConv();
if (CC != CallingConv::C &&
CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall)
@@ -1144,8 +1243,8 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Handle *simple* calls for now.
const Type *RetTy = CS.getType();
- MVT RetVT;
- if (RetTy == Type::VoidTy)
+ EVT RetVT;
+ if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(RetTy, RetVT, true))
return false;
@@ -1153,7 +1252,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Materialize callee address in a register. FIXME: GV address can be
// handled with a CALLpcrel32 instead.
X86AddressMode CalleeAM;
- if (!X86SelectAddress(Callee, CalleeAM, true))
+ if (!X86SelectCallAddress(Callee, CalleeAM))
return false;
unsigned CalleeOp = 0;
GlobalValue *GV = 0;
@@ -1174,7 +1273,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Deal with call operands first.
SmallVector<Value*, 8> ArgVals;
SmallVector<unsigned, 8> Args;
- SmallVector<MVT, 8> ArgVTs;
+ SmallVector<EVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
Args.reserve(CS.arg_size());
ArgVals.reserve(CS.arg_size());
@@ -1200,7 +1299,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
return false;
const Type *ArgTy = (*i)->getType();
- MVT ArgVT;
+ EVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT))
return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
@@ -1214,7 +1313,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, false, TM, ArgLocs);
+ CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
@@ -1230,11 +1329,11 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = Args[VA.getValNo()];
- MVT ArgVT = ArgVTs[VA.getValNo()];
+ EVT ArgVT = ArgVTs[VA.getValNo()];
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt: {
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
@@ -1266,6 +1365,14 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
ArgVT = VA.getLocVT();
break;
}
+ case CCValAssign::BCvt: {
+ unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
+ ISD::BIT_CONVERT, Arg);
+ assert(BC != 0 && "Failed to emit a bitcast!");
+ Arg = BC;
+ ArgVT = VA.getLocVT();
+ break;
+ }
}
if (VA.isRegLoc()) {
@@ -1294,28 +1401,53 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
- if (!Subtarget->is64Bit() &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT()) {
+ if (Subtarget->isPICStyleGOT()) {
TargetRegisterClass *RC = X86::GR32RegisterClass;
unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
Emitted = true;
}
-
+
// Issue the call.
- unsigned CallOpc = CalleeOp
- ? (Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r)
- : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
- MachineInstrBuilder MIB = CalleeOp
- ? BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp)
- : BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV);
+ MachineInstrBuilder MIB;
+ if (CalleeOp) {
+ // Register-indirect call.
+ unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
+ MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
+
+ } else {
+ // Direct call.
+ assert(GV && "Not a direct call");
+ unsigned CallOpc =
+ Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
+
+ // See if we need any target-specific flags on the GV operand.
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ TM.getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+
+ MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
+ }
// Add an implicit use GOT pointer in EBX.
- if (!Subtarget->is64Bit() &&
- TM.getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT())
+ if (Subtarget->isPICStyleGOT())
MIB.addReg(X86::EBX);
// Add implicit physical register uses to the call.
@@ -1327,14 +1459,14 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
// Now handle call return value (if any).
- if (RetVT.getSimpleVT() != MVT::isVoid) {
+ if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CC, false, TM, RVLocs);
+ CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
- MVT CopyVT = RVLocs[0].getValVT();
+ EVT CopyVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
TargetRegisterClass *SrcRC = DstRC;
@@ -1358,7 +1490,7 @@ bool X86FastISel::X86SelectCall(Instruction *I) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
// then loading it back. Ewww...
- MVT ResVT = RVLocs[0].getValVT();
+ EVT ResVT = RVLocs[0].getValVT();
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI.CreateStackObject(MemSize, MemSize);
@@ -1418,8 +1550,8 @@ X86FastISel::TargetSelectInstruction(Instruction *I) {
return X86SelectExtractValue(I);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
- MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(I->getType());
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
if (DstVT.bitsGT(SrcVT))
return X86SelectZExt(I);
if (DstVT.bitsLT(SrcVT))
@@ -1435,14 +1567,14 @@ X86FastISel::TargetSelectInstruction(Instruction *I) {
}
unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
- MVT VT;
+ EVT VT;
if (!isTypeLegal(C->getType(), VT))
return false;
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i8:
Opc = X86::MOV8rm;
@@ -1487,7 +1619,7 @@ unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
// Materialize addresses with LEA instructions.
if (isa<GlobalValue>(C)) {
X86AddressMode AM;
- if (X86SelectAddress(C, AM, false)) {
+ if (X86SelectAddress(C, AM)) {
if (TLI.getPointerTy() == MVT::i32)
Opc = X86::LEA32r;
else
@@ -1509,16 +1641,15 @@ unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
unsigned char OpFlag = 0;
- if (TM.getRelocationModel() == Reloc::PIC_) {
- if (Subtarget->isPICStyleStub()) {
- OpFlag = X86II::MO_PIC_BASE_OFFSET;
- PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
- } else if (Subtarget->isPICStyleGOT()) {
- OpFlag = X86II::MO_GOTOFF;
- PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
- } else if (Subtarget->isPICStyleRIPRel() &&
- TM.getCodeModel() == CodeModel::Small)
- PICBase = X86::RIP;
+ if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+ PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOTOFF;
+ PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ TM.getCodeModel() == CodeModel::Small) {
+ PICBase = X86::RIP;
}
// Create the load from the constant pool.
@@ -1542,7 +1673,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
return 0;
X86AddressMode AM;
- if (!X86SelectAddress(C, AM, false))
+ if (!X86SelectAddress(C, AM))
return 0;
unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp
index 37027ee..d9a05a8 100644
--- a/lib/Target/X86/X86FloatingPoint.cpp
+++ b/lib/Target/X86/X86FloatingPoint.cpp
@@ -31,19 +31,21 @@
#define DEBUG_TYPE "x86-codegen"
#include "X86.h"
#include "X86InstrInfo.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
@@ -56,6 +58,7 @@ namespace {
FPS() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
@@ -73,12 +76,12 @@ namespace {
unsigned StackTop; // The current top of the FP stack.
void dumpStack() const {
- cerr << "Stack contents:";
+ errs() << "Stack contents:";
for (unsigned i = 0; i != StackTop; ++i) {
- cerr << " FP" << Stack[i];
+ errs() << " FP" << Stack[i];
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
}
- cerr << "\n";
+ errs() << "\n";
}
private:
/// isStackEmpty - Return true if the FP stack is empty.
@@ -210,6 +213,14 @@ bool FPS::runOnMachineFunction(MachineFunction &MF) {
I != E; ++I)
Changed |= processBasicBlock(MF, **I);
+ // Process any unreachable blocks in arbitrary order now.
+ if (MF.size() == Processed.size())
+ return Changed;
+
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
+ if (Processed.insert(BB))
+ Changed |= processBasicBlock(MF, *BB);
+
return Changed;
}
@@ -236,7 +247,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
PrevMI = prior(I);
++NumFP; // Keep track of # of pseudo instrs
- DOUT << "\nFPInst:\t" << *MI;
+ DEBUG(errs() << "\nFPInst:\t" << *MI);
// Get dead variables list now because the MI pointer may be deleted as part
// of processing!
@@ -255,7 +266,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
case X86II::CompareFP: handleCompareFP(I); break;
case X86II::CondMovFP: handleCondMovFP(I); break;
case X86II::SpecialFP: handleSpecialFP(I); break;
- default: assert(0 && "Unknown FP Type!");
+ default: llvm_unreachable("Unknown FP Type!");
}
// Check to see if any of the values defined by this instruction are dead
@@ -263,7 +274,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
unsigned Reg = DeadRegs[i];
if (Reg >= X86::FP0 && Reg <= X86::FP6) {
- DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
+ DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
freeStackSlotAfter(I, Reg-X86::FP0);
}
}
@@ -272,13 +283,13 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
DEBUG(
MachineBasicBlock::iterator PrevI(PrevMI);
if (I == PrevI) {
- cerr << "Just deleted pseudo instruction\n";
+ errs() << "Just deleted pseudo instruction\n";
} else {
MachineBasicBlock::iterator Start = I;
// Rewind to first instruction newly inserted.
while (Start != BB.begin() && prior(Start) != PrevI) --Start;
- cerr << "Inserted instructions:\n\t";
- Start->print(*cerr.stream(), &MF.getTarget());
+ errs() << "Inserted instructions:\n\t";
+ Start->print(errs(), &MF.getTarget());
while (++Start != next(I)) {}
}
dumpStack();
@@ -945,7 +956,7 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
MachineInstr *MI = I;
DebugLoc dl = MI->getDebugLoc();
switch (MI->getOpcode()) {
- default: assert(0 && "Unknown SpecialFP instruction!");
+ default: llvm_unreachable("Unknown SpecialFP instruction!");
case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
diff --git a/lib/Target/X86/X86FloatingPointRegKill.cpp b/lib/Target/X86/X86FloatingPointRegKill.cpp
index 009846e..3e0385c 100644
--- a/lib/Target/X86/X86FloatingPointRegKill.cpp
+++ b/lib/Target/X86/X86FloatingPointRegKill.cpp
@@ -35,6 +35,7 @@ namespace {
FPRegKiller() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
@@ -117,9 +118,10 @@ bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) {
!ContainsFPCode && SI != E; ++SI) {
for (BasicBlock::const_iterator II = SI->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
- if (PN->getType()==Type::X86_FP80Ty ||
+ if (PN->getType()==Type::getX86_FP80Ty(LLVMBB->getContext()) ||
(!Subtarget.hasSSE1() && PN->getType()->isFloatingPoint()) ||
- (!Subtarget.hasSSE2() && PN->getType()==Type::DoubleTy)) {
+ (!Subtarget.hasSSE2() &&
+ PN->getType()==Type::getDoubleTy(LLVMBB->getContext()))) {
ContainsFPCode = true;
break;
}
diff --git a/lib/Target/X86/X86ISelDAGToDAG.cpp b/lib/Target/X86/X86ISelDAGToDAG.cpp
index 1336177..5b678fb 100644
--- a/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -35,8 +35,9 @@
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -78,7 +79,8 @@ namespace {
X86ISelAddressMode()
: BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
- Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0), SymbolFlags(0) {
+ Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0),
+ SymbolFlags(X86II::MO_NO_FLAG) {
}
bool hasSymbolicDisplacement() const {
@@ -105,23 +107,37 @@ namespace {
}
void dump() {
- cerr << "X86ISelAddressMode " << this << "\n";
- cerr << "Base.Reg ";
- if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
- else cerr << "nul";
- cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
- cerr << " Scale" << Scale << "\n";
- cerr << "IndexReg ";
- if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
- else cerr << "nul";
- cerr << " Disp " << Disp << "\n";
- cerr << "GV "; if (GV) GV->dump();
- else cerr << "nul";
- cerr << " CP "; if (CP) CP->dump();
- else cerr << "nul";
- cerr << "\n";
- cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
- cerr << " JT" << JT << " Align" << Align << "\n";
+ errs() << "X86ISelAddressMode " << this << '\n';
+ errs() << "Base.Reg ";
+ if (Base.Reg.getNode() != 0)
+ Base.Reg.getNode()->dump();
+ else
+ errs() << "nul";
+ errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
+ << " Scale" << Scale << '\n'
+ << "IndexReg ";
+ if (IndexReg.getNode() != 0)
+ IndexReg.getNode()->dump();
+ else
+ errs() << "nul";
+ errs() << " Disp " << Disp << '\n'
+ << "GV ";
+ if (GV)
+ GV->dump();
+ else
+ errs() << "nul";
+ errs() << " CP ";
+ if (CP)
+ CP->dump();
+ else
+ errs() << "nul";
+ errs() << '\n'
+ << "ES ";
+ if (ES)
+ errs() << ES;
+ else
+ errs() << "nul";
+ errs() << " JT" << JT << " Align" << Align << '\n';
}
};
}
@@ -140,10 +156,6 @@ namespace {
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
- /// CurBB - Current BB being isel'd.
- ///
- MachineBasicBlock *CurBB;
-
/// OptForSize - If true, selector should try to optimize for code size
/// instead of performance.
bool OptForSize;
@@ -174,12 +186,14 @@ namespace {
private:
SDNode *Select(SDValue N);
SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
+ SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
- bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
- unsigned Depth = 0);
+ bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
+ bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
+ unsigned Depth);
bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
SDValue &Scale, SDValue &Index, SDValue &Disp,
@@ -342,13 +356,17 @@ static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
Ops.push_back(Load.getOperand(0));
else
Ops.push_back(TF.getOperand(i));
- CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
- CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
- CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
+ SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
+ SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
+ Load.getOperand(1),
+ Load.getOperand(2));
+ CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
Store.getOperand(2), Store.getOperand(3));
}
-/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
+/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The
+/// chain produced by the load must only be used by the store's chain operand,
+/// otherwise this may produce a cycle in the DAG.
///
static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
SDValue &Load) {
@@ -366,8 +384,9 @@ static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
return false;
if (N.hasOneUse() &&
+ LD->hasNUsesOfValue(1, 1) &&
N.getOperand(1) == Address &&
- N.getNode()->isOperandOf(Chain.getNode())) {
+ LD->isOperandOf(Chain.getNode())) {
Load = N;
return true;
}
@@ -431,7 +450,8 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
if (Chain.getOperand(0).getNode() == Callee.getNode())
return true;
if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
- Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
+ Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
+ Callee.getValue(1).hasOneUse())
return true;
return false;
}
@@ -583,8 +603,8 @@ void X86DAGToDAGISel::PreprocessForFPConvert() {
// If the source and destination are SSE registers, then this is a legal
// conversion that should not be lowered.
- MVT SrcVT = N->getOperand(0).getValueType();
- MVT DstVT = N->getValueType(0);
+ EVT SrcVT = N->getOperand(0).getValueType();
+ EVT DstVT = N->getValueType(0);
bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
if (SrcIsSSE && DstIsSSE)
@@ -602,7 +622,7 @@ void X86DAGToDAGISel::PreprocessForFPConvert() {
// Here we could have an FP stack truncation or an FPStack <-> SSE convert.
// FPStack has extload and truncstore. SSE can fold direct loads into other
// operations. Based on this, decide what we want to do.
- MVT MemVT;
+ EVT MemVT;
if (N->getOpcode() == ISD::FP_ROUND)
MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
else
@@ -635,8 +655,7 @@ void X86DAGToDAGISel::PreprocessForFPConvert() {
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
/// when it has created a SelectionDAG for us to codegen.
void X86DAGToDAGISel::InstructionSelect() {
- CurBB = BB; // BB can change as result of isel.
- const Function *F = CurDAG->getMachineFunction().getFunction();
+ const Function *F = MF->getFunction();
OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
DEBUG(BB->dump());
@@ -648,12 +667,12 @@ void X86DAGToDAGISel::InstructionSelect() {
// Codegen the basic block.
#ifndef NDEBUG
- DOUT << "===== Instruction selection begins:\n";
+ DEBUG(errs() << "===== Instruction selection begins:\n");
Indent = 0;
#endif
SelectRoot(*CurDAG);
#ifndef NDEBUG
- DOUT << "===== Instruction selection ends:\n";
+ DEBUG(errs() << "===== Instruction selection ends:\n");
#endif
CurDAG->RemoveDeadNodes();
@@ -706,7 +725,7 @@ bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
/// into an addressing mode. These wrap things that will resolve down into a
/// symbol reference. If no match is possible, this returns true, otherwise it
-/// returns false.
+/// returns false.
bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
// If the addressing mode already has a symbol as the displacement, we can
// never match another symbol.
@@ -714,28 +733,27 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
return true;
SDValue N0 = N.getOperand(0);
-
+ CodeModel::Model M = TM.getCodeModel();
+
// Handle X86-64 rip-relative addresses. We check this before checking direct
// folding because RIP is preferable to non-RIP accesses.
if (Subtarget->is64Bit() &&
// Under X86-64 non-small code model, GV (and friends) are 64-bits, so
// they cannot be folded into immediate fields.
// FIXME: This can be improved for kernel and other models?
- TM.getCodeModel() == CodeModel::Small &&
-
+ (M == CodeModel::Small || M == CodeModel::Kernel) &&
// Base and index reg must be 0 in order to use %rip as base and lowering
// must allow RIP.
!AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
-
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
int64_t Offset = AM.Disp + G->getOffset();
- if (!isInt32(Offset)) return true;
+ if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
AM.GV = G->getGlobal();
AM.Disp = Offset;
AM.SymbolFlags = G->getTargetFlags();
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
int64_t Offset = AM.Disp + CP->getOffset();
- if (!isInt32(Offset)) return true;
+ if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
AM.CP = CP->getConstVal();
AM.Align = CP->getAlignment();
AM.Disp = Offset;
@@ -748,7 +766,7 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
AM.JT = J->getIndex();
AM.SymbolFlags = J->getTargetFlags();
}
-
+
if (N.getOpcode() == X86ISD::WrapperRIP)
AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
return false;
@@ -758,7 +776,7 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
// X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
// mode, this results in a non-RIP-relative computation.
if (!Subtarget->is64Bit() ||
- (TM.getCodeModel() == CodeModel::Small &&
+ ((M == CodeModel::Small || M == CodeModel::Kernel) &&
TM.getRelocationModel() == Reloc::Static)) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
AM.GV = G->getGlobal();
@@ -786,15 +804,49 @@ bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done. This just pattern matches for the
/// addressing mode.
-bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
- unsigned Depth) {
+bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
+ if (MatchAddressRecursively(N, AM, 0))
+ return true;
+
+ // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
+ // a smaller encoding and avoids a scaled-index.
+ if (AM.Scale == 2 &&
+ AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base.Reg.getNode() == 0) {
+ AM.Base.Reg = AM.IndexReg;
+ AM.Scale = 1;
+ }
+
+ // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
+ // because it has a smaller encoding.
+ // TODO: Which other code models can use this?
+ if (TM.getCodeModel() == CodeModel::Small &&
+ Subtarget->is64Bit() &&
+ AM.Scale == 1 &&
+ AM.BaseType == X86ISelAddressMode::RegBase &&
+ AM.Base.Reg.getNode() == 0 &&
+ AM.IndexReg.getNode() == 0 &&
+ AM.SymbolFlags == X86II::MO_NO_FLAG &&
+ AM.hasSymbolicDisplacement())
+ AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
+
+ return false;
+}
+
+bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
+ unsigned Depth) {
bool is64Bit = Subtarget->is64Bit();
DebugLoc dl = N.getDebugLoc();
- DOUT << "MatchAddress: "; DEBUG(AM.dump());
+ DEBUG({
+ errs() << "MatchAddress: ";
+ AM.dump();
+ });
// Limit recursion.
if (Depth > 5)
return MatchAddressBase(N, AM);
-
+
+ CodeModel::Model M = TM.getCodeModel();
+
// If this is already a %rip relative address, we can only merge immediates
// into it. Instead of handling this in every case, we handle it here.
// RIP relative addressing: %rip + 32-bit displacement!
@@ -803,10 +855,11 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
// displacements. It isn't very important, but this should be fixed for
// consistency.
if (!AM.ES && AM.JT != -1) return true;
-
+
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
int64_t Val = AM.Disp + Cst->getSExtValue();
- if (isInt32(Val)) {
+ if (X86::isOffsetSuitableForCodeModel(Val, M,
+ AM.hasSymbolicDisplacement())) {
AM.Disp = Val;
return false;
}
@@ -818,7 +871,9 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
default: break;
case ISD::Constant: {
uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
- if (!is64Bit || isInt32(AM.Disp + Val)) {
+ if (!is64Bit ||
+ X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
+ AM.hasSymbolicDisplacement())) {
AM.Disp += Val;
return false;
}
@@ -857,6 +912,10 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
if (ConstantSDNode
*CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
unsigned Val = CN->getZExtValue();
+ // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
+ // that the base operand remains free for further matching. If
+ // the base doesn't end up getting used, a post-processing step
+ // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
if (Val == 1 || Val == 2 || Val == 3) {
AM.Scale = 1 << Val;
SDValue ShVal = N.getNode()->getOperand(0);
@@ -870,7 +929,9 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
ConstantSDNode *AddVal =
cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
- if (!is64Bit || isInt32(Disp))
+ if (!is64Bit ||
+ X86::isOffsetSuitableForCodeModel(Disp, M,
+ AM.hasSymbolicDisplacement()))
AM.Disp = Disp;
else
AM.IndexReg = ShVal;
@@ -912,7 +973,9 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
CN->getZExtValue();
- if (!is64Bit || isInt32(Disp))
+ if (!is64Bit ||
+ X86::isOffsetSuitableForCodeModel(Disp, M,
+ AM.hasSymbolicDisplacement()))
AM.Disp = Disp;
else
Reg = N.getNode()->getOperand(0);
@@ -936,7 +999,7 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
// Test if the LHS of the sub can be folded.
X86ISelAddressMode Backup = AM;
- if (MatchAddress(N.getNode()->getOperand(0), AM, Depth+1)) {
+ if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
AM = Backup;
break;
}
@@ -998,12 +1061,12 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
case ISD::ADD: {
X86ISelAddressMode Backup = AM;
- if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
- !MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
+ if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
+ !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
return false;
AM = Backup;
- if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
- !MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
+ if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
+ !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
return false;
AM = Backup;
@@ -1027,11 +1090,13 @@ bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
X86ISelAddressMode Backup = AM;
uint64_t Offset = CN->getSExtValue();
// Start with the LHS as an addr mode.
- if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
+ if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
// Address could not have picked a GV address for the displacement.
AM.GV == NULL &&
// On x86-64, the resultant disp must fit in 32-bits.
- (!is64Bit || isInt32(AM.Disp + Offset)) &&
+ (!is64Bit ||
+ X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
+ AM.hasSymbolicDisplacement())) &&
// Check to see if the LHS & C is zero.
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
AM.Disp += Offset;
@@ -1219,7 +1284,7 @@ bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
if (!Done && MatchAddress(N, AM))
return false;
- MVT VT = N.getValueType();
+ EVT VT = N.getValueType();
if (AM.BaseType == X86ISelAddressMode::RegBase) {
if (!AM.Base.Reg.getNode())
AM.Base.Reg = CurDAG->getRegister(0, VT);
@@ -1292,7 +1357,7 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
assert (T == AM.Segment);
AM.Segment = Copy;
- MVT VT = N.getValueType();
+ EVT VT = N.getValueType();
unsigned Complexity = 0;
if (AM.BaseType == X86ISelAddressMode::RegBase)
if (AM.Base.Reg.getNode())
@@ -1329,12 +1394,13 @@ bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
Complexity++;
- if (Complexity > 2) {
- SDValue Segment;
- getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
- return true;
- }
- return false;
+ // If it isn't worth using an LEA, reject it.
+ if (Complexity <= 2)
+ return false;
+
+ SDValue Segment;
+ getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
+ return true;
}
/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
@@ -1380,7 +1446,6 @@ bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
/// initialize the global base register, if necessary.
///
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
- MachineFunction *MF = CurBB->getParent();
unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
}
@@ -1400,367 +1465,686 @@ SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
return NULL;
- SDValue LSI = Node->getOperand(4); // MemOperand
- const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
- return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
- MVT::i32, MVT::i32, MVT::Other, Ops,
- array_lengthof(Ops));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
+ const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
+ MVT::i32, MVT::i32, MVT::Other, Ops,
+ array_lengthof(Ops));
+ cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
+ return ResNode;
+}
+
+SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
+ if (Node->hasAnyUseOfValue(0))
+ return 0;
+
+ // Optimize common patterns for __sync_add_and_fetch and
+ // __sync_sub_and_fetch where the result is not used. This allows us
+ // to use "lock" version of add, sub, inc, dec instructions.
+ // FIXME: Do not use special instructions but instead add the "lock"
+ // prefix to the target node somehow. The extra information will then be
+ // transferred to machine instruction and it denotes the prefix.
+ SDValue Chain = Node->getOperand(0);
+ SDValue Ptr = Node->getOperand(1);
+ SDValue Val = Node->getOperand(2);
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
+ return 0;
+
+ bool isInc = false, isDec = false, isSub = false, isCN = false;
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
+ if (CN) {
+ isCN = true;
+ int64_t CNVal = CN->getSExtValue();
+ if (CNVal == 1)
+ isInc = true;
+ else if (CNVal == -1)
+ isDec = true;
+ else if (CNVal >= 0)
+ Val = CurDAG->getTargetConstant(CNVal, NVT);
+ else {
+ isSub = true;
+ Val = CurDAG->getTargetConstant(-CNVal, NVT);
+ }
+ } else if (Val.hasOneUse() &&
+ Val.getOpcode() == ISD::SUB &&
+ X86::isZeroNode(Val.getOperand(0))) {
+ isSub = true;
+ Val = Val.getOperand(1);
+ }
+
+ unsigned Opc = 0;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: return 0;
+ case MVT::i8:
+ if (isInc)
+ Opc = X86::LOCK_INC8m;
+ else if (isDec)
+ Opc = X86::LOCK_DEC8m;
+ else if (isSub) {
+ if (isCN)
+ Opc = X86::LOCK_SUB8mi;
+ else
+ Opc = X86::LOCK_SUB8mr;
+ } else {
+ if (isCN)
+ Opc = X86::LOCK_ADD8mi;
+ else
+ Opc = X86::LOCK_ADD8mr;
+ }
+ break;
+ case MVT::i16:
+ if (isInc)
+ Opc = X86::LOCK_INC16m;
+ else if (isDec)
+ Opc = X86::LOCK_DEC16m;
+ else if (isSub) {
+ if (isCN) {
+ if (Predicate_i16immSExt8(Val.getNode()))
+ Opc = X86::LOCK_SUB16mi8;
+ else
+ Opc = X86::LOCK_SUB16mi;
+ } else
+ Opc = X86::LOCK_SUB16mr;
+ } else {
+ if (isCN) {
+ if (Predicate_i16immSExt8(Val.getNode()))
+ Opc = X86::LOCK_ADD16mi8;
+ else
+ Opc = X86::LOCK_ADD16mi;
+ } else
+ Opc = X86::LOCK_ADD16mr;
+ }
+ break;
+ case MVT::i32:
+ if (isInc)
+ Opc = X86::LOCK_INC32m;
+ else if (isDec)
+ Opc = X86::LOCK_DEC32m;
+ else if (isSub) {
+ if (isCN) {
+ if (Predicate_i32immSExt8(Val.getNode()))
+ Opc = X86::LOCK_SUB32mi8;
+ else
+ Opc = X86::LOCK_SUB32mi;
+ } else
+ Opc = X86::LOCK_SUB32mr;
+ } else {
+ if (isCN) {
+ if (Predicate_i32immSExt8(Val.getNode()))
+ Opc = X86::LOCK_ADD32mi8;
+ else
+ Opc = X86::LOCK_ADD32mi;
+ } else
+ Opc = X86::LOCK_ADD32mr;
+ }
+ break;
+ case MVT::i64:
+ if (isInc)
+ Opc = X86::LOCK_INC64m;
+ else if (isDec)
+ Opc = X86::LOCK_DEC64m;
+ else if (isSub) {
+ Opc = X86::LOCK_SUB64mr;
+ if (isCN) {
+ if (Predicate_i64immSExt8(Val.getNode()))
+ Opc = X86::LOCK_SUB64mi8;
+ else if (Predicate_i64immSExt32(Val.getNode()))
+ Opc = X86::LOCK_SUB64mi32;
+ }
+ } else {
+ Opc = X86::LOCK_ADD64mr;
+ if (isCN) {
+ if (Predicate_i64immSExt8(Val.getNode()))
+ Opc = X86::LOCK_ADD64mi8;
+ else if (Predicate_i64immSExt32(Val.getNode()))
+ Opc = X86::LOCK_ADD64mi32;
+ }
+ }
+ break;
+ }
+
+ DebugLoc dl = Node->getDebugLoc();
+ SDValue Undef = SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, NVT), 0);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
+ if (isInc || isDec) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
+ SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
+ cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+ SDValue RetVals[] = { Undef, Ret };
+ return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
+ } else {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
+ SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
+ cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+ SDValue RetVals[] = { Undef, Ret };
+ return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
+ }
+}
+
+/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
+/// any uses which require the SF or OF bits to be accurate.
+static bool HasNoSignedComparisonUses(SDNode *N) {
+ // Examine each user of the node.
+ for (SDNode::use_iterator UI = N->use_begin(),
+ UE = N->use_end(); UI != UE; ++UI) {
+ // Only examine CopyToReg uses.
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ // Only examine CopyToReg uses that copy to EFLAGS.
+ if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
+ X86::EFLAGS)
+ return false;
+ // Examine each user of the CopyToReg use.
+ for (SDNode::use_iterator FlagUI = UI->use_begin(),
+ FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
+ // Only examine the Flag result.
+ if (FlagUI.getUse().getResNo() != 1) continue;
+ // Anything unusual: assume conservatively.
+ if (!FlagUI->isMachineOpcode()) return false;
+ // Examine the opcode of the user.
+ switch (FlagUI->getMachineOpcode()) {
+ // These comparisons don't treat the most significant bit specially.
+ case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
+ case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
+ case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
+ case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
+ case X86::JA: case X86::JAE: case X86::JB: case X86::JBE:
+ case X86::JE: case X86::JNE: case X86::JP: case X86::JNP:
+ case X86::CMOVA16rr: case X86::CMOVA16rm:
+ case X86::CMOVA32rr: case X86::CMOVA32rm:
+ case X86::CMOVA64rr: case X86::CMOVA64rm:
+ case X86::CMOVAE16rr: case X86::CMOVAE16rm:
+ case X86::CMOVAE32rr: case X86::CMOVAE32rm:
+ case X86::CMOVAE64rr: case X86::CMOVAE64rm:
+ case X86::CMOVB16rr: case X86::CMOVB16rm:
+ case X86::CMOVB32rr: case X86::CMOVB32rm:
+ case X86::CMOVB64rr: case X86::CMOVB64rm:
+ case X86::CMOVBE16rr: case X86::CMOVBE16rm:
+ case X86::CMOVBE32rr: case X86::CMOVBE32rm:
+ case X86::CMOVBE64rr: case X86::CMOVBE64rm:
+ case X86::CMOVE16rr: case X86::CMOVE16rm:
+ case X86::CMOVE32rr: case X86::CMOVE32rm:
+ case X86::CMOVE64rr: case X86::CMOVE64rm:
+ case X86::CMOVNE16rr: case X86::CMOVNE16rm:
+ case X86::CMOVNE32rr: case X86::CMOVNE32rm:
+ case X86::CMOVNE64rr: case X86::CMOVNE64rm:
+ case X86::CMOVNP16rr: case X86::CMOVNP16rm:
+ case X86::CMOVNP32rr: case X86::CMOVNP32rm:
+ case X86::CMOVNP64rr: case X86::CMOVNP64rm:
+ case X86::CMOVP16rr: case X86::CMOVP16rm:
+ case X86::CMOVP32rr: case X86::CMOVP32rm:
+ case X86::CMOVP64rr: case X86::CMOVP64rm:
+ continue;
+ // Anything else: assume conservatively.
+ default: return false;
+ }
+ }
+ }
+ return true;
}
SDNode *X86DAGToDAGISel::Select(SDValue N) {
SDNode *Node = N.getNode();
- MVT NVT = Node->getValueType(0);
+ EVT NVT = Node->getValueType(0);
unsigned Opc, MOpc;
unsigned Opcode = Node->getOpcode();
DebugLoc dl = Node->getDebugLoc();
#ifndef NDEBUG
- DOUT << std::string(Indent, ' ') << "Selecting: ";
- DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent, ' ') << "Selecting: ";
+ Node->dump(CurDAG);
+ errs() << '\n';
+ });
Indent += 2;
#endif
if (Node->isMachineOpcode()) {
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "== ";
- DEBUG(Node->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "== ";
+ Node->dump(CurDAG);
+ errs() << '\n';
+ });
Indent -= 2;
#endif
return NULL; // Already selected.
}
switch (Opcode) {
- default: break;
- case X86ISD::GlobalBaseReg:
- return getGlobalBaseReg();
-
- case X86ISD::ATOMOR64_DAG:
- return SelectAtomic64(Node, X86::ATOMOR6432);
- case X86ISD::ATOMXOR64_DAG:
- return SelectAtomic64(Node, X86::ATOMXOR6432);
- case X86ISD::ATOMADD64_DAG:
- return SelectAtomic64(Node, X86::ATOMADD6432);
- case X86ISD::ATOMSUB64_DAG:
- return SelectAtomic64(Node, X86::ATOMSUB6432);
- case X86ISD::ATOMNAND64_DAG:
- return SelectAtomic64(Node, X86::ATOMNAND6432);
- case X86ISD::ATOMAND64_DAG:
- return SelectAtomic64(Node, X86::ATOMAND6432);
- case X86ISD::ATOMSWAP64_DAG:
- return SelectAtomic64(Node, X86::ATOMSWAP6432);
-
- case ISD::SMUL_LOHI:
- case ISD::UMUL_LOHI: {
- SDValue N0 = Node->getOperand(0);
- SDValue N1 = Node->getOperand(1);
-
- bool isSigned = Opcode == ISD::SMUL_LOHI;
- if (!isSigned)
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
- case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
- case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
- case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
- }
- else
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
- case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
- case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
- case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
- }
+ default: break;
+ case X86ISD::GlobalBaseReg:
+ return getGlobalBaseReg();
+
+ case X86ISD::ATOMOR64_DAG:
+ return SelectAtomic64(Node, X86::ATOMOR6432);
+ case X86ISD::ATOMXOR64_DAG:
+ return SelectAtomic64(Node, X86::ATOMXOR6432);
+ case X86ISD::ATOMADD64_DAG:
+ return SelectAtomic64(Node, X86::ATOMADD6432);
+ case X86ISD::ATOMSUB64_DAG:
+ return SelectAtomic64(Node, X86::ATOMSUB6432);
+ case X86ISD::ATOMNAND64_DAG:
+ return SelectAtomic64(Node, X86::ATOMNAND6432);
+ case X86ISD::ATOMAND64_DAG:
+ return SelectAtomic64(Node, X86::ATOMAND6432);
+ case X86ISD::ATOMSWAP64_DAG:
+ return SelectAtomic64(Node, X86::ATOMSWAP6432);
+
+ case ISD::ATOMIC_LOAD_ADD: {
+ SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
+ if (RetVal)
+ return RetVal;
+ break;
+ }
- unsigned LoReg, HiReg;
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
- case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
- case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
- case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
+ case ISD::SMUL_LOHI:
+ case ISD::UMUL_LOHI: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ bool isSigned = Opcode == ISD::SMUL_LOHI;
+ if (!isSigned) {
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
+ case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
+ case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
+ case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
}
-
- SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
- // multiplty is commmutative
- if (!foldedLoad) {
- foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
- if (foldedLoad)
- std::swap(N0, N1);
+ } else {
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
+ case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
+ case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
+ case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
}
+ }
- SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
- N0, SDValue()).getValue(1);
-
- if (foldedLoad) {
- SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
- InFlag };
- SDNode *CNode =
- CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
- array_lengthof(Ops));
- InFlag = SDValue(CNode, 1);
- // Update the chain.
- ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
- } else {
- InFlag =
- SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
- }
+ unsigned LoReg, HiReg;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
+ case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
+ case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
+ case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
+ }
- // Copy the low half of the result, if it is needed.
- if (!N.getValue(0).use_empty()) {
- SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- LoReg, NVT, InFlag);
- InFlag = Result.getValue(2);
- ReplaceUses(N.getValue(0), Result);
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ // Multiply is commmutative.
+ if (!foldedLoad) {
+ foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ if (foldedLoad)
+ std::swap(N0, N1);
+ }
+
+ SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
+ N0, SDValue()).getValue(1);
+
+ if (foldedLoad) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
+ InFlag };
+ SDNode *CNode =
+ CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
+ array_lengthof(Ops));
+ InFlag = SDValue(CNode, 1);
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
+ } else {
+ InFlag =
+ SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
+ }
+
+ // Copy the low half of the result, if it is needed.
+ if (!N.getValue(0).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ LoReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
+ ReplaceUses(N.getValue(0), Result);
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
- DEBUG(Result.getNode()->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "=> ";
+ Result.getNode()->dump(CurDAG);
+ errs() << '\n';
+ });
#endif
+ }
+ // Copy the high half of the result, if it is needed.
+ if (!N.getValue(1).use_empty()) {
+ SDValue Result;
+ if (HiReg == X86::AH && Subtarget->is64Bit()) {
+ // Prevent use of AH in a REX instruction by referencing AX instead.
+ // Shift it down 8 bits.
+ Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ X86::AX, MVT::i16, InFlag);
+ InFlag = Result.getValue(2);
+ Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
+ Result,
+ CurDAG->getTargetConstant(8, MVT::i8)), 0);
+ // Then truncate it down to i8.
+ Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
+ MVT::i8, Result);
+ } else {
+ Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ HiReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
}
- // Copy the high half of the result, if it is needed.
- if (!N.getValue(1).use_empty()) {
- SDValue Result;
- if (HiReg == X86::AH && Subtarget->is64Bit()) {
- // Prevent use of AH in a REX instruction by referencing AX instead.
- // Shift it down 8 bits.
- Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- X86::AX, MVT::i16, InFlag);
- InFlag = Result.getValue(2);
- Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
- Result,
- CurDAG->getTargetConstant(8, MVT::i8)), 0);
- // Then truncate it down to i8.
- SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
- Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
- MVT::i8, Result, SRIdx), 0);
- } else {
- Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- HiReg, NVT, InFlag);
- InFlag = Result.getValue(2);
- }
- ReplaceUses(N.getValue(1), Result);
+ ReplaceUses(N.getValue(1), Result);
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
- DEBUG(Result.getNode()->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "=> ";
+ Result.getNode()->dump(CurDAG);
+ errs() << '\n';
+ });
#endif
- }
+ }
#ifndef NDEBUG
- Indent -= 2;
+ Indent -= 2;
#endif
- return NULL;
- }
-
- case ISD::SDIVREM:
- case ISD::UDIVREM: {
- SDValue N0 = Node->getOperand(0);
- SDValue N1 = Node->getOperand(1);
-
- bool isSigned = Opcode == ISD::SDIVREM;
- if (!isSigned)
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
- case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
- case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
- case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
- }
- else
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
- case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
- case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
- case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
- }
+ return NULL;
+ }
- unsigned LoReg, HiReg;
- unsigned ClrOpcode, SExtOpcode;
- switch (NVT.getSimpleVT()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8:
- LoReg = X86::AL; HiReg = X86::AH;
- ClrOpcode = 0;
- SExtOpcode = X86::CBW;
- break;
- case MVT::i16:
- LoReg = X86::AX; HiReg = X86::DX;
- ClrOpcode = X86::MOV16r0;
- SExtOpcode = X86::CWD;
- break;
- case MVT::i32:
- LoReg = X86::EAX; HiReg = X86::EDX;
- ClrOpcode = X86::MOV32r0;
- SExtOpcode = X86::CDQ;
- break;
- case MVT::i64:
- LoReg = X86::RAX; HiReg = X86::RDX;
- ClrOpcode = X86::MOV64r0;
- SExtOpcode = X86::CQO;
- break;
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ bool isSigned = Opcode == ISD::SDIVREM;
+ if (!isSigned) {
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
+ case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
+ case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
+ case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
}
+ } else {
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
+ case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
+ case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
+ case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
+ }
+ }
- SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
- bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
- bool signBitIsZero = CurDAG->SignBitIsZero(N0);
-
- SDValue InFlag;
- if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
- // Special case for div8, just use a move with zero extension to AX to
- // clear the upper 8 bits (AH).
- SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
- if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
- SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
- Move =
- SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
- MVT::Other, Ops,
- array_lengthof(Ops)), 0);
- Chain = Move.getValue(1);
- ReplaceUses(N0.getValue(1), Chain);
- } else {
- Move =
- SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
- Chain = CurDAG->getEntryNode();
- }
- Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
- InFlag = Chain.getValue(1);
+ unsigned LoReg, HiReg;
+ unsigned ClrOpcode, SExtOpcode;
+ switch (NVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unsupported VT!");
+ case MVT::i8:
+ LoReg = X86::AL; HiReg = X86::AH;
+ ClrOpcode = 0;
+ SExtOpcode = X86::CBW;
+ break;
+ case MVT::i16:
+ LoReg = X86::AX; HiReg = X86::DX;
+ ClrOpcode = X86::MOV16r0;
+ SExtOpcode = X86::CWD;
+ break;
+ case MVT::i32:
+ LoReg = X86::EAX; HiReg = X86::EDX;
+ ClrOpcode = X86::MOV32r0;
+ SExtOpcode = X86::CDQ;
+ break;
+ case MVT::i64:
+ LoReg = X86::RAX; HiReg = X86::RDX;
+ ClrOpcode = ~0U; // NOT USED.
+ SExtOpcode = X86::CQO;
+ break;
+ }
+
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
+ bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
+ bool signBitIsZero = CurDAG->SignBitIsZero(N0);
+
+ SDValue InFlag;
+ if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
+ // Special case for div8, just use a move with zero extension to AX to
+ // clear the upper 8 bits (AH).
+ SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
+ if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
+ Move =
+ SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
+ MVT::Other, Ops,
+ array_lengthof(Ops)), 0);
+ Chain = Move.getValue(1);
+ ReplaceUses(N0.getValue(1), Chain);
} else {
+ Move =
+ SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
+ Chain = CurDAG->getEntryNode();
+ }
+ Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
+ InFlag = Chain.getValue(1);
+ } else {
+ InFlag =
+ CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
+ LoReg, N0, SDValue()).getValue(1);
+ if (isSigned && !signBitIsZero) {
+ // Sign extend the low part into the high part.
InFlag =
- CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
- LoReg, N0, SDValue()).getValue(1);
- if (isSigned && !signBitIsZero) {
- // Sign extend the low part into the high part.
- InFlag =
- SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
+ SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
+ } else {
+ // Zero out the high part, effectively zero extending the input.
+ SDValue ClrNode;
+
+ if (NVT.getSimpleVT() == MVT::i64) {
+ ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, MVT::i32),
+ 0);
+ // We just did a 32-bit clear, insert it into a 64-bit register to
+ // clear the whole 64-bit reg.
+ SDValue Undef =
+ SDValue(CurDAG->getMachineNode(TargetInstrInfo::IMPLICIT_DEF,
+ dl, MVT::i64), 0);
+ SDValue SubRegNo =
+ CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
+ ClrNode =
+ SDValue(CurDAG->getMachineNode(TargetInstrInfo::INSERT_SUBREG, dl,
+ MVT::i64, Undef, ClrNode, SubRegNo),
+ 0);
} else {
- // Zero out the high part, effectively zero extending the input.
- SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
- 0);
- InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
- ClrNode, InFlag).getValue(1);
+ ClrNode = SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
}
- }
- if (foldedLoad) {
- SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
- InFlag };
- SDNode *CNode =
- CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
- array_lengthof(Ops));
- InFlag = SDValue(CNode, 1);
- // Update the chain.
- ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
- } else {
- InFlag =
- SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
+ InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
+ ClrNode, InFlag).getValue(1);
}
+ }
- // Copy the division (low) result, if it is needed.
- if (!N.getValue(0).use_empty()) {
- SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- LoReg, NVT, InFlag);
- InFlag = Result.getValue(2);
- ReplaceUses(N.getValue(0), Result);
+ if (foldedLoad) {
+ SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
+ InFlag };
+ SDNode *CNode =
+ CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
+ array_lengthof(Ops));
+ InFlag = SDValue(CNode, 1);
+ // Update the chain.
+ ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
+ } else {
+ InFlag =
+ SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
+ }
+
+ // Copy the division (low) result, if it is needed.
+ if (!N.getValue(0).use_empty()) {
+ SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ LoReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
+ ReplaceUses(N.getValue(0), Result);
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
- DEBUG(Result.getNode()->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "=> ";
+ Result.getNode()->dump(CurDAG);
+ errs() << '\n';
+ });
#endif
+ }
+ // Copy the remainder (high) result, if it is needed.
+ if (!N.getValue(1).use_empty()) {
+ SDValue Result;
+ if (HiReg == X86::AH && Subtarget->is64Bit()) {
+ // Prevent use of AH in a REX instruction by referencing AX instead.
+ // Shift it down 8 bits.
+ Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ X86::AX, MVT::i16, InFlag);
+ InFlag = Result.getValue(2);
+ Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
+ Result,
+ CurDAG->getTargetConstant(8, MVT::i8)),
+ 0);
+ // Then truncate it down to i8.
+ Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
+ MVT::i8, Result);
+ } else {
+ Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
+ HiReg, NVT, InFlag);
+ InFlag = Result.getValue(2);
}
- // Copy the remainder (high) result, if it is needed.
- if (!N.getValue(1).use_empty()) {
- SDValue Result;
- if (HiReg == X86::AH && Subtarget->is64Bit()) {
- // Prevent use of AH in a REX instruction by referencing AX instead.
- // Shift it down 8 bits.
- Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- X86::AX, MVT::i16, InFlag);
- InFlag = Result.getValue(2);
- Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
- Result,
- CurDAG->getTargetConstant(8, MVT::i8)),
- 0);
- // Then truncate it down to i8.
- SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
- Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
- MVT::i8, Result, SRIdx), 0);
- } else {
- Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
- HiReg, NVT, InFlag);
- InFlag = Result.getValue(2);
- }
- ReplaceUses(N.getValue(1), Result);
+ ReplaceUses(N.getValue(1), Result);
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
- DEBUG(Result.getNode()->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "=> ";
+ Result.getNode()->dump(CurDAG);
+ errs() << '\n';
+ });
#endif
- }
+ }
#ifndef NDEBUG
- Indent -= 2;
+ Indent -= 2;
#endif
- return NULL;
- }
+ return NULL;
+ }
- case ISD::DECLARE: {
- // Handle DECLARE nodes here because the second operand may have been
- // wrapped in X86ISD::Wrapper.
- SDValue Chain = Node->getOperand(0);
- SDValue N1 = Node->getOperand(1);
- SDValue N2 = Node->getOperand(2);
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
-
- // FIXME: We need to handle this for VLAs.
- if (!FINode) {
- ReplaceUses(N.getValue(0), Chain);
- return NULL;
+ case X86ISD::CMP: {
+ SDValue N0 = Node->getOperand(0);
+ SDValue N1 = Node->getOperand(1);
+
+ // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
+ // use a smaller encoding.
+ if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
+ N0.getValueType() != MVT::i8 &&
+ X86::isZeroNode(N1)) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
+ if (!C) break;
+
+ // For example, convert "testl %eax, $8" to "testb %al, $8"
+ if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
+ (!(C->getZExtValue() & 0x80) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // On x86-32, only the ABCD registers have 8-bit subregisters.
+ if (!Subtarget->is64Bit()) {
+ TargetRegisterClass *TRC = 0;
+ switch (N0.getValueType().getSimpleVT().SimpleTy) {
+ case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
+ case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
+ default: llvm_unreachable("Unsupported TEST operand type!");
+ }
+ SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+ Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
+ Reg.getValueType(), Reg, RC), 0);
+ }
+
+ // Extract the l-register.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
+ MVT::i8, Reg);
+
+ // Emit a testb.
+ return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
}
-
- if (N2.getOpcode() == ISD::ADD &&
- N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
- N2 = N2.getOperand(1);
-
- // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
- // somehow, just ignore it.
- if (N2.getOpcode() != X86ISD::Wrapper &&
- N2.getOpcode() != X86ISD::WrapperRIP) {
- ReplaceUses(N.getValue(0), Chain);
- return NULL;
+
+ // For example, "testl %eax, $2048" to "testb %ah, $8".
+ if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
+ (!(C->getZExtValue() & 0x8000) ||
+ HasNoSignedComparisonUses(Node))) {
+ // Shift the immediate right by 8 bits.
+ SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
+ MVT::i8);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Put the value in an ABCD register.
+ TargetRegisterClass *TRC = 0;
+ switch (N0.getValueType().getSimpleVT().SimpleTy) {
+ case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
+ case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
+ case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
+ default: llvm_unreachable("Unsupported TEST operand type!");
+ }
+ SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
+ Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
+ Reg.getValueType(), Reg, RC), 0);
+
+ // Extract the h-register.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
+ MVT::i8, Reg);
+
+ // Emit a testb. No special NOREX tricks are needed since there's
+ // only one GPR operand!
+ return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
+ Subreg, ShiftedImm);
}
- GlobalAddressSDNode *GVNode =
- dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
- if (GVNode == 0) {
- ReplaceUses(N.getValue(0), Chain);
- return NULL;
+
+ // For example, "testl %eax, $32776" to "testw %ax, $32776".
+ if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
+ N0.getValueType() != MVT::i16 &&
+ (!(C->getZExtValue() & 0x8000) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Extract the 16-bit subregister.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
+ MVT::i16, Reg);
+
+ // Emit a testw.
+ return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
+ }
+
+ // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
+ if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
+ N0.getValueType() == MVT::i64 &&
+ (!(C->getZExtValue() & 0x80000000) ||
+ HasNoSignedComparisonUses(Node))) {
+ SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
+ SDValue Reg = N0.getNode()->getOperand(0);
+
+ // Extract the 32-bit subregister.
+ SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
+ MVT::i32, Reg);
+
+ // Emit a testl.
+ return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
}
- SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
- TLI.getPointerTy());
- SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
- TLI.getPointerTy());
- SDValue Ops[] = { Tmp1, Tmp2, Chain };
- return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
- MVT::Other, Ops,
- array_lengthof(Ops));
}
+ break;
+ }
}
SDNode *ResNode = SelectCode(N);
#ifndef NDEBUG
- DOUT << std::string(Indent-2, ' ') << "=> ";
- if (ResNode == NULL || ResNode == N.getNode())
- DEBUG(N.getNode()->dump(CurDAG));
- else
- DEBUG(ResNode->dump(CurDAG));
- DOUT << "\n";
+ DEBUG({
+ errs() << std::string(Indent-2, ' ') << "=> ";
+ if (ResNode == NULL || ResNode == N.getNode())
+ N.getNode()->dump(CurDAG);
+ else
+ ResNode->dump(CurDAG);
+ errs() << '\n';
+ });
Indent -= 2;
#endif
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 5a6294a..fadc818 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -16,13 +16,16 @@
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86TargetMachine.h"
+#include "X86TargetObjectFile.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
+#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -33,21 +36,48 @@
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool>
DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
+// Disable16Bit - 16-bit operations typically have a larger encoding than
+// corresponding 32-bit instructions, and 16-bit code is slow on some
+// processors. This is an experimental flag to disable 16-bit operations
+// (which forces them to be Legalized to 32-bit operations).
+static cl::opt<bool>
+Disable16Bit("disable-16bit", cl::Hidden,
+ cl::desc("Disable use of 16-bit instructions"));
+
// Forward declarations.
-static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
+static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2);
+static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
+ switch (TM.getSubtarget<X86Subtarget>().TargetType) {
+ default: llvm_unreachable("unknown subtarget type");
+ case X86Subtarget::isDarwin:
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ return new X8664_MachoTargetObjectFile();
+ return new X8632_MachoTargetObjectFile();
+ case X86Subtarget::isELF:
+ return new TargetLoweringObjectFileELF();
+ case X86Subtarget::isMingw:
+ case X86Subtarget::isCygwin:
+ case X86Subtarget::isWindows:
+ return new TargetLoweringObjectFileCOFF();
+ }
+
+}
+
X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
- : TargetLowering(TM) {
+ : TargetLowering(TM, createTLOF(TM)) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
@@ -62,7 +92,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setShiftAmountType(MVT::i8);
setBooleanContents(ZeroOrOneBooleanContent);
setSchedulingPreference(SchedulingForRegPressure);
- setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
setStackPointerRegisterToSaveRestore(X86StackPtr);
if (Subtarget->isTargetDarwin()) {
@@ -80,7 +109,8 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// Set up the register classes.
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
- addRegisterClass(MVT::i16, X86::GR16RegisterClass);
+ if (!Disable16Bit)
+ addRegisterClass(MVT::i16, X86::GR16RegisterClass);
addRegisterClass(MVT::i32, X86::GR32RegisterClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, X86::GR64RegisterClass);
@@ -89,9 +119,11 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
- setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ if (!Disable16Bit)
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
- setTruncStoreAction(MVT::i32, MVT::i16, Expand);
+ if (!Disable16Bit)
+ setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
@@ -242,8 +274,13 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
- setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
- setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ if (Disable16Bit) {
+ setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
+ } else {
+ setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ }
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
@@ -257,16 +294,22 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
- setOperationAction(ISD::SELECT , MVT::i1 , Promote);
- setOperationAction(ISD::SELECT , MVT::i8 , Promote);
+ setOperationAction(ISD::SELECT , MVT::i1 , Promote);
// X86 wants to expand cmov itself.
- setOperationAction(ISD::SELECT , MVT::i16 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i8 , Custom);
+ if (Disable16Bit)
+ setOperationAction(ISD::SELECT , MVT::i16 , Expand);
+ else
+ setOperationAction(ISD::SELECT , MVT::i16 , Custom);
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
setOperationAction(ISD::SELECT , MVT::f80 , Custom);
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
- setOperationAction(ISD::SETCC , MVT::i16 , Custom);
+ if (Disable16Bit)
+ setOperationAction(ISD::SETCC , MVT::i16 , Expand);
+ else
+ setOperationAction(ISD::SETCC , MVT::i16 , Custom);
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
@@ -275,8 +318,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
}
- // X86 ret instruction may pop stack.
- setOperationAction(ISD::RET , MVT::Other, Custom);
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// Darwin ABI issue.
@@ -330,7 +371,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
}
- // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
+ // Use the default ISD::DBG_STOPPOINT.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (!Subtarget->isTargetDarwin() &&
@@ -637,6 +678,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v8i8, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v4i16, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v2i32, Custom);
}
if (!UseSoftFloat && Subtarget->hasSSE1()) {
@@ -696,16 +740,19 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
+ EVT VT = (MVT::SimpleValueType)i;
// Do not attempt to custom lower non-power-of-2 vectors
if (!isPowerOf2_32(VT.getVectorNumElements()))
continue;
// Do not attempt to custom lower non-128-bit vectors
if (!VT.is128BitVector())
continue;
- setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
- setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR,
+ VT.getSimpleVT().SimpleTy, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE,
+ VT.getSimpleVT().SimpleTy, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT,
+ VT.getSimpleVT().SimpleTy, Custom);
}
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
@@ -722,22 +769,23 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
- MVT VT = (MVT::SimpleValueType)i;
+ MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
+ EVT VT = SVT;
// Do not attempt to promote non-128-bit vectors
if (!VT.is128BitVector()) {
continue;
}
- setOperationAction(ISD::AND, VT, Promote);
- AddPromotedToType (ISD::AND, VT, MVT::v2i64);
- setOperationAction(ISD::OR, VT, Promote);
- AddPromotedToType (ISD::OR, VT, MVT::v2i64);
- setOperationAction(ISD::XOR, VT, Promote);
- AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
- setOperationAction(ISD::LOAD, VT, Promote);
- AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
- setOperationAction(ISD::SELECT, VT, Promote);
- AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
+ setOperationAction(ISD::AND, SVT, Promote);
+ AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
+ setOperationAction(ISD::OR, SVT, Promote);
+ AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
+ setOperationAction(ISD::XOR, SVT, Promote);
+ AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
+ setOperationAction(ISD::LOAD, SVT, Promote);
+ AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
+ setOperationAction(ISD::SELECT, SVT, Promote);
+ AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
}
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
@@ -847,7 +895,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
// This includes 256-bit vectors
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
+ EVT VT = (MVT::SimpleValueType)i;
// Do not attempt to custom lower non-power-of-2 vectors
if (!isPowerOf2_32(VT.getVectorNumElements()))
@@ -861,7 +909,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
- }
+ }
#endif
#if 0
@@ -871,7 +919,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
// Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
// Including 256-bit vectors
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
- MVT VT = (MVT::SimpleValueType)i;
+ EVT VT = (MVT::SimpleValueType)i;
if (!VT.is256BitVector()) {
continue;
@@ -933,13 +981,12 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
- allowUnalignedMemoryAccesses = true; // x86 supports it!
setPrefLoopAlignment(16);
benefitFromCodePlacementOpt = true;
}
-MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
+MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i8;
}
@@ -993,7 +1040,7 @@ unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
-MVT
+EVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr,
SelectionDAG &DAG) const {
@@ -1019,7 +1066,7 @@ SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (usesGlobalOffsetTable())
return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
- if (!Subtarget->isPICStyleRIPRel())
+ if (!Subtarget->is64Bit())
// This doesn't have DebugLoc associated with it, but is not really the
// same as a Register.
return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
@@ -1029,7 +1076,7 @@ SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
- return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
+ return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
}
//===----------------------------------------------------------------------===//
@@ -1038,16 +1085,16 @@ unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
#include "X86GenCallingConv.inc"
-/// LowerRET - Lower an ISD::RET node.
-SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
- assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
+SDValue
+X86TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
@@ -1056,49 +1103,19 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- SDValue Chain = Op.getOperand(0);
-
- // Handle tail call return.
- Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
- if (Chain.getOpcode() == X86ISD::TAILCALL) {
- SDValue TailCall = Chain;
- SDValue TargetAddress = TailCall.getOperand(1);
- SDValue StackAdjustment = TailCall.getOperand(2);
- assert(((TargetAddress.getOpcode() == ISD::Register &&
- (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
- cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
- TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
- TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
- "Expecting an global address, external symbol, or register");
- assert(StackAdjustment.getOpcode() == ISD::Constant &&
- "Expecting a const value");
-
- SmallVector<SDValue,8> Operands;
- Operands.push_back(Chain.getOperand(0));
- Operands.push_back(TargetAddress);
- Operands.push_back(StackAdjustment);
- // Copy registers used by the call. Last operand is a flag so it is not
- // copied.
- for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
- Operands.push_back(Chain.getOperand(i));
- }
- return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
- Operands.size());
- }
- // Regular return.
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
- RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
+ RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- SDValue ValToCopy = Op.getOperand(i*2+1);
+ SDValue ValToCopy = Outs[i].Val;
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
@@ -1116,7 +1133,7 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
// which is returned in RAX / RDX.
if (Subtarget->is64Bit()) {
- MVT ValVT = ValToCopy.getValueType();
+ EVT ValVT = ValToCopy.getValueType();
if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
@@ -1145,6 +1162,9 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
Flag = Chain.getValue(1);
+
+ // RAX now acts like a return value.
+ MF.getRegInfo().addLiveOut(X86::RAX);
}
RetOps[0] = Chain; // Update chain.
@@ -1157,36 +1177,32 @@ SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
MVT::Other, &RetOps[0], RetOps.size());
}
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
-/// LowerCallResult - Lower the result values of an ISD::CALL into the
-/// appropriate copies out of appropriate physical registers. This assumes that
-/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
-/// being lowered. The returns a SDNode with the same number of values as the
-/// ISD::CALL.
-SDNode *X86TargetLowering::
-LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG) {
-
- DebugLoc dl = TheCall->getDebugLoc();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- bool isVarArg = TheCall->isVarArg();
bool Is64Bit = Subtarget->is64Bit();
- CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
- CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
-
- SmallVector<SDValue, 8> ResultVals;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
- MVT CopyVT = VA.getValVT();
+ EVT CopyVT = VA.getValVT();
// If this is x86-64, and we disabled SSE, we can't return FP values
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
- ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
- cerr << "SSE register return with SSE disabled\n";
- exit(1);
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ llvm_report_error("SSE register return with SSE disabled");
}
// If this is a call to a function that returns an fp value on the floating
@@ -1206,7 +1222,7 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
MVT::v2i64, InFlag).getValue(1);
Val = Chain.getValue(0);
Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
- Val, DAG.getConstant(0, MVT::i64));
+ Val, DAG.getConstant(0, MVT::i64));
} else {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
MVT::i64, InFlag).getValue(1);
@@ -1228,13 +1244,10 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
DAG.getIntPtrConstant(1));
}
- ResultVals.push_back(Val);
+ InVals.push_back(Val);
}
- // Merge everything together with a MERGE_VALUES node.
- ResultVals.push_back(Chain);
- return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size()).getNode();
+ return Chain;
}
@@ -1248,30 +1261,28 @@ LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
-/// CallIsStructReturn - Determines whether a CALL node uses struct return
+/// CallIsStructReturn - Determines whether a call uses struct return
/// semantics.
-static bool CallIsStructReturn(CallSDNode *TheCall) {
- unsigned NumOps = TheCall->getNumArgs();
- if (!NumOps)
+static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
+ if (Outs.empty())
return false;
- return TheCall->getArgFlags(0).isSRet();
+ return Outs[0].Flags.isSRet();
}
-/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
+/// ArgsAreStructReturn - Determines whether a function uses struct
/// return semantics.
-static bool ArgsAreStructReturn(SDValue Op) {
- unsigned NumArgs = Op.getNode()->getNumValues() - 1;
- if (!NumArgs)
+static bool
+ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
+ if (Ins.empty())
return false;
- return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
+ return Ins[0].Flags.isSRet();
}
-/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
-/// the callee to pop its own arguments. Callee pop is necessary to support tail
-/// calls.
-bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
+/// IsCalleePop - Determines whether the callee is required to pop its
+/// own arguments. Callee pop is necessary to support tail calls.
+bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
if (IsVarArg)
return false;
@@ -1289,7 +1300,7 @@ bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
-CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
+CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return CC_X86_Win64_C;
@@ -1305,36 +1316,18 @@ CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
return CC_X86_32_C;
}
-/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
-/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
+/// NameDecorationForCallConv - Selects the appropriate decoration to
+/// apply to a MachineFunction containing a given calling convention.
NameDecorationStyle
-X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
- unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- if (CC == CallingConv::X86_FastCall)
+X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
+ if (CallConv == CallingConv::X86_FastCall)
return FastCall;
- else if (CC == CallingConv::X86_StdCall)
+ else if (CallConv == CallingConv::X86_StdCall)
return StdCall;
return None;
}
-/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
-/// in a register before calling.
-bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
- return !IsTailCall && !Is64Bit &&
- getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT();
-}
-
-/// CallRequiresFnAddressInReg - Check whether the call requires the function
-/// address to be loaded in a register.
-bool
-X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
- return !Is64Bit && IsTailCall &&
- getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT();
-}
-
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" with size and alignment information specified by
/// the specific parameter attribute. The copy will be passed as a byval
@@ -1348,35 +1341,52 @@ CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
/*AlwaysInline=*/true, NULL, 0, NULL, 0);
}
-SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
- const CCValAssign &VA,
- MachineFrameInfo *MFI,
- unsigned CC,
- SDValue Root, unsigned i) {
+SDValue
+X86TargetLowering::LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ MachineFrameInfo *MFI,
+ unsigned i) {
+
// Create the nodes corresponding to a load from this parameter slot.
- ISD::ArgFlagsTy Flags =
- cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
- bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
+ EVT ValVT;
+
+ // If value is passed by pointer we have address passed instead of the value
+ // itself.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ValVT = VA.getLocVT();
+ else
+ ValVT = VA.getValVT();
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
- int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
+ int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
VA.getLocMemOffset(), isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
if (Flags.isByVal())
return FIN;
- return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
+ return DAG.getLoad(ValVT, dl, Chain, FIN,
PseudoSourceValue::getFixedStack(FI), 0);
}
SDValue
-X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
+X86TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
- DebugLoc dl = Op.getDebugLoc();
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
@@ -1385,25 +1395,23 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
FuncInfo->setForceFramePointer(true);
// Decorate the function name.
- FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
+ FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
MachineFrameInfo *MFI = MF.getFrameInfo();
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- unsigned CC = MF.getFunction()->getCallingConv();
bool Is64Bit = Subtarget->is64Bit();
bool IsWin64 = Subtarget->isTargetWin64();
- assert(!(isVarArg && CC == CallingConv::Fast) &&
+ assert(!(isVarArg && CallConv == CallingConv::Fast) &&
"Var args not supported with calling convention fastcc");
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
- SmallVector<SDValue, 8> ArgValues;
unsigned LastVal = ~0U;
+ SDValue ArgValue;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
@@ -1413,7 +1421,7 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
LastVal = VA.getValNo();
if (VA.isRegLoc()) {
- MVT RegVT = VA.getLocVT();
+ EVT RegVT = VA.getLocVT();
TargetRegisterClass *RC = NULL;
if (RegVT == MVT::i32)
RC = X86::GR32RegisterClass;
@@ -1425,27 +1433,13 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
RC = X86::FR64RegisterClass;
else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
RC = X86::VR128RegisterClass;
- else if (RegVT.isVector()) {
- assert(RegVT.getSizeInBits() == 64);
- if (!Is64Bit)
- RC = X86::VR64RegisterClass; // MMX values are passed in MMXs.
- else {
- // Darwin calling convention passes MMX values in either GPRs or
- // XMMs in x86-64. Other targets pass them in memory.
- if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
- RC = X86::VR128RegisterClass; // MMX values are passed in XMMs.
- RegVT = MVT::v2i64;
- } else {
- RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs.
- RegVT = MVT::i64;
- }
- }
- } else {
- assert(0 && "Unknown argument type!");
- }
+ else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
+ RC = X86::VR64RegisterClass;
+ else
+ llvm_unreachable("Unknown argument type!");
- unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
- SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
@@ -1456,52 +1450,53 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
- if (VA.getLocInfo() != CCValAssign::Full)
- ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
-
- // Handle MMX values passed in GPRs.
- if (Is64Bit && RegVT != VA.getLocVT()) {
- if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
- ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
- else if (RC == X86::VR128RegisterClass) {
+ if (VA.isExtInLoc()) {
+ // Handle MMX values passed in XMM regs.
+ if (RegVT.isVector()) {
ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
ArgValue, DAG.getConstant(0, MVT::i64));
- ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
- }
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+ } else
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
-
- ArgValues.push_back(ArgValue);
} else {
assert(VA.isMemLoc());
- ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
+ ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
}
+
+ // If value is passed via pointer - do a load.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
+
+ InVals.push_back(ArgValue);
}
// The x86-64 ABI for returning structs by value requires that we copy
// the sret argument into %rax for the return. Save the argument into
// a virtual register so that we can access it from the return points.
- if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
- MachineFunction &MF = DAG.getMachineFunction();
+ if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
FuncInfo->setSRetReturnReg(Reg);
}
- SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
unsigned StackSize = CCInfo.getNextStackOffset();
// align stack specially for tail calls
- if (PerformTailCallOpt && CC == CallingConv::Fast)
+ if (PerformTailCallOpt && CallConv == CallingConv::Fast)
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
- if (Is64Bit || CC != CallingConv::X86_FastCall) {
+ if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
}
if (Is64Bit) {
@@ -1558,75 +1553,81 @@ X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
- SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
- DAG.getIntPtrConstant(VarArgsGPOffset));
+ unsigned Offset = VarArgsGPOffset;
for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
+ DAG.getIntPtrConstant(Offset));
unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
X86::GR64RegisterClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
- PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
+ PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
+ Offset);
MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
- DAG.getIntPtrConstant(8));
+ Offset += 8;
}
- // Now store the XMM (fp + vector) parameter registers.
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
- DAG.getIntPtrConstant(VarArgsFPOffset));
- for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
- unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
- X86::VR128RegisterClass);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
- SDValue Store =
- DAG.getStore(Val.getValue(1), dl, Val, FIN,
- PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
- DAG.getIntPtrConstant(16));
+ if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 11> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+
+ unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
+ SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
+ SaveXMMOps.push_back(ALVal);
+
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
+
+ for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
+ unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
+ X86::VR128RegisterClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
+ SaveXMMOps.push_back(Val);
+ }
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other,
+ &SaveXMMOps[0], SaveXMMOps.size()));
}
+
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &MemOps[0], MemOps.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
}
}
- ArgValues.push_back(Root);
-
// Some CCs need callee pop.
- if (IsCalleePop(isVarArg, CC)) {
+ if (IsCalleePop(isVarArg, CallConv)) {
BytesToPopOnReturn = StackSize; // Callee pops everything.
BytesCallerReserves = 0;
} else {
BytesToPopOnReturn = 0; // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
- if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
+ if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
BytesToPopOnReturn = 4;
BytesCallerReserves = StackSize;
}
if (!Is64Bit) {
RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
- if (CC == CallingConv::X86_FastCall)
+ if (CallConv == CallingConv::X86_FastCall)
VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
}
FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
- // Return the new list of results.
- return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
- &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
+ return Chain;
}
SDValue
-X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
- const SDValue &StackPtr,
+X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
- SDValue Chain,
- SDValue Arg, ISD::ArgFlagsTy Flags) {
- DebugLoc dl = TheCall->getDebugLoc();
- unsigned LocMemOffset = VA.getLocMemOffset();
+ ISD::ArgFlagsTy Flags) {
+ const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
+ unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
if (Flags.isByVal()) {
@@ -1649,7 +1650,7 @@ X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
if (!IsTailCall || FPDiff==0) return Chain;
// Adjust the Return address stack slot.
- MVT VT = getPointerTy();
+ EVT VT = getPointerTy();
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
@@ -1669,41 +1670,45 @@ EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
int SlotSize = Is64Bit ? 8 : 4;
int NewReturnAddrFI =
MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
- MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
+ EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
return Chain;
}
-SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
+SDValue
+X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
MachineFunction &MF = DAG.getMachineFunction();
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- unsigned CC = TheCall->getCallingConv();
- bool isVarArg = TheCall->isVarArg();
- bool IsTailCall = TheCall->isTailCall() &&
- CC == CallingConv::Fast && PerformTailCallOpt;
- SDValue Callee = TheCall->getCallee();
bool Is64Bit = Subtarget->is64Bit();
- bool IsStructRet = CallIsStructReturn(TheCall);
- DebugLoc dl = TheCall->getDebugLoc();
+ bool IsStructRet = CallIsStructReturn(Outs);
- assert(!(isVarArg && CC == CallingConv::Fast) &&
+ assert((!isTailCall ||
+ (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
+ "IsEligibleForTailCallOptimization missed a case!");
+ assert(!(isVarArg && CallConv == CallingConv::Fast) &&
"Var args not supported with calling convention fastcc");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
- CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
- if (PerformTailCallOpt && CC == CallingConv::Fast)
+ if (PerformTailCallOpt && CallConv == CallingConv::Fast)
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
- if (IsTailCall) {
+ if (isTailCall) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
@@ -1719,7 +1724,7 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
SDValue RetAddrFrIdx;
// Load return adress for tail calls.
- Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
+ Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
FPDiff, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
@@ -1730,57 +1735,54 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// of tail call optimization arguments are handle later.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
- SDValue Arg = TheCall->getArg(i);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
- Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::ZExt:
- Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::AExt:
- Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
+ // Special case: passing MMX values in XMM registers.
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
+ Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
+ } else
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
+ PseudoSourceValue::getFixedStack(FI), 0);
+ Arg = SpillSlot;
+ break;
+ }
}
if (VA.isRegLoc()) {
- if (Is64Bit) {
- MVT RegVT = VA.getLocVT();
- if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
- switch (VA.getLocReg()) {
- default:
- break;
- case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
- case X86::R8: {
- // Special case: passing MMX values in GPR registers.
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
- break;
- }
- case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
- case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
- // Special case: passing MMX values in XMM registers.
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
- Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
- Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
- break;
- }
- }
- }
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
- if (!IsTailCall || (IsTailCall && isByVal)) {
+ if (!isTailCall || (isTailCall && isByVal)) {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
- MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
- Chain, Arg, Flags));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
}
}
}
@@ -1794,37 +1796,41 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
SDValue InFlag;
// Tail call byval lowering might overwrite argument registers so in case of
// tail call optimization the copies to registers are lowered later.
- if (!IsTailCall)
+ if (!isTailCall)
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
- // ELF / PIC requires GOT in the EBX register before function calls via PLT
- // GOT pointer.
- if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
- Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
- DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc::getUnknownLoc(),
- getPointerTy()),
- InFlag);
- InFlag = Chain.getValue(1);
- }
- // If we are tail calling and generating PIC/GOT style code load the address
- // of the callee into ecx. The value in ecx is used as target of the tail
- // jump. This is done to circumvent the ebx/callee-saved problem for tail
- // calls on PIC/GOT architectures. Normally we would just put the address of
- // GOT into ebx and then call target@PLT. But for tail callss ebx would be
- // restored (since ebx is callee saved) before jumping to the target@PLT.
- if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
- // Note: The actual moving to ecx is done further down.
- GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
- if (G && !G->getGlobal()->hasHiddenVisibility() &&
- !G->getGlobal()->hasProtectedVisibility())
- Callee = LowerGlobalAddress(Callee, DAG);
- else if (isa<ExternalSymbolSDNode>(Callee))
- Callee = LowerExternalSymbol(Callee,DAG);
+
+ if (Subtarget->isPICStyleGOT()) {
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (!isTailCall) {
+ Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc::getUnknownLoc(),
+ getPointerTy()),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ } else {
+ // If we are tail calling and generating PIC/GOT style code load the
+ // address of the callee into ECX. The value in ecx is used as target of
+ // the tail jump. This is done to circumvent the ebx/callee-saved problem
+ // for tail calls on PIC/GOT architectures. Normally we would just put the
+ // address of GOT into ebx and then call target@PLT. But for tail calls
+ // ebx would be restored (since ebx is callee saved) before jumping to the
+ // target@PLT.
+
+ // Note: The actual moving to ECX is done further down.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (G && !G->getGlobal()->hasHiddenVisibility() &&
+ !G->getGlobal()->hasProtectedVisibility())
+ Callee = LowerGlobalAddress(Callee, DAG);
+ else if (isa<ExternalSymbolSDNode>(Callee))
+ Callee = LowerExternalSymbol(Callee, DAG);
+ }
}
if (Is64Bit && isVarArg) {
@@ -1853,7 +1859,15 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// For tail calls lower the arguments to the 'real' stack slot.
- if (IsTailCall) {
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
+
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
@@ -1863,8 +1877,8 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc()) {
assert(VA.isMemLoc());
- SDValue Arg = TheCall->getArg(i);
- ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
@@ -1879,12 +1893,13 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
getPointerTy());
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
- MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
+ MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
+ ArgChain,
Flags, DAG, dl));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(
- DAG.getStore(Chain, dl, Arg, FIN,
+ DAG.getStore(ArgChain, dl, Arg, FIN,
PseudoSourceValue::getFixedStack(FI), 0));
}
}
@@ -1912,13 +1927,49 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
- if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
- getTargetMachine(), true))
- Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
- G->getOffset());
+ GlobalValue *GV = G->getGlobal();
+ if (!GV->hasDLLImportLinkage()) {
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
+ G->getOffset(), OpFlags);
+ }
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
- Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
- } else if (IsTailCall) {
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
+ // symbols should go through the PLT.
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
+ OpFlags);
+ } else if (isTailCall) {
unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl,
@@ -1926,27 +1977,23 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
Callee,InFlag);
Callee = DAG.getRegister(Opc, getPointerTy());
// Add register as live out.
- DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
+ MF.getRegInfo().addLiveOut(Opc);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
- if (IsTailCall) {
+ if (isTailCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
-
- // Returns a chain & a flag for retval copy to use.
- NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
- Ops.clear();
}
Ops.push_back(Chain);
Ops.push_back(Callee);
- if (IsTailCall)
+ if (isTailCall)
Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
// Add argument registers to the end of the list so that they are known live
@@ -1956,9 +2003,7 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
RegsToPass[i].second.getValueType()));
// Add an implicit use GOT pointer in EBX.
- if (!IsTailCall && !Is64Bit &&
- getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
- Subtarget->isPICStyleGOT())
+ if (!isTailCall && Subtarget->isPICStyleGOT())
Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
// Add an implicit use of AL for x86 vararg functions.
@@ -1968,13 +2013,28 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
if (InFlag.getNode())
Ops.push_back(InFlag);
- if (IsTailCall) {
- assert(InFlag.getNode() &&
- "Flag must be set. Depend on flag being set in LowerRET");
- Chain = DAG.getNode(X86ISD::TAILCALL, dl,
- TheCall->getVTList(), &Ops[0], Ops.size());
+ if (isTailCall) {
+ // If this is the first return lowered for this function, add the regs
+ // to the liveout set for the function.
+ if (MF.getRegInfo().liveout_empty()) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ assert(((Callee.getOpcode() == ISD::Register &&
+ (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
+ cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
+ Callee.getOpcode() == ISD::TargetExternalSymbol ||
+ Callee.getOpcode() == ISD::TargetGlobalAddress) &&
+ "Expecting an global address, external symbol, or register");
- return SDValue(Chain.getNode(), Op.getResNo());
+ return DAG.getNode(X86ISD::TC_RETURN, dl,
+ NodeTys, &Ops[0], Ops.size());
}
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
@@ -1982,9 +2042,9 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush;
- if (IsCalleePop(isVarArg, CC))
+ if (IsCalleePop(isVarArg, CallConv))
NumBytesForCalleeToPush = NumBytes; // Callee pops everything
- else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
+ else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
// If this is is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
@@ -2002,8 +2062,8 @@ SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
// Handle result values, copying them out of physregs into vregs that we
// return.
- return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
- Op.getResNo());
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
}
@@ -2060,36 +2120,18 @@ unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
return Offset;
}
-/// IsEligibleForTailCallElimination - Check to see whether the next instruction
-/// following the call is a return. A function is eligible if caller/callee
-/// calling conventions match, currently only fastcc supports tail calls, and
-/// the function CALL is immediatly followed by a RET.
-bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
- SDValue Ret,
- SelectionDAG& DAG) const {
- if (!PerformTailCallOpt)
- return false;
-
- if (CheckTailCallReturnConstraints(TheCall, Ret)) {
- MachineFunction &MF = DAG.getMachineFunction();
- unsigned CallerCC = MF.getFunction()->getCallingConv();
- unsigned CalleeCC= TheCall->getCallingConv();
- if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
- SDValue Callee = TheCall->getCallee();
- // On x86/32Bit PIC/GOT tail calls are supported.
- if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
- !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
- return true;
-
- // Can only do local tail calls (in same module, hidden or protected) on
- // x86_64 PIC/GOT at the moment.
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
- return G->getGlobal()->hasHiddenVisibility()
- || G->getGlobal()->hasProtectedVisibility();
- }
- }
-
- return false;
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
+ return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
}
FastISel *
@@ -2133,6 +2175,36 @@ SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
}
+bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement) {
+ // Offset should fit into 32 bit immediate field.
+ if (!isInt32(Offset))
+ return false;
+
+ // If we don't have a symbolic displacement - we don't have any extra
+ // restrictions.
+ if (!hasSymbolicDisplacement)
+ return true;
+
+ // FIXME: Some tweaks might be needed for medium code model.
+ if (M != CodeModel::Small && M != CodeModel::Kernel)
+ return false;
+
+ // For small code model we assume that latest object is 16MB before end of 31
+ // bits boundary. We may also accept pretty large negative constants knowing
+ // that all objects are in the positive half of address space.
+ if (M == CodeModel::Small && Offset < 16*1024*1024)
+ return true;
+
+ // For kernel code model we know that all object resist in the negative half
+ // of 32bits address space. We may not accept negative offsets, since they may
+ // be just off and we may accept pretty large positive ones.
+ if (M == CodeModel::Kernel && Offset > 0)
+ return true;
+
+ return false;
+}
+
/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code, returning the condition code and the LHS/RHS of the
/// comparison to make.
@@ -2155,7 +2227,7 @@ static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
}
switch (SetCCOpcode) {
- default: assert(0 && "Invalid integer condition!");
+ default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ: return X86::COND_E;
case ISD::SETGT: return X86::COND_G;
case ISD::SETGE: return X86::COND_GE;
@@ -2195,7 +2267,7 @@ static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
- default: assert(0 && "Condcode should be pre-legalized away");
+ default: llvm_unreachable("Condcode should be pre-legalized away");
case ISD::SETUEQ:
case ISD::SETEQ: return X86::COND_E;
case ISD::SETOLT: // flipped
@@ -2253,7 +2325,7 @@ static bool isUndefOrEqual(int Val, int CmpVal) {
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
/// the second operand.
-static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
if (VT == MVT::v2f64 || VT == MVT::v2i64)
@@ -2262,68 +2334,68 @@ static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
}
bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
- SmallVector<int, 8> M;
+ SmallVector<int, 8> M;
N->getMask(M);
return ::isPSHUFDMask(M, N->getValueType(0));
}
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFHW.
-static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
if (VT != MVT::v8i16)
return false;
-
+
// Lower quadword copied in order or undef.
for (int i = 0; i != 4; ++i)
if (Mask[i] >= 0 && Mask[i] != i)
return false;
-
+
// Upper quadword shuffled.
for (int i = 4; i != 8; ++i)
if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
return false;
-
+
return true;
}
bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
- SmallVector<int, 8> M;
+ SmallVector<int, 8> M;
N->getMask(M);
return ::isPSHUFHWMask(M, N->getValueType(0));
}
/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFLW.
-static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
if (VT != MVT::v8i16)
return false;
-
+
// Upper quadword copied in order.
for (int i = 4; i != 8; ++i)
if (Mask[i] >= 0 && Mask[i] != i)
return false;
-
+
// Lower quadword shuffled.
for (int i = 0; i != 4; ++i)
if (Mask[i] >= 4)
return false;
-
+
return true;
}
bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
- SmallVector<int, 8> M;
+ SmallVector<int, 8> M;
N->getMask(M);
return ::isPSHUFLWMask(M, N->getValueType(0));
}
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
-static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
int NumElems = VT.getVectorNumElements();
if (NumElems != 2 && NumElems != 4)
return false;
-
+
int Half = NumElems / 2;
for (int i = 0; i < Half; ++i)
if (!isUndefOrInRange(Mask[i], 0, NumElems))
@@ -2331,7 +2403,7 @@ static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
for (int i = Half; i < NumElems; ++i)
if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
return false;
-
+
return true;
}
@@ -2345,12 +2417,12 @@ bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
/// half elements to come from vector 1 (which would equal the dest.) and
/// the upper half to come from vector 2.
-static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
int NumElems = VT.getVectorNumElements();
-
- if (NumElems != 2 && NumElems != 4)
+
+ if (NumElems != 2 && NumElems != 4)
return false;
-
+
int Half = NumElems / 2;
for (int i = 0; i < Half; ++i)
if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
@@ -2424,24 +2496,24 @@ bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
/// <2, 3, 2, 3>
bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
unsigned NumElems = N->getValueType(0).getVectorNumElements();
-
+
if (NumElems != 4)
return false;
-
- return isUndefOrEqual(N->getMaskElt(0), 2) &&
+
+ return isUndefOrEqual(N->getMaskElt(0), 2) &&
isUndefOrEqual(N->getMaskElt(1), 3) &&
- isUndefOrEqual(N->getMaskElt(2), 2) &&
+ isUndefOrEqual(N->getMaskElt(2), 2) &&
isUndefOrEqual(N->getMaskElt(3), 3);
}
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
-static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
+static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
bool V2IsSplat = false) {
int NumElts = VT.getVectorNumElements();
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
return false;
-
+
for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
@@ -2466,12 +2538,12 @@ bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
-static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
+static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
bool V2IsSplat = false) {
int NumElts = VT.getVectorNumElements();
if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
return false;
-
+
for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
@@ -2497,11 +2569,11 @@ bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
-static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
int NumElems = VT.getVectorNumElements();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
-
+
for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
@@ -2522,11 +2594,11 @@ bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
-static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
int NumElems = VT.getVectorNumElements();
if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
return false;
-
+
for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
@@ -2547,19 +2619,19 @@ bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
-static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
+static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
if (VT.getVectorElementType().getSizeInBits() < 32)
return false;
int NumElts = VT.getVectorNumElements();
-
+
if (!isUndefOrEqual(Mask[0], NumElts))
return false;
-
+
for (int i = 1; i < NumElts; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
-
+
return true;
}
@@ -2572,21 +2644,21 @@ bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
-static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
+static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
bool V2IsSplat = false, bool V2IsUndef = false) {
int NumOps = VT.getVectorNumElements();
if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
return false;
-
+
if (!isUndefOrEqual(Mask[0], 0))
return false;
-
+
for (int i = 1; i < NumOps; ++i)
if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
(V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
(V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
return false;
-
+
return true;
}
@@ -2650,7 +2722,7 @@ bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
int e = N->getValueType(0).getVectorNumElements() / 2;
-
+
for (int i = 0; i < e; ++i)
if (!isUndefOrEqual(N->getMaskElt(i), i))
return false;
@@ -2714,14 +2786,23 @@ unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
return Mask;
}
+/// isZeroNode - Returns true if Elt is a constant zero or a floating point
+/// constant +0.0.
+bool X86::isZeroNode(SDValue Elt) {
+ return ((isa<ConstantSDNode>(Elt) &&
+ cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
+ (isa<ConstantFPSDNode>(Elt) &&
+ cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
+}
+
/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
/// their permute mask.
static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0);
+ EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
-
+
for (unsigned i = 0; i != NumElems; ++i) {
int idx = SVOp->getMaskElt(i);
if (idx < 0)
@@ -2737,7 +2818,7 @@ static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
-static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
+static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
unsigned NumElems = VT.getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
@@ -2795,7 +2876,7 @@ static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
return false;
unsigned NumElems = Op->getValueType(0).getVectorNumElements();
-
+
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
@@ -2820,17 +2901,8 @@ static bool isSplatVector(SDNode *N) {
return true;
}
-/// isZeroNode - Returns true if Elt is a constant zero or a floating point
-/// constant +0.0.
-static inline bool isZeroNode(SDValue Elt) {
- return ((isa<ConstantSDNode>(Elt) &&
- cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
- (isa<ConstantFPSDNode>(Elt) &&
- cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
-}
-
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
-/// to an zero vector.
+/// to an zero vector.
/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
static bool isZeroShuffle(ShuffleVectorSDNode *N) {
SDValue V1 = N->getOperand(0);
@@ -2842,13 +2914,15 @@ static bool isZeroShuffle(ShuffleVectorSDNode *N) {
unsigned Opc = V2.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
continue;
- if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
return false;
} else if (Idx >= 0) {
unsigned Opc = V1.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
continue;
- if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V1.getOperand(Idx)))
return false;
}
}
@@ -2857,7 +2931,7 @@ static bool isZeroShuffle(ShuffleVectorSDNode *N) {
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
-static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
+static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
@@ -2879,7 +2953,7 @@ static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
/// getOnesVector - Returns a vector of specified type with all bits set.
///
-static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
+static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
@@ -2897,13 +2971,13 @@ static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0);
+ EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
-
+
bool Changed = false;
SmallVector<int, 8> MaskVec;
SVOp->getMask(MaskVec);
-
+
for (unsigned i = 0; i != NumElems; ++i) {
if (MaskVec[i] > (int)NumElems) {
MaskVec[i] = NumElems;
@@ -2918,7 +2992,7 @@ static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
-static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
+static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
@@ -2929,7 +3003,7 @@ static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
}
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
-static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
+static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
@@ -2941,7 +3015,7 @@ static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
}
/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
-static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
+static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
unsigned Half = NumElems/2;
@@ -2954,13 +3028,13 @@ static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
}
/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
-static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
+static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
bool HasSSE2) {
if (SV->getValueType(0).getVectorNumElements() <= 4)
return SDValue(SV, 0);
-
- MVT PVT = MVT::v4f32;
- MVT VT = SV->getValueType(0);
+
+ EVT PVT = MVT::v4f32;
+ EVT VT = SV->getValueType(0);
DebugLoc dl = SV->getDebugLoc();
SDValue V1 = SV->getOperand(0);
int NumElems = VT.getVectorNumElements();
@@ -2976,7 +3050,7 @@ static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
}
NumElems >>= 1;
}
-
+
// Perform the splat.
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
@@ -2991,7 +3065,7 @@ static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
bool isZero, bool HasSSE2,
SelectionDAG &DAG) {
- MVT VT = V2.getValueType();
+ EVT VT = V2.getValueType();
SDValue V1 = isZero
? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
unsigned NumElems = VT.getVectorNumElements();
@@ -3016,7 +3090,7 @@ unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
continue;
}
SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
- if (Elt.getNode() && isZeroNode(Elt))
+ if (Elt.getNode() && X86::isZeroNode(Elt))
++NumZeros;
else
break;
@@ -3142,11 +3216,11 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
/// getVShift - Return a vector logical shift node.
///
-static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
+static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
const TargetLowering &TLI, DebugLoc dl) {
bool isMMX = VT.getSizeInBits() == 64;
- MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
+ EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
@@ -3171,9 +3245,9 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
}
- MVT VT = Op.getValueType();
- MVT EVT = VT.getVectorElementType();
- unsigned EVTBits = EVT.getSizeInBits();
+ EVT VT = Op.getValueType();
+ EVT ExtVT = VT.getVectorElementType();
+ unsigned EVTBits = ExtVT.getSizeInBits();
unsigned NumElems = Op.getNumOperands();
unsigned NumZero = 0;
@@ -3189,7 +3263,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
if (Elt.getOpcode() != ISD::Constant &&
Elt.getOpcode() != ISD::ConstantFP)
IsAllConstants = false;
- if (isZeroNode(Elt))
+ if (X86::isZeroNode(Elt))
NumZero++;
else {
NonZeros |= (1 << i);
@@ -3212,11 +3286,11 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
// insertion that way. Only do this if the value is non-constant or if the
// value is a constant being inserted into element 0. It is cheaper to do
// a constant pool load than it is to do a movd + shuffle.
- if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
+ if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
(!IsAllConstants || Idx == 0)) {
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
// Handle MMX and SSE both.
- MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
+ EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
// Truncate the value (which may itself be a constant) to i32, and
@@ -3234,7 +3308,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
for (unsigned i = 1; i != VecElts; ++i)
Mask.push_back(i);
Item = DAG.getVectorShuffle(VecVT, dl, Item,
- DAG.getUNDEF(Item.getValueType()),
+ DAG.getUNDEF(Item.getValueType()),
&Mask[0]);
}
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
@@ -3248,15 +3322,15 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
if (Idx == 0) {
if (NumZero == 0) {
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
- } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
- (EVT == MVT::i64 && Subtarget->is64Bit())) {
+ } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
+ (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
DAG);
- } else if (EVT == MVT::i16 || EVT == MVT::i8) {
+ } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
- MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
+ EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
@@ -3266,7 +3340,8 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
- isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
+ X86::isZeroNode(Op.getOperand(0)) &&
+ !X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
@@ -3374,9 +3449,9 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
// If we have SSE 4.1, Expand into a number of inserts unless the number of
// values to be inserted is equal to the number of elements, in which case
// use the unpack code below in the hopes of matching the consecutive elts
- // load merge pattern for shuffles.
+ // load merge pattern for shuffles.
// FIXME: We could probably just check that here directly.
- if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
+ if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
getSubtarget()->hasSSE41()) {
V[0] = DAG.getUNDEF(VT);
for (unsigned i = 0; i < NumElems; ++i)
@@ -3457,7 +3532,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
}
// For SSSE3, If all 8 words of the result come from only 1 quadword of each
- // of the two input vectors, shuffle them into one input vector so only a
+ // of the two input vectors, shuffle them into one input vector so only a
// single pshufb instruction is necessary. If There are more than 2 input
// quads, disable the next transformation since it does not help SSSE3.
bool V1Used = InputQuads[0] || InputQuads[1];
@@ -3481,7 +3556,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
SmallVector<int, 8> MaskV;
MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
- NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
+ NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
@@ -3506,7 +3581,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
int idx = MaskVals[i];
if (idx < 0)
continue;
- idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
+ idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
if ((idx != i) && idx < 4)
pshufhw = false;
if ((idx != i) && idx > 3)
@@ -3521,19 +3596,19 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
// If we've eliminated the use of V2, and the new mask is a pshuflw or
// pshufhw, that's as cheap as it gets. Return the new shuffle.
if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
- return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
+ return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
}
}
-
+
// If we have SSSE3, and all words of the result are from 1 input vector,
// case 2 is generated, otherwise case 3 is generated. If no SSSE3
// is present, fall back to case 4.
if (TLI.getSubtarget()->hasSSSE3()) {
SmallVector<SDValue,16> pshufbMask;
-
+
// If we have elements from both input vectors, set the high bit of the
- // shuffle mask element to zero out elements that come from V2 in the V1
+ // shuffle mask element to zero out elements that come from V2 in the V1
// mask, and elements that come from V1 in the V2 mask, so that the two
// results can be OR'd together.
bool TwoInputs = V1Used && V2Used;
@@ -3548,12 +3623,12 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
}
V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
- V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
+ V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
if (!TwoInputs)
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
-
+
// Calculate the shuffle mask for the second input, shuffle it, and
// OR it with the first shuffled input.
pshufbMask.clear();
@@ -3568,7 +3643,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
}
V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
- V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
+ V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
@@ -3597,7 +3672,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
&MaskV[0]);
}
-
+
// If BestHi >= 0, generate a pshufhw to put the high elements in order,
// and update MaskVals with the new element order.
if (BestHiQuad >= 0) {
@@ -3619,7 +3694,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
&MaskV[0]);
}
-
+
// In case BestHi & BestLo were both -1, which means each quadword has a word
// from each of the four input quadwords, calculate the InOrder bitvector now
// before falling through to the insert/extract cleanup.
@@ -3629,7 +3704,7 @@ SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
if (MaskVals[i] < 0 || MaskVals[i] == i)
InOrder.set(i);
}
-
+
// The other elements are put in the right place using pextrw and pinsrw.
for (unsigned i = 0; i != 8; ++i) {
if (InOrder[i])
@@ -3660,9 +3735,9 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
DebugLoc dl = SVOp->getDebugLoc();
SmallVector<int, 16> MaskVals;
SVOp->getMask(MaskVals);
-
+
// If we have SSSE3, case 1 is generated when all result bytes come from
- // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
+ // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
// present, fall back to case 3.
// FIXME: kill V2Only once shuffles are canonizalized by getNode.
bool V1Only = true;
@@ -3676,13 +3751,13 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
else
V1Only = false;
}
-
+
// If SSSE3, use 1 pshufb instruction per vector with elements in the result.
if (TLI.getSubtarget()->hasSSSE3()) {
SmallVector<SDValue,16> pshufbMask;
-
+
// If all result elements are from one input vector, then only translate
- // undef mask values to 0x80 (zero out result) in the pshufb mask.
+ // undef mask values to 0x80 (zero out result) in the pshufb mask.
//
// Otherwise, we have elements from both input vectors, and must zero out
// elements that come from V2 in the first mask, and V1 in the second mask
@@ -3705,7 +3780,7 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
MVT::v16i8, &pshufbMask[0], 16));
if (!TwoInputs)
return V1;
-
+
// Calculate the shuffle mask for the second input, shuffle it, and
// OR it with the first shuffled input.
pshufbMask.clear();
@@ -3722,7 +3797,7 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
MVT::v16i8, &pshufbMask[0], 16));
return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
}
-
+
// No SSSE3 - Calculate in place words and then fix all out of place words
// With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
// the 16 different words that comprise the two doublequadword input vectors.
@@ -3732,17 +3807,17 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
for (int i = 0; i != 8; ++i) {
int Elt0 = MaskVals[i*2];
int Elt1 = MaskVals[i*2+1];
-
+
// This word of the result is all undef, skip it.
if (Elt0 < 0 && Elt1 < 0)
continue;
-
+
// This word of the result is already in the correct place, skip it.
if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
continue;
if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
continue;
-
+
SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
SDValue InsElt;
@@ -3801,15 +3876,15 @@ static
SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG,
TargetLowering &TLI, DebugLoc dl) {
- MVT VT = SVOp->getValueType(0);
+ EVT VT = SVOp->getValueType(0);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
unsigned NumElems = VT.getVectorNumElements();
unsigned NewWidth = (NumElems == 4) ? 2 : 4;
- MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
- MVT MaskEltVT = MaskVT.getVectorElementType();
- MVT NewVT = MaskVT;
- switch (VT.getSimpleVT()) {
+ EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
+ EVT MaskEltVT = MaskVT.getVectorElementType();
+ EVT NewVT = MaskVT;
+ switch (VT.getSimpleVT().SimpleTy) {
default: assert(false && "Unexpected!");
case MVT::v4f32: NewVT = MVT::v2f64; break;
case MVT::v4i32: NewVT = MVT::v2i64; break;
@@ -3849,7 +3924,7 @@ SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
/// getVZextMovL - Return a zero-extending vector move low node.
///
-static SDValue getVZextMovL(MVT VT, MVT OpVT,
+static SDValue getVZextMovL(EVT VT, EVT OpVT,
SDValue SrcOp, SelectionDAG &DAG,
const X86Subtarget *Subtarget, DebugLoc dl) {
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
@@ -3859,11 +3934,11 @@ static SDValue getVZextMovL(MVT VT, MVT OpVT,
if (!LD) {
// movssrr and movsdrr do not clear top bits. Try to use movd, movq
// instead.
- MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
- if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
+ MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
+ if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
- SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
+ SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
// PR2108
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
@@ -3889,8 +3964,8 @@ LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
- MVT VT = SVOp->getValueType(0);
-
+ EVT VT = SVOp->getValueType(0);
+
SmallVector<std::pair<int, int>, 8> Locs;
Locs.resize(4);
SmallVector<int, 8> Mask1(4U, -1);
@@ -3926,7 +4001,7 @@ LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
SmallVector<int, 8> Mask2(4U, -1);
-
+
for (unsigned i = 0; i != 4; ++i) {
if (Locs[i].first == -1)
continue;
@@ -4036,7 +4111,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned NumElems = VT.getVectorNumElements();
bool isMMX = VT.getSizeInBits() == 64;
@@ -4050,7 +4125,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
// Promote splats to v4f32.
if (SVOp->isSplat()) {
- if (isMMX || NumElems < 4)
+ if (isMMX || NumElems < 4)
return Op;
return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
}
@@ -4079,10 +4154,10 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
DAG, Subtarget, dl);
}
}
-
+
if (X86::isPSHUFDMask(SVOp))
return Op;
-
+
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
@@ -4092,11 +4167,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
if (isShift && ShVal.hasOneUse()) {
// If the shifted value has multiple uses, it may be cheaper to use
// v_set0 + movlhps or movhlps, etc.
- MVT EVT = VT.getVectorElementType();
- ShAmt *= EVT.getSizeInBits();
+ EVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
-
+
if (X86::isMOVLMask(SVOp)) {
if (V1IsUndef)
return V2;
@@ -4105,7 +4180,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
if (!isMMX)
return Op;
}
-
+
// FIXME: fold these into legal mask.
if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
X86::isMOVSLDUPMask(SVOp) ||
@@ -4120,11 +4195,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
if (isShift) {
// No better options. Use a vshl / vsrl.
- MVT EVT = VT.getVectorElementType();
- ShAmt *= EVT.getSizeInBits();
+ EVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
-
+
bool Commuted = false;
// FIXME: This should also accept a bitcast of a splat? Be careful, not
// 1,1,1,1 -> v8i16 though.
@@ -4144,7 +4219,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
// Shuffling low element of v1 into undef, just return v1.
- if (V2IsUndef)
+ if (V2IsUndef)
return V1;
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
// the instruction selector will not match, so get a canonical MOVL with
@@ -4196,7 +4271,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SVOp->getMask(PermMask);
if (isShuffleMaskLegal(PermMask, VT))
return Op;
-
+
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
if (VT == MVT::v8i16) {
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
@@ -4209,7 +4284,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
if (NewOp.getNode())
return NewOp;
}
-
+
// Handle all 4 wide cases with a number of shuffles except for MMX.
if (NumElems == 4 && !isMMX)
return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
@@ -4220,7 +4295,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
@@ -4283,7 +4358,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
return Res;
}
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
@@ -4296,21 +4371,21 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
- MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
- SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
+ EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
Op.getOperand(0), Op.getOperand(1));
- SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 32) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
-
+
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { Idx, -1, -1, -1 };
- MVT VVT = Op.getOperand(0).getValueType();
- SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ EVT VVT = Op.getOperand(0).getValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
@@ -4326,8 +4401,8 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
- MVT VVT = Op.getOperand(0).getValueType();
- SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ EVT VVT = Op.getOperand(0).getValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
@@ -4338,18 +4413,18 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
- MVT VT = Op.getValueType();
- MVT EVT = VT.getVectorElementType();
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
- if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
+ if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
isa<ConstantSDNode>(N2)) {
- unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
- : X86ISD::PINSRW;
+ unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
+ : X86ISD::PINSRW;
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
@@ -4357,7 +4432,7 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
- } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
+ } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
@@ -4367,24 +4442,25 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
- } else if (EVT == MVT::i32) {
- // InsertPS works with constant index.
- if (isa<ConstantSDNode>(N2))
- return Op;
+ } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
+ // PINSR* works with constant index.
+ return Op;
}
return SDValue();
}
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
- MVT EVT = VT.getVectorElementType();
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT.getVectorElementType();
if (Subtarget->hasSSE41())
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
- if (EVT == MVT::i8)
+ if (EltVT == MVT::i8)
return SDValue();
DebugLoc dl = Op.getDebugLoc();
@@ -4392,7 +4468,7 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
- if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
+ if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
@@ -4413,9 +4489,12 @@ X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
Op.getOperand(0))));
+ if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
+
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
- MVT VT = MVT::v2i32;
- switch (Op.getValueType().getSimpleVT()) {
+ EVT VT = MVT::v2i32;
+ switch (Op.getValueType().getSimpleVT().SimpleTy) {
default: break;
case MVT::v16i8:
case MVT::v8i16:
@@ -4435,21 +4514,21 @@ X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
-
+
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
- if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
- if (Subtarget->isPICStyleStub())
- OpFlag = X86II::MO_PIC_BASE_OFFSET;
- else if (Subtarget->isPICStyleGOT())
- OpFlag = X86II::MO_GOTOFF;
- else if (Subtarget->isPICStyleRIPRel() &&
- getTargetMachine().getCodeModel() == CodeModel::Small)
- WrapperKind = X86ISD::WrapperRIP;
- }
-
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset(), OpFlag);
@@ -4468,25 +4547,26 @@ X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
-
+
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
- if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
- if (Subtarget->isPICStyleStub())
- OpFlag = X86II::MO_PIC_BASE_OFFSET;
- else if (Subtarget->isPICStyleGOT())
- OpFlag = X86II::MO_GOTOFF;
- else if (Subtarget->isPICStyleRIPRel())
- WrapperKind = X86ISD::WrapperRIP;
- }
-
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
OpFlag);
DebugLoc DL = JT->getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
-
+
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
@@ -4494,43 +4574,44 @@ SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
DebugLoc::getUnknownLoc(), getPointerTy()),
Result);
}
-
+
return Result;
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
-
+
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
- if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
- if (Subtarget->isPICStyleStub())
- OpFlag = X86II::MO_PIC_BASE_OFFSET;
- else if (Subtarget->isPICStyleGOT())
- OpFlag = X86II::MO_GOTOFF;
- else if (Subtarget->isPICStyleRIPRel())
- WrapperKind = X86ISD::WrapperRIP;
- }
-
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
-
+
DebugLoc DL = Op.getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
-
-
+
+
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
- !Subtarget->isPICStyleRIPRel()) {
+ !Subtarget->is64Bit()) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
Result);
}
-
+
return Result;
}
@@ -4538,53 +4619,37 @@ SDValue
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
int64_t Offset,
SelectionDAG &DAG) const {
- bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
- bool ExtraLoadRequired =
- Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
-
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
+ CodeModel::Model M = getTargetMachine().getCodeModel();
SDValue Result;
- if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
+ if (OpFlags == X86II::MO_NO_FLAG &&
+ X86::isOffsetSuitableForCodeModel(Offset, M)) {
+ // A direct static reference to a global.
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
Offset = 0;
} else {
- unsigned char OpFlags = 0;
-
- if (Subtarget->isPICStyleRIPRel() &&
- getTargetMachine().getRelocationModel() != Reloc::Static) {
- if (ExtraLoadRequired)
- OpFlags = X86II::MO_GOTPCREL;
- } else if (Subtarget->isPICStyleGOT() &&
- getTargetMachine().getRelocationModel() == Reloc::PIC_) {
- if (ExtraLoadRequired)
- OpFlags = X86II::MO_GOT;
- else
- OpFlags = X86II::MO_GOTOFF;
- }
-
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
}
-
+
if (Subtarget->isPICStyleRIPRel() &&
- getTargetMachine().getCodeModel() == CodeModel::Small)
+ (M == CodeModel::Small || M == CodeModel::Kernel))
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
- if (IsPic && !Subtarget->isPICStyleRIPRel()) {
+ if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
Result);
}
- // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
- // load the value at address GV, not the value of GV itself. This means that
- // the GlobalAddress must be in the base or index register of the address, not
- // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
- // The same applies for external symbols during PIC codegen
- if (ExtraLoadRequired)
+ // For globals that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlags))
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
PseudoSourceValue::getGOT(), 0);
@@ -4606,7 +4671,7 @@ X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
- SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg,
+ SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags) {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
DebugLoc dl = GA->getDebugLoc();
@@ -4628,7 +4693,7 @@ GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
- const MVT PtrVT) {
+ const EVT PtrVT) {
SDValue InFlag;
DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
@@ -4643,7 +4708,7 @@ LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
- const MVT PtrVT) {
+ const EVT PtrVT) {
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
X86::RAX, X86II::MO_TLSGD);
}
@@ -4651,7 +4716,7 @@ LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
- const MVT PtrVT, TLSModel::Model model,
+ const EVT PtrVT, TLSModel::Model model,
bool is64Bit) {
DebugLoc dl = GA->getDebugLoc();
// Get the Thread Pointer
@@ -4677,7 +4742,7 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
assert(model == TLSModel::InitialExec);
OperandFlags = X86II::MO_INDNTPOFF;
}
-
+
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
// exec)
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
@@ -4701,29 +4766,29 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
"TLS not implemented for non-ELF targets");
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GA->getGlobal();
-
+
// If GV is an alias then use the aliasee for determining
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->resolveAliasedGlobal(false);
-
+
TLSModel::Model model = getTLSModel(GV,
getTargetMachine().getRelocationModel());
-
+
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic: // not implemented
if (Subtarget->is64Bit())
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
-
+
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
Subtarget->is64Bit());
}
-
- assert(0 && "Unreachable");
+
+ llvm_unreachable("Unreachable");
return SDValue();
}
@@ -4732,17 +4797,16 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
/// take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
- SDValue Tmp1 = isSRA ?
- DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
- DAG.getConstant(VTBits - 1, MVT::i8)) :
- DAG.getConstant(0, VT);
+ SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, MVT::i8))
+ : DAG.getConstant(0, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
@@ -4754,9 +4818,9 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
}
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
- DAG.getConstant(VTBits, MVT::i8));
+ DAG.getConstant(VTBits, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
- AndNode, DAG.getConstant(0, MVT::i8));
+ AndNode, DAG.getConstant(0, MVT::i8));
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
@@ -4776,7 +4840,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
- MVT SrcVT = Op.getOperand(0).getValueType();
+ EVT SrcVT = Op.getOperand(0).getValueType();
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
@@ -4808,7 +4872,7 @@ SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
-SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
+SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) {
// Build the FILD
@@ -4888,19 +4952,22 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
*/
DebugLoc dl = Op.getDebugLoc();
+ LLVMContext *Context = DAG.getContext();
// Build some magic constants.
std::vector<Constant*> CV0;
- CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
- CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
- CV0.push_back(ConstantInt::get(APInt(32, 0)));
- CV0.push_back(ConstantInt::get(APInt(32, 0)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
Constant *C0 = ConstantVector::get(CV0);
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
std::vector<Constant*> CV1;
- CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
- CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
@@ -4965,7 +5032,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
- MVT DestVT = Op.getValueType();
+ EVT DestVT = Op.getValueType();
if (DestVT.bitsLT(MVT::f64)) {
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
@@ -4988,7 +5055,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
- MVT SrcVT = N0.getValueType();
+ EVT SrcVT = N0.getValueType();
if (SrcVT == MVT::i64) {
// We only handle SSE2 f64 target here; caller can expand the rest.
if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
@@ -5017,7 +5084,7 @@ std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
DebugLoc dl = Op.getDebugLoc();
- MVT DstTy = Op.getValueType();
+ EVT DstTy = Op.getValueType();
if (!IsSigned) {
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
@@ -5043,10 +5110,10 @@ FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
unsigned MemSize = DstTy.getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
-
+
unsigned Opc;
- switch (DstTy.getSimpleVT()) {
- default: assert(0 && "Invalid FP_TO_SINT to lower!");
+ switch (DstTy.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
@@ -5105,18 +5172,19 @@ SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
+ LLVMContext *Context = DAG.getContext();
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
- MVT EltVT = VT;
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT;
if (VT.isVector())
EltVT = VT.getVectorElementType();
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
- Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
CV.push_back(C);
CV.push_back(C);
} else {
- Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@@ -5131,21 +5199,19 @@ SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
+ LLVMContext *Context = DAG.getContext();
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
- MVT EltVT = VT;
- unsigned EltNum = 1;
- if (VT.isVector()) {
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT;
+ if (VT.isVector())
EltVT = VT.getVectorElementType();
- EltNum = VT.getVectorNumElements();
- }
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
- Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
CV.push_back(C);
CV.push_back(C);
} else {
- Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
@@ -5168,11 +5234,12 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
+ LLVMContext *Context = DAG.getContext();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType();
- MVT SrcVT = Op1.getValueType();
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Op1.getValueType();
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
@@ -5191,13 +5258,13 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
// First get the sign bit of second operand.
std::vector<Constant*> CV;
if (SrcVT == MVT::f64) {
- CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
- CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
} else {
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
@@ -5220,13 +5287,13 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
- CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
- CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
} else {
- CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
@@ -5299,21 +5366,48 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
Opcode = X86ISD::ADD;
NumOperands = 2;
break;
+ case ISD::AND: {
+ // If the primary and result isn't used, don't bother using X86ISD::AND,
+ // because a TEST instruction will be better.
+ bool NonFlagUse = false;
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::BRCOND &&
+ UI->getOpcode() != ISD::SELECT &&
+ UI->getOpcode() != ISD::SETCC) {
+ NonFlagUse = true;
+ break;
+ }
+ if (!NonFlagUse)
+ break;
+ }
+ // FALL THROUGH
case ISD::SUB:
- // Due to the ISEL shortcoming noted above, be conservative if this sub is
+ case ISD::OR:
+ case ISD::XOR:
+ // Due to the ISEL shortcoming noted above, be conservative if this op is
// likely to be selected as part of a load-modify-store instruction.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() == ISD::STORE)
goto default_case;
- // Otherwise use a regular EFLAGS-setting sub.
- Opcode = X86ISD::SUB;
+ // Otherwise use a regular EFLAGS-setting instruction.
+ switch (Op.getNode()->getOpcode()) {
+ case ISD::SUB: Opcode = X86ISD::SUB; break;
+ case ISD::OR: Opcode = X86ISD::OR; break;
+ case ISD::XOR: Opcode = X86ISD::XOR; break;
+ case ISD::AND: Opcode = X86ISD::AND; break;
+ default: llvm_unreachable("unexpected operator!");
+ }
NumOperands = 2;
break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::INC:
case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
return SDValue(Op.getNode(), 1);
default:
default_case:
@@ -5419,14 +5513,14 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
DebugLoc dl = Op.getDebugLoc();
if (isFP) {
unsigned SSECC = 8;
- MVT VT0 = Op0.getValueType();
+ EVT VT0 = Op0.getValueType();
assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
bool Swap = false;
@@ -5469,7 +5563,7 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
}
- assert(0 && "Illegal FP comparison");
+ llvm_unreachable("Illegal FP comparison");
}
// Handle all other FP comparisons here.
return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
@@ -5481,10 +5575,13 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
bool Swap = false, Invert = false, FlipSigns = false;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: break;
+ case MVT::v8i8:
case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
+ case MVT::v4i16:
case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
+ case MVT::v2i32:
case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
}
@@ -5508,7 +5605,7 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
EltVT);
std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
@@ -5538,7 +5635,10 @@ static bool isX86LogicalCmp(SDValue Op) {
Opc == X86ISD::SMUL ||
Opc == X86ISD::UMUL ||
Opc == X86ISD::INC ||
- Opc == X86ISD::DEC))
+ Opc == X86ISD::DEC ||
+ Opc == X86ISD::OR ||
+ Opc == X86ISD::XOR ||
+ Opc == X86ISD::AND))
return true;
return false;
@@ -5560,7 +5660,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
@@ -5751,8 +5851,8 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SDValue Flag;
- MVT IntPtr = getPointerTy();
- MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
+ EVT IntPtr = getPointerTy();
+ EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
@@ -5802,8 +5902,8 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
if (const char *bzeroEntry = V &&
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
- MVT IntPtr = getPointerTy();
- const Type *IntPtrTy = TD->getIntPtrType();
+ EVT IntPtr = getPointerTy();
+ const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
@@ -5812,8 +5912,9 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
Entry.Node = Size;
Args.push_back(Entry);
std::pair<SDValue,SDValue> CallResult =
- LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
- 0, CallingConv::C, false,
+ LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
+ false, false, false, false,
+ 0, CallingConv::C, false, /*isReturnValueUsed=*/false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
return CallResult.second;
}
@@ -5824,7 +5925,7 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag(0, 0);
- MVT AVT;
+ EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
unsigned BytesLeft = 0;
@@ -5893,7 +5994,7 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Size;
- MVT CVT = Count.getValueType();
+ EVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
@@ -5909,8 +6010,8 @@ X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
} else if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
- MVT AddrVT = Dst.getValueType();
- MVT SizeVT = Size.getValueType();
+ EVT AddrVT = Dst.getValueType();
+ EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
@@ -5945,7 +6046,7 @@ X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
return SDValue();
// DWORD aligned
- MVT AVT = MVT::i32;
+ EVT AVT = MVT::i32;
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
AVT = MVT::i64;
@@ -5980,9 +6081,9 @@ X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
- MVT DstVT = Dst.getValueType();
- MVT SrcVT = Src.getValueType();
- MVT SizeVT = Size.getValueType();
+ EVT DstVT = Dst.getValueType();
+ EVT SrcVT = Src.getValueType();
+ EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
@@ -6054,8 +6155,7 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDValue SrcPtr = Op.getOperand(1);
SDValue SrcSV = Op.getOperand(2);
- assert(0 && "VAArgInst is not yet implemented for x86-64!");
- abort();
+ llvm_report_error("VAArgInst is not yet implemented for x86-64!");
return SDValue();
}
@@ -6179,6 +6279,36 @@ X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
DAG.getConstant(X86CC, MVT::i8), Cond);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
+ // ptest intrinsics. The intrinsic these come from are designed to return
+ // an integer value, not just an instruction so lower it to the ptest
+ // pattern and a setcc for the result.
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_sse41_ptestnzc:{
+ unsigned X86CC = 0;
+ switch (IntNo) {
+ default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
+ case Intrinsic::x86_sse41_ptestz:
+ // ZF = 1
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_sse41_ptestc:
+ // CF = 1
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse41_ptestnzc:
+ // ZF and CF = 0
+ X86CC = X86::COND_A;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
+ SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
// Fix vector shift instructions where the last operand is a non-immediate
// i32 value.
@@ -6203,7 +6333,7 @@ X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
return SDValue();
unsigned NewIntNo = 0;
- MVT ShAmtVT = MVT::v4i32;
+ EVT ShAmtVT = MVT::v4i32;
switch (IntNo) {
case Intrinsic::x86_sse2_pslli_w:
NewIntNo = Intrinsic::x86_sse2_psll_w;
@@ -6256,14 +6386,28 @@ X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_mmx_psrai_d:
NewIntNo = Intrinsic::x86_mmx_psra_d;
break;
- default: abort(); // Can't reach here.
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
}
break;
}
}
- MVT VT = Op.getValueType();
- ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
- DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
+
+ // The vector shift intrinsics with scalars uses 32b shift amounts but
+ // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
+ // to be zero.
+ SDValue ShOps[4];
+ ShOps[0] = ShAmt;
+ ShOps[1] = DAG.getConstant(0, MVT::i32);
+ if (ShAmtVT == MVT::v4i32) {
+ ShOps[2] = DAG.getUNDEF(MVT::i32);
+ ShOps[3] = DAG.getUNDEF(MVT::i32);
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
+ } else {
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
+ }
+
+ EVT VT = Op.getValueType();
+ ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(NewIntNo, MVT::i32),
Op.getOperand(1), ShAmt);
@@ -6295,7 +6439,7 @@ SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
@@ -6401,12 +6545,12 @@ SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
- unsigned CC = Func->getCallingConv();
+ CallingConv::ID CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
@@ -6428,8 +6572,7 @@ SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
if (InRegCount > 2) {
- cerr << "Nest register in use - reduce number of inreg parameters!\n";
- abort();
+ llvm_report_error("Nest register in use - reduce number of inreg parameters!");
}
}
break;
@@ -6499,7 +6642,7 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
const TargetMachine &TM = MF.getTarget();
const TargetFrameInfo &TFI = *TM.getFrameInfo();
unsigned StackAlignment = TFI.getStackAlignment();
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// Save FP Control Word to stack slot
@@ -6537,8 +6680,8 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
- MVT OpVT = VT;
+ EVT VT = Op.getValueType();
+ EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
@@ -6570,8 +6713,8 @@ SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
- MVT OpVT = VT;
+ EVT VT = Op.getValueType();
+ EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
@@ -6599,7 +6742,7 @@ SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType();
+ EVT VT = Op.getValueType();
assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
DebugLoc dl = Op.getDebugLoc();
@@ -6656,7 +6799,7 @@ SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
switch (Op.getOpcode()) {
- default: assert(0 && "Unknown ovf instruction!");
+ default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
// A subtract of one will be selected as a INC. Note that INC doesn't
// set CF, so we can't do this for UADDO.
@@ -6712,11 +6855,11 @@ SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
}
SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
- MVT T = Op.getValueType();
+ EVT T = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned Reg = 0;
unsigned size = 0;
- switch(T.getSimpleVT()) {
+ switch(T.getSimpleVT().SimpleTy) {
default:
assert(false && "Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
@@ -6763,7 +6906,7 @@ SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
- MVT T = Node->getValueType(0);
+ EVT T = Node->getValueType(0);
SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
DAG.getConstant(0, T), Node->getOperand(2));
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
@@ -6778,7 +6921,7 @@ SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
///
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
- default: assert(0 && "Should not custom lower this!");
+ default: llvm_unreachable("Should not custom lower this!");
case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
@@ -6805,9 +6948,6 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
- case ISD::CALL: return LowerCALL(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
@@ -6836,7 +6976,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
void X86TargetLowering::
ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG, unsigned NewOp) {
- MVT T = Node->getValueType(0);
+ EVT T = Node->getValueType(0);
DebugLoc dl = Node->getDebugLoc();
assert (T == MVT::i64 && "Only know how to expand i64 atomics");
@@ -6846,12 +6986,11 @@ ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
Node->getOperand(2), DAG.getIntPtrConstant(0));
SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Node->getOperand(2), DAG.getIntPtrConstant(1));
- // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
- // have a MemOperand. Pass the info through as a normal operand.
- SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
- SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
+ SDValue Ops[] = { Chain, In1, In2L, In2H };
SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
- SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
+ SDValue Result =
+ DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
+ cast<MemSDNode>(Node)->getMemOperand());
SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
Results.push_back(Result.getValue(2));
@@ -6872,7 +7011,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
FP_TO_INTHelper(SDValue(N, 0), DAG, true);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode() != 0) {
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
// Return a load from the stack slot.
Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
}
@@ -6893,7 +7032,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N,
return;
}
case ISD::ATOMIC_CMP_SWAP: {
- MVT T = N->getValueType(0);
+ EVT T = N->getValueType(0);
assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
@@ -6969,7 +7108,6 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
- case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::BT: return "X86ISD::BT";
case X86ISD::CMP: return "X86ISD::CMP";
@@ -7027,7 +7165,12 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::UMUL: return "X86ISD::UMUL";
case X86ISD::INC: return "X86ISD::INC";
case X86ISD::DEC: return "X86ISD::DEC";
+ case X86ISD::OR: return "X86ISD::OR";
+ case X86ISD::XOR: return "X86ISD::XOR";
+ case X86ISD::AND: return "X86ISD::AND";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
+ case X86ISD::PTEST: return "X86ISD::PTEST";
+ case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
}
}
@@ -7036,28 +7179,28 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
// X86 supports extremely general addressing modes.
+ CodeModel::Model M = getTargetMachine().getCodeModel();
// X86 allows a sign-extended 32-bit immediate field as a displacement.
- if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
+ if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
return false;
if (AM.BaseGV) {
- // We can only fold this if we don't need an extra load.
- if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
+ unsigned GVFlags =
+ Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
+
+ // If a reference to this global requires an extra load, we can't fold it.
+ if (isGlobalStubReference(GVFlags))
return false;
- // If BaseGV requires a register, we cannot also have a BaseReg.
- if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
- AM.HasBaseReg)
+
+ // If BaseGV requires a register for the PIC base, we cannot also have a
+ // BaseReg specified.
+ if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
return false;
- // X86-64 only supports addr of globals in small code model.
- if (Subtarget->is64Bit()) {
- if (getTargetMachine().getCodeModel() != CodeModel::Small)
- return false;
- // If lower 4G is not available, then we must use rip-relative addressing.
- if (AM.BaseOffs || AM.Scale > 1)
- return false;
- }
+ // If lower 4G is not available, then we must use rip-relative addressing.
+ if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
+ return false;
}
switch (AM.Scale) {
@@ -7094,7 +7237,7 @@ bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
return Subtarget->is64Bit() || NumBits1 < 64;
}
-bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
+bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
@@ -7106,15 +7249,16 @@ bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
- return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
+ return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
+ Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
}
-bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
+bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
}
-bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
+bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
}
@@ -7124,8 +7268,8 @@ bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
-X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
- MVT VT) const {
+X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
// Only do shuffles on 128-bit vector types for now.
if (VT.getSizeInBits() == 64)
return false;
@@ -7146,7 +7290,7 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
bool
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
- MVT VT) const {
+ EVT VT) const {
unsigned NumElts = VT.getVectorNumElements();
// FIXME: This collection of masks seems suspect.
if (NumElts == 2)
@@ -7254,7 +7398,8 @@ X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t2);
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
- (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
+ (*MIB).setMemRefs(bInstr->memoperands_begin(),
+ bInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
MIB.addReg(EAXreg);
@@ -7406,7 +7551,8 @@ X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
(*MIB).addOperand(*argOpers[i]);
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
- (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
+ (*MIB).setMemRefs(bInstr->memoperands_begin(),
+ bInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
MIB.addReg(X86::EAX);
@@ -7450,7 +7596,7 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
- // Move all successors to thisMBB to nextMBB
+ // Move all successors of thisMBB to nextMBB
nextMBB->transferSuccessors(thisMBB);
// Update thisMBB to fall through to newMBB
@@ -7510,7 +7656,8 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t3);
assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
- (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
+ (*MIB).setMemRefs(mInstr->memoperands_begin(),
+ mInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
MIB.addReg(X86::EAX);
@@ -7522,70 +7669,190 @@ X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
return nextMBB;
}
-
+// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
+// all of this code can be replaced with that in the .td file.
MachineBasicBlock *
-X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned numArgs, bool memArg) const {
+
+ MachineFunction *F = BB->getParent();
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ unsigned Opc;
+ if (memArg)
+ Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
+ else
+ Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
+
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
+
+ for (unsigned i = 0; i < numArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i+1);
+
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+
+ BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
+ .addReg(X86::XMM0);
+
+ F->DeleteMachineInstr(MI);
+
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit code to save XMM registers to the stack. The ABI says that the
+ // number of registers to save is given in %al, so it's theoretically
+ // possible to do an indirect jump trick to avoid saving all of them,
+ // however this code takes a simpler approach and just executes all
+ // of the stores if %al is non-zero. It's less code, and it's probably
+ // easier on the hardware branch predictor, and stores aren't all that
+ // expensive anyway.
+
+ // Create the new basic blocks. One block contains all the XMM stores,
+ // and one block is the final destination regardless of whether any
+ // stores were performed.
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *F = MBB->getParent();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+ MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, XMMSaveMBB);
+ F->insert(MBBIter, EndMBB);
+
+ // Set up the CFG.
+ // Move any original successors of MBB to the end block.
+ EndMBB->transferSuccessors(MBB);
+ // The original block will now fall through to the XMM save block.
+ MBB->addSuccessor(XMMSaveMBB);
+ // The XMMSaveMBB will fall through to the end block.
+ XMMSaveMBB->addSuccessor(EndMBB);
+
+ // Now add the instructions.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned CountReg = MI->getOperand(0).getReg();
+ int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
+ int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
+
+ if (!Subtarget->isTargetWin64()) {
+ // If %al is 0, branch around the XMM save block.
+ BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
+ BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ }
+
+ // In the XMM save block, save all the XMM argument registers.
+ for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
+ int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
+ MachineMemOperand *MMO =
+ F->getMachineMemOperand(
+ PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
+ MachineMemOperand::MOStore, Offset,
+ /*Size=*/16, /*Align=*/16);
+ BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
+ .addFrameIndex(RegSaveFrameIndex)
+ .addImm(/*Scale=*/1)
+ .addReg(/*IndexReg=*/0)
+ .addImm(/*Disp=*/Offset)
+ .addReg(/*Segment=*/0)
+ .addReg(MI->getOperand(i).getReg())
+ .addMemOperand(MMO);
+ }
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+
+ return EndMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ unsigned Opc =
+ X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
+ BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ // Add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+}
+
+
+MachineBasicBlock *
+X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
+ case X86::CMOV_GR8:
case X86::CMOV_V1I64:
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_V4F32:
case X86::CMOV_V2F64:
- case X86::CMOV_V2I64: {
- // To "insert" a SELECT_CC instruction, we actually have to insert the
- // diamond control-flow pattern. The incoming instruction knows the
- // destination vreg to set, the condition code register to branch on, the
- // true/false values to select between, and a branch opcode to use.
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- MachineFunction::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // TrueVal = ...
- // cmpTY ccX, r1, r2
- // bCC copy1MBB
- // fallthrough --> copy0MBB
- MachineBasicBlock *thisMBB = BB;
- MachineFunction *F = BB->getParent();
- MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
- unsigned Opc =
- X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
- BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
- F->insert(It, copy0MBB);
- F->insert(It, sinkMBB);
- // Update machine-CFG edges by transferring all successors of the current
- // block to the new block which will contain the Phi node for the select.
- sinkMBB->transferSuccessors(BB);
-
- // Add the true and fallthrough blocks as its successors.
- BB->addSuccessor(copy0MBB);
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = ...
- // # fallthrough to sinkMBB
- BB = copy0MBB;
-
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
- .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
- .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
-
- F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
- return BB;
- }
+ case X86::CMOV_V2I64:
+ return EmitLoweredSelect(MI, BB, EM);
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
@@ -7596,33 +7863,36 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
MachineFunction *F = BB->getParent();
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
- addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
- addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
CWFrameIdx);
// Set the high part to be round to zero...
- addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
- addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
- addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
- default: assert(0 && "illegal opcode!");
+ default: llvm_unreachable("illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
@@ -7655,15 +7925,26 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
} else {
AM.Disp = Op.getImm();
}
- addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
+ addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
.addReg(MI->getOperand(X86AddrNumOperands).getReg());
// Reload the original control word now.
- addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
+ // String/text processing lowering.
+ case X86::PCMPISTRM128REG:
+ return EmitPCMP(MI, BB, 3, false /* in-mem */);
+ case X86::PCMPISTRM128MEM:
+ return EmitPCMP(MI, BB, 3, true /* in-mem */);
+ case X86::PCMPESTRM128REG:
+ return EmitPCMP(MI, BB, 5, false /* in mem */);
+ case X86::PCMPESTRM128MEM:
+ return EmitPCMP(MI, BB, 5, true /* in mem */);
+
+ // Atomic Lowering.
case X86::ATOMAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
X86::AND32ri, X86::MOV32rm,
@@ -7825,6 +8106,8 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
X86::MOV32rr, X86::MOV32rr,
X86::MOV32ri, X86::MOV32ri,
false);
+ case X86::VASTART_SAVE_XMM_REGS:
+ return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
}
}
@@ -7855,6 +8138,9 @@ void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
case X86ISD::UMUL:
case X86ISD::INC:
case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
// These nodes' second result is a boolean.
if (Op.getResNo() == 0)
break;
@@ -7891,7 +8177,7 @@ static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
}
static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
- MVT EVT, LoadSDNode *&LDBase,
+ EVT EltVT, LoadSDNode *&LDBase,
unsigned &LastLoadedElt,
SelectionDAG &DAG, MachineFrameInfo *MFI,
const TargetLowering &TLI) {
@@ -7919,7 +8205,7 @@ static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
continue;
LoadSDNode *LD = cast<LoadSDNode>(Elt);
- if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
+ if (!TLI.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i, MFI))
return false;
LastLoadedElt = i;
}
@@ -7935,8 +8221,8 @@ static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
DebugLoc dl = N->getDebugLoc();
- MVT VT = N->getValueType(0);
- MVT EVT = VT.getVectorElementType();
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
unsigned NumElems = VT.getVectorNumElements();
@@ -7947,7 +8233,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
LoadSDNode *LD = NULL;
unsigned LastLoadedElt;
- if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
+ if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
MFI, TLI))
return SDValue();
@@ -7976,57 +8262,159 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
-
- // If we have SSE[12] support, try to form min/max nodes.
+
+ // If we have SSE[12] support, try to form min/max nodes. SSE min/max
+ // instructions have the peculiarity that if either operand is a NaN,
+ // they chose what we call the RHS operand (and as such are not symmetric).
+ // It happens that this matches the semantics of the common C idiom
+ // x<y?x:y and related forms, so we can recognize these cases.
if (Subtarget->hasSSE2() &&
(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
Cond.getOpcode() == ISD::SETCC) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
+ // Check for x CC y ? x : y.
if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
switch (CC) {
default: break;
- case ISD::SETOLE: // (X <= Y) ? X : Y -> min
+ case ISD::SETULT:
+ // This can be a min if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(RHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(LHS))
+ break;
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETOLE:
+ // This can be a min if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(LHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(RHS))
+ break;
+ }
+ Opcode = X86ISD::FMIN;
+ break;
case ISD::SETULE:
- case ISD::SETLE:
- if (!UnsafeFPMath) break;
- // FALL THROUGH.
- case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
+ // This can be a min, but if either operand is a NaN we need it to
+ // preserve the original LHS.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
case ISD::SETLT:
+ case ISD::SETLE:
Opcode = X86ISD::FMIN;
break;
- case ISD::SETOGT: // (X > Y) ? X : Y -> max
+ case ISD::SETOGE:
+ // This can be a max if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(LHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(RHS))
+ break;
+ }
+ Opcode = X86ISD::FMAX;
+ break;
case ISD::SETUGT:
+ // This can be a max if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(RHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(LHS))
+ break;
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGE:
+ // This can be a max, but if either operand is a NaN we need it to
+ // preserve the original LHS.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
case ISD::SETGT:
- if (!UnsafeFPMath) break;
- // FALL THROUGH.
- case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
switch (CC) {
default: break;
- case ISD::SETOGT: // (X > Y) ? Y : X -> min
+ case ISD::SETOGE:
+ // This can be a min if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(RHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(LHS))
+ break;
+ }
+ Opcode = X86ISD::FMIN;
+ break;
case ISD::SETUGT:
+ // This can be a min if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(LHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(RHS))
+ break;
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGE:
+ // This can be a min, but if either operand is a NaN we need it to
+ // preserve the original LHS.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
case ISD::SETGT:
- if (!UnsafeFPMath) break;
- // FALL THROUGH.
- case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
- case ISD::SETOLE: // (X <= Y) ? Y : X -> max
+ case ISD::SETULT:
+ // This can be a max if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(LHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(RHS))
+ break;
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETOLE:
+ // This can be a max if we can prove that at least one of the operands
+ // is not a nan.
+ if (!FiniteOnlyFPMath()) {
+ if (DAG.isKnownNeverNaN(RHS)) {
+ // Put the potential NaN in the RHS so that SSE will preserve it.
+ std::swap(LHS, RHS);
+ } else if (!DAG.isKnownNeverNaN(LHS))
+ break;
+ }
+ Opcode = X86ISD::FMAX;
+ break;
case ISD::SETULE:
- case ISD::SETLE:
- if (!UnsafeFPMath) break;
- // FALL THROUGH.
- case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
+ // This can be a max, but if either operand is a NaN we need it to
+ // preserve the original LHS.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
case ISD::SETLT:
+ case ISD::SETLE:
Opcode = X86ISD::FMAX;
break;
}
@@ -8035,7 +8423,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
-
+
// If this is a select between two integer constants, try to do some
// optimizations.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
@@ -8045,7 +8433,7 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// If this is efficiently invertible, canonicalize the LHSC/RHSC values
// so that TrueC (the true value) is larger than FalseC.
bool NeedsCondInvert = false;
-
+
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
// Efficiently invertible.
(Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
@@ -8054,41 +8442,41 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
NeedsCondInvert = true;
std::swap(TrueC, FalseC);
}
-
+
// Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
if (FalseC->getAPIntValue() == 0 &&
TrueC->getAPIntValue().isPowerOf2()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
-
+
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
-
+
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
DAG.getConstant(ShAmt, MVT::i8));
}
-
+
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
-
+
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
}
-
+
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
-
+
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
@@ -8104,13 +8492,13 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
break;
}
}
-
+
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
-
+
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
@@ -8118,17 +8506,17 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, Cond.getValueType()));
-
+
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
- }
+ }
}
}
-
+
return SDValue();
}
@@ -8136,11 +8524,11 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
DebugLoc DL = N->getDebugLoc();
-
+
// If the flag operand isn't dead, don't touch this CMOV.
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
return SDValue();
-
+
// If this is a select between two integer constants, try to do some
// optimizations. Note that the operands are ordered the opposite of SELECT
// operands.
@@ -8149,12 +8537,12 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
// larger than FalseC (the false value).
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
-
+
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueC, FalseC);
}
-
+
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
// This is efficient for any integer data type (including i8/i16) and
// shift amount.
@@ -8162,10 +8550,10 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
SDValue Cond = N->getOperand(3);
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, MVT::i8), Cond);
-
+
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
-
+
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
DAG.getConstant(ShAmt, MVT::i8));
@@ -8173,31 +8561,31 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
-
+
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
// for any integer data type, including i8/i16.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
SDValue Cond = N->getOperand(3);
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, MVT::i8), Cond);
-
+
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
-
+
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
-
+
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
-
+
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
@@ -8213,7 +8601,7 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
break;
}
}
-
+
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
SDValue Cond = N->getOperand(3);
@@ -8235,7 +8623,7 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
- }
+ }
}
}
return SDValue();
@@ -8254,7 +8642,7 @@ static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
if (VT != MVT::i64)
return SDValue();
@@ -8289,17 +8677,17 @@ static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
std::swap(MulAmt1, MulAmt2);
SDValue NewMul;
- if (isPowerOf2_64(MulAmt1))
+ if (isPowerOf2_64(MulAmt1))
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(MulAmt1, VT));
- if (isPowerOf2_64(MulAmt2))
+ if (isPowerOf2_64(MulAmt2))
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
- else
+ else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
DAG.getConstant(MulAmt2, VT));
@@ -8321,14 +8709,14 @@ static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
if (!Subtarget->hasSSE2())
return SDValue();
- MVT VT = N->getValueType(0);
+ EVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
return SDValue();
SDValue ShAmtOp = N->getOperand(1);
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
DebugLoc DL = N->getDebugLoc();
- SDValue BaseShAmt;
+ SDValue BaseShAmt = SDValue();
if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
unsigned NumElts = VT.getVectorNumElements();
unsigned i = 0;
@@ -8347,21 +8735,40 @@ static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
}
} else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
- BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
- DAG.getIntPtrConstant(0));
+ SDValue InVec = ShAmtOp.getOperand(0);
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ unsigned NumElts = InVec.getValueType().getVectorNumElements();
+ unsigned i = 0;
+ for (; i != NumElts; ++i) {
+ SDValue Arg = InVec.getOperand(i);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ BaseShAmt = Arg;
+ break;
+ }
+ } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
+ unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
+ if (C->getZExtValue() == SplatIdx)
+ BaseShAmt = InVec.getOperand(1);
+ }
+ }
+ if (BaseShAmt.getNode() == 0)
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
+ DAG.getIntPtrConstant(0));
} else
return SDValue();
+ // The shift amount is an i32.
if (EltVT.bitsGT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
- BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
// The shift amount is identical so we can do a vector shift.
SDValue ValOp = N->getOperand(0);
switch (N->getOpcode()) {
default:
- assert(0 && "Unknown shift opcode!");
+ llvm_unreachable("Unknown shift opcode!");
break;
case ISD::SHL:
if (VT == MVT::v2i64)
@@ -8415,13 +8822,13 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
StoreSDNode *St = cast<StoreSDNode>(N);
- MVT VT = St->getValue().getValueType();
+ EVT VT = St->getValue().getValueType();
if (VT.getSizeInBits() != 64)
return SDValue();
const Function *F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
- bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
+ bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
&& Subtarget->hasSSE2();
if ((VT.isVector() ||
(VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
@@ -8464,7 +8871,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
// pair instead.
if (Subtarget->is64Bit() || F64IsLegal) {
- MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
+ EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
Ld->getBasePtr(), Ld->getSrcValue(),
Ld->getSrcValueOffset(), Ld->isVolatile(),
@@ -8568,9 +8975,9 @@ static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
SDValue Op = N->getOperand(0);
if (Op.getOpcode() == ISD::BIT_CONVERT)
Op = Op.getOperand(0);
- MVT VT = N->getValueType(0), OpVT = Op.getValueType();
+ EVT VT = N->getValueType(0), OpVT = Op.getValueType();
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
- VT.getVectorElementType().getSizeInBits() ==
+ VT.getVectorElementType().getSizeInBits() ==
OpVT.getVectorElementType().getSizeInBits()) {
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
}
@@ -8580,7 +8987,7 @@ static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
// On X86 and X86-64, atomic operations are lowered to locked instructions.
// Locked instructions, in turn, have implicit fence semantics (all memory
// operations are flushed before issuing the locked instruction, and the
-// are not buffered), so we can fold away the common pattern of
+// are not buffered), so we can fold away the common pattern of
// fence-atomic-fence.
static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
SDValue atomic = N->getOperand(0);
@@ -8601,11 +9008,11 @@ static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
default:
return SDValue();
}
-
+
SDValue fence = atomic.getOperand(0);
if (fence.getOpcode() != ISD::MEMBARRIER)
return SDValue();
-
+
switch (atomic.getOpcode()) {
case ISD::ATOMIC_CMP_SWAP:
return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
@@ -8657,6 +9064,101 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
+static bool LowerToBSwap(CallInst *CI) {
+ // FIXME: this should verify that we are targetting a 486 or better. If not,
+ // we will turn this bswap into something that will be lowered to logical ops
+ // instead of emitting the bswap asm. For now, we don't support 486 or lower
+ // so don't worry about this.
+
+ // Verify this is a simple bswap.
+ if (CI->getNumOperands() != 2 ||
+ CI->getType() != CI->getOperand(1)->getType() ||
+ !CI->getType()->isInteger())
+ return false;
+
+ const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (!Ty || Ty->getBitWidth() % 16 != 0)
+ return false;
+
+ // Okay, we can do this xform, do so now.
+ const Type *Tys[] = { Ty };
+ Module *M = CI->getParent()->getParent()->getParent();
+ Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
+
+ Value *Op = CI->getOperand(1);
+ Op = CallInst::Create(Int, Op, CI->getName(), CI);
+
+ CI->replaceAllUsesWith(Op);
+ CI->eraseFromParent();
+ return true;
+}
+
+bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
+
+ std::string AsmStr = IA->getAsmString();
+
+ // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
+ std::vector<std::string> AsmPieces;
+ SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
+
+ // bswap $0
+ if (AsmPieces.size() == 2 &&
+ (AsmPieces[0] == "bswap" ||
+ AsmPieces[0] == "bswapq" ||
+ AsmPieces[0] == "bswapl") &&
+ (AsmPieces[1] == "$0" ||
+ AsmPieces[1] == "${0:q}")) {
+ // No need to check constraints, nothing other than the equivalent of
+ // "=r,0" would be valid here.
+ return LowerToBSwap(CI);
+ }
+ // rorw $$8, ${0:w} --> llvm.bswap.i16
+ if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
+ AsmPieces.size() == 3 &&
+ AsmPieces[0] == "rorw" &&
+ AsmPieces[1] == "$$8," &&
+ AsmPieces[2] == "${0:w}" &&
+ IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
+ return LowerToBSwap(CI);
+ }
+ break;
+ case 3:
+ if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
+ Constraints.size() >= 2 &&
+ Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
+ Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
+ // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
+ std::vector<std::string> Words;
+ SplitString(AsmPieces[0], Words, " \t");
+ if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
+ Words.clear();
+ SplitString(AsmPieces[1], Words, " \t");
+ if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
+ Words.clear();
+ SplitString(AsmPieces[2], Words, " \t,");
+ if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
+ Words[2] == "%edx") {
+ return LowerToBSwap(CI);
+ }
+ }
+ }
+ }
+ break;
+ }
+ return false;
+}
+
+
+
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
@@ -8689,7 +9191,7 @@ X86TargetLowering::getConstraintType(const std::string &Constraint) const {
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
const char *X86TargetLowering::
-LowerXConstraint(MVT ConstraintVT) const {
+LowerXConstraint(EVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
@@ -8749,7 +9251,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
const ConstantInt *CI = C->getConstantIntValue();
- if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
+ if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
break;
@@ -8763,7 +9266,8 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
const ConstantInt *CI = C->getConstantIntValue();
- if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
+ if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
@@ -8803,16 +9307,22 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
continue;
}
}
-
+
// Otherwise, this isn't something we can handle, reject it.
return;
}
+ GlobalValue *GV = GA->getGlobal();
+ // If we require an extra load to get this address, as in PIC mode, we
+ // can't accept it.
+ if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
+ getTargetMachine())))
+ return;
+
if (hasMemory)
- Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), Offset, DAG);
+ Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
else
- Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
- Offset);
+ Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
Result = Op;
break;
}
@@ -8828,12 +9338,42 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::vector<unsigned> X86TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
if (Constraint.size() == 1) {
// FIXME: not handling fp-stack yet!
switch (Constraint[0]) { // GCC X86 Constraint Letters
default: break; // Unknown constraint letter
- case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
+ case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
+ if (Subtarget->is64Bit()) {
+ if (VT == MVT::i32)
+ return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
+ X86::ESI, X86::EDI, X86::R8D, X86::R9D,
+ X86::R10D,X86::R11D,X86::R12D,
+ X86::R13D,X86::R14D,X86::R15D,
+ X86::EBP, X86::ESP, 0);
+ else if (VT == MVT::i16)
+ return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
+ X86::SI, X86::DI, X86::R8W,X86::R9W,
+ X86::R10W,X86::R11W,X86::R12W,
+ X86::R13W,X86::R14W,X86::R15W,
+ X86::BP, X86::SP, 0);
+ else if (VT == MVT::i8)
+ return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
+ X86::SIL, X86::DIL, X86::R8B,X86::R9B,
+ X86::R10B,X86::R11B,X86::R12B,
+ X86::R13B,X86::R14B,X86::R15B,
+ X86::BPL, X86::SPL, 0);
+
+ else if (VT == MVT::i64)
+ return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
+ X86::RSI, X86::RDI, X86::R8, X86::R9,
+ X86::R10, X86::R11, X86::R12,
+ X86::R13, X86::R14, X86::R15,
+ X86::RBP, X86::RSP, 0);
+
+ break;
+ }
+ // 32-bit fallthrough
case 'Q': // Q_REGS
if (VT == MVT::i32)
return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
@@ -8852,7 +9392,7 @@ getRegClassForInlineAsmConstraint(const std::string &Constraint,
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const {
+ EVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
@@ -8860,7 +9400,6 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
- case 'R': // LEGACY_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8)
return std::make_pair(0U, X86::GR8RegisterClass);
@@ -8869,6 +9408,14 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
if (VT == MVT::i32 || !Subtarget->is64Bit())
return std::make_pair(0U, X86::GR32RegisterClass);
return std::make_pair(0U, X86::GR64RegisterClass);
+ case 'R': // LEGACY_REGS
+ if (VT == MVT::i8)
+ return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
+ if (VT == MVT::i32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
+ return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
@@ -8886,7 +9433,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
case 'x': // SSE_REGS if SSE1 allowed
if (!Subtarget->hasSSE1()) break;
- switch (VT.getSimpleVT()) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
@@ -8915,15 +9462,39 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
// Not found as a standard register?
if (Res.second == 0) {
- // GCC calls "st(0)" just plain "st".
+ // Map st(0) -> st(7) -> ST0
+ if (Constraint.size() == 7 && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 's' &&
+ tolower(Constraint[2]) == 't' &&
+ Constraint[3] == '(' &&
+ (Constraint[4] >= '0' && Constraint[4] <= '7') &&
+ Constraint[5] == ')' &&
+ Constraint[6] == '}') {
+
+ Res.first = X86::ST0+Constraint[4]-'0';
+ Res.second = X86::RFP80RegisterClass;
+ return Res;
+ }
+
+ // GCC allows "st(0)" to be called just plain "st".
if (StringsEqualNoCase("{st}", Constraint)) {
Res.first = X86::ST0;
Res.second = X86::RFP80RegisterClass;
+ return Res;
+ }
+
+ // flags -> EFLAGS
+ if (StringsEqualNoCase("{flags}", Constraint)) {
+ Res.first = X86::EFLAGS;
+ Res.second = X86::CCRRegisterClass;
+ return Res;
}
+
// 'A' means EAX + EDX.
if (Constraint == "A") {
Res.first = X86::EAX;
- Res.second = X86::GRADRegisterClass;
+ Res.second = X86::GR32_ADRegisterClass;
+ return Res;
}
return Res;
}
@@ -9015,7 +9586,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
/// When and where to widen is target dependent based on the cost of
/// scalarizing vs using the wider vector type.
-MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
+EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
assert(VT.isVector());
if (isTypeLegal(VT))
return VT;
@@ -9024,7 +9595,7 @@ MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
// type based on element type. This would speed up our search (though
// it may not be worth it since the size of the list is relatively
// small).
- MVT EltVT = VT.getVectorElementType();
+ EVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
// On X86, it make sense to widen any vector wider than 1
@@ -9033,7 +9604,7 @@ MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType)nVT;
+ EVT SVT = (MVT::SimpleValueType)nVT;
if (isTypeLegal(SVT) &&
SVT.getVectorElementType() == EltVT &&
diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h
index ffed46c..2f7b8ba 100644
--- a/lib/Target/X86/X86ISelLowering.h
+++ b/lib/Target/X86/X86ISelLowering.h
@@ -85,7 +85,7 @@ namespace llvm {
/// as.
FST,
- /// CALL/TAILCALL - These operations represent an abstract X86 call
+ /// CALL - These operations represent an abstract X86 call
/// instruction, which includes a bunch of information. In particular the
/// operands of these node are:
///
@@ -102,12 +102,8 @@ namespace llvm {
/// #1 - The first register result value (optional)
/// #2 - The second register result value (optional)
///
- /// The CALL vs TAILCALL distinction boils down to whether the callee is
- /// known not to modify the caller's stack frame, as is standard with
- /// LLVM.
CALL,
- TAILCALL,
-
+
/// RDTSC_DAG - This operation implements the lowering for
/// readcyclecounter
RDTSC_DAG,
@@ -208,17 +204,6 @@ namespace llvm {
LCMPXCHG_DAG,
LCMPXCHG8_DAG,
- // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
- // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
- // Atomic 64-bit binary operations.
- ATOMADD64_DAG,
- ATOMSUB64_DAG,
- ATOMOR64_DAG,
- ATOMXOR64_DAG,
- ATOMAND64_DAG,
- ATOMNAND64_DAG,
- ATOMSWAP64_DAG,
-
// FNSTCW16m - Store FP control world into i16 memory.
FNSTCW16m,
@@ -241,10 +226,29 @@ namespace llvm {
// ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
ADD, SUB, SMUL, UMUL,
- INC, DEC,
+ INC, DEC, OR, XOR, AND,
// MUL_IMM - X86 specific multiply by immediate.
- MUL_IMM
+ MUL_IMM,
+
+ // PTEST - Vector bitwise comparisons
+ PTEST,
+
+ // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
+ // according to %al. An operator is needed so that this can be expanded
+ // with control flow.
+ VASTART_SAVE_XMM_REGS,
+
+ // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
+ // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
+ // Atomic 64-bit binary operations.
+ ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ ATOMSUB64_DAG,
+ ATOMOR64_DAG,
+ ATOMXOR64_DAG,
+ ATOMAND64_DAG,
+ ATOMNAND64_DAG,
+ ATOMSWAP64_DAG
};
}
@@ -333,6 +337,15 @@ namespace llvm {
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
/// instructions.
unsigned getShufflePSHUFLWImmediate(SDNode *N);
+
+ /// isZeroNode - Returns true if Elt is a constant zero or a floating point
+ /// constant +0.0.
+ bool isZeroNode(SDValue Elt);
+
+ /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
+ /// fit into displacement field of the instruction.
+ bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement = true);
}
//===--------------------------------------------------------------------===//
@@ -374,12 +387,17 @@ namespace llvm {
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
- /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
+ /// lowering. It returns EVT::iAny if SelectionDAG should be responsible for
/// determining it.
- virtual
- MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
- bool isSrcConst, bool isSrcStr,
- SelectionDAG &DAG) const;
+ virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
+ bool isSrcConst, bool isSrcStr,
+ SelectionDAG &DAG) const;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
+ return true;
+ }
/// LowerOperation - Provide custom lowering hooks for some operations.
///
@@ -395,7 +413,8 @@ namespace llvm {
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
/// getTargetNodeName - This method returns the name of a target specific
@@ -403,7 +422,7 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the ISD::SETCC ValueType
- virtual MVT getSetCCResultType(MVT VT) const;
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// in Mask are known to be either zero or one and return them in the
@@ -420,13 +439,15 @@ namespace llvm {
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
+ virtual bool ExpandInlineAsm(CallInst *CI) const;
+
ConstraintType getConstraintType(const std::string &Constraint) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
- virtual const char *LowerXConstraint(MVT ConstraintVT) const;
+ virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
@@ -444,7 +465,7 @@ namespace llvm {
/// error, this returns a register number of 0.
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
@@ -454,7 +475,7 @@ namespace llvm {
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
- virtual bool isTruncateFree(MVT VT1, MVT VT2) const;
+ virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
/// isZExtFree - Return true if any actual instruction that defines a
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
@@ -465,31 +486,31 @@ namespace llvm {
/// all instructions that define 32-bit values implicit zero-extend the
/// result out to 64 bits.
virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
- virtual bool isZExtFree(MVT VT1, MVT VT2) const;
+ virtual bool isZExtFree(EVT VT1, EVT VT2) const;
/// isNarrowingProfitable - Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
- virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const;
+ virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask
/// values are assumed to be legal.
virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
- MVT VT) const;
+ EVT VT) const;
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
/// used by Targets can use this to indicate if there is a suitable
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
/// pool entry.
virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
- MVT VT) const;
+ EVT VT) const;
/// ShouldShrinkFPConstant - If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
- virtual bool ShouldShrinkFPConstant(MVT VT) const {
+ virtual bool ShouldShrinkFPConstant(EVT VT) const {
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
// expensive than a straight movsd. On the other hand, it's important to
// shrink long double fp constant since fldt is very slow.
@@ -497,11 +518,14 @@ namespace llvm {
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
- /// for tail call optimization. Target which want to do tail call
+ /// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
- virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
- SDValue Ret,
- SelectionDAG &DAG) const;
+ virtual bool
+ IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
virtual const X86Subtarget* getSubtarget() {
return Subtarget;
@@ -509,17 +533,17 @@ namespace llvm {
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
- bool isScalarFPTypeInSSEReg(MVT VT) const {
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
/// getWidenVectorType: given a vector type, returns the type to widen
/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
- /// If there is no vector type that we want to widen to, returns MVT::Other
+ /// If there is no vector type that we want to widen to, returns EVT::Other
/// When and were to widen is target dependent based on the cost of
/// scalarizing vs using the wider vector type.
- virtual MVT getWidenVectorType(MVT VT) const;
+ virtual EVT getWidenVectorType(EVT VT) const;
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
@@ -554,28 +578,30 @@ namespace llvm {
bool X86ScalarSSEf32;
bool X86ScalarSSEf64;
- SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG);
-
- SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG,
- const CCValAssign &VA, MachineFrameInfo *MFI,
- unsigned CC, SDValue Root, unsigned i);
-
- SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
- const SDValue &StackPtr,
- const CCValAssign &VA, SDValue Chain,
- SDValue Arg, ISD::ArgFlagsTy Flags);
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &ArgInfo,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA, MachineFrameInfo *MFI,
+ unsigned i);
+ SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags);
// Call lowering helpers.
- bool IsCalleePop(bool isVarArg, unsigned CallingConv);
- bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall);
- bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall);
+ bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv);
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
SDValue Chain, bool IsTailCall, bool Is64Bit,
int FPDiff, DebugLoc dl);
- CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const;
- NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op);
+ CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
+ NameDecorationStyle NameDecorationForCallConv(CallingConv::ID CallConv);
unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
@@ -595,7 +621,7 @@ namespace llvm {
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
- SDValue BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain, SDValue StackSlot,
+ SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
SelectionDAG &DAG);
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
@@ -612,10 +638,7 @@ namespace llvm {
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
@@ -635,6 +658,26 @@ namespace llvm {
SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
+
void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG, unsigned NewOp);
@@ -651,9 +694,17 @@ namespace llvm {
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff);
+ /// Utility function to emit string processing sse4.2 instructions
+ /// that return in xmm0.
+ /// This takes the instruction to expand, the associated machine basic
+ /// block, the number of args, and whether or not the second arg is
+ /// in memory or not.
+ MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
+ unsigned argNum, bool inMem) const;
+
/// Utility function to emit atomic bitwise operations (and, or, xor).
- // It takes the bitwise instruction to expand, the associated machine basic
- // block, and the associated X86 opcodes for reg/reg and reg/imm.
+ /// It takes the bitwise instruction to expand, the associated machine basic
+ /// block, and the associated X86 opcodes for reg/reg and reg/imm.
MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
MachineInstr *BInstr,
MachineBasicBlock *BB,
@@ -683,6 +734,15 @@ namespace llvm {
MachineBasicBlock *BB,
unsigned cmovOpc) const;
+ /// Utility function to emit the xmm reg save portion of va_start.
+ MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *BInstr,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
+
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent, for use with the given x86 condition code.
SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
diff --git a/lib/Target/X86/X86Instr64bit.td b/lib/Target/X86/X86Instr64bit.td
index 472ba4c..ef19823 100644
--- a/lib/Target/X86/X86Instr64bit.td
+++ b/lib/Target/X86/X86Instr64bit.td
@@ -28,26 +28,29 @@ def i64i32imm_pcrel : Operand<i64> {
// 64-bits but only 8 bits are significant.
-def i64i8imm : Operand<i64>;
+def i64i8imm : Operand<i64> {
+ let ParserMatchClass = ImmSExt8AsmOperand;
+}
def lea64mem : Operand<i64> {
let PrintMethod = "printlea64mem";
- let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm);
+ let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printlea64_32mem";
let AsmOperandLowerMethod = "lower_lea64_32mem";
- let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
+ let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
//===----------------------------------------------------------------------===//
// Complex Pattern Definitions.
//
def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
- [add, mul, X86mul_imm, shl, or, frameindex, X86Wrapper,
- X86WrapperRIP],
- []>;
+ [add, sub, mul, X86mul_imm, shl, or, frameindex,
+ X86WrapperRIP], []>;
def tls64addr : ComplexPattern<i64, 4, "SelectTLSADDRAddr",
[tglobaltlsaddr], []>;
@@ -129,13 +132,40 @@ let isCall = 1 in
def CALL64pcrel32 : Ii32<0xE8, RawFrm,
(outs), (ins i64i32imm_pcrel:$dst, variable_ops),
"call\t$dst", []>,
- Requires<[In64BitMode]>;
+ Requires<[In64BitMode, NotWin64]>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
- "call\t{*}$dst", [(X86call GR64:$dst)]>;
+ "call\t{*}$dst", [(X86call GR64:$dst)]>,
+ Requires<[NotWin64]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
- "call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>;
+ "call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
+ Requires<[NotWin64]>;
+
+ def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
+ "lcall{q}\t{*}$dst", []>;
}
+ // FIXME: We need to teach codegen about single list of call-clobbered registers.
+let isCall = 1 in
+ // All calls clobber the non-callee saved registers. RSP is marked as
+ // a use to prevent stack-pointer assignments that appear immediately
+ // before calls from potentially appearing dead. Uses for argument
+ // registers are added manually.
+ let Defs = [RAX, RCX, RDX, R8, R9, R10, R11,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, EFLAGS],
+ Uses = [RSP] in {
+ def WINCALL64pcrel32 : I<0xE8, RawFrm,
+ (outs), (ins i64i32imm_pcrel:$dst, variable_ops),
+ "call\t$dst", []>,
+ Requires<[IsWin64]>;
+ def WINCALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
+ "call\t{*}$dst",
+ [(X86call GR64:$dst)]>, Requires<[IsWin64]>;
+ def WINCALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
+ "call\t{*}$dst",
+ [(X86call (loadi64 addr:$dst))]>, Requires<[IsWin64]>;
+ }
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
@@ -162,6 +192,8 @@ let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
[(brind GR64:$dst)]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))]>;
+ def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
+ "ljmp{q}\t{*}$dst", []>;
}
//===----------------------------------------------------------------------===//
@@ -182,12 +214,18 @@ let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
-let mayLoad = 1 in
+let mayLoad = 1 in {
def POP64r : I<0x58, AddRegFrm,
(outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
-let mayStore = 1 in
+def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
+def POP64rmm: I<0x8F, MRM0m, (outs i64mem:$dst), (ins), "pop{q}\t$dst", []>;
+}
+let mayStore = 1 in {
def PUSH64r : I<0x50, AddRegFrm,
(outs), (ins GR64:$reg), "push{q}\t$reg", []>;
+def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", []>;
+def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", []>;
+}
}
let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1 in {
@@ -246,6 +284,14 @@ let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
[(X86rep_stos i64)]>, REP;
+def SCAS64 : RI<0xAF, RawFrm, (outs), (ins), "scas{q}", []>;
+
+def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmps{q}", []>;
+
+// Fast system-call instructions
+def SYSEXIT64 : RI<0x35, RawFrm,
+ (outs), (ins), "sysexit", []>, TB;
+
//===----------------------------------------------------------------------===//
// Move Instructions...
//
@@ -275,6 +321,25 @@ def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store i64immSExt32:$src, addr:$dst)]>;
+def MOV64o8a : RIi8<0xA0, RawFrm, (outs), (ins i8imm:$src),
+ "mov{q}\t{$src, %rax|%rax, $src}", []>;
+def MOV64o32a : RIi32<0xA1, RawFrm, (outs), (ins i32imm:$src),
+ "mov{q}\t{$src, %rax|%rax, $src}", []>;
+def MOV64ao8 : RIi8<0xA2, RawFrm, (outs i8imm:$dst), (ins),
+ "mov{q}\t{%rax, $dst|$dst, %rax}", []>;
+def MOV64ao32 : RIi32<0xA3, RawFrm, (outs i32imm:$dst), (ins),
+ "mov{q}\t{%rax, $dst|$dst, %rax}", []>;
+
+// Moves to and from segment registers
+def MOV64rs : RI<0x8C, MRMDestReg, (outs GR64:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV64ms : RI<0x8C, MRMDestMem, (outs i64mem:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV64sr : RI<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR64:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV64sm : RI<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i64mem:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+
// Sign/Zero extenders
// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
@@ -332,13 +397,15 @@ def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
[(set GR64:$dst, (zextloadi64i32 addr:$src))]>;
// Any instruction that defines a 32-bit result leaves the high half of the
-// register. Truncate can be lowered to EXTRACT_SUBREG, and CopyFromReg may
-// be copying from a truncate, but any other 32-bit operation will zero-extend
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. And x86's cmov doesn't do anything if the
+// condition is false. But any other 32-bit operation will zero-extend
// up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetInstrInfo::EXTRACT_SUBREG &&
- N->getOpcode() != ISD::CopyFromReg;
+ N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != X86ISD::CMOV;
}]>;
// In the case of a 32-bit def that is known to implicitly zero-extend,
@@ -361,6 +428,10 @@ let neverHasSideEffects = 1 in {
//
let Defs = [EFLAGS] in {
+
+def ADD64i32 : RI<0x05, RawFrm, (outs), (ins i32imm:$src),
+ "add{q}\t{$src, %rax|%rax, $src}", []>;
+
let isTwoAddress = 1 in {
let isConvertibleToThreeAddress = 1 in {
let isCommutable = 1 in
@@ -386,6 +457,12 @@ def ADD64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, (load addr:$src2))),
(implicit EFLAGS)]>;
+
+// Register-Register Addition - Equivalent to the normal rr form (ADD64rr), but
+// differently encoded.
+def ADD64mrmrr : RI<0x03, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "add{l}\t{$src2, $dst|$dst, $src2}", []>;
+
} // isTwoAddress
// Memory-Register Addition
@@ -403,6 +480,10 @@ def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2),
(implicit EFLAGS)]>;
let Uses = [EFLAGS] in {
+
+def ADC64i32 : RI<0x15, RawFrm, (outs), (ins i32imm:$src),
+ "adc{q}\t{$src, %rax|%rax, $src}", []>;
+
let isTwoAddress = 1 in {
let isCommutable = 1 in
def ADC64rr : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
@@ -458,6 +539,9 @@ def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst),
(implicit EFLAGS)]>;
} // isTwoAddress
+def SUB64i32 : RI<0x2D, RawFrm, (outs), (ins i32imm:$src),
+ "sub{q}\t{$src, %rax|%rax, $src}", []>;
+
// Memory-Register Subtraction
def SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
@@ -494,6 +578,9 @@ def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:
[(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress
+def SBB64i32 : RI<0x1D, RawFrm, (outs), (ins i32imm:$src),
+ "sbb{q}\t{$src, %rax|%rax, $src}", []>;
+
def SBB64mr : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>;
@@ -665,8 +752,10 @@ let isConvertibleToThreeAddress = 1 in // Can transform into LEA.
def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"shl{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>;
-// NOTE: We don't use shifts of a register by one, because 'add reg,reg' is
-// cheaper.
+// NOTE: We don't include patterns for shifts of a register by one, because
+// 'add reg,reg' is cheaper.
+def SHL64r1 : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1),
+ "shr{q}\t$dst", []>;
} // isTwoAddress
let Uses = [CL] in
@@ -729,6 +818,39 @@ def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
[(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
// Rotate instructions
+
+let isTwoAddress = 1 in {
+def RCL64r1 : RI<0xD1, MRM2r, (outs GR64:$dst), (ins GR64:$src),
+ "rcl{q}\t{1, $dst|$dst, 1}", []>;
+def RCL64m1 : RI<0xD1, MRM2m, (outs i64mem:$dst), (ins i64mem:$src),
+ "rcl{q}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCL64rCL : RI<0xD3, MRM2r, (outs GR64:$dst), (ins GR64:$src),
+ "rcl{q}\t{%cl, $dst|$dst, CL}", []>;
+def RCL64mCL : RI<0xD3, MRM2m, (outs i64mem:$dst), (ins i64mem:$src),
+ "rcl{q}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCL64ri : RIi8<0xC1, MRM2r, (outs GR64:$dst), (ins GR64:$src, i8imm:$cnt),
+ "rcl{q}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCL64mi : RIi8<0xC1, MRM2m, (outs i64mem:$dst), (ins i64mem:$src, i8imm:$cnt),
+ "rcl{q}\t{$cnt, $dst|$dst, $cnt}", []>;
+
+def RCR64r1 : RI<0xD1, MRM3r, (outs GR64:$dst), (ins GR64:$src),
+ "rcr{q}\t{1, $dst|$dst, 1}", []>;
+def RCR64m1 : RI<0xD1, MRM3m, (outs i64mem:$dst), (ins i64mem:$src),
+ "rcr{q}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCR64rCL : RI<0xD3, MRM3r, (outs GR64:$dst), (ins GR64:$src),
+ "rcr{q}\t{%cl, $dst|$dst, CL}", []>;
+def RCR64mCL : RI<0xD3, MRM3m, (outs i64mem:$dst), (ins i64mem:$src),
+ "rcr{q}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCR64ri : RIi8<0xC1, MRM3r, (outs GR64:$dst), (ins GR64:$src, i8imm:$cnt),
+ "rcr{q}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCR64mi : RIi8<0xC1, MRM3m, (outs i64mem:$dst), (ins i64mem:$src, i8imm:$cnt),
+ "rcr{q}\t{$cnt, $dst|$dst, $cnt}", []>;
+}
+
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src),
@@ -839,6 +961,9 @@ def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
[(store (not (loadi64 addr:$dst)), addr:$dst)]>;
let Defs = [EFLAGS] in {
+def AND64i32 : RI<0x25, RawFrm, (outs), (ins i32imm:$src),
+ "and{q}\t{$src, %rax|%rax, $src}", []>;
+
let isTwoAddress = 1 in {
let isCommutable = 1 in
def AND64rr : RI<0x21, MRMDestReg,
@@ -912,6 +1037,9 @@ def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src),
[(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
(implicit EFLAGS)]>;
+def OR64i32 : RIi32<0x0D, RawFrm, (outs), (ins i32imm:$src),
+ "or{q}\t{$src, %rax|%rax, $src}", []>;
+
let isTwoAddress = 1 in {
let isCommutable = 1 in
def XOR64rr : RI<0x31, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
@@ -945,6 +1073,10 @@ def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
(implicit EFLAGS)]>;
+
+def XOR64i32 : RIi32<0x35, RawFrm, (outs), (ins i32imm:$src),
+ "xor{q}\t{$src, %rax|%rax, $src}", []>;
+
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
@@ -953,6 +1085,8 @@ def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
// Integer comparison
let Defs = [EFLAGS] in {
+def TEST64i32 : RI<0xa9, RawFrm, (outs), (ins i32imm:$src),
+ "test{q}\t{$src, %rax|%rax, $src}", []>;
let isCommutable = 1 in
def TEST64rr : RI<0x85, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
@@ -973,10 +1107,15 @@ def TEST64mi32 : RIi32<0xF7, MRM0m, (outs),
[(X86cmp (and (loadi64 addr:$src1), i64immSExt32:$src2), 0),
(implicit EFLAGS)]>;
+
+def CMP64i32 : RI<0x3D, RawFrm, (outs), (ins i32imm:$src),
+ "cmp{q}\t{$src, %rax|%rax, $src}", []>;
def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, GR64:$src2),
(implicit EFLAGS)]>;
+def CMP64mrmrr : RI<0x3B, MRMSrcReg, (outs), (ins GR64:$src1, GR64:$src2),
+ "cmp{q}\t{$src2, $src1|$src1, $src2}", []>;
def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), GR64:$src2),
@@ -1306,14 +1445,12 @@ def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src)
// Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's
// equivalent due to implicit zero-extending, and it sometimes has a smaller
// encoding.
-// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
-// FIXME: AddedComplexity gives MOV64r0 a higher priority than MOV64ri32. Remove
+// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
// when we have a better way to specify isel priority.
-let Defs = [EFLAGS], AddedComplexity = 1,
- isReMaterializable = 1, isAsCheapAsAMove = 1 in
-def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins),
- "xor{l}\t${dst:subreg32}, ${dst:subreg32}",
- [(set GR64:$dst, 0)]>;
+let AddedComplexity = 1 in
+def : Pat<(i64 0),
+ (SUBREG_TO_REG (i64 0), (MOV32r0), x86_subreg_32bit)>;
+
// Materialize i64 constant where top 32-bits are zero.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
@@ -1343,12 +1480,12 @@ def TLS_addr64 : I<0, Pseudo, (outs), (ins lea64mem:$sym),
[(X86tlsaddr tls64addr:$sym)]>,
Requires<[In64BitMode]>;
-let AddedComplexity = 5 in
+let AddedComplexity = 5, isCodeGenOnly = 1 in
def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"movq\t%gs:$src, $dst",
[(set GR64:$dst, (gsload addr:$src))]>, SegGS;
-let AddedComplexity = 5 in
+let AddedComplexity = 5, isCodeGenOnly = 1 in
def MOV64FSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"movq\t%fs:$src, $dst",
[(set GR64:$dst, (fsload addr:$src))]>, SegFS;
@@ -1371,11 +1508,43 @@ def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"xadd\t$val, $ptr",
[(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
TB, LOCK;
+
def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"xchg\t$val, $ptr",
[(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
}
+// Optimized codegen when the non-memory output is not used.
+// FIXME: Use normal add / sub instructions and add lock prefix dynamically.
+def LOCK_ADD64mr : RI<0x03, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ "lock\n\t"
+ "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
+ (ins i64mem:$dst, i64i8imm :$src2),
+ "lock\n\t"
+ "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
+ (ins i64mem:$dst, i64i32imm :$src2),
+ "lock\n\t"
+ "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ "lock\n\t"
+ "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
+ (ins i64mem:$dst, i64i8imm :$src2),
+ "lock\n\t"
+ "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
+ (ins i64mem:$dst, i64i32imm:$src2),
+ "lock\n\t"
+ "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
+ "lock\n\t"
+ "inc{q}\t$dst", []>, LOCK;
+def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
+ "lock\n\t"
+ "dec{q}\t$dst", []>, LOCK;
+
// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
usesCustomDAGSchedInserter = 1 in {
@@ -1405,78 +1574,88 @@ def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
[(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
}
+// Segmentation support instructions
+
+// i16mem operand in LAR64rm and GR32 operand in LAR32rr is not a typo.
+def LAR64rm : RI<0x02, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
+ "lar{q}\t{$src, $dst|$dst, $src}", []>, TB;
+def LAR64rr : RI<0x02, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
+ "lar{q}\t{$src, $dst|$dst, $src}", []>, TB;
+
+// String manipulation instructions
+
+def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", []>;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
-// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
+// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
+// code model mode, should use 'movabs'. FIXME: This is really a hack, the
+// 'movabs' predicate should handle this sort of thing.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
+
+// In static codegen with small code model, we can get the address of a label
+// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri64i32 should accept these.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
+
+// In kernel code model, we can get the address of a label
+// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
- (MOV64ri tconstpool :$dst)>, Requires<[NotSmallCode]>;
+ (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
- (MOV64ri tjumptable :$dst)>, Requires<[NotSmallCode]>;
+ (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
- (MOV64ri tglobaladdr :$dst)>, Requires<[NotSmallCode]>;
+ (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
- (MOV64ri texternalsym:$dst)>, Requires<[NotSmallCode]>;
+ (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
-// should handle this sort of thing.
+// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tconstpool:$src)>,
- Requires<[SmallCode, IsStatic]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tjumptable:$src)>,
- Requires<[SmallCode, IsStatic]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
- Requires<[SmallCode, IsStatic]>;
+ Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, texternalsym:$src)>,
- Requires<[SmallCode, IsStatic]>;
-
-// If we have small model and -static mode, it is safe to store global addresses
-// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
-// should handle this sort of thing.
-def : Pat<(store (i64 (X86WrapperRIP tconstpool:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tconstpool:$src)>,
- Requires<[SmallCode, IsStatic]>;
-def : Pat<(store (i64 (X86WrapperRIP tjumptable:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tjumptable:$src)>,
- Requires<[SmallCode, IsStatic]>;
-def : Pat<(store (i64 (X86WrapperRIP tglobaladdr:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
- Requires<[SmallCode, IsStatic]>;
-def : Pat<(store (i64 (X86WrapperRIP texternalsym:$src)), addr:$dst),
- (MOV64mi32 addr:$dst, texternalsym:$src)>,
- Requires<[SmallCode, IsStatic]>;
-
+ Requires<[NearData, IsStatic]>;
// Calls
// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
- (CALL64pcrel32 tglobaladdr:$dst)>;
+ (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
def : Pat<(X86call (i64 texternalsym:$dst)),
- (CALL64pcrel32 texternalsym:$dst)>;
-
-def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
- (CALL64pcrel32 tglobaladdr:$dst)>;
-def : Pat<(X86tailcall (i64 texternalsym:$dst)),
- (CALL64pcrel32 texternalsym:$dst)>;
-
-def : Pat<(X86tailcall GR64:$dst),
- (CALL64r GR64:$dst)>;
+ (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
+def : Pat<(X86call (i64 tglobaladdr:$dst)),
+ (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
+def : Pat<(X86call (i64 texternalsym:$dst)),
+ (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
// tailcall stuff
-def : Pat<(X86tailcall GR32:$dst),
- (TAILCALL)>;
-def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
- (TAILCALL)>;
-def : Pat<(X86tailcall (i64 texternalsym:$dst)),
- (TAILCALL)>;
-
def : Pat<(X86tcret GR64:$dst, imm:$off),
(TCRETURNri64 GR64:$dst, imm:$off)>;
@@ -1540,30 +1719,15 @@ def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i32 addr:$src),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV32rm addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
x86_subreg_32bit)>;
-def : Pat<(extloadi16i1 addr:$src),
- (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
- x86_subreg_8bit)>,
- Requires<[In64BitMode]>;
-def : Pat<(extloadi16i8 addr:$src),
- (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
- x86_subreg_8bit)>,
- Requires<[In64BitMode]>;
-
-// anyext
-def : Pat<(i64 (anyext GR8:$src)),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>;
-def : Pat<(i64 (anyext GR16:$src)),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
-def : Pat<(i64 (anyext GR32:$src)),
- (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, x86_subreg_32bit)>;
-def : Pat<(i16 (anyext GR8:$src)),
- (INSERT_SUBREG (i16 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
- Requires<[In64BitMode]>;
-def : Pat<(i32 (anyext GR8:$src)),
- (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
- Requires<[In64BitMode]>;
+
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
+def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
+def : Pat<(i64 (anyext GR32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, x86_subreg_32bit)>;
//===----------------------------------------------------------------------===//
// Some peepholes
@@ -1661,6 +1825,11 @@ def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
(EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
x86_subreg_8bit_hi))>,
Requires<[In64BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
+ x86_subreg_8bit_hi))>,
+ Requires<[In64BitMode]>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
(SUBREG_TO_REG
(i64 0),
@@ -1668,6 +1837,13 @@ def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
(EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
x86_subreg_8bit_hi)),
x86_subreg_32bit)>;
+def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32_NOREXrr8
+ (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
+ x86_subreg_8bit_hi)),
+ x86_subreg_32bit)>;
// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
@@ -1906,6 +2082,102 @@ def : Pat<(parallel (store (i64 (X86dec_flag (loadi64 addr:$dst))), addr:$dst),
(implicit EFLAGS)),
(DEC64m addr:$dst)>;
+// Register-Register Logical Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR64:$src1, GR64:$src2),
+ (implicit EFLAGS)),
+ (OR64rr GR64:$src1, GR64:$src2)>;
+
+// Register-Integer Logical Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR64:$src1, i64immSExt8:$src2),
+ (implicit EFLAGS)),
+ (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(parallel (X86or_flag GR64:$src1, i64immSExt32:$src2),
+ (implicit EFLAGS)),
+ (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Register-Memory Logical Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR64:$src1, (loadi64 addr:$src2)),
+ (implicit EFLAGS)),
+ (OR64rm GR64:$src1, addr:$src2)>;
+
+// Memory-Register Logical Or with EFLAGS result
+def : Pat<(parallel (store (X86or_flag (loadi64 addr:$dst), GR64:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR64mr addr:$dst, GR64:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi64 addr:$dst), i64immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR64mi8 addr:$dst, i64immSExt8:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi64 addr:$dst), i64immSExt32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR64mi32 addr:$dst, i64immSExt32:$src2)>;
+
+// Register-Register Logical XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR64:$src1, GR64:$src2),
+ (implicit EFLAGS)),
+ (XOR64rr GR64:$src1, GR64:$src2)>;
+
+// Register-Integer Logical XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR64:$src1, i64immSExt8:$src2),
+ (implicit EFLAGS)),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(parallel (X86xor_flag GR64:$src1, i64immSExt32:$src2),
+ (implicit EFLAGS)),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Register-Memory Logical XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR64:$src1, (loadi64 addr:$src2)),
+ (implicit EFLAGS)),
+ (XOR64rm GR64:$src1, addr:$src2)>;
+
+// Memory-Register Logical XOr with EFLAGS result
+def : Pat<(parallel (store (X86xor_flag (loadi64 addr:$dst), GR64:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR64mr addr:$dst, GR64:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi64 addr:$dst), i64immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR64mi8 addr:$dst, i64immSExt8:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi64 addr:$dst), i64immSExt32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR64mi32 addr:$dst, i64immSExt32:$src2)>;
+
+// Register-Register Logical And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR64:$src1, GR64:$src2),
+ (implicit EFLAGS)),
+ (AND64rr GR64:$src1, GR64:$src2)>;
+
+// Register-Integer Logical And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR64:$src1, i64immSExt8:$src2),
+ (implicit EFLAGS)),
+ (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(parallel (X86and_flag GR64:$src1, i64immSExt32:$src2),
+ (implicit EFLAGS)),
+ (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Register-Memory Logical And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR64:$src1, (loadi64 addr:$src2)),
+ (implicit EFLAGS)),
+ (AND64rm GR64:$src1, addr:$src2)>;
+
+// Memory-Register Logical And with EFLAGS result
+def : Pat<(parallel (store (X86and_flag (loadi64 addr:$dst), GR64:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND64mr addr:$dst, GR64:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi64 addr:$dst), i64immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND64mi8 addr:$dst, i64immSExt8:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi64 addr:$dst), i64immSExt32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND64mi32 addr:$dst, i64immSExt32:$src2)>;
+
//===----------------------------------------------------------------------===//
// X86-64 SSE Instructions
//===----------------------------------------------------------------------===//
@@ -1977,3 +2249,15 @@ let isTwoAddress = 1 in {
}
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">;
+
+// -disable-16bit support.
+def : Pat<(truncstorei16 (i64 imm:$src), addr:$dst),
+ (MOV16mi addr:$dst, imm:$src)>;
+def : Pat<(truncstorei16 GR64:$src, addr:$dst),
+ (MOV16mr addr:$dst, (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit))>;
+def : Pat<(i64 (sextloadi16 addr:$dst)),
+ (MOVSX64rm16 addr:$dst)>;
+def : Pat<(i64 (zextloadi16 addr:$dst)),
+ (MOVZX64rm16 addr:$dst)>;
+def : Pat<(i64 (extloadi16 addr:$dst)),
+ (MOVZX64rm16 addr:$dst)>;
diff --git a/lib/Target/X86/X86InstrBuilder.h b/lib/Target/X86/X86InstrBuilder.h
index 6359542..c475b56 100644
--- a/lib/Target/X86/X86InstrBuilder.h
+++ b/lib/Target/X86/X86InstrBuilder.h
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
namespace llvm {
@@ -47,7 +48,7 @@ struct X86AddressMode {
unsigned Scale;
unsigned IndexReg;
- unsigned Disp;
+ int Disp;
GlobalValue *GV;
unsigned GVOpFlags;
@@ -61,20 +62,20 @@ struct X86AddressMode {
/// current instruction -- that is, a dereference of an address in a register,
/// with no scale, index or displacement. An example is: DWORD PTR [EAX].
///
-inline const MachineInstrBuilder &addDirectMem(const MachineInstrBuilder &MIB,
- unsigned Reg) {
+static inline const MachineInstrBuilder &
+addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg) {
// Because memory references are always represented with four
// values, this adds: Reg, [1, NoReg, 0] to the instruction.
return MIB.addReg(Reg).addImm(1).addReg(0).addImm(0);
}
-inline const MachineInstrBuilder &addLeaOffset(const MachineInstrBuilder &MIB,
- int Offset) {
+static inline const MachineInstrBuilder &
+addLeaOffset(const MachineInstrBuilder &MIB, int Offset) {
return MIB.addImm(1).addReg(0).addImm(Offset);
}
-inline const MachineInstrBuilder &addOffset(const MachineInstrBuilder &MIB,
- int Offset) {
+static inline const MachineInstrBuilder &
+addOffset(const MachineInstrBuilder &MIB, int Offset) {
return addLeaOffset(MIB, Offset).addReg(0);
}
@@ -82,29 +83,29 @@ inline const MachineInstrBuilder &addOffset(const MachineInstrBuilder &MIB,
/// [Reg + Offset], i.e., one with no scale or index, but with a
/// displacement. An example is: DWORD PTR [EAX + 4].
///
-inline const MachineInstrBuilder &addRegOffset(const MachineInstrBuilder &MIB,
- unsigned Reg, bool isKill,
- int Offset) {
+static inline const MachineInstrBuilder &
+addRegOffset(const MachineInstrBuilder &MIB,
+ unsigned Reg, bool isKill, int Offset) {
return addOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset);
}
-inline const MachineInstrBuilder &addLeaRegOffset(const MachineInstrBuilder &MIB,
- unsigned Reg, bool isKill,
- int Offset) {
+static inline const MachineInstrBuilder &
+addLeaRegOffset(const MachineInstrBuilder &MIB,
+ unsigned Reg, bool isKill, int Offset) {
return addLeaOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset);
}
/// addRegReg - This function is used to add a memory reference of the form:
/// [Reg + Reg].
-inline const MachineInstrBuilder &addRegReg(const MachineInstrBuilder &MIB,
+static inline const MachineInstrBuilder &addRegReg(const MachineInstrBuilder &MIB,
unsigned Reg1, bool isKill1,
unsigned Reg2, bool isKill2) {
return MIB.addReg(Reg1, getKillRegState(isKill1)).addImm(1)
.addReg(Reg2, getKillRegState(isKill2)).addImm(0);
}
-inline const MachineInstrBuilder &addLeaAddress(const MachineInstrBuilder &MIB,
- const X86AddressMode &AM) {
+static inline const MachineInstrBuilder &
+addLeaAddress(const MachineInstrBuilder &MIB, const X86AddressMode &AM) {
assert (AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8);
if (AM.BaseType == X86AddressMode::RegBase)
@@ -120,8 +121,9 @@ inline const MachineInstrBuilder &addLeaAddress(const MachineInstrBuilder &MIB,
return MIB.addImm(AM.Disp);
}
-inline const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
- const X86AddressMode &AM) {
+static inline const MachineInstrBuilder &
+addFullAddress(const MachineInstrBuilder &MIB,
+ const X86AddressMode &AM) {
return addLeaAddress(MIB, AM).addReg(0);
}
@@ -130,7 +132,7 @@ inline const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
/// reference has base register as the FrameIndex offset until it is resolved.
/// This allows a constant offset to be specified as well...
///
-inline const MachineInstrBuilder &
+static inline const MachineInstrBuilder &
addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
MachineInstr *MI = MIB;
MachineFunction &MF = *MI->getParent()->getParent();
@@ -141,11 +143,11 @@ addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
Flags |= MachineMemOperand::MOLoad;
if (TID.mayStore())
Flags |= MachineMemOperand::MOStore;
- MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FI),
- Flags,
- MFI.getObjectOffset(FI) + Offset,
- MFI.getObjectSize(FI),
- MFI.getObjectAlignment(FI));
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
+ Flags, Offset,
+ MFI.getObjectSize(FI),
+ MFI.getObjectAlignment(FI));
return addOffset(MIB.addFrameIndex(FI), Offset)
.addMemOperand(MMO);
}
@@ -157,7 +159,7 @@ addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
/// the GlobalBaseReg parameter can be used to make this a
/// GlobalBaseReg-relative reference.
///
-inline const MachineInstrBuilder &
+static inline const MachineInstrBuilder &
addConstantPoolReference(const MachineInstrBuilder &MIB, unsigned CPI,
unsigned GlobalBaseReg, unsigned char OpFlags) {
//FIXME: factor this
diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td
index bc7def4..7e37373 100644
--- a/lib/Target/X86/X86InstrFPStack.td
+++ b/lib/Target/X86/X86InstrFPStack.td
@@ -303,6 +303,31 @@ def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
}
def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
+// Versions of FP instructions that take a single memory operand. Added for the
+// disassembler; remove as they are included with patterns elsewhere.
+def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom\t$src">;
+def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp\t$src">;
+
+def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
+def FSTENVm : FPI<0xD9, MRM6m, (outs f32mem:$dst), (ins), "fstenv\t$dst">;
+
+def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
+def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
+
+def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom\t$src">;
+def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp\t$src">;
+
+def FISTTP32m: FPI<0xDD, MRM1m, (outs i32mem:$dst), (ins), "fisttp{l}\t$dst">;
+def FRSTORm : FPI<0xDD, MRM4m, (outs f32mem:$dst), (ins), "frstor\t$dst">;
+def FSAVEm : FPI<0xDD, MRM6m, (outs f32mem:$dst), (ins), "fsave\t$dst">;
+def FSTSWm : FPI<0xDD, MRM7m, (outs f32mem:$dst), (ins), "fstsw\t$dst">;
+
+def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{w}\t$src">;
+def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{w}\t$src">;
+
+def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f32mem:$src), "fbld\t$src">;
+def FBSTPm : FPI<0xDF, MRM6m, (outs f32mem:$dst), (ins), "fbstp\t$dst">;
+
// Floating point cmovs.
multiclass FPCMov<PatLeaf cc> {
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
diff --git a/lib/Target/X86/X86InstrFormats.td b/lib/Target/X86/X86InstrFormats.td
index eeed5bd..abdb313 100644
--- a/lib/Target/X86/X86InstrFormats.td
+++ b/lib/Target/X86/X86InstrFormats.td
@@ -79,6 +79,7 @@ class XD { bits<4> Prefix = 11; }
class XS { bits<4> Prefix = 12; }
class T8 { bits<4> Prefix = 13; }
class TA { bits<4> Prefix = 14; }
+class TF { bits<4> Prefix = 15; }
class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
string AsmStr>
@@ -142,6 +143,24 @@ class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern>
let Pattern = pattern;
}
+// Templates for instructions that use a 16- or 32-bit segmented address as
+// their only operand: lcall (FAR CALL) and ljmp (FAR JMP)
+//
+// Iseg16 - 16-bit segment selector, 16-bit offset
+// Iseg32 - 16-bit segment selector, 32-bit offset
+
+class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern> : X86Inst<o, f, NoImm, outs, ins, asm> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
+class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
+ list<dag> pattern> : X86Inst<o, f, NoImm, outs, ins, asm> {
+ let Pattern = pattern;
+ let CodeSize = 3;
+}
+
// SSE1 Instruction Templates:
//
// SSI - SSE1 instructions with XS prefix.
@@ -229,6 +248,16 @@ class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern>
: I<o, F, outs, ins, asm, pattern>, T8, Requires<[HasSSE42]>;
+// SS42FI - SSE 4.2 instructions with TF prefix.
+class SS42FI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern>
+ : I<o, F, outs, ins, asm, pattern>, TF, Requires<[HasSSE42]>;
+
+// SS42AI = SSE 4.2 instructions with TA prefix
+class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm,
+ list<dag> pattern>
+ : I<o, F, outs, ins, asm, pattern>, TA, Requires<[HasSSE42]>;
+
// X86-64 Instruction templates...
//
@@ -282,4 +311,3 @@ class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> patter
: Ii8<o, F, outs, ins, asm, pattern>, XD, Requires<[HasMMX]>;
class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern>
: Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasMMX]>;
-
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index e5d84c5..e8a39d1 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -18,8 +18,8 @@
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
-#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -27,24 +27,24 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
using namespace llvm;
-namespace {
- cl::opt<bool>
- NoFusing("disable-spill-fusing",
- cl::desc("Disable fusing of spill code into instructions"));
- cl::opt<bool>
- PrintFailedFusing("print-failed-fuse-candidates",
- cl::desc("Print instructions that the allocator wants to"
- " fuse, but the X86 backend currently can't"),
- cl::Hidden);
- cl::opt<bool>
- ReMatPICStubLoad("remat-pic-stub-load",
- cl::desc("Re-materialize load from stub in PIC mode"),
- cl::init(false), cl::Hidden);
-}
+static cl::opt<bool>
+NoFusing("disable-spill-fusing",
+ cl::desc("Disable fusing of spill code into instructions"));
+static cl::opt<bool>
+PrintFailedFusing("print-failed-fuse-candidates",
+ cl::desc("Print instructions that the allocator wants to"
+ " fuse, but the X86 backend currently can't"),
+ cl::Hidden);
+static cl::opt<bool>
+ReMatPICStubLoad("remat-pic-stub-load",
+ cl::desc("Re-materialize load from stub in PIC mode"),
+ cl::init(false), cl::Hidden);
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
: TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
@@ -212,9 +212,10 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
unsigned RegOp = OpTbl2Addr[i][0];
unsigned MemOp = OpTbl2Addr[i][1];
if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
- MemOp)).second)
+ std::make_pair(MemOp,0))).second)
assert(false && "Duplicated entries?");
- unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
+ // Index 0, folded load and store, no alignment requirement.
+ unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp,
AuxInfo))).second)
@@ -222,93 +223,94 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
}
// If the third value is 1, then it's folding either a load or a store.
- static const unsigned OpTbl0[][3] = {
- { X86::BT16ri8, X86::BT16mi8, 1 },
- { X86::BT32ri8, X86::BT32mi8, 1 },
- { X86::BT64ri8, X86::BT64mi8, 1 },
- { X86::CALL32r, X86::CALL32m, 1 },
- { X86::CALL64r, X86::CALL64m, 1 },
- { X86::CMP16ri, X86::CMP16mi, 1 },
- { X86::CMP16ri8, X86::CMP16mi8, 1 },
- { X86::CMP16rr, X86::CMP16mr, 1 },
- { X86::CMP32ri, X86::CMP32mi, 1 },
- { X86::CMP32ri8, X86::CMP32mi8, 1 },
- { X86::CMP32rr, X86::CMP32mr, 1 },
- { X86::CMP64ri32, X86::CMP64mi32, 1 },
- { X86::CMP64ri8, X86::CMP64mi8, 1 },
- { X86::CMP64rr, X86::CMP64mr, 1 },
- { X86::CMP8ri, X86::CMP8mi, 1 },
- { X86::CMP8rr, X86::CMP8mr, 1 },
- { X86::DIV16r, X86::DIV16m, 1 },
- { X86::DIV32r, X86::DIV32m, 1 },
- { X86::DIV64r, X86::DIV64m, 1 },
- { X86::DIV8r, X86::DIV8m, 1 },
- { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
- { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
- { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
- { X86::IDIV16r, X86::IDIV16m, 1 },
- { X86::IDIV32r, X86::IDIV32m, 1 },
- { X86::IDIV64r, X86::IDIV64m, 1 },
- { X86::IDIV8r, X86::IDIV8m, 1 },
- { X86::IMUL16r, X86::IMUL16m, 1 },
- { X86::IMUL32r, X86::IMUL32m, 1 },
- { X86::IMUL64r, X86::IMUL64m, 1 },
- { X86::IMUL8r, X86::IMUL8m, 1 },
- { X86::JMP32r, X86::JMP32m, 1 },
- { X86::JMP64r, X86::JMP64m, 1 },
- { X86::MOV16ri, X86::MOV16mi, 0 },
- { X86::MOV16rr, X86::MOV16mr, 0 },
- { X86::MOV32ri, X86::MOV32mi, 0 },
- { X86::MOV32rr, X86::MOV32mr, 0 },
- { X86::MOV64ri32, X86::MOV64mi32, 0 },
- { X86::MOV64rr, X86::MOV64mr, 0 },
- { X86::MOV8ri, X86::MOV8mi, 0 },
- { X86::MOV8rr, X86::MOV8mr, 0 },
- { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
- { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
- { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
- { X86::MOVDQArr, X86::MOVDQAmr, 0 },
- { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
- { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
- { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
- { X86::MOVSDrr, X86::MOVSDmr, 0 },
- { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
- { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
- { X86::MOVSSrr, X86::MOVSSmr, 0 },
- { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
- { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
- { X86::MUL16r, X86::MUL16m, 1 },
- { X86::MUL32r, X86::MUL32m, 1 },
- { X86::MUL64r, X86::MUL64m, 1 },
- { X86::MUL8r, X86::MUL8m, 1 },
- { X86::SETAEr, X86::SETAEm, 0 },
- { X86::SETAr, X86::SETAm, 0 },
- { X86::SETBEr, X86::SETBEm, 0 },
- { X86::SETBr, X86::SETBm, 0 },
- { X86::SETEr, X86::SETEm, 0 },
- { X86::SETGEr, X86::SETGEm, 0 },
- { X86::SETGr, X86::SETGm, 0 },
- { X86::SETLEr, X86::SETLEm, 0 },
- { X86::SETLr, X86::SETLm, 0 },
- { X86::SETNEr, X86::SETNEm, 0 },
- { X86::SETNOr, X86::SETNOm, 0 },
- { X86::SETNPr, X86::SETNPm, 0 },
- { X86::SETNSr, X86::SETNSm, 0 },
- { X86::SETOr, X86::SETOm, 0 },
- { X86::SETPr, X86::SETPm, 0 },
- { X86::SETSr, X86::SETSm, 0 },
- { X86::TAILJMPr, X86::TAILJMPm, 1 },
- { X86::TEST16ri, X86::TEST16mi, 1 },
- { X86::TEST32ri, X86::TEST32mi, 1 },
- { X86::TEST64ri32, X86::TEST64mi32, 1 },
- { X86::TEST8ri, X86::TEST8mi, 1 }
+ static const unsigned OpTbl0[][4] = {
+ { X86::BT16ri8, X86::BT16mi8, 1, 0 },
+ { X86::BT32ri8, X86::BT32mi8, 1, 0 },
+ { X86::BT64ri8, X86::BT64mi8, 1, 0 },
+ { X86::CALL32r, X86::CALL32m, 1, 0 },
+ { X86::CALL64r, X86::CALL64m, 1, 0 },
+ { X86::CMP16ri, X86::CMP16mi, 1, 0 },
+ { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
+ { X86::CMP16rr, X86::CMP16mr, 1, 0 },
+ { X86::CMP32ri, X86::CMP32mi, 1, 0 },
+ { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
+ { X86::CMP32rr, X86::CMP32mr, 1, 0 },
+ { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
+ { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
+ { X86::CMP64rr, X86::CMP64mr, 1, 0 },
+ { X86::CMP8ri, X86::CMP8mi, 1, 0 },
+ { X86::CMP8rr, X86::CMP8mr, 1, 0 },
+ { X86::DIV16r, X86::DIV16m, 1, 0 },
+ { X86::DIV32r, X86::DIV32m, 1, 0 },
+ { X86::DIV64r, X86::DIV64m, 1, 0 },
+ { X86::DIV8r, X86::DIV8m, 1, 0 },
+ { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
+ { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
+ { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
+ { X86::IDIV16r, X86::IDIV16m, 1, 0 },
+ { X86::IDIV32r, X86::IDIV32m, 1, 0 },
+ { X86::IDIV64r, X86::IDIV64m, 1, 0 },
+ { X86::IDIV8r, X86::IDIV8m, 1, 0 },
+ { X86::IMUL16r, X86::IMUL16m, 1, 0 },
+ { X86::IMUL32r, X86::IMUL32m, 1, 0 },
+ { X86::IMUL64r, X86::IMUL64m, 1, 0 },
+ { X86::IMUL8r, X86::IMUL8m, 1, 0 },
+ { X86::JMP32r, X86::JMP32m, 1, 0 },
+ { X86::JMP64r, X86::JMP64m, 1, 0 },
+ { X86::MOV16ri, X86::MOV16mi, 0, 0 },
+ { X86::MOV16rr, X86::MOV16mr, 0, 0 },
+ { X86::MOV32ri, X86::MOV32mi, 0, 0 },
+ { X86::MOV32rr, X86::MOV32mr, 0, 0 },
+ { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
+ { X86::MOV64rr, X86::MOV64mr, 0, 0 },
+ { X86::MOV8ri, X86::MOV8mi, 0, 0 },
+ { X86::MOV8rr, X86::MOV8mr, 0, 0 },
+ { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
+ { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
+ { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
+ { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
+ { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
+ { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
+ { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
+ { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
+ { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
+ { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
+ { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
+ { X86::MUL16r, X86::MUL16m, 1, 0 },
+ { X86::MUL32r, X86::MUL32m, 1, 0 },
+ { X86::MUL64r, X86::MUL64m, 1, 0 },
+ { X86::MUL8r, X86::MUL8m, 1, 0 },
+ { X86::SETAEr, X86::SETAEm, 0, 0 },
+ { X86::SETAr, X86::SETAm, 0, 0 },
+ { X86::SETBEr, X86::SETBEm, 0, 0 },
+ { X86::SETBr, X86::SETBm, 0, 0 },
+ { X86::SETEr, X86::SETEm, 0, 0 },
+ { X86::SETGEr, X86::SETGEm, 0, 0 },
+ { X86::SETGr, X86::SETGm, 0, 0 },
+ { X86::SETLEr, X86::SETLEm, 0, 0 },
+ { X86::SETLr, X86::SETLm, 0, 0 },
+ { X86::SETNEr, X86::SETNEm, 0, 0 },
+ { X86::SETNOr, X86::SETNOm, 0, 0 },
+ { X86::SETNPr, X86::SETNPm, 0, 0 },
+ { X86::SETNSr, X86::SETNSm, 0, 0 },
+ { X86::SETOr, X86::SETOm, 0, 0 },
+ { X86::SETPr, X86::SETPm, 0, 0 },
+ { X86::SETSr, X86::SETSm, 0, 0 },
+ { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
+ { X86::TEST16ri, X86::TEST16mi, 1, 0 },
+ { X86::TEST32ri, X86::TEST32mi, 1, 0 },
+ { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
+ { X86::TEST8ri, X86::TEST8mi, 1, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
unsigned RegOp = OpTbl0[i][0];
unsigned MemOp = OpTbl0[i][1];
+ unsigned Align = OpTbl0[i][3];
if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
- MemOp)).second)
+ std::make_pair(MemOp,Align))).second)
assert(false && "Duplicated entries?");
unsigned FoldedLoad = OpTbl0[i][2];
// Index 0, folded load or store.
@@ -319,338 +321,342 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
AmbEntries.push_back(MemOp);
}
- static const unsigned OpTbl1[][2] = {
- { X86::CMP16rr, X86::CMP16rm },
- { X86::CMP32rr, X86::CMP32rm },
- { X86::CMP64rr, X86::CMP64rm },
- { X86::CMP8rr, X86::CMP8rm },
- { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
- { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
- { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
- { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
- { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
- { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
- { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
- { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
- { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
- { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
- { X86::FsMOVAPDrr, X86::MOVSDrm },
- { X86::FsMOVAPSrr, X86::MOVSSrm },
- { X86::IMUL16rri, X86::IMUL16rmi },
- { X86::IMUL16rri8, X86::IMUL16rmi8 },
- { X86::IMUL32rri, X86::IMUL32rmi },
- { X86::IMUL32rri8, X86::IMUL32rmi8 },
- { X86::IMUL64rri32, X86::IMUL64rmi32 },
- { X86::IMUL64rri8, X86::IMUL64rmi8 },
- { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
- { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
- { X86::Int_COMISDrr, X86::Int_COMISDrm },
- { X86::Int_COMISSrr, X86::Int_COMISSrm },
- { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
- { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
- { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
- { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
- { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
- { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
- { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
- { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
- { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
- { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
- { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
- { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
- { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
- { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
- { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
- { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
- { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
- { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
- { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
- { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
- { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
- { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
- { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
- { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
- { X86::MOV16rr, X86::MOV16rm },
- { X86::MOV32rr, X86::MOV32rm },
- { X86::MOV64rr, X86::MOV64rm },
- { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
- { X86::MOV64toSDrr, X86::MOV64toSDrm },
- { X86::MOV8rr, X86::MOV8rm },
- { X86::MOVAPDrr, X86::MOVAPDrm },
- { X86::MOVAPSrr, X86::MOVAPSrm },
- { X86::MOVDDUPrr, X86::MOVDDUPrm },
- { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
- { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
- { X86::MOVDQArr, X86::MOVDQArm },
- { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
- { X86::MOVSDrr, X86::MOVSDrm },
- { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
- { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
- { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
- { X86::MOVSSrr, X86::MOVSSrm },
- { X86::MOVSX16rr8, X86::MOVSX16rm8 },
- { X86::MOVSX32rr16, X86::MOVSX32rm16 },
- { X86::MOVSX32rr8, X86::MOVSX32rm8 },
- { X86::MOVSX64rr16, X86::MOVSX64rm16 },
- { X86::MOVSX64rr32, X86::MOVSX64rm32 },
- { X86::MOVSX64rr8, X86::MOVSX64rm8 },
- { X86::MOVUPDrr, X86::MOVUPDrm },
- { X86::MOVUPSrr, X86::MOVUPSrm },
- { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
- { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
- { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
- { X86::MOVZX16rr8, X86::MOVZX16rm8 },
- { X86::MOVZX32rr16, X86::MOVZX32rm16 },
- { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
- { X86::MOVZX32rr8, X86::MOVZX32rm8 },
- { X86::MOVZX64rr16, X86::MOVZX64rm16 },
- { X86::MOVZX64rr32, X86::MOVZX64rm32 },
- { X86::MOVZX64rr8, X86::MOVZX64rm8 },
- { X86::PSHUFDri, X86::PSHUFDmi },
- { X86::PSHUFHWri, X86::PSHUFHWmi },
- { X86::PSHUFLWri, X86::PSHUFLWmi },
- { X86::RCPPSr, X86::RCPPSm },
- { X86::RCPPSr_Int, X86::RCPPSm_Int },
- { X86::RSQRTPSr, X86::RSQRTPSm },
- { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
- { X86::RSQRTSSr, X86::RSQRTSSm },
- { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
- { X86::SQRTPDr, X86::SQRTPDm },
- { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
- { X86::SQRTPSr, X86::SQRTPSm },
- { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
- { X86::SQRTSDr, X86::SQRTSDm },
- { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
- { X86::SQRTSSr, X86::SQRTSSm },
- { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
- { X86::TEST16rr, X86::TEST16rm },
- { X86::TEST32rr, X86::TEST32rm },
- { X86::TEST64rr, X86::TEST64rm },
- { X86::TEST8rr, X86::TEST8rm },
+ static const unsigned OpTbl1[][3] = {
+ { X86::CMP16rr, X86::CMP16rm, 0 },
+ { X86::CMP32rr, X86::CMP32rm, 0 },
+ { X86::CMP64rr, X86::CMP64rm, 0 },
+ { X86::CMP8rr, X86::CMP8rm, 0 },
+ { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
+ { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
+ { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
+ { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
+ { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
+ { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
+ { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
+ { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
+ { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
+ { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
+ { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
+ { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
+ { X86::IMUL16rri, X86::IMUL16rmi, 0 },
+ { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
+ { X86::IMUL32rri, X86::IMUL32rmi, 0 },
+ { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
+ { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
+ { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
+ { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
+ { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
+ { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
+ { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
+ { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
+ { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
+ { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
+ { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
+ { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
+ { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
+ { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
+ { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
+ { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
+ { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
+ { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
+ { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
+ { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
+ { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
+ { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
+ { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
+ { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
+ { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
+ { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
+ { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
+ { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
+ { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
+ { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
+ { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
+ { X86::MOV16rr, X86::MOV16rm, 0 },
+ { X86::MOV32rr, X86::MOV32rm, 0 },
+ { X86::MOV64rr, X86::MOV64rm, 0 },
+ { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
+ { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
+ { X86::MOV8rr, X86::MOV8rm, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
+ { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
+ { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
+ { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
+ { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
+ { X86::MOVDQArr, X86::MOVDQArm, 16 },
+ { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
+ { X86::MOVSDrr, X86::MOVSDrm, 0 },
+ { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
+ { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
+ { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
+ { X86::MOVSSrr, X86::MOVSSrm, 0 },
+ { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
+ { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
+ { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
+ { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
+ { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
+ { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
+ { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
+ { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
+ { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
+ { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
+ { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
+ { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
+ { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
+ { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
+ { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
+ { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
+ { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
+ { X86::PSHUFDri, X86::PSHUFDmi, 16 },
+ { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
+ { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
+ { X86::RCPPSr, X86::RCPPSm, 16 },
+ { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
+ { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
+ { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
+ { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
+ { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
+ { X86::SQRTPDr, X86::SQRTPDm, 16 },
+ { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
+ { X86::SQRTPSr, X86::SQRTPSm, 16 },
+ { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
+ { X86::SQRTSDr, X86::SQRTSDm, 0 },
+ { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
+ { X86::SQRTSSr, X86::SQRTSSm, 0 },
+ { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
+ { X86::TEST16rr, X86::TEST16rm, 0 },
+ { X86::TEST32rr, X86::TEST32rm, 0 },
+ { X86::TEST64rr, X86::TEST64rm, 0 },
+ { X86::TEST8rr, X86::TEST8rm, 0 },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
- { X86::UCOMISDrr, X86::UCOMISDrm },
- { X86::UCOMISSrr, X86::UCOMISSrm }
+ { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
+ { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
unsigned RegOp = OpTbl1[i][0];
unsigned MemOp = OpTbl1[i][1];
+ unsigned Align = OpTbl1[i][2];
if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
- MemOp)).second)
+ std::make_pair(MemOp,Align))).second)
assert(false && "Duplicated entries?");
- unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
+ // Index 1, folded load
+ unsigned AuxInfo = 1 | (1 << 4);
if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))).second)
AmbEntries.push_back(MemOp);
}
- static const unsigned OpTbl2[][2] = {
- { X86::ADC32rr, X86::ADC32rm },
- { X86::ADC64rr, X86::ADC64rm },
- { X86::ADD16rr, X86::ADD16rm },
- { X86::ADD32rr, X86::ADD32rm },
- { X86::ADD64rr, X86::ADD64rm },
- { X86::ADD8rr, X86::ADD8rm },
- { X86::ADDPDrr, X86::ADDPDrm },
- { X86::ADDPSrr, X86::ADDPSrm },
- { X86::ADDSDrr, X86::ADDSDrm },
- { X86::ADDSSrr, X86::ADDSSrm },
- { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
- { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
- { X86::AND16rr, X86::AND16rm },
- { X86::AND32rr, X86::AND32rm },
- { X86::AND64rr, X86::AND64rm },
- { X86::AND8rr, X86::AND8rm },
- { X86::ANDNPDrr, X86::ANDNPDrm },
- { X86::ANDNPSrr, X86::ANDNPSrm },
- { X86::ANDPDrr, X86::ANDPDrm },
- { X86::ANDPSrr, X86::ANDPSrm },
- { X86::CMOVA16rr, X86::CMOVA16rm },
- { X86::CMOVA32rr, X86::CMOVA32rm },
- { X86::CMOVA64rr, X86::CMOVA64rm },
- { X86::CMOVAE16rr, X86::CMOVAE16rm },
- { X86::CMOVAE32rr, X86::CMOVAE32rm },
- { X86::CMOVAE64rr, X86::CMOVAE64rm },
- { X86::CMOVB16rr, X86::CMOVB16rm },
- { X86::CMOVB32rr, X86::CMOVB32rm },
- { X86::CMOVB64rr, X86::CMOVB64rm },
- { X86::CMOVBE16rr, X86::CMOVBE16rm },
- { X86::CMOVBE32rr, X86::CMOVBE32rm },
- { X86::CMOVBE64rr, X86::CMOVBE64rm },
- { X86::CMOVE16rr, X86::CMOVE16rm },
- { X86::CMOVE32rr, X86::CMOVE32rm },
- { X86::CMOVE64rr, X86::CMOVE64rm },
- { X86::CMOVG16rr, X86::CMOVG16rm },
- { X86::CMOVG32rr, X86::CMOVG32rm },
- { X86::CMOVG64rr, X86::CMOVG64rm },
- { X86::CMOVGE16rr, X86::CMOVGE16rm },
- { X86::CMOVGE32rr, X86::CMOVGE32rm },
- { X86::CMOVGE64rr, X86::CMOVGE64rm },
- { X86::CMOVL16rr, X86::CMOVL16rm },
- { X86::CMOVL32rr, X86::CMOVL32rm },
- { X86::CMOVL64rr, X86::CMOVL64rm },
- { X86::CMOVLE16rr, X86::CMOVLE16rm },
- { X86::CMOVLE32rr, X86::CMOVLE32rm },
- { X86::CMOVLE64rr, X86::CMOVLE64rm },
- { X86::CMOVNE16rr, X86::CMOVNE16rm },
- { X86::CMOVNE32rr, X86::CMOVNE32rm },
- { X86::CMOVNE64rr, X86::CMOVNE64rm },
- { X86::CMOVNO16rr, X86::CMOVNO16rm },
- { X86::CMOVNO32rr, X86::CMOVNO32rm },
- { X86::CMOVNO64rr, X86::CMOVNO64rm },
- { X86::CMOVNP16rr, X86::CMOVNP16rm },
- { X86::CMOVNP32rr, X86::CMOVNP32rm },
- { X86::CMOVNP64rr, X86::CMOVNP64rm },
- { X86::CMOVNS16rr, X86::CMOVNS16rm },
- { X86::CMOVNS32rr, X86::CMOVNS32rm },
- { X86::CMOVNS64rr, X86::CMOVNS64rm },
- { X86::CMOVO16rr, X86::CMOVO16rm },
- { X86::CMOVO32rr, X86::CMOVO32rm },
- { X86::CMOVO64rr, X86::CMOVO64rm },
- { X86::CMOVP16rr, X86::CMOVP16rm },
- { X86::CMOVP32rr, X86::CMOVP32rm },
- { X86::CMOVP64rr, X86::CMOVP64rm },
- { X86::CMOVS16rr, X86::CMOVS16rm },
- { X86::CMOVS32rr, X86::CMOVS32rm },
- { X86::CMOVS64rr, X86::CMOVS64rm },
- { X86::CMPPDrri, X86::CMPPDrmi },
- { X86::CMPPSrri, X86::CMPPSrmi },
- { X86::CMPSDrr, X86::CMPSDrm },
- { X86::CMPSSrr, X86::CMPSSrm },
- { X86::DIVPDrr, X86::DIVPDrm },
- { X86::DIVPSrr, X86::DIVPSrm },
- { X86::DIVSDrr, X86::DIVSDrm },
- { X86::DIVSSrr, X86::DIVSSrm },
- { X86::FsANDNPDrr, X86::FsANDNPDrm },
- { X86::FsANDNPSrr, X86::FsANDNPSrm },
- { X86::FsANDPDrr, X86::FsANDPDrm },
- { X86::FsANDPSrr, X86::FsANDPSrm },
- { X86::FsORPDrr, X86::FsORPDrm },
- { X86::FsORPSrr, X86::FsORPSrm },
- { X86::FsXORPDrr, X86::FsXORPDrm },
- { X86::FsXORPSrr, X86::FsXORPSrm },
- { X86::HADDPDrr, X86::HADDPDrm },
- { X86::HADDPSrr, X86::HADDPSrm },
- { X86::HSUBPDrr, X86::HSUBPDrm },
- { X86::HSUBPSrr, X86::HSUBPSrm },
- { X86::IMUL16rr, X86::IMUL16rm },
- { X86::IMUL32rr, X86::IMUL32rm },
- { X86::IMUL64rr, X86::IMUL64rm },
- { X86::MAXPDrr, X86::MAXPDrm },
- { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
- { X86::MAXPSrr, X86::MAXPSrm },
- { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
- { X86::MAXSDrr, X86::MAXSDrm },
- { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
- { X86::MAXSSrr, X86::MAXSSrm },
- { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
- { X86::MINPDrr, X86::MINPDrm },
- { X86::MINPDrr_Int, X86::MINPDrm_Int },
- { X86::MINPSrr, X86::MINPSrm },
- { X86::MINPSrr_Int, X86::MINPSrm_Int },
- { X86::MINSDrr, X86::MINSDrm },
- { X86::MINSDrr_Int, X86::MINSDrm_Int },
- { X86::MINSSrr, X86::MINSSrm },
- { X86::MINSSrr_Int, X86::MINSSrm_Int },
- { X86::MULPDrr, X86::MULPDrm },
- { X86::MULPSrr, X86::MULPSrm },
- { X86::MULSDrr, X86::MULSDrm },
- { X86::MULSSrr, X86::MULSSrm },
- { X86::OR16rr, X86::OR16rm },
- { X86::OR32rr, X86::OR32rm },
- { X86::OR64rr, X86::OR64rm },
- { X86::OR8rr, X86::OR8rm },
- { X86::ORPDrr, X86::ORPDrm },
- { X86::ORPSrr, X86::ORPSrm },
- { X86::PACKSSDWrr, X86::PACKSSDWrm },
- { X86::PACKSSWBrr, X86::PACKSSWBrm },
- { X86::PACKUSWBrr, X86::PACKUSWBrm },
- { X86::PADDBrr, X86::PADDBrm },
- { X86::PADDDrr, X86::PADDDrm },
- { X86::PADDQrr, X86::PADDQrm },
- { X86::PADDSBrr, X86::PADDSBrm },
- { X86::PADDSWrr, X86::PADDSWrm },
- { X86::PADDWrr, X86::PADDWrm },
- { X86::PANDNrr, X86::PANDNrm },
- { X86::PANDrr, X86::PANDrm },
- { X86::PAVGBrr, X86::PAVGBrm },
- { X86::PAVGWrr, X86::PAVGWrm },
- { X86::PCMPEQBrr, X86::PCMPEQBrm },
- { X86::PCMPEQDrr, X86::PCMPEQDrm },
- { X86::PCMPEQWrr, X86::PCMPEQWrm },
- { X86::PCMPGTBrr, X86::PCMPGTBrm },
- { X86::PCMPGTDrr, X86::PCMPGTDrm },
- { X86::PCMPGTWrr, X86::PCMPGTWrm },
- { X86::PINSRWrri, X86::PINSRWrmi },
- { X86::PMADDWDrr, X86::PMADDWDrm },
- { X86::PMAXSWrr, X86::PMAXSWrm },
- { X86::PMAXUBrr, X86::PMAXUBrm },
- { X86::PMINSWrr, X86::PMINSWrm },
- { X86::PMINUBrr, X86::PMINUBrm },
- { X86::PMULDQrr, X86::PMULDQrm },
- { X86::PMULHUWrr, X86::PMULHUWrm },
- { X86::PMULHWrr, X86::PMULHWrm },
- { X86::PMULLDrr, X86::PMULLDrm },
- { X86::PMULLDrr_int, X86::PMULLDrm_int },
- { X86::PMULLWrr, X86::PMULLWrm },
- { X86::PMULUDQrr, X86::PMULUDQrm },
- { X86::PORrr, X86::PORrm },
- { X86::PSADBWrr, X86::PSADBWrm },
- { X86::PSLLDrr, X86::PSLLDrm },
- { X86::PSLLQrr, X86::PSLLQrm },
- { X86::PSLLWrr, X86::PSLLWrm },
- { X86::PSRADrr, X86::PSRADrm },
- { X86::PSRAWrr, X86::PSRAWrm },
- { X86::PSRLDrr, X86::PSRLDrm },
- { X86::PSRLQrr, X86::PSRLQrm },
- { X86::PSRLWrr, X86::PSRLWrm },
- { X86::PSUBBrr, X86::PSUBBrm },
- { X86::PSUBDrr, X86::PSUBDrm },
- { X86::PSUBSBrr, X86::PSUBSBrm },
- { X86::PSUBSWrr, X86::PSUBSWrm },
- { X86::PSUBWrr, X86::PSUBWrm },
- { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
- { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
- { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
- { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
- { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
- { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
- { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
- { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
- { X86::PXORrr, X86::PXORrm },
- { X86::SBB32rr, X86::SBB32rm },
- { X86::SBB64rr, X86::SBB64rm },
- { X86::SHUFPDrri, X86::SHUFPDrmi },
- { X86::SHUFPSrri, X86::SHUFPSrmi },
- { X86::SUB16rr, X86::SUB16rm },
- { X86::SUB32rr, X86::SUB32rm },
- { X86::SUB64rr, X86::SUB64rm },
- { X86::SUB8rr, X86::SUB8rm },
- { X86::SUBPDrr, X86::SUBPDrm },
- { X86::SUBPSrr, X86::SUBPSrm },
- { X86::SUBSDrr, X86::SUBSDrm },
- { X86::SUBSSrr, X86::SUBSSrm },
+ static const unsigned OpTbl2[][3] = {
+ { X86::ADC32rr, X86::ADC32rm, 0 },
+ { X86::ADC64rr, X86::ADC64rm, 0 },
+ { X86::ADD16rr, X86::ADD16rm, 0 },
+ { X86::ADD32rr, X86::ADD32rm, 0 },
+ { X86::ADD64rr, X86::ADD64rm, 0 },
+ { X86::ADD8rr, X86::ADD8rm, 0 },
+ { X86::ADDPDrr, X86::ADDPDrm, 16 },
+ { X86::ADDPSrr, X86::ADDPSrm, 16 },
+ { X86::ADDSDrr, X86::ADDSDrm, 0 },
+ { X86::ADDSSrr, X86::ADDSSrm, 0 },
+ { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
+ { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
+ { X86::AND16rr, X86::AND16rm, 0 },
+ { X86::AND32rr, X86::AND32rm, 0 },
+ { X86::AND64rr, X86::AND64rm, 0 },
+ { X86::AND8rr, X86::AND8rm, 0 },
+ { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
+ { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
+ { X86::ANDPDrr, X86::ANDPDrm, 16 },
+ { X86::ANDPSrr, X86::ANDPSrm, 16 },
+ { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
+ { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
+ { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
+ { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
+ { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
+ { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
+ { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
+ { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
+ { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
+ { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
+ { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
+ { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
+ { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
+ { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
+ { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
+ { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
+ { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
+ { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
+ { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
+ { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
+ { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
+ { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
+ { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
+ { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
+ { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
+ { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
+ { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
+ { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
+ { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
+ { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
+ { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
+ { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
+ { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
+ { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
+ { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
+ { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
+ { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
+ { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
+ { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
+ { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
+ { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
+ { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
+ { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
+ { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
+ { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
+ { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
+ { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
+ { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
+ { X86::CMPPDrri, X86::CMPPDrmi, 16 },
+ { X86::CMPPSrri, X86::CMPPSrmi, 16 },
+ { X86::CMPSDrr, X86::CMPSDrm, 0 },
+ { X86::CMPSSrr, X86::CMPSSrm, 0 },
+ { X86::DIVPDrr, X86::DIVPDrm, 16 },
+ { X86::DIVPSrr, X86::DIVPSrm, 16 },
+ { X86::DIVSDrr, X86::DIVSDrm, 0 },
+ { X86::DIVSSrr, X86::DIVSSrm, 0 },
+ { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
+ { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
+ { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
+ { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
+ { X86::FsORPDrr, X86::FsORPDrm, 16 },
+ { X86::FsORPSrr, X86::FsORPSrm, 16 },
+ { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
+ { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
+ { X86::HADDPDrr, X86::HADDPDrm, 16 },
+ { X86::HADDPSrr, X86::HADDPSrm, 16 },
+ { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
+ { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
+ { X86::IMUL16rr, X86::IMUL16rm, 0 },
+ { X86::IMUL32rr, X86::IMUL32rm, 0 },
+ { X86::IMUL64rr, X86::IMUL64rm, 0 },
+ { X86::MAXPDrr, X86::MAXPDrm, 16 },
+ { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
+ { X86::MAXPSrr, X86::MAXPSrm, 16 },
+ { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
+ { X86::MAXSDrr, X86::MAXSDrm, 0 },
+ { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
+ { X86::MAXSSrr, X86::MAXSSrm, 0 },
+ { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
+ { X86::MINPDrr, X86::MINPDrm, 16 },
+ { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
+ { X86::MINPSrr, X86::MINPSrm, 16 },
+ { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
+ { X86::MINSDrr, X86::MINSDrm, 0 },
+ { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
+ { X86::MINSSrr, X86::MINSSrm, 0 },
+ { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
+ { X86::MULPDrr, X86::MULPDrm, 16 },
+ { X86::MULPSrr, X86::MULPSrm, 16 },
+ { X86::MULSDrr, X86::MULSDrm, 0 },
+ { X86::MULSSrr, X86::MULSSrm, 0 },
+ { X86::OR16rr, X86::OR16rm, 0 },
+ { X86::OR32rr, X86::OR32rm, 0 },
+ { X86::OR64rr, X86::OR64rm, 0 },
+ { X86::OR8rr, X86::OR8rm, 0 },
+ { X86::ORPDrr, X86::ORPDrm, 16 },
+ { X86::ORPSrr, X86::ORPSrm, 16 },
+ { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
+ { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
+ { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
+ { X86::PADDBrr, X86::PADDBrm, 16 },
+ { X86::PADDDrr, X86::PADDDrm, 16 },
+ { X86::PADDQrr, X86::PADDQrm, 16 },
+ { X86::PADDSBrr, X86::PADDSBrm, 16 },
+ { X86::PADDSWrr, X86::PADDSWrm, 16 },
+ { X86::PADDWrr, X86::PADDWrm, 16 },
+ { X86::PANDNrr, X86::PANDNrm, 16 },
+ { X86::PANDrr, X86::PANDrm, 16 },
+ { X86::PAVGBrr, X86::PAVGBrm, 16 },
+ { X86::PAVGWrr, X86::PAVGWrm, 16 },
+ { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
+ { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
+ { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
+ { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
+ { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
+ { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
+ { X86::PINSRWrri, X86::PINSRWrmi, 16 },
+ { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
+ { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
+ { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
+ { X86::PMINSWrr, X86::PMINSWrm, 16 },
+ { X86::PMINUBrr, X86::PMINUBrm, 16 },
+ { X86::PMULDQrr, X86::PMULDQrm, 16 },
+ { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
+ { X86::PMULHWrr, X86::PMULHWrm, 16 },
+ { X86::PMULLDrr, X86::PMULLDrm, 16 },
+ { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
+ { X86::PMULLWrr, X86::PMULLWrm, 16 },
+ { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
+ { X86::PORrr, X86::PORrm, 16 },
+ { X86::PSADBWrr, X86::PSADBWrm, 16 },
+ { X86::PSLLDrr, X86::PSLLDrm, 16 },
+ { X86::PSLLQrr, X86::PSLLQrm, 16 },
+ { X86::PSLLWrr, X86::PSLLWrm, 16 },
+ { X86::PSRADrr, X86::PSRADrm, 16 },
+ { X86::PSRAWrr, X86::PSRAWrm, 16 },
+ { X86::PSRLDrr, X86::PSRLDrm, 16 },
+ { X86::PSRLQrr, X86::PSRLQrm, 16 },
+ { X86::PSRLWrr, X86::PSRLWrm, 16 },
+ { X86::PSUBBrr, X86::PSUBBrm, 16 },
+ { X86::PSUBDrr, X86::PSUBDrm, 16 },
+ { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
+ { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
+ { X86::PSUBWrr, X86::PSUBWrm, 16 },
+ { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
+ { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
+ { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
+ { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
+ { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
+ { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
+ { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
+ { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
+ { X86::PXORrr, X86::PXORrm, 16 },
+ { X86::SBB32rr, X86::SBB32rm, 0 },
+ { X86::SBB64rr, X86::SBB64rm, 0 },
+ { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
+ { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
+ { X86::SUB16rr, X86::SUB16rm, 0 },
+ { X86::SUB32rr, X86::SUB32rm, 0 },
+ { X86::SUB64rr, X86::SUB64rm, 0 },
+ { X86::SUB8rr, X86::SUB8rm, 0 },
+ { X86::SUBPDrr, X86::SUBPDrm, 16 },
+ { X86::SUBPSrr, X86::SUBPSrm, 16 },
+ { X86::SUBSDrr, X86::SUBSDrm, 0 },
+ { X86::SUBSSrr, X86::SUBSSrm, 0 },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
- { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
- { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
- { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
- { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
- { X86::XOR16rr, X86::XOR16rm },
- { X86::XOR32rr, X86::XOR32rm },
- { X86::XOR64rr, X86::XOR64rm },
- { X86::XOR8rr, X86::XOR8rm },
- { X86::XORPDrr, X86::XORPDrm },
- { X86::XORPSrr, X86::XORPSrm }
+ { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
+ { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
+ { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
+ { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
+ { X86::XOR16rr, X86::XOR16rm, 0 },
+ { X86::XOR32rr, X86::XOR32rm, 0 },
+ { X86::XOR64rr, X86::XOR64rm, 0 },
+ { X86::XOR8rr, X86::XOR8rm, 0 },
+ { X86::XORPDrr, X86::XORPDrm, 16 },
+ { X86::XORPSrr, X86::XORPSrm, 16 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
unsigned RegOp = OpTbl2[i][0];
unsigned MemOp = OpTbl2[i][1];
+ unsigned Align = OpTbl2[i][2];
if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
- MemOp)).second)
+ std::make_pair(MemOp,Align))).second)
assert(false && "Duplicated entries?");
- unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
+ // Index 2, folded load
+ unsigned AuxInfo = 2 | (1 << 4);
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))).second)
AmbEntries.push_back(MemOp);
@@ -760,7 +766,6 @@ unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
return 0;
}
-
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
/// X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
@@ -776,37 +781,9 @@ static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
return isPICBase;
}
-/// isGVStub - Return true if the GV requires an extra load to get the
-/// real address.
-static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
- return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
-}
-
-/// CanRematLoadWithDispOperand - Return true if a load with the specified
-/// operand is a candidate for remat: for this to be true we need to know that
-/// the load will always return the same value, even if moved.
-static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
- X86TargetMachine &TM) {
- // Loads from constant pool entries can be remat'd.
- if (MO.isCPI()) return true;
-
- // We can remat globals in some cases.
- if (MO.isGlobal()) {
- // If this is a load of a stub, not of the global, we can remat it. This
- // access will always return the address of the global.
- if (isGVStub(MO.getGlobal(), TM))
- return true;
-
- // If the global itself is constant, we can remat the load.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
- if (GV->isConstant())
- return true;
- }
- return false;
-}
-
bool
-X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
+X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
@@ -825,7 +802,7 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
if (MI->getOperand(1).isReg() &&
MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
- CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
+ MI->isInvariantLoad(AA)) {
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == 0 || BaseReg == X86::RIP)
return true;
@@ -876,7 +853,7 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
/// would clobber the EFLAGS condition register. Note the result may be
/// conservative. If it cannot definitely determine the safety after visiting
-/// two instructions it assumes it's not safe.
+/// a few instructions in each direction it assumes it's not safe.
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
// It's always safe to clobber EFLAGS at the end of a block.
@@ -884,11 +861,13 @@ static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
return true;
// For compile time consideration, if we are not able to determine the
- // safety after visiting 2 instructions, we will assume it's not safe.
- for (unsigned i = 0; i < 2; ++i) {
+ // safety after visiting 4 instructions in each direction, we will assume
+ // it's not safe.
+ MachineBasicBlock::iterator Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
bool SeenDef = false;
- for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
- MachineOperand &MO = I->getOperand(j);
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
if (!MO.isReg())
continue;
if (MO.getReg() == X86::EFLAGS) {
@@ -901,10 +880,33 @@ static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
if (SeenDef)
// This instruction defines EFLAGS, no need to look any further.
return true;
- ++I;
+ ++Iter;
// If we make it to the end of the block, it's safe to clobber EFLAGS.
- if (I == MBB.end())
+ if (Iter == MBB.end())
+ return true;
+ }
+
+ Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
+ // If we make it to the beginning of the block, it's safe to clobber
+ // EFLAGS iff EFLAGS is not live-in.
+ if (Iter == MBB.begin())
+ return !MBB.isLiveIn(X86::EFLAGS);
+
+ --Iter;
+ bool SawKill = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
+ if (MO.isDef()) return MO.isDead();
+ if (MO.isKill()) SawKill = true;
+ }
+ }
+
+ if (SawKill)
+ // This instruction kills EFLAGS and doesn't redefine it, so
+ // there's no need to look further.
return true;
}
@@ -914,14 +916,11 @@ static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
- unsigned DestReg,
+ unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig) const {
DebugLoc DL = DebugLoc::getUnknownLoc();
if (I != MBB.end()) DL = I->getDebugLoc();
- unsigned SubIdx = Orig->getOperand(0).isReg()
- ? Orig->getOperand(0).getSubReg() : 0;
- bool ChangeSubIdx = SubIdx != 0;
if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
DestReg = RI.getSubReg(DestReg, SubIdx);
SubIdx = 0;
@@ -929,76 +928,36 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// Re-materialize them as movri instructions to avoid side effects.
- bool Emitted = false;
- switch (Orig->getOpcode()) {
+ bool Clone = true;
+ unsigned Opc = Orig->getOpcode();
+ switch (Opc) {
default: break;
case X86::MOV8r0:
case X86::MOV16r0:
- case X86::MOV32r0:
- case X86::MOV64r0: {
+ case X86::MOV32r0: {
if (!isSafeToClobberEFLAGS(MBB, I)) {
- unsigned Opc = 0;
- switch (Orig->getOpcode()) {
+ switch (Opc) {
default: break;
case X86::MOV8r0: Opc = X86::MOV8ri; break;
case X86::MOV16r0: Opc = X86::MOV16ri; break;
case X86::MOV32r0: Opc = X86::MOV32ri; break;
- case X86::MOV64r0: Opc = X86::MOV64ri32; break;
}
- BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
- Emitted = true;
+ Clone = false;
}
break;
}
}
- if (!Emitted) {
+ if (Clone) {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
MI->getOperand(0).setReg(DestReg);
MBB.insert(I, MI);
+ } else {
+ BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
}
- if (ChangeSubIdx) {
- MachineInstr *NewMI = prior(I);
- NewMI->getOperand(0).setSubReg(SubIdx);
- }
-}
-
-/// isInvariantLoad - Return true if the specified instruction (which is marked
-/// mayLoad) is loading from a location whose value is invariant across the
-/// function. For example, loading a value from the constant pool or from
-/// from the argument area of a function if it does not change. This should
-/// only return true of *all* loads the instruction does are invariant (if it
-/// does multiple loads).
-bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
- // This code cares about loads from three cases: constant pool entries,
- // invariant argument slots, and global stubs. In order to handle these cases
- // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
- // operand and base our analysis on it. This is safe because the address of
- // none of these three cases is ever used as anything other than a load base
- // and X86 doesn't have any instructions that load from multiple places.
-
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- // Loads from constant pools are trivially invariant.
- if (MO.isCPI())
- return true;
-
- if (MO.isGlobal())
- return isGVStub(MO.getGlobal(), TM);
-
- // If this is a load from an invariant stack slot, the load is a constant.
- if (MO.isFI()) {
- const MachineFrameInfo &MFI =
- *MI->getParent()->getParent()->getFrameInfo();
- int Idx = MO.getIndex();
- return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
- }
- }
-
- // All other instances of these instructions are presumed to have other
- // issues.
- return false;
+ MachineInstr *NewMI = prior(I);
+ NewMI->getOperand(0).setSubReg(SubIdx);
}
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
@@ -1304,7 +1263,7 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
unsigned Opc;
unsigned Size;
switch (MI->getOpcode()) {
- default: assert(0 && "Unreachable!");
+ default: llvm_unreachable("Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
@@ -1459,7 +1418,7 @@ static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::JE;
case X86::COND_NE: return X86::JNE;
case X86::COND_L: return X86::JL;
@@ -1483,7 +1442,7 @@ unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
@@ -1699,14 +1658,26 @@ bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
/* Source and destination have the same register class. */;
else if (CommonRC->hasSuperClass(SrcRC))
CommonRC = SrcRC;
- else if (!DestRC->hasSubClass(SrcRC))
- CommonRC = 0;
+ else if (!DestRC->hasSubClass(SrcRC)) {
+ // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
+ // but we want to copy then as GR64. Similarly, for GR32_NOREX and
+ // GR32_NOSP, copy as GR32.
+ if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
+ DestRC->hasSuperClass(&X86::GR64RegClass))
+ CommonRC = &X86::GR64RegClass;
+ else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
+ DestRC->hasSuperClass(&X86::GR32RegClass))
+ CommonRC = &X86::GR32RegClass;
+ else
+ CommonRC = 0;
+ }
if (CommonRC) {
unsigned Opc;
- if (CommonRC == &X86::GR64RegClass) {
+ if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
Opc = X86::MOV64rr;
- } else if (CommonRC == &X86::GR32RegClass) {
+ } else if (CommonRC == &X86::GR32RegClass ||
+ CommonRC == &X86::GR32_NOSPRegClass) {
Opc = X86::MOV32rr;
} else if (CommonRC == &X86::GR16RegClass) {
Opc = X86::MOV16rr;
@@ -1731,7 +1702,8 @@ bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Opc = X86::MOV8rr_NOREX;
else
Opc = X86::MOV8rr;
- } else if (CommonRC == &X86::GR64_NOREXRegClass) {
+ } else if (CommonRC == &X86::GR64_NOREXRegClass ||
+ CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
Opc = X86::MOV64rr;
} else if (CommonRC == &X86::GR32_NOREXRegClass) {
Opc = X86::MOV32rr;
@@ -1759,16 +1731,17 @@ bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
return true;
}
-
+
// Moving EFLAGS to / from another register requires a push and a pop.
if (SrcRC == &X86::CCRRegClass) {
if (SrcReg != X86::EFLAGS)
return false;
- if (DestRC == &X86::GR64RegClass) {
+ if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
return true;
- } else if (DestRC == &X86::GR32RegClass) {
+ } else if (DestRC == &X86::GR32RegClass ||
+ DestRC == &X86::GR32_NOSPRegClass) {
BuildMI(MBB, MI, DL, get(X86::PUSHFD));
BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
return true;
@@ -1776,11 +1749,12 @@ bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
} else if (DestRC == &X86::CCRRegClass) {
if (DestReg != X86::EFLAGS)
return false;
- if (SrcRC == &X86::GR64RegClass) {
+ if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
BuildMI(MBB, MI, DL, get(X86::POPFQ));
return true;
- } else if (SrcRC == &X86::GR32RegClass) {
+ } else if (SrcRC == &X86::GR32RegClass ||
+ DestRC == &X86::GR32_NOSPRegClass) {
BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
BuildMI(MBB, MI, DL, get(X86::POPFD));
return true;
@@ -1838,9 +1812,9 @@ static unsigned getStoreRegOpcode(unsigned SrcReg,
bool isStackAligned,
TargetMachine &TM) {
unsigned Opc = 0;
- if (RC == &X86::GR64RegClass) {
+ if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Opc = X86::MOV64mr;
- } else if (RC == &X86::GR32RegClass) {
+ } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16mr;
@@ -1865,7 +1839,8 @@ static unsigned getStoreRegOpcode(unsigned SrcReg,
Opc = X86::MOV8mr_NOREX;
else
Opc = X86::MOV8mr;
- } else if (RC == &X86::GR64_NOREXRegClass) {
+ } else if (RC == &X86::GR64_NOREXRegClass ||
+ RC == &X86::GR64_NOREX_NOSPRegClass) {
Opc = X86::MOV64mr;
} else if (RC == &X86::GR32_NOREXRegClass) {
Opc = X86::MOV32mr;
@@ -1889,8 +1864,7 @@ static unsigned getStoreRegOpcode(unsigned SrcReg,
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64mr;
} else {
- assert(0 && "Unknown regclass");
- abort();
+ llvm_unreachable("Unknown regclass");
}
return Opc;
@@ -1914,6 +1888,8 @@ void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
@@ -1923,6 +1899,7 @@ void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
MIB.addReg(SrcReg, getKillRegState(isKill));
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
@@ -1931,9 +1908,9 @@ static unsigned getLoadRegOpcode(unsigned DestReg,
bool isStackAligned,
const TargetMachine &TM) {
unsigned Opc = 0;
- if (RC == &X86::GR64RegClass) {
+ if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Opc = X86::MOV64rm;
- } else if (RC == &X86::GR32RegClass) {
+ } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rm;
@@ -1958,7 +1935,8 @@ static unsigned getLoadRegOpcode(unsigned DestReg,
Opc = X86::MOV8rm_NOREX;
else
Opc = X86::MOV8rm;
- } else if (RC == &X86::GR64_NOREXRegClass) {
+ } else if (RC == &X86::GR64_NOREXRegClass ||
+ RC == &X86::GR64_NOREX_NOSPRegClass) {
Opc = X86::MOV64rm;
} else if (RC == &X86::GR32_NOREXRegClass) {
Opc = X86::MOV32rm;
@@ -1982,8 +1960,7 @@ static unsigned getLoadRegOpcode(unsigned DestReg,
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rm;
} else {
- assert(0 && "Unknown regclass");
- abort();
+ llvm_unreachable("Unknown regclass");
}
return Opc;
@@ -2005,6 +1982,8 @@ void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
@@ -2013,6 +1992,7 @@ void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
@@ -2026,9 +2006,11 @@ bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
if (MI != MBB.end()) DL = MI->getDebugLoc();
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
+ bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
unsigned SlotSize = is64Bit ? 8 : 4;
MachineFunction &MF = *MBB.getParent();
+ unsigned FPReg = RI.getFrameRegister(MF);
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned CalleeFrameSize = 0;
@@ -2038,10 +2020,12 @@ bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
- if (RegClass != &X86::VR128RegClass) {
+ if (Reg == FPReg)
+ // X86RegisterInfo::emitPrologue will handle spilling of frame register.
+ continue;
+ if (RegClass != &X86::VR128RegClass && !isWin64) {
CalleeFrameSize += SlotSize;
- BuildMI(MBB, MI, DL, get(Opc))
- .addReg(Reg, RegState::Kill);
+ BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
} else {
storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
}
@@ -2060,13 +2044,18 @@ bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
DebugLoc DL = DebugLoc::getUnknownLoc();
if (MI != MBB.end()) DL = MI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ unsigned FPReg = RI.getFrameRegister(MF);
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
-
+ bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
+ if (Reg == FPReg)
+ // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
+ continue;
const TargetRegisterClass *RegClass = CSI[i].getRegClass();
- if (RegClass != &X86::VR128RegClass) {
+ if (RegClass != &X86::VR128RegClass && !isWin64) {
BuildMI(MBB, MI, DL, get(Opc), Reg);
} else {
loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
@@ -2143,8 +2132,9 @@ static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
MachineInstr*
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI, unsigned i,
- const SmallVectorImpl<MachineOperand> &MOs) const{
- const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
+ const SmallVectorImpl<MachineOperand> &MOs,
+ unsigned Size, unsigned Align) const {
+ const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
bool isTwoAddrFold = false;
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
@@ -2165,8 +2155,6 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV32r0)
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
- else if (MI->getOpcode() == X86::MOV64r0)
- NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
else if (MI->getOpcode() == X86::MOV8r0)
NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
if (NewMI)
@@ -2182,60 +2170,82 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
- DenseMap<unsigned*, unsigned>::iterator I =
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
OpcodeTablePtr->find((unsigned*)MI->getOpcode());
if (I != OpcodeTablePtr->end()) {
+ unsigned Opcode = I->second.first;
+ unsigned MinAlign = I->second.second;
+ if (Align < MinAlign)
+ return NULL;
+ bool NarrowToMOV32rm = false;
+ if (Size) {
+ unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
+ if (Size < RCSize) {
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
+ return NULL;
+ // If this is a 64-bit load, but the spill slot is 32, then we can do
+ // a 32-bit load which is implicitly zero-extended. This likely is due
+ // to liveintervalanalysis remat'ing a load from stack slot.
+ if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
+ return NULL;
+ Opcode = X86::MOV32rm;
+ NarrowToMOV32rm = true;
+ }
+ }
+
if (isTwoAddrFold)
- NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
+ NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
else
- NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
+ NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
+
+ if (NarrowToMOV32rm) {
+ // If this is the special case where we use a MOV32rm to load a 32-bit
+ // value and zero-extend the top bits. Change the destination register
+ // to a 32-bit one.
+ unsigned DstReg = NewMI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
+ 4/*x86_subreg_32bit*/));
+ else
+ NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
+ }
return NewMI;
}
}
// No fusion
if (PrintFailedFusing)
- cerr << "We failed to fuse operand " << i << " in " << *MI;
+ errs() << "We failed to fuse operand " << i << " in " << *MI;
return NULL;
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops,
+ const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return NULL;
const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
- // FIXME: Move alignment requirement into tables?
- if (Alignment < 16) {
- switch (MI->getOpcode()) {
- default: break;
- // Not always safe to fold movsd into these instructions since their load
- // folding variants expects the address to be 16 byte aligned.
- case X86::FsANDNPDrr:
- case X86::FsANDNPSrr:
- case X86::FsANDPDrr:
- case X86::FsANDPSrr:
- case X86::FsORPDrr:
- case X86::FsORPSrr:
- case X86::FsXORPDrr:
- case X86::FsXORPSrr:
- return NULL;
- }
- }
-
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
+ unsigned RCSize = 0;
switch (MI->getOpcode()) {
default: return NULL;
- case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
- case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
- case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
- case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
}
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Size < RCSize)
+ return NULL;
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
@@ -2244,12 +2254,12 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
- return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
- const SmallVectorImpl<unsigned> &Ops,
+ const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// Check switch flag
if (NoFusing) return NULL;
@@ -2257,26 +2267,22 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
// Determine the alignment of the load.
unsigned Alignment = 0;
if (LoadMI->hasOneMemOperand())
- Alignment = LoadMI->memoperands_begin()->getAlignment();
-
- // FIXME: Move alignment requirement into tables?
- if (Alignment < 16) {
- switch (MI->getOpcode()) {
- default: break;
- // Not always safe to fold movsd into these instructions since their load
- // folding variants expects the address to be 16 byte aligned.
- case X86::FsANDNPDrr:
- case X86::FsANDNPSrr:
- case X86::FsANDPDrr:
- case X86::FsANDPSrr:
- case X86::FsORPDrr:
- case X86::FsORPSrr:
- case X86::FsXORPDrr:
- case X86::FsXORPSrr:
- return NULL;
+ Alignment = (*LoadMI->memoperands_begin())->getAlignment();
+ else
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ Alignment = 16;
+ break;
+ case X86::FsFLD0SD:
+ Alignment = 8;
+ break;
+ case X86::FsFLD0SS:
+ Alignment = 4;
+ break;
+ default:
+ llvm_unreachable("Don't know how to fold this instruction!");
}
- }
-
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
@@ -2293,28 +2299,40 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
return NULL;
SmallVector<MachineOperand,X86AddrNumOperands> MOs;
- if (LoadMI->getOpcode() == X86::V_SET0 ||
- LoadMI->getOpcode() == X86::V_SETALLONES) {
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0:
+ case X86::V_SETALLONES:
+ case X86::FsFLD0SD:
+ case X86::FsFLD0SS: {
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
- if (TM.getRelocationModel() == Reloc::PIC_ &&
- !TM.getSubtarget<X86Subtarget>().is64Bit())
- // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
- // This doesn't work for several reasons.
- // 1. GlobalBaseReg may have been spilled.
- // 2. It may not be live at MI.
- return false;
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ PICBase = X86::RIP;
+ else
+ // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
+ // This doesn't work for several reasons.
+ // 1. GlobalBaseReg may have been spilled.
+ // 2. It may not be live at MI.
+ return NULL;
+ }
- // Create a v4i32 constant-pool entry.
+ // Create a constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
- const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
- Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
- ConstantVector::getNullValue(Ty) :
- ConstantVector::getAllOnesValue(Ty);
- unsigned CPI = MCP.getConstantPoolIndex(C, 16);
+ const Type *Ty;
+ if (LoadMI->getOpcode() == X86::FsFLD0SS)
+ Ty = Type::getFloatTy(MF.getFunction()->getContext());
+ else if (LoadMI->getOpcode() == X86::FsFLD0SD)
+ Ty = Type::getDoubleTy(MF.getFunction()->getContext());
+ else
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
+ Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
+ Constant::getAllOnesValue(Ty) :
+ Constant::getNullValue(Ty);
+ unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
@@ -2322,13 +2340,17 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
MOs.push_back(MachineOperand::CreateReg(0, false));
- } else {
+ break;
+ }
+ default: {
// Folding a normal load. Just copy the load's address operands.
unsigned NumOps = LoadMI->getDesc().getNumOperands();
for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
MOs.push_back(LoadMI->getOperand(i));
+ break;
+ }
}
- return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
}
@@ -2360,15 +2382,14 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
- const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
+ const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
+ case X86::MOV8r0:
case X86::MOV16r0:
case X86::MOV32r0:
- case X86::MOV64r0:
- case X86::MOV8r0:
return true;
default: break;
}
@@ -2381,7 +2402,7 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
if (OpcodeTablePtr) {
// Find the Opcode to fuse
- DenseMap<unsigned*, unsigned>::iterator I =
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
OpcodeTablePtr->find((unsigned*)Opc);
if (I != OpcodeTablePtr->end())
return true;
@@ -2410,8 +2431,7 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
- const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
- ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
+ const TargetRegisterClass *RC = TOI.getRegClass(&RI);
SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
@@ -2430,7 +2450,11 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
// Emit the load instruction.
if (UnfoldLoad) {
- loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
@@ -2489,10 +2513,12 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
// Emit the store instruction.
if (UnfoldStore) {
- const TargetOperandInfo &DstTOI = TID.OpInfo[0];
- const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
- ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
- storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
+ const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
}
return true;
@@ -2513,9 +2539,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
const TargetInstrDesc &TID = get(Opc);
- const TargetOperandInfo &TOI = TID.OpInfo[Index];
- const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
- ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
+ const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
unsigned NumDefs = TID.NumDefs;
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
@@ -2536,35 +2560,40 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
// Emit the load instruction.
SDNode *Load = 0;
- const MachineFunction &MF = DAG.getMachineFunction();
+ MachineFunction &MF = DAG.getMachineFunction();
if (FoldedLoad) {
- MVT VT = *RC->vt_begin();
+ EVT VT = *RC->vt_begin();
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
- Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
- VT, MVT::Other, &AddrOps[0], AddrOps.size());
+ Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
+ VT, MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Load);
+
+ // Preserve memory reference information.
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
// Emit the data processing instruction.
- std::vector<MVT> VTs;
+ std::vector<EVT> VTs;
const TargetRegisterClass *DstRC = 0;
if (TID.getNumDefs() > 0) {
- const TargetOperandInfo &DstTOI = TID.OpInfo[0];
- DstRC = DstTOI.isLookupPtrRegClass()
- ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
+ DstRC = TID.OpInfo[0].getRegClass(&RI);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
- MVT VT = N->getValueType(i);
+ EVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
- SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
- BeforeOps.size());
+ SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
+ BeforeOps.size());
NewNodes.push_back(NewNode);
// Emit the store instruction.
@@ -2574,11 +2603,18 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
AddrOps.push_back(Chain);
bool isAligned = (RI.getStackAlignment() >= 16) ||
RI.needsStackRealignment(MF);
- SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
- isAligned, TM),
- dl, MVT::Other,
- &AddrOps[0], AddrOps.size());
+ SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
+ isAligned, TM),
+ dl, MVT::Other,
+ &AddrOps[0], AddrOps.size());
NewNodes.push_back(Store);
+
+ // Preserve memory reference information.
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
return true;
@@ -2644,7 +2680,7 @@ unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
case X86II::Imm16: return 2;
case X86II::Imm32: return 4;
case X86II::Imm64: return 8;
- default: assert(0 && "Immediate size not set!");
+ default: llvm_unreachable("Immediate size not set!");
return 0;
}
}
@@ -2829,7 +2865,7 @@ static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
} else if (RelocOp->isJTI()) {
FinalSize += sizeJumpTableAddress(false);
} else {
- assert(0 && "Unknown value to relocate!");
+ llvm_unreachable("Unknown value to relocate!");
}
return FinalSize;
}
@@ -2926,7 +2962,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
case X86II::GS:
++FinalSize;
break;
- default: assert(0 && "Invalid segment!");
+ default: llvm_unreachable("Invalid segment!");
case 0: break; // No segment override!
}
@@ -2946,6 +2982,10 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
case X86II::TA: // 0F 3A
Need0FPrefix = true;
break;
+ case X86II::TF: // F2 0F 38
+ ++FinalSize;
+ Need0FPrefix = true;
+ break;
case X86II::REP: break; // already handled.
case X86II::XS: // F3 0F
++FinalSize;
@@ -2959,7 +2999,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
++FinalSize;
break; // Two-byte opcode prefix
- default: assert(0 && "Invalid prefix!");
+ default: llvm_unreachable("Invalid prefix!");
case 0: break; // No prefix!
}
@@ -2981,6 +3021,9 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
case X86II::TA: // 0F 3A
++FinalSize;
break;
+ case X86II::TF: // F2 0F 38
+ ++FinalSize;
+ break;
}
// If this is a two-address instruction, skip one of the register operands.
@@ -2993,7 +3036,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
--NumOps;
switch (Desc->TSFlags & X86II::FormMask) {
- default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
+ default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
// Remember the current PC offset, this is the PIC relocation
// base address.
@@ -3002,16 +3045,16 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
break;
case TargetInstrInfo::INLINEASM: {
const MachineFunction *MF = MI.getParent()->getParent();
- const char *AsmStr = MI.getOperand(0).getSymbolName();
- const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
- FinalSize += AI->getInlineAsmLength(AsmStr);
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
+ *MF->getTarget().getMCAsmInfo());
break;
}
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
break;
case TargetInstrInfo::IMPLICIT_DEF:
- case TargetInstrInfo::DECLARE:
+ case TargetInstrInfo::KILL:
case X86::DWARF_LOC:
case X86::FP_REG_KILL:
break;
@@ -3038,7 +3081,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
} else if (MO.isImm()) {
FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
} else {
- assert(0 && "Unknown RawFrm operand!");
+ llvm_unreachable("Unknown RawFrm operand!");
}
}
break;
@@ -3196,10 +3239,10 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
}
if (!Desc->isVariadic() && CurOp != NumOps) {
- cerr << "Cannot determine size: ";
- MI.dump();
- cerr << '\n';
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Cannot determine size: " << MI;
+ llvm_report_error(Msg.str());
}
@@ -3209,7 +3252,7 @@ static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
const TargetInstrDesc &Desc = MI->getDesc();
- bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
+ bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
if (Desc.getOpcode() == X86::MOVPC32r)
@@ -3245,12 +3288,11 @@ unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
- if (TM.getRelocationModel() == Reloc::PIC_ &&
- TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
+ if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
- .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0,
+ .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
} else {
GlobalBaseReg = PC;
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index 83f0194..2237c8b 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -69,35 +69,36 @@ namespace X86 {
/// instruction info tracks.
///
namespace X86II {
- enum {
+ /// Target Operand Flag enum.
+ enum TOF {
//===------------------------------------------------------------------===//
// X86 Specific MachineOperand flags.
- MO_NO_FLAG = 0,
+ MO_NO_FLAG,
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
/// relocation of:
/// SYMBOL_LABEL + [. - PICBASELABEL]
- MO_GOT_ABSOLUTE_ADDRESS = 1,
+ MO_GOT_ABSOLUTE_ADDRESS,
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
/// immediate should get the value of the symbol minus the PIC base label:
/// SYMBOL_LABEL - PICBASELABEL
- MO_PIC_BASE_OFFSET = 2,
+ MO_PIC_BASE_OFFSET,
/// MO_GOT - On a symbol operand this indicates that the immediate is the
/// offset to the GOT entry for the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOT
- MO_GOT = 3,
+ MO_GOT,
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
/// the offset to the location of the symbol name from the base of the GOT.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTOFF
- MO_GOTOFF = 4,
+ MO_GOTOFF,
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
/// offset to the GOT entry for the symbol name from the current code
@@ -105,50 +106,115 @@ namespace X86II {
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @GOTPCREL
- MO_GOTPCREL = 5,
+ MO_GOTPCREL,
/// MO_PLT - On a symbol operand this indicates that the immediate is
/// offset to the PLT entry of symbol name from the current code location.
///
/// See the X86-64 ELF ABI supplement for more details.
/// SYMBOL_LABEL @PLT
- MO_PLT = 6,
+ MO_PLT,
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TLSGD
- MO_TLSGD = 7,
+ MO_TLSGD,
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @GOTTPOFF
- MO_GOTTPOFF = 8,
+ MO_GOTTPOFF,
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @INDNTPOFF
- MO_INDNTPOFF = 9,
+ MO_INDNTPOFF,
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @TPOFF
- MO_TPOFF = 10,
+ MO_TPOFF,
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
/// some TLS offset.
///
/// See 'ELF Handling for Thread-Local Storage' for more details.
/// SYMBOL_LABEL @NTPOFF
- MO_NTPOFF = 11,
+ MO_NTPOFF,
+
+ /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "__imp_FOO" symbol. This is used for
+ /// dllimport linkage on windows.
+ MO_DLLIMPORT,
+
+ /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$stub" symbol. This is used for calls
+ /// and jumps to external functions on Tiger and before.
+ MO_DARWIN_STUB,
+ /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+ /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY,
+
+ /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+ /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+ /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY_PIC_BASE,
+
+ /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
+ /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
+ /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
+ /// stub.
+ MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE
+ };
+}
+
+/// isGlobalStubReference - Return true if the specified TargetFlag operand is
+/// a reference to a stub for a global, not the global itself.
+inline static bool isGlobalStubReference(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_DLLIMPORT: // dllimport stub.
+ case X86II::MO_GOTPCREL: // rip-relative GOT reference.
+ case X86II::MO_GOT: // normal GOT reference.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// isGlobalRelativeToPICBase - Return true if the specified global value
+/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
+/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
+inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
+ case X86II::MO_GOT: // isPICStyleGOT: other global.
+ case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// X86II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace X86II {
+ enum {
//===------------------------------------------------------------------===//
// Instruction encodings. These are the standard/most common forms for X86
// instructions.
@@ -249,6 +315,9 @@ namespace X86II {
// T8, TA - Prefix after the 0x0F prefix.
T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
+
+ // TF - Prefix before and after 0x0F
+ TF = 15 << Op0Shift,
//===------------------------------------------------------------------===//
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
@@ -355,10 +424,10 @@ class X86InstrInfo : public TargetInstrInfoImpl {
/// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
/// RegOp2MemOpTable2 - Load / store folding opcode maps.
///
- DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
- DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
- DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
- DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
/// MemOp2RegOpTable - Load / store unfolding opcode map.
///
@@ -382,11 +451,11 @@ public:
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
- bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
+ bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const;
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- unsigned DestReg, const MachineInstr *Orig) const;
-
- bool isInvariantLoad(const MachineInstr *MI) const;
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig) const;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
@@ -430,6 +499,8 @@ public:
virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
@@ -440,6 +511,8 @@ public:
virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const;
virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
@@ -530,9 +603,10 @@ public:
private:
MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
- MachineInstr* MI,
- unsigned OpNum,
- const SmallVectorImpl<MachineOperand> &MOs) const;
+ MachineInstr* MI,
+ unsigned OpNum,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ unsigned Size, unsigned Alignment) const;
};
} // End llvm namespace
diff --git a/lib/Target/X86/X86InstrInfo.td b/lib/Target/X86/X86InstrInfo.td
index 03df10d..30b57d8 100644
--- a/lib/Target/X86/X86InstrInfo.td
+++ b/lib/Target/X86/X86InstrInfo.td
@@ -56,6 +56,10 @@ def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
+def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
+ SDTCisVT<1, iPTR>,
+ SDTCisVT<2, iPTR>]>;
+
def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
def SDTX86RdTsc : SDTypeProfile<0, 0, []>;
@@ -114,6 +118,11 @@ def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary,
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
[SDNPHasChain, SDNPOptInFlag]>;
+def X86vastart_save_xmm_regs :
+ SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
+ SDT_X86VASTART_SAVE_XMM_REGS,
+ [SDNPHasChain]>;
+
def X86callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
@@ -124,9 +133,6 @@ def X86callseq_end :
def X86call : SDNode<"X86ISD::CALL", SDT_X86Call,
[SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
-def X86tailcall: SDNode<"X86ISD::TAILCALL", SDT_X86Call,
- [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
-
def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore]>;
def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
@@ -156,6 +162,9 @@ def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags>;
def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags>;
def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>;
def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>;
+def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags>;
+def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags>;
+def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags>;
def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
@@ -167,57 +176,80 @@ def i32imm_pcrel : Operand<i32> {
let PrintMethod = "print_pcrel_imm";
}
+// A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
+// the index operand of an address, to conform to x86 encoding restrictions.
+def ptr_rc_nosp : PointerLikeRegClass<1>;
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
+def X86MemAsmOperand : AsmOperandClass {
+ let Name = "Mem";
+ let SuperClass = ?;
+}
class X86MemOperand<string printMethod> : Operand<iPTR> {
let PrintMethod = printMethod;
- let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm, i8imm);
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
+def opaque32mem : X86MemOperand<"printopaquemem">;
+def opaque48mem : X86MemOperand<"printopaquemem">;
+def opaque80mem : X86MemOperand<"printopaquemem">;
+
def i8mem : X86MemOperand<"printi8mem">;
def i16mem : X86MemOperand<"printi16mem">;
def i32mem : X86MemOperand<"printi32mem">;
def i64mem : X86MemOperand<"printi64mem">;
def i128mem : X86MemOperand<"printi128mem">;
-def i256mem : X86MemOperand<"printi256mem">;
+//def i256mem : X86MemOperand<"printi256mem">;
def f32mem : X86MemOperand<"printf32mem">;
def f64mem : X86MemOperand<"printf64mem">;
def f80mem : X86MemOperand<"printf80mem">;
def f128mem : X86MemOperand<"printf128mem">;
-def f256mem : X86MemOperand<"printf256mem">;
+//def f256mem : X86MemOperand<"printf256mem">;
// A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
// plain GR64, so that it doesn't potentially require a REX prefix.
def i8mem_NOREX : Operand<i64> {
let PrintMethod = "printi8mem";
- let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX, i32imm, i8imm);
+ let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
def lea32mem : Operand<i32> {
let PrintMethod = "printlea32mem";
- let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
+ let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
def SSECC : Operand<i8> {
let PrintMethod = "printSSECC";
}
-def piclabel: Operand<i32> {
- let PrintMethod = "printPICLabel";
+def ImmSExt8AsmOperand : AsmOperandClass {
+ let Name = "ImmSExt8";
+ let SuperClass = ImmAsmOperand;
}
// A couple of more descriptive operand definitions.
// 16-bits but only 8 bits are significant.
-def i16i8imm : Operand<i16>;
+def i16i8imm : Operand<i16> {
+ let ParserMatchClass = ImmSExt8AsmOperand;
+}
// 32-bits but only 8 bits are significant.
-def i32i8imm : Operand<i32>;
+def i32i8imm : Operand<i32> {
+ let ParserMatchClass = ImmSExt8AsmOperand;
+}
// Branch targets have OtherVT type and print as pc-relative values.
def brtarget : Operand<OtherVT> {
let PrintMethod = "print_pcrel_imm";
}
+def brtarget8 : Operand<OtherVT> {
+ let PrintMethod = "print_pcrel_imm";
+}
+
//===----------------------------------------------------------------------===//
// X86 Complex Pattern Definitions.
//
@@ -225,7 +257,8 @@ def brtarget : Operand<OtherVT> {
// Define X86 specific addressing mode.
def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], []>;
def lea32addr : ComplexPattern<i32, 4, "SelectLEAAddr",
- [add, sub, mul, shl, or, frameindex], []>;
+ [add, sub, mul, X86mul_imm, shl, or, frameindex],
+ []>;
def tls32addr : ComplexPattern<i32, 4, "SelectTLSADDRAddr",
[tglobaltlsaddr], []>;
@@ -246,8 +279,14 @@ def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
def In32BitMode : Predicate<"!Subtarget->is64Bit()">;
def In64BitMode : Predicate<"Subtarget->is64Bit()">;
+def IsWin64 : Predicate<"Subtarget->isTargetWin64()">;
+def NotWin64 : Predicate<"!Subtarget->isTargetWin64()">;
def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
-def NotSmallCode : Predicate<"TM.getCodeModel() != CodeModel::Small">;
+def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
+def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
+ "TM.getCodeModel() != CodeModel::Kernel">;
+def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
+ "TM.getCodeModel() == CodeModel::Kernel">;
def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
def OptForSpeed : Predicate<"!OptForSize">;
def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">;
@@ -484,15 +523,35 @@ def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
Requires<[In32BitMode]>;
}
+// x86-64 va_start lowering magic.
+let usesCustomDAGSchedInserter = 1 in
+def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
+ (outs),
+ (ins GR8:$al,
+ i64imm:$regsavefi, i64imm:$offset,
+ variable_ops),
+ "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
+ [(X86vastart_save_xmm_regs GR8:$al,
+ imm:$regsavefi,
+ imm:$offset)]>;
+
// Nop
-let neverHasSideEffects = 1 in
+let neverHasSideEffects = 1 in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>;
+ def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero),
+ "nopl\t$zero", []>, TB;
+}
-// PIC base
+// Trap
+def INT3 : I<0xcc, RawFrm, (outs), (ins), "int 3", []>;
+def INT : I<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap", []>;
+
+// PIC base construction. This expands to code that looks like this:
+// call $next_inst
+// popl %destreg"
let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
- def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins piclabel:$label),
- "call\t$label\n\t"
- "pop{l}\t$reg", []>;
+ def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
+ "", []>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
@@ -506,7 +565,11 @@ let isTerminator = 1, isReturn = 1, isBarrier = 1,
[(X86retflag 0)]>;
def RETI : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
"ret\t$amt",
- [(X86retflag imm:$amt)]>;
+ [(X86retflag timm:$amt)]>;
+ def LRET : I <0xCB, RawFrm, (outs), (ins),
+ "lret", []>;
+ def LRETI : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
+ "lret\t$amt", []>;
}
// All branches are RawFrm, Void, Branch, and Terminators
@@ -514,8 +577,10 @@ let isBranch = 1, isTerminator = 1 in
class IBr<bits<8> opcode, dag ins, string asm, list<dag> pattern> :
I<opcode, RawFrm, (outs), ins, asm, pattern>;
-let isBranch = 1, isBarrier = 1 in
+let isBranch = 1, isBarrier = 1 in {
def JMP : IBr<0xE9, (ins brtarget:$dst), "jmp\t$dst", [(br bb:$dst)]>;
+ def JMP8 : IBr<0xEB, (ins brtarget8:$dst), "jmp\t$dst", []>;
+}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
@@ -523,10 +588,42 @@ let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
[(brind GR32:$dst)]>;
def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
[(brind (loadi32 addr:$dst))]>;
+
+ def FARJMP16i : Iseg16<0xEA, RawFrm, (outs),
+ (ins i16imm:$seg, i16imm:$off),
+ "ljmp{w}\t$seg, $off", []>, OpSize;
+ def FARJMP32i : Iseg32<0xEA, RawFrm, (outs),
+ (ins i16imm:$seg, i32imm:$off),
+ "ljmp{l}\t$seg, $off", []>;
+
+ def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
+ "ljmp{w}\t{*}$dst", []>, OpSize;
+ def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
+ "ljmp{l}\t{*}$dst", []>;
}
// Conditional branches
let Uses = [EFLAGS] in {
+// Short conditional jumps
+def JO8 : IBr<0x70, (ins brtarget8:$dst), "jo\t$dst", []>;
+def JNO8 : IBr<0x71, (ins brtarget8:$dst), "jno\t$dst", []>;
+def JB8 : IBr<0x72, (ins brtarget8:$dst), "jb\t$dst", []>;
+def JAE8 : IBr<0x73, (ins brtarget8:$dst), "jae\t$dst", []>;
+def JE8 : IBr<0x74, (ins brtarget8:$dst), "je\t$dst", []>;
+def JNE8 : IBr<0x75, (ins brtarget8:$dst), "jne\t$dst", []>;
+def JBE8 : IBr<0x76, (ins brtarget8:$dst), "jbe\t$dst", []>;
+def JA8 : IBr<0x77, (ins brtarget8:$dst), "ja\t$dst", []>;
+def JS8 : IBr<0x78, (ins brtarget8:$dst), "js\t$dst", []>;
+def JNS8 : IBr<0x79, (ins brtarget8:$dst), "jns\t$dst", []>;
+def JP8 : IBr<0x7A, (ins brtarget8:$dst), "jp\t$dst", []>;
+def JNP8 : IBr<0x7B, (ins brtarget8:$dst), "jnp\t$dst", []>;
+def JL8 : IBr<0x7C, (ins brtarget8:$dst), "jl\t$dst", []>;
+def JGE8 : IBr<0x7D, (ins brtarget8:$dst), "jge\t$dst", []>;
+def JLE8 : IBr<0x7E, (ins brtarget8:$dst), "jle\t$dst", []>;
+def JG8 : IBr<0x7F, (ins brtarget8:$dst), "jg\t$dst", []>;
+
+def JCXZ8 : IBr<0xE3, (ins brtarget8:$dst), "jcxz\t$dst", []>;
+
def JE : IBr<0x84, (ins brtarget:$dst), "je\t$dst",
[(X86brcond bb:$dst, X86_COND_E, EFLAGS)]>, TB;
def JNE : IBr<0x85, (ins brtarget:$dst), "jne\t$dst",
@@ -563,6 +660,12 @@ def JNO : IBr<0x81, (ins brtarget:$dst), "jno\t$dst",
[(X86brcond bb:$dst, X86_COND_NO, EFLAGS)]>, TB;
} // Uses = [EFLAGS]
+// Loop instructions
+
+def LOOP : I<0xE2, RawFrm, (ins brtarget8:$dst), (outs), "loop\t$dst", []>;
+def LOOPE : I<0xE1, RawFrm, (ins brtarget8:$dst), (outs), "loope\t$dst", []>;
+def LOOPNE : I<0xE0, RawFrm, (ins brtarget8:$dst), (outs), "loopne\t$dst", []>;
+
//===----------------------------------------------------------------------===//
// Call Instructions...
//
@@ -583,13 +686,26 @@ let isCall = 1 in
"call\t{*}$dst", [(X86call GR32:$dst)]>;
def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
"call\t{*}$dst", [(X86call (loadi32 addr:$dst))]>;
+
+ def FARCALL16i : Iseg16<0x9A, RawFrm, (outs),
+ (ins i16imm:$seg, i16imm:$off),
+ "lcall{w}\t$seg, $off", []>, OpSize;
+ def FARCALL32i : Iseg32<0x9A, RawFrm, (outs),
+ (ins i16imm:$seg, i32imm:$off),
+ "lcall{l}\t$seg, $off", []>;
+
+ def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
+ "lcall{w}\t{*}$dst", []>, OpSize;
+ def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
+ "lcall{l}\t{*}$dst", []>;
}
-// Tail call stuff.
+// Constructing a stack frame.
+
+def ENTER : I<0xC8, RawFrm, (outs), (ins i16imm:$len, i8imm:$lvl),
+ "enter\t$len, $lvl", []>;
-def TAILCALL : I<0, Pseudo, (outs), (ins),
- "#TAILCALL",
- []>;
+// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNdi : I<0, Pseudo, (outs), (ins i32imm:$dst, i32imm:$offset, variable_ops),
@@ -620,11 +736,29 @@ def LEAVE : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
-let mayLoad = 1 in
-def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
+let mayLoad = 1 in {
+def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
+ OpSize;
+def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
+def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
+ OpSize;
+def POP16rmm: I<0x8F, MRM0m, (outs i16mem:$dst), (ins), "pop{w}\t$dst", []>,
+ OpSize;
+def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
+def POP32rmm: I<0x8F, MRM0m, (outs i32mem:$dst), (ins), "pop{l}\t$dst", []>;
+}
-let mayStore = 1 in
+let mayStore = 1 in {
+def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
+ OpSize;
def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
+def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
+ OpSize;
+def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[]>,
+ OpSize;
+def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
+def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[]>;
+}
}
let Defs = [ESP], Uses = [ESP], neverHasSideEffects = 1, mayStore = 1 in {
@@ -710,6 +844,14 @@ let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI] in
def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
[(X86rep_stos i32)]>, REP;
+def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scas{b}", []>;
+def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scas{w}", []>, OpSize;
+def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l}", []>;
+
+def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmps{b}", []>;
+def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmps{w}", []>, OpSize;
+def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l}", []>;
+
let Defs = [RAX, RDX] in
def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)]>,
TB;
@@ -718,6 +860,18 @@ let isBarrier = 1, hasCtrlDep = 1 in {
def TRAP : I<0x0B, RawFrm, (outs), (ins), "ud2", [(trap)]>, TB;
}
+def SYSCALL : I<0x05, RawFrm,
+ (outs), (ins), "syscall", []>, TB;
+def SYSRET : I<0x07, RawFrm,
+ (outs), (ins), "sysret", []>, TB;
+def SYSENTER : I<0x34, RawFrm,
+ (outs), (ins), "sysenter", []>, TB;
+def SYSEXIT : I<0x35, RawFrm,
+ (outs), (ins), "sysexit", []>, TB;
+
+def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
+
+
//===----------------------------------------------------------------------===//
// Input/Output Instructions...
//
@@ -793,6 +947,30 @@ def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store (i32 imm:$src), addr:$dst)]>;
+def MOV8o8a : Ii8 <0xA0, RawFrm, (outs), (ins i8imm:$src),
+ "mov{b}\t{$src, %al|%al, $src}", []>;
+def MOV16o16a : Ii16 <0xA1, RawFrm, (outs), (ins i16imm:$src),
+ "mov{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins i32imm:$src),
+ "mov{l}\t{$src, %eax|%eax, $src}", []>;
+
+def MOV8ao8 : Ii8 <0xA2, RawFrm, (outs i8imm:$dst), (ins),
+ "mov{b}\t{%al, $dst|$dst, %al}", []>;
+def MOV16ao16 : Ii16 <0xA3, RawFrm, (outs i16imm:$dst), (ins),
+ "mov{w}\t{%ax, $dst|$dst, %ax}", []>, OpSize;
+def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs i32imm:$dst), (ins),
+ "mov{l}\t{%eax, $dst|$dst, %eax}", []>;
+
+// Moves to and from segment registers
+def MOV16rs : I<0x8C, MRMDestReg, (outs GR16:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV16ms : I<0x8C, MRMDestMem, (outs i16mem:$dst), (ins SEGMENT_REG:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV16sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR16:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+def MOV16sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i16mem:$src),
+ "mov{w}\t{$src, $dst|$dst, $src}", []>;
+
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
@@ -950,6 +1128,20 @@ let isTwoAddress = 1 in {
// Conditional moves
let Uses = [EFLAGS] in {
+
+// X86 doesn't have 8-bit conditional moves. Use a customDAGSchedInserter to
+// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
+// however that requires promoting the operands, and can induce additional
+// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
+// clobber EFLAGS, because if one of the operands is zero, the expansion
+// could involve an xor.
+let usesCustomDAGSchedInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] in
+def CMOV_GR8 : I<0, Pseudo,
+ (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
+ "#CMOV_GR8 PSEUDO!",
+ [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
+ imm:$cond, EFLAGS))]>;
+
let isCommutable = 1 in {
def CMOVB16rr : I<0x42, MRMSrcReg, // if <u, GR16 = GR16
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
@@ -1549,6 +1741,14 @@ let isTwoAddress = 0 in {
"and{l}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
+
+ def AND8i8 : Ii8<0x24, RawFrm, (outs), (ins i8imm:$src),
+ "and{b}\t{$src, %al|%al, $src}", []>;
+ def AND16i16 : Ii16<0x25, RawFrm, (outs), (ins i16imm:$src),
+ "and{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def AND32i32 : Ii32<0x25, RawFrm, (outs), (ins i32imm:$src),
+ "and{l}\t{$src, %eax|%eax, $src}", []>;
+
}
@@ -1635,6 +1835,13 @@ let isTwoAddress = 0 in {
"or{l}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
+
+ def OR8i8 : Ii8 <0x0C, RawFrm, (outs), (ins i8imm:$src),
+ "or{b}\t{$src, %al|%al, $src}", []>;
+ def OR16i16 : Ii16 <0x0D, RawFrm, (outs), (ins i16imm:$src),
+ "or{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def OR32i32 : Ii32 <0x0D, RawFrm, (outs), (ins i32imm:$src),
+ "or{l}\t{$src, %eax|%eax, $src}", []>;
} // isTwoAddress = 0
@@ -1744,6 +1951,13 @@ let isTwoAddress = 0 in {
"xor{l}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst),
(implicit EFLAGS)]>;
+
+ def XOR8i8 : Ii8 <0x34, RawFrm, (outs), (ins i8imm:$src),
+ "xor{b}\t{$src, %al|%al, $src}", []>;
+ def XOR16i16 : Ii16 <0x35, RawFrm, (outs), (ins i16imm:$src),
+ "xor{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def XOR32i32 : Ii32 <0x35, RawFrm, (outs), (ins i32imm:$src),
+ "xor{l}\t{$src, %eax|%eax, $src}", []>;
} // isTwoAddress = 0
} // Defs = [EFLAGS]
@@ -1771,8 +1985,17 @@ def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2),
def SHL32ri : Ii8<0xC1, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2),
"shl{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (shl GR32:$src1, (i8 imm:$src2)))]>;
-// NOTE: We don't use shifts of a register by one, because 'add reg,reg' is
-// cheaper.
+
+// NOTE: We don't include patterns for shifts of a register by one, because
+// 'add reg,reg' is cheaper.
+
+def SHL8r1 : I<0xD0, MRM4r, (outs GR8:$dst), (ins GR8:$src1),
+ "shl{b}\t$dst", []>;
+def SHL16r1 : I<0xD1, MRM4r, (outs GR16:$dst), (ins GR16:$src1),
+ "shl{w}\t$dst", []>, OpSize;
+def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1),
+ "shl{l}\t$dst", []>;
+
} // isConvertibleToThreeAddress = 1
let isTwoAddress = 0 in {
@@ -1951,6 +2174,97 @@ let isTwoAddress = 0 in {
}
// Rotate instructions
+
+def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src),
+ "rcl{b}\t{1, $dst|$dst, 1}", []>;
+def RCL8m1 : I<0xD0, MRM2m, (outs i8mem:$dst), (ins i8mem:$src),
+ "rcl{b}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src),
+ "rcl{b}\t{%cl, $dst|$dst, CL}", []>;
+def RCL8mCL : I<0xD2, MRM2m, (outs i8mem:$dst), (ins i8mem:$src),
+ "rcl{b}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt),
+ "rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCL8mi : Ii8<0xC0, MRM2m, (outs i8mem:$dst), (ins i8mem:$src, i8imm:$cnt),
+ "rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>;
+
+def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src),
+ "rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize;
+def RCL16m1 : I<0xD1, MRM2m, (outs i16mem:$dst), (ins i16mem:$src),
+ "rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize;
+let Uses = [CL] in {
+def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src),
+ "rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
+def RCL16mCL : I<0xD3, MRM2m, (outs i16mem:$dst), (ins i16mem:$src),
+ "rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
+}
+def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt),
+ "rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
+def RCL16mi : Ii8<0xC1, MRM2m, (outs i16mem:$dst), (ins i16mem:$src, i8imm:$cnt),
+ "rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
+
+def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src),
+ "rcl{l}\t{1, $dst|$dst, 1}", []>;
+def RCL32m1 : I<0xD1, MRM2m, (outs i32mem:$dst), (ins i32mem:$src),
+ "rcl{l}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src),
+ "rcl{l}\t{%cl, $dst|$dst, CL}", []>;
+def RCL32mCL : I<0xD3, MRM2m, (outs i32mem:$dst), (ins i32mem:$src),
+ "rcl{l}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt),
+ "rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCL32mi : Ii8<0xC1, MRM2m, (outs i32mem:$dst), (ins i32mem:$src, i8imm:$cnt),
+ "rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>;
+
+def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src),
+ "rcr{b}\t{1, $dst|$dst, 1}", []>;
+def RCR8m1 : I<0xD0, MRM3m, (outs i8mem:$dst), (ins i8mem:$src),
+ "rcr{b}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src),
+ "rcr{b}\t{%cl, $dst|$dst, CL}", []>;
+def RCR8mCL : I<0xD2, MRM3m, (outs i8mem:$dst), (ins i8mem:$src),
+ "rcr{b}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt),
+ "rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCR8mi : Ii8<0xC0, MRM3m, (outs i8mem:$dst), (ins i8mem:$src, i8imm:$cnt),
+ "rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>;
+
+def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src),
+ "rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize;
+def RCR16m1 : I<0xD1, MRM3m, (outs i16mem:$dst), (ins i16mem:$src),
+ "rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize;
+let Uses = [CL] in {
+def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src),
+ "rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
+def RCR16mCL : I<0xD3, MRM3m, (outs i16mem:$dst), (ins i16mem:$src),
+ "rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize;
+}
+def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt),
+ "rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
+def RCR16mi : Ii8<0xC1, MRM3m, (outs i16mem:$dst), (ins i16mem:$src, i8imm:$cnt),
+ "rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize;
+
+def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src),
+ "rcr{l}\t{1, $dst|$dst, 1}", []>;
+def RCR32m1 : I<0xD1, MRM3m, (outs i32mem:$dst), (ins i32mem:$src),
+ "rcr{l}\t{1, $dst|$dst, 1}", []>;
+let Uses = [CL] in {
+def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src),
+ "rcr{l}\t{%cl, $dst|$dst, CL}", []>;
+def RCR32mCL : I<0xD3, MRM3m, (outs i32mem:$dst), (ins i32mem:$src),
+ "rcr{l}\t{%cl, $dst|$dst, CL}", []>;
+}
+def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt),
+ "rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>;
+def RCR32mi : Ii8<0xC1, MRM3m, (outs i32mem:$dst), (ins i32mem:$src, i8imm:$cnt),
+ "rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>;
+
// FIXME: provide shorter instructions when imm8 == 1
let Uses = [CL] in {
def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src),
@@ -2228,6 +2542,15 @@ def ADD32rm : I<0x03, MRMSrcMem, (outs GR32:$dst),
"add{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, (load addr:$src2))),
(implicit EFLAGS)]>;
+
+// Register-Register Addition - Equivalent to the normal rr forms (ADD8rr,
+// ADD16rr, and ADD32rr), but differently encoded.
+def ADD8mrmrr: I<0x02, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
+ "add{b}\t{$src2, $dst|$dst, $src2}", []>;
+def ADD16mrmrr: I<0x03, MRMSrcReg,(outs GR16:$dst),(ins GR16:$src1, GR16:$src2),
+ "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize;
+def ADD32mrmrr: I<0x03, MRMSrcReg,(outs GR16:$dst),(ins GR16:$src1, GR16:$src2),
+ "add{l}\t{$src2, $dst|$dst, $src2}", []>;
// Register-Integer Addition
def ADD8ri : Ii8<0x80, MRM0r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
@@ -2295,6 +2618,14 @@ let isTwoAddress = 0 in {
[(store (add (load addr:$dst), i32immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>;
+
+ // addition to rAX
+ def ADD8i8 : Ii8<0x04, RawFrm, (outs), (ins i8imm:$src),
+ "add{b}\t{$src, %al|%al, $src}", []>;
+ def ADD16i16 : Ii16<0x05, RawFrm, (outs), (ins i16imm:$src),
+ "add{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def ADD32i32 : Ii32<0x05, RawFrm, (outs), (ins i32imm:$src),
+ "add{l}\t{$src, %eax|%eax, $src}", []>;
}
let Uses = [EFLAGS] in {
@@ -2373,6 +2704,13 @@ let isTwoAddress = 0 in {
def ADC32mi8 : Ii8<0x83, MRM2m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"adc{l}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
+
+ def ADC8i8 : Ii8<0x14, RawFrm, (outs), (ins i8imm:$src),
+ "adc{b}\t{$src, %al|%al, $src}", []>;
+ def ADC16i16 : Ii16<0x15, RawFrm, (outs), (ins i16imm:$src),
+ "adc{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def ADC32i32 : Ii32<0x15, RawFrm, (outs), (ins i32imm:$src),
+ "adc{l}\t{$src, %eax|%eax, $src}", []>;
}
} // Uses = [EFLAGS]
@@ -2472,6 +2810,13 @@ let isTwoAddress = 0 in {
[(store (sub (load addr:$dst), i32immSExt8:$src2),
addr:$dst),
(implicit EFLAGS)]>;
+
+ def SUB8i8 : Ii8<0x2C, RawFrm, (outs), (ins i8imm:$src),
+ "sub{b}\t{$src, %al|%al, $src}", []>;
+ def SUB16i16 : Ii16<0x2D, RawFrm, (outs), (ins i16imm:$src),
+ "sub{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def SUB32i32 : Ii32<0x2D, RawFrm, (outs), (ins i32imm:$src),
+ "sub{l}\t{$src, %eax|%eax, $src}", []>;
}
let Uses = [EFLAGS] in {
@@ -2516,6 +2861,13 @@ let isTwoAddress = 0 in {
def SBB32mi8 : Ii8<0x83, MRM3m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
"sbb{l}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
+
+ def SBB8i8 : Ii8<0x1C, RawFrm, (outs), (ins i8imm:$src),
+ "sbb{b}\t{$src, %al|%al, $src}", []>;
+ def SBB16i16 : Ii16<0x1D, RawFrm, (outs), (ins i16imm:$src),
+ "sbb{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+ def SBB32i32 : Ii32<0x1D, RawFrm, (outs), (ins i32imm:$src),
+ "sbb{l}\t{$src, %eax|%eax, $src}", []>;
}
def SBB8rm : I<0x1A, MRMSrcMem, (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2),
"sbb{b}\t{$src2, $dst|$dst, $src2}",
@@ -2647,6 +2999,13 @@ def TEST32rr : I<0x85, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
(implicit EFLAGS)]>;
}
+def TEST8i8 : Ii8<0xA8, RawFrm, (outs), (ins i8imm:$src),
+ "test{b}\t{$src, %al|%al, $src}", []>;
+def TEST16i16 : Ii16<0xA9, RawFrm, (outs), (ins i16imm:$src),
+ "test{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+def TEST32i32 : Ii32<0xA9, RawFrm, (outs), (ins i32imm:$src),
+ "test{l}\t{$src, %eax|%eax, $src}", []>;
+
def TEST8rm : I<0x84, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2),
"test{b}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR8:$src1, (loadi8 addr:$src2)), 0),
@@ -2878,6 +3237,13 @@ def SETNOm : I<0x91, MRM0m,
// Integer comparisons
let Defs = [EFLAGS] in {
+def CMP8i8 : Ii8<0x3C, RawFrm, (outs), (ins i8imm:$src),
+ "cmp{b}\t{$src, %al|%al, $src}", []>;
+def CMP16i16 : Ii16<0x3D, RawFrm, (outs), (ins i16imm:$src),
+ "cmp{w}\t{$src, %ax|%ax, $src}", []>, OpSize;
+def CMP32i32 : Ii32<0x3D, RawFrm, (outs), (ins i32imm:$src),
+ "cmp{l}\t{$src, %eax|%eax, $src}", []>;
+
def CMP8rr : I<0x38, MRMDestReg,
(outs), (ins GR8 :$src1, GR8 :$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
@@ -2920,6 +3286,12 @@ def CMP32rm : I<0x3B, MRMSrcMem,
"cmp{l}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR32:$src1, (loadi32 addr:$src2)),
(implicit EFLAGS)]>;
+def CMP8mrmrr : I<0x3A, MRMSrcReg, (outs), (ins GR8:$src1, GR8:$src2),
+ "cmp{b}\t{$src2, $src1|$src1, $src2}", []>;
+def CMP16mrmrr : I<0x3B, MRMSrcReg, (outs), (ins GR16:$src1, GR16:$src2),
+ "cmp{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize;
+def CMP32mrmrr : I<0x3B, MRMSrcReg, (outs), (ins GR32:$src1, GR32:$src2),
+ "cmp{l}\t{$src2, $src1|$src1, $src2}", []>;
def CMP8ri : Ii8<0x80, MRM7r,
(outs), (ins GR8:$src1, i8imm:$src2),
"cmp{b}\t{$src2, $src1|$src1, $src2}",
@@ -3095,7 +3467,8 @@ let neverHasSideEffects = 1 in {
// Alias instructions that map movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
-let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1 in {
+let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isCodeGenOnly = 1 in {
def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins),
"xor{b}\t$dst, $dst",
[(set GR8:$dst, 0)]>;
@@ -3127,12 +3500,12 @@ def TLS_addr32 : I<0, Pseudo, (outs), (ins lea32mem:$sym),
[(X86tlsaddr tls32addr:$sym)]>,
Requires<[In32BitMode]>;
-let AddedComplexity = 5 in
+let AddedComplexity = 5, isCodeGenOnly = 1 in
def GS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movl\t%gs:$src, $dst",
[(set GR32:$dst, (gsload addr:$src))]>, SegGS;
-let AddedComplexity = 5 in
+let AddedComplexity = 5, isCodeGenOnly = 1 in
def FS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movl\t%fs:$src, $dst",
[(set GR32:$dst, (fsload addr:$src))]>, SegFS;
@@ -3143,7 +3516,7 @@ def FS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
def DWARF_LOC : I<0, Pseudo, (outs),
(ins i32imm:$line, i32imm:$col, i32imm:$file),
- ".loc\t${file:debug} ${line:debug} ${col:debug}",
+ ".loc\t$file $line $col",
[(dwarf_loc (i32 imm:$line), (i32 imm:$col),
(i32 imm:$file))]>;
@@ -3151,7 +3524,7 @@ def DWARF_LOC : I<0, Pseudo, (outs),
// EH Pseudo Instructions
//
let isTerminator = 1, isReturn = 1, isBarrier = 1,
- hasCtrlDep = 1 in {
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR32:$addr)]>;
@@ -3223,6 +3596,78 @@ def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins i8mem:$ptr, GR8:$val),
TB, LOCK;
}
+// Optimized codegen when the non-memory output is not used.
+// FIXME: Use normal add / sub instructions and add lock prefix dynamically.
+def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
+ "lock\n\t"
+ "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ "lock\n\t"
+ "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
+def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ "lock\n\t"
+ "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
+ "lock\n\t"
+ "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
+ "lock\n\t"
+ "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
+ "lock\n\t"
+ "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
+ "lock\n\t"
+ "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
+def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
+ "lock\n\t"
+ "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+
+def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
+ "lock\n\t"
+ "inc{b}\t$dst", []>, LOCK;
+def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
+ "lock\n\t"
+ "inc{w}\t$dst", []>, OpSize, LOCK;
+def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
+ "lock\n\t"
+ "inc{l}\t$dst", []>, LOCK;
+
+def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
+ "lock\n\t"
+ "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ "lock\n\t"
+ "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
+def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ "lock\n\t"
+ "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
+ "lock\n\t"
+ "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
+ "lock\n\t"
+ "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
+def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
+ "lock\n\t"
+ "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
+ "lock\n\t"
+ "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
+def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
+ "lock\n\t"
+ "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
+
+def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
+ "lock\n\t"
+ "dec{b}\t$dst", []>, LOCK;
+def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
+ "lock\n\t"
+ "dec{w}\t$dst", []>, OpSize, LOCK;
+def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
+ "lock\n\t"
+ "dec{l}\t$dst", []>, LOCK;
+
// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
usesCustomDAGSchedInserter = 1 in {
@@ -3318,6 +3763,25 @@ def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
"#ATOMSWAP6432 PSEUDO!", []>;
}
+// Segmentation support instructions.
+
+def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
+def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
+
+// i16mem operand in LAR32rm and GR32 operand in LAR32rr is not a typo.
+def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
+ "lar{l}\t{$src, $dst|$dst, $src}", []>, TB;
+def LAR32rr : I<0x02, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "lar{l}\t{$src, $dst|$dst, $src}", []>, TB;
+
+// String manipulation instructions
+
+def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", []>;
+def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", []>, OpSize;
+def LODSD : I<0xAD, RawFrm, (outs), (ins), "lodsd", []>;
+
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
@@ -3345,14 +3809,6 @@ def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
// Calls
// tailcall stuff
-def : Pat<(X86tailcall GR32:$dst),
- (TAILCALL)>;
-
-def : Pat<(X86tailcall (i32 tglobaladdr:$dst)),
- (TAILCALL)>;
-def : Pat<(X86tailcall (i32 texternalsym:$dst)),
- (TAILCALL)>;
-
def : Pat<(X86tcret GR32:$dst, imm:$off),
(TCRETURNri GR32:$dst, imm:$off)>;
@@ -3362,6 +3818,7 @@ def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
(TCRETURNdi texternalsym:$dst, imm:$off)>;
+// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
(CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
@@ -3472,21 +3929,17 @@ def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
// extload bool -> extload byte
def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
-def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>,
- Requires<[In32BitMode]>;
+def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
-def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>,
- Requires<[In32BitMode]>;
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
-// anyext
-def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>,
- Requires<[In32BitMode]>;
-def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>,
- Requires<[In32BitMode]>;
-def : Pat<(i32 (anyext GR16:$src)),
- (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
+def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
+def : Pat<(i32 (anyext GR16:$src)), (MOVZX32rr16 GR16:$src)>;
// (and (i32 load), 255) -> (zextload i8)
def : Pat<(i32 (and (nvloadi32 addr:$src), (i32 255))),
@@ -3567,6 +4020,10 @@ def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
(MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
x86_subreg_8bit_hi))>,
Requires<[In32BitMode]>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
+ x86_subreg_8bit_hi))>,
+ Requires<[In32BitMode]>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
(MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD),
x86_subreg_8bit_hi))>,
@@ -3961,6 +4418,243 @@ def : Pat<(parallel (store (i32 (X86dec_flag (loadi32 addr:$dst))), addr:$dst),
(implicit EFLAGS)),
(DEC32m addr:$dst)>, Requires<[In32BitMode]>;
+// Register-Register Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR8:$src1, GR8:$src2),
+ (implicit EFLAGS)),
+ (OR8rr GR8:$src1, GR8:$src2)>;
+def : Pat<(parallel (X86or_flag GR16:$src1, GR16:$src2),
+ (implicit EFLAGS)),
+ (OR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(parallel (X86or_flag GR32:$src1, GR32:$src2),
+ (implicit EFLAGS)),
+ (OR32rr GR32:$src1, GR32:$src2)>;
+
+// Register-Memory Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR8:$src1, (loadi8 addr:$src2)),
+ (implicit EFLAGS)),
+ (OR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(parallel (X86or_flag GR16:$src1, (loadi16 addr:$src2)),
+ (implicit EFLAGS)),
+ (OR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(parallel (X86or_flag GR32:$src1, (loadi32 addr:$src2)),
+ (implicit EFLAGS)),
+ (OR32rm GR32:$src1, addr:$src2)>;
+
+// Register-Integer Or with EFLAGS result
+def : Pat<(parallel (X86or_flag GR8:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (OR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(parallel (X86or_flag GR16:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (OR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(parallel (X86or_flag GR32:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (OR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(parallel (X86or_flag GR16:$src1, i16immSExt8:$src2),
+ (implicit EFLAGS)),
+ (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(parallel (X86or_flag GR32:$src1, i32immSExt8:$src2),
+ (implicit EFLAGS)),
+ (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// Memory-Register Or with EFLAGS result
+def : Pat<(parallel (store (X86or_flag (loadi8 addr:$dst), GR8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR8mr addr:$dst, GR8:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi16 addr:$dst), GR16:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR16mr addr:$dst, GR16:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi32 addr:$dst), GR32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR32mr addr:$dst, GR32:$src2)>;
+
+// Memory-Integer Or with EFLAGS result
+def : Pat<(parallel (store (X86or_flag (loadi8 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR8mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi16 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR16mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi32 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR32mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi16 addr:$dst), i16immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR16mi8 addr:$dst, i16immSExt8:$src2)>;
+def : Pat<(parallel (store (X86or_flag (loadi32 addr:$dst), i32immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (OR32mi8 addr:$dst, i32immSExt8:$src2)>;
+
+// Register-Register XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR8:$src1, GR8:$src2),
+ (implicit EFLAGS)),
+ (XOR8rr GR8:$src1, GR8:$src2)>;
+def : Pat<(parallel (X86xor_flag GR16:$src1, GR16:$src2),
+ (implicit EFLAGS)),
+ (XOR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(parallel (X86xor_flag GR32:$src1, GR32:$src2),
+ (implicit EFLAGS)),
+ (XOR32rr GR32:$src1, GR32:$src2)>;
+
+// Register-Memory XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR8:$src1, (loadi8 addr:$src2)),
+ (implicit EFLAGS)),
+ (XOR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(parallel (X86xor_flag GR16:$src1, (loadi16 addr:$src2)),
+ (implicit EFLAGS)),
+ (XOR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(parallel (X86xor_flag GR32:$src1, (loadi32 addr:$src2)),
+ (implicit EFLAGS)),
+ (XOR32rm GR32:$src1, addr:$src2)>;
+
+// Register-Integer XOr with EFLAGS result
+def : Pat<(parallel (X86xor_flag GR8:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(parallel (X86xor_flag GR16:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(parallel (X86xor_flag GR32:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(parallel (X86xor_flag GR16:$src1, i16immSExt8:$src2),
+ (implicit EFLAGS)),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(parallel (X86xor_flag GR32:$src1, i32immSExt8:$src2),
+ (implicit EFLAGS)),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// Memory-Register XOr with EFLAGS result
+def : Pat<(parallel (store (X86xor_flag (loadi8 addr:$dst), GR8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR8mr addr:$dst, GR8:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi16 addr:$dst), GR16:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR16mr addr:$dst, GR16:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi32 addr:$dst), GR32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR32mr addr:$dst, GR32:$src2)>;
+
+// Memory-Integer XOr with EFLAGS result
+def : Pat<(parallel (store (X86xor_flag (loadi8 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR8mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi16 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR16mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi32 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR32mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi16 addr:$dst), i16immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR16mi8 addr:$dst, i16immSExt8:$src2)>;
+def : Pat<(parallel (store (X86xor_flag (loadi32 addr:$dst), i32immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (XOR32mi8 addr:$dst, i32immSExt8:$src2)>;
+
+// Register-Register And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2),
+ (implicit EFLAGS)),
+ (AND8rr GR8:$src1, GR8:$src2)>;
+def : Pat<(parallel (X86and_flag GR16:$src1, GR16:$src2),
+ (implicit EFLAGS)),
+ (AND16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(parallel (X86and_flag GR32:$src1, GR32:$src2),
+ (implicit EFLAGS)),
+ (AND32rr GR32:$src1, GR32:$src2)>;
+
+// Register-Memory And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR8:$src1, (loadi8 addr:$src2)),
+ (implicit EFLAGS)),
+ (AND8rm GR8:$src1, addr:$src2)>;
+def : Pat<(parallel (X86and_flag GR16:$src1, (loadi16 addr:$src2)),
+ (implicit EFLAGS)),
+ (AND16rm GR16:$src1, addr:$src2)>;
+def : Pat<(parallel (X86and_flag GR32:$src1, (loadi32 addr:$src2)),
+ (implicit EFLAGS)),
+ (AND32rm GR32:$src1, addr:$src2)>;
+
+// Register-Integer And with EFLAGS result
+def : Pat<(parallel (X86and_flag GR8:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (AND8ri GR8:$src1, imm:$src2)>;
+def : Pat<(parallel (X86and_flag GR16:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (AND16ri GR16:$src1, imm:$src2)>;
+def : Pat<(parallel (X86and_flag GR32:$src1, imm:$src2),
+ (implicit EFLAGS)),
+ (AND32ri GR32:$src1, imm:$src2)>;
+def : Pat<(parallel (X86and_flag GR16:$src1, i16immSExt8:$src2),
+ (implicit EFLAGS)),
+ (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(parallel (X86and_flag GR32:$src1, i32immSExt8:$src2),
+ (implicit EFLAGS)),
+ (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
+
+// Memory-Register And with EFLAGS result
+def : Pat<(parallel (store (X86and_flag (loadi8 addr:$dst), GR8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND8mr addr:$dst, GR8:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi16 addr:$dst), GR16:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND16mr addr:$dst, GR16:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi32 addr:$dst), GR32:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND32mr addr:$dst, GR32:$src2)>;
+
+// Memory-Integer And with EFLAGS result
+def : Pat<(parallel (store (X86and_flag (loadi8 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND8mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi16 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND16mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi32 addr:$dst), imm:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND32mi addr:$dst, imm:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi16 addr:$dst), i16immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND16mi8 addr:$dst, i16immSExt8:$src2)>;
+def : Pat<(parallel (store (X86and_flag (loadi32 addr:$dst), i32immSExt8:$src2),
+ addr:$dst),
+ (implicit EFLAGS)),
+ (AND32mi8 addr:$dst, i32immSExt8:$src2)>;
+
+// -disable-16bit support.
+def : Pat<(truncstorei16 (i32 imm:$src), addr:$dst),
+ (MOV16mi addr:$dst, imm:$src)>;
+def : Pat<(truncstorei16 GR32:$src, addr:$dst),
+ (MOV16mr addr:$dst, (EXTRACT_SUBREG GR32:$src, x86_subreg_16bit))>;
+def : Pat<(i32 (sextloadi16 addr:$dst)),
+ (MOVSX32rm16 addr:$dst)>;
+def : Pat<(i32 (zextloadi16 addr:$dst)),
+ (MOVZX32rm16 addr:$dst)>;
+def : Pat<(i32 (extloadi16 addr:$dst)),
+ (MOVZX32rm16 addr:$dst)>;
+
//===----------------------------------------------------------------------===//
// Floating Point Stack Support
//===----------------------------------------------------------------------===//
diff --git a/lib/Target/X86/X86InstrMMX.td b/lib/Target/X86/X86InstrMMX.td
index b79a006..ce76b4e 100644
--- a/lib/Target/X86/X86InstrMMX.td
+++ b/lib/Target/X86/X86InstrMMX.td
@@ -1,10 +1,10 @@
//====- X86InstrMMX.td - Describe the X86 Instruction Set --*- tablegen -*-===//
-//
+//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
-//
+//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 MMX instruction set, defining the instructions,
@@ -67,16 +67,18 @@ def mmx_pshufw : PatFrag<(ops node:$lhs, node:$rhs),
// MMX Multiclasses
//===----------------------------------------------------------------------===//
-let isTwoAddress = 1 in {
+let Constraints = "$src1 = $dst" in {
// MMXI_binop_rm - Simple MMX binary operator.
multiclass MMXI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit Commutable = 0> {
- def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
+ def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (OpVT (OpNode VR64:$src1, VR64:$src2)))]> {
let isCommutable = Commutable;
}
- def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2),
+ def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (OpVT (OpNode VR64:$src1,
(bitconvert
@@ -85,12 +87,14 @@ let isTwoAddress = 1 in {
multiclass MMXI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
bit Commutable = 0> {
- def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
+ def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst),
+ (ins VR64:$src1, VR64:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))]> {
let isCommutable = Commutable;
}
- def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2),
+ def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst),
+ (ins VR64:$src1, i64mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (IntId VR64:$src1,
(bitconvert (load_mmx addr:$src2))))]>;
@@ -139,8 +143,10 @@ let isTwoAddress = 1 in {
// MMX EMMS & FEMMS Instructions
//===----------------------------------------------------------------------===//
-def MMX_EMMS : MMXI<0x77, RawFrm, (outs), (ins), "emms", [(int_x86_mmx_emms)]>;
-def MMX_FEMMS : MMXI<0x0E, RawFrm, (outs), (ins), "femms", [(int_x86_mmx_femms)]>;
+def MMX_EMMS : MMXI<0x77, RawFrm, (outs), (ins), "emms",
+ [(int_x86_mmx_emms)]>;
+def MMX_FEMMS : MMXI<0x0E, RawFrm, (outs), (ins), "femms",
+ [(int_x86_mmx_femms)]>;
//===----------------------------------------------------------------------===//
// MMX Scalar Instructions
@@ -149,12 +155,14 @@ def MMX_FEMMS : MMXI<0x0E, RawFrm, (outs), (ins), "femms", [(int_x86_mmx_femms)]
// Data Transfer Instructions
def MMX_MOVD64rr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (v2i32 (scalar_to_vector GR32:$src)))]>;
+ [(set VR64:$dst,
+ (v2i32 (scalar_to_vector GR32:$src)))]>;
let canFoldAsLoad = 1, isReMaterializable = 1 in
def MMX_MOVD64rm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (v2i32 (scalar_to_vector (loadi32 addr:$src))))]>;
-let mayStore = 1 in
+ [(set VR64:$dst,
+ (v2i32 (scalar_to_vector (loadi32 addr:$src))))]>;
+let mayStore = 1 in
def MMX_MOVD64mr : MMXI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR64:$src),
"movd\t{$src, $dst|$dst, $src}", []>;
@@ -164,9 +172,16 @@ def MMX_MOVD64to64rr : MMXRI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR64:$src),
[]>;
let neverHasSideEffects = 1 in
-def MMX_MOVD64from64rr : MMXRI<0x7E, MRMSrcReg,
+// These are 64 bit moves, but since the OS X assembler doesn't
+// recognize a register-register movq, we write them as
+// movd.
+def MMX_MOVD64from64rr : MMXRI<0x7E, MRMDestReg,
(outs GR64:$dst), (ins VR64:$src),
"movd\t{$src, $dst|$dst, $src}", []>;
+def MMX_MOVD64rrv164 : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR64:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR64:$dst,
+ (v1i64 (scalar_to_vector GR64:$src)))]>;
let neverHasSideEffects = 1 in
def MMX_MOVQ64rr : MMXI<0x6F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
@@ -179,21 +194,21 @@ def MMX_MOVQ64mr : MMXI<0x7F, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (v1i64 VR64:$src), addr:$dst)]>;
-def MMX_MOVDQ2Qrr : SDIi8<0xD6, MRMDestMem, (outs VR64:$dst), (ins VR128:$src),
+def MMX_MOVDQ2Qrr : SDIi8<0xD6, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"movdq2q\t{$src, $dst|$dst, $src}",
[(set VR64:$dst,
(v1i64 (bitconvert
(i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))))))]>;
-def MMX_MOVQ2DQrr : SSDIi8<0xD6, MRMDestMem, (outs VR128:$dst), (ins VR64:$src),
+def MMX_MOVQ2DQrr : SSDIi8<0xD6, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src),
"movq2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(movl immAllZerosV,
(v2i64 (scalar_to_vector (i64 (bitconvert VR64:$src))))))]>;
let neverHasSideEffects = 1 in
-def MMX_MOVQ2FR64rr: SSDIi8<0xD6, MRMDestMem, (outs FR64:$dst), (ins VR64:$src),
+def MMX_MOVQ2FR64rr: SSDIi8<0xD6, MRMSrcReg, (outs FR64:$dst), (ins VR64:$src),
"movq2dq\t{$src, $dst|$dst, $src}", []>;
def MMX_MOVNTQmr : MMXI<0xE7, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src),
@@ -207,7 +222,8 @@ def MMX_MOVZDI2PDIrr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src),
[(set VR64:$dst,
(v2i32 (X86vzmovl (v2i32 (scalar_to_vector GR32:$src)))))]>;
let AddedComplexity = 20 in
-def MMX_MOVZDI2PDIrm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), (ins i32mem:$src),
+def MMX_MOVZDI2PDIrm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst),
+ (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR64:$dst,
(v2i32 (X86vzmovl (v2i32
@@ -265,7 +281,7 @@ defm MMX_PAND : MMXI_binop_rm_v1i64<0xDB, "pand", and, 1>;
defm MMX_POR : MMXI_binop_rm_v1i64<0xEB, "por" , or, 1>;
defm MMX_PXOR : MMXI_binop_rm_v1i64<0xEF, "pxor", xor, 1>;
-let isTwoAddress = 1 in {
+let Constraints = "$src1 = $dst" in {
def MMX_PANDNrr : MMXI<0xDF, MRMSrcReg,
(outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
"pandn\t{$src2, $dst|$dst, $src2}",
@@ -316,33 +332,33 @@ defm MMX_PCMPGTD : MMXI_binop_rm_int<0x66, "pcmpgtd", int_x86_mmx_pcmpgt_d>;
// Conversion Instructions
// -- Unpack Instructions
-let isTwoAddress = 1 in {
+let Constraints = "$src1 = $dst" in {
// Unpack High Packed Data Instructions
- def MMX_PUNPCKHBWrr : MMXI<0x68, MRMSrcReg,
+ def MMX_PUNPCKHBWrr : MMXI<0x68, MRMSrcReg,
(outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
(v8i8 (mmx_unpckh VR64:$src1, VR64:$src2)))]>;
- def MMX_PUNPCKHBWrm : MMXI<0x68, MRMSrcMem,
+ def MMX_PUNPCKHBWrm : MMXI<0x68, MRMSrcMem,
(outs VR64:$dst), (ins VR64:$src1, i64mem:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
(v8i8 (mmx_unpckh VR64:$src1,
(bc_v8i8 (load_mmx addr:$src2)))))]>;
- def MMX_PUNPCKHWDrr : MMXI<0x69, MRMSrcReg,
+ def MMX_PUNPCKHWDrr : MMXI<0x69, MRMSrcReg,
(outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
(v4i16 (mmx_unpckh VR64:$src1, VR64:$src2)))]>;
- def MMX_PUNPCKHWDrm : MMXI<0x69, MRMSrcMem,
+ def MMX_PUNPCKHWDrm : MMXI<0x69, MRMSrcMem,
(outs VR64:$dst), (ins VR64:$src1, i64mem:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
(v4i16 (mmx_unpckh VR64:$src1,
(bc_v4i16 (load_mmx addr:$src2)))))]>;
- def MMX_PUNPCKHDQrr : MMXI<0x6A, MRMSrcReg,
+ def MMX_PUNPCKHDQrr : MMXI<0x6A, MRMSrcReg,
(outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
"punpckhdq\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
@@ -379,12 +395,12 @@ let isTwoAddress = 1 in {
(v4i16 (mmx_unpckl VR64:$src1,
(bc_v4i16 (load_mmx addr:$src2)))))]>;
- def MMX_PUNPCKLDQrr : MMXI<0x62, MRMSrcReg,
+ def MMX_PUNPCKLDQrr : MMXI<0x62, MRMSrcReg,
(outs VR64:$dst), (ins VR64:$src1, VR64:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
(v2i32 (mmx_unpckl VR64:$src1, VR64:$src2)))]>;
- def MMX_PUNPCKLDQrm : MMXI<0x62, MRMSrcMem,
+ def MMX_PUNPCKLDQrm : MMXI<0x62, MRMSrcMem,
(outs VR64:$dst), (ins VR64:$src1, i64mem:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR64:$dst,
@@ -415,19 +431,22 @@ let neverHasSideEffects = 1 in {
def MMX_CVTPD2PIrr : MMX2I<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvtpd2pi\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
-def MMX_CVTPD2PIrm : MMX2I<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
+def MMX_CVTPD2PIrm : MMX2I<0x2D, MRMSrcMem, (outs VR64:$dst),
+ (ins f128mem:$src),
"cvtpd2pi\t{$src, $dst|$dst, $src}", []>;
def MMX_CVTPI2PDrr : MMX2I<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
-def MMX_CVTPI2PDrm : MMX2I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+def MMX_CVTPI2PDrm : MMX2I<0x2A, MRMSrcMem, (outs VR128:$dst),
+ (ins i64mem:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}", []>;
def MMX_CVTPI2PSrr : MMXI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src),
"cvtpi2ps\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
-def MMX_CVTPI2PSrm : MMXI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+def MMX_CVTPI2PSrm : MMXI<0x2A, MRMSrcMem, (outs VR128:$dst),
+ (ins i64mem:$src),
"cvtpi2ps\t{$src, $dst|$dst, $src}", []>;
def MMX_CVTPS2PIrr : MMXI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
@@ -439,7 +458,8 @@ def MMX_CVTPS2PIrm : MMXI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src),
def MMX_CVTTPD2PIrr : MMX2I<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
-def MMX_CVTTPD2PIrm : MMX2I<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
+def MMX_CVTTPD2PIrm : MMX2I<0x2C, MRMSrcMem, (outs VR64:$dst),
+ (ins f128mem:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}", []>;
def MMX_CVTTPS2PIrr : MMXI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
@@ -459,14 +479,16 @@ def MMX_PEXTRWri : MMXIi8<0xC5, MRMSrcReg,
"pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (MMX_X86pextrw (v4i16 VR64:$src1),
(iPTR imm:$src2)))]>;
-let isTwoAddress = 1 in {
+let Constraints = "$src1 = $dst" in {
def MMX_PINSRWrri : MMXIi8<0xC4, MRMSrcReg,
- (outs VR64:$dst), (ins VR64:$src1, GR32:$src2, i16i8imm:$src3),
+ (outs VR64:$dst), (ins VR64:$src1, GR32:$src2,
+ i16i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR64:$dst, (v4i16 (MMX_X86pinsrw (v4i16 VR64:$src1),
- GR32:$src2, (iPTR imm:$src3))))]>;
+ GR32:$src2,(iPTR imm:$src3))))]>;
def MMX_PINSRWrmi : MMXIi8<0xC4, MRMSrcMem,
- (outs VR64:$dst), (ins VR64:$src1, i16mem:$src2, i16i8imm:$src3),
+ (outs VR64:$dst), (ins VR64:$src1, i16mem:$src2,
+ i16i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR64:$dst,
(v4i16 (MMX_X86pinsrw (v4i16 VR64:$src1),
@@ -494,7 +516,7 @@ def MMX_MASKMOVQ64: MMXI64<0xF7, MRMSrcReg, (outs), (ins VR64:$src, VR64:$mask),
//===----------------------------------------------------------------------===//
// Alias instructions that map zero vector to pxor.
-let isReMaterializable = 1 in {
+let isReMaterializable = 1, isCodeGenOnly = 1 in {
def MMX_V_SET0 : MMXI<0xEF, MRMInitReg, (outs VR64:$dst), (ins),
"pxor\t$dst, $dst",
[(set VR64:$dst, (v2i32 immAllZerosV))]>;
@@ -579,7 +601,7 @@ def : Pat<(f64 (bitconvert (v8i8 VR64:$src))),
let AddedComplexity = 20 in {
def : Pat<(v2i32 (X86vzmovl (bc_v2i32 (load_mmx addr:$src)))),
- (MMX_MOVZDI2PDIrm addr:$src)>;
+ (MMX_MOVZDI2PDIrm addr:$src)>;
}
// Clear top half.
@@ -657,6 +679,33 @@ def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))))),
(v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
+// Patterns for vector comparisons
+def : Pat<(v8i8 (X86pcmpeqb VR64:$src1, VR64:$src2)),
+ (MMX_PCMPEQBrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v8i8 (X86pcmpeqb VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPEQBrm VR64:$src1, addr:$src2)>;
+def : Pat<(v4i16 (X86pcmpeqw VR64:$src1, VR64:$src2)),
+ (MMX_PCMPEQWrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v4i16 (X86pcmpeqw VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPEQWrm VR64:$src1, addr:$src2)>;
+def : Pat<(v2i32 (X86pcmpeqd VR64:$src1, VR64:$src2)),
+ (MMX_PCMPEQDrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v2i32 (X86pcmpeqd VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPEQDrm VR64:$src1, addr:$src2)>;
+
+def : Pat<(v8i8 (X86pcmpgtb VR64:$src1, VR64:$src2)),
+ (MMX_PCMPGTBrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v8i8 (X86pcmpgtb VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPGTBrm VR64:$src1, addr:$src2)>;
+def : Pat<(v4i16 (X86pcmpgtw VR64:$src1, VR64:$src2)),
+ (MMX_PCMPGTWrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v4i16 (X86pcmpgtw VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPGTWrm VR64:$src1, addr:$src2)>;
+def : Pat<(v2i32 (X86pcmpgtd VR64:$src1, VR64:$src2)),
+ (MMX_PCMPGTDrr VR64:$src1, VR64:$src2)>;
+def : Pat<(v2i32 (X86pcmpgtd VR64:$src1, (bitconvert (load_mmx addr:$src2)))),
+ (MMX_PCMPGTDrm VR64:$src1, addr:$src2)>;
+
// CMOV* - Used to implement the SELECT DAG operation. Expanded by the
// scheduler into a branch sequence.
// These are expanded by the scheduler.
diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td
index 5d6ef36..96fc932 100644
--- a/lib/Target/X86/X86InstrSSE.td
+++ b/lib/Target/X86/X86InstrSSE.td
@@ -1,10 +1,10 @@
//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===//
-//
+//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
-//
+//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
@@ -36,22 +36,22 @@ def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>;
def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>;
def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>;
-def X86pshufb : SDNode<"X86ISD::PSHUFB",
+def X86pshufb : SDNode<"X86ISD::PSHUFB",
SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86pextrb : SDNode<"X86ISD::PEXTRB",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pextrw : SDNode<"X86ISD::PEXTRW",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
-def X86pinsrb : SDNode<"X86ISD::PINSRB",
+def X86pinsrb : SDNode<"X86ISD::PINSRB",
SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
-def X86pinsrw : SDNode<"X86ISD::PINSRW",
+def X86pinsrw : SDNode<"X86ISD::PINSRW",
SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
-def X86insrtps : SDNode<"X86ISD::INSERTPS",
+def X86insrtps : SDNode<"X86ISD::INSERTPS",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
- SDTCisVT<2, f32>, SDTCisPtrTy<3>]>>;
+ SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad,
@@ -69,6 +69,10 @@ def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>;
def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>;
def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>;
+def SDTX86CmpPTest : SDTypeProfile<0, 2, [SDTCisVT<0, v4f32>,
+ SDTCisVT<1, v4f32>]>;
+def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>;
+
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
@@ -83,11 +87,13 @@ def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [],
def ssmem : Operand<v4f32> {
let PrintMethod = "printf32mem";
- let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm, i8imm);
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
def sdmem : Operand<v2f64> {
let PrintMethod = "printf64mem";
- let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm, i8imm);
+ let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
+ let ParserMatchClass = X86MemAsmOperand;
}
//===----------------------------------------------------------------------===//
@@ -179,13 +185,13 @@ def SHUFFLE_get_shuf_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShuffleSHUFImmediate(N));
}]>;
-// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to
+// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;
-// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to
+// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
@@ -360,25 +366,25 @@ def Int_CVTPS2PIrr : PSI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
[(set VR64:$dst, (int_x86_sse_cvtps2pi VR128:$src))]>;
def Int_CVTPS2PIrm : PSI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src),
"cvtps2pi\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (int_x86_sse_cvtps2pi
+ [(set VR64:$dst, (int_x86_sse_cvtps2pi
(load addr:$src)))]>;
def Int_CVTTPS2PIrr: PSI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvttps2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttps2pi VR128:$src))]>;
def Int_CVTTPS2PIrm: PSI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src),
"cvttps2pi\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (int_x86_sse_cvttps2pi
+ [(set VR64:$dst, (int_x86_sse_cvttps2pi
(load addr:$src)))]>;
let Constraints = "$src1 = $dst" in {
- def Int_CVTPI2PSrr : PSI<0x2A, MRMSrcReg,
+ def Int_CVTPI2PSrr : PSI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR64:$src2),
"cvtpi2ps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1,
VR64:$src2))]>;
- def Int_CVTPI2PSrm : PSI<0x2A, MRMSrcMem,
+ def Int_CVTPI2PSrm : PSI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtpi2ps\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1,
+ [(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1,
(load addr:$src2)))]>;
}
@@ -407,11 +413,11 @@ let Constraints = "$src1 = $dst" in {
// Comparison instructions
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
- def CMPSSrr : SSIi8<0xC2, MRMSrcReg,
+ def CMPSSrr : SSIi8<0xC2, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, FR32:$src, SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
- def CMPSSrm : SSIi8<0xC2, MRMSrcMem,
+ def CMPSSrm : SSIi8<0xC2, MRMSrcMem,
(outs FR32:$dst), (ins FR32:$src1, f32mem:$src, SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
}
@@ -428,13 +434,15 @@ def UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins FR32:$src1, f32mem:$src2),
// Aliases to match intrinsics which expect XMM operand(s).
let Constraints = "$src1 = $dst" in {
- def Int_CMPSSrr : SSIi8<0xC2, MRMSrcReg,
- (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
+ def Int_CMPSSrr : SSIi8<0xC2, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src,
+ SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
- VR128:$src, imm:$cc))]>;
- def Int_CMPSSrm : SSIi8<0xC2, MRMSrcMem,
- (outs VR128:$dst), (ins VR128:$src1, f32mem:$src, SSECC:$cc),
+ VR128:$src, imm:$cc))]>;
+ def Int_CMPSSrm : SSIi8<0xC2, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f32mem:$src,
+ SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
(load addr:$src), imm:$cc))]>;
@@ -460,18 +468,19 @@ def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
-// Aliases of packed SSE1 instructions for scalar use. These all have names that
-// start with 'Fs'.
+// Aliases of packed SSE1 instructions for scalar use. These all have names
+// that start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
-let isReMaterializable = 1, isAsCheapAsAMove = 1 in
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
+ canFoldAsLoad = 1 in
def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins),
"pxor\t$dst, $dst", [(set FR32:$dst, fp32imm0)]>,
Requires<[HasSSE1]>, TB, OpSize;
// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are
// disregarded.
-let neverHasSideEffects = 1 in
+let neverHasSideEffects = 1 in
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
"movaps\t{$src, $dst|$dst, $src}", []>;
@@ -552,7 +561,7 @@ multiclass basic_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
(ins FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
-
+
// Vector operation, reg+reg.
def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
@@ -616,7 +625,7 @@ multiclass sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
(ins FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
-
+
// Vector operation, reg+reg.
def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
@@ -671,7 +680,7 @@ defm MIN : sse1_fp_binop_rm<0x5D, "min", X86fmin,
// SSE packed FP Instructions
// Move Instructions
-let neverHasSideEffects = 1 in
+let neverHasSideEffects = 1 in
def MOVAPSrr : PSI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in
@@ -708,13 +717,13 @@ let Constraints = "$src1 = $dst" in {
def MOVLPSrm : PSI<0x12, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movlps\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(movlp VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>;
def MOVHPSrm : PSI<0x16, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movhps\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(movhp VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>;
} // AddedComplexity
@@ -789,7 +798,7 @@ multiclass sse1_fp_unop_rm<bits<8> opc, string OpcodeStr,
def SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode (load addr:$src)))]>;
-
+
// Vector operation, reg.
def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
@@ -890,12 +899,12 @@ let Constraints = "$src1 = $dst" in {
}
let Constraints = "$src1 = $dst" in {
- def CMPPSrri : PSIi8<0xC2, MRMSrcReg,
+ def CMPPSrri : PSIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
VR128:$src, imm:$cc))]>;
- def CMPPSrmi : PSIi8<0xC2, MRMSrcMem,
+ def CMPPSrmi : PSIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
@@ -909,13 +918,13 @@ def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
// Shuffle and unpack instructions
let Constraints = "$src1 = $dst" in {
let isConvertibleToThreeAddress = 1 in // Convert to pshufd
- def SHUFPSrri : PSIi8<0xC6, MRMSrcReg,
+ def SHUFPSrri : PSIi8<0xC6, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
VR128:$src2, i8imm:$src3),
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v4f32 (shufp:$src3 VR128:$src1, VR128:$src2)))]>;
- def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem,
+ def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
f128mem:$src2, i8imm:$src3),
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
@@ -924,24 +933,24 @@ let Constraints = "$src1 = $dst" in {
VR128:$src1, (memopv4f32 addr:$src2))))]>;
let AddedComplexity = 10 in {
- def UNPCKHPSrr : PSI<0x15, MRMSrcReg,
+ def UNPCKHPSrr : PSI<0x15, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpckhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckh VR128:$src1, VR128:$src2)))]>;
- def UNPCKHPSrm : PSI<0x15, MRMSrcMem,
+ def UNPCKHPSrm : PSI<0x15, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpckhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckh VR128:$src1,
(memopv4f32 addr:$src2))))]>;
- def UNPCKLPSrr : PSI<0x14, MRMSrcReg,
+ def UNPCKLPSrr : PSI<0x14, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpcklps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckl VR128:$src1, VR128:$src2)))]>;
- def UNPCKLPSrm : PSI<0x14, MRMSrcMem,
+ def UNPCKLPSrm : PSI<0x14, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpcklps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
@@ -984,7 +993,8 @@ def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
-let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1 in
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isCodeGenOnly = 1 in
def V_SET0 : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins),
"xorps\t$dst, $dst",
[(set VR128:$dst, (v4i32 immAllZerosV))]>;
@@ -1046,14 +1056,14 @@ let AddedComplexity = 20 in
def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (X86vzmovl (v4f32 (scalar_to_vector
- (loadf32 addr:$src))))))]>;
+ (loadf32 addr:$src))))))]>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(MOVZSS2PSrm addr:$src)>;
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// SSE2 Instructions
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// Move Instructions
let neverHasSideEffects = 1 in
@@ -1077,7 +1087,7 @@ def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f64mem:$src),
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))]>;
-def CVTSD2SSrm : SDI<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
+def CVTSD2SSrm : SDI<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))]>;
def CVTSI2SDrr : SDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR32:$src),
@@ -1087,6 +1097,27 @@ def CVTSI2SDrm : SDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i32mem:$src),
"cvtsi2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
+def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
+def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
+def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
+def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
+def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}", []>;
+def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}", []>;
+def CVTDQ2PSrr : PSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtdq2ps\t{$src, $dst|$dst, $src}", []>;
+def CVTDQ2PSrm : PSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtdq2ps\t{$src, $dst|$dst, $src}", []>;
+def COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
+ "comisd\t{$src2, $src1|$src1, $src2}", []>;
+def COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
+ "comisd\t{$src2, $src1|$src1, $src2}", []>;
+
// SSE2 instructions with XS prefix
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
@@ -1112,21 +1143,21 @@ def Int_CVTPD2PIrr : PDI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
[(set VR64:$dst, (int_x86_sse_cvtpd2pi VR128:$src))]>;
def Int_CVTPD2PIrm : PDI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
"cvtpd2pi\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (int_x86_sse_cvtpd2pi
+ [(set VR64:$dst, (int_x86_sse_cvtpd2pi
(memop addr:$src)))]>;
def Int_CVTTPD2PIrr: PDI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttpd2pi VR128:$src))]>;
def Int_CVTTPD2PIrm: PDI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}",
- [(set VR64:$dst, (int_x86_sse_cvttpd2pi
+ [(set VR64:$dst, (int_x86_sse_cvttpd2pi
(memop addr:$src)))]>;
def Int_CVTPI2PDrr : PDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cvtpi2pd VR64:$src))]>;
def Int_CVTPI2PDrm : PDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}",
- [(set VR128:$dst, (int_x86_sse_cvtpi2pd
+ [(set VR128:$dst, (int_x86_sse_cvtpi2pd
(load addr:$src)))]>;
// Aliases for intrinsics
@@ -1141,11 +1172,11 @@ def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src),
// Comparison instructions
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
- def CMPSDrr : SDIi8<0xC2, MRMSrcReg,
+ def CMPSDrr : SDIi8<0xC2, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, FR64:$src, SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
- def CMPSDrm : SDIi8<0xC2, MRMSrcMem,
+ def CMPSDrm : SDIi8<0xC2, MRMSrcMem,
(outs FR64:$dst), (ins FR64:$src1, f64mem:$src, SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
}
@@ -1162,13 +1193,15 @@ def UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs), (ins FR64:$src1, f64mem:$src2),
// Aliases to match intrinsics which expect XMM operand(s).
let Constraints = "$src1 = $dst" in {
- def Int_CMPSDrr : SDIi8<0xC2, MRMSrcReg,
- (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
+ def Int_CMPSDrr : SDIi8<0xC2, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src,
+ SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
VR128:$src, imm:$cc))]>;
- def Int_CMPSDrm : SDIi8<0xC2, MRMSrcMem,
- (outs VR128:$dst), (ins VR128:$src1, f64mem:$src, SSECC:$cc),
+ def Int_CMPSDrm : SDIi8<0xC2, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src,
+ SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
(load addr:$src), imm:$cc))]>;
@@ -1194,11 +1227,12 @@ def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
-// Aliases of packed SSE2 instructions for scalar use. These all have names that
-// start with 'Fs'.
+// Aliases of packed SSE2 instructions for scalar use. These all have names
+// that start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
-let isReMaterializable = 1, isAsCheapAsAMove = 1 in
+let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
+ canFoldAsLoad = 1 in
def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins),
"pxor\t$dst, $dst", [(set FR64:$dst, fpimm0)]>,
Requires<[HasSSE2]>, TB, OpSize;
@@ -1286,7 +1320,7 @@ multiclass basic_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
(ins FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
-
+
// Vector operation, reg+reg.
def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
@@ -1350,7 +1384,7 @@ multiclass sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
(ins FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
-
+
// Vector operation, reg+reg.
def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
@@ -1402,7 +1436,7 @@ defm MAX : sse2_fp_binop_rm<0x5F, "max", X86fmax,
defm MIN : sse2_fp_binop_rm<0x5D, "min", X86fmin,
int_x86_sse2_min_sd, int_x86_sse2_min_pd>;
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// SSE packed FP Instructions
// Move Instructions
@@ -1442,13 +1476,13 @@ let Constraints = "$src1 = $dst" in {
def MOVLPDrm : PDI<0x12, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movlpd\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(v2f64 (movlp VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))]>;
def MOVHPDrm : PDI<0x16, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movhpd\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(v2f64 (movhp VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))]>;
} // AddedComplexity
@@ -1564,7 +1598,7 @@ def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg,
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
VR128:$src2))]>;
def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem,
- (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
(load addr:$src2)))]>;
@@ -1612,7 +1646,7 @@ multiclass sse2_fp_unop_rm<bits<8> opc, string OpcodeStr,
def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode (load addr:$src)))]>;
-
+
// Vector operation, reg.
def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
@@ -1712,12 +1746,12 @@ let Constraints = "$src1 = $dst" in {
}
let Constraints = "$src1 = $dst" in {
- def CMPPDrri : PDIi8<0xC2, MRMSrcReg,
+ def CMPPDrri : PDIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
VR128:$src, imm:$cc))]>;
- def CMPPDrmi : PDIi8<0xC2, MRMSrcMem,
+ def CMPPDrmi : PDIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
@@ -1730,12 +1764,12 @@ def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
// Shuffle and unpack instructions
let Constraints = "$src1 = $dst" in {
- def SHUFPDrri : PDIi8<0xC6, MRMSrcReg,
+ def SHUFPDrri : PDIi8<0xC6, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3),
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v2f64 (shufp:$src3 VR128:$src1, VR128:$src2)))]>;
- def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem,
+ def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
f128mem:$src2, i8imm:$src3),
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
@@ -1744,24 +1778,24 @@ let Constraints = "$src1 = $dst" in {
VR128:$src1, (memopv2f64 addr:$src2))))]>;
let AddedComplexity = 10 in {
- def UNPCKHPDrr : PDI<0x15, MRMSrcReg,
+ def UNPCKHPDrr : PDI<0x15, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpckhpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckh VR128:$src1, VR128:$src2)))]>;
- def UNPCKHPDrm : PDI<0x15, MRMSrcMem,
+ def UNPCKHPDrm : PDI<0x15, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpckhpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckh VR128:$src1,
(memopv2f64 addr:$src2))))]>;
- def UNPCKLPDrr : PDI<0x14, MRMSrcReg,
+ def UNPCKLPDrr : PDI<0x14, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpcklpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckl VR128:$src1, VR128:$src2)))]>;
- def UNPCKLPDrm : PDI<0x14, MRMSrcMem,
+ def UNPCKLPDrm : PDI<0x14, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpcklpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
@@ -1770,7 +1804,7 @@ let Constraints = "$src1 = $dst" in {
} // Constraints = "$src1 = $dst"
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// SSE integer instructions
// Move Instructions
@@ -1825,14 +1859,17 @@ multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr,
Intrinsic IntId, Intrinsic IntId2> {
- def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1,
+ VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
- def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,
+ i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
- (bitconvert (memopv2i64 addr:$src2))))]>;
- def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
+ (bitconvert (memopv2i64 addr:$src2))))]>;
+ def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst), (ins VR128:$src1,
+ i32i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId2 VR128:$src1, (i32 imm:$src2)))]>;
}
@@ -1840,15 +1877,17 @@ multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit Commutable = 0> {
- def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1,
+ VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
- def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,
+ i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1,
- (bitconvert (memopv2i64 addr:$src2)))))]>;
+ (bitconvert (memopv2i64 addr:$src2)))))]>;
}
/// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64.
@@ -1858,14 +1897,17 @@ multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
///
multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit Commutable = 0> {
- def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
- def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
+ def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
- [(set VR128:$dst, (OpNode VR128:$src1,(memopv2i64 addr:$src2)))]>;
+ [(set VR128:$dst, (OpNode VR128:$src1,
+ (memopv2i64 addr:$src2)))]>;
}
} // Constraints = "$src1 = $dst"
@@ -2029,8 +2071,8 @@ def PSHUFDmi : PDIi8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
"pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v4i32 (pshufd:$src2
- (bc_v4i32(memopv2i64 addr:$src1)),
- (undef))))]>;
+ (bc_v4i32(memopv2i64 addr:$src1)),
+ (undef))))]>;
// SSE2 with ImmT == Imm8 and XS prefix.
def PSHUFHWri : Ii8<0x70, MRMSrcReg,
@@ -2043,8 +2085,8 @@ def PSHUFHWmi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
"pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (pshufhw:$src2
- (bc_v8i16 (memopv2i64 addr:$src1)),
- (undef))))]>,
+ (bc_v8i16 (memopv2i64 addr:$src1)),
+ (undef))))]>,
XS, Requires<[HasSSE2]>;
// SSE2 with ImmT == Imm8 and XD prefix.
@@ -2064,90 +2106,90 @@ def PSHUFLWmi : Ii8<0x70, MRMSrcMem,
let Constraints = "$src1 = $dst" in {
- def PUNPCKLBWrr : PDI<0x60, MRMSrcReg,
+ def PUNPCKLBWrr : PDI<0x60, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (unpckl VR128:$src1, VR128:$src2)))]>;
- def PUNPCKLBWrm : PDI<0x60, MRMSrcMem,
+ def PUNPCKLBWrm : PDI<0x60, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2))))]>;
- def PUNPCKLWDrr : PDI<0x61, MRMSrcReg,
+ def PUNPCKLWDrr : PDI<0x61, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (unpckl VR128:$src1, VR128:$src2)))]>;
- def PUNPCKLWDrm : PDI<0x61, MRMSrcMem,
+ def PUNPCKLWDrm : PDI<0x61, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2))))]>;
- def PUNPCKLDQrr : PDI<0x62, MRMSrcReg,
+ def PUNPCKLDQrr : PDI<0x62, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (unpckl VR128:$src1, VR128:$src2)))]>;
- def PUNPCKLDQrm : PDI<0x62, MRMSrcMem,
+ def PUNPCKLDQrm : PDI<0x62, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2))))]>;
- def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
+ def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1, VR128:$src2)))]>;
- def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
+ def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1,
(memopv2i64 addr:$src2))))]>;
-
- def PUNPCKHBWrr : PDI<0x68, MRMSrcReg,
+
+ def PUNPCKHBWrr : PDI<0x68, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (unpckh VR128:$src1, VR128:$src2)))]>;
- def PUNPCKHBWrm : PDI<0x68, MRMSrcMem,
+ def PUNPCKHBWrm : PDI<0x68, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
- [(set VR128:$dst,
- (unpckh VR128:$src1,
+ [(set VR128:$dst,
+ (unpckh VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2))))]>;
- def PUNPCKHWDrr : PDI<0x69, MRMSrcReg,
+ def PUNPCKHWDrr : PDI<0x69, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (unpckh VR128:$src1, VR128:$src2)))]>;
- def PUNPCKHWDrm : PDI<0x69, MRMSrcMem,
+ def PUNPCKHWDrm : PDI<0x69, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckh VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2))))]>;
- def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg,
+ def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (unpckh VR128:$src1, VR128:$src2)))]>;
- def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem,
+ def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckh VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2))))]>;
- def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
+ def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1, VR128:$src2)))]>;
- def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
+ def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
@@ -2172,7 +2214,7 @@ let Constraints = "$src1 = $dst" in {
(outs VR128:$dst), (ins VR128:$src1,
i16mem:$src2, i32i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
imm:$src3))]>;
}
@@ -2202,7 +2244,7 @@ def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
[(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>;
def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movnti\t{$src, $dst|$dst, $src}",
- [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>,
+ [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>,
TB, Requires<[HasSSE2]>;
// Flush cache
@@ -2217,17 +2259,18 @@ def MFENCE : I<0xAE, MRM6r, (outs), (ins),
"mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>;
//TODO: custom lower this so as to never even generate the noop
-def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
+def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
(i8 0)), (NOOP)>;
def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
-def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
+def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
(i8 1)), (MFENCE)>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-ones value if folding it would be beneficial.
-let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1 in
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isCodeGenOnly = 1 in
def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins),
"pcmpeqd\t$dst, $dst",
[(set VR128:$dst, (v4i32 immAllOnesV))]>;
@@ -2240,7 +2283,7 @@ def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR64:$src),
(v2f64 (scalar_to_vector FR64:$src)))]>;
def MOVSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"movsd\t{$src, $dst|$dst, $src}",
- [(set VR128:$dst,
+ [(set VR128:$dst,
(v2f64 (scalar_to_vector (loadf64 addr:$src))))]>;
def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
@@ -2399,9 +2442,9 @@ def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))),
(MOVZPQILo2PQIrm addr:$src)>;
}
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// SSE3 Instructions
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// Move Instructions
def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
@@ -2525,9 +2568,9 @@ let AddedComplexity = 20 in
def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))),
(MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>;
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// SSSE3 Instructions
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
/// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8.
multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr,
@@ -2801,12 +2844,13 @@ def : Pat<(X86pshufb VR128:$src, VR128:$mask),
def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))),
(PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>;
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
// Non-Instruction Patterns
-//===----------------------------------------------------------------------===//
+//===---------------------------------------------------------------------===//
-// extload f32 -> f64. This matches load+fextend because we have a hack in
-// the isel (PreprocessForFPConvert) that can introduce loads after dag combine.
+// extload f32 -> f64. This matches load+fextend because we have a hack in
+// the isel (PreprocessForFPConvert) that can introduce loads after dag
+// combine.
// Since these loads aren't folded into the fextend, we have to match it
// explicitly here.
let Predicates = [HasSSE2] in
@@ -2884,12 +2928,12 @@ def : Pat<(v4f32 (pshufd:$src2 VR128:$src1, (undef))),
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2i64 (pshufd:$src3 VR128:$src1, (undef))),
- (SHUFPDrri VR128:$src1, VR128:$src1,
+ (SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2f64 (pshufd:$src3 VR128:$src1, (undef))),
- (SHUFPDrri VR128:$src1, VR128:$src1,
+ (SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Unary v4f32 shuffle with PSHUF* in order to fold a load.
@@ -2899,16 +2943,16 @@ def : Pat<(pshufd:$src2 (bc_v4i32 (memopv4f32 addr:$src1)), (undef)),
// Special binary v4i32 shuffle cases with SHUFPS.
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (v4i32 VR128:$src2))),
- (SHUFPSrri VR128:$src1, VR128:$src2,
+ (SHUFPSrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))),
- (SHUFPSrmi VR128:$src1, addr:$src2,
+ (SHUFPSrmi VR128:$src1, addr:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special binary v2i64 shuffle cases using SHUFPDrri.
def : Pat<(v2i64 (shufp:$src3 VR128:$src1, VR128:$src2)),
- (SHUFPDrri VR128:$src1, VR128:$src2,
+ (SHUFPDrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
@@ -3030,7 +3074,7 @@ def : Pat<(v4i32 (movlp VR128:$src1, VR128:$src2)),
// vector_shuffle v1, v2 <4, 5, 2, 3> using SHUFPSrri (we prefer movsd, but
// fall back to this for SSE1)
def : Pat<(v4f32 (movlp:$src3 VR128:$src1, (v4f32 VR128:$src2))),
- (SHUFPSrri VR128:$src2, VR128:$src1,
+ (SHUFPSrri VR128:$src2, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE1]>;
// Set lowest element and zero upper elements.
@@ -3097,7 +3141,7 @@ def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
-
+
//===----------------------------------------------------------------------===//
// SSE4.1 Instructions
//===----------------------------------------------------------------------===//
@@ -3108,7 +3152,7 @@ multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd,
Intrinsic V2F64Int> {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
- def PSr_Int : SS4AIi8<opcps, MRMSrcReg,
+ def PSr_Int : SS4AIi8<opcps, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
@@ -3149,41 +3193,41 @@ multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
Intrinsic F64Int> {
// Intrinsic operation, reg.
def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
- (outs VR128:$dst),
+ (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(F32Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
- def SSm_Int : SS4AIi8<opcss, MRMSrcMem,
- (outs VR128:$dst),
+ def SSm_Int : SS4AIi8<opcss, MRMSrcMem,
+ (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, reg.
def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
- (outs VR128:$dst),
+ (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(F64Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
def SDm_Int : SS4AIi8<opcsd, MRMSrcMem,
- (outs VR128:$dst),
+ (outs VR128:$dst),
(ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
OpSize;
}
@@ -3302,9 +3346,9 @@ let Constraints = "$src1 = $dst" in {
Intrinsic IntId128, bit Commutable = 0> {
def rri : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(IntId128 VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize {
let isCommutable = Commutable;
@@ -3339,7 +3383,7 @@ let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>,
OpSize;
@@ -3471,13 +3515,13 @@ def : Pat<(int_x86_sse41_pmovzxbq
multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst, (X86pextrb (v16i8 VR128:$src1), imm:$src2))]>,
OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
@@ -3492,7 +3536,7 @@ defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
@@ -3507,13 +3551,13 @@ defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (v4i32 VR128:$src1), imm:$src2))]>, OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v4i32 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize;
@@ -3527,14 +3571,14 @@ defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>,
OpSize;
- def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins f32mem:$dst, VR128:$src1, i32i8imm:$src2),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
addr:$dst)]>, OpSize;
@@ -3553,15 +3597,15 @@ let Constraints = "$src1 = $dst" in {
multiclass SS41I_insert8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(X86pinsrb VR128:$src1, GR32:$src2, imm:$src3))]>, OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i8mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
imm:$src3))]>, OpSize;
}
@@ -3573,16 +3617,16 @@ let Constraints = "$src1 = $dst" in {
multiclass SS41I_insert32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
- !strconcat(OpcodeStr,
+ !strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i32mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
+ [(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
imm:$src3)))]>, OpSize;
}
@@ -3590,37 +3634,57 @@ let Constraints = "$src1 = $dst" in {
defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
+// insertps has a few different modes, there's the first two here below which
+// are optimized inserts that won't zero arbitrary elements in the destination
+// vector. The next one matches the intrinsic and could zero arbitrary elements
+// in the target vector.
let Constraints = "$src1 = $dst" in {
multiclass SS41I_insertf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
- (ins VR128:$src1, FR32:$src2, i32i8imm:$src3),
- !strconcat(OpcodeStr,
+ (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
+ !strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
- (X86insrtps VR128:$src1, FR32:$src2, imm:$src3))]>, OpSize;
+ [(set VR128:$dst,
+ (X86insrtps VR128:$src1, VR128:$src2, imm:$src3))]>,
+ OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
- [(set VR128:$dst,
- (X86insrtps VR128:$src1, (loadf32 addr:$src2),
+ [(set VR128:$dst,
+ (X86insrtps VR128:$src1,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))]>, OpSize;
}
}
defm INSERTPS : SS41I_insertf32<0x21, "insertps">;
+def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3),
+ (INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>;
+
+// ptest instruction we'll lower to this in X86ISelLowering primarily from
+// the intel intrinsic that corresponds to this.
let Defs = [EFLAGS] in {
def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
- "ptest \t{$src2, $src1|$src1, $src2}", []>, OpSize;
+ "ptest \t{$src2, $src1|$src1, $src2}",
+ [(X86ptest VR128:$src1, VR128:$src2),
+ (implicit EFLAGS)]>, OpSize;
def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2),
- "ptest \t{$src2, $src1|$src1, $src2}", []>, OpSize;
+ "ptest \t{$src2, $src1|$src1, $src2}",
+ [(X86ptest VR128:$src1, (load addr:$src2)),
+ (implicit EFLAGS)]>, OpSize;
}
def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 Instructions
+//===----------------------------------------------------------------------===//
+
/// SS42I_binop_rm_int - Simple SSE 4.2 binary operator
let Constraints = "$src1 = $dst" in {
multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr,
@@ -3647,3 +3711,171 @@ def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)),
(PCMPGTQrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))),
(PCMPGTQrm VR128:$src1, addr:$src2)>;
+
+// crc intrinsic instruction
+// This set of instructions are only rm, the only difference is the size
+// of r and m.
+let Constraints = "$src1 = $dst" in {
+ def CRC32m8 : SS42FI<0xF0, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src1, i8mem:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_8 GR32:$src1,
+ (load addr:$src2)))]>, OpSize;
+ def CRC32r8 : SS42FI<0xF0, MRMSrcReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR8:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_8 GR32:$src1, GR8:$src2))]>,
+ OpSize;
+ def CRC32m16 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src1, i16mem:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_16 GR32:$src1,
+ (load addr:$src2)))]>,
+ OpSize;
+ def CRC32r16 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR16:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_16 GR32:$src1, GR16:$src2))]>,
+ OpSize;
+ def CRC32m32 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src1, i32mem:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_32 GR32:$src1,
+ (load addr:$src2)))]>, OpSize;
+ def CRC32r32 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
+ (ins GR32:$src1, GR32:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR32:$dst,
+ (int_x86_sse42_crc32_32 GR32:$src1, GR32:$src2))]>,
+ OpSize;
+ def CRC64m64 : SS42FI<0xF0, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$src1, i64mem:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR64:$dst,
+ (int_x86_sse42_crc32_64 GR64:$src1,
+ (load addr:$src2)))]>,
+ OpSize, REX_W;
+ def CRC64r64 : SS42FI<0xF0, MRMSrcReg, (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2),
+ "crc32 \t{$src2, $src1|$src1, $src2}",
+ [(set GR64:$dst,
+ (int_x86_sse42_crc32_64 GR64:$src1, GR64:$src2))]>,
+ OpSize, REX_W;
+}
+
+// String/text processing instructions.
+let Defs = [EFLAGS], usesCustomDAGSchedInserter = 1 in {
+def PCMPISTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "#PCMPISTRM128rr PSEUDO!",
+ [(set VR128:$dst,
+ (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2,
+ imm:$src3))]>, OpSize;
+def PCMPISTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "#PCMPISTRM128rm PSEUDO!",
+ [(set VR128:$dst,
+ (int_x86_sse42_pcmpistrm128 VR128:$src1,
+ (load addr:$src2),
+ imm:$src3))]>, OpSize;
+}
+
+let Defs = [XMM0, EFLAGS] in {
+def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}",
+ []>, OpSize;
+def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}",
+ []>, OpSize;
+}
+
+let Defs = [EFLAGS], Uses = [EAX, EDX],
+ usesCustomDAGSchedInserter = 1 in {
+def PCMPESTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ "#PCMPESTRM128rr PSEUDO!",
+ [(set VR128:$dst,
+ (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
+ VR128:$src3,
+ EDX, imm:$src5))]>, OpSize;
+def PCMPESTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ "#PCMPESTRM128rm PSEUDO!",
+ [(set VR128:$dst,
+ (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
+ (load addr:$src3),
+ EDX, imm:$src5))]>, OpSize;
+}
+
+let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in {
+def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}",
+ []>, OpSize;
+def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}",
+ []>, OpSize;
+}
+
+let Defs = [ECX, EFLAGS] in {
+ multiclass SS42AI_pcmpistri<Intrinsic IntId128> {
+ def rr : SS42AI<0x63, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, i8imm:$src3),
+ "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}",
+ [(set ECX,
+ (IntId128 VR128:$src1, VR128:$src2, imm:$src3)),
+ (implicit EFLAGS)]>,
+ OpSize;
+ def rm : SS42AI<0x63, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, i8imm:$src3),
+ "pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}",
+ [(set ECX,
+ (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)),
+ (implicit EFLAGS)]>,
+ OpSize;
+ }
+}
+
+defm PCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128>;
+defm PCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128>;
+defm PCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128>;
+defm PCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128>;
+defm PCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128>;
+defm PCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128>;
+
+let Defs = [ECX, EFLAGS] in {
+let Uses = [EAX, EDX] in {
+ multiclass SS42AI_pcmpestri<Intrinsic IntId128> {
+ def rr : SS42AI<0x61, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, i8imm:$src5),
+ "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}",
+ [(set ECX,
+ (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)),
+ (implicit EFLAGS)]>,
+ OpSize;
+ def rm : SS42AI<0x61, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, i8imm:$src5),
+ "pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}",
+ [(set ECX,
+ (IntId128 VR128:$src1, EAX, (load addr:$src3),
+ EDX, imm:$src5)),
+ (implicit EFLAGS)]>,
+ OpSize;
+ }
+}
+}
+
+defm PCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128>;
+defm PCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128>;
+defm PCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128>;
+defm PCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128>;
+defm PCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128>;
+defm PCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128>;
diff --git a/lib/Target/X86/X86JITInfo.cpp b/lib/Target/X86/X86JITInfo.cpp
index f923106..62ca47f 100644
--- a/lib/Target/X86/X86JITInfo.cpp
+++ b/lib/Target/X86/X86JITInfo.cpp
@@ -15,15 +15,16 @@
#include "X86JITInfo.h"
#include "X86Relocations.h"
#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
#include "llvm/Function.h"
-#include "llvm/Config/alloca.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cstdlib>
#include <cstring>
using namespace llvm;
// Determine the platform we're running on
-#if defined (__x86_64__) || defined (_M_AMD64)
+#if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
# define X86_64_JIT
#elif defined(__i386__) || defined(i386) || defined(_M_IX86)
# define X86_32_JIT
@@ -51,13 +52,6 @@ static TargetJITInfo::JITCompilerFn JITCompilerFunction;
#define GETASMPREFIX(X) GETASMPREFIX2(X)
#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
-// Check if building with -fPIC
-#if defined(__PIC__) && __PIC__ && defined(__linux__)
-#define ASMCALLSUFFIX "@PLT"
-#else
-#define ASMCALLSUFFIX
-#endif
-
// For ELF targets, use a .size and .type directive, to let tools
// know the extent of functions defined in assembler.
#if defined(__ELF__)
@@ -130,7 +124,7 @@ extern "C" {
// JIT callee
"movq %rbp, %rdi\n" // Pass prev frame and return address
"movq 8(%rbp), %rsi\n"
- "call " ASMPREFIX "X86CompilationCallback2" ASMCALLSUFFIX "\n"
+ "call " ASMPREFIX "X86CompilationCallback2\n"
// Restore all XMM arg registers
"movaps 112(%rsp), %xmm7\n"
"movaps 96(%rsp), %xmm6\n"
@@ -206,7 +200,7 @@ extern "C" {
"movl 4(%ebp), %eax\n" // Pass prev frame and return address
"movl %eax, 4(%esp)\n"
"movl %ebp, (%esp)\n"
- "call " ASMPREFIX "X86CompilationCallback2" ASMCALLSUFFIX "\n"
+ "call " ASMPREFIX "X86CompilationCallback2\n"
"movl %ebp, %esp\n" // Restore ESP
CFI(".cfi_def_cfa_register %esp\n")
"subl $12, %esp\n"
@@ -262,7 +256,7 @@ extern "C" {
"movl 4(%ebp), %eax\n" // Pass prev frame and return address
"movl %eax, 4(%esp)\n"
"movl %ebp, (%esp)\n"
- "call " ASMPREFIX "X86CompilationCallback2" ASMCALLSUFFIX "\n"
+ "call " ASMPREFIX "X86CompilationCallback2\n"
"addl $16, %esp\n"
"movaps 48(%esp), %xmm3\n"
CFI(".cfi_restore %xmm3\n")
@@ -321,8 +315,7 @@ extern "C" {
#else // Not an i386 host
void X86CompilationCallback() {
- assert(0 && "Cannot call X86CompilationCallback() on a non-x86 arch!\n");
- abort();
+ llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
}
#endif
}
@@ -331,14 +324,21 @@ extern "C" {
/// function stub when we did not know the real target of a call. This function
/// must locate the start of the stub or call site and pass it into the JIT
/// compiler function.
-extern "C" void ATTRIBUTE_USED
+extern "C" {
+#if !(defined (X86_64_JIT) && defined(_MSC_VER))
+ // the following function is called only from this translation unit,
+ // unless we are under 64bit Windows with MSC, where there is
+ // no support for inline assembly
+static
+#endif
+void ATTRIBUTE_USED
X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
intptr_t *RetAddrLoc = &StackPtr[1];
assert(*RetAddrLoc == RetAddr &&
"Could not find return address on the stack!");
// It's a stub if there is an interrupt marker after the call.
- bool isStub = ((unsigned char*)RetAddr)[0] == 0xCD;
+ bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
// The call instruction should have pushed the return value onto the stack...
#if defined (X86_64_JIT)
@@ -348,10 +348,10 @@ X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
#endif
#if 0
- DOUT << "In callback! Addr=" << (void*)RetAddr
- << " ESP=" << (void*)StackPtr
- << ": Resolving call to function: "
- << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n";
+ DEBUG(errs() << "In callback! Addr=" << (void*)RetAddr
+ << " ESP=" << (void*)StackPtr
+ << ": Resolving call to function: "
+ << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
#endif
// Sanity check to make sure this really is a call instruction.
@@ -377,7 +377,7 @@ X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
// If this is a stub, rewrite the call into an unconditional branch
// instruction so that two return addresses are not pushed onto the stack
// when the requested function finally gets called. This also makes the
- // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
+ // 0xCE byte (interrupt) dead, so the marker doesn't effect anything.
#if defined (X86_64_JIT)
// If the target address is within 32-bit range of the stub, use a
// PC-relative branch instead of loading the actual address. (This is
@@ -403,31 +403,26 @@ X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) {
*RetAddrLoc -= 5;
#endif
}
+}
TargetJITInfo::LazyResolverFn
X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
JITCompilerFunction = F;
#if defined (X86_32_JIT) && !defined (_MSC_VER)
- unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
- union {
- unsigned u[3];
- char c[12];
- } text;
-
- if (!X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) {
- // FIXME: support for AMD family of processors.
- if (memcmp(text.c, "GenuineIntel", 12) == 0) {
- X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
- if ((EDX >> 25) & 0x1)
- return X86CompilationCallback_SSE;
- }
- }
+ if (Subtarget->hasSSE1())
+ return X86CompilationCallback_SSE;
#endif
return X86CompilationCallback;
}
+X86JITInfo::X86JITInfo(X86TargetMachine &tm) : TM(tm) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ useGOT = 0;
+ TLSOffset = 0;
+}
+
void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
JITCodeEmitter &JCE) {
#if defined (X86_64_JIT)
@@ -485,7 +480,10 @@ void *X86JITInfo::emitFunctionStub(const Function* F, void *Fn,
JCE.emitWordLE((intptr_t)Fn-JCE.getCurrentPCValue()-4);
#endif
- JCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
+ // This used to use 0xCD, but that value is used by JITMemoryManager to
+ // initialize the buffer with garbage, which means it may follow a
+ // noreturn function call, confusing X86CompilationCallback2. PR 4929.
+ JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub!
return JCE.finishGVStub(F);
}
@@ -495,9 +493,11 @@ void X86JITInfo::emitFunctionStubAtAddr(const Function* F, void *Fn, void *Stub,
// complains about casting a function pointer to a normal pointer.
JCE.startGVStub(F, Stub, 5);
JCE.emitByte(0xE9);
-#if defined (X86_64_JIT)
- assert(((((intptr_t)Fn-JCE.getCurrentPCValue()-5) << 32) >> 32) ==
- ((intptr_t)Fn-JCE.getCurrentPCValue()-5)
+#if defined (X86_64_JIT) && !defined (NDEBUG)
+ // Yes, we need both of these casts, or some broken versions of GCC (4.2.4)
+ // get the signed-ness of the expression wrong. Go figure.
+ intptr_t Displacement = (intptr_t)Fn - (intptr_t)JCE.getCurrentPCValue() - 5;
+ assert(((Displacement << 32) >> 32) == Displacement
&& "PIC displacement does not fit in displacement field!");
#endif
JCE.emitWordLE((intptr_t)Fn-JCE.getCurrentPCValue()-4);
@@ -538,6 +538,7 @@ void X86JITInfo::relocate(void *Function, MachineRelocation *MR,
break;
}
case X86::reloc_absolute_word:
+ case X86::reloc_absolute_word_sext:
// Absolute relocation, just add the relocated value to the value already
// in memory.
*((unsigned*)RelocPos) += (unsigned)ResultPtr;
@@ -554,7 +555,7 @@ char* X86JITInfo::allocateThreadLocalMemory(size_t size) {
TLSOffset -= size;
return TLSOffset;
#else
- assert(0 && "Cannot allocate thread local storage on this arch!\n");
+ llvm_unreachable("Cannot allocate thread local storage on this arch!");
return 0;
#endif
}
diff --git a/lib/Target/X86/X86JITInfo.h b/lib/Target/X86/X86JITInfo.h
index 6a4e214..c381433 100644
--- a/lib/Target/X86/X86JITInfo.h
+++ b/lib/Target/X86/X86JITInfo.h
@@ -20,16 +20,15 @@
namespace llvm {
class X86TargetMachine;
+ class X86Subtarget;
class X86JITInfo : public TargetJITInfo {
X86TargetMachine &TM;
+ const X86Subtarget *Subtarget;
uintptr_t PICBase;
char* TLSOffset;
public:
- explicit X86JITInfo(X86TargetMachine &tm) : TM(tm) {
- useGOT = 0;
- TLSOffset = 0;
- }
+ explicit X86JITInfo(X86TargetMachine &tm);
/// replaceMachineCodeForFunction - Make it so that calling the function
/// whose machine code is at OLD turns into a call to NEW, perhaps by
diff --git a/lib/Target/X86/X86MCAsmInfo.cpp b/lib/Target/X86/X86MCAsmInfo.cpp
new file mode 100644
index 0000000..9d7e66d
--- /dev/null
+++ b/lib/Target/X86/X86MCAsmInfo.cpp
@@ -0,0 +1,123 @@
+//===-- X86MCAsmInfo.cpp - X86 asm properties -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of the X86MCAsmInfo properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86MCAsmInfo.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+enum AsmWriterFlavorTy {
+ // Note: This numbering has to match the GCC assembler dialects for inline
+ // asm alternatives to work right.
+ ATT = 0, Intel = 1
+};
+
+static cl::opt<AsmWriterFlavorTy>
+AsmWriterFlavor("x86-asm-syntax", cl::init(ATT),
+ cl::desc("Choose style of code to emit from X86 backend:"),
+ cl::values(clEnumValN(ATT, "att", "Emit AT&T-style assembly"),
+ clEnumValN(Intel, "intel", "Emit Intel-style assembly"),
+ clEnumValEnd));
+
+
+static const char *const x86_asm_table[] = {
+ "{si}", "S",
+ "{di}", "D",
+ "{ax}", "a",
+ "{cx}", "c",
+ "{memory}", "memory",
+ "{flags}", "",
+ "{dirflag}", "",
+ "{fpsr}", "",
+ "{cc}", "cc",
+ 0,0};
+
+X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &Triple) {
+ AsmTransCBE = x86_asm_table;
+ AssemblerDialect = AsmWriterFlavor;
+
+ bool is64Bit = Triple.getArch() == Triple::x86_64;
+
+ TextAlignFillValue = 0x90;
+
+ if (!is64Bit)
+ Data64bitsDirective = 0; // we can't emit a 64-bit unit
+
+ // Leopard and above support aligned common symbols.
+ COMMDirectiveTakesAlignment = Triple.getDarwinMajorNumber() >= 9;
+
+ CommentString = "##";
+ PCSymbol = ".";
+
+ SupportsDebugInformation = true;
+ DwarfUsesInlineInfoSection = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::Dwarf;
+ AbsoluteEHSectionOffsets = false;
+}
+
+X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &Triple) {
+ AsmTransCBE = x86_asm_table;
+ AssemblerDialect = AsmWriterFlavor;
+
+ PrivateGlobalPrefix = ".L";
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+ PCSymbol = ".";
+
+ // Set up DWARF directives
+ HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
+
+ // Debug Information
+ AbsoluteDebugSectionOffsets = true;
+ SupportsDebugInformation = true;
+
+ // Exceptions handling
+ ExceptionsType = ExceptionHandling::Dwarf;
+ AbsoluteEHSectionOffsets = false;
+
+ // On Linux we must declare when we can use a non-executable stack.
+ if (Triple.getOS() == Triple::Linux)
+ NonexecutableStackDirective = "\t.section\t.note.GNU-stack,\"\",@progbits";
+}
+
+X86MCAsmInfoCOFF::X86MCAsmInfoCOFF(const Triple &Triple) {
+ AsmTransCBE = x86_asm_table;
+ AssemblerDialect = AsmWriterFlavor;
+}
+
+
+X86WinMCAsmInfo::X86WinMCAsmInfo(const Triple &Triple) {
+ AsmTransCBE = x86_asm_table;
+ AssemblerDialect = AsmWriterFlavor;
+
+ GlobalPrefix = "_";
+ CommentString = ";";
+
+ PrivateGlobalPrefix = "$";
+ AlignDirective = "\tALIGN\t";
+ ZeroDirective = "\tdb\t";
+ ZeroDirectiveSuffix = " dup(0)";
+ AsciiDirective = "\tdb\t";
+ AscizDirective = 0;
+ Data8bitsDirective = "\tdb\t";
+ Data16bitsDirective = "\tdw\t";
+ Data32bitsDirective = "\tdd\t";
+ Data64bitsDirective = "\tdq\t";
+ HasDotTypeDotSizeDirective = false;
+ HasSingleParameterDotFile = false;
+
+ AlignmentIsInBytes = true;
+}
diff --git a/lib/Target/X86/X86MCAsmInfo.h b/lib/Target/X86/X86MCAsmInfo.h
new file mode 100644
index 0000000..18e2bdb
--- /dev/null
+++ b/lib/Target/X86/X86MCAsmInfo.h
@@ -0,0 +1,42 @@
+//=====-- X86MCAsmInfo.h - X86 asm properties -----------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the X86MCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86TARGETASMINFO_H
+#define X86TARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAsmInfoCOFF.h"
+#include "llvm/MC/MCAsmInfoDarwin.h"
+
+namespace llvm {
+ class Triple;
+
+ struct X86MCAsmInfoDarwin : public MCAsmInfoDarwin {
+ explicit X86MCAsmInfoDarwin(const Triple &Triple);
+ };
+
+ struct X86ELFMCAsmInfo : public MCAsmInfo {
+ explicit X86ELFMCAsmInfo(const Triple &Triple);
+ };
+
+ struct X86MCAsmInfoCOFF : public MCAsmInfoCOFF {
+ explicit X86MCAsmInfoCOFF(const Triple &Triple);
+ };
+
+ struct X86WinMCAsmInfo : public MCAsmInfo {
+ explicit X86WinMCAsmInfo(const Triple &Triple);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp
index a2f319f..f03723a 100644
--- a/lib/Target/X86/X86RegisterInfo.cpp
+++ b/lib/Target/X86/X86RegisterInfo.cpp
@@ -30,14 +30,16 @@
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
@@ -54,6 +56,7 @@ X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
Is64Bit = Subtarget->is64Bit();
IsWin64 = Subtarget->isTargetWin64();
StackAlign = TM.getFrameInfo()->getStackAlignment();
+
if (Is64Bit) {
SlotSize = 8;
StackPtr = X86::RSP;
@@ -65,12 +68,12 @@ X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
}
}
-// getDwarfRegNum - This function maps LLVM register identifiers to the
-// Dwarf specific numbering, used in debug info and exception tables.
-
+/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
+/// specific numbering, used in debug info and exception tables.
int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
unsigned Flavour = DWARFFlavour::X86_64;
+
if (!Subtarget->is64Bit()) {
if (Subtarget->isTargetDarwin()) {
if (isEH)
@@ -88,9 +91,8 @@ int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
}
-// getX86RegNum - This function maps LLVM register identifiers to their X86
-// specific numbering, which is used in various places encoding instructions.
-//
+/// getX86RegNum - This function maps LLVM register identifiers to their X86
+/// specific numbering, which is used in various places encoding instructions.
unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
@@ -146,17 +148,131 @@ unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
default:
assert(isVirtualRegister(RegNo) && "Unknown physical register!");
- assert(0 && "Register allocator hasn't allocated reg correctly yet!");
+ llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
return 0;
}
}
-const TargetRegisterClass *X86RegisterInfo::getPointerRegClass() const {
- const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
- if (Subtarget->is64Bit())
- return &X86::GR64RegClass;
- else
+const TargetRegisterClass *
+X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ unsigned SubIdx) const {
+ switch (SubIdx) {
+ default: return 0;
+ case 1:
+ // 8-bit
+ if (B == &X86::GR8RegClass) {
+ if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
+ return A;
+ } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
+ A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass ||
+ A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_ABCDRegClass;
+ else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
+ A == &X86::GR32_NOREXRegClass ||
+ A == &X86::GR32_NOSPRegClass)
+ return &X86::GR32_ABCDRegClass;
+ else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
+ A == &X86::GR16_NOREXRegClass)
+ return &X86::GR16_ABCDRegClass;
+ } else if (B == &X86::GR8_NOREXRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_NOREXRegClass;
+ else if (A == &X86::GR64_ABCDRegClass)
+ return &X86::GR64_ABCDRegClass;
+ else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
+ A == &X86::GR32_NOSPRegClass)
+ return &X86::GR32_NOREXRegClass;
+ else if (A == &X86::GR32_ABCDRegClass)
+ return &X86::GR32_ABCDRegClass;
+ else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
+ return &X86::GR16_NOREXRegClass;
+ else if (A == &X86::GR16_ABCDRegClass)
+ return &X86::GR16_ABCDRegClass;
+ }
+ break;
+ case 2:
+ // 8-bit hi
+ if (B == &X86::GR8_ABCD_HRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
+ A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass ||
+ A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_ABCDRegClass;
+ else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
+ A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
+ return &X86::GR32_ABCDRegClass;
+ else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
+ A == &X86::GR16_NOREXRegClass)
+ return &X86::GR16_ABCDRegClass;
+ }
+ break;
+ case 3:
+ // 16-bit
+ if (B == &X86::GR16RegClass) {
+ if (A->getSize() == 4 || A->getSize() == 8)
+ return A;
+ } else if (B == &X86::GR16_ABCDRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
+ A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass ||
+ A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_ABCDRegClass;
+ else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
+ A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
+ return &X86::GR32_ABCDRegClass;
+ } else if (B == &X86::GR16_NOREXRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_NOREXRegClass;
+ else if (A == &X86::GR64_ABCDRegClass)
+ return &X86::GR64_ABCDRegClass;
+ else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
+ A == &X86::GR32_NOSPRegClass)
+ return &X86::GR32_NOREXRegClass;
+ else if (A == &X86::GR32_ABCDRegClass)
+ return &X86::GR64_ABCDRegClass;
+ }
+ break;
+ case 4:
+ // 32-bit
+ if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
+ if (A->getSize() == 8)
+ return A;
+ } else if (B == &X86::GR32_ABCDRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
+ A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass ||
+ A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_ABCDRegClass;
+ } else if (B == &X86::GR32_NOREXRegClass) {
+ if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
+ A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
+ return &X86::GR64_NOREXRegClass;
+ else if (A == &X86::GR64_ABCDRegClass)
+ return &X86::GR64_ABCDRegClass;
+ }
+ break;
+ }
+ return 0;
+}
+
+const TargetRegisterClass *
+X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
+ switch (Kind) {
+ default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
+ case 0: // Normal GPRs.
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ return &X86::GR64RegClass;
return &X86::GR32RegClass;
+ case 1: // Normal GRPs except the stack pointer (for encoding reasons).
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ return &X86::GR64_NOSPRegClass;
+ return &X86::GR32_NOSPRegClass;
+ }
}
const TargetRegisterClass *
@@ -276,6 +392,7 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(X86::ESP);
Reserved.set(X86::SP);
Reserved.set(X86::SPL);
+
// Set the frame-pointer register and its aliases as reserved if needed.
if (hasFP(MF)) {
Reserved.set(X86::RBP);
@@ -283,10 +400,10 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(X86::BP);
Reserved.set(X86::BPL);
}
- // Mark the x87 stack registers as reserved, since they don't
- // behave normally with respect to liveness. We don't fully
- // model the effects of x87 stack pushes and pops after
- // stackification.
+
+ // Mark the x87 stack registers as reserved, since they don't behave normally
+ // with respect to liveness. We don't fully model the effects of x87 stack
+ // pushes and pops after stackification.
Reserved.set(X86::ST0);
Reserved.set(X86::ST1);
Reserved.set(X86::ST2);
@@ -304,10 +421,12 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
unsigned MaxAlign = 0;
+
for (int i = FFI->getObjectIndexBegin(),
e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
+
unsigned Align = FFI->getObjectAlignment(i);
MaxAlign = std::max(MaxAlign, Align);
}
@@ -315,10 +434,9 @@ static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
return MaxAlign;
}
-// hasFP - Return true if the specified function should have a dedicated frame
-// pointer register. This is true if the function has variable sized allocas or
-// if frame pointer elimination is disabled.
-//
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
@@ -335,7 +453,7 @@ bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
// FIXME: Currently we don't support stack realignment for functions with
- // variable-sized allocas
+ // variable-sized allocas
return (RealignStack &&
(MFI->getMaxAlignment() > StackAlign &&
!MFI->hasVarSizedObjects()));
@@ -345,34 +463,45 @@ bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
+bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
+ int &FrameIdx) const {
+ if (Reg == FramePtr && hasFP(MF)) {
+ FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
+ return true;
+ }
+ return false;
+}
+
int
X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
- int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize;
- uint64_t StackSize = MF.getFrameInfo()->getStackSize();
+ const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
+ uint64_t StackSize = MFI->getStackSize();
if (needsStackRealignment(MF)) {
- if (FI < 0)
- // Skip the saved EBP
+ if (FI < 0) {
+ // Skip the saved EBP.
Offset += SlotSize;
- else {
- unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI);
+ } else {
+ unsigned Align = MFI->getObjectAlignment(FI);
assert( (-(Offset + StackSize)) % Align == 0);
Align = 0;
return Offset + StackSize;
}
-
// FIXME: Support tail calls
} else {
if (!hasFP(MF))
return Offset + StackSize;
- // Skip the saved EBP
+ // Skip the saved EBP.
Offset += SlotSize;
// Skip the RETADDR move area
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
- if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
+ if (TailCallReturnAddrDelta < 0)
+ Offset -= TailCallReturnAddrDelta;
}
return Offset;
@@ -392,24 +521,29 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
- Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
+ Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
MachineInstr *New = 0;
if (Old->getOpcode() == getCallFrameSetupOpcode()) {
New = BuildMI(MF, Old->getDebugLoc(),
TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
- StackPtr).addReg(StackPtr).addImm(Amount);
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(Amount);
} else {
assert(Old->getOpcode() == getCallFrameDestroyOpcode());
- // factor out the amount the callee already popped.
+
+ // Factor out the amount the callee already popped.
uint64_t CalleeAmt = Old->getOperand(1).getImm();
Amount -= CalleeAmt;
- if (Amount) {
+
+ if (Amount) {
unsigned Opc = (Amount < 128) ?
(Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
(Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
- .addReg(StackPtr).addImm(Amount);
+ .addReg(StackPtr)
+ .addImm(Amount);
}
}
@@ -417,7 +551,7 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
// The EFLAGS implicit def is dead.
New->getOperand(3).setIsDead();
- // Replace the pseudo instruction with a new instruction...
+ // Replace the pseudo instruction with a new instruction.
MBB.insert(I, New);
}
}
@@ -432,10 +566,12 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineInstr *Old = I;
MachineInstr *New =
BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
- StackPtr).addReg(StackPtr).addImm(CalleeAmt);
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(CalleeAmt);
+
// The EFLAGS implicit def is dead.
New->getOperand(3).setIsDead();
-
MBB.insert(I, New);
}
}
@@ -443,21 +579,24 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MBB.erase(I);
}
-void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const{
+unsigned
+X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const{
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
+
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
-
unsigned BasePtr;
+
if (needsStackRealignment(MF))
BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
else
@@ -471,34 +610,33 @@ void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
if (MI.getOperand(i+3).isImm()) {
// Offset is a 32-bit integer.
int Offset = getFrameIndexOffset(MF, FrameIndex) +
- (int)(MI.getOperand(i+3).getImm());
+ (int)(MI.getOperand(i + 3).getImm());
- MI.getOperand(i+3).ChangeToImmediate(Offset);
+ MI.getOperand(i + 3).ChangeToImmediate(Offset);
} else {
// Offset is symbolic. This is extremely rare.
uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
(uint64_t)MI.getOperand(i+3).getOffset();
MI.getOperand(i+3).setOffset(Offset);
}
+ return 0;
}
void
X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
- MachineFrameInfo *FFI = MF.getFrameInfo();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
// Calculate and set max stack object alignment early, so we can decide
// whether we will need stack realignment (and thus FP).
- unsigned MaxAlign = std::max(FFI->getMaxAlignment(),
- calculateMaxStackAlignment(FFI));
+ unsigned MaxAlign = std::max(MFI->getMaxAlignment(),
+ calculateMaxStackAlignment(MFI));
- FFI->setMaxAlignment(MaxAlign);
-}
+ MFI->setMaxAlignment(MaxAlign);
-void
-X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+
if (TailCallReturnAddrDelta < 0) {
// create RETURNADDR area
// arg
@@ -509,18 +647,21 @@ X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
// ...
// }
// [EBP]
- MF.getFrameInfo()->
- CreateFixedObject(-TailCallReturnAddrDelta,
- (-1*SlotSize)+TailCallReturnAddrDelta);
+ MFI->CreateFixedObject(-TailCallReturnAddrDelta,
+ (-1U*SlotSize)+TailCallReturnAddrDelta);
}
+
if (hasFP(MF)) {
assert((TailCallReturnAddrDelta <= 0) &&
"The Delta should always be zero or negative");
+ const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
+
// Create a frame entry for the EBP register that must be saved.
- int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
- (int)SlotSize * -2+
- TailCallReturnAddrDelta);
- assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
+ int FrameIdx = MFI->CreateFixedObject(SlotSize,
+ -(int)SlotSize +
+ TFI.getOffsetOfLocalArea() +
+ TailCallReturnAddrDelta);
+ assert(FrameIdx == MFI->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
FrameIdx = 0;
}
@@ -549,14 +690,14 @@ void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
MachineInstr *MI =
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
- .addReg(StackPtr).addImm(ThisVal);
- // The EFLAGS implicit def is dead.
- MI->getOperand(3).setIsDead();
+ .addReg(StackPtr)
+ .addImm(ThisVal);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
Offset -= ThisVal;
}
}
-// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
+/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
static
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
@@ -579,11 +720,12 @@ void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
}
}
-// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
+/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
static
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
+ // FIXME: THIS ISN'T RUN!!!
return;
if (MBBI == MBB.end()) return;
@@ -610,23 +752,22 @@ void mergeSPUpdatesDown(MachineBasicBlock &MBB,
}
/// mergeSPUpdates - Checks the instruction before/after the passed
-/// instruction. If it is an ADD/SUB instruction it is deleted
-/// argument and the stack adjustment is returned as a positive value for ADD
-/// and a negative for SUB.
+/// instruction. If it is an ADD/SUB instruction it is deleted argument and the
+/// stack adjustment is returned as a positive value for ADD and a negative for
+/// SUB.
static int mergeSPUpdates(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr,
bool doMergeWithPrevious) {
-
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
(!doMergeWithPrevious && MBBI == MBB.end()))
return 0;
- int Offset = 0;
-
MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
unsigned Opc = PI->getOpcode();
+ int Offset = 0;
+
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr){
@@ -644,122 +785,116 @@ static int mergeSPUpdates(MachineBasicBlock &MBB,
return Offset;
}
-void X86RegisterInfo::emitFrameMoves(MachineFunction &MF,
- unsigned FrameLabelId,
- unsigned ReadyLabelId) const {
+void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
+ unsigned LabelId,
+ unsigned FramePtr) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
- if (!MMI)
- return;
+ if (!MMI) return;
+
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+ if (CSI.empty()) return;
- uint64_t StackSize = MFI->getStackSize();
std::vector<MachineMove> &Moves = MMI->getFrameMoves();
const TargetData *TD = MF.getTarget().getTargetData();
+ bool HasFP = hasFP(MF);
- // Calculate amount of bytes used for return address storing
+ // Calculate amount of bytes used for return address storing.
int stackGrowth =
(MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize());
- MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
- MachineLocation FPSrc(MachineLocation::VirtualFP);
- Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
-
- if (StackSize) {
- // Show update of SP.
- if (hasFP(MF)) {
- // Adjust SP
- MachineLocation SPDst(MachineLocation::VirtualFP);
- MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
- Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
- } else {
- MachineLocation SPDst(MachineLocation::VirtualFP);
- MachineLocation SPSrc(MachineLocation::VirtualFP,
- -StackSize+stackGrowth);
- Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
- }
- } else {
- // FIXME: Verify & implement for FP
- MachineLocation SPDst(StackPtr);
- MachineLocation SPSrc(StackPtr, stackGrowth);
- Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
- }
-
- // Add callee saved registers to move list.
- const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
-
// FIXME: This is dirty hack. The code itself is pretty mess right now.
// It should be rewritten from scratch and generalized sometimes.
- // Determine maximum offset (minumum due to stack growth)
+ // Determine maximum offset (minumum due to stack growth).
int64_t MaxOffset = 0;
- for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I)
MaxOffset = std::min(MaxOffset,
- MFI->getObjectOffset(CSI[I].getFrameIdx()));
-
- // Calculate offsets
- int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
- for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
- int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
- unsigned Reg = CSI[I].getReg();
- Offset = (MaxOffset-Offset+saveAreaOffset);
+ MFI->getObjectOffset(I->getFrameIdx()));
+
+ // Calculate offsets.
+ int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+ Offset = MaxOffset - Offset + saveAreaOffset;
+
+ // Don't output a new machine move if we're re-saving the frame
+ // pointer. This happens when the PrologEpilogInserter has inserted an extra
+ // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
+ // generates one when frame pointers are used. If we generate a "machine
+ // move" for this extra "PUSH", the linker will lose track of the fact that
+ // the frame pointer should have the value of the first "PUSH" when it's
+ // trying to unwind.
+ //
+ // FIXME: This looks inelegant. It's possibly correct, but it's covering up
+ // another bug. I.e., one where we generate a prolog like this:
+ //
+ // pushl %ebp
+ // movl %esp, %ebp
+ // pushl %ebp
+ // pushl %esi
+ // ...
+ //
+ // The immediate re-push of EBP is unnecessary. At the least, it's an
+ // optimization bug. EBP can be used as a scratch register in certain
+ // cases, but probably not when we have a frame pointer.
+ if (HasFP && FramePtr == Reg)
+ continue;
+
MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
MachineLocation CSSrc(Reg);
- Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
- }
-
- if (hasFP(MF)) {
- // Save FP
- MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
- MachineLocation FPSrc(FramePtr);
- Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
+ Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
}
}
-
+/// emitPrologue - Push callee-saved registers onto the stack, which
+/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
+/// space for local variables. Also emit labels used by the exception handler to
+/// generate the exception handling frames.
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
- MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
+ MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
+ MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
- const Function* Fn = MF.getFunction();
- const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
+ const Function *Fn = MF.getFunction();
+ const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
- MachineBasicBlock::iterator MBBI = MBB.begin();
bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
- !Fn->doesNotThrow() ||
- UnwindTablesMandatory;
+ !Fn->doesNotThrow() || UnwindTablesMandatory;
+ uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
+ uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
+ bool HasFP = hasFP(MF);
DebugLoc DL;
- // Prepare for frame info.
- unsigned FrameLabelId = 0;
-
- // Get the number of bytes to allocate from the FrameInfo.
- uint64_t StackSize = MFI->getStackSize();
-
- // Get desired stack alignment
- uint64_t MaxAlign = MFI->getMaxAlignment();
-
// Add RETADDR move area to callee saved frame size.
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0)
X86FI->setCalleeSavedFrameSize(
- X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
+ X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
// function, and use up to 128 bytes of stack space, don't have a frame
// pointer, calls, or dynamic alloca then we do not need to adjust the
// stack pointer (we fit in the Red Zone).
- bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
- if (Is64Bit && !DisableRedZone &&
+ if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
!needsStackRealignment(MF) &&
!MFI->hasVarSizedObjects() && // No dynamic alloca.
!MFI->hasCalls() && // No calls.
!Subtarget->isTargetWin64()) { // Win64 has no Red Zone
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
- if (hasFP(MF)) MinSize += SlotSize;
- StackSize = std::max(MinSize,
- StackSize > 128 ? StackSize - 128 : 0);
+ if (HasFP) MinSize += SlotSize;
+ StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
+ MFI->setStackSize(StackSize);
+ } else if (Subtarget->isTargetWin64()) {
+ // We need to always allocate 32 bytes as register spill area.
+ // FIXME: We might reuse these 32 bytes for leaf functions.
+ StackSize += 32;
MFI->setStackSize(StackSize);
}
@@ -769,33 +904,73 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
if (TailCallReturnAddrDelta < 0) {
MachineInstr *MI =
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
- StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
- // The EFLAGS implicit def is dead.
- MI->getOperand(3).setIsDead();
+ StackPtr)
+ .addReg(StackPtr)
+ .addImm(-TailCallReturnAddrDelta);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
}
+ // Mapping for machine moves:
+ //
+ // DST: VirtualFP AND
+ // SRC: VirtualFP => DW_CFA_def_cfa_offset
+ // ELSE => DW_CFA_def_cfa
+ //
+ // SRC: VirtualFP AND
+ // DST: Register => DW_CFA_def_cfa_register
+ //
+ // ELSE
+ // OFFSET < 0 => DW_CFA_offset_extended_sf
+ // REG < 64 => DW_CFA_offset + Reg
+ // ELSE => DW_CFA_offset_extended
+
+ std::vector<MachineMove> &Moves = MMI->getFrameMoves();
+ const TargetData *TD = MF.getTarget().getTargetData();
uint64_t NumBytes = 0;
- if (hasFP(MF)) {
- // Calculate required stack adjustment
+ int stackGrowth =
+ (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
+ TargetFrameInfo::StackGrowsUp ?
+ TD->getPointerSize() : -TD->getPointerSize());
+
+ if (HasFP) {
+ // Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
if (needsStackRealignment(MF))
- FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
+ FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
- // Get the offset of the stack slot for the EBP register... which is
+ // Get the offset of the stack slot for the EBP register, which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
// Update the frame offset adjustment.
MFI->setOffsetAdjustment(-NumBytes);
- // Save EBP into the appropriate stack slot...
+ // Save EBP/RBP into the appropriate stack slot.
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
.addReg(FramePtr, RegState::Kill);
if (needsFrameMoves) {
- // Mark effective beginning of when frame pointer becomes valid.
- FrameLabelId = MMI->NextLabelID();
+ // Mark the place where EBP/RBP was saved.
+ unsigned FrameLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
+
+ // Define the current CFA rule to use the provided offset.
+ if (StackSize) {
+ MachineLocation SPDst(MachineLocation::VirtualFP);
+ MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
+ Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
+ } else {
+ // FIXME: Verify & implement for FP
+ MachineLocation SPDst(StackPtr);
+ MachineLocation SPSrc(StackPtr, stackGrowth);
+ Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
+ }
+
+ // Change the rule for the FramePtr to be an "offset" rule.
+ MachineLocation FPDst(MachineLocation::VirtualFP,
+ 2 * stackGrowth);
+ MachineLocation FPSrc(FramePtr);
+ Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
}
// Update EBP with the new base value...
@@ -803,6 +978,17 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
.addReg(StackPtr);
+ if (needsFrameMoves) {
+ // Mark effective beginning of when frame pointer becomes valid.
+ unsigned FrameLabelId = MMI->NextLabelID();
+ BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
+
+ // Define the current CFA to use the EBP/RBP register.
+ MachineLocation FPDst(FramePtr);
+ MachineLocation FPSrc(MachineLocation::VirtualFP);
+ Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
+ }
+
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
I != E; ++I)
@@ -814,6 +1000,7 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
StackPtr).addReg(StackPtr).addImm(-MaxAlign);
+
// The EFLAGS implicit def is dead.
MI->getOperand(3).setIsDead();
}
@@ -822,11 +1009,30 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
}
// Skip the callee-saved push instructions.
+ bool PushedRegs = false;
+ int StackOffset = 2 * stackGrowth;
+
while (MBBI != MBB.end() &&
(MBBI->getOpcode() == X86::PUSH32r ||
- MBBI->getOpcode() == X86::PUSH64r))
+ MBBI->getOpcode() == X86::PUSH64r)) {
+ PushedRegs = true;
++MBBI;
+ if (!HasFP && needsFrameMoves) {
+ // Mark callee-saved push instruction.
+ unsigned LabelId = MMI->NextLabelID();
+ BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
+
+ // Define the current CFA rule to use the provided offset.
+ unsigned Ptr = StackSize ?
+ MachineLocation::VirtualFP : StackPtr;
+ MachineLocation SPDst(Ptr);
+ MachineLocation SPSrc(Ptr, StackOffset);
+ Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
+ StackOffset += stackGrowth;
+ }
+ }
+
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
@@ -883,12 +1089,29 @@ void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
}
- if (needsFrameMoves) {
- unsigned ReadyLabelId = 0;
- // Mark effective beginning of when frame pointer is ready.
- ReadyLabelId = MMI->NextLabelID();
- BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId);
- emitFrameMoves(MF, FrameLabelId, ReadyLabelId);
+ if ((NumBytes || PushedRegs) && needsFrameMoves) {
+ // Mark end of stack pointer adjustment.
+ unsigned LabelId = MMI->NextLabelID();
+ BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
+
+ if (!HasFP && NumBytes) {
+ // Define the current CFA rule to use the provided offset.
+ if (StackSize) {
+ MachineLocation SPDst(MachineLocation::VirtualFP);
+ MachineLocation SPSrc(MachineLocation::VirtualFP,
+ -StackSize + stackGrowth);
+ Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
+ } else {
+ // FIXME: Verify & implement for FP
+ MachineLocation SPDst(StackPtr);
+ MachineLocation SPSrc(StackPtr, stackGrowth);
+ Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
+ }
+ }
+
+ // Emit DWARF info specifying the offsets of the callee-saved registers.
+ if (PushedRegs)
+ emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
}
}
@@ -901,6 +1124,8 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
DebugLoc DL = MBBI->getDebugLoc();
switch (RetOpcode) {
+ default:
+ llvm_unreachable("Can only insert epilog into returning blocks");
case X86::RET:
case X86::RETI:
case X86::TCRETURNdi:
@@ -911,26 +1136,25 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
case X86::EH_RETURN64:
case X86::TAILJMPd:
case X86::TAILJMPr:
- case X86::TAILJMPm: break; // These are ok
- default:
- assert(0 && "Can only insert epilog into returning blocks");
+ case X86::TAILJMPm:
+ break; // These are ok
}
- // Get the number of bytes to allocate from the FrameInfo
+ // Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = MFI->getStackSize();
uint64_t MaxAlign = MFI->getMaxAlignment();
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
uint64_t NumBytes = 0;
if (hasFP(MF)) {
- // Calculate required stack adjustment
+ // Calculate required stack adjustment.
uint64_t FrameSize = StackSize - SlotSize;
if (needsStackRealignment(MF))
FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
NumBytes = FrameSize - CSSize;
- // pop EBP.
+ // Pop EBP.
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
} else {
@@ -942,9 +1166,11 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
+
if (Opc != X86::POP32r && Opc != X86::POP64r &&
!PI->getDesc().isTerminator())
break;
+
--MBBI;
}
@@ -957,10 +1183,10 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
// If dynamic alloca is used, then reset esp to point to the last callee-saved
// slot before popping them off! Same applies for the case, when stack was
- // realigned
+ // realigned.
if (needsStackRealignment(MF)) {
// We cannot use LEA here, because stack pointer was realigned. We need to
- // deallocate local frame back
+ // deallocate local frame back.
if (CSSize) {
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
MBBI = prior(LastCSPop);
@@ -972,17 +1198,18 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
} else if (MFI->hasVarSizedObjects()) {
if (CSSize) {
unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
- MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
- FramePtr, false, -CSSize);
+ MachineInstr *MI =
+ addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
+ FramePtr, false, -CSSize);
MBB.insert(MBBI, MI);
- } else
- BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
- StackPtr).addReg(FramePtr);
-
- } else {
- // adjust stack pointer back: ESP += numbytes
- if (NumBytes)
- emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
+ } else {
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
+ .addReg(FramePtr);
+ }
+ } else if (NumBytes) {
+ // Adjust stack pointer back: ESP += numbytes.
+ emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
}
// We're returning from function via eh_return.
@@ -993,9 +1220,9 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
BuildMI(MBB, MBBI, DL,
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
StackPtr).addReg(DestAddr.getReg());
- // Tail call return: adjust the stack pointer and jump to callee
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
+ // Tail call return: adjust the stack pointer and jump to callee.
MBBI = prior(MBB.end());
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(1);
@@ -1006,6 +1233,7 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
+
// Incoporate the retaddr area.
Offset = StackAdj-MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
@@ -1032,6 +1260,7 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
// Add the return addr area delta back since we are not tail calling.
int delta = -1*X86FI->getTCReturnAddrDelta();
MBBI = prior(MBB.end());
+
// Check for possible merge with preceeding ADD instruction.
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
@@ -1039,18 +1268,16 @@ void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
}
unsigned X86RegisterInfo::getRARegister() const {
- if (Is64Bit)
- return X86::RIP; // Should have dwarf #16
- else
- return X86::EIP; // Should have dwarf #8
+ return Is64Bit ? X86::RIP // Should have dwarf #16.
+ : X86::EIP; // Should have dwarf #8.
}
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
return hasFP(MF) ? FramePtr : StackPtr;
}
-void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
- const {
+void
+X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const {
// Calculate amount of bytes used for return address storing
int stackGrowth = (Is64Bit ? -8 : -4);
@@ -1066,18 +1293,18 @@ void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
}
unsigned X86RegisterInfo::getEHExceptionRegister() const {
- assert(0 && "What is the exception register");
+ llvm_unreachable("What is the exception register");
return 0;
}
unsigned X86RegisterInfo::getEHHandlerRegister() const {
- assert(0 && "What is the exception handler register");
+ llvm_unreachable("What is the exception handler register");
return 0;
}
namespace llvm {
-unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) {
- switch (VT.getSimpleVT()) {
+unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
+ switch (VT.getSimpleVT().SimpleTy) {
default: return Reg;
case MVT::i8:
if (High) {
@@ -1264,14 +1491,21 @@ namespace {
RegNum < RI.getLastVirtReg(); ++RegNum)
MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
- FFI->setMaxAlignment(MaxAlign);
+ if (FFI->getMaxAlignment() == MaxAlign)
+ return false;
- return false;
+ FFI->setMaxAlignment(MaxAlign);
+ return true;
}
virtual const char *getPassName() const {
return "X86 Maximal Stack Alignment Calculator";
}
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
};
char MSAC::ID = 0;
diff --git a/lib/Target/X86/X86RegisterInfo.h b/lib/Target/X86/X86RegisterInfo.h
index 33b9f5e..f635707 100644
--- a/lib/Target/X86/X86RegisterInfo.h
+++ b/lib/Target/X86/X86RegisterInfo.h
@@ -93,9 +93,16 @@ public:
/// Code Generation virtual methods...
///
+ /// getMatchingSuperRegClass - Return a subclass of the specified register
+ /// class A so that each register in it has a sub-register of the
+ /// specified sub-register index which is in the specified register class B.
+ virtual const TargetRegisterClass *
+ getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B, unsigned Idx) const;
+
/// getPointerRegClass - Returns a TargetRegisterClass used for pointer
/// values.
- const TargetRegisterClass *getPointerRegClass() const;
+ const TargetRegisterClass *getPointerRegClass(unsigned Kind = 0) const;
/// getCrossCopyRegClass - Returns a legal register class to copy a register
/// in the specified class to or from. Returns NULL if it is possible to copy
@@ -125,23 +132,25 @@ public:
bool hasReservedCallFrame(MachineFunction &MF) const;
+ bool hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
+ int &FrameIdx) const;
+
void eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator MI,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator MI,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
- void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS = NULL) const;
+ void emitCalleeSavedFrameMoves(MachineFunction &MF, unsigned LabelId,
+ unsigned FramePtr) const;
void emitPrologue(MachineFunction &MF) const;
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
- void emitFrameMoves(MachineFunction &MF,
- unsigned FrameLabelId, unsigned ReadyLabelId) const;
-
// Debug information queries.
unsigned getRARegister() const;
unsigned getFrameRegister(MachineFunction &MF) const;
@@ -155,8 +164,8 @@ public:
// getX86SubSuperRegister - X86 utility function. It returns the sub or super
// register of a specific X86 register.
-// e.g. getX86SubSuperRegister(X86::EAX, MVT::i16) return X86:AX
-unsigned getX86SubSuperRegister(unsigned, MVT, bool High=false);
+// e.g. getX86SubSuperRegister(X86::EAX, EVT::i16) return X86:AX
+unsigned getX86SubSuperRegister(unsigned, EVT, bool High=false);
} // End llvm namespace
diff --git a/lib/Target/X86/X86RegisterInfo.td b/lib/Target/X86/X86RegisterInfo.td
index 2e6f017..7bf074d 100644
--- a/lib/Target/X86/X86RegisterInfo.td
+++ b/lib/Target/X86/X86RegisterInfo.td
@@ -270,42 +270,27 @@ def : SubRegSet<1, [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
// cannot be encoded.
def GR8 : RegisterClass<"X86", [i8], 8,
- [AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL,
+ [AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate SPL or BPL.
- static const unsigned X86_GR8_AO_64_fp[] = {
- X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
- X86::R8B, X86::R9B, X86::R10B, X86::R11B,
- X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B
- };
- // If not, just don't allocate SPL.
static const unsigned X86_GR8_AO_64[] = {
X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL
};
- // In 32-mode, none of the 8-bit registers aliases EBP or ESP.
- static const unsigned X86_GR8_AO_32[] = {
- X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH
- };
GR8Class::iterator
GR8Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
- if (!Subtarget.is64Bit())
- return X86_GR8_AO_32;
- else if (RI->hasFP(MF))
- return X86_GR8_AO_64_fp;
- else
+ if (Subtarget.is64Bit())
return X86_GR8_AO_64;
+ else
+ return begin();
}
GR8Class::iterator
@@ -313,17 +298,20 @@ def GR8 : RegisterClass<"X86", [i8], 8,
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
+ // Does the function dedicate RBP / EBP to being a frame ptr?
if (!Subtarget.is64Bit())
- return X86_GR8_AO_32 + (sizeof(X86_GR8_AO_32) / sizeof(unsigned));
+ // In 32-mode, none of the 8-bit registers aliases EBP or ESP.
+ return begin() + 8;
else if (RI->hasFP(MF))
- return X86_GR8_AO_64_fp + (sizeof(X86_GR8_AO_64_fp) / sizeof(unsigned));
+ // If so, don't allocate SPL or BPL.
+ return array_endof(X86_GR8_AO_64) - 1;
else
- return X86_GR8_AO_64 + (sizeof(X86_GR8_AO_64) / sizeof(unsigned));
+ // If not, just don't allocate SPL.
+ return array_endof(X86_GR8_AO_64);
}
}];
}
-
def GR16 : RegisterClass<"X86", [i16], 16,
[AX, CX, DX, SI, DI, BX, BP, SP,
R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W]> {
@@ -333,42 +321,20 @@ def GR16 : RegisterClass<"X86", [i16], 16,
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate SP or BP.
- static const unsigned X86_GR16_AO_64_fp[] = {
- X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
- X86::R8W, X86::R9W, X86::R10W, X86::R11W,
- X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W
- };
- static const unsigned X86_GR16_AO_32_fp[] = {
- X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX
- };
- // If not, just don't allocate SP.
static const unsigned X86_GR16_AO_64[] = {
X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP
};
- static const unsigned X86_GR16_AO_32[] = {
- X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP
- };
GR16Class::iterator
GR16Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
- if (Subtarget.is64Bit()) {
- if (RI->hasFP(MF))
- return X86_GR16_AO_64_fp;
- else
- return X86_GR16_AO_64;
- } else {
- if (RI->hasFP(MF))
- return X86_GR16_AO_32_fp;
- else
- return X86_GR16_AO_32;
- }
+ if (Subtarget.is64Bit())
+ return X86_GR16_AO_64;
+ else
+ return begin();
}
GR16Class::iterator
@@ -377,21 +343,26 @@ def GR16 : RegisterClass<"X86", [i16], 16,
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
+ // Does the function dedicate RBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR16_AO_64_fp+(sizeof(X86_GR16_AO_64_fp)/sizeof(unsigned));
+ // If so, don't allocate SP or BP.
+ return array_endof(X86_GR16_AO_64) - 1;
else
- return X86_GR16_AO_64 + (sizeof(X86_GR16_AO_64) / sizeof(unsigned));
+ // If not, just don't allocate SP.
+ return array_endof(X86_GR16_AO_64);
} else {
+ // Does the function dedicate EBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR16_AO_32_fp+(sizeof(X86_GR16_AO_32_fp)/sizeof(unsigned));
+ // If so, don't allocate SP or BP.
+ return begin() + 6;
else
- return X86_GR16_AO_32 + (sizeof(X86_GR16_AO_32) / sizeof(unsigned));
+ // If not, just don't allocate SP.
+ return begin() + 7;
}
}
}];
}
-
def GR32 : RegisterClass<"X86", [i32], 32,
[EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> {
@@ -401,42 +372,20 @@ def GR32 : RegisterClass<"X86", [i32], 32,
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate ESP or EBP.
- static const unsigned X86_GR32_AO_64_fp[] = {
- X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
- X86::R8D, X86::R9D, X86::R10D, X86::R11D,
- X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D
- };
- static const unsigned X86_GR32_AO_32_fp[] = {
- X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX
- };
- // If not, just don't allocate ESP.
static const unsigned X86_GR32_AO_64[] = {
X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP
};
- static const unsigned X86_GR32_AO_32[] = {
- X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP
- };
GR32Class::iterator
GR32Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
- if (Subtarget.is64Bit()) {
- if (RI->hasFP(MF))
- return X86_GR32_AO_64_fp;
- else
- return X86_GR32_AO_64;
- } else {
- if (RI->hasFP(MF))
- return X86_GR32_AO_32_fp;
- else
- return X86_GR32_AO_32;
- }
+ if (Subtarget.is64Bit())
+ return X86_GR32_AO_64;
+ else
+ return begin();
}
GR32Class::iterator
@@ -445,21 +394,29 @@ def GR32 : RegisterClass<"X86", [i32], 32,
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
+ // Does the function dedicate RBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR32_AO_64_fp+(sizeof(X86_GR32_AO_64_fp)/sizeof(unsigned));
+ // If so, don't allocate ESP or EBP.
+ return array_endof(X86_GR32_AO_64) - 1;
else
- return X86_GR32_AO_64 + (sizeof(X86_GR32_AO_64) / sizeof(unsigned));
+ // If not, just don't allocate ESP.
+ return array_endof(X86_GR32_AO_64);
} else {
+ // Does the function dedicate EBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR32_AO_32_fp+(sizeof(X86_GR32_AO_32_fp)/sizeof(unsigned));
+ // If so, don't allocate ESP or EBP.
+ return begin() + 6;
else
- return X86_GR32_AO_32 + (sizeof(X86_GR32_AO_32) / sizeof(unsigned));
+ // If not, just don't allocate ESP.
+ return begin() + 7;
}
}
}];
}
-
+// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
+// RIP isn't really a register and it can't be used anywhere except in an
+// address, but it doesn't cause trouble.
def GR64 : RegisterClass<"X86", [i64], 64,
[RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
RBX, R14, R15, R12, R13, RBP, RSP, RIP]> {
@@ -483,6 +440,11 @@ def GR64 : RegisterClass<"X86", [i64], 64,
}];
}
+// Segment registers for use by MOV instructions (and others) that have a
+// segment register as one operand. Always contain a 16-bit segment
+// descriptor.
+def SEGMENT_REG : RegisterClass<"X86", [i16], 16, [CS, DS, SS, ES, FS, GS]> {
+}
// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
@@ -509,38 +471,25 @@ def GR64_ABCD : RegisterClass<"X86", [i64], 64, [RAX, RCX, RDX, RBX]> {
// On x86-64, GR64_NOREX, GR32_NOREX and GR16_NOREX are the classes
// of registers which do not by themselves require a REX prefix.
def GR8_NOREX : RegisterClass<"X86", [i8], 8,
- [AL, CL, DL, BL, AH, CH, DH, BH,
+ [AL, CL, DL, AH, CH, DH, BL, BH,
SIL, DIL, BPL, SPL]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate SPL or BPL.
- static const unsigned X86_GR8_NOREX_AO_64_fp[] = {
- X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::BL
- };
- // If not, just don't allocate SPL.
static const unsigned X86_GR8_NOREX_AO_64[] = {
X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL, X86::BL, X86::BPL
};
- // In 32-mode, none of the 8-bit registers aliases EBP or ESP.
- static const unsigned X86_GR8_NOREX_AO_32[] = {
- X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH
- };
GR8_NOREXClass::iterator
GR8_NOREXClass::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
- if (!Subtarget.is64Bit())
- return X86_GR8_NOREX_AO_32;
- else if (RI->hasFP(MF))
- return X86_GR8_NOREX_AO_64_fp;
- else
+ if (Subtarget.is64Bit())
return X86_GR8_NOREX_AO_64;
+ else
+ return begin();
}
GR8_NOREXClass::iterator
@@ -548,15 +497,16 @@ def GR8_NOREX : RegisterClass<"X86", [i8], 8,
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
+ // Does the function dedicate RBP / EBP to being a frame ptr?
if (!Subtarget.is64Bit())
- return X86_GR8_NOREX_AO_32 +
- (sizeof(X86_GR8_NOREX_AO_32) / sizeof(unsigned));
+ // In 32-mode, none of the 8-bit registers aliases EBP or ESP.
+ return begin() + 8;
else if (RI->hasFP(MF))
- return X86_GR8_NOREX_AO_64_fp +
- (sizeof(X86_GR8_NOREX_AO_64_fp) / sizeof(unsigned));
+ // If so, don't allocate SPL or BPL.
+ return array_endof(X86_GR8_NOREX_AO_64) - 1;
else
- return X86_GR8_NOREX_AO_64 +
- (sizeof(X86_GR8_NOREX_AO_64) / sizeof(unsigned));
+ // If not, just don't allocate SPL.
+ return array_endof(X86_GR8_NOREX_AO_64);
}
}];
}
@@ -564,38 +514,20 @@ def GR16_NOREX : RegisterClass<"X86", [i16], 16,
[AX, CX, DX, SI, DI, BX, BP, SP]> {
let SubRegClassList = [GR8_NOREX, GR8_NOREX];
let MethodProtos = [{
- iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate SP or BP.
- static const unsigned X86_GR16_AO_fp[] = {
- X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX
- };
- // If not, just don't allocate SP.
- static const unsigned X86_GR16_AO[] = {
- X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP
- };
-
- GR16_NOREXClass::iterator
- GR16_NOREXClass::allocation_order_begin(const MachineFunction &MF) const {
- const TargetMachine &TM = MF.getTarget();
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
- if (RI->hasFP(MF))
- return X86_GR16_AO_fp;
- else
- return X86_GR16_AO;
- }
-
GR16_NOREXClass::iterator
GR16_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ // Does the function dedicate RBP / EBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR16_AO_fp+(sizeof(X86_GR16_AO_fp)/sizeof(unsigned));
+ // If so, don't allocate SP or BP.
+ return end() - 2;
else
- return X86_GR16_AO + (sizeof(X86_GR16_AO) / sizeof(unsigned));
+ // If not, just don't allocate SP.
+ return end() - 1;
}
}];
}
@@ -604,89 +536,149 @@ def GR32_NOREX : RegisterClass<"X86", [i32], 32,
[EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP]> {
let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX];
let MethodProtos = [{
- iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate ESP or EBP.
- static const unsigned X86_GR32_NOREX_AO_fp[] = {
- X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX
- };
- // If not, just don't allocate ESP.
- static const unsigned X86_GR32_NOREX_AO[] = {
- X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP
- };
-
GR32_NOREXClass::iterator
- GR32_NOREXClass::allocation_order_begin(const MachineFunction &MF) const {
+ GR32_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ // Does the function dedicate RBP / EBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR32_NOREX_AO_fp;
+ // If so, don't allocate ESP or EBP.
+ return end() - 2;
else
- return X86_GR32_NOREX_AO;
+ // If not, just don't allocate ESP.
+ return end() - 1;
}
-
- GR32_NOREXClass::iterator
- GR32_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
+ }];
+}
+// GR64_NOREX - GR64 registers which do not require a REX prefix.
+def GR64_NOREX : RegisterClass<"X86", [i64], 64,
+ [RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP]> {
+ let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX, GR32_NOREX];
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ GR64_NOREXClass::iterator
+ GR64_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ // Does the function dedicate RBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR32_NOREX_AO_fp +
- (sizeof(X86_GR32_NOREX_AO_fp) / sizeof(unsigned));
+ // If so, don't allocate RIP, RSP or RBP.
+ return end() - 3;
else
- return X86_GR32_NOREX_AO +
- (sizeof(X86_GR32_NOREX_AO) / sizeof(unsigned));
+ // If not, just don't allocate RIP or RSP.
+ return end() - 2;
}
}];
}
-// GR64_NOREX - GR64 registers which do not require a REX prefix.
-def GR64_NOREX : RegisterClass<"X86", [i64], 64,
- [RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP]> {
- let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX, GR32_NOREX];
+// GR32_NOSP - GR32 registers except ESP.
+def GR32_NOSP : RegisterClass<"X86", [i32], 32,
+ [EAX, ECX, EDX, ESI, EDI, EBX, EBP,
+ R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D]> {
+ let SubRegClassList = [GR8, GR8, GR16];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
- // Does the function dedicate RBP / EBP to being a frame ptr?
- // If so, don't allocate RSP or RBP.
- static const unsigned X86_GR64_NOREX_AO_fp[] = {
- X86::RAX, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RBX
- };
- // If not, just don't allocate RSP.
- static const unsigned X86_GR64_NOREX_AO[] = {
- X86::RAX, X86::RCX, X86::RDX, X86::RSI, X86::RDI, X86::RBX, X86::RBP
+ static const unsigned X86_GR32_NOSP_AO_64[] = {
+ X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
+ X86::R8D, X86::R9D, X86::R10D, X86::R11D,
+ X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP
};
- GR64_NOREXClass::iterator
- GR64_NOREXClass::allocation_order_begin(const MachineFunction &MF) const {
+ GR32_NOSPClass::iterator
+ GR32_NOSPClass::allocation_order_begin(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
+ if (Subtarget.is64Bit())
+ return X86_GR32_NOSP_AO_64;
+ else
+ return begin();
+ }
+
+ GR32_NOSPClass::iterator
+ GR32_NOSPClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
- if (RI->hasFP(MF))
- return X86_GR64_NOREX_AO_fp;
+ const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
+ if (Subtarget.is64Bit()) {
+ // Does the function dedicate RBP to being a frame ptr?
+ if (RI->hasFP(MF))
+ // If so, don't allocate EBP.
+ return array_endof(X86_GR32_NOSP_AO_64) - 1;
+ else
+ // If not, any reg in this class is ok.
+ return array_endof(X86_GR32_NOSP_AO_64);
+ } else {
+ // Does the function dedicate EBP to being a frame ptr?
+ if (RI->hasFP(MF))
+ // If so, don't allocate EBP.
+ return begin() + 6;
+ else
+ // If not, any reg in this class is ok.
+ return begin() + 7;
+ }
+ }
+ }];
+}
+
+// GR64_NOSP - GR64 registers except RSP (and RIP).
+def GR64_NOSP : RegisterClass<"X86", [i64], 64,
+ [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ RBX, R14, R15, R12, R13, RBP]> {
+ let SubRegClassList = [GR8, GR8, GR16, GR32_NOSP];
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ GR64_NOSPClass::iterator
+ GR64_NOSPClass::allocation_order_end(const MachineFunction &MF) const {
+ const TargetMachine &TM = MF.getTarget();
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
+ if (!Subtarget.is64Bit())
+ return begin(); // None of these are allocatable in 32-bit.
+ if (RI->hasFP(MF)) // Does the function dedicate RBP to being a frame ptr?
+ return end()-1; // If so, don't allocate RBP
else
- return X86_GR64_NOREX_AO;
+ return end(); // If not, any reg in this class is ok.
}
+ }];
+}
- GR64_NOREXClass::iterator
- GR64_NOREXClass::allocation_order_end(const MachineFunction &MF) const {
+// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
+def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
+ [RAX, RCX, RDX, RSI, RDI, RBX, RBP]> {
+ let SubRegClassList = [GR8_NOREX, GR8_NOREX, GR16_NOREX, GR32_NOREX];
+ let MethodProtos = [{
+ iterator allocation_order_end(const MachineFunction &MF) const;
+ }];
+ let MethodBodies = [{
+ GR64_NOREX_NOSPClass::iterator
+ GR64_NOREX_NOSPClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ // Does the function dedicate RBP to being a frame ptr?
if (RI->hasFP(MF))
- return X86_GR64_NOREX_AO_fp +
- (sizeof(X86_GR64_NOREX_AO_fp) / sizeof(unsigned));
+ // If so, don't allocate RBP.
+ return end() - 1;
else
- return X86_GR64_NOREX_AO +
- (sizeof(X86_GR64_NOREX_AO) / sizeof(unsigned));
+ // If not, any reg in this class is ok.
+ return end();
}
}];
}
// A class to support the 'A' assembler constraint: EAX then EDX.
-def GRAD : RegisterClass<"X86", [i32], 32, [EAX, EDX]>;
+def GR32_AD : RegisterClass<"X86", [i32], 32, [EAX, EDX]> {
+ let SubRegClassList = [GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD];
+}
// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32,
diff --git a/lib/Target/X86/X86Relocations.h b/lib/Target/X86/X86Relocations.h
index b225f48..990962d 100644
--- a/lib/Target/X86/X86Relocations.h
+++ b/lib/Target/X86/X86Relocations.h
@@ -20,21 +20,31 @@ namespace llvm {
namespace X86 {
/// RelocationType - An enum for the x86 relocation codes. Note that
/// the terminology here doesn't follow x86 convention - word means
- /// 32-bit and dword means 64-bit.
+ /// 32-bit and dword means 64-bit. The relocations will be treated
+ /// by JIT or ObjectCode emitters, this is transparent to the x86 code
+ /// emitter but JIT and ObjectCode will treat them differently
enum RelocationType {
- // reloc_pcrel_word - PC relative relocation, add the relocated value to
- // the value already in memory, after we adjust it for where the PC is.
+ /// reloc_pcrel_word - PC relative relocation, add the relocated value to
+ /// the value already in memory, after we adjust it for where the PC is.
reloc_pcrel_word = 0,
- // reloc_picrel_word - PIC base relative relocation, add the relocated
- // value to the value already in memory, after we adjust it for where the
- // PIC base is.
+ /// reloc_picrel_word - PIC base relative relocation, add the relocated
+ /// value to the value already in memory, after we adjust it for where the
+ /// PIC base is.
reloc_picrel_word = 1,
-
- // reloc_absolute_word, reloc_absolute_dword - Absolute relocation, just
- // add the relocated value to the value already in memory.
+
+ /// reloc_absolute_word - absolute relocation, just add the relocated
+ /// value to the value already in memory.
reloc_absolute_word = 2,
- reloc_absolute_dword = 3
+
+ /// reloc_absolute_word_sext - absolute relocation, just add the relocated
+ /// value to the value already in memory. In object files, it represents a
+ /// value which must be sign-extended when resolving the relocation.
+ reloc_absolute_word_sext = 3,
+
+ /// reloc_absolute_dword - absolute relocation, just add the relocated
+ /// value to the value already in memory.
+ reloc_absolute_dword = 4
};
}
}
diff --git a/lib/Target/X86/X86Subtarget.cpp b/lib/Target/X86/X86Subtarget.cpp
index 8506fa6..fb76aeb 100644
--- a/lib/Target/X86/X86Subtarget.cpp
+++ b/lib/Target/X86/X86Subtarget.cpp
@@ -13,80 +13,111 @@
#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
+#include "X86InstrInfo.h"
#include "X86GenSubtarget.inc"
-#include "llvm/Module.h"
-#include "llvm/Support/CommandLine.h"
+#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#if defined(_MSC_VER)
- #include <intrin.h>
+#include <intrin.h>
#endif
-static cl::opt<X86Subtarget::AsmWriterFlavorTy>
-AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
- cl::desc("Choose style of code to emit from X86 backend:"),
- cl::values(
- clEnumValN(X86Subtarget::ATT, "att", "Emit AT&T-style assembly"),
- clEnumValN(X86Subtarget::Intel, "intel", "Emit Intel-style assembly"),
- clEnumValEnd));
-
-
-/// True if accessing the GV requires an extra load. For Windows, dllimported
-/// symbols are indirect, loading the value at address GV rather then the
-/// value of GV itself. This means that the GlobalAddress must be in the base
-/// or index register of the address, not the GV offset field.
-bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV,
- const TargetMachine& TM,
- bool isDirectCall) const
-{
- // FIXME: PIC
- if (TM.getRelocationModel() != Reloc::Static &&
- TM.getCodeModel() != CodeModel::Large) {
+/// ClassifyGlobalReference - Classify a global variable reference for the
+/// current subtarget according to how we should reference it in a non-pcrel
+/// context.
+unsigned char X86Subtarget::
+ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
+ // DLLImport only exists on windows, it is implemented as a load from a
+ // DLLIMPORT stub.
+ if (GV->hasDLLImportLinkage())
+ return X86II::MO_DLLIMPORT;
+
+ // GV with ghost linkage (in JIT lazy compilation mode) do not require an
+ // extra load from stub.
+ bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
+
+ // X86-64 in PIC mode.
+ if (isPICStyleRIPRel()) {
+ // Large model never uses stubs.
+ if (TM.getCodeModel() == CodeModel::Large)
+ return X86II::MO_NO_FLAG;
+
if (isTargetDarwin()) {
- if (isDirectCall)
- return false;
- bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
- if (GV->hasHiddenVisibility() &&
- (Is64Bit || (!isDecl && !GV->hasCommonLinkage())))
- // If symbol visibility is hidden, the extra load is not needed if
- // target is x86-64 or the symbol is definitely defined in the current
- // translation unit.
- return false;
- return !isDirectCall && (isDecl || GV->isWeakForLinker());
- } else if (isTargetELF()) {
+ // If symbol visibility is hidden, the extra load is not needed if
+ // target is x86-64 or the symbol is definitely defined in the current
+ // translation unit.
+ if (GV->hasDefaultVisibility() &&
+ (isDecl || GV->isWeakForLinker()))
+ return X86II::MO_GOTPCREL;
+ } else {
+ assert(isTargetELF() && "Unknown rip-relative target");
+
// Extra load is needed for all externally visible.
- if (isDirectCall)
- return false;
- if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
- return false;
- return true;
- } else if (isTargetCygMing() || isTargetWindows()) {
- return (GV->hasDLLImportLinkage());
+ if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
+ return X86II::MO_GOTPCREL;
}
+
+ return X86II::MO_NO_FLAG;
}
- return false;
-}
+
+ if (isPICStyleGOT()) { // 32-bit ELF targets.
+ // Extra load is needed for all externally visible.
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return X86II::MO_GOTOFF;
+ return X86II::MO_GOT;
+ }
+
+ if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
+ // Determine whether we have a stub reference and/or whether the reference
+ // is relative to the PIC base or not.
+
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return X86II::MO_PIC_BASE_OFFSET;
-/// True if accessing the GV requires a register. This is a superset of the
-/// cases where GVRequiresExtraLoad is true. Some variations of PIC require
-/// a register, but not an extra load.
-bool X86Subtarget::GVRequiresRegister(const GlobalValue *GV,
- const TargetMachine& TM,
- bool isDirectCall) const
-{
- if (GVRequiresExtraLoad(GV, TM, isDirectCall))
- return true;
- // Code below here need only consider cases where GVRequiresExtraLoad
- // returns false.
- if (TM.getRelocationModel() == Reloc::PIC_)
- return !isDirectCall &&
- (GV->hasLocalLinkage() || GV->hasExternalLinkage());
- return false;
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
+
+ // If symbol visibility is hidden, we have a stub for common symbol
+ // references and external declarations.
+ if (isDecl || GV->hasCommonLinkage()) {
+ // Hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
+ }
+
+ // Otherwise, no stub.
+ return X86II::MO_PIC_BASE_OFFSET;
+ }
+
+ if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
+ // Determine whether we have a stub reference.
+
+ // If this is a strong reference to a definition, it is definitely not
+ // through a stub.
+ if (!isDecl && !GV->isWeakForLinker())
+ return X86II::MO_NO_FLAG;
+
+ // Unless we have a symbol with hidden visibility, we have to go through a
+ // normal $non_lazy_ptr stub because this symbol might be resolved late.
+ if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
+ return X86II::MO_DARWIN_NONLAZY;
+
+ // Otherwise, no stub.
+ return X86II::MO_NO_FLAG;
+ }
+
+ // Direct static reference to global.
+ return X86II::MO_NO_FLAG;
}
+
/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
@@ -120,9 +151,9 @@ unsigned X86Subtarget::getSpecialAddressLatency() const {
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
-bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
- unsigned *rECX, unsigned *rEDX) {
-#if defined(__x86_64__) || defined(_M_AMD64)
+static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
+ unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
+#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
@@ -192,18 +223,19 @@ void X86Subtarget::AutoDetectSubtargetFeatures() {
char c[12];
} text;
- if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
+ if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
return;
- X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
+ GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
- if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
- if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
- if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
- if (ECX & 0x1) X86SSELevel = SSE3;
- if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3;
- if ((ECX >> 19) & 0x1) X86SSELevel = SSE41;
- if ((ECX >> 20) & 0x1) X86SSELevel = SSE42;
+ if ((EDX >> 15) & 1) HasCMov = true;
+ if ((EDX >> 23) & 1) X86SSELevel = MMX;
+ if ((EDX >> 25) & 1) X86SSELevel = SSE1;
+ if ((EDX >> 26) & 1) X86SSELevel = SSE2;
+ if (ECX & 0x1) X86SSELevel = SSE3;
+ if ((ECX >> 9) & 1) X86SSELevel = SSSE3;
+ if ((ECX >> 19) & 1) X86SSELevel = SSE41;
+ if ((ECX >> 20) & 1) X86SSELevel = SSE42;
bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
@@ -218,7 +250,7 @@ void X86Subtarget::AutoDetectSubtargetFeatures() {
DetectFamilyModel(EAX, Family, Model);
IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
- X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
HasX86_64 = (EDX >> 29) & 0x1;
HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
@@ -227,13 +259,13 @@ void X86Subtarget::AutoDetectSubtargetFeatures() {
static const char *GetCurrentX86CPU() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
- if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
+ if (GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = 0;
unsigned Model = 0;
DetectFamilyModel(EAX, Family, Model);
- X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
bool HasSSE3 = (ECX & 0x1);
@@ -242,7 +274,7 @@ static const char *GetCurrentX86CPU() {
char c[12];
} text;
- X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
+ GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
@@ -319,9 +351,7 @@ static const char *GetCurrentX86CPU() {
}
case 15:
if (HasSSE3) {
- switch (Model) {
- default: return "k8-sse3";
- }
+ return "k8-sse3";
} else {
switch (Model) {
case 1: return "opteron";
@@ -330,9 +360,7 @@ static const char *GetCurrentX86CPU() {
}
}
case 16:
- switch (Model) {
- default: return "amdfam10";
- }
+ return "amdfam10";
default:
return "generic";
}
@@ -341,11 +369,12 @@ static const char *GetCurrentX86CPU() {
}
}
-X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
- : AsmFlavor(AsmWriterFlavor)
- , PICStyle(PICStyles::None)
+X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
+ bool is64Bit)
+ : PICStyle(PICStyles::None)
, X86SSELevel(NoMMXSSE)
, X863DNowLevel(NoThreeDNow)
+ , HasCMov(false)
, HasX86_64(false)
, HasSSE4A(false)
, HasAVX(false)
@@ -384,15 +413,14 @@ X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
if (Is64Bit)
HasX86_64 = true;
- DOUT << "Subtarget features: SSELevel " << X86SSELevel
- << ", 3DNowLevel " << X863DNowLevel
- << ", 64bit " << HasX86_64 << "\n";
+ DEBUG(errs() << "Subtarget features: SSELevel " << X86SSELevel
+ << ", 3DNowLevel " << X863DNowLevel
+ << ", 64bit " << HasX86_64 << "\n");
assert((!Is64Bit || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
- const std::string& TT = M.getTargetTriple();
if (TT.length() > 5) {
size_t Pos;
if ((Pos = TT.find("-darwin")) != std::string::npos) {
@@ -415,38 +443,10 @@ X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
TargetType = isWindows;
} else if (TT.find("windows") != std::string::npos) {
TargetType = isWindows;
- }
- else if (TT.find("-cl") != std::string::npos) {
+ } else if (TT.find("-cl") != std::string::npos) {
TargetType = isDarwin;
DarwinVers = 9;
}
- } else if (TT.empty()) {
-#if defined(__CYGWIN__)
- TargetType = isCygwin;
-#elif defined(__MINGW32__) || defined(__MINGW64__)
- TargetType = isMingw;
-#elif defined(__APPLE__)
- TargetType = isDarwin;
-#if __APPLE_CC__ > 5400
- DarwinVers = 9; // GCC 5400+ is Leopard.
-#else
- DarwinVers = 8; // Minimum supported darwin is Tiger.
-#endif
-
-#elif defined(_WIN32) || defined(_WIN64)
- TargetType = isWindows;
-#elif defined(__linux__)
- // Linux doesn't imply ELF, but we don't currently support anything else.
- TargetType = isELF;
- IsLinux = true;
-#endif
- }
-
- // If the asm syntax hasn't been overridden on the command line, use whatever
- // the target wants.
- if (AsmFlavor == X86Subtarget::Unset) {
- AsmFlavor = (TargetType == isWindows)
- ? X86Subtarget::Intel : X86Subtarget::ATT;
}
// Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
diff --git a/lib/Target/X86/X86Subtarget.h b/lib/Target/X86/X86Subtarget.h
index 0d1434f..a2e368d 100644
--- a/lib/Target/X86/X86Subtarget.h
+++ b/lib/Target/X86/X86Subtarget.h
@@ -18,23 +18,22 @@
#include <string>
namespace llvm {
-class Module;
class GlobalValue;
class TargetMachine;
+/// PICStyles - The X86 backend supports a number of different styles of PIC.
+///
namespace PICStyles {
enum Style {
- Stub, GOT, RIPRel, WinPIC, None
+ StubPIC, // Used on i386-darwin in -fPIC mode.
+ StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
+ GOT, // Used on many 32-bit unices in -fPIC mode.
+ RIPRel, // Used on X86-64 when not in -static mode.
+ None // Set when in -static mode (not PIC or DynamicNoPIC mode).
};
}
class X86Subtarget : public TargetSubtarget {
-public:
- enum AsmWriterFlavorTy {
- // Note: This numbering has to match the GCC assembler dialects for inline
- // asm alternatives to work right.
- ATT = 0, Intel = 1, Unset
- };
protected:
enum X86SSEEnum {
NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42
@@ -44,10 +43,6 @@ protected:
NoThreeDNow, ThreeDNow, ThreeDNowA
};
- /// AsmFlavor - Which x86 asm dialect to use.
- ///
- AsmWriterFlavorTy AsmFlavor;
-
/// PICStyle - Which PIC style to use
///
PICStyles::Style PICStyle;
@@ -60,6 +55,10 @@ protected:
///
X863DNowEnum X863DNowLevel;
+ /// HasCMov - True if this processor has conditional move instructions
+ /// (generally pentium pro+).
+ bool HasCMov;
+
/// HasX86_64 - True if the processor supports X86-64 instructions.
///
bool HasX86_64;
@@ -95,7 +94,7 @@ protected:
unsigned MaxInlineSizeThreshold;
private:
- /// Is64Bit - True if the processor supports 64-bit instructions and module
+ /// Is64Bit - True if the processor supports 64-bit instructions and
/// pointer size is 64 bit.
bool Is64Bit;
@@ -105,9 +104,9 @@ public:
} TargetType;
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- X86Subtarget(const Module &M, const std::string &FS, bool is64Bit);
+ X86Subtarget(const std::string &TT, const std::string &FS, bool is64Bit);
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
@@ -145,66 +144,67 @@ public:
bool hasAVX() const { return HasAVX; }
bool hasFMA3() const { return HasFMA3; }
bool hasFMA4() const { return HasFMA4; }
-
bool isBTMemSlow() const { return IsBTMemSlow; }
- unsigned getAsmFlavor() const {
- return AsmFlavor != Unset ? unsigned(AsmFlavor) : 0;
- }
-
- bool isFlavorAtt() const { return AsmFlavor == ATT; }
- bool isFlavorIntel() const { return AsmFlavor == Intel; }
-
bool isTargetDarwin() const { return TargetType == isDarwin; }
- bool isTargetELF() const {
- return TargetType == isELF;
- }
+ bool isTargetELF() const { return TargetType == isELF; }
+
bool isTargetWindows() const { return TargetType == isWindows; }
bool isTargetMingw() const { return TargetType == isMingw; }
- bool isTargetCygMing() const { return (TargetType == isMingw ||
- TargetType == isCygwin); }
bool isTargetCygwin() const { return TargetType == isCygwin; }
+ bool isTargetCygMing() const {
+ return TargetType == isMingw || TargetType == isCygwin;
+ }
+
+ /// isTargetCOFF - Return true if this is any COFF/Windows target variant.
+ bool isTargetCOFF() const {
+ return TargetType == isMingw || TargetType == isCygwin ||
+ TargetType == isWindows;
+ }
+
bool isTargetWin64() const {
- return (Is64Bit && (TargetType == isMingw || TargetType == isWindows));
+ return Is64Bit && (TargetType == isMingw || TargetType == isWindows);
}
std::string getDataLayout() const {
const char *p;
if (is64Bit())
p = "e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128";
- else {
- if (isTargetDarwin())
- p = "e-p:32:32-f64:32:64-i64:32:64-f80:128:128";
- else
- p = "e-p:32:32-f64:32:64-i64:32:64-f80:32:32";
- }
+ else if (isTargetDarwin())
+ p = "e-p:32:32-f64:32:64-i64:32:64-f80:128:128";
+ else
+ p = "e-p:32:32-f64:32:64-i64:32:64-f80:32:32";
return std::string(p);
}
bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
- bool isPICStyleStub() const { return PICStyle == PICStyles::Stub; }
bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
- bool isPICStyleWinPIC() const { return PICStyle == PICStyles::WinPIC; }
+
+ bool isPICStyleStubPIC() const {
+ return PICStyle == PICStyles::StubPIC;
+ }
+
+ bool isPICStyleStubNoDynamic() const {
+ return PICStyle == PICStyles::StubDynamicNoPIC;
+ }
+ bool isPICStyleStubAny() const {
+ return PICStyle == PICStyles::StubDynamicNoPIC ||
+ PICStyle == PICStyles::StubPIC; }
- /// getDarwinVers - Return the darwin version number, 8 = tiger, 9 = leopard.
+ /// getDarwinVers - Return the darwin version number, 8 = Tiger, 9 = Leopard,
+ /// 10 = Snow Leopard, etc.
unsigned getDarwinVers() const { return DarwinVers; }
/// isLinux - Return true if the target is "Linux".
bool isLinux() const { return IsLinux; }
- /// True if accessing the GV requires an extra load. For Windows, dllimported
- /// symbols are indirect, loading the value at address GV rather then the
- /// value of GV itself. This means that the GlobalAddress must be in the base
- /// or index register of the address, not the GV offset field.
- bool GVRequiresExtraLoad(const GlobalValue* GV, const TargetMachine& TM,
- bool isDirectCall) const;
-
- /// True if accessing the GV requires a register. This is a superset of the
- /// cases where GVRequiresExtraLoad is true. Some variations of PIC require
- /// a register, but not an extra load.
- bool GVRequiresRegister(const GlobalValue* GV, const TargetMachine& TM,
- bool isDirectCall) const;
+
+ /// ClassifyGlobalReference - Classify a global variable reference for the
+ /// current subtarget according to how we should reference it in a non-pcrel
+ /// context.
+ unsigned char ClassifyGlobalReference(const GlobalValue *GV,
+ const TargetMachine &TM)const;
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
@@ -224,13 +224,6 @@ public:
unsigned getSpecialAddressLatency() const;
};
-namespace X86 {
- /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in
- /// the specified arguments. If we can't run cpuid on the host, return true.
- bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
- unsigned *rECX, unsigned *rEDX);
-}
-
} // End llvm namespace
#endif
diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp
index b000914..a61de1c 100644
--- a/lib/Target/X86/X86TargetMachine.cpp
+++ b/lib/Target/X86/X86TargetMachine.cpp
@@ -11,172 +11,134 @@
//
//===----------------------------------------------------------------------===//
-#include "X86TargetAsmInfo.h"
+#include "X86MCAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
-#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-/// X86TargetMachineModule - Note that this is used on hosts that cannot link
-/// in a library unless there are references into the library. In particular,
-/// it seems that it is not possible to get things to work on Win32 without
-/// this. Though it is unused, do not remove it.
-extern "C" int X86TargetMachineModule;
-int X86TargetMachineModule = 0;
-
-// Register the target.
-static RegisterTarget<X86_32TargetMachine>
-X("x86", "32-bit X86: Pentium-Pro and above");
-static RegisterTarget<X86_64TargetMachine>
-Y("x86-64", "64-bit X86: EM64T and AMD64");
-
-// Force static initialization.
-extern "C" void LLVMInitializeX86Target() { }
-
-// No assembler printer by default
-X86TargetMachine::AsmPrinterCtorFn X86TargetMachine::AsmPrinterCtor = 0;
-
-const TargetAsmInfo *X86TargetMachine::createTargetAsmInfo() const {
- if (Subtarget.isFlavorIntel())
- return new X86WinTargetAsmInfo(*this);
- else
- switch (Subtarget.TargetType) {
- case X86Subtarget::isDarwin:
- return new X86DarwinTargetAsmInfo(*this);
- case X86Subtarget::isELF:
- return new X86ELFTargetAsmInfo(*this);
- case X86Subtarget::isMingw:
- case X86Subtarget::isCygwin:
- return new X86COFFTargetAsmInfo(*this);
- case X86Subtarget::isWindows:
- return new X86WinTargetAsmInfo(*this);
- default:
- return new X86GenericTargetAsmInfo(*this);
- }
-}
-
-unsigned X86_32TargetMachine::getJITMatchQuality() {
-#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
- return 10;
-#endif
- return 0;
-}
-
-unsigned X86_64TargetMachine::getJITMatchQuality() {
-#if defined(__x86_64__) || defined(_M_AMD64)
- return 10;
-#endif
- return 0;
+static const MCAsmInfo *createMCAsmInfo(const Target &T,
+ const StringRef &TT) {
+ Triple TheTriple(TT);
+ switch (TheTriple.getOS()) {
+ case Triple::Darwin:
+ return new X86MCAsmInfoDarwin(TheTriple);
+ case Triple::MinGW32:
+ case Triple::MinGW64:
+ case Triple::Cygwin:
+ return new X86MCAsmInfoCOFF(TheTriple);
+ case Triple::Win32:
+ return new X86WinMCAsmInfo(TheTriple);
+ default:
+ return new X86ELFMCAsmInfo(TheTriple);
+ }
}
-unsigned X86_32TargetMachine::getModuleMatchQuality(const Module &M) {
- // We strongly match "i[3-9]86-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
- TT[4] == '-' && TT[1] - '3' < 6)
- return 20;
- // If the target triple is something non-X86, we don't match.
- if (!TT.empty()) return 0;
+extern "C" void LLVMInitializeX86Target() {
+ // Register the target.
+ RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
+ RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
- if (M.getEndianness() == Module::LittleEndian &&
- M.getPointerSize() == Module::Pointer32)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
+ // Register the target asm info.
+ RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
+ RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
- return getJITMatchQuality()/2;
+ // Register the code emitter.
+ TargetRegistry::RegisterCodeEmitter(TheX86_32Target, createX86MCCodeEmitter);
+ TargetRegistry::RegisterCodeEmitter(TheX86_64Target, createX86MCCodeEmitter);
}
-unsigned X86_64TargetMachine::getModuleMatchQuality(const Module &M) {
- // We strongly match "x86_64-*".
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 7 && TT[0] == 'x' && TT[1] == '8' && TT[2] == '6' &&
- TT[3] == '_' && TT[4] == '6' && TT[5] == '4' && TT[6] == '-')
- return 20;
-
- // We strongly match "amd64-*".
- if (TT.size() >= 6 && TT[0] == 'a' && TT[1] == 'm' && TT[2] == 'd' &&
- TT[3] == '6' && TT[4] == '4' && TT[5] == '-')
- return 20;
-
- // If the target triple is something non-X86-64, we don't match.
- if (!TT.empty()) return 0;
-
- if (M.getEndianness() == Module::LittleEndian &&
- M.getPointerSize() == Module::Pointer64)
- return 10; // Weak match
- else if (M.getEndianness() != Module::AnyEndianness ||
- M.getPointerSize() != Module::AnyPointerSize)
- return 0; // Match for some other target
- return getJITMatchQuality()/2;
-}
-
-X86_32TargetMachine::X86_32TargetMachine(const Module &M, const std::string &FS)
- : X86TargetMachine(M, FS, false) {
+X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : X86TargetMachine(T, TT, FS, false) {
}
-X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS)
- : X86TargetMachine(M, FS, true) {
+X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : X86TargetMachine(T, TT, FS, true) {
}
-/// X86TargetMachine ctor - Create an ILP32 architecture model
+/// X86TargetMachine ctor - Create an X86 target.
///
-X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS,
- bool is64Bit)
- : Subtarget(M, FS, is64Bit),
+X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool is64Bit)
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS, is64Bit),
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
- Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
+ Subtarget.getStackAlignment(),
+ (Subtarget.isTargetWin64() ? -40 :
+ (Subtarget.is64Bit() ? -8 : -4))),
InstrInfo(*this), JITInfo(*this), TLInfo(*this), ELFWriterInfo(*this) {
DefRelocModel = getRelocationModel();
- // FIXME: Correctly select PIC model for Win64 stuff
+
+ // If no relocation model was picked, default as appropriate for the target.
if (getRelocationModel() == Reloc::Default) {
- if (Subtarget.isTargetDarwin() ||
- (Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64()))
- setRelocationModel(Reloc::DynamicNoPIC);
- else
+ if (!Subtarget.isTargetDarwin())
setRelocationModel(Reloc::Static);
+ else if (Subtarget.is64Bit())
+ setRelocationModel(Reloc::PIC_);
+ else
+ setRelocationModel(Reloc::DynamicNoPIC);
}
- // ELF doesn't have a distinct dynamic-no-PIC model. Dynamic-no-PIC
- // is defined as a model for code which may be used in static or
- // dynamic executables but not necessarily a shared library. On ELF
- // implement this by using the Static model.
- if (Subtarget.isTargetELF() &&
- getRelocationModel() == Reloc::DynamicNoPIC)
- setRelocationModel(Reloc::Static);
-
- if (Subtarget.is64Bit()) {
- // No DynamicNoPIC support under X86-64.
- if (getRelocationModel() == Reloc::DynamicNoPIC)
+ assert(getRelocationModel() != Reloc::Default &&
+ "Relocation mode not picked");
+
+ // If no code model is picked, default to small.
+ if (getCodeModel() == CodeModel::Default)
+ setCodeModel(CodeModel::Small);
+
+ // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
+ // is defined as a model for code which may be used in static or dynamic
+ // executables but not necessarily a shared library. On X86-32 we just
+ // compile in -static mode, in x86-64 we use PIC.
+ if (getRelocationModel() == Reloc::DynamicNoPIC) {
+ if (is64Bit)
setRelocationModel(Reloc::PIC_);
- // Default X86-64 code model is small.
- if (getCodeModel() == CodeModel::Default)
- setCodeModel(CodeModel::Small);
+ else if (!Subtarget.isTargetDarwin())
+ setRelocationModel(Reloc::Static);
}
- if (Subtarget.isTargetCygMing())
- Subtarget.setPICStyle(PICStyles::WinPIC);
- else if (Subtarget.isTargetDarwin()) {
+ // If we are on Darwin, disallow static relocation model in X86-64 mode, since
+ // the Mach-O file format doesn't support it.
+ if (getRelocationModel() == Reloc::Static &&
+ Subtarget.isTargetDarwin() &&
+ is64Bit)
+ setRelocationModel(Reloc::PIC_);
+
+ // Determine the PICStyle based on the target selected.
+ if (getRelocationModel() == Reloc::Static) {
+ // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
+ Subtarget.setPICStyle(PICStyles::None);
+ } else if (Subtarget.isTargetCygMing()) {
+ Subtarget.setPICStyle(PICStyles::None);
+ } else if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
- else
- Subtarget.setPICStyle(PICStyles::Stub);
+ else if (getRelocationModel() == Reloc::PIC_)
+ Subtarget.setPICStyle(PICStyles::StubPIC);
+ else {
+ assert(getRelocationModel() == Reloc::DynamicNoPIC);
+ Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
+ }
} else if (Subtarget.isTargetELF()) {
if (Subtarget.is64Bit())
Subtarget.setPICStyle(PICStyles::RIPRel);
else
Subtarget.setPICStyle(PICStyles::GOT);
}
+
+ // Finally, if we have "none" as our PIC style, force to static mode.
+ if (Subtarget.getPICStyle() == PICStyles::None)
+ setRelocationModel(Reloc::Static);
}
//===----------------------------------------------------------------------===//
@@ -212,33 +174,16 @@ bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
return true; // -print-machineinstr should print after this.
}
-bool X86TargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // FIXME: Move this somewhere else!
- // On Darwin, override 64-bit static relocation to pic_ since the
- // assembler doesn't support it.
- if (DefRelocModel == Reloc::Static &&
- Subtarget.isTargetDarwin() && Subtarget.is64Bit() &&
- getCodeModel() == CodeModel::Small)
- setRelocationModel(Reloc::PIC_);
-
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(Out, *this, Verbose));
- return false;
-}
-
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
- (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit()))
+ (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
setRelocationModel(Reloc::Static);
+ Subtarget.setPICStyle(PICStyles::None);
+ }
// 64-bit JIT places everything in the same buffer except external functions.
// On Darwin, use small code model but hack the call instruction for
@@ -251,24 +196,20 @@ bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
}
PM.add(createX86CodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
- (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit()))
+ (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
setRelocationModel(Reloc::Static);
+ Subtarget.setPICStyle(PICStyles::None);
+ }
// 64-bit JIT places everything in the same buffer except external functions.
// On Darwin, use small code model but hack the call instruction for
@@ -281,40 +222,34 @@ bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
}
PM.add(createX86JITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
return false;
}
+bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ PM.add(createX86ObjectCodeEmitterPass(*this, OCE));
+ return false;
+}
+
bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
MachineCodeEmitter &MCE) {
PM.add(createX86CodeEmitterPass(*this, MCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm,
JITCodeEmitter &JCE) {
PM.add(createX86JITCodeEmitterPass(*this, JCE));
- if (DumpAsm) {
- assert(AsmPrinterCtor && "AsmPrinter was not linked in");
- if (AsmPrinterCtor)
- PM.add(AsmPrinterCtor(errs(), *this, true));
- }
-
return false;
}
+bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE) {
+ PM.add(createX86ObjectCodeEmitterPass(*this, OCE));
+ return false;
+}
diff --git a/lib/Target/X86/X86TargetMachine.h b/lib/Target/X86/X86TargetMachine.h
index 90a5cc2..b538408 100644
--- a/lib/Target/X86/X86TargetMachine.h
+++ b/lib/Target/X86/X86TargetMachine.h
@@ -26,7 +26,7 @@
namespace llvm {
-class raw_ostream;
+class formatted_raw_ostream;
class X86TargetMachine : public LLVMTargetMachine {
X86Subtarget Subtarget;
@@ -38,18 +38,9 @@ class X86TargetMachine : public LLVMTargetMachine {
X86ELFWriterInfo ELFWriterInfo;
Reloc::Model DefRelocModel; // Reloc model before it's overridden.
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
- // To avoid having target depend on the asmprinter stuff libraries, asmprinter
- // set this functions to ctor pointer at startup time if they are linked in.
- typedef FunctionPass *(*AsmPrinterCtorFn)(raw_ostream &o,
- X86TargetMachine &tm,
- bool verbose);
- static AsmPrinterCtorFn AsmPrinterCtor;
-
public:
- X86TargetMachine(const Module &M, const std::string &FS, bool is64Bit);
+ X86TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS, bool is64Bit);
virtual const X86InstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &FrameInfo; }
@@ -66,50 +57,41 @@ public:
return Subtarget.isTargetELF() ? &ELFWriterInfo : 0;
}
- static unsigned getModuleMatchQuality(const Module &M);
- static unsigned getJITMatchQuality();
-
- static void registerAsmPrinter(AsmPrinterCtorFn F) {
- AsmPrinterCtor = F;
- }
-
// Set up the pass pipeline.
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPreRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
virtual bool addPostRegAlloc(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ MachineCodeEmitter &MCE);
virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE);
+ JITCodeEmitter &JCE);
+ virtual bool addCodeEmitter(PassManagerBase &PM, CodeGenOpt::Level OptLevel,
+ ObjectCodeEmitter &OCE);
+ virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
+ CodeGenOpt::Level OptLevel,
+ MachineCodeEmitter &MCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, MachineCodeEmitter &MCE);
+ JITCodeEmitter &JCE);
virtual bool addSimpleCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
- bool DumpAsm, JITCodeEmitter &JCE);
+ ObjectCodeEmitter &OCE);
};
/// X86_32TargetMachine - X86 32-bit target machine.
///
class X86_32TargetMachine : public X86TargetMachine {
public:
- X86_32TargetMachine(const Module &M, const std::string &FS);
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
+ X86_32TargetMachine(const Target &T, const std::string &M,
+ const std::string &FS);
};
/// X86_64TargetMachine - X86 64-bit target machine.
///
class X86_64TargetMachine : public X86TargetMachine {
public:
- X86_64TargetMachine(const Module &M, const std::string &FS);
-
- static unsigned getJITMatchQuality();
- static unsigned getModuleMatchQuality(const Module &M);
+ X86_64TargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
};
} // End llvm namespace
diff --git a/lib/Target/X86/X86TargetObjectFile.cpp b/lib/Target/X86/X86TargetObjectFile.cpp
new file mode 100644
index 0000000..d39b3c4
--- /dev/null
+++ b/lib/Target/X86/X86TargetObjectFile.cpp
@@ -0,0 +1,65 @@
+//===-- llvm/Target/X86/X86TargetObjectFile.cpp - X86 Object Info ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetObjectFile.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+using namespace llvm;
+
+const MCExpr *X8632_MachoTargetObjectFile::
+getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const {
+ // The mach-o version of this method defaults to returning a stub reference.
+ IsIndirect = true;
+ IsPCRel = false;
+
+
+ MachineModuleInfoMachO &MachOMMI =
+ MMI->getObjFileInfo<MachineModuleInfoMachO>();
+
+ SmallString<128> Name;
+ Mang->getNameWithPrefix(Name, GV, true);
+ Name += "$non_lazy_ptr";
+
+ // Add information about the stub reference to MachOMMI so that the stub gets
+ // emitted by the asmprinter.
+ MCSymbol *Sym = getContext().GetOrCreateSymbol(Name.str());
+ const MCSymbol *&StubSym = MachOMMI.getGVStubEntry(Sym);
+ if (StubSym == 0) {
+ Name.clear();
+ Mang->getNameWithPrefix(Name, GV, false);
+ StubSym = getContext().GetOrCreateSymbol(Name.str());
+ }
+
+ return MCSymbolRefExpr::Create(Sym, getContext());
+}
+
+const MCExpr *X8664_MachoTargetObjectFile::
+getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const {
+
+ // On Darwin/X86-64, we can reference dwarf symbols with foo@GOTPCREL+4, which
+ // is an indirect pc-relative reference.
+ IsIndirect = true;
+ IsPCRel = true;
+
+ SmallString<128> Name;
+ Mang->getNameWithPrefix(Name, GV, false);
+ Name += "@GOTPCREL";
+ const MCExpr *Res =
+ MCSymbolRefExpr::Create(Name.str(), getContext());
+ const MCExpr *Four = MCConstantExpr::Create(4, getContext());
+ return MCBinaryExpr::CreateAdd(Res, Four, getContext());
+}
+
diff --git a/lib/Target/X86/X86TargetObjectFile.h b/lib/Target/X86/X86TargetObjectFile.h
new file mode 100644
index 0000000..377a93b
--- /dev/null
+++ b/lib/Target/X86/X86TargetObjectFile.h
@@ -0,0 +1,40 @@
+//===-- llvm/Target/X86/X86TargetObjectFile.h - X86 Object Info -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_X86_TARGETOBJECTFILE_H
+#define LLVM_TARGET_X86_TARGETOBJECTFILE_H
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+namespace llvm {
+
+ /// X8632_MachoTargetObjectFile - This TLOF implementation is used for
+ /// Darwin/x86-32.
+ class X8632_MachoTargetObjectFile : public TargetLoweringObjectFileMachO {
+ public:
+
+ virtual const MCExpr *
+ getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const;
+ };
+
+ /// X8664_MachoTargetObjectFile - This TLOF implementation is used for
+ /// Darwin/x86-64.
+ class X8664_MachoTargetObjectFile : public TargetLoweringObjectFileMachO {
+ public:
+
+ virtual const MCExpr *
+ getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
+ MachineModuleInfo *MMI,
+ bool &IsIndirect, bool &IsPCRel) const;
+ };
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/XCore/AsmPrinter/CMakeLists.txt b/lib/Target/XCore/AsmPrinter/CMakeLists.txt
new file mode 100644
index 0000000..7c7c2f4
--- /dev/null
+++ b/lib/Target/XCore/AsmPrinter/CMakeLists.txt
@@ -0,0 +1,6 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMXCoreAsmPrinter
+ XCoreAsmPrinter.cpp
+ )
+add_dependencies(LLVMXCoreAsmPrinter XCoreCodeGenTable_gen)
diff --git a/lib/Target/XCore/AsmPrinter/Makefile b/lib/Target/XCore/AsmPrinter/Makefile
new file mode 100644
index 0000000..82dc1df
--- /dev/null
+++ b/lib/Target/XCore/AsmPrinter/Makefile
@@ -0,0 +1,16 @@
+##===- lib/Target/XCore/AsmPrinter/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMXCoreAsmPrinter
+
+# Hack: we need to include 'main' XCore target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/XCore/AsmPrinter/XCoreAsmPrinter.cpp b/lib/Target/XCore/AsmPrinter/XCoreAsmPrinter.cpp
new file mode 100644
index 0000000..e58edda
--- /dev/null
+++ b/lib/Target/XCore/AsmPrinter/XCoreAsmPrinter.cpp
@@ -0,0 +1,374 @@
+//===-- XCoreAsmPrinter.cpp - XCore LLVM assembly writer ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal representation
+// of machine-dependent LLVM code to the XAS-format XCore assembly language.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asm-printer"
+#include "XCore.h"
+#include "XCoreInstrInfo.h"
+#include "XCoreSubtarget.h"
+#include "XCoreMCAsmInfo.h"
+#include "XCoreTargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/Mangler.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cctype>
+using namespace llvm;
+
+STATISTIC(EmittedInsts, "Number of machine instrs printed");
+
+static cl::opt<unsigned> MaxThreads("xcore-max-threads", cl::Optional,
+ cl::desc("Maximum number of threads (for emulation thread-local storage)"),
+ cl::Hidden,
+ cl::value_desc("number"),
+ cl::init(8));
+
+namespace {
+ class VISIBILITY_HIDDEN XCoreAsmPrinter : public AsmPrinter {
+ const XCoreSubtarget &Subtarget;
+ public:
+ explicit XCoreAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
+ const MCAsmInfo *T, bool V)
+ : AsmPrinter(O, TM, T, V),
+ Subtarget(TM.getSubtarget<XCoreSubtarget>()) {}
+
+ virtual const char *getPassName() const {
+ return "XCore Assembly Printer";
+ }
+
+ void printMemOperand(const MachineInstr *MI, int opNum);
+ void printOperand(const MachineInstr *MI, int opNum);
+ bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant, const char *ExtraCode);
+
+ void emitGlobalDirective(const std::string &name);
+ void emitExternDirective(const std::string &name);
+
+ void emitArrayBound(const std::string &name, const GlobalVariable *GV);
+ virtual void PrintGlobalVariable(const GlobalVariable *GV);
+
+ void emitFunctionStart(MachineFunction &MF);
+ void emitFunctionEnd(MachineFunction &MF);
+
+ void printInstruction(const MachineInstr *MI); // autogenerated.
+ static const char *getRegisterName(unsigned RegNo);
+
+ void printMachineInstruction(const MachineInstr *MI);
+ bool runOnMachineFunction(MachineFunction &F);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AsmPrinter::getAnalysisUsage(AU);
+ AU.setPreservesAll();
+ AU.addRequired<MachineModuleInfo>();
+ AU.addRequired<DwarfWriter>();
+ }
+ };
+} // end of anonymous namespace
+
+#include "XCoreGenAsmWriter.inc"
+
+void XCoreAsmPrinter::
+emitGlobalDirective(const std::string &name)
+{
+ O << MAI->getGlobalDirective() << name;
+ O << "\n";
+}
+
+void XCoreAsmPrinter::
+emitExternDirective(const std::string &name)
+{
+ O << "\t.extern\t" << name;
+ O << '\n';
+}
+
+void XCoreAsmPrinter::
+emitArrayBound(const std::string &name, const GlobalVariable *GV)
+{
+ assert(((GV->hasExternalLinkage() ||
+ GV->hasWeakLinkage()) ||
+ GV->hasLinkOnceLinkage()) && "Unexpected linkage");
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(
+ cast<PointerType>(GV->getType())->getElementType()))
+ {
+ O << MAI->getGlobalDirective() << name << ".globound" << "\n";
+ O << MAI->getSetDirective() << name << ".globound" << ","
+ << ATy->getNumElements() << "\n";
+ if (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()) {
+ // TODO Use COMDAT groups for LinkOnceLinkage
+ O << MAI->getWeakDefDirective() << name << ".globound" << "\n";
+ }
+ }
+}
+
+void XCoreAsmPrinter::PrintGlobalVariable(const GlobalVariable *GV) {
+ // Check to see if this is a special global used by LLVM, if so, emit it.
+ if (!GV->hasInitializer() ||
+ EmitSpecialLLVMGlobal(GV))
+ return;
+
+ const TargetData *TD = TM.getTargetData();
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GV, Mang,TM));
+
+ std::string name = Mang->getMangledName(GV);
+ Constant *C = GV->getInitializer();
+ unsigned Align = (unsigned)TD->getPreferredTypeAlignmentShift(C->getType());
+
+ // Mark the start of the global
+ O << "\t.cc_top " << name << ".data," << name << "\n";
+
+ switch (GV->getLinkage()) {
+ case GlobalValue::AppendingLinkage:
+ llvm_report_error("AppendingLinkage is not supported by this target!");
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ case GlobalValue::ExternalLinkage:
+ emitArrayBound(name, GV);
+ emitGlobalDirective(name);
+ // TODO Use COMDAT groups for LinkOnceLinkage
+ if (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()) {
+ O << MAI->getWeakDefDirective() << name << "\n";
+ }
+ // FALL THROUGH
+ case GlobalValue::InternalLinkage:
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
+ break;
+ case GlobalValue::GhostLinkage:
+ llvm_unreachable("Should not have any unmaterialized functions!");
+ case GlobalValue::DLLImportLinkage:
+ llvm_unreachable("DLLImport linkage is not supported by this target!");
+ case GlobalValue::DLLExportLinkage:
+ llvm_unreachable("DLLExport linkage is not supported by this target!");
+ default:
+ llvm_unreachable("Unknown linkage type!");
+ }
+
+ EmitAlignment(Align, GV, 2);
+
+ unsigned Size = TD->getTypeAllocSize(C->getType());
+ if (GV->isThreadLocal()) {
+ Size *= MaxThreads;
+ }
+ if (MAI->hasDotTypeDotSizeDirective()) {
+ O << "\t.type " << name << ",@object\n";
+ O << "\t.size " << name << "," << Size << "\n";
+ }
+ O << name << ":\n";
+
+ EmitGlobalConstant(C);
+ if (GV->isThreadLocal()) {
+ for (unsigned i = 1; i < MaxThreads; ++i) {
+ EmitGlobalConstant(C);
+ }
+ }
+ if (Size < 4) {
+ // The ABI requires that unsigned scalar types smaller than 32 bits
+ // are are padded to 32 bits.
+ EmitZeros(4 - Size);
+ }
+
+ // Mark the end of the global
+ O << "\t.cc_bottom " << name << ".data\n";
+}
+
+/// Emit the directives on the start of functions
+void XCoreAsmPrinter::emitFunctionStart(MachineFunction &MF) {
+ // Print out the label for the function.
+ const Function *F = MF.getFunction();
+
+ OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
+
+ // Mark the start of the function
+ O << "\t.cc_top " << CurrentFnName << ".function," << CurrentFnName << "\n";
+
+ switch (F->getLinkage()) {
+ default: llvm_unreachable("Unknown linkage type!");
+ case Function::InternalLinkage: // Symbols default to internal.
+ case Function::PrivateLinkage:
+ case Function::LinkerPrivateLinkage:
+ break;
+ case Function::ExternalLinkage:
+ emitGlobalDirective(CurrentFnName);
+ break;
+ case Function::LinkOnceAnyLinkage:
+ case Function::LinkOnceODRLinkage:
+ case Function::WeakAnyLinkage:
+ case Function::WeakODRLinkage:
+ // TODO Use COMDAT groups for LinkOnceLinkage
+ O << MAI->getGlobalDirective() << CurrentFnName << "\n";
+ O << MAI->getWeakDefDirective() << CurrentFnName << "\n";
+ break;
+ }
+ // (1 << 1) byte aligned
+ EmitAlignment(MF.getAlignment(), F, 1);
+ if (MAI->hasDotTypeDotSizeDirective()) {
+ O << "\t.type " << CurrentFnName << ",@function\n";
+ }
+ O << CurrentFnName << ":\n";
+}
+
+/// Emit the directives on the end of functions
+void XCoreAsmPrinter::
+emitFunctionEnd(MachineFunction &MF)
+{
+ // Mark the end of the function
+ O << "\t.cc_bottom " << CurrentFnName << ".function\n";
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool XCoreAsmPrinter::runOnMachineFunction(MachineFunction &MF)
+{
+ this->MF = &MF;
+
+ SetupMachineFunction(MF);
+
+ // Print out constants referenced by the function
+ EmitConstantPool(MF.getConstantPool());
+
+ // Print out jump tables referenced by the function
+ EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
+
+ // Emit the function start directives
+ emitFunctionStart(MF);
+
+ // Emit pre-function debug information.
+ DW->BeginFunction(&MF);
+
+ // Print out code for the function.
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I) {
+
+ // Print a label for the basic block.
+ if (I != MF.begin()) {
+ EmitBasicBlockStart(I);
+ }
+
+ for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+ II != E; ++II) {
+ // Print the assembly for the instruction.
+ printMachineInstruction(II);
+ }
+
+ // Each Basic Block is separated by a newline
+ O << '\n';
+ }
+
+ // Emit function end directives
+ emitFunctionEnd(MF);
+
+ // Emit post-function debug information.
+ DW->EndFunction(&MF);
+
+ // We didn't modify anything.
+ return false;
+}
+
+void XCoreAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum)
+{
+ printOperand(MI, opNum);
+
+ if (MI->getOperand(opNum+1).isImm()
+ && MI->getOperand(opNum+1).getImm() == 0)
+ return;
+
+ O << "+";
+ printOperand(MI, opNum+1);
+}
+
+void XCoreAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ switch (MO.getType()) {
+ case MachineOperand::MO_Register:
+ O << getRegisterName(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ O << MO.getImm();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ O << Mang->getMangledName(MO.getGlobal());
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ O << MO.getSymbolName();
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
+ << '_' << MO.getIndex();
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
+ << '_' << MO.getIndex();
+ break;
+ default:
+ llvm_unreachable("not implemented");
+ }
+}
+
+/// PrintAsmOperand - Print out an operand for an inline asm expression.
+///
+bool XCoreAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode) {
+ printOperand(MI, OpNo);
+ return false;
+}
+
+void XCoreAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
+ ++EmittedInsts;
+
+ processDebugLoc(MI, true);
+
+ // Check for mov mnemonic
+ unsigned src, dst, srcSR, dstSR;
+ if (TM.getInstrInfo()->isMoveInstr(*MI, src, dst, srcSR, dstSR)) {
+ O << "\tmov " << getRegisterName(dst) << ", ";
+ O << getRegisterName(src) << '\n';
+ return;
+ }
+ printInstruction(MI);
+ if (VerboseAsm && !MI->getDebugLoc().isUnknown())
+ EmitComments(*MI);
+ O << '\n';
+
+ processDebugLoc(MI, false);
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeXCoreAsmPrinter() {
+ RegisterAsmPrinter<XCoreAsmPrinter> X(TheXCoreTarget);
+}
diff --git a/lib/Target/XCore/CMakeLists.txt b/lib/Target/XCore/CMakeLists.txt
index a7aba14..0965323 100644
--- a/lib/Target/XCore/CMakeLists.txt
+++ b/lib/Target/XCore/CMakeLists.txt
@@ -11,13 +11,14 @@ tablegen(XCoreGenCallingConv.inc -gen-callingconv)
tablegen(XCoreGenSubtarget.inc -gen-subtarget)
add_llvm_target(XCore
- XCoreAsmPrinter.cpp
+ MCSectionXCore.cpp
XCoreFrameInfo.cpp
XCoreInstrInfo.cpp
XCoreISelDAGToDAG.cpp
XCoreISelLowering.cpp
+ XCoreMCAsmInfo.cpp
XCoreRegisterInfo.cpp
XCoreSubtarget.cpp
- XCoreTargetAsmInfo.cpp
XCoreTargetMachine.cpp
+ XCoreTargetObjectFile.cpp
)
diff --git a/lib/Target/XCore/MCSectionXCore.cpp b/lib/Target/XCore/MCSectionXCore.cpp
new file mode 100644
index 0000000..5acceaf
--- /dev/null
+++ b/lib/Target/XCore/MCSectionXCore.cpp
@@ -0,0 +1,35 @@
+//===- MCSectionXCore.cpp - XCore-specific section representation ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the MCSectionXCore class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCSectionXCore.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+MCSectionXCore *
+MCSectionXCore::Create(const StringRef &Section, unsigned Type,
+ unsigned Flags, SectionKind K,
+ bool isExplicit, MCContext &Ctx) {
+ return new (Ctx) MCSectionXCore(Section, Type, Flags, K, isExplicit);
+}
+
+
+/// PrintTargetSpecificSectionFlags - This handles the XCore-specific cp/dp
+/// section flags.
+void MCSectionXCore::PrintTargetSpecificSectionFlags(const MCAsmInfo &MAI,
+ raw_ostream &OS) const {
+ if (getFlags() & MCSectionXCore::SHF_CP_SECTION)
+ OS << 'c';
+ if (getFlags() & MCSectionXCore::SHF_DP_SECTION)
+ OS << 'd';
+}
diff --git a/lib/Target/XCore/MCSectionXCore.h b/lib/Target/XCore/MCSectionXCore.h
new file mode 100644
index 0000000..02f8f95
--- /dev/null
+++ b/lib/Target/XCore/MCSectionXCore.h
@@ -0,0 +1,54 @@
+//===- MCSectionXCore.h - XCore-specific section representation -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the MCSectionXCore class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_MCSECTION_XCORE_H
+#define LLVM_MCSECTION_XCORE_H
+
+#include "llvm/MC/MCSectionELF.h"
+
+namespace llvm {
+
+class MCSectionXCore : public MCSectionELF {
+ MCSectionXCore(const StringRef &Section, unsigned Type, unsigned Flags,
+ SectionKind K, bool isExplicit)
+ : MCSectionELF(Section, Type, Flags, K, isExplicit) {}
+
+public:
+
+ enum {
+ /// SHF_CP_SECTION - All sections with the "c" flag are grouped together
+ /// by the linker to form the constant pool and the cp register is set to
+ /// the start of the constant pool by the boot code.
+ SHF_CP_SECTION = FIRST_TARGET_DEP_FLAG,
+
+ /// SHF_DP_SECTION - All sections with the "d" flag are grouped together
+ /// by the linker to form the data section and the dp register is set to
+ /// the start of the section by the boot code.
+ SHF_DP_SECTION = FIRST_TARGET_DEP_FLAG << 1
+ };
+
+ static MCSectionXCore *Create(const StringRef &Section, unsigned Type,
+ unsigned Flags, SectionKind K,
+ bool isExplicit, MCContext &Ctx);
+
+
+ /// PrintTargetSpecificSectionFlags - This handles the XCore-specific cp/dp
+ /// section flags.
+ virtual void PrintTargetSpecificSectionFlags(const MCAsmInfo &MAI,
+ raw_ostream &OS) const;
+
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/XCore/Makefile b/lib/Target/XCore/Makefile
index 568df70..bd3b52a 100644
--- a/lib/Target/XCore/Makefile
+++ b/lib/Target/XCore/Makefile
@@ -7,7 +7,7 @@
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
-LIBRARYNAME = LLVMXCore
+LIBRARYNAME = LLVMXCoreCodeGen
TARGET = XCore
# Make sure that tblgen is run, first thing.
@@ -17,5 +17,7 @@ BUILT_SOURCES = XCoreGenRegisterInfo.h.inc XCoreGenRegisterNames.inc \
XCoreGenDAGISel.inc XCoreGenCallingConv.inc \
XCoreGenSubtarget.inc
+DIRS = AsmPrinter TargetInfo
+
include $(LEVEL)/Makefile.common
diff --git a/lib/Target/XCore/TargetInfo/CMakeLists.txt b/lib/Target/XCore/TargetInfo/CMakeLists.txt
new file mode 100644
index 0000000..0a568de
--- /dev/null
+++ b/lib/Target/XCore/TargetInfo/CMakeLists.txt
@@ -0,0 +1,7 @@
+include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
+
+add_llvm_library(LLVMXCoreInfo
+ XCoreTargetInfo.cpp
+ )
+
+add_dependencies(LLVMXCoreInfo XCoreTable_gen)
diff --git a/lib/Target/XCore/TargetInfo/Makefile b/lib/Target/XCore/TargetInfo/Makefile
new file mode 100644
index 0000000..07473d2
--- /dev/null
+++ b/lib/Target/XCore/TargetInfo/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Target/XCore/TargetInfo/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../../../..
+LIBRARYNAME = LLVMXCoreInfo
+
+# Hack: we need to include 'main' target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp b/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp
new file mode 100644
index 0000000..7aa8965
--- /dev/null
+++ b/lib/Target/XCore/TargetInfo/XCoreTargetInfo.cpp
@@ -0,0 +1,19 @@
+//===-- XCoreTargetInfo.cpp - XCore Target Implementation -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCore.h"
+#include "llvm/Module.h"
+#include "llvm/Target/TargetRegistry.h"
+using namespace llvm;
+
+Target llvm::TheXCoreTarget;
+
+extern "C" void LLVMInitializeXCoreTargetInfo() {
+ RegisterTarget<Triple::xcore> X(TheXCoreTarget, "xcore", "XCore");
+}
diff --git a/lib/Target/XCore/XCore.h b/lib/Target/XCore/XCore.h
index d95aab3..8937fbe 100644
--- a/lib/Target/XCore/XCore.h
+++ b/lib/Target/XCore/XCore.h
@@ -21,12 +21,12 @@ namespace llvm {
class FunctionPass;
class TargetMachine;
class XCoreTargetMachine;
- class raw_ostream;
+ class formatted_raw_ostream;
FunctionPass *createXCoreISelDag(XCoreTargetMachine &TM);
- FunctionPass *createXCoreCodePrinterPass(raw_ostream &OS,
- XCoreTargetMachine &TM,
- bool Verbose);
+
+ extern Target TheXCoreTarget;
+
} // end namespace llvm;
// Defines symbolic names for XCore registers. This defines a mapping from
diff --git a/lib/Target/XCore/XCore.td b/lib/Target/XCore/XCore.td
index 7a2dcdb..b07445d 100644
--- a/lib/Target/XCore/XCore.td
+++ b/lib/Target/XCore/XCore.td
@@ -30,27 +30,14 @@ def XCoreInstrInfo : InstrInfo {
}
//===----------------------------------------------------------------------===//
-// XCore Subtarget features.
-//===----------------------------------------------------------------------===//
-
-def FeatureXS1A
- : SubtargetFeature<"xs1a", "IsXS1A", "true",
- "Enable XS1A instructions">;
-
-def FeatureXS1B
- : SubtargetFeature<"xs1b", "IsXS1B", "true",
- "Enable XS1B instructions">;
-
-//===----------------------------------------------------------------------===//
// XCore processors supported.
//===----------------------------------------------------------------------===//
class Proc<string Name, list<SubtargetFeature> Features>
: Processor<Name, NoItineraries, Features>;
-def : Proc<"generic", [FeatureXS1A]>;
-def : Proc<"xs1a-generic", [FeatureXS1A]>;
-def : Proc<"xs1b-generic", [FeatureXS1B]>;
+def : Proc<"generic", []>;
+def : Proc<"xs1b-generic", []>;
//===----------------------------------------------------------------------===//
// Declare the target which we are implementing
diff --git a/lib/Target/XCore/XCoreISelDAGToDAG.cpp b/lib/Target/XCore/XCoreISelDAGToDAG.cpp
index eed34a4..860b72f 100644
--- a/lib/Target/XCore/XCoreISelDAGToDAG.cpp
+++ b/lib/Target/XCore/XCoreISelDAGToDAG.cpp
@@ -19,6 +19,7 @@
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@@ -28,6 +29,8 @@
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include <queue>
#include <set>
using namespace llvm;
@@ -159,69 +162,62 @@ InstructionSelect() {
SDNode *XCoreDAGToDAGISel::Select(SDValue Op) {
SDNode *N = Op.getNode();
DebugLoc dl = N->getDebugLoc();
- MVT NVT = N->getValueType(0);
+ EVT NVT = N->getValueType(0);
if (NVT == MVT::i32) {
switch (N->getOpcode()) {
default: break;
case ISD::Constant: {
if (Predicate_immMskBitp(N)) {
SDValue MskSize = Transform_msksize_xform(N);
- return CurDAG->getTargetNode(XCore::MKMSK_rus, dl, MVT::i32, MskSize);
+ return CurDAG->getMachineNode(XCore::MKMSK_rus, dl,
+ MVT::i32, MskSize);
}
else if (! Predicate_immU16(N)) {
unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
SDValue CPIdx =
- CurDAG->getTargetConstantPool(ConstantInt::get(Type::Int32Ty, Val),
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
TLI.getPointerTy());
- return CurDAG->getTargetNode(XCore::LDWCP_lru6, dl, MVT::i32,
- MVT::Other, CPIdx,
- CurDAG->getEntryNode());
+ return CurDAG->getMachineNode(XCore::LDWCP_lru6, dl, MVT::i32,
+ MVT::Other, CPIdx,
+ CurDAG->getEntryNode());
}
break;
}
case ISD::SMUL_LOHI: {
// FIXME fold addition into the macc instruction
- if (!Subtarget.isXS1A()) {
- SDValue Zero(CurDAG->getTargetNode(XCore::LDC_ru6, dl, MVT::i32,
- CurDAG->getTargetConstant(0, MVT::i32)), 0);
- SDValue Ops[] = { Zero, Zero, Op.getOperand(0), Op.getOperand(1) };
- SDNode *ResNode = CurDAG->getTargetNode(XCore::MACCS_l4r, dl,
- MVT::i32, MVT::i32, Ops, 4);
- ReplaceUses(SDValue(N, 0), SDValue(ResNode, 1));
- ReplaceUses(SDValue(N, 1), SDValue(ResNode, 0));
- return NULL;
- }
- break;
+ SDValue Zero(CurDAG->getMachineNode(XCore::LDC_ru6, dl, MVT::i32,
+ CurDAG->getTargetConstant(0, MVT::i32)), 0);
+ SDValue Ops[] = { Zero, Zero, Op.getOperand(0), Op.getOperand(1) };
+ SDNode *ResNode = CurDAG->getMachineNode(XCore::MACCS_l4r, dl,
+ MVT::i32, MVT::i32, Ops, 4);
+ ReplaceUses(SDValue(N, 0), SDValue(ResNode, 1));
+ ReplaceUses(SDValue(N, 1), SDValue(ResNode, 0));
+ return NULL;
}
case ISD::UMUL_LOHI: {
// FIXME fold addition into the macc / lmul instruction
- SDValue Zero(CurDAG->getTargetNode(XCore::LDC_ru6, dl, MVT::i32,
+ SDValue Zero(CurDAG->getMachineNode(XCore::LDC_ru6, dl, MVT::i32,
CurDAG->getTargetConstant(0, MVT::i32)), 0);
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
Zero, Zero };
- SDNode *ResNode = CurDAG->getTargetNode(XCore::LMUL_l6r, dl, MVT::i32,
- MVT::i32, Ops, 4);
+ SDNode *ResNode = CurDAG->getMachineNode(XCore::LMUL_l6r, dl, MVT::i32,
+ MVT::i32, Ops, 4);
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 1));
ReplaceUses(SDValue(N, 1), SDValue(ResNode, 0));
return NULL;
}
case XCoreISD::LADD: {
- if (!Subtarget.isXS1A()) {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
- Op.getOperand(2) };
- return CurDAG->getTargetNode(XCore::LADD_l5r, dl, MVT::i32, MVT::i32,
- Ops, 3);
- }
- break;
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(2) };
+ return CurDAG->getMachineNode(XCore::LADD_l5r, dl, MVT::i32, MVT::i32,
+ Ops, 3);
}
case XCoreISD::LSUB: {
- if (!Subtarget.isXS1A()) {
- SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
- Op.getOperand(2) };
- return CurDAG->getTargetNode(XCore::LSUB_l5r, dl, MVT::i32, MVT::i32,
- Ops, 3);
- }
- break;
+ SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(2) };
+ return CurDAG->getMachineNode(XCore::LSUB_l5r, dl, MVT::i32, MVT::i32,
+ Ops, 3);
}
// Other cases are autogenerated.
}
diff --git a/lib/Target/XCore/XCoreISelLowering.cpp b/lib/Target/XCore/XCoreISelLowering.cpp
index cc11d32..5ef56c9 100644
--- a/lib/Target/XCore/XCoreISelLowering.cpp
+++ b/lib/Target/XCore/XCoreISelLowering.cpp
@@ -16,6 +16,7 @@
#include "XCoreISelLowering.h"
#include "XCoreMachineFunctionInfo.h"
#include "XCore.h"
+#include "XCoreTargetObjectFile.h"
#include "XCoreTargetMachine.h"
#include "XCoreSubtarget.h"
#include "llvm/DerivedTypes.h"
@@ -32,6 +33,8 @@
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/VectorExtras.h"
#include <queue>
#include <set>
@@ -48,12 +51,14 @@ getTargetNodeName(unsigned Opcode) const
case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
case XCoreISD::STWSP : return "XCoreISD::STWSP";
case XCoreISD::RETSP : return "XCoreISD::RETSP";
+ case XCoreISD::LADD : return "XCoreISD::LADD";
+ case XCoreISD::LSUB : return "XCoreISD::LSUB";
default : return NULL;
}
}
XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
- : TargetLowering(XTM),
+ : TargetLowering(XTM, new XCoreTargetObjectFile()),
TM(XTM),
Subtarget(*XTM.getSubtargetImpl()) {
@@ -67,8 +72,6 @@ XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
setIntDivIsCheap(false);
setShiftAmountType(MVT::i32);
- // shl X, 32 == 0
- setShiftAmountFlavor(Extend);
setStackPointerRegisterToSaveRestore(XCore::SP);
setSchedulingPreference(SchedulingForRegPressure);
@@ -88,13 +91,8 @@ XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
// 64bit
- if (!Subtarget.isXS1A()) {
- setOperationAction(ISD::ADD, MVT::i64, Custom);
- setOperationAction(ISD::SUB, MVT::i64, Custom);
- }
- if (Subtarget.isXS1A()) {
- setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
- }
+ setOperationAction(ISD::ADD, MVT::i64, Custom);
+ setOperationAction(ISD::SUB, MVT::i64, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
@@ -112,9 +110,6 @@ XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
- // RET must be custom lowered, to meet ABI requirements
- setOperationAction(ISD::RET, MVT::Other, Custom);
-
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
// Thread Local Storage
@@ -130,7 +125,11 @@ XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
-
+
+ // Custom expand misaligned loads / stores.
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::STORE, MVT::i32, Custom);
+
// Varargs
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
@@ -145,19 +144,24 @@ XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
// Debug
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
+
+ maxStoresPerMemset = 4;
+ maxStoresPerMemmove = maxStoresPerMemcpy = 2;
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::STORE);
}
SDValue XCoreTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode())
{
- case ISD::CALL: return LowerCALL(Op, DAG);
- case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
- case ISD::RET: return LowerRET(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
@@ -166,7 +170,7 @@ LowerOperation(SDValue Op, SelectionDAG &DAG) {
case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
default:
- assert(0 && "unimplemented operand");
+ llvm_unreachable("unimplemented operand");
return SDValue();
}
}
@@ -178,7 +182,7 @@ void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default:
- assert(0 && "Don't know how to custom expand this!");
+ llvm_unreachable("Don't know how to custom expand this!");
return;
case ISD::ADD:
case ISD::SUB:
@@ -214,17 +218,16 @@ getGlobalAddressWrapper(SDValue GA, GlobalValue *GV, SelectionDAG &DAG)
DebugLoc dl = GA.getDebugLoc();
if (isa<Function>(GV)) {
return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
- } else if (!Subtarget.isXS1A()) {
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
- if (!GVar) {
- // If GV is an alias then use the aliasee to determine constness
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
- GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
- }
- bool isConst = GVar && GVar->isConstant();
- if (isConst) {
- return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
- }
+ }
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar) {
+ // If GV is an alias then use the aliasee to determine constness
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
+ }
+ bool isConst = GVar && GVar->isConstant();
+ if (isConst) {
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
}
return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
}
@@ -265,14 +268,16 @@ LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG)
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
}
if (! GVar) {
- assert(0 && "Thread local object not a GlobalVariable?");
+ llvm_unreachable("Thread local object not a GlobalVariable?");
return SDValue();
}
const Type *Ty = cast<PointerType>(GV->getType())->getElementType();
if (!Ty->isSized() || isZeroLengthArray(Ty)) {
- cerr << "Size of thread local object " << GVar->getName()
- << " is unknown\n";
- abort();
+#ifndef NDEBUG
+ errs() << "Size of thread local object " << GVar->getName()
+ << " is unknown\n";
+#endif
+ llvm_unreachable(0);
}
SDValue base = getGlobalAddressWrapper(GA, GV, DAG);
const TargetData *TD = TM.getTargetData();
@@ -288,21 +293,16 @@ LowerConstantPool(SDValue Op, SelectionDAG &DAG)
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really debug info here
DebugLoc dl = CP->getDebugLoc();
- if (Subtarget.isXS1A()) {
- assert(0 && "Lowering of constant pool unimplemented");
- return SDValue();
+ EVT PtrVT = Op.getValueType();
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry()) {
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
} else {
- MVT PtrVT = Op.getValueType();
- SDValue Res;
- if (CP->isMachineConstantPoolEntry()) {
- Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
- CP->getAlignment());
- } else {
- Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
- CP->getAlignment());
- }
- return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
}
+ return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
}
SDValue XCoreTargetLowering::
@@ -310,19 +310,211 @@ LowerJumpTable(SDValue Op, SelectionDAG &DAG)
{
// FIXME there isn't really debug info here
DebugLoc dl = Op.getDebugLoc();
- MVT PtrVT = Op.getValueType();
+ EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, JTI);
}
+static bool
+IsWordAlignedBasePlusConstantOffset(SDValue Addr, SDValue &AlignedBase,
+ int64_t &Offset)
+{
+ if (Addr.getOpcode() != ISD::ADD) {
+ return false;
+ }
+ ConstantSDNode *CN = 0;
+ if (!(CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
+ return false;
+ }
+ int64_t off = CN->getSExtValue();
+ const SDValue &Base = Addr.getOperand(0);
+ const SDValue *Root = &Base;
+ if (Base.getOpcode() == ISD::ADD &&
+ Base.getOperand(1).getOpcode() == ISD::SHL) {
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Base.getOperand(1)
+ .getOperand(1));
+ if (CN && (CN->getSExtValue() >= 2)) {
+ Root = &Base.getOperand(0);
+ }
+ }
+ if (isa<FrameIndexSDNode>(*Root)) {
+ // All frame indicies are word aligned
+ AlignedBase = Base;
+ Offset = off;
+ return true;
+ }
+ if (Root->getOpcode() == XCoreISD::DPRelativeWrapper ||
+ Root->getOpcode() == XCoreISD::CPRelativeWrapper) {
+ // All dp / cp relative addresses are word aligned
+ AlignedBase = Base;
+ Offset = off;
+ return true;
+ }
+ return false;
+}
+
+SDValue XCoreTargetLowering::
+LowerLOAD(SDValue Op, SelectionDAG &DAG)
+{
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
+ "Unexpected extension type");
+ assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
+ if (allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
+ return SDValue();
+ }
+ unsigned ABIAlignment = getTargetData()->
+ getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned load alone.
+ if (LD->getAlignment() >= ABIAlignment) {
+ return SDValue();
+ }
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ DebugLoc dl = Op.getDebugLoc();
+
+ SDValue Base;
+ int64_t Offset;
+ if (!LD->isVolatile() &&
+ IsWordAlignedBasePlusConstantOffset(BasePtr, Base, Offset)) {
+ if (Offset % 4 == 0) {
+ // We've managed to infer better alignment information than the load
+ // already has. Use an aligned load.
+ return DAG.getLoad(getPointerTy(), dl, Chain, BasePtr, NULL, 4);
+ }
+ // Lower to
+ // ldw low, base[offset >> 2]
+ // ldw high, base[(offset >> 2) + 1]
+ // shr low_shifted, low, (offset & 0x3) * 8
+ // shl high_shifted, high, 32 - (offset & 0x3) * 8
+ // or result, low_shifted, high_shifted
+ SDValue LowOffset = DAG.getConstant(Offset & ~0x3, MVT::i32);
+ SDValue HighOffset = DAG.getConstant((Offset & ~0x3) + 4, MVT::i32);
+ SDValue LowShift = DAG.getConstant((Offset & 0x3) * 8, MVT::i32);
+ SDValue HighShift = DAG.getConstant(32 - (Offset & 0x3) * 8, MVT::i32);
+
+ SDValue LowAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Base, LowOffset);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Base, HighOffset);
+
+ SDValue Low = DAG.getLoad(getPointerTy(), dl, Chain,
+ LowAddr, NULL, 4);
+ SDValue High = DAG.getLoad(getPointerTy(), dl, Chain,
+ HighAddr, NULL, 4);
+ SDValue LowShifted = DAG.getNode(ISD::SRL, dl, MVT::i32, Low, LowShift);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, dl, MVT::i32, High, HighShift);
+ SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, LowShifted, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, 2, dl);
+ }
+
+ if (LD->getAlignment() == 2) {
+ int SVOffset = LD->getSrcValueOffset();
+ SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
+ BasePtr, LD->getSrcValue(), SVOffset, MVT::i16,
+ LD->isVolatile(), 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue High = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, Chain,
+ HighAddr, LD->getSrcValue(), SVOffset + 2,
+ MVT::i16, LD->isVolatile(), 2);
+ SDValue HighShifted = DAG.getNode(ISD::SHL, dl, MVT::i32, High,
+ DAG.getConstant(16, MVT::i32));
+ SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, Low, HighShifted);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Low.getValue(1),
+ High.getValue(1));
+ SDValue Ops[] = { Result, Chain };
+ return DAG.getMergeValues(Ops, 2, dl);
+ }
+
+ // Lower to a call to __misaligned_load(BasePtr).
+ const Type *IntPtrTy = getTargetData()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ std::pair<SDValue, SDValue> CallResult =
+ LowerCallTo(Chain, IntPtrTy, false, false,
+ false, false, 0, CallingConv::C, false,
+ /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
+ Args, DAG, dl);
+
+ SDValue Ops[] =
+ { CallResult.first, CallResult.second };
+
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+SDValue XCoreTargetLowering::
+LowerSTORE(SDValue Op, SelectionDAG &DAG)
+{
+ StoreSDNode *ST = cast<StoreSDNode>(Op);
+ assert(!ST->isTruncatingStore() && "Unexpected store type");
+ assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
+ if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
+ return SDValue();
+ }
+ unsigned ABIAlignment = getTargetData()->
+ getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
+ // Leave aligned store alone.
+ if (ST->getAlignment() >= ABIAlignment) {
+ return SDValue();
+ }
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (ST->getAlignment() == 2) {
+ int SVOffset = ST->getSrcValueOffset();
+ SDValue Low = Value;
+ SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
+ DAG.getConstant(16, MVT::i32));
+ SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
+ ST->getSrcValue(), SVOffset, MVT::i16,
+ ST->isVolatile(), 2);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
+ DAG.getConstant(2, MVT::i32));
+ SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
+ ST->getSrcValue(), SVOffset + 2,
+ MVT::i16, ST->isVolatile(), 2);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
+ }
+
+ // Lower to a call to __misaligned_store(BasePtr, Value).
+ const Type *IntPtrTy = getTargetData()->getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Ty = IntPtrTy;
+ Entry.Node = BasePtr;
+ Args.push_back(Entry);
+
+ Entry.Node = Value;
+ Args.push_back(Entry);
+
+ std::pair<SDValue, SDValue> CallResult =
+ LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()), false, false,
+ false, false, 0, CallingConv::C, false,
+ /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
+ Args, DAG, dl);
+
+ return CallResult.second;
+}
+
SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode *N, SelectionDAG &DAG)
{
assert(N->getValueType(0) == MVT::i64 &&
(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
"Unknown operand to lower!");
- assert(!Subtarget.isXS1A() && "Cannot custom lower ADD/SUB on xs1a");
DebugLoc dl = N->getDebugLoc();
// Extract components
@@ -353,12 +545,12 @@ ExpandADDSUB(SDNode *N, SelectionDAG &DAG)
SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op, SelectionDAG &DAG)
{
- assert(0 && "unimplemented");
+ llvm_unreachable("unimplemented");
// FIX Arguments passed by reference need a extra dereference.
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
- MVT VT = Node->getValueType(0);
+ EVT VT = Node->getValueType(0);
SDValue VAList = DAG.getLoad(getPointerTy(), dl, Node->getOperand(0),
Node->getOperand(1), V, 0);
// Increment the pointer, VAList, to the next vararg
@@ -398,35 +590,33 @@ SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
-//
-// The lower operations present on calling convention works on this order:
-// LowerCALL (virt regs --> phys regs, virt regs --> stack)
-// LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
-// LowerRET (virt regs --> phys regs)
-// LowerCALL (phys regs --> virt regs)
-//
//===----------------------------------------------------------------------===//
#include "XCoreGenCallingConv.inc"
//===----------------------------------------------------------------------===//
-// CALL Calling Convention Implementation
+// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
-/// XCore custom CALL implementation
-SDValue XCoreTargetLowering::
-LowerCALL(SDValue Op, SelectionDAG &DAG)
-{
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- unsigned CallingConv = TheCall->getCallingConv();
+/// XCore call implementation
+SDValue
+XCoreTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+
// For now, only CallingConv::C implemented
- switch (CallingConv)
+ switch (CallConv)
{
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
- return LowerCCCCallTo(Op, DAG, CallingConv);
+ return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, Ins, dl, DAG, InVals);
}
}
@@ -434,24 +624,25 @@ LowerCALL(SDValue Op, SelectionDAG &DAG)
/// regs to (physical regs)/(stack frame), CALLSEQ_START and
/// CALLSEQ_END are emitted.
/// TODO: isTailCall, sret.
-SDValue XCoreTargetLowering::
-LowerCCCCallTo(SDValue Op, SelectionDAG &DAG, unsigned CC)
-{
- CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
- SDValue Chain = TheCall->getChain();
- SDValue Callee = TheCall->getCallee();
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
+SDValue
+XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
// The ABI dictates there should be one stack slot available to the callee
// on function entry (for saving lr).
CCInfo.AllocateStack(4, 4);
- CCInfo.AnalyzeCallOperands(TheCall, CC_XCore);
+ CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
@@ -465,13 +656,11 @@ LowerCCCCallTo(SDValue Op, SelectionDAG &DAG, unsigned CC)
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
-
- // Arguments start after the 5 first operands of ISD::CALL
- SDValue Arg = TheCall->getArg(i);
+ SDValue Arg = Outs[i].Val;
// Promote the value if needed.
switch (VA.getLocInfo()) {
- default: assert(0 && "Unknown loc info!");
+ default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
@@ -554,59 +743,58 @@ LowerCCCCallTo(SDValue Op, SelectionDAG &DAG, unsigned CC)
// Handle result values, copying them out of physregs into vregs that we
// return.
- return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
- Op.getResNo());
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
}
-/// LowerCallResult - Lower the result values of an ISD::CALL into the
-/// appropriate copies out of appropriate physical registers. This assumes that
-/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
-/// being lowered. Returns a SDNode with the same number of values as the
-/// ISD::CALL.
-SDNode *XCoreTargetLowering::
-LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
- unsigned CallingConv, SelectionDAG &DAG) {
- bool isVarArg = TheCall->isVarArg();
- DebugLoc dl = TheCall->getDebugLoc();
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+XCoreTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
- CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- CCInfo.AnalyzeCallResult(TheCall, RetCC_XCore);
- SmallVector<SDValue, 8> ResultVals;
+ CCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
- ResultVals.push_back(Chain.getValue(0));
+ InVals.push_back(Chain.getValue(0));
}
- ResultVals.push_back(Chain);
-
- // Merge everything together with a MERGE_VALUES node.
- return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
- &ResultVals[0], ResultVals.size()).getNode();
+ return Chain;
}
//===----------------------------------------------------------------------===//
-// FORMAL_ARGUMENTS Calling Convention Implementation
+// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
-/// XCore custom FORMAL_ARGUMENTS implementation
-SDValue XCoreTargetLowering::
-LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
-{
- unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
- switch(CC)
+/// XCore formal arguments implementation
+SDValue
+XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
+ switch (CallConv)
{
default:
- assert(0 && "Unsupported calling convention");
+ llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
- return LowerCCCArguments(Op, DAG);
+ return LowerCCCArguments(Chain, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
}
}
@@ -614,27 +802,28 @@ LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG)
/// virtual registers and generate load operations for
/// arguments places on the stack.
/// TODO: sret
-SDValue XCoreTargetLowering::
-LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
-{
+SDValue
+XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
- SDValue Root = Op.getOperand(0);
- bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
- unsigned CC = MF.getFunction()->getCallingConv();
- DebugLoc dl = Op.getDebugLoc();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
- CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
- CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_XCore);
+ CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
unsigned StackSlotSize = XCoreFrameInfo::stackSlotSize();
- SmallVector<SDValue, 16> ArgValues;
-
unsigned LRSaveSize = StackSlotSize;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
@@ -643,18 +832,21 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
if (VA.isRegLoc()) {
// Arguments passed in registers
- MVT RegVT = VA.getLocVT();
- switch (RegVT.getSimpleVT()) {
+ EVT RegVT = VA.getLocVT();
+ switch (RegVT.getSimpleVT().SimpleTy) {
default:
- cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
- << RegVT.getSimpleVT()
- << "\n";
- abort();
+ {
+#ifndef NDEBUG
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << RegVT.getSimpleVT().SimpleTy << "\n";
+#endif
+ llvm_unreachable(0);
+ }
case MVT::i32:
unsigned VReg = RegInfo.createVirtualRegister(
XCore::GRRegsRegisterClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
- ArgValues.push_back(DAG.getCopyFromReg(Root, dl, VReg, RegVT));
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
}
} else {
// sanity check
@@ -662,9 +854,9 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > StackSlotSize) {
- cerr << "LowerFORMAL_ARGUMENTS Unhandled argument type: "
- << VA.getLocVT().getSimpleVT()
- << "\n";
+ errs() << "LowerFormalArguments Unhandled argument type: "
+ << (unsigned)VA.getLocVT().getSimpleVT().SimpleTy
+ << "\n";
}
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(ObjSize,
@@ -673,7 +865,7 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
- ArgValues.push_back(DAG.getLoad(VA.getLocVT(), dl, Root, FIN, NULL, 0));
+ InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, NULL, 0));
}
}
@@ -702,14 +894,14 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
unsigned VReg = RegInfo.createVirtualRegister(
XCore::GRRegsRegisterClass);
RegInfo.addLiveIn(ArgRegs[i], VReg);
- SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
// Move argument from virt reg -> stack
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
MemOps.push_back(Store);
}
if (!MemOps.empty())
- Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &MemOps[0], MemOps.size());
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
} else {
// This will point to the next argument passed via stack.
XFI->setVarArgsFrameIndex(
@@ -717,34 +909,29 @@ LowerCCCArguments(SDValue Op, SelectionDAG &DAG)
}
}
- ArgValues.push_back(Root);
-
- // Return the new list of results.
- std::vector<MVT> RetVT(Op.getNode()->value_begin(),
- Op.getNode()->value_end());
- return DAG.getNode(ISD::MERGE_VALUES, dl, RetVT,
- &ArgValues[0], ArgValues.size());
+ return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
-SDValue XCoreTargetLowering::
-LowerRET(SDValue Op, SelectionDAG &DAG)
-{
+SDValue
+XCoreTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) {
+
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
- unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- DebugLoc dl = Op.getDebugLoc();
// CCState - Info about the registers and stack slot.
- CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
- // Analize return values of ISD::RET
- CCInfo.AnalyzeReturn(Op.getNode(), RetCC_XCore);
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
@@ -754,8 +941,6 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
- // The chain is always operand #0
- SDValue Chain = Op.getOperand(0);
SDValue Flag;
// Copy the result values into the output registers.
@@ -763,10 +948,8 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
- // ISD::RET => ret chain, (regnum1,val1), ...
- // So i*2+1 index only the regnums
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
- Op.getOperand(i*2+1), Flag);
+ Outs[i].Val, Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
@@ -788,7 +971,8 @@ LowerRET(SDValue Op, SelectionDAG &DAG)
MachineBasicBlock *
XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *BB) const {
+ MachineBasicBlock *BB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == XCore::SELECT_CC) &&
@@ -816,9 +1000,18 @@ XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
- // Update machine-CFG edges by transferring all successors of the current
+ // Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
- sinkMBB->transferSuccessors(BB);
+ // Also inform sdisel of the edge changes.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I) {
+ EM->insert(std::make_pair(*I, sinkMBB));
+ sinkMBB->addSuccessor(*I);
+ }
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
@@ -844,6 +1037,56 @@ XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
}
//===----------------------------------------------------------------------===//
+// Target Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc dl = N->getDebugLoc();
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::STORE: {
+ // Replace unaligned store of unaligned load with memmove.
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ if (!DCI.isBeforeLegalize() ||
+ allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
+ ST->isVolatile() || ST->isIndexed()) {
+ break;
+ }
+ SDValue Chain = ST->getChain();
+
+ unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
+ if (StoreBits % 8) {
+ break;
+ }
+ unsigned ABIAlignment = getTargetData()->getABITypeAlignment(
+ ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
+ unsigned Alignment = ST->getAlignment();
+ if (Alignment >= ABIAlignment) {
+ break;
+ }
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
+ if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
+ LD->getAlignment() == Alignment &&
+ !LD->isVolatile() && !LD->isIndexed() &&
+ Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
+ return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
+ LD->getBasePtr(),
+ DAG.getConstant(StoreBits/8, MVT::i32),
+ Alignment, ST->getSrcValue(),
+ ST->getSrcValueOffset(), LD->getSrcValue(),
+ LD->getSrcValueOffset());
+ }
+ }
+ break;
+ }
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
// Addressing mode description hooks
//===----------------------------------------------------------------------===//
@@ -867,44 +1110,35 @@ static inline bool isImmUs4(int64_t val)
bool
XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
- MVT VT = getValueType(Ty, true);
- // Get expected value type after legalization
- switch (VT.getSimpleVT()) {
- // Legal load / stores
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- break;
- // Expand i1 -> i8
- case MVT::i1:
- VT = MVT::i8;
- break;
- // Everything else is lowered to words
- default:
- VT = MVT::i32;
- break;
- }
+ // Be conservative with void
+ // FIXME: Can we be more aggressive?
+ if (Ty->getTypeID() == Type::VoidTyID)
+ return false;
+
+ const TargetData *TD = TM.getTargetData();
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (AM.BaseGV) {
- return VT == MVT::i32 && !AM.HasBaseReg && AM.Scale == 0 &&
+ return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
AM.BaseOffs%4 == 0;
}
- switch (VT.getSimpleVT()) {
- default:
- return false;
- case MVT::i8:
+ switch (Size) {
+ case 1:
// reg + imm
if (AM.Scale == 0) {
return isImmUs(AM.BaseOffs);
}
+ // reg + reg
return AM.Scale == 1 && AM.BaseOffs == 0;
- case MVT::i16:
+ case 2:
+ case 3:
// reg + imm
if (AM.Scale == 0) {
return isImmUs2(AM.BaseOffs);
}
+ // reg + reg<<1
return AM.Scale == 2 && AM.BaseOffs == 0;
- case MVT::i32:
+ default:
// reg + imm
if (AM.Scale == 0) {
return isImmUs4(AM.BaseOffs);
@@ -922,7 +1156,7 @@ XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
std::vector<unsigned> XCoreTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const
+ EVT VT) const
{
if (Constraint.size() != 1)
return std::vector<unsigned>();
diff --git a/lib/Target/XCore/XCoreISelLowering.h b/lib/Target/XCore/XCoreISelLowering.h
index 753ea81..ef8555e 100644
--- a/lib/Target/XCore/XCoreISelLowering.h
+++ b/lib/Target/XCore/XCoreISelLowering.h
@@ -79,7 +79,8 @@ namespace llvm {
virtual const char *getTargetNodeName(unsigned Opcode) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
- MachineBasicBlock *MBB) const;
+ MachineBasicBlock *MBB,
+ DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
virtual bool isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const;
@@ -92,18 +93,31 @@ namespace llvm {
const XCoreSubtarget &Subtarget;
// Lower Operand helpers
- SDValue LowerCCCArguments(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCCCCallTo(SDValue Op, SelectionDAG &DAG, unsigned CC);
- SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode*TheCall,
- unsigned CallingConv, SelectionDAG &DAG);
+ SDValue LowerCCCArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
SDValue getGlobalAddressWrapper(SDValue GA, GlobalValue *GV,
SelectionDAG &DAG);
// Lower Operand specifics
- SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
- SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
- SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG);
+ SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
@@ -116,10 +130,35 @@ namespace llvm {
// Inline asm support
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
- MVT VT) const;
+ EVT VT) const;
// Expand specifics
SDValue ExpandADDSUB(SDNode *Op, SelectionDAG &DAG);
+
+ virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals);
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG);
};
}
diff --git a/lib/Target/XCore/XCoreInstrInfo.cpp b/lib/Target/XCore/XCoreInstrInfo.cpp
index 504d202..e616fe6 100644
--- a/lib/Target/XCore/XCoreInstrInfo.cpp
+++ b/lib/Target/XCore/XCoreInstrInfo.cpp
@@ -21,6 +21,7 @@
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "XCoreGenInstrInfo.inc"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
namespace llvm {
namespace XCore {
@@ -36,7 +37,7 @@ namespace XCore {
using namespace llvm;
-XCoreInstrInfo::XCoreInstrInfo(void)
+XCoreInstrInfo::XCoreInstrInfo()
: TargetInstrInfoImpl(XCoreInsts, array_lengthof(XCoreInsts)),
RI(*this) {
}
@@ -115,30 +116,6 @@ XCoreInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
return 0;
}
-/// isInvariantLoad - Return true if the specified instruction (which is marked
-/// mayLoad) is loading from a location whose value is invariant across the
-/// function. For example, loading a value from the constant pool or from
-/// from the argument area of a function if it does not change. This should
-/// only return true of *all* loads the instruction does are invariant (if it
-/// does multiple loads).
-bool
-XCoreInstrInfo::isInvariantLoad(const MachineInstr *MI) const {
- // Loads from constants pools and loads from invariant argument slots are
- // invariant
- int Opcode = MI->getOpcode();
- if (Opcode == XCore::LDWCP_ru6 || Opcode == XCore::LDWCP_lru6) {
- return MI->getOperand(1).isCPI();
- }
- int FrameIndex;
- if (isLoadFromStackSlot(MI, FrameIndex)) {
- const MachineFrameInfo &MFI =
- *MI->getParent()->getParent()->getFrameInfo();
- return MFI.isFixedObjectIndex(FrameIndex) &&
- MFI.isImmutableObjectIndex(FrameIndex);
- }
- return false;
-}
-
//===----------------------------------------------------------------------===//
// Branch Analysis
//===----------------------------------------------------------------------===//
@@ -186,7 +163,7 @@ static XCore::CondCode GetCondFromBranchOpc(unsigned BrOpc)
static inline unsigned GetCondBranchFromCond(XCore::CondCode CC)
{
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case XCore::COND_TRUE : return XCore::BRFT_lru6;
case XCore::COND_FALSE : return XCore::BRFF_lru6;
}
@@ -197,7 +174,7 @@ static inline unsigned GetCondBranchFromCond(XCore::CondCode CC)
static inline XCore::CondCode GetOppositeBranchCondition(XCore::CondCode CC)
{
switch (CC) {
- default: assert(0 && "Illegal condition code!");
+ default: llvm_unreachable("Illegal condition code!");
case XCore::COND_TRUE : return XCore::COND_FALSE;
case XCore::COND_FALSE : return XCore::COND_TRUE;
}
@@ -402,14 +379,6 @@ void XCoreInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
.addImm(0);
}
-void XCoreInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
- bool isKill, SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const
-{
- assert(0 && "unimplemented\n");
-}
-
void XCoreInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, int FrameIndex,
@@ -422,14 +391,6 @@ void XCoreInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
.addImm(0);
}
-void XCoreInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const
-{
- assert(0 && "unimplemented\n");
-}
-
bool XCoreInstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const
diff --git a/lib/Target/XCore/XCoreInstrInfo.h b/lib/Target/XCore/XCoreInstrInfo.h
index 0870886..24230ac 100644
--- a/lib/Target/XCore/XCoreInstrInfo.h
+++ b/lib/Target/XCore/XCoreInstrInfo.h
@@ -22,7 +22,7 @@ namespace llvm {
class XCoreInstrInfo : public TargetInstrInfoImpl {
const XCoreRegisterInfo RI;
public:
- XCoreInstrInfo(void);
+ XCoreInstrInfo();
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
@@ -52,8 +52,6 @@ public:
virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const;
- virtual bool isInvariantLoad(const MachineInstr *MI) const;
-
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
@@ -76,21 +74,11 @@ public:
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC) const;
- virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const;
diff --git a/lib/Target/XCore/XCoreInstrInfo.td b/lib/Target/XCore/XCoreInstrInfo.td
index 65cd4fe..4b9ea7a 100644
--- a/lib/Target/XCore/XCoreInstrInfo.td
+++ b/lib/Target/XCore/XCoreInstrInfo.td
@@ -23,18 +23,6 @@
include "XCoreInstrFormats.td"
//===----------------------------------------------------------------------===//
-// Feature predicates.
-//===----------------------------------------------------------------------===//
-
-// HasXS1A - This predicate is true when the target processor supports XS1A
-// instructions.
-def HasXS1A : Predicate<"Subtarget.isXS1A()">;
-
-// HasXS1B - This predicate is true when the target processor supports XS1B
-// instructions.
-def HasXS1B : Predicate<"Subtarget.isXS1B()">;
-
-//===----------------------------------------------------------------------===//
// XCore specific DAG Nodes.
//
@@ -95,6 +83,12 @@ def neg_xform : SDNodeXForm<imm, [{
return getI32Imm(-value);
}]>;
+def bpwsub_xform : SDNodeXForm<imm, [{
+ // Transformation function: 32-imm
+ uint32_t value = N->getZExtValue();
+ return getI32Imm(32-value);
+}]>;
+
def div4neg_xform : SDNodeXForm<imm, [{
// Transformation function: -imm/4
uint32_t value = N->getZExtValue();
@@ -136,9 +130,6 @@ def immU20 : PatLeaf<(imm), [{
return (uint32_t)N->getZExtValue() < (1 << 20);
}]>;
-// FIXME check subtarget. Currently we check if the immediate
-// is in the common subset of legal immediate values for both
-// XS1A and XS1B.
def immMskBitp : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
if (!isMask_32(value)) {
@@ -151,9 +142,6 @@ def immMskBitp : PatLeaf<(imm), [{
|| msksize == 32;
}]>;
-// FIXME check subtarget. Currently we check if the immediate
-// is in the common subset of legal immediate values for both
-// XS1A and XS1B.
def immBitp : PatLeaf<(imm), [{
uint32_t value = (uint32_t)N->getZExtValue();
return (value >= 1 && value <= 8)
@@ -162,6 +150,14 @@ def immBitp : PatLeaf<(imm), [{
|| value == 32;
}]>;
+def immBpwSubBitp : PatLeaf<(imm), [{
+ uint32_t value = (uint32_t)N->getZExtValue();
+ return (value >= 24 && value <= 31)
+ || value == 16
+ || value == 8
+ || value == 0;
+}]>;
+
def lda16f : PatFrag<(ops node:$addr, node:$offset),
(add node:$addr, (shl node:$offset, 1))>;
def lda16b : PatFrag<(ops node:$addr, node:$offset),
@@ -469,7 +465,7 @@ def ST8_l3r : _FL3R<(outs), (ins GRRegs:$val, GRRegs:$addr, GRRegs:$offset),
}
// Four operand long
-let Predicates = [HasXS1B], Constraints = "$src1 = $dst1,$src2 = $dst2" in {
+let Constraints = "$src1 = $dst1,$src2 = $dst2" in {
def MACCU_l4r : _L4R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
GRRegs:$src4),
@@ -485,7 +481,6 @@ def MACCS_l4r : _L4R<(outs GRRegs:$dst1, GRRegs:$dst2),
// Five operand long
-let Predicates = [HasXS1B] in {
def LADD_l5r : _L5R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
"ladd $dst1, $dst2, $src1, $src2, $src3",
@@ -500,7 +495,6 @@ def LDIV_l5r : _L5R<(outs GRRegs:$dst1, GRRegs:$dst2),
(ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3),
"ldiv $dst1, $dst2, $src1, $src2, $src3",
[]>;
-}
// Six operand long
@@ -510,13 +504,6 @@ def LMUL_l6r : _L6R<(outs GRRegs:$dst1, GRRegs:$dst2),
"lmul $dst1, $dst2, $src1, $src2, $src3, $src4",
[]>;
-let Predicates = [HasXS1A] in
-def MACC_l6r : _L6R<(outs GRRegs:$dst1, GRRegs:$dst2),
- (ins GRRegs:$src1, GRRegs:$src2, GRRegs:$src3,
- GRRegs:$src4),
- "macc $dst1, $dst2, $src1, $src2, $src3, $src4",
- []>;
-
// Register - U6
//let Uses = [DP] in ...
@@ -664,13 +651,12 @@ def BRFU_lu6 : _FLU6<
}
//let Uses = [CP] in ...
-let Predicates = [HasXS1B], Defs = [R11], neverHasSideEffects = 1,
- isReMaterializable = 1 in
+let Defs = [R11], neverHasSideEffects = 1, isReMaterializable = 1 in
def LDAWCP_u6: _FRU6<(outs), (ins MEMii:$a),
"ldaw r11, cp[$a]",
[]>;
-let Predicates = [HasXS1B], Defs = [R11], isReMaterializable = 1 in
+let Defs = [R11], isReMaterializable = 1 in
def LDAWCP_lu6: _FLRU6<
(outs), (ins MEMii:$a),
"ldaw r11, cp[$a]",
@@ -821,7 +807,7 @@ def : Pat<(zextloadi8 (add GRRegs:$addr, GRRegs:$offset)),
(LD8U_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(zextloadi8 GRRegs:$addr), (LD8U_3r GRRegs:$addr, (LDC_ru6 0))>;
-def : Pat<(zextloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
+def : Pat<(sextloadi16 (lda16f GRRegs:$addr, GRRegs:$offset)),
(LD16S_3r GRRegs:$addr, GRRegs:$offset)>;
def : Pat<(sextloadi16 GRRegs:$addr), (LD16S_3r GRRegs:$addr, (LDC_ru6 0))>;
@@ -989,3 +975,21 @@ def : Pat<(mul GRRegs:$src, -3),
def : Pat<(sra GRRegs:$src, 31),
(ASHR_l2rus GRRegs:$src, 32)>;
+def : Pat<(brcond (setlt GRRegs:$lhs, 0), bb:$dst),
+ (BRFT_lru6 (ASHR_l2rus GRRegs:$lhs, 32), bb:$dst)>;
+
+// setge X, 0 is canonicalized to setgt X, -1
+def : Pat<(brcond (setgt GRRegs:$lhs, -1), bb:$dst),
+ (BRFF_lru6 (ASHR_l2rus GRRegs:$lhs, 32), bb:$dst)>;
+
+def : Pat<(select (setlt GRRegs:$lhs, 0), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (ASHR_l2rus GRRegs:$lhs, 32), GRRegs:$T, GRRegs:$F)>;
+
+def : Pat<(select (setgt GRRegs:$lhs, -1), GRRegs:$T, GRRegs:$F),
+ (SELECT_CC (ASHR_l2rus GRRegs:$lhs, 32), GRRegs:$F, GRRegs:$T)>;
+
+def : Pat<(setgt GRRegs:$lhs, -1),
+ (EQ_2rus (ASHR_l2rus GRRegs:$lhs, 32), 0)>;
+
+def : Pat<(sra (shl GRRegs:$src, immBpwSubBitp:$imm), immBpwSubBitp:$imm),
+ (SEXT_rus GRRegs:$src, (bpwsub_xform immBpwSubBitp:$imm))>;
diff --git a/lib/Target/XCore/XCoreMCAsmInfo.cpp b/lib/Target/XCore/XCoreMCAsmInfo.cpp
new file mode 100644
index 0000000..dffdda9
--- /dev/null
+++ b/lib/Target/XCore/XCoreMCAsmInfo.cpp
@@ -0,0 +1,31 @@
+//===-- XCoreMCAsmInfo.cpp - XCore asm properties -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreMCAsmInfo.h"
+using namespace llvm;
+
+XCoreMCAsmInfo::XCoreMCAsmInfo(const Target &T, const StringRef &TT) {
+ SupportsDebugInformation = true;
+ Data16bitsDirective = "\t.short\t";
+ Data32bitsDirective = "\t.long\t";
+ Data64bitsDirective = 0;
+ ZeroDirective = "\t.space\t";
+ CommentString = "#";
+
+ PrivateGlobalPrefix = ".L";
+ AscizDirective = ".asciiz";
+ WeakDefDirective = "\t.weak\t";
+ WeakRefDirective = "\t.weak\t";
+ SetDirective = "\t.set\t";
+
+ // Debug
+ HasLEB128 = true;
+ AbsoluteDebugSectionOffsets = true;
+}
+
diff --git a/lib/Target/XCore/XCoreMCAsmInfo.h b/lib/Target/XCore/XCoreMCAsmInfo.h
new file mode 100644
index 0000000..01f8e48
--- /dev/null
+++ b/lib/Target/XCore/XCoreMCAsmInfo.h
@@ -0,0 +1,29 @@
+//=====-- XCoreMCAsmInfo.h - XCore asm properties -------------*- C++ -*--====//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the XCoreMCAsmInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef XCORETARGETASMINFO_H
+#define XCORETARGETASMINFO_H
+
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+ class Target;
+ class StringRef;
+ class XCoreMCAsmInfo : public MCAsmInfo {
+ public:
+ explicit XCoreMCAsmInfo(const Target &T, const StringRef &TT);
+ };
+
+} // namespace llvm
+
+#endif
diff --git a/lib/Target/XCore/XCoreRegisterInfo.cpp b/lib/Target/XCore/XCoreRegisterInfo.cpp
index 82cd92d..136a035 100644
--- a/lib/Target/XCore/XCoreRegisterInfo.cpp
+++ b/lib/Target/XCore/XCoreRegisterInfo.cpp
@@ -30,6 +30,8 @@
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -142,9 +144,11 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
if (!isU6 && !isImmU16(Amount)) {
// FIX could emit multiple instructions in this case.
- cerr << "eliminateCallFramePseudoInstr size too big: "
- << Amount << "\n";
- abort();
+#ifndef NDEBUG
+ errs() << "eliminateCallFramePseudoInstr size too big: "
+ << Amount << "\n";
+#endif
+ llvm_unreachable(0);
}
MachineInstr *New;
@@ -167,8 +171,10 @@ eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MBB.erase(I);
}
-void XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS) const {
+unsigned
+XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value,
+ RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
MachineInstr &MI = *II;
DebugLoc dl = MI.getDebugLoc();
@@ -187,12 +193,13 @@ void XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int StackSize = MF.getFrameInfo()->getStackSize();
#ifndef NDEBUG
- DOUT << "\nFunction : " << MF.getFunction()->getName() << "\n";
- DOUT << "<--------->\n";
- MI.print(DOUT);
- DOUT << "FrameIndex : " << FrameIndex << "\n";
- DOUT << "FrameOffset : " << Offset << "\n";
- DOUT << "StackSize : " << StackSize << "\n";
+ DEBUG(errs() << "\nFunction : "
+ << MF.getFunction()->getName() << "\n");
+ DEBUG(errs() << "<--------->\n");
+ DEBUG(MI.print(errs()));
+ DEBUG(errs() << "FrameIndex : " << FrameIndex << "\n");
+ DEBUG(errs() << "FrameOffset : " << Offset << "\n");
+ DEBUG(errs() << "StackSize : " << StackSize << "\n");
#endif
Offset += StackSize;
@@ -203,10 +210,7 @@ void XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
assert(Offset%4 == 0 && "Misaligned stack offset");
- #ifndef NDEBUG
- DOUT << "Offset : " << Offset << "\n";
- DOUT << "<--------->\n";
- #endif
+ DEBUG(errs() << "Offset : " << Offset << "\n" << "<--------->\n");
Offset/=4;
@@ -224,63 +228,65 @@ void XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
bool isUs = isImmUs(Offset);
unsigned FramePtr = XCore::R10;
- MachineInstr *New = 0;
if (!isUs) {
if (!RS) {
- cerr << "eliminateFrameIndex Frame size too big: " << Offset << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "eliminateFrameIndex Frame size too big: " << Offset;
+ llvm_report_error(Msg.str());
}
unsigned ScratchReg = RS->scavengeRegister(XCore::GRRegsRegisterClass, II,
SPAdj);
loadConstant(MBB, II, ScratchReg, Offset, dl);
switch (MI.getOpcode()) {
case XCore::LDWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::LDW_3r), Reg)
+ BuildMI(MBB, II, dl, TII.get(XCore::LDW_3r), Reg)
.addReg(FramePtr)
.addReg(ScratchReg, RegState::Kill);
break;
case XCore::STWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::STW_3r))
+ BuildMI(MBB, II, dl, TII.get(XCore::STW_3r))
.addReg(Reg, getKillRegState(isKill))
.addReg(FramePtr)
.addReg(ScratchReg, RegState::Kill);
break;
case XCore::LDAWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l3r), Reg)
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l3r), Reg)
.addReg(FramePtr)
.addReg(ScratchReg, RegState::Kill);
break;
default:
- assert(0 && "Unexpected Opcode\n");
+ llvm_unreachable("Unexpected Opcode");
}
} else {
switch (MI.getOpcode()) {
case XCore::LDWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::LDW_2rus), Reg)
+ BuildMI(MBB, II, dl, TII.get(XCore::LDW_2rus), Reg)
.addReg(FramePtr)
.addImm(Offset);
break;
case XCore::STWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::STW_2rus))
+ BuildMI(MBB, II, dl, TII.get(XCore::STW_2rus))
.addReg(Reg, getKillRegState(isKill))
.addReg(FramePtr)
.addImm(Offset);
break;
case XCore::LDAWFI:
- New = BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l2rus), Reg)
+ BuildMI(MBB, II, dl, TII.get(XCore::LDAWF_l2rus), Reg)
.addReg(FramePtr)
.addImm(Offset);
break;
default:
- assert(0 && "Unexpected Opcode\n");
+ llvm_unreachable("Unexpected Opcode");
}
}
} else {
bool isU6 = isImmU6(Offset);
if (!isU6 && !isImmU16(Offset)) {
- // FIXME could make this work for LDWSP, LDAWSP.
- cerr << "eliminateFrameIndex Frame size too big: " << Offset << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "eliminateFrameIndex Frame size too big: " << Offset;
+ llvm_report_error(Msg.str());
}
switch (MI.getOpcode()) {
@@ -302,11 +308,12 @@ void XCoreRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
.addImm(Offset);
break;
default:
- assert(0 && "Unexpected Opcode\n");
+ llvm_unreachable("Unexpected Opcode");
}
}
// Erase old instruction.
MBB.erase(II);
+ return 0;
}
void
@@ -354,8 +361,10 @@ loadConstant(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
// TODO use mkmsk if possible.
if (!isImmU16(Value)) {
// TODO use constant pool.
- cerr << "loadConstant value too big " << Value << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "loadConstant value too big " << Value;
+ llvm_report_error(Msg.str());
}
int Opcode = isImmU6(Value) ? XCore::LDC_ru6 : XCore::LDC_lru6;
BuildMI(MBB, I, dl, TII.get(Opcode), DstReg).addImm(Value);
@@ -368,8 +377,10 @@ storeToStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
Offset/=4;
bool isU6 = isImmU6(Offset);
if (!isU6 && !isImmU16(Offset)) {
- cerr << "storeToStack offset too big " << Offset << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "storeToStack offset too big " << Offset;
+ llvm_report_error(Msg.str());
}
int Opcode = isU6 ? XCore::STWSP_ru6 : XCore::STWSP_lru6;
BuildMI(MBB, I, dl, TII.get(Opcode))
@@ -384,8 +395,10 @@ loadFromStack(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
Offset/=4;
bool isU6 = isImmU6(Offset);
if (!isU6 && !isImmU16(Offset)) {
- cerr << "loadFromStack offset too big " << Offset << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "loadFromStack offset too big " << Offset;
+ llvm_report_error(Msg.str());
}
int Opcode = isU6 ? XCore::LDWSP_ru6 : XCore::LDWSP_lru6;
BuildMI(MBB, I, dl, TII.get(Opcode), DstReg)
@@ -414,8 +427,10 @@ void XCoreRegisterInfo::emitPrologue(MachineFunction &MF) const {
if (!isU6 && !isImmU16(FrameSize)) {
// FIXME could emit multiple instructions.
- cerr << "emitPrologue Frame size too big: " << FrameSize << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "emitPrologue Frame size too big: " << FrameSize;
+ llvm_report_error(Msg.str());
}
bool emitFrameMoves = needsFrameMoves(MF);
@@ -538,8 +553,10 @@ void XCoreRegisterInfo::emitEpilogue(MachineFunction &MF,
if (!isU6 && !isImmU16(FrameSize)) {
// FIXME could emit multiple instructions.
- cerr << "emitEpilogue Frame size too big: " << FrameSize << "\n";
- abort();
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "emitEpilogue Frame size too big: " << FrameSize;
+ llvm_report_error(Msg.str());
}
if (FrameSize) {
diff --git a/lib/Target/XCore/XCoreRegisterInfo.h b/lib/Target/XCore/XCoreRegisterInfo.h
index 00b7caa..a7df510 100644
--- a/lib/Target/XCore/XCoreRegisterInfo.h
+++ b/lib/Target/XCore/XCoreRegisterInfo.h
@@ -57,8 +57,9 @@ public:
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
- void eliminateFrameIndex(MachineBasicBlock::iterator II,
- int SPAdj, RegScavenger *RS = NULL) const;
+ unsigned eliminateFrameIndex(MachineBasicBlock::iterator II,
+ int SPAdj, int *Value = NULL,
+ RegScavenger *RS = NULL) const;
void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS = NULL) const;
diff --git a/lib/Target/XCore/XCoreSubtarget.cpp b/lib/Target/XCore/XCoreSubtarget.cpp
index dc53da4..78a6fa5 100644
--- a/lib/Target/XCore/XCoreSubtarget.cpp
+++ b/lib/Target/XCore/XCoreSubtarget.cpp
@@ -13,16 +13,8 @@
#include "XCoreSubtarget.h"
#include "XCore.h"
-#include "XCoreGenSubtarget.inc"
using namespace llvm;
-XCoreSubtarget::XCoreSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS)
- : IsXS1A(false),
- IsXS1B(false)
+XCoreSubtarget::XCoreSubtarget(const std::string &TT, const std::string &FS)
{
- std::string CPU = "xs1a-generic";
-
- // Parse features string.
- ParseSubtargetFeatures(FS, CPU);
}
diff --git a/lib/Target/XCore/XCoreSubtarget.h b/lib/Target/XCore/XCoreSubtarget.h
index ff6475b..f8be3ec 100644
--- a/lib/Target/XCore/XCoreSubtarget.h
+++ b/lib/Target/XCore/XCoreSubtarget.h
@@ -20,21 +20,14 @@
#include <string>
namespace llvm {
-class Module;
class XCoreSubtarget : public TargetSubtarget {
- bool IsXS1A;
- bool IsXS1B;
public:
/// This constructor initializes the data members to match that
- /// of the specified module.
+ /// of the specified triple.
///
- XCoreSubtarget(const TargetMachine &TM, const Module &M,
- const std::string &FS);
-
- bool isXS1A() const { return IsXS1A; }
- bool isXS1B() const { return IsXS1B; }
+ XCoreSubtarget(const std::string &TT, const std::string &FS);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
diff --git a/lib/Target/XCore/XCoreTargetMachine.cpp b/lib/Target/XCore/XCoreTargetMachine.cpp
index b72225f..75f2055 100644
--- a/lib/Target/XCore/XCoreTargetMachine.cpp
+++ b/lib/Target/XCore/XCoreTargetMachine.cpp
@@ -10,38 +10,20 @@
//
//===----------------------------------------------------------------------===//
-#include "XCoreTargetAsmInfo.h"
+#include "XCoreMCAsmInfo.h"
#include "XCoreTargetMachine.h"
#include "XCore.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
-#include "llvm/Target/TargetMachineRegistry.h"
+#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
-/// XCoreTargetMachineModule - Note that this is used on hosts that
-/// cannot link in a library unless there are references into the
-/// library. In particular, it seems that it is not possible to get
-/// things to work on Win32 without this. Though it is unused, do not
-/// remove it.
-extern "C" int XCoreTargetMachineModule;
-int XCoreTargetMachineModule = 0;
-
-namespace {
- // Register the target.
- RegisterTarget<XCoreTargetMachine> X("xcore", "XCore");
-}
-
-// Force static initialization.
-extern "C" void LLVMInitializeXCoreTarget() { }
-
-const TargetAsmInfo *XCoreTargetMachine::createTargetAsmInfo() const {
- return new XCoreTargetAsmInfo(*this);
-}
-
/// XCoreTargetMachine ctor - Create an ILP32 architecture model
///
-XCoreTargetMachine::XCoreTargetMachine(const Module &M, const std::string &FS)
- : Subtarget(*this, M, FS),
+XCoreTargetMachine::XCoreTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS)
+ : LLVMTargetMachine(T, TT),
+ Subtarget(TT, FS),
DataLayout("e-p:32:32:32-a0:0:32-f32:32:32-f64:32:32-i1:8:32-i8:8:32-"
"i16:16:32-i32:32:32-i64:32:32"),
InstrInfo(),
@@ -49,26 +31,14 @@ XCoreTargetMachine::XCoreTargetMachine(const Module &M, const std::string &FS)
TLInfo(*this) {
}
-unsigned XCoreTargetMachine::getModuleMatchQuality(const Module &M) {
- std::string TT = M.getTargetTriple();
- if (TT.size() >= 6 && std::string(TT.begin(), TT.begin()+6) == "xcore-")
- return 20;
-
- // Otherwise we don't match.
- return 0;
-}
-
bool XCoreTargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createXCoreISelDag(*this));
return false;
}
-bool XCoreTargetMachine::addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose,
- raw_ostream &Out) {
- // Output assembly language.
- PM.add(createXCoreCodePrinterPass(Out, *this, Verbose));
- return false;
+// Force static initialization.
+extern "C" void LLVMInitializeXCoreTarget() {
+ RegisterTargetMachine<XCoreTargetMachine> X(TheXCoreTarget);
+ RegisterAsmInfo<XCoreMCAsmInfo> Y(TheXCoreTarget);
}
diff --git a/lib/Target/XCore/XCoreTargetMachine.h b/lib/Target/XCore/XCoreTargetMachine.h
index 2385aed..b0b1464 100644
--- a/lib/Target/XCore/XCoreTargetMachine.h
+++ b/lib/Target/XCore/XCoreTargetMachine.h
@@ -23,20 +23,15 @@
namespace llvm {
-class Module;
-
class XCoreTargetMachine : public LLVMTargetMachine {
XCoreSubtarget Subtarget;
const TargetData DataLayout; // Calculates type size & alignment
XCoreInstrInfo InstrInfo;
XCoreFrameInfo FrameInfo;
XCoreTargetLowering TLInfo;
-
-protected:
- virtual const TargetAsmInfo *createTargetAsmInfo() const;
-
public:
- XCoreTargetMachine(const Module &M, const std::string &FS);
+ XCoreTargetMachine(const Target &T, const std::string &TT,
+ const std::string &FS);
virtual const XCoreInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const XCoreFrameInfo *getFrameInfo() const { return &FrameInfo; }
@@ -49,13 +44,9 @@ public:
return &InstrInfo.getRegisterInfo();
}
virtual const TargetData *getTargetData() const { return &DataLayout; }
- static unsigned getModuleMatchQuality(const Module &M);
// Pass Pipeline Configuration
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
- virtual bool addAssemblyEmitter(PassManagerBase &PM,
- CodeGenOpt::Level OptLevel,
- bool Verbose, raw_ostream &Out);
};
} // end namespace llvm
diff --git a/lib/Target/XCore/XCoreTargetObjectFile.cpp b/lib/Target/XCore/XCoreTargetObjectFile.cpp
new file mode 100644
index 0000000..7de3b55
--- /dev/null
+++ b/lib/Target/XCore/XCoreTargetObjectFile.cpp
@@ -0,0 +1,67 @@
+//===-- XCoreTargetObjectFile.cpp - XCore object files --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "XCoreTargetObjectFile.h"
+#include "XCoreSubtarget.h"
+#include "MCSectionXCore.h"
+#include "llvm/Target/TargetMachine.h"
+using namespace llvm;
+
+
+void XCoreTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM){
+ TargetLoweringObjectFileELF::Initialize(Ctx, TM);
+
+ DataSection =
+ MCSectionXCore::Create(".dp.data", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE |
+ MCSectionXCore::SHF_DP_SECTION,
+ SectionKind::getDataRel(), false, getContext());
+ BSSSection =
+ MCSectionXCore::Create(".dp.bss", MCSectionELF::SHT_NOBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_WRITE |
+ MCSectionXCore::SHF_DP_SECTION,
+ SectionKind::getBSS(), false, getContext());
+
+ MergeableConst4Section =
+ MCSectionXCore::Create(".cp.rodata.cst4", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE |
+ MCSectionXCore::SHF_CP_SECTION,
+ SectionKind::getMergeableConst4(), false,
+ getContext());
+ MergeableConst8Section =
+ MCSectionXCore::Create(".cp.rodata.cst8", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE |
+ MCSectionXCore::SHF_CP_SECTION,
+ SectionKind::getMergeableConst8(), false,
+ getContext());
+ MergeableConst16Section =
+ MCSectionXCore::Create(".cp.rodata.cst16", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC | MCSectionELF::SHF_MERGE |
+ MCSectionXCore::SHF_CP_SECTION,
+ SectionKind::getMergeableConst16(), false,
+ getContext());
+
+ // TLS globals are lowered in the backend to arrays indexed by the current
+ // thread id. After lowering they require no special handling by the linker
+ // and can be placed in the standard data / bss sections.
+ TLSDataSection = DataSection;
+ TLSBSSSection = BSSSection;
+
+ ReadOnlySection =
+ MCSectionXCore::Create(".cp.rodata", MCSectionELF::SHT_PROGBITS,
+ MCSectionELF::SHF_ALLOC |
+ MCSectionXCore::SHF_CP_SECTION,
+ SectionKind::getReadOnlyWithRel(), false,
+ getContext());
+
+ // Dynamic linking is not supported. Data with relocations is placed in the
+ // same section as data without relocations.
+ DataRelSection = DataRelLocalSection = DataSection;
+ DataRelROSection = DataRelROLocalSection = ReadOnlySection;
+}
diff --git a/lib/Target/XCore/XCoreTargetObjectFile.h b/lib/Target/XCore/XCoreTargetObjectFile.h
new file mode 100644
index 0000000..7efb990
--- /dev/null
+++ b/lib/Target/XCore/XCoreTargetObjectFile.h
@@ -0,0 +1,26 @@
+//===-- llvm/Target/XCoreTargetObjectFile.h - XCore Object Info -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
+#define LLVM_TARGET_XCORE_TARGETOBJECTFILE_H
+
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+namespace llvm {
+
+ class XCoreTargetObjectFile : public TargetLoweringObjectFileELF {
+ public:
+
+ void Initialize(MCContext &Ctx, const TargetMachine &TM);
+
+ // TODO: Classify globals as xcore wishes.
+ };
+} // end namespace llvm
+
+#endif
diff --git a/lib/Transforms/Hello/Hello.cpp b/lib/Transforms/Hello/Hello.cpp
index d07f613..8000d0d 100644
--- a/lib/Transforms/Hello/Hello.cpp
+++ b/lib/Transforms/Hello/Hello.cpp
@@ -16,7 +16,7 @@
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -32,7 +32,7 @@ namespace {
HelloCounter++;
std::string fname = F.getName();
EscapeString(fname);
- cerr << "Hello: " << fname << "\n";
+ errs() << "Hello: " << fname << "\n";
return false;
}
};
@@ -51,7 +51,7 @@ namespace {
HelloCounter++;
std::string fname = F.getName();
EscapeString(fname);
- cerr << "Hello: " << fname << "\n";
+ errs() << "Hello: " << fname << "\n";
return false;
}
diff --git a/lib/Transforms/IPO/ArgumentPromotion.cpp b/lib/Transforms/IPO/ArgumentPromotion.cpp
index a612634..5b91f3d 100644
--- a/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -36,16 +36,18 @@
#include "llvm/Module.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
-#include "llvm/Support/Compiler.h"
#include <set>
using namespace llvm;
@@ -60,11 +62,10 @@ namespace {
struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
- AU.addRequired<TargetData>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
- virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
+ virtual bool runOnSCC(std::vector<CallGraphNode *> &SCC);
static char ID; // Pass identification, replacement for typeid
explicit ArgPromotion(unsigned maxElements = 3)
: CallGraphSCCPass(&ID), maxElements(maxElements) {}
@@ -73,11 +74,11 @@ namespace {
typedef std::vector<uint64_t> IndicesVector;
private:
- bool PromoteArguments(CallGraphNode *CGN);
+ CallGraphNode *PromoteArguments(CallGraphNode *CGN);
bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
- Function *DoPromotion(Function *F,
- SmallPtrSet<Argument*, 8> &ArgsToPromote,
- SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
+ CallGraphNode *DoPromotion(Function *F,
+ SmallPtrSet<Argument*, 8> &ArgsToPromote,
+ SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
/// The maximum number of elements to expand, or 0 for unlimited.
unsigned maxElements;
};
@@ -91,14 +92,17 @@ Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
return new ArgPromotion(maxElements);
}
-bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
+bool ArgPromotion::runOnSCC(std::vector<CallGraphNode *> &SCC) {
bool Changed = false, LocalChange;
do { // Iterate until we stop promoting from this SCC.
LocalChange = false;
// Attempt to promote arguments from all functions in this SCC.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- LocalChange |= PromoteArguments(SCC[i]);
+ if (CallGraphNode *CGN = PromoteArguments(SCC[i])) {
+ LocalChange = true;
+ SCC[i] = CGN;
+ }
Changed |= LocalChange; // Remember that we changed something.
} while (LocalChange);
@@ -110,11 +114,11 @@ bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
///
-bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
+CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
Function *F = CGN->getFunction();
// Make sure that it is local to this module.
- if (!F || !F->hasLocalLinkage()) return false;
+ if (!F || !F->hasLocalLinkage()) return 0;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
@@ -123,12 +127,12 @@ bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
I != E; ++I, ++ArgNo)
if (isa<PointerType>(I->getType()))
PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
- if (PointerArgs.empty()) return false;
+ if (PointerArgs.empty()) return 0;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers.
if (F->hasAddressTaken())
- return false;
+ return 0;
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
@@ -144,9 +148,9 @@ bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
- DOUT << "argpromotion disable promoting argument '"
- << PtrArg->getName() << "' because it would require adding more "
- << "than " << maxElements << " arguments to the function.\n";
+ DEBUG(errs() << "argpromotion disable promoting argument '"
+ << PtrArg->getName() << "' because it would require adding more"
+ << " than " << maxElements << " arguments to the function.\n");
} else {
// If all the elements are single-value types, we can promote it.
bool AllSimple = true;
@@ -173,13 +177,10 @@ bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
}
// No promotable pointer arguments.
- if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
-
- Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
+ if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
+ return 0;
- // Update the call graph to know that the function has been transformed.
- getAnalysis<CallGraph>().changeFunction(F, NewF);
- return true;
+ return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
}
/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
@@ -409,9 +410,9 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
// to do.
if (ToPromote.find(Operands) == ToPromote.end()) {
if (maxElements > 0 && ToPromote.size() == maxElements) {
- DOUT << "argpromotion not promoting argument '"
- << Arg->getName() << "' because it would require adding more "
- << "than " << maxElements << " arguments to the function.\n";
+ DEBUG(errs() << "argpromotion not promoting argument '"
+ << Arg->getName() << "' because it would require adding more "
+ << "than " << maxElements << " arguments to the function.\n");
// We limit aggregate promotion to only promoting up to a fixed number
// of elements of the aggregate.
return false;
@@ -432,7 +433,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
SmallPtrSet<BasicBlock*, 16> TranspBlocks;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
- TargetData &TD = getAnalysis<TargetData>();
+ TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ if (!TD) return false; // Without TargetData, assume the worst.
for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
// Check to see if the load is invalidated from the start of the block to
@@ -442,7 +444,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
const PointerType *LoadTy =
cast<PointerType>(Load->getPointerOperand()->getType());
- unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
+ unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
return false; // Pointer is invalidated!
@@ -467,8 +469,8 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
-Function *ArgPromotion::DoPromotion(Function *F,
- SmallPtrSet<Argument*, 8> &ArgsToPromote,
+CallGraphNode *ArgPromotion::DoPromotion(Function *F,
+ SmallPtrSet<Argument*, 8> &ArgsToPromote,
SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
// Start by computing a new prototype for the function, which is the same as
@@ -581,19 +583,24 @@ Function *ArgPromotion::DoPromotion(Function *F,
bool ExtraArgHack = false;
if (Params.empty() && FTy->isVarArg()) {
ExtraArgHack = true;
- Params.push_back(Type::Int32Ty);
+ Params.push_back(Type::getInt32Ty(F->getContext()));
}
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
- // Create the new function body and insert it into the module...
+ // Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
NF->copyAttributesFrom(F);
+
+ DEBUG(errs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
+ << "From: " << *F);
+
// Recompute the parameter attributes list based on the new arguments for
// the function.
- NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()));
+ NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
+ AttributesVec.end()));
AttributesVec.clear();
F->getParent()->getFunctionList().insert(F, NF);
@@ -606,6 +613,10 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Get the callgraph information that we need to update to reflect our
// changes.
CallGraph &CG = getAnalysis<CallGraph>();
+
+ // Get a new callgraph node for NF.
+ CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
+
// Loop over all of the callers of the function, transforming the call sites
// to pass in the loaded pointers.
@@ -636,9 +647,10 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Emit a GEP and load for each element of the struct.
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
const StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
+ Value *Idxs[2] = {
+ ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
(*AI)->getName()+"."+utostr(i),
Call);
@@ -662,7 +674,9 @@ Function *ArgPromotion::DoPromotion(Function *F,
IE = SI->end(); II != IE; ++II) {
// Use i32 to index structs, and i64 for others (pointers/arrays).
// This satisfies GEP constraints.
- const Type *IdxTy = (isa<StructType>(ElTy) ? Type::Int32Ty : Type::Int64Ty);
+ const Type *IdxTy = (isa<StructType>(ElTy) ?
+ Type::getInt32Ty(F->getContext()) :
+ Type::getInt64Ty(F->getContext()));
Ops.push_back(ConstantInt::get(IdxTy, *II));
// Keep track of the type we're currently indexing
ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
@@ -679,7 +693,7 @@ Function *ArgPromotion::DoPromotion(Function *F,
}
if (ExtraArgHack)
- Args.push_back(Constant::getNullValue(Type::Int32Ty));
+ Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
// Push any varargs arguments on the list
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
@@ -715,7 +729,8 @@ Function *ArgPromotion::DoPromotion(Function *F,
AA.replaceWithNewValue(Call, New);
// Update the callgraph to know that the callsite has been transformed.
- CG[Call->getParent()->getParent()]->replaceCallSite(Call, New);
+ CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
+ CalleeNode->replaceCallEdge(Call, New, NF_CGN);
if (!Call->use_empty()) {
Call->replaceAllUsesWith(New);
@@ -756,14 +771,16 @@ Function *ArgPromotion::DoPromotion(Function *F,
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
const StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
+ Value *Idxs[2] = {
+ ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
- std::string Name = TheAlloca->getName()+"."+utostr(i);
- Value *Idx = GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
- Name, InsertPt);
- I2->setName(I->getName()+"."+utostr(i));
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
+ Value *Idx =
+ GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
+ TheAlloca->getName()+"."+Twine(i),
+ InsertPt);
+ I2->setName(I->getName()+"."+Twine(i));
new StoreInst(I2++, Idx, InsertPt);
}
@@ -792,8 +809,8 @@ Function *ArgPromotion::DoPromotion(Function *F,
LI->replaceAllUsesWith(I2);
AA.replaceWithNewValue(LI, I2);
LI->eraseFromParent();
- DOUT << "*** Promoted load of argument '" << I->getName()
- << "' in function '" << F->getName() << "'\n";
+ DEBUG(errs() << "*** Promoted load of argument '" << I->getName()
+ << "' in function '" << F->getName() << "'\n");
} else {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
IndicesVector Operands;
@@ -819,8 +836,8 @@ Function *ArgPromotion::DoPromotion(Function *F,
NewName += ".val";
TheArg->setName(NewName);
- DOUT << "*** Promoted agg argument '" << TheArg->getName()
- << "' of function '" << NF->getName() << "'\n";
+ DEBUG(errs() << "*** Promoted agg argument '" << TheArg->getName()
+ << "' of function '" << NF->getName() << "'\n");
// All of the uses must be load instructions. Replace them all with
// the argument specified by ArgNo.
@@ -842,13 +859,18 @@ Function *ArgPromotion::DoPromotion(Function *F,
// Notify the alias analysis implementation that we inserted a new argument.
if (ExtraArgHack)
- AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
+ AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
+ NF->arg_begin());
// Tell the alias analysis that the old function is about to disappear.
AA.replaceWithNewValue(F, NF);
+
+ NF_CGN->stealCalledFunctionsFrom(CG[F]);
+
// Now that the old function is dead, delete it.
- F->eraseFromParent();
- return NF;
+ delete CG.removeFunctionFromModule(F);
+
+ return NF_CGN;
}
diff --git a/lib/Transforms/IPO/CMakeLists.txt b/lib/Transforms/IPO/CMakeLists.txt
index 1438b48..ec0f1e1 100644
--- a/lib/Transforms/IPO/CMakeLists.txt
+++ b/lib/Transforms/IPO/CMakeLists.txt
@@ -1,18 +1,19 @@
add_llvm_library(LLVMipo
- FunctionAttrs.cpp
ArgumentPromotion.cpp
ConstantMerge.cpp
DeadArgumentElimination.cpp
DeadTypeElimination.cpp
ExtractGV.cpp
+ FunctionAttrs.cpp
GlobalDCE.cpp
GlobalOpt.cpp
+ IPConstantPropagation.cpp
+ IPO.cpp
IndMemRemoval.cpp
InlineAlways.cpp
- Inliner.cpp
InlineSimple.cpp
+ Inliner.cpp
Internalize.cpp
- IPConstantPropagation.cpp
LoopExtractor.cpp
LowerSetJmp.cpp
MergeFunctions.cpp
diff --git a/lib/Transforms/IPO/ConstantMerge.cpp b/lib/Transforms/IPO/ConstantMerge.cpp
index 237e6db..c1a1045 100644
--- a/lib/Transforms/IPO/ConstantMerge.cpp
+++ b/lib/Transforms/IPO/ConstantMerge.cpp
@@ -78,7 +78,7 @@ bool ConstantMerge::runOnModule(Module &M) {
}
// Only process constants with initializers.
- if (GV->isConstant() && GV->hasInitializer()) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
index e480dad..79a32f0 100644
--- a/lib/Transforms/IPO/DeadArgumentElimination.cpp
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -24,10 +24,12 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
@@ -72,7 +74,7 @@ namespace {
std::string getDescription() const {
return std::string((IsArg ? "Argument #" : "Return value #"))
- + utostr(Idx) + " of function " + F->getName();
+ + utostr(Idx) + " of function " + F->getNameStr();
}
};
@@ -195,8 +197,10 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
+
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
- FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
+ FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
+ Params, false);
unsigned NumArgs = Params.size();
// Create the new function body and insert it into the module...
@@ -277,7 +281,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
- if (F->getReturnType() == Type::VoidTy)
+ if (F->getReturnType() == Type::getVoidTy(F->getContext()))
return 0;
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
@@ -422,7 +426,7 @@ void DAE::SurveyFunction(Function &F) {
return;
}
- DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
+ DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
@@ -485,7 +489,7 @@ void DAE::SurveyFunction(Function &F) {
for (unsigned i = 0; i != RetCount; ++i)
MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
- DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
+ DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
// Now, check all of our arguments.
unsigned i = 0;
@@ -527,7 +531,7 @@ void DAE::MarkValue(const RetOrArg &RA, Liveness L,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
- DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
+ DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
// Mark the function as live.
LiveFunctions.insert(&F);
// Mark all arguments as live.
@@ -548,7 +552,7 @@ void DAE::MarkLive(const RetOrArg &RA) {
if (!LiveValues.insert(RA).second)
return; // We were already marked Live.
- DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
+ DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
PropagateLiveness(RA);
}
@@ -596,11 +600,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
+
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
- if (RetTy == Type::VoidTy) {
- NRetTy = Type::VoidTy;
+ if (RetTy == Type::getVoidTy(F->getContext())) {
+ NRetTy = Type::getVoidTy(F->getContext());
} else {
const StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
@@ -612,8 +617,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
- DOUT << "DAE - Removing return value " << i << " from "
- << F->getNameStart() << "\n";
+ DEBUG(errs() << "DAE - Removing return value " << i << " from "
+ << F->getName() << "\n");
}
}
else
@@ -622,8 +627,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
- DOUT << "DAE - Removing return value from " << F->getNameStart()
- << "\n";
+ DEBUG(errs() << "DAE - Removing return value from " << F->getName()
+ << "\n");
++NumRetValsEliminated;
}
if (RetTypes.size() > 1)
@@ -633,14 +638,14 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// something and {} into void.
// Make the new struct packed if we used to return a packed struct
// already.
- NRetTy = StructType::get(RetTypes, STy->isPacked());
+ NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
NRetTy = RetTypes.front();
else if (RetTypes.size() == 0)
// No return types? Make it void, but only if we didn't use to return {}.
- NRetTy = Type::VoidTy;
+ NRetTy = Type::getVoidTy(F->getContext());
}
assert(NRetTy && "No new return type found?");
@@ -649,7 +654,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// values. Otherwise, ensure that we don't have any conflicting attributes
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
- if (NRetTy == Type::VoidTy)
+ if (NRetTy == Type::getVoidTy(F->getContext()))
RAttrs &= ~Attribute::typeIncompatible(NRetTy);
else
assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
@@ -677,8 +682,8 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
- DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
- << ") from " << F->getNameStart() << "\n";
+ DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
+ << ") from " << F->getName() << "\n");
}
}
@@ -697,11 +702,12 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
bool ExtraArgHack = false;
if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
ExtraArgHack = true;
- Params.push_back(Type::Int32Ty);
+ Params.push_back(Type::getInt32Ty(F->getContext()));
}
// Create the new function type based on the recomputed parameters.
- FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
+ FunctionType *NFTy = FunctionType::get(NRetTy, Params,
+ FTy->isVarArg());
// No change?
if (NFTy == FTy)
@@ -750,7 +756,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
if (ExtraArgHack)
- Args.push_back(UndefValue::get(Type::Int32Ty));
+ Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
@@ -786,7 +792,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Return type not changed? Just replace users then.
Call->replaceAllUsesWith(New);
New->takeName(Call);
- } else if (New->getType() == Type::VoidTy) {
+ } else if (New->getType() == Type::getVoidTy(F->getContext())) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
@@ -806,7 +812,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// extract/insertvalue chaining and let instcombine clean that up.
//
// Start out building up our return value from undef
- Value *RetVal = llvm::UndefValue::get(RetTy);
+ Value *RetVal = UndefValue::get(RetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
Value *V;
@@ -862,7 +868,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Value *RetVal;
- if (NFTy->getReturnType() == Type::VoidTy) {
+ if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
RetVal = 0;
} else {
assert (isa<StructType>(RetTy));
@@ -873,7 +879,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// clean that up.
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
- RetVal = llvm::UndefValue::get(NRetTy);
+ RetVal = UndefValue::get(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
@@ -893,7 +899,7 @@ bool DAE::RemoveDeadStuffFromFunction(Function *F) {
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
- ReturnInst::Create(RetVal, RI);
+ ReturnInst::Create(F->getContext(), RetVal, RI);
BB->getInstList().erase(RI);
}
@@ -910,7 +916,7 @@ bool DAE::runOnModule(Module &M) {
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
- DOUT << "DAE - Deleting dead varargs\n";
+ DEBUG(errs() << "DAE - Deleting dead varargs\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
Function &F = *I++;
if (F.getFunctionType()->isVarArg())
@@ -921,7 +927,7 @@ bool DAE::runOnModule(Module &M) {
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
//
- DOUT << "DAE - Determining liveness\n";
+ DEBUG(errs() << "DAE - Determining liveness\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
diff --git a/lib/Transforms/IPO/ExtractGV.cpp b/lib/Transforms/IPO/ExtractGV.cpp
index 0c529d2..191100c 100644
--- a/lib/Transforms/IPO/ExtractGV.cpp
+++ b/lib/Transforms/IPO/ExtractGV.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
@@ -43,6 +44,7 @@ namespace {
return false; // Nothing to extract
}
+
if (deleteStuff)
return deleteGV();
M.setModuleInlineAsm("");
@@ -99,7 +101,8 @@ namespace {
// by putting them in the used array
{
std::vector<Constant *> AUGs;
- const Type *SBP= PointerType::getUnqual(Type::Int8Ty);
+ const Type *SBP=
+ Type::getInt8PtrTy(M.getContext());
for (std::vector<GlobalValue*>::iterator GI = Named.begin(),
GE = Named.end(); GI != GE; ++GI) {
(*GI)->setLinkage(GlobalValue::ExternalLinkage);
@@ -107,9 +110,9 @@ namespace {
}
ArrayType *AT = ArrayType::get(SBP, AUGs.size());
Constant *Init = ConstantArray::get(AT, AUGs);
- GlobalValue *gv = new GlobalVariable(AT, false,
+ GlobalValue *gv = new GlobalVariable(M, AT, false,
GlobalValue::AppendingLinkage,
- Init, "llvm.used", &M);
+ Init, "llvm.used");
gv->setSection("llvm.metadata");
}
diff --git a/lib/Transforms/IPO/FunctionAttrs.cpp b/lib/Transforms/IPO/FunctionAttrs.cpp
index e831524..7edaa7f 100644
--- a/lib/Transforms/IPO/FunctionAttrs.cpp
+++ b/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -26,6 +26,7 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
@@ -44,7 +45,7 @@ namespace {
FunctionAttrs() : CallGraphSCCPass(&ID) {}
// runOnSCC - Analyze the SCC, performing the transformation if possible.
- bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
+ bool runOnSCC(std::vector<CallGraphNode *> &SCC);
// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
bool AddReadAttrs(const std::vector<CallGraphNode *> &SCC);
@@ -54,7 +55,7 @@ namespace {
// IsFunctionMallocLike - Does this function allocate new memory?
bool IsFunctionMallocLike(Function *F,
- SmallPtrSet<CallGraphNode*, 8> &) const;
+ SmallPtrSet<Function*, 8> &) const;
// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
bool AddNoAliasAttrs(const std::vector<CallGraphNode *> &SCC);
@@ -93,13 +94,12 @@ bool FunctionAttrs::PointsToLocalMemory(Value *V) {
/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
- SmallPtrSet<CallGraphNode*, 8> SCCNodes;
- CallGraph &CG = getAnalysis<CallGraph>();
+ SmallPtrSet<Function*, 8> SCCNodes;
// Fill SCCNodes with the elements of the SCC. Used for quickly
// looking up whether a given CallGraphNode is in this SCC.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- SCCNodes.insert(SCC[i]);
+ SCCNodes.insert(SCC[i]->getFunction());
// Check if any of the functions in the SCC read or write memory. If they
// write memory then they can't be marked readnone or readonly.
@@ -133,9 +133,9 @@ bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
// Some instructions can be ignored even if they read or write memory.
// Detect these now, skipping to the next instruction if one is found.
CallSite CS = CallSite::get(I);
- if (CS.getInstruction()) {
+ if (CS.getInstruction() && CS.getCalledFunction()) {
// Ignore calls to functions in the same SCC.
- if (SCCNodes.count(CG[CS.getCalledFunction()]))
+ if (SCCNodes.count(CS.getCalledFunction()))
continue;
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
// Ignore loads from local memory.
@@ -154,7 +154,7 @@ bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
return false;
if (isa<MallocInst>(I))
- // MallocInst claims not to write memory! PR3754.
+ // malloc claims not to write memory! PR3754.
return false;
// If this instruction may read memory, remember that.
@@ -226,9 +226,7 @@ bool FunctionAttrs::AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC) {
/// IsFunctionMallocLike - A function is malloc-like if it returns either null
/// or a pointer that doesn't alias any other pointer visible to the caller.
bool FunctionAttrs::IsFunctionMallocLike(Function *F,
- SmallPtrSet<CallGraphNode*, 8> &SCCNodes) const {
- CallGraph &CG = getAnalysis<CallGraph>();
-
+ SmallPtrSet<Function*, 8> &SCCNodes) const {
UniqueVector<Value *> FlowsToReturn;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
@@ -250,32 +248,36 @@ bool FunctionAttrs::IsFunctionMallocLike(Function *F,
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
- case Instruction::GetElementPtr:
case Instruction::BitCast:
+ case Instruction::GetElementPtr:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
- } continue;
+ continue;
+ }
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
FlowsToReturn.insert(PN->getIncomingValue(i));
- } continue;
+ continue;
+ }
// Check whether the pointer came from an allocation.
case Instruction::Alloca:
case Instruction::Malloc:
break;
case Instruction::Call:
+ if (isMalloc(RVI))
+ break;
case Instruction::Invoke: {
CallSite CS(RVI);
if (CS.paramHasAttr(0, Attribute::NoAlias))
break;
if (CS.getCalledFunction() &&
- SCCNodes.count(CG[CS.getCalledFunction()]))
+ SCCNodes.count(CS.getCalledFunction()))
break;
} // fall-through
default:
@@ -291,12 +293,12 @@ bool FunctionAttrs::IsFunctionMallocLike(Function *F,
/// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
bool FunctionAttrs::AddNoAliasAttrs(const std::vector<CallGraphNode *> &SCC) {
- SmallPtrSet<CallGraphNode*, 8> SCCNodes;
+ SmallPtrSet<Function*, 8> SCCNodes;
// Fill SCCNodes with the elements of the SCC. Used for quickly
// looking up whether a given CallGraphNode is in this SCC.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- SCCNodes.insert(SCC[i]);
+ SCCNodes.insert(SCC[i]->getFunction());
// Check each function in turn, determining which functions return noalias
// pointers.
@@ -339,7 +341,7 @@ bool FunctionAttrs::AddNoAliasAttrs(const std::vector<CallGraphNode *> &SCC) {
return MadeChange;
}
-bool FunctionAttrs::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
+bool FunctionAttrs::runOnSCC(std::vector<CallGraphNode *> &SCC) {
bool Changed = AddReadAttrs(SCC);
Changed |= AddNoCaptureAttrs(SCC);
Changed |= AddNoAliasAttrs(SCC);
diff --git a/lib/Transforms/IPO/GlobalDCE.cpp b/lib/Transforms/IPO/GlobalDCE.cpp
index 9c652b9..09f9e7c 100644
--- a/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/lib/Transforms/IPO/GlobalDCE.cpp
@@ -58,6 +58,7 @@ ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCE(); }
bool GlobalDCE::runOnModule(Module &M) {
bool Changed = false;
+
// Loop over the module, adding globals which are obviously necessary.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Changed |= RemoveUnusedGlobalValue(*I);
@@ -147,6 +148,9 @@ bool GlobalDCE::runOnModule(Module &M) {
// Make sure that all memory is released
AliveGlobals.clear();
+
+ // Remove dead metadata.
+ Changed |= M.getContext().RemoveDeadMetadata();
return Changed;
}
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index 7fe097c..a44386e 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -20,20 +20,23 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
@@ -56,7 +59,6 @@ STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
namespace {
struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
static char ID; // Pass identification, replacement for typeid
GlobalOpt() : ModulePass(&ID) {}
@@ -244,7 +246,8 @@ static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
return false;
}
-static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
+static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
+ LLVMContext &Context) {
ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
if (!CI) return 0;
unsigned IdxV = CI->getZExtValue();
@@ -280,7 +283,8 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
/// users of the global, cleaning up the obvious ones. This is largely just a
/// quick scan over the use list to clean up the easy and obvious cruft. This
/// returns true if it made a change.
-static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
+static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
+ LLVMContext &Context) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
User *U = *UI++;
@@ -301,11 +305,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
Constant *SubInit = 0;
if (Init)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
- Changed |= CleanupConstantGlobalUsers(CE, SubInit);
+ Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
} else if (CE->getOpcode() == Instruction::BitCast &&
isa<PointerType>(CE->getType())) {
// Pointer cast, delete any stores and memsets to the global.
- Changed |= CleanupConstantGlobalUsers(CE, 0);
+ Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
}
if (CE->use_empty()) {
@@ -319,11 +323,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
Constant *SubInit = 0;
if (!isa<ConstantExpr>(GEP->getOperand(0))) {
ConstantExpr *CE =
- dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
+ dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
}
- Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
+ Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
if (GEP->use_empty()) {
GEP->eraseFromParent();
@@ -341,7 +345,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
if (SafeToDestroyConstant(C)) {
C->destroyConstant();
// This could have invalidated UI, start over from scratch.
- CleanupConstantGlobalUsers(V, Init);
+ CleanupConstantGlobalUsers(V, Init, Context);
return true;
}
}
@@ -423,13 +427,18 @@ static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
// Scalar replacing *just* the outer index of the array is probably not
// going to be a win anyway, so just give up.
for (++GEPI; // Skip array index.
- GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
+ GEPI != E;
++GEPI) {
uint64_t NumElements;
if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
NumElements = SubArrayTy->getNumElements();
- else
- NumElements = cast<VectorType>(*GEPI)->getNumElements();
+ else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
+ NumElements = SubVectorTy->getNumElements();
+ else {
+ assert(isa<StructType>(*GEPI) &&
+ "Indexed GEP type is not array, vector, or struct!");
+ continue;
+ }
ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
@@ -461,7 +470,8 @@ static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
/// behavior of the program in a more fine-grained way. We have determined that
/// this transformation is safe already. We return the first global variable we
/// insert so that the caller can reprocess it.
-static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
+static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
+ LLVMContext &Context) {
// Make sure this global only has simple uses that we can SRA.
if (!GlobalUsersSafeToSRA(GV))
return 0;
@@ -483,14 +493,15 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
const StructLayout &Layout = *TD.getStructLayout(STy);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
- ConstantInt::get(Type::Int32Ty, i));
+ ConstantInt::get(Type::getInt32Ty(Context), i),
+ Context);
assert(In && "Couldn't get element of initializer?");
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
+ GlobalVariable *NGV = new GlobalVariable(Context,
+ STy->getElementType(i), false,
GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+utostr(i),
- (Module *)NULL,
+ In, GV->getName()+"."+Twine(i),
GV->isThreadLocal(),
- GV->getType()->getAddressSpace());
+ GV->getType()->getAddressSpace());
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
@@ -517,15 +528,16 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
- ConstantInt::get(Type::Int32Ty, i));
+ ConstantInt::get(Type::getInt32Ty(Context), i),
+ Context);
assert(In && "Couldn't get element of initializer?");
- GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
+ GlobalVariable *NGV = new GlobalVariable(Context,
+ STy->getElementType(), false,
GlobalVariable::InternalLinkage,
- In, GV->getName()+"."+utostr(i),
- (Module *)NULL,
+ In, GV->getName()+"."+Twine(i),
GV->isThreadLocal(),
- GV->getType()->getAddressSpace());
+ GV->getType()->getAddressSpace());
Globals.insert(GV, NGV);
NewGlobals.push_back(NGV);
@@ -541,9 +553,9 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
if (NewGlobals.empty())
return 0;
- DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
+ DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
- Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
+ Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
// Loop over all of the uses of the global, replacing the constantexpr geps,
// with smaller constantexpr geps or direct references.
@@ -577,7 +589,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
Idxs.push_back(GEPI->getOperand(i));
NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
- GEPI->getName()+"."+utostr(Val), GEPI);
+ GEPI->getName()+"."+Twine(Val),GEPI);
}
}
GEP->replaceAllUsesWith(NewPtr);
@@ -667,7 +679,8 @@ static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
return true;
}
-static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
+static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
+ LLVMContext &Context) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
Instruction *I = cast<Instruction>(*UI++);
@@ -700,7 +713,7 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
Changed |= OptimizeAwayTrappingUsesOfValue(CI,
ConstantExpr::getCast(CI->getOpcode(),
- NewV, CI->getType()));
+ NewV, CI->getType()), Context);
if (CI->use_empty()) {
Changed = true;
CI->eraseFromParent();
@@ -717,8 +730,8 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
break;
if (Idxs.size() == GEPI->getNumOperands()-1)
Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
- ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
- Idxs.size()));
+ ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
+ Idxs.size()), Context);
if (GEPI->use_empty()) {
Changed = true;
GEPI->eraseFromParent();
@@ -734,7 +747,8 @@ static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
/// value stored into it. If there are uses of the loaded value that would trap
/// if the loaded value is dynamically null, then we know that they cannot be
/// reachable with a null optimize away the load.
-static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
+static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
+ LLVMContext &Context) {
bool Changed = false;
// Keep track of whether we are able to remove all the uses of the global
@@ -745,7 +759,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
User *GlobalUser = *GUI++;
if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
- Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
+ Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
// If we were able to delete all uses of the loads
if (LI->use_empty()) {
LI->eraseFromParent();
@@ -768,15 +782,15 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
}
if (Changed) {
- DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
+ DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
++NumGlobUses;
}
// If we nuked all of the loads, then none of the stores are needed either,
// nor is the global.
if (AllNonStoreUsesGone) {
- DOUT << " *** GLOBAL NOW DEAD!\n";
- CleanupConstantGlobalUsers(GV, 0);
+ DEBUG(errs() << " *** GLOBAL NOW DEAD!\n");
+ CleanupConstantGlobalUsers(GV, 0, Context);
if (GV->use_empty()) {
GV->eraseFromParent();
++NumDeleted;
@@ -788,10 +802,10 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
/// instructions that are foldable.
-static void ConstantPropUsersOf(Value *V) {
+static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
if (Instruction *I = dyn_cast<Instruction>(*UI++))
- if (Constant *NewC = ConstantFoldInstruction(I)) {
+ if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
I->replaceAllUsesWith(NewC);
// Advance UI to the next non-I use to avoid invalidating it!
@@ -808,8 +822,9 @@ static void ConstantPropUsersOf(Value *V) {
/// malloc, there is no reason to actually DO the malloc. Instead, turn the
/// malloc into a global, and any loads of GV as uses of the new global.
static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
- MallocInst *MI) {
- DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI;
+ MallocInst *MI,
+ LLVMContext &Context) {
+ DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI);
ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
if (NElements->getZExtValue() != 1) {
@@ -818,10 +833,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
Type *NewTy = ArrayType::get(MI->getAllocatedType(),
NElements->getZExtValue());
MallocInst *NewMI =
- new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
+ new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)),
MI->getAlignment(), MI->getName(), MI);
Value* Indices[2];
- Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
+ Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context));
Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
NewMI->getName()+".el0", MI);
MI->replaceAllUsesWith(NewGEP);
@@ -831,17 +846,17 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// Create the new global variable. The contents of the malloc'd memory is
// undefined, so initialize with an undef value.
+ // FIXME: This new global should have the alignment returned by malloc. Code
+ // could depend on malloc returning large alignment (on the mac, 16 bytes) but
+ // this would only guarantee some lower alignment.
Constant *Init = UndefValue::get(MI->getAllocatedType());
- GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
+ GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
+ MI->getAllocatedType(), false,
GlobalValue::InternalLinkage, Init,
GV->getName()+".body",
- (Module *)NULL,
+ GV,
GV->isThreadLocal());
- // FIXME: This new global should have the alignment returned by malloc. Code
- // could depend on malloc returning large alignment (on the mac, 16 bytes) but
- // this would only guarantee some lower alignment.
- GV->getParent()->getGlobalList().insert(GV, NewGV);
-
+
// Anything that used the malloc now uses the global directly.
MI->replaceAllUsesWith(NewGV);
@@ -853,9 +868,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// If there is a comparison against null, we will insert a global bool to
// keep track of whether the global was initialized yet or not.
GlobalVariable *InitBool =
- new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
- ConstantInt::getFalse(), GV->getName()+".init",
- (Module *)NULL, GV->isThreadLocal());
+ new GlobalVariable(Context, Type::getInt1Ty(Context), false,
+ GlobalValue::InternalLinkage,
+ ConstantInt::getFalse(Context), GV->getName()+".init",
+ GV->isThreadLocal());
bool InitBoolUsed = false;
// Loop over all uses of GV, processing them in turn.
@@ -872,10 +888,10 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
InitBoolUsed = true;
switch (CI->getPredicate()) {
- default: assert(0 && "Unknown ICmp Predicate!");
+ default: llvm_unreachable("Unknown ICmp Predicate!");
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
- LV = ConstantInt::getFalse(); // X < null -> always false
+ LV = ConstantInt::getFalse(Context); // X < null -> always false
break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
@@ -897,7 +913,7 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
} else {
StoreInst *SI = cast<StoreInst>(GV->use_back());
// The global is initialized when the store to it occurs.
- new StoreInst(ConstantInt::getTrue(), InitBool, SI);
+ new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
SI->eraseFromParent();
}
@@ -917,9 +933,141 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// To further other optimizations, loop over all users of NewGV and try to
// constant prop them. This will promote GEP instructions with constant
// indices into GEP constant-exprs, which will allow global-opt to hack on it.
- ConstantPropUsersOf(NewGV);
+ ConstantPropUsersOf(NewGV, Context);
if (RepValue != NewGV)
- ConstantPropUsersOf(RepValue);
+ ConstantPropUsersOf(RepValue, Context);
+
+ return NewGV;
+}
+
+/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
+/// variable, and transforms the program as if it always contained the result of
+/// the specified malloc. Because it is always the result of the specified
+/// malloc, there is no reason to actually DO the malloc. Instead, turn the
+/// malloc into a global, and any loads of GV as uses of the new global.
+static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
+ CallInst *CI,
+ BitCastInst *BCI,
+ LLVMContext &Context,
+ TargetData* TD) {
+ const Type *IntPtrTy = TD->getIntPtrType(Context);
+
+ DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *CI);
+
+ ConstantInt *NElements = cast<ConstantInt>(getMallocArraySize(CI,
+ Context, TD));
+ if (NElements->getZExtValue() != 1) {
+ // If we have an array allocation, transform it to a single element
+ // allocation to make the code below simpler.
+ Type *NewTy = ArrayType::get(getMallocAllocatedType(CI),
+ NElements->getZExtValue());
+ Value* NewM = CallInst::CreateMalloc(CI, IntPtrTy, NewTy);
+ Instruction* NewMI = cast<Instruction>(NewM);
+ Value* Indices[2];
+ Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy);
+ Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
+ NewMI->getName()+".el0", CI);
+ BCI->replaceAllUsesWith(NewGEP);
+ BCI->eraseFromParent();
+ CI->eraseFromParent();
+ BCI = cast<BitCastInst>(NewMI);
+ CI = extractMallocCallFromBitCast(NewMI);
+ }
+
+ // Create the new global variable. The contents of the malloc'd memory is
+ // undefined, so initialize with an undef value.
+ // FIXME: This new global should have the alignment returned by malloc. Code
+ // could depend on malloc returning large alignment (on the mac, 16 bytes) but
+ // this would only guarantee some lower alignment.
+ const Type *MAT = getMallocAllocatedType(CI);
+ Constant *Init = UndefValue::get(MAT);
+ GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
+ MAT, false,
+ GlobalValue::InternalLinkage, Init,
+ GV->getName()+".body",
+ GV,
+ GV->isThreadLocal());
+
+ // Anything that used the malloc now uses the global directly.
+ BCI->replaceAllUsesWith(NewGV);
+
+ Constant *RepValue = NewGV;
+ if (NewGV->getType() != GV->getType()->getElementType())
+ RepValue = ConstantExpr::getBitCast(RepValue,
+ GV->getType()->getElementType());
+
+ // If there is a comparison against null, we will insert a global bool to
+ // keep track of whether the global was initialized yet or not.
+ GlobalVariable *InitBool =
+ new GlobalVariable(Context, Type::getInt1Ty(Context), false,
+ GlobalValue::InternalLinkage,
+ ConstantInt::getFalse(Context), GV->getName()+".init",
+ GV->isThreadLocal());
+ bool InitBoolUsed = false;
+
+ // Loop over all uses of GV, processing them in turn.
+ std::vector<StoreInst*> Stores;
+ while (!GV->use_empty())
+ if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
+ while (!LI->use_empty()) {
+ Use &LoadUse = LI->use_begin().getUse();
+ if (!isa<ICmpInst>(LoadUse.getUser()))
+ LoadUse = RepValue;
+ else {
+ ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
+ // Replace the cmp X, 0 with a use of the bool value.
+ Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
+ InitBoolUsed = true;
+ switch (ICI->getPredicate()) {
+ default: llvm_unreachable("Unknown ICmp Predicate!");
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ LV = ConstantInt::getFalse(Context); // X < null -> always false
+ break;
+ case ICmpInst::ICMP_ULE:
+ case ICmpInst::ICMP_SLE:
+ case ICmpInst::ICMP_EQ:
+ LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
+ break;
+ case ICmpInst::ICMP_NE:
+ case ICmpInst::ICMP_UGE:
+ case ICmpInst::ICMP_SGE:
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ break; // no change.
+ }
+ ICI->replaceAllUsesWith(LV);
+ ICI->eraseFromParent();
+ }
+ }
+ LI->eraseFromParent();
+ } else {
+ StoreInst *SI = cast<StoreInst>(GV->use_back());
+ // The global is initialized when the store to it occurs.
+ new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
+ SI->eraseFromParent();
+ }
+
+ // If the initialization boolean was used, insert it, otherwise delete it.
+ if (!InitBoolUsed) {
+ while (!InitBool->use_empty()) // Delete initializations
+ cast<Instruction>(InitBool->use_back())->eraseFromParent();
+ delete InitBool;
+ } else
+ GV->getParent()->getGlobalList().insert(GV, InitBool);
+
+
+ // Now the GV is dead, nuke it and the malloc.
+ GV->eraseFromParent();
+ BCI->eraseFromParent();
+ CI->eraseFromParent();
+
+ // To further other optimizations, loop over all users of NewGV and try to
+ // constant prop them. This will promote GEP instructions with constant
+ // indices into GEP constant-exprs, which will allow global-opt to hack on it.
+ ConstantPropUsersOf(NewGV, Context);
+ if (RepValue != NewGV)
+ ConstantPropUsersOf(RepValue, Context);
return NewGV;
}
@@ -1071,7 +1219,7 @@ static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
/// GV are simple enough to perform HeapSRA, return true.
static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
- MallocInst *MI) {
+ Instruction *StoredVal) {
SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
@@ -1095,7 +1243,7 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
Value *InVal = PN->getIncomingValue(op);
// PHI of the stored value itself is ok.
- if (InVal == MI) continue;
+ if (InVal == StoredVal) continue;
if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
// One of the PHIs in our set is (optimistically) ok.
@@ -1121,7 +1269,8 @@ static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
+ std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
+ LLVMContext &Context) {
std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
if (FieldNo >= FieldVals.size())
@@ -1139,19 +1288,20 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
// a new Load of the scalarized global.
Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
InsertedScalarizedValues,
- PHIsToRewrite),
- LI->getName()+".f" + utostr(FieldNo), LI);
+ PHIsToRewrite, Context),
+ LI->getName()+".f"+Twine(FieldNo), LI);
} else if (PHINode *PN = dyn_cast<PHINode>(V)) {
// PN's type is pointer to struct. Make a new PHI of pointer to struct
// field.
const StructType *ST =
cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
- Result =PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
- PN->getName()+".f"+utostr(FieldNo), PN);
+ Result =
+ PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
+ PN->getName()+".f"+Twine(FieldNo), PN);
PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
} else {
- assert(0 && "Unknown usable value");
+ llvm_unreachable("Unknown usable value");
Result = 0;
}
@@ -1162,18 +1312,20 @@ static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
/// the load, rewrite the derived value to use the HeapSRoA'd load.
static void RewriteHeapSROALoadUser(Instruction *LoadUser,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
+ std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
+ LLVMContext &Context) {
// If this is a comparison against null, handle it.
if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
// If we have a setcc of the loaded pointer, we can use a setcc of any
// field.
Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
- InsertedScalarizedValues, PHIsToRewrite);
+ InsertedScalarizedValues, PHIsToRewrite,
+ Context);
- Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
- Constant::getNullValue(NPtr->getType()),
- SCI->getName(), SCI);
+ Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
+ Constant::getNullValue(NPtr->getType()),
+ SCI->getName());
SCI->replaceAllUsesWith(New);
SCI->eraseFromParent();
return;
@@ -1187,7 +1339,8 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
// Load the pointer for this field.
unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
- InsertedScalarizedValues, PHIsToRewrite);
+ InsertedScalarizedValues, PHIsToRewrite,
+ Context);
// Create the new GEP idx vector.
SmallVector<Value*, 8> GEPIdx;
@@ -1219,7 +1372,8 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
// users.
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
+ RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
+ Context);
}
}
@@ -1229,11 +1383,13 @@ static void RewriteHeapSROALoadUser(Instruction *LoadUser,
/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
- std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
+ std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
+ LLVMContext &Context) {
for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
UI != E; ) {
Instruction *User = cast<Instruction>(*UI++);
- RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
+ RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
+ Context);
}
if (Load->use_empty()) {
@@ -1244,8 +1400,9 @@ static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
/// it up into multiple allocations of arrays of the fields.
-static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
- DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI;
+static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
+ LLVMContext &Context){
+ DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI);
const StructType *STy = cast<StructType>(MI->getAllocatedType());
// There is guaranteed to be at least one use of the malloc (storing
@@ -1264,14 +1421,15 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
const Type *PFieldTy = PointerType::getUnqual(FieldTy);
GlobalVariable *NGV =
- new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
+ new GlobalVariable(*GV->getParent(),
+ PFieldTy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(PFieldTy),
- GV->getName() + ".f" + utostr(FieldNo), GV,
+ GV->getName() + ".f" + Twine(FieldNo), GV,
GV->isThreadLocal());
FieldGlobals.push_back(NGV);
MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
- MI->getName() + ".f" + utostr(FieldNo),MI);
+ MI->getName() + ".f" + Twine(FieldNo), MI);
FieldMallocs.push_back(NMI);
new StoreInst(NMI, NGV, MI);
}
@@ -1290,9 +1448,9 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
// }
Value *RunningOr = 0;
for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
- Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
- Constant::getNullValue(FieldMallocs[i]->getType()),
- "isnull", MI);
+ Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
+ Constant::getNullValue(FieldMallocs[i]->getType()),
+ "isnull");
if (!RunningOr)
RunningOr = Cond; // First seteq
else
@@ -1305,7 +1463,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
// Create the block to check the first condition. Put all these blocks at the
// end of the function as they are unlikely to be executed.
- BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
+ BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
OrigBB->getParent());
// Remove the uncond branch from OrigBB to ContBB, turning it into a cond
@@ -1317,11 +1475,13 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
// pointer, because some may be null while others are not.
for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
- Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
+ Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
Constant::getNullValue(GVVal->getType()),
- "tmp", NullPtrBlock);
- BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
- BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
+ "tmp");
+ BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
+ OrigBB->getParent());
+ BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
+ OrigBB->getParent());
BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
// Fill in FreeBlock.
@@ -1353,7 +1513,8 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
Instruction *User = cast<Instruction>(*UI++);
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
+ RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
+ Context);
continue;
}
@@ -1384,7 +1545,192 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *InVal = PN->getIncomingValue(i);
InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
- PHIsToRewrite);
+ PHIsToRewrite, Context);
+ FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
+ }
+ }
+
+ // Drop all inter-phi links and any loads that made it this far.
+ for (DenseMap<Value*, std::vector<Value*> >::iterator
+ I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
+ I != E; ++I) {
+ if (PHINode *PN = dyn_cast<PHINode>(I->first))
+ PN->dropAllReferences();
+ else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
+ LI->dropAllReferences();
+ }
+
+ // Delete all the phis and loads now that inter-references are dead.
+ for (DenseMap<Value*, std::vector<Value*> >::iterator
+ I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
+ I != E; ++I) {
+ if (PHINode *PN = dyn_cast<PHINode>(I->first))
+ PN->eraseFromParent();
+ else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
+ LI->eraseFromParent();
+ }
+
+ // The old global is now dead, remove it.
+ GV->eraseFromParent();
+
+ ++NumHeapSRA;
+ return cast<GlobalVariable>(FieldGlobals[0]);
+}
+
+/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
+/// it up into multiple allocations of arrays of the fields.
+static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV,
+ CallInst *CI, BitCastInst* BCI,
+ LLVMContext &Context,
+ TargetData *TD){
+ DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC CALL = " << *CI
+ << " BITCAST = " << *BCI << '\n');
+ const Type* MAT = getMallocAllocatedType(CI);
+ const StructType *STy = cast<StructType>(MAT);
+
+ // There is guaranteed to be at least one use of the malloc (storing
+ // it into GV). If there are other uses, change them to be uses of
+ // the global to simplify later code. This also deletes the store
+ // into GV.
+ ReplaceUsesOfMallocWithGlobal(BCI, GV);
+
+ // Okay, at this point, there are no users of the malloc. Insert N
+ // new mallocs at the same place as CI, and N globals.
+ std::vector<Value*> FieldGlobals;
+ std::vector<Value*> FieldMallocs;
+
+ for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
+ const Type *FieldTy = STy->getElementType(FieldNo);
+ const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
+
+ GlobalVariable *NGV =
+ new GlobalVariable(*GV->getParent(),
+ PFieldTy, false, GlobalValue::InternalLinkage,
+ Constant::getNullValue(PFieldTy),
+ GV->getName() + ".f" + Twine(FieldNo), GV,
+ GV->isThreadLocal());
+ FieldGlobals.push_back(NGV);
+
+ Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context), FieldTy,
+ getMallocArraySize(CI, Context, TD),
+ BCI->getName() + ".f" + Twine(FieldNo));
+ FieldMallocs.push_back(NMI);
+ new StoreInst(NMI, NGV, BCI);
+ }
+
+ // The tricky aspect of this transformation is handling the case when malloc
+ // fails. In the original code, malloc failing would set the result pointer
+ // of malloc to null. In this case, some mallocs could succeed and others
+ // could fail. As such, we emit code that looks like this:
+ // F0 = malloc(field0)
+ // F1 = malloc(field1)
+ // F2 = malloc(field2)
+ // if (F0 == 0 || F1 == 0 || F2 == 0) {
+ // if (F0) { free(F0); F0 = 0; }
+ // if (F1) { free(F1); F1 = 0; }
+ // if (F2) { free(F2); F2 = 0; }
+ // }
+ Value *RunningOr = 0;
+ for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
+ Value *Cond = new ICmpInst(BCI, ICmpInst::ICMP_EQ, FieldMallocs[i],
+ Constant::getNullValue(FieldMallocs[i]->getType()),
+ "isnull");
+ if (!RunningOr)
+ RunningOr = Cond; // First seteq
+ else
+ RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", BCI);
+ }
+
+ // Split the basic block at the old malloc.
+ BasicBlock *OrigBB = BCI->getParent();
+ BasicBlock *ContBB = OrigBB->splitBasicBlock(BCI, "malloc_cont");
+
+ // Create the block to check the first condition. Put all these blocks at the
+ // end of the function as they are unlikely to be executed.
+ BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
+ OrigBB->getParent());
+
+ // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
+ // branch on RunningOr.
+ OrigBB->getTerminator()->eraseFromParent();
+ BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
+
+ // Within the NullPtrBlock, we need to emit a comparison and branch for each
+ // pointer, because some may be null while others are not.
+ for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
+ Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
+ Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
+ Constant::getNullValue(GVVal->getType()),
+ "tmp");
+ BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
+ OrigBB->getParent());
+ BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
+ OrigBB->getParent());
+ BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
+
+ // Fill in FreeBlock.
+ new FreeInst(GVVal, FreeBlock);
+ new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
+ FreeBlock);
+ BranchInst::Create(NextBlock, FreeBlock);
+
+ NullPtrBlock = NextBlock;
+ }
+
+ BranchInst::Create(ContBB, NullPtrBlock);
+
+ // CI and BCI are no longer needed, remove them.
+ BCI->eraseFromParent();
+ CI->eraseFromParent();
+
+ /// InsertedScalarizedLoads - As we process loads, if we can't immediately
+ /// update all uses of the load, keep track of what scalarized loads are
+ /// inserted for a given load.
+ DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
+ InsertedScalarizedValues[GV] = FieldGlobals;
+
+ std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
+
+ // Okay, the malloc site is completely handled. All of the uses of GV are now
+ // loads, and all uses of those loads are simple. Rewrite them to use loads
+ // of the per-field globals instead.
+ for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
+ Instruction *User = cast<Instruction>(*UI++);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
+ RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
+ Context);
+ continue;
+ }
+
+ // Must be a store of null.
+ StoreInst *SI = cast<StoreInst>(User);
+ assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
+ "Unexpected heap-sra user!");
+
+ // Insert a store of null into each global.
+ for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
+ const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
+ Constant *Null = Constant::getNullValue(PT->getElementType());
+ new StoreInst(Null, FieldGlobals[i], SI);
+ }
+ // Erase the original store.
+ SI->eraseFromParent();
+ }
+
+ // While we have PHIs that are interesting to rewrite, do it.
+ while (!PHIsToRewrite.empty()) {
+ PHINode *PN = PHIsToRewrite.back().first;
+ unsigned FieldNo = PHIsToRewrite.back().second;
+ PHIsToRewrite.pop_back();
+ PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
+ assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
+
+ // Add all the incoming values. This can materialize more phis.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
+ PHIsToRewrite, Context);
FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
}
}
@@ -1422,7 +1768,8 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
MallocInst *MI,
Module::global_iterator &GVI,
- TargetData &TD) {
+ TargetData *TD,
+ LLVMContext &Context) {
// If this is a malloc of an abstract type, don't touch it.
if (!MI->getAllocatedType()->isSized())
return false;
@@ -1456,9 +1803,10 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// Restrict this transformation to only working on small allocations
// (2048 bytes currently), as we don't want to introduce a 16M global or
// something.
- if (NElements->getZExtValue()*
- TD.getTypeAllocSize(MI->getAllocatedType()) < 2048) {
- GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
+ if (TD &&
+ NElements->getZExtValue()*
+ TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) {
+ GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context);
return true;
}
}
@@ -1485,7 +1833,8 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
MallocInst *NewMI =
new MallocInst(AllocSTy,
- ConstantInt::get(Type::Int32Ty, AT->getNumElements()),
+ ConstantInt::get(Type::getInt32Ty(Context),
+ AT->getNumElements()),
"", MI);
NewMI->takeName(MI);
Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
@@ -1494,7 +1843,100 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
MI = NewMI;
}
- GVI = PerformHeapAllocSRoA(GV, MI);
+ GVI = PerformHeapAllocSRoA(GV, MI, Context);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
+/// pointer global variable with a single value stored it that is a malloc or
+/// cast of malloc.
+static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
+ CallInst *CI,
+ BitCastInst *BCI,
+ Module::global_iterator &GVI,
+ TargetData *TD,
+ LLVMContext &Context) {
+ // If we can't figure out the type being malloced, then we can't optimize.
+ const Type *AllocTy = getMallocAllocatedType(CI);
+ assert(AllocTy);
+
+ // If this is a malloc of an abstract type, don't touch it.
+ if (!AllocTy->isSized())
+ return false;
+
+ // We can't optimize this global unless all uses of it are *known* to be
+ // of the malloc value, not of the null initializer value (consider a use
+ // that compares the global's value against zero to see if the malloc has
+ // been reached). To do this, we check to see if all uses of the global
+ // would trap if the global were null: this proves that they must all
+ // happen after the malloc.
+ if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
+ return false;
+
+ // We can't optimize this if the malloc itself is used in a complex way,
+ // for example, being stored into multiple globals. This allows the
+ // malloc to be stored into the specified global, loaded setcc'd, and
+ // GEP'd. These are all things we could transform to using the global
+ // for.
+ {
+ SmallPtrSet<PHINode*, 8> PHIs;
+ if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
+ return false;
+ }
+
+ // If we have a global that is only initialized with a fixed size malloc,
+ // transform the program to use global memory instead of malloc'd memory.
+ // This eliminates dynamic allocation, avoids an indirection accessing the
+ // data, and exposes the resultant global to further GlobalOpt.
+ if (ConstantInt *NElements =
+ dyn_cast<ConstantInt>(getMallocArraySize(CI, Context, TD))) {
+ // Restrict this transformation to only working on small allocations
+ // (2048 bytes currently), as we don't want to introduce a 16M global or
+ // something.
+ if (TD &&
+ NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
+ GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, Context, TD);
+ return true;
+ }
+ }
+
+ // If the allocation is an array of structures, consider transforming this
+ // into multiple malloc'd arrays, one for each field. This is basically
+ // SRoA for malloc'd memory.
+
+ // If this is an allocation of a fixed size array of structs, analyze as a
+ // variable size array. malloc [100 x struct],1 -> malloc struct, 100
+ if (!isArrayMalloc(CI, Context, TD))
+ if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
+ AllocTy = AT->getElementType();
+
+ if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
+ // This the structure has an unreasonable number of fields, leave it
+ // alone.
+ if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
+ AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, BCI)) {
+
+ // If this is a fixed size array, transform the Malloc to be an alloc of
+ // structs. malloc [100 x struct],1 -> malloc struct, 100
+ if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
+ Value* NumElements = ConstantInt::get(Type::getInt32Ty(Context),
+ AT->getNumElements());
+ Value* NewMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
+ AllocSTy, NumElements,
+ BCI->getName());
+ Value *Cast = new BitCastInst(NewMI, getMallocType(CI), "tmp", CI);
+ BCI->replaceAllUsesWith(Cast);
+ BCI->eraseFromParent();
+ CI->eraseFromParent();
+ BCI = cast<BitCastInst>(NewMI);
+ CI = extractMallocCallFromBitCast(NewMI);
+ }
+
+ GVI = PerformHeapAllocSRoA(GV, CI, BCI, Context, TD);
return true;
}
}
@@ -1506,7 +1948,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// that only one value (besides its initializer) is ever stored to the global.
static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
Module::global_iterator &GVI,
- TargetData &TD) {
+ TargetData *TD, LLVMContext &Context) {
// Ignore no-op GEPs and bitcasts.
StoredOnceVal = StoredOnceVal->stripPointerCasts();
@@ -1518,14 +1960,25 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
GV->getInitializer()->isNullValue()) {
if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
if (GV->getInitializer()->getType() != SOVC->getType())
- SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
+ SOVC =
+ ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
// Optimize away any trapping uses of the loaded value.
- if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
+ if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
return true;
} else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
- if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD))
+ if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context))
return true;
+ } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
+ if (getMallocAllocatedType(CI)) {
+ BitCastInst* BCI = NULL;
+ for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+ UI != E; )
+ BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++));
+ if (BCI &&
+ TryToOptimizeStoreOfMallocToGlobal(GV, CI, BCI, GVI, TD, Context))
+ return true;
+ }
}
}
@@ -1536,7 +1989,8 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
/// two values ever stored into GV are its initializer and OtherVal. See if we
/// can shrink the global into a boolean and select between the two values
/// whenever it is used. This exposes the values to other scalar optimizations.
-static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
+static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
+ LLVMContext &Context) {
const Type *GVElType = GV->getType()->getElementType();
// If GVElType is already i1, it is already shrunk. If the type of the GV is
@@ -1544,7 +1998,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
// between them is very expensive and unlikely to lead to later
// simplification. In these cases, we typically end up with "cond ? v1 : v2"
// where v1 and v2 both require constant pool loads, a big loss.
- if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
+ if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
return false;
@@ -1554,18 +2008,19 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
return false;
- DOUT << " *** SHRINKING TO BOOL: " << *GV;
+ DEBUG(errs() << " *** SHRINKING TO BOOL: " << *GV);
// Create the new global, initializing it to false.
- GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
- GlobalValue::InternalLinkage, ConstantInt::getFalse(),
+ GlobalVariable *NewGV = new GlobalVariable(Context,
+ Type::getInt1Ty(Context), false,
+ GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
GV->getName()+".b",
- (Module *)NULL,
GV->isThreadLocal());
GV->getParent()->getGlobalList().insert(GV, NewGV);
Constant *InitVal = GV->getInitializer();
- assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
+ assert(InitVal->getType() != Type::getInt1Ty(Context) &&
+ "No reason to shrink to bool!");
// If initialized to zero and storing one into the global, we can use a cast
// instead of a select to synthesize the desired value.
@@ -1581,7 +2036,7 @@ static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
// Only do this if we weren't storing a loaded value.
Value *StoreVal;
if (StoringOther || SI->getOperand(0) == InitVal)
- StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
+ StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
else {
// Otherwise, we are storing a previously loaded copy. To do this,
// change the copy from copying the original value to just copying the
@@ -1632,7 +2087,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->removeDeadConstantUsers();
if (GV->use_empty()) {
- DOUT << "GLOBAL DEAD: " << *GV;
+ DEBUG(errs() << "GLOBAL DEAD: " << *GV);
GV->eraseFromParent();
++NumDeleted;
return true;
@@ -1675,7 +2130,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GS.AccessingFunction->getName() == "main" &&
GS.AccessingFunction->hasExternalLinkage() &&
GV->getType()->getAddressSpace() == 0) {
- DOUT << "LOCALIZING GLOBAL: " << *GV;
+ DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
const Type* ElemTy = GV->getType()->getElementType();
// FIXME: Pass Global's alignment when globals have alignment
@@ -1692,11 +2147,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// If the global is never loaded (but may be stored to), it is dead.
// Delete it now.
if (!GS.isLoaded) {
- DOUT << "GLOBAL NEVER LOADED: " << *GV;
+ DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
// Delete any stores we can find to the global. We may not be able to
// make it completely dead though.
- bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
+ bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
+ GV->getContext());
// If the global is dead now, delete it.
if (GV->use_empty()) {
@@ -1707,16 +2163,16 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
return Changed;
} else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
- DOUT << "MARKING CONSTANT: " << *GV;
+ DEBUG(errs() << "MARKING CONSTANT: " << *GV);
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer());
+ CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
// If the global is dead now, just nuke it.
if (GV->use_empty()) {
- DOUT << " *** Marking constant allowed us to simplify "
- << "all users and delete global!\n";
+ DEBUG(errs() << " *** Marking constant allowed us to simplify "
+ << "all users and delete global!\n");
GV->eraseFromParent();
++NumDeleted;
}
@@ -1724,11 +2180,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
++NumMarked;
return true;
} else if (!GV->getInitializer()->getType()->isSingleValueType()) {
- if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
- getAnalysis<TargetData>())) {
- GVI = FirstNewGV; // Don't skip the newly produced globals!
- return true;
- }
+ if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
+ if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
+ GV->getContext())) {
+ GVI = FirstNewGV; // Don't skip the newly produced globals!
+ return true;
+ }
} else if (GS.StoredType == GlobalStatus::isStoredOnce) {
// If the initial value for the global was an undef value, and if only
// one other value was stored into it, we can just change the
@@ -1740,11 +2197,12 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->setInitializer(SOVConstant);
// Clean up any obviously simplifiable users now.
- CleanupConstantGlobalUsers(GV, GV->getInitializer());
+ CleanupConstantGlobalUsers(GV, GV->getInitializer(),
+ GV->getContext());
if (GV->use_empty()) {
- DOUT << " *** Substituting initializer allowed us to "
- << "simplify all users and delete global!\n";
+ DEBUG(errs() << " *** Substituting initializer allowed us to "
+ << "simplify all users and delete global!\n");
GV->eraseFromParent();
++NumDeleted;
} else {
@@ -1757,13 +2215,14 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// Try to optimize globals based on the knowledge that only one value
// (besides its initializer) is ever stored to the global.
if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
- getAnalysis<TargetData>()))
+ getAnalysisIfAvailable<TargetData>(),
+ GV->getContext()))
return true;
// Otherwise, if the global was not a boolean, we can shrink it to be a
// boolean.
if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
- if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
+ if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
++NumShrunkToBool;
return true;
}
@@ -1866,16 +2325,16 @@ GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
if (!ATy) return 0;
const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
if (!STy || STy->getNumElements() != 2 ||
- STy->getElementType(0) != Type::Int32Ty) return 0;
+ STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
if (!PFTy) return 0;
const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
- if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
- FTy->getNumParams() != 0)
+ if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
+ FTy->isVarArg() || FTy->getNumParams() != 0)
return 0;
// Verify that the initializer is simple enough for us to handle.
- if (!I->hasInitializer()) return 0;
+ if (!I->hasDefinitiveInitializer()) return 0;
ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
if (!CA) return 0;
for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
@@ -1916,10 +2375,11 @@ static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
/// specified array, returning the new global to use.
static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
- const std::vector<Function*> &Ctors) {
+ const std::vector<Function*> &Ctors,
+ LLVMContext &Context) {
// If we made a change, reassemble the initializer list.
std::vector<Constant*> CSVals;
- CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
+ CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
CSVals.push_back(0);
// Create the new init list.
@@ -1928,19 +2388,19 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
if (Ctors[i]) {
CSVals[1] = Ctors[i];
} else {
- const Type *FTy = FunctionType::get(Type::VoidTy, false);
+ const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
const PointerType *PFTy = PointerType::getUnqual(FTy);
CSVals[1] = Constant::getNullValue(PFTy);
- CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
+ CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
}
- CAList.push_back(ConstantStruct::get(CSVals));
+ CAList.push_back(ConstantStruct::get(Context, CSVals, false));
}
// Create the array initializer.
const Type *StructTy =
- cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
- Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
- CAList);
+ cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
+ Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
+ CAList.size()), CAList);
// If we didn't change the number of elements, don't create a new GV.
if (CA->getType() == GCL->getInitializer()->getType()) {
@@ -1949,9 +2409,9 @@ static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
}
// Create the new global and insert it next to the existing list.
- GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
+ GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
+ GCL->isConstant(),
GCL->getLinkage(), CA, "",
- (Module *)NULL,
GCL->isThreadLocal());
GCL->getParent()->getGlobalList().insert(GCL, NGV);
NGV->takeName(GCL);
@@ -1984,21 +2444,38 @@ static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
/// enough for us to understand. In particular, if it is a cast of something,
/// we punt. We basically just support direct accesses to globals and GEP's of
/// globals. This should be kept up to date with CommitValueTo.
-static bool isSimpleEnoughPointerToCommit(Constant *C) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
- if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
- return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
- return !GV->isDeclaration(); // reject external globals.
- }
+static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
+ // Conservatively, avoid aggregate types. This is because we don't
+ // want to worry about them partially overlapping other stores.
+ if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
+ return false;
+
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+ // Do not allow weak/linkonce/dllimport/dllexport linkage or
+ // external globals.
+ return GV->hasDefinitiveInitializer();
+
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
// Handle a constantexpr gep.
if (CE->getOpcode() == Instruction::GetElementPtr &&
- isa<GlobalVariable>(CE->getOperand(0))) {
+ isa<GlobalVariable>(CE->getOperand(0)) &&
+ cast<GEPOperator>(CE)->isInBounds()) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
- return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
- return GV->hasInitializer() &&
- ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+ // Do not allow weak/linkonce/dllimport/dllexport linkage or
+ // external globals.
+ if (!GV->hasDefinitiveInitializer())
+ return false;
+
+ // The first index must be zero.
+ ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
+ if (!CI || !CI->isZero()) return false;
+
+ // The remaining indices must be compile-time known integers within the
+ // notional bounds of the corresponding static array types.
+ if (!CE->isGEPWithNoNotionalOverIndexing())
+ return false;
+
+ return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
}
return false;
}
@@ -2007,7 +2484,8 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
/// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
- ConstantExpr *Addr, unsigned OpNo) {
+ ConstantExpr *Addr, unsigned OpNo,
+ LLVMContext &Context) {
// Base case of the recursion.
if (OpNo == Addr->getNumOperands()) {
assert(Val->getType() == Init->getType() && "Type mismatch!");
@@ -2028,7 +2506,7 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Elts.push_back(UndefValue::get(STy->getElementType(i)));
} else {
- assert(0 && "This code is out of sync with "
+ llvm_unreachable("This code is out of sync with "
" ConstantFoldLoadThroughGEPConstantExpr");
}
@@ -2036,10 +2514,10 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
unsigned Idx = CU->getZExtValue();
assert(Idx < STy->getNumElements() && "Struct index out of range!");
- Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
+ Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
// Return the modified struct.
- return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
+ return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
} else {
ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
const ArrayType *ATy = cast<ArrayType>(Init->getType());
@@ -2056,20 +2534,21 @@ static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
Constant *Elt = UndefValue::get(ATy->getElementType());
Elts.assign(ATy->getNumElements(), Elt);
} else {
- assert(0 && "This code is out of sync with "
+ llvm_unreachable("This code is out of sync with "
" ConstantFoldLoadThroughGEPConstantExpr");
}
assert(CI->getZExtValue() < ATy->getNumElements());
Elts[CI->getZExtValue()] =
- EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
+ EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
return ConstantArray::get(ATy, Elts);
}
}
/// CommitValueTo - We have decided that Addr (which satisfies the predicate
/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
-static void CommitValueTo(Constant *Val, Constant *Addr) {
+static void CommitValueTo(Constant *Val, Constant *Addr,
+ LLVMContext &Context) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
assert(GV->hasInitializer());
GV->setInitializer(Val);
@@ -2080,7 +2559,7 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
Constant *Init = GV->getInitializer();
- Init = EvaluateStoreInto(Init, Val, CE, 2);
+ Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
GV->setInitializer(Init);
}
@@ -2088,7 +2567,8 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
/// P after the stores reflected by 'memory' have been performed. If we can't
/// decide, return null.
static Constant *ComputeLoadResult(Constant *P,
- const DenseMap<Constant*, Constant*> &Memory) {
+ const DenseMap<Constant*, Constant*> &Memory,
+ LLVMContext &Context) {
// If this memory location has been recently stored, use the stored value: it
// is the most up-to-date.
DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
@@ -2096,7 +2576,7 @@ static Constant *ComputeLoadResult(Constant *P,
// Access it.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
- if (GV->hasInitializer())
+ if (GV->hasDefinitiveInitializer())
return GV->getInitializer();
return 0;
}
@@ -2106,7 +2586,7 @@ static Constant *ComputeLoadResult(Constant *P,
if (CE->getOpcode() == Instruction::GetElementPtr &&
isa<GlobalVariable>(CE->getOperand(0))) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- if (GV->hasInitializer())
+ if (GV->hasDefinitiveInitializer())
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
}
@@ -2117,7 +2597,7 @@ static Constant *ComputeLoadResult(Constant *P,
/// successful, false if we can't evaluate it. ActualArgs contains the formal
/// arguments for the function.
static bool EvaluateFunction(Function *F, Constant *&RetVal,
- const std::vector<Constant*> &ActualArgs,
+ const SmallVectorImpl<Constant*> &ActualArgs,
std::vector<Function*> &CallStack,
DenseMap<Constant*, Constant*> &MutatedMemory,
std::vector<GlobalVariable*> &AllocaTmps) {
@@ -2126,6 +2606,8 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
return false;
+ LLVMContext &Context = F->getContext();
+
CallStack.push_back(F);
/// Values - As we compute SSA register values, we store their contents here.
@@ -2152,7 +2634,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
if (SI->isVolatile()) return false; // no volatile accesses.
Constant *Ptr = getVal(Values, SI->getOperand(1));
- if (!isSimpleEnoughPointerToCommit(Ptr))
+ if (!isSimpleEnoughPointerToCommit(Ptr, Context))
// If this is too complex for us to commit, reject it.
return false;
Constant *Val = getVal(Values, SI->getOperand(0));
@@ -2170,7 +2652,8 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
getVal(Values, CI->getOperand(0)),
CI->getType());
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
- InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
+ InstResult =
+ ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
getVal(Values, SI->getOperand(1)),
getVal(Values, SI->getOperand(2)));
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
@@ -2179,16 +2662,18 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
i != e; ++i)
GEPOps.push_back(getVal(Values, *i));
- InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
+ InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
+ ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
+ ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
if (LI->isVolatile()) return false; // no volatile accesses.
InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
- MutatedMemory);
+ MutatedMemory, Context);
if (InstResult == 0) return false; // Could not evaluate load.
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
const Type *Ty = AI->getType()->getElementType();
- AllocaTmps.push_back(new GlobalVariable(Ty, false,
+ AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
GlobalValue::InternalLinkage,
UndefValue::get(Ty),
AI->getName()));
@@ -2208,14 +2693,14 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
if (!Callee) return false; // Cannot resolve.
- std::vector<Constant*> Formals;
+ SmallVector<Constant*, 8> Formals;
for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
i != e; ++i)
Formals.push_back(getVal(Values, *i));
-
+
if (Callee->isDeclaration()) {
// If this is a function we can constant fold, do it.
- if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
+ if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
Formals.size())) {
InstResult = C;
} else {
@@ -2310,16 +2795,17 @@ static bool EvaluateStaticConstructor(Function *F) {
// Call the function.
Constant *RetValDummy;
- bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
- CallStack, MutatedMemory, AllocaTmps);
+ bool EvalSuccess = EvaluateFunction(F, RetValDummy,
+ SmallVector<Constant*, 0>(), CallStack,
+ MutatedMemory, AllocaTmps);
if (EvalSuccess) {
// We succeeded at evaluation: commit the result.
- DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
- << F->getName() << "' to " << MutatedMemory.size()
- << " stores.\n";
+ DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
+ << F->getName() << "' to " << MutatedMemory.size()
+ << " stores.\n");
for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
E = MutatedMemory.end(); I != E; ++I)
- CommitValueTo(I->second, I->first);
+ CommitValueTo(I->second, I->first, F->getContext());
}
// At this point, we are done interpreting. If we created any 'alloca'
@@ -2376,7 +2862,7 @@ bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
if (!MadeChange) return false;
- GCL = InstallGlobalCtors(GCL, Ctors);
+ GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
return true;
}
diff --git a/lib/Transforms/IPO/IPConstantPropagation.cpp b/lib/Transforms/IPO/IPConstantPropagation.cpp
index e4a9dea..7b0e9c7 100644
--- a/lib/Transforms/IPO/IPConstantPropagation.cpp
+++ b/lib/Transforms/IPO/IPConstantPropagation.cpp
@@ -19,6 +19,7 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
@@ -129,7 +130,8 @@ bool IPCP::PropagateConstantsIntoArguments(Function &F) {
Function::arg_iterator AI = F.arg_begin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
// Do we have a constant argument?
- if (ArgumentConstants[i].second || AI->use_empty())
+ if (ArgumentConstants[i].second || AI->use_empty() ||
+ (AI->hasByValAttr() && !F.onlyReadsMemory()))
continue;
Value *V = ArgumentConstants[i].first;
@@ -151,13 +153,15 @@ bool IPCP::PropagateConstantsIntoArguments(Function &F) {
// callers will be updated to use the value they pass in directly instead of
// using the return value.
bool IPCP::PropagateConstantReturn(Function &F) {
- if (F.getReturnType() == Type::VoidTy)
+ if (F.getReturnType() == Type::getVoidTy(F.getContext()))
return false; // No return value.
// If this function could be overridden later in the link stage, we can't
// propagate information about its results into callers.
if (F.mayBeOverridden())
return false;
+
+ LLVMContext &Context = F.getContext();
// Check to see if this function returns a constant.
SmallVector<Value *,4> RetVals;
@@ -182,7 +186,7 @@ bool IPCP::PropagateConstantReturn(Function &F) {
if (!STy)
V = RI->getOperand(i);
else
- V = FindInsertedValue(RI->getOperand(0), i);
+ V = FindInsertedValue(RI->getOperand(0), i, Context);
if (V) {
// Ignore undefs, we can change them into anything
diff --git a/lib/Transforms/IPO/IndMemRemoval.cpp b/lib/Transforms/IPO/IndMemRemoval.cpp
index b55dea2..e7884ec 100644
--- a/lib/Transforms/IPO/IndMemRemoval.cpp
+++ b/lib/Transforms/IPO/IndMemRemoval.cpp
@@ -1,4 +1,4 @@
-//===-- IndMemRemoval.cpp - Remove indirect allocations and frees ----------===//
+//===-- IndMemRemoval.cpp - Remove indirect allocations and frees ---------===//
//
// The LLVM Compiler Infrastructure
//
@@ -10,8 +10,8 @@
// This pass finds places where memory allocation functions may escape into
// indirect land. Some transforms are much easier (aka possible) only if free
// or malloc are not called indirectly.
-// Thus find places where the address of memory functions are taken and construct
-// bounce functions with direct calls of those functions.
+// Thus find places where the address of memory functions are taken and
+// construct bounce functions with direct calls of those functions.
//
//===----------------------------------------------------------------------===//
@@ -55,8 +55,8 @@ bool IndMemRemPass::runOnModule(Module &M) {
Function* FN = Function::Create(F->getFunctionType(),
GlobalValue::LinkOnceAnyLinkage,
"free_llvm_bounce", &M);
- BasicBlock* bb = BasicBlock::Create("entry",FN);
- Instruction* R = ReturnInst::Create(bb);
+ BasicBlock* bb = BasicBlock::Create(M.getContext(), "entry",FN);
+ Instruction* R = ReturnInst::Create(M.getContext(), bb);
new FreeInst(FN->arg_begin(), R);
++NumBounce;
NumBounceSites += F->getNumUses();
@@ -70,11 +70,12 @@ bool IndMemRemPass::runOnModule(Module &M) {
GlobalValue::LinkOnceAnyLinkage,
"malloc_llvm_bounce", &M);
FN->setDoesNotAlias(0);
- BasicBlock* bb = BasicBlock::Create("entry",FN);
+ BasicBlock* bb = BasicBlock::Create(M.getContext(), "entry",FN);
Instruction* c = CastInst::CreateIntegerCast(
- FN->arg_begin(), Type::Int32Ty, false, "c", bb);
- Instruction* a = new MallocInst(Type::Int8Ty, c, "m", bb);
- ReturnInst::Create(a, bb);
+ FN->arg_begin(), Type::getInt32Ty(M.getContext()), false, "c", bb);
+ Instruction* a = new MallocInst(Type::getInt8Ty(M.getContext()),
+ c, "m", bb);
+ ReturnInst::Create(M.getContext(), a, bb);
++NumBounce;
NumBounceSites += F->getNumUses();
F->replaceAllUsesWith(FN);
diff --git a/lib/Transforms/IPO/InlineAlways.cpp b/lib/Transforms/IPO/InlineAlways.cpp
index 5f9ea54..2344403 100644
--- a/lib/Transforms/IPO/InlineAlways.cpp
+++ b/lib/Transforms/IPO/InlineAlways.cpp
@@ -19,11 +19,11 @@
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineCost.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Transforms/Utils/InlineCost.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
diff --git a/lib/Transforms/IPO/InlineSimple.cpp b/lib/Transforms/IPO/InlineSimple.cpp
index e107a00..b1c643b 100644
--- a/lib/Transforms/IPO/InlineSimple.cpp
+++ b/lib/Transforms/IPO/InlineSimple.cpp
@@ -18,11 +18,11 @@
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineCost.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
-#include "llvm/Transforms/Utils/InlineCost.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
@@ -78,7 +78,7 @@ bool SimpleInliner::doInitialization(CallGraph &CG) {
return false;
// Don't crash on invalid code
- if (!GV->hasInitializer())
+ if (!GV->hasDefinitiveInitializer())
return false;
const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
diff --git a/lib/Transforms/IPO/Inliner.cpp b/lib/Transforms/IPO/Inliner.cpp
index b382837..ea47366 100644
--- a/lib/Transforms/IPO/Inliner.cpp
+++ b/lib/Transforms/IPO/Inliner.cpp
@@ -18,21 +18,25 @@
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineCost.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/IPO/InlinerPass.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
+STATISTIC(NumMergedAllocas, "Number of allocas merged together");
static cl::opt<int>
-InlineLimit("inline-threshold", cl::Hidden, cl::init(200),
+InlineLimit("inline-threshold", cl::Hidden, cl::init(200), cl::ZeroOrMore,
cl::desc("Control the amount of inlining to perform (default = 200)"));
Inliner::Inliner(void *ID)
@@ -45,19 +49,32 @@ Inliner::Inliner(void *ID, int Threshold)
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
- Info.addRequired<TargetData>();
CallGraphSCCPass::getAnalysisUsage(Info);
}
-// InlineCallIfPossible - If it is possible to inline the specified call site,
-// do so and update the CallGraph for this operation.
-bool Inliner::InlineCallIfPossible(CallSite CS, CallGraph &CG,
- const SmallPtrSet<Function*, 8> &SCCFunctions,
- const TargetData &TD) {
+
+typedef DenseMap<const ArrayType*, std::vector<AllocaInst*> >
+InlinedArrayAllocasTy;
+
+/// InlineCallIfPossible - If it is possible to inline the specified call site,
+/// do so and update the CallGraph for this operation.
+///
+/// This function also does some basic book-keeping to update the IR. The
+/// InlinedArrayAllocas map keeps track of any allocas that are already
+/// available from other functions inlined into the caller. If we are able to
+/// inline this call site we attempt to reuse already available allocas or add
+/// any new allocas to the set if not possible.
+static bool InlineCallIfPossible(CallSite CS, CallGraph &CG,
+ const TargetData *TD,
+ InlinedArrayAllocasTy &InlinedArrayAllocas) {
Function *Callee = CS.getCalledFunction();
Function *Caller = CS.getCaller();
- if (!InlineFunction(CS, &CG, &TD)) return false;
+ // Try to inline the function. Get the list of static allocas that were
+ // inlined.
+ SmallVector<AllocaInst*, 16> StaticAllocas;
+ if (!InlineFunction(CS, &CG, TD, &StaticAllocas))
+ return false;
// If the inlined function had a higher stack protection level than the
// calling function, then bump up the caller's stack protection level.
@@ -67,23 +84,89 @@ bool Inliner::InlineCallIfPossible(CallSite CS, CallGraph &CG,
!Caller->hasFnAttr(Attribute::StackProtectReq))
Caller->addFnAttr(Attribute::StackProtect);
- // If we inlined the last possible call site to the function, delete the
- // function body now.
- if (Callee->use_empty() && (Callee->hasLocalLinkage() ||
- Callee->hasAvailableExternallyLinkage()) &&
- !SCCFunctions.count(Callee)) {
- DOUT << " -> Deleting dead function: " << Callee->getName() << "\n";
- CallGraphNode *CalleeNode = CG[Callee];
-
- // Remove any call graph edges from the callee to its callees.
- CalleeNode->removeAllCalledFunctions();
-
- resetCachedCostInfo(CalleeNode->getFunction());
+
+ // Look at all of the allocas that we inlined through this call site. If we
+ // have already inlined other allocas through other calls into this function,
+ // then we know that they have disjoint lifetimes and that we can merge them.
+ //
+ // There are many heuristics possible for merging these allocas, and the
+ // different options have different tradeoffs. One thing that we *really*
+ // don't want to hurt is SRoA: once inlining happens, often allocas are no
+ // longer address taken and so they can be promoted.
+ //
+ // Our "solution" for that is to only merge allocas whose outermost type is an
+ // array type. These are usually not promoted because someone is using a
+ // variable index into them. These are also often the most important ones to
+ // merge.
+ //
+ // A better solution would be to have real memory lifetime markers in the IR
+ // and not have the inliner do any merging of allocas at all. This would
+ // allow the backend to do proper stack slot coloring of all allocas that
+ // *actually make it to the backend*, which is really what we want.
+ //
+ // Because we don't have this information, we do this simple and useful hack.
+ //
+ SmallPtrSet<AllocaInst*, 16> UsedAllocas;
+
+ // Loop over all the allocas we have so far and see if they can be merged with
+ // a previously inlined alloca. If not, remember that we had it.
+ for (unsigned AllocaNo = 0, e = StaticAllocas.size();
+ AllocaNo != e; ++AllocaNo) {
+ AllocaInst *AI = StaticAllocas[AllocaNo];
+
+ // Don't bother trying to merge array allocations (they will usually be
+ // canonicalized to be an allocation *of* an array), or allocations whose
+ // type is not itself an array (because we're afraid of pessimizing SRoA).
+ const ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
+ if (ATy == 0 || AI->isArrayAllocation())
+ continue;
+
+ // Get the list of all available allocas for this array type.
+ std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
+
+ // Loop over the allocas in AllocasForType to see if we can reuse one. Note
+ // that we have to be careful not to reuse the same "available" alloca for
+ // multiple different allocas that we just inlined, we use the 'UsedAllocas'
+ // set to keep track of which "available" allocas are being used by this
+ // function. Also, AllocasForType can be empty of course!
+ bool MergedAwayAlloca = false;
+ for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
+ AllocaInst *AvailableAlloca = AllocasForType[i];
+
+ // The available alloca has to be in the right function, not in some other
+ // function in this SCC.
+ if (AvailableAlloca->getParent() != AI->getParent())
+ continue;
+
+ // If the inlined function already uses this alloca then we can't reuse
+ // it.
+ if (!UsedAllocas.insert(AvailableAlloca))
+ continue;
+
+ // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
+ // success!
+ DEBUG(errs() << " ***MERGED ALLOCA: " << *AI);
+
+ AI->replaceAllUsesWith(AvailableAlloca);
+ AI->eraseFromParent();
+ MergedAwayAlloca = true;
+ ++NumMergedAllocas;
+ break;
+ }
- // Removing the node for callee from the call graph and delete it.
- delete CG.removeFunctionFromModule(CalleeNode);
- ++NumDeleted;
+ // If we already nuked the alloca, we're done with it.
+ if (MergedAwayAlloca)
+ continue;
+
+ // If we were unable to merge away the alloca either because there are no
+ // allocas of the right type available or because we reused them all
+ // already, remember that this alloca came from an inlined function and mark
+ // it used so we don't reuse it for other allocas from this inline
+ // operation.
+ AllocasForType.push_back(AI);
+ UsedAllocas.insert(AI);
}
+
return true;
}
@@ -91,69 +174,145 @@ bool Inliner::InlineCallIfPossible(CallSite CS, CallGraph &CG,
/// at the given CallSite.
bool Inliner::shouldInline(CallSite CS) {
InlineCost IC = getInlineCost(CS);
- float FudgeFactor = getInlineFudgeFactor(CS);
if (IC.isAlways()) {
- DOUT << " Inlining: cost=always"
- << ", Call: " << *CS.getInstruction();
+ DEBUG(errs() << " Inlining: cost=always"
+ << ", Call: " << *CS.getInstruction() << "\n");
return true;
}
if (IC.isNever()) {
- DOUT << " NOT Inlining: cost=never"
- << ", Call: " << *CS.getInstruction();
+ DEBUG(errs() << " NOT Inlining: cost=never"
+ << ", Call: " << *CS.getInstruction() << "\n");
return false;
}
int Cost = IC.getValue();
int CurrentThreshold = InlineThreshold;
- Function *Fn = CS.getCaller();
- if (Fn && !Fn->isDeclaration()
- && Fn->hasFnAttr(Attribute::OptimizeForSize)
- && InlineThreshold != 50) {
+ Function *Caller = CS.getCaller();
+ if (Caller && !Caller->isDeclaration() &&
+ Caller->hasFnAttr(Attribute::OptimizeForSize) &&
+ InlineLimit.getNumOccurrences() == 0 &&
+ InlineThreshold != 50)
CurrentThreshold = 50;
- }
+ float FudgeFactor = getInlineFudgeFactor(CS);
if (Cost >= (int)(CurrentThreshold * FudgeFactor)) {
- DOUT << " NOT Inlining: cost=" << Cost
- << ", Call: " << *CS.getInstruction();
+ DEBUG(errs() << " NOT Inlining: cost=" << Cost
+ << ", Call: " << *CS.getInstruction() << "\n");
return false;
- } else {
- DOUT << " Inlining: cost=" << Cost
- << ", Call: " << *CS.getInstruction();
- return true;
}
+
+ // Try to detect the case where the current inlining candidate caller
+ // (call it B) is a static function and is an inlining candidate elsewhere,
+ // and the current candidate callee (call it C) is large enough that
+ // inlining it into B would make B too big to inline later. In these
+ // circumstances it may be best not to inline C into B, but to inline B
+ // into its callers.
+ if (Caller->hasLocalLinkage()) {
+ int TotalSecondaryCost = 0;
+ bool outerCallsFound = false;
+ bool allOuterCallsWillBeInlined = true;
+ bool someOuterCallWouldNotBeInlined = false;
+ for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
+ I != E; ++I) {
+ CallSite CS2 = CallSite::get(*I);
+
+ // If this isn't a call to Caller (it could be some other sort
+ // of reference) skip it.
+ if (CS2.getInstruction() == 0 || CS2.getCalledFunction() != Caller)
+ continue;
+
+ InlineCost IC2 = getInlineCost(CS2);
+ if (IC2.isNever())
+ allOuterCallsWillBeInlined = false;
+ if (IC2.isAlways() || IC2.isNever())
+ continue;
+
+ outerCallsFound = true;
+ int Cost2 = IC2.getValue();
+ int CurrentThreshold2 = InlineThreshold;
+ Function *Caller2 = CS2.getCaller();
+ if (Caller2 && !Caller2->isDeclaration() &&
+ Caller2->hasFnAttr(Attribute::OptimizeForSize) &&
+ InlineThreshold != 50)
+ CurrentThreshold2 = 50;
+
+ float FudgeFactor2 = getInlineFudgeFactor(CS2);
+
+ if (Cost2 >= (int)(CurrentThreshold2 * FudgeFactor2))
+ allOuterCallsWillBeInlined = false;
+
+ // See if we have this case. We subtract off the penalty
+ // for the call instruction, which we would be deleting.
+ if (Cost2 < (int)(CurrentThreshold2 * FudgeFactor2) &&
+ Cost2 + Cost - (InlineConstants::CallPenalty + 1) >=
+ (int)(CurrentThreshold2 * FudgeFactor2)) {
+ someOuterCallWouldNotBeInlined = true;
+ TotalSecondaryCost += Cost2;
+ }
+ }
+ // If all outer calls to Caller would get inlined, the cost for the last
+ // one is set very low by getInlineCost, in anticipation that Caller will
+ // be removed entirely. We did not account for this above unless there
+ // is only one caller of Caller.
+ if (allOuterCallsWillBeInlined && Caller->use_begin() != Caller->use_end())
+ TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
+
+ if (outerCallsFound && someOuterCallWouldNotBeInlined &&
+ TotalSecondaryCost < Cost) {
+ DEBUG(errs() << " NOT Inlining: " << *CS.getInstruction() <<
+ " Cost = " << Cost <<
+ ", outer Cost = " << TotalSecondaryCost << '\n');
+ return false;
+ }
+ }
+
+ DEBUG(errs() << " Inlining: cost=" << Cost
+ << ", Call: " << *CS.getInstruction() << '\n');
+ return true;
}
-bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) {
+bool Inliner::runOnSCC(std::vector<CallGraphNode*> &SCC) {
CallGraph &CG = getAnalysis<CallGraph>();
- TargetData &TD = getAnalysis<TargetData>();
+ const TargetData *TD = getAnalysisIfAvailable<TargetData>();
SmallPtrSet<Function*, 8> SCCFunctions;
- DOUT << "Inliner visiting SCC:";
+ DEBUG(errs() << "Inliner visiting SCC:");
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F) SCCFunctions.insert(F);
- DOUT << " " << (F ? F->getName() : "INDIRECTNODE");
+ DEBUG(errs() << " " << (F ? F->getName() : "INDIRECTNODE"));
}
// Scan through and identify all call sites ahead of time so that we only
// inline call sites in the original functions, not call sites that result
// from inlining other functions.
- std::vector<CallSite> CallSites;
+ SmallVector<CallSite, 16> CallSites;
- for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- if (Function *F = SCC[i]->getFunction())
- for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
- CallSite CS = CallSite::get(I);
- if (CS.getInstruction() && !isa<DbgInfoIntrinsic>(I) &&
- (!CS.getCalledFunction() ||
- !CS.getCalledFunction()->isDeclaration()))
- CallSites.push_back(CS);
- }
+ for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
+ Function *F = SCC[i]->getFunction();
+ if (!F) continue;
+
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ CallSite CS = CallSite::get(I);
+ // If this isn't a call, or it is a call to an intrinsic, it can
+ // never be inlined.
+ if (CS.getInstruction() == 0 || isa<IntrinsicInst>(I))
+ continue;
+
+ // If this is a direct call to an external function, we can never inline
+ // it. If it is an indirect call, inlining may resolve it to be a
+ // direct call, so we keep it.
+ if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
+ continue;
+
+ CallSites.push_back(CS);
+ }
+ }
- DOUT << ": " << CallSites.size() << " call sites.\n";
+ DEBUG(errs() << ": " << CallSites.size() << " call sites.\n");
// Now that we have all of the call sites, move the ones to functions in the
// current SCC to the end of the list.
@@ -163,6 +322,9 @@ bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) {
if (SCCFunctions.count(F))
std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
+
+ InlinedArrayAllocasTy InlinedArrayAllocas;
+
// Now that we have all of the call sites, loop over them and inline them if
// it looks profitable to do so.
bool Changed = false;
@@ -171,51 +333,68 @@ bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) {
LocalChange = false;
// Iterate over the outer loop because inlining functions can cause indirect
// calls to become direct calls.
- for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi)
- if (Function *Callee = CallSites[CSi].getCalledFunction()) {
- // Calls to external functions are never inlinable.
- if (Callee->isDeclaration()) {
- if (SCC.size() == 1) {
- std::swap(CallSites[CSi], CallSites.back());
- CallSites.pop_back();
- } else {
- // Keep the 'in SCC / not in SCC' boundary correct.
- CallSites.erase(CallSites.begin()+CSi);
- }
- --CSi;
- continue;
- }
-
- // If the policy determines that we should inline this function,
- // try to do so.
- CallSite CS = CallSites[CSi];
- if (shouldInline(CS)) {
- Function *Caller = CS.getCaller();
- // Attempt to inline the function...
- if (InlineCallIfPossible(CS, CG, SCCFunctions, TD)) {
- // Remove any cached cost info for this caller, as inlining the
- // callee has increased the size of the caller (which may be the
- // same as the callee).
- resetCachedCostInfo(Caller);
-
- // Remove this call site from the list. If possible, use
- // swap/pop_back for efficiency, but do not use it if doing so would
- // move a call site to a function in this SCC before the
- // 'FirstCallInSCC' barrier.
- if (SCC.size() == 1) {
- std::swap(CallSites[CSi], CallSites.back());
- CallSites.pop_back();
- } else {
- CallSites.erase(CallSites.begin()+CSi);
- }
- --CSi;
-
- ++NumInlined;
- Changed = true;
- LocalChange = true;
- }
- }
+ for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
+ CallSite CS = CallSites[CSi];
+
+ Function *Callee = CS.getCalledFunction();
+ // We can only inline direct calls to non-declarations.
+ if (Callee == 0 || Callee->isDeclaration()) continue;
+
+ // If the policy determines that we should inline this function,
+ // try to do so.
+ if (!shouldInline(CS))
+ continue;
+
+ Function *Caller = CS.getCaller();
+ // Attempt to inline the function...
+ if (!InlineCallIfPossible(CS, CG, TD, InlinedArrayAllocas))
+ continue;
+
+ // If we inlined the last possible call site to the function, delete the
+ // function body now.
+ if (Callee->use_empty() && Callee->hasLocalLinkage() &&
+ // TODO: Can remove if in SCC now.
+ !SCCFunctions.count(Callee) &&
+
+ // The function may be apparently dead, but if there are indirect
+ // callgraph references to the node, we cannot delete it yet, this
+ // could invalidate the CGSCC iterator.
+ CG[Callee]->getNumReferences() == 0) {
+ DEBUG(errs() << " -> Deleting dead function: "
+ << Callee->getName() << "\n");
+ CallGraphNode *CalleeNode = CG[Callee];
+
+ // Remove any call graph edges from the callee to its callees.
+ CalleeNode->removeAllCalledFunctions();
+
+ resetCachedCostInfo(Callee);
+
+ // Removing the node for callee from the call graph and delete it.
+ delete CG.removeFunctionFromModule(CalleeNode);
+ ++NumDeleted;
}
+
+ // Remove any cached cost info for this caller, as inlining the
+ // callee has increased the size of the caller (which may be the
+ // same as the callee).
+ resetCachedCostInfo(Caller);
+
+ // Remove this call site from the list. If possible, use
+ // swap/pop_back for efficiency, but do not use it if doing so would
+ // move a call site to a function in this SCC before the
+ // 'FirstCallInSCC' barrier.
+ if (SCC.size() == 1) {
+ std::swap(CallSites[CSi], CallSites.back());
+ CallSites.pop_back();
+ } else {
+ CallSites.erase(CallSites.begin()+CSi);
+ }
+ --CSi;
+
+ ++NumInlined;
+ Changed = true;
+ LocalChange = true;
+ }
} while (LocalChange);
return Changed;
@@ -227,47 +406,55 @@ bool Inliner::doFinalization(CallGraph &CG) {
return removeDeadFunctions(CG);
}
- /// removeDeadFunctions - Remove dead functions that are not included in
- /// DNR (Do Not Remove) list.
+/// removeDeadFunctions - Remove dead functions that are not included in
+/// DNR (Do Not Remove) list.
bool Inliner::removeDeadFunctions(CallGraph &CG,
- SmallPtrSet<const Function *, 16> *DNR) {
- std::set<CallGraphNode*> FunctionsToRemove;
+ SmallPtrSet<const Function *, 16> *DNR) {
+ SmallPtrSet<CallGraphNode*, 16> FunctionsToRemove;
// Scan for all of the functions, looking for ones that should now be removed
// from the program. Insert the dead ones in the FunctionsToRemove set.
for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
CallGraphNode *CGN = I->second;
- if (Function *F = CGN ? CGN->getFunction() : 0) {
- // If the only remaining users of the function are dead constants, remove
- // them.
- F->removeDeadConstantUsers();
-
- if (DNR && DNR->count(F))
- continue;
+ if (CGN->getFunction() == 0)
+ continue;
+
+ Function *F = CGN->getFunction();
+
+ // If the only remaining users of the function are dead constants, remove
+ // them.
+ F->removeDeadConstantUsers();
+
+ if (DNR && DNR->count(F))
+ continue;
+ if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
+ !F->hasAvailableExternallyLinkage())
+ continue;
+ if (!F->use_empty())
+ continue;
+
+ // Remove any call graph edges from the function to its callees.
+ CGN->removeAllCalledFunctions();
+
+ // Remove any edges from the external node to the function's call graph
+ // node. These edges might have been made irrelegant due to
+ // optimization of the program.
+ CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
- if ((F->hasLinkOnceLinkage() || F->hasLocalLinkage()) &&
- F->use_empty()) {
-
- // Remove any call graph edges from the function to its callees.
- CGN->removeAllCalledFunctions();
-
- // Remove any edges from the external node to the function's call graph
- // node. These edges might have been made irrelegant due to
- // optimization of the program.
- CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
-
- // Removing the node for callee from the call graph and delete it.
- FunctionsToRemove.insert(CGN);
- }
- }
+ // Removing the node for callee from the call graph and delete it.
+ FunctionsToRemove.insert(CGN);
}
// Now that we know which functions to delete, do so. We didn't want to do
// this inline, because that would invalidate our CallGraph::iterator
// objects. :(
+ //
+ // Note that it doesn't matter that we are iterating over a non-stable set
+ // here to do this, it doesn't matter which order the functions are deleted
+ // in.
bool Changed = false;
- for (std::set<CallGraphNode*>::iterator I = FunctionsToRemove.begin(),
- E = FunctionsToRemove.end(); I != E; ++I) {
+ for (SmallPtrSet<CallGraphNode*, 16>::iterator I = FunctionsToRemove.begin(),
+ E = FunctionsToRemove.end(); I != E; ++I) {
resetCachedCostInfo((*I)->getFunction());
delete CG.removeFunctionFromModule(*I);
++NumDeleted;
diff --git a/lib/Transforms/IPO/Internalize.cpp b/lib/Transforms/IPO/Internalize.cpp
index 5093ae9..e3c3c67 100644
--- a/lib/Transforms/IPO/Internalize.cpp
+++ b/lib/Transforms/IPO/Internalize.cpp
@@ -21,6 +21,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include <fstream>
#include <set>
@@ -86,7 +87,7 @@ void InternalizePass::LoadFile(const char *Filename) {
// Load the APIFile...
std::ifstream In(Filename);
if (!In.good()) {
- cerr << "WARNING: Internalize couldn't load file '" << Filename
+ errs() << "WARNING: Internalize couldn't load file '" << Filename
<< "'! Continuing as if it's empty.\n";
return; // Just continue as if the file were empty
}
@@ -101,7 +102,7 @@ void InternalizePass::LoadFile(const char *Filename) {
bool InternalizePass::runOnModule(Module &M) {
CallGraph *CG = getAnalysisIfAvailable<CallGraph>();
CallGraphNode *ExternalNode = CG ? CG->getExternalCallingNode() : 0;
-
+
if (ExternalNames.empty()) {
// Return if we're not in 'all but main' mode and have no external api
if (!AllButMain)
@@ -131,12 +132,14 @@ bool InternalizePass::runOnModule(Module &M) {
if (ExternalNode) ExternalNode->removeOneAbstractEdgeTo((*CG)[I]);
Changed = true;
++NumFunctions;
- DOUT << "Internalizing func " << I->getName() << "\n";
+ DEBUG(errs() << "Internalizing func " << I->getName() << "\n");
}
// Never internalize the llvm.used symbol. It is used to implement
// attribute((used)).
+ // FIXME: Shouldn't this just filter on llvm.metadata section??
ExternalNames.insert("llvm.used");
+ ExternalNames.insert("llvm.compiler.used");
// Never internalize anchors used by the machine module info, else the info
// won't find them. (see MachineModuleInfo.)
@@ -158,7 +161,7 @@ bool InternalizePass::runOnModule(Module &M) {
I->setLinkage(GlobalValue::InternalLinkage);
Changed = true;
++NumGlobals;
- DOUT << "Internalized gvar " << I->getName() << "\n";
+ DEBUG(errs() << "Internalized gvar " << I->getName() << "\n");
}
// Mark all aliases that are not in the api as internal as well.
@@ -169,7 +172,7 @@ bool InternalizePass::runOnModule(Module &M) {
I->setLinkage(GlobalValue::InternalLinkage);
Changed = true;
++NumAliases;
- DOUT << "Internalized alias " << I->getName() << "\n";
+ DEBUG(errs() << "Internalized alias " << I->getName() << "\n");
}
return Changed;
diff --git a/lib/Transforms/IPO/LoopExtractor.cpp b/lib/Transforms/IPO/LoopExtractor.cpp
index 0c65443..02ac3bb 100644
--- a/lib/Transforms/IPO/LoopExtractor.cpp
+++ b/lib/Transforms/IPO/LoopExtractor.cpp
@@ -20,7 +20,7 @@
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/Scalar.h"
@@ -33,23 +33,19 @@ using namespace llvm;
STATISTIC(NumExtracted, "Number of loops extracted");
namespace {
- // FIXME: This is not a function pass, but the PassManager doesn't allow
- // Module passes to require FunctionPasses, so we can't get loop info if we're
- // not a function pass.
- struct VISIBILITY_HIDDEN LoopExtractor : public FunctionPass {
+ struct VISIBILITY_HIDDEN LoopExtractor : public LoopPass {
static char ID; // Pass identification, replacement for typeid
unsigned NumLoops;
explicit LoopExtractor(unsigned numLoops = ~0)
- : FunctionPass(&ID), NumLoops(numLoops) {}
+ : LoopPass(&ID), NumLoops(numLoops) {}
- virtual bool runOnFunction(Function &F);
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(BreakCriticalEdgesID);
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<DominatorTree>();
- AU.addRequired<LoopInfo>();
}
};
}
@@ -73,68 +69,50 @@ Y("loop-extract-single", "Extract at most one loop into a new function");
// createLoopExtractorPass - This pass extracts all natural loops from the
// program into a function if it can.
//
-FunctionPass *llvm::createLoopExtractorPass() { return new LoopExtractor(); }
+Pass *llvm::createLoopExtractorPass() { return new LoopExtractor(); }
-bool LoopExtractor::runOnFunction(Function &F) {
- LoopInfo &LI = getAnalysis<LoopInfo>();
-
- // If this function has no loops, there is nothing to do.
- if (LI.empty())
+bool LoopExtractor::runOnLoop(Loop *L, LPPassManager &LPM) {
+ // Only visit top-level loops.
+ if (L->getParentLoop())
return false;
DominatorTree &DT = getAnalysis<DominatorTree>();
-
- // If there is more than one top-level loop in this function, extract all of
- // the loops.
bool Changed = false;
- if (LI.end()-LI.begin() > 1) {
- for (LoopInfo::iterator i = LI.begin(), e = LI.end(); i != e; ++i) {
- if (NumLoops == 0) return Changed;
- --NumLoops;
- Changed |= ExtractLoop(DT, *i) != 0;
- ++NumExtracted;
- }
- } else {
- // Otherwise there is exactly one top-level loop. If this function is more
- // than a minimal wrapper around the loop, extract the loop.
- Loop *TLL = *LI.begin();
- bool ShouldExtractLoop = false;
-
- // Extract the loop if the entry block doesn't branch to the loop header.
- TerminatorInst *EntryTI = F.getEntryBlock().getTerminator();
- if (!isa<BranchInst>(EntryTI) ||
- !cast<BranchInst>(EntryTI)->isUnconditional() ||
- EntryTI->getSuccessor(0) != TLL->getHeader())
- ShouldExtractLoop = true;
- else {
- // Check to see if any exits from the loop are more than just return
- // blocks.
- SmallVector<BasicBlock*, 8> ExitBlocks;
- TLL->getExitBlocks(ExitBlocks);
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (!isa<ReturnInst>(ExitBlocks[i]->getTerminator())) {
- ShouldExtractLoop = true;
- break;
- }
- }
- if (ShouldExtractLoop) {
- if (NumLoops == 0) return Changed;
- --NumLoops;
- Changed |= ExtractLoop(DT, TLL) != 0;
- ++NumExtracted;
- } else {
- // Okay, this function is a minimal container around the specified loop.
- // If we extract the loop, we will continue to just keep extracting it
- // infinitely... so don't extract it. However, if the loop contains any
- // subloops, extract them.
- for (Loop::iterator i = TLL->begin(), e = TLL->end(); i != e; ++i) {
- if (NumLoops == 0) return Changed;
- --NumLoops;
- Changed |= ExtractLoop(DT, *i) != 0;
- ++NumExtracted;
+ // If there is more than one top-level loop in this function, extract all of
+ // the loops. Otherwise there is exactly one top-level loop; in this case if
+ // this function is more than a minimal wrapper around the loop, extract
+ // the loop.
+ bool ShouldExtractLoop = false;
+
+ // Extract the loop if the entry block doesn't branch to the loop header.
+ TerminatorInst *EntryTI =
+ L->getHeader()->getParent()->getEntryBlock().getTerminator();
+ if (!isa<BranchInst>(EntryTI) ||
+ !cast<BranchInst>(EntryTI)->isUnconditional() ||
+ EntryTI->getSuccessor(0) != L->getHeader())
+ ShouldExtractLoop = true;
+ else {
+ // Check to see if any exits from the loop are more than just return
+ // blocks.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ if (!isa<ReturnInst>(ExitBlocks[i]->getTerminator())) {
+ ShouldExtractLoop = true;
+ break;
}
+ }
+ if (ShouldExtractLoop) {
+ if (NumLoops == 0) return Changed;
+ --NumLoops;
+ if (ExtractLoop(DT, L) != 0) {
+ Changed = true;
+ // After extraction, the loop is replaced by a function call, so
+ // we shouldn't try to run any more loop passes on it.
+ LPM.deleteLoopFromQueue(L);
}
+ ++NumExtracted;
}
return Changed;
@@ -143,7 +121,7 @@ bool LoopExtractor::runOnFunction(Function &F) {
// createSingleLoopExtractorPass - This pass extracts one natural loop from the
// program into a function if it can. This is used by bugpoint.
//
-FunctionPass *llvm::createSingleLoopExtractorPass() {
+Pass *llvm::createSingleLoopExtractorPass() {
return new SingleLoopExtractor();
}
@@ -193,8 +171,8 @@ void BlockExtractorPass::LoadFile(const char *Filename) {
// Load the BlockFile...
std::ifstream In(Filename);
if (!In.good()) {
- cerr << "WARNING: BlockExtractor couldn't load file '" << Filename
- << "'!\n";
+ errs() << "WARNING: BlockExtractor couldn't load file '" << Filename
+ << "'!\n";
return;
}
while (In) {
diff --git a/lib/Transforms/IPO/LowerSetJmp.cpp b/lib/Transforms/IPO/LowerSetJmp.cpp
index dfc040b..55194b3 100644
--- a/lib/Transforms/IPO/LowerSetJmp.cpp
+++ b/lib/Transforms/IPO/LowerSetJmp.cpp
@@ -39,6 +39,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
@@ -200,7 +201,7 @@ bool LowerSetJmp::runOnModule(Module& M) {
// This function is always successful, unless it isn't.
bool LowerSetJmp::doInitialization(Module& M)
{
- const Type *SBPTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type *SBPTy = Type::getInt8PtrTy(M.getContext());
const Type *SBPPTy = PointerType::getUnqual(SBPTy);
// N.B. See llvm/runtime/GCCLibraries/libexception/SJLJ-Exception.h for
@@ -208,33 +209,40 @@ bool LowerSetJmp::doInitialization(Module& M)
// void __llvm_sjljeh_init_setjmpmap(void**)
InitSJMap = M.getOrInsertFunction("__llvm_sjljeh_init_setjmpmap",
- Type::VoidTy, SBPPTy, (Type *)0);
+ Type::getVoidTy(M.getContext()),
+ SBPPTy, (Type *)0);
// void __llvm_sjljeh_destroy_setjmpmap(void**)
DestroySJMap = M.getOrInsertFunction("__llvm_sjljeh_destroy_setjmpmap",
- Type::VoidTy, SBPPTy, (Type *)0);
+ Type::getVoidTy(M.getContext()),
+ SBPPTy, (Type *)0);
// void __llvm_sjljeh_add_setjmp_to_map(void**, void*, unsigned)
AddSJToMap = M.getOrInsertFunction("__llvm_sjljeh_add_setjmp_to_map",
- Type::VoidTy, SBPPTy, SBPTy,
- Type::Int32Ty, (Type *)0);
+ Type::getVoidTy(M.getContext()),
+ SBPPTy, SBPTy,
+ Type::getInt32Ty(M.getContext()),
+ (Type *)0);
// void __llvm_sjljeh_throw_longjmp(int*, int)
ThrowLongJmp = M.getOrInsertFunction("__llvm_sjljeh_throw_longjmp",
- Type::VoidTy, SBPTy, Type::Int32Ty,
+ Type::getVoidTy(M.getContext()), SBPTy,
+ Type::getInt32Ty(M.getContext()),
(Type *)0);
// unsigned __llvm_sjljeh_try_catching_longjmp_exception(void **)
TryCatchLJ =
M.getOrInsertFunction("__llvm_sjljeh_try_catching_longjmp_exception",
- Type::Int32Ty, SBPPTy, (Type *)0);
+ Type::getInt32Ty(M.getContext()), SBPPTy, (Type *)0);
// bool __llvm_sjljeh_is_longjmp_exception()
IsLJException = M.getOrInsertFunction("__llvm_sjljeh_is_longjmp_exception",
- Type::Int1Ty, (Type *)0);
+ Type::getInt1Ty(M.getContext()),
+ (Type *)0);
// int __llvm_sjljeh_get_longjmp_value()
GetLJValue = M.getOrInsertFunction("__llvm_sjljeh_get_longjmp_value",
- Type::Int32Ty, (Type *)0);
+ Type::getInt32Ty(M.getContext()),
+ (Type *)0);
return true;
}
@@ -257,7 +265,8 @@ bool LowerSetJmp::IsTransformableFunction(const std::string& Name) {
// throwing the exception for us.
void LowerSetJmp::TransformLongJmpCall(CallInst* Inst)
{
- const Type* SBPTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type* SBPTy =
+ Type::getInt8PtrTy(Inst->getContext());
// Create the call to "__llvm_sjljeh_throw_longjmp". This takes the
// same parameters as "longjmp", except that the buffer is cast to a
@@ -278,7 +287,7 @@ void LowerSetJmp::TransformLongJmpCall(CallInst* Inst)
if (SVP.first)
BranchInst::Create(SVP.first->getParent(), Inst);
else
- new UnwindInst(Inst);
+ new UnwindInst(Inst->getContext(), Inst);
// Remove all insts after the branch/unwind inst. Go from back to front to
// avoid replaceAllUsesWith if possible.
@@ -309,7 +318,8 @@ AllocaInst* LowerSetJmp::GetSetJmpMap(Function* Func)
assert(Inst && "Couldn't find even ONE instruction in entry block!");
// Fill in the alloca and call to initialize the SJ map.
- const Type *SBPTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type *SBPTy =
+ Type::getInt8PtrTy(Func->getContext());
AllocaInst* Map = new AllocaInst(SBPTy, 0, "SJMap", Inst);
CallInst::Create(InitSJMap, Map, "", Inst);
return SJMap[Func] = Map;
@@ -324,12 +334,13 @@ BasicBlock* LowerSetJmp::GetRethrowBB(Function* Func)
// The basic block we're going to jump to if we need to rethrow the
// exception.
- BasicBlock* Rethrow = BasicBlock::Create("RethrowExcept", Func);
+ BasicBlock* Rethrow =
+ BasicBlock::Create(Func->getContext(), "RethrowExcept", Func);
// Fill in the "Rethrow" BB with a call to rethrow the exception. This
// is the last instruction in the BB since at this point the runtime
// should exit this function and go to the next function.
- new UnwindInst(Rethrow);
+ new UnwindInst(Func->getContext(), Rethrow);
return RethrowBBMap[Func] = Rethrow;
}
@@ -340,7 +351,8 @@ LowerSetJmp::SwitchValuePair LowerSetJmp::GetSJSwitch(Function* Func,
{
if (SwitchValMap[Func].first) return SwitchValMap[Func];
- BasicBlock* LongJmpPre = BasicBlock::Create("LongJmpBlkPre", Func);
+ BasicBlock* LongJmpPre =
+ BasicBlock::Create(Func->getContext(), "LongJmpBlkPre", Func);
// Keep track of the preliminary basic block for some of the other
// transformations.
@@ -352,7 +364,8 @@ LowerSetJmp::SwitchValuePair LowerSetJmp::GetSJSwitch(Function* Func,
// The "decision basic block" gets the number associated with the
// setjmp call returning to switch on and the value returned by
// longjmp.
- BasicBlock* DecisionBB = BasicBlock::Create("LJDecisionBB", Func);
+ BasicBlock* DecisionBB =
+ BasicBlock::Create(Func->getContext(), "LJDecisionBB", Func);
BranchInst::Create(DecisionBB, Rethrow, Cond, LongJmpPre);
@@ -375,12 +388,13 @@ void LowerSetJmp::TransformSetJmpCall(CallInst* Inst)
Function* Func = ABlock->getParent();
// Add this setjmp to the setjmp map.
- const Type* SBPTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type* SBPTy =
+ Type::getInt8PtrTy(Inst->getContext());
CastInst* BufPtr =
new BitCastInst(Inst->getOperand(1), SBPTy, "SBJmpBuf", Inst);
std::vector<Value*> Args =
make_vector<Value*>(GetSetJmpMap(Func), BufPtr,
- ConstantInt::get(Type::Int32Ty,
+ ConstantInt::get(Type::getInt32Ty(Inst->getContext()),
SetJmpIDMap[Func]++), 0);
CallInst::Create(AddSJToMap, Args.begin(), Args.end(), "", Inst);
@@ -424,14 +438,17 @@ void LowerSetJmp::TransformSetJmpCall(CallInst* Inst)
// This PHI node will be in the new block created from the
// splitBasicBlock call.
- PHINode* PHI = PHINode::Create(Type::Int32Ty, "SetJmpReturn", Inst);
+ PHINode* PHI = PHINode::Create(Type::getInt32Ty(Inst->getContext()),
+ "SetJmpReturn", Inst);
// Coming from a call to setjmp, the return is 0.
- PHI->addIncoming(ConstantInt::getNullValue(Type::Int32Ty), ABlock);
+ PHI->addIncoming(Constant::getNullValue(Type::getInt32Ty(Inst->getContext())),
+ ABlock);
// Add the case for this setjmp's number...
SwitchValuePair SVP = GetSJSwitch(Func, GetRethrowBB(Func));
- SVP.first->addCase(ConstantInt::get(Type::Int32Ty, SetJmpIDMap[Func] - 1),
+ SVP.first->addCase(ConstantInt::get(Type::getInt32Ty(Inst->getContext()),
+ SetJmpIDMap[Func] - 1),
SetJmpContBlock);
// Value coming from the handling of the exception.
@@ -503,7 +520,8 @@ void LowerSetJmp::visitInvokeInst(InvokeInst& II)
BasicBlock* ExceptBB = II.getUnwindDest();
Function* Func = BB->getParent();
- BasicBlock* NewExceptBB = BasicBlock::Create("InvokeExcept", Func);
+ BasicBlock* NewExceptBB = BasicBlock::Create(II.getContext(),
+ "InvokeExcept", Func);
// If this is a longjmp exception, then branch to the preliminary BB of
// the longjmp exception handling. Otherwise, go to the old exception.
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 5693cc0..13bbf9c 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -47,11 +47,14 @@
#include "llvm/Constants.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include <map>
#include <vector>
using namespace llvm;
@@ -61,7 +64,7 @@ STATISTIC(NumFunctionsMerged, "Number of functions merged");
namespace {
struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
static char ID; // Pass identification, replacement for typeid
- MergeFunctions() : ModulePass((intptr_t)&ID) {}
+ MergeFunctions() : ModulePass(&ID) {}
bool runOnModule(Module &M);
};
@@ -127,7 +130,7 @@ static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
return false;
default:
- assert(0 && "Unknown type!");
+ llvm_unreachable("Unknown type!");
return false;
case Type::PointerTyID: {
@@ -185,7 +188,8 @@ static bool
isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
if (I1->getOpcode() != I2->getOpcode() ||
I1->getNumOperands() != I2->getNumOperands() ||
- !isEquivalentType(I1->getType(), I2->getType()))
+ !isEquivalentType(I1->getType(), I2->getType()) ||
+ !I1->hasSameSubclassOptionalData(I2))
return false;
// We have two instructions of identical opcode and #operands. Check to see
@@ -449,6 +453,7 @@ static LinkageCategory categorize(const Function *F) {
switch (F->getLinkage()) {
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
+ case GlobalValue::LinkerPrivateLinkage:
return Internal;
case GlobalValue::WeakAnyLinkage:
@@ -468,14 +473,14 @@ static LinkageCategory categorize(const Function *F) {
return ExternalStrong;
}
- assert(0 && "Unknown LinkageType.");
+ llvm_unreachable("Unknown LinkageType.");
return ExternalWeak;
}
static void ThunkGToF(Function *F, Function *G) {
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
G->getParent());
- BasicBlock *BB = BasicBlock::Create("", NewG);
+ BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
std::vector<Value *> Args;
unsigned i = 0;
@@ -494,13 +499,13 @@ static void ThunkGToF(Function *F, Function *G) {
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
CI->setTailCall();
CI->setCallingConv(F->getCallingConv());
- if (NewG->getReturnType() == Type::VoidTy) {
- ReturnInst::Create(BB);
+ if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
+ ReturnInst::Create(F->getContext(), BB);
} else if (CI->getType() != NewG->getReturnType()) {
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
- ReturnInst::Create(BCI, BB);
+ ReturnInst::Create(F->getContext(), BCI, BB);
} else {
- ReturnInst::Create(CI, BB);
+ ReturnInst::Create(F->getContext(), CI, BB);
}
NewG->copyAttributesFrom(G);
@@ -574,22 +579,22 @@ static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
case Internal:
switch (catG) {
case ExternalStrong:
- assert(0);
+ llvm_unreachable(0);
// fall-through
case ExternalWeak:
- if (F->hasAddressTaken())
+ if (F->hasAddressTaken())
ThunkGToF(F, G);
else
AliasGToF(F, G);
- break;
+ break;
case Internal: {
bool addrTakenF = F->hasAddressTaken();
bool addrTakenG = G->hasAddressTaken();
if (!addrTakenF && addrTakenG) {
std::swap(FnVec[i], FnVec[j]);
std::swap(F, G);
- std::swap(addrTakenF, addrTakenG);
- }
+ std::swap(addrTakenF, addrTakenG);
+ }
if (addrTakenF && addrTakenG) {
ThunkGToF(F, G);
@@ -597,7 +602,7 @@ static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
assert(!addrTakenG);
AliasGToF(F, G);
}
- } break;
+ } break;
}
break;
}
@@ -629,19 +634,19 @@ bool MergeFunctions::runOnModule(Module &M) {
bool LocalChanged;
do {
LocalChanged = false;
- DOUT << "size: " << FnMap.size() << "\n";
+ DEBUG(errs() << "size: " << FnMap.size() << "\n");
for (std::map<unsigned long, std::vector<Function *> >::iterator
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
std::vector<Function *> &FnVec = I->second;
- DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n";
+ DEBUG(errs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
for (int i = 0, e = FnVec.size(); i != e; ++i) {
for (int j = i + 1; j != e; ++j) {
bool isEqual = equals(FnVec[i], FnVec[j]);
- DOUT << " " << FnVec[i]->getName()
- << (isEqual ? " == " : " != ")
- << FnVec[j]->getName() << "\n";
+ DEBUG(errs() << " " << FnVec[i]->getName()
+ << (isEqual ? " == " : " != ")
+ << FnVec[j]->getName() << "\n");
if (isEqual) {
if (fold(FnVec, i, j)) {
diff --git a/lib/Transforms/IPO/PartialInlining.cpp b/lib/Transforms/IPO/PartialInlining.cpp
index 73ec9c1..8f858d3 100644
--- a/lib/Transforms/IPO/PartialInlining.cpp
+++ b/lib/Transforms/IPO/PartialInlining.cpp
@@ -48,7 +48,8 @@ ModulePass* llvm::createPartialInliningPass() { return new PartialInliner(); }
Function* PartialInliner::unswitchFunction(Function* F) {
// First, verify that this function is an unswitching candidate...
BasicBlock* entryBlock = F->begin();
- if (!isa<BranchInst>(entryBlock->getTerminator()))
+ BranchInst *BR = dyn_cast<BranchInst>(entryBlock->getTerminator());
+ if (!BR || BR->isUnconditional())
return 0;
BasicBlock* returnBlock = 0;
diff --git a/lib/Transforms/IPO/PruneEH.cpp b/lib/Transforms/IPO/PruneEH.cpp
index 2b52f46..daf81e9 100644
--- a/lib/Transforms/IPO/PruneEH.cpp
+++ b/lib/Transforms/IPO/PruneEH.cpp
@@ -19,6 +19,7 @@
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/CallGraph.h"
@@ -40,7 +41,7 @@ namespace {
PruneEH() : CallGraphSCCPass(&ID) {}
// runOnSCC - Analyze the SCC, performing the transformation if possible.
- bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
+ bool runOnSCC(std::vector<CallGraphNode *> &SCC);
bool SimplifyFunction(Function *F);
void DeleteBasicBlock(BasicBlock *BB);
@@ -54,7 +55,7 @@ X("prune-eh", "Remove unused exception handling info");
Pass *llvm::createPruneEHPass() { return new PruneEH(); }
-bool PruneEH::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
+bool PruneEH::runOnSCC(std::vector<CallGraphNode *> &SCC) {
SmallPtrSet<CallGraphNode *, 8> SCCNodes;
CallGraph &CG = getAnalysis<CallGraph>();
bool MadeChange = false;
@@ -164,9 +165,6 @@ bool PruneEH::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
// function if we have invokes to non-unwinding functions or code after calls to
// no-return functions.
bool PruneEH::SimplifyFunction(Function *F) {
- CallGraph &CG = getAnalysis<CallGraph>();
- CallGraphNode *CGN = CG[F];
-
bool MadeChange = false;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
@@ -180,14 +178,13 @@ bool PruneEH::SimplifyFunction(Function *F) {
Call->setAttributes(II->getAttributes());
// Anything that used the value produced by the invoke instruction
- // now uses the value produced by the call instruction.
+ // now uses the value produced by the call instruction. Note that we
+ // do this even for void functions and calls with no uses so that the
+ // callgraph edge is updated.
II->replaceAllUsesWith(Call);
BasicBlock *UnwindBlock = II->getUnwindDest();
UnwindBlock->removePredecessor(II->getParent());
- // Fix up the call graph.
- CGN->replaceCallSite(II, Call);
-
// Insert a branch to the normal destination right before the
// invoke.
BranchInst::Create(II->getNormalDest(), II);
@@ -214,7 +211,7 @@ bool PruneEH::SimplifyFunction(Function *F) {
// Remove the uncond branch and add an unreachable.
BB->getInstList().pop_back();
- new UnreachableInst(BB);
+ new UnreachableInst(BB->getContext(), BB);
DeleteBasicBlock(New); // Delete the new BB.
MadeChange = true;
diff --git a/lib/Transforms/IPO/RaiseAllocations.cpp b/lib/Transforms/IPO/RaiseAllocations.cpp
index 9900368..4c1f26d 100644
--- a/lib/Transforms/IPO/RaiseAllocations.cpp
+++ b/lib/Transforms/IPO/RaiseAllocations.cpp
@@ -16,6 +16,7 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
@@ -69,7 +70,6 @@ ModulePass *llvm::createRaiseAllocationsPass() {
// function into the appropriate instruction.
//
void RaiseAllocations::doInitialization(Module &M) {
-
// Get Malloc and free prototypes if they exist!
MallocFunc = M.getFunction("malloc");
if (MallocFunc) {
@@ -77,22 +77,27 @@ void RaiseAllocations::doInitialization(Module &M) {
// Get the expected prototype for malloc
const FunctionType *Malloc1Type =
- FunctionType::get(PointerType::getUnqual(Type::Int8Ty),
- std::vector<const Type*>(1, Type::Int64Ty), false);
+ FunctionType::get(Type::getInt8PtrTy(M.getContext()),
+ std::vector<const Type*>(1,
+ Type::getInt64Ty(M.getContext())), false);
// Chck to see if we got the expected malloc
if (TyWeHave != Malloc1Type) {
// Check to see if the prototype is wrong, giving us i8*(i32) * malloc
// This handles the common declaration of: 'void *malloc(unsigned);'
const FunctionType *Malloc2Type =
- FunctionType::get(PointerType::getUnqual(Type::Int8Ty),
- std::vector<const Type*>(1, Type::Int32Ty), false);
+ FunctionType::get(PointerType::getUnqual(
+ Type::getInt8Ty(M.getContext())),
+ std::vector<const Type*>(1,
+ Type::getInt32Ty(M.getContext())), false);
if (TyWeHave != Malloc2Type) {
// Check to see if the prototype is missing, giving us
// i8*(...) * malloc
// This handles the common declaration of: 'void *malloc();'
const FunctionType *Malloc3Type =
- FunctionType::get(PointerType::getUnqual(Type::Int8Ty), true);
+ FunctionType::get(PointerType::getUnqual(
+ Type::getInt8Ty(M.getContext())),
+ true);
if (TyWeHave != Malloc3Type)
// Give up
MallocFunc = 0;
@@ -105,19 +110,24 @@ void RaiseAllocations::doInitialization(Module &M) {
const FunctionType* TyWeHave = FreeFunc->getFunctionType();
// Get the expected prototype for void free(i8*)
- const FunctionType *Free1Type = FunctionType::get(Type::VoidTy,
- std::vector<const Type*>(1, PointerType::getUnqual(Type::Int8Ty)), false);
+ const FunctionType *Free1Type =
+ FunctionType::get(Type::getVoidTy(M.getContext()),
+ std::vector<const Type*>(1, PointerType::getUnqual(
+ Type::getInt8Ty(M.getContext()))),
+ false);
if (TyWeHave != Free1Type) {
// Check to see if the prototype was forgotten, giving us
// void (...) * free
// This handles the common forward declaration of: 'void free();'
- const FunctionType* Free2Type = FunctionType::get(Type::VoidTy, true);
+ const FunctionType* Free2Type =
+ FunctionType::get(Type::getVoidTy(M.getContext()), true);
if (TyWeHave != Free2Type) {
// One last try, check to see if we can find free as
// int (...)* free. This handles the case where NOTHING was declared.
- const FunctionType* Free3Type = FunctionType::get(Type::Int32Ty, true);
+ const FunctionType* Free3Type =
+ FunctionType::get(Type::getInt32Ty(M.getContext()), true);
if (TyWeHave != Free3Type) {
// Give up.
@@ -137,7 +147,7 @@ void RaiseAllocations::doInitialization(Module &M) {
bool RaiseAllocations::runOnModule(Module &M) {
// Find the malloc/free prototypes...
doInitialization(M);
-
+
bool Changed = false;
// First, process all of the malloc calls...
@@ -159,12 +169,15 @@ bool RaiseAllocations::runOnModule(Module &M) {
// If no prototype was provided for malloc, we may need to cast the
// source size.
- if (Source->getType() != Type::Int32Ty)
+ if (Source->getType() != Type::getInt32Ty(M.getContext()))
Source =
- CastInst::CreateIntegerCast(Source, Type::Int32Ty, false/*ZExt*/,
+ CastInst::CreateIntegerCast(Source,
+ Type::getInt32Ty(M.getContext()),
+ false/*ZExt*/,
"MallocAmtCast", I);
- MallocInst *MI = new MallocInst(Type::Int8Ty, Source, "", I);
+ MallocInst *MI = new MallocInst(Type::getInt8Ty(M.getContext()),
+ Source, "", I);
MI->takeName(I);
I->replaceAllUsesWith(MI);
@@ -216,7 +229,7 @@ bool RaiseAllocations::runOnModule(Module &M) {
Value *Source = *CS.arg_begin();
if (!isa<PointerType>(Source->getType()))
Source = new IntToPtrInst(Source,
- PointerType::getUnqual(Type::Int8Ty),
+ Type::getInt8PtrTy(M.getContext()),
"FreePtrCast", I);
new FreeInst(Source, I);
@@ -226,7 +239,7 @@ bool RaiseAllocations::runOnModule(Module &M) {
BranchInst::Create(II->getNormalDest(), I);
// Delete the old call site
- if (I->getType() != Type::VoidTy)
+ if (I->getType() != Type::getVoidTy(M.getContext()))
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
Changed = true;
diff --git a/lib/Transforms/IPO/StripSymbols.cpp b/lib/Transforms/IPO/StripSymbols.cpp
index 046e044..77d44b2 100644
--- a/lib/Transforms/IPO/StripSymbols.cpp
+++ b/lib/Transforms/IPO/StripSymbols.cpp
@@ -24,18 +24,18 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace llvm;
namespace {
- class VISIBILITY_HIDDEN StripSymbols : public ModulePass {
+ class StripSymbols : public ModulePass {
bool OnlyDebugInfo;
public:
static char ID; // Pass identification, replacement for typeid
@@ -49,7 +49,7 @@ namespace {
}
};
- class VISIBILITY_HIDDEN StripNonDebugSymbols : public ModulePass {
+ class StripNonDebugSymbols : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripNonDebugSymbols()
@@ -62,7 +62,7 @@ namespace {
}
};
- class VISIBILITY_HIDDEN StripDebugDeclare : public ModulePass {
+ class StripDebugDeclare : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit StripDebugDeclare()
@@ -138,7 +138,7 @@ static void StripSymtab(ValueSymbolTable &ST, bool PreserveDbgInfo) {
Value *V = VI->getValue();
++VI;
if (!isa<GlobalValue>(V) || cast<GlobalValue>(V)->hasLocalLinkage()) {
- if (!PreserveDbgInfo || strncmp(V->getNameStart(), "llvm.dbg", 8))
+ if (!PreserveDbgInfo || !V->getName().startswith("llvm.dbg"))
// Set name to "", removing from symbol table!
V->setName("");
}
@@ -156,43 +156,37 @@ static void StripTypeSymtab(TypeSymbolTable &ST, bool PreserveDbgInfo) {
}
/// Find values that are marked as llvm.used.
-void findUsedValues(Module &M,
- SmallPtrSet<const GlobalValue*, 8>& llvmUsedValues) {
- if (GlobalVariable *LLVMUsed = M.getGlobalVariable("llvm.used")) {
- llvmUsedValues.insert(LLVMUsed);
- // Collect values that are preserved as per explicit request.
- // llvm.used is used to list these values.
- if (ConstantArray *Inits =
- dyn_cast<ConstantArray>(LLVMUsed->getInitializer())) {
- for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(Inits->getOperand(i)))
- llvmUsedValues.insert(GV);
- else if (ConstantExpr *CE =
- dyn_cast<ConstantExpr>(Inits->getOperand(i)))
- if (CE->getOpcode() == Instruction::BitCast)
- if (GlobalValue *GV = dyn_cast<GlobalValue>(CE->getOperand(0)))
- llvmUsedValues.insert(GV);
- }
- }
- }
+static void findUsedValues(GlobalVariable *LLVMUsed,
+ SmallPtrSet<const GlobalValue*, 8> &UsedValues) {
+ if (LLVMUsed == 0) return;
+ UsedValues.insert(LLVMUsed);
+
+ ConstantArray *Inits = dyn_cast<ConstantArray>(LLVMUsed->getInitializer());
+ if (Inits == 0) return;
+
+ for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i)
+ if (GlobalValue *GV =
+ dyn_cast<GlobalValue>(Inits->getOperand(i)->stripPointerCasts()))
+ UsedValues.insert(GV);
}
/// StripSymbolNames - Strip symbol names.
-bool StripSymbolNames(Module &M, bool PreserveDbgInfo) {
+static bool StripSymbolNames(Module &M, bool PreserveDbgInfo) {
SmallPtrSet<const GlobalValue*, 8> llvmUsedValues;
- findUsedValues(M, llvmUsedValues);
+ findUsedValues(M.getGlobalVariable("llvm.used"), llvmUsedValues);
+ findUsedValues(M.getGlobalVariable("llvm.compiler.used"), llvmUsedValues);
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasLocalLinkage() && llvmUsedValues.count(I) == 0)
- if (!PreserveDbgInfo || strncmp(I->getNameStart(), "llvm.dbg", 8))
+ if (!PreserveDbgInfo || !I->getName().startswith("llvm.dbg"))
I->setName(""); // Internal symbols can't participate in linkage
}
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (I->hasLocalLinkage() && llvmUsedValues.count(I) == 0)
- if (!PreserveDbgInfo || strncmp(I->getNameStart(), "llvm.dbg", 8))
+ if (!PreserveDbgInfo || !I->getName().startswith("llvm.dbg"))
I->setName(""); // Internal symbols can't participate in linkage
StripSymtab(I->getValueSymbolTable(), PreserveDbgInfo);
}
@@ -206,169 +200,58 @@ bool StripSymbolNames(Module &M, bool PreserveDbgInfo) {
// StripDebugInfo - Strip debug info in the module if it exists.
// To do this, we remove llvm.dbg.func.start, llvm.dbg.stoppoint, and
// llvm.dbg.region.end calls, and any globals they point to if now dead.
-bool StripDebugInfo(Module &M) {
-
- SmallPtrSet<const GlobalValue*, 8> llvmUsedValues;
- findUsedValues(M, llvmUsedValues);
-
- SmallVector<GlobalVariable *, 2> CUs;
- SmallVector<GlobalVariable *, 4> GVs;
- SmallVector<GlobalVariable *, 4> SPs;
- CollectDebugInfoAnchors(M, CUs, GVs, SPs);
- // These anchors use LinkOnce linkage so that the optimizer does not
- // remove them accidently. Set InternalLinkage for all these debug
- // info anchors.
- for (SmallVector<GlobalVariable *, 2>::iterator I = CUs.begin(),
- E = CUs.end(); I != E; ++I)
- (*I)->setLinkage(GlobalValue::InternalLinkage);
- for (SmallVector<GlobalVariable *, 4>::iterator I = GVs.begin(),
- E = GVs.end(); I != E; ++I)
- (*I)->setLinkage(GlobalValue::InternalLinkage);
- for (SmallVector<GlobalVariable *, 4>::iterator I = SPs.begin(),
- E = SPs.end(); I != E; ++I)
- (*I)->setLinkage(GlobalValue::InternalLinkage);
-
-
- // Delete all dbg variables.
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- GlobalVariable *GV = dyn_cast<GlobalVariable>(I);
- if (!GV) continue;
- if (!GV->use_empty() && llvmUsedValues.count(I) == 0) {
- if (strncmp(GV->getNameStart(), "llvm.dbg", 8) == 0) {
- GV->replaceAllUsesWith(UndefValue::get(GV->getType()));
- }
- }
- }
+static bool StripDebugInfo(Module &M) {
+ // Remove all of the calls to the debugger intrinsics, and remove them from
+ // the module.
Function *FuncStart = M.getFunction("llvm.dbg.func.start");
Function *StopPoint = M.getFunction("llvm.dbg.stoppoint");
Function *RegionStart = M.getFunction("llvm.dbg.region.start");
Function *RegionEnd = M.getFunction("llvm.dbg.region.end");
Function *Declare = M.getFunction("llvm.dbg.declare");
- std::vector<Constant*> DeadConstants;
-
- // Remove all of the calls to the debugger intrinsics, and remove them from
- // the module.
if (FuncStart) {
while (!FuncStart->use_empty()) {
CallInst *CI = cast<CallInst>(FuncStart->use_back());
- Value *Arg = CI->getOperand(1);
- assert(CI->use_empty() && "llvm.dbg intrinsic should have void result");
CI->eraseFromParent();
- if (Arg->use_empty())
- if (Constant *C = dyn_cast<Constant>(Arg))
- DeadConstants.push_back(C);
}
FuncStart->eraseFromParent();
}
if (StopPoint) {
while (!StopPoint->use_empty()) {
CallInst *CI = cast<CallInst>(StopPoint->use_back());
- Value *Arg = CI->getOperand(3);
- assert(CI->use_empty() && "llvm.dbg intrinsic should have void result");
CI->eraseFromParent();
- if (Arg->use_empty())
- if (Constant *C = dyn_cast<Constant>(Arg))
- DeadConstants.push_back(C);
}
StopPoint->eraseFromParent();
}
if (RegionStart) {
while (!RegionStart->use_empty()) {
CallInst *CI = cast<CallInst>(RegionStart->use_back());
- Value *Arg = CI->getOperand(1);
- assert(CI->use_empty() && "llvm.dbg intrinsic should have void result");
CI->eraseFromParent();
- if (Arg->use_empty())
- if (Constant *C = dyn_cast<Constant>(Arg))
- DeadConstants.push_back(C);
}
RegionStart->eraseFromParent();
}
if (RegionEnd) {
while (!RegionEnd->use_empty()) {
CallInst *CI = cast<CallInst>(RegionEnd->use_back());
- Value *Arg = CI->getOperand(1);
- assert(CI->use_empty() && "llvm.dbg intrinsic should have void result");
CI->eraseFromParent();
- if (Arg->use_empty())
- if (Constant *C = dyn_cast<Constant>(Arg))
- DeadConstants.push_back(C);
}
RegionEnd->eraseFromParent();
}
if (Declare) {
while (!Declare->use_empty()) {
CallInst *CI = cast<CallInst>(Declare->use_back());
- Value *Arg1 = CI->getOperand(1);
- Value *Arg2 = CI->getOperand(2);
- assert(CI->use_empty() && "llvm.dbg intrinsic should have void result");
CI->eraseFromParent();
- if (Arg1->use_empty()) {
- if (Constant *C = dyn_cast<Constant>(Arg1))
- DeadConstants.push_back(C);
- else
- RecursivelyDeleteTriviallyDeadInstructions(Arg1);
- }
- if (Arg2->use_empty())
- if (Constant *C = dyn_cast<Constant>(Arg2))
- DeadConstants.push_back(C);
}
Declare->eraseFromParent();
}
- // llvm.dbg.compile_units and llvm.dbg.subprograms are marked as linkonce
- // but since we are removing all debug information, make them internal now.
- // FIXME: Use private linkage maybe?
- if (Constant *C = M.getNamedGlobal("llvm.dbg.compile_units"))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- GV->setLinkage(GlobalValue::InternalLinkage);
-
- if (Constant *C = M.getNamedGlobal("llvm.dbg.subprograms"))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- GV->setLinkage(GlobalValue::InternalLinkage);
-
- if (Constant *C = M.getNamedGlobal("llvm.dbg.global_variables"))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- GV->setLinkage(GlobalValue::InternalLinkage);
-
- // Delete all dbg variables.
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- GlobalVariable *GV = dyn_cast<GlobalVariable>(I);
- if (!GV) continue;
- if (GV->use_empty() && llvmUsedValues.count(I) == 0
- && (!GV->hasSection()
- || strcmp(GV->getSection().c_str(), "llvm.metadata") == 0))
- DeadConstants.push_back(GV);
- }
-
- if (DeadConstants.empty())
- return false;
+ NamedMDNode *NMD = M.getNamedMetadata("llvm.dbg.gv");
+ if (NMD)
+ NMD->eraseFromParent();
- // Delete any internal globals that were only used by the debugger intrinsics.
- while (!DeadConstants.empty()) {
- Constant *C = DeadConstants.back();
- DeadConstants.pop_back();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
- if (GV->hasLocalLinkage())
- RemoveDeadConstant(GV);
- }
- else
- RemoveDeadConstant(C);
- }
-
- // Remove all llvm.dbg types.
- TypeSymbolTable &ST = M.getTypeSymbolTable();
- for (TypeSymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ) {
- if (!strncmp(TI->first.c_str(), "llvm.dbg.", 9))
- ST.remove(TI++);
- else
- ++TI;
- }
-
+ // Remove dead metadata.
+ M.getContext().RemoveDeadMetadata();
return true;
}
@@ -414,8 +297,7 @@ bool StripDebugDeclare::runOnModule(Module &M) {
I != E; ++I) {
GlobalVariable *GV = dyn_cast<GlobalVariable>(I);
if (!GV) continue;
- if (GV->use_empty() && GV->hasName()
- && strncmp(GV->getNameStart(), "llvm.dbg.global_variable", 24) == 0)
+ if (GV->use_empty() && GV->getName().startswith("llvm.dbg.global_variable"))
DeadConstants.push_back(GV);
}
diff --git a/lib/Transforms/IPO/StructRetPromotion.cpp b/lib/Transforms/IPO/StructRetPromotion.cpp
index 9f54388..4442820 100644
--- a/lib/Transforms/IPO/StructRetPromotion.cpp
+++ b/lib/Transforms/IPO/StructRetPromotion.cpp
@@ -23,6 +23,7 @@
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Instructions.h"
@@ -34,6 +35,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumRejectedSRETUses , "Number of sret rejected due to unexpected uses");
@@ -47,15 +49,15 @@ namespace {
CallGraphSCCPass::getAnalysisUsage(AU);
}
- virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
+ virtual bool runOnSCC(std::vector<CallGraphNode *> &SCC);
static char ID; // Pass identification, replacement for typeid
SRETPromotion() : CallGraphSCCPass(&ID) {}
private:
- bool PromoteReturn(CallGraphNode *CGN);
+ CallGraphNode *PromoteReturn(CallGraphNode *CGN);
bool isSafeToUpdateAllCallers(Function *F);
Function *cloneFunctionBody(Function *F, const StructType *STy);
- void updateCallSites(Function *F, Function *NF);
+ CallGraphNode *updateCallSites(Function *F, Function *NF);
bool nestedStructType(const StructType *STy);
};
}
@@ -68,49 +70,54 @@ Pass *llvm::createStructRetPromotionPass() {
return new SRETPromotion();
}
-bool SRETPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
+bool SRETPromotion::runOnSCC(std::vector<CallGraphNode *> &SCC) {
bool Changed = false;
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
- Changed |= PromoteReturn(SCC[i]);
+ if (CallGraphNode *NewNode = PromoteReturn(SCC[i])) {
+ SCC[i] = NewNode;
+ Changed = true;
+ }
return Changed;
}
/// PromoteReturn - This method promotes function that uses StructRet paramater
-/// into a function that uses mulitple return value.
-bool SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
+/// into a function that uses multiple return values.
+CallGraphNode *SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
Function *F = CGN->getFunction();
if (!F || F->isDeclaration() || !F->hasLocalLinkage())
- return false;
+ return 0;
// Make sure that function returns struct.
if (F->arg_size() == 0 || !F->hasStructRetAttr() || F->doesNotReturn())
- return false;
+ return 0;
- DOUT << "SretPromotion: Looking at sret function " << F->getNameStart() << "\n";
+ DEBUG(errs() << "SretPromotion: Looking at sret function "
+ << F->getName() << "\n");
- assert (F->getReturnType() == Type::VoidTy && "Invalid function return type");
+ assert(F->getReturnType() == Type::getVoidTy(F->getContext()) &&
+ "Invalid function return type");
Function::arg_iterator AI = F->arg_begin();
const llvm::PointerType *FArgType = dyn_cast<PointerType>(AI->getType());
- assert (FArgType && "Invalid sret parameter type");
+ assert(FArgType && "Invalid sret parameter type");
const llvm::StructType *STy =
dyn_cast<StructType>(FArgType->getElementType());
- assert (STy && "Invalid sret parameter element type");
+ assert(STy && "Invalid sret parameter element type");
// Check if it is ok to perform this promotion.
if (isSafeToUpdateAllCallers(F) == false) {
- DOUT << "SretPromotion: Not all callers can be updated\n";
+ DEBUG(errs() << "SretPromotion: Not all callers can be updated\n");
NumRejectedSRETUses++;
- return false;
+ return 0;
}
- DOUT << "SretPromotion: sret argument will be promoted\n";
+ DEBUG(errs() << "SretPromotion: sret argument will be promoted\n");
NumSRET++;
// [1] Replace use of sret parameter
- AllocaInst *TheAlloca = new AllocaInst (STy, NULL, "mrv",
- F->getEntryBlock().begin());
+ AllocaInst *TheAlloca = new AllocaInst(STy, NULL, "mrv",
+ F->getEntryBlock().begin());
Value *NFirstArg = F->arg_begin();
NFirstArg->replaceAllUsesWith(TheAlloca);
@@ -121,7 +128,7 @@ bool SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
++BI;
if (isa<ReturnInst>(I)) {
Value *NV = new LoadInst(TheAlloca, "mrv.ld", I);
- ReturnInst *NR = ReturnInst::Create(NV, I);
+ ReturnInst *NR = ReturnInst::Create(F->getContext(), NV, I);
I->replaceAllUsesWith(NR);
I->eraseFromParent();
}
@@ -131,11 +138,13 @@ bool SRETPromotion::PromoteReturn(CallGraphNode *CGN) {
Function *NF = cloneFunctionBody(F, STy);
// [4] Update all call sites to use new function
- updateCallSites(F, NF);
+ CallGraphNode *NF_CFN = updateCallSites(F, NF);
- F->eraseFromParent();
- getAnalysis<CallGraph>().changeFunction(F, NF);
- return true;
+ CallGraph &CG = getAnalysis<CallGraph>();
+ NF_CFN->stealCalledFunctionsFrom(CG[F]);
+
+ delete CG.removeFunctionFromModule(F);
+ return NF_CFN;
}
// Check if it is ok to perform this promotion.
@@ -243,23 +252,26 @@ Function *SRETPromotion::cloneFunctionBody(Function *F,
Function::arg_iterator NI = NF->arg_begin();
++I;
while (I != E) {
- I->replaceAllUsesWith(NI);
- NI->takeName(I);
- ++I;
- ++NI;
+ I->replaceAllUsesWith(NI);
+ NI->takeName(I);
+ ++I;
+ ++NI;
}
return NF;
}
/// updateCallSites - Update all sites that call F to use NF.
-void SRETPromotion::updateCallSites(Function *F, Function *NF) {
+CallGraphNode *SRETPromotion::updateCallSites(Function *F, Function *NF) {
CallGraph &CG = getAnalysis<CallGraph>();
SmallVector<Value*, 16> Args;
// Attributes - Keep track of the parameter attributes for the arguments.
SmallVector<AttributeWithIndex, 8> ArgAttrsVec;
+ // Get a new callgraph node for NF.
+ CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
+
while (!F->use_empty()) {
CallSite CS = CallSite::get(*F->use_begin());
Instruction *Call = CS.getInstruction();
@@ -309,8 +321,10 @@ void SRETPromotion::updateCallSites(Function *F, Function *NF) {
New->takeName(Call);
// Update the callgraph to know that the callsite has been transformed.
- CG[Call->getParent()->getParent()]->replaceCallSite(Call, New);
-
+ CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
+ CalleeNode->removeCallEdgeFor(Call);
+ CalleeNode->addCalledFunction(New, NF_CGN);
+
// Update all users of sret parameter to extract value using extractvalue.
for (Value::use_iterator UI = FirstCArg->use_begin(),
UE = FirstCArg->use_end(); UI != UE; ) {
@@ -318,24 +332,25 @@ void SRETPromotion::updateCallSites(Function *F, Function *NF) {
CallInst *C2 = dyn_cast<CallInst>(U2);
if (C2 && (C2 == Call))
continue;
- else if (GetElementPtrInst *UGEP = dyn_cast<GetElementPtrInst>(U2)) {
- ConstantInt *Idx = dyn_cast<ConstantInt>(UGEP->getOperand(2));
- assert (Idx && "Unexpected getelementptr index!");
- Value *GR = ExtractValueInst::Create(New, Idx->getZExtValue(),
- "evi", UGEP);
- while(!UGEP->use_empty()) {
- // isSafeToUpdateAllCallers has checked that all GEP uses are
- // LoadInsts
- LoadInst *L = cast<LoadInst>(*UGEP->use_begin());
- L->replaceAllUsesWith(GR);
- L->eraseFromParent();
- }
- UGEP->eraseFromParent();
+
+ GetElementPtrInst *UGEP = cast<GetElementPtrInst>(U2);
+ ConstantInt *Idx = cast<ConstantInt>(UGEP->getOperand(2));
+ Value *GR = ExtractValueInst::Create(New, Idx->getZExtValue(),
+ "evi", UGEP);
+ while(!UGEP->use_empty()) {
+ // isSafeToUpdateAllCallers has checked that all GEP uses are
+ // LoadInsts
+ LoadInst *L = cast<LoadInst>(*UGEP->use_begin());
+ L->replaceAllUsesWith(GR);
+ L->eraseFromParent();
}
- else assert( 0 && "Unexpected sret parameter use");
+ UGEP->eraseFromParent();
+ continue;
}
Call->eraseFromParent();
}
+
+ return NF_CGN;
}
/// nestedStructType - Return true if STy includes any
@@ -344,7 +359,7 @@ bool SRETPromotion::nestedStructType(const StructType *STy) {
unsigned Num = STy->getNumElements();
for (unsigned i = 0; i < Num; i++) {
const Type *Ty = STy->getElementType(i);
- if (!Ty->isSingleValueType() && Ty != Type::VoidTy)
+ if (!Ty->isSingleValueType() && Ty != Type::getVoidTy(STy->getContext()))
return true;
}
return false;
diff --git a/lib/Transforms/Instrumentation/BlockProfiling.cpp b/lib/Transforms/Instrumentation/BlockProfiling.cpp
index 2bd9809..eb8f225 100644
--- a/lib/Transforms/Instrumentation/BlockProfiling.cpp
+++ b/lib/Transforms/Instrumentation/BlockProfiling.cpp
@@ -19,12 +19,11 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "RSProfiling.h"
#include "ProfilingUtils.h"
@@ -52,8 +51,8 @@ ModulePass *llvm::createFunctionProfilerPass() {
bool FunctionProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- cerr << "WARNING: cannot insert function profiling into a module"
- << " with no main function!\n";
+ errs() << "WARNING: cannot insert function profiling into a module"
+ << " with no main function!\n";
return false; // No main, no instrumentation!
}
@@ -62,10 +61,11 @@ bool FunctionProfiler::runOnModule(Module &M) {
if (!I->isDeclaration())
++NumFunctions;
- const Type *ATy = ArrayType::get(Type::Int32Ty, NumFunctions);
+ const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()),
+ NumFunctions);
GlobalVariable *Counters =
- new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(ATy), "FuncProfCounters", &M);
+ new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
+ Constant::getNullValue(ATy), "FuncProfCounters");
// Instrument all of the functions...
unsigned i = 0;
@@ -98,26 +98,29 @@ ModulePass *llvm::createBlockProfilerPass() { return new BlockProfiler(); }
bool BlockProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- cerr << "WARNING: cannot insert block profiling into a module"
- << " with no main function!\n";
+ errs() << "WARNING: cannot insert block profiling into a module"
+ << " with no main function!\n";
return false; // No main, no instrumentation!
}
unsigned NumBlocks = 0;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- NumBlocks += I->size();
+ if (!I->isDeclaration())
+ NumBlocks += I->size();
- const Type *ATy = ArrayType::get(Type::Int32Ty, NumBlocks);
+ const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumBlocks);
GlobalVariable *Counters =
- new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(ATy), "BlockProfCounters", &M);
+ new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
+ Constant::getNullValue(ATy), "BlockProfCounters");
// Instrument all of the blocks...
unsigned i = 0;
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ if (I->isDeclaration()) continue;
for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
// Insert counter at the start of the block
IncrementCounterInBlock(BB, i++, Counters);
+ }
// Add the initialization call to main.
InsertProfilingInitCall(Main, "llvm_start_block_profiling", Counters);
diff --git a/lib/Transforms/Instrumentation/CMakeLists.txt b/lib/Transforms/Instrumentation/CMakeLists.txt
index d7c518d..494928e 100644
--- a/lib/Transforms/Instrumentation/CMakeLists.txt
+++ b/lib/Transforms/Instrumentation/CMakeLists.txt
@@ -1,6 +1,7 @@
add_llvm_library(LLVMInstrumentation
BlockProfiling.cpp
EdgeProfiling.cpp
+ OptimalEdgeProfiling.cpp
ProfilingUtils.cpp
RSProfiling.cpp
)
diff --git a/lib/Transforms/Instrumentation/EdgeProfiling.cpp b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
index 0831f3b..b9cb275 100644
--- a/lib/Transforms/Instrumentation/EdgeProfiling.cpp
+++ b/lib/Transforms/Instrumentation/EdgeProfiling.cpp
@@ -16,25 +16,30 @@
// number of counters inserted.
//
//===----------------------------------------------------------------------===//
-
+#define DEBUG_TYPE "insert-edge-profiling"
#include "ProfilingUtils.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
+STATISTIC(NumEdgesInserted, "The # of edges inserted.");
+
namespace {
class VISIBILITY_HIDDEN EdgeProfiler : public ModulePass {
bool runOnModule(Module &M);
public:
static char ID; // Pass identification, replacement for typeid
EdgeProfiler() : ModulePass(&ID) {}
+
+ virtual const char *getPassName() const {
+ return "Edge Profiler";
+ }
};
}
@@ -47,14 +52,17 @@ ModulePass *llvm::createEdgeProfilerPass() { return new EdgeProfiler(); }
bool EdgeProfiler::runOnModule(Module &M) {
Function *Main = M.getFunction("main");
if (Main == 0) {
- cerr << "WARNING: cannot insert edge profiling into a module"
- << " with no main function!\n";
+ errs() << "WARNING: cannot insert edge profiling into a module"
+ << " with no main function!\n";
return false; // No main, no instrumentation!
}
std::set<BasicBlock*> BlocksToInstrument;
unsigned NumEdges = 0;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ // Reserve space for (0,entry) edge.
+ ++NumEdges;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
// Keep track of which blocks need to be instrumented. We don't want to
// instrument blocks that are added as the result of breaking critical
@@ -62,15 +70,20 @@ bool EdgeProfiler::runOnModule(Module &M) {
BlocksToInstrument.insert(BB);
NumEdges += BB->getTerminator()->getNumSuccessors();
}
+ }
- const Type *ATy = ArrayType::get(Type::Int32Ty, NumEdges);
+ const Type *ATy = ArrayType::get(Type::getInt32Ty(M.getContext()), NumEdges);
GlobalVariable *Counters =
- new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
- Constant::getNullValue(ATy), "EdgeProfCounters", &M);
+ new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
+ Constant::getNullValue(ATy), "EdgeProfCounters");
+ NumEdgesInserted = NumEdges;
// Instrument all of the edges...
unsigned i = 0;
- for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ // Create counter for (0,entry) edge.
+ IncrementCounterInBlock(&F->getEntryBlock(), i++, Counters);
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (BlocksToInstrument.count(BB)) { // Don't instrument inserted blocks
// Okay, we have to add a counter of each outgoing edge. If the
@@ -93,6 +106,7 @@ bool EdgeProfiler::runOnModule(Module &M) {
}
}
}
+ }
// Add the initialization call to main.
InsertProfilingInitCall(Main, "llvm_start_edge_profiling", Counters);
diff --git a/lib/Transforms/Instrumentation/MaximumSpanningTree.h b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
new file mode 100644
index 0000000..2951dbc
--- /dev/null
+++ b/lib/Transforms/Instrumentation/MaximumSpanningTree.h
@@ -0,0 +1,95 @@
+//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This module privides means for calculating a maximum spanning tree for a
+// given set of weighted edges. The type parameter T is the type of a node.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
+#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
+
+#include "llvm/ADT/EquivalenceClasses.h"
+#include <vector>
+#include <algorithm>
+
+namespace llvm {
+
+ /// MaximumSpanningTree - A MST implementation.
+ /// The type parameter T determines the type of the nodes of the graph.
+ template <typename T>
+ class MaximumSpanningTree {
+
+ // A comparing class for comparing weighted edges.
+ template <typename CT>
+ struct EdgeWeightCompare {
+ bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X,
+ typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
+ if (X.second > Y.second) return true;
+ if (X.second < Y.second) return false;
+ return false;
+ }
+ };
+
+ public:
+ typedef std::pair<const T*, const T*> Edge;
+ typedef std::pair<Edge, double> EdgeWeight;
+ typedef std::vector<EdgeWeight> EdgeWeights;
+ protected:
+ typedef std::vector<Edge> MaxSpanTree;
+
+ MaxSpanTree MST;
+
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+
+ /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
+ /// spanning tree.
+ MaximumSpanningTree(EdgeWeights &EdgeVector) {
+
+ std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
+
+ // Create spanning tree, Forest contains a special data structure
+ // that makes checking if two nodes are already in a common (sub-)tree
+ // fast and cheap.
+ EquivalenceClasses<const T*> Forest;
+ for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
+ EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
+ Edge e = (*EWi).first;
+
+ Forest.insert(e.first);
+ Forest.insert(e.second);
+ }
+
+ // Iterate over the sorted edges, biggest first.
+ for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
+ EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
+ Edge e = (*EWi).first;
+
+ if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
+ Forest.unionSets(e.first, e.second);
+ // So we know now that the edge is not already in a subtree, so we push
+ // the edge to the MST.
+ MST.push_back(e);
+ }
+ }
+ }
+
+ typename MaxSpanTree::iterator begin() {
+ return MST.begin();
+ }
+
+ typename MaxSpanTree::iterator end() {
+ return MST.end();
+ }
+ };
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
new file mode 100644
index 0000000..b2e6747
--- /dev/null
+++ b/lib/Transforms/Instrumentation/OptimalEdgeProfiling.cpp
@@ -0,0 +1,219 @@
+//===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass instruments the specified program with counters for edge profiling.
+// Edge profiling can give a reasonable approximation of the hot paths through a
+// program, and is used for a wide variety of program transformations.
+//
+//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "insert-optimal-edge-profiling"
+#include "ProfilingUtils.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Analysis/ProfileInfoLoader.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "MaximumSpanningTree.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumEdgesInserted, "The # of edges inserted.");
+
+namespace {
+ class VISIBILITY_HIDDEN OptimalEdgeProfiler : public ModulePass {
+ bool runOnModule(Module &M);
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ OptimalEdgeProfiler() : ModulePass(&ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredID(ProfileEstimatorPassID);
+ AU.addRequired<ProfileInfo>();
+ }
+
+ virtual const char *getPassName() const {
+ return "Optimal Edge Profiler";
+ }
+ };
+}
+
+char OptimalEdgeProfiler::ID = 0;
+static RegisterPass<OptimalEdgeProfiler>
+X("insert-optimal-edge-profiling",
+ "Insert optimal instrumentation for edge profiling");
+
+ModulePass *llvm::createOptimalEdgeProfilerPass() {
+ return new OptimalEdgeProfiler();
+}
+
+inline static void printEdgeCounter(ProfileInfo::Edge e,
+ BasicBlock* b,
+ unsigned i) {
+ DEBUG(errs() << "--Edge Counter for " << (e) << " in " \
+ << ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n");
+}
+
+bool OptimalEdgeProfiler::runOnModule(Module &M) {
+ Function *Main = M.getFunction("main");
+ if (Main == 0) {
+ errs() << "WARNING: cannot insert edge profiling into a module"
+ << " with no main function!\n";
+ return false; // No main, no instrumentation!
+ }
+
+ // NumEdges counts all the edges that may be instrumented. Later on its
+ // decided which edges to actually instrument, to achieve optimal profiling.
+ // For the entry block a virtual edge (0,entry) is reserved, for each block
+ // with no successors an edge (BB,0) is reserved. These edges are necessary
+ // to calculate a truly optimal maximum spanning tree and thus an optimal
+ // instrumentation.
+ unsigned NumEdges = 0;
+
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ // Reserve space for (0,entry) edge.
+ ++NumEdges;
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
+ // Keep track of which blocks need to be instrumented. We don't want to
+ // instrument blocks that are added as the result of breaking critical
+ // edges!
+ if (BB->getTerminator()->getNumSuccessors() == 0) {
+ // Reserve space for (BB,0) edge.
+ ++NumEdges;
+ } else {
+ NumEdges += BB->getTerminator()->getNumSuccessors();
+ }
+ }
+ }
+
+ // In the profiling output a counter for each edge is reserved, but only few
+ // are used. This is done to be able to read back in the profile without
+ // calulating the maximum spanning tree again, instead each edge counter that
+ // is not used is initialised with -1 to signal that this edge counter has to
+ // be calculated from other edge counters on reading the profile info back
+ // in.
+
+ const Type *Int32 = Type::getInt32Ty(M.getContext());
+ const ArrayType *ATy = ArrayType::get(Int32, NumEdges);
+ GlobalVariable *Counters =
+ new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
+ Constant::getNullValue(ATy), "OptEdgeProfCounters");
+ NumEdgesInserted = 0;
+
+ std::vector<Constant*> Initializer(NumEdges);
+ Constant* Zero = ConstantInt::get(Int32, 0);
+ Constant* Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
+
+ // Instrument all of the edges not in MST...
+ unsigned i = 0;
+ for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
+ if (F->isDeclaration()) continue;
+ DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
+
+ // Calculate a Maximum Spanning Tree with the edge weights determined by
+ // ProfileEstimator. ProfileEstimator also assign weights to the virtual
+ // edges (0,entry) and (BB,0) (for blocks with no successors) and this
+ // edges also participate in the maximum spanning tree calculation.
+ // The third parameter of MaximumSpanningTree() has the effect that not the
+ // actual MST is returned but the edges _not_ in the MST.
+
+ ProfileInfo::EdgeWeights ECs =
+ getAnalysisID<ProfileInfo>(ProfileEstimatorPassID, *F).getEdgeWeights(F);
+ std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
+ MaximumSpanningTree<BasicBlock> MST (EdgeVector);
+ std::stable_sort(MST.begin(),MST.end());
+
+ // Check if (0,entry) not in the MST. If not, instrument edge
+ // (IncrementCounterInBlock()) and set the counter initially to zero, if
+ // the edge is in the MST the counter is initialised to -1.
+
+ BasicBlock *entry = &(F->getEntryBlock());
+ ProfileInfo::Edge edge = ProfileInfo::getEdge(0,entry);
+ if (!std::binary_search(MST.begin(), MST.end(), edge)) {
+ printEdgeCounter(edge,entry,i);
+ IncrementCounterInBlock(entry, i, Counters); NumEdgesInserted++;
+ Initializer[i++] = (Zero);
+ } else{
+ Initializer[i++] = (Uncounted);
+ }
+
+ // InsertedBlocks contains all blocks that were inserted for splitting an
+ // edge, this blocks do not have to be instrumented.
+ DenseSet<BasicBlock*> InsertedBlocks;
+ for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
+ // Check if block was not inserted and thus does not have to be
+ // instrumented.
+ if (InsertedBlocks.count(BB)) continue;
+
+ // Okay, we have to add a counter of each outgoing edge not in MST. If
+ // the outgoing edge is not critical don't split it, just insert the
+ // counter in the source or destination of the edge. Also, if the block
+ // has no successors, the virtual edge (BB,0) is processed.
+ TerminatorInst *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 0) {
+ ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,0);
+ if (!std::binary_search(MST.begin(), MST.end(), edge)) {
+ printEdgeCounter(edge,BB,i);
+ IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++;
+ Initializer[i++] = (Zero);
+ } else{
+ Initializer[i++] = (Uncounted);
+ }
+ }
+ for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
+ BasicBlock *Succ = TI->getSuccessor(s);
+ ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
+ if (!std::binary_search(MST.begin(), MST.end(), edge)) {
+
+ // If the edge is critical, split it.
+ bool wasInserted = SplitCriticalEdge(TI, s, this);
+ Succ = TI->getSuccessor(s);
+ if (wasInserted)
+ InsertedBlocks.insert(Succ);
+
+ // Okay, we are guaranteed that the edge is no longer critical. If
+ // we only have a single successor, insert the counter in this block,
+ // otherwise insert it in the successor block.
+ if (TI->getNumSuccessors() == 1) {
+ // Insert counter at the start of the block
+ printEdgeCounter(edge,BB,i);
+ IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++;
+ } else {
+ // Insert counter at the start of the block
+ printEdgeCounter(edge,Succ,i);
+ IncrementCounterInBlock(Succ, i, Counters); NumEdgesInserted++;
+ }
+ Initializer[i++] = (Zero);
+ } else {
+ Initializer[i++] = (Uncounted);
+ }
+ }
+ }
+ }
+
+ // Check if the number of edges counted at first was the number of edges we
+ // considered for instrumentation.
+ assert(i==NumEdges && "the number of edges in counting array is wrong");
+
+ // Assing the now completely defined initialiser to the array.
+ Constant *init = ConstantArray::get(ATy, Initializer);
+ Counters->setInitializer(init);
+
+ // Add the initialization call to main.
+ InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
+ return true;
+}
+
diff --git a/lib/Transforms/Instrumentation/ProfilingUtils.cpp b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
index 48071f1..1679bea 100644
--- a/lib/Transforms/Instrumentation/ProfilingUtils.cpp
+++ b/lib/Transforms/Instrumentation/ProfilingUtils.cpp
@@ -18,22 +18,27 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array) {
+ LLVMContext &Context = MainFn->getContext();
const Type *ArgVTy =
- PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
- const PointerType *UIntPtr = PointerType::getUnqual(Type::Int32Ty);
+ PointerType::getUnqual(Type::getInt8PtrTy(Context));
+ const PointerType *UIntPtr =
+ Type::getInt32PtrTy(Context);
Module &M = *MainFn->getParent();
- Constant *InitFn = M.getOrInsertFunction(FnName, Type::Int32Ty, Type::Int32Ty,
- ArgVTy, UIntPtr, Type::Int32Ty,
+ Constant *InitFn = M.getOrInsertFunction(FnName, Type::getInt32Ty(Context),
+ Type::getInt32Ty(Context),
+ ArgVTy, UIntPtr,
+ Type::getInt32Ty(Context),
(Type *)0);
// This could force argc and argv into programs that wouldn't otherwise have
// them, but instead we just pass null values in.
std::vector<Value*> Args(4);
- Args[0] = Constant::getNullValue(Type::Int32Ty);
+ Args[0] = Constant::getNullValue(Type::getInt32Ty(Context));
Args[1] = Constant::getNullValue(ArgVTy);
// Skip over any allocas in the entry block.
@@ -41,7 +46,8 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
BasicBlock::iterator InsertPos = Entry->begin();
while (isa<AllocaInst>(InsertPos)) ++InsertPos;
- std::vector<Constant*> GEPIndices(2, Constant::getNullValue(Type::Int32Ty));
+ std::vector<Constant*> GEPIndices(2,
+ Constant::getNullValue(Type::getInt32Ty(Context)));
unsigned NumElements = 0;
if (Array) {
Args[2] = ConstantExpr::getGetElementPtr(Array, &GEPIndices[0],
@@ -53,7 +59,7 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
// pass null.
Args[2] = ConstantPointerNull::get(UIntPtr);
}
- Args[3] = ConstantInt::get(Type::Int32Ty, NumElements);
+ Args[3] = ConstantInt::get(Type::getInt32Ty(Context), NumElements);
Instruction *InitCall = CallInst::Create(InitFn, Args.begin(), Args.end(),
"newargc", InsertPos);
@@ -78,16 +84,18 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
AI = MainFn->arg_begin();
// If the program looked at argc, have it look at the return value of the
// init call instead.
- if (AI->getType() != Type::Int32Ty) {
+ if (AI->getType() != Type::getInt32Ty(Context)) {
Instruction::CastOps opcode;
if (!AI->use_empty()) {
opcode = CastInst::getCastOpcode(InitCall, true, AI->getType(), true);
AI->replaceAllUsesWith(
CastInst::Create(opcode, InitCall, AI->getType(), "", InsertPos));
}
- opcode = CastInst::getCastOpcode(AI, true, Type::Int32Ty, true);
+ opcode = CastInst::getCastOpcode(AI, true,
+ Type::getInt32Ty(Context), true);
InitCall->setOperand(1,
- CastInst::Create(opcode, AI, Type::Int32Ty, "argc.cast", InitCall));
+ CastInst::Create(opcode, AI, Type::getInt32Ty(Context),
+ "argc.cast", InitCall));
} else {
AI->replaceAllUsesWith(InitCall);
InitCall->setOperand(1, AI);
@@ -104,17 +112,20 @@ void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
while (isa<AllocaInst>(InsertPos))
++InsertPos;
+ LLVMContext &Context = BB->getContext();
+
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
- Indices[0] = Constant::getNullValue(Type::Int32Ty);
- Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
+ Indices[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Indices[1] = ConstantInt::get(Type::getInt32Ty(Context), CounterNum);
Constant *ElementPtr =
- ConstantExpr::getGetElementPtr(CounterArray, &Indices[0], Indices.size());
+ ConstantExpr::getGetElementPtr(CounterArray, &Indices[0],
+ Indices.size());
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos);
Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal,
- ConstantInt::get(Type::Int32Ty, 1),
+ ConstantInt::get(Type::getInt32Ty(Context), 1),
"NewFuncCounter", InsertPos);
new StoreInst(NewVal, ElementPtr, InsertPos);
}
diff --git a/lib/Transforms/Instrumentation/RSProfiling.cpp b/lib/Transforms/Instrumentation/RSProfiling.cpp
index b110f4e..3b72260 100644
--- a/lib/Transforms/Instrumentation/RSProfiling.cpp
+++ b/lib/Transforms/Instrumentation/RSProfiling.cpp
@@ -33,6 +33,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Constants.h"
@@ -43,6 +44,8 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "RSProfiling.h"
#include <set>
@@ -197,8 +200,8 @@ GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
uint64_t resetval) : T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ResetValue = Init;
- Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
- Init, "RandomSteeringCounter", &M);
+ Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
+ Init, "RandomSteeringCounter");
}
GlobalRandomCounter::~GlobalRandomCounter() {}
@@ -211,8 +214,9 @@ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
//decrement counter
LoadInst* l = new LoadInst(Counter, "counter", t);
- ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
- "countercc", t);
+ ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
+ ConstantInt::get(T, 0),
+ "countercc");
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
"counternew", t);
@@ -221,7 +225,8 @@ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
//reset counter
BasicBlock* oldnext = t->getSuccessor(0);
- BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
+ BasicBlock* resetblock = BasicBlock::Create(bb->getContext(),
+ "reset", oldnext->getParent(),
oldnext);
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
t->setSuccessor(0, resetblock);
@@ -234,8 +239,8 @@ GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
: AI(0), T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ResetValue = Init;
- Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
- Init, "RandomSteeringCounter", &M);
+ Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
+ Init, "RandomSteeringCounter");
}
GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
@@ -283,8 +288,9 @@ void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
//decrement counter
LoadInst* l = new LoadInst(AI, "counter", t);
- ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
- "countercc", t);
+ ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
+ ConstantInt::get(T, 0),
+ "countercc");
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
"counternew", t);
@@ -293,7 +299,8 @@ void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
//reset counter
BasicBlock* oldnext = t->getSuccessor(0);
- BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
+ BasicBlock* resetblock = BasicBlock::Create(bb->getContext(),
+ "reset", oldnext->getParent(),
oldnext);
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
t->setSuccessor(0, resetblock);
@@ -315,12 +322,13 @@ void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
CallInst* c = CallInst::Create(F, "rdcc", t);
BinaryOperator* b =
- BinaryOperator::CreateAnd(c, ConstantInt::get(Type::Int64Ty, rm),
+ BinaryOperator::CreateAnd(c,
+ ConstantInt::get(Type::getInt64Ty(bb->getContext()), rm),
"mrdcc", t);
- ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
- ConstantInt::get(Type::Int64Ty, 0),
- "mrdccc", t);
+ ICmpInst *s = new ICmpInst(t, ICmpInst::ICMP_EQ, b,
+ ConstantInt::get(Type::getInt64Ty(bb->getContext()), 0),
+ "mrdccc");
t->setCondition(s);
}
@@ -345,16 +353,16 @@ void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNu
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
- Indices[0] = Constant::getNullValue(Type::Int32Ty);
- Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
- Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
+ Indices[0] = Constant::getNullValue(Type::getInt32Ty(BB->getContext()));
+ Indices[1] = ConstantInt::get(Type::getInt32Ty(BB->getContext()), CounterNum);
+ Constant *ElementPtr =ConstantExpr::getGetElementPtr(CounterArray,
&Indices[0], 2);
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
profcode.insert(OldVal);
Value *NewVal = BinaryOperator::CreateAdd(OldVal,
- ConstantInt::get(Type::Int32Ty, 1),
+ ConstantInt::get(Type::getInt32Ty(BB->getContext()), 1),
"NewCounter", InsertPos);
profcode.insert(NewVal);
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
@@ -377,7 +385,8 @@ Value* ProfilerRS::Translate(Value* v) {
if (bb == &bb->getParent()->getEntryBlock())
TransCache[bb] = bb; //don't translate entry block
else
- TransCache[bb] = BasicBlock::Create("dup_" + bb->getName(),
+ TransCache[bb] = BasicBlock::Create(v->getContext(),
+ "dup_" + bb->getName(),
bb->getParent(), NULL);
return TransCache[bb];
} else if (Instruction* i = dyn_cast<Instruction>(v)) {
@@ -401,7 +410,7 @@ Value* ProfilerRS::Translate(Value* v) {
TransCache[v] = v;
return v;
}
- assert(0 && "Value not handled");
+ llvm_unreachable("Value not handled");
return 0;
}
@@ -466,16 +475,16 @@ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F)
//a:
Function::iterator BBN = src; ++BBN;
- BasicBlock* bbC = BasicBlock::Create("choice", &F, BBN);
+ BasicBlock* bbC = BasicBlock::Create(F.getContext(), "choice", &F, BBN);
//ChoicePoints.insert(bbC);
BBN = cast<BasicBlock>(Translate(src));
- BasicBlock* bbCp = BasicBlock::Create("choice", &F, ++BBN);
+ BasicBlock* bbCp = BasicBlock::Create(F.getContext(), "choice", &F, ++BBN);
ChoicePoints.insert(bbCp);
//b:
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
- ConstantInt::get(Type::Int1Ty, true), bbCp);
+ ConstantInt::get(Type::getInt1Ty(src->getContext()), true), bbCp);
//c:
{
TerminatorInst* iB = src->getTerminator();
@@ -531,9 +540,8 @@ bool ProfilerRS::runOnFunction(Function& F) {
TerminatorInst* T = F.getEntryBlock().getTerminator();
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
cast<BasicBlock>(
- Translate(T->getSuccessor(0))),
- ConstantInt::get(Type::Int1Ty,
- true)));
+ Translate(T->getSuccessor(0))),
+ ConstantInt::get(Type::getInt1Ty(F.getContext()), true)));
//do whatever is needed now that the function is duplicated
c->PrepFunction(&F);
@@ -556,10 +564,12 @@ bool ProfilerRS::runOnFunction(Function& F) {
bool ProfilerRS::doInitialization(Module &M) {
switch (RandomMethod) {
case GBV:
- c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
+ c = new GlobalRandomCounter(M, Type::getInt32Ty(M.getContext()),
+ (1 << 14) - 1);
break;
case GBVO:
- c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
+ c = new GlobalRandomCounterOpt(M, Type::getInt32Ty(M.getContext()),
+ (1 << 14) - 1);
break;
case HOSTCC:
c = new CycleCounter(M, (1 << 14) - 1);
@@ -639,7 +649,7 @@ static void getBackEdges(Function& F, T& BackEdges) {
std::map<BasicBlock*, int> finish;
int time = 0;
recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
- DOUT << F.getName() << " " << BackEdges.size() << "\n";
+ DEBUG(errs() << F.getName() << " " << BackEdges.size() << "\n");
}
diff --git a/lib/Transforms/Makefile b/lib/Transforms/Makefile
index 5fe1eeb..025d02a 100644
--- a/lib/Transforms/Makefile
+++ b/lib/Transforms/Makefile
@@ -13,7 +13,7 @@ PARALLEL_DIRS = Utils Instrumentation Scalar IPO Hello
include $(LEVEL)/Makefile.config
# No support for plugins on windows targets
-ifeq ($(OS), $(filter $(OS), Cygwin MingW))
+ifeq ($(HOST_OS), $(filter $(HOST_OS), Cygwin MingW))
PARALLEL_DIRS := $(filter-out Hello, $(PARALLEL_DIRS))
endif
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp
index 9c55f66..37f383f 100644
--- a/lib/Transforms/Scalar/ADCE.cpp
+++ b/lib/Transforms/Scalar/ADCE.cpp
@@ -21,19 +21,17 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-
using namespace llvm;
STATISTIC(NumRemoved, "Number of instructions removed");
namespace {
- struct VISIBILITY_HIDDEN ADCE : public FunctionPass {
+ struct ADCE : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
ADCE() : FunctionPass(&ID) {}
diff --git a/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
index fb9b880..54533f5 100644
--- a/lib/Transforms/Scalar/BasicBlockPlacement.cpp
+++ b/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -31,7 +31,6 @@
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Transforms/Scalar.h"
#include <set>
@@ -40,7 +39,7 @@ using namespace llvm;
STATISTIC(NumMoved, "Number of basic blocks moved");
namespace {
- struct VISIBILITY_HIDDEN BlockPlacement : public FunctionPass {
+ struct BlockPlacement : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
BlockPlacement() : FunctionPass(&ID) {}
@@ -127,13 +126,13 @@ void BlockPlacement::PlaceBlocks(BasicBlock *BB) {
/*empty*/;
if (SI == E) return; // No more successors to place.
- unsigned MaxExecutionCount = PI->getExecutionCount(*SI);
+ double MaxExecutionCount = PI->getExecutionCount(*SI);
BasicBlock *MaxSuccessor = *SI;
// Scan for more frequently executed successors
for (; SI != E; ++SI)
if (!PlacedBlocks.count(*SI)) {
- unsigned Count = PI->getExecutionCount(*SI);
+ double Count = PI->getExecutionCount(*SI);
if (Count > MaxExecutionCount ||
// Prefer to not disturb the code.
(Count == MaxExecutionCount && *SI == &*InsertPos)) {
diff --git a/lib/Transforms/Scalar/CMakeLists.txt b/lib/Transforms/Scalar/CMakeLists.txt
index 8a8f83f..cbeed4c 100644
--- a/lib/Transforms/Scalar/CMakeLists.txt
+++ b/lib/Transforms/Scalar/CMakeLists.txt
@@ -1,13 +1,13 @@
add_llvm_library(LLVMScalarOpts
ADCE.cpp
BasicBlockPlacement.cpp
+ CodeGenLICM.cpp
CodeGenPrepare.cpp
CondPropagate.cpp
ConstantProp.cpp
DCE.cpp
DeadStoreElimination.cpp
GVN.cpp
- GVNPRE.cpp
IndVarSimplify.cpp
InstructionCombining.cpp
JumpThreading.cpp
@@ -19,7 +19,6 @@ add_llvm_library(LLVMScalarOpts
LoopUnroll.cpp
LoopUnswitch.cpp
MemCpyOptimizer.cpp
- PredicateSimplifier.cpp
Reassociate.cpp
Reg2Mem.cpp
SCCP.cpp
diff --git a/lib/Transforms/Scalar/CodeGenLICM.cpp b/lib/Transforms/Scalar/CodeGenLICM.cpp
new file mode 100644
index 0000000..10f950e
--- /dev/null
+++ b/lib/Transforms/Scalar/CodeGenLICM.cpp
@@ -0,0 +1,112 @@
+//===- CodeGenLICM.cpp - LICM a function for code generation --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This function performs late LICM, hoisting constants out of loops that
+// are not valid immediates. It should not be followed by instcombine,
+// because instcombine would quickly stuff the constants back into the loop.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "codegen-licm"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/ADT/DenseMap.h"
+using namespace llvm;
+
+namespace {
+ class CodeGenLICM : public LoopPass {
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit CodeGenLICM() : LoopPass(&ID) {}
+ };
+}
+
+char CodeGenLICM::ID = 0;
+static RegisterPass<CodeGenLICM> X("codegen-licm",
+ "hoist constants out of loops");
+
+Pass *llvm::createCodeGenLICMPass() {
+ return new CodeGenLICM();
+}
+
+bool CodeGenLICM::runOnLoop(Loop *L, LPPassManager &) {
+ bool Changed = false;
+
+ // Only visit outermost loops.
+ if (L->getParentLoop()) return Changed;
+
+ Instruction *PreheaderTerm = L->getLoopPreheader()->getTerminator();
+ DenseMap<Constant *, BitCastInst *> HoistedConstants;
+
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ for (BasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
+ BBI != BBE; ++BBI) {
+ Instruction *I = BBI;
+ // TODO: For now, skip all intrinsic instructions, because some of them
+ // can require their operands to be constants, and we don't want to
+ // break that.
+ if (isa<IntrinsicInst>(I))
+ continue;
+ // LLVM represents fneg as -0.0-x; don't hoist the -0.0 out.
+ if (BinaryOperator::isFNeg(I) ||
+ BinaryOperator::isNeg(I) ||
+ BinaryOperator::isNot(I))
+ continue;
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ // Don't hoist out switch case constants.
+ if (isa<SwitchInst>(I) && i == 1)
+ break;
+ // Don't hoist out shuffle masks.
+ if (isa<ShuffleVectorInst>(I) && i == 2)
+ break;
+ Value *Op = I->getOperand(i);
+ Constant *C = dyn_cast<Constant>(Op);
+ if (!C) continue;
+ // TODO: Ask the target which constants are legal. This would allow
+ // us to add support for hoisting ConstantInts and GlobalValues too.
+ if (isa<ConstantFP>(C) ||
+ isa<ConstantVector>(C) ||
+ isa<ConstantAggregateZero>(C)) {
+ BitCastInst *&BC = HoistedConstants[C];
+ if (!BC)
+ BC = new BitCastInst(C, C->getType(), "hoist", PreheaderTerm);
+ I->setOperand(i, BC);
+ Changed = true;
+ }
+ }
+ }
+ }
+
+ return Changed;
+}
+
+void CodeGenLICM::getAnalysisUsage(AnalysisUsage &AU) const {
+ // This pass preserves just about everything. List some popular things here.
+ AU.setPreservesCFG();
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved("scalar-evolution");
+ AU.addPreserved("iv-users");
+ AU.addPreserved("lda");
+ AU.addPreserved("live-values");
+
+ // Hoisting requires a loop preheader.
+ AU.addRequiredID(LoopSimplifyID);
+}
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 85e9243..a3e3fea 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -23,10 +23,9 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
-#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
@@ -35,10 +34,10 @@
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -46,10 +45,11 @@ static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
cl::init(false), cl::Hidden);
namespace {
- class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
+ class CodeGenPrepare : public FunctionPass {
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// transformation profitability.
const TargetLowering *TLI;
+ ProfileInfo *PI;
/// BackEdges - Keep a set of all the loop back edges.
///
@@ -60,6 +60,10 @@ namespace {
: FunctionPass(&ID), TLI(tli) {}
bool runOnFunction(Function &F);
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<ProfileInfo>();
+ }
+
private:
bool EliminateMostlyEmptyBlocks(Function &F);
bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
@@ -95,6 +99,7 @@ void CodeGenPrepare::findLoopBackEdges(const Function &F) {
bool CodeGenPrepare::runOnFunction(Function &F) {
bool EverMadeChange = false;
+ PI = getAnalysisIfAvailable<ProfileInfo>();
// First pass, eliminate blocks that contain only PHI nodes and an
// unconditional branch.
EverMadeChange |= EliminateMostlyEmptyBlocks(F);
@@ -232,7 +237,7 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
- DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
+ DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
// If the destination block has a single pred, then this is a trivial edge,
// just collapse it.
@@ -241,12 +246,12 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
- MergeBasicBlockIntoOnlyPred(DestBB);
+ MergeBasicBlockIntoOnlyPred(DestBB, this);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
- DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
+ DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
return;
}
}
@@ -283,9 +288,13 @@ void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
// The PHIs are now updated, change everything that refers to BB to use
// DestBB and remove BB.
BB->replaceAllUsesWith(DestBB);
+ if (PI) {
+ PI->replaceAllUses(BB, DestBB);
+ PI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
+ }
BB->eraseFromParent();
- DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
+ DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
}
@@ -358,6 +367,9 @@ static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
// If we found a workable predecessor, change TI to branch to Succ.
if (FoundMatch) {
+ ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
+ if (PI)
+ PI->splitEdge(TIBB, Dest, Pred);
Dest->removePredecessor(TIBB);
TI->setSuccessor(SuccNum, Pred);
return;
@@ -410,8 +422,8 @@ static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
///
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
// If this is a noop copy,
- MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
- MVT DstVT = TLI.getValueType(CI->getType());
+ EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(CI->getType());
// This is an fp<->int conversion?
if (SrcVT.isInteger() != DstVT.isInteger())
@@ -424,10 +436,10 @@ static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
// If these values will be promoted, find out what they will be promoted
// to. This helps us consider truncates on PPC as noop copies when they
// are.
- if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
- SrcVT = TLI.getTypeToTransformTo(SrcVT);
- if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
- DstVT = TLI.getTypeToTransformTo(DstVT);
+ if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::Promote)
+ SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
+ if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::Promote)
+ DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
// If, after promotion, these are the same types, this is a noop copy.
if (SrcVT != DstVT)
@@ -520,7 +532,8 @@ static bool OptimizeCmpExpression(CmpInst *CI) {
BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
InsertedCmp =
- CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
+ CmpInst::Create(CI->getOpcode(),
+ CI->getPredicate(), CI->getOperand(0),
CI->getOperand(1), "", InsertPt);
MadeChange = true;
}
@@ -577,7 +590,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// If all the instructions matched are already in this BB, don't do anything.
if (!AnyNonLocal) {
- DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n");
+ DEBUG(errs() << "CGP: Found local addrmode: " << AddrMode << "\n");
return false;
}
@@ -592,14 +605,15 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// computation.
Value *&SunkAddr = SunkAddrs[Addr];
if (SunkAddr) {
- DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst);
+ DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
+ << *MemoryInst);
if (SunkAddr->getType() != Addr->getType())
SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
} else {
- DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
- << *MemoryInst);
- const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
+ DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
+ << *MemoryInst);
+ const Type *IntPtrTy =
+ TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
Value *Result = 0;
// Start with the scale value.
@@ -616,7 +630,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
}
if (AddrMode.Scale != 1)
- V = BinaryOperator::CreateMul(V, Context->getConstantInt(IntPtrTy,
+ V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
AddrMode.Scale),
"sunkaddr", InsertPt);
Result = V;
@@ -648,7 +662,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
// Add in the Base Offset if present.
if (AddrMode.BaseOffs) {
- Value *V = Context->getConstantInt(IntPtrTy, AddrMode.BaseOffs);
+ Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
if (Result)
Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
else
@@ -656,7 +670,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
}
if (Result == 0)
- SunkAddr = Context->getNullValue(Addr->getType());
+ SunkAddr = Constant::getNullValue(Addr->getType());
else
SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
}
@@ -858,18 +872,16 @@ bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
// If we found an inline asm expession, and if the target knows how to
// lower it to normal LLVM code, do so now.
- if (TLI && isa<InlineAsm>(CI->getCalledValue()))
- if (const TargetAsmInfo *TAI =
- TLI->getTargetMachine().getTargetAsmInfo()) {
- if (TAI->ExpandInlineAsm(CI)) {
- BBI = BB.begin();
- // Avoid processing instructions out of order, which could cause
- // reuse before a value is defined.
- SunkAddrs.clear();
- } else
- // Sink address computing for memory operands into the block.
- MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
- }
+ if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
+ if (TLI->ExpandInlineAsm(CI)) {
+ BBI = BB.begin();
+ // Avoid processing instructions out of order, which could cause
+ // reuse before a value is defined.
+ SunkAddrs.clear();
+ } else
+ // Sink address computing for memory operands into the block.
+ MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
+ }
}
}
diff --git a/lib/Transforms/Scalar/CondPropagate.cpp b/lib/Transforms/Scalar/CondPropagate.cpp
index c85d031..5b573f4 100644
--- a/lib/Transforms/Scalar/CondPropagate.cpp
+++ b/lib/Transforms/Scalar/CondPropagate.cpp
@@ -14,26 +14,21 @@
#define DEBUG_TYPE "condprop"
#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Type.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Streams.h"
using namespace llvm;
STATISTIC(NumBrThread, "Number of CFG edges threaded through branches");
STATISTIC(NumSwThread, "Number of CFG edges threaded through switches");
namespace {
- struct VISIBILITY_HIDDEN CondProp : public FunctionPass {
+ struct CondProp : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
CondProp() : FunctionPass(&ID) {}
@@ -124,7 +119,7 @@ void CondProp::SimplifyBlock(BasicBlock *BB) {
// Succ is now dead, but we cannot delete it without potentially
// invalidating iterators elsewhere. Just insert an unreachable
// instruction in it and delete this block later on.
- new UnreachableInst(Succ);
+ new UnreachableInst(BB->getContext(), Succ);
DeadBlocks.push_back(Succ);
MadeChange = true;
}
@@ -196,8 +191,6 @@ void CondProp::SimplifyPredecessors(SwitchInst *SI) {
if (&*BBI != SI)
return;
- bool RemovedPreds = false;
-
// Ok, we have this really simple case, walk the PHI operands, looking for
// constants. Walk from the end to remove operands from the end when
// possible, and to avoid invalidating "i".
@@ -209,7 +202,6 @@ void CondProp::SimplifyPredecessors(SwitchInst *SI) {
RevectorBlockTo(PN->getIncomingBlock(i-1),
SI->getSuccessor(DestCase));
++NumSwThread;
- RemovedPreds = true;
// If there were two predecessors before this simplification, or if the
// PHI node contained all the same value except for the one we just
diff --git a/lib/Transforms/Scalar/ConstantProp.cpp b/lib/Transforms/Scalar/ConstantProp.cpp
index b933488..4fee327 100644
--- a/lib/Transforms/Scalar/ConstantProp.cpp
+++ b/lib/Transforms/Scalar/ConstantProp.cpp
@@ -24,7 +24,6 @@
#include "llvm/Constant.h"
#include "llvm/Instruction.h"
#include "llvm/Pass.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/Statistic.h"
#include <set>
@@ -33,7 +32,7 @@ using namespace llvm;
STATISTIC(NumInstKilled, "Number of instructions killed");
namespace {
- struct VISIBILITY_HIDDEN ConstantPropagation : public FunctionPass {
+ struct ConstantPropagation : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
ConstantPropagation() : FunctionPass(&ID) {}
@@ -67,7 +66,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
if (!I->use_empty()) // Don't muck with dead instructions...
- if (Constant *C = ConstantFoldInstruction(I)) {
+ if (Constant *C = ConstantFoldInstruction(I, F.getContext())) {
// Add all of the users of this instruction to the worklist, they might
// be constant propagatable now...
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
diff --git a/lib/Transforms/Scalar/DCE.cpp b/lib/Transforms/Scalar/DCE.cpp
index 8bb504c..39940c3 100644
--- a/lib/Transforms/Scalar/DCE.cpp
+++ b/lib/Transforms/Scalar/DCE.cpp
@@ -21,7 +21,6 @@
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Instruction.h"
#include "llvm/Pass.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/ADT/Statistic.h"
#include <set>
@@ -34,7 +33,7 @@ namespace {
//===--------------------------------------------------------------------===//
// DeadInstElimination pass implementation
//
- struct VISIBILITY_HIDDEN DeadInstElimination : public BasicBlockPass {
+ struct DeadInstElimination : public BasicBlockPass {
static char ID; // Pass identification, replacement for typeid
DeadInstElimination() : BasicBlockPass(&ID) {}
virtual bool runOnBasicBlock(BasicBlock &BB) {
diff --git a/lib/Transforms/Scalar/DeadStoreElimination.cpp b/lib/Transforms/Scalar/DeadStoreElimination.cpp
index b923c92..a7b3e75 100644
--- a/lib/Transforms/Scalar/DeadStoreElimination.cpp
+++ b/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -29,14 +29,15 @@
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/Compiler.h"
using namespace llvm;
STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");
namespace {
- struct VISIBILITY_HIDDEN DSE : public FunctionPass {
+ struct DSE : public FunctionPass {
+ TargetData *TD;
+
static char ID; // Pass identification, replacement for typeid
DSE() : FunctionPass(&ID) {}
@@ -62,7 +63,6 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
- AU.addRequired<TargetData>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addPreserved<DominatorTree>();
@@ -79,15 +79,15 @@ FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
bool DSE::runOnBasicBlock(BasicBlock &BB) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
- TargetData &TD = getAnalysis<TargetData>();
+ TD = getAnalysisIfAvailable<TargetData>();
bool MadeChange = false;
- // Do a top-down walk on the BB
+ // Do a top-down walk on the BB.
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
Instruction *Inst = BBI++;
- // If we find a store or a free, get it's memory dependence.
+ // If we find a store or a free, get its memory dependence.
if (!isa<StoreInst>(Inst) && !isa<FreeInst>(Inst))
continue;
@@ -117,13 +117,17 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
// If this is a store-store dependence, then the previous store is dead so
// long as this store is at least as big as it.
if (StoreInst *DepStore = dyn_cast<StoreInst>(InstDep.getInst()))
- if (TD.getTypeStoreSize(DepStore->getOperand(0)->getType()) <=
- TD.getTypeStoreSize(SI->getOperand(0)->getType())) {
+ if (TD &&
+ TD->getTypeStoreSize(DepStore->getOperand(0)->getType()) <=
+ TD->getTypeStoreSize(SI->getOperand(0)->getType())) {
// Delete the store and now-dead instructions that feed it.
DeleteDeadInstruction(DepStore);
NumFastStores++;
MadeChange = true;
-
+
+ // DeleteDeadInstruction can delete the current instruction in loop
+ // cases, reset BBI.
+ BBI = Inst;
if (BBI != BB.begin())
--BBI;
continue;
@@ -134,8 +138,15 @@ bool DSE::runOnBasicBlock(BasicBlock &BB) {
if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
SI->getOperand(0) == DepLoad) {
+ // DeleteDeadInstruction can delete the current instruction. Save BBI
+ // in case we need it.
+ WeakVH NextInst(BBI);
+
DeleteDeadInstruction(SI);
- if (BBI != BB.begin())
+
+ if (NextInst == 0) // Next instruction deleted.
+ BBI = BB.begin();
+ else if (BBI != BB.begin()) // Revisit this instruction if possible.
--BBI;
NumFastStores++;
MadeChange = true;
@@ -181,7 +192,6 @@ bool DSE::handleFreeWithNonTrivialDependency(FreeInst *F, MemDepResult Dep) {
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock &BB) {
- TargetData &TD = getAnalysis<TargetData>();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
bool MadeChange = false;
@@ -302,14 +312,16 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
// Get size information for the alloca
unsigned pointerSize = ~0U;
- if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
- if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
- pointerSize = C->getZExtValue() *
- TD.getTypeAllocSize(A->getAllocatedType());
- } else {
- const PointerType* PT = cast<PointerType>(
- cast<Argument>(*I)->getType());
- pointerSize = TD.getTypeAllocSize(PT->getElementType());
+ if (TD) {
+ if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
+ if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
+ pointerSize = C->getZExtValue() *
+ TD->getTypeAllocSize(A->getAllocatedType());
+ } else {
+ const PointerType* PT = cast<PointerType>(
+ cast<Argument>(*I)->getType());
+ pointerSize = TD->getTypeAllocSize(PT->getElementType());
+ }
}
// See if the call site touches it
@@ -357,7 +369,6 @@ bool DSE::handleEndBlock(BasicBlock &BB) {
bool DSE::RemoveUndeadPointers(Value* killPointer, uint64_t killPointerSize,
BasicBlock::iterator &BBI,
SmallPtrSet<Value*, 64>& deadPointers) {
- TargetData &TD = getAnalysis<TargetData>();
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
// If the kill pointer can be easily reduced to an alloca,
@@ -379,13 +390,15 @@ bool DSE::RemoveUndeadPointers(Value* killPointer, uint64_t killPointerSize,
E = deadPointers.end(); I != E; ++I) {
// Get size information for the alloca.
unsigned pointerSize = ~0U;
- if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
- if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
- pointerSize = C->getZExtValue() *
- TD.getTypeAllocSize(A->getAllocatedType());
- } else {
- const PointerType* PT = cast<PointerType>(cast<Argument>(*I)->getType());
- pointerSize = TD.getTypeAllocSize(PT->getElementType());
+ if (TD) {
+ if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
+ if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
+ pointerSize = C->getZExtValue() *
+ TD->getTypeAllocSize(A->getAllocatedType());
+ } else {
+ const PointerType* PT = cast<PointerType>(cast<Argument>(*I)->getType());
+ pointerSize = TD->getTypeAllocSize(PT->getElementType());
+ }
}
// See if this pointer could alias it
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index f4fe15e..2ed4a63 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -23,6 +23,7 @@
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
#include "llvm/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
@@ -32,13 +33,18 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <cstdio>
using namespace llvm;
@@ -60,17 +66,17 @@ static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
- struct VISIBILITY_HIDDEN Expression {
+ struct Expression {
enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
UDIV, SDIV, FDIV, UREM, SREM,
- FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
- ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
- ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
- FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
- FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
+ FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
+ ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
+ ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
+ FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
+ FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
- FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
+ FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
EMPTY, TOMBSTONE };
@@ -80,11 +86,11 @@ namespace {
uint32_t secondVN;
uint32_t thirdVN;
SmallVector<uint32_t, 4> varargs;
- Value* function;
-
+ Value *function;
+
Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { }
-
+
bool operator==(const Expression &other) const {
if (opcode != other.opcode)
return false;
@@ -103,30 +109,30 @@ namespace {
else {
if (varargs.size() != other.varargs.size())
return false;
-
+
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return false;
-
+
return true;
}
}
-
+
bool operator!=(const Expression &other) const {
return !(*this == other);
}
};
-
- class VISIBILITY_HIDDEN ValueTable {
+
+ class ValueTable {
private:
DenseMap<Value*, uint32_t> valueNumbering;
DenseMap<Expression, uint32_t> expressionNumbering;
AliasAnalysis* AA;
MemoryDependenceAnalysis* MD;
DominatorTree* DT;
-
+
uint32_t nextValueNumber;
-
+
Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression::ExpressionOpcode getOpcode(CastInst* C);
@@ -142,11 +148,11 @@ namespace {
Expression create_expression(Constant* C);
public:
ValueTable() : nextValueNumber(1) { }
- uint32_t lookup_or_add(Value* V);
- uint32_t lookup(Value* V) const;
- void add(Value* V, uint32_t num);
+ uint32_t lookup_or_add(Value *V);
+ uint32_t lookup(Value *V) const;
+ void add(Value *V, uint32_t num);
void clear();
- void erase(Value* v);
+ void erase(Value *v);
unsigned size();
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
AliasAnalysis *getAliasAnalysis() const { return AA; }
@@ -162,30 +168,30 @@ template <> struct DenseMapInfo<Expression> {
static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);
}
-
+
static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);
}
-
+
static unsigned getHashValue(const Expression e) {
unsigned hash = e.opcode;
-
+
hash = e.firstVN + hash * 37;
hash = e.secondVN + hash * 37;
hash = e.thirdVN + hash * 37;
-
+
hash = ((unsigned)((uintptr_t)e.type >> 4) ^
(unsigned)((uintptr_t)e.type >> 9)) +
hash * 37;
-
+
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)
hash = *I + hash * 37;
-
+
hash = ((unsigned)((uintptr_t)e.function >> 4) ^
(unsigned)((uintptr_t)e.function >> 9)) +
hash * 37;
-
+
return hash;
}
static bool isEqual(const Expression &LHS, const Expression &RHS) {
@@ -201,7 +207,7 @@ template <> struct DenseMapInfo<Expression> {
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
switch(BO->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Binary operator with unknown opcode?");
+ llvm_unreachable("Binary operator with unknown opcode?");
case Instruction::Add: return Expression::ADD;
case Instruction::FAdd: return Expression::FADD;
case Instruction::Sub: return Expression::SUB;
@@ -224,10 +230,10 @@ Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
}
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
- if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
+ if (isa<ICmpInst>(C)) {
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Comparison with unknown predicate?");
+ llvm_unreachable("Comparison with unknown predicate?");
case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
case ICmpInst::ICMP_NE: return Expression::ICMPNE;
case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
@@ -239,32 +245,32 @@ Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
}
- }
- assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
- switch (C->getPredicate()) {
- default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Comparison with unknown predicate?");
- case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
- case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
- case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
- case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
- case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
- case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
- case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
- case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
- case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
- case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
- case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
- case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
- case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
- case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
+ } else {
+ switch (C->getPredicate()) {
+ default: // THIS SHOULD NEVER HAPPEN
+ llvm_unreachable("Comparison with unknown predicate?");
+ case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
+ case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
+ case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
+ case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
+ case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
+ case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
+ case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
+ case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
+ case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
+ case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
+ case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
+ case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
+ case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
+ case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
+ }
}
}
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
switch(C->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
- assert(0 && "Cast operator with unknown opcode?");
+ llvm_unreachable("Cast operator with unknown opcode?");
case Instruction::Trunc: return Expression::TRUNC;
case Instruction::ZExt: return Expression::ZEXT;
case Instruction::SExt: return Expression::SEXT;
@@ -282,126 +288,126 @@ Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
Expression ValueTable::create_expression(CallInst* C) {
Expression e;
-
+
e.type = C->getType();
e.firstVN = 0;
e.secondVN = 0;
e.thirdVN = 0;
e.function = C->getCalledFunction();
e.opcode = Expression::CALL;
-
+
for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
-
+
return e;
}
Expression ValueTable::create_expression(BinaryOperator* BO) {
Expression e;
-
+
e.firstVN = lookup_or_add(BO->getOperand(0));
e.secondVN = lookup_or_add(BO->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = BO->getType();
e.opcode = getOpcode(BO);
-
+
return e;
}
Expression ValueTable::create_expression(CmpInst* C) {
Expression e;
-
+
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = lookup_or_add(C->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
-
+
return e;
}
Expression ValueTable::create_expression(CastInst* C) {
Expression e;
-
+
e.firstVN = lookup_or_add(C->getOperand(0));
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = C->getType();
e.opcode = getOpcode(C);
-
+
return e;
}
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
Expression e;
-
+
e.firstVN = lookup_or_add(S->getOperand(0));
e.secondVN = lookup_or_add(S->getOperand(1));
e.thirdVN = lookup_or_add(S->getOperand(2));
e.function = 0;
e.type = S->getType();
e.opcode = Expression::SHUFFLE;
-
+
return e;
}
Expression ValueTable::create_expression(ExtractElementInst* E) {
Expression e;
-
+
e.firstVN = lookup_or_add(E->getOperand(0));
e.secondVN = lookup_or_add(E->getOperand(1));
e.thirdVN = 0;
e.function = 0;
e.type = E->getType();
e.opcode = Expression::EXTRACT;
-
+
return e;
}
Expression ValueTable::create_expression(InsertElementInst* I) {
Expression e;
-
+
e.firstVN = lookup_or_add(I->getOperand(0));
e.secondVN = lookup_or_add(I->getOperand(1));
e.thirdVN = lookup_or_add(I->getOperand(2));
e.function = 0;
e.type = I->getType();
e.opcode = Expression::INSERT;
-
+
return e;
}
Expression ValueTable::create_expression(SelectInst* I) {
Expression e;
-
+
e.firstVN = lookup_or_add(I->getCondition());
e.secondVN = lookup_or_add(I->getTrueValue());
e.thirdVN = lookup_or_add(I->getFalseValue());
e.function = 0;
e.type = I->getType();
e.opcode = Expression::SELECT;
-
+
return e;
}
Expression ValueTable::create_expression(GetElementPtrInst* G) {
Expression e;
-
+
e.firstVN = lookup_or_add(G->getPointerOperand());
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
e.type = G->getType();
e.opcode = Expression::GEP;
-
+
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
I != E; ++I)
e.varargs.push_back(lookup_or_add(*I));
-
+
return e;
}
@@ -410,21 +416,21 @@ Expression ValueTable::create_expression(GetElementPtrInst* G) {
//===----------------------------------------------------------------------===//
/// add - Insert a value into the table with a specified value number.
-void ValueTable::add(Value* V, uint32_t num) {
+void ValueTable::add(Value *V, uint32_t num) {
valueNumbering.insert(std::make_pair(V, num));
}
/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
-uint32_t ValueTable::lookup_or_add(Value* V) {
+uint32_t ValueTable::lookup_or_add(Value *V) {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())
return VI->second;
-
+
if (CallInst* C = dyn_cast<CallInst>(V)) {
if (AA->doesNotAccessMemory(C)) {
Expression e = create_expression(C);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -432,20 +438,20 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (AA->onlyReadsMemory(C)) {
Expression e = create_expression(C);
-
+
if (expressionNumbering.find(e) == expressionNumbering.end()) {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
MemDepResult local_dep = MD->getDependency(C);
-
+
if (!local_dep.isDef() && !local_dep.isNonLocal()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
@@ -453,12 +459,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
if (local_dep.isDef()) {
CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
-
+
if (local_cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
for (unsigned i = 1; i < C->getNumOperands(); ++i) {
uint32_t c_vn = lookup_or_add(C->getOperand(i));
uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
@@ -467,19 +473,19 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
return nextValueNumber++;
}
}
-
+
uint32_t v = lookup_or_add(local_cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
}
// Non-local case.
- const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
+ const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
MD->getNonLocalCallDependency(CallSite(C));
// FIXME: call/call dependencies for readonly calls should return def, not
// clobber! Move the checking logic to MemDep!
CallInst* cdep = 0;
-
+
// Check to see if we have a single dominating call instruction that is
// identical to C.
for (unsigned i = 0, e = deps.size(); i != e; ++i) {
@@ -494,23 +500,23 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
cdep = 0;
break;
}
-
+
CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
// FIXME: All duplicated with non-local case.
if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
cdep = NonLocalDepCall;
continue;
}
-
+
cdep = 0;
break;
}
-
+
if (!cdep) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
-
+
if (cdep->getNumOperands() != C->getNumOperands()) {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
@@ -523,18 +529,18 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
return nextValueNumber++;
}
}
-
+
uint32_t v = lookup_or_add(cdep);
valueNumbering.insert(std::make_pair(V, v));
return v;
-
+
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
Expression e = create_expression(BO);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -542,12 +548,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
Expression e = create_expression(C);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -555,12 +561,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -568,12 +574,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -581,12 +587,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -594,12 +600,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -607,12 +613,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (CastInst* U = dyn_cast<CastInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -620,12 +626,12 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
Expression e = create_expression(U);
-
+
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
@@ -633,7 +639,7 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
-
+
return nextValueNumber++;
}
} else {
@@ -644,7 +650,7 @@ uint32_t ValueTable::lookup_or_add(Value* V) {
/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
-uint32_t ValueTable::lookup(Value* V) const {
+uint32_t ValueTable::lookup(Value *V) const {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
assert(VI != valueNumbering.end() && "Value not numbered?");
return VI->second;
@@ -658,7 +664,7 @@ void ValueTable::clear() {
}
/// erase - Remove a value from the value numbering
-void ValueTable::erase(Value* V) {
+void ValueTable::erase(Value *V) {
valueNumbering.erase(V);
}
@@ -676,17 +682,17 @@ void ValueTable::verifyRemoved(const Value *V) const {
//===----------------------------------------------------------------------===//
namespace {
- struct VISIBILITY_HIDDEN ValueNumberScope {
+ struct ValueNumberScope {
ValueNumberScope* parent;
DenseMap<uint32_t, Value*> table;
-
+
ValueNumberScope(ValueNumberScope* p) : parent(p) { }
};
}
namespace {
- class VISIBILITY_HIDDEN GVN : public FunctionPass {
+ class GVN : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
@@ -698,45 +704,35 @@ namespace {
ValueTable VN;
DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
-
- typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
- PhiMapType phiMap;
-
-
+
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
-
+
AU.addPreserved<DominatorTree>();
AU.addPreserved<AliasAnalysis>();
}
-
+
// Helper fuctions
// FIXME: eliminate or document these better
bool processLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
- bool processInstruction(Instruction* I,
+ bool processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase);
bool processNonLocalLoad(LoadInst* L,
SmallVectorImpl<Instruction*> &toErase);
- bool processBlock(BasicBlock* BB);
- Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
- DenseMap<BasicBlock*, Value*> &Phis,
- bool top_level = false);
+ bool processBlock(BasicBlock *BB);
void dump(DenseMap<uint32_t, Value*>& d);
bool iterateOnFunction(Function &F);
- Value* CollapsePhi(PHINode* p);
- bool isSafeReplacement(PHINode* p, Instruction* inst);
+ Value *CollapsePhi(PHINode* p);
bool performPRE(Function& F);
- Value* lookupNumber(BasicBlock* BB, uint32_t num);
- bool mergeBlockIntoPredecessor(BasicBlock* BB);
- Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
+ Value *lookupNumber(BasicBlock *BB, uint32_t num);
void cleanupGlobalSets();
void verifyRemoved(const Instruction *I) const;
};
-
+
char GVN::ID = 0;
}
@@ -756,107 +752,31 @@ void GVN::dump(DenseMap<uint32_t, Value*>& d) {
printf("}\n");
}
-Value* GVN::CollapsePhi(PHINode* p) {
- Value* constVal = p->hasConstantValue();
- if (!constVal) return 0;
-
- Instruction* inst = dyn_cast<Instruction>(constVal);
- if (!inst)
- return constVal;
-
- if (DT->dominates(inst, p))
- if (isSafeReplacement(p, inst))
- return inst;
- return 0;
-}
-
-bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
+static bool isSafeReplacement(PHINode* p, Instruction *inst) {
if (!isa<PHINode>(inst))
return true;
-
+
for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
UI != E; ++UI)
if (PHINode* use_phi = dyn_cast<PHINode>(UI))
if (use_phi->getParent() == inst->getParent())
return false;
-
+
return true;
}
-/// GetValueForBlock - Get the value to use within the specified basic block.
-/// available values are in Phis.
-Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
- DenseMap<BasicBlock*, Value*> &Phis,
- bool top_level) {
-
- // If we have already computed this value, return the previously computed val.
- DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
- if (V != Phis.end() && !top_level) return V->second;
-
- // If the block is unreachable, just return undef, since this path
- // can't actually occur at runtime.
- if (!DT->isReachableFromEntry(BB))
- return Phis[BB] = Context->getUndef(orig->getType());
-
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- Value *ret = GetValueForBlock(Pred, orig, Phis);
- Phis[BB] = ret;
- return ret;
- }
+Value *GVN::CollapsePhi(PHINode *PN) {
+ Value *ConstVal = PN->hasConstantValue(DT);
+ if (!ConstVal) return 0;
- // Get the number of predecessors of this block so we can reserve space later.
- // If there is already a PHI in it, use the #preds from it, otherwise count.
- // Getting it from the PHI is constant time.
- unsigned NumPreds;
- if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
- NumPreds = ExistingPN->getNumIncomingValues();
- else
- NumPreds = std::distance(pred_begin(BB), pred_end(BB));
-
- // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
- // now, then get values to fill in the incoming values for the PHI.
- PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
- BB->begin());
- PN->reserveOperandSpace(NumPreds);
-
- Phis.insert(std::make_pair(BB, PN));
-
- // Fill in the incoming values for the block.
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- Value* val = GetValueForBlock(*PI, orig, Phis);
- PN->addIncoming(val, *PI);
- }
-
- VN.getAliasAnalysis()->copyValue(orig, PN);
-
- // Attempt to collapse PHI nodes that are trivially redundant
- Value* v = CollapsePhi(PN);
- if (!v) {
- // Cache our phi construction results
- if (LoadInst* L = dyn_cast<LoadInst>(orig))
- phiMap[L->getPointerOperand()].insert(PN);
- else
- phiMap[orig].insert(PN);
-
- return PN;
- }
-
- PN->replaceAllUsesWith(v);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
-
- for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
- E = Phis.end(); I != E; ++I)
- if (I->second == PN)
- I->second = v;
-
- DEBUG(cerr << "GVN removed: " << *PN);
- MD->removeInstruction(PN);
- PN->eraseFromParent();
- DEBUG(verifyRemoved(PN));
-
- Phis[BB] = v;
- return v;
+ Instruction *Inst = dyn_cast<Instruction>(ConstVal);
+ if (!Inst)
+ return ConstVal;
+
+ if (DT->dominates(Inst, PN))
+ if (isSafeReplacement(PN, Inst))
+ return Inst;
+ return 0;
}
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
@@ -869,11 +789,11 @@ Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
/// currently speculating that it will be.
/// 3) we are speculating for this block and have used that to speculate for
/// other blocks.
-static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
+static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
// Optimistically assume that the block is fully available and check to see
// if we already know about this block in one lookup.
- std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
+ std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
FullyAvailableBlocks.insert(std::make_pair(BB, 2));
// If the entry already existed for this block, return the precomputed value.
@@ -884,29 +804,29 @@ static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
IV.first->second = 3;
return IV.first->second != 0;
}
-
+
// Otherwise, see if it is fully available in all predecessors.
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
-
+
// If this block has no predecessors, it isn't live-in here.
if (PI == PE)
goto SpeculationFailure;
-
+
for (; PI != PE; ++PI)
// If the value isn't fully available in one of our predecessors, then it
// isn't fully available in this block either. Undo our previous
// optimistic assumption and bail out.
if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
goto SpeculationFailure;
-
+
return true;
-
+
// SpeculationFailure - If we get here, we found out that this is not, after
// all, a fully-available block. We have a problem if we speculated on this and
// used the speculation to mark other blocks as available.
SpeculationFailure:
char &BBVal = FullyAvailableBlocks[BB];
-
+
// If we didn't speculate on this, just return with it set to false.
if (BBVal == 2) {
BBVal = 0;
@@ -918,7 +838,7 @@ SpeculationFailure:
// 0 if set to one.
SmallVector<BasicBlock*, 32> BBWorklist;
BBWorklist.push_back(BB);
-
+
while (!BBWorklist.empty()) {
BasicBlock *Entry = BBWorklist.pop_back_val();
// Note that this sets blocks to 0 (unavailable) if they happen to not
@@ -928,24 +848,372 @@ SpeculationFailure:
// Mark as unavailable.
EntryVal = 0;
-
+
for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
BBWorklist.push_back(*I);
}
-
+
return false;
}
+
+/// CanCoerceMustAliasedValueToLoad - Return true if
+/// CoerceAvailableValueToLoadType will succeed.
+static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
+ const Type *LoadTy,
+ const TargetData &TD) {
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
+ isa<StructType>(StoredVal->getType()) ||
+ isa<ArrayType>(StoredVal->getType()))
+ return false;
+
+ // The store has to be at least as big as the load.
+ if (TD.getTypeSizeInBits(StoredVal->getType()) <
+ TD.getTypeSizeInBits(LoadTy))
+ return false;
+
+ return true;
+}
+
+
+/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
+/// then a load from a must-aliased pointer of a different type, try to coerce
+/// the stored value. LoadedTy is the type of the load we want to replace and
+/// InsertPt is the place to insert new instructions.
+///
+/// If we can't do it, return null.
+static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
+ const Type *LoadedTy,
+ Instruction *InsertPt,
+ const TargetData &TD) {
+ if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
+ return 0;
+
+ const Type *StoredValTy = StoredVal->getType();
+
+ uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
+
+ // If the store and reload are the same size, we can always reuse it.
+ if (StoreSize == LoadSize) {
+ if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
+ // Pointer to Pointer -> use bitcast.
+ return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
+ }
+
+ // Convert source pointers to integers, which can be bitcast.
+ if (isa<PointerType>(StoredValTy)) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ const Type *TypeToCastTo = LoadedTy;
+ if (isa<PointerType>(TypeToCastTo))
+ TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
+
+ if (StoredValTy != TypeToCastTo)
+ StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
+
+ // Cast to pointer if the load needs a pointer type.
+ if (isa<PointerType>(LoadedTy))
+ StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
+
+ return StoredVal;
+ }
+
+ // If the loaded value is smaller than the available value, then we can
+ // extract out a piece from it. If the available value is too small, then we
+ // can't do anything.
+ assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
+
+ // Convert source pointers to integers, which can be manipulated.
+ if (isa<PointerType>(StoredValTy)) {
+ StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // Convert vectors and fp to integer, which can be manipulated.
+ if (!isa<IntegerType>(StoredValTy)) {
+ StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
+ StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
+ }
+
+ // If this is a big-endian system, we need to shift the value down to the low
+ // bits so that a truncate will work.
+ if (TD.isBigEndian()) {
+ Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
+ StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
+ }
+
+ // Truncate the integer to the right size now.
+ const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
+ StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
+
+ if (LoadedTy == NewIntTy)
+ return StoredVal;
+
+ // If the result is a pointer, inttoptr.
+ if (isa<PointerType>(LoadedTy))
+ return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
+
+ // Otherwise, bitcast.
+ return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
+}
+
+/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
+/// be expressed as a base pointer plus a constant offset. Return the base and
+/// offset to the caller.
+static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
+ const TargetData &TD) {
+ Operator *PtrOp = dyn_cast<Operator>(Ptr);
+ if (PtrOp == 0) return Ptr;
+
+ // Just look through bitcasts.
+ if (PtrOp->getOpcode() == Instruction::BitCast)
+ return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
+
+ // If this is a GEP with constant indices, we can look through it.
+ GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
+ if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
+ ++I, ++GTI) {
+ ConstantInt *OpC = cast<ConstantInt>(*I);
+ if (OpC->isZero()) continue;
+
+ // Handle a struct and array indices which add their offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += OpC->getSExtValue()*Size;
+ }
+ }
+
+ // Re-sign extend from the pointer size if needed to get overflow edge cases
+ // right.
+ unsigned PtrSize = TD.getPointerSizeInBits();
+ if (PtrSize < 64)
+ Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
+
+ return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
+}
+
+
+/// AnalyzeLoadFromClobberingStore - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store. This means
+/// that the store *may* provide bits used by the load but we can't be sure
+/// because the pointers don't mustalias. Check this case to see if there is
+/// anything more we can do before we give up. This returns -1 if we have to
+/// give up, or a byte number in the stored value of the piece that feeds the
+/// load.
+static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
+ const TargetData &TD) {
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
+ isa<StructType>(DepSI->getOperand(0)->getType()) ||
+ isa<ArrayType>(DepSI->getOperand(0)->getType()))
+ return -1;
+
+ int64_t StoreOffset = 0, LoadOffset = 0;
+ Value *StoreBase =
+ GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
+ Value *LoadBase =
+ GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
+ if (StoreBase != LoadBase)
+ return -1;
+
+ // If the load and store are to the exact same address, they should have been
+ // a must alias. AA must have gotten confused.
+ // FIXME: Study to see if/when this happens.
+ if (LoadOffset == StoreOffset) {
+#if 0
+ errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *DepSI->getPointerOperand() << "\n"
+ << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
+ << "Load Ptr = " << *L->getPointerOperand() << "\n"
+ << "Load Offs = " << LoadOffset << " - " << *L << "\n\n";
+ errs() << "'" << L->getParent()->getParent()->getName() << "'"
+ << *L->getParent();
+#endif
+ return -1;
+ }
+
+ // If the load and store don't overlap at all, the store doesn't provide
+ // anything to the load. In this case, they really don't alias at all, AA
+ // must have gotten confused.
+ // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
+ // remove this check, as it is duplicated with what we have below.
+ uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
+ uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
+
+ if ((StoreSize & 7) | (LoadSize & 7))
+ return -1;
+ StoreSize >>= 3; // Convert to bytes.
+ LoadSize >>= 3;
+
+
+ bool isAAFailure = false;
+ if (StoreOffset < LoadOffset) {
+ isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
+ } else {
+ isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
+ }
+ if (isAAFailure) {
+#if 0
+ errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
+ << "Base = " << *StoreBase << "\n"
+ << "Store Ptr = " << *DepSI->getPointerOperand() << "\n"
+ << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
+ << "Load Ptr = " << *L->getPointerOperand() << "\n"
+ << "Load Offs = " << LoadOffset << " - " << *L << "\n\n";
+ errs() << "'" << L->getParent()->getParent()->getName() << "'"
+ << *L->getParent();
+#endif
+ return -1;
+ }
+
+ // If the Load isn't completely contained within the stored bits, we don't
+ // have all the bits to feed it. We could do something crazy in the future
+ // (issue a smaller load then merge the bits in) but this seems unlikely to be
+ // valuable.
+ if (StoreOffset > LoadOffset ||
+ StoreOffset+StoreSize < LoadOffset+LoadSize)
+ return -1;
+
+ // Okay, we can do this transformation. Return the number of bytes into the
+ // store that the load is.
+ return LoadOffset-StoreOffset;
+}
+
+
+/// GetStoreValueForLoad - This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store. This means
+/// that the store *may* provide bits used by the load but we can't be sure
+/// because the pointers don't mustalias. Check this case to see if there is
+/// anything more we can do before we give up.
+static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
+ const Type *LoadTy,
+ Instruction *InsertPt, const TargetData &TD){
+ LLVMContext &Ctx = SrcVal->getType()->getContext();
+
+ uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
+ uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
+
+
+ // Compute which bits of the stored value are being used by the load. Convert
+ // to an integer type to start with.
+ if (isa<PointerType>(SrcVal->getType()))
+ SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
+ if (!isa<IntegerType>(SrcVal->getType()))
+ SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
+ "tmp", InsertPt);
+
+ // Shift the bits to the least significant depending on endianness.
+ unsigned ShiftAmt;
+ if (TD.isLittleEndian()) {
+ ShiftAmt = Offset*8;
+ } else {
+ ShiftAmt = (StoreSize-LoadSize-Offset)*8;
+ }
+
+ if (ShiftAmt)
+ SrcVal = BinaryOperator::CreateLShr(SrcVal,
+ ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
+
+ if (LoadSize != StoreSize)
+ SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
+ "tmp", InsertPt);
+
+ return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
+}
+
+struct AvailableValueInBlock {
+ /// BB - The basic block in question.
+ BasicBlock *BB;
+ /// V - The value that is live out of the block.
+ Value *V;
+ /// Offset - The byte offset in V that is interesting for the load query.
+ unsigned Offset;
+
+ static AvailableValueInBlock get(BasicBlock *BB, Value *V,
+ unsigned Offset = 0) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.V = V;
+ Res.Offset = Offset;
+ return Res;
+ }
+};
+
+/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
+/// construct SSA form, allowing us to eliminate LI. This returns the value
+/// that should be used at LI's definition site.
+static Value *ConstructSSAForLoadSet(LoadInst *LI,
+ SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
+ const TargetData *TD,
+ AliasAnalysis *AA) {
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSAUpdate(&NewPHIs);
+ SSAUpdate.Initialize(LI);
+
+ const Type *LoadTy = LI->getType();
+
+ for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
+ BasicBlock *BB = ValuesPerBlock[i].BB;
+ Value *AvailableVal = ValuesPerBlock[i].V;
+ unsigned Offset = ValuesPerBlock[i].Offset;
+
+ if (SSAUpdate.HasValueForBlock(BB))
+ continue;
+
+ if (AvailableVal->getType() != LoadTy) {
+ assert(TD && "Need target data to handle type mismatch case");
+ AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
+ BB->getTerminator(), *TD);
+
+ if (Offset) {
+ DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
+ << *ValuesPerBlock[i].V << '\n'
+ << *AvailableVal << '\n' << "\n\n\n");
+ }
+
+
+ DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
+ << *ValuesPerBlock[i].V << '\n'
+ << *AvailableVal << '\n' << "\n\n\n");
+ }
+
+ SSAUpdate.AddAvailableValue(BB, AvailableVal);
+ }
+
+ // Perform PHI construction.
+ Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
+
+ // If new PHI nodes were created, notify alias analysis.
+ if (isa<PointerType>(V->getType()))
+ for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
+ AA->copyValue(LI, NewPHIs[i]);
+
+ return V;
+}
+
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI,
SmallVectorImpl<Instruction*> &toErase) {
// Find the non-local dependencies of the load.
- SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
+ SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
Deps);
- //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
-
+ //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
+ // << Deps.size() << *LI << '\n');
+
// If we had to process more than one hundred blocks to find the
// dependencies, this load isn't worth worrying about. Optimizing
// it will be too expensive.
@@ -956,106 +1224,124 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// clobber in the current block. Reject this early.
if (Deps.size() == 1 && Deps[0].second.isClobber()) {
DEBUG(
- DOUT << "GVN: non-local load ";
- WriteAsOperand(*DOUT.stream(), LI);
- DOUT << " is clobbered by " << *Deps[0].second.getInst();
+ errs() << "GVN: non-local load ";
+ WriteAsOperand(errs(), LI);
+ errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
);
return false;
}
-
+
// Filter out useless results (non-locals, etc). Keep track of the blocks
// where we have a value available in repl, also keep track of whether we see
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
- SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
+ SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
SmallVector<BasicBlock*, 16> UnavailableBlocks;
+
+ const TargetData *TD = 0;
for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
BasicBlock *DepBB = Deps[i].first;
MemDepResult DepInfo = Deps[i].second;
-
+
if (DepInfo.isClobber()) {
+ // If the dependence is to a store that writes to a superset of the bits
+ // read by the load, we can extract the bits we need for the load from the
+ // stored value.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+ if (TD) {
+ int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
+ if (Offset != -1) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ DepSI->getOperand(0),
+ Offset));
+ continue;
+ }
+ }
+ }
+
+ // FIXME: Handle memset/memcpy.
UnavailableBlocks.push_back(DepBB);
continue;
}
-
+
Instruction *DepInst = DepInfo.getInst();
-
+
// Loading the allocation -> undef.
- if (isa<AllocationInst>(DepInst)) {
- ValuesPerBlock.push_back(std::make_pair(DepBB,
- Context->getUndef(LI->getType())));
+ if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ UndefValue::get(LI->getType())));
continue;
}
-
- if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
- // Reject loads and stores that are to the same address but are of
- // different types.
- // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
- // of bitfield access, it would be interesting to optimize for it at some
- // point.
+
+ if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
+ // Reject loads and stores that are to the same address but are of
+ // different types if we have to.
if (S->getOperand(0)->getType() != LI->getType()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
+ LI->getType(), *TD)) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
}
-
- ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
-
- } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
+
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ S->getOperand(0)));
+ continue;
+ }
+
+ if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
+ // If the types mismatch and we can't handle it, reject reuse of the load.
if (LD->getType() != LI->getType()) {
- UnavailableBlocks.push_back(DepBB);
- continue;
+ if (TD == 0)
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ // If the stored value is larger or equal to the loaded value, we can
+ // reuse it.
+ if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
}
- ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
- } else {
- UnavailableBlocks.push_back(DepBB);
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
continue;
}
+
+ UnavailableBlocks.push_back(DepBB);
+ continue;
}
-
+
// If we have no predecessors that produce a known value for this load, exit
// early.
if (ValuesPerBlock.empty()) return false;
-
+
// If all of the instructions we depend on produce a known value for this
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
- // Use cached PHI construction information from previous runs
- SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
- // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
- for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
- I != E; ++I) {
- if ((*I)->getParent() == LI->getParent()) {
- DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
- LI->replaceAllUsesWith(*I);
- if (isa<PointerType>((*I)->getType()))
- MD->invalidateCachedPointerInfo(*I);
- toErase.push_back(LI);
- NumGVNLoad++;
- return true;
- }
-
- ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
- }
-
- DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
+ DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
- DenseMap<BasicBlock*, Value*> BlockReplValues;
- BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
// Perform PHI construction.
- Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
- LI->replaceAllUsesWith(v);
-
- if (isa<PHINode>(v))
- v->takeName(LI);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
+ VN.getAliasAnalysis());
+ LI->replaceAllUsesWith(V);
+
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (isa<PointerType>(V->getType()))
+ MD->invalidateCachedPointerInfo(V);
toErase.push_back(LI);
NumGVNLoad++;
return true;
}
-
+
if (!EnablePRE || !EnableLoadPRE)
return false;
@@ -1066,7 +1352,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// prefer to not increase code size. As such, we only do this when we know
// that we only have to insert *one* load (which means we're basically moving
// the load, not inserting a new one).
-
+
SmallPtrSet<BasicBlock *, 4> Blockers;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
Blockers.insert(UnavailableBlocks[i]);
@@ -1090,28 +1376,28 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
allSingleSucc = false;
}
-
+
assert(TmpBB);
LoadBB = TmpBB;
-
+
// If we have a repl set with LI itself in it, this means we have a loop where
// at least one of the values is LI. Since this means that we won't be able
// to eliminate LI even if we insert uses in the other predecessors, we will
// end up increasing code size. Reject this by scanning for LI.
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- if (ValuesPerBlock[i].second == LI)
+ if (ValuesPerBlock[i].V == LI)
return false;
-
+
if (isSinglePred) {
bool isHot = false;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
- // "Hot" Instruction is in some loop (because it dominates its dep.
- // instruction).
- if (DT->dominates(LI, I)) {
- isHot = true;
- break;
- }
+ if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
+ // "Hot" Instruction is in some loop (because it dominates its dep.
+ // instruction).
+ if (DT->dominates(LI, I)) {
+ isHot = true;
+ break;
+ }
// We are interested only in "hot" instructions. We don't want to do any
// mis-optimizations here.
@@ -1128,7 +1414,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
- FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
+ FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
@@ -1136,33 +1422,33 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
PI != E; ++PI) {
if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
continue;
-
+
// If this load is not available in multiple predecessors, reject it.
if (UnavailablePred && UnavailablePred != *PI)
return false;
UnavailablePred = *PI;
}
-
+
assert(UnavailablePred != 0 &&
"Fully available value should be eliminated above!");
-
+
// If the loaded pointer is PHI node defined in this block, do PHI translation
// to get its value in the predecessor.
Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
-
+
// Make sure the value is live in the predecessor. If it was defined by a
// non-PHI instruction in this block, we don't know how to recompute it above.
if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
- DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
- << *LPInst << *LI << "\n");
+ DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
+ << *LPInst << '\n' << *LI << "\n");
return false;
}
-
+
// We don't currently handle critical edges :(
if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
- DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
- << UnavailablePred->getName() << "': " << *LI);
+ DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
+ << UnavailablePred->getName() << "': " << *LI << '\n');
return false;
}
@@ -1182,28 +1468,23 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
- DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
-
+ DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
+
Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
-
- SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
- for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
- I != E; ++I)
- ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
-
- DenseMap<BasicBlock*, Value*> BlockReplValues;
- BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
- BlockReplValues[UnavailablePred] = NewLoad;
-
+
+ // Add the newly created load.
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
+
// Perform PHI construction.
- Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
- LI->replaceAllUsesWith(v);
- if (isa<PHINode>(v))
- v->takeName(LI);
- if (isa<PointerType>(v->getType()))
- MD->invalidateCachedPointerInfo(v);
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD,
+ VN.getAliasAnalysis());
+ LI->replaceAllUsesWith(V);
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (isa<PointerType>(V->getType()))
+ MD->invalidateCachedPointerInfo(V);
toErase.push_back(LI);
NumPRELoad++;
return true;
@@ -1214,64 +1495,119 @@ bool GVN::processNonLocalLoad(LoadInst *LI,
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
if (L->isVolatile())
return false;
-
- Value* pointer = L->getPointerOperand();
// ... to a pointer that has been loaded from before...
- MemDepResult dep = MD->getDependency(L);
-
+ MemDepResult Dep = MD->getDependency(L);
+
// If the value isn't available, don't do anything!
- if (dep.isClobber()) {
+ if (Dep.isClobber()) {
+ // FIXME: We should handle memset/memcpy/memmove as dependent instructions
+ // to forward the value if available.
+ //if (isa<MemIntrinsic>(Dep.getInst()))
+ //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
+
+ // Check to see if we have something like this:
+ // store i32 123, i32* %P
+ // %A = bitcast i32* %P to i8*
+ // %B = gep i8* %A, i32 1
+ // %C = load i8* %B
+ //
+ // We could do that by recognizing if the clobber instructions are obviously
+ // a common base + constant offset, and if the previous store (or memset)
+ // completely covers this load. This sort of thing can happen in bitfield
+ // access code.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
+ if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
+ int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
+ if (Offset != -1) {
+ Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
+ L->getType(), L, *TD);
+ DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
+ << *AvailVal << '\n' << *L << "\n\n\n");
+
+ // Replace the load!
+ L->replaceAllUsesWith(AvailVal);
+ if (isa<PointerType>(AvailVal->getType()))
+ MD->invalidateCachedPointerInfo(AvailVal);
+ toErase.push_back(L);
+ NumGVNLoad++;
+ return true;
+ }
+ }
+
DEBUG(
// fast print dep, using operator<< on instruction would be too slow
- DOUT << "GVN: load ";
- WriteAsOperand(*DOUT.stream(), L);
- Instruction *I = dep.getInst();
- DOUT << " is clobbered by " << *I;
+ errs() << "GVN: load ";
+ WriteAsOperand(errs(), L);
+ Instruction *I = Dep.getInst();
+ errs() << " is clobbered by " << *I << '\n';
);
return false;
}
// If it is defined in another block, try harder.
- if (dep.isNonLocal())
+ if (Dep.isNonLocal())
return processNonLocalLoad(L, toErase);
- Instruction *DepInst = dep.getInst();
+ Instruction *DepInst = Dep.getInst();
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
- // Only forward substitute stores to loads of the same type.
- // FIXME: Could do better!
- if (DepSI->getPointerOperand()->getType() != pointer->getType())
- return false;
+ Value *StoredVal = DepSI->getOperand(0);
+ // The store and load are to a must-aliased pointer, but they may not
+ // actually have the same type. See if we know how to reuse the stored
+ // value (depending on its type).
+ const TargetData *TD = 0;
+ if (StoredVal->getType() != L->getType() &&
+ (TD = getAnalysisIfAvailable<TargetData>())) {
+ StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
+ L, *TD);
+ if (StoredVal == 0)
+ return false;
+
+ DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
+ << '\n' << *L << "\n\n\n");
+ }
+
// Remove it!
- L->replaceAllUsesWith(DepSI->getOperand(0));
- if (isa<PointerType>(DepSI->getOperand(0)->getType()))
- MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
+ L->replaceAllUsesWith(StoredVal);
+ if (isa<PointerType>(StoredVal->getType()))
+ MD->invalidateCachedPointerInfo(StoredVal);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
- // Only forward substitute stores to loads of the same type.
- // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
- if (DepLI->getType() != L->getType())
- return false;
+ Value *AvailableVal = DepLI;
+
+ // The loads are of a must-aliased pointer, but they may not actually have
+ // the same type. See if we know how to reuse the previously loaded value
+ // (depending on its type).
+ const TargetData *TD = 0;
+ if (DepLI->getType() != L->getType() &&
+ (TD = getAnalysisIfAvailable<TargetData>())) {
+ AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
+ if (AvailableVal == 0)
+ return false;
+
+ DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
+ << "\n" << *L << "\n\n\n");
+ }
// Remove it!
- L->replaceAllUsesWith(DepLI);
+ L->replaceAllUsesWith(AvailableVal);
if (isa<PointerType>(DepLI->getType()))
MD->invalidateCachedPointerInfo(DepLI);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
-
+
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
- if (isa<AllocationInst>(DepInst)) {
- L->replaceAllUsesWith(Context->getUndef(L->getType()));
+ if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
+ L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
NumGVNLoad++;
return true;
@@ -1280,150 +1616,93 @@ bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
return false;
}
-Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
+Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
if (I == localAvail.end())
return 0;
-
- ValueNumberScope* locals = I->second;
-
- while (locals) {
- DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
- if (I != locals->table.end())
+
+ ValueNumberScope *Locals = I->second;
+ while (Locals) {
+ DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
+ if (I != Locals->table.end())
return I->second;
- else
- locals = locals->parent;
+ Locals = Locals->parent;
}
-
+
return 0;
}
-/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
-/// by inheritance from the dominator fails, see if we can perform phi
-/// construction to eliminate the redundancy.
-Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
- BasicBlock* BaseBlock = orig->getParent();
-
- SmallPtrSet<BasicBlock*, 4> Visited;
- SmallVector<BasicBlock*, 8> Stack;
- Stack.push_back(BaseBlock);
-
- DenseMap<BasicBlock*, Value*> Results;
-
- // Walk backwards through our predecessors, looking for instances of the
- // value number we're looking for. Instances are recorded in the Results
- // map, which is then used to perform phi construction.
- while (!Stack.empty()) {
- BasicBlock* Current = Stack.back();
- Stack.pop_back();
-
- // If we've walked all the way to a proper dominator, then give up. Cases
- // where the instance is in the dominator will have been caught by the fast
- // path, and any cases that require phi construction further than this are
- // probably not worth it anyways. Note that this is a SIGNIFICANT compile
- // time improvement.
- if (DT->properlyDominates(Current, orig->getParent())) return 0;
-
- DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
- localAvail.find(Current);
- if (LA == localAvail.end()) return 0;
- DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
-
- if (V != LA->second->table.end()) {
- // Found an instance, record it.
- Results.insert(std::make_pair(Current, V->second));
- continue;
- }
-
- // If we reach the beginning of the function, then give up.
- if (pred_begin(Current) == pred_end(Current))
- return 0;
-
- for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
- PI != PE; ++PI)
- if (Visited.insert(*PI))
- Stack.push_back(*PI);
- }
-
- // If we didn't find instances, give up. Otherwise, perform phi construction.
- if (Results.size() == 0)
- return 0;
- else
- return GetValueForBlock(BaseBlock, orig, Results, true);
-}
/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
SmallVectorImpl<Instruction*> &toErase) {
- if (LoadInst* L = dyn_cast<LoadInst>(I)) {
- bool changed = processLoad(L, toErase);
-
- if (!changed) {
- unsigned num = VN.lookup_or_add(L);
- localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ bool Changed = processLoad(LI, toErase);
+
+ if (!Changed) {
+ unsigned Num = VN.lookup_or_add(LI);
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
}
-
- return changed;
+
+ return Changed;
}
-
- uint32_t nextNum = VN.getNextUnusedValueNumber();
- unsigned num = VN.lookup_or_add(I);
-
- if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
-
+
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ unsigned Num = VN.lookup_or_add(I);
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
+
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
return false;
-
- Value* branchCond = BI->getCondition();
- uint32_t condVN = VN.lookup_or_add(branchCond);
-
- BasicBlock* trueSucc = BI->getSuccessor(0);
- BasicBlock* falseSucc = BI->getSuccessor(1);
-
- if (trueSucc->getSinglePredecessor())
- localAvail[trueSucc]->table[condVN] = Context->getConstantIntTrue();
- if (falseSucc->getSinglePredecessor())
- localAvail[falseSucc]->table[condVN] = Context->getConstantIntFalse();
+
+ Value *BranchCond = BI->getCondition();
+ uint32_t CondVN = VN.lookup_or_add(BranchCond);
+
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+
+ if (TrueSucc->getSinglePredecessor())
+ localAvail[TrueSucc]->table[CondVN] =
+ ConstantInt::getTrue(TrueSucc->getContext());
+ if (FalseSucc->getSinglePredecessor())
+ localAvail[FalseSucc]->table[CondVN] =
+ ConstantInt::getFalse(TrueSucc->getContext());
return false;
-
+
// Allocations are always uniquely numbered, so we can save time and memory
- // by fast failing them.
+ // by fast failing them.
} else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
return false;
}
-
+
// Collapse PHI nodes
if (PHINode* p = dyn_cast<PHINode>(I)) {
- Value* constVal = CollapsePhi(p);
-
+ Value *constVal = CollapsePhi(p);
+
if (constVal) {
- for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
- PI != PE; ++PI)
- PI->second.erase(p);
-
p->replaceAllUsesWith(constVal);
if (isa<PointerType>(constVal->getType()))
MD->invalidateCachedPointerInfo(constVal);
VN.erase(p);
-
+
toErase.push_back(p);
} else {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
}
-
+
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
- } else if (num == nextNum) {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
-
+ } else if (Num == NextNum) {
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
+
// Perform fast-path value-number based elimination of values inherited from
// dominators.
- } else if (Value* repl = lookupNumber(I->getParent(), num)) {
+ } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
// Remove it!
VN.erase(I);
I->replaceAllUsesWith(repl);
@@ -1432,21 +1711,10 @@ bool GVN::processInstruction(Instruction *I,
toErase.push_back(I);
return true;
-#if 0
- // Perform slow-pathvalue-number based elimination with phi construction.
- } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
- // Remove it!
- VN.erase(I);
- I->replaceAllUsesWith(repl);
- if (isa<PointerType>(repl->getType()))
- MD->invalidateCachedPointerInfo(repl);
- toErase.push_back(I);
- return true;
-#endif
} else {
- localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
+ localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
}
-
+
return false;
}
@@ -1457,35 +1725,35 @@ bool GVN::runOnFunction(Function& F) {
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
-
- bool changed = false;
- bool shouldContinue = true;
-
+
+ bool Changed = false;
+ bool ShouldContinue = true;
+
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
- BasicBlock* BB = FI;
+ BasicBlock *BB = FI;
++FI;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) NumGVNBlocks++;
-
- changed |= removedBlock;
+
+ Changed |= removedBlock;
}
-
+
unsigned Iteration = 0;
-
- while (shouldContinue) {
- DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
- shouldContinue = iterateOnFunction(F);
- changed |= shouldContinue;
+
+ while (ShouldContinue) {
+ DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
+ ShouldContinue = iterateOnFunction(F);
+ Changed |= ShouldContinue;
++Iteration;
}
-
+
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
- changed |= PREChanged;
+ Changed |= PREChanged;
}
}
// FIXME: Should perform GVN again after PRE does something. PRE can move
@@ -1495,27 +1763,27 @@ bool GVN::runOnFunction(Function& F) {
cleanupGlobalSets();
- return changed;
+ return Changed;
}
-bool GVN::processBlock(BasicBlock* BB) {
+bool GVN::processBlock(BasicBlock *BB) {
// FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
// incrementing BI before processing an instruction).
SmallVector<Instruction*, 8> toErase;
- bool changed_function = false;
-
+ bool ChangedFunction = false;
+
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
- changed_function |= processInstruction(BI, toErase);
+ ChangedFunction |= processInstruction(BI, toErase);
if (toErase.empty()) {
++BI;
continue;
}
-
+
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
-
+
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
@@ -1523,7 +1791,7 @@ bool GVN::processBlock(BasicBlock* BB) {
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
- DEBUG(cerr << "GVN removed: " << **I);
+ DEBUG(errs() << "GVN removed: " << **I << '\n');
MD->removeInstruction(*I);
(*I)->eraseFromParent();
DEBUG(verifyRemoved(*I));
@@ -1535,8 +1803,8 @@ bool GVN::processBlock(BasicBlock* BB) {
else
++BI;
}
-
- return changed_function;
+
+ return ChangedFunction;
}
/// performPRE - Perform a purely local form of PRE that looks for diamond
@@ -1547,32 +1815,33 @@ bool GVN::performPRE(Function& F) {
DenseMap<BasicBlock*, Value*> predMap;
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
- BasicBlock* CurrentBlock = *DI;
-
+ BasicBlock *CurrentBlock = *DI;
+
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
-
+
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
Instruction *CurInst = BI++;
- if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
- isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
+ if (isa<AllocationInst>(CurInst) ||
+ isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
+ CurInst->getType()->isVoidTy() ||
CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
isa<DbgInfoIntrinsic>(CurInst))
continue;
- uint32_t valno = VN.lookup(CurInst);
-
+ uint32_t ValNo = VN.lookup(CurInst);
+
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
- unsigned numWith = 0;
- unsigned numWithout = 0;
- BasicBlock* PREPred = 0;
+ unsigned NumWith = 0;
+ unsigned NumWithout = 0;
+ BasicBlock *PREPred = 0;
predMap.clear();
for (pred_iterator PI = pred_begin(CurrentBlock),
@@ -1581,59 +1850,59 @@ bool GVN::performPRE(Function& F) {
// own predecessor, on in blocks with predecessors
// that are not reachable.
if (*PI == CurrentBlock) {
- numWithout = 2;
+ NumWithout = 2;
break;
} else if (!localAvail.count(*PI)) {
- numWithout = 2;
+ NumWithout = 2;
break;
}
-
- DenseMap<uint32_t, Value*>::iterator predV =
- localAvail[*PI]->table.find(valno);
+
+ DenseMap<uint32_t, Value*>::iterator predV =
+ localAvail[*PI]->table.find(ValNo);
if (predV == localAvail[*PI]->table.end()) {
PREPred = *PI;
- numWithout++;
+ NumWithout++;
} else if (predV->second == CurInst) {
- numWithout = 2;
+ NumWithout = 2;
} else {
predMap[*PI] = predV->second;
- numWith++;
+ NumWith++;
}
}
-
+
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
- if (numWithout != 1 || numWith == 0)
+ if (NumWithout != 1 || NumWith == 0)
continue;
-
+
// We can't do PRE safely on a critical edge, so instead we schedule
// the edge to be split and perform the PRE the next time we iterate
// on the function.
- unsigned succNum = 0;
+ unsigned SuccNum = 0;
for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
i != e; ++i)
if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
- succNum = i;
+ SuccNum = i;
break;
}
-
- if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
- toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
+
+ if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
continue;
}
-
+
// Instantiate the expression the in predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
- Instruction* PREInstr = CurInst->clone();
+ Instruction *PREInstr = CurInst->clone();
bool success = true;
for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
Value *Op = PREInstr->getOperand(i);
if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
continue;
-
+
if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
PREInstr->setOperand(i, V);
} else {
@@ -1641,25 +1910,25 @@ bool GVN::performPRE(Function& F) {
break;
}
}
-
+
// Fail out if we encounter an operand that is not available in
- // the PRE predecessor. This is typically because of loads which
+ // the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
DEBUG(verifyRemoved(PREInstr));
continue;
}
-
+
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(CurInst->getName() + ".pre");
predMap[PREPred] = PREInstr;
- VN.add(PREInstr, valno);
+ VN.add(PREInstr, ValNo);
NumGVNPRE++;
-
+
// Update the availability map to include the new instruction.
- localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
-
+ localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
+
// Create a PHI to make the value available in this block.
PHINode* Phi = PHINode::Create(CurInst->getType(),
CurInst->getName() + ".pre-phi",
@@ -1667,27 +1936,27 @@ bool GVN::performPRE(Function& F) {
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI)
Phi->addIncoming(predMap[*PI], *PI);
-
- VN.add(Phi, valno);
- localAvail[CurrentBlock]->table[valno] = Phi;
-
+
+ VN.add(Phi, ValNo);
+ localAvail[CurrentBlock]->table[ValNo] = Phi;
+
CurInst->replaceAllUsesWith(Phi);
if (isa<PointerType>(Phi->getType()))
MD->invalidateCachedPointerInfo(Phi);
VN.erase(CurInst);
-
- DEBUG(cerr << "GVN PRE removed: " << *CurInst);
+
+ DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
MD->removeInstruction(CurInst);
CurInst->eraseFromParent();
DEBUG(verifyRemoved(CurInst));
Changed = true;
}
}
-
+
for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
SplitCriticalEdge(I->first, I->second, this);
-
+
return Changed || toSplit.size();
}
@@ -1705,25 +1974,24 @@ bool GVN::iterateOnFunction(Function &F) {
}
// Top-down walk of the dominator tree
- bool changed = false;
+ bool Changed = false;
#if 0
// Needed for value numbering with phi construction to work.
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
RE = RPOT.end(); RI != RE; ++RI)
- changed |= processBlock(*RI);
+ Changed |= processBlock(*RI);
#else
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI)
- changed |= processBlock(DI->getBlock());
+ Changed |= processBlock(DI->getBlock());
#endif
- return changed;
+ return Changed;
}
void GVN::cleanupGlobalSets() {
VN.clear();
- phiMap.clear();
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
@@ -1736,18 +2004,6 @@ void GVN::cleanupGlobalSets() {
void GVN::verifyRemoved(const Instruction *Inst) const {
VN.verifyRemoved(Inst);
- // Walk through the PHI map to make sure the instruction isn't hiding in there
- // somewhere.
- for (PhiMapType::iterator
- I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
- assert(I->first != Inst && "Inst is still a key in PHI map!");
-
- for (SmallPtrSet<Instruction*, 4>::iterator
- II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
- assert(*II != Inst && "Inst is still a value in PHI map!");
- }
- }
-
// Walk through the value number scope to make sure the instruction isn't
// ferreted away in it.
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 88cf60e..e2d9e0b 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -51,11 +51,11 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
@@ -67,7 +67,7 @@ STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
namespace {
- class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
+ class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
ScalarEvolution *SE;
@@ -75,30 +75,30 @@ namespace {
bool Changed;
public:
- static char ID; // Pass identification, replacement for typeid
- IndVarSimplify() : LoopPass(&ID) {}
-
- virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<DominatorTree>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<LoopInfo>();
- AU.addRequired<IVUsers>();
- AU.addRequiredID(LCSSAID);
- AU.addPreserved<ScalarEvolution>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreserved<IVUsers>();
- AU.addPreservedID(LCSSAID);
- AU.setPreservesCFG();
- }
+ static char ID; // Pass identification, replacement for typeid
+ IndVarSimplify() : LoopPass(&ID) {}
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<DominatorTree>();
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<IVUsers>();
+ AU.addPreserved<ScalarEvolution>();
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<IVUsers>();
+ AU.setPreservesCFG();
+ }
private:
void RewriteNonIntegerIVs(Loop *L);
- ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV* BackedgeTakenCount,
+ ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
@@ -129,7 +129,7 @@ Pass *llvm::createIndVarSimplifyPass() {
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
- const SCEV* BackedgeTakenCount,
+ const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
@@ -138,13 +138,13 @@ ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
Value *CmpIndVar;
- const SCEV* RHS = BackedgeTakenCount;
+ const SCEV *RHS = BackedgeTakenCount;
if (ExitingBlock == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
- const SCEV* Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
- const SCEV* N =
+ const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
+ const SCEV *N =
SE->getAddExpr(BackedgeTakenCount,
SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
if ((isa<SCEVConstant>(N) && !N->isZero()) ||
@@ -182,13 +182,13 @@ ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
else
Opcode = ICmpInst::ICMP_EQ;
- DOUT << "INDVARS: Rewriting loop exit condition to:\n"
- << " LHS:" << *CmpIndVar // includes a newline
- << " op:\t"
- << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
- << " RHS:\t" << *RHS << "\n";
+ DEBUG(errs() << "INDVARS: Rewriting loop exit condition to:\n"
+ << " LHS:" << *CmpIndVar << '\n'
+ << " op:\t"
+ << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
+ << " RHS:\t" << *RHS << "\n");
- ICmpInst *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
+ ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
Instruction *OrigCond = cast<Instruction>(BI->getCondition());
// It's tempting to use replaceAllUsesWith here to fully replace the old
@@ -264,7 +264,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible.
- const SCEV* ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
+ const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (!ExitValue->isLoopInvariant(L))
continue;
@@ -273,25 +273,23 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L,
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
- DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
- << " LoopVal = " << *Inst << "\n";
+ DEBUG(errs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
+ << " LoopVal = " << *Inst << "\n");
PN->setIncomingValue(i, ExitVal);
// If this instruction is dead now, delete it.
RecursivelyDeleteTriviallyDeadInstructions(Inst);
- // If we're inserting code into the exit block rather than the
- // preheader, we can (and have to) remove the PHI entirely.
- // This is safe, because the NewVal won't be variant
- // in the loop, so we don't need an LCSSA phi node anymore.
- if (ExitBlocks.size() == 1) {
+ if (NumPreds == 1) {
+ // Completely replace a single-pred PHI. This is safe, because the
+ // NewVal won't be variant in the loop, so we don't need an LCSSA phi
+ // node anymore.
PN->replaceAllUsesWith(ExitVal);
RecursivelyDeleteTriviallyDeadInstructions(PN);
- break;
}
}
- if (ExitBlocks.size() != 1) {
+ if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = PN->clone();
@@ -339,7 +337,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
RewriteNonIntegerIVs(L);
BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
- const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE);
@@ -367,14 +365,14 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
NeedCannIV = true;
}
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- const SCEV* Stride = IU->StrideOrder[i];
+ const SCEV *Stride = IU->StrideOrder[i];
const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = Ty;
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
@@ -403,7 +401,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
++NumInserted;
Changed = true;
- DOUT << "INDVARS: New CanIV: " << *IndVar;
+ DEBUG(errs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// the old canonical-looking variable after it so that the IR remains
@@ -458,9 +456,9 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- const SCEV* Stride = IU->StrideOrder[i];
+ const SCEV *Stride = IU->StrideOrder[i];
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
ilist<IVStrideUse> &List = SI->second->Users;
@@ -471,7 +469,7 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
- const SCEV* AR = IU->getReplacementExpr(*UI);
+ const SCEV *AR = IU->getReplacementExpr(*UI);
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
@@ -508,8 +506,8 @@ void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
NewVal->takeName(Op);
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
- DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *Op
- << " into = " << *NewVal << "\n";
+ DEBUG(errs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
+ << " into = " << *NewVal << "\n");
++NumRemoved;
Changed = true;
@@ -546,8 +544,19 @@ void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
// New instructions were inserted at the end of the preheader.
if (isa<PHINode>(I))
break;
- if (I->isTrapping())
+ // Don't move instructions which might have side effects, since the side
+ // effects need to complete before instructions inside the loop. Also
+ // don't move instructions which might read memory, since the loop may
+ // modify memory. Note that it's okay if the instruction might have
+ // undefined behavior: LoopSimplify guarantees that the preheader
+ // dominates the exit block.
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
+ // Don't sink static AllocaInsts out of the entry block, which would
+ // turn them into dynamic allocas!
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ if (AI->isStaticAlloca())
+ continue;
// Determine if there is a use in or before the loop (direct or
// otherwise).
bool UsedInLoop = false;
@@ -630,7 +639,8 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
// Check incoming value.
ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
if (!InitValue) return;
- uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
+ uint64_t newInitValue =
+ Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
return;
@@ -646,7 +656,8 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
IncrVIndex = 0;
IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
if (!IncrValue) return;
- uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
+ uint64_t newIncrValue =
+ Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
return;
@@ -677,7 +688,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
EVIndex = 0;
EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
if (!EV) return;
- uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
+ uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(EV->getValueAPF(), &intEV))
return;
@@ -710,24 +721,26 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
// Insert new integer induction variable.
- PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
+ PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
PH->getName()+".int", PH);
- NewPHI->addIncoming(Context->getConstantInt(Type::Int32Ty, newInitValue),
+ NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
+ newInitValue),
PH->getIncomingBlock(IncomingEdge));
Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
- Context->getConstantInt(Type::Int32Ty,
+ ConstantInt::get(Type::getInt32Ty(PH->getContext()),
newIncrValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
// The back edge is edge 1 of newPHI, whatever it may have been in the
// original PHI.
- ConstantInt *NewEV = Context->getConstantInt(Type::Int32Ty, intEV);
+ ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
+ intEV);
Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
- ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
- EC->getParent()->getTerminator());
+ ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
+ NewPred, LHS, RHS, EC->getName());
// In the following deltions, PH may become dead and may be deleted.
// Use a WeakVH to observe whether this happens.
@@ -739,7 +752,7 @@ void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
RecursivelyDeleteTriviallyDeadInstructions(EC);
// Delete old, floating point, increment instruction.
- Incr->replaceAllUsesWith(Context->getUndef(Incr->getType()));
+ Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr);
// Replace floating induction variable, if it isn't already deleted.
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index 59fbd39..7c96c49 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -40,7 +40,9 @@
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
+#include "llvm/Operator.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/MallocHelper.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -48,11 +50,13 @@
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -60,7 +64,6 @@
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <climits>
-#include <sstream>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -71,29 +74,49 @@ STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
namespace {
- class VISIBILITY_HIDDEN InstCombiner
- : public FunctionPass,
- public InstVisitor<InstCombiner, Instruction*> {
- // Worklist of all of the instructions that need to be simplified.
+ /// InstCombineWorklist - This is the worklist management logic for
+ /// InstCombine.
+ class InstCombineWorklist {
SmallVector<Instruction*, 256> Worklist;
DenseMap<Instruction*, unsigned> WorklistMap;
- TargetData *TD;
- bool MustPreserveLCSSA;
+
+ void operator=(const InstCombineWorklist&RHS); // DO NOT IMPLEMENT
+ InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
public:
- static char ID; // Pass identification, replacement for typeid
- InstCombiner() : FunctionPass(&ID) {}
-
- LLVMContext* getContext() { return Context; }
-
- /// AddToWorkList - Add the specified instruction to the worklist if it
- /// isn't already in it.
- void AddToWorkList(Instruction *I) {
- if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
+ InstCombineWorklist() {}
+
+ bool isEmpty() const { return Worklist.empty(); }
+
+ /// Add - Add the specified instruction to the worklist if it isn't already
+ /// in it.
+ void Add(Instruction *I) {
+ if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second) {
+ DEBUG(errs() << "IC: ADD: " << *I << '\n');
Worklist.push_back(I);
+ }
+ }
+
+ void AddValue(Value *V) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Add(I);
}
- // RemoveFromWorkList - remove I from the worklist if it exists.
- void RemoveFromWorkList(Instruction *I) {
+ /// AddInitialGroup - Add the specified batch of stuff in reverse order.
+ /// which should only be done when the worklist is empty and when the group
+ /// has no duplicates.
+ void AddInitialGroup(Instruction *const *List, unsigned NumEntries) {
+ assert(Worklist.empty() && "Worklist must be empty to add initial group");
+ Worklist.reserve(NumEntries+16);
+ DEBUG(errs() << "IC: ADDING: " << NumEntries << " instrs to worklist\n");
+ for (; NumEntries; --NumEntries) {
+ Instruction *I = List[NumEntries-1];
+ WorklistMap.insert(std::make_pair(I, Worklist.size()));
+ Worklist.push_back(I);
+ }
+ }
+
+ // Remove - remove I from the worklist if it exists.
+ void Remove(Instruction *I) {
DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
if (It == WorklistMap.end()) return; // Not in worklist.
@@ -103,51 +126,74 @@ namespace {
WorklistMap.erase(It);
}
- Instruction *RemoveOneFromWorkList() {
+ Instruction *RemoveOne() {
Instruction *I = Worklist.back();
Worklist.pop_back();
WorklistMap.erase(I);
return I;
}
-
/// AddUsersToWorkList - When an instruction is simplified, add all users of
/// the instruction to the work lists because they might get more simplified
/// now.
///
- void AddUsersToWorkList(Value &I) {
+ void AddUsersToWorkList(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
- AddToWorkList(cast<Instruction>(*UI));
- }
-
- /// AddUsesToWorkList - When an instruction is simplified, add operands to
- /// the work lists because they might get more simplified now.
- ///
- void AddUsesToWorkList(Instruction &I) {
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i))
- AddToWorkList(Op);
+ Add(cast<Instruction>(*UI));
}
- /// AddSoonDeadInstToWorklist - The specified instruction is about to become
- /// dead. Add all of its operands to the worklist, turning them into
- /// undef's to reduce the number of uses of those instructions.
- ///
- /// Return the specified operand before it is turned into an undef.
- ///
- Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
- Value *R = I.getOperand(op);
-
- for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
- if (Instruction *Op = dyn_cast<Instruction>(*i)) {
- AddToWorkList(Op);
- // Set the operand to undef to drop the use.
- *i = Context->getUndef(Op->getType());
- }
+
+ /// Zap - check that the worklist is empty and nuke the backing store for
+ /// the map if it is large.
+ void Zap() {
+ assert(WorklistMap.empty() && "Worklist empty, but map not?");
- return R;
+ // Do an explicit clear, this shrinks the map if needed.
+ WorklistMap.clear();
}
+ };
+} // end anonymous namespace.
+
+
+namespace {
+ /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
+ /// just like the normal insertion helper, but also adds any new instructions
+ /// to the instcombine worklist.
+ class InstCombineIRInserter : public IRBuilderDefaultInserter<true> {
+ InstCombineWorklist &Worklist;
+ public:
+ InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
+
+ void InsertHelper(Instruction *I, const Twine &Name,
+ BasicBlock *BB, BasicBlock::iterator InsertPt) const {
+ IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
+ Worklist.Add(I);
+ }
+ };
+} // end anonymous namespace
+
+
+namespace {
+ class InstCombiner : public FunctionPass,
+ public InstVisitor<InstCombiner, Instruction*> {
+ TargetData *TD;
+ bool MustPreserveLCSSA;
+ bool MadeIRChange;
+ public:
+ /// Worklist - All of the instructions that need to be simplified.
+ InstCombineWorklist Worklist;
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ typedef IRBuilder<true, ConstantFolder, InstCombineIRInserter> BuilderTy;
+ BuilderTy *Builder;
+
+ static char ID; // Pass identification, replacement for typeid
+ InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
+
+ LLVMContext *Context;
+ LLVMContext *getContext() const { return Context; }
public:
virtual bool runOnFunction(Function &F);
@@ -155,12 +201,11 @@ namespace {
bool DoOneIteration(Function &F, unsigned ItNum);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
AU.addPreservedID(LCSSAID);
AU.setPreservesCFG();
}
- TargetData &getTargetData() const { return *TD; }
+ TargetData *getTargetData() const { return TD; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
@@ -187,8 +232,10 @@ namespace {
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
+ Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Value *A, Value *B, Value *C);
Instruction *visitOr (BinaryOperator &I);
@@ -208,7 +255,7 @@ namespace {
Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
- Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
+ Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I);
@@ -269,30 +316,10 @@ namespace {
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(&Old, New); // Insert inst
- AddToWorkList(New);
+ Worklist.Add(New);
return New;
}
-
- /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
- /// This also adds the cast to the worklist. Finally, this returns the
- /// cast.
- Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
- Instruction &Pos) {
- if (V->getType() == Ty) return V;
-
- if (Constant *CV = dyn_cast<Constant>(V))
- return Context->getConstantExprCast(opc, CV, Ty);
-
- Instruction *C = CastInst::Create(opc, V, Ty, V->getName(), &Pos);
- AddToWorkList(C);
- return C;
- }
- Value *InsertBitCastBefore(Value *V, const Type *Ty, Instruction &Pos) {
- return InsertCastBefore(Instruction::BitCast, V, Ty, Pos);
- }
-
-
// ReplaceInstUsesWith - This method is to be used when an instruction is
// found to be dead, replacable with another preexisting expression. Here
// we add all uses of I to the worklist, replace all uses of I with the new
@@ -300,16 +327,15 @@ namespace {
// modified.
//
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
- AddUsersToWorkList(I); // Add all modified instrs to worklist
- if (&I != V) {
- I.replaceAllUsesWith(V);
- return &I;
- } else {
- // If we are replacing the instruction with itself, this must be in a
- // segment of unreachable code, so just clobber the instruction.
- I.replaceAllUsesWith(Context->getUndef(I.getType()));
- return &I;
- }
+ Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
+
+ // If we are replacing the instruction with itself, this must be in a
+ // segment of unreachable code, so just clobber the instruction.
+ if (&I == V)
+ V = UndefValue::get(I.getType());
+
+ I.replaceAllUsesWith(V);
+ return &I;
}
// EraseInstFromFunction - When dealing with an instruction that has side
@@ -317,10 +343,19 @@ namespace {
// instruction. Instead, visit methods should return the value returned by
// this function.
Instruction *EraseInstFromFunction(Instruction &I) {
+ DEBUG(errs() << "IC: ERASE " << I << '\n');
+
assert(I.use_empty() && "Cannot erase instruction that is used!");
- AddUsesToWorkList(I);
- RemoveFromWorkList(&I);
+ // Make sure that we reprocess all operands now that we reduced their
+ // use counts.
+ if (I.getNumOperands() < 8) {
+ for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
+ if (Instruction *Op = dyn_cast<Instruction>(*i))
+ Worklist.Add(Op);
+ }
+ Worklist.Remove(&I);
I.eraseFromParent();
+ MadeIRChange = true;
return 0; // Don't do anything with FI
}
@@ -364,10 +399,15 @@ namespace {
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt& UndefElts, unsigned Depth = 0);
- // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
- // PHI node as operand #0, see if we can fold the instruction into the PHI
- // (which is only possible if all operands to the PHI are constants).
- Instruction *FoldOpIntoPhi(Instruction &I);
+ // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
+ // which has a PHI node as operand #0, see if we can fold the instruction
+ // into the PHI (which is only possible if all operands to the PHI are
+ // constants).
+ //
+ // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+ // that would normally be unprofitable because they strongly encourage jump
+ // threading.
+ Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
@@ -399,7 +439,7 @@ namespace {
unsigned PrefAlign = 0);
};
-}
+} // end anonymous namespace
char InstCombiner::ID = 0;
static RegisterPass<InstCombiner>
@@ -409,7 +449,8 @@ X("instcombine", "Combine redundant instructions");
// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
- if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
+ if (BinaryOperator::isNeg(V) ||
+ BinaryOperator::isFNeg(V) ||
BinaryOperator::isNot(V))
return 3;
return 4;
@@ -429,7 +470,7 @@ static bool isOnlyUse(Value *V) {
static const Type *getPromotedType(const Type *Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
if (ITy->getBitWidth() < 32)
- return Type::Int32Ty;
+ return Type::getInt32Ty(Ty->getContext());
}
return Ty;
}
@@ -438,29 +479,12 @@ static const Type *getPromotedType(const Type *Ty) {
/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
/// operand value, otherwise return null.
static Value *getBitCastOperand(Value *V) {
- if (BitCastInst *I = dyn_cast<BitCastInst>(V))
- // BitCastInst?
- return I->getOperand(0);
- else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- // GetElementPtrInst?
- if (GEP->hasAllZeroIndices())
- return GEP->getOperand(0);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast)
- // BitCast ConstantExp?
- return CE->getOperand(0);
- else if (CE->getOpcode() == Instruction::GetElementPtr) {
- // GetElementPtr ConstantExp?
- for (User::op_iterator I = CE->op_begin() + 1, E = CE->op_end();
- I != E; ++I) {
- ConstantInt *CI = dyn_cast<ConstantInt>(I);
- if (!CI || !CI->isZero())
- // Any non-zero indices? Not cast-like.
- return 0;
- }
- // All-zero indices? This is just like casting.
- return CE->getOperand(0);
- }
+ if (Operator *O = dyn_cast<Operator>(V)) {
+ if (O->getOpcode() == Instruction::BitCast)
+ return O->getOperand(0);
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ if (GEP->hasAllZeroIndices())
+ return GEP->getPointerOperand();
}
return 0;
}
@@ -474,7 +498,7 @@ isEliminableCastPair(
const Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
-
+
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
const Type *MidTy = CI->getType(); // B from above
@@ -483,12 +507,15 @@ isEliminableCastPair(
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy, TD->getIntPtrType());
+ DstTy,
+ TD ? TD->getIntPtrType(CI->getContext()) : 0);
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr && SrcTy != TD->getIntPtrType()) ||
- (Res == Instruction::PtrToInt && DstTy != TD->getIntPtrType()))
+ if ((Res == Instruction::IntToPtr &&
+ (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
+ (Res == Instruction::PtrToInt &&
+ (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
Res = 0;
return Instruction::CastOps(Res);
@@ -503,7 +530,7 @@ static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
// If this is another cast that can be eliminated, it isn't codegen either.
if (const CastInst *CI = dyn_cast<CastInst>(V))
- if (isEliminableCastPair(CI, opcode, Ty, TD))
+ if (isEliminableCastPair(CI, opcode, Ty, TD))
return false;
return true;
}
@@ -528,7 +555,7 @@ bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
if (isa<Constant>(I.getOperand(1))) {
- Constant *Folded = Context->getConstantExpr(I.getOpcode(),
+ Constant *Folded = ConstantExpr::get(I.getOpcode(),
cast<Constant>(I.getOperand(1)),
cast<Constant>(Op->getOperand(1)));
I.setOperand(0, Op->getOperand(0));
@@ -541,11 +568,11 @@ bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
Constant *C2 = cast<Constant>(Op1->getOperand(1));
// Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
- Constant *Folded = Context->getConstantExpr(I.getOpcode(), C1, C2);
+ Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Op1->getOperand(0),
Op1->getName(), &I);
- AddToWorkList(New);
+ Worklist.Add(New);
I.setOperand(0, New);
I.setOperand(1, Folded);
return true;
@@ -568,17 +595,17 @@ bool InstCombiner::SimplifyCompare(CmpInst &I) {
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
-static inline Value *dyn_castNegVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castNegVal(Value *V) {
if (BinaryOperator::isNeg(V))
return BinaryOperator::getNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return Context->getConstantExprNeg(C);
+ return ConstantExpr::getNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isInteger())
- return Context->getConstantExprNeg(C);
+ return ConstantExpr::getNeg(C);
return 0;
}
@@ -587,28 +614,28 @@ static inline Value *dyn_castNegVal(Value *V, LLVMContext* Context) {
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
-static inline Value *dyn_castFNegVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castFNegVal(Value *V) {
if (BinaryOperator::isFNeg(V))
return BinaryOperator::getFNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantFP *C = dyn_cast<ConstantFP>(V))
- return Context->getConstantExprFNeg(C);
+ return ConstantExpr::getFNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isFloatingPoint())
- return Context->getConstantExprFNeg(C);
+ return ConstantExpr::getFNeg(C);
return 0;
}
-static inline Value *dyn_castNotVal(Value *V, LLVMContext* Context) {
+static inline Value *dyn_castNotVal(Value *V) {
if (BinaryOperator::isNot(V))
return BinaryOperator::getNotArgument(V);
// Constants can be considered to be not'ed values...
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
- return Context->getConstantInt(~C->getValue());
+ return ConstantInt::get(C->getType(), ~C->getValue());
return 0;
}
@@ -617,8 +644,7 @@ static inline Value *dyn_castNotVal(Value *V, LLVMContext* Context) {
// non-constant operand of the multiply, and set CST to point to the multiplier.
// Otherwise, return null.
//
-static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST,
- LLVMContext* Context) {
+static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
if (V->hasOneUse() && V->getType()->isInteger())
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (I->getOpcode() == Instruction::Mul)
@@ -629,48 +655,27 @@ static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST,
// The multiplier is really 1 << CST.
uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
uint32_t CSTVal = CST->getLimitedValue(BitWidth);
- CST = Context->getConstantInt(APInt(BitWidth, 1).shl(CSTVal));
+ CST = ConstantInt::get(V->getType()->getContext(),
+ APInt(BitWidth, 1).shl(CSTVal));
return I->getOperand(0);
}
}
return 0;
}
-/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
-/// expression, return it.
-static User *dyn_castGetElementPtr(Value *V) {
- if (isa<GetElementPtrInst>(V)) return cast<User>(V);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::GetElementPtr)
- return cast<User>(V);
- return false;
-}
-
-/// getOpcode - If this is an Instruction or a ConstantExpr, return the
-/// opcode value. Otherwise return UserOp1.
-static unsigned getOpcode(const Value *V) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getOpcode();
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- return CE->getOpcode();
- // Use UserOp1 to mean there's no opcode.
- return Instruction::UserOp1;
-}
-
/// AddOne - Add one to a ConstantInt
-static Constant *AddOne(Constant *C, LLVMContext* Context) {
- return Context->getConstantExprAdd(C,
- Context->getConstantInt(C->getType(), 1));
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C,
+ ConstantInt::get(C->getType(), 1));
}
/// SubOne - Subtract one from a ConstantInt
-static Constant *SubOne(ConstantInt *C, LLVMContext* Context) {
- return Context->getConstantExprSub(C,
- Context->getConstantInt(C->getType(), 1));
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantExpr::getSub(C,
+ ConstantInt::get(C->getType(), 1));
}
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
-static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign,
- LLVMContext* Context) {
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
uint32_t W = C1->getBitWidth();
APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
if (sign) {
@@ -697,7 +702,7 @@ static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign,
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
- APInt Demanded, LLVMContext* Context) {
+ APInt Demanded) {
assert(I && "No instruction?");
assert(OpNo < I->getNumOperands() && "Operand index too large");
@@ -712,7 +717,7 @@ static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
// This instruction is producing bits that are not demanded. Shrink the RHS.
Demanded &= OpC->getValue();
- I->setOperand(OpNo, Context->getConstantInt(Demanded));
+ I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
return true;
}
@@ -784,7 +789,7 @@ bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
KnownZero, KnownOne, Depth);
if (NewVal == 0) return false;
- U.set(NewVal);
+ U = NewVal;
return true;
}
@@ -844,7 +849,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if (DemandedMask == 0) { // Not demanding any bits from V.
if (isa<UndefValue>(V))
return 0;
- return Context->getUndef(VTy);
+ return UndefValue::get(VTy);
}
if (Depth == 6) // Limit search depth.
@@ -886,7 +891,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Context->getNullValue(VTy);
+ return Constant::getNullValue(VTy);
} else if (I->getOpcode() == Instruction::Or) {
// We can simplify (X|Y) -> X or Y in the user's context if we know that
@@ -955,10 +960,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
- return Context->getNullValue(VTy);
+ return Constant::getNullValue(VTy);
// If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
return I;
// Output known-1 bits are only known if set in both the LHS & RHS.
@@ -995,7 +1000,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return I->getOperand(1);
// If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
// Output known-0 bits are only known if clear in both the LHS & RHS.
@@ -1030,7 +1035,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// other, turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
- Instruction *Or =
+ Instruction *Or =
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
I->getName());
return InsertNewInstBefore(Or, *I);
@@ -1043,7 +1048,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
// all known
if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
- Constant *AndC = Context->getConstantInt(~RHSKnownOne & DemandedMask);
+ Constant *AndC = Constant::getIntegerValue(VTy,
+ ~RHSKnownOne & DemandedMask);
Instruction *And =
BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
return InsertNewInstBefore(And, *I);
@@ -1052,9 +1058,36 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the RHS is a constant, see if we can simplify it.
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
return I;
+ // If our LHS is an 'and' and if it has one use, and if any of the bits we
+ // are flipping are known to be set, then the xor is just resetting those
+ // bits to zero. We can just knock out bits from the 'and' and the 'xor',
+ // simplifying both of them.
+ if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
+ if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
+ isa<ConstantInt>(I->getOperand(1)) &&
+ isa<ConstantInt>(LHSInst->getOperand(1)) &&
+ (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
+ ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
+ ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
+ APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
+
+ Constant *AndC =
+ ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
+ Instruction *NewAnd =
+ BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
+ InsertNewInstBefore(NewAnd, *I);
+
+ Constant *XorC =
+ ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
+ Instruction *NewXor =
+ BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
+ return InsertNewInstBefore(NewXor, *I);
+ }
+
+
RHSKnownZero = KnownZeroOut;
RHSKnownOne = KnownOneOut;
break;
@@ -1069,8 +1102,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(I, 1, DemandedMask, Context) ||
- ShrinkDemandedConstant(I, 2, DemandedMask, Context))
+ if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
+ ShrinkDemandedConstant(I, 2, DemandedMask))
return I;
// Only known if known in both the LHS and RHS.
@@ -1194,7 +1227,7 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the RHS of the add has bits set that can't affect the input, reduce
// the constant.
- if (ShrinkDemandedConstant(I, 1, InDemandedBits, Context))
+ if (ShrinkDemandedConstant(I, 1, InDemandedBits))
return I;
// Avoid excess work.
@@ -1415,10 +1448,10 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
Instruction *NewVal;
if (InputBit > ResultBit)
NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
- Context->getConstantInt(I->getType(), InputBit-ResultBit));
+ ConstantInt::get(I->getType(), InputBit-ResultBit));
else
NewVal = BinaryOperator::CreateShl(I->getOperand(1),
- Context->getConstantInt(I->getType(), ResultBit-InputBit));
+ ConstantInt::get(I->getType(), ResultBit-InputBit));
NewVal->takeName(I);
return InsertNewInstBefore(NewVal, *I);
}
@@ -1434,12 +1467,8 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If the client is only demanding bits that we know, return the known
// constant.
- if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
- Constant *C = Context->getConstantInt(RHSKnownOne);
- if (isa<PointerType>(V->getType()))
- C = Context->getConstantExprIntToPtr(C, V->getType());
- return C;
- }
+ if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
+ return Constant::getIntegerValue(VTy, RHSKnownOne);
return false;
}
@@ -1465,13 +1494,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
return 0;
} else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
UndefElts = EltMask;
- return Context->getUndef(V->getType());
+ return UndefValue::get(V->getType());
}
UndefElts = 0;
if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Undef = Context->getUndef(EltTy);
+ Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
for (unsigned i = 0; i != VWidth; ++i)
@@ -1486,7 +1515,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
}
// If we changed the constant, return it.
- Constant *NewCP = Context->getConstantVector(Elts);
+ Constant *NewCP = ConstantVector::get(Elts);
return NewCP != CP ? NewCP : 0;
} else if (isa<ConstantAggregateZero>(V)) {
// Simplify the CAZ to a ConstantVector where the non-demanded elements are
@@ -1498,15 +1527,15 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
return 0;
const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
- Constant *Zero = Context->getNullValue(EltTy);
- Constant *Undef = Context->getUndef(EltTy);
+ Constant *Zero = Constant::getNullValue(EltTy);
+ Constant *Undef = UndefValue::get(EltTy);
std::vector<Constant*> Elts;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = DemandedElts[i] ? Zero : Undef;
Elts.push_back(Elt);
}
UndefElts = DemandedElts ^ EltMask;
- return Context->getConstantVector(Elts);
+ return ConstantVector::get(Elts);
}
// Limit search depth.
@@ -1553,8 +1582,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// If this is inserting an element that isn't demanded, remove this
// insertelement.
unsigned IdxNo = Idx->getZExtValue();
- if (IdxNo >= VWidth || !DemandedElts[IdxNo])
- return AddSoonDeadInstToWorklist(*I, 0);
+ if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
+ Worklist.Add(I);
+ return I->getOperand(0);
+ }
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
@@ -1620,12 +1651,12 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
std::vector<Constant*> Elts;
for (unsigned i = 0; i < VWidth; ++i) {
if (UndefElts[i])
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
else
- Elts.push_back(Context->getConstantInt(Type::Int32Ty,
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
Shuffle->getMaskValue(i)));
}
- I->setOperand(2, Context->getConstantVector(Elts));
+ I->setOperand(2, ConstantVector::get(Elts));
MadeChange = true;
}
break;
@@ -1678,7 +1709,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = UndefElts2;
if (VWidth > InVWidth) {
- assert(0 && "Unimp");
+ llvm_unreachable("Unimp");
// If there are more elements in the result than there are in the source,
// then an output element is undef if the corresponding input element is
// undef.
@@ -1686,7 +1717,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
if (UndefElts2[OutIdx/Ratio])
UndefElts.set(OutIdx);
} else if (VWidth < InVWidth) {
- assert(0 && "Unimp");
+ llvm_unreachable("Unimp");
// If there are more elements in the source than there are in the result,
// then a result element is undef if all of the corresponding input
// elements are undef.
@@ -1752,11 +1783,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Value *LHS = II->getOperand(1);
Value *RHS = II->getOperand(2);
// Extract the element as scalars.
- LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
- RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
+ LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
+ RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
switch (II->getIntrinsicID()) {
- default: assert(0 && "Case stmts out of sync!");
+ default: llvm_unreachable("Case stmts out of sync!");
case Intrinsic::x86_sse_sub_ss:
case Intrinsic::x86_sse2_sub_sd:
TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
@@ -1771,9 +1804,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Instruction *New =
InsertElementInst::Create(
- Context->getUndef(II->getType()), TmpV, 0U, II->getName());
+ UndefValue::get(II->getType()), TmpV,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName());
InsertNewInstBefore(New, *II);
- AddSoonDeadInstToWorklist(*II, 0);
return New;
}
}
@@ -1799,8 +1832,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
/// 'shouldApply' and 'apply' methods.
///
template<typename Functor>
-static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F,
- LLVMContext* Context) {
+static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
unsigned Opcode = Root.getOpcode();
Value *LHS = Root.getOperand(0);
@@ -1833,7 +1865,7 @@ static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F,
// Make what used to be the LHS of the root be the user of the root...
Value *ExtraOperand = TmpLHSI->getOperand(1);
if (&Root == TmpLHSI) {
- Root.replaceAllUsesWith(Context->getNullValue(TmpLHSI->getType()));
+ Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
return 0;
}
Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
@@ -1872,12 +1904,11 @@ namespace {
// AddRHS - Implements: X + X --> X << 1
struct AddRHS {
Value *RHS;
- LLVMContext* Context;
- AddRHS(Value *rhs, LLVMContext* C) : RHS(rhs), Context(C) {}
+ explicit AddRHS(Value *rhs) : RHS(rhs) {}
bool shouldApply(Value *LHS) const { return LHS == RHS; }
Instruction *apply(BinaryOperator &Add) const {
return BinaryOperator::CreateShl(Add.getOperand(0),
- Context->getConstantInt(Add.getType(), 1));
+ ConstantInt::get(Add.getType(), 1));
}
};
@@ -1885,12 +1916,11 @@ struct AddRHS {
// iff C1&C2 == 0
struct AddMaskingAnd {
Constant *C2;
- LLVMContext* Context;
- AddMaskingAnd(Constant *c, LLVMContext* C) : C2(c), Context(C) {}
+ explicit AddMaskingAnd(Constant *c) : C2(c) {}
bool shouldApply(Value *LHS) const {
ConstantInt *C1;
return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
- Context->getConstantExprAnd(C1, C2)->isNullValue();
+ ConstantExpr::getAnd(C1, C2)->isNullValue();
}
Instruction *apply(BinaryOperator &Add) const {
return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
@@ -1901,11 +1931,8 @@ struct AddMaskingAnd {
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner *IC) {
- LLVMContext* Context = IC->getContext();
-
- if (CastInst *CI = dyn_cast<CastInst>(&I)) {
- return IC->InsertCastBefore(CI->getOpcode(), SO, I.getType(), I);
- }
+ if (CastInst *CI = dyn_cast<CastInst>(&I))
+ return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
@@ -1913,24 +1940,24 @@ static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
if (Constant *SOC = dyn_cast<Constant>(SO)) {
if (ConstIsRHS)
- return Context->getConstantExpr(I.getOpcode(), SOC, ConstOperand);
- return Context->getConstantExpr(I.getOpcode(), ConstOperand, SOC);
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
}
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
- Instruction *New;
+
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
- New = BinaryOperator::Create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
- else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- New = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
- SO->getName()+".cmp");
- else {
- assert(0 && "Unknown binary instruction type!");
- abort();
- }
- return IC->InsertNewInstBefore(New, I);
+ return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName()+".op");
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ llvm_unreachable("Unknown binary instruction type!");
}
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
@@ -1946,7 +1973,7 @@ static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
if (isa<Constant>(TV) || isa<Constant>(FV)) {
// Bool selects with constant operands can be folded to logical ops.
- if (SI->getType() == Type::Int1Ty) return 0;
+ if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0;
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
@@ -1958,20 +1985,34 @@ static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
}
-/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
-/// node as operand #0, see if we can fold the instruction into the PHI (which
-/// is only possible if all operands to the PHI are constants).
-Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
+/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
+/// has a PHI node as operand #0, see if we can fold the instruction into the
+/// PHI (which is only possible if all operands to the PHI are constants).
+///
+/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
+/// that would normally be unprofitable because they strongly encourage jump
+/// threading.
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
+ bool AllowAggressive) {
+ AllowAggressive = false;
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
- if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
-
- // Check to see if all of the operands of the PHI are constants. If there is
- // one non-constant value, remember the BB it is. If there is more than one
- // or if *it* is a PHI, bail out.
+ if (NumPHIValues == 0 ||
+ // We normally only transform phis with a single use, unless we're trying
+ // hard to make jump threading happen.
+ (!PN->hasOneUse() && !AllowAggressive))
+ return 0;
+
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
BasicBlock *NonConstBB = 0;
for (unsigned i = 0; i != NumPHIValues; ++i)
- if (!isa<Constant>(PN->getIncomingValue(i))) {
+ if (!isa<Constant>(PN->getIncomingValue(i)) ||
+ isa<ConstantExpr>(PN->getIncomingValue(i))) {
if (NonConstBB) return 0; // More than one non-const value.
if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
NonConstBB = PN->getIncomingBlock(i);
@@ -1986,7 +2027,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB) {
+ if (NonConstBB != 0 && !AllowAggressive) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional()) return 0;
}
@@ -1998,15 +2039,37 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
NewPN->takeName(PN);
// Next, add all of the operands to the PHI.
- if (I.getNumOperands() == 2) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ } else {
+ assert(PN->getIncomingBlock(i) == NonConstBB);
+ InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
+ FalseVInPred,
+ "phitmp", NonConstBB->getTerminator());
+ Worklist.Add(cast<Instruction>(InV));
+ }
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (I.getNumOperands() == 2) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = 0;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = Context->getConstantExprCompare(CI->getPredicate(), InC, C);
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
else
- InV = Context->getConstantExpr(I.getOpcode(), InC, C);
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
@@ -2014,14 +2077,14 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = CmpInst::Create(CI->getOpcode(),
+ InV = CmpInst::Create(CI->getOpcode(),
CI->getPredicate(),
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else
- assert(0 && "Unknown binop!");
+ llvm_unreachable("Unknown binop!");
- AddToWorkList(cast<Instruction>(InV));
+ Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
@@ -2031,13 +2094,13 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- InV = Context->getConstantExprCast(CI->getOpcode(), InC, RetTy);
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
I.getType(), "phitmp",
NonConstBB->getTerminator());
- AddToWorkList(cast<Instruction>(InV));
+ Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
@@ -2098,13 +2161,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (SimplifyDemandedInstructionBits(I))
return &I;
- // zext(i1) - 1 -> select i1, 0, -1
+ // zext(bool) + C -> bool ? C + 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
- if (CI->isAllOnesValue() &&
- ZI->getOperand(0)->getType() == Type::Int1Ty)
- return SelectInst::Create(ZI->getOperand(0),
- Context->getNullValue(I.getType()),
- Context->getConstantIntAllOnesValue(I.getType()));
+ if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
+ return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
}
if (isa<PHINode>(LHS))
@@ -2146,24 +2206,23 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
const Type *MiddleType = 0;
switch (Size) {
default: break;
- case 32: MiddleType = Type::Int32Ty; break;
- case 16: MiddleType = Type::Int16Ty; break;
- case 8: MiddleType = Type::Int8Ty; break;
+ case 32: MiddleType = Type::getInt32Ty(*Context); break;
+ case 16: MiddleType = Type::getInt16Ty(*Context); break;
+ case 8: MiddleType = Type::getInt8Ty(*Context); break;
}
if (MiddleType) {
- Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
- InsertNewInstBefore(NewTrunc, I);
+ Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
return new SExtInst(NewTrunc, I.getType(), I.getName());
}
}
}
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return BinaryOperator::CreateXor(LHS, RHS);
// X + X --> X << 1
if (I.getType()->isInteger()) {
- if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS, Context), Context))
+ if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS)))
return Result;
if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
@@ -2180,11 +2239,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// -A + B --> B - A
// -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castNegVal(LHS, Context)) {
+ if (Value *LHSV = dyn_castNegVal(LHS)) {
if (LHS->getType()->isIntOrIntVector()) {
- if (Value *RHSV = dyn_castNegVal(RHS, Context)) {
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSV, RHSV, "sum");
- InsertNewInstBefore(NewAdd, I);
+ if (Value *RHSV = dyn_castNegVal(RHS)) {
+ Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
}
@@ -2194,34 +2252,34 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// A + -B --> A - B
if (!isa<Constant>(RHS))
- if (Value *V = dyn_castNegVal(RHS, Context))
+ if (Value *V = dyn_castNegVal(RHS))
return BinaryOperator::CreateSub(LHS, V);
ConstantInt *C2;
- if (Value *X = dyn_castFoldableMul(LHS, C2, Context)) {
+ if (Value *X = dyn_castFoldableMul(LHS, C2)) {
if (X == RHS) // X*C + X --> X * (C+1)
- return BinaryOperator::CreateMul(RHS, AddOne(C2, Context));
+ return BinaryOperator::CreateMul(RHS, AddOne(C2));
// X*C1 + X*C2 --> X * (C1+C2)
ConstantInt *C1;
- if (X == dyn_castFoldableMul(RHS, C1, Context))
- return BinaryOperator::CreateMul(X, Context->getConstantExprAdd(C1, C2));
+ if (X == dyn_castFoldableMul(RHS, C1))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
}
// X + X*C --> X * (C+1)
- if (dyn_castFoldableMul(RHS, C2, Context) == LHS)
- return BinaryOperator::CreateMul(LHS, AddOne(C2, Context));
+ if (dyn_castFoldableMul(RHS, C2) == LHS)
+ return BinaryOperator::CreateMul(LHS, AddOne(C2));
// X + ~X --> -1 since ~X = -X-1
- if (dyn_castNotVal(LHS, Context) == RHS ||
- dyn_castNotVal(RHS, Context) == LHS)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ if (dyn_castNotVal(LHS) == RHS ||
+ dyn_castNotVal(RHS) == LHS)
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
- if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2, Context), Context))
+ if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
return R;
// A+B --> A|B iff A and B have no bits set in common.
@@ -2258,8 +2316,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
if (W == Y) {
- Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, Z,
- LHS->getName()), I);
+ Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
return BinaryOperator::CreateMul(W, NewAdd);
}
}
@@ -2268,11 +2325,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Value *X = 0;
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
- return BinaryOperator::CreateSub(SubOne(CRHS, Context), X);
+ return BinaryOperator::CreateSub(SubOne(CRHS), X);
// (X & FF00) + xx00 -> (X+xx00) & FF00
- if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
- Constant *Anded = Context->getConstantExprAnd(CRHS, C2);
+ if (LHS->hasOneUse() &&
+ match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
+ Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
if (Anded == CRHS) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
@@ -2286,8 +2344,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = InsertNewInstBefore(BinaryOperator::CreateAdd(X, CRHS,
- LHS->getName()), I);
+ Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
@@ -2299,28 +2356,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
return R;
}
- // add (cast *A to intptrtype) B ->
- // cast (GEP (cast *A to i8*) B) --> intptrtype
- {
- CastInst *CI = dyn_cast<CastInst>(LHS);
- Value *Other = RHS;
- if (!CI) {
- CI = dyn_cast<CastInst>(RHS);
- Other = LHS;
- }
- if (CI && CI->getType()->isSized() &&
- (CI->getType()->getScalarSizeInBits() ==
- TD->getIntPtrType()->getPrimitiveSizeInBits())
- && isa<PointerType>(CI->getOperand(0)->getType())) {
- unsigned AS =
- cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
- Value *I2 = InsertBitCastBefore(CI->getOperand(0),
- Context->getPointerType(Type::Int8Ty, AS), I);
- I2 = InsertNewInstBefore(GetElementPtrInst::Create(I2, Other, "ctg2"), I);
- return new PtrToIntInst(I2, CI->getType());
- }
- }
-
// add (select X 0 (sub n A)) A --> select X A n
{
SelectInst *SI = dyn_cast<SelectInst>(LHS);
@@ -2336,10 +2371,12 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// Can we fold the add into the argument of the select?
// We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
+ if (match(FV, m_Zero()) &&
+ match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
- if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
+ if (match(TV, m_Zero()) &&
+ match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
}
@@ -2351,14 +2388,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
Constant *CI =
- Context->getConstantExprTrunc(RHSC, LHSConv->getOperand(0)->getType());
+ ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
- Context->getConstantExprSExt(CI, I.getType()) == RHSC &&
+ ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- CI, "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
@@ -2373,10 +2409,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),
- "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
@@ -2392,7 +2426,7 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// X + 0 --> X
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
- if (CFP->isExactlyValue(Context->getConstantFPNegativeZero
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero
(I.getType())->getValueAPF()))
return ReplaceInstUsesWith(I, LHS);
}
@@ -2404,12 +2438,12 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// -A + B --> B - A
// -A + -B --> -(A + B)
- if (Value *LHSV = dyn_castFNegVal(LHS, Context))
+ if (Value *LHSV = dyn_castFNegVal(LHS))
return BinaryOperator::CreateFSub(RHS, LHSV);
// A + -B --> A - B
if (!isa<Constant>(RHS))
- if (Value *V = dyn_castFNegVal(RHS, Context))
+ if (Value *V = dyn_castFNegVal(RHS))
return BinaryOperator::CreateFSub(LHS, V);
// Check for X+0.0. Simplify it to X if we know X is not -0.0.
@@ -2427,14 +2461,13 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
Constant *CI =
- Context->getConstantExprFPToSI(CFP, LHSConv->getOperand(0)->getType());
+ ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
- Context->getConstantExprSIToFP(CI, I.getType()) == CFP &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- CI, "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ CI, "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
@@ -2449,10 +2482,8 @@ Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
- Instruction *NewAdd = BinaryOperator::CreateAdd(LHSConv->getOperand(0),
- RHSConv->getOperand(0),
- "addconv");
- InsertNewInstBefore(NewAdd, I);
+ Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
@@ -2465,10 +2496,10 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Op0 == Op1) // sub X, X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// If this is a 'B = x-(-A)', change to B = x+A...
- if (Value *V = dyn_castNegVal(Op1, Context))
+ if (Value *V = dyn_castNegVal(Op1))
return BinaryOperator::CreateAdd(Op0, V);
if (isa<UndefValue>(Op0))
@@ -2484,7 +2515,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// C - ~X == X + (1+C)
Value *X = 0;
if (match(Op1, m_Not(m_Value(X))))
- return BinaryOperator::CreateAdd(X, AddOne(C, Context));
+ return BinaryOperator::CreateAdd(X, AddOne(C));
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
@@ -2519,22 +2550,29 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI, this))
return R;
+
+ // C - zext(bool) -> bool ? C - 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
+ if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
+ return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
}
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return BinaryOperator::CreateXor(Op0, Op1);
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
if (Op1I->getOpcode() == Instruction::Add) {
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(1), I.getName());
+ return BinaryOperator::CreateNeg(Op1I->getOperand(1),
+ I.getName());
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(0), I.getName());
+ return BinaryOperator::CreateNeg(Op1I->getOperand(0),
+ I.getName());
else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
// C1-(X+C2) --> (C1-C2)-X
return BinaryOperator::CreateSub(
- Context->getConstantExprSub(CI1, CI2), Op1I->getOperand(0));
+ ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
}
}
@@ -2558,8 +2596,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
(Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
- Value *NewNot =
- InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp, "B.not"), I);
+ Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
return BinaryOperator::CreateAnd(Op0, NewNot);
}
@@ -2569,13 +2606,13 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
if (CSI->isZero())
if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
- Context->getConstantExprNeg(DivRHS));
+ ConstantExpr::getNeg(DivRHS));
// X - X*C --> X * (1-C)
ConstantInt *C2 = 0;
- if (dyn_castFoldableMul(Op1I, C2, Context) == Op0) {
+ if (dyn_castFoldableMul(Op1I, C2) == Op0) {
Constant *CP1 =
- Context->getConstantExprSub(Context->getConstantInt(I.getType(), 1),
+ ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
C2);
return BinaryOperator::CreateMul(Op0, CP1);
}
@@ -2590,18 +2627,19 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return ReplaceInstUsesWith(I, Op0I->getOperand(0));
} else if (Op0I->getOpcode() == Instruction::Sub) {
if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
- return BinaryOperator::CreateNeg(Op0I->getOperand(1), I.getName());
+ return BinaryOperator::CreateNeg(Op0I->getOperand(1),
+ I.getName());
}
}
ConstantInt *C1;
- if (Value *X = dyn_castFoldableMul(Op0, C1, Context)) {
+ if (Value *X = dyn_castFoldableMul(Op0, C1)) {
if (X == Op1) // X*C - X --> X * (C-1)
- return BinaryOperator::CreateMul(Op1, SubOne(C1, Context));
+ return BinaryOperator::CreateMul(Op1, SubOne(C1));
ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
- if (X == dyn_castFoldableMul(Op1, C2, Context))
- return BinaryOperator::CreateMul(X, Context->getConstantExprSub(C1, C2));
+ if (X == dyn_castFoldableMul(Op1, C2))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
}
return 0;
}
@@ -2610,15 +2648,17 @@ Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// If this is a 'B = x-(-A)', change to B = x+A...
- if (Value *V = dyn_castFNegVal(Op1, Context))
+ if (Value *V = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFAdd(Op0, V);
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
if (Op1I->getOpcode() == Instruction::FAdd) {
if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(1), I.getName());
+ return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
+ I.getName());
else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateFNeg(Op1I->getOperand(0), I.getName());
+ return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
+ I.getName());
}
}
@@ -2657,26 +2697,24 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // TODO: If Op1 is undef and Op0 is finite, return zero.
- if (!I.getType()->isFPOrFPVector() &&
- isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ if (isa<UndefValue>(Op1)) // undef * X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- // Simplify mul instructions with a constant RHS...
- if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // Simplify mul instructions with a constant RHS.
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
// ((X << C1)*C2) == (X * (C2 << C1))
if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
if (SI->getOpcode() == Instruction::Shl)
if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
return BinaryOperator::CreateMul(SI->getOperand(0),
- Context->getConstantExprShl(CI, ShOp));
+ ConstantExpr::getShl(CI, ShOp));
if (CI->isZero())
- return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
+ return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0
if (CI->equalsInt(1)) // X * 1 == X
return ReplaceInstUsesWith(I, Op0);
if (CI->isAllOnesValue()) // X * -1 == 0 - X
@@ -2685,12 +2723,13 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
const APInt& Val = cast<ConstantInt>(CI)->getValue();
if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
return BinaryOperator::CreateShl(Op0,
- Context->getConstantInt(Op0->getType(), Val.logBase2()));
+ ConstantInt::get(Op0->getType(), Val.logBase2()));
}
- } else if (isa<VectorType>(Op1->getType())) {
- // TODO: If Op1 is all zeros and Op0 is all finite, return all zeros.
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (Op1C->isNullValue())
+ return ReplaceInstUsesWith(I, Op1C);
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
return BinaryOperator::CreateNeg(Op0, I.getName());
@@ -2705,13 +2744,10 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
- isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
+ isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
// Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
- Instruction *Add = BinaryOperator::CreateMul(Op0I->getOperand(0),
- Op1, "tmp");
- InsertNewInstBefore(Add, I);
- Value *C1C2 = Context->getConstantExprMul(Op1,
- cast<Constant>(Op0I->getOperand(1)));
+ Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
+ Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
return BinaryOperator::CreateAdd(Add, C1C2);
}
@@ -2726,93 +2762,80 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
return NV;
}
- if (Value *Op0v = dyn_castNegVal(Op0, Context)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castNegVal(I.getOperand(1), Context))
+ if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1))
return BinaryOperator::CreateMul(Op0v, Op1v);
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
- Value *Op1 = I.getOperand(1);
+ Value *Op1C = Op1;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
if (!BO ||
(BO->getOpcode() != Instruction::UDiv &&
BO->getOpcode() != Instruction::SDiv)) {
- Op1 = Op0;
- BO = dyn_cast<BinaryOperator>(I.getOperand(1));
+ Op1C = Op0;
+ BO = dyn_cast<BinaryOperator>(Op1);
}
- Value *Neg = dyn_castNegVal(Op1, Context);
+ Value *Neg = dyn_castNegVal(Op1C);
if (BO && BO->hasOneUse() &&
- (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
+ (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
(BO->getOpcode() == Instruction::UDiv ||
BO->getOpcode() == Instruction::SDiv)) {
Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
- Instruction *Rem;
+ // If the division is exact, X % Y is zero.
+ if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
+ if (SDiv->isExact()) {
+ if (Op1BO == Op1C)
+ return ReplaceInstUsesWith(I, Op0BO);
+ return BinaryOperator::CreateNeg(Op0BO);
+ }
+
+ Value *Rem;
if (BO->getOpcode() == Instruction::UDiv)
- Rem = BinaryOperator::CreateURem(Op0BO, Op1BO);
+ Rem = Builder->CreateURem(Op0BO, Op1BO);
else
- Rem = BinaryOperator::CreateSRem(Op0BO, Op1BO);
-
- InsertNewInstBefore(Rem, I);
+ Rem = Builder->CreateSRem(Op0BO, Op1BO);
Rem->takeName(BO);
- if (Op1BO == Op1)
+ if (Op1BO == Op1C)
return BinaryOperator::CreateSub(Op0BO, Rem);
- else
- return BinaryOperator::CreateSub(Rem, Op0BO);
+ return BinaryOperator::CreateSub(Rem, Op0BO);
}
}
- if (I.getType() == Type::Int1Ty)
- return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
+ /// i1 mul -> i1 and.
+ if (I.getType() == Type::getInt1Ty(*Context))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op1, Y);
+ if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op0, Y);
+ }
+
// If one of the operands of the multiply is a cast from a boolean value, then
// we know the bool is either zero or one, so this is a 'masking' multiply.
- // See if we can simplify things based on how the boolean was originally
- // formed.
- CastInst *BoolCast = 0;
- if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
- if (CI->getOperand(0)->getType() == Type::Int1Ty)
- BoolCast = CI;
- if (!BoolCast)
- if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
- if (CI->getOperand(0)->getType() == Type::Int1Ty)
- BoolCast = CI;
- if (BoolCast) {
- if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
- Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
- const Type *SCOpTy = SCIOp0->getType();
- bool TIS = false;
-
- // If the icmp is true iff the sign bit of X is set, then convert this
- // multiply into a shift/and combination.
- if (isa<ConstantInt>(SCIOp1) &&
- isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
- TIS) {
- // Shift the X value right to turn it into "all signbits".
- Constant *Amt = Context->getConstantInt(SCIOp0->getType(),
- SCOpTy->getPrimitiveSizeInBits()-1);
- Value *V =
- InsertNewInstBefore(
- BinaryOperator::Create(Instruction::AShr, SCIOp0, Amt,
- BoolCast->getOperand(0)->getName()+
- ".mask"), I);
-
- // If the multiply type is not the same as the source type, sign extend
- // or truncate to the multiply type.
- if (I.getType() != V->getType()) {
- uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
- uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
- Instruction::CastOps opcode =
- (SrcBits == DstBits ? Instruction::BitCast :
- (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
- V = InsertCastBefore(opcode, V, I.getType(), I);
- }
+ // X * Y (where Y is 0 or 1) -> X & (0-Y)
+ if (!isa<VectorType>(I.getType())) {
+ // -2 is "-1 << 1" so it is all bits set except the low one.
+ APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+
+ Value *BoolCast = 0, *OtherOp = 0;
+ if (MaskedValueIsZero(Op0, Negative2))
+ BoolCast = Op0, OtherOp = Op1;
+ else if (MaskedValueIsZero(Op1, Negative2))
+ BoolCast = Op1, OtherOp = Op0;
- Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
- return BinaryOperator::CreateAnd(V, OtherOp);
- }
+ if (BoolCast) {
+ Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+ BoolCast, "tmp");
+ return BinaryOperator::CreateAnd(V, OtherOp);
}
}
@@ -2821,17 +2844,17 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
- Value *Op0 = I.getOperand(0);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Simplify mul instructions with a constant RHS...
- if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
- if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
// "In IEEE floating point, x*1 is not equivalent to x for nans. However,
// ANSI says we can drop signals, so we can do this anyway." (from GCC)
if (Op1F->isExactlyValue(1.0))
return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
- } else if (isa<VectorType>(Op1->getType())) {
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
+ } else if (isa<VectorType>(Op1C->getType())) {
+ if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
// As above, vector X*splat(1.0) -> X in all defined cases.
if (Constant *Splat = Op1V->getSplatValue()) {
if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
@@ -2851,8 +2874,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
return NV;
}
- if (Value *Op0v = dyn_castFNegVal(Op0, Context)) // -X * -Y = X*Y
- if (Value *Op1v = dyn_castFNegVal(I.getOperand(1), Context))
+ if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castFNegVal(Op1))
return BinaryOperator::CreateFMul(Op0v, Op1v);
return Changed ? &I : 0;
@@ -2907,11 +2930,11 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
I != E; ++I) {
if (*I == SI) {
*I = SI->getOperand(NonNullOperand);
- AddToWorkList(BBI);
+ Worklist.Add(BBI);
} else if (*I == SelectCond) {
- *I = NonNullOperand == 1 ? Context->getConstantIntTrue() :
- Context->getConstantIntFalse();
- AddToWorkList(BBI);
+ *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) :
+ ConstantInt::getFalse(*Context);
+ Worklist.Add(BBI);
}
}
@@ -2942,7 +2965,7 @@ Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
if (isa<UndefValue>(Op0)) {
if (Op0->getType()->isFPOrFPVector())
return ReplaceInstUsesWith(I, Op0);
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// X / undef -> undef
@@ -2962,12 +2985,12 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
// (sdiv X, X) --> 1 (udiv X, X) --> 1
if (Op0 == Op1) {
if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
- Constant *CI = Context->getConstantInt(Ty->getElementType(), 1);
+ Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
std::vector<Constant*> Elts(Ty->getNumElements(), CI);
- return ReplaceInstUsesWith(I, Context->getConstantVector(Elts));
+ return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
}
- Constant *CI = Context->getConstantInt(I.getType(), 1);
+ Constant *CI = ConstantInt::get(I.getType(), 1);
return ReplaceInstUsesWith(I, CI);
}
@@ -2989,11 +3012,11 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
if (MultiplyOverflows(RHS, LHSRHS,
- I.getOpcode()==Instruction::SDiv, Context))
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ I.getOpcode()==Instruction::SDiv))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
else
return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
- Context->getConstantExprMul(RHS, LHSRHS));
+ ConstantExpr::getMul(RHS, LHSRHS));
}
if (!RHS->isZero()) { // avoid X udiv 0
@@ -3009,10 +3032,10 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
// 0 / X == 0, we don't need to preserve faults!
if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
if (LHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// It can't be division by zero, hence it must be division by one.
- if (I.getType() == Type::Int1Ty)
+ if (I.getType() == Type::getInt1Ty(*Context))
return ReplaceInstUsesWith(I, Op0);
if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
@@ -3038,14 +3061,13 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
// if so, convert to a right shift.
if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
return BinaryOperator::CreateLShr(Op0,
- Context->getConstantInt(Op0->getType(), C->getValue().logBase2()));
+ ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
// X udiv C, where C >= signbit
if (C->getValue().isNegative()) {
- Value *IC = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT, Op0, C),
- I);
- return SelectInst::Create(IC, Context->getNullValue(I.getType()),
- Context->getConstantInt(I.getType(), 1));
+ Value *IC = Builder->CreateICmpULT( Op0, C);
+ return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
+ ConstantInt::get(I.getType(), 1));
}
}
@@ -3057,10 +3079,8 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
if (C1.isPowerOf2()) {
Value *N = RHSI->getOperand(1);
const Type *NTy = N->getType();
- if (uint32_t C2 = C1.logBase2()) {
- Constant *C2V = Context->getConstantInt(NTy, C2);
- N = InsertNewInstBefore(BinaryOperator::CreateAdd(N, C2V, "tmp"), I);
- }
+ if (uint32_t C2 = C1.logBase2())
+ N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
return BinaryOperator::CreateLShr(Op0, N);
}
}
@@ -3076,16 +3096,12 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
// Compute the shift amounts
uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
// Construct the "on true" case of the select
- Constant *TC = Context->getConstantInt(Op0->getType(), TSA);
- Instruction *TSI = BinaryOperator::CreateLShr(
- Op0, TC, SI->getName()+".t");
- TSI = InsertNewInstBefore(TSI, I);
+ Constant *TC = ConstantInt::get(Op0->getType(), TSA);
+ Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
// Construct the "on false" case of the select
- Constant *FC = Context->getConstantInt(Op0->getType(), FSA);
- Instruction *FSI = BinaryOperator::CreateLShr(
- Op0, FC, SI->getName()+".f");
- FSI = InsertNewInstBefore(FSI, I);
+ Constant *FC = ConstantInt::get(Op0->getType(), FSA);
+ Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
// construct the select instruction and return it.
return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
@@ -3105,17 +3121,45 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
// sdiv X, -1 == -X
if (RHS->isAllOnesValue())
return BinaryOperator::CreateNeg(Op0);
+
+ // sdiv X, C --> ashr X, log2(C)
+ if (cast<SDivOperator>(&I)->isExact() &&
+ RHS->getValue().isNonNegative() &&
+ RHS->getValue().isPowerOf2()) {
+ Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+ RHS->getValue().exactLogBase2());
+ return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
+ }
+
+ // -X/C --> X/-C provided the negation doesn't overflow.
+ if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+ if (isa<Constant>(Sub->getOperand(0)) &&
+ cast<Constant>(Sub->getOperand(0))->isNullValue() &&
+ Sub->hasNoSignedWrap())
+ return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+ ConstantExpr::getNeg(RHS));
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
if (I.getType()->isInteger()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ if (MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ ConstantInt *ShiftedInt;
+ if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
+ ShiftedInt->getValue().isPowerOf2()) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
}
- }
+ }
return 0;
}
@@ -3134,7 +3178,7 @@ Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
if (isa<UndefValue>(Op0)) { // undef % X -> 0
if (I.getType()->isFPOrFPVector())
return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1))
return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
@@ -3159,15 +3203,15 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
// 0 % X == 0 for integer, we don't need to preserve faults!
if (Constant *LHS = dyn_cast<Constant>(Op0))
if (LHS->isNullValue())
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// X % 0 == undef, we don't need to preserve faults!
if (RHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Context->getUndef(I.getType()));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
if (RHS->equalsInt(1)) // X % 1 == 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
@@ -3199,7 +3243,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
// if so, convert to a bitwise and.
if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
if (C->getValue().isPowerOf2())
- return BinaryOperator::CreateAnd(Op0, SubOne(C, Context));
+ return BinaryOperator::CreateAnd(Op0, SubOne(C));
}
if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
@@ -3207,9 +3251,8 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
if (RHSI->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(RHSI->getOperand(0))) {
if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
- Constant *N1 = Context->getConstantIntAllOnesValue(I.getType());
- Value *Add = InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI, N1,
- "tmp"), I);
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
return BinaryOperator::CreateAnd(Op0, Add);
}
}
@@ -3223,12 +3266,10 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
// STO == 0 and SFO == 0 handled above.
if ((STO->getValue().isPowerOf2()) &&
(SFO->getValue().isPowerOf2())) {
- Value *TrueAnd = InsertNewInstBefore(
- BinaryOperator::CreateAnd(Op0, SubOne(STO, Context),
- SI->getName()+".t"), I);
- Value *FalseAnd = InsertNewInstBefore(
- BinaryOperator::CreateAnd(Op0, SubOne(SFO, Context),
- SI->getName()+".f"), I);
+ Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
+ SI->getName()+".t");
+ Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
+ SI->getName()+".f");
return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
}
}
@@ -3241,15 +3282,15 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Handle the integer rem common cases
- if (Instruction *common = commonIRemTransforms(I))
- return common;
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
- if (Value *RHSNeg = dyn_castNegVal(Op1, Context))
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
if (!isa<Constant>(RHSNeg) ||
(isa<ConstantInt>(RHSNeg) &&
cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
// X % -Y -> X % Y
- AddUsesToWorkList(I);
+ Worklist.AddValue(I.getOperand(1));
I.setOperand(1, RHSNeg);
return &I;
}
@@ -3279,15 +3320,15 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
for (unsigned i = 0; i != VWidth; ++i) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
if (RHS->getValue().isNegative())
- Elts[i] = cast<ConstantInt>(Context->getConstantExprNeg(RHS));
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
else
Elts[i] = RHS;
}
}
- Constant *NewRHSV = Context->getConstantVector(Elts);
+ Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != RHSV) {
- AddUsesToWorkList(I);
+ Worklist.AddValue(I.getOperand(1));
I.setOperand(1, NewRHSV);
return &I;
}
@@ -3351,7 +3392,7 @@ static unsigned getICmpCode(const ICmpInst *ICI) {
case ICmpInst::ICMP_SLE: return 6; // 110
// True -> 7
default:
- assert(0 && "Invalid ICmp predicate!");
+ llvm_unreachable("Invalid ICmp predicate!");
return 0;
}
}
@@ -3379,7 +3420,7 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
// True -> 7
default:
// Not expecting FCMP_FALSE and FCMP_TRUE;
- assert(0 && "Unexpected FCmp predicate!");
+ llvm_unreachable("Unexpected FCmp predicate!");
return 0;
}
}
@@ -3389,10 +3430,10 @@ static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
/// new ICmp instruction. The sign is passed in to determine which kind
/// of predicate to use in the new icmp instruction.
static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
- LLVMContext* Context) {
+ LLVMContext *Context) {
switch (code) {
- default: assert(0 && "Illegal ICmp code!");
- case 0: return Context->getConstantIntFalse();
+ default: llvm_unreachable("Illegal ICmp code!");
+ case 0: return ConstantInt::getFalse(*Context);
case 1:
if (sign)
return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
@@ -3415,7 +3456,7 @@ static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
else
return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
- case 7: return Context->getConstantIntTrue();
+ case 7: return ConstantInt::getTrue(*Context);
}
}
@@ -3423,9 +3464,9 @@ static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
/// opcode and two operands into either a FCmp instruction. isordered is passed
/// in to determine which kind of predicate to use in the new fcmp instruction.
static Value *getFCmpValue(bool isordered, unsigned code,
- Value *LHS, Value *RHS, LLVMContext* Context) {
+ Value *LHS, Value *RHS, LLVMContext *Context) {
switch (code) {
- default: assert(0 && "Illegal FCmp code!");
+ default: llvm_unreachable("Illegal FCmp code!");
case 0:
if (isordered)
return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
@@ -3461,7 +3502,7 @@ static Value *getFCmpValue(bool isordered, unsigned code,
return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
else
return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
- case 7: return Context->getConstantIntTrue();
+ case 7: return ConstantInt::getTrue(*Context);
}
}
@@ -3504,7 +3545,7 @@ struct FoldICmpLogical {
case Instruction::And: Code = LHSCode & RHSCode; break;
case Instruction::Or: Code = LHSCode | RHSCode; break;
case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
- default: assert(0 && "Illegal logical opcode!"); return 0;
+ default: llvm_unreachable("Illegal logical opcode!"); return 0;
}
bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
@@ -3529,14 +3570,13 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Value *X = Op->getOperand(0);
Constant *Together = 0;
if (!Op->isShift())
- Together = Context->getConstantExprAnd(AndRHS, OpRHS);
+ Together = ConstantExpr::getAnd(AndRHS, OpRHS);
switch (Op->getOpcode()) {
case Instruction::Xor:
if (Op->hasOneUse()) {
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Instruction *And = BinaryOperator::CreateAnd(X, AndRHS);
- InsertNewInstBefore(And, TheAnd);
+ Value *And = Builder->CreateAnd(X, AndRHS);
And->takeName(Op);
return BinaryOperator::CreateXor(And, Together);
}
@@ -3547,8 +3587,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
if (Op->hasOneUse() && Together != OpRHS) {
// (X | C1) & C2 --> (X | (C1&C2)) & C2
- Instruction *Or = BinaryOperator::CreateOr(X, Together);
- InsertNewInstBefore(Or, TheAnd);
+ Value *Or = Builder->CreateOr(X, Together);
Or->takeName(Op);
return BinaryOperator::CreateAnd(Or, AndRHS);
}
@@ -3578,8 +3617,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
return &TheAnd;
} else {
// Pull the XOR out of the AND.
- Instruction *NewAnd = BinaryOperator::CreateAnd(X, AndRHS);
- InsertNewInstBefore(NewAnd, TheAnd);
+ Value *NewAnd = Builder->CreateAnd(X, AndRHS);
NewAnd->takeName(Op);
return BinaryOperator::CreateXor(NewAnd, AndRHS);
}
@@ -3595,7 +3633,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = Context->getConstantInt(AndRHS->getValue() & ShlMask);
+ ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask);
if (CI->getValue() == ShlMask) {
// Masking out bits that the shift already masks
@@ -3615,7 +3653,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = Context->getConstantInt(AndRHS->getValue() & ShrMask);
+ ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
if (CI->getValue() == ShrMask) {
// Masking out bits that the shift already masks.
@@ -3634,14 +3672,12 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = Context->getConstantInt(AndRHS->getValue() & ShrMask);
+ Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
if (C == AndRHS) { // Masking out bits shifted in.
// (Val ashr C1) & C2 -> (Val lshr C1) & C2
// Make the argument unsigned.
Value *ShVal = Op->getOperand(0);
- ShVal = InsertNewInstBefore(
- BinaryOperator::CreateLShr(ShVal, OpRHS,
- Op->getName()), TheAnd);
+ ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
}
}
@@ -3659,7 +3695,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside,
Instruction &IB) {
- assert(cast<ConstantInt>(Context->getConstantExprICmp((isSigned ?
+ assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
@@ -3675,10 +3711,9 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
}
// Emit V-Lo <u Hi-Lo
- Constant *NegLo = Context->getConstantExprNeg(Lo);
- Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
- InsertNewInstBefore(Add, IB);
- Constant *UpperBound = Context->getConstantExprAdd(NegLo, Hi);
+ Constant *NegLo = ConstantExpr::getNeg(Lo);
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
}
@@ -3686,7 +3721,7 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
// V < Min || V >= Hi -> V > Hi-1
- Hi = SubOne(cast<ConstantInt>(Hi), Context);
+ Hi = SubOne(cast<ConstantInt>(Hi));
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
ICmpInst::Predicate pred = (isSigned ?
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
@@ -3695,10 +3730,9 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
// Emit V-Lo >u Hi-1-Lo
// Note that Hi has already had one subtracted from it, above.
- ConstantInt *NegLo = cast<ConstantInt>(Context->getConstantExprNeg(Lo));
- Instruction *Add = BinaryOperator::CreateAdd(V, NegLo, V->getName()+".off");
- InsertNewInstBefore(Add, IB);
- Constant *LowerBound = Context->getConstantExprAdd(NegLo, Hi);
+ ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
+ Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
+ Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
}
@@ -3740,7 +3774,7 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
switch (LHSI->getOpcode()) {
default: return 0;
case Instruction::And:
- if (Context->getConstantExprAnd(N, Mask) == Mask) {
+ if (ConstantExpr::getAnd(N, Mask) == Mask) {
// If the AndRHS is a power of two minus one (0+1+), this is simple.
if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) ==
@@ -3764,17 +3798,14 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
// If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
if ((Mask->getValue().countLeadingZeros() +
Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
- && Context->getConstantExprAnd(N, Mask)->isNullValue())
+ && ConstantExpr::getAnd(N, Mask)->isNullValue())
break;
return 0;
}
- Instruction *New;
if (isSub)
- New = BinaryOperator::CreateSub(LHSI->getOperand(0), RHS, "fold");
- else
- New = BinaryOperator::CreateAdd(LHSI->getOperand(0), RHS, "fold");
- return InsertNewInstBefore(New, I);
+ return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
+ return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
@@ -3785,16 +3816,17 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
ICmpInst::Predicate LHSCC, RHSCC;
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
+ if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
+ m_ConstantInt(LHSCst))) ||
+ !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
+ m_ConstantInt(RHSCst))))
return 0;
// (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
// where C is a power of 2
if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
LHSCst->getValue().isPowerOf2()) {
- Instruction *NewOr = BinaryOperator::CreateOr(Val, Val2);
- InsertNewInstBefore(NewOr, I);
+ Value *NewOr = Builder->CreateOr(Val, Val2);
return new ICmpInst(LHSCC, NewOr, LHSCst);
}
@@ -3837,14 +3869,14 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
@@ -3852,13 +3884,13 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
}
case ICmpInst::ICMP_NE:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_ULT:
- if (LHSCst == SubOne(RHSCst, Context)) // (X != 13 & X u< 14) -> X < 13
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
break; // (X != 13 & X u< 15) -> no change
case ICmpInst::ICMP_SLT:
- if (LHSCst == SubOne(RHSCst, Context)) // (X != 13 & X s< 14) -> X < 13
+ if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
break; // (X != 13 & X s< 15) -> no change
case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
@@ -3866,23 +3898,21 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_NE:
- if (LHSCst == SubOne(RHSCst, Context)){// (X != 13 & X != 14) -> X-13 >u 1
- Constant *AddCST = Context->getConstantExprNeg(LHSCst);
- Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
- Val->getName()+".off");
- InsertNewInstBefore(Add, I);
+ if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
return new ICmpInst(ICmpInst::ICMP_UGT, Add,
- Context->getConstantInt(Add->getType(), 1));
+ ConstantInt::get(Add->getType(), 1));
}
break; // (X != 13 & X != 15) -> no change
}
break;
case ICmpInst::ICMP_ULT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
@@ -3894,10 +3924,10 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SLT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
@@ -3909,18 +3939,18 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_UGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
break;
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst, Context)) // (X u> 13 & X != 14) -> X u> 14
+ if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
return new ICmpInst(LHSCC, Val, RHSCst);
break; // (X u> 13 & X != 15) -> no change
case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
- return InsertRangeTest(Val, AddOne(LHSCst, Context),
+ return InsertRangeTest(Val, AddOne(LHSCst),
RHSCst, false, true, I);
case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
break;
@@ -3928,18 +3958,18 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
return ReplaceInstUsesWith(I, RHS);
case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
break;
case ICmpInst::ICMP_NE:
- if (RHSCst == AddOne(LHSCst, Context)) // (X s> 13 & X != 14) -> X s> 14
+ if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
return new ICmpInst(LHSCC, Val, RHSCst);
break; // (X s> 13 & X != 15) -> no change
case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
- return InsertRangeTest(Val, AddOne(LHSCst, Context),
+ return InsertRangeTest(Val, AddOne(LHSCst),
RHSCst, true, true, I);
case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
break;
@@ -3950,13 +3980,89 @@ Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
return 0;
}
+Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+
+ if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
+ RHS->getPredicate() == FCmpInst::FCMP_ORD) {
+ // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // false.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp ord x,x" is "fcmp ord x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_ORD,
+ LHS->getOperand(0), RHS->getOperand(0));
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
+
+ if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ if (Op0CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, LHS);
+
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op1Pred == 0) {
+ std::swap(LHS, RHS);
+ std::swap(Op0Pred, Op1Pred);
+ std::swap(Op0Ordered, Op1Ordered);
+ }
+ if (Op0Pred == 0) {
+ // uno && ueq -> uno && (uno || eq) -> ueq
+ // ord && olt -> ord && (ord && lt) -> olt
+ if (Op0Ordered == Op1Ordered)
+ return ReplaceInstUsesWith(I, RHS);
+
+ // uno && oeq -> uno && (ord && eq) -> false
+ // uno && ord -> false
+ if (!Op0Ordered)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
+ // ord && ueq -> ord && (uno || eq) -> oeq
+ return cast<Instruction>(getFCmpValue(true, Op1Pred,
+ Op0LHS, Op0RHS, Context));
+ }
+ }
+
+ return 0;
+}
+
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
bool Changed = SimplifyCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1)) // X & undef -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// and X, X = X
if (Op0 == Op1)
@@ -3976,36 +4082,32 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
- const APInt& AndRHSMask = AndRHS->getValue();
+ const APInt &AndRHSMask = AndRHS->getValue();
APInt NotAndRHS(~AndRHSMask);
// Optimize a variety of ((val OP C1) & C2) combinations...
- if (isa<BinaryOperator>(Op0)) {
- Instruction *Op0I = cast<Instruction>(Op0);
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
Value *Op0LHS = Op0I->getOperand(0);
Value *Op0RHS = Op0I->getOperand(1);
switch (Op0I->getOpcode()) {
+ default: break;
case Instruction::Xor:
case Instruction::Or:
// If the mask is only needed on one incoming arm, push it up.
- if (Op0I->hasOneUse()) {
- if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
- // Not masking anything out for the LHS, move to RHS.
- Instruction *NewRHS = BinaryOperator::CreateAnd(Op0RHS, AndRHS,
- Op0RHS->getName()+".masked");
- InsertNewInstBefore(NewRHS, I);
- return BinaryOperator::Create(
- cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
- }
- if (!isa<Constant>(Op0RHS) &&
- MaskedValueIsZero(Op0RHS, NotAndRHS)) {
- // Not masking anything out for the RHS, move to LHS.
- Instruction *NewLHS = BinaryOperator::CreateAnd(Op0LHS, AndRHS,
- Op0LHS->getName()+".masked");
- InsertNewInstBefore(NewLHS, I);
- return BinaryOperator::Create(
- cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
- }
+ if (!Op0I->hasOneUse()) break;
+
+ if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
+ // Not masking anything out for the LHS, move to RHS.
+ Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
+ Op0RHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
+ }
+ if (!isa<Constant>(Op0RHS) &&
+ MaskedValueIsZero(Op0RHS, NotAndRHS)) {
+ // Not masking anything out for the RHS, move to LHS.
+ Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
+ Op0LHS->getName()+".masked");
+ return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
}
break;
@@ -4036,8 +4138,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
if (!(A && A->isZero()) && // avoid infinite recursion.
MaskedValueIsZero(Op0LHS, Mask)) {
- Instruction *NewNeg = BinaryOperator::CreateNeg(Op0RHS);
- InsertNewInstBefore(NewNeg, I);
+ Value *NewNeg = Builder->CreateNeg(Op0RHS);
return BinaryOperator::CreateAnd(NewNeg, AndRHS);
}
}
@@ -4048,9 +4149,8 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// (1 << x) & 1 --> zext(x == 0)
// (1 >> x) & 1 --> zext(x == 0)
if (AndRHSMask == 1 && Op0LHS == AndRHS) {
- Instruction *NewICmp = new ICmpInst(ICmpInst::ICMP_EQ, Op0RHS,
- Context->getNullValue(I.getType()));
- InsertNewInstBefore(NewICmp, I);
+ Value *NewICmp =
+ Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
return new ZExtInst(NewICmp, I.getType());
}
break;
@@ -4072,21 +4172,18 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// into : and (cast X to T), trunc_or_bitcast(C1)&C2
// This will fold the two constants together, which may allow
// other simplifications.
- Instruction *NewCast = CastInst::CreateTruncOrBitCast(
+ Value *NewCast = Builder->CreateTruncOrBitCast(
CastOp->getOperand(0), I.getType(),
CastOp->getName()+".shrunk");
- NewCast = InsertNewInstBefore(NewCast, I);
// trunc_or_bitcast(C1)&C2
- Constant *C3 =
- Context->getConstantExprTruncOrBitCast(AndCI,I.getType());
- C3 = Context->getConstantExprAnd(C3, AndRHS);
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ C3 = ConstantExpr::getAnd(C3, AndRHS);
return BinaryOperator::CreateAnd(NewCast, C3);
} else if (CastOp->getOpcode() == Instruction::Or) {
// Change: and (cast (or X, C1) to T), C2
// into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
- Constant *C3 =
- Context->getConstantExprTruncOrBitCast(AndCI,I.getType());
- if (Context->getConstantExprAnd(C3, AndRHS) == AndRHS)
+ Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
+ if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
// trunc(C1)&C2
return ReplaceInstUsesWith(I, AndRHS);
}
@@ -4103,17 +4200,16 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return NV;
}
- Value *Op0NotVal = dyn_castNotVal(Op0, Context);
- Value *Op1NotVal = dyn_castNotVal(Op1, Context);
+ Value *Op0NotVal = dyn_castNotVal(Op0);
+ Value *Op1NotVal = dyn_castNotVal(Op1);
if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// (~A & ~B) == (~(A | B)) - De Morgan's Law
if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
- Instruction *Or = BinaryOperator::CreateOr(Op0NotVal, Op1NotVal,
- I.getName()+".demorgan");
- InsertNewInstBefore(Or, I);
+ Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
+ I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
@@ -4159,11 +4255,8 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
cast<BinaryOperator>(Op1)->swapOperands();
std::swap(A, B);
}
- if (A == Op0) { // A&(A^B) -> A & ~B
- Instruction *NotB = BinaryOperator::CreateNot(B, "tmp");
- InsertNewInstBefore(NotB, I);
- return BinaryOperator::CreateAnd(A, NotB);
- }
+ if (A == Op0) // A&(A^B) -> A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
}
// (A&((~A)|B)) -> A&B
@@ -4177,7 +4270,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
// (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
@@ -4190,16 +4283,15 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
// Only do this if the casts both really cause code to be generated.
ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateAnd(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -4210,10 +4302,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateAnd(SI0->getOperand(0),
- SI1->getOperand(0),
- SI0->getName()), I);
+ Value *NewOp =
+ Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
@@ -4221,66 +4312,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// If and'ing two fcmp, try combine them into one.
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
- if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
- RHS->getPredicate() == FCmpInst::FCMP_ORD) {
- // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // false.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
- RHS->getOperand(0));
- }
- } else {
- Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
- FCmpInst::Predicate Op0CC, Op1CC;
- if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
- match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- else if (Op0CC == FCmpInst::FCMP_FALSE ||
- Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- else if (Op0CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Op1);
- else if (Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Op0);
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op1Pred == 0) {
- std::swap(Op0, Op1);
- std::swap(Op0Pred, Op1Pred);
- std::swap(Op0Ordered, Op1Ordered);
- }
- if (Op0Pred == 0) {
- // uno && ueq -> uno && (uno || eq) -> ueq
- // ord && olt -> ord && (ord && lt) -> olt
- if (Op0Ordered == Op1Ordered)
- return ReplaceInstUsesWith(I, Op1);
- // uno && oeq -> uno && (ord && eq) -> false
- // uno && ord -> false
- if (!Op0Ordered)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
- // ord && ueq -> ord && (uno || eq) -> oeq
- return cast<Instruction>(getFCmpValue(true, Op1Pred,
- Op0LHS, Op0RHS, Context));
- }
- }
- }
- }
- }
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
+ return Res;
}
return Changed ? &I : 0;
@@ -4450,7 +4484,8 @@ Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
/// we can simplify this expression to "cond ? C : D or B".
static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
- Value *C, Value *D) {
+ Value *C, Value *D,
+ LLVMContext *Context) {
// If A is not a select of -1/0, this cannot match.
Value *Cond = 0;
if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
@@ -4477,8 +4512,10 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
ICmpInst::Predicate LHSCC, RHSCC;
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!match(LHS, m_ICmp(LHSCC, m_Value(Val), m_ConstantInt(LHSCst))) ||
- !match(RHS, m_ICmp(RHSCC, m_Value(Val2), m_ConstantInt(RHSCst))))
+ if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
+ m_ConstantInt(LHSCst))) ||
+ !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
+ m_ConstantInt(RHSCst))))
return 0;
// From here on, we only handle:
@@ -4520,18 +4557,16 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
assert(LHSCst != RHSCst && "Compares not folded above?");
switch (LHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ:
- if (LHSCst == SubOne(RHSCst, Context)) {
+ if (LHSCst == SubOne(RHSCst)) {
// (X == 13 | X == 14) -> X-13 <u 2
- Constant *AddCST = Context->getConstantExprNeg(LHSCst);
- Instruction *Add = BinaryOperator::CreateAdd(Val, AddCST,
- Val->getName()+".off");
- InsertNewInstBefore(Add, I);
- AddCST = Context->getConstantExprSub(AddOne(RHSCst, Context), LHSCst);
+ Constant *AddCST = ConstantExpr::getNeg(LHSCst);
+ Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
+ AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
}
break; // (X == 13 | X == 15) -> no change
@@ -4546,7 +4581,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
@@ -4554,12 +4589,12 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
}
break;
case ICmpInst::ICMP_ULT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
break;
case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
@@ -4567,7 +4602,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// this can cause overflow.
if (RHSCst->isMaxValue(false))
return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst, Context),
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
false, false, I);
case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
break;
@@ -4580,7 +4615,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_SLT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
break;
case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
@@ -4588,7 +4623,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
// this can cause overflow.
if (RHSCst->isMaxValue(true))
return ReplaceInstUsesWith(I, LHS);
- return InsertRangeTest(Val, LHSCst, AddOne(RHSCst, Context),
+ return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
true, false, I);
case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
break;
@@ -4601,7 +4636,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_UGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
return ReplaceInstUsesWith(I, LHS);
@@ -4609,14 +4644,14 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
break;
}
break;
case ICmpInst::ICMP_SGT:
switch (RHSCC) {
- default: assert(0 && "Unknown integer condition code!");
+ default: llvm_unreachable("Unknown integer condition code!");
case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
return ReplaceInstUsesWith(I, LHS);
@@ -4624,7 +4659,7 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
break;
case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
break;
}
@@ -4633,6 +4668,72 @@ Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
return 0;
}
+Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
+ FCmpInst *RHS) {
+ if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ RHS->getPredicate() == FCmpInst::FCMP_UNO &&
+ LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
+ if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
+ if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
+ // If either of the constants are nans, then the whole thing returns
+ // true.
+ if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+
+ // Otherwise, no need to compare the two constants, compare the
+ // rest.
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+ }
+
+ // Handle vector zeros. This occurs because the canonical form of
+ // "fcmp uno x,x" is "fcmp uno x, 0".
+ if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
+ isa<ConstantAggregateZero>(RHS->getOperand(1)))
+ return new FCmpInst(FCmpInst::FCMP_UNO,
+ LHS->getOperand(0), RHS->getOperand(0));
+
+ return 0;
+ }
+
+ Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
+ Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
+ FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
+
+ if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
+ // Swap RHS operands to match LHS.
+ Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
+ std::swap(Op1LHS, Op1RHS);
+ }
+ if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
+ // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
+ if (Op0CC == Op1CC)
+ return new FCmpInst((FCmpInst::Predicate)Op0CC,
+ Op0LHS, Op0RHS);
+ if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ if (Op0CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, RHS);
+ if (Op1CC == FCmpInst::FCMP_FALSE)
+ return ReplaceInstUsesWith(I, LHS);
+ bool Op0Ordered;
+ bool Op1Ordered;
+ unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
+ unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
+ if (Op0Ordered == Op1Ordered) {
+ // If both are ordered or unordered, return a new fcmp with
+ // or'ed predicates.
+ Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
+ Op0LHS, Op0RHS, Context);
+ if (Instruction *I = dyn_cast<Instruction>(RV))
+ return I;
+ // Otherwise, it's a constant boolean value...
+ return ReplaceInstUsesWith(I, RV);
+ }
+ }
+ return 0;
+}
+
/// FoldOrWithConstants - This helper function folds:
///
/// ((A | B) & C1) | (B & C2)
@@ -4655,8 +4756,7 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
if (!Xor.isAllOnesValue()) return 0;
if (V1 == A || V1 == B) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateAnd((V1 == A) ? B : A, CI1), I);
+ Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
return BinaryOperator::CreateOr(NewOp, V1);
}
@@ -4668,7 +4768,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<UndefValue>(Op1)) // X | undef -> -1
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// or X, X = X
if (Op0 == Op1)
@@ -4691,21 +4791,21 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
ConstantInt *C1 = 0; Value *X = 0;
// (X & C1) | C2 --> (X | C2) & (C1|C2)
- if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
- Instruction *Or = BinaryOperator::CreateOr(X, RHS);
- InsertNewInstBefore(Or, I);
+ if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
+ isOnlyUse(Op0)) {
+ Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateAnd(Or,
- Context->getConstantInt(RHS->getValue() | C1->getValue()));
+ ConstantInt::get(*Context, RHS->getValue() | C1->getValue()));
}
// (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
- if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
- Instruction *Or = BinaryOperator::CreateOr(X, RHS);
- InsertNewInstBefore(Or, I);
+ if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
+ isOnlyUse(Op0)) {
+ Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateXor(Or,
- Context->getConstantInt(C1->getValue() & ~RHS->getValue()));
+ ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue()));
}
// Try to fold constant and into select arguments.
@@ -4738,19 +4838,19 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
}
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
- if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
MaskedValueIsZero(Op1, C1->getValue())) {
- Instruction *NOr = BinaryOperator::CreateOr(A, Op1);
- InsertNewInstBefore(NOr, I);
+ Value *NOr = Builder->CreateOr(A, Op1);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
}
// Y|(X^C) -> (X|Y)^C iff Y&C == 0
- if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
+ if (Op1->hasOneUse() &&
+ match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
MaskedValueIsZero(Op0, C1->getValue())) {
- Instruction *NOr = BinaryOperator::CreateOr(A, Op0);
- InsertNewInstBefore(NOr, I);
+ Value *NOr = Builder->CreateOr(A, Op0);
NOr->takeName(Op0);
return BinaryOperator::CreateXor(NOr, C1);
}
@@ -4801,20 +4901,19 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
V1 = C, V2 = A, V3 = B;
if (V1) {
- Value *Or =
- InsertNewInstBefore(BinaryOperator::CreateOr(V2, V3, "tmp"), I);
+ Value *Or = Builder->CreateOr(V2, V3, "tmp");
return BinaryOperator::CreateAnd(V1, Or);
}
}
// (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
- if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
+ if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
+ if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
+ if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context))
return Match;
- if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
+ if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context))
return Match;
// ((A&~B)|(~A&B)) -> A^B
@@ -4841,10 +4940,8 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
SI0->getOperand(1) == SI1->getOperand(1) &&
(SI0->hasOneUse() || SI1->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateOr(SI0->getOperand(0),
- SI1->getOperand(0),
- SI0->getName()), I);
+ Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
+ SI0->getName());
return BinaryOperator::Create(SI1->getOpcode(), NewOp,
SI1->getOperand(1));
}
@@ -4865,26 +4962,25 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
if (A == Op1) // ~A | A == -1
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
} else {
A = 0;
}
// Note, A is still live here!
if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
if (Op0 == B)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
// (~A | ~B) == (~(A & B)) - De Morgan's Law
if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
- Value *And = InsertNewInstBefore(BinaryOperator::CreateAnd(A, B,
- I.getName()+".demorgan"), I);
+ Value *And = Builder->CreateAnd(A, B, I.getName()+".demorgan");
return BinaryOperator::CreateNot(And);
}
}
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
@@ -4899,17 +4995,16 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
!isa<ICmpInst>(Op1C->getOperand(0))) {
const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVector() &&
// Only do this if the casts both really cause code to be
// generated.
ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateOr(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -4919,61 +5014,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
- if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
- RHS->getPredicate() == FCmpInst::FCMP_UNO &&
- LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
- if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
- if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
- // If either of the constants are nans, then the whole thing returns
- // true.
- if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
-
- // Otherwise, no need to compare the two constants, compare the
- // rest.
- return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
- RHS->getOperand(0));
- }
- } else {
- Value *Op0LHS, *Op0RHS, *Op1LHS, *Op1RHS;
- FCmpInst::Predicate Op0CC, Op1CC;
- if (match(Op0, m_FCmp(Op0CC, m_Value(Op0LHS), m_Value(Op0RHS))) &&
- match(Op1, m_FCmp(Op1CC, m_Value(Op1LHS), m_Value(Op1RHS)))) {
- if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
- // Swap RHS operands to match LHS.
- Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
- std::swap(Op1LHS, Op1RHS);
- }
- if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
- // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
- if (Op0CC == Op1CC)
- return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
- else if (Op0CC == FCmpInst::FCMP_TRUE ||
- Op1CC == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- else if (Op0CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Op1);
- else if (Op1CC == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Op0);
- bool Op0Ordered;
- bool Op1Ordered;
- unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
- unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
- if (Op0Ordered == Op1Ordered) {
- // If both are ordered or unordered, return a new fcmp with
- // or'ed predicates.
- Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
- Op0LHS, Op0RHS, Context);
- if (Instruction *I = dyn_cast<Instruction>(RV))
- return I;
- // Otherwise, it's a constant boolean value...
- return ReplaceInstUsesWith(I, RV);
- }
- }
- }
- }
- }
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
+ return Res;
}
return Changed ? &I : 0;
@@ -5001,14 +5044,14 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (isa<UndefValue>(Op0))
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
}
// xor X, X = 0, even if X is nested in a sequence of Xor's.
- if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1), Context)) {
+ if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// See if we can simplify any instructions used by the instruction whose sole
@@ -5020,22 +5063,20 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
// Is this a ~ operation?
- if (Value *NotOp = dyn_castNotVal(&I, Context)) {
+ if (Value *NotOp = dyn_castNotVal(&I)) {
// ~(~X & Y) --> (X | ~Y) - De Morgan's Law
// ~(~X | Y) === (X & ~Y) - De Morgan's Law
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
if (Op0I->getOpcode() == Instruction::And ||
Op0I->getOpcode() == Instruction::Or) {
- if (dyn_castNotVal(Op0I->getOperand(1), Context)) Op0I->swapOperands();
- if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0), Context)) {
- Instruction *NotY =
- BinaryOperator::CreateNot(Op0I->getOperand(1),
- Op0I->getOperand(1)->getName()+".not");
- InsertNewInstBefore(NotY, I);
+ if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
+ if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
+ Value *NotY =
+ Builder->CreateNot(Op0I->getOperand(1),
+ Op0I->getOperand(1)->getName()+".not");
if (Op0I->getOpcode() == Instruction::And)
return BinaryOperator::CreateOr(Op0NotVal, NotY);
- else
- return BinaryOperator::CreateAnd(Op0NotVal, NotY);
+ return BinaryOperator::CreateAnd(Op0NotVal, NotY);
}
}
}
@@ -5043,7 +5084,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- if (RHS == Context->getConstantIntTrue() && Op0->hasOneUse()) {
+ if (RHS->isOne() && Op0->hasOneUse()) {
// xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
return new ICmpInst(ICI->getInversePredicate(),
@@ -5059,16 +5100,12 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
- if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
- if (RHS == Context->getConstantExprCast(Opcode,
- Context->getConstantIntTrue(),
- Op0C->getDestTy())) {
- Instruction *NewCI = InsertNewInstBefore(CmpInst::Create(
- CI->getOpcode(), CI->getInversePredicate(),
- CI->getOperand(0), CI->getOperand(1)), I);
- NewCI->takeName(CI);
- return CastInst::Create(Opcode, NewCI, Op0C->getType());
- }
+ if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+ (RHS == ConstantExpr::getCast(Opcode,
+ ConstantInt::getTrue(*Context),
+ Op0C->getDestTy()))) {
+ CI->setPredicate(CI->getInversePredicate());
+ return CastInst::Create(Opcode, CI, Op0C->getType());
}
}
}
@@ -5078,9 +5115,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// ~(c-X) == X-c-1 == X+(-c-1)
if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
- Constant *NegOp0I0C = Context->getConstantExprNeg(Op0I0C);
- Constant *ConstantRHS = Context->getConstantExprSub(NegOp0I0C,
- Context->getConstantInt(I.getType(), 1));
+ Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
+ Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
+ ConstantInt::get(I.getType(), 1));
return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
}
@@ -5088,28 +5125,28 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Op0I->getOpcode() == Instruction::Add) {
// ~(X-c) --> (-c-1)-X
if (RHS->isAllOnesValue()) {
- Constant *NegOp0CI = Context->getConstantExprNeg(Op0CI);
+ Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
return BinaryOperator::CreateSub(
- Context->getConstantExprSub(NegOp0CI,
- Context->getConstantInt(I.getType(), 1)),
+ ConstantExpr::getSub(NegOp0CI,
+ ConstantInt::get(I.getType(), 1)),
Op0I->getOperand(0));
} else if (RHS->getValue().isSignBit()) {
// (X + C) ^ signbit -> (X + C + signbit)
- Constant *C =
- Context->getConstantInt(RHS->getValue() + Op0CI->getValue());
+ Constant *C = ConstantInt::get(*Context,
+ RHS->getValue() + Op0CI->getValue());
return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
}
} else if (Op0I->getOpcode() == Instruction::Or) {
// (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
- Constant *NewRHS = Context->getConstantExprOr(Op0CI, RHS);
+ Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
// Anything in both C1 and C2 is known to be zero, remove it from
// NewRHS.
- Constant *CommonBits = Context->getConstantExprAnd(Op0CI, RHS);
- NewRHS = Context->getConstantExprAnd(NewRHS,
- Context->getConstantExprNot(CommonBits));
- AddToWorkList(Op0I);
+ Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
+ NewRHS = ConstantExpr::getAnd(NewRHS,
+ ConstantExpr::getNot(CommonBits));
+ Worklist.Add(Op0I);
I.setOperand(0, Op0I->getOperand(0));
I.setOperand(1, NewRHS);
return &I;
@@ -5127,13 +5164,13 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return NV;
}
- if (Value *X = dyn_castNotVal(Op0, Context)) // ~A ^ A == -1
+ if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
if (X == Op1)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
- if (Value *X = dyn_castNotVal(Op1, Context)) // A ^ ~A == -1
+ if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
if (X == Op0)
- return ReplaceInstUsesWith(I, Context->getAllOnesValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
@@ -5152,7 +5189,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return ReplaceInstUsesWith(I, B); // A^(A^B) == B
} else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
return ReplaceInstUsesWith(I, A); // A^(B^A) == B
- } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
+ } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
+ Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
Op1I->swapOperands();
std::swap(A, B);
@@ -5167,26 +5205,23 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
if (Op0I) {
Value *A, *B;
- if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
+ if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()) {
if (A == Op1) // (B|A)^B == (A|B)^B
std::swap(A, B);
- if (B == Op1) { // (A|B)^B == A & ~B
- Instruction *NotB =
- InsertNewInstBefore(BinaryOperator::CreateNot(Op1, "tmp"), I);
- return BinaryOperator::CreateAnd(A, NotB);
- }
+ if (B == Op1) // (A|B)^B == A & ~B
+ return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
} else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
return ReplaceInstUsesWith(I, B); // (A^B)^A == B
} else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
return ReplaceInstUsesWith(I, A); // (B^A)^A == B
- } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
+ } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
+ Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
std::swap(A, B);
if (B == Op1 && // (B&A)^A == ~B & A
!isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
- Instruction *N =
- InsertNewInstBefore(BinaryOperator::CreateNot(A, "tmp"), I);
- return BinaryOperator::CreateAnd(N, Op1);
+ return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
}
}
}
@@ -5196,10 +5231,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Op0I->getOpcode() == Op1I->getOpcode() &&
Op0I->getOperand(1) == Op1I->getOperand(1) &&
(Op1I->hasOneUse() || Op1I->hasOneUse())) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateXor(Op0I->getOperand(0),
- Op1I->getOperand(0),
- Op0I->getName()), I);
+ Value *NewOp =
+ Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
+ Op0I->getName());
return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
Op1I->getOperand(1));
}
@@ -5235,8 +5269,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
X = B, Y = A, Z = C;
if (X) {
- Instruction *NewOp =
- InsertNewInstBefore(BinaryOperator::CreateXor(Y, Z, Op0->getName()), I);
+ Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
return BinaryOperator::CreateAnd(NewOp, X);
}
}
@@ -5244,7 +5277,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS),Context))
+ if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
return R;
// fold (xor (cast A), (cast B)) -> (cast (xor A, B))
@@ -5258,10 +5291,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.getType(), TD) &&
ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
I.getType(), TD)) {
- Instruction *NewOp = BinaryOperator::CreateXor(Op0C->getOperand(0),
- Op1C->getOperand(0),
- I.getName());
- InsertNewInstBefore(NewOp, I);
+ Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
+ Op1C->getOperand(0), I.getName());
return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
}
@@ -5271,8 +5302,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
}
static ConstantInt *ExtractElement(Constant *V, Constant *Idx,
- LLVMContext* Context) {
- return cast<ConstantInt>(Context->getConstantExprExtractElement(V, Idx));
+ LLVMContext *Context) {
+ return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
static bool HasAddOverflow(ConstantInt *Result,
@@ -5290,13 +5321,13 @@ static bool HasAddOverflow(ConstantInt *Result,
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext* Context,
+ Constant *In2, LLVMContext *Context,
bool IsSigned = false) {
- Result = Context->getConstantExprAdd(In1, In2);
+ Result = ConstantExpr::getAdd(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = Context->getConstantInt(Type::Int32Ty, i);
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
if (HasAddOverflow(ExtractElement(Result, Idx, Context),
ExtractElement(In1, Idx, Context),
ExtractElement(In2, Idx, Context),
@@ -5326,13 +5357,13 @@ static bool HasSubOverflow(ConstantInt *Result,
/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
/// overflowed for this type.
static bool SubWithOverflow(Constant *&Result, Constant *In1,
- Constant *In2, LLVMContext* Context,
+ Constant *In2, LLVMContext *Context,
bool IsSigned = false) {
- Result = Context->getConstantExprSub(In1, In2);
+ Result = ConstantExpr::getSub(In1, In2);
if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- Constant *Idx = Context->getConstantInt(Type::Int32Ty, i);
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
if (HasSubOverflow(ExtractElement(Result, Idx, Context),
ExtractElement(In1, Idx, Context),
ExtractElement(In2, Idx, Context),
@@ -5351,11 +5382,10 @@ static bool SubWithOverflow(Constant *&Result, Constant *In1,
/// code necessary to compute the offset from the base pointer (without adding
/// in the base pointer). Return the result as a signed integer of intptr size.
static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
- TargetData &TD = IC.getTargetData();
+ TargetData &TD = *IC.getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
- const Type *IntPtrTy = TD.getIntPtrType();
- LLVMContext* Context = IC.getContext();
- Value *Result = Context->getNullValue(IntPtrTy);
+ const Type *IntPtrTy = TD.getIntPtrType(I.getContext());
+ Value *Result = Constant::getNullValue(IntPtrTy);
// Build a mask for high order bits.
unsigned IntPtrWidth = TD.getPointerSizeInBits();
@@ -5372,74 +5402,49 @@ static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
- Result =
- Context->getConstantInt(RC->getValue() + APInt(IntPtrWidth, Size));
- else
- Result = IC.InsertNewInstBefore(
- BinaryOperator::CreateAdd(Result,
- Context->getConstantInt(IntPtrTy, Size),
- GEP->getName()+".offs"), I);
+ Result = IC.Builder->CreateAdd(Result,
+ ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".offs");
continue;
}
- Constant *Scale = Context->getConstantInt(IntPtrTy, Size);
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Constant *OC =
- Context->getConstantExprIntegerCast(OpC, IntPtrTy, true /*SExt*/);
- Scale = Context->getConstantExprMul(OC, Scale);
- if (Constant *RC = dyn_cast<Constant>(Result))
- Result = Context->getConstantExprAdd(RC, Scale);
- else {
- // Emit an add instruction.
- Result = IC.InsertNewInstBefore(
- BinaryOperator::CreateAdd(Result, Scale,
- GEP->getName()+".offs"), I);
- }
+ ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
+ Scale = ConstantExpr::getMul(OC, Scale);
+ // Emit an add instruction.
+ Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
continue;
}
// Convert to correct type.
- if (Op->getType() != IntPtrTy) {
- if (Constant *OpC = dyn_cast<Constant>(Op))
- Op = Context->getConstantExprIntegerCast(OpC, IntPtrTy, true);
- else
- Op = IC.InsertNewInstBefore(CastInst::CreateIntegerCast(Op, IntPtrTy,
- true,
- Op->getName()+".c"), I);
- }
+ if (Op->getType() != IntPtrTy)
+ Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
if (Size != 1) {
- Constant *Scale = Context->getConstantInt(IntPtrTy, Size);
- if (Constant *OpC = dyn_cast<Constant>(Op))
- Op = Context->getConstantExprMul(OpC, Scale);
- else // We'll let instcombine(mul) convert this to a shl if possible.
- Op = IC.InsertNewInstBefore(BinaryOperator::CreateMul(Op, Scale,
- GEP->getName()+".idx"), I);
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ // We'll let instcombine(mul) convert this to a shl if possible.
+ Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
}
// Emit an add instruction.
- if (isa<Constant>(Op) && isa<Constant>(Result))
- Result = Context->getConstantExprAdd(cast<Constant>(Op),
- cast<Constant>(Result));
- else
- Result = IC.InsertNewInstBefore(BinaryOperator::CreateAdd(Op, Result,
- GEP->getName()+".offs"), I);
+ Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
}
return Result;
}
-/// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
-/// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
-/// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
-/// complex, and scales are involved. The above expression would also be legal
-/// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
-/// later form is less amenable to optimization though, and we are allowed to
-/// generate the first by knowing that pointer arithmetic doesn't overflow.
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
+/// be complex, and scales are involved. The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
InstCombiner &IC) {
- TargetData &TD = IC.getTargetData();
+ TargetData &TD = *IC.getTargetData();
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
@@ -5502,8 +5507,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
- VariableIdx = new TruncInst(VariableIdx, TD.getIntPtrType(),
- VariableIdx->getNameStart(), &I);
+ VariableIdx = new TruncInst(VariableIdx,
+ TD.getIntPtrType(VariableIdx->getContext()),
+ VariableIdx->getName(), &I);
return VariableIdx;
}
@@ -5523,40 +5529,39 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
- const Type *IntPtrTy = TD.getIntPtrType();
+ const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
true /*SExt*/,
- VariableIdx->getNameStart(), &I);
- Constant *OffsetVal = IC.getContext()->getConstantInt(IntPtrTy, NewOffs);
+ VariableIdx->getName(), &I);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
}
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
/// else. At this point we know that the GEP is on the LHS of the comparison.
-Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
- assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
-
// Look through bitcasts.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
RHS = BCI->getOperand(0);
Value *PtrBase = GEPLHS->getOperand(0);
- if (PtrBase == RHS) {
+ if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
- // know pointers can't overflow. See if we can output an optimized form.
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
// If not, synthesize the offset the hard way.
if (Offset == 0)
Offset = EmitGEPOffset(GEPLHS, I, *this);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
- Context->getNullValue(Offset->getType()));
- } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
+ Constant::getNullValue(Offset->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
// If the base pointers are different, but the indices are the same, just
// compare the base pointer.
if (PtrBase != GEPRHS->getOperand(0)) {
@@ -5572,7 +5577,7 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
// If all indices are the same, just compare the base pointers.
if (IndicesTheSame)
- return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
GEPLHS->getOperand(0), GEPRHS->getOperand(0));
// Otherwise, the base pointers are different and the indices are
@@ -5622,7 +5627,7 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
if (NumDifferences == 0) // SAME GEP?
return ReplaceInstUsesWith(I, // No comparison is needed here.
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1) {
@@ -5635,7 +5640,8 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
- if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ if (TD &&
+ (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS, I, *this);
@@ -5680,7 +5686,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
ICmpInst::Predicate Pred;
switch (I.getPredicate()) {
- default: assert(0 && "Unexpected predicate!");
+ default: llvm_unreachable("Unexpected predicate!");
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ:
Pred = ICmpInst::ICMP_EQ;
@@ -5706,9 +5712,9 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case FCmpInst::FCMP_UNO:
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
@@ -5728,8 +5734,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
@@ -5740,8 +5746,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
}
@@ -5753,8 +5759,8 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
}
}
@@ -5763,27 +5769,27 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// casting the FP value to the integer value and back, checking for equality.
// Don't do this for zero, because -0.0 is not fractional.
Constant *RHSInt = LHSUnsigned
- ? Context->getConstantExprFPToUI(RHSC, IntTy)
- : Context->getConstantExprFPToSI(RHSC, IntTy);
+ ? ConstantExpr::getFPToUI(RHSC, IntTy)
+ : ConstantExpr::getFPToSI(RHSC, IntTy);
if (!RHS.isZero()) {
bool Equal = LHSUnsigned
- ? Context->getConstantExprUIToFP(RHSInt, RHSC->getType()) == RHSC
- : Context->getConstantExprSIToFP(RHSInt, RHSC->getType()) == RHSC;
+ ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+ : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
if (!Equal) {
// If we had a comparison against a fractional value, we have to adjust
// the compare predicate and sometimes the value. RHSC is rounded towards
// zero at this point.
switch (Pred) {
- default: assert(0 && "Unexpected integer comparison!");
+ default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
@@ -5795,7 +5801,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
@@ -5808,7 +5814,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
@@ -5820,7 +5826,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
@@ -5844,22 +5850,22 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// Fold trivial predicates.
if (I.getPredicate() == FCmpInst::FCMP_FALSE)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
if (I.getPredicate() == FCmpInst::FCMP_TRUE)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
switch (I.getPredicate()) {
- default: assert(0 && "Unknown predicate!");
+ default: llvm_unreachable("Unknown predicate!");
case FCmpInst::FCMP_UEQ: // True if unordered or equal
case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
case FCmpInst::FCMP_OGT: // True if ordered and greater than
case FCmpInst::FCMP_OLT: // True if ordered and less than
case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
case FCmpInst::FCMP_ULT: // True if unordered or less than
@@ -5867,7 +5873,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_UNE: // True if unordered or not equal
// Canonicalize these to be 'fcmp uno %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_UNO);
- I.setOperand(1, Context->getNullValue(Op0->getType()));
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
@@ -5876,13 +5882,13 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
// Canonicalize these to be 'fcmp ord %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_ORD);
- I.setOperand(1, Context->getNullValue(Op0->getType()));
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
}
}
if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
- return ReplaceInstUsesWith(I, Context->getUndef(Type::Int1Ty));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
@@ -5890,11 +5896,11 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
if (CFP->getValueAPF().isNaN()) {
if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
assert(FCmpInst::isUnordered(I.getPredicate()) &&
"Comparison must be either ordered or unordered!");
// True if unordered.
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
}
}
@@ -5905,7 +5911,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::SIToFP:
@@ -5921,18 +5927,16 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
- Op1 = Context->getConstantExprCompare(I.getPredicate(), C, RHSC);
+ Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
- Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
- LHSI->getOperand(2), RHSC,
- I.getName()), I);
+ Op2 = Builder->CreateFCmp(I.getPredicate(),
+ LHSI->getOperand(2), RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
- Op2 = Context->getConstantExprCompare(I.getPredicate(), C, RHSC);
+ Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
- Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
- LHSI->getOperand(1), RHSC,
- I.getName()), I);
+ Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
}
}
@@ -5952,28 +5956,27 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// icmp X, X
if (Op0 == Op1)
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(),
I.isTrueWhenEqual()));
if (isa<UndefValue>(Op1)) // X icmp undef -> undef
- return ReplaceInstUsesWith(I, Context->getUndef(Type::Int1Ty));
+ return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
// icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
// addresses never equal each other! We already know that Op0 != Op1.
- if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
+ if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
isa<ConstantPointerNull>(Op0)) &&
- (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
+ (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
isa<ConstantPointerNull>(Op1)))
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::getInt1Ty(*Context),
!I.isTrueWhenEqual()));
// icmp's with boolean values can always be turned into bitwise operations
- if (Ty == Type::Int1Ty) {
+ if (Ty == Type::getInt1Ty(*Context)) {
switch (I.getPredicate()) {
- default: assert(0 && "Invalid icmp instruction!");
+ default: llvm_unreachable("Invalid icmp instruction!");
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
- Instruction *Xor = BinaryOperator::CreateXor(Op0, Op1, I.getName()+"tmp");
- InsertNewInstBefore(Xor, I);
+ Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
return BinaryOperator::CreateNot(Xor);
}
case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
@@ -5983,32 +5986,28 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
// FALL THROUGH
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
- Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
// FALL THROUGH
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
- Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
// FALL THROUGH
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
- Instruction *Not = BinaryOperator::CreateNot(Op0, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
// FALL THROUGH
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
- Instruction *Not = BinaryOperator::CreateNot(Op1, I.getName()+"tmp");
- InsertNewInstBefore(Not, I);
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
@@ -6040,20 +6039,24 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
default: break;
case ICmpInst::ICMP_ULE:
if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
+ AddOne(CI));
case ICmpInst::ICMP_SLE:
if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ AddOne(CI));
case ICmpInst::ICMP_UGE:
if (CI->isMinValue(false)) // A >=u MIN -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
+ SubOne(CI));
case ICmpInst::ICMP_SGE:
if (CI->isMinValue(true)) // A >=s MIN -> TRUE
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI, Context));
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ SubOne(CI));
}
// If this comparison is a normal comparison, it demands all
@@ -6100,110 +6103,114 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// that code below can assume that Min != Max.
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
return new ICmpInst(I.getPredicate(),
- Context->getConstantInt(Op0Min), Op1);
+ ConstantInt::get(*Context, Op0Min), Op1);
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(I.getPredicate(), Op0,
- Context->getConstantInt(Op1Min));
+ return new ICmpInst(I.getPredicate(), Op0,
+ ConstantInt::get(*Context, Op1Min));
// Based on the range information we know about the LHS, see if we can
// simplify this comparison. For example, (x&4) < 8 is always true.
switch (I.getPredicate()) {
- default: assert(0 && "Unknown icmp opcode!");
+ default: llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_NE:
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
break;
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ SubOne(CI));
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
if (CI->isMinValue(true))
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Context->getConstantIntAllOnesValue(Op0->getType()));
+ Constant::getAllOnesValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_UGT:
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ AddOne(CI));
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
if (CI->isMaxValue(true))
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Context->getNullValue(Op0->getType()));
+ Constant::getNullValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ SubOne(CI));
}
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI, Context));
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ AddOne(CI));
}
break;
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return ReplaceInstUsesWith(I, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
break;
}
@@ -6255,16 +6262,16 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
if (isAllZeros)
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Context->getNullValue(LHSI->getOperand(0)->getType()));
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
}
break;
case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and fcmp are in the same
+ // Only fold icmp into the PHI if the phi and icmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = FoldOpIntoPhi(I, true))
return NV;
break;
case Instruction::Select: {
@@ -6275,18 +6282,16 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
- Op1 = Context->getConstantExprICmp(I.getPredicate(), C, RHSC);
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// Insert a new ICmp of the other select operand.
- Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
- LHSI->getOperand(2), RHSC,
- I.getName()), I);
+ Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
+ RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
- Op2 = Context->getConstantExprICmp(I.getPredicate(), C, RHSC);
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// Insert a new ICmp of the other select operand.
- Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
- LHSI->getOperand(1), RHSC,
- I.getName()), I);
+ Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
}
}
@@ -6298,19 +6303,31 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// If we have (malloc != null), and if the malloc has a single use, we
// can assume it is successful and remove the malloc.
if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
- AddToWorkList(LHSI);
- return ReplaceInstUsesWith(I, Context->getConstantInt(Type::Int1Ty,
- !I.isTrueWhenEqual()));
+ Worklist.Add(LHSI);
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(*Context),
+ !I.isTrueWhenEqual()));
+ }
+ break;
+ case Instruction::Call:
+ // If we have (malloc != null), and if the malloc has a single use, we
+ // can assume it is successful and remove the malloc.
+ if (isMalloc(LHSI) && LHSI->hasOneUse() &&
+ isa<ConstantPointerNull>(RHSC)) {
+ Worklist.Add(LHSI);
+ return ReplaceInstUsesWith(I,
+ ConstantInt::get(Type::getInt1Ty(*Context),
+ !I.isTrueWhenEqual()));
}
break;
}
}
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
- if (User *GEP = dyn_castGetElementPtr(Op0))
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
- if (User *GEP = dyn_castGetElementPtr(Op1))
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
if (Instruction *NI = FoldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
@@ -6333,10 +6350,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// If Op1 is a constant, we can fold the cast into the constant.
if (Op0->getType() != Op1->getType()) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- Op1 = Context->getConstantExprBitCast(Op1C, Op0->getType());
+ Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the icmp
- Op1 = InsertBitCastBefore(Op1, Op0->getType(), I);
+ Op1 = Builder->CreateBitCast(Op1, Op0->getType());
}
}
return new ICmpInst(I.getPredicate(), Op0, Op1);
@@ -6397,16 +6414,12 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// Mask = -1 >> count-trailing-zeros(Cst).
if (!CI->isZero() && !CI->isOne()) {
const APInt &AP = CI->getValue();
- ConstantInt *Mask = Context->getConstantInt(
+ ConstantInt *Mask = ConstantInt::get(*Context,
APInt::getLowBitsSet(AP.getBitWidth(),
AP.getBitWidth() -
AP.countTrailingZeros()));
- Instruction *And1 = BinaryOperator::CreateAnd(Op0I->getOperand(0),
- Mask);
- Instruction *And2 = BinaryOperator::CreateAnd(Op1I->getOperand(0),
- Mask);
- InsertNewInstBefore(And1, I);
- InsertNewInstBefore(And2, I);
+ Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
return new ICmpInst(I.getPredicate(), And1, And2);
}
}
@@ -6435,7 +6448,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
- Context->getNullValue(A->getType()));
+ Constant::getNullValue(A->getType()));
}
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
@@ -6444,10 +6457,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (match(B, m_ConstantInt(C1)) &&
match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
Constant *NC =
- Context->getConstantInt(C1->getValue() ^ C2->getValue());
- Instruction *Xor = BinaryOperator::CreateXor(C, NC, "tmp");
- return new ICmpInst(I.getPredicate(), A,
- InsertNewInstBefore(Xor, I));
+ ConstantInt::get(*Context, C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder->CreateXor(C, NC, "tmp");
+ return new ICmpInst(I.getPredicate(), A, Xor);
}
// A^B == A^D -> B == D
@@ -6463,18 +6475,18 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// A == (A^B) -> B == 0
Value *OtherVal = A == Op0 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
- Context->getNullValue(A->getType()));
+ Constant::getNullValue(A->getType()));
}
// (A-B) == A -> B == 0
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
- Context->getNullValue(B->getType()));
+ Constant::getNullValue(B->getType()));
// A == (A-B) -> B == 0
if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
return new ICmpInst(I.getPredicate(), B,
- Context->getNullValue(B->getType()));
+ Constant::getNullValue(B->getType()));
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (Op0->hasOneUse() && Op1->hasOneUse() &&
@@ -6493,10 +6505,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
if (X) { // Build (X^Y) & Z
- Op1 = InsertNewInstBefore(BinaryOperator::CreateXor(X, Y, "tmp"), I);
- Op1 = InsertNewInstBefore(BinaryOperator::CreateAnd(Op1, Z, "tmp"), I);
+ Op1 = Builder->CreateXor(X, Y, "tmp");
+ Op1 = Builder->CreateAnd(Op1, Z, "tmp");
I.setOperand(0, Op1);
- I.setOperand(1, Context->getNullValue(Op1->getType()));
+ I.setOperand(1, Constant::getNullValue(Op1->getType()));
return &I;
}
}
@@ -6535,13 +6547,13 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
// C2 (CI). By solving for X we can turn this into a range check
// instead of computing a divide.
- Constant *Prod = Context->getConstantExprMul(CmpRHS, DivRHS);
+ Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
// Determine if the product overflows by seeing if the product is
// not equal to the divide. Make sure we do the same kind of divide
// as in the LHS instruction that we're folding.
- bool ProdOV = (DivIsSigned ? Context->getConstantExprSDiv(Prod, DivRHS) :
- Context->getConstantExprUDiv(Prod, DivRHS)) != CmpRHS;
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+ ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
@@ -6565,8 +6577,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
if (CmpRHSV == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = cast<ConstantInt>(Context->getConstantExprNeg(SubOne(DivRHS,
- Context)));
+ LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
HiBound = DivRHS;
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
@@ -6575,11 +6586,11 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
- HiBound = AddOne(Prod, Context);
+ HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
ConstantInt* DivNeg =
- cast<ConstantInt>(Context->getConstantExprNeg(DivRHS));
+ cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context,
true) ? -1 : 0;
}
@@ -6587,15 +6598,15 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
} else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
if (CmpRHSV == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
- LoBound = AddOne(DivRHS, Context);
- HiBound = cast<ConstantInt>(Context->getConstantExprNeg(DivRHS));
+ LoBound = AddOne(DivRHS);
+ HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
}
} else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
- HiBound = AddOne(Prod, Context);
+ HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
LoOverflow = AddWithOverflow(LoBound, HiBound,
@@ -6613,42 +6624,42 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
Value *X = DivI->getOperand(0);
switch (Pred) {
- default: assert(0 && "Unhandled icmp opcode!");
+ default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
else if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
else if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
else
return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
if (LoOverflow == -1) // Low bound is less than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
else if (HiOverflow == -1) // High bound less than input range.
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
else
@@ -6682,7 +6693,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
NewRHS.zext(SrcBits);
NewRHS |= KnownOne;
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Context->getConstantInt(NewRHS));
+ ConstantInt::get(*Context, NewRHS));
}
}
break;
@@ -6699,7 +6710,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// the operation, just stop using the Xor.
if (!XorCST->getValue().isNegative()) {
ICI.setOperand(0, CompareVal);
- AddToWorkList(LHSI);
+ Worklist.Add(LHSI);
return &ICI;
}
@@ -6711,10 +6722,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (isTrueIfPositive)
return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
- SubOne(RHS, Context));
+ SubOne(RHS));
else
return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
- AddOne(RHS, Context));
+ AddOne(RHS));
}
if (LHSI->hasOneUse()) {
@@ -6725,7 +6736,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
return new ICmpInst(Pred, LHSI->getOperand(0),
- Context->getConstantInt(RHSV ^ SignBit));
+ ConstantInt::get(*Context, RHSV ^ SignBit));
}
// (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
@@ -6736,7 +6747,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
: ICI.getSignedPredicate();
Pred = ICI.getSwappedPredicate(Pred);
return new ICmpInst(Pred, LHSI->getOperand(0),
- Context->getConstantInt(RHSV ^ NotSignBit));
+ ConstantInt::get(*Context, RHSV ^ NotSignBit));
}
}
}
@@ -6763,12 +6774,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
NewCST.zext(BitWidth);
APInt NewCI = RHSV;
NewCI.zext(BitWidth);
- Instruction *NewAnd =
- BinaryOperator::CreateAnd(Cast->getOperand(0),
- Context->getConstantInt(NewCST),LHSI->getName());
- InsertNewInstBefore(NewAnd, ICI);
+ Value *NewAnd =
+ Builder->CreateAnd(Cast->getOperand(0),
+ ConstantInt::get(*Context, NewCST), LHSI->getName());
return new ICmpInst(ICI.getPredicate(), NewAnd,
- Context->getConstantInt(NewCI));
+ ConstantInt::get(*Context, NewCI));
}
}
@@ -6805,32 +6815,31 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (CanFold) {
Constant *NewCst;
if (Shift->getOpcode() == Instruction::Shl)
- NewCst = Context->getConstantExprLShr(RHS, ShAmt);
+ NewCst = ConstantExpr::getLShr(RHS, ShAmt);
else
- NewCst = Context->getConstantExprShl(RHS, ShAmt);
+ NewCst = ConstantExpr::getShl(RHS, ShAmt);
// Check to see if we are shifting out any of the bits being
// compared.
- if (Context->getConstantExpr(Shift->getOpcode(),
+ if (ConstantExpr::get(Shift->getOpcode(),
NewCst, ShAmt) != RHS) {
// If we shifted bits out, the fold is not going to work out.
// As a special case, check to see if this means that the
// result is always true or false now.
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
} else {
ICI.setOperand(1, NewCst);
Constant *NewAndCST;
if (Shift->getOpcode() == Instruction::Shl)
- NewAndCST = Context->getConstantExprLShr(AndCST, ShAmt);
+ NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
else
- NewAndCST = Context->getConstantExprShl(AndCST, ShAmt);
+ NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
LHSI->setOperand(1, NewAndCST);
LHSI->setOperand(0, Shift->getOperand(0));
- AddToWorkList(Shift); // Shift is dead.
- AddUsesToWorkList(ICI);
+ Worklist.Add(Shift); // Shift is dead.
return &ICI;
}
}
@@ -6845,19 +6854,15 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// Compute C << Y.
Value *NS;
if (Shift->getOpcode() == Instruction::LShr) {
- NS = BinaryOperator::CreateShl(AndCST,
- Shift->getOperand(1), "tmp");
+ NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
} else {
// Insert a logical shift.
- NS = BinaryOperator::CreateLShr(AndCST,
- Shift->getOperand(1), "tmp");
+ NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
}
- InsertNewInstBefore(cast<Instruction>(NS), ICI);
// Compute X & (C << Y).
- Instruction *NewAnd =
- BinaryOperator::CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
- InsertNewInstBefore(NewAnd, ICI);
+ Value *NewAnd =
+ Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
ICI.setOperand(0, NewAnd);
return &ICI;
@@ -6881,11 +6886,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
- Context->getConstantExprShl(Context->getConstantExprLShr(RHS, ShAmt),
+ ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
ShAmt);
if (Comp != RHS) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Context->getConstantInt(Type::Int1Ty, IsICMP_NE);
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
@@ -6893,15 +6898,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Constant *Mask =
- Context->getConstantInt(APInt::getLowBitsSet(TypeBits,
+ ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits,
TypeBits-ShAmtVal));
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
- Context->getConstantInt(RHSV.lshr(ShAmtVal)));
+ ConstantInt::get(*Context, RHSV.lshr(ShAmtVal)));
}
}
@@ -6910,15 +6913,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (LHSI->hasOneUse() &&
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
// (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = Context->getConstantInt(APInt(TypeBits, 1) <<
+ Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) <<
(TypeBits-ShAmt->getZExtValue()-1));
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
-
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Context->getNullValue(And->getType()));
+ And, Constant::getNullValue(And->getType()));
}
break;
}
@@ -6948,7 +6948,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (Comp != RHSV) { // Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Context->getConstantInt(Type::Int1Ty, IsICMP_NE);
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
@@ -6959,20 +6959,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
MaskedValueIsZero(LHSI->getOperand(0),
APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Context->getConstantExprShl(RHS, ShAmt));
+ ConstantExpr::getShl(RHS, ShAmt));
}
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = Context->getConstantInt(Val);
+ Constant *Mask = ConstantInt::get(*Context, Val);
- Instruction *AndI =
- BinaryOperator::CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- Value *And = InsertNewInstBefore(AndI, ICI);
+ Value *And = Builder->CreateAnd(LHSI->getOperand(0),
+ Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
- Context->getConstantExprShl(RHS, ShAmt));
+ ConstantExpr::getShl(RHS, ShAmt));
}
break;
}
@@ -7005,18 +7003,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (ICI.isSignedPredicate()) {
if (CR.getLower().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
- Context->getConstantInt(CR.getUpper()));
+ ConstantInt::get(*Context, CR.getUpper()));
} else if (CR.getUpper().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
- Context->getConstantInt(CR.getLower()));
+ ConstantInt::get(*Context, CR.getLower()));
}
} else {
if (CR.getLower().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
- Context->getConstantInt(CR.getUpper()));
+ ConstantInt::get(*Context, CR.getUpper()));
} else if (CR.getUpper().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
- Context->getConstantInt(CR.getLower()));
+ ConstantInt::get(*Context, CR.getLower()));
}
}
}
@@ -7036,12 +7034,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
- Instruction *NewRem =
- BinaryOperator::CreateURem(BO->getOperand(0), BO->getOperand(1),
- BO->getName());
- InsertNewInstBefore(NewRem, ICI);
- return new ICmpInst(ICI.getPredicate(), NewRem,
- Context->getNullValue(BO->getType()));
+ Value *NewRem =
+ Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
+ BO->getName());
+ return new ICmpInst(ICI.getPredicate(), NewRem,
+ Constant::getNullValue(BO->getType()));
}
}
break;
@@ -7050,19 +7047,18 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Context->getConstantExprSub(RHS, BOp1C));
+ ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
- if (Value *NegVal = dyn_castNegVal(BOp1, Context))
+ if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
- else if (Value *NegVal = dyn_castNegVal(BOp0, Context))
+ else if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
else if (BO->hasOneUse()) {
- Instruction *Neg = BinaryOperator::CreateNeg(BOp1);
- InsertNewInstBefore(Neg, ICI);
+ Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
@@ -7073,7 +7069,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// the explicit xor.
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Context->getConstantExprXor(RHS, BOC));
+ ConstantExpr::getXor(RHS, BOC));
// FALLTHROUGH
case Instruction::Sub:
@@ -7087,10 +7083,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- Constant *NotCI = Context->getConstantExprNot(RHS);
- if (!Context->getConstantExprAnd(BOC, NotCI)->isNullValue())
+ Constant *NotCI = ConstantExpr::getNot(RHS);
+ if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(ICI,
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
isICMP_NE));
}
break;
@@ -7101,19 +7097,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return ReplaceInstUsesWith(ICI,
- Context->getConstantInt(Type::Int1Ty,
+ ConstantInt::get(Type::getInt1Ty(*Context),
isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
ICmpInst::ICMP_NE, LHSI,
- Context->getNullValue(RHS->getType()));
+ Constant::getNullValue(RHS->getType()));
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
- Constant *Zero = Context->getNullValue(X->getType());
+ Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
@@ -7122,7 +7118,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
- Constant *NegX = Context->getConstantExprNeg(BOC);
+ Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
@@ -7133,9 +7129,9 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
// Handle icmp {eq|ne} <intrinsic>, intcst.
if (II->getIntrinsicID() == Intrinsic::bswap) {
- AddToWorkList(II);
+ Worklist.Add(II);
ICI.setOperand(0, II->getOperand(1));
- ICI.setOperand(1, Context->getConstantInt(RHSV.byteSwap()));
+ ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap()));
return &ICI;
}
}
@@ -7155,17 +7151,17 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
- if (LHSCI->getOpcode() == Instruction::PtrToInt &&
- getTargetData().getPointerSizeInBits() ==
+ if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
+ TD->getPointerSizeInBits() ==
cast<IntegerType>(DestTy)->getBitWidth()) {
Value *RHSOp = 0;
if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
- RHSOp = Context->getConstantExprIntToPtr(RHSC, SrcTy);
+ RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
} else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
RHSOp = RHSC->getOperand(0);
// If the pointer types don't match, insert a bitcast.
if (LHSCIOp->getType() != RHSOp->getType())
- RHSOp = InsertBitCastBefore(RHSOp, LHSCIOp->getType(), ICI);
+ RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
if (RHSOp)
@@ -7212,8 +7208,8 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DestTy.
- Constant *Res1 = Context->getConstantExprTrunc(CI, SrcTy);
- Constant *Res2 = Context->getConstantExprCast(LHSCI->getOpcode(),
+ Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
Res1, DestTy);
// If the re-extended constant didn't change...
@@ -7239,9 +7235,9 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// First, handle some easy cases. We know the result cannot be equal at this
// point so handle the ICI.isEquality() cases
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntFalse());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, Context->getConstantIntTrue());
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
@@ -7249,20 +7245,19 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
if (isSignedCmp) {
// We're performing a signed comparison.
if (cast<ConstantInt>(CI)->getValue().isNegative())
- Result = Context->getConstantIntFalse(); // X < (small) --> false
+ Result = ConstantInt::getFalse(*Context); // X < (small) --> false
else
- Result = Context->getConstantIntTrue(); // X < (large) --> true
+ Result = ConstantInt::getTrue(*Context); // X < (large) --> true
} else {
// We're performing an unsigned comparison.
if (isSignedExt) {
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
- Constant *NegOne = Context->getConstantIntAllOnesValue(SrcTy);
- Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
- NegOne, ICI.getName()), ICI);
+ Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+ Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
} else {
// Unsigned extend & unsigned compare -> always true.
- Result = Context->getConstantIntTrue();
+ Result = ConstantInt::getTrue(*Context);
}
}
@@ -7275,7 +7270,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
"ICmp should be folded!");
if (Constant *CI = dyn_cast<Constant>(Result))
- return ReplaceInstUsesWith(ICI, Context->getConstantExprNot(CI));
+ return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
return BinaryOperator::CreateNot(Result);
}
@@ -7317,21 +7312,21 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
// shl X, 0 == X and shr X, 0 == X
// shl 0, X == 0 and shr 0, X == 0
- if (Op1 == Context->getNullValue(Op1->getType()) ||
- Op0 == Context->getNullValue(Op0->getType()))
+ if (Op1 == Constant::getNullValue(Op1->getType()) ||
+ Op0 == Constant::getNullValue(Op0->getType()))
return ReplaceInstUsesWith(I, Op0);
if (isa<UndefValue>(Op0)) {
if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
return ReplaceInstUsesWith(I, Op0);
else // undef << X -> 0, undef >>u X -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
if (isa<UndefValue>(Op1)) {
if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
return ReplaceInstUsesWith(I, Op0);
else // X << undef, X >>u undef -> 0
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
}
// See if we can fold away this shift.
@@ -7363,9 +7358,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
//
if (Op1->uge(TypeBits)) {
if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Context->getNullValue(Op0->getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
else {
- I.setOperand(1, Context->getConstantInt(I.getType(), TypeBits-1));
+ I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
return &I;
}
}
@@ -7375,7 +7370,7 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (BO->getOpcode() == Instruction::Mul && isLeftShift)
if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
return BinaryOperator::CreateMul(BO->getOperand(0),
- Context->getConstantExprShl(BOOp, Op1));
+ ConstantExpr::getShl(BOOp, Op1));
// Try to fold constant and into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
@@ -7396,10 +7391,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt = Context->getConstantExprZExt(Op1, TrOp->getType());
- Instruction *NSh = BinaryOperator::Create(I.getOpcode(), TrOp, ShAmt,
- I.getName());
- InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
+ Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
+ // (shift2 (shift1 & 0x00FF), c2)
+ Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
// For logical shifts, the truncation has the effect of making the high
// part of the register be zeros. Emulate this by inserting an AND to
@@ -7420,10 +7414,9 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
MaskV = MaskV.lshr(Op1->getZExtValue());
}
- Instruction *And =
- BinaryOperator::CreateAnd(NSh, Context->getConstantInt(MaskV),
- TI->getName());
- InsertNewInstBefore(And, I); // shift1 & 0x00FF
+ // shift1 & 0x00FF
+ Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV),
+ TI->getName());
// Return the value truncated to the interesting size.
return new TruncInst(And, I.getType());
@@ -7444,17 +7437,15 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// These operators commute.
// Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))){
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *X =
- BinaryOperator::Create(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- InsertNewInstBefore(X, I); // (X + (Y << C))
+ match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
+ Op0BO->getOperand(1)->getName());
uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
@@ -7465,16 +7456,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
m_ConstantInt(CC))) &&
cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(0), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *XM =
- BinaryOperator::CreateAnd(V1,
- Context->getConstantExprShl(CC, Op1),
- V1->getName()+".mask");
- InsertNewInstBefore(XM, I); // X & (CC << C)
-
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(0), Op1,
+ Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
}
}
@@ -7483,17 +7470,15 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
case Instruction::Sub: {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))){
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(1), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *X =
- BinaryOperator::Create(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- InsertNewInstBefore(X, I); // (X + (Y << C))
+ match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
+ Op0BO->getOperand(0)->getName());
uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
}
@@ -7504,15 +7489,11 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
m_ConstantInt(CC))) && V2 == Op1 &&
cast<BinaryOperator>(Op0BO->getOperand(0))
->getOperand(0)->hasOneUse()) {
- Instruction *YS = BinaryOperator::CreateShl(
- Op0BO->getOperand(1), Op1,
- Op0BO->getName());
- InsertNewInstBefore(YS, I); // (Y << C)
- Instruction *XM =
- BinaryOperator::CreateAnd(V1,
- Context->getConstantExprShl(CC, Op1),
- V1->getName()+".mask");
- InsertNewInstBefore(XM, I); // X & (CC << C)
+ Value *YS = // (Y << C)
+ Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
}
@@ -7552,11 +7533,10 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
if (isValid) {
- Constant *NewRHS = Context->getConstantExpr(I.getOpcode(), Op0C, Op1);
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
- Instruction *NewShift =
- BinaryOperator::Create(I.getOpcode(), Op0BO->getOperand(0), Op1);
- InsertNewInstBefore(NewShift, I);
+ Value *NewShift =
+ Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
NewShift->takeName(Op0BO);
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
@@ -7589,31 +7569,33 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// saturates.
if (AmtSum >= TypeBits) {
if (I.getOpcode() != Instruction::AShr)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr.
}
return BinaryOperator::Create(I.getOpcode(), X,
- Context->getConstantInt(Ty, AmtSum));
- } else if (ShiftOp->getOpcode() == Instruction::LShr &&
- I.getOpcode() == Instruction::AShr) {
+ ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::LShr &&
+ I.getOpcode() == Instruction::AShr) {
if (AmtSum >= TypeBits)
- return ReplaceInstUsesWith(I, Context->getNullValue(I.getType()));
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
// ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
- return BinaryOperator::CreateLShr(X, Context->getConstantInt(Ty, AmtSum));
- } else if (ShiftOp->getOpcode() == Instruction::AShr &&
- I.getOpcode() == Instruction::LShr) {
+ return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (ShiftOp->getOpcode() == Instruction::AShr &&
+ I.getOpcode() == Instruction::LShr) {
// ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
if (AmtSum >= TypeBits)
AmtSum = TypeBits-1;
- Instruction *Shift =
- BinaryOperator::CreateAShr(X, Context->getConstantInt(Ty, AmtSum));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask));
}
// Okay, if we get here, one shift must be left, and the other shift must be
@@ -7622,12 +7604,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
// If we have ((X >>? C) << C), turn this into X & (-1 << C).
if (I.getOpcode() == Instruction::Shl) {
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
}
// If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
if (I.getOpcode() == Instruction::LShr) {
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
- return BinaryOperator::CreateAnd(X, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
}
// We can simplify ((X << C) >>s C) into a trunc + sext.
// NOTE: we could do this for any C, but that would make 'unusual' integer
@@ -7641,15 +7623,12 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
case 32 :
case 64 :
case 128:
- SExtType = Context->getIntegerType(Ty->getBitWidth() - ShiftAmt1);
+ SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1);
break;
default: break;
}
- if (SExtType) {
- Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
- InsertNewInstBefore(NewTrunc, I);
- return new SExtInst(NewTrunc, Ty);
- }
+ if (SExtType)
+ return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
// Otherwise, we can't handle it yet.
} else if (ShiftAmt1 < ShiftAmt2) {
uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
@@ -7658,23 +7637,21 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (I.getOpcode() == Instruction::Shl) {
assert(ShiftOp->getOpcode() == Instruction::LShr ||
ShiftOp->getOpcode() == Instruction::AShr);
- Instruction *Shift =
- BinaryOperator::CreateShl(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
if (I.getOpcode() == Instruction::LShr) {
assert(ShiftOp->getOpcode() == Instruction::Shl);
- Instruction *Shift =
- BinaryOperator::CreateLShr(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
@@ -7686,24 +7663,22 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (I.getOpcode() == Instruction::Shl) {
assert(ShiftOp->getOpcode() == Instruction::LShr ||
ShiftOp->getOpcode() == Instruction::AShr);
- Instruction *Shift =
- BinaryOperator::Create(ShiftOp->getOpcode(), X,
- Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
+ ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
if (I.getOpcode() == Instruction::LShr) {
assert(ShiftOp->getOpcode() == Instruction::Shl);
- Instruction *Shift =
- BinaryOperator::CreateShl(X, Context->getConstantInt(Ty, ShiftDiff));
- InsertNewInstBefore(Shift, I);
+ Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
- return BinaryOperator::CreateAnd(Shift, Context->getConstantInt(Mask));
+ return BinaryOperator::CreateAnd(Shift,
+ ConstantInt::get(*Context, Mask));
}
// We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
@@ -7718,12 +7693,13 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
/// X*Scale+Offset.
///
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- int &Offset, LLVMContext* Context) {
- assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
+ int &Offset, LLVMContext *Context) {
+ assert(Val->getType() == Type::getInt32Ty(*Context) &&
+ "Unexpected allocation size type!");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Offset = CI->getZExtValue();
Scale = 0;
- return Context->getConstantInt(Type::Int32Ty, 0);
+ return ConstantInt::get(Type::getInt32Ty(*Context), 0);
} else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (I->getOpcode() == Instruction::Shl) {
@@ -7763,6 +7739,9 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocationInst &AI) {
const PointerType *PTy = cast<PointerType>(CI.getType());
+ BuilderTy AllocaBuilder(*Builder);
+ AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
+
// Remove any uses of AI that are dead.
assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
@@ -7773,11 +7752,14 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
++UI; // If this instruction uses AI more than once, don't break UI.
++NumDeadInst;
- DOUT << "IC: DCE: " << *User;
+ DEBUG(errs() << "IC: DCE: " << *User << '\n');
EraseInstFromFunction(*User);
}
}
-
+
+ // This requires TargetData to get the alloca alignment and size information.
+ if (!TD) return 0;
+
// Get the type really allocated and the type casted to.
const Type *AllocElTy = AI.getAllocatedType();
const Type *CastElTy = PTy->getElementType();
@@ -7816,30 +7798,22 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
if (Scale == 1) {
Amt = NumElements;
} else {
- // If the allocation size is constant, form a constant mul expression
- Amt = Context->getConstantInt(Type::Int32Ty, Scale);
- if (isa<ConstantInt>(NumElements))
- Amt = Context->getConstantExprMul(cast<ConstantInt>(NumElements),
- cast<ConstantInt>(Amt));
- // otherwise multiply the amount and the number of elements
- else {
- Instruction *Tmp = BinaryOperator::CreateMul(Amt, NumElements, "tmp");
- Amt = InsertNewInstBefore(Tmp, AI);
- }
+ Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale);
+ // Insert before the alloca, not before the cast.
+ Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
}
if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = Context->getConstantInt(Type::Int32Ty, Offset, true);
- Instruction *Tmp = BinaryOperator::CreateAdd(Amt, Off, "tmp");
- Amt = InsertNewInstBefore(Tmp, AI);
+ Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true);
+ Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
}
AllocationInst *New;
if (isa<MallocInst>(AI))
- New = new MallocInst(CastElTy, Amt, AI.getAlignment());
+ New = AllocaBuilder.CreateMalloc(CastElTy, Amt);
else
- New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
- InsertNewInstBefore(New, AI);
+ New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
+ New->setAlignment(AI.getAlignment());
New->takeName(&AI);
// If the allocation has one real use plus a dbg.declare, just remove the
@@ -7851,11 +7825,9 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
else if (!AI.hasOneUse()) {
- AddUsesToWorkList(AI);
// New is the allocation instruction, pointer typed. AI is the original
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
- InsertNewInstBefore(NewCast, AI);
+ Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
AI.replaceAllUsesWith(NewCast);
}
return ReplaceInstUsesWith(CI, New);
@@ -7923,6 +7895,23 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // UDiv and URem can be truncated if all the truncated bits are zero.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (BitWidth < OrigBitWidth) {
+ APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
+ if (MaskedValueIsZero(I->getOperand(0), Mask) &&
+ MaskedValueIsZero(I->getOperand(1), Mask)) {
+ return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
+ NumCastsRemoved) &&
+ CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
+ NumCastsRemoved);
+ }
+ }
+ break;
+ }
case Instruction::Shl:
// If we are truncating the result of this SHL, and if it's a shift of a
// constant amount, we can always perform a SHL in a smaller type.
@@ -7993,7 +7982,7 @@ bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V))
- return Context->getConstantExprIntegerCast(C, Ty,
+ return ConstantExpr::getIntegerCast(C, Ty,
isSigned /*Sext or ZExt*/);
// Otherwise, it must be an instruction.
@@ -8009,7 +7998,9 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
case Instruction::Xor:
case Instruction::AShr:
case Instruction::LShr:
- case Instruction::Shl: {
+ case Instruction::Shl:
+ case Instruction::UDiv:
+ case Instruction::URem: {
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
@@ -8046,7 +8037,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
}
default:
// TODO: Can handle more cases here.
- assert(0 && "Unreachable!");
+ llvm_unreachable("Unreachable!");
break;
}
@@ -8089,13 +8080,14 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices,
const TargetData *TD,
- LLVMContext* Context) {
+ LLVMContext *Context) {
+ if (!TD) return 0;
if (!Ty->isSized()) return 0;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- const Type *IntPtrTy = TD->getIntPtrType();
+ const Type *IntPtrTy = TD->getIntPtrType(*Context);
int64_t FirstIdx = 0;
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
@@ -8110,7 +8102,7 @@ static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
- NewIndices.push_back(Context->getConstantInt(IntPtrTy, FirstIdx));
+ NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
@@ -8124,14 +8116,14 @@ static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset,
"Offset must stay within the indexed type");
unsigned Elt = SL->getElementContainingOffset(Offset);
- NewIndices.push_back(Context->getConstantInt(Type::Int32Ty, Elt));
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt));
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
- NewIndices.push_back(Context->getConstantInt(IntPtrTy,Offset/EltSize));
+ NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
Ty = AT->getElementType();
} else {
@@ -8154,7 +8146,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
- AddToWorkList(GEP);
+ Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
@@ -8163,7 +8155,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
- if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
+ if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
if (GEP->hasAllConstantIndices()) {
// We are guaranteed to get a constant from EmitGEPOffset.
ConstantInt *OffsetV =
@@ -8179,10 +8171,10 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
- Instruction *NGEP = GetElementPtrInst::Create(OrigBase,
- NewIndices.begin(),
- NewIndices.end(), "");
- InsertNewInstBefore(NGEP, CI);
+ Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(OrigBase,
+ NewIndices.begin(), NewIndices.end()) :
+ Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<BitCastInst>(CI))
@@ -8214,10 +8206,8 @@ static bool isSafeIntegerType(const Type *Ty) {
}
}
-/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
-/// integer types. This function implements the common transforms for all those
-/// cases.
-/// @brief Implement the transforms common to CastInst with integer operands
+/// commonIntCastTransforms - This function implements the common transforms
+/// for trunc, zext, and sext.
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
@@ -8241,11 +8231,10 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
// Attempt to propagate the cast into the instruction for int->int casts.
int NumCastsRemoved = 0;
- if (!isa<BitCastInst>(CI) &&
- // Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- (isSafeIntegerType(DestTy->getScalarType()) ||
+ // Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((isSafeIntegerType(DestTy->getScalarType()) ||
!isSafeIntegerType(SrcI->getType()->getScalarType())) &&
CanEvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode(), NumCastsRemoved)) {
@@ -8261,7 +8250,7 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
default:
// All the others use floating point so we shouldn't actually
// get here because of the check above.
- assert(0 && "Unknown cast type");
+ llvm_unreachable("Unknown cast type");
case Instruction::Trunc:
DoXForm = true;
break;
@@ -8307,8 +8296,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
}
if (DoXForm) {
- DOUT << "ICE: EvaluateInDifferentType converting expression type to avoid"
- << " cast: " << CI;
+ DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid cast: " << CI);
Value *Res = EvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode() == Instruction::SExt);
if (JustReplace)
@@ -8317,9 +8306,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
assert(Res->getType() == DestTy);
switch (CI.getOpcode()) {
- default: assert(0 && "Unknown cast type!");
+ default: llvm_unreachable("Unknown cast type!");
case Instruction::Trunc:
- case Instruction::BitCast:
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
case Instruction::ZExt: {
@@ -8332,8 +8320,8 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
- Constant *C = Context->getConstantInt(APInt::getLowBitsSet(DestBitSize,
- SrcBitSize));
+ Constant *C = ConstantInt::get(*Context,
+ APInt::getLowBitsSet(DestBitSize, SrcBitSize));
return BinaryOperator::CreateAnd(Res, C);
}
case Instruction::SExt: {
@@ -8344,9 +8332,7 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
return ReplaceInstUsesWith(CI, Res);
// We need to emit a cast to truncate, then a cast to sext.
- return CastInst::Create(Instruction::SExt,
- InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
- CI), DestTy);
+ return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
}
}
}
@@ -8362,16 +8348,12 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
case Instruction::Or:
case Instruction::Xor:
// If we are discarding information, rewrite.
- if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
- // Don't insert two casts if they cannot be eliminated. We allow
- // two casts to be inserted if the sizes are the same. This could
- // only be converting signedness, which is a noop.
- if (DestBitSize == SrcBitSize ||
- !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
+ if (DestBitSize < SrcBitSize && DestBitSize != 1) {
+ // Don't insert two casts unless at least one can be eliminated.
+ if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
!ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
- Instruction::CastOps opcode = CI.getOpcode();
- Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
+ Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
+ Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::Create(
cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
}
@@ -8380,62 +8362,25 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
// cast (xor bool X, true) to int --> xor (cast bool X to int), 1
if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
SrcI->getOpcode() == Instruction::Xor &&
- Op1 == Context->getConstantIntTrue() &&
+ Op1 == ConstantInt::getTrue(*Context) &&
(!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
- Value *New = InsertCastBefore(Instruction::ZExt, Op0, DestTy, CI);
+ Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
return BinaryOperator::CreateXor(New,
- Context->getConstantInt(CI.getType(), 1));
- }
- break;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // If we are just changing the sign, rewrite.
- if (DestBitSize == SrcBitSize) {
- // Don't insert two casts if they cannot be eliminated. We allow
- // two casts to be inserted if the sizes are the same. This could
- // only be converting signedness, which is a noop.
- if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
- !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
- Value *Op0c = InsertCastBefore(Instruction::BitCast,
- Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(Instruction::BitCast,
- Op1, DestTy, *SrcI);
- return BinaryOperator::Create(
- cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
- }
+ ConstantInt::get(CI.getType(), 1));
}
break;
- case Instruction::Shl:
- // Allow changing the sign of the source operand. Do not allow
- // changing the size of the shift, UNLESS the shift amount is a
- // constant. We must not change variable sized shifts to a smaller
- // size, because it is undefined to shift more bits out than exist
- // in the value.
- if (DestBitSize == SrcBitSize ||
- (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
- Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
- Instruction::BitCast : Instruction::Trunc);
- Value *Op0c = InsertCastBefore(opcode, Op0, DestTy, *SrcI);
- Value *Op1c = InsertCastBefore(opcode, Op1, DestTy, *SrcI);
+ case Instruction::Shl: {
+ // Canonicalize trunc inside shl, if we can.
+ ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
+ if (CI && DestBitSize < SrcBitSize &&
+ CI->getLimitedValue(DestBitSize) < DestBitSize) {
+ Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
+ Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::CreateShl(Op0c, Op1c);
}
break;
- case Instruction::AShr:
- // If this is a signed shr, and if all bits shifted in are about to be
- // truncated off, turn it into an unsigned shr to allow greater
- // simplifications.
- if (DestBitSize < SrcBitSize &&
- isa<ConstantInt>(Op1)) {
- uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
- if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
- // Insert the new logical shift right.
- return BinaryOperator::CreateLShr(Op0, Op1);
- }
- }
- break;
+ }
}
return 0;
}
@@ -8450,11 +8395,10 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
- if (DestBitWidth == 1 &&
- isa<VectorType>(Ty) == isa<VectorType>(Src->getType())) {
- Constant *One = Context->getConstantInt(Src->getType(), 1);
- Src = InsertNewInstBefore(BinaryOperator::CreateAnd(Src, One, "tmp"), CI);
- Value *Zero = Context->getNullValue(Src->getType());
+ if (DestBitWidth == 1) {
+ Constant *One = ConstantInt::get(Src->getType(), 1);
+ Src = Builder->CreateAnd(Src, One, "tmp");
+ Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
@@ -8469,12 +8413,12 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
if (MaskedValueIsZero(ShiftOp, Mask)) {
if (ShAmt >= DestBitWidth) // All zeros.
- return ReplaceInstUsesWith(CI, Context->getNullValue(Ty));
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
// Okay, we can shrink this. Truncate the input, then return a new
// shift.
- Value *V1 = InsertCastBefore(Instruction::Trunc, ShiftOp, Ty, CI);
- Value *V2 = Context->getConstantExprTrunc(ShAmtV, Ty);
+ Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
+ Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
return BinaryOperator::CreateLShr(V1, V2);
}
}
@@ -8499,20 +8443,15 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (!DoXform) return ICI;
Value *In = ICI->getOperand(0);
- Value *Sh = Context->getConstantInt(In->getType(),
+ Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
- In = InsertNewInstBefore(BinaryOperator::CreateLShr(In, Sh,
- In->getName()+".lobit"),
- CI);
+ In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
if (In->getType() != CI.getType())
- In = CastInst::CreateIntegerCast(In, CI.getType(),
- false/*ZExt*/, "tmp", &CI);
+ In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
- Constant *One = Context->getConstantInt(In->getType(), 1);
- In = InsertNewInstBefore(BinaryOperator::CreateXor(In, One,
- In->getName()+".not"),
- CI);
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, In->getName()+".not");
}
return ReplaceInstUsesWith(CI, In);
@@ -8545,8 +8484,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
- Constant *Res = Context->getConstantInt(Type::Int1Ty, isNE);
- Res = Context->getConstantExprZExt(Res, CI.getType());
+ Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE);
+ Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
@@ -8555,15 +8494,13 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
if (ShiftAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
- In = InsertNewInstBefore(BinaryOperator::CreateLShr(In,
- Context->getConstantInt(In->getType(), ShiftAmt),
- In->getName()+".lobit"), CI);
+ In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
+ In->getName()+".lobit");
}
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
- Constant *One = Context->getConstantInt(In->getType(), 1);
- In = BinaryOperator::CreateXor(In, One, "tmp");
- InsertNewInstBefore(cast<Instruction>(In), CI);
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder->CreateXor(In, One, "tmp");
}
if (CI.getType() == In->getType())
@@ -8600,21 +8537,21 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// SrcSize > DstSize: trunc(a) & mask
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = Context->getConstantInt(A->getType(), AndValue);
- Instruction *And =
- BinaryOperator::CreateAnd(A, AndConst, CSrc->getName()+".mask");
- InsertNewInstBefore(And, CI);
+ Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+ Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
- } else if (SrcSize == DstSize) {
+ }
+
+ if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, Context->getConstantInt(A->getType(),
+ return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
AndValue));
- } else if (SrcSize > DstSize) {
- Instruction *Trunc = new TruncInst(A, CI.getType(), "tmp");
- InsertNewInstBefore(Trunc, CI);
+ }
+ if (SrcSize > DstSize) {
+ Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
- Context->getConstantInt(Trunc->getType(),
+ ConstantInt::get(Trunc->getType(),
AndValue));
}
}
@@ -8631,8 +8568,8 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
- Value *LCast = InsertCastBefore(Instruction::ZExt, LHS, CI.getType(), CI);
- Value *RCast = InsertCastBefore(Instruction::ZExt, RHS, CI.getType(), CI);
+ Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
}
}
@@ -8645,7 +8582,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (TI0->getType() == CI.getType())
return
BinaryOperator::CreateAnd(TI0,
- Context->getConstantExprZExt(C, CI.getType()));
+ ConstantExpr::getZExt(C, CI.getType()));
}
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
@@ -8657,9 +8594,8 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType()) {
- Constant *ZC = Context->getConstantExprZExt(C, CI.getType());
- Instruction *NewAnd = BinaryOperator::CreateAnd(TI0, ZC, "tmp");
- InsertNewInstBefore(NewAnd, *And);
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
return BinaryOperator::CreateXor(NewAnd, ZC);
}
}
@@ -8674,14 +8610,14 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Value *Src = CI.getOperand(0);
// Canonicalize sign-extend from i1 to a select.
- if (Src->getType() == Type::Int1Ty)
+ if (Src->getType() == Type::getInt1Ty(*Context))
return SelectInst::Create(Src,
- Context->getConstantIntAllOnesValue(CI.getType()),
- Context->getNullValue(CI.getType()));
+ Constant::getAllOnesValue(CI.getType()),
+ Constant::getNullValue(CI.getType()));
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
- if (getOpcode(Src) == Instruction::Trunc) {
+ if (Operator::getOpcode(Src) == Instruction::Trunc) {
Value *Op = cast<User>(Src)->getOperand(0);
unsigned OpBits = Op->getType()->getScalarSizeInBits();
unsigned MidBits = Src->getType()->getScalarSizeInBits();
@@ -8729,9 +8665,8 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
unsigned MidSize = Src->getType()->getScalarSizeInBits();
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
- Constant *ShAmtV = Context->getConstantInt(CI.getType(), ShAmt);
- I = InsertNewInstBefore(BinaryOperator::CreateShl(I, ShAmtV,
- CI.getName()), CI);
+ Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
+ I = Builder->CreateShl(I, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(I, ShAmtV);
}
}
@@ -8742,18 +8677,18 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
/// in the specified FP type without changing its value.
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem,
- LLVMContext* Context) {
+ LLVMContext *Context) {
bool losesInfo;
APFloat F = CFP->getValueAPF();
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
- return Context->getConstantFP(F);
+ return ConstantFP::get(*Context, F);
return 0;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
/// through it until we get the source value.
-static Value *LookThroughFPExtensions(Value *V, LLVMContext* Context) {
+static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0), Context);
@@ -8762,12 +8697,12 @@ static Value *LookThroughFPExtensions(Value *V, LLVMContext* Context) {
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType() == Type::PPC_FP128Ty)
+ if (CFP->getType() == Type::getPPC_FP128Ty(*Context))
return V; // No constant folding of this.
// See if the value can be truncated to float and then reextended.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context))
return V;
- if (CFP->getType() == Type::DoubleTy)
+ if (CFP->getType() == Type::getDoubleTy(*Context))
return V; // Won't shrink.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context))
return V;
@@ -8804,10 +8739,8 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
- LHSTrunc = InsertCastBefore(Instruction::FPExt, LHSTrunc,
- CI.getType(), CI);
- RHSTrunc = InsertCastBefore(Instruction::FPExt, RHSTrunc,
- CI.getType(), CI);
+ LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
+ RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
@@ -8875,10 +8808,11 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// trunc to be exposed to other transforms. Don't do this for extending
// ptrtoint's, because we don't know if the target sign or zero extends its
// pointers.
- if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
- Value *P = InsertNewInstBefore(new PtrToIntInst(CI.getOperand(0),
- TD->getIntPtrType(),
- "tmp"), CI);
+ if (TD &&
+ CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
+ Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()),
+ "tmp");
return new TruncInst(P, CI.getType());
}
@@ -8891,65 +8825,16 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// allows the trunc to be exposed to other transforms. Don't do this for
// extending inttoptr's, because we don't know if the target sign or zero
// extends to pointers.
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
+ if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits()) {
- Value *P = InsertNewInstBefore(new TruncInst(CI.getOperand(0),
- TD->getIntPtrType(),
- "tmp"), CI);
+ Value *P = Builder->CreateTrunc(CI.getOperand(0),
+ TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- const Type *DestPointee = cast<PointerType>(CI.getType())->getElementType();
- if (!DestPointee->isSized()) return 0;
-
- // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
- ConstantInt *Cst;
- Value *X;
- if (match(CI.getOperand(0), m_Add(m_Cast<PtrToIntInst>(m_Value(X)),
- m_ConstantInt(Cst)))) {
- // If the source and destination operands have the same type, see if this
- // is a single-index GEP.
- if (X->getType() == CI.getType()) {
- // Get the size of the pointee type.
- uint64_t Size = TD->getTypeAllocSize(DestPointee);
-
- // Convert the constant to intptr type.
- APInt Offset = Cst->getValue();
- Offset.sextOrTrunc(TD->getPointerSizeInBits());
-
- // If Offset is evenly divisible by Size, we can do this xform.
- if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
- Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
- return GetElementPtrInst::Create(X, Context->getConstantInt(Offset));
- }
- }
- // TODO: Could handle other cases, e.g. where add is indexing into field of
- // struct etc.
- } else if (CI.getOperand(0)->hasOneUse() &&
- match(CI.getOperand(0), m_Add(m_Value(X), m_ConstantInt(Cst)))) {
- // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
- // "inttoptr+GEP" instead of "add+intptr".
-
- // Get the size of the pointee type.
- uint64_t Size = TD->getTypeAllocSize(DestPointee);
-
- // Convert the constant to intptr type.
- APInt Offset = Cst->getValue();
- Offset.sextOrTrunc(TD->getPointerSizeInBits());
-
- // If Offset is evenly divisible by Size, we can do this xform.
- if (Size && !APIntOps::srem(Offset, APInt(Offset.getBitWidth(), Size))){
- Offset = APIntOps::sdiv(Offset, APInt(Offset.getBitWidth(), Size));
-
- Instruction *P = InsertNewInstBefore(new IntToPtrInst(X, CI.getType(),
- "tmp"), CI);
- return GetElementPtrInst::Create(P,
- Context->getConstantInt(Offset), "tmp");
- }
- }
+
return 0;
}
@@ -8960,10 +8845,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
- if (SrcTy->isInteger() && DestTy->isInteger()) {
- if (Instruction *Result = commonIntCastTransforms(CI))
- return Result;
- } else if (isa<PointerType>(SrcTy)) {
+ if (isa<PointerType>(SrcTy)) {
if (Instruction *I = commonPointerCastTransforms(CI))
return I;
} else {
@@ -8987,8 +8869,10 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
- // If we are casting a malloc or alloca to a pointer to a type of the same
+ // If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
+ // There is no need to modify malloc calls because it is their bitcast that
+ // needs to be cleaned up.
if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
@@ -8996,7 +8880,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
- Constant *ZeroUInt = Context->getNullValue(Type::Int32Ty);
+ Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context));
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
@@ -9008,8 +8892,30 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
- return GetElementPtrInst::Create(Src, Idxs.begin(), Idxs.end(), "",
- ((Instruction*) NULL));
+ return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
+ ((Instruction*) NULL));
+ }
+ }
+
+ if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ if (DestVTy->getNumElements() == 1) {
+ if (!isa<VectorType>(SrcTy)) {
+ Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
+ return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+ Constant::getNullValue(Type::getInt32Ty(*Context)));
+ }
+ // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
+ }
+ }
+
+ if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
+ if (SrcVTy->getNumElements() == 1) {
+ if (!isa<VectorType>(DestTy)) {
+ Value *Elem =
+ Builder->CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(*Context)));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
}
}
@@ -9030,10 +8936,8 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = InsertCastBefore(Instruction::BitCast,
- SVI->getOperand(0), DestTy, CI);
- Value *RHS = InsertCastBefore(Instruction::BitCast,
- SVI->getOperand(1), DestTy, CI);
+ Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
+ Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
@@ -9076,9 +8980,9 @@ static unsigned GetSelectFoldableOperands(Instruction *I) {
/// GetSelectFoldableConstant - For the same transformation as the previous
/// function, return the identity constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I,
- LLVMContext* Context) {
+ LLVMContext *Context) {
switch (I->getOpcode()) {
- default: assert(0 && "This cannot happen!"); abort();
+ default: llvm_unreachable("This cannot happen!");
case Instruction::Add:
case Instruction::Sub:
case Instruction::Or:
@@ -9086,11 +8990,11 @@ static Constant *GetSelectFoldableConstant(Instruction *I,
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
- return Context->getNullValue(I->getType());
+ return Constant::getNullValue(I->getType());
case Instruction::And:
- return Context->getAllOnesValue(I->getType());
+ return Constant::getAllOnesValue(I->getType());
case Instruction::Mul:
- return Context->getConstantInt(I->getType(), 1);
+ return ConstantInt::get(I->getType(), 1);
}
}
@@ -9110,7 +9014,7 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
// Fold this by inserting a select from the input values.
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
- FI->getOperand(0), SI.getName()+".v");
+ FI->getOperand(0), SI.getName()+".v");
InsertNewInstBefore(NewSI, SI);
return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
TI->getType());
@@ -9160,7 +9064,7 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
else
return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
}
- assert(0 && "Shouldn't get here");
+ llvm_unreachable("Shouldn't get here");
return 0;
}
@@ -9202,7 +9106,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
NewSel->takeName(TVI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
- assert(0 && "Unknown instruction!!");
+ llvm_unreachable("Unknown instruction!!");
}
}
}
@@ -9231,7 +9135,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
NewSel->takeName(FVI);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
- assert(0 && "Unknown instruction!!");
+ llvm_unreachable("Unknown instruction!!");
}
}
}
@@ -9266,7 +9170,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
return ReplaceInstUsesWith(SI, FalseVal);
// X < C ? X : C-1 --> X > C-1 ? C-1 : X
- Constant *AdjustedRHS = SubOne(CI, Context);
+ Constant *AdjustedRHS = SubOne(CI);
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
Pred = ICmpInst::getSwappedPredicate(Pred);
@@ -9286,7 +9190,7 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
return ReplaceInstUsesWith(SI, FalseVal);
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
- Constant *AdjustedRHS = AddOne(CI, Context);
+ Constant *AdjustedRHS = AddOne(CI);
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
(CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
Pred = ICmpInst::getSwappedPredicate(Pred);
@@ -9323,10 +9227,10 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
(Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
Value *In = ICI->getOperand(0);
- Value *Sh = Context->getConstantInt(In->getType(),
+ Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
- In->getName()+".lobit"),
+ In->getName()+".lobit"),
*ICI);
if (In->getType() != SI.getType())
In = CastInst::CreateIntegerCast(In, SI.getType(),
@@ -9365,6 +9269,14 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
return Changed ? &SI : 0;
}
+/// isDefinedInBB - Return true if the value is an instruction defined in the
+/// specified basicblock.
+static bool isDefinedInBB(const Value *V, const BasicBlock *BB) {
+ const Instruction *I = dyn_cast<Instruction>(V);
+ return I != 0 && I->getParent() == BB;
+}
+
+
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *CondVal = SI.getCondition();
Value *TrueVal = SI.getTrueValue();
@@ -9390,7 +9302,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return ReplaceInstUsesWith(SI, FalseVal);
}
- if (SI.getType() == Type::Int1Ty) {
+ if (SI.getType() == Type::getInt1Ty(*Context)) {
if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
if (C->getZExtValue()) {
// Change: A = select B, true, C --> A = or B, C
@@ -9438,26 +9350,6 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
-
- // (x <s 0) ? -1 : 0 -> ashr x, 31
- if (TrueValC->isAllOnesValue() && FalseValC->isZero())
- if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
- if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
- // The comparison constant and the result are not neccessarily the
- // same width. Make an all-ones value by inserting a AShr.
- Value *X = IC->getOperand(0);
- uint32_t Bits = X->getType()->getScalarSizeInBits();
- Constant *ShAmt = Context->getConstantInt(X->getType(), Bits-1);
- Instruction *SRA = BinaryOperator::Create(Instruction::AShr, X,
- ShAmt, "ones");
- InsertNewInstBefore(SRA, SI);
-
- // Then cast to the appropriate width.
- return CastInst::CreateIntegerCast(SRA, SI.getType(), true);
- }
- }
-
-
// If one of the constants is zero (we know they can't both be) and we
// have an icmp instruction with zero, and we have an 'and' with the
// non-constant value, eliminate this whole mess. This corresponds to
@@ -9568,10 +9460,11 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// select C, (add X, Y), (sub X, Z)
Value *NegVal; // Compute -Z
if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
- NegVal = Context->getConstantExprNeg(C);
+ NegVal = ConstantExpr::getNeg(C);
} else {
NegVal = InsertNewInstBefore(
- BinaryOperator::CreateNeg(SubOp->getOperand(1), "tmp"), SI);
+ BinaryOperator::CreateNeg(SubOp->getOperand(1),
+ "tmp"), SI);
}
Value *NewTrueOp = OtherAddOp;
@@ -9595,6 +9488,17 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
return FoldI;
}
+ // See if we can fold the select into a phi node. The true/false values have
+ // to be live in the predecessor blocks. If they are instructions in SI's
+ // block, we can't map to the predecessor.
+ if (isa<PHINode>(SI.getCondition()) &&
+ (!isDefinedInBB(SI.getTrueValue(), SI.getParent()) ||
+ isa<PHINode>(SI.getTrueValue())) &&
+ (!isDefinedInBB(SI.getFalseValue(), SI.getParent()) ||
+ isa<PHINode>(SI.getFalseValue())))
+ if (Instruction *NV = FoldOpIntoPhi(SI))
+ return NV;
+
if (BinaryOperator::isNot(CondVal)) {
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
SI.setOperand(1, FalseVal);
@@ -9617,7 +9521,7 @@ static unsigned EnforceKnownAlignment(Value *V,
User *U = dyn_cast<User>(V);
if (!U) return Align;
- switch (getOpcode(U)) {
+ switch (Operator::getOpcode(U)) {
default: break;
case Instruction::BitCast:
return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
@@ -9650,16 +9554,13 @@ static unsigned EnforceKnownAlignment(Value *V,
Align = PrefAlign;
}
}
- } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
- // If there is a requested alignment and if this is an alloca, round up. We
- // don't do this for malloc, because some systems can't respect the request.
- if (isa<AllocaInst>(AI)) {
- if (AI->getAlignment() >= PrefAlign)
- Align = AI->getAlignment();
- else {
- AI->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // If there is a requested alignment and if this is an alloca, round up.
+ if (AI->getAlignment() >= PrefAlign)
+ Align = AI->getAlignment();
+ else {
+ AI->setAlignment(PrefAlign);
+ Align = PrefAlign;
}
}
@@ -9694,7 +9595,8 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
- MI->setAlignment(MinAlign);
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MinAlign, false));
return MI;
}
@@ -9715,7 +9617,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// Use an integer load+store unless we can find something better.
Type *NewPtrTy =
- Context->getPointerTypeUnqual(Context->getIntegerType(Size<<3));
+ PointerType::getUnqual(IntegerType::get(*Context, Size<<3));
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
@@ -9725,7 +9627,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
// integer datatype.
if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
- if (SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+ if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
// The SrcETy might be something like {{{double}}} or [1 x double]. Rip
// down through these levels if so.
while (!SrcETy->isSingleValueType()) {
@@ -9744,7 +9646,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
}
if (SrcETy->isSingleValueType())
- NewPtrTy = Context->getPointerTypeUnqual(SrcETy);
+ NewPtrTy = PointerType::getUnqual(SrcETy);
}
}
@@ -9754,28 +9656,29 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
- Value *Src = InsertBitCastBefore(MI->getOperand(2), NewPtrTy, *MI);
- Value *Dest = InsertBitCastBefore(MI->getOperand(1), NewPtrTy, *MI);
+ Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
+ Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
InsertNewInstBefore(L, *MI);
InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setOperand(3, Context->getNullValue(MemOpLength->getType()));
+ MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
return MI;
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
if (MI->getAlignment() < Alignment) {
- MI->setAlignment(Alignment);
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ Alignment, false));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || FillC->getType() != Type::Int8Ty)
+ if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context))
return 0;
uint64_t Len = LenC->getZExtValue();
Alignment = MI->getAlignment();
@@ -9785,21 +9688,21 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- const Type *ITy = Context->getIntegerType(Len*8); // n=1 -> i8.
+ const Type *ITy = IntegerType::get(*Context, Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
- Dest = InsertBitCastBefore(Dest, Context->getPointerTypeUnqual(ITy), *MI);
+ Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- InsertNewInstBefore(new StoreInst(Context->getConstantInt(ITy, Fill),
+ InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
Dest, false, Alignment), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Context->getNullValue(LenC->getType()));
+ MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
}
@@ -9820,8 +9723,6 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return &CI;
}
-
-
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
@@ -9891,9 +9792,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn PPC lvx -> load if the pointer is known aligned.
// Turn X86 loadups -> load if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- Value *Ptr = InsertBitCastBefore(II->getOperand(1),
- Context->getPointerTypeUnqual(II->getType()),
- CI);
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
+ PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
}
break;
@@ -9902,8 +9802,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn stvx -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
const Type *OpPtrTy =
- Context->getPointerTypeUnqual(II->getOperand(1)->getType());
- Value *Ptr = InsertBitCastBefore(II->getOperand(2), OpPtrTy, CI);
+ PointerType::getUnqual(II->getOperand(1)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
return new StoreInst(II->getOperand(1), Ptr);
}
break;
@@ -9913,8 +9813,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// Turn X86 storeu -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
const Type *OpPtrTy =
- Context->getPointerTypeUnqual(II->getOperand(2)->getType());
- Value *Ptr = InsertBitCastBefore(II->getOperand(1), OpPtrTy, CI);
+ PointerType::getUnqual(II->getOperand(2)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
return new StoreInst(II->getOperand(2), Ptr);
}
break;
@@ -9951,9 +9851,9 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
- Value *Op0 =InsertBitCastBefore(II->getOperand(1),Mask->getType(),CI);
- Value *Op1 =InsertBitCastBefore(II->getOperand(2),Mask->getType(),CI);
- Value *Result = Context->getUndef(Op0->getType());
+ Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
+ Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
// Only extract each element once.
Value *ExtractedElts[32];
@@ -9966,16 +9866,16 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Idx &= 31; // Match the hardware behavior.
if (ExtractedElts[Idx] == 0) {
- Instruction *Elt =
- new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
- InsertNewInstBefore(Elt, CI);
- ExtractedElts[Idx] = Elt;
+ ExtractedElts[Idx] =
+ Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
+ ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false),
+ "tmp");
}
// Insert this value into the result vector.
- Result = InsertElementInst::Create(Result, ExtractedElts[Idx],
- i, "tmp");
- InsertNewInstBefore(cast<Instruction>(Result), CI);
+ Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+ ConstantInt::get(Type::getInt32Ty(*Context), i, false),
+ "tmp");
}
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
}
@@ -9999,7 +9899,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
TerminatorInst *TI = II->getParent()->getTerminator();
bool CannotRemove = false;
for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI)) {
+ if (isa<AllocaInst>(BI) || isMalloc(BI)) {
CannotRemove = true;
break;
}
@@ -10055,7 +9955,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
- if (TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+ if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
return false;
return true;
}
@@ -10076,11 +9976,13 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
Instruction *OldCall = CS.getInstruction();
// If the call and callee calling conventions don't match, this call must
// be unreachable, as the call is undefined.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)),
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)),
OldCall);
- if (!OldCall->use_empty())
- OldCall->replaceAllUsesWith(Context->getUndef(OldCall->getType()));
+ // If OldCall dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
return EraseInstFromFunction(*OldCall);
return 0;
@@ -10090,18 +9992,20 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
// This instruction is not reachable, just remove it. We insert a store to
// undef so that we know that this code is not reachable, despite the fact
// that we can't modify the CFG here.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)),
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)),
CS.getInstruction());
- if (!CS.getInstruction()->use_empty())
+ // If CS dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!CS.getInstruction()->getType()->isVoidTy())
CS.getInstruction()->
- replaceAllUsesWith(Context->getUndef(CS.getInstruction()->getType()));
+ replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
// Don't break the CFG, insert a dummy cond branch.
BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
- Context->getConstantIntTrue(), II);
+ ConstantInt::getTrue(*Context), II);
}
return EraseInstFromFunction(*CS.getInstruction());
}
@@ -10165,13 +10069,15 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Callee->isDeclaration() &&
// Conversion is ok if changing from one pointer type to another or from
// a pointer to an integer of the same size.
- !((isa<PointerType>(OldRetTy) || OldRetTy == TD->getIntPtrType()) &&
- (isa<PointerType>(NewRetTy) || NewRetTy == TD->getIntPtrType())))
+ !((isa<PointerType>(OldRetTy) || !TD ||
+ OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(NewRetTy) || !TD ||
+ NewRetTy == TD->getIntPtrType(Caller->getContext()))))
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
// void -> non-void is handled specially
- NewRetTy != Type::VoidTy && !CastInst::isCastable(NewRetTy, OldRetTy))
+ !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
@@ -10212,8 +10118,10 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Converting from one pointer type to another or between a pointer and an
// integer of the same size is safe even if we do not have a body.
bool isConvertible = ActTy == ParamTy ||
- ((isa<PointerType>(ParamTy) || ParamTy == TD->getIntPtrType()) &&
- (isa<PointerType>(ActTy) || ActTy == TD->getIntPtrType()));
+ (TD && ((isa<PointerType>(ParamTy) ||
+ ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(ActTy) ||
+ ActTy == TD->getIntPtrType(Caller->getContext()))));
if (Callee->isDeclaration() && !isConvertible) return false;
}
@@ -10260,8 +10168,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
} else {
Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
false, ParamTy, false);
- CastInst *NewCast = CastInst::Create(opcode, *AI, ParamTy, "tmp");
- Args.push_back(InsertNewInstBefore(NewCast, *Caller));
+ Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
}
// Add any parameter attributes.
@@ -10270,26 +10177,24 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
// If the function takes more arguments than the call was taking, add them
- // now...
+ // now.
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
- Args.push_back(Context->getNullValue(FT->getParamType(i)));
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
- // If we are removing arguments to the function, emit an obnoxious warning...
+ // If we are removing arguments to the function, emit an obnoxious warning.
if (FT->getNumParams() < NumActualArgs) {
if (!FT->isVarArg()) {
- cerr << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
+ errs() << "WARNING: While resolving call to function '"
+ << Callee->getName() << "' arguments were dropped!\n";
} else {
- // Add all of the arguments in their promoted form to the arg list...
+ // Add all of the arguments in their promoted form to the arg list.
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
const Type *PTy = getPromotedType((*AI)->getType());
if (PTy != (*AI)->getType()) {
// Must promote to pass through va_arg area!
- Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
- PTy, false);
- Instruction *Cast = CastInst::Create(opcode, *AI, PTy, "tmp");
- InsertNewInstBefore(Cast, *Caller);
- Args.push_back(Cast);
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
} else {
Args.push_back(*AI);
}
@@ -10304,10 +10209,11 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (Attributes FnAttrs = CallerPAL.getFnAttributes())
attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
- if (NewRetTy == Type::VoidTy)
+ if (NewRetTy->isVoidTy())
Caller->setName(""); // Void type should not have a name.
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),attrVec.end());
+ const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+ attrVec.end());
Instruction *NC;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -10329,7 +10235,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Insert a cast of the return type as necessary.
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (NV->getType() != Type::VoidTy) {
+ if (!NV->getType()->isVoidTy()) {
Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
@@ -10343,16 +10249,17 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Otherwise, it's a call, just insert cast right after the call instr
InsertNewInstBefore(NC, *Caller);
}
- AddUsersToWorkList(*Caller);
+ Worklist.AddUsersToWorkList(*Caller);
} else {
- NV = Context->getUndef(Caller->getType());
+ NV = UndefValue::get(Caller->getType());
}
}
- if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
+
+ if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
- Caller->eraseFromParent();
- RemoveFromWorkList(Caller);
+
+ EraseInstFromFunction(*Caller);
return true;
}
@@ -10469,14 +10376,14 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
- FunctionType *NewFTy =
- Context->getFunctionType(FTy->getReturnType(), NewTypes,
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
- NestF->getType() == Context->getPointerTypeUnqual(NewFTy) ?
- NestF : Context->getConstantExprBitCast(NestF,
- Context->getPointerTypeUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),NewAttrs.end());
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+ NewAttrs.end());
Instruction *NewCaller;
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
@@ -10495,10 +10402,10 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
setCallingConv(cast<CallInst>(Caller)->getCallingConv());
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
}
- if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
+ if (!Caller->getType()->isVoidTy())
Caller->replaceAllUsesWith(NewCaller);
Caller->eraseFromParent();
- RemoveFromWorkList(Caller);
+ Worklist.Remove(Caller);
return 0;
}
}
@@ -10508,13 +10415,13 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// code sort out any function type mismatches.
Constant *NewCallee =
NestF->getType() == PTy ? NestF :
- Context->getConstantExprBitCast(NestF, PTy);
+ ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}
-/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
-/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
+/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
+/// and if a/b/c and the add's all have a single use, turn this into a phi
/// and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
@@ -10526,8 +10433,7 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
const Type *LHSType = LHSVal->getType();
const Type *RHSType = RHSVal->getType();
- // Scan to see if all operands are the same opcode, all have one use, and all
- // kill their operands (i.e. the operands have one use).
+ // Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
@@ -10547,6 +10453,13 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
if (I->getOperand(0) != LHSVal) LHSVal = 0;
if (I->getOperand(1) != RHSVal) RHSVal = 0;
}
+
+ // If both LHS and RHS would need a PHI, don't do this transformation,
+ // because it would increase the number of PHIs entering the block,
+ // which leads to higher register pressure. This is especially
+ // bad when the PHIs are in the header of a loop.
+ if (!LHSVal && !RHSVal)
+ return 0;
// Otherwise, this is safe to transform!
@@ -10589,8 +10502,8 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
CmpInst *CIOp = cast<CmpInst>(FirstInst);
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
- RHSVal);
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ LHSVal, RHSVal);
}
Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
@@ -10601,9 +10514,13 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
// This is true if all GEP bases are allocas and if all indices into them are
// constants.
bool AllBasePointersAreAllocas = true;
+
+ // We don't want to replace this phi if the replacement would require
+ // more than one phi, which leads to higher register pressure. This is
+ // especially bad when the PHIs are in the header of a loop.
+ bool NeededPhi = false;
- // Scan to see if all operands are the same opcode, all have one use, and all
- // kill their operands (i.e. the operands have one use).
+ // Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
@@ -10632,7 +10549,16 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
return 0;
+
+ // If we already needed a PHI for an earlier operand, and another operand
+ // also requires a PHI, we'd be introducing more PHIs than we're
+ // eliminating, which increases register pressure on entry to the PHI's
+ // block.
+ if (NeededPhi)
+ return 0;
+
FixedOperands[op] = 0; // Needs a PHI.
+ NeededPhi = true;
}
}
@@ -10678,8 +10604,11 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
}
Value *Base = FixedOperands[0];
- return GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
- FixedOperands.end());
+ return cast<GEPOperator>(FirstInst)->isInBounds() ?
+ GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
+ FixedOperands.end()) :
+ GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
+ FixedOperands.end());
}
@@ -10836,7 +10765,7 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
PhiVal, ConstantOp);
assert(isa<LoadInst>(FirstInst) && "Unknown operation");
@@ -10929,7 +10858,7 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
PotentiallyDeadPHIs.insert(&PN);
if (DeadPHICycle(PU, PotentiallyDeadPHIs))
- return ReplaceInstUsesWith(PN, Context->getUndef(PN.getType()));
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
// If this phi has a single use, and if that use just computes a value for
@@ -10941,7 +10870,7 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
if (PHIUser->hasOneUse() &&
(isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
PHIUser->use_back() == &PN) {
- return ReplaceInstUsesWith(PN, Context->getUndef(PN.getType()));
+ return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
}
@@ -10982,30 +10911,14 @@ Instruction *InstCombiner::visitPHINode(PHINode &PN) {
return 0;
}
-static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
- Instruction *InsertPoint,
- InstCombiner *IC) {
- unsigned PtrSize = DTy->getScalarSizeInBits();
- unsigned VTySize = V->getType()->getScalarSizeInBits();
- // We must cast correctly to the pointer type. Ensure that we
- // sign extend the integer value if it is smaller as this is
- // used for address computation.
- Instruction::CastOps opcode =
- (VTySize < PtrSize ? Instruction::SExt :
- (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
- return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
-}
-
-
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *PtrOp = GEP.getOperand(0);
- // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
- // If so, eliminate the noop.
+ // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops.
if (GEP.getNumOperands() == 1)
return ReplaceInstUsesWith(GEP, PtrOp);
if (isa<UndefValue>(GEP.getOperand(0)))
- return ReplaceInstUsesWith(GEP, Context->getUndef(GEP.getType()));
+ return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
bool HasZeroPointerIndex = false;
if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
@@ -11015,78 +10928,48 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
return ReplaceInstUsesWith(GEP, PtrOp);
// Eliminate unneeded casts for indices.
- bool MadeChange = false;
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator i = GEP.op_begin() + 1, e = GEP.op_end();
- i != e; ++i, ++GTI) {
- if (isa<SequentialType>(*GTI)) {
- if (CastInst *CI = dyn_cast<CastInst>(*i)) {
- if (CI->getOpcode() == Instruction::ZExt ||
- CI->getOpcode() == Instruction::SExt) {
- const Type *SrcTy = CI->getOperand(0)->getType();
- // We can eliminate a cast from i32 to i64 iff the target
- // is a 32-bit pointer target.
- if (SrcTy->getScalarSizeInBits() >= TD->getPointerSizeInBits()) {
- MadeChange = true;
- *i = CI->getOperand(0);
- }
- }
- }
+ if (TD) {
+ bool MadeChange = false;
+ unsigned PtrSize = TD->getPointerSizeInBits();
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+ I != E; ++I, ++GTI) {
+ if (!isa<SequentialType>(*GTI)) continue;
+
// If we are using a wider index than needed for this platform, shrink it
- // to what we need. If narrower, sign-extend it to what we need.
- // If the incoming value needs a cast instruction,
- // insert it. This explicit cast can make subsequent optimizations more
- // obvious.
- Value *Op = *i;
- if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- *i = Context->getConstantExprTrunc(C, TD->getIntPtrType());
- MadeChange = true;
- } else {
- Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
- GEP);
- *i = Op;
- MadeChange = true;
- }
- } else if (TD->getTypeSizeInBits(Op->getType()) < TD->getPointerSizeInBits()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- *i = Context->getConstantExprSExt(C, TD->getIntPtrType());
- MadeChange = true;
- } else {
- Op = InsertCastBefore(Instruction::SExt, Op, TD->getIntPtrType(),
- GEP);
- *i = Op;
- MadeChange = true;
- }
- }
+ // to what we need. If narrower, sign-extend it to what we need. This
+ // explicit cast can make subsequent optimizations more obvious.
+ unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
+ if (OpBits == PtrSize)
+ continue;
+
+ *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
+ MadeChange = true;
}
+ if (MadeChange) return &GEP;
}
- if (MadeChange) return &GEP;
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
//
- SmallVector<Value*, 8> SrcGEPOperands;
- if (User *Src = dyn_castGetElementPtr(PtrOp))
- SrcGEPOperands.append(Src->op_begin(), Src->op_end());
-
- if (!SrcGEPOperands.empty()) {
+ if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
// Note that if our source is a gep chain itself that we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
//
- if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
- cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
- return 0; // Wait until our source is folded to completion.
+ if (GetElementPtrInst *SrcGEP =
+ dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2)
+ return 0; // Wait until our source is folded to completion.
SmallVector<Value*, 8> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
- for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
- E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
EndsWithSequential = !isa<StructType>(*I);
// Can we combine the two pointer arithmetics offsets?
@@ -11094,98 +10977,68 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Replace: gep (gep %P, long B), long A, ...
// With: T = long A+B; gep %P, T, ...
//
- Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
- if (SO1 == Context->getNullValue(SO1->getType())) {
+ Value *Sum;
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+ if (SO1 == Constant::getNullValue(SO1->getType())) {
Sum = GO1;
- } else if (GO1 == Context->getNullValue(GO1->getType())) {
+ } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Sum = SO1;
} else {
- // If they aren't the same type, convert both to an integer of the
- // target's pointer size.
- if (SO1->getType() != GO1->getType()) {
- if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
- SO1 =
- Context->getConstantExprIntegerCast(SO1C, GO1->getType(), true);
- } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
- GO1 =
- Context->getConstantExprIntegerCast(GO1C, SO1->getType(), true);
- } else {
- unsigned PS = TD->getPointerSizeInBits();
- if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
- // Convert GO1 to SO1's type.
- GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
-
- } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
- // Convert SO1 to GO1's type.
- SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
- } else {
- const Type *PT = TD->getIntPtrType();
- SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
- GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
- }
- }
- }
- if (isa<Constant>(SO1) && isa<Constant>(GO1))
- Sum = Context->getConstantExprAdd(cast<Constant>(SO1),
- cast<Constant>(GO1));
- else {
- Sum = BinaryOperator::CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
- InsertNewInstBefore(cast<Instruction>(Sum), GEP);
- }
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return 0;
+ Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
}
- // Recycle the GEP we already have if possible.
- if (SrcGEPOperands.size() == 2) {
- GEP.setOperand(0, SrcGEPOperands[0]);
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setOperand(0, Src->getOperand(0));
GEP.setOperand(1, Sum);
return &GEP;
- } else {
- Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
- SrcGEPOperands.end()-1);
- Indices.push_back(Sum);
- Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
}
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
} else if (isa<Constant>(*GEP.idx_begin()) &&
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
- SrcGEPOperands.size() != 1) {
+ Src->getNumOperands() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
- Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
- SrcGEPOperands.end());
- Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty())
- return GetElementPtrInst::Create(SrcGEPOperands[0], Indices.begin(),
- Indices.end(), GEP.getName());
-
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
- // GEP of global variable. If all of the indices for this GEP are
- // constants, we can promote this to a constexpr instead of an instruction.
-
- // Scan for nonconstants...
- SmallVector<Constant*, 8> Indices;
- User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
- for (; I != E && isa<Constant>(*I); ++I)
- Indices.push_back(cast<Constant>(*I));
-
- if (I == E) { // If they are all constants...
- Constant *CE = Context->getConstantExprGetElementPtr(GV,
- &Indices[0],Indices.size());
-
- // Replace all uses of the GEP with the new constexpr...
- return ReplaceInstUsesWith(GEP, CE);
- }
- } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
- if (!isa<PointerType>(X->getType())) {
- // Not interesting. Source pointer must be a cast from pointer.
- } else if (HasZeroPointerIndex) {
- // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
- // into : GEP [10 x i8]* X, i32 0, ...
- //
- // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
- // into : GEP i8* X, ...
- //
- // This occurs when the program declares an array extern like "int X[];"
+ return (cast<GEPOperator>(&GEP)->isInBounds() &&
+ Src->isInBounds()) ?
+ GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName()) :
+ GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
+ Indices.end(), GEP.getName());
+ }
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ if (Value *X = getBitCastOperand(PtrOp)) {
+ assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
+
+ // If the input bitcast is actually "bitcast(bitcast(x))", then we don't
+ // want to change the gep until the bitcasts are eliminated.
+ if (getBitCastOperand(X)) {
+ Worklist.AddValue(PtrOp);
+ return 0;
+ }
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
const PointerType *XTy = cast<PointerType>(X->getType());
if (const ArrayType *CATy =
@@ -11194,10 +11047,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (CATy->getElementType() == XTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
- return GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
- GEP.getName());
- } else if (const ArrayType *XATy =
- dyn_cast<ArrayType>(XTy->getElementType())) {
+ return cast<GEPOperator>(&GEP)->isInBounds() ?
+ GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
+ GEP.getName()) :
+ GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
+ GEP.getName());
+ }
+
+ if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
@@ -11216,16 +11073,17 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
- if (isa<ArrayType>(SrcElTy) &&
+ if (TD && isa<ArrayType>(SrcElTy) &&
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
TD->getTypeAllocSize(ResElTy)) {
Value *Idx[2];
- Idx[0] = Context->getNullValue(Type::Int32Ty);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = GEP.getOperand(1);
- Value *V = InsertNewInstBefore(
- GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName()), GEP);
+ Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
+ Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
// V and GEP are both pointer types --> BitCast
- return new BitCastInst(V, GEP.getType());
+ return new BitCastInst(NewGEP, GEP.getType());
}
// Transform things like:
@@ -11233,7 +11091,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
+ if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) {
uint64_t ArrayEltSize =
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
@@ -11243,17 +11101,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
ConstantInt *Scale = 0;
if (ArrayEltSize == 1) {
NewIdx = GEP.getOperand(1);
- Scale =
- Context->getConstantInt(cast<IntegerType>(NewIdx->getType()), 1);
+ Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
- NewIdx = Context->getConstantInt(CI->getType(), 1);
+ NewIdx = ConstantInt::get(CI->getType(), 1);
Scale = CI;
} else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
if (Inst->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(Inst->getOperand(1))) {
ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
- Scale = Context->getConstantInt(cast<IntegerType>(Inst->getType()),
+ Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1ULL << ShAmtVal);
NewIdx = Inst->getOperand(0);
} else if (Inst->getOpcode() == Instruction::Mul &&
@@ -11269,23 +11126,21 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// operation after making sure Scale doesn't have the sign bit set.
if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
Scale->getZExtValue() % ArrayEltSize == 0) {
- Scale = Context->getConstantInt(Scale->getType(),
+ Scale = ConstantInt::get(Scale->getType(),
Scale->getZExtValue() / ArrayEltSize);
if (Scale->getZExtValue() != 1) {
- Constant *C =
- Context->getConstantExprIntegerCast(Scale, NewIdx->getType(),
+ Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
false /*ZExt*/);
- Instruction *Sc = BinaryOperator::CreateMul(NewIdx, C, "idxscale");
- NewIdx = InsertNewInstBefore(Sc, GEP);
+ NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
}
// Insert the new GEP instruction.
Value *Idx[2];
- Idx[0] = Context->getNullValue(Type::Int32Ty);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
Idx[1] = NewIdx;
- Instruction *NewGEP =
- GetElementPtrInst::Create(X, Idx, Idx + 2, GEP.getName());
- NewGEP = InsertNewInstBefore(NewGEP, GEP);
+ Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
+ Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
@@ -11294,12 +11149,13 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
/// See if we can simplify:
- /// X = bitcast A to B*
+ /// X = bitcast A* to B*
/// Y = gep X, <...constant indices...>
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
- if (!isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
+ if (TD &&
+ !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
// Determine how much the GEP moves the pointer. We are guaranteed to get
// a constant back from EmitGEPOffset.
ConstantInt *OffsetV =
@@ -11311,7 +11167,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (Offset == 0) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
- if (isa<AllocationInst>(BCI->getOperand(0))) {
+ if (isa<AllocationInst>(BCI->getOperand(0)) ||
+ isMalloc(BCI->getOperand(0))) {
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
if (Instruction *I = visitBitCast(*BCI)) {
if (I != BCI) {
@@ -11332,11 +11189,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
const Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
- Instruction *NGEP =
- GetElementPtrInst::Create(BCI->getOperand(0), NewIndices.begin(),
- NewIndices.end());
- if (NGEP->getType() == GEP.getType()) return NGEP;
- InsertNewInstBefore(NGEP, GEP);
+ Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
+ Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end()) :
+ Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
+ NewIndices.end());
+
+ if (NGEP->getType() == GEP.getType())
+ return ReplaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
return new BitCastInst(NGEP, GEP.getType());
}
@@ -11351,18 +11211,17 @@ Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
if (AI.isArrayAllocation()) { // Check C != 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
const Type *NewTy =
- Context->getArrayType(AI.getAllocatedType(), C->getZExtValue());
+ ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocationInst *New = 0;
// Create and insert the replacement instruction...
if (isa<MallocInst>(AI))
- New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
+ New = Builder->CreateMalloc(NewTy, 0, AI.getName());
else {
assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
- New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
+ New = Builder->CreateAlloca(NewTy, 0, AI.getName());
}
-
- InsertNewInstBefore(New, AI);
+ New->setAlignment(AI.getAlignment());
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...also skip interleaved debug info
@@ -11373,27 +11232,27 @@ Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
- Value *NullIdx = Context->getNullValue(Type::Int32Ty);
+ Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context));
Value *Idx[2];
Idx[0] = NullIdx;
Idx[1] = NullIdx;
- Value *V = GetElementPtrInst::Create(New, Idx, Idx + 2,
- New->getName()+".sub", It);
+ Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
+ New->getName()+".sub", It);
// Now make everything use the getelementptr instead of the original
// allocation.
return ReplaceInstUsesWith(AI, V);
} else if (isa<UndefValue>(AI.getArraySize())) {
- return ReplaceInstUsesWith(AI, Context->getNullValue(AI.getType()));
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
}
}
- if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
+ if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
// If alloca'ing a zero byte object, replace the alloca with a null pointer.
// Note that we only do this for alloca's, because malloc should allocate
// and return a unique pointer, even for a zero byte allocation.
if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
- return ReplaceInstUsesWith(AI, Context->getNullValue(AI.getType()));
+ return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
@@ -11409,8 +11268,8 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
// free undef -> unreachable.
if (isa<UndefValue>(Op)) {
// Insert a new store to null because we cannot modify the CFG here.
- new StoreInst(Context->getConstantIntTrue(),
- Context->getUndef(Context->getPointerTypeUnqual(Type::Int1Ty)), &FI);
+ new StoreInst(ConstantInt::getTrue(*Context),
+ UndefValue::get(Type::getInt1PtrTy(*Context)), &FI);
return EraseInstFromFunction(FI);
}
@@ -11428,7 +11287,7 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
// Change free (gep X, 0,0,0,0) into free(X)
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
if (GEPI->hasAllZeroIndices()) {
- AddToWorkList(GEPI);
+ Worklist.Add(GEPI);
FI.setOperand(0, GEPI->getOperand(0));
return &FI;
}
@@ -11440,6 +11299,21 @@ Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
EraseInstFromFunction(FI);
return EraseInstFromFunction(*MI);
}
+ if (isMalloc(Op)) {
+ if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
+ if (Op->hasOneUse() && CI->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ EraseInstFromFunction(*CI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ } else {
+ // Op is a call to malloc
+ if (Op->hasOneUse()) {
+ EraseInstFromFunction(FI);
+ return EraseInstFromFunction(*cast<Instruction>(Op));
+ }
+ }
+ }
return 0;
}
@@ -11450,7 +11324,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
const TargetData *TD) {
User *CI = cast<User>(LI.getOperand(0));
Value *CastOp = CI->getOperand(0);
- LLVMContext* Context = IC.getContext();
+ LLVMContext *Context = IC.getContext();
if (TD) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
@@ -11479,7 +11353,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
- Value *NL = Context->getConstantInt(StrVal);
+ Value *NL = ConstantInt::get(*Context, StrVal);
return IC.ReplaceInstUsesWith(LI, NL);
}
}
@@ -11505,26 +11379,26 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
if (Constant *CSrc = dyn_cast<Constant>(CastOp))
if (ASrcTy->getNumElements() != 0) {
Value *Idxs[2];
- Idxs[0] = Idxs[1] = Context->getNullValue(Type::Int32Ty);
- CastOp = Context->getConstantExprGetElementPtr(CSrc, Idxs, 2);
+ Idxs[0] = Idxs[1] = Constant::getNullValue(Type::getInt32Ty(*Context));
+ CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
SrcTy = cast<PointerType>(CastOp->getType());
SrcPTy = SrcTy->getElementType();
}
- if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
+ if (IC.getTargetData() &&
+ (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
isa<VectorType>(SrcPTy)) &&
// Do not allow turning this into a load of an integer, which is then
// casted to a pointer, this pessimizes pointer analysis a lot.
(isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
- IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
- IC.getTargetData().getTypeSizeInBits(DestPTy)) {
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
+ IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
// the result of the loaded value.
- Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
- CI->getName(),
- LI.isVolatile()),LI);
+ Value *NewLoad =
+ IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
// Now cast the result of the load.
return new BitCastInst(NewLoad, LI.getType());
}
@@ -11537,14 +11411,16 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
// Attempt to improve the alignment.
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
- if (KnownAlign >
- (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
- LI.getAlignment()))
- LI.setAlignment(KnownAlign);
-
- // load (cast X) --> cast (load X) iff safe
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+ if (KnownAlign >
+ (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
+ LI.getAlignment()))
+ LI.setAlignment(KnownAlign);
+ }
+
+ // load (cast X) --> cast (load X) iff safe.
if (isa<CastInst>(Op))
if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
return Res;
@@ -11562,29 +11438,28 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
const Value *GEPI0 = GEPI->getOperand(0);
// TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(GEPI0) &&
- cast<PointerType>(GEPI0->getType())->getAddressSpace() == 0) {
+ if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
// Insert a new store to null instruction before the load to indicate
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
if (Constant *C = dyn_cast<Constant>(Op)) {
// load null/undef -> undef
// TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<UndefValue>(C) || (C->isNullValue() &&
- cast<PointerType>(Op->getType())->getAddressSpace() == 0)) {
+ if (isa<UndefValue>(C) ||
+ (C->isNullValue() && LI.getPointerAddressSpace() == 0)) {
// Insert a new store to null instruction before the load to indicate that
// this code is not reachable. We do this instead of inserting an
// unreachable instruction directly because we cannot modify the CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
// Instcombine load (constant global) into the value loaded.
@@ -11605,9 +11480,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
- new StoreInst(Context->getUndef(LI.getType()),
- Context->getNullValue(Op->getType()), &LI);
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ new StoreInst(UndefValue::get(LI.getType()),
+ Constant::getNullValue(Op->getType()), &LI);
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
} else if (CE->isCast()) {
@@ -11622,9 +11497,9 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (GV->getInitializer()->isNullValue())
- return ReplaceInstUsesWith(LI, Context->getNullValue(LI.getType()));
+ return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
else if (isa<UndefValue>(GV->getInitializer()))
- return ReplaceInstUsesWith(LI, Context->getUndef(LI.getType()));
+ return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
@@ -11643,10 +11518,10 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
- Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
- SI->getOperand(1)->getName()+".val"), LI);
- Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
- SI->getOperand(2)->getName()+".val"), LI);
+ Value *V1 = Builder->CreateLoad(SI->getOperand(1),
+ SI->getOperand(1)->getName()+".val");
+ Value *V2 = Builder->CreateLoad(SI->getOperand(2),
+ SI->getOperand(2)->getName()+".val");
return SelectInst::Create(SI->getCondition(), V1, V2);
}
@@ -11674,7 +11549,6 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
User *CI = cast<User>(SI.getOperand(1));
Value *CastOp = CI->getOperand(0);
- LLVMContext* Context = IC.getContext();
const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
@@ -11696,7 +11570,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// constants.
if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
// Index through pointer.
- Constant *Zero = Context->getNullValue(Type::Int32Ty);
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext()));
NewGEPIndices.push_back(Zero);
while (1) {
@@ -11713,7 +11587,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
}
}
- SrcTy = Context->getPointerType(SrcPTy, SrcTy->getAddressSpace());
+ SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
}
if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
@@ -11721,10 +11595,11 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// If the pointers point into different address spaces or if they point to
// values with different sizes, we can't do the transformation.
- if (SrcTy->getAddressSpace() !=
+ if (!IC.getTargetData() ||
+ SrcTy->getAddressSpace() !=
cast<PointerType>(CI->getType())->getAddressSpace() ||
- IC.getTargetData().getTypeSizeInBits(SrcPTy) !=
- IC.getTargetData().getTypeSizeInBits(DestPTy))
+ IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
+ IC.getTargetData()->getTypeSizeInBits(DestPTy))
return 0;
// Okay, we are casting from one integer or pointer type to another of
@@ -11745,22 +11620,12 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// SIOp0 is a pointer to aggregate and this is a store to the first field,
// emit a GEP to index into its first field.
- if (!NewGEPIndices.empty()) {
- if (Constant *C = dyn_cast<Constant>(CastOp))
- CastOp = Context->getConstantExprGetElementPtr(C, &NewGEPIndices[0],
- NewGEPIndices.size());
- else
- CastOp = IC.InsertNewInstBefore(
- GetElementPtrInst::Create(CastOp, NewGEPIndices.begin(),
- NewGEPIndices.end()), SI);
- }
+ if (!NewGEPIndices.empty())
+ CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
+ NewGEPIndices.end());
- if (Constant *C = dyn_cast<Constant>(SIOp0))
- NewCast = Context->getConstantExprCast(opcode, C, CastDstTy);
- else
- NewCast = IC.InsertNewInstBefore(
- CastInst::Create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
- SI);
+ NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
+ SIOp0->getName()+".c");
return new StoreInst(NewCast, CastOp);
}
@@ -11777,12 +11642,16 @@ static bool equivalentAddressValues(Value *A, Value *B) {
if (A == B) return true;
// Test if the values come form identical arithmetic instructions.
+ // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
+ // its only used to compare two uses within the same basic block, which
+ // means that they'll always either have the same value or one of them
+ // will have an undefined value.
if (isa<BinaryOperator>(A) ||
isa<CastInst>(A) ||
isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalTo(BI))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
@@ -11854,12 +11723,14 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
}
// Attempt to improve the alignment.
- unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
- if (KnownAlign >
- (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
- SI.getAlignment()))
- SI.setAlignment(KnownAlign);
+ if (TD) {
+ unsigned KnownAlign =
+ GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+ if (KnownAlign >
+ (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
+ SI.getAlignment()))
+ SI.setAlignment(KnownAlign);
+ }
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
@@ -11914,12 +11785,11 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (SI.isVolatile()) return 0; // Don't hack volatile stores.
// store X, null -> turns into 'unreachable' in SimplifyCFG
- if (isa<ConstantPointerNull>(Ptr) &&
- cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
+ if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
- SI.setOperand(0, Context->getUndef(Val->getType()));
+ SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
- AddToWorkList(U); // Dropped a use.
+ Worklist.Add(U); // Dropped a use.
++NumCombined;
}
return 0; // Do not modify these!
@@ -12096,41 +11966,34 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Cannonicalize fcmp_one -> fcmp_oeq
FCmpInst::Predicate FPred; Value *Y;
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)))
- if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
- FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
- FCmpInst *I = cast<FCmpInst>(BI.getCondition());
- FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
- Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
- NewSCC->takeName(I);
- // Swap Destinations and condition...
- BI.setCondition(NewSCC);
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+ FPred == FCmpInst::FCMP_OGE) {
+ FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+ Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+
+ // Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
- RemoveFromWorkList(I);
- I->eraseFromParent();
- AddToWorkList(NewSCC);
+ Worklist.Add(Cond);
return &BI;
}
// Cannonicalize icmp_ne -> icmp_eq
ICmpInst::Predicate IPred;
if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
- TrueDest, FalseDest)))
- if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
- IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
- IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
- ICmpInst *I = cast<ICmpInst>(BI.getCondition());
- ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
- Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
- NewSCC->takeName(I);
- // Swap Destinations and condition...
- BI.setCondition(NewSCC);
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
+ IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+ IPred == ICmpInst::ICMP_SGE) {
+ ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+ Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+ // Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
- RemoveFromWorkList(I);
- I->eraseFromParent();;
- AddToWorkList(NewSCC);
+ Worklist.Add(Cond);
return &BI;
}
@@ -12145,10 +12008,10 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
// change 'switch (X+4) case 1:' into 'switch (X) case -3'
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
SI.setOperand(i,
- Context->getConstantExprSub(cast<Constant>(SI.getOperand(i)),
+ ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
AddRHS));
SI.setOperand(0, I->getOperand(0));
- AddToWorkList(I);
+ Worklist.Add(I);
return &SI;
}
}
@@ -12163,10 +12026,10 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
if (Constant *C = dyn_cast<Constant>(Agg)) {
if (isa<UndefValue>(C))
- return ReplaceInstUsesWith(EV, Context->getUndef(EV.getType()));
+ return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
if (isa<ConstantAggregateZero>(C))
- return ReplaceInstUsesWith(EV, Context->getNullValue(EV.getType()));
+ return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
// Extract the element indexed by the first index out of the constant
@@ -12214,10 +12077,8 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
// %E = insertvalue { i32 } %X, i32 42, 0
// by switching the order of the insert and extract (though the
// insertvalue should be left in, since it may have other uses).
- Value *NewEV = InsertNewInstBefore(
- ExtractValueInst::Create(IV->getAggregateOperand(),
- EV.idx_begin(), EV.idx_end()),
- EV);
+ Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+ EV.idx_begin(), EV.idx_end());
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
insi, inse);
}
@@ -12303,17 +12164,17 @@ static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
/// value is already around as a register, for example if it were inserted then
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo,
- LLVMContext* Context) {
+ LLVMContext *Context) {
assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
const VectorType *PTy = cast<VectorType>(V->getType());
unsigned Width = PTy->getNumElements();
if (EltNo >= Width) // Out of range access.
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
if (isa<UndefValue>(V))
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
else if (isa<ConstantAggregateZero>(V))
- return Context->getNullValue(PTy->getElementType());
+ return Constant::getNullValue(PTy->getElementType());
else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
return CP->getOperand(EltNo);
else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
@@ -12339,7 +12200,7 @@ static Value *FindScalarElement(Value *V, unsigned EltNo,
else if (InEl < LHSWidth*2)
return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context);
else
- return Context->getUndef(PTy->getElementType());
+ return UndefValue::get(PTy->getElementType());
}
// Otherwise, we don't know.
@@ -12349,18 +12210,18 @@ static Value *FindScalarElement(Value *V, unsigned EltNo,
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// If vector val is undef, replace extract with scalar undef.
if (isa<UndefValue>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
// If vector val is constant 0, replace extract with scalar 0.
if (isa<ConstantAggregateZero>(EI.getOperand(0)))
- return ReplaceInstUsesWith(EI, Context->getNullValue(EI.getType()));
+ return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
// If vector val is constant with all elements the same, replace EI with
// that element. When the elements are not identical, we cannot replace yet
// (we do that below, but only when the index is constant).
Constant *op0 = C->getOperand(0);
- for (unsigned i = 1; i < C->getNumOperands(); ++i)
+ for (unsigned i = 1; i != C->getNumOperands(); ++i)
if (C->getOperand(i) != op0) {
op0 = 0;
break;
@@ -12373,13 +12234,12 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// find a previously computed scalar that was inserted into the vector.
if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
unsigned IndexVal = IdxC->getZExtValue();
- unsigned VectorWidth =
- cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
+ unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
// If this is extracting an invalid index, turn this into undef, to avoid
// crashing the code below.
if (IndexVal >= VectorWidth)
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
// This instruction only demands the single element from the input vector.
// If the input vector has a single use, simplify it based on this use
@@ -12411,42 +12271,27 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
}
if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
- if (I->hasOneUse()) {
- // Push extractelement into predecessor operation if legal and
- // profitable to do so
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
- bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
- if (CheapToScalarize(BO, isConstantElt)) {
- ExtractElementInst *newEI0 =
- new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
- ExtractElementInst *newEI1 =
- new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
- InsertNewInstBefore(newEI0, EI);
- InsertNewInstBefore(newEI1, EI);
- return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
- }
- } else if (isa<LoadInst>(I)) {
- unsigned AS =
- cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
- Value *Ptr = InsertBitCastBefore(I->getOperand(0),
- Context->getPointerType(EI.getType(), AS),EI);
- GetElementPtrInst *GEP =
- GetElementPtrInst::Create(Ptr, EI.getOperand(1), I->getName()+".gep");
- InsertNewInstBefore(GEP, EI);
- return new LoadInst(GEP);
- }
- }
- if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
+ // Push extractelement into predecessor operation if legal and
+ // profitable to do so
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ if (I->hasOneUse() &&
+ CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
+ Value *newEI0 =
+ Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
+ EI.getName()+".lhs");
+ Value *newEI1 =
+ Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
+ EI.getName()+".rhs");
+ return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
+ }
+ } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
// Extracting the inserted element?
if (IE->getOperand(2) == EI.getOperand(1))
return ReplaceInstUsesWith(EI, IE->getOperand(1));
// If the inserted and extracted elements are constants, they must not
// be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) &&
- isa<Constant>(EI.getOperand(1))) {
- AddUsesToWorkList(EI);
+ if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
+ Worklist.AddValue(EI.getOperand(0));
EI.setOperand(0, IE->getOperand(0));
return &EI;
}
@@ -12465,11 +12310,14 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
} else {
- return ReplaceInstUsesWith(EI, Context->getUndef(EI.getType()));
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
}
- return new ExtractElementInst(Src, SrcIdx);
+ return ExtractElementInst::Create(Src,
+ ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx,
+ false));
}
}
+ // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
}
return 0;
}
@@ -12479,21 +12327,21 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
std::vector<Constant*> &Mask,
- LLVMContext* Context) {
+ LLVMContext *Context) {
assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, Context->getUndef(Type::Int32Ty));
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
return true;
} else if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
return true;
} else if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i+NumElts));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts));
return true;
} else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
@@ -12510,7 +12358,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
// transitively ok.
if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
// If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = Context->getUndef(Type::Int32Ty);
+ Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context));
return true;
}
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
@@ -12527,11 +12375,11 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx);
+ ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
} else {
assert(EI->getOperand(0) == RHS);
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx+NumElts);
+ ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts);
}
return true;
@@ -12549,17 +12397,17 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
- Value *&RHS, LLVMContext* Context) {
+ Value *&RHS, LLVMContext *Context) {
assert(isa<VectorType>(V->getType()) &&
(RHS == 0 || V->getType() == RHS->getType()) &&
"Invalid shuffle!");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, Context->getUndef(Type::Int32Ty));
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
return V;
} else if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, Context->getConstantInt(Type::Int32Ty, 0));
+ Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0));
return V;
} else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
@@ -12580,7 +12428,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
RHS = EI->getOperand(0);
Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context);
Mask[InsertedIdx % NumElts] =
- Context->getConstantInt(Type::Int32Ty, NumElts+ExtractedIdx);
+ ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx);
return V;
}
@@ -12590,7 +12438,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
// Everything but the extracted element is replaced with the RHS.
for (unsigned i = 0; i != NumElts; ++i) {
if (i != InsertedIdx)
- Mask[i] = Context->getConstantInt(Type::Int32Ty, NumElts+i);
+ Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i);
}
return V;
}
@@ -12608,7 +12456,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
// Otherwise, can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(Context->getConstantInt(Type::Int32Ty, i));
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
return V;
}
@@ -12635,45 +12483,23 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
return ReplaceInstUsesWith(IE, VecOp);
if (InsertedIdx >= NumVectorElts) // Out of range insert.
- return ReplaceInstUsesWith(IE, Context->getUndef(IE.getType()));
+ return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
// If we are extracting a value from a vector, then inserting it right
// back into the same place, just use the input vector.
if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
return ReplaceInstUsesWith(IE, VecOp);
- // We could theoretically do this for ANY input. However, doing so could
- // turn chains of insertelement instructions into a chain of shufflevector
- // instructions, and right now we do not merge shufflevectors. As such,
- // only do this in a situation where it is clear that there is benefit.
- if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
- // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
- // the values of VecOp, except then one read from EIOp0.
- // Build a new shuffle mask.
- std::vector<Constant*> Mask;
- if (isa<UndefValue>(VecOp))
- Mask.assign(NumVectorElts, Context->getUndef(Type::Int32Ty));
- else {
- assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
- Mask.assign(NumVectorElts, Context->getConstantInt(Type::Int32Ty,
- NumVectorElts));
- }
- Mask[InsertedIdx] =
- Context->getConstantInt(Type::Int32Ty, ExtractedIdx);
- return new ShuffleVectorInst(EI->getOperand(0), VecOp,
- Context->getConstantVector(Mask));
- }
-
// If this insertelement isn't used by some other insertelement, turn it
// (and any insertelements it points to), into one big shuffle.
if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
std::vector<Constant*> Mask;
Value *RHS = 0;
Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context);
- if (RHS == 0) RHS = Context->getUndef(LHS->getType());
+ if (RHS == 0) RHS = UndefValue::get(LHS->getType());
// We now have a shuffle of LHS, RHS, Mask.
return new ShuffleVectorInst(LHS, RHS,
- Context->getConstantVector(Mask));
+ ConstantVector::get(Mask));
}
}
}
@@ -12697,7 +12523,7 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(SVI.getOperand(2)))
- return ReplaceInstUsesWith(SVI, Context->getUndef(SVI.getType()));
+ return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
@@ -12724,21 +12550,21 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
std::vector<Constant*> Elts;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] >= 2*e)
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
else {
if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
(Mask[i] < e && isa<UndefValue>(LHS))) {
Mask[i] = 2*e; // Turn into undef.
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
} else {
Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(Context->getConstantInt(Type::Int32Ty, Mask[i]));
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i]));
}
}
}
SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, Context->getUndef(RHS->getType()));
- SVI.setOperand(2, Context->getConstantVector(Elts));
+ SVI.setOperand(1, UndefValue::get(RHS->getType()));
+ SVI.setOperand(2, ConstantVector::get(Elts));
LHS = SVI.getOperand(0);
RHS = SVI.getOperand(1);
MadeChange = true;
@@ -12788,14 +12614,14 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
std::vector<Constant*> Elts;
for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
if (NewMask[i] >= LHSInNElts*2) {
- Elts.push_back(Context->getUndef(Type::Int32Ty));
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
} else {
- Elts.push_back(Context->getConstantInt(Type::Int32Ty, NewMask[i]));
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), NewMask[i]));
}
}
return new ShuffleVectorInst(LHSSVI->getOperand(0),
LHSSVI->getOperand(1),
- Context->getConstantVector(Elts));
+ ConstantVector::get(Elts));
}
}
}
@@ -12855,6 +12681,9 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
const TargetData *TD) {
SmallVector<BasicBlock*, 256> Worklist;
Worklist.push_back(BB);
+
+ std::vector<Instruction*> InstrsForInstCombineWorklist;
+ InstrsForInstCombineWorklist.reserve(128);
while (!Worklist.empty()) {
BB = Worklist.back();
@@ -12863,44 +12692,28 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
// We have now visited this block! If we've already been here, ignore it.
if (!Visited.insert(BB)) continue;
- DbgInfoIntrinsic *DBI_Prev = NULL;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = BBI++;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
- DOUT << "IC: DCE: " << *Inst;
+ DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
Inst->eraseFromParent();
continue;
}
// ConstantProp instruction if trivially constant.
- if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
- DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
+ if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
Inst->replaceAllUsesWith(C);
++NumConstProp;
Inst->eraseFromParent();
continue;
}
-
- // If there are two consecutive llvm.dbg.stoppoint calls then
- // it is likely that the optimizer deleted code in between these
- // two intrinsics.
- DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
- if (DBI_Next) {
- if (DBI_Prev
- && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
- && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
- IC.RemoveFromWorkList(DBI_Prev);
- DBI_Prev->eraseFromParent();
- }
- DBI_Prev = DBI_Next;
- } else {
- DBI_Prev = 0;
- }
- IC.AddToWorkList(Inst);
+ InstrsForInstCombineWorklist.push_back(Inst);
}
// Recursively visit successors. If this is a branch or switch on a
@@ -12932,14 +12745,22 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Worklist.push_back(TI->getSuccessor(i));
}
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+ InstrsForInstCombineWorklist.size());
}
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
- bool Changed = false;
- TD = &getAnalysis<TargetData>();
+ MadeIRChange = false;
+ TD = getAnalysisIfAvailable<TargetData>();
- DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getNameStr() << "\n");
+ DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getNameStr() << "\n");
{
// Do a depth-first traversal of the function, populate the worklist with
@@ -12957,71 +12778,73 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
while (Term != BB->begin()) { // Remove instrs bottom-up
BasicBlock::iterator I = Term; --I;
- DOUT << "IC: DCE: " << *I;
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
// A debug intrinsic shouldn't force another iteration if we weren't
// going to do one without it.
if (!isa<DbgInfoIntrinsic>(I)) {
++NumDeadInst;
- Changed = true;
+ MadeIRChange = true;
}
- if (!I->use_empty())
- I->replaceAllUsesWith(Context->getUndef(I->getType()));
+
+
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I->getType()->isVoidTy())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
}
}
- while (!Worklist.empty()) {
- Instruction *I = RemoveOneFromWorkList();
+ while (!Worklist.isEmpty()) {
+ Instruction *I = Worklist.RemoveOne();
if (I == 0) continue; // skip null values.
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I)) {
- // Add operands to the worklist.
- if (I->getNumOperands() < 4)
- AddUsesToWorkList(*I);
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
+ EraseInstFromFunction(*I);
++NumDeadInst;
-
- DOUT << "IC: DCE: " << *I;
-
- I->eraseFromParent();
- RemoveFromWorkList(I);
- Changed = true;
+ MadeIRChange = true;
continue;
}
// Instruction isn't dead, see if we can constant propagate it.
- if (Constant *C = ConstantFoldInstruction(I, TD)) {
- DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
+ if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
// Add operands to the worklist.
- AddUsesToWorkList(*I);
ReplaceInstUsesWith(*I, C);
-
++NumConstProp;
- I->eraseFromParent();
- RemoveFromWorkList(I);
- Changed = true;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
continue;
}
- if (TD &&
- (I->getType()->getTypeID() == Type::VoidTyID ||
- I->isTrapping())) {
+ if (TD) {
// See if we can constant fold its operands.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
- if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
+ if (Constant *NewC = ConstantFoldConstantExpression(CE,
+ F.getContext(), TD))
if (NewC != CE) {
- i->set(NewC);
- Changed = true;
+ *i = NewC;
+ MadeIRChange = true;
}
}
// See if we can trivially sink this instruction to a successor basic block.
if (I->hasOneUse()) {
BasicBlock *BB = I->getParent();
- BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
+ Instruction *UserInst = cast<Instruction>(I->use_back());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(I->use_begin().getUse());
+ else
+ UserParent = UserInst->getParent();
+
if (UserParent != BB) {
bool UserIsSuccessor = false;
// See if the user is one of our successors.
@@ -13034,31 +12857,34 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
// If the user is one of our immediate successors, and if that successor
// only has us as a predecessors (we'd have to split the critical edge
// otherwise), we can keep going.
- if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
- next(pred_begin(UserParent)) == pred_end(UserParent))
+ if (UserIsSuccessor && UserParent->getSinglePredecessor())
// Okay, the CFG is simple enough, try to sink this instruction.
- Changed |= TryToSinkInstruction(I, UserParent);
+ MadeIRChange |= TryToSinkInstruction(I, UserParent);
}
}
- // Now that we have an instruction, try combining it to simplify it...
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder->SetInsertPoint(I->getParent(), I);
+
#ifndef NDEBUG
std::string OrigI;
#endif
- DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
+ DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
+
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
- DOUT << "IC: Old = " << *I
- << " New = " << *Result;
+ DEBUG(errs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
// Push the new instruction and any users onto the worklist.
- AddToWorkList(Result);
- AddUsersToWorkList(*Result);
+ Worklist.Add(Result);
+ Worklist.AddUsersToWorkList(*Result);
// Move the name to the new instruction first.
Result->takeName(I);
@@ -13073,52 +12899,42 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
InstParent->getInstList().insert(InsertPos, Result);
- // Make sure that we reprocess all operands now that we reduced their
- // use counts.
- AddUsesToWorkList(*I);
-
- // Instructions can end up on the worklist more than once. Make sure
- // we do not process an instruction that has been deleted.
- RemoveFromWorkList(I);
-
- // Erase the old instruction.
- InstParent->getInstList().erase(I);
+ EraseInstFromFunction(*I);
} else {
#ifndef NDEBUG
- DOUT << "IC: Mod = " << OrigI
- << " New = " << *I;
+ DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
#endif
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
if (isInstructionTriviallyDead(I)) {
- // Make sure we process all operands now that we are reducing their
- // use counts.
- AddUsesToWorkList(*I);
-
- // Instructions may end up in the worklist more than once. Erase all
- // occurrences of this instruction.
- RemoveFromWorkList(I);
- I->eraseFromParent();
+ EraseInstFromFunction(*I);
} else {
- AddToWorkList(I);
- AddUsersToWorkList(*I);
+ Worklist.Add(I);
+ Worklist.AddUsersToWorkList(*I);
}
}
- Changed = true;
+ MadeIRChange = true;
}
}
- assert(WorklistMap.empty() && "Worklist empty, but map not?");
-
- // Do an explicit clear, this shrinks the map if needed.
- WorklistMap.clear();
- return Changed;
+ Worklist.Zap();
+ return MadeIRChange;
}
bool InstCombiner::runOnFunction(Function &F) {
MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+ Context = &F.getContext();
+
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<true, ConstantFolder, InstCombineIRInserter>
+ TheBuilder(F.getContext(), ConstantFolder(F.getContext()),
+ InstCombineIRInserter(Worklist));
+ Builder = &TheBuilder;
bool EverMadeChange = false;
@@ -13126,6 +12942,8 @@ bool InstCombiner::runOnFunction(Function &F) {
unsigned Iteration = 0;
while (DoOneIteration(F, Iteration++))
EverMadeChange = true;
+
+ Builder = 0;
return EverMadeChange;
}
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index dee7bfb..8b11edd 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -19,6 +19,7 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
@@ -26,13 +27,13 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
+STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
@@ -56,7 +57,7 @@ namespace {
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
- class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
+ class JumpThreading : public FunctionPass {
TargetData *TD;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
@@ -68,15 +69,16 @@ namespace {
JumpThreading() : FunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
bool runOnFunction(Function &F);
void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB);
- bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
- unsigned JumpThreadCost);
+ bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
+ bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
+ BasicBlock *PredBB);
+
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
@@ -99,8 +101,8 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
- DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
- TD = &getAnalysis<TargetData>();
+ DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
+ TD = getAnalysisIfAvailable<TargetData>();
FindLoopHeaders(F);
@@ -119,8 +121,8 @@ bool JumpThreading::runOnFunction(Function &F) {
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
- DOUT << " JT: Deleting dead block '" << BB->getNameStart()
- << "' with terminator: " << *BB->getTerminator();
+ DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
+ << "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
Changed = true;
@@ -134,6 +136,48 @@ bool JumpThreading::runOnFunction(Function &F) {
return EverChanged;
}
+/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
+/// thread across it.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+ /// Ignore PHI nodes, these will be flattened when duplication happens.
+ BasicBlock::const_iterator I = BB->getFirstNonPHI();
+
+ // Sum up the cost of each instruction until we get to the terminator. Don't
+ // include the terminator because the copy won't include it.
+ unsigned Size = 0;
+ for (; !isa<TerminatorInst>(I); ++I) {
+ // Debugger intrinsics don't incur code size.
+ if (isa<DbgInfoIntrinsic>(I)) continue;
+
+ // If this is a pointer->pointer bitcast, it is free.
+ if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
+ continue;
+
+ // All other instructions count for at least one unit.
+ ++Size;
+
+ // Calls are more expensive. If they are non-intrinsic calls, we model them
+ // as having cost of 4. If they are a non-vector intrinsic, we model them
+ // as having cost of 2 total, and if they are a vector intrinsic, we model
+ // them as having cost 1.
+ if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ if (!isa<IntrinsicInst>(CI))
+ Size += 3;
+ else if (!isa<VectorType>(CI->getType()))
+ Size += 1;
+ }
+ }
+
+ // Threading through a switch statement is particularly profitable. If this
+ // block ends in a switch, decrease its cost to make it more likely to happen.
+ if (isa<SwitchInst>(I))
+ Size = Size > 6 ? Size-6 : 0;
+
+ return Size;
+}
+
+
+
/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops. Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations. To prevent this from
@@ -173,52 +217,34 @@ BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
if (CommonPreds.size() == 1)
return CommonPreds[0];
- DOUT << " Factoring out " << CommonPreds.size()
- << " common predecessors.\n";
+ DEBUG(errs() << " Factoring out " << CommonPreds.size()
+ << " common predecessors.\n");
return SplitBlockPredecessors(PN->getParent(),
&CommonPreds[0], CommonPreds.size(),
".thr_comm", this);
}
-/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
- /// Ignore PHI nodes, these will be flattened when duplication happens.
- BasicBlock::const_iterator I = BB->getFirstNonPHI();
-
- // Sum up the cost of each instruction until we get to the terminator. Don't
- // include the terminator because the copy won't include it.
- unsigned Size = 0;
- for (; !isa<TerminatorInst>(I); ++I) {
- // Debugger intrinsics don't incur code size.
- if (isa<DbgInfoIntrinsic>(I)) continue;
-
- // If this is a pointer->pointer bitcast, it is free.
- if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
- continue;
-
- // All other instructions count for at least one unit.
- ++Size;
-
- // Calls are more expensive. If they are non-intrinsic calls, we model them
- // as having cost of 4. If they are a non-vector intrinsic, we model them
- // as having cost of 2 total, and if they are a vector intrinsic, we model
- // them as having cost 1.
- if (const CallInst *CI = dyn_cast<CallInst>(I)) {
- if (!isa<IntrinsicInst>(CI))
- Size += 3;
- else if (!isa<VectorType>(CI->getType()))
- Size += 1;
- }
+/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
+/// in an undefined jump, decide which block is best to revector to.
+///
+/// Since we can pick an arbitrary destination, we pick the successor with the
+/// fewest predecessors. This should reduce the in-degree of the others.
+///
+static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
+ TerminatorInst *BBTerm = BB->getTerminator();
+ unsigned MinSucc = 0;
+ BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
+ // Compute the successor with the minimum number of predecessors.
+ unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
+ for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
+ TestBB = BBTerm->getSuccessor(i);
+ unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
+ if (NumPreds < MinNumPreds)
+ MinSucc = i;
}
- // Threading through a switch statement is particularly profitable. If this
- // block ends in a switch, decrease its cost to make it more likely to happen.
- if (isa<SwitchInst>(I))
- Size = Size > 6 ? Size-6 : 0;
-
- return Size;
+ return MinSucc;
}
/// ProcessBlock - If there are any predecessors whose control can be threaded
@@ -262,39 +288,28 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
- DOUT << " In block '" << BB->getNameStart()
- << "' folding terminator: " << *BB->getTerminator();
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding terminator: " << *BB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(BB);
return true;
}
// If the terminator is branching on an undef, we can pick any of the
- // successors to branch to. Since this is arbitrary, we pick the successor
- // with the fewest predecessors. This should reduce the in-degree of the
- // others.
+ // successors to branch to. Let GetBestDestForJumpOnUndef decide.
if (isa<UndefValue>(Condition)) {
- TerminatorInst *BBTerm = BB->getTerminator();
- unsigned MinSucc = 0;
- BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
- // Compute the successor with the minimum number of predecessors.
- unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- TestBB = BBTerm->getSuccessor(i);
- unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
- if (NumPreds < MinNumPreds)
- MinSucc = i;
- }
+ unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
// Fold the branch/switch.
+ TerminatorInst *BBTerm = BB->getTerminator();
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
- if (i == MinSucc) continue;
+ if (i == BestSucc) continue;
BBTerm->getSuccessor(i)->removePredecessor(BB);
}
- DOUT << " In block '" << BB->getNameStart()
- << "' folding undef terminator: " << *BBTerm;
- BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding undef terminator: " << *BBTerm << '\n');
+ BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
BBTerm->eraseFromParent();
return true;
}
@@ -419,8 +434,8 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
- DOUT << " In block '" << PredBB->getNameStart()
- << "' folding terminator: " << *PredBB->getTerminator();
+ DEBUG(errs() << " In block '" << PredBB->getName()
+ << "' folding terminator: " << *PredBB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(PredBB);
return true;
@@ -431,29 +446,24 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
- DOUT << " In block '" << BB->getNameStart()
- << "' folding condition to '" << BranchDir << "': "
- << *BB->getTerminator();
+ DEBUG(errs() << " In block '" << BB->getName()
+ << "' folding condition to '" << BranchDir << "': "
+ << *BB->getTerminator() << '\n');
++NumFolds;
- DestBI->setCondition(Context->getConstantInt(Type::Int1Ty, BranchDir));
+ Value *OldCond = DestBI->getCondition();
+ DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ BranchDir));
ConstantFoldTerminator(BB);
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
return true;
}
-
- // Otherwise we need to thread from PredBB to DestBB's successor which
- // involves code duplication. Check to see if it is worth it.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
+
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
@@ -472,7 +482,6 @@ bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
if (PredBB == DestBB)
return false;
-
SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
@@ -508,8 +517,8 @@ bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
- DOUT << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI;
- DOUT << "THROUGH: " << *DestSI;
+ DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
+ DEBUG(errs() << "THROUGH: " << *DestSI);
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
@@ -564,7 +573,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
- if (AvailableVal == LI) AvailableVal = Context->getUndef(LI->getType());
+ if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
@@ -685,49 +694,74 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
}
-/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
+/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
/// inputs to the phi node.
///
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
- // See if the phi node has any constant values. If so, we can determine where
- // the corresponding predecessor will branch.
- ConstantInt *PredCst = 0;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
- break;
-
- // If no incoming value has a constant, we don't know the destination of any
- // predecessors.
- if (PredCst == 0)
- return false;
-
- // See if the cost of duplicating this block is low enough.
BasicBlock *BB = PN->getParent();
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
+
+ // See if the phi node has any constant integer or undef values. If so, we
+ // can determine where the corresponding predecessor will branch.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *PredVal = PN->getIncomingValue(i);
+
+ // Check to see if this input is a constant integer. If so, the direction
+ // of the branch is predictable.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
+ // Merge any common predecessors that will act the same.
+ BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
+
+ BasicBlock *SuccBB;
+ if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
+ SuccBB = BI->getSuccessor(CI->isZero());
+ else {
+ SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
+ SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
+ }
+
+ // Ok, try to thread it!
+ return ThreadEdge(BB, PredBB, SuccBB);
+ }
+
+ // If the input is an undef, then it doesn't matter which way it will go.
+ // Pick an arbitrary dest and thread the edge.
+ if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
+ // Merge any common predecessors that will act the same.
+ BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
+ BasicBlock *SuccBB =
+ BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
+
+ // Ok, try to thread it!
+ return ThreadEdge(BB, PredBB, SuccBB);
+ }
}
- // If so, we can actually do this threading. Merge any common predecessors
- // that will act the same.
- BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
+ // If the incoming values are all variables, we don't know the destination of
+ // any predecessors. However, if any of the predecessor blocks end in an
+ // unconditional branch, we can *duplicate* the jump into that block in order
+ // to further encourage jump threading and to eliminate cases where we have
+ // branch on a phi of an icmp (branch on icmp is much better).
+
+ // We don't want to do this tranformation for switches, because we don't
+ // really want to duplicate a switch.
+ if (isa<SwitchInst>(BB->getTerminator()))
+ return false;
- // Next, figure out which successor we are threading to.
- BasicBlock *SuccBB;
- if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
- SuccBB = BI->getSuccessor(PredCst == Context->getConstantIntFalse());
- else {
- SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
- SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
+ // Look for unconditional branch predecessors.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
+ if (PredBr->isUnconditional() &&
+ // Try to duplicate BB into PredBB.
+ DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
+ return true;
}
-
- // Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+
+ return false;
}
+
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
/// whose condition is an AND/OR where one side is PN. If PN has constant
/// operands that permit us to evaluate the condition for some operand, thread
@@ -756,7 +790,8 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
- ConstantInt *PredCst = Context->getConstantInt(Type::Int1Ty, !isAnd);
+ ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ !isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
@@ -768,14 +803,6 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
if (PredNo == ~0U)
return false;
- // See if the cost of duplicating this block is low enough.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
-
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
@@ -787,7 +814,7 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
@@ -795,15 +822,15 @@ bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
/// result can not be determined, a null pointer is returned.
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
Value *LHS, Value *RHS,
- LLVMContext* Context) {
+ LLVMContext &Context) {
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return Context->getConstantExprCompare(pred, CLHS, CRHS);
+ return ConstantExpr::getCompare(pred, CLHS, CRHS);
if (LHS == RHS)
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
return ICmpInst::isTrueWhenEqual(pred) ?
- Context->getConstantIntTrue() : Context->getConstantIntFalse();
+ ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
return 0;
}
@@ -829,7 +856,7 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PredVal = PN->getIncomingValue(i);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
- RHS, Context);
+ RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
@@ -854,14 +881,6 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
if (PredVal == 0)
return false;
- // See if the cost of duplicating this block is low enough.
- unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
- if (JumpThreadCost > Threshold) {
- DOUT << " Not threading BB '" << BB->getNameStart()
- << "' - Cost is too high: " << JumpThreadCost << "\n";
- return false;
- }
-
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
@@ -870,58 +889,77 @@ bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
// Ok, try to thread it!
- return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
+ return ThreadEdge(BB, PredBB, SuccBB);
}
+/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
+/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
+/// NewPred using the entries from OldPred (suitably mapped).
+static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
+ BasicBlock *OldPred,
+ BasicBlock *NewPred,
+ DenseMap<Instruction*, Value*> &ValueMap) {
+ for (BasicBlock::iterator PNI = PHIBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
+ // Ok, we have a PHI node. Figure out what the incoming value was for the
+ // DestBlock.
+ Value *IV = PN->getIncomingValueForBlock(OldPred);
+
+ // Remap the value if necessary.
+ if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
+ if (I != ValueMap.end())
+ IV = I->second;
+ }
+
+ PN->addIncoming(IV, NewPred);
+ }
+}
+
/// ThreadEdge - We have decided that it is safe and profitable to thread an
/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
/// change.
bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
- BasicBlock *SuccBB, unsigned JumpThreadCost) {
-
+ BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
- DOUT << " Not threading across BB '" << BB->getNameStart()
- << "' - would thread to self!\n";
+ DEBUG(errs() << " Not threading across BB '" << BB->getName()
+ << "' - would thread to self!\n");
return false;
}
// If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
- DOUT << " Not threading from '" << PredBB->getNameStart()
- << "' across loop header BB '" << BB->getNameStart()
- << "' to dest BB '" << SuccBB->getNameStart()
- << "' - it might create an irreducible loop!\n";
+ DEBUG(errs() << " Not threading from '" << PredBB->getName()
+ << "' across loop header BB '" << BB->getName()
+ << "' to dest BB '" << SuccBB->getName()
+ << "' - it might create an irreducible loop!\n");
return false;
}
- // And finally, do it!
- DOUT << " Threading edge from '" << PredBB->getNameStart() << "' to '"
- << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
- << ", across block:\n "
- << *BB << "\n";
-
- // Jump Threading can not update SSA properties correctly if the values
- // defined in the duplicated block are used outside of the block itself. For
- // this reason, we spill all values that are used outside of BB to the stack.
- for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
- if (!I->isUsedOutsideOfBlock(BB))
- continue;
-
- // We found a use of I outside of BB. Create a new stack slot to
- // break this inter-block usage pattern.
- DemoteRegToStack(*I);
+ unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+ if (JumpThreadCost > Threshold) {
+ DEBUG(errs() << " Not threading BB '" << BB->getName()
+ << "' - Cost is too high: " << JumpThreadCost << "\n");
+ return false;
}
-
+
+ // And finally, do it!
+ DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
+ << SuccBB->getName() << "' with cost: " << JumpThreadCost
+ << ", across block:\n "
+ << *BB << "\n");
+
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
DenseMap<Instruction*, Value*> ValueMapping;
- BasicBlock *NewBB =
- BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
+ BB->getName()+".thread",
+ BB->getParent(), BB);
NewBB->moveAfter(PredBB);
BasicBlock::iterator BI = BB->begin();
@@ -932,7 +970,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone();
- New->setName(BI->getNameStart());
+ New->setName(BI->getName());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;
@@ -951,21 +989,48 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
// PHI nodes for NewBB now.
- for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
- PHINode *PN = cast<PHINode>(PNI);
- // Ok, we have a PHI node. Figure out what the incoming value was for the
- // DestBlock.
- Value *IV = PN->getIncomingValueForBlock(BB);
-
- // Remap the value if necessary.
- if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
- DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
- if (I != ValueMapping.end())
- IV = I->second;
+ AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
+
+ // If there were values defined in BB that are used outside the block, then we
+ // now have to update all uses of the value to use either the original value,
+ // the cloned value, or some PHI derived value. This can require arbitrary
+ // PHI insertion, of which we are prepared to do, clean these up now.
+ SSAUpdater SSAUpdate;
+ SmallVector<Use*, 16> UsesToRename;
+ for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ // Scan all uses of this instruction to see if it is used outside of its
+ // block, and if so, record them in UsesToRename.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(UI) == BB)
+ continue;
+ } else if (User->getParent() == BB)
+ continue;
+
+ UsesToRename.push_back(&UI.getUse());
}
- PN->addIncoming(IV, NewBB);
+
+ // If there are no uses outside the block, we're done with this instruction.
+ if (UsesToRename.empty())
+ continue;
+
+ DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+
+ // We found a use of I outside of BB. Rename all uses of I that are outside
+ // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
+ // with the two values we know.
+ SSAUpdate.Initialize(I);
+ SSAUpdate.AddAvailableValue(BB, I);
+ SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
+
+ while (!UsesToRename.empty())
+ SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
+ DEBUG(errs() << "\n");
}
+
// Ok, NewBB is good to go. Update the terminator of PredBB to jump to
// NewBB instead of BB. This eliminates predecessors from BB, which requires
// us to simplify any PHI nodes in BB.
@@ -982,7 +1047,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
BI = NewBB->begin();
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
Instruction *Inst = BI++;
- if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
+ if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
continue;
@@ -995,3 +1060,120 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
++NumThreads;
return true;
}
+
+/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
+/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
+/// If we can duplicate the contents of BB up into PredBB do so now, this
+/// improves the odds that the branch will be on an analyzable instruction like
+/// a compare.
+bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
+ BasicBlock *PredBB) {
+ // If BB is a loop header, then duplicating this block outside the loop would
+ // cause us to transform this into an irreducible loop, don't do this.
+ // See the comments above FindLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB)) {
+ DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
+ << "' into predecessor block '" << PredBB->getName()
+ << "' - it might create an irreducible loop!\n");
+ return false;
+ }
+
+ unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+ if (DuplicationCost > Threshold) {
+ DEBUG(errs() << " Not duplicating BB '" << BB->getName()
+ << "' - Cost is too high: " << DuplicationCost << "\n");
+ return false;
+ }
+
+ // Okay, we decided to do this! Clone all the instructions in BB onto the end
+ // of PredBB.
+ DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
+ << PredBB->getName() << "' to eliminate branch on phi. Cost: "
+ << DuplicationCost << " block is:" << *BB << "\n");
+
+ // We are going to have to map operands from the original BB block into the
+ // PredBB block. Evaluate PHI nodes in BB.
+ DenseMap<Instruction*, Value*> ValueMapping;
+
+ BasicBlock::iterator BI = BB->begin();
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
+
+ BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
+
+ // Clone the non-phi instructions of BB into PredBB, keeping track of the
+ // mapping and using it to remap operands in the cloned instructions.
+ for (; BI != BB->end(); ++BI) {
+ Instruction *New = BI->clone();
+ New->setName(BI->getName());
+ PredBB->getInstList().insert(OldPredBranch, New);
+ ValueMapping[BI] = New;
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+ }
+
+ // Check to see if the targets of the branch had PHI nodes. If so, we need to
+ // add entries to the PHI nodes for branch from PredBB now.
+ BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
+ AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
+ ValueMapping);
+ AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
+ ValueMapping);
+
+ // If there were values defined in BB that are used outside the block, then we
+ // now have to update all uses of the value to use either the original value,
+ // the cloned value, or some PHI derived value. This can require arbitrary
+ // PHI insertion, of which we are prepared to do, clean these up now.
+ SSAUpdater SSAUpdate;
+ SmallVector<Use*, 16> UsesToRename;
+ for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
+ // Scan all uses of this instruction to see if it is used outside of its
+ // block, and if so, record them in UsesToRename.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(UI) == BB)
+ continue;
+ } else if (User->getParent() == BB)
+ continue;
+
+ UsesToRename.push_back(&UI.getUse());
+ }
+
+ // If there are no uses outside the block, we're done with this instruction.
+ if (UsesToRename.empty())
+ continue;
+
+ DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
+
+ // We found a use of I outside of BB. Rename all uses of I that are outside
+ // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
+ // with the two values we know.
+ SSAUpdate.Initialize(I);
+ SSAUpdate.AddAvailableValue(BB, I);
+ SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
+
+ while (!UsesToRename.empty())
+ SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
+ DEBUG(errs() << "\n");
+ }
+
+ // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
+ // that we nuked.
+ BB->removePredecessor(PredBB);
+
+ // Remove the unconditional branch at the end of the PredBB block.
+ OldPredBranch->eraseFromParent();
+
+ ++NumDupes;
+ return true;
+}
+
+
diff --git a/lib/Transforms/Scalar/LICM.cpp b/lib/Transforms/Scalar/LICM.cpp
index d6daeca..756fbf3 100644
--- a/lib/Transforms/Scalar/LICM.cpp
+++ b/lib/Transforms/Scalar/LICM.cpp
@@ -35,8 +35,8 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
-#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
@@ -46,8 +46,8 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
@@ -73,7 +73,7 @@ EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
"global variables"));
namespace {
- struct VISIBILITY_HIDDEN LICM : public LoopPass {
+ struct LICM : public LoopPass {
static char ID; // Pass identification, replacement for typeid
LICM() : LoopPass(&ID) {}
@@ -91,6 +91,7 @@ namespace {
AU.addRequired<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominanceFrontier>();
+ AU.addPreservedID(LoopSimplifyID);
}
bool doFinalization() {
@@ -338,7 +339,6 @@ void LICM::SinkRegion(DomTreeNode *N) {
}
}
-
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
@@ -389,9 +389,13 @@ bool LICM::canSinkOrHoistInst(Instruction &I) {
// Don't hoist loads which have may-aliased stores in loop.
unsigned Size = 0;
if (LI->getType()->isSized())
- Size = AA->getTargetData().getTypeStoreSize(LI->getType());
+ Size = AA->getTypeStoreSize(LI->getType());
return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ if (isa<DbgStopPointInst>(CI)) {
+ // Don't hoist/sink dbgstoppoints, we handle them separately
+ return false;
+ }
// Handle obvious cases efficiently.
AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
@@ -465,7 +469,7 @@ bool LICM::isLoopInvariantInst(Instruction &I) {
/// position, and may either delete it or move it to outside of the loop.
///
void LICM::sink(Instruction &I) {
- DOUT << "LICM sinking instruction: " << I;
+ DEBUG(errs() << "LICM sinking instruction: " << I);
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
@@ -482,22 +486,27 @@ void LICM::sink(Instruction &I) {
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
// Instruction is not used, just delete it.
CurAST->deleteValue(&I);
- if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
- I.replaceAllUsesWith(Context->getUndef(I.getType()));
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.getType()->isVoidTy())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
I.eraseFromParent();
} else {
// Move the instruction to the start of the exit block, after any PHI
// nodes in it.
I.removeFromParent();
-
BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
ExitBlocks[0]->getInstList().insert(InsertPt, &I);
}
} else if (ExitBlocks.empty()) {
// The instruction is actually dead if there ARE NO exit blocks.
CurAST->deleteValue(&I);
- if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
- I.replaceAllUsesWith(Context->getUndef(I.getType()));
+ // If I has users in unreachable blocks, eliminate.
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I.getType()->isVoidTy())
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
I.eraseFromParent();
} else {
// Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
@@ -507,7 +516,7 @@ void LICM::sink(Instruction &I) {
// Firstly, we create a stack object to hold the value...
AllocaInst *AI = 0;
- if (I.getType() != Type::VoidTy) {
+ if (!I.getType()->isVoidTy()) {
AI = new AllocaInst(I.getType(), 0, I.getName(),
I.getParent()->getParent()->getEntryBlock().begin());
CurAST->add(AI);
@@ -593,7 +602,7 @@ void LICM::sink(Instruction &I) {
if (AI) {
std::vector<AllocaInst*> Allocas;
Allocas.push_back(AI);
- PromoteMemToReg(Allocas, *DT, *DF, CurAST);
+ PromoteMemToReg(Allocas, *DT, *DF, AI->getContext(), CurAST);
}
}
}
@@ -602,7 +611,8 @@ void LICM::sink(Instruction &I) {
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void LICM::hoist(Instruction &I) {
- DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
+ DEBUG(errs() << "LICM hoisting to " << Preheader->getName() << ": "
+ << I << "\n");
// Remove the instruction from its current basic block... but don't delete the
// instruction.
@@ -623,7 +633,8 @@ void LICM::hoist(Instruction &I) {
///
bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
// If it is not a trapping instruction, it is always safe to hoist.
- if (!Inst.isTrapping()) return true;
+ if (Inst.isSafeToSpeculativelyExecute())
+ return true;
// Otherwise we have to check to make sure that the instruction dominates all
// of the exit blocks. If it doesn't, then there is a path out of the loop
@@ -635,12 +646,6 @@ bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
if (Inst.getParent() == CurLoop->getHeader())
return true;
- // It's always safe to load from a global or alloca.
- if (isa<LoadInst>(Inst))
- if (isa<AllocationInst>(Inst.getOperand(0)) ||
- isa<GlobalVariable>(Inst.getOperand(0)))
- return true;
-
// Get the exit blocks for the current loop.
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
@@ -773,7 +778,7 @@ void LICM::PromoteValuesInLoop() {
PromotedAllocas.reserve(PromotedValues.size());
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
PromotedAllocas.push_back(PromotedValues[i].first);
- PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
+ PromoteMemToReg(PromotedAllocas, *DT, *DF, Preheader->getContext(), CurAST);
}
/// FindPromotableValuesInLoop - Check the current loop for stores to definite
@@ -862,7 +867,7 @@ void LICM::FindPromotableValuesInLoop(
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
- DOUT << "LICM: Promoting value: " << *V << "\n";
+ DEBUG(errs() << "LICM: Promoting value: " << *V << "\n");
}
}
diff --git a/lib/Transforms/Scalar/LoopDeletion.cpp b/lib/Transforms/Scalar/LoopDeletion.cpp
index 302cdec..5f93756 100644
--- a/lib/Transforms/Scalar/LoopDeletion.cpp
+++ b/lib/Transforms/Scalar/LoopDeletion.cpp
@@ -15,19 +15,17 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-delete"
-
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
-
using namespace llvm;
STATISTIC(NumDeleted, "Number of loops deleted");
namespace {
- class VISIBILITY_HIDDEN LoopDeletion : public LoopPass {
+ class LoopDeletion : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopDeletion() : LoopPass(&ID) {}
@@ -38,9 +36,9 @@ namespace {
bool SingleDominatingExit(Loop* L,
SmallVector<BasicBlock*, 4>& exitingBlocks);
bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
- SmallVector<BasicBlock*, 4>& exitBlocks);
- bool IsLoopInvariantInst(Instruction *I, Loop* L);
-
+ SmallVector<BasicBlock*, 4>& exitBlocks,
+ bool &Changed, BasicBlock *Preheader);
+
virtual void getAnalysisUsage(AnalysisUsage& AU) const {
AU.addRequired<ScalarEvolution>();
AU.addRequired<DominatorTree>();
@@ -84,32 +82,13 @@ bool LoopDeletion::SingleDominatingExit(Loop* L,
return DT.dominates(exitingBlocks[0], latch);
}
-/// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
-/// a loop, which is defined as being true if all of its operands are defined
-/// outside of the loop. These instructions can be hoisted out of the loop
-/// if their results are needed. This could be made more aggressive by
-/// recursively checking the operands for invariance, but it's not clear that
-/// it's worth it.
-bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
- // PHI nodes are not loop invariant if defined in the loop.
- if (isa<PHINode>(I) && L->contains(I->getParent()))
- return false;
-
- // The instruction is loop invariant if all of its operands are loop-invariant
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (!L->isLoopInvariant(I->getOperand(i)))
- return false;
-
- // If we got this far, the instruction is loop invariant!
- return true;
-}
-
/// IsLoopDead - Determined if a loop is dead. This assumes that we've already
/// checked for unique exit and exiting blocks, and that the code is in LCSSA
/// form.
bool LoopDeletion::IsLoopDead(Loop* L,
SmallVector<BasicBlock*, 4>& exitingBlocks,
- SmallVector<BasicBlock*, 4>& exitBlocks) {
+ SmallVector<BasicBlock*, 4>& exitBlocks,
+ bool &Changed, BasicBlock *Preheader) {
BasicBlock* exitingBlock = exitingBlocks[0];
BasicBlock* exitBlock = exitBlocks[0];
@@ -122,7 +101,7 @@ bool LoopDeletion::IsLoopDead(Loop* L,
while (PHINode* P = dyn_cast<PHINode>(BI)) {
Value* incoming = P->getIncomingValueForBlock(exitingBlock);
if (Instruction* I = dyn_cast<Instruction>(incoming))
- if (!IsLoopInvariantInst(I, L))
+ if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
return false;
BI++;
@@ -181,15 +160,16 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
return false;
// Finally, we have to check that the loop really is dead.
- if (!IsLoopDead(L, exitingBlocks, exitBlocks))
- return false;
+ bool Changed = false;
+ if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
+ return Changed;
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
- const SCEV* S = SE.getBackedgeTakenCount(L);
+ const SCEV *S = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(S))
- return false;
+ return Changed;
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
@@ -199,18 +179,12 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues. Don't
// mess with this unless you have good reason and know what you're doing.
-
- // Move simple loop-invariant expressions out of the loop, since they
- // might be needed by the exit phis.
- for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
- LI != LE; ++LI)
- for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
- BI != BE; ) {
- Instruction* I = BI++;
- if (!I->use_empty() && IsLoopInvariantInst(I, L))
- I->moveBefore(preheader->getTerminator());
- }
-
+
+ // Tell ScalarEvolution that the loop is deleted. Do this before
+ // deleting the loop so that ScalarEvolution can look at the loop
+ // to determine what it needs to clean up.
+ SE.forgetLoopBackedgeTakenCount(L);
+
// Connect the preheader directly to the exit block.
TerminatorInst* TI = preheader->getTerminator();
TI->replaceUsesOfWith(L->getHeader(), exitBlock);
@@ -248,11 +222,6 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
(*LI)->dropAllReferences();
}
- // Tell ScalarEvolution that the loop is deleted. Do this before
- // deleting the loop so that ScalarEvolution can look at the loop
- // to determine what it needs to clean up.
- SE.forgetLoopBackedgeTakenCount(L);
-
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove its
@@ -273,8 +242,9 @@ bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
// The last step is to inform the loop pass manager that we've
// eliminated this loop.
LPM.deleteLoopFromQueue(L);
+ Changed = true;
NumDeleted++;
- return true;
+ return Changed;
}
diff --git a/lib/Transforms/Scalar/LoopIndexSplit.cpp b/lib/Transforms/Scalar/LoopIndexSplit.cpp
index 38e3a8b..5f9d370 100644
--- a/lib/Transforms/Scalar/LoopIndexSplit.cpp
+++ b/lib/Transforms/Scalar/LoopIndexSplit.cpp
@@ -51,7 +51,6 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-index-split"
-
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
@@ -61,7 +60,6 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
@@ -73,8 +71,7 @@ STATISTIC(NumRestrictBounds, "Number of loop iteration space restricted");
namespace {
- class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass {
-
+ class LoopIndexSplit : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopIndexSplit() : LoopPass(&ID) {}
@@ -294,31 +291,33 @@ static bool isUsedOutsideLoop(Value *V, Loop *L) {
// Return V+1
static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt,
- LLVMContext* Context) {
- Constant *One = Context->getConstantInt(V->getType(), 1, Sign);
+ LLVMContext &Context) {
+ Constant *One = ConstantInt::get(V->getType(), 1, Sign);
return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt);
}
// Return V-1
static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt,
- LLVMContext* Context) {
- Constant *One = Context->getConstantInt(V->getType(), 1, Sign);
+ LLVMContext &Context) {
+ Constant *One = ConstantInt::get(V->getType(), 1, Sign);
return BinaryOperator::CreateSub(V, One, "lsp", InsertPt);
}
// Return min(V1, V1)
static Value *getMin(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) {
- Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- V1, V2, "lsp", InsertPt);
+ Value *C = new ICmpInst(InsertPt,
+ Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ V1, V2, "lsp");
return SelectInst::Create(C, V1, V2, "lsp", InsertPt);
}
// Return max(V1, V2)
static Value *getMax(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) {
- Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
- V1, V2, "lsp", InsertPt);
+ Value *C = new ICmpInst(InsertPt,
+ Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ V1, V2, "lsp");
return SelectInst::Create(C, V2, V1, "lsp", InsertPt);
}
@@ -427,15 +426,15 @@ bool LoopIndexSplit::processOneIterationLoop() {
// c1 = icmp uge i32 SplitValue, StartValue
// c2 = icmp ult i32 SplitValue, ExitValue
// and i32 c1, c2
- Instruction *C1 = new ICmpInst(ExitCondition->isSignedPredicate() ?
+ Instruction *C1 = new ICmpInst(BR, ExitCondition->isSignedPredicate() ?
ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
- SplitValue, StartValue, "lisplit", BR);
+ SplitValue, StartValue, "lisplit");
CmpInst::Predicate C2P = ExitCondition->getPredicate();
BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
- if (LatchBR->getOperand(0) != Header)
+ if (LatchBR->getOperand(1) != Header)
C2P = CmpInst::getInversePredicate(C2P);
- Instruction *C2 = new ICmpInst(C2P, SplitValue, ExitValue, "lisplit", BR);
+ Instruction *C2 = new ICmpInst(BR, C2P, SplitValue, ExitValue, "lisplit");
Instruction *NSplitCond = BinaryOperator::CreateAnd(C1, C2, "lisplit", BR);
SplitCondition->replaceAllUsesWith(NSplitCond);
@@ -491,6 +490,8 @@ bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) {
EBR->setSuccessor(1, T);
}
+ LLVMContext &Context = Op.getContext();
+
// New upper and lower bounds.
Value *NLB = NULL;
Value *NUB = NULL;
@@ -698,7 +699,8 @@ void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
E = df_end(DN); DI != E; ++DI) {
BasicBlock *BB = DI->getBlock();
WorkList.push_back(BB);
- BB->replaceAllUsesWith(UndefValue::get(Type::LabelTy));
+ BB->replaceAllUsesWith(UndefValue::get(
+ Type::getLabelTy(DeadBB->getContext())));
}
while (!WorkList.empty()) {
@@ -877,6 +879,8 @@ bool LoopIndexSplit::splitLoop() {
BasicBlock *ExitingBlock = ExitCondition->getParent();
if (!cleanBlock(ExitingBlock)) return false;
+ LLVMContext &Context = Header->getContext();
+
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BranchInst *BR = dyn_cast<BranchInst>((*I)->getTerminator());
diff --git a/lib/Transforms/Scalar/LoopRotation.cpp b/lib/Transforms/Scalar/LoopRotation.cpp
index 1f7892a..70c69bb 100644
--- a/lib/Transforms/Scalar/LoopRotation.cpp
+++ b/lib/Transforms/Scalar/LoopRotation.cpp
@@ -32,7 +32,7 @@ using namespace llvm;
STATISTIC(NumRotated, "Number of loops rotated");
namespace {
- class VISIBILITY_HIDDEN RenameData {
+ class RenameData {
public:
RenameData(Instruction *O, Value *P, Instruction *H)
: Original(O), PreHeader(P), Header(H) { }
@@ -42,8 +42,7 @@ namespace {
Instruction *Header; // New header replacement
};
- class VISIBILITY_HIDDEN LoopRotate : public LoopPass {
-
+ class LoopRotate : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopRotate() : LoopPass(&ID) {}
@@ -178,6 +177,11 @@ bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
// Now, this loop is suitable for rotation.
+ // Anything ScalarEvolution may know about this loop or the PHI nodes
+ // in its header will soon be invalidated.
+ if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
+ SE->forgetLoopBackedgeTakenCount(L);
+
// Find new Loop header. NewHeader is a Header's one and only successor
// that is inside loop. Header's other successor is outside the
// loop. Otherwise loop is not suitable for rotation.
@@ -435,7 +439,8 @@ void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
// Right now original pre-header has two successors, new header and
// exit block. Insert new block between original pre-header and
// new header such that loop's new pre-header has only one successor.
- BasicBlock *NewPreHeader = BasicBlock::Create("bb.nph",
+ BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(),
+ "bb.nph",
OrigHeader->getParent(),
NewHeader);
LoopInfo &LI = LPM.getAnalysis<LoopInfo>();
@@ -511,26 +516,30 @@ void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
DF->addBasicBlock(L->getHeader(), LatchSet);
}
- // If a loop block dominates new loop latch then its frontier is
- // new header and Exit.
+ // If a loop block dominates new loop latch then add to its frontiers
+ // new header and Exit and remove new latch (which is equal to original
+ // header).
BasicBlock *NewLatch = L->getLoopLatch();
- DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
- for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
- BI != BE; ++BI) {
- BasicBlock *B = *BI;
- if (DT->dominates(B, NewLatch)) {
- DominanceFrontier::iterator BDFI = DF->find(B);
- if (BDFI != DF->end()) {
- DominanceFrontier::DomSetType &BSet = BDFI->second;
- BSet = BDFI->second;
- BSet.clear();
- BSet.insert(L->getHeader());
- BSet.insert(Exit);
- } else {
- DominanceFrontier::DomSetType BSet;
- BSet.insert(L->getHeader());
- BSet.insert(Exit);
- DF->addBasicBlock(B, BSet);
+
+ assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader");
+
+ if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
+ for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
+ BI != BE; ++BI) {
+ BasicBlock *B = *BI;
+ if (DT->dominates(B, NewLatch)) {
+ DominanceFrontier::iterator BDFI = DF->find(B);
+ if (BDFI != DF->end()) {
+ DominanceFrontier::DomSetType &BSet = BDFI->second;
+ BSet.erase(NewLatch);
+ BSet.insert(L->getHeader());
+ BSet.insert(Exit);
+ } else {
+ DominanceFrontier::DomSetType BSet;
+ BSet.insert(L->getHeader());
+ BSet.insert(Exit);
+ DF->addBasicBlock(B, BSet);
+ }
}
}
}
@@ -538,22 +547,7 @@ void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
// Preserve canonical loop form, which means Exit block should
// have only one predecessor.
- BasicBlock *NExit = SplitEdge(L->getLoopLatch(), Exit, this);
-
- // Preserve LCSSA.
- for (BasicBlock::iterator I = Exit->begin();
- (PN = dyn_cast<PHINode>(I)); ++I) {
- unsigned N = PN->getNumIncomingValues();
- for (unsigned index = 0; index != N; ++index)
- if (PN->getIncomingBlock(index) == NExit) {
- PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName(),
- NExit->begin());
- NewPN->addIncoming(PN->getIncomingValue(index), L->getLoopLatch());
- PN->setIncomingValue(index, NewPN);
- PN->setIncomingBlock(index, NExit);
- break;
- }
- }
+ SplitEdge(L->getLoopLatch(), Exit, this);
assert(NewHeader && L->getHeader() == NewHeader &&
"Invalid loop header after loop rotation");
diff --git a/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
index 046fed3..d8f6cc1 100644
--- a/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ b/lib/Transforms/Scalar/LoopStrengthReduce.cpp
@@ -24,7 +24,6 @@
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
@@ -38,9 +37,9 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
@@ -64,26 +63,26 @@ namespace {
/// IVInfo - This structure keeps track of one IV expression inserted during
/// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
/// well as the PHI node and increment value created for rewrite.
- struct VISIBILITY_HIDDEN IVExpr {
- const SCEV* Stride;
- const SCEV* Base;
+ struct IVExpr {
+ const SCEV *Stride;
+ const SCEV *Base;
PHINode *PHI;
- IVExpr(const SCEV* const stride, const SCEV* const base, PHINode *phi)
+ IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
: Stride(stride), Base(base), PHI(phi) {}
};
/// IVsOfOneStride - This structure keeps track of all IV expression inserted
/// during StrengthReduceStridedIVUsers for a particular stride of the IV.
- struct VISIBILITY_HIDDEN IVsOfOneStride {
+ struct IVsOfOneStride {
std::vector<IVExpr> IVs;
- void addIV(const SCEV* const Stride, const SCEV* const Base, PHINode *PHI) {
+ void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
IVs.push_back(IVExpr(Stride, Base, PHI));
}
};
- class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
+ class LoopStrengthReduce : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
DominatorTree *DT;
@@ -92,11 +91,11 @@ namespace {
/// IVsByStride - Keep track of all IVs that have been inserted for a
/// particular stride.
- std::map<const SCEV*, IVsOfOneStride> IVsByStride;
+ std::map<const SCEV *, IVsOfOneStride> IVsByStride;
/// StrideNoReuse - Keep track of all the strides whose ivs cannot be
/// reused (nor should they be rewritten to reuse other strides).
- SmallSet<const SCEV*, 4> StrideNoReuse;
+ SmallSet<const SCEV *, 4> StrideNoReuse;
/// DeadInsts - Keep track of instructions we may have made dead, so that
/// we can remove them after we are done working.
@@ -134,7 +133,7 @@ namespace {
private:
ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse,
- const SCEV* const * &CondStride);
+ const SCEV *const * &CondStride);
void OptimizeIndvars(Loop *L);
void OptimizeLoopCountIV(Loop *L);
@@ -150,16 +149,16 @@ namespace {
IVStrideUse* &CondUse);
bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
- const SCEV* const * &CondStride);
+ const SCEV *const * &CondStride);
bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
- const SCEV* CheckForIVReuse(bool, bool, bool, const SCEV* const&,
+ const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&,
IVExpr&, const Type*,
const std::vector<BasedUser>& UsersToProcess);
bool ValidScale(bool, int64_t,
const std::vector<BasedUser>& UsersToProcess);
bool ValidOffset(bool, int64_t, int64_t,
const std::vector<BasedUser>& UsersToProcess);
- const SCEV* CollectIVUsers(const SCEV* const &Stride,
+ const SCEV *CollectIVUsers(const SCEV *const &Stride,
IVUsersOfOneStride &Uses,
Loop *L,
bool &AllUsesAreAddresses,
@@ -169,11 +168,11 @@ namespace {
const std::vector<BasedUser> &UsersToProcess,
const Loop *L,
bool AllUsesAreAddresses,
- const SCEV* Stride);
+ const SCEV *Stride);
void PrepareToStrengthReduceFully(
std::vector<BasedUser> &UsersToProcess,
- const SCEV* Stride,
- const SCEV* CommonExprs,
+ const SCEV *Stride,
+ const SCEV *CommonExprs,
const Loop *L,
SCEVExpander &PreheaderRewriter);
void PrepareToStrengthReduceFromSmallerStride(
@@ -183,13 +182,13 @@ namespace {
Instruction *PreInsertPt);
void PrepareToStrengthReduceWithNewPhi(
std::vector<BasedUser> &UsersToProcess,
- const SCEV* Stride,
- const SCEV* CommonExprs,
+ const SCEV *Stride,
+ const SCEV *CommonExprs,
Value *CommonBaseV,
Instruction *IVIncInsertPt,
const Loop *L,
SCEVExpander &PreheaderRewriter);
- void StrengthReduceStridedIVUsers(const SCEV* const &Stride,
+ void StrengthReduceStridedIVUsers(const SCEV *const &Stride,
IVUsersOfOneStride &Uses,
Loop *L);
void DeleteTriviallyDeadInstructions();
@@ -233,7 +232,7 @@ void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
/// subexpression that is an AddRec from a loop other than L. An outer loop
/// of L is OK, but not an inner loop nor a disjoint loop.
-static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
+static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
// This is very common, put it first.
if (isa<SCEVConstant>(S))
return false;
@@ -248,7 +247,7 @@ static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
if (newLoop == L)
return false;
// if newLoop is an outer loop of L, this is OK.
- if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
+ if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop))
return false;
}
return true;
@@ -328,7 +327,7 @@ namespace {
/// this use. As the use is processed, information gets moved from this
/// field to the Imm field (below). BasedUser values are sorted by this
/// field.
- const SCEV* Base;
+ const SCEV *Base;
/// Inst - The instruction using the induction variable.
Instruction *Inst;
@@ -341,7 +340,7 @@ namespace {
/// before Inst, because it will be folded into the imm field of the
/// instruction. This is also sometimes used for loop-variant values that
/// must be added inside the loop.
- const SCEV* Imm;
+ const SCEV *Imm;
/// Phi - The induction variable that performs the striding that
/// should be used for this user.
@@ -363,13 +362,13 @@ namespace {
// Once we rewrite the code to insert the new IVs we want, update the
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
// to it.
- void RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
+ void RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
Instruction *InsertPt,
SCEVExpander &Rewriter, Loop *L, Pass *P,
LoopInfo &LI,
SmallVectorImpl<WeakVH> &DeadInsts);
- Value *InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
+ Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
const Type *Ty,
SCEVExpander &Rewriter,
Instruction *IP, Loop *L,
@@ -379,12 +378,12 @@ namespace {
}
void BasedUser::dump() const {
- cerr << " Base=" << *Base;
- cerr << " Imm=" << *Imm;
- cerr << " Inst: " << *Inst;
+ errs() << " Base=" << *Base;
+ errs() << " Imm=" << *Imm;
+ errs() << " Inst: " << *Inst;
}
-Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
+Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
const Type *Ty,
SCEVExpander &Rewriter,
Instruction *IP, Loop *L,
@@ -408,7 +407,7 @@ Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
- const SCEV* NewValSCEV = SE->getUnknown(Base);
+ const SCEV *NewValSCEV = SE->getUnknown(Base);
// Always emit the immediate into the same block as the user.
NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
@@ -423,7 +422,7 @@ Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
// value of NewBase in the case that it's a diffferent instruction from
// the PHI that NewBase is computed from, or null otherwise.
//
-void BasedUser::RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
+void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
Instruction *NewBasePt,
SCEVExpander &Rewriter, Loop *L, Pass *P,
LoopInfo &LI,
@@ -460,9 +459,10 @@ void BasedUser::RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
// Replace the use of the operand Value with the new Phi we just created.
Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
- DOUT << " Replacing with ";
- DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
- DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
+ DEBUG(errs() << " Replacing with ");
+ DEBUG(WriteAsOperand(errs(), NewVal, /*PrintType=*/false));
+ DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
+ << *Imm << "\n");
return;
}
@@ -483,43 +483,45 @@ void BasedUser::RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
// loop because multiple copies sometimes do useful sinking of code in
// that case(?).
Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
+ BasicBlock *PHIPred = PN->getIncomingBlock(i);
if (L->contains(OldLoc->getParent())) {
// If this is a critical edge, split the edge so that we do not insert
// the code on all predecessor/successor paths. We do this unless this
// is the canonical backedge for this loop, as this can make some
// inserted code be in an illegal position.
- BasicBlock *PHIPred = PN->getIncomingBlock(i);
if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
(PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
// First step, split the critical edge.
- SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
+ BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
+ P, false);
// Next step: move the basic block. In particular, if the PHI node
// is outside of the loop, and PredTI is in the loop, we want to
// move the block to be immediately before the PHI block, not
// immediately after PredTI.
- if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
- BasicBlock *NewBB = PN->getIncomingBlock(i);
+ if (L->contains(PHIPred) && !L->contains(PN->getParent()))
NewBB->moveBefore(PN->getParent());
- }
// Splitting the edge can reduce the number of PHI entries we have.
e = PN->getNumIncomingValues();
+ PHIPred = NewBB;
+ i = PN->getBasicBlockIndex(PHIPred);
}
}
- Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
+ Value *&Code = InsertedCode[PHIPred];
if (!Code) {
// Insert the code into the end of the predecessor block.
Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
- PN->getIncomingBlock(i)->getTerminator() :
+ PHIPred->getTerminator() :
OldLoc->getParent()->getTerminator();
Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
Rewriter, InsertPt, L, LI);
- DOUT << " Changing PHI use to ";
- DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
- DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
+ DEBUG(errs() << " Changing PHI use to ");
+ DEBUG(WriteAsOperand(errs(), Code, /*PrintType=*/false));
+ DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
+ << *Imm << "\n");
}
// Replace the use of the operand Value with the new Phi we just created.
@@ -535,7 +537,7 @@ void BasedUser::RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
/// fitsInAddressMode - Return true if V can be subsumed within an addressing
/// mode, and does not need to be put in a register first.
-static bool fitsInAddressMode(const SCEV* const &V, const Type *AccessTy,
+static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy,
const TargetLowering *TLI, bool HasBaseReg) {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
int64_t VC = SC->getValue()->getSExtValue();
@@ -567,12 +569,12 @@ static bool fitsInAddressMode(const SCEV* const &V, const Type *AccessTy,
/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
/// loop varying to the Imm operand.
-static void MoveLoopVariantsToImmediateField(const SCEV* &Val, const SCEV* &Imm,
+static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
Loop *L, ScalarEvolution *SE) {
if (Val->isLoopInvariant(L)) return; // Nothing to do.
if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
- SmallVector<const SCEV*, 4> NewOps;
+ SmallVector<const SCEV *, 4> NewOps;
NewOps.reserve(SAE->getNumOperands());
for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
@@ -590,10 +592,10 @@ static void MoveLoopVariantsToImmediateField(const SCEV* &Val, const SCEV* &Imm,
Val = SE->getAddExpr(NewOps);
} else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
// Try to pull immediates out of the start value of nested addrec's.
- const SCEV* Start = SARE->getStart();
+ const SCEV *Start = SARE->getStart();
MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
- SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
+ SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
Ops[0] = Start;
Val = SE->getAddRecExpr(Ops, SARE->getLoop());
} else {
@@ -609,15 +611,15 @@ static void MoveLoopVariantsToImmediateField(const SCEV* &Val, const SCEV* &Imm,
/// Accumulate these immediate values into the Imm value.
static void MoveImmediateValues(const TargetLowering *TLI,
const Type *AccessTy,
- const SCEV* &Val, const SCEV* &Imm,
+ const SCEV *&Val, const SCEV *&Imm,
bool isAddress, Loop *L,
ScalarEvolution *SE) {
if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
- SmallVector<const SCEV*, 4> NewOps;
+ SmallVector<const SCEV *, 4> NewOps;
NewOps.reserve(SAE->getNumOperands());
for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
- const SCEV* NewOp = SAE->getOperand(i);
+ const SCEV *NewOp = SAE->getOperand(i);
MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
if (!NewOp->isLoopInvariant(L)) {
@@ -636,11 +638,11 @@ static void MoveImmediateValues(const TargetLowering *TLI,
return;
} else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
// Try to pull immediates out of the start value of nested addrec's.
- const SCEV* Start = SARE->getStart();
+ const SCEV *Start = SARE->getStart();
MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
if (Start != SARE->getStart()) {
- SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
+ SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
Ops[0] = Start;
Val = SE->getAddRecExpr(Ops, SARE->getLoop());
}
@@ -651,8 +653,8 @@ static void MoveImmediateValues(const TargetLowering *TLI,
fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
- const SCEV* SubImm = SE->getIntegerSCEV(0, Val->getType());
- const SCEV* NewOp = SME->getOperand(1);
+ const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
+ const SCEV *NewOp = SME->getOperand(1);
MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
// If we extracted something out of the subexpressions, see if we can
@@ -687,7 +689,7 @@ static void MoveImmediateValues(const TargetLowering *TLI,
static void MoveImmediateValues(const TargetLowering *TLI,
Instruction *User,
- const SCEV* &Val, const SCEV* &Imm,
+ const SCEV *&Val, const SCEV *&Imm,
bool isAddress, Loop *L,
ScalarEvolution *SE) {
const Type *AccessTy = getAccessType(User);
@@ -697,19 +699,19 @@ static void MoveImmediateValues(const TargetLowering *TLI,
/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
/// added together. This is used to reassociate common addition subexprs
/// together for maximal sharing when rewriting bases.
-static void SeparateSubExprs(SmallVector<const SCEV*, 16> &SubExprs,
- const SCEV* Expr,
+static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
+ const SCEV *Expr,
ScalarEvolution *SE) {
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
} else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
- const SCEV* Zero = SE->getIntegerSCEV(0, Expr->getType());
+ const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
if (SARE->getOperand(0) == Zero) {
SubExprs.push_back(Expr);
} else {
// Compute the addrec with zero as its base.
- SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
+ SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
Ops[0] = Zero; // Start with zero base.
SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
@@ -733,7 +735,7 @@ struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
/// not remove anything. This looks for things like (a+b+c) and
/// (a+c+d) and computes the common (a+c) subexpression. The common expression
/// is *removed* from the Bases and returned.
-static const SCEV*
+static const SCEV *
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
ScalarEvolution *SE, Loop *L,
const TargetLowering *TLI) {
@@ -741,9 +743,9 @@ RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
// Only one use? This is a very common case, so we handle it specially and
// cheaply.
- const SCEV* Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
- const SCEV* Result = Zero;
- const SCEV* FreeResult = Zero;
+ const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
+ const SCEV *Result = Zero;
+ const SCEV *FreeResult = Zero;
if (NumUses == 1) {
// If the use is inside the loop, use its base, regardless of what it is:
// it is clearly shared across all the IV's. If the use is outside the loop
@@ -759,13 +761,13 @@ RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
// Also track whether all uses of each expression can be moved into an
// an addressing mode "for free"; such expressions are left within the loop.
// struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
- std::map<const SCEV*, SubExprUseData> SubExpressionUseData;
+ std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
// UniqueSubExprs - Keep track of all of the subexpressions we see in the
// order we see them.
- SmallVector<const SCEV*, 16> UniqueSubExprs;
+ SmallVector<const SCEV *, 16> UniqueSubExprs;
- SmallVector<const SCEV*, 16> SubExprs;
+ SmallVector<const SCEV *, 16> SubExprs;
unsigned NumUsesInsideLoop = 0;
for (unsigned i = 0; i != NumUses; ++i) {
// If the user is outside the loop, just ignore it for base computation.
@@ -809,7 +811,7 @@ RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
// Now that we know how many times each is used, build Result. Iterate over
// UniqueSubexprs so that we have a stable ordering.
for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
- std::map<const SCEV*, SubExprUseData>::iterator I =
+ std::map<const SCEV *, SubExprUseData>::iterator I =
SubExpressionUseData.find(UniqueSubExprs[i]);
assert(I != SubExpressionUseData.end() && "Entry not found?");
if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
@@ -853,7 +855,7 @@ RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
if (FreeResult != Zero) {
SeparateSubExprs(SubExprs, FreeResult, SE);
for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
- std::map<const SCEV*, SubExprUseData>::iterator I =
+ std::map<const SCEV *, SubExprUseData>::iterator I =
SubExpressionUseData.find(SubExprs[j]);
SubExpressionUseData.erase(I);
}
@@ -902,7 +904,8 @@ bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
// If this is a load or other access, pass the type of the access in.
- const Type *AccessTy = Type::VoidTy;
+ const Type *AccessTy =
+ Type::getVoidTy(UsersToProcess[i].Inst->getContext());
if (isAddressUse(UsersToProcess[i].Inst,
UsersToProcess[i].OperandValToReplace))
AccessTy = getAccessType(UsersToProcess[i].Inst);
@@ -934,7 +937,8 @@ bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
// If this is a load or other access, pass the type of the access in.
- const Type *AccessTy = Type::VoidTy;
+ const Type *AccessTy =
+ Type::getVoidTy(UsersToProcess[i].Inst->getContext());
if (isAddressUse(UsersToProcess[i].Inst,
UsersToProcess[i].OperandValToReplace))
AccessTy = getAccessType(UsersToProcess[i].Inst);
@@ -982,10 +986,10 @@ bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
/// be folded into the addressing mode, nor even that the factor be constant;
/// a multiply (executed once) outside the loop is better than another IV
/// within. Well, usually.
-const SCEV* LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
+const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
bool AllUsesAreAddresses,
bool AllUsesAreOutsideLoop,
- const SCEV* const &Stride,
+ const SCEV *const &Stride,
IVExpr &IV, const Type *Ty,
const std::vector<BasedUser>& UsersToProcess) {
if (StrideNoReuse.count(Stride))
@@ -995,7 +999,7 @@ const SCEV* LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
int64_t SInt = SC->getValue()->getSExtValue();
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
- std::map<const SCEV*, IVsOfOneStride>::iterator SI =
+ std::map<const SCEV *, IVsOfOneStride>::iterator SI =
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
StrideNoReuse.count(SI->first))
@@ -1048,7 +1052,7 @@ const SCEV* LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
// an existing IV if we can.
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
- std::map<const SCEV*, IVsOfOneStride>::iterator SI =
+ std::map<const SCEV *, IVsOfOneStride>::iterator SI =
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
continue;
@@ -1068,7 +1072,7 @@ const SCEV* LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
// -1*old.
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
- std::map<const SCEV*, IVsOfOneStride>::iterator SI =
+ std::map<const SCEV *, IVsOfOneStride>::iterator SI =
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end())
continue;
@@ -1097,7 +1101,7 @@ static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
/// isNonConstantNegative - Return true if the specified scev is negated, but
/// not a constant.
-static bool isNonConstantNegative(const SCEV* const &Expr) {
+static bool isNonConstantNegative(const SCEV *const &Expr) {
const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
if (!Mul) return false;
@@ -1114,7 +1118,7 @@ static bool isNonConstantNegative(const SCEV* const &Expr) {
/// of the strided accesses, as well as the old information from Uses. We
/// progressively move information from the Base field to the Imm field, until
/// we eventually have the full access expression to rewrite the use.
-const SCEV* LoopStrengthReduce::CollectIVUsers(const SCEV* const &Stride,
+const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride,
IVUsersOfOneStride &Uses,
Loop *L,
bool &AllUsesAreAddresses,
@@ -1145,7 +1149,7 @@ const SCEV* LoopStrengthReduce::CollectIVUsers(const SCEV* const &Stride,
// for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
// "A+B"), emit it to the preheader, then remove the expression from the
// UsersToProcess base values.
- const SCEV* CommonExprs =
+ const SCEV *CommonExprs =
RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
// Next, figure out what we can represent in the immediate fields of
@@ -1211,7 +1215,7 @@ bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
const std::vector<BasedUser> &UsersToProcess,
const Loop *L,
bool AllUsesAreAddresses,
- const SCEV* Stride) {
+ const SCEV *Stride) {
if (!EnableFullLSRMode)
return false;
@@ -1248,7 +1252,7 @@ bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
const Instruction *Inst = UsersToProcess[i].Inst;
const Type *AccessTy = getAccessType(Inst);
- const SCEV* Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
+ const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
if (!Diff->isZero() &&
(!AllUsesAreAddresses ||
!fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
@@ -1282,7 +1286,7 @@ bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
///
/// Return the created phi node.
///
-static PHINode *InsertAffinePhi(const SCEV* Start, const SCEV* Step,
+static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
Instruction *IVIncInsertPt,
const Loop *L,
SCEVExpander &Rewriter) {
@@ -1302,7 +1306,7 @@ static PHINode *InsertAffinePhi(const SCEV* Start, const SCEV* Step,
// If the stride is negative, insert a sub instead of an add for the
// increment.
bool isNegative = isNonConstantNegative(Step);
- const SCEV* IncAmount = Step;
+ const SCEV *IncAmount = Step;
if (isNegative)
IncAmount = Rewriter.SE.getNegativeSCEV(Step);
@@ -1341,13 +1345,13 @@ static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
// loop before users outside of the loop with a particular base.
//
// We would like to use stable_sort here, but we can't. The problem is that
- // const SCEV*'s don't have a deterministic ordering w.r.t to each other, so
+ // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
// we don't have anything to do a '<' comparison on. Because we think the
// number of uses is small, do a horrible bubble sort which just relies on
// ==.
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
// Get a base value.
- const SCEV* Base = UsersToProcess[i].Base;
+ const SCEV *Base = UsersToProcess[i].Base;
// Compact everything with this base to be consecutive with this one.
for (unsigned j = i+1; j != e; ++j) {
@@ -1366,11 +1370,11 @@ static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
void
LoopStrengthReduce::PrepareToStrengthReduceFully(
std::vector<BasedUser> &UsersToProcess,
- const SCEV* Stride,
- const SCEV* CommonExprs,
+ const SCEV *Stride,
+ const SCEV *CommonExprs,
const Loop *L,
SCEVExpander &PreheaderRewriter) {
- DOUT << " Fully reducing all users\n";
+ DEBUG(errs() << " Fully reducing all users\n");
// Rewrite the UsersToProcess records, creating a separate PHI for each
// unique Base value.
@@ -1379,9 +1383,9 @@ LoopStrengthReduce::PrepareToStrengthReduceFully(
// TODO: The uses are grouped by base, but not sorted. We arbitrarily
// pick the first Imm value here to start with, and adjust it for the
// other uses.
- const SCEV* Imm = UsersToProcess[i].Imm;
- const SCEV* Base = UsersToProcess[i].Base;
- const SCEV* Start = SE->getAddExpr(CommonExprs, Base, Imm);
+ const SCEV *Imm = UsersToProcess[i].Imm;
+ const SCEV *Base = UsersToProcess[i].Base;
+ const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
PreheaderRewriter);
// Loop over all the users with the same base.
@@ -1413,13 +1417,13 @@ static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
void
LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
std::vector<BasedUser> &UsersToProcess,
- const SCEV* Stride,
- const SCEV* CommonExprs,
+ const SCEV *Stride,
+ const SCEV *CommonExprs,
Value *CommonBaseV,
Instruction *IVIncInsertPt,
const Loop *L,
SCEVExpander &PreheaderRewriter) {
- DOUT << " Inserting new PHI:\n";
+ DEBUG(errs() << " Inserting new PHI:\n");
PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
Stride, IVIncInsertPt, L,
@@ -1432,9 +1436,9 @@ LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
UsersToProcess[i].Phi = Phi;
- DOUT << " IV=";
- DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
- DOUT << "\n";
+ DEBUG(errs() << " IV=");
+ DEBUG(WriteAsOperand(errs(), Phi, /*PrintType=*/false));
+ DEBUG(errs() << "\n");
}
/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
@@ -1447,8 +1451,8 @@ LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
Value *CommonBaseV,
const IVExpr &ReuseIV,
Instruction *PreInsertPt) {
- DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
- << " and BASE " << *ReuseIV.Base << "\n";
+ DEBUG(errs() << " Rewriting in terms of existing IV of STRIDE "
+ << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
// All the users will share the reused IV.
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
@@ -1490,7 +1494,7 @@ static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV. All of the users may have different starting values, and this
/// may not be the only stride.
-void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
+void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV *const &Stride,
IVUsersOfOneStride &Uses,
Loop *L) {
// If all the users are moved to another stride, then there is nothing to do.
@@ -1513,7 +1517,7 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// move information from the Base field to the Imm field, until we eventually
// have the full access expression to rewrite the use.
std::vector<BasedUser> UsersToProcess;
- const SCEV* CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
+ const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
AllUsesAreOutsideLoop,
UsersToProcess);
@@ -1531,9 +1535,11 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// If all uses are addresses, consider sinking the immediate part of the
// common expression back into uses if they can fit in the immediate fields.
if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
- const SCEV* NewCommon = CommonExprs;
- const SCEV* Imm = SE->getIntegerSCEV(0, ReplacedTy);
- MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
+ const SCEV *NewCommon = CommonExprs;
+ const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
+ MoveImmediateValues(TLI, Type::getVoidTy(
+ L->getLoopPreheader()->getContext()),
+ NewCommon, Imm, true, L, SE);
if (!Imm->isZero()) {
bool DoSink = true;
@@ -1548,11 +1554,12 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
if (GV || Offset)
// Pass VoidTy as the AccessTy to be conservative, because
// there could be multiple access types among all the uses.
- DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
+ DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
+ Type::getVoidTy(L->getLoopPreheader()->getContext()),
UsersToProcess, TLI);
if (DoSink) {
- DOUT << " Sinking " << *Imm << " back down into uses\n";
+ DEBUG(errs() << " Sinking " << *Imm << " back down into uses\n");
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
CommonExprs = NewCommon;
@@ -1564,9 +1571,9 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// Now that we know what we need to do, insert the PHI node itself.
//
- DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
- << *Stride << ":\n"
- << " Common base: " << *CommonExprs << "\n";
+ DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
+ << *Stride << ":\n"
+ << " Common base: " << *CommonExprs << "\n");
SCEVExpander Rewriter(*SE);
SCEVExpander PreheaderRewriter(*SE);
@@ -1576,11 +1583,13 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
BasicBlock *LatchBlock = L->getLoopLatch();
Instruction *IVIncInsertPt = LatchBlock->getTerminator();
- Value *CommonBaseV = Context->getNullValue(ReplacedTy);
+ Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
- const SCEV* RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
- IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
- SE->getIntegerSCEV(0, Type::Int32Ty),
+ const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
+ IVExpr ReuseIV(SE->getIntegerSCEV(0,
+ Type::getInt32Ty(Preheader->getContext())),
+ SE->getIntegerSCEV(0,
+ Type::getInt32Ty(Preheader->getContext())),
0);
/// Choose a strength-reduction strategy and prepare for it by creating
@@ -1618,7 +1627,7 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// strength-reduced forms. This outer loop handles all bases, the inner
// loop handles all users of a particular base.
while (!UsersToProcess.empty()) {
- const SCEV* Base = UsersToProcess.back().Base;
+ const SCEV *Base = UsersToProcess.back().Base;
Instruction *Inst = UsersToProcess.back().Inst;
// Emit the code for Base into the preheader.
@@ -1626,17 +1635,17 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
if (!Base->isZero()) {
BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
- DOUT << " INSERTING code for BASE = " << *Base << ":";
+ DEBUG(errs() << " INSERTING code for BASE = " << *Base << ":");
if (BaseV->hasName())
- DOUT << " Result value name = %" << BaseV->getNameStr();
- DOUT << "\n";
+ DEBUG(errs() << " Result value name = %" << BaseV->getName());
+ DEBUG(errs() << "\n");
// If BaseV is a non-zero constant, make sure that it gets inserted into
// the preheader, instead of being forward substituted into the uses. We
// do this by forcing a BitCast (noop cast) to be inserted into the
// preheader in this case.
if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
- !isa<Instruction>(BaseV)) {
+ isa<Constant>(BaseV)) {
// We want this constant emitted into the preheader! This is just
// using cast as a copy so BitCast (no-op cast) is appropriate
BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
@@ -1650,15 +1659,15 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// FIXME: Use emitted users to emit other users.
BasedUser &User = UsersToProcess.back();
- DOUT << " Examining ";
+ DEBUG(errs() << " Examining ");
if (User.isUseOfPostIncrementedValue)
- DOUT << "postinc";
+ DEBUG(errs() << "postinc");
else
- DOUT << "preinc";
- DOUT << " use ";
- DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
+ DEBUG(errs() << "preinc");
+ DEBUG(errs() << " use ");
+ DEBUG(WriteAsOperand(errs(), UsersToProcess.back().OperandValToReplace,
/*PrintType=*/false));
- DOUT << " in Inst: " << *(User.Inst);
+ DEBUG(errs() << " in Inst: " << *User.Inst);
// If this instruction wants to use the post-incremented value, move it
// after the post-inc and use its value instead of the PHI.
@@ -1673,7 +1682,7 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
User.Inst->moveBefore(IVIncInsertPt);
}
- const SCEV* RewriteExpr = SE->getUnknown(RewriteOp);
+ const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
SE->getEffectiveSCEVType(ReplacedTy)) {
@@ -1705,7 +1714,7 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
// The base has been used to initialize the PHI node but we don't want
// it here.
if (!ReuseIV.Base->isZero()) {
- const SCEV* typedBase = ReuseIV.Base;
+ const SCEV *typedBase = ReuseIV.Base;
if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
// It's possible the original IV is a larger type than the new IV,
@@ -1770,10 +1779,10 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
/// set the IV user and stride information and return true, otherwise return
/// false.
bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
- const SCEV* const * &CondStride) {
+ const SCEV *const * &CondStride) {
for (unsigned Stride = 0, e = IU->StrideOrder.size();
Stride != e && !CondUse; ++Stride) {
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
@@ -1800,7 +1809,7 @@ namespace {
const ScalarEvolution *SE;
explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
- bool operator()(const SCEV* const &LHS, const SCEV* const &RHS) {
+ bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) {
const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
if (LHSC && RHSC) {
@@ -1843,14 +1852,14 @@ namespace {
/// if (v1 < 30) goto loop
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse,
- const SCEV* const* &CondStride) {
+ const SCEV *const* &CondStride) {
// If there's only one stride in the loop, there's nothing to do here.
if (IU->StrideOrder.size() < 2)
return Cond;
// If there are other users of the condition's stride, don't bother
// trying to change the condition because the stride will still
// remain.
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator I =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
IU->IVUsesByStride.find(*CondStride);
if (I == IU->IVUsesByStride.end() ||
I->second->Users.size() != 1)
@@ -1867,11 +1876,11 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
const Type *NewCmpTy = NULL;
unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
unsigned NewTyBits = 0;
- const SCEV* *NewStride = NULL;
+ const SCEV **NewStride = NULL;
Value *NewCmpLHS = NULL;
Value *NewCmpRHS = NULL;
int64_t Scale = 1;
- const SCEV* NewOffset = SE->getIntegerSCEV(0, CmpTy);
+ const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
int64_t CmpVal = C->getValue().getSExtValue();
@@ -1883,7 +1892,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
// Look for a suitable stride / iv as replacement.
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
if (!isa<SCEVConstant>(SI->first))
continue;
@@ -1942,7 +1951,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
NewCmpTy = NewCmpLHS->getType();
NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
- const Type *NewCmpIntTy = Context->getIntegerType(NewTyBits);
+ const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
// Check if it is possible to rewrite it using
// an iv / stride of a smaller integer type.
@@ -1963,7 +1972,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
bool AllUsesAreAddresses = true;
bool AllUsesAreOutsideLoop = true;
std::vector<BasedUser> UsersToProcess;
- const SCEV* CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
+ const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
AllUsesAreAddresses,
AllUsesAreOutsideLoop,
UsersToProcess);
@@ -1987,10 +1996,10 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
NewStride = &IU->StrideOrder[i];
if (!isa<PointerType>(NewCmpTy))
- NewCmpRHS = Context->getConstantInt(NewCmpTy, NewCmpVal);
+ NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
else {
- Constant *CI = Context->getConstantInt(NewCmpIntTy, NewCmpVal);
- NewCmpRHS = Context->getConstantExprIntToPtr(CI, NewCmpTy);
+ Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
+ NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
}
NewOffset = TyBits == NewTyBits
? SE->getMulExpr(CondUse->getOffset(),
@@ -2019,9 +2028,8 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
// Create a new compare instruction using new stride / iv.
ICmpInst *OldCond = Cond;
// Insert new compare instruction.
- Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
- L->getHeader()->getName() + ".termcond",
- OldCond);
+ Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
+ L->getHeader()->getName() + ".termcond");
// Remove the old compare instruction. The old indvar is probably dead too.
DeadInsts.push_back(CondUse->getOperandValToReplace());
@@ -2098,13 +2106,13 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
if (!Sel || !Sel->hasOneUse()) return Cond;
- const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return Cond;
- const SCEV* One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
+ const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
// Add one to the backedge-taken count to get the trip count.
- const SCEV* IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
+ const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
// Check for a max calculation that matches the pattern.
if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
@@ -2117,13 +2125,13 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
if (Max->getNumOperands() != 2)
return Cond;
- const SCEV* MaxLHS = Max->getOperand(0);
- const SCEV* MaxRHS = Max->getOperand(1);
+ const SCEV *MaxLHS = Max->getOperand(0);
+ const SCEV *MaxRHS = Max->getOperand(1);
if (!MaxLHS || MaxLHS != One) return Cond;
// Check the relevant induction variable for conformance to
// the pattern.
- const SCEV* IV = SE->getSCEV(Cond->getOperand(0));
+ const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
if (!AR || !AR->isAffine() ||
AR->getStart() != One ||
@@ -2152,7 +2160,7 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
// Ok, everything looks ok to change the condition into an SLT or SGE and
// delete the max calculation.
ICmpInst *NewCond =
- new ICmpInst(Pred, Cond->getOperand(0), NewRHS, "scmp", Cond);
+ new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
// Delete the max calculation instructions.
Cond->replaceAllUsesWith(NewCond);
@@ -2169,13 +2177,13 @@ ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
/// inside the loop then try to eliminate the cast opeation.
void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
- const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return;
-
+
for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
++Stride) {
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
if (!isa<SCEVConstant>(SI->first))
@@ -2209,7 +2217,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
if (TLI) {
// If target does not support DestTy natively then do not apply
// this transformation.
- MVT DVT = TLI->getValueType(DestTy);
+ EVT DVT = TLI->getValueType(DestTy);
if (!TLI->isTypeLegal(DVT)) continue;
}
@@ -2234,7 +2242,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
if (!Init) continue;
- Constant *NewInit = Context->getConstantFP(DestTy, Init->getZExtValue());
+ Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
@@ -2258,7 +2266,7 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
/* create new increment. '++d' in above example. */
- Constant *CFP = Context->getConstantFP(DestTy, C->getZExtValue());
+ Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
BinaryOperator *NewIncr =
BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
Instruction::FAdd : Instruction::FSub,
@@ -2294,6 +2302,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
// one register value.
BasicBlock *LatchBlock = L->getLoopLatch();
BasicBlock *ExitingBlock = L->getExitingBlock();
+
if (!ExitingBlock)
// Multiple exits, just look at the exit in the latch block if there is one.
ExitingBlock = LatchBlock;
@@ -2305,7 +2314,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
// Search IVUsesByStride to find Cond's IVUse if there is one.
IVStrideUse *CondUse = 0;
- const SCEV* const *CondStride = 0;
+ const SCEV *const *CondStride = 0;
ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
if (!FindIVUserForCond(Cond, CondUse, CondStride))
return; // setcc doesn't use the IV.
@@ -2335,7 +2344,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
int64_t SInt = SC->getValue()->getSExtValue();
for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
++NewStride) {
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
continue;
@@ -2349,7 +2358,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
bool AllUsesAreAddresses = true;
bool AllUsesAreOutsideLoop = true;
std::vector<BasedUser> UsersToProcess;
- const SCEV* CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
+ const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
AllUsesAreAddresses,
AllUsesAreOutsideLoop,
UsersToProcess);
@@ -2410,7 +2419,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
// If the number of times the loop is executed isn't computable, give up.
- const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return;
@@ -2439,9 +2448,9 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
// Handle only tests for equality for the moment, and only stride 1.
if (Cond->getPredicate() != CmpInst::ICMP_EQ)
return;
- const SCEV* IV = SE->getSCEV(Cond->getOperand(0));
+ const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
- const SCEV* One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
+ const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
return;
// If the RHS of the comparison is defined inside the loop, the rewrite
@@ -2497,7 +2506,7 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
Value *startVal = phi->getIncomingValue(inBlock);
Value *endVal = Cond->getOperand(1);
// FIXME check for case where both are constant
- Constant* Zero = Context->getConstantInt(Cond->getOperand(1)->getType(), 0);
+ Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
BinaryOperator *NewStartVal =
BinaryOperator::Create(Instruction::Sub, endVal, startVal,
"tmp", PreInsertPt);
@@ -2516,11 +2525,9 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
Changed = false;
if (!IU->IVUsesByStride.empty()) {
-#ifndef NDEBUG
- DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
- << "\" ";
- DEBUG(L->dump());
-#endif
+ DEBUG(errs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
+ << "\" ";
+ L->dump());
// Sort the StrideOrder so we process larger strides first.
std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
@@ -2557,7 +2564,7 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
// strides deterministic - not dependent on map order.
for (unsigned Stride = 0, e = IU->StrideOrder.size();
Stride != e; ++Stride) {
- std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
// FIXME: Generalize to non-affine IV's.
diff --git a/lib/Transforms/Scalar/LoopUnroll.cpp b/lib/Transforms/Scalar/LoopUnroll.cpp
index 23757cd..837ec59 100644
--- a/lib/Transforms/Scalar/LoopUnroll.cpp
+++ b/lib/Transforms/Scalar/LoopUnroll.cpp
@@ -17,9 +17,9 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <climits>
@@ -39,7 +39,7 @@ UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
"-unroll-threshold loop size is reached."));
namespace {
- class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
+ class LoopUnroll : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopUnroll() : LoopPass(&ID) {}
@@ -96,10 +96,7 @@ static unsigned ApproximateLoopSize(const Loop *L) {
// is higher than other instructions. Here 3 and 10 are magic
// numbers that help one isolated test case from PR2067 without
// negatively impacting measured benchmarks.
- if (isa<IntrinsicInst>(I))
- Size = Size + 3;
- else
- Size = Size + 10;
+ Size += isa<IntrinsicInst>(I) ? 3 : 10;
} else {
++Size;
}
@@ -118,51 +115,48 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
LoopInfo *LI = &getAnalysis<LoopInfo>();
BasicBlock *Header = L->getHeader();
- DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
- << "] Loop %" << Header->getName() << "\n";
+ DEBUG(errs() << "Loop Unroll: F[" << Header->getParent()->getName()
+ << "] Loop %" << Header->getName() << "\n");
+ (void)Header;
// Find trip count
unsigned TripCount = L->getSmallConstantTripCount();
unsigned Count = UnrollCount;
-
+
// Automatically select an unroll count.
if (Count == 0) {
// Conservative heuristic: if we know the trip count, see if we can
// completely unroll (subject to the threshold, checked below); otherwise
- // try to find greatest modulo of the trip count which is still under
+ // try to find greatest modulo of the trip count which is still under
// threshold value.
- if (TripCount != 0) {
- Count = TripCount;
- } else {
+ if (TripCount == 0)
return false;
- }
+ Count = TripCount;
}
// Enforce the threshold.
if (UnrollThreshold != NoThreshold) {
unsigned LoopSize = ApproximateLoopSize(L);
- DOUT << " Loop Size = " << LoopSize << "\n";
+ DEBUG(errs() << " Loop Size = " << LoopSize << "\n");
uint64_t Size = (uint64_t)LoopSize*Count;
if (TripCount != 1 && Size > UnrollThreshold) {
- DOUT << " Too large to fully unroll with count: " << Count
- << " because size: " << Size << ">" << UnrollThreshold << "\n";
- if (UnrollAllowPartial) {
- // Reduce unroll count to be modulo of TripCount for partial unrolling
- Count = UnrollThreshold / LoopSize;
- while (Count != 0 && TripCount%Count != 0) {
- Count--;
- }
- if (Count < 2) {
- DOUT << " could not unroll partially\n";
- return false;
- } else {
- DOUT << " partially unrolling with count: " << Count << "\n";
- }
- } else {
- DOUT << " will not try to unroll partially because "
- << "-unroll-allow-partial not given\n";
+ DEBUG(errs() << " Too large to fully unroll with count: " << Count
+ << " because size: " << Size << ">" << UnrollThreshold << "\n");
+ if (!UnrollAllowPartial) {
+ DEBUG(errs() << " will not try to unroll partially because "
+ << "-unroll-allow-partial not given\n");
+ return false;
+ }
+ // Reduce unroll count to be modulo of TripCount for partial unrolling
+ Count = UnrollThreshold / LoopSize;
+ while (Count != 0 && TripCount%Count != 0) {
+ Count--;
+ }
+ if (Count < 2) {
+ DEBUG(errs() << " could not unroll partially\n");
return false;
}
+ DEBUG(errs() << " partially unrolling with count: " << Count << "\n");
}
}
diff --git a/lib/Transforms/Scalar/LoopUnswitch.cpp b/lib/Transforms/Scalar/LoopUnswitch.cpp
index de5eedf..f6de362 100644
--- a/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ b/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -34,6 +34,7 @@
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
@@ -44,8 +45,8 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
using namespace llvm;
@@ -56,12 +57,14 @@ STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
+// The specific value of 50 here was chosen based only on intuition and a
+// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
- cl::init(10), cl::Hidden);
+ cl::init(50), cl::Hidden);
namespace {
- class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
+ class LoopUnswitch : public LoopPass {
LoopInfo *LI; // Loop information
LPPassManager *LPM;
@@ -112,6 +115,10 @@ namespace {
private:
+ virtual void releaseMemory() {
+ UnswitchedVals.clear();
+ }
+
/// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
/// remove it.
void RemoveLoopFromWorklist(Loop *L) {
@@ -168,8 +175,10 @@ static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
if (isa<Constant>(Cond)) return 0;
// TODO: Handle: br (VARIANT|INVARIANT).
- // TODO: Hoist simple expressions out of loops.
- if (L->isLoopInvariant(Cond)) return Cond;
+
+ // Hoist simple values out.
+ if (L->makeLoopInvariant(Cond, Changed))
+ return Cond;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
if (BO->getOpcode() == Instruction::And ||
@@ -214,6 +223,7 @@ bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
/// and profitable.
bool LoopUnswitch::processCurrentLoop() {
bool Changed = false;
+ LLVMContext &Context = currentLoop->getHeader()->getContext();
// Loop over all of the basic blocks in the loop. If we find an interior
// block that is branching on a loop-invariant condition, we can unswitch this
@@ -231,7 +241,7 @@ bool LoopUnswitch::processCurrentLoop() {
Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
- Context->getConstantIntTrue())) {
+ ConstantInt::getTrue(Context))) {
++NumBranches;
return true;
}
@@ -261,7 +271,7 @@ bool LoopUnswitch::processCurrentLoop() {
Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
currentLoop, Changed);
if (LoopCond && UnswitchIfProfitable(LoopCond,
- Context->getConstantIntTrue())) {
+ ConstantInt::getTrue(Context))) {
++NumSelects;
return true;
}
@@ -335,6 +345,7 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
BasicBlock **LoopExit) {
BasicBlock *Header = currentLoop->getHeader();
TerminatorInst *HeaderTerm = Header->getTerminator();
+ LLVMContext &Context = Header->getContext();
BasicBlock *LoopExitBB = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
@@ -349,10 +360,10 @@ bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
// this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
- if (Val) *Val = Context->getConstantIntTrue();
+ if (Val) *Val = ConstantInt::getTrue(Context);
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
- if (Val) *Val = Context->getConstantIntFalse();
+ if (Val) *Val = ConstantInt::getFalse(Context);
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
// If this isn't a switch on Cond, we can't handle it.
@@ -398,29 +409,14 @@ unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
if (IsTrivialUnswitchCondition(LIC))
return 0;
- // FIXME: This is really overly conservative. However, more liberal
- // estimations have thus far resulted in excessive unswitching, which is bad
- // both in compile time and in code size. This should be replaced once
- // someone figures out how a good estimation.
- return currentLoop->getBlocks().size();
-
- unsigned Cost = 0;
- // FIXME: this is brain dead. It should take into consideration code
- // shrinkage.
+ // FIXME: This is overly conservative because it does not take into
+ // consideration code simplification opportunities.
+ CodeMetrics Metrics;
for (Loop::block_iterator I = currentLoop->block_begin(),
E = currentLoop->block_end();
- I != E; ++I) {
- BasicBlock *BB = *I;
- // Do not include empty blocks in the cost calculation. This happen due to
- // loop canonicalization and will be removed.
- if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
- continue;
-
- // Count basic blocks.
- ++Cost;
- }
-
- return Cost;
+ I != E; ++I)
+ Metrics.analyzeBasicBlock(*I);
+ return Metrics.NumInsts;
}
/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
@@ -445,9 +441,9 @@ bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
// FIXME: this should estimate growth by the amount of code shared by the
// resultant unswitched loops.
//
- DOUT << "NOT unswitching loop %"
- << currentLoop->getHeader()->getName() << ", cost too high: "
- << currentLoop->getBlocks().size() << "\n";
+ DEBUG(errs() << "NOT unswitching loop %"
+ << currentLoop->getHeader()->getName() << ", cost too high: "
+ << currentLoop->getBlocks().size() << "\n");
return false;
}
@@ -506,14 +502,20 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
// Insert a conditional branch on LIC to the two preheaders. The original
// code is the true version and the new code is the false version.
Value *BranchVal = LIC;
- if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
- BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
- else if (Val != Context->getConstantIntTrue())
+ if (!isa<ConstantInt>(Val) ||
+ Val->getType() != Type::getInt1Ty(LIC->getContext()))
+ BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
+ else if (Val != ConstantInt::getTrue(Val->getContext()))
// We want to enter the new loop when the condition is true.
std::swap(TrueDest, FalseDest);
// Insert the new branch.
- BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
+ BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
+
+ // If either edge is critical, split it. This helps preserve LoopSimplify
+ // form for enclosing loops.
+ SplitCriticalEdge(BI, 0, this);
+ SplitCriticalEdge(BI, 1, this);
}
/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
@@ -524,10 +526,10 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
Constant *Val,
BasicBlock *ExitBlock) {
- DOUT << "loop-unswitch: Trivial-Unswitch loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function " << L->getHeader()->getParent()->getName()
- << " on cond: " << *Val << " == " << *Cond << "\n";
+ DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function " << L->getHeader()->getParent()->getName()
+ << " on cond: " << *Val << " == " << *Cond << "\n");
// First step, split the preheader, so that we know that there is a safe place
// to insert the conditional branch. We will change loopPreheader to have a
@@ -570,47 +572,11 @@ void LoopUnswitch::SplitExitEdges(Loop *L,
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
- std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
-
- for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
- BasicBlock* NewExitBlock = SplitEdge(Preds[j], ExitBlock, this);
- BasicBlock* StartBlock = Preds[j];
- BasicBlock* EndBlock;
- if (NewExitBlock->getSinglePredecessor() == ExitBlock) {
- EndBlock = NewExitBlock;
- NewExitBlock = EndBlock->getSinglePredecessor();
- } else {
- EndBlock = ExitBlock;
- }
-
- std::set<PHINode*> InsertedPHIs;
- PHINode* OldLCSSA = 0;
- for (BasicBlock::iterator I = EndBlock->begin();
- (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
- Value* OldValue = OldLCSSA->getIncomingValueForBlock(NewExitBlock);
- PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
- OldLCSSA->getName() + ".us-lcssa",
- NewExitBlock->getTerminator());
- NewLCSSA->addIncoming(OldValue, StartBlock);
- OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(NewExitBlock),
- NewLCSSA);
- InsertedPHIs.insert(NewLCSSA);
- }
-
- BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
- for (BasicBlock::iterator I = NewExitBlock->begin();
- (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
- ++I) {
- PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
- OldLCSSA->getName() + ".us-lcssa",
- InsertPt);
- OldLCSSA->replaceAllUsesWith(NewLCSSA);
- NewLCSSA->addIncoming(OldLCSSA, NewExitBlock);
- }
-
- }
+ SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
+ pred_end(ExitBlock));
+ SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
+ ".us-lcssa", this);
}
-
}
/// UnswitchNontrivialCondition - We determined that the loop is profitable
@@ -619,10 +585,10 @@ void LoopUnswitch::SplitExitEdges(Loop *L,
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
Loop *L) {
Function *F = loopHeader->getParent();
- DOUT << "loop-unswitch: Unswitching loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function " << F->getName()
- << " when '" << *Val << "' == " << *LIC << "\n";
+ DEBUG(errs() << "loop-unswitch: Unswitching loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function " << F->getName()
+ << " when '" << *Val << "' == " << *LIC << "\n");
LoopBlocks.clear();
NewBlocks.clear();
@@ -745,7 +711,7 @@ static void RemoveFromWorklist(Instruction *I,
static void ReplaceUsesOfWith(Instruction *I, Value *V,
std::vector<Instruction*> &Worklist,
Loop *L, LPPassManager *LPM) {
- DOUT << "Replace with '" << *V << "': " << *I;
+ DEBUG(errs() << "Replace with '" << *V << "': " << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
@@ -788,7 +754,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
// dominates the latch).
LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
Pred->getTerminator()->eraseFromParent();
- new UnreachableInst(Pred);
+ new UnreachableInst(BB->getContext(), Pred);
// The loop is now broken, remove it from LI.
RemoveLoopFromHierarchy(L);
@@ -807,7 +773,7 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
return;
}
- DOUT << "Nuking dead block: " << *BB;
+ DEBUG(errs() << "Nuking dead block: " << *BB);
// Remove the instructions in the basic block from the worklist.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
@@ -815,8 +781,10 @@ void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
// Anything that uses the instructions in this basic block should have their
// uses replaced with undefs.
- if (!I->use_empty())
- I->replaceAllUsesWith(Context->getUndef(I->getType()));
+ // If I is not void type then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!I->getType()->isVoidTy())
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
}
// If this is the edge to the header block for a loop, remove the loop and
@@ -897,15 +865,18 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
// selects, switches.
std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
std::vector<Instruction*> Worklist;
+ LLVMContext &Context = Val->getContext();
+
// If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
// in the loop with the appropriate one directly.
- if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
+ if (IsEqual || (isa<ConstantInt>(Val) &&
+ Val->getType() == Type::getInt1Ty(Val->getContext()))) {
Value *Replacement;
if (IsEqual)
Replacement = Val;
else
- Replacement = Context->getConstantInt(Type::Int1Ty,
+ Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
!cast<ConstantInt>(Val)->getZExtValue());
for (unsigned i = 0, e = Users.size(); i != e; ++i)
@@ -937,27 +908,35 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
// FIXME: This is a hack. We need to keep the successor around
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the
- // loop structure and put the block on an dead code path.
-
- BasicBlock *SISucc = SI->getSuccessor(i);
- BasicBlock* Old = SI->getParent();
- BasicBlock* Split = SplitBlock(Old, SI, this);
-
- Instruction* OldTerm = Old->getTerminator();
- BranchInst::Create(Split, SISucc,
- Context->getConstantIntTrue(), OldTerm);
-
- LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
- Old->getTerminator()->eraseFromParent();
-
- PHINode *PN;
- for (BasicBlock::iterator II = SISucc->begin();
- (PN = dyn_cast<PHINode>(II)); ++II) {
- Value *InVal = PN->removeIncomingValue(Split, false);
- PN->addIncoming(InVal, Old);
- }
-
- SI->removeCase(i);
+ // loop structure and put the block on a dead code path.
+ BasicBlock *Switch = SI->getParent();
+ SplitEdge(Switch, SI->getSuccessor(i), this);
+ // Compute the successors instead of relying on the return value
+ // of SplitEdge, since it may have split the switch successor
+ // after PHI nodes.
+ BasicBlock *NewSISucc = SI->getSuccessor(i);
+ BasicBlock *OldSISucc = *succ_begin(NewSISucc);
+ // Create an "unreachable" destination.
+ BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
+ Switch->getParent(),
+ OldSISucc);
+ new UnreachableInst(Context, Abort);
+ // Force the new case destination to branch to the "unreachable"
+ // block while maintaining a (dead) CFG edge to the old block.
+ NewSISucc->getTerminator()->eraseFromParent();
+ BranchInst::Create(Abort, OldSISucc,
+ ConstantInt::getTrue(Context), NewSISucc);
+ // Release the PHI operands for this edge.
+ for (BasicBlock::iterator II = NewSISucc->begin();
+ PHINode *PN = dyn_cast<PHINode>(II); ++II)
+ PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
+ UndefValue::get(PN->getType()));
+ // Tell the domtree about the new block. We don't fully update the
+ // domtree here -- instead we force it to do a full recomputation
+ // after the pass is complete -- but we do need to inform it of
+ // new blocks.
+ if (DT)
+ DT->addNewBlock(Abort, NewSISucc);
break;
}
}
@@ -971,7 +950,7 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
SimplifyCode(Worklist, L);
}
-/// SimplifyCode - Okay, now that we have simplified some instructions in the
+/// SimplifyCode - Okay, now that we have simplified some instructions in the
/// loop, walk over it and constant prop, dce, and fold control flow where
/// possible. Note that this is effectively a very simple loop-structure-aware
/// optimizer. During processing of this loop, L could very well be deleted, so
@@ -986,14 +965,14 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
Worklist.pop_back();
// Simple constant folding.
- if (Constant *C = ConstantFoldInstruction(I)) {
+ if (Constant *C = ConstantFoldInstruction(I, I->getContext())) {
ReplaceUsesOfWith(I, C, Worklist, L, LPM);
continue;
}
// Simple DCE.
if (isInstructionTriviallyDead(I)) {
- DOUT << "Remove dead instruction '" << *I;
+ DEBUG(errs() << "Remove dead instruction '" << *I);
// Add uses to the worklist, which may be dead now.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
@@ -1017,10 +996,11 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
break;
case Instruction::And:
if (isa<ConstantInt>(I->getOperand(0)) &&
- I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
+ // constant -> RHS
+ I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
- if (CB->getType() == Type::Int1Ty) {
+ if (CB->getType() == Type::getInt1Ty(I->getContext())) {
if (CB->isOne()) // X & 1 -> X
ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
else // X & 0 -> 0
@@ -1030,10 +1010,11 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
break;
case Instruction::Or:
if (isa<ConstantInt>(I->getOperand(0)) &&
- I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
+ // constant -> RHS
+ I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
- if (CB->getType() == Type::Int1Ty) {
+ if (CB->getType() == Type::getInt1Ty(I->getContext())) {
if (CB->isOne()) // X | 1 -> 1
ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
else // X | 0 -> X
@@ -1052,8 +1033,8 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
if (!SinglePred) continue; // Nothing to do.
assert(SinglePred == Pred && "CFG broken");
- DOUT << "Merging blocks: " << Pred->getName() << " <- "
- << Succ->getName() << "\n";
+ DEBUG(errs() << "Merging blocks: " << Pred->getName() << " <- "
+ << Succ->getName() << "\n");
// Resolve any single entry PHI nodes in Succ.
while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
@@ -1080,7 +1061,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
// remove dead blocks.
break; // FIXME: Enable.
- DOUT << "Folded branch: " << *BI;
+ DEBUG(errs() << "Folded branch: " << *BI);
BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
DeadSucc->removePredecessor(BI->getParent(), true);
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
index 3c7a5ab..c922814 100644
--- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp
+++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp
@@ -24,29 +24,33 @@
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include <list>
using namespace llvm;
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
+STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
/// isBytewiseValue - If the specified value can be set by repeating the same
/// byte in memory, return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
-static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
+static Value *isBytewiseValue(Value *V) {
+ LLVMContext &Context = V->getContext();
+
// All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType() == Type::Int8Ty) return V;
+ if (V->getType() == Type::getInt8Ty(Context)) return V;
// Constant float and double values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- if (CFP->getType() == Type::FloatTy)
- V = Context->getConstantExprBitCast(CFP, Type::Int32Ty);
- if (CFP->getType() == Type::DoubleTy)
- V = Context->getConstantExprBitCast(CFP, Type::Int64Ty);
+ if (CFP->getType()->isFloatTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
+ if (CFP->getType()->isDoubleTy())
+ V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
// Don't handle long double formats, which have strange constraints.
}
@@ -69,7 +73,7 @@ static Value *isBytewiseValue(Value *V, LLVMContext* Context) {
if (Val != Val2)
return 0;
}
- return Context->getConstantInt(Val);
+ return ConstantInt::get(Context, Val);
}
}
@@ -271,6 +275,7 @@ void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
if (Start < I->Start) {
I->Start = Start;
I->StartPtr = SI->getPointerOperand();
+ I->Alignment = SI->getAlignment();
}
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
@@ -295,8 +300,7 @@ void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
//===----------------------------------------------------------------------===//
namespace {
-
- class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
+ class MemCpyOpt : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
@@ -309,16 +313,15 @@ namespace {
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
- AU.addRequired<TargetData>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<MemoryDependenceAnalysis>();
- AU.addPreserved<TargetData>();
}
// Helper fuctions
- bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
- bool processMemCpy(MemCpyInst* M);
- bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
+ bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
+ bool processMemCpy(MemCpyInst *M);
+ bool processMemMove(MemMoveInst *M);
+ bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
bool iterateOnFunction(Function &F);
};
@@ -337,27 +340,31 @@ static RegisterPass<MemCpyOpt> X("memcpyopt",
/// some other patterns to fold away. In particular, this looks for stores to
/// neighboring locations of memory. If it sees enough consequtive ones
/// (currently 4) it attempts to merge them together into a memcpy/memset.
-bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
+bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (SI->isVolatile()) return false;
+ LLVMContext &Context = SI->getContext();
+
// There are two cases that are interesting for this code to handle: memcpy
// and memset. Right now we only handle memset.
// Ensure that the value being stored is something that can be memset'able a
// byte at a time like "0" or "-1" or any width, as well as things like
// 0xA0A0A0A0 and 0.0.
- Value *ByteVal = isBytewiseValue(SI->getOperand(0), Context);
+ Value *ByteVal = isBytewiseValue(SI->getOperand(0));
if (!ByteVal)
return false;
- TargetData &TD = getAnalysis<TargetData>();
+ TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ if (!TD) return false;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
+ Module *M = SI->getParent()->getParent()->getParent();
// Okay, so we now have a single store that can be splatable. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
- MemsetRanges Ranges(TD);
+ MemsetRanges Ranges(*TD);
Value *StartPtr = SI->getPointerOperand();
@@ -385,12 +392,12 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
if (NextStore->isVolatile()) break;
// Check to see if this stored value is of the same byte-splattable value.
- if (ByteVal != isBytewiseValue(NextStore->getOperand(0), Context))
+ if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
break;
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
- if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
+ if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
break;
Ranges.addStore(Offset, NextStore);
@@ -405,7 +412,6 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
// store as well. We try to avoid this unless there is at least something
// interesting as a small compile-time optimization.
Ranges.addStore(0, SI);
-
Function *MemSetF = 0;
@@ -419,7 +425,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
if (Range.TheStores.size() == 1) continue;
// If it is profitable to lower this range to memset, do so now.
- if (!Range.isProfitableToUseMemset(TD))
+ if (!Range.isProfitableToUseMemset(*TD))
continue;
// Otherwise, we do want to transform this! Create a new memset. We put
@@ -429,37 +435,38 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
BasicBlock::iterator InsertPt = BI;
if (MemSetF == 0) {
- const Type *Tys[] = {Type::Int64Ty};
- MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
- ->getParent(), Intrinsic::memset,
- Tys, 1);
- }
+ const Type *Ty = Type::getInt64Ty(Context);
+ MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, &Ty, 1);
+ }
// Get the starting pointer of the block.
StartPtr = Range.StartPtr;
// Cast the start ptr to be i8* as memset requires.
- const Type *i8Ptr = Context->getPointerTypeUnqual(Type::Int8Ty);
+ const Type *i8Ptr = Type::getInt8PtrTy(Context);
if (StartPtr->getType() != i8Ptr)
- StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
+ StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
InsertPt);
Value *Ops[] = {
StartPtr, ByteVal, // Start, value
- Context->getConstantInt(Type::Int64Ty, Range.End-Range.Start), // size
- Context->getConstantInt(Type::Int32Ty, Range.Alignment) // align
+ // size
+ ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
+ // align
+ ConstantInt::get(Type::getInt32Ty(Context), Range.Alignment)
};
Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
- DEBUG(cerr << "Replace stores:\n";
+ DEBUG(errs() << "Replace stores:\n";
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
- cerr << *Range.TheStores[i];
- cerr << "With: " << *C); C=C;
+ errs() << *Range.TheStores[i];
+ errs() << "With: " << *C); C=C;
// Don't invalidate the iterator
BBI = BI;
// Zap all the stores.
- for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
+ for (SmallVector<StoreInst*, 16>::const_iterator
+ SI = Range.TheStores.begin(),
SE = Range.TheStores.end(); SI != SE; ++SI)
(*SI)->eraseFromParent();
++NumMemSetInfer;
@@ -490,29 +497,30 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Deliberately get the source and destination with bitcasts stripped away,
// because we'll need to do type comparisons based on the underlying type.
- Value* cpyDest = cpy->getDest();
- Value* cpySrc = cpy->getSource();
+ Value *cpyDest = cpy->getDest();
+ Value *cpySrc = cpy->getSource();
CallSite CS = CallSite::get(C);
// We need to be able to reason about the size of the memcpy, so we require
// that it be a constant.
- ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
+ ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
if (!cpyLength)
return false;
// Require that src be an alloca. This simplifies the reasoning considerably.
- AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
+ AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
if (!srcAlloca)
return false;
// Check that all of src is copied to dest.
- TargetData& TD = getAnalysis<TargetData>();
+ TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ if (!TD) return false;
- ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
+ ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
if (!srcArraySize)
return false;
- uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
+ uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpyLength->getZExtValue() < srcSize)
@@ -521,25 +529,25 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Check that accessing the first srcSize bytes of dest will not cause a
// trap. Otherwise the transform is invalid since it might cause a trap
// to occur earlier than it otherwise would.
- if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
+ if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
// The destination is an alloca. Check it is larger than srcSize.
- ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
+ ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
if (!destArraySize)
return false;
- uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
+ uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
destArraySize->getZExtValue();
if (destSize < srcSize)
return false;
- } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
+ } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
// If the destination is an sret parameter then only accesses that are
// outside of the returned struct type can trap.
if (!A->hasStructRetAttr())
return false;
- const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
- uint64_t destSize = TD.getTypeAllocSize(StructTy);
+ const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
+ uint64_t destSize = TD->getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
@@ -554,14 +562,14 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
srcAlloca->use_end());
while (!srcUseList.empty()) {
- User* UI = srcUseList.back();
+ User *UI = srcUseList.back();
srcUseList.pop_back();
if (isa<BitCastInst>(UI)) {
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
I != E; ++I)
srcUseList.push_back(*I);
- } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
+ } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
if (G->hasAllZeroIndices())
for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
I != E; ++I)
@@ -575,8 +583,8 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Since we're changing the parameter to the callsite, we need to make sure
// that what would be the new parameter dominates the callsite.
- DominatorTree& DT = getAnalysis<DominatorTree>();
- if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
+ DominatorTree &DT = getAnalysis<DominatorTree>();
+ if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
if (!DT.dominates(cpyDestInst, C))
return false;
@@ -584,7 +592,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// unexpected manner, for example via a global, which we deduce from
// the use analysis, we also need to know that it does not sneakily
// access dest. We rely on AA to figure this out for us.
- AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
AliasAnalysis::NoModRef)
return false;
@@ -597,11 +605,11 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
cpyDest->getName(), C);
changedArgument = true;
- if (CS.getArgument(i)->getType() != cpyDest->getType())
- CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
- CS.getArgument(i)->getType(), cpyDest->getName(), C));
- else
+ if (CS.getArgument(i)->getType() == cpyDest->getType())
CS.setArgument(i, cpyDest);
+ else
+ CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
+ CS.getArgument(i)->getType(), cpyDest->getName(), C));
}
if (!changedArgument)
@@ -609,7 +617,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Drop any cached information about the call, because we may have changed
// its dependence information by changing its parameter.
- MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
+ MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
MD.removeInstruction(C);
// Remove the memcpy
@@ -624,22 +632,22 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
/// This allows later passes to remove the first memcpy altogether.
-bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
- MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
+bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
+ MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
// The are two possible optimizations we can do for memcpy:
- // a) memcpy-memcpy xform which exposes redundance for DSE
- // b) call-memcpy xform for return slot optimization
+ // a) memcpy-memcpy xform which exposes redundance for DSE.
+ // b) call-memcpy xform for return slot optimization.
MemDepResult dep = MD.getDependency(M);
if (!dep.isClobber())
return false;
if (!isa<MemCpyInst>(dep.getInst())) {
- if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
+ if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
return performCallSlotOptzn(M, C);
return false;
}
- MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
+ MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
// We can only transforms memcpy's where the dest of one is the source of the
// other
@@ -648,8 +656,8 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
// Second, the length of the memcpy's must be the same, or the preceeding one
// must be larger than the following one.
- ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
- ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
+ ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
+ ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
if (!C1 || !C2)
return false;
@@ -661,7 +669,7 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
// Finally, we have to make sure that the dest of the second does not
// alias the source of the first
- AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
AliasAnalysis::NoAlias)
return false;
@@ -673,17 +681,16 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
return false;
// If all checks passed, then we can transform these memcpy's
- const Type *Tys[1];
- Tys[0] = M->getLength()->getType();
- Function* MemCpyFun = Intrinsic::getDeclaration(
+ const Type *Ty = M->getLength()->getType();
+ Function *MemCpyFun = Intrinsic::getDeclaration(
M->getParent()->getParent()->getParent(),
- M->getIntrinsicID(), Tys, 1);
+ M->getIntrinsicID(), &Ty, 1);
Value *Args[4] = {
M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
};
- CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
+ CallInst *C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
// If C and M don't interfere, then this is a valid transformation. If they
@@ -702,41 +709,78 @@ bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
return false;
}
-// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
-// function.
-//
-bool MemCpyOpt::runOnFunction(Function& F) {
+/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
+/// are guaranteed not to alias.
+bool MemCpyOpt::processMemMove(MemMoveInst *M) {
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
+
+ // If the memmove is a constant size, use it for the alias query, this allows
+ // us to optimize things like: memmove(P, P+64, 64);
+ uint64_t MemMoveSize = ~0ULL;
+ if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
+ MemMoveSize = Len->getZExtValue();
- bool changed = false;
- bool shouldContinue = true;
+ // See if the pointers alias.
+ if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
+ AliasAnalysis::NoAlias)
+ return false;
- while (shouldContinue) {
- shouldContinue = iterateOnFunction(F);
- changed |= shouldContinue;
- }
+ DEBUG(errs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
- return changed;
-}
+ // If not, then we know we can transform this.
+ Module *Mod = M->getParent()->getParent()->getParent();
+ const Type *Ty = M->getLength()->getType();
+ M->setOperand(0, Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, &Ty, 1));
+ // MemDep may have over conservative information about this instruction, just
+ // conservatively flush it from the cache.
+ getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
-// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
+ ++NumMoveToCpy;
+ return true;
+}
+
+
+// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
bool MemCpyOpt::iterateOnFunction(Function &F) {
- bool changed_function = false;
+ bool MadeChange = false;
- // Walk all instruction in the function
+ // Walk all instruction in the function.
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
- // Avoid invalidating the iterator
- Instruction* I = BI++;
+ // Avoid invalidating the iterator.
+ Instruction *I = BI++;
if (StoreInst *SI = dyn_cast<StoreInst>(I))
- changed_function |= processStore(SI, BI);
- else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
- changed_function |= processMemCpy(M);
+ MadeChange |= processStore(SI, BI);
+ else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
+ MadeChange |= processMemCpy(M);
+ else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
+ if (processMemMove(M)) {
+ --BI; // Reprocess the new memcpy.
+ MadeChange = true;
+ }
}
}
}
- return changed_function;
+ return MadeChange;
+}
+
+// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
+// function.
+//
+bool MemCpyOpt::runOnFunction(Function &F) {
+ bool MadeChange = false;
+ while (1) {
+ if (!iterateOnFunction(F))
+ break;
+ MadeChange = true;
+ }
+
+ return MadeChange;
}
+
+
+
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index fa60a9d..e6ffac2 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -31,9 +31,9 @@
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
@@ -46,7 +46,7 @@ STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");
namespace {
- struct VISIBILITY_HIDDEN ValueEntry {
+ struct ValueEntry {
unsigned Rank;
Value *Op;
ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
@@ -61,17 +61,17 @@ namespace {
///
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
- cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
+ errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType();
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
- cerr << "," << Ops[i].Rank;
+ WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
+ errs() << "," << Ops[i].Rank;
}
}
#endif
namespace {
- class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
+ class Reassociate : public FunctionPass {
std::map<BasicBlock*, unsigned> RankMap;
std::map<AssertingVH<>, unsigned> ValueRankMap;
bool MadeChange;
@@ -181,8 +181,8 @@ unsigned Reassociate::getRank(Value *V) {
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
++Rank;
- //DOUT << "Calculated Rank[" << V->getName() << "] = "
- // << Rank << "\n";
+ //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
+ // << Rank << "\n");
return CachedRank = Rank;
}
@@ -200,8 +200,8 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
///
static Instruction *LowerNegateToMultiply(Instruction *Neg,
std::map<AssertingVH<>, unsigned> &ValueRankMap,
- LLVMContext* Context) {
- Constant *Cst = Context->getConstantIntAllOnesValue(Neg->getType());
+ LLVMContext &Context) {
+ Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
ValueRankMap.erase(Neg);
@@ -222,7 +222,7 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
isReassociableOp(RHS, I->getOpcode()) &&
"Not an expression that needs linearization?");
- DOUT << "Linear" << *LHS << *RHS << *I;
+ DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
// Move the RHS instruction to live immediately before I, avoiding breaking
// dominator properties.
@@ -235,7 +235,7 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
++NumLinear;
MadeChange = true;
- DOUT << "Linearized: " << *I;
+ DEBUG(errs() << "Linearized: " << *I << '\n');
// If D is part of this expression tree, tail recurse.
if (isReassociableOp(I->getOperand(1), I->getOpcode()))
@@ -256,6 +256,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
unsigned Opcode = I->getOpcode();
+ LLVMContext &Context = I->getContext();
// First step, linearize the expression if it is in ((A+B)+(C+D)) form.
BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
@@ -284,8 +285,8 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the leaves out.
- I->setOperand(0, Context->getUndef(I->getType()));
- I->setOperand(1, Context->getUndef(I->getType()));
+ I->setOperand(0, UndefValue::get(I->getType()));
+ I->setOperand(1, UndefValue::get(I->getType()));
return;
} else {
// Turn X+(Y+Z) -> (Y+Z)+X
@@ -320,7 +321,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the RHS leaf out.
- I->setOperand(1, Context->getUndef(I->getType()));
+ I->setOperand(1, UndefValue::get(I->getType()));
}
// RewriteExprTree - Now that the operands for this expression tree are
@@ -333,10 +334,10 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) {
Value *OldLHS = I->getOperand(0);
- DOUT << "RA: " << *I;
+ DEBUG(errs() << "RA: " << *I << '\n');
I->setOperand(0, Ops[i].Op);
I->setOperand(1, Ops[i+1].Op);
- DOUT << "TO: " << *I;
+ DEBUG(errs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
@@ -349,9 +350,9 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
assert(i+2 < Ops.size() && "Ops index out of range!");
if (I->getOperand(1) != Ops[i].Op) {
- DOUT << "RA: " << *I;
+ DEBUG(errs() << "RA: " << *I << '\n');
I->setOperand(1, Ops[i].Op);
- DOUT << "TO: " << *I;
+ DEBUG(errs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
}
@@ -373,7 +374,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
-static Value *NegateValue(Value *V, Instruction *BI) {
+static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
@@ -386,8 +387,8 @@ static Value *NegateValue(Value *V, Instruction *BI) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
// Push the negates through the add.
- I->setOperand(0, NegateValue(I->getOperand(0), BI));
- I->setOperand(1, NegateValue(I->getOperand(1), BI));
+ I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
+ I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
// We must move the add instruction here, because the neg instructions do
// not dominate the old add instruction in general. By moving it, we are
@@ -407,7 +408,7 @@ static Value *NegateValue(Value *V, Instruction *BI) {
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
/// X-Y into (X + -Y).
-static bool ShouldBreakUpSubtract(Instruction *Sub) {
+static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
// If this is a negation, we can't split it up!
if (BinaryOperator::isNeg(Sub))
return false;
@@ -431,7 +432,7 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) {
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
-static Instruction *BreakUpSubtract(Instruction *Sub,
+static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
std::map<AssertingVH<>, unsigned> &ValueRankMap) {
// Convert a subtract into an add and a neg instruction... so that sub
// instructions can be commuted with other add instructions...
@@ -439,7 +440,7 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
// Calculate the negative value of Operand 1 of the sub instruction...
// and set it as the RHS of the add instruction we just made...
//
- Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
+ Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
Instruction *New =
BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
New->takeName(Sub);
@@ -449,7 +450,7 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
Sub->replaceAllUsesWith(New);
Sub->eraseFromParent();
- DOUT << "Negated: " << *New;
+ DEBUG(errs() << "Negated: " << *New << '\n');
return New;
}
@@ -458,16 +459,16 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl,
std::map<AssertingVH<>, unsigned> &ValueRankMap,
- LLVMContext* Context) {
+ LLVMContext &Context) {
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
(Shl->hasOneUse() &&
(isReassociableOp(Shl->use_back(), Instruction::Mul) ||
isReassociableOp(Shl->use_back(), Instruction::Add)))) {
- Constant *MulCst = Context->getConstantInt(Shl->getType(), 1);
+ Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
MulCst =
- Context->getConstantExprShl(MulCst, cast<Constant>(Shl->getOperand(1)));
+ ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
"", Shl);
@@ -567,7 +568,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
- Ops.back().Op = Context->getConstantExpr(Opcode, V1, V2);
+ Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
return OptimizeExpression(I, Ops);
}
@@ -623,10 +624,10 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
if (FoundX != i) {
if (Opcode == Instruction::And) { // ...&X&~X = 0
++NumAnnihil;
- return Context->getNullValue(X->getType());
+ return Constant::getNullValue(X->getType());
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
++NumAnnihil;
- return Context->getConstantIntAllOnesValue(X->getType());
+ return Constant::getAllOnesValue(X->getType());
}
}
}
@@ -645,7 +646,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
assert(Opcode == Instruction::Xor);
if (e == 2) {
++NumAnnihil;
- return Context->getNullValue(Ops[0].Op->getType());
+ return Constant::getNullValue(Ops[0].Op->getType());
}
// ... X^X -> ...
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
@@ -670,7 +671,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
// Remove X and -X from the operand list.
if (Ops.size() == 2) {
++NumAnnihil;
- return Context->getNullValue(X->getType());
+ return Constant::getNullValue(X->getType());
} else {
Ops.erase(Ops.begin()+i);
if (i < FoundX)
@@ -727,7 +728,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
- DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
+ DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
@@ -781,6 +782,8 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
/// ReassociateBB - Inspect all of the instructions in this basic block,
/// reassociating them as we go.
void Reassociate::ReassociateBB(BasicBlock *BB) {
+ LLVMContext &Context = BB->getContext();
+
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
Instruction *BI = BBI++;
if (BI->getOpcode() == Instruction::Shl &&
@@ -798,8 +801,8 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
// If this is a subtract instruction which is not already in negate form,
// see if we can convert it to X+-Y.
if (BI->getOpcode() == Instruction::Sub) {
- if (ShouldBreakUpSubtract(BI)) {
- BI = BreakUpSubtract(BI, ValueRankMap);
+ if (ShouldBreakUpSubtract(Context, BI)) {
+ BI = BreakUpSubtract(Context, BI, ValueRankMap);
MadeChange = true;
} else if (BinaryOperator::isNeg(BI)) {
// Otherwise, this is a negation. See if the operand is a multiply tree
@@ -838,7 +841,7 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
std::vector<ValueEntry> Ops;
LinearizeExprTree(I, Ops);
- DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
+ DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
@@ -853,7 +856,7 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
- DOUT << "Reassoc to scalar: " << *V << "\n";
+ DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
I->replaceAllUsesWith(V);
RemoveDeadBinaryOp(I);
return;
@@ -871,7 +874,7 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
Ops.pop_back();
}
- DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
+ DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
diff --git a/lib/Transforms/Scalar/Reg2Mem.cpp b/lib/Transforms/Scalar/Reg2Mem.cpp
index ac95d25..99e1252 100644
--- a/lib/Transforms/Scalar/Reg2Mem.cpp
+++ b/lib/Transforms/Scalar/Reg2Mem.cpp
@@ -26,7 +26,6 @@
#include "llvm/BasicBlock.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include <list>
using namespace llvm;
@@ -35,7 +34,7 @@ STATISTIC(NumRegsDemoted, "Number of registers demoted");
STATISTIC(NumPhisDemoted, "Number of phi-nodes demoted");
namespace {
- struct VISIBILITY_HIDDEN RegToMem : public FunctionPass {
+ struct RegToMem : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
RegToMem() : FunctionPass(&ID) {}
@@ -44,73 +43,17 @@ namespace {
AU.addPreservedID(BreakCriticalEdgesID);
}
- bool valueEscapes(Instruction* i) {
- BasicBlock* bb = i->getParent();
- for (Value::use_iterator ii = i->use_begin(), ie = i->use_end();
- ii != ie; ++ii)
- if (cast<Instruction>(*ii)->getParent() != bb ||
- isa<PHINode>(*ii))
+ bool valueEscapes(const Instruction *Inst) const {
+ const BasicBlock *BB = Inst->getParent();
+ for (Value::use_const_iterator UI = Inst->use_begin(),E = Inst->use_end();
+ UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != BB ||
+ isa<PHINode>(*UI))
return true;
return false;
}
- virtual bool runOnFunction(Function &F) {
- if (!F.isDeclaration()) {
- // Insert all new allocas into entry block.
- BasicBlock* BBEntry = &F.getEntryBlock();
- assert(pred_begin(BBEntry) == pred_end(BBEntry) &&
- "Entry block to function must not have predecessors!");
-
- // Find first non-alloca instruction and create insertion point. This is
- // safe if block is well-formed: it always have terminator, otherwise
- // we'll get and assertion.
- BasicBlock::iterator I = BBEntry->begin();
- while (isa<AllocaInst>(I)) ++I;
-
- CastInst *AllocaInsertionPoint =
- CastInst::Create(Instruction::BitCast,
- Context->getNullValue(Type::Int32Ty), Type::Int32Ty,
- "reg2mem alloca point", I);
-
- // Find the escaped instructions. But don't create stack slots for
- // allocas in entry block.
- std::list<Instruction*> worklist;
- for (Function::iterator ibb = F.begin(), ibe = F.end();
- ibb != ibe; ++ibb)
- for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end();
- iib != iie; ++iib) {
- if (!(isa<AllocaInst>(iib) && iib->getParent() == BBEntry) &&
- valueEscapes(iib)) {
- worklist.push_front(&*iib);
- }
- }
-
- // Demote escaped instructions
- NumRegsDemoted += worklist.size();
- for (std::list<Instruction*>::iterator ilb = worklist.begin(),
- ile = worklist.end(); ilb != ile; ++ilb)
- DemoteRegToStack(**ilb, false, AllocaInsertionPoint);
-
- worklist.clear();
-
- // Find all phi's
- for (Function::iterator ibb = F.begin(), ibe = F.end();
- ibb != ibe; ++ibb)
- for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end();
- iib != iie; ++iib)
- if (isa<PHINode>(iib))
- worklist.push_front(&*iib);
-
- // Demote phi nodes
- NumPhisDemoted += worklist.size();
- for (std::list<Instruction*>::iterator ilb = worklist.begin(),
- ile = worklist.end(); ilb != ile; ++ilb)
- DemotePHIToStack(cast<PHINode>(*ilb), AllocaInsertionPoint);
-
- return true;
- }
- return false;
- }
+ virtual bool runOnFunction(Function &F);
};
}
@@ -118,6 +61,66 @@ char RegToMem::ID = 0;
static RegisterPass<RegToMem>
X("reg2mem", "Demote all values to stack slots");
+
+bool RegToMem::runOnFunction(Function &F) {
+ if (F.isDeclaration())
+ return false;
+
+ // Insert all new allocas into entry block.
+ BasicBlock *BBEntry = &F.getEntryBlock();
+ assert(pred_begin(BBEntry) == pred_end(BBEntry) &&
+ "Entry block to function must not have predecessors!");
+
+ // Find first non-alloca instruction and create insertion point. This is
+ // safe if block is well-formed: it always have terminator, otherwise
+ // we'll get and assertion.
+ BasicBlock::iterator I = BBEntry->begin();
+ while (isa<AllocaInst>(I)) ++I;
+
+ CastInst *AllocaInsertionPoint =
+ new BitCastInst(Constant::getNullValue(Type::getInt32Ty(F.getContext())),
+ Type::getInt32Ty(F.getContext()),
+ "reg2mem alloca point", I);
+
+ // Find the escaped instructions. But don't create stack slots for
+ // allocas in entry block.
+ std::list<Instruction*> WorkList;
+ for (Function::iterator ibb = F.begin(), ibe = F.end();
+ ibb != ibe; ++ibb)
+ for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end();
+ iib != iie; ++iib) {
+ if (!(isa<AllocaInst>(iib) && iib->getParent() == BBEntry) &&
+ valueEscapes(iib)) {
+ WorkList.push_front(&*iib);
+ }
+ }
+
+ // Demote escaped instructions
+ NumRegsDemoted += WorkList.size();
+ for (std::list<Instruction*>::iterator ilb = WorkList.begin(),
+ ile = WorkList.end(); ilb != ile; ++ilb)
+ DemoteRegToStack(**ilb, false, AllocaInsertionPoint);
+
+ WorkList.clear();
+
+ // Find all phi's
+ for (Function::iterator ibb = F.begin(), ibe = F.end();
+ ibb != ibe; ++ibb)
+ for (BasicBlock::iterator iib = ibb->begin(), iie = ibb->end();
+ iib != iie; ++iib)
+ if (isa<PHINode>(iib))
+ WorkList.push_front(&*iib);
+
+ // Demote phi nodes
+ NumPhisDemoted += WorkList.size();
+ for (std::list<Instruction*>::iterator ilb = WorkList.begin(),
+ ile = WorkList.end(); ilb != ile; ++ilb)
+ DemotePHIToStack(cast<PHINode>(*ilb), AllocaInsertionPoint);
+
+ return true;
+}
+
+
// createDemoteRegisterToMemory - Provide an entry point to create this pass.
//
const PassInfo *const llvm::DemoteRegisterToMemoryID = &X;
diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp
index f0bc127..b5edf4e 100644
--- a/lib/Transforms/Scalar/SCCP.cpp
+++ b/lib/Transforms/Scalar/SCCP.cpp
@@ -33,9 +33,10 @@
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallSet.h"
@@ -58,7 +59,7 @@ namespace {
/// LatticeVal class - This class represents the different lattice values that
/// an LLVM value may occupy. It is a simple class with value semantics.
///
-class VISIBILITY_HIDDEN LatticeVal {
+class LatticeVal {
enum {
/// undefined - This LLVM Value has no known value yet.
undefined,
@@ -139,7 +140,7 @@ public:
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
- LLVMContext* Context;
+ LLVMContext *Context;
DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
std::map<Value*, LatticeVal> ValueState; // The state each value is in.
@@ -179,12 +180,12 @@ class SCCPSolver : public InstVisitor<SCCPSolver> {
typedef std::pair<BasicBlock*, BasicBlock*> Edge;
DenseSet<Edge> KnownFeasibleEdges;
public:
- void setContext(LLVMContext* C) { Context = C; }
+ void setContext(LLVMContext *C) { Context = C; }
/// MarkBlockExecutable - This method can be used by clients to mark all of
/// the blocks that are known to be intrinsically live in the processed unit.
void MarkBlockExecutable(BasicBlock *BB) {
- DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
+ DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
BBExecutable.insert(BB); // Basic block is executable!
BBWorkList.push_back(BB); // Add the block to the work list!
}
@@ -260,14 +261,14 @@ private:
//
inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
if (IV.markConstant(C)) {
- DOUT << "markConstant: " << *C << ": " << *V;
+ DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
InstWorkList.push_back(V);
}
}
inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
IV.markForcedConstant(C);
- DOUT << "markForcedConstant: " << *C << ": " << *V;
+ DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
InstWorkList.push_back(V);
}
@@ -280,11 +281,11 @@ private:
// work list so that the users of the instruction are updated later.
inline void markOverdefined(LatticeVal &IV, Value *V) {
if (IV.markOverdefined()) {
- DEBUG(DOUT << "markOverdefined: ";
+ DEBUG(errs() << "markOverdefined: ";
if (Function *F = dyn_cast<Function>(V))
- DOUT << "Function '" << F->getName() << "'\n";
+ errs() << "Function '" << F->getName() << "'\n";
else
- DOUT << *V);
+ errs() << *V << '\n');
// Only instructions go on the work list
OverdefinedInstWorkList.push_back(V);
}
@@ -337,8 +338,8 @@ private:
return; // This edge is already known to be executable!
if (BBExecutable.count(Dest)) {
- DOUT << "Marking Edge Executable: " << Source->getNameStart()
- << " -> " << Dest->getNameStart() << "\n";
+ DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
+ << " -> " << Dest->getName() << "\n");
// The destination is already executable, but we just made an edge
// feasible that wasn't before. Revisit the PHI nodes in the block
@@ -399,7 +400,9 @@ private:
void visitStoreInst (Instruction &I);
void visitLoadInst (LoadInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
+ void visitCallInst (CallInst &I) {
+ visitCallSite(CallSite::get(&I));
+ }
void visitInvokeInst (InvokeInst &II) {
visitCallSite(CallSite::get(&II));
visitTerminatorInst(II);
@@ -414,7 +417,7 @@ private:
void visitInstruction(Instruction &I) {
// If a new instruction is added to LLVM that we don't handle...
- cerr << "SCCP: Don't know how to handle: " << I;
+ errs() << "SCCP: Don't know how to handle: " << I;
markOverdefined(&I); // Just in case
}
};
@@ -440,7 +443,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
Succs[0] = Succs[1] = true;
} else if (BCValue.isConstant()) {
// Constant condition variables mean the branch can only go a single way
- Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true;
+ Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
}
}
} else if (isa<InvokeInst>(&TI)) {
@@ -455,7 +458,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
} else if (SCValue.isConstant())
Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
} else {
- assert(0 && "SCCP: Don't know how to handle this terminator!");
+ llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}
}
@@ -485,7 +488,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
// Constant condition variables mean the branch can only go a single way
return BI->getSuccessor(BCValue.getConstant() ==
- Context->getConstantIntFalse()) == To;
+ ConstantInt::getFalse(*Context)) == To;
}
return false;
}
@@ -513,8 +516,10 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
}
return false;
} else {
- cerr << "Unknown terminator instruction: " << *TI;
- abort();
+#ifndef NDEBUG
+ errs() << "Unknown terminator instruction: " << *TI << '\n';
+#endif
+ llvm_unreachable(0);
}
}
@@ -642,7 +647,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) {
DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
It = TrackedMultipleRetVals.find(std::make_pair(F, i));
if (It == TrackedMultipleRetVals.end()) break;
- if (Value *Val = FindInsertedValue(I.getOperand(0), i))
+ if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
mergeInValue(It->second, F, getValueState(Val));
}
}
@@ -666,7 +671,7 @@ void SCCPSolver::visitCastInst(CastInst &I) {
if (VState.isOverdefined()) // Inherit overdefinedness of operand
markOverdefined(&I);
else if (VState.isConstant()) // Propagate constant value
- markConstant(&I, Context->getConstantExprCast(I.getOpcode(),
+ markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
VState.getConstant(), I.getType()));
}
@@ -809,12 +814,12 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
if (NonOverdefVal->isUndefined()) {
// Could annihilate value.
if (I.getOpcode() == Instruction::And)
- markConstant(IV, &I, Context->getNullValue(I.getType()));
+ markConstant(IV, &I, Constant::getNullValue(I.getType()));
else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
- markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT));
+ markConstant(IV, &I, Constant::getAllOnesValue(PT));
else
markConstant(IV, &I,
- Context->getConstantIntAllOnesValue(I.getType()));
+ Constant::getAllOnesValue(I.getType()));
return;
} else {
if (I.getOpcode() == Instruction::And) {
@@ -859,7 +864,7 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
break; // Cannot fold this operation over the PHI nodes!
} else if (In1.isConstant() && In2.isConstant()) {
Constant *V =
- Context->getConstantExpr(I.getOpcode(), In1.getConstant(),
+ ConstantExpr::get(I.getOpcode(), In1.getConstant(),
In2.getConstant());
if (Result.isUndefined())
Result.markConstant(V);
@@ -908,7 +913,7 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) {
markOverdefined(IV, &I);
} else if (V1State.isConstant() && V2State.isConstant()) {
markConstant(IV, &I,
- Context->getConstantExpr(I.getOpcode(), V1State.getConstant(),
+ ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
V2State.getConstant()));
}
}
@@ -945,7 +950,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) {
Result.markOverdefined();
break; // Cannot fold this operation over the PHI nodes!
} else if (In1.isConstant() && In2.isConstant()) {
- Constant *V = Context->getConstantExprCompare(I.getPredicate(),
+ Constant *V = ConstantExpr::getCompare(I.getPredicate(),
In1.getConstant(),
In2.getConstant());
if (Result.isUndefined())
@@ -994,7 +999,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) {
markOverdefined(IV, &I);
} else if (V1State.isConstant() && V2State.isConstant()) {
- markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(),
+ markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
V1State.getConstant(),
V2State.getConstant()));
}
@@ -1096,7 +1101,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
Constant *Ptr = Operands[0];
Operands.erase(Operands.begin()); // Erase the pointer from idx list...
- markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0],
+ markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
Operands.size()));
}
@@ -1127,10 +1132,9 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
if (PtrVal.isConstant() && !I.isVolatile()) {
Value *Ptr = PtrVal.getConstant();
// TODO: Consider a target hook for valid address spaces for this xform.
- if (isa<ConstantPointerNull>(Ptr) &&
- cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
+ if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
// load null -> null
- markConstant(IV, &I, Context->getNullValue(I.getType()));
+ markConstant(IV, &I, Constant::getNullValue(I.getType()));
return;
}
@@ -1179,7 +1183,7 @@ void SCCPSolver::visitCallSite(CallSite CS) {
if (F == 0 || !F->hasLocalLinkage()) {
CallOverdefined:
// Void return and not tracking callee, just bail.
- if (I->getType() == Type::VoidTy) return;
+ if (I->getType()->isVoidTy()) return;
// Otherwise, if we have a single return value case, and if the function is
// a declaration, maybe we can constant fold it.
@@ -1258,6 +1262,10 @@ CallOverdefined:
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++CAI) {
LatticeVal &IV = ValueState[AI];
+ if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
+ IV.markOverdefined();
+ continue;
+ }
if (!IV.isOverdefined())
mergeInValue(IV, AI, getValueState(*CAI));
}
@@ -1273,7 +1281,7 @@ void SCCPSolver::Solve() {
Value *I = OverdefinedInstWorkList.back();
OverdefinedInstWorkList.pop_back();
- DOUT << "\nPopped off OI-WL: " << *I;
+ DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant
@@ -1291,7 +1299,7 @@ void SCCPSolver::Solve() {
Value *I = InstWorkList.back();
InstWorkList.pop_back();
- DOUT << "\nPopped off I-WL: " << *I;
+ DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
// "I" got into the work list because it either made the transition from
// bottom to constant
@@ -1311,7 +1319,7 @@ void SCCPSolver::Solve() {
BasicBlock *BB = BBWorkList.back();
BBWorkList.pop_back();
- DOUT << "\nPopped off BBWL: " << *BB;
+ DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
// Notify all instructions in this basic block that they are newly
// executable.
@@ -1345,7 +1353,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// Look for instructions which produce undef values.
- if (I->getType() == Type::VoidTy) continue;
+ if (I->getType()->isVoidTy()) continue;
LatticeVal &LV = getValueState(I);
if (!LV.isUndefined()) continue;
@@ -1371,22 +1379,22 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// to be handled here, because we don't know whether the top part is 1's
// or 0's.
assert(Op0LV.isUndefined());
- markForcedConstant(LV, I, Context->getNullValue(ITy));
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Mul:
case Instruction::And:
// undef * X -> 0. X could be zero.
// undef & X -> 0. X could be zero.
- markForcedConstant(LV, I, Context->getNullValue(ITy));
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Or:
// undef | X -> -1. X could be -1.
if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
markForcedConstant(LV, I,
- Context->getConstantVectorAllOnesValue(PTy));
+ Constant::getAllOnesValue(PTy));
else
- markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy));
+ markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
return true;
case Instruction::SDiv:
@@ -1399,7 +1407,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// undef / X -> 0. X could be maxint.
// undef % X -> 0. X could be 1.
- markForcedConstant(LV, I, Context->getNullValue(ITy));
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::AShr:
@@ -1420,7 +1428,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// X >> undef -> 0. X could be 0.
// X << undef -> 0. X could be 0.
- markForcedConstant(LV, I, Context->getNullValue(ITy));
+ markForcedConstant(LV, I, Constant::getNullValue(ITy));
return true;
case Instruction::Select:
// undef ? X : Y -> X or Y. There could be commonality between X/Y.
@@ -1483,7 +1491,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) {
// as undef, then further analysis could think the undef went another way
// leading to an inconsistent set of conclusions.
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- BI->setCondition(Context->getConstantIntFalse());
+ BI->setCondition(ConstantInt::getFalse(*Context));
} else {
SwitchInst *SI = cast<SwitchInst>(TI);
SI->setCondition(SI->getCaseValue(1));
@@ -1502,7 +1510,7 @@ namespace {
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
- struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
+ struct SCCP : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
SCCP() : FunctionPass(&ID) {}
@@ -1531,9 +1539,9 @@ FunctionPass *llvm::createSCCPPass() {
// and return true if the function was modified.
//
bool SCCP::runOnFunction(Function &F) {
- DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
+ DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
SCCPSolver Solver;
- Solver.setContext(Context);
+ Solver.setContext(&F.getContext());
// Mark the first block of the function as being executable.
Solver.MarkBlockExecutable(F.begin());
@@ -1546,7 +1554,7 @@ bool SCCP::runOnFunction(Function &F) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
Solver.Solve();
- DOUT << "RESOLVING UNDEFs\n";
+ DEBUG(errs() << "RESOLVING UNDEFs\n");
ResolvedUndefs = Solver.ResolvedUndefsIn(F);
}
@@ -1561,7 +1569,7 @@ bool SCCP::runOnFunction(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (!Solver.isBlockExecutable(BB)) {
- DOUT << " BasicBlock Dead:" << *BB;
+ DEBUG(errs() << " BasicBlock Dead:" << *BB);
++NumDeadBlocks;
// Delete the instructions backwards, as it has a reduced likelihood of
@@ -1573,7 +1581,7 @@ bool SCCP::runOnFunction(Function &F) {
Instruction *I = Insts.back();
Insts.pop_back();
if (!I->use_empty())
- I->replaceAllUsesWith(Context->getUndef(I->getType()));
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
BB->getInstList().erase(I);
MadeChanges = true;
++NumInstRemoved;
@@ -1584,8 +1592,7 @@ bool SCCP::runOnFunction(Function &F) {
//
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = BI++;
- if (Inst->getType() == Type::VoidTy ||
- isa<TerminatorInst>(Inst))
+ if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
continue;
LatticeVal &IV = Values[Inst];
@@ -1593,8 +1600,8 @@ bool SCCP::runOnFunction(Function &F) {
continue;
Constant *Const = IV.isConstant()
- ? IV.getConstant() : Context->getUndef(Inst->getType());
- DOUT << " Constant: " << *Const << " = " << *Inst;
+ ? IV.getConstant() : UndefValue::get(Inst->getType());
+ DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
// Replaces all of the uses of a variable with uses of the constant.
Inst->replaceAllUsesWith(Const);
@@ -1617,7 +1624,7 @@ namespace {
/// IPSCCP Class - This class implements interprocedural Sparse Conditional
/// Constant Propagation.
///
- struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
+ struct IPSCCP : public ModulePass {
static char ID;
IPSCCP() : ModulePass(&ID) {}
bool runOnModule(Module &M);
@@ -1658,7 +1665,10 @@ static bool AddressIsTaken(GlobalValue *GV) {
}
bool IPSCCP::runOnModule(Module &M) {
+ LLVMContext *Context = &M.getContext();
+
SCCPSolver Solver;
+ Solver.setContext(Context);
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
@@ -1687,7 +1697,7 @@ bool IPSCCP::runOnModule(Module &M) {
while (ResolvedUndefs) {
Solver.Solve();
- DOUT << "RESOLVING UNDEFS\n";
+ DEBUG(errs() << "RESOLVING UNDEFS\n");
ResolvedUndefs = false;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
@@ -1709,8 +1719,8 @@ bool IPSCCP::runOnModule(Module &M) {
LatticeVal &IV = Values[AI];
if (IV.isConstant() || IV.isUndefined()) {
Constant *CST = IV.isConstant() ?
- IV.getConstant() : Context->getUndef(AI->getType());
- DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
+ IV.getConstant() : UndefValue::get(AI->getType());
+ DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n");
// Replaces all of the uses of a variable with uses of the
// constant.
@@ -1721,7 +1731,7 @@ bool IPSCCP::runOnModule(Module &M) {
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (!Solver.isBlockExecutable(BB)) {
- DOUT << " BasicBlock Dead:" << *BB;
+ DEBUG(errs() << " BasicBlock Dead:" << *BB);
++IPNumDeadBlocks;
// Delete the instructions backwards, as it has a reduced likelihood of
@@ -1734,7 +1744,7 @@ bool IPSCCP::runOnModule(Module &M) {
Instruction *I = Insts.back();
Insts.pop_back();
if (!I->use_empty())
- I->replaceAllUsesWith(Context->getUndef(I->getType()));
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
BB->getInstList().erase(I);
MadeChanges = true;
++IPNumInstRemoved;
@@ -1746,18 +1756,18 @@ bool IPSCCP::runOnModule(Module &M) {
TI->getSuccessor(i)->removePredecessor(BB);
}
if (!TI->use_empty())
- TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
+ TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
BB->getInstList().erase(TI);
if (&*BB != &F->front())
BlocksToErase.push_back(BB);
else
- new UnreachableInst(BB);
+ new UnreachableInst(M.getContext(), BB);
} else {
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = BI++;
- if (Inst->getType() == Type::VoidTy)
+ if (Inst->getType()->isVoidTy())
continue;
LatticeVal &IV = Values[Inst];
@@ -1765,8 +1775,8 @@ bool IPSCCP::runOnModule(Module &M) {
continue;
Constant *Const = IV.isConstant()
- ? IV.getConstant() : Context->getUndef(Inst->getType());
- DOUT << " Constant: " << *Const << " = " << *Inst;
+ ? IV.getConstant() : UndefValue::get(Inst->getType());
+ DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
// Replaces all of the uses of a variable with uses of the
// constant.
@@ -1802,7 +1812,7 @@ bool IPSCCP::runOnModule(Module &M) {
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
} else {
- assert(0 && "Didn't fold away reference to block!");
+ llvm_unreachable("Didn't fold away reference to block!");
}
#endif
@@ -1834,12 +1844,12 @@ bool IPSCCP::runOnModule(Module &M) {
for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
E = RV.end(); I != E; ++I)
if (!I->second.isOverdefined() &&
- I->first->getReturnType() != Type::VoidTy) {
+ !I->first->getReturnType()->isVoidTy()) {
Function *F = I->first;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (!isa<UndefValue>(RI->getOperand(0)))
- RI->setOperand(0, Context->getUndef(F->getReturnType()));
+ RI->setOperand(0, UndefValue::get(F->getReturnType()));
}
// If we infered constant or undef values for globals variables, we can delete
@@ -1850,7 +1860,7 @@ bool IPSCCP::runOnModule(Module &M) {
GlobalVariable *GV = I->first;
assert(!I->second.isOverdefined() &&
"Overdefined values should have been taken out of the map!");
- DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
+ DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
while (!GV->use_empty()) {
StoreInst *SI = cast<StoreInst>(GV->use_back());
SI->eraseFromParent();
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index 109fb90..610d874 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -34,13 +34,13 @@
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
using namespace llvm;
STATISTIC(NumReplaced, "Number of allocas broken up");
@@ -49,7 +49,7 @@ STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
namespace {
- struct VISIBILITY_HIDDEN SROA : public FunctionPass {
+ struct SROA : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
explicit SROA(signed T = -1) : FunctionPass(&ID) {
if (T == -1)
@@ -68,7 +68,6 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
- AU.addRequired<TargetData>();
AU.setPreservesCFG();
}
@@ -150,9 +149,16 @@ FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
bool SROA::runOnFunction(Function &F) {
- TD = &getAnalysis<TargetData>();
-
+ TD = getAnalysisIfAvailable<TargetData>();
+
bool Changed = performPromotion(F);
+
+ // FIXME: ScalarRepl currently depends on TargetData more than it
+ // theoretically needs to. It should be refactored in order to support
+ // target-independent IR. Until this is done, just skip the actual
+ // scalar-replacement portion of this pass.
+ if (!TD) return Changed;
+
while (1) {
bool LocalChange = performScalarRepl(F);
if (!LocalChange) break; // No need to repromote if no scalarrepl
@@ -186,7 +192,7 @@ bool SROA::performPromotion(Function &F) {
if (Allocas.empty()) break;
- PromoteMemToReg(Allocas, DT, DF);
+ PromoteMemToReg(Allocas, DT, DF, F.getContext());
NumPromoted += Allocas.size();
Changed = true;
}
@@ -238,11 +244,10 @@ bool SROA::performScalarRepl(Function &F) {
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
// is only subsequently read.
if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
- DOUT << "Found alloca equal to global: " << *AI;
- DOUT << " memcpy = " << *TheCopy;
+ DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
+ DEBUG(errs() << " memcpy = " << *TheCopy << '\n');
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
- AI->replaceAllUsesWith(
- Context->getConstantExprBitCast(TheSrc, AI->getType()));
+ AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
TheCopy->eraseFromParent(); // Don't mutate the global.
AI->eraseFromParent();
++NumGlobals;
@@ -256,9 +261,12 @@ bool SROA::performScalarRepl(Function &F) {
// value cannot be decomposed at all.
uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+ // Do not promote [0 x %struct].
+ if (AllocaSize == 0) continue;
+
// Do not promote any struct whose size is too big.
if (AllocaSize > SRThreshold) continue;
-
+
if ((isa<StructType>(AI->getAllocatedType()) ||
isa<ArrayType>(AI->getAllocatedType())) &&
// Do not promote any struct into more than "32" separate vars.
@@ -266,7 +274,7 @@ bool SROA::performScalarRepl(Function &F) {
// Check that all of the users of the allocation are capable of being
// transformed.
switch (isSafeAllocaToScalarRepl(AI)) {
- default: assert(0 && "Unexpected value!");
+ default: llvm_unreachable("Unexpected value!");
case 0: // Not safe to scalar replace.
break;
case 1: // Safe, but requires cleanup/canonicalizations first
@@ -298,16 +306,17 @@ bool SROA::performScalarRepl(Function &F) {
// we just get a lot of insert/extracts. If at least one vector is
// involved, then we probably really do have a union of vector/array.
if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
- DOUT << "CONVERT TO VECTOR: " << *AI << " TYPE = " << *VectorTy <<"\n";
+ DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
+ << *VectorTy << '\n');
// Create and insert the vector alloca.
- NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
+ NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
} else {
- DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
+ DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
// Create and insert the integer alloca.
- const Type *NewTy = Context->getIntegerType(AllocaSize*8);
+ const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
ConvertUsesToScalar(AI, NewAI, 0);
}
@@ -328,14 +337,14 @@ bool SROA::performScalarRepl(Function &F) {
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocationInst *AI,
std::vector<AllocationInst*> &WorkList) {
- DOUT << "Found inst to SROA: " << *AI;
+ DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
SmallVector<AllocaInst*, 32> ElementAllocas;
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
ElementAllocas.reserve(ST->getNumContainedTypes());
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
AI->getAlignment(),
- AI->getName() + "." + utostr(i), AI);
+ AI->getName() + "." + Twine(i), AI);
ElementAllocas.push_back(NA);
WorkList.push_back(NA); // Add to worklist for recursive processing
}
@@ -345,7 +354,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
const Type *ElTy = AT->getElementType();
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
- AI->getName() + "." + utostr(i), AI);
+ AI->getName() + "." + Twine(i), AI);
ElementAllocas.push_back(NA);
WorkList.push_back(NA); // Add to worklist for recursive processing
}
@@ -371,7 +380,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
// %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
// (Also works for arrays instead of structs)
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
- Value *Insert = Context->getUndef(LI->getType());
+ Value *Insert = UndefValue::get(LI->getType());
for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
@@ -418,7 +427,8 @@ void SROA::DoScalarReplacement(AllocationInst *AI,
// expanded itself once the worklist is rerun.
//
SmallVector<Value*, 8> NewArgs;
- NewArgs.push_back(Context->getNullValue(Type::Int32Ty));
+ NewArgs.push_back(Constant::getNullValue(
+ Type::getInt32Ty(AI->getContext())));
NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
NewArgs.end(), "", GEPI);
@@ -478,7 +488,7 @@ void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
if (Info.isUnsafe) return;
break;
}
- DOUT << " Transformation preventing inst: " << *User;
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
return MarkUnsafe(Info);
case Instruction::Call:
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
@@ -488,10 +498,10 @@ void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
break;
}
}
- DOUT << " Transformation preventing inst: " << *User;
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
return MarkUnsafe(Info);
default:
- DOUT << " Transformation preventing inst: " << *User;
+ DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
return MarkUnsafe(Info);
}
}
@@ -531,7 +541,7 @@ void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
// The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
if (I == E ||
- I.getOperand() != Context->getNullValue(I.getOperand()->getType())) {
+ I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
return MarkUnsafe(Info);
}
@@ -727,6 +737,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
// that doesn't have anything to do with the alloca that we are promoting. For
// memset, this Value* stays null.
Value *OtherPtr = 0;
+ LLVMContext &Context = MI->getContext();
unsigned MemAlignment = MI->getAlignment();
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
if (BCInst == MTI->getRawDest())
@@ -764,7 +775,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
const Type *BytePtrTy = MI->getRawDest()->getType();
bool SROADest = MI->getRawDest() == BCInst;
- Constant *Zero = Context->getNullValue(Type::Int32Ty);
+ Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// If this is a memcpy/memmove, emit a GEP of the other element address.
@@ -772,9 +783,10 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
unsigned OtherEltAlign = MemAlignment;
if (OtherPtr) {
- Value *Idx[2] = { Zero, Context->getConstantInt(Type::Int32Ty, i) };
+ Value *Idx[2] = { Zero,
+ ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
- OtherPtr->getNameStr()+"."+utostr(i),
+ OtherPtr->getNameStr()+"."+Twine(i),
MI);
uint64_t EltOffset;
const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
@@ -819,7 +831,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
Constant *StoreVal;
if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
if (CI->isZero()) {
- StoreVal = Context->getNullValue(EltTy); // 0.0, null, 0, <0,0>
+ StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
} else {
// If EltTy is a vector type, get the element type.
const Type *ValTy = EltTy->getScalarType();
@@ -835,18 +847,18 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
}
// Convert the integer value to the appropriate type.
- StoreVal = Context->getConstantInt(TotalVal);
+ StoreVal = ConstantInt::get(Context, TotalVal);
if (isa<PointerType>(ValTy))
- StoreVal = Context->getConstantExprIntToPtr(StoreVal, ValTy);
+ StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
else if (ValTy->isFloatingPoint())
- StoreVal = Context->getConstantExprBitCast(StoreVal, ValTy);
+ StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
assert(StoreVal->getType() == ValTy && "Type mismatch!");
// If the requested value was a vector constant, create it.
if (EltTy != ValTy) {
unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
- StoreVal = Context->getConstantVector(&Elts[0], NumElts);
+ StoreVal = ConstantVector::get(&Elts[0], NumElts);
}
}
new StoreInst(StoreVal, EltPtr, MI);
@@ -872,15 +884,16 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
Value *Ops[] = {
SROADest ? EltPtr : OtherElt, // Dest ptr
SROADest ? OtherElt : EltPtr, // Src ptr
- Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
- Context->getConstantInt(Type::Int32Ty, OtherEltAlign) // Align
+ ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
+ // Align
+ ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
} else {
assert(isa<MemSetInst>(MI));
Value *Ops[] = {
EltPtr, MI->getOperand(2), // Dest, Value,
- Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
+ ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
Zero // Align
};
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
@@ -910,9 +923,11 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
// Handle tail padding by extending the operand
if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
SrcVal = new ZExtInst(SrcVal,
- Context->getIntegerType(AllocaSizeBits), "", SI);
+ IntegerType::get(SI->getContext(), AllocaSizeBits),
+ "", SI);
- DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
+ DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
+ << '\n');
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
@@ -929,7 +944,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
Value *EltVal = SrcVal;
if (Shift) {
- Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
+ Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
@@ -942,7 +957,8 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
if (FieldSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
- Context->getIntegerType(FieldSizeBits), "", SI);
+ IntegerType::get(SI->getContext(), FieldSizeBits),
+ "", SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == FieldTy) {
// Storing to an integer field of this size, just do it.
@@ -952,7 +968,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
- Context->getPointerTypeUnqual(EltVal->getType()),
+ PointerType::getUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
@@ -977,7 +993,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
Value *EltVal = SrcVal;
if (Shift) {
- Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
+ Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
"sroa.store.elt", SI);
}
@@ -985,7 +1001,8 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
// Truncate down to an integer of the right size.
if (ElementSizeBits != AllocaSizeBits)
EltVal = new TruncInst(EltVal,
- Context->getIntegerType(ElementSizeBits),"",SI);
+ IntegerType::get(SI->getContext(),
+ ElementSizeBits),"",SI);
Value *DestField = NewElts[i];
if (EltVal->getType() == ArrayEltTy) {
// Storing to an integer field of this size, just do it.
@@ -995,7 +1012,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
} else {
// Otherwise, bitcast the dest pointer (for aggregates).
DestField = new BitCastInst(DestField,
- Context->getPointerTypeUnqual(EltVal->getType()),
+ PointerType::getUnqual(EltVal->getType()),
"", SI);
}
new StoreInst(EltVal, DestField, SI);
@@ -1026,7 +1043,8 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
return;
- DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
+ DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
+ << '\n');
// There are two forms here: AI could be an array or struct. Both cases
// have different ways to compute the element offset.
@@ -1038,9 +1056,9 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
}
-
- Value *ResultVal =
- Context->getNullValue(Context->getIntegerType(AllocaSizeBits));
+
+ Value *ResultVal =
+ Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
// Load the value from the alloca. If the NewElt is an aggregate, cast
@@ -1053,11 +1071,12 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
// Ignore zero sized fields like {}, they obviously contain no data.
if (FieldSizeBits == 0) continue;
- const IntegerType *FieldIntTy = Context->getIntegerType(FieldSizeBits);
+ const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
+ FieldSizeBits);
if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
!isa<VectorType>(FieldTy))
SrcField = new BitCastInst(SrcField,
- Context->getPointerTypeUnqual(FieldIntTy),
+ PointerType::getUnqual(FieldIntTy),
"", LI);
SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
@@ -1082,7 +1101,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
if (Shift) {
- Value *ShiftVal = Context->getConstantInt(SrcField->getType(), Shift);
+ Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
}
@@ -1152,7 +1171,8 @@ int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
I != E; ++I) {
isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
if (Info.isUnsafe) {
- DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
+ DEBUG(errs() << "Cannot transform: " << *AI << "\n due to user: "
+ << **I << '\n');
return 0;
}
}
@@ -1186,24 +1206,25 @@ void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
return;
if (NumElements == 1) {
- GEPI->setOperand(2, Context->getNullValue(Type::Int32Ty));
+ GEPI->setOperand(2,
+ Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
return;
}
assert(NumElements == 2 && "Unhandled case!");
// All users of the GEP must be loads. At each use of the GEP, insert
// two loads of the appropriate indexed GEP and select between them.
- Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
- Context->getNullValue(I.getOperand()->getType()),
- "isone", GEPI);
+ Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
+ Constant::getNullValue(I.getOperand()->getType()),
+ "isone");
// Insert the new GEP instructions, which are properly indexed.
SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
- Indices[1] = Context->getNullValue(Type::Int32Ty);
+ Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
Indices.begin(),
Indices.end(),
GEPI->getName()+".0", GEPI);
- Indices[1] = Context->getConstantInt(Type::Int32Ty, 1);
+ Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
Indices.begin(),
Indices.end(),
@@ -1261,9 +1282,9 @@ void SROA::CleanupAllocaUsers(AllocationInst *AI) {
/// and stores would mutate the memory.
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
unsigned AllocaSize, const TargetData &TD,
- LLVMContext* Context) {
+ LLVMContext &Context) {
// If this could be contributing to a vector, analyze it.
- if (VecTy != Type::VoidTy) { // either null or a vector type.
+ if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
// If the In type is a vector that is the same size as the alloca, see if it
// matches the existing VecTy.
@@ -1276,7 +1297,7 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
VecTy = VInTy;
return;
}
- } else if (In == Type::FloatTy || In == Type::DoubleTy ||
+ } else if (In->isFloatTy() || In->isDoubleTy() ||
(isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
// If we're accessing something that could be an element of a vector, see
@@ -1289,7 +1310,7 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
cast<VectorType>(VecTy)->getElementType()
->getPrimitiveSizeInBits()/8 == EltSize)) {
if (VecTy == 0)
- VecTy = Context->getVectorType(In, AllocaSize/EltSize);
+ VecTy = VectorType::get(In, AllocaSize/EltSize);
return;
}
}
@@ -1297,7 +1318,7 @@ static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
// Otherwise, we have a case that we can't handle with an optimized vector
// form. We can still turn this into a large integer.
- VecTy = Type::VoidTy;
+ VecTy = Type::getVoidTy(Context);
}
/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
@@ -1320,7 +1341,8 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Don't break volatile loads.
if (LI->isVolatile())
return false;
- MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD, Context);
+ MergeInType(LI->getType(), Offset, VecTy,
+ AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(LI->getType());
continue;
}
@@ -1329,7 +1351,7 @@ bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
// Storing the pointer, not into the value?
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
MergeInType(SI->getOperand(0)->getType(), Offset,
- VecTy, AllocaSize, *TD, Context);
+ VecTy, AllocaSize, *TD, V->getContext());
SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
continue;
}
@@ -1433,7 +1455,8 @@ void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
assert(SI->getOperand(0) != Ptr && "Consistency error!");
- Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
+ // FIXME: Remove once builder has Twine API.
+ Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
Builder);
Builder.CreateStore(New, NewAI);
@@ -1457,8 +1480,10 @@ void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
for (unsigned i = 1; i != NumBytes; ++i)
APVal |= APVal << 8;
- Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
- Value *New = ConvertScalar_InsertValue(Context->getConstantInt(APVal),
+ // FIXME: Remove once builder has Twine API.
+ Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
+ Value *New = ConvertScalar_InsertValue(
+ ConstantInt::get(User->getContext(), APVal),
Old, Offset, Builder);
Builder.CreateStore(New, NewAI);
}
@@ -1510,8 +1535,7 @@ void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
continue;
}
- assert(0 && "Unsupported operation!");
- abort();
+ llvm_unreachable("Unsupported operation!");
}
}
@@ -1545,9 +1569,8 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
}
// Return the element extracted out of it.
- Value *V = Builder.CreateExtractElement(FromVal,
- Context->getConstantInt(Type::Int32Ty,Elt),
- "tmp");
+ Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
+ Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
if (V->getType() != ToType)
V = Builder.CreateBitCast(V, ToType, "tmp");
return V;
@@ -1557,7 +1580,7 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
// use insertvalue's to form the FCA.
if (const StructType *ST = dyn_cast<StructType>(ToType)) {
const StructLayout &Layout = *TD->getStructLayout(ST);
- Value *Res = Context->getUndef(ST);
+ Value *Res = UndefValue::get(ST);
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
Offset+Layout.getElementOffsetInBits(i),
@@ -1569,7 +1592,7 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
- Value *Res = Context->getUndef(AT);
+ Value *Res = UndefValue::get(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
Offset+i*EltSize, Builder);
@@ -1599,21 +1622,23 @@ Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
// only some bits are used.
if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateLShr(FromVal,
- Context->getConstantInt(FromVal->getType(),
+ ConstantInt::get(FromVal->getType(),
ShAmt), "tmp");
else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
FromVal = Builder.CreateShl(FromVal,
- Context->getConstantInt(FromVal->getType(),
+ ConstantInt::get(FromVal->getType(),
-ShAmt), "tmp");
// Finally, unconditionally truncate the integer to the right width.
unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
if (LIBitWidth < NTy->getBitWidth())
FromVal =
- Builder.CreateTrunc(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
+ Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
+ LIBitWidth), "tmp");
else if (LIBitWidth > NTy->getBitWidth())
FromVal =
- Builder.CreateZExt(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
+ Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
+ LIBitWidth), "tmp");
// If the result is an integer, this is a trunc or bitcast.
if (isa<IntegerType>(ToType)) {
@@ -1645,6 +1670,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// Convert the stored type to the actual type, shift it left to insert
// then 'or' into place.
const Type *AllocaType = Old->getType();
+ LLVMContext &Context = Old->getContext();
if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
@@ -1664,7 +1690,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
SV = Builder.CreateInsertElement(Old, SV,
- Context->getConstantInt(Type::Int32Ty, Elt),
+ ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
"tmp");
return SV;
}
@@ -1697,9 +1723,10 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
- SV = Builder.CreateBitCast(SV, Context->getIntegerType(SrcWidth), "tmp");
+ SV = Builder.CreateBitCast(SV,
+ IntegerType::get(SV->getContext(),SrcWidth), "tmp");
else if (isa<PointerType>(SV->getType()))
- SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
+ SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
// Zero extend or truncate the value if needed.
if (SV->getType() != AllocaType) {
@@ -1732,11 +1759,11 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// only some bits in the structure are set.
APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
- SV = Builder.CreateShl(SV, Context->getConstantInt(SV->getType(),
+ SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
ShAmt), "tmp");
Mask <<= ShAmt;
} else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
- SV = Builder.CreateLShr(SV, Context->getConstantInt(SV->getType(),
+ SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
-ShAmt), "tmp");
Mask = Mask.lshr(-ShAmt);
}
@@ -1745,7 +1772,7 @@ Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
// in the new bits.
if (SrcWidth != DestWidth) {
assert(DestWidth > SrcWidth);
- Old = Builder.CreateAnd(Old, Context->getConstantInt(~Mask), "mask");
+ Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
SV = Builder.CreateOr(Old, SV, "ins");
}
return SV;
diff --git a/lib/Transforms/Scalar/SimplifyCFGPass.cpp b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
index b8bce80..29712b3 100644
--- a/lib/Transforms/Scalar/SimplifyCFGPass.cpp
+++ b/lib/Transforms/Scalar/SimplifyCFGPass.cpp
@@ -30,7 +30,6 @@
#include "llvm/Module.h"
#include "llvm/Attributes.h"
#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -40,7 +39,7 @@ using namespace llvm;
STATISTIC(NumSimpl, "Number of blocks simplified");
namespace {
- struct VISIBILITY_HIDDEN CFGSimplifyPass : public FunctionPass {
+ struct CFGSimplifyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
CFGSimplifyPass() : FunctionPass(&ID) {}
@@ -58,20 +57,20 @@ FunctionPass *llvm::createCFGSimplificationPass() {
/// ChangeToUnreachable - Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
-static void ChangeToUnreachable(Instruction *I, LLVMContext* Context) {
+static void ChangeToUnreachable(Instruction *I, LLVMContext &Context) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
- new UnreachableInst(I);
+ new UnreachableInst(I->getContext(), I);
// All instructions after this are dead.
BasicBlock::iterator BBI = I, BBE = BB->end();
while (BBI != BBE) {
if (!BBI->use_empty())
- BBI->replaceAllUsesWith(Context->getUndef(BBI->getType()));
+ BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
BB->getInstList().erase(BBI++);
}
}
@@ -97,7 +96,7 @@ static void ChangeToCall(InvokeInst *II) {
static bool MarkAliveBlocks(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 128> &Reachable,
- LLVMContext* Context) {
+ LLVMContext &Context) {
SmallVector<BasicBlock*, 128> Worklist;
Worklist.push_back(BB);
@@ -132,7 +131,7 @@ static bool MarkAliveBlocks(BasicBlock *BB,
if (isa<UndefValue>(Ptr) ||
(isa<ConstantPointerNull>(Ptr) &&
- cast<PointerType>(Ptr->getType())->getAddressSpace() == 0)) {
+ SI->getPointerAddressSpace() == 0)) {
ChangeToUnreachable(SI, Context);
Changed = true;
break;
diff --git a/lib/Transforms/Scalar/SimplifyHalfPowrLibCalls.cpp b/lib/Transforms/Scalar/SimplifyHalfPowrLibCalls.cpp
index 4aad17d..13077fe 100644
--- a/lib/Transforms/Scalar/SimplifyHalfPowrLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyHalfPowrLibCalls.cpp
@@ -22,15 +22,13 @@
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Config/config.h"
using namespace llvm;
namespace {
/// This pass optimizes well half_powr function calls.
///
- class VISIBILITY_HIDDEN SimplifyHalfPowrLibCalls : public FunctionPass {
+ class SimplifyHalfPowrLibCalls : public FunctionPass {
const TargetData *TD;
public:
static char ID; // Pass identification
@@ -39,7 +37,6 @@ namespace {
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
Instruction *
@@ -60,8 +57,9 @@ FunctionPass *llvm::createSimplifyHalfPowrLibCallsPass() {
/// InlineHalfPowrs - Inline a sequence of adjacent half_powr calls, rearranging
/// their control flow to better facilitate subsequent optimization.
Instruction *
-SimplifyHalfPowrLibCalls::InlineHalfPowrs(const std::vector<Instruction *> &HalfPowrs,
- Instruction *InsertPt) {
+SimplifyHalfPowrLibCalls::
+InlineHalfPowrs(const std::vector<Instruction *> &HalfPowrs,
+ Instruction *InsertPt) {
std::vector<BasicBlock *> Bodies;
BasicBlock *NewBlock = 0;
@@ -123,7 +121,7 @@ SimplifyHalfPowrLibCalls::InlineHalfPowrs(const std::vector<Instruction *> &Half
/// runOnFunction - Top level algorithm.
///
bool SimplifyHalfPowrLibCalls::runOnFunction(Function &F) {
- TD = &getAnalysis<TargetData>();
+ TD = getAnalysisIfAvailable<TargetData>();
bool Changed = false;
std::vector<Instruction *> HalfPowrs;
@@ -136,8 +134,7 @@ bool SimplifyHalfPowrLibCalls::runOnFunction(Function &F) {
Function *Callee = CI->getCalledFunction();
if (Callee && Callee->hasExternalLinkage()) {
// Look for calls with well-known names.
- const char *CalleeName = Callee->getNameStart();
- if (strcmp(CalleeName, "__half_powrf4") == 0)
+ if (Callee->getName() == "__half_powrf4")
IsHalfPowr = true;
}
}
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index ec48469..e1866015 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -9,11 +9,9 @@
//
// This file implements a simple pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
-// library functions). For example, a call to the function "exit(3)" that
-// occurs within the main() function can be transformed into a simple "return 3"
-// instruction. Any optimization that takes this form (replace call to library
-// function with simpler code that provides the same result) belongs in this
-// file.
+// library functions). Any optimization that takes the very simple form
+// "replace call to library function with simpler code that provides the same
+// result" belongs in this file.
//
//===----------------------------------------------------------------------===//
@@ -29,8 +27,9 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Config/config.h"
using namespace llvm;
@@ -44,7 +43,7 @@ STATISTIC(NumAnnotated, "Number of attributes added to library functions");
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
-class VISIBILITY_HIDDEN LibCallOptimization {
+class LibCallOptimization {
protected:
Function *Caller;
const TargetData *TD;
@@ -58,14 +57,14 @@ public:
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
+ virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
-
- Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder<> &B) {
+
+ Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
- this->TD = &TD;
+ this->TD = TD;
if (CI->getCalledFunction())
- Context = CI->getCalledFunction()->getContext();
+ Context = &CI->getCalledFunction()->getContext();
return CallOptimizer(CI->getCalledFunction(), CI, B);
}
@@ -76,12 +75,12 @@ public:
/// specified pointer. Ptr is required to be some pointer type, and the
/// return value has 'intptr_t' type.
Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
-
+
/// EmitMemCpy - Emit a call to the memcpy function to the builder. This
/// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
- Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
+ Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
unsigned Align, IRBuilder<> &B);
-
+
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
@@ -96,35 +95,36 @@ public:
/// 'floor'). This function is known to take a single of type matching 'Op'
/// and returns one value with the same type. If 'Op' is a long double, 'l'
/// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
- Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B);
-
+ Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B,
+ const AttrListPtr &Attrs);
+
/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
/// is an integer.
void EmitPutChar(Value *Char, IRBuilder<> &B);
-
+
/// EmitPutS - Emit a call to the puts function. This assumes that Str is
/// some pointer.
void EmitPutS(Value *Str, IRBuilder<> &B);
-
+
/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
/// an i32, and File is a pointer to FILE.
void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
-
+
/// EmitFPutS - Emit a call to the puts function. Str is required to be a
/// pointer and File is a pointer to FILE.
void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
-
+
/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
-
+
};
} // End anonymous namespace.
/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
return
- B.CreateBitCast(V, Context->getPointerTypeUnqual(Type::Int8Ty), "cstr");
+ B.CreateBitCast(V, Type::getInt8PtrTy(*Context), "cstr");
}
/// EmitStrLen - Emit a call to the strlen function to the builder, for the
@@ -137,8 +137,8 @@ Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
Attribute::NoUnwind);
Constant *StrLen =M->getOrInsertFunction("strlen", AttrListPtr::get(AWI, 2),
- TD->getIntPtrType(),
- Context->getPointerTypeUnqual(Type::Int8Ty),
+ TD->getIntPtrType(*Context),
+ Type::getInt8PtrTy(*Context),
NULL);
CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
if (const Function *F = dyn_cast<Function>(StrLen->stripPointerCasts()))
@@ -157,7 +157,7 @@ Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
Tys[0] = Len->getType();
Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1);
return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
- Context->getConstantInt(Type::Int32Ty, Align));
+ ConstantInt::get(Type::getInt32Ty(*Context), Align));
}
/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
@@ -169,9 +169,10 @@ Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
AWI = AttributeWithIndex::get(~0u, Attribute::ReadOnly | Attribute::NoUnwind);
Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(&AWI, 1),
- Context->getPointerTypeUnqual(Type::Int8Ty),
- Context->getPointerTypeUnqual(Type::Int8Ty),
- Type::Int32Ty, TD->getIntPtrType(),
+ Type::getInt8PtrTy(*Context),
+ Type::getInt8PtrTy(*Context),
+ Type::getInt32Ty(*Context),
+ TD->getIntPtrType(*Context),
NULL);
CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
@@ -192,10 +193,10 @@ Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
Attribute::NoUnwind);
Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI, 3),
- Type::Int32Ty,
- Context->getPointerTypeUnqual(Type::Int8Ty),
- Context->getPointerTypeUnqual(Type::Int8Ty),
- TD->getIntPtrType(), NULL);
+ Type::getInt32Ty(*Context),
+ Type::getInt8PtrTy(*Context),
+ Type::getInt8PtrTy(*Context),
+ TD->getIntPtrType(*Context), NULL);
CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
@@ -213,7 +214,7 @@ Value *LibCallOptimization::EmitMemSet(Value *Dst, Value *Val,
const Type *Tys[1];
Tys[0] = Len->getType();
Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
- Value *Align = Context->getConstantInt(Type::Int32Ty, 1);
+ Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1);
return B.CreateCall4(MemSet, CastToCStr(Dst, B), Val, Len, Align);
}
@@ -222,14 +223,15 @@ Value *LibCallOptimization::EmitMemSet(Value *Dst, Value *Val,
/// returns one value with the same type. If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
- IRBuilder<> &B) {
+ IRBuilder<> &B,
+ const AttrListPtr &Attrs) {
char NameBuffer[20];
- if (Op->getType() != Type::DoubleTy) {
+ if (!Op->getType()->isDoubleTy()) {
// If we need to add a suffix, copy into NameBuffer.
unsigned NameLen = strlen(Name);
assert(NameLen < sizeof(NameBuffer)-2);
memcpy(NameBuffer, Name, NameLen);
- if (Op->getType() == Type::FloatTy)
+ if (Op->getType()->isFloatTy())
NameBuffer[NameLen] = 'f'; // floorf
else
NameBuffer[NameLen] = 'l'; // floorl
@@ -241,7 +243,7 @@ Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(), NULL);
CallInst *CI = B.CreateCall(Callee, Op, Name);
-
+ CI->setAttributes(Attrs);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -252,10 +254,12 @@ Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
/// is an integer.
void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
Module *M = Caller->getParent();
- Value *PutChar = M->getOrInsertFunction("putchar", Type::Int32Ty,
- Type::Int32Ty, NULL);
+ Value *PutChar = M->getOrInsertFunction("putchar", Type::getInt32Ty(*Context),
+ Type::getInt32Ty(*Context), NULL);
CallInst *CI = B.CreateCall(PutChar,
- B.CreateIntCast(Char, Type::Int32Ty, "chari"),
+ B.CreateIntCast(Char,
+ Type::getInt32Ty(*Context),
+ "chari"),
"putchar");
if (const Function *F = dyn_cast<Function>(PutChar->stripPointerCasts()))
@@ -271,8 +275,8 @@ void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Value *PutS = M->getOrInsertFunction("puts", AttrListPtr::get(AWI, 2),
- Type::Int32Ty,
- Context->getPointerTypeUnqual(Type::Int8Ty),
+ Type::getInt32Ty(*Context),
+ Type::getInt8PtrTy(*Context),
NULL);
CallInst *CI = B.CreateCall(PutS, CastToCStr(Str, B), "puts");
if (const Function *F = dyn_cast<Function>(PutS->stripPointerCasts()))
@@ -289,12 +293,16 @@ void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
AWI[1] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Constant *F;
if (isa<PointerType>(File->getType()))
- F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2), Type::Int32Ty,
- Type::Int32Ty, File->getType(), NULL);
+ F = M->getOrInsertFunction("fputc", AttrListPtr::get(AWI, 2),
+ Type::getInt32Ty(*Context),
+ Type::getInt32Ty(*Context), File->getType(),
+ NULL);
else
- F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
+ F = M->getOrInsertFunction("fputc",
+ Type::getInt32Ty(*Context),
+ Type::getInt32Ty(*Context),
File->getType(), NULL);
- Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
+ Char = B.CreateIntCast(Char, Type::getInt32Ty(*Context), "chari");
CallInst *CI = B.CreateCall2(F, Char, File, "fputc");
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
@@ -311,12 +319,13 @@ void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
AWI[2] = AttributeWithIndex::get(~0u, Attribute::NoUnwind);
Constant *F;
if (isa<PointerType>(File->getType()))
- F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3), Type::Int32Ty,
- Context->getPointerTypeUnqual(Type::Int8Ty),
+ F = M->getOrInsertFunction("fputs", AttrListPtr::get(AWI, 3),
+ Type::getInt32Ty(*Context),
+ Type::getInt8PtrTy(*Context),
File->getType(), NULL);
else
- F = M->getOrInsertFunction("fputs", Type::Int32Ty,
- Context->getPointerTypeUnqual(Type::Int8Ty),
+ F = M->getOrInsertFunction("fputs", Type::getInt32Ty(*Context),
+ Type::getInt8PtrTy(*Context),
File->getType(), NULL);
CallInst *CI = B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
@@ -336,17 +345,19 @@ void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
Constant *F;
if (isa<PointerType>(File->getType()))
F = M->getOrInsertFunction("fwrite", AttrListPtr::get(AWI, 3),
- TD->getIntPtrType(),
- Context->getPointerTypeUnqual(Type::Int8Ty),
- TD->getIntPtrType(), TD->getIntPtrType(),
+ TD->getIntPtrType(*Context),
+ Type::getInt8PtrTy(*Context),
+ TD->getIntPtrType(*Context),
+ TD->getIntPtrType(*Context),
File->getType(), NULL);
else
- F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
- Context->getPointerTypeUnqual(Type::Int8Ty),
- TD->getIntPtrType(), TD->getIntPtrType(),
+ F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(*Context),
+ Type::getInt8PtrTy(*Context),
+ TD->getIntPtrType(*Context),
+ TD->getIntPtrType(*Context),
File->getType(), NULL);
CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
- Context->getConstantInt(TD->getIntPtrType(), 1), File);
+ ConstantInt::get(TD->getIntPtrType(*Context), 1), File);
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
@@ -362,30 +373,30 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Look through noop bitcast instructions.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
return GetStringLengthH(BCI->getOperand(0), PHIs);
-
+
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN))
return ~0ULL; // already in the set.
-
+
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
if (Len == 0) return 0; // Unknown length -> unknown.
-
+
if (Len == ~0ULL) continue;
-
+
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; // Disagree -> unknown.
LenSoFar = Len;
}
-
+
// Success, all agree.
return LenSoFar;
}
-
+
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
@@ -397,7 +408,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
if (Len1 != Len2) return 0;
return Len1;
}
-
+
// If the value is not a GEP instruction nor a constant expression with a
// GEP instruction, then return unknown.
User *GEP = 0;
@@ -410,11 +421,11 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
} else {
return 0;
}
-
+
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return 0;
-
+
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
@@ -422,7 +433,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
return 0;
} else
return 0;
-
+
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
@@ -431,28 +442,30 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
StartIdx = CI->getZExtValue();
else
return 0;
-
+
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasInitializer())
+ if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
+ GV->mayBeOverridden())
return 0;
Constant *GlobalInit = GV->getInitializer();
-
+
// Handle the ConstantAggregateZero case, which is a degenerate case. The
// initializer is constant zero so the length of the string must be zero.
if (isa<ConstantAggregateZero>(GlobalInit))
return 1; // Len = 0 offset by 1.
-
+
// Must be a Constant Array
ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
+ if (!Array ||
+ Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
return false;
-
+
// Get the number of elements in the array
uint64_t NumElts = Array->getType()->getNumElements();
-
+
// Traverse the constant array from StartIdx (derived above) which is
// the place the GEP refers to in the array.
for (unsigned i = StartIdx; i != NumElts; ++i) {
@@ -463,7 +476,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
if (CI->isZero())
return i-StartIdx+1; // We found end of string, success!
}
-
+
return 0; // The array isn't null terminated, conservatively return 'unknown'.
}
@@ -471,7 +484,7 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLength(Value *V) {
if (!isa<PointerType>(V->getType())) return 0;
-
+
SmallPtrSet<PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
@@ -480,7 +493,7 @@ static uint64_t GetStringLength(Value *V) {
}
/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
-/// value is equal or not-equal to zero.
+/// value is equal or not-equal to zero.
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
@@ -496,73 +509,38 @@ static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
}
//===----------------------------------------------------------------------===//
-// Miscellaneous LibCall Optimizations
-//===----------------------------------------------------------------------===//
-
-namespace {
-//===---------------------------------------===//
-// 'exit' Optimizations
-
-/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
-struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
- virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
- // Verify we have a reasonable prototype for exit.
- if (Callee->arg_size() == 0 || !CI->use_empty())
- return 0;
-
- // Verify the caller is main, and that the result type of main matches the
- // argument type of exit.
- if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
- Caller->getReturnType() != CI->getOperand(1)->getType())
- return 0;
-
- TerminatorInst *OldTI = CI->getParent()->getTerminator();
-
- // Create the return after the call.
- ReturnInst *RI = B.CreateRet(CI->getOperand(1));
-
- // Drop all successor phi node entries.
- for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
- OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
-
- // Erase all instructions from after our return instruction until the end of
- // the block.
- BasicBlock::iterator FirstDead = RI; ++FirstDead;
- CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
- return CI;
- }
-};
-
-//===----------------------------------------------------------------------===//
// String and Memory LibCall Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'strcat' Optimizations
-
-struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
+namespace {
+struct StrCatOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
- FT->getReturnType() != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
-
+
// Extract some information from the instruction
Value *Dst = CI->getOperand(1);
Value *Src = CI->getOperand(2);
-
+
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
--Len; // Unbias length.
-
+
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
-
+
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
EmitStrLenMemCpy(Src, Dst, Len, B);
return Dst;
}
@@ -571,28 +549,28 @@ struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B);
-
+
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
-
+
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(CpyDst, Src,
- Context->getConstantInt(TD->getIntPtrType(), Len+1), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len+1), 1, B);
}
};
//===---------------------------------------===//
// 'strncat' Optimizations
-struct VISIBILITY_HIDDEN StrNCatOpt : public StrCatOpt {
+struct StrNCatOpt : public StrCatOpt {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
- FT->getReturnType() != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType() ||
!isa<IntegerType>(FT->getParamType(2)))
@@ -619,6 +597,9 @@ struct VISIBILITY_HIDDEN StrNCatOpt : public StrCatOpt {
// strncat(x, c, 0) -> x
if (SrcLen == 0 || Len == 0) return Dst;
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// We don't optimize this case
if (Len < SrcLen) return 0;
@@ -632,27 +613,31 @@ struct VISIBILITY_HIDDEN StrNCatOpt : public StrCatOpt {
//===---------------------------------------===//
// 'strchr' Optimizations
-struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
+struct StrChrOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
- FT->getReturnType() != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
FT->getParamType(0) != FT->getReturnType())
return 0;
-
+
Value *SrcStr = CI->getOperand(1);
-
+
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
if (CharC == 0) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
+ if (Len == 0 ||
+ FT->getParamType(1) != Type::getInt32Ty(*Context)) // memchr needs i32.
return 0;
-
+
return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
- Context->getConstantInt(TD->getIntPtrType(), Len), B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), B);
}
// Otherwise, the character is a constant, see if the first argument is
@@ -660,24 +645,24 @@ struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
std::string Str;
if (!GetConstantStringInfo(SrcStr, Str))
return 0;
-
+
// strchr can find the nul character.
Str += '\0';
char CharValue = CharC->getSExtValue();
-
+
// Compute the offset.
uint64_t i = 0;
while (1) {
if (i == Str.size()) // Didn't find the char. strchr returns null.
- return Context->getNullValue(CI->getType());
+ return Constant::getNullValue(CI->getType());
// Did we find our match?
if (Str[i] == CharValue)
break;
++i;
}
-
+
// strchr(s+n,c) -> gep(s+n+i,c)
- Value *Idx = Context->getConstantInt(Type::Int64Ty, i);
+ Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), i);
return B.CreateGEP(SrcStr, Idx, "strchr");
}
};
@@ -685,40 +670,44 @@ struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strcmp' Optimizations
-struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
+struct StrCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
+ if (FT->getNumParams() != 2 ||
+ FT->getReturnType() != Type::getInt32Ty(*Context) ||
FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Context->getPointerTypeUnqual(Type::Int8Ty))
+ FT->getParamType(0) != Type::getInt8PtrTy(*Context))
return 0;
-
+
Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strcmp(x,x) -> 0
- return Context->getConstantInt(CI->getType(), 0);
-
+ return ConstantInt::get(CI->getType(), 0);
+
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-
+
if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-
+
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
+
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
- return Context->getConstantInt(CI->getType(),
+ return ConstantInt::get(CI->getType(),
strcmp(Str1.c_str(),Str2.c_str()));
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
return EmitMemCmp(Str1P, Str2P,
- Context->getConstantInt(TD->getIntPtrType(),
+ ConstantInt::get(TD->getIntPtrType(*Context),
std::min(Len1, Len2)), B);
}
@@ -729,43 +718,44 @@ struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strncmp' Optimizations
-struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
+struct StrNCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
const FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
+ if (FT->getNumParams() != 3 ||
+ FT->getReturnType() != Type::getInt32Ty(*Context) ||
FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!isa<IntegerType>(FT->getParamType(2)))
return 0;
-
+
Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return Context->getConstantInt(CI->getType(), 0);
-
+ return ConstantInt::get(CI->getType(), 0);
+
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
Length = LengthArg->getZExtValue();
else
return 0;
-
+
if (Length == 0) // strncmp(x,y,0) -> 0
- return Context->getConstantInt(CI->getType(), 0);
-
+ return ConstantInt::get(CI->getType(), 0);
+
std::string Str1, Str2;
bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
-
+
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
-
+
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
-
+
// strncmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
- return Context->getConstantInt(CI->getType(),
+ return ConstantInt::get(CI->getType(),
strncmp(Str1.c_str(), Str2.c_str(), Length));
return 0;
}
@@ -775,27 +765,30 @@ struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strcpy' Optimizations
-struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
+struct StrCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Context->getPointerTypeUnqual(Type::Int8Ty))
+ FT->getParamType(0) != Type::getInt8PtrTy(*Context))
return 0;
-
+
Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
-
+
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
-
+
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
EmitMemCpy(Dst, Src,
- Context->getConstantInt(TD->getIntPtrType(), Len), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
return Dst;
}
};
@@ -803,12 +796,12 @@ struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strncpy' Optimizations
-struct VISIBILITY_HIDDEN StrNCpyOpt : public LibCallOptimization {
+struct StrNCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!isa<IntegerType>(FT->getParamType(2)))
return 0;
@@ -823,7 +816,8 @@ struct VISIBILITY_HIDDEN StrNCpyOpt : public LibCallOptimization {
if (SrcLen == 0) {
// strncpy(x, "", y) -> memset(x, '\0', y, 1)
- EmitMemSet(Dst, Context->getConstantInt(Type::Int8Ty, '\0'), LenOp, B);
+ EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'), LenOp,
+ B);
return Dst;
}
@@ -835,12 +829,15 @@ struct VISIBILITY_HIDDEN StrNCpyOpt : public LibCallOptimization {
if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// Let strncpy handle the zero padding
if (Len > SrcLen+1) return 0;
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
EmitMemCpy(Dst, Src,
- Context->getConstantInt(TD->getIntPtrType(), Len), 1, B);
+ ConstantInt::get(TD->getIntPtrType(*Context), Len), 1, B);
return Dst;
}
@@ -849,19 +846,19 @@ struct VISIBILITY_HIDDEN StrNCpyOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strlen' Optimizations
-struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
+struct StrLenOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
- FT->getParamType(0) != Context->getPointerTypeUnqual(Type::Int8Ty) ||
+ FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
-
+
Value *Src = CI->getOperand(1);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
- return Context->getConstantInt(CI->getType(), Len-1);
+ return ConstantInt::get(CI->getType(), Len-1);
// Handle strlen(p) != 0.
if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
@@ -875,7 +872,7 @@ struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'strto*' Optimizations
-struct VISIBILITY_HIDDEN StrToOpt : public LibCallOptimization {
+struct StrToOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
@@ -897,18 +894,18 @@ struct VISIBILITY_HIDDEN StrToOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'memcmp' Optimizations
-struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
+struct MemCmpOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
- FT->getReturnType() != Type::Int32Ty)
+ FT->getReturnType() != Type::getInt32Ty(*Context))
return 0;
Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Context->getNullValue(CI->getType());
+ return Constant::getNullValue(CI->getType());
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
@@ -916,7 +913,7 @@ struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
uint64_t Len = LenC->getZExtValue();
if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Context->getNullValue(CI->getType());
+ return Constant::getNullValue(CI->getType());
if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
@@ -927,8 +924,8 @@ struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
// memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
// memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
- const Type *PTy = Context->getPointerTypeUnqual(Len == 2 ?
- Type::Int16Ty : Type::Int32Ty);
+ const Type *PTy = PointerType::getUnqual(Len == 2 ?
+ Type::getInt16Ty(*Context) : Type::getInt32Ty(*Context));
LHS = B.CreateBitCast(LHS, PTy, "tmp");
RHS = B.CreateBitCast(RHS, PTy, "tmp");
LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
@@ -944,13 +941,16 @@ struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'memcpy' Optimizations
-struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
+struct MemCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
- FT->getParamType(2) != TD->getIntPtrType())
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
@@ -962,25 +962,28 @@ struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'memmove' Optimizations
-struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization {
+struct MemMoveOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
- FT->getParamType(2) != TD->getIntPtrType())
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
Module *M = Caller->getParent();
Intrinsic::ID IID = Intrinsic::memmove;
const Type *Tys[1];
- Tys[0] = TD->getIntPtrType();
+ Tys[0] = TD->getIntPtrType(*Context);
Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1);
Value *Dst = CastToCStr(CI->getOperand(1), B);
Value *Src = CastToCStr(CI->getOperand(2), B);
Value *Size = CI->getOperand(3);
- Value *Align = Context->getConstantInt(Type::Int32Ty, 1);
+ Value *Align = ConstantInt::get(Type::getInt32Ty(*Context), 1);
B.CreateCall4(MemMove, Dst, Src, Size, Align);
return CI->getOperand(1);
}
@@ -989,17 +992,21 @@ struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'memset' Optimizations
-struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization {
+struct MemSetOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
- FT->getParamType(1) != TD->getIntPtrType() ||
- FT->getParamType(2) != TD->getIntPtrType())
+ !isa<IntegerType>(FT->getParamType(1)) ||
+ FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
- Value *Val = B.CreateTrunc(CI->getOperand(2), Type::Int8Ty);
+ Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
+ false);
EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
return CI->getOperand(1);
}
@@ -1012,7 +1019,7 @@ struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'pow*' Optimizations
-struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
+struct PowOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
@@ -1021,40 +1028,44 @@ struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
-
+
Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
return Op1C;
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
- return EmitUnaryFloatFnCall(Op2, "exp2", B);
+ return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
}
-
+
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
if (Op2C == 0) return 0;
-
+
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return Context->getConstantFP(CI->getType(), 1.0);
-
+ return ConstantFP::get(CI->getType(), 1.0);
+
if (Op2C->isExactlyValue(0.5)) {
- // FIXME: This is not safe for -0.0 and -inf. This can only be done when
- // 'unsafe' math optimizations are allowed.
- // x pow(x, 0.5) sqrt(x)
- // ---------------------------------------------
- // -0.0 +0.0 -0.0
- // -inf +inf NaN
-#if 0
- // pow(x, 0.5) -> sqrt(x)
- return B.CreateCall(get_sqrt(), Op1, "sqrt");
-#endif
+ // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+ // This is faster than calling pow, and still handles negative zero
+ // and negative infinite correctly.
+ // TODO: In fast-math mode, this could be just sqrt(x).
+ // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+ Value *Inf = ConstantFP::getInfinity(CI->getType());
+ Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+ Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+ Callee->getAttributes());
+ Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+ Callee->getAttributes());
+ Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp");
+ Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
+ return Sel;
}
-
+
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
return Op1;
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
return B.CreateFMul(Op1, Op1, "pow2");
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(Context->getConstantFP(CI->getType(), 1.0),
+ return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
Op1, "powrecip");
return 0;
}
@@ -1063,7 +1074,7 @@ struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'exp2' Optimizations
-struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
+struct Exp2Opt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
@@ -1071,35 +1082,38 @@ struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
-
+
Value *Op = CI->getOperand(1);
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
Value *LdExpArg = 0;
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
+ LdExpArg = B.CreateSExt(OpC->getOperand(0),
+ Type::getInt32Ty(*Context), "tmp");
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
+ LdExpArg = B.CreateZExt(OpC->getOperand(0),
+ Type::getInt32Ty(*Context), "tmp");
}
if (LdExpArg) {
const char *Name;
- if (Op->getType() == Type::FloatTy)
+ if (Op->getType()->isFloatTy())
Name = "ldexpf";
- else if (Op->getType() == Type::DoubleTy)
+ else if (Op->getType()->isDoubleTy())
Name = "ldexp";
else
Name = "ldexpl";
- Constant *One = Context->getConstantFP(APFloat(1.0f));
- if (Op->getType() != Type::FloatTy)
- One = Context->getConstantExprFPExtend(One, Op->getType());
+ Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+ if (!Op->getType()->isFloatTy())
+ One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
- Op->getType(), Type::Int32Ty,NULL);
+ Op->getType(),
+ Type::getInt32Ty(*Context),NULL);
CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -1113,22 +1127,23 @@ struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
+struct UnaryDoubleFPOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
- FT->getParamType(0) != Type::DoubleTy)
+ if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+ !FT->getParamType(0)->isDoubleTy())
return 0;
// If this is something like 'floor((double)floatval)', convert to floorf.
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
- if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
+ if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
return 0;
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
- V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
- return B.CreateFPExt(V, Type::DoubleTy);
+ V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
+ Callee->getAttributes());
+ return B.CreateFPExt(V, Type::getDoubleTy(*Context));
}
};
@@ -1139,54 +1154,56 @@ struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'ffs*' Optimizations
-struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
+struct FFSOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
+ if (FT->getNumParams() != 1 ||
+ FT->getReturnType() != Type::getInt32Ty(*Context) ||
!isa<IntegerType>(FT->getParamType(0)))
return 0;
-
+
Value *Op = CI->getOperand(1);
-
+
// Constant fold.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->getValue() == 0) // ffs(0) -> 0.
- return Context->getNullValue(CI->getType());
- return Context->getConstantInt(Type::Int32Ty, // ffs(c) -> cttz(c)+1
+ return Constant::getNullValue(CI->getType());
+ return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
CI->getValue().countTrailingZeros()+1);
}
-
+
// ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
const Type *ArgType = Op->getType();
Value *F = Intrinsic::getDeclaration(Callee->getParent(),
Intrinsic::cttz, &ArgType, 1);
Value *V = B.CreateCall(F, Op, "cttz");
- V = B.CreateAdd(V, Context->getConstantInt(V->getType(), 1), "tmp");
- V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
-
- Value *Cond = B.CreateICmpNE(Op, Context->getNullValue(ArgType), "tmp");
- return B.CreateSelect(Cond, V, Context->getConstantInt(Type::Int32Ty, 0));
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
+ V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
+ return B.CreateSelect(Cond, V,
+ ConstantInt::get(Type::getInt32Ty(*Context), 0));
}
};
//===---------------------------------------===//
// 'isdigit' Optimizations
-struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
+struct IsDigitOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
- FT->getParamType(0) != Type::Int32Ty)
+ FT->getParamType(0) != Type::getInt32Ty(*Context))
return 0;
-
+
// isdigit(c) -> (c-'0') <u 10
Value *Op = CI->getOperand(1);
- Op = B.CreateSub(Op, Context->getConstantInt(Type::Int32Ty, '0'),
+ Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
"isdigittmp");
- Op = B.CreateICmpULT(Op, Context->getConstantInt(Type::Int32Ty, 10),
+ Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
"isdigit");
return B.CreateZExt(Op, CI->getType());
}
@@ -1195,58 +1212,58 @@ struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'isascii' Optimizations
-struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
+struct IsAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
- FT->getParamType(0) != Type::Int32Ty)
+ FT->getParamType(0) != Type::getInt32Ty(*Context))
return 0;
-
+
// isascii(c) -> c <u 128
Value *Op = CI->getOperand(1);
- Op = B.CreateICmpULT(Op, Context->getConstantInt(Type::Int32Ty, 128),
+ Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
"isascii");
return B.CreateZExt(Op, CI->getType());
}
};
-
+
//===---------------------------------------===//
// 'abs', 'labs', 'llabs' Optimizations
-struct VISIBILITY_HIDDEN AbsOpt : public LibCallOptimization {
+struct AbsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(integer) where the types agree.
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
FT->getParamType(0) != FT->getReturnType())
return 0;
-
+
// abs(x) -> x >s -1 ? x : -x
Value *Op = CI->getOperand(1);
- Value *Pos = B.CreateICmpSGT(Op,
- Context->getConstantIntAllOnesValue(Op->getType()),
+ Value *Pos = B.CreateICmpSGT(Op,
+ Constant::getAllOnesValue(Op->getType()),
"ispos");
Value *Neg = B.CreateNeg(Op, "neg");
return B.CreateSelect(Pos, Op, Neg);
}
};
-
+
//===---------------------------------------===//
// 'toascii' Optimizations
-struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
+struct ToAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != Type::Int32Ty)
+ FT->getParamType(0) != Type::getInt32Ty(*Context))
return 0;
-
+
// isascii(c) -> c & 0x7f
return B.CreateAnd(CI->getOperand(1),
- Context->getConstantInt(CI->getType(),0x7F));
+ ConstantInt::get(CI->getType(),0x7F));
}
};
@@ -1257,15 +1274,15 @@ struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'printf' Optimizations
-struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
+struct PrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
!(isa<IntegerType>(FT->getReturnType()) ||
- FT->getReturnType() == Type::VoidTy))
+ FT->getReturnType()->isVoidTy()))
return 0;
-
+
// Check for a fixed format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
@@ -1273,39 +1290,39 @@ struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
// Empty format string -> noop.
if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value*)CI :
- Context->getConstantInt(CI->getType(), 0);
-
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 0);
+
// printf("x") -> putchar('x'), even for '%'.
if (FormatStr.size() == 1) {
- EmitPutChar(Context->getConstantInt(Type::Int32Ty, FormatStr[0]), B);
- return CI->use_empty() ? (Value*)CI :
- Context->getConstantInt(CI->getType(), 1);
+ EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context), FormatStr[0]), B);
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 1);
}
-
+
// printf("foo\n") --> puts("foo")
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) { // no format characters.
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr.erase(FormatStr.end()-1);
- Constant *C = Context->getConstantArray(FormatStr, true);
- C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
- C, "str", Callee->getParent());
+ Constant *C = ConstantArray::get(*Context, FormatStr, true);
+ C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
+ GlobalVariable::InternalLinkage, C, "str");
EmitPutS(C, B);
- return CI->use_empty() ? (Value*)CI :
- Context->getConstantInt(CI->getType(), FormatStr.size()+1);
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), FormatStr.size()+1);
}
-
+
// Optimize specific format strings.
// printf("%c", chr) --> putchar(*(i8*)dst)
if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
isa<IntegerType>(CI->getOperand(2)->getType())) {
EmitPutChar(CI->getOperand(2), B);
- return CI->use_empty() ? (Value*)CI :
- Context->getConstantInt(CI->getType(), 1);
+ return CI->use_empty() ? (Value*)CI :
+ ConstantInt::get(CI->getType(), 1);
}
-
+
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
isa<PointerType>(CI->getOperand(2)->getType()) &&
@@ -1320,7 +1337,7 @@ struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'sprintf' Optimizations
-struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
+struct SPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed pointer arguments and an integer result.
const FunctionType *FT = Callee->getFunctionType();
@@ -1333,7 +1350,7 @@ struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return 0;
-
+
// If we just have a format string (nothing else crazy) transform it.
if (CI->getNumOperands() == 3) {
// Make sure there's no % in the constant array. We could try to handle
@@ -1341,41 +1358,49 @@ struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return 0; // we found a format specifier, bail out.
-
+
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
- Context->getConstantInt(TD->getIntPtrType(), FormatStr.size()+1),1,B);
- return Context->getConstantInt(CI->getType(), FormatStr.size());
+ ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
+ return ConstantInt::get(CI->getType(), FormatStr.size());
}
-
+
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
return 0;
-
+
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
- Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char");
+ Value *V = B.CreateTrunc(CI->getOperand(3),
+ Type::getInt8Ty(*Context), "char");
Value *Ptr = CastToCStr(CI->getOperand(1), B);
B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(Ptr, Context->getConstantInt(Type::Int32Ty, 1), "nul");
- B.CreateStore(Context->getNullValue(Type::Int8Ty), Ptr);
-
- return Context->getConstantInt(CI->getType(), 1);
+ Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1),
+ "nul");
+ B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
}
-
+
if (FormatStr[1] == 's') {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
Value *Len = EmitStrLen(CI->getOperand(3), B);
Value *IncLen = B.CreateAdd(Len,
- Context->getConstantInt(Len->getType(), 1),
+ ConstantInt::get(Len->getType(), 1),
"leninc");
EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
-
+
// The sprintf result is the unincremented number of bytes in the string.
return B.CreateIntCast(Len, CI->getType(), false);
}
@@ -1386,7 +1411,7 @@ struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'fwrite' Optimizations
-struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
+struct FWriteOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require a pointer, an integer, an integer, a pointer, returning integer.
const FunctionType *FT = Callee->getFunctionType();
@@ -1396,22 +1421,22 @@ struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
!isa<PointerType>(FT->getParamType(3)) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
-
+
// Get the element size and count.
ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
if (!SizeC || !CountC) return 0;
uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
-
+
// If this is writing zero records, remove the call (it's a noop).
if (Bytes == 0)
- return Context->getConstantInt(CI->getType(), 0);
-
+ return ConstantInt::get(CI->getType(), 0);
+
// If this is writing one byte, turn it into fputc.
if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
EmitFPutC(Char, CI->getOperand(4), B);
- return Context->getConstantInt(CI->getType(), 1);
+ return ConstantInt::get(CI->getType(), 1);
}
return 0;
@@ -1421,20 +1446,23 @@ struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'fputs' Optimizations
-struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
+struct FPutsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
// Require two pointers. Also, we can't optimize if return value is used.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
!CI->use_empty())
return 0;
-
+
// fputs(s,F) --> fwrite(s,1,strlen(s),F)
uint64_t Len = GetStringLength(CI->getOperand(1));
if (!Len) return 0;
EmitFWrite(CI->getOperand(1),
- Context->getConstantInt(TD->getIntPtrType(), Len-1),
+ ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
CI->getOperand(2), B);
return CI; // Known to have no uses (see above).
}
@@ -1443,7 +1471,7 @@ struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
//===---------------------------------------===//
// 'fprintf' Optimizations
-struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
+struct FPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed paramters as pointers and integer result.
const FunctionType *FT = Callee->getFunctionType();
@@ -1451,7 +1479,7 @@ struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
!isa<PointerType>(FT->getParamType(1)) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
-
+
// All the optimizations depend on the format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
@@ -1462,26 +1490,29 @@ struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
return 0; // We found a format specifier.
-
- EmitFWrite(CI->getOperand(2), Context->getConstantInt(TD->getIntPtrType(),
+
+ // These optimizations require TargetData.
+ if (!TD) return 0;
+
+ EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(*Context),
FormatStr.size()),
CI->getOperand(1), B);
- return Context->getConstantInt(CI->getType(), FormatStr.size());
+ return ConstantInt::get(CI->getType(), FormatStr.size());
}
-
+
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
return 0;
-
+
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// fprintf(F, "%c", chr) --> *(i8*)dst = chr
if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
- return Context->getConstantInt(CI->getType(), 1);
+ return ConstantInt::get(CI->getType(), 1);
}
-
+
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) -> fputs(str, F)
if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
@@ -1502,10 +1533,8 @@ struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
namespace {
/// This pass optimizes well known library functions from libc and libm.
///
- class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass {
+ class SimplifyLibCalls : public FunctionPass {
StringMap<LibCallOptimization*> Optimizations;
- // Miscellaneous LibCall Optimizations
- ExitOpt Exit;
// String and Memory LibCall Optimizations
StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrCmpOpt StrCmp;
StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrNCpyOpt StrNCpy; StrLenOpt StrLen;
@@ -1536,7 +1565,6 @@ namespace {
bool doInitialization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetData>();
}
};
char SimplifyLibCalls::ID = 0;
@@ -1547,15 +1575,12 @@ X("simplify-libcalls", "Simplify well-known library calls");
// Public interface to the Simplify LibCalls pass.
FunctionPass *llvm::createSimplifyLibCallsPass() {
- return new SimplifyLibCalls();
+ return new SimplifyLibCalls();
}
/// Optimizations - Populate the Optimizations map with all the optimizations
/// we know.
void SimplifyLibCalls::InitOptimizations() {
- // Miscellaneous LibCall Optimizations
- Optimizations["exit"] = &Exit;
-
// String and Memory LibCall Optimizations
Optimizations["strcat"] = &StrCat;
Optimizations["strncat"] = &StrNCat;
@@ -1576,7 +1601,7 @@ void SimplifyLibCalls::InitOptimizations() {
Optimizations["memcpy"] = &MemCpy;
Optimizations["memmove"] = &MemMove;
Optimizations["memset"] = &MemSet;
-
+
// Math Library Optimizations
Optimizations["powf"] = &Pow;
Optimizations["pow"] = &Pow;
@@ -1594,7 +1619,7 @@ void SimplifyLibCalls::InitOptimizations() {
Optimizations["llvm.exp2.f80"] = &Exp2;
Optimizations["llvm.exp2.f64"] = &Exp2;
Optimizations["llvm.exp2.f32"] = &Exp2;
-
+
#ifdef HAVE_FLOORF
Optimizations["floor"] = &UnaryDoubleFP;
#endif
@@ -1610,7 +1635,7 @@ void SimplifyLibCalls::InitOptimizations() {
#ifdef HAVE_NEARBYINTF
Optimizations["nearbyint"] = &UnaryDoubleFP;
#endif
-
+
// Integer Optimizations
Optimizations["ffs"] = &FFS;
Optimizations["ffsl"] = &FFS;
@@ -1621,7 +1646,7 @@ void SimplifyLibCalls::InitOptimizations() {
Optimizations["isdigit"] = &IsDigit;
Optimizations["isascii"] = &IsAscii;
Optimizations["toascii"] = &ToAscii;
-
+
// Formatting and IO Optimizations
Optimizations["sprintf"] = &SPrintF;
Optimizations["printf"] = &PrintF;
@@ -1636,10 +1661,10 @@ void SimplifyLibCalls::InitOptimizations() {
bool SimplifyLibCalls::runOnFunction(Function &F) {
if (Optimizations.empty())
InitOptimizations();
-
- const TargetData &TD = getAnalysis<TargetData>();
-
- IRBuilder<> Builder;
+
+ const TargetData *TD = getAnalysisIfAvailable<TargetData>();
+
+ IRBuilder<> Builder(F.getContext());
bool Changed = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
@@ -1647,37 +1672,35 @@ bool SimplifyLibCalls::runOnFunction(Function &F) {
// Ignore non-calls.
CallInst *CI = dyn_cast<CallInst>(I++);
if (!CI) continue;
-
+
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CI->getCalledFunction();
if (Callee == 0 || !Callee->isDeclaration() ||
!(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
continue;
-
+
// Ignore unknown calls.
- const char *CalleeName = Callee->getNameStart();
- StringMap<LibCallOptimization*>::iterator OMI =
- Optimizations.find(CalleeName, CalleeName+Callee->getNameLen());
- if (OMI == Optimizations.end()) continue;
-
+ LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
+ if (!LCO) continue;
+
// Set the builder to the instruction after the call.
Builder.SetInsertPoint(BB, I);
-
+
// Try to optimize this call.
- Value *Result = OMI->second->OptimizeCall(CI, TD, Builder);
+ Value *Result = LCO->OptimizeCall(CI, TD, Builder);
if (Result == 0) continue;
- DEBUG(DOUT << "SimplifyLibCalls simplified: " << *CI;
- DOUT << " into: " << *Result << "\n");
-
+ DEBUG(errs() << "SimplifyLibCalls simplified: " << *CI;
+ errs() << " into: " << *Result << "\n");
+
// Something changed!
Changed = true;
++NumSimplified;
-
+
// Inspect the instruction after the call (which was potentially just
// added) next.
I = CI; ++I;
-
+
if (CI != Result && !CI->use_empty()) {
CI->replaceAllUsesWith(Result);
if (!Result->hasName())
@@ -1736,40 +1759,39 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
if (!F.isDeclaration())
continue;
- unsigned NameLen = F.getNameLen();
- if (!NameLen)
+ if (!F.hasName())
continue;
const FunctionType *FTy = F.getFunctionType();
- const char *NameStr = F.getNameStart();
- switch (NameStr[0]) {
+ StringRef Name = F.getName();
+ switch (Name[0]) {
case 's':
- if (NameLen == 6 && !strcmp(NameStr, "strlen")) {
+ if (Name == "strlen") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 6 && !strcmp(NameStr, "strcpy")) ||
- (NameLen == 6 && !strcmp(NameStr, "stpcpy")) ||
- (NameLen == 6 && !strcmp(NameStr, "strcat")) ||
- (NameLen == 6 && !strcmp(NameStr, "strtol")) ||
- (NameLen == 6 && !strcmp(NameStr, "strtod")) ||
- (NameLen == 6 && !strcmp(NameStr, "strtof")) ||
- (NameLen == 7 && !strcmp(NameStr, "strtoul")) ||
- (NameLen == 7 && !strcmp(NameStr, "strtoll")) ||
- (NameLen == 7 && !strcmp(NameStr, "strtold")) ||
- (NameLen == 7 && !strcmp(NameStr, "strncat")) ||
- (NameLen == 7 && !strcmp(NameStr, "strncpy")) ||
- (NameLen == 8 && !strcmp(NameStr, "strtoull"))) {
+ } else if (Name == "strcpy" ||
+ Name == "stpcpy" ||
+ Name == "strcat" ||
+ Name == "strtol" ||
+ Name == "strtod" ||
+ Name == "strtof" ||
+ Name == "strtoul" ||
+ Name == "strtoll" ||
+ Name == "strtold" ||
+ Name == "strncat" ||
+ Name == "strncpy" ||
+ Name == "strtoull") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 7 && !strcmp(NameStr, "strxfrm")) {
+ } else if (Name == "strxfrm") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1777,13 +1799,13 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 6 && !strcmp(NameStr, "strcmp")) ||
- (NameLen == 6 && !strcmp(NameStr, "strspn")) ||
- (NameLen == 7 && !strcmp(NameStr, "strncmp")) ||
- (NameLen == 7 && !strcmp(NameStr, "strcspn")) ||
- (NameLen == 7 && !strcmp(NameStr, "strcoll")) ||
- (NameLen == 10 && !strcmp(NameStr, "strcasecmp")) ||
- (NameLen == 11 && !strcmp(NameStr, "strncasecmp"))) {
+ } else if (Name == "strcmp" ||
+ Name == "strspn" ||
+ Name == "strncmp" ||
+ Name ==" strcspn" ||
+ Name == "strcoll" ||
+ Name == "strcasecmp" ||
+ Name == "strncasecmp") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1792,31 +1814,31 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 6 && !strcmp(NameStr, "strstr")) ||
- (NameLen == 7 && !strcmp(NameStr, "strpbrk"))) {
+ } else if (Name == "strstr" ||
+ Name == "strpbrk") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 6 && !strcmp(NameStr, "strtok")) ||
- (NameLen == 8 && !strcmp(NameStr, "strtok_r"))) {
+ } else if (Name == "strtok" ||
+ Name == "strtok_r") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 5 && !strcmp(NameStr, "scanf")) ||
- (NameLen == 6 && !strcmp(NameStr, "setbuf")) ||
- (NameLen == 7 && !strcmp(NameStr, "setvbuf"))) {
+ } else if (Name == "scanf" ||
+ Name == "setbuf" ||
+ Name == "setvbuf") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 6 && !strcmp(NameStr, "strdup")) ||
- (NameLen == 7 && !strcmp(NameStr, "strndup"))) {
+ } else if (Name == "strdup" ||
+ Name == "strndup") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)))
@@ -1824,10 +1846,10 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 4 && !strcmp(NameStr, "stat")) ||
- (NameLen == 6 && !strcmp(NameStr, "sscanf")) ||
- (NameLen == 7 && !strcmp(NameStr, "sprintf")) ||
- (NameLen == 7 && !strcmp(NameStr, "statvfs"))) {
+ } else if (Name == "stat" ||
+ Name == "sscanf" ||
+ Name == "sprintf" ||
+ Name == "statvfs") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1835,7 +1857,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 8 && !strcmp(NameStr, "snprintf")) {
+ } else if (Name == "snprintf") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(2)))
@@ -1843,7 +1865,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 3);
- } else if (NameLen == 9 && !strcmp(NameStr, "setitimer")) {
+ } else if (Name == "setitimer") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(1)) ||
!isa<PointerType>(FTy->getParamType(2)))
@@ -1851,7 +1873,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
setDoesNotCapture(F, 3);
- } else if (NameLen == 6 && !strcmp(NameStr, "system")) {
+ } else if (Name == "system") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -1860,7 +1882,13 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'm':
- if (NameLen == 6 && !strcmp(NameStr, "memcmp")) {
+ if (Name == "malloc") {
+ if (FTy->getNumParams() != 1 ||
+ !isa<PointerType>(FTy->getReturnType()))
+ continue;
+ setDoesNotThrow(F);
+ setDoesNotAlias(F, 0);
+ } else if (Name == "memcmp") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1869,29 +1897,29 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 6 && !strcmp(NameStr, "memchr")) ||
- (NameLen == 7 && !strcmp(NameStr, "memrchr"))) {
+ } else if (Name == "memchr" ||
+ Name == "memrchr") {
if (FTy->getNumParams() != 3)
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
- } else if ((NameLen == 4 && !strcmp(NameStr, "modf")) ||
- (NameLen == 5 && !strcmp(NameStr, "modff")) ||
- (NameLen == 5 && !strcmp(NameStr, "modfl")) ||
- (NameLen == 6 && !strcmp(NameStr, "memcpy")) ||
- (NameLen == 7 && !strcmp(NameStr, "memccpy")) ||
- (NameLen == 7 && !strcmp(NameStr, "memmove"))) {
+ } else if (Name == "modf" ||
+ Name == "modff" ||
+ Name == "modfl" ||
+ Name == "memcpy" ||
+ Name == "memccpy" ||
+ Name == "memmove") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 8 && !strcmp(NameStr, "memalign")) {
+ } else if (Name == "memalign") {
if (!isa<PointerType>(FTy->getReturnType()))
continue;
setDoesNotAlias(F, 0);
- } else if ((NameLen == 5 && !strcmp(NameStr, "mkdir")) ||
- (NameLen == 6 && !strcmp(NameStr, "mktime"))) {
+ } else if (Name == "mkdir" ||
+ Name == "mktime") {
if (FTy->getNumParams() == 0 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -1900,7 +1928,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'r':
- if (NameLen == 7 && !strcmp(NameStr, "realloc")) {
+ if (Name == "realloc") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getReturnType()))
@@ -1908,23 +1936,23 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
- } else if (NameLen == 4 && !strcmp(NameStr, "read")) {
+ } else if (Name == "read") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
// May throw; "read" is a valid pthread cancellation point.
setDoesNotCapture(F, 2);
- } else if ((NameLen == 5 && !strcmp(NameStr, "rmdir")) ||
- (NameLen == 6 && !strcmp(NameStr, "rewind")) ||
- (NameLen == 6 && !strcmp(NameStr, "remove")) ||
- (NameLen == 8 && !strcmp(NameStr, "realpath"))) {
+ } else if (Name == "rmdir" ||
+ Name == "rewind" ||
+ Name == "remove" ||
+ Name == "realpath") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 6 && !strcmp(NameStr, "rename")) ||
- (NameLen == 8 && !strcmp(NameStr, "readlink"))) {
+ } else if (Name == "rename" ||
+ Name == "readlink") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1935,7 +1963,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'w':
- if (NameLen == 5 && !strcmp(NameStr, "write")) {
+ if (Name == "write") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
@@ -1944,7 +1972,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'b':
- if (NameLen == 5 && !strcmp(NameStr, "bcopy")) {
+ if (Name == "bcopy") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1952,7 +1980,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 4 && !strcmp(NameStr, "bcmp")) {
+ } else if (Name == "bcmp") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -1961,7 +1989,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 5 && !strcmp(NameStr, "bzero")) {
+ } else if (Name == "bzero") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -1970,17 +1998,17 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'c':
- if (NameLen == 6 && !strcmp(NameStr, "calloc")) {
+ if (Name == "calloc") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getReturnType()))
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
- } else if ((NameLen == 5 && !strcmp(NameStr, "chmod")) ||
- (NameLen == 5 && !strcmp(NameStr, "chown")) ||
- (NameLen == 7 && !strcmp(NameStr, "ctermid")) ||
- (NameLen == 8 && !strcmp(NameStr, "clearerr")) ||
- (NameLen == 8 && !strcmp(NameStr, "closedir"))) {
+ } else if (Name == "chmod" ||
+ Name == "chown" ||
+ Name == "ctermid" ||
+ Name == "clearerr" ||
+ Name == "closedir") {
if (FTy->getNumParams() == 0 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -1989,17 +2017,17 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'a':
- if ((NameLen == 4 && !strcmp(NameStr, "atoi")) ||
- (NameLen == 4 && !strcmp(NameStr, "atol")) ||
- (NameLen == 4 && !strcmp(NameStr, "atof")) ||
- (NameLen == 5 && !strcmp(NameStr, "atoll"))) {
+ if (Name == "atoi" ||
+ Name == "atol" ||
+ Name == "atof" ||
+ Name == "atoll") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
- } else if (NameLen == 6 && !strcmp(NameStr, "access")) {
+ } else if (Name == "access") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -2008,7 +2036,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'f':
- if (NameLen == 5 && !strcmp(NameStr, "fopen")) {
+ if (Name == "fopen") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)) ||
@@ -2018,7 +2046,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 6 && !strcmp(NameStr, "fdopen")) {
+ } else if (Name == "fdopen") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2026,52 +2054,52 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 4 && !strcmp(NameStr, "feof")) ||
- (NameLen == 4 && !strcmp(NameStr, "free")) ||
- (NameLen == 5 && !strcmp(NameStr, "fseek")) ||
- (NameLen == 5 && !strcmp(NameStr, "ftell")) ||
- (NameLen == 5 && !strcmp(NameStr, "fgetc")) ||
- (NameLen == 6 && !strcmp(NameStr, "fseeko")) ||
- (NameLen == 6 && !strcmp(NameStr, "ftello")) ||
- (NameLen == 6 && !strcmp(NameStr, "fileno")) ||
- (NameLen == 6 && !strcmp(NameStr, "fflush")) ||
- (NameLen == 6 && !strcmp(NameStr, "fclose")) ||
- (NameLen == 7 && !strcmp(NameStr, "fsetpos")) ||
- (NameLen == 9 && !strcmp(NameStr, "flockfile")) ||
- (NameLen == 11 && !strcmp(NameStr, "funlockfile")) ||
- (NameLen == 12 && !strcmp(NameStr, "ftrylockfile"))) {
+ } else if (Name == "feof" ||
+ Name == "free" ||
+ Name == "fseek" ||
+ Name == "ftell" ||
+ Name == "fgetc" ||
+ Name == "fseeko" ||
+ Name == "ftello" ||
+ Name == "fileno" ||
+ Name == "fflush" ||
+ Name == "fclose" ||
+ Name == "fsetpos" ||
+ Name == "flockfile" ||
+ Name == "funlockfile" ||
+ Name == "ftrylockfile") {
if (FTy->getNumParams() == 0 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if (NameLen == 6 && !strcmp(NameStr, "ferror")) {
+ } else if (Name == "ferror") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setOnlyReadsMemory(F);
- } else if ((NameLen == 5 && !strcmp(NameStr, "fputc")) ||
- (NameLen == 5 && !strcmp(NameStr, "fstat")) ||
- (NameLen == 5 && !strcmp(NameStr, "frexp")) ||
- (NameLen == 6 && !strcmp(NameStr, "frexpf")) ||
- (NameLen == 6 && !strcmp(NameStr, "frexpl")) ||
- (NameLen == 8 && !strcmp(NameStr, "fstatvfs"))) {
+ } else if (Name == "fputc" ||
+ Name == "fstat" ||
+ Name == "frexp" ||
+ Name == "frexpf" ||
+ Name == "frexpl" ||
+ Name == "fstatvfs") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 5 && !strcmp(NameStr, "fgets")) {
+ } else if (Name == "fgets") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(2)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 3);
- } else if ((NameLen == 5 && !strcmp(NameStr, "fread")) ||
- (NameLen == 6 && !strcmp(NameStr, "fwrite"))) {
+ } else if (Name == "fread" ||
+ Name == "fwrite") {
if (FTy->getNumParams() != 4 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(3)))
@@ -2079,10 +2107,10 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 4);
- } else if ((NameLen == 5 && !strcmp(NameStr, "fputs")) ||
- (NameLen == 6 && !strcmp(NameStr, "fscanf")) ||
- (NameLen == 7 && !strcmp(NameStr, "fprintf")) ||
- (NameLen == 7 && !strcmp(NameStr, "fgetpos"))) {
+ } else if (Name == "fputs" ||
+ Name == "fscanf" ||
+ Name == "fprintf" ||
+ Name == "fgetpos") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2093,31 +2121,31 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'g':
- if ((NameLen == 4 && !strcmp(NameStr, "getc")) ||
- (NameLen == 10 && !strcmp(NameStr, "getlogin_r")) ||
- (NameLen == 13 && !strcmp(NameStr, "getc_unlocked"))) {
+ if (Name == "getc" ||
+ Name == "getlogin_r" ||
+ Name == "getc_unlocked") {
if (FTy->getNumParams() == 0 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if (NameLen == 6 && !strcmp(NameStr, "getenv")) {
+ } else if (Name == "getenv") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setOnlyReadsMemory(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 4 && !strcmp(NameStr, "gets")) ||
- (NameLen == 7 && !strcmp(NameStr, "getchar"))) {
+ } else if (Name == "gets" ||
+ Name == "getchar") {
setDoesNotThrow(F);
- } else if (NameLen == 9 && !strcmp(NameStr, "getitimer")) {
+ } else if (Name == "getitimer") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 8 && !strcmp(NameStr, "getpwnam")) {
+ } else if (Name == "getpwnam") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -2126,22 +2154,22 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'u':
- if (NameLen == 6 && !strcmp(NameStr, "ungetc")) {
+ if (Name == "ungetc") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 5 && !strcmp(NameStr, "uname")) ||
- (NameLen == 6 && !strcmp(NameStr, "unlink")) ||
- (NameLen == 8 && !strcmp(NameStr, "unsetenv"))) {
+ } else if (Name == "uname" ||
+ Name == "unlink" ||
+ Name == "unsetenv") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 5 && !strcmp(NameStr, "utime")) ||
- (NameLen == 6 && !strcmp(NameStr, "utimes"))) {
+ } else if (Name == "utime" ||
+ Name == "utimes") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2152,30 +2180,30 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'p':
- if (NameLen == 4 && !strcmp(NameStr, "putc")) {
+ if (Name == "putc") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 4 && !strcmp(NameStr, "puts")) ||
- (NameLen == 6 && !strcmp(NameStr, "printf")) ||
- (NameLen == 6 && !strcmp(NameStr, "perror"))) {
+ } else if (Name == "puts" ||
+ Name == "printf" ||
+ Name == "perror") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 5 && !strcmp(NameStr, "pread")) ||
- (NameLen == 6 && !strcmp(NameStr, "pwrite"))) {
+ } else if (Name == "pread" ||
+ Name == "pwrite") {
if (FTy->getNumParams() != 4 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
// May throw; these are valid pthread cancellation points.
setDoesNotCapture(F, 2);
- } else if (NameLen == 7 && !strcmp(NameStr, "putchar")) {
+ } else if (Name == "putchar") {
setDoesNotThrow(F);
- } else if (NameLen == 5 && !strcmp(NameStr, "popen")) {
+ } else if (Name == "popen") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)) ||
@@ -2185,7 +2213,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 6 && !strcmp(NameStr, "pclose")) {
+ } else if (Name == "pclose") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -2194,14 +2222,14 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'v':
- if (NameLen == 6 && !strcmp(NameStr, "vscanf")) {
+ if (Name == "vscanf") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 7 && !strcmp(NameStr, "vsscanf")) ||
- (NameLen == 7 && !strcmp(NameStr, "vfscanf"))) {
+ } else if (Name == "vsscanf" ||
+ Name == "vfscanf") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(1)) ||
!isa<PointerType>(FTy->getParamType(2)))
@@ -2209,19 +2237,19 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 6 && !strcmp(NameStr, "valloc")) {
+ } else if (Name == "valloc") {
if (!isa<PointerType>(FTy->getReturnType()))
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
- } else if (NameLen == 7 && !strcmp(NameStr, "vprintf")) {
+ } else if (Name == "vprintf") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 8 && !strcmp(NameStr, "vfprintf")) ||
- (NameLen == 8 && !strcmp(NameStr, "vsprintf"))) {
+ } else if (Name == "vfprintf" ||
+ Name == "vsprintf") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2229,7 +2257,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 9 && !strcmp(NameStr, "vsnprintf")) {
+ } else if (Name == "vsnprintf") {
if (FTy->getNumParams() != 4 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(2)))
@@ -2240,13 +2268,13 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'o':
- if (NameLen == 4 && !strcmp(NameStr, "open")) {
+ if (Name == "open") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
// May throw; "open" is a valid pthread cancellation point.
setDoesNotCapture(F, 1);
- } else if (NameLen == 7 && !strcmp(NameStr, "opendir")) {
+ } else if (Name == "opendir") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)))
@@ -2257,12 +2285,12 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 't':
- if (NameLen == 7 && !strcmp(NameStr, "tmpfile")) {
+ if (Name == "tmpfile") {
if (!isa<PointerType>(FTy->getReturnType()))
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
- } else if (NameLen == 5 && !strcmp(NameStr, "times")) {
+ } else if (Name == "times") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -2271,21 +2299,21 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'h':
- if ((NameLen == 5 && !strcmp(NameStr, "htonl")) ||
- (NameLen == 5 && !strcmp(NameStr, "htons"))) {
+ if (Name == "htonl" ||
+ Name == "htons") {
setDoesNotThrow(F);
setDoesNotAccessMemory(F);
}
break;
case 'n':
- if ((NameLen == 5 && !strcmp(NameStr, "ntohl")) ||
- (NameLen == 5 && !strcmp(NameStr, "ntohs"))) {
+ if (Name == "ntohl" ||
+ Name == "ntohs") {
setDoesNotThrow(F);
setDoesNotAccessMemory(F);
}
break;
case 'l':
- if (NameLen == 5 && !strcmp(NameStr, "lstat")) {
+ if (Name == "lstat") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2293,7 +2321,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 6 && !strcmp(NameStr, "lchown")) {
+ } else if (Name == "lchown") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
@@ -2302,7 +2330,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 'q':
- if (NameLen == 5 && !strcmp(NameStr, "qsort")) {
+ if (Name == "qsort") {
if (FTy->getNumParams() != 4 ||
!isa<PointerType>(FTy->getParamType(3)))
continue;
@@ -2311,8 +2339,8 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case '_':
- if ((NameLen == 8 && !strcmp(NameStr, "__strdup")) ||
- (NameLen == 9 && !strcmp(NameStr, "__strndup"))) {
+ if (Name == "__strdup" ||
+ Name == "__strndup") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)))
@@ -2320,19 +2348,19 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
- } else if (NameLen == 10 && !strcmp(NameStr, "__strtok_r")) {
+ } else if (Name == "__strtok_r") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 8 && !strcmp(NameStr, "_IO_getc")) {
+ } else if (Name == "_IO_getc") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if (NameLen == 8 && !strcmp(NameStr, "_IO_putc")) {
+ } else if (Name == "_IO_putc") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
@@ -2341,16 +2369,16 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
}
break;
case 1:
- if (NameLen == 15 && !strcmp(NameStr, "\1__isoc99_scanf")) {
+ if (Name == "\1__isoc99_scanf") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if ((NameLen == 7 && !strcmp(NameStr, "\1stat64")) ||
- (NameLen == 8 && !strcmp(NameStr, "\1lstat64")) ||
- (NameLen == 10 && !strcmp(NameStr, "\1statvfs64")) ||
- (NameLen == 16 && !strcmp(NameStr, "\1__isoc99_sscanf"))) {
+ } else if (Name == "\1stat64" ||
+ Name == "\1lstat64" ||
+ Name == "\1statvfs64" ||
+ Name == "\1__isoc99_sscanf") {
if (FTy->getNumParams() < 1 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
@@ -2358,7 +2386,7 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if (NameLen == 8 && !strcmp(NameStr, "\1fopen64")) {
+ } else if (Name == "\1fopen64") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getReturnType()) ||
!isa<PointerType>(FTy->getParamType(0)) ||
@@ -2368,26 +2396,26 @@ bool SimplifyLibCalls::doInitialization(Module &M) {
setDoesNotAlias(F, 0);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
- } else if ((NameLen == 9 && !strcmp(NameStr, "\1fseeko64")) ||
- (NameLen == 9 && !strcmp(NameStr, "\1ftello64"))) {
+ } else if (Name == "\1fseeko64" ||
+ Name == "\1ftello64") {
if (FTy->getNumParams() == 0 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
- } else if (NameLen == 10 && !strcmp(NameStr, "\1tmpfile64")) {
+ } else if (Name == "\1tmpfile64") {
if (!isa<PointerType>(FTy->getReturnType()))
continue;
setDoesNotThrow(F);
setDoesNotAlias(F, 0);
- } else if ((NameLen == 8 && !strcmp(NameStr, "\1fstat64")) ||
- (NameLen == 11 && !strcmp(NameStr, "\1fstatvfs64"))) {
+ } else if (Name == "\1fstat64" ||
+ Name == "\1fstatvfs64") {
if (FTy->getNumParams() != 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
- } else if (NameLen == 7 && !strcmp(NameStr, "\1open64")) {
+ } else if (Name == "\1open64") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
diff --git a/lib/Transforms/Scalar/TailDuplication.cpp b/lib/Transforms/Scalar/TailDuplication.cpp
index c037ee9..68689d6 100644
--- a/lib/Transforms/Scalar/TailDuplication.cpp
+++ b/lib/Transforms/Scalar/TailDuplication.cpp
@@ -30,8 +30,8 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <map>
@@ -45,7 +45,7 @@ TailDupThreshold("taildup-threshold",
cl::init(1), cl::Hidden);
namespace {
- class VISIBILITY_HIDDEN TailDup : public FunctionPass {
+ class TailDup : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
@@ -128,7 +128,7 @@ bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
// other instructions.
if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
- // Allso alloca and malloc.
+ // Also alloca and malloc.
if (isa<AllocationInst>(I)) return false;
// Some vector instructions can expand into a number of instructions.
@@ -243,13 +243,13 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
BasicBlock *DestBlock = Branch->getSuccessor(0);
assert(SourceBlock != DestBlock && "Our predicate is broken!");
- DOUT << "TailDuplication[" << SourceBlock->getParent()->getName()
- << "]: Eliminating branch: " << *Branch;
+ DEBUG(errs() << "TailDuplication[" << SourceBlock->getParent()->getName()
+ << "]: Eliminating branch: " << *Branch);
// See if we can avoid duplicating code by moving it up to a dominator of both
// blocks.
if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
- DOUT << "Found shared dominator: " << DomBlock->getName() << "\n";
+ DEBUG(errs() << "Found shared dominator: " << DomBlock->getName() << "\n");
// If there are non-phi instructions in DestBlock that have no operands
// defined in DestBlock, and if the instruction has no side effects, we can
@@ -258,7 +258,8 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
while (!isa<TerminatorInst>(BBI)) {
Instruction *I = BBI++;
- bool CanHoist = !I->isTrapping() && !I->mayHaveSideEffects();
+ bool CanHoist = I->isSafeToSpeculativelyExecute() &&
+ !I->mayReadFromMemory();
if (CanHoist) {
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
@@ -271,7 +272,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
// Remove from DestBlock, move right before the term in DomBlock.
DestBlock->getInstList().remove(I);
DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
- DOUT << "Hoisted: " << *I;
+ DEBUG(errs() << "Hoisted: " << *I);
}
}
}
@@ -358,7 +359,8 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
Instruction *Inst = BI++;
if (isInstructionTriviallyDead(Inst))
Inst->eraseFromParent();
- else if (Constant *C = ConstantFoldInstruction(Inst)) {
+ else if (Constant *C = ConstantFoldInstruction(Inst,
+ Inst->getContext())) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
}
diff --git a/lib/Transforms/Scalar/TailRecursionElimination.cpp b/lib/Transforms/Scalar/TailRecursionElimination.cpp
index 34ee57c..b56e170 100644
--- a/lib/Transforms/Scalar/TailRecursionElimination.cpp
+++ b/lib/Transforms/Scalar/TailRecursionElimination.cpp
@@ -60,14 +60,13 @@
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Support/Compiler.h"
using namespace llvm;
STATISTIC(NumEliminated, "Number of tail calls removed");
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
namespace {
- struct VISIBILITY_HIDDEN TailCallElim : public FunctionPass {
+ struct TailCallElim : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
TailCallElim() : FunctionPass(&ID) {}
@@ -394,7 +393,7 @@ bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
// create the new entry block, allowing us to branch back to the old entry.
if (OldEntry == 0) {
OldEntry = &F->getEntryBlock();
- BasicBlock *NewEntry = BasicBlock::Create("", F, OldEntry);
+ BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
NewEntry->takeName(OldEntry);
OldEntry->setName("tailrecurse");
BranchInst::Create(OldEntry, NewEntry);
diff --git a/lib/Transforms/Utils/AddrModeMatcher.cpp b/lib/Transforms/Utils/AddrModeMatcher.cpp
index 71049fa..135a621 100644
--- a/lib/Transforms/Utils/AddrModeMatcher.cpp
+++ b/lib/Transforms/Utils/AddrModeMatcher.cpp
@@ -19,17 +19,18 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::PatternMatch;
-void ExtAddrMode::print(OStream &OS) const {
+void ExtAddrMode::print(raw_ostream &OS) const {
bool NeedPlus = false;
OS << "[";
if (BaseGV) {
OS << (NeedPlus ? " + " : "")
<< "GV:";
- WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
NeedPlus = true;
}
@@ -39,13 +40,13 @@ void ExtAddrMode::print(OStream &OS) const {
if (BaseReg) {
OS << (NeedPlus ? " + " : "")
<< "Base:";
- WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false);
+ WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
NeedPlus = true;
}
if (Scale) {
OS << (NeedPlus ? " + " : "")
<< Scale << "*";
- WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false);
+ WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
NeedPlus = true;
}
@@ -53,8 +54,8 @@ void ExtAddrMode::print(OStream &OS) const {
}
void ExtAddrMode::dump() const {
- print(cerr);
- cerr << '\n';
+ print(errs());
+ errs() << '\n';
}
@@ -205,7 +206,7 @@ bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
if (!RHS) return false;
int64_t Scale = RHS->getSExtValue();
if (Opcode == Instruction::Shl)
- Scale = 1 << Scale;
+ Scale = 1LL << Scale;
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
}
diff --git a/lib/Transforms/Utils/BasicBlockUtils.cpp b/lib/Transforms/Utils/BasicBlockUtils.cpp
index 6d1180d..4931ab3 100644
--- a/lib/Transforms/Utils/BasicBlockUtils.cpp
+++ b/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -16,6 +16,7 @@
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -23,6 +24,8 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include <algorithm>
using namespace llvm;
@@ -249,11 +252,11 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
Value *RetVal = 0;
// Create a value to return... if the function doesn't return null...
- if (BB->getParent()->getReturnType() != Type::VoidTy)
+ if (BB->getParent()->getReturnType() != Type::getVoidTy(TI->getContext()))
RetVal = Constant::getNullValue(BB->getParent()->getReturnType());
// Create the return...
- NewTI = ReturnInst::Create(RetVal);
+ NewTI = ReturnInst::Create(TI->getContext(), RetVal);
}
break;
@@ -261,8 +264,7 @@ void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) {
case Instruction::Switch: // Should remove entry
default:
case Instruction::Ret: // Cannot happen, has no successors!
- assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!");
- abort();
+ llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
}
if (NewTI) // If it's a different instruction, replace.
@@ -318,7 +320,8 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
++SplitIt;
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
- // The new block lives in whichever loop the old one did.
+ // The new block lives in whichever loop the old one did. This preserves
+ // LCSSA as well, because we force the split point to be after any PHI nodes.
if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, LI->getBase());
@@ -352,32 +355,61 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'.
///
-/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
-/// DominanceFrontier, but no other analyses.
+/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
+/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
+/// In particular, it does not preserve LoopSimplify (because it's
+/// complicated to handle the case where one of the edges being split
+/// is an exit of a loop with other exits).
+///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
BasicBlock *const *Preds,
unsigned NumPreds, const char *Suffix,
Pass *P) {
// Create new basic block, insert right before the original block.
- BasicBlock *NewBB =
- BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB);
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
+ BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
+ LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
+ Loop *L = LI ? LI->getLoopFor(BB) : 0;
+ bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
+
// Move the edges from Preds to point to NewBB instead of BB.
- for (unsigned i = 0; i != NumPreds; ++i)
+ // While here, if we need to preserve loop analyses, collect
+ // some information about how this split will affect loops.
+ bool HasLoopExit = false;
+ bool IsLoopEntry = !!L;
+ bool SplitMakesNewLoopHeader = false;
+ for (unsigned i = 0; i != NumPreds; ++i) {
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
-
+
+ if (LI) {
+ // If we need to preserve LCSSA, determine if any of
+ // the preds is a loop exit.
+ if (PreserveLCSSA)
+ if (Loop *PL = LI->getLoopFor(Preds[i]))
+ if (!PL->contains(BB))
+ HasLoopExit = true;
+ // If we need to preserve LoopInfo, note whether any of the
+ // preds crosses an interesting loop boundary.
+ if (L) {
+ if (L->contains(Preds[i]))
+ IsLoopEntry = false;
+ else
+ SplitMakesNewLoopHeader = true;
+ }
+ }
+ }
+
// Update dominator tree and dominator frontier if available.
DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
if (DT)
DT->splitBlock(NewBB);
if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
DF->splitBlock(NewBB);
- AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
-
-
+
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
@@ -388,20 +420,42 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
+
+ AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
+
+ if (L) {
+ if (IsLoopEntry) {
+ if (Loop *PredLoop = LI->getLoopFor(Preds[0])) {
+ // Add the new block to the nearest enclosing loop (and not an
+ // adjacent loop).
+ while (PredLoop && !PredLoop->contains(BB))
+ PredLoop = PredLoop->getParentLoop();
+ if (PredLoop)
+ PredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
+ }
+ } else {
+ L->addBasicBlockToLoop(NewBB, LI->getBase());
+ if (SplitMakesNewLoopHeader)
+ L->moveToHeader(NewBB);
+ }
+ }
// Otherwise, create a new PHI node in NewBB for each PHI node in BB.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
// Check to see if all of the values coming in are the same. If so, we
- // don't need to create a new PHI node.
- Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
- for (unsigned i = 1; i != NumPreds; ++i)
- if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
- InVal = 0;
- break;
- }
-
+ // don't need to create a new PHI node, unless it's needed for LCSSA.
+ Value *InVal = 0;
+ if (!HasLoopExit) {
+ InVal = PN->getIncomingValueForBlock(Preds[0]);
+ for (unsigned i = 1; i != NumPreds; ++i)
+ if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
+ InVal = 0;
+ break;
+ }
+ }
+
if (InVal) {
// If all incoming values for the new PHI would be the same, just don't
// make a new PHI. Instead, just remove the incoming values from the old
@@ -426,16 +480,6 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
-
- // Check to see if we can eliminate this phi node.
- if (Value *V = PN->hasConstantValue(DT != 0)) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || DT == 0 || DT->dominates(I, PN)) {
- PN->replaceAllUsesWith(V);
- if (AA) AA->deleteValue(PN);
- PN->eraseFromParent();
- }
- }
}
return NewBB;
@@ -503,11 +547,15 @@ static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
- // Test if the values come form identical arithmetic instructions.
+ // Test if the values come from identical arithmetic instructions.
+ // Use isIdenticalToWhenDefined instead of isIdenticalTo because
+ // this function is only used when one address use dominates the
+ // other, which means that they'll always either have the same
+ // value or one of them will have an undefined value.
if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
isa<PHINode>(A) || isa<GetElementPtrInst>(A))
if (const Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalTo(BI))
+ if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
@@ -537,7 +585,7 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
unsigned AccessSize = 0;
if (AA) {
const Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
- AccessSize = AA->getTargetData().getTypeStoreSizeInBits(AccessTy);
+ AccessSize = AA->getTypeStoreSize(AccessTy);
}
while (ScanFrom != ScanBB->begin()) {
diff --git a/lib/Transforms/Utils/BasicInliner.cpp b/lib/Transforms/Utils/BasicInliner.cpp
index 1650cfa..4b720b1 100644
--- a/lib/Transforms/Utils/BasicInliner.cpp
+++ b/lib/Transforms/Utils/BasicInliner.cpp
@@ -13,7 +13,6 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "basicinliner"
-
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/Transforms/Utils/BasicInliner.h"
@@ -21,6 +20,7 @@
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <vector>
@@ -89,7 +89,7 @@ void BasicInlinerImpl::inlineFunctions() {
}
}
- DOUT << ": " << CallSites.size() << " call sites.\n";
+ DEBUG(errs() << ": " << CallSites.size() << " call sites.\n");
// Inline call sites.
bool Changed = false;
@@ -109,22 +109,22 @@ void BasicInlinerImpl::inlineFunctions() {
}
InlineCost IC = CA.getInlineCost(CS, NeverInline);
if (IC.isAlways()) {
- DOUT << " Inlining: cost=always"
- <<", call: " << *CS.getInstruction();
+ DEBUG(errs() << " Inlining: cost=always"
+ <<", call: " << *CS.getInstruction());
} else if (IC.isNever()) {
- DOUT << " NOT Inlining: cost=never"
- <<", call: " << *CS.getInstruction();
+ DEBUG(errs() << " NOT Inlining: cost=never"
+ <<", call: " << *CS.getInstruction());
continue;
} else {
int Cost = IC.getValue();
if (Cost >= (int) BasicInlineThreshold) {
- DOUT << " NOT Inlining: cost = " << Cost
- << ", call: " << *CS.getInstruction();
+ DEBUG(errs() << " NOT Inlining: cost = " << Cost
+ << ", call: " << *CS.getInstruction());
continue;
} else {
- DOUT << " Inlining: cost = " << Cost
- << ", call: " << *CS.getInstruction();
+ DEBUG(errs() << " Inlining: cost = " << Cost
+ << ", call: " << *CS.getInstruction());
}
}
diff --git a/lib/Transforms/Utils/BreakCriticalEdges.cpp b/lib/Transforms/Utils/BreakCriticalEdges.cpp
index c4fd1ea..849b2b5 100644
--- a/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ b/lib/Transforms/Utils/BreakCriticalEdges.cpp
@@ -21,11 +21,13 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
@@ -43,6 +45,7 @@ namespace {
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addPreserved<LoopInfo>();
+ AU.addPreserved<ProfileInfo>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
@@ -114,6 +117,38 @@ bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
return false;
}
+/// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
+/// may require new PHIs in the new exit block. This function inserts the
+/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
+/// is the new loop exit block, and DestBB is the old loop exit, now the
+/// successor of SplitBB.
+static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
+ BasicBlock *SplitBB,
+ BasicBlock *DestBB) {
+ // SplitBB shouldn't have anything non-trivial in it yet.
+ assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
+ "SplitBB has non-PHI nodes!");
+
+ // For each PHI in the destination block...
+ for (BasicBlock::iterator I = DestBB->begin();
+ PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ unsigned Idx = PN->getBasicBlockIndex(SplitBB);
+ Value *V = PN->getIncomingValue(Idx);
+ // If the input is a PHI which already satisfies LCSSA, don't create
+ // a new one.
+ if (const PHINode *VP = dyn_cast<PHINode>(V))
+ if (VP->getParent() == SplitBB)
+ continue;
+ // Otherwise a new PHI is needed. Create one and populate it.
+ PHINode *NewPN = PHINode::Create(PN->getType(), "split",
+ SplitBB->getTerminator());
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i)
+ NewPN->addIncoming(V, Preds[i]);
+ // Update the original PHI.
+ PN->setIncomingValue(Idx, NewPN);
+ }
+}
+
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
/// split the critical edge. This will update DominatorTree and
/// DominatorFrontier information if it is available, thus calling this pass
@@ -121,15 +156,15 @@ bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
/// false otherwise. This ensures that all edges to that dest go to one block
/// instead of each going to a different block.
//
-bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
- bool MergeIdenticalEdges) {
- if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
+BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
+ Pass *P, bool MergeIdenticalEdges) {
+ if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Create a new basic block, linking it into the CFG.
- BasicBlock *NewBB = BasicBlock::Create(TIBB->getName() + "." +
- DestBB->getName() + "_crit_edge");
+ BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
+ TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
// Create our unconditional branch...
BranchInst::Create(DestBB, NewBB);
@@ -171,7 +206,7 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
// If we don't have a pass object, we can't update anything...
- if (P == 0) return true;
+ if (P == 0) return NewBB;
// Now update analysis information. Since the only predecessor of NewBB is
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
@@ -222,8 +257,8 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
// If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
if (!OtherPreds.empty()) {
// FIXME: IMPLEMENT THIS!
- assert(0 && "Requiring domfrontiers but not idom/domtree/domset."
- " not implemented yet!");
+ llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
+ " not implemented yet!");
}
// Since the new block is dominated by its only predecessor TIBB,
@@ -253,9 +288,9 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
// Update LoopInfo if it is around.
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) {
- // If one or the other blocks were not in a loop, the new block is not
- // either, and thus LI doesn't need to be updated.
- if (Loop *TIL = LI->getLoopFor(TIBB))
+ if (Loop *TIL = LI->getLoopFor(TIBB)) {
+ // If one or the other blocks were not in a loop, the new block is not
+ // either, and thus LI doesn't need to be updated.
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
@@ -277,6 +312,65 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
P->addBasicBlockToLoop(NewBB, LI->getBase());
}
}
+ // If TIBB is in a loop and DestBB is outside of that loop, split the
+ // other exit blocks of the loop that also have predecessors outside
+ // the loop, to maintain a LoopSimplify guarantee.
+ if (!TIL->contains(DestBB) &&
+ P->mustPreserveAnalysisID(LoopSimplifyID)) {
+ assert(!TIL->contains(NewBB) &&
+ "Split point for loop exit is contained in loop!");
+
+ // Update LCSSA form in the newly created exit block.
+ if (P->mustPreserveAnalysisID(LCSSAID)) {
+ SmallVector<BasicBlock *, 1> OrigPred;
+ OrigPred.push_back(TIBB);
+ CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
+ }
+
+ // For each unique exit block...
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ TIL->getExitBlocks(ExitBlocks);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ // Collect all the preds that are inside the loop, and note
+ // whether there are any preds outside the loop.
+ SmallVector<BasicBlock *, 4> Preds;
+ bool HasPredOutsideOfLoop = false;
+ BasicBlock *Exit = ExitBlocks[i];
+ for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
+ I != E; ++I)
+ if (TIL->contains(*I))
+ Preds.push_back(*I);
+ else
+ HasPredOutsideOfLoop = true;
+ // If there are any preds not in the loop, we'll need to split
+ // the edges. The Preds.empty() check is needed because a block
+ // may appear multiple times in the list. We can't use
+ // getUniqueExitBlocks above because that depends on LoopSimplify
+ // form, which we're in the process of restoring!
+ if (!Preds.empty() && HasPredOutsideOfLoop) {
+ BasicBlock *NewExitBB =
+ SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
+ "split", P);
+ if (P->mustPreserveAnalysisID(LCSSAID))
+ CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
+ }
+ }
+ }
+ // LCSSA form was updated above for the case where LoopSimplify is
+ // available, which means that all predecessors of loop exit blocks
+ // are within the loop. Without LoopSimplify form, it would be
+ // necessary to insert a new phi.
+ assert((!P->mustPreserveAnalysisID(LCSSAID) ||
+ P->mustPreserveAnalysisID(LoopSimplifyID)) &&
+ "SplitCriticalEdge doesn't know how to update LCCSA form "
+ "without LoopSimplify!");
+ }
}
- return true;
+
+ // Update ProfileInfo if it is around.
+ if (ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>()) {
+ PI->splitEdge(TIBB,DestBB,NewBB,MergeIdenticalEdges);
+ }
+
+ return NewBB;
}
diff --git a/lib/Transforms/Utils/CMakeLists.txt b/lib/Transforms/Utils/CMakeLists.txt
index 10cae5c..f4394ea 100644
--- a/lib/Transforms/Utils/CMakeLists.txt
+++ b/lib/Transforms/Utils/CMakeLists.txt
@@ -6,11 +6,10 @@ add_llvm_library(LLVMTransformUtils
CloneFunction.cpp
CloneLoop.cpp
CloneModule.cpp
- CloneTrace.cpp
CodeExtractor.cpp
DemoteRegToStack.cpp
- InlineCost.cpp
InlineFunction.cpp
+ InstructionNamer.cpp
LCSSA.cpp
Local.cpp
LoopSimplify.cpp
@@ -19,12 +18,12 @@ add_llvm_library(LLVMTransformUtils
LowerSwitch.cpp
Mem2Reg.cpp
PromoteMemoryToRegister.cpp
- SimplifyCFG.cpp
+ SSAUpdater.cpp
SSI.cpp
+ SimplifyCFG.cpp
UnifyFunctionExitNodes.cpp
UnrollLoop.cpp
ValueMapper.cpp
- InstructionNamer.cpp
)
target_link_libraries (LLVMTransformUtils LLVMSupport)
diff --git a/lib/Transforms/Utils/CloneFunction.cpp b/lib/Transforms/Utils/CloneFunction.cpp
index d0fdefa..30130fa 100644
--- a/lib/Transforms/Utils/CloneFunction.cpp
+++ b/lib/Transforms/Utils/CloneFunction.cpp
@@ -20,6 +20,7 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
@@ -34,7 +35,7 @@ BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
DenseMap<const Value*, Value*> &ValueMap,
const char *NameSuffix, Function *F,
ClonedCodeInfo *CodeInfo) {
- BasicBlock *NewBB = BasicBlock::Create("", F);
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
@@ -72,7 +73,7 @@ BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
//
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
- std::vector<ReturnInst*> &Returns,
+ SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
assert(NameSuffix && "NameSuffix cannot be null!");
@@ -165,7 +166,7 @@ Function *llvm::CloneFunction(const Function *F,
ValueMap[I] = DestI++; // Add mapping to ValueMap
}
- std::vector<ReturnInst*> Returns; // Ignore returns cloned...
+ SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
return NewF;
}
@@ -179,7 +180,7 @@ namespace {
Function *NewFunc;
const Function *OldFunc;
DenseMap<const Value*, Value*> &ValueMap;
- std::vector<ReturnInst*> &Returns;
+ SmallVectorImpl<ReturnInst*> &Returns;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
const TargetData *TD;
@@ -187,7 +188,7 @@ namespace {
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
DenseMap<const Value*, Value*> &valueMap,
- std::vector<ReturnInst*> &returns,
+ SmallVectorImpl<ReturnInst*> &returns,
const char *nameSuffix,
ClonedCodeInfo *codeInfo,
const TargetData *td)
@@ -218,7 +219,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// Nope, clone it now.
BasicBlock *NewBB;
- BBEntry = NewBB = BasicBlock::Create();
+ BBEntry = NewBB = BasicBlock::Create(BB->getContext());
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
@@ -237,7 +238,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
// Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
if (DbgFnStart == NULL) {
- DISubprogram SP(cast<GlobalVariable>(DFSI->getSubprogram()));
+ DISubprogram SP(DFSI->getSubprogram());
if (SP.describes(BB->getParent()))
DbgFnStart = DFSI->getSubprogram();
}
@@ -323,17 +324,21 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
/// mapping its operands through ValueMap if they are available.
Constant *PruningFunctionCloner::
ConstantFoldMappedInstruction(const Instruction *I) {
+ LLVMContext &Context = I->getContext();
+
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
- ValueMap)))
+ ValueMap,
+ Context)))
Ops.push_back(Op);
else
return 0; // All operands not constant!
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
- &Ops[0], Ops.size(), TD);
+ &Ops[0], Ops.size(),
+ Context, TD);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
@@ -344,7 +349,7 @@ ConstantFoldMappedInstruction(const Instruction *I) {
CE);
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
- Ops.size(), TD);
+ Ops.size(), Context, TD);
}
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
@@ -356,11 +361,12 @@ ConstantFoldMappedInstruction(const Instruction *I) {
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
DenseMap<const Value*, Value*> &ValueMap,
- std::vector<ReturnInst*> &Returns,
+ SmallVectorImpl<ReturnInst*> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
const TargetData *TD) {
assert(NameSuffix && "NameSuffix cannot be null!");
+ LLVMContext &Context = OldFunc->getContext();
#ifndef NDEBUG
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
@@ -385,7 +391,7 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
// insert it into the new function in the right order. If not, ignore it.
//
// Defer PHI resolution until rest of function is resolved.
- std::vector<const PHINode*> PHIToResolve;
+ SmallVector<const PHINode*, 16> PHIToResolve;
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
BI != BE; ++BI) {
BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
@@ -430,7 +436,8 @@ void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
if (BasicBlock *MappedBlock =
cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
- Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
+ Value *InVal = MapValue(PN->getIncomingValue(pred),
+ ValueMap, Context);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
diff --git a/lib/Transforms/Utils/CloneModule.cpp b/lib/Transforms/Utils/CloneModule.cpp
index 82f5b93..0285f8c 100644
--- a/lib/Transforms/Utils/CloneModule.cpp
+++ b/lib/Transforms/Utils/CloneModule.cpp
@@ -56,10 +56,11 @@ Module *llvm::CloneModule(const Module *M,
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
- GlobalVariable *GV = new GlobalVariable(I->getType()->getElementType(),
+ GlobalVariable *GV = new GlobalVariable(*New,
+ I->getType()->getElementType(),
false,
GlobalValue::ExternalLinkage, 0,
- I->getName(), New);
+ I->getName());
GV->setAlignment(I->getAlignment());
ValueMap[I] = GV;
}
@@ -88,7 +89,8 @@ Module *llvm::CloneModule(const Module *M,
GlobalVariable *GV = cast<GlobalVariable>(ValueMap[I]);
if (I->hasInitializer())
GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
- ValueMap)));
+ ValueMap,
+ M->getContext())));
GV->setLinkage(I->getLinkage());
GV->setThreadLocal(I->isThreadLocal());
GV->setConstant(I->isConstant());
@@ -106,7 +108,7 @@ Module *llvm::CloneModule(const Module *M,
ValueMap[J] = DestI++;
}
- std::vector<ReturnInst*> Returns; // Ignore returns cloned...
+ SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(F, I, ValueMap, Returns);
}
@@ -119,7 +121,7 @@ Module *llvm::CloneModule(const Module *M,
GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]);
GA->setLinkage(I->getLinkage());
if (const Constant* C = I->getAliasee())
- GA->setAliasee(cast<Constant>(MapValue(C, ValueMap)));
+ GA->setAliasee(cast<Constant>(MapValue(C, ValueMap, M->getContext())));
}
return New;
diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp
index 6d5904e..c39ccf7 100644
--- a/lib/Transforms/Utils/CodeExtractor.cpp
+++ b/lib/Transforms/Utils/CodeExtractor.cpp
@@ -18,6 +18,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
@@ -27,6 +28,8 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <set>
@@ -180,8 +183,24 @@ void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
void CodeExtractor::splitReturnBlocks() {
for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
E = BlocksToExtract.end(); I != E; ++I)
- if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
- (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
+ if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
+ BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
+ if (DT) {
+ // Old dominates New. New node domiantes all other nodes dominated
+ //by Old.
+ DomTreeNode *OldNode = DT->getNode(*I);
+ SmallVector<DomTreeNode*, 8> Children;
+ for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
+ DI != DE; ++DI)
+ Children.push_back(*DI);
+
+ DomTreeNode *NewNode = DT->addNewBlock(New, *I);
+
+ for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
+ E = Children.end(); I != E; ++I)
+ DT->changeImmediateDominator(*I, NewNode);
+ }
+ }
}
// findInputsOutputs - Find inputs to, outputs from the code region.
@@ -234,15 +253,15 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
BasicBlock *newHeader,
Function *oldFunction,
Module *M) {
- DOUT << "inputs: " << inputs.size() << "\n";
- DOUT << "outputs: " << outputs.size() << "\n";
+ DEBUG(errs() << "inputs: " << inputs.size() << "\n");
+ DEBUG(errs() << "outputs: " << outputs.size() << "\n");
// This function returns unsigned, outputs will go back by reference.
switch (NumExitBlocks) {
case 0:
- case 1: RetTy = Type::VoidTy; break;
- case 2: RetTy = Type::Int1Ty; break;
- default: RetTy = Type::Int16Ty; break;
+ case 1: RetTy = Type::getVoidTy(header->getContext()); break;
+ case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
+ default: RetTy = Type::getInt16Ty(header->getContext()); break;
}
std::vector<const Type*> paramTy;
@@ -251,32 +270,34 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
for (Values::const_iterator i = inputs.begin(),
e = inputs.end(); i != e; ++i) {
const Value *value = *i;
- DOUT << "value used in func: " << *value << "\n";
+ DEBUG(errs() << "value used in func: " << *value << "\n");
paramTy.push_back(value->getType());
}
// Add the types of the output values to the function's argument list.
for (Values::const_iterator I = outputs.begin(), E = outputs.end();
I != E; ++I) {
- DOUT << "instr used in func: " << **I << "\n";
+ DEBUG(errs() << "instr used in func: " << **I << "\n");
if (AggregateArgs)
paramTy.push_back((*I)->getType());
else
paramTy.push_back(PointerType::getUnqual((*I)->getType()));
}
- DOUT << "Function type: " << *RetTy << " f(";
+ DEBUG(errs() << "Function type: " << *RetTy << " f(");
for (std::vector<const Type*>::iterator i = paramTy.begin(),
e = paramTy.end(); i != e; ++i)
- DOUT << **i << ", ";
- DOUT << ")\n";
+ DEBUG(errs() << **i << ", ");
+ DEBUG(errs() << ")\n");
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
- PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy));
+ PointerType *StructPtr =
+ PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
paramTy.clear();
paramTy.push_back(StructPtr);
}
- const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
+ const FunctionType *funcType =
+ FunctionType::get(RetTy, paramTy, false);
// Create the new function
Function *newFunction = Function::Create(funcType,
@@ -298,13 +319,13 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
Value *RewriteVal;
if (AggregateArgs) {
Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::Int32Ty);
- Idx[1] = ConstantInt::get(Type::Int32Ty, i);
- std::string GEPname = "gep_" + inputs[i]->getName();
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
TerminatorInst *TI = newFunction->begin()->getTerminator();
- GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2,
- GEPname, TI);
- RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
+ GetElementPtrInst *GEP =
+ GetElementPtrInst::Create(AI, Idx, Idx+2,
+ "gep_" + inputs[i]->getName(), TI);
+ RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
} else
RewriteVal = AI++;
@@ -340,6 +361,20 @@ Function *CodeExtractor::constructFunction(const Values &inputs,
return newFunction;
}
+/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
+/// that uses the value within the basic block, and return the predecessor
+/// block associated with that use, or return 0 if none is found.
+static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
+ for (Value::use_iterator UI = Used->use_begin(),
+ UE = Used->use_end(); UI != UE; ++UI) {
+ PHINode *P = dyn_cast<PHINode>(*UI);
+ if (P && P->getParent() == BB)
+ return P->getIncomingBlock(UI);
+ }
+
+ return 0;
+}
+
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
@@ -348,7 +383,9 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Values &inputs, Values &outputs) {
// Emit a call to the new function, passing in: *pointer to struct (if
// aggregating parameters), or plan inputs and allocated memory for outputs
- std::vector<Value*> params, StructValues, ReloadOutputs;
+ std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
+
+ LLVMContext &Context = newFunction->getContext();
// Add inputs as params, or to be filled into the struct
for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
@@ -378,7 +415,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
ArgTypes.push_back((*v)->getType());
// Allocate a struct at the beginning of this function
- Type *StructArgTy = StructType::get(ArgTypes);
+ Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
Struct =
new AllocaInst(StructArgTy, 0, "structArg",
codeReplacer->getParent()->begin()->begin());
@@ -386,8 +423,8 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::Int32Ty);
- Idx[1] = ConstantInt::get(Type::Int32Ty, i);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(Struct, Idx, Idx + 2,
"gep_" + StructValues[i]->getName());
@@ -412,8 +449,8 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Value *Output = 0;
if (AggregateArgs) {
Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::Int32Ty);
- Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
GetElementPtrInst *GEP
= GetElementPtrInst::Create(Struct, Idx, Idx + 2,
"gep_reload_" + outputs[i]->getName());
@@ -423,6 +460,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
Output = ReloadOutputs[i];
}
LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
+ Reloads.push_back(load);
codeReplacer->getInstList().push_back(load);
std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
for (unsigned u = 0, e = Users.size(); u != e; ++u) {
@@ -434,7 +472,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
// Now we can emit a switch statement using the call as a value.
SwitchInst *TheSwitch =
- SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty),
+ SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
codeReplacer, 0, codeReplacer);
// Since there may be multiple exits from the original region, make the new
@@ -456,7 +494,8 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
if (!NewTarget) {
// If we don't already have an exit stub for this non-extracted
// destination, create one now!
- NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
+ NewTarget = BasicBlock::Create(Context,
+ OldTarget->getName() + ".exitStub",
newFunction);
unsigned SuccNum = switchVal++;
@@ -465,17 +504,18 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
case 0:
case 1: break; // No value needed.
case 2: // Conditional branch, return a bool
- brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
+ brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
break;
default:
- brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
+ brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
break;
}
- ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);
+ ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
// Update the switch instruction.
- TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
+ TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
+ SuccNum),
OldTarget);
// Restore values just before we exit
@@ -507,14 +547,25 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
DominatesDef = false;
}
- if (DT)
+ if (DT) {
DominatesDef = DT->dominates(DefBlock, OldTarget);
+
+ // If the output value is used by a phi in the target block,
+ // then we need to test for dominance of the phi's predecessor
+ // instead. Unfortunately, this a little complicated since we
+ // have already rewritten uses of the value to uses of the reload.
+ BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
+ OldTarget);
+ if (pred && DT && DT->dominates(DefBlock, pred))
+ DominatesDef = true;
+ }
if (DominatesDef) {
if (AggregateArgs) {
Value *Idx[2];
- Idx[0] = Constant::getNullValue(Type::Int32Ty);
- Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out);
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
+ FirstOut+out);
GetElementPtrInst *GEP =
GetElementPtrInst::Create(OAI, Idx, Idx + 2,
"gep_" + outputs[out]->getName(),
@@ -543,15 +594,16 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
// this should be rewritten as a `ret'
// Check if the function should return a value
- if (OldFnRetTy == Type::VoidTy) {
- ReturnInst::Create(0, TheSwitch); // Return void
+ if (OldFnRetTy == Type::getVoidTy(Context)) {
+ ReturnInst::Create(Context, 0, TheSwitch); // Return void
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
// return what we have
- ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
+ ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
} else {
// Otherwise we must have code extracted an unwind or something, just
// return whatever we want.
- ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch);
+ ReturnInst::Create(Context,
+ Constant::getNullValue(OldFnRetTy), TheSwitch);
}
TheSwitch->eraseFromParent();
@@ -644,12 +696,14 @@ ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
Function *oldFunction = header->getParent();
// This takes place of the original loop
- BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction,
+ BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
+ "codeRepl", oldFunction,
header);
// The new function needs a root node because other nodes can branch to the
// head of the region, but the entry node of a function cannot have preds.
- BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
+ BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
+ "newFuncRoot");
newFuncRoot->getInstList().push_back(BranchInst::Create(header));
// Find inputs to, outputs from the code region.
@@ -702,7 +756,8 @@ ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
// cerr << "OLD FUNCTION: " << *oldFunction;
// verifyFunction(*oldFunction);
- DEBUG(if (verifyFunction(*newFunction)) abort());
+ DEBUG(if (verifyFunction(*newFunction))
+ llvm_report_error("verifyFunction failed!"));
return newFunction;
}
diff --git a/lib/Transforms/Utils/DemoteRegToStack.cpp b/lib/Transforms/Utils/DemoteRegToStack.cpp
index b8dd754..c908b4a 100644
--- a/lib/Transforms/Utils/DemoteRegToStack.cpp
+++ b/lib/Transforms/Utils/DemoteRegToStack.cpp
@@ -39,7 +39,8 @@ AllocaInst* llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
// Create a stack slot to hold the value.
AllocaInst *Slot;
if (AllocaPoint) {
- Slot = new AllocaInst(I.getType(), 0, I.getName()+".reg2mem", AllocaPoint);
+ Slot = new AllocaInst(I.getType(), 0,
+ I.getName()+".reg2mem", AllocaPoint);
} else {
Function *F = I.getParent()->getParent();
Slot = new AllocaInst(I.getType(), 0, I.getName()+".reg2mem",
@@ -116,7 +117,8 @@ AllocaInst* llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
// Create a stack slot to hold the value.
AllocaInst *Slot;
if (AllocaPoint) {
- Slot = new AllocaInst(P->getType(), 0, P->getName()+".reg2mem", AllocaPoint);
+ Slot = new AllocaInst(P->getType(), 0,
+ P->getName()+".reg2mem", AllocaPoint);
} else {
Function *F = P->getParent()->getParent();
Slot = new AllocaInst(P->getType(), 0, P->getName()+".reg2mem",
diff --git a/lib/Transforms/Utils/InlineFunction.cpp b/lib/Transforms/Utils/InlineFunction.cpp
index 4989c00..0d00d69 100644
--- a/lib/Transforms/Utils/InlineFunction.cpp
+++ b/lib/Transforms/Utils/InlineFunction.cpp
@@ -15,6 +15,7 @@
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
@@ -28,13 +29,73 @@
#include "llvm/Support/CallSite.h"
using namespace llvm;
-bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
- return InlineFunction(CallSite(CI), CG, TD);
+bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD,
+ SmallVectorImpl<AllocaInst*> *StaticAllocas) {
+ return InlineFunction(CallSite(CI), CG, TD, StaticAllocas);
}
-bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
- return InlineFunction(CallSite(II), CG, TD);
+bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD,
+ SmallVectorImpl<AllocaInst*> *StaticAllocas) {
+ return InlineFunction(CallSite(II), CG, TD, StaticAllocas);
}
+
+/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
+/// an invoke, we have to turn all of the calls that can throw into
+/// invokes. This function analyze BB to see if there are any calls, and if so,
+/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
+/// nodes in that block with the values specified in InvokeDestPHIValues.
+///
+static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
+ BasicBlock *InvokeDest,
+ const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *I = BBI++;
+
+ // We only need to check for function calls: inlined invoke
+ // instructions require no special handling.
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (CI == 0) continue;
+
+ // If this call cannot unwind, don't convert it to an invoke.
+ if (CI->doesNotThrow())
+ continue;
+
+ // Convert this function call into an invoke instruction.
+ // First, split the basic block.
+ BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
+
+ // Next, create the new invoke instruction, inserting it at the end
+ // of the old basic block.
+ SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
+ InvokeInst *II =
+ InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
+ InvokeArgs.begin(), InvokeArgs.end(),
+ CI->getName(), BB->getTerminator());
+ II->setCallingConv(CI->getCallingConv());
+ II->setAttributes(CI->getAttributes());
+
+ // Make sure that anything using the call now uses the invoke! This also
+ // updates the CallGraph if present.
+ CI->replaceAllUsesWith(II);
+
+ // Delete the unconditional branch inserted by splitBasicBlock
+ BB->getInstList().pop_back();
+ Split->getInstList().pop_front(); // Delete the original call
+
+ // Update any PHI nodes in the exceptional block to indicate that
+ // there is now a new entry in them.
+ unsigned i = 0;
+ for (BasicBlock::iterator I = InvokeDest->begin();
+ isa<PHINode>(I); ++I, ++i)
+ cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
+
+ // This basic block is now complete, the caller will continue scanning the
+ // next one.
+ return;
+ }
+}
+
+
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes and turn unwind
/// instructions into branches to the invoke unwind dest.
@@ -43,10 +104,9 @@ bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo,
- CallGraph *CG) {
+ ClonedCodeInfo &InlinedCodeInfo) {
BasicBlock *InvokeDest = II->getUnwindDest();
- std::vector<Value*> InvokeDestPHIValues;
+ SmallVector<Value*, 8> InvokeDestPHIValues;
// If there are PHI nodes in the unwind destination block, we need to
// keep track of which values came into them from this invoke, then remove
@@ -62,92 +122,39 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
- // rewrite.
- if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB) {
- if (InlinedCodeInfo.ContainsCalls) {
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
- Instruction *I = BBI++;
-
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- if (!isa<CallInst>(I)) continue;
- CallInst *CI = cast<CallInst>(I);
-
- // If this call cannot unwind, don't convert it to an invoke.
- if (CI->doesNotThrow())
- continue;
-
- // Convert this function call into an invoke instruction.
- // First, split the basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
-
- // Next, create the new invoke instruction, inserting it at the end
- // of the old basic block.
- SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
- InvokeInst *II =
- InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
- InvokeArgs.begin(), InvokeArgs.end(),
- CI->getName(), BB->getTerminator());
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
-
- // Make sure that anything using the call now uses the invoke!
- CI->replaceAllUsesWith(II);
-
- // Update the callgraph.
- if (CG) {
- // We should be able to do this:
- // (*CG)[Caller]->replaceCallSite(CI, II);
- // but that fails if the old call site isn't in the call graph,
- // which, because of LLVM bug 3601, it sometimes isn't.
- CallGraphNode *CGN = (*CG)[Caller];
- for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
- NI != NE; ++NI) {
- if (NI->first == CI) {
- NI->first = II;
- break;
- }
- }
- }
-
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- Split->getInstList().pop_front(); // Delete the original call
-
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
-
- // This basic block is now complete, start scanning the next one.
- break;
- }
- }
-
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- // An UnwindInst requires special handling when it gets inlined into an
- // invoke site. Once this happens, we know that the unwind would cause
- // a control transfer to the invoke exception destination, so we can
- // transform it into a direct branch to the exception destination.
- BranchInst::Create(InvokeDest, UI);
-
- // Delete the unwind instruction!
- UI->eraseFromParent();
-
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
+ // rewrite. If the code doesn't have calls or unwinds, we know there is
+ // nothing to rewrite.
+ if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
+ // Now that everything is happy, we have one final detail. The PHI nodes in
+ // the exception destination block still have entries due to the original
+ // invoke instruction. Eliminate these entries (which might even delete the
+ // PHI node) now.
+ InvokeDest->removePredecessor(II->getParent());
+ return;
+ }
+
+ for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
+ if (InlinedCodeInfo.ContainsCalls)
+ HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
+ InvokeDestPHIValues);
+
+ if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
+ // An UnwindInst requires special handling when it gets inlined into an
+ // invoke site. Once this happens, we know that the unwind would cause
+ // a control transfer to the invoke exception destination, so we can
+ // transform it into a direct branch to the exception destination.
+ BranchInst::Create(InvokeDest, UI);
+
+ // Delete the unwind instruction!
+ UI->eraseFromParent();
+
+ // Update any PHI nodes in the exceptional block to indicate that
+ // there is now a new entry in them.
+ unsigned i = 0;
+ for (BasicBlock::iterator I = InvokeDest->begin();
+ isa<PHINode>(I); ++I, ++i) {
+ PHINode *PN = cast<PHINode>(I);
+ PN->addIncoming(InvokeDestPHIValues[i], BB);
}
}
}
@@ -185,17 +192,19 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
}
for (; I != E; ++I) {
- const Instruction *OrigCall = I->first.getInstruction();
+ const Value *OrigCall = I->first;
DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
// Only copy the edge if the call was inlined!
- if (VMI != ValueMap.end() && VMI->second) {
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
- CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
- }
+ if (VMI == ValueMap.end() || VMI->second == 0)
+ continue;
+
+ // If the call was inlined, but then constant folded, there is no edge to
+ // add. Check for this case.
+ if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
+ CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
}
+
// Update the call graph by deleting the edge from Callee to Caller. We must
// do this after the loop above in case Caller and Callee are the same.
CallerNode->removeCallEdgeFor(CS);
@@ -204,25 +213,27 @@ static void UpdateCallGraphAfterInlining(CallSite CS,
/// findFnRegionEndMarker - This is a utility routine that is used by
/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
+///
static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
- GlobalVariable *FnStart = NULL;
+ MDNode *FnStart = NULL;
const DbgRegionEndInst *FnEnd = NULL;
for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
++BI) {
if (FnStart == NULL) {
if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
- DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
+ DISubprogram SP(FSI->getSubprogram());
assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
if (SP.describes(F))
- FnStart = SP.getGV();
+ FnStart = SP.getNode();
}
- } else {
- if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
- if (REI->getContext() == FnStart)
- FnEnd = REI;
+ continue;
}
+
+ if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
+ if (REI->getContext() == FnStart)
+ FnEnd = REI;
}
return FnEnd;
}
@@ -236,8 +247,10 @@ static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
// exists in the instruction stream. Similiarly this will inline a recursive
// function by one level.
//
-bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
+bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
+ SmallVectorImpl<AllocaInst*> *StaticAllocas) {
Instruction *TheCall = CS.getInstruction();
+ LLVMContext &Context = TheCall->getContext();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
@@ -277,7 +290,7 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
// Make sure to capture all of the return instructions from the cloned
// function.
- std::vector<ReturnInst*> Returns;
+ SmallVector<ReturnInst*, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
Function::iterator FirstNewBlock;
@@ -302,15 +315,17 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
!CalledFunc->onlyReadsMemory()) {
const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
- const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type *VoidPtrTy =
+ Type::getInt8PtrTy(Context);
// Create the alloca. If we have TargetData, use nice alignment.
unsigned Align = 1;
if (TD) Align = TD->getPrefTypeAlignment(AggTy);
- Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
- Caller->begin()->begin());
+ Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
+ I->getName(),
+ &*Caller->begin()->begin());
// Emit a memcpy.
- const Type *Tys[] = { Type::Int64Ty };
+ const Type *Tys[] = { Type::getInt64Ty(Context) };
Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
Intrinsic::memcpy,
Tys, 1);
@@ -321,13 +336,15 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
if (TD == 0)
Size = ConstantExpr::getSizeOf(AggTy);
else
- Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
+ Size = ConstantInt::get(Type::getInt64Ty(Context),
+ TD->getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
// better alignment.
Value *CallArgs[] = {
- DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
+ DestCast, SrcCast, Size,
+ ConstantInt::get(Type::getInt32Ty(Context), 1)
};
CallInst *TheMemCpy =
CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
@@ -352,13 +369,12 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
// call site. The function body cloner does not clone original
// region end marker from the CalledFunc. This will ensure that
// inlined function's scope ends at the right place.
- const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
- if (DREI) {
- for (BasicBlock::iterator BI = TheCall,
- BE = TheCall->getParent()->end(); BI != BE; ++BI) {
+ if (const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc)) {
+ for (BasicBlock::iterator BI = TheCall, BE = TheCall->getParent()->end();
+ BI != BE; ++BI) {
if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
if (DbgRegionEndInst *NewDREI =
- dyn_cast<DbgRegionEndInst>(DREI->clone()))
+ dyn_cast<DbgRegionEndInst>(DREI->clone()))
NewDREI->insertAfter(DSPI);
break;
}
@@ -388,31 +404,39 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
{
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; )
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
+ E = FirstNewBlock->end(); I != E; ) {
+ AllocaInst *AI = dyn_cast<AllocaInst>(I++);
+ if (AI == 0) continue;
+
+ // If the alloca is now dead, remove it. This often occurs due to code
+ // specialization.
+ if (AI->use_empty()) {
+ AI->eraseFromParent();
+ continue;
+ }
- if (isa<Constant>(AI->getArraySize())) {
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
- ++I;
-
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(
- InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
+ if (!isa<Constant>(AI->getArraySize()))
+ continue;
+
+ // Keep track of the static allocas that we inline into the caller if the
+ // StaticAllocas pointer is non-null.
+ if (StaticAllocas) StaticAllocas->push_back(AI);
+
+ // Scan for the block of allocas that we can move over, and move them
+ // all at once.
+ while (isa<AllocaInst>(I) &&
+ isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
+ if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I));
+ ++I;
}
+
+ // Transfer all of the allocas over in a block. Using splice means
+ // that the instructions aren't removed from the symbol table, then
+ // reinserted.
+ Caller->getEntryBlock().getInstList().splice(InsertPoint,
+ FirstNewBlock->getInstList(),
+ AI, I);
+ }
}
// If the inlined code contained dynamic alloca instructions, wrap the inlined
@@ -486,7 +510,7 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
BB != E; ++BB) {
TerminatorInst *Term = BB->getTerminator();
if (isa<UnwindInst>(Term)) {
- new UnreachableInst(Term);
+ new UnreachableInst(Context, Term);
BB->getInstList().erase(Term);
}
}
@@ -495,7 +519,7 @@ bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
// any inlined 'unwind' instructions into branches to the invoke exception
// destination, and call instructions into invoke instructions.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
+ HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
// If we cloned in _exactly one_ basic block, and if that block ends in a
// return instruction, we splice the body of the inlined callee directly into
diff --git a/lib/Transforms/Utils/InstructionNamer.cpp b/lib/Transforms/Utils/InstructionNamer.cpp
index 4f8a160..1fa51a3 100644
--- a/lib/Transforms/Utils/InstructionNamer.cpp
+++ b/lib/Transforms/Utils/InstructionNamer.cpp
@@ -32,7 +32,7 @@ namespace {
bool runOnFunction(Function &F) {
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
AI != AE; ++AI)
- if (!AI->hasName() && AI->getType() != Type::VoidTy)
+ if (!AI->hasName() && AI->getType() != Type::getVoidTy(F.getContext()))
AI->setName("tmp");
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
@@ -40,7 +40,7 @@ namespace {
BB->setName("BB");
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!I->hasName() && I->getType() != Type::VoidTy)
+ if (!I->hasName() && I->getType() != Type::getVoidTy(F.getContext()))
I->setName("tmp");
}
return true;
diff --git a/lib/Transforms/Utils/LCSSA.cpp b/lib/Transforms/Utils/LCSSA.cpp
index d5e7303..56e662e 100644
--- a/lib/Transforms/Utils/LCSSA.cpp
+++ b/lib/Transforms/Utils/LCSSA.cpp
@@ -33,22 +33,19 @@
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
-#include <algorithm>
-#include <map>
using namespace llvm;
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
namespace {
- struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
+ struct LCSSA : public LoopPass {
static char ID; // Pass identification, replacement for typeid
LCSSA() : LoopPass(&ID) {}
@@ -57,12 +54,10 @@ namespace {
DominatorTree *DT;
std::vector<BasicBlock*> LoopBlocks;
PredIteratorCache PredCache;
+ Loop *L;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
- void ProcessInstruction(Instruction* Instr,
- const SmallVector<BasicBlock*, 8>& exitBlocks);
-
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
@@ -71,9 +66,9 @@ namespace {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
- AU.addRequired<LoopInfo>();
+ AU.addRequiredTransitive<LoopInfo>();
AU.addPreserved<LoopInfo>();
- AU.addRequired<DominatorTree>();
+ AU.addRequiredTransitive<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominatorTree>();
@@ -85,15 +80,17 @@ namespace {
AU.addPreserved<DominanceFrontier>();
}
private:
- void getLoopValuesUsedOutsideLoop(Loop *L,
- SetVector<Instruction*> &AffectedValues,
- const SmallVector<BasicBlock*, 8>& exitBlocks);
-
- Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
- DenseMap<DomTreeNode*, Value*> &Phis);
+ bool ProcessInstruction(Instruction *Inst,
+ const SmallVectorImpl<BasicBlock*> &ExitBlocks);
+
+ /// verifyAnalysis() - Verify loop nest.
+ virtual void verifyAnalysis() const {
+ // Check the special guarantees that LCSSA makes.
+ assert(L->isLCSSAForm() && "LCSSA form not preserved!");
+ }
/// inLoop - returns true if the given block is within the current loop
- bool inLoop(BasicBlock* B) {
+ bool inLoop(BasicBlock *B) const {
return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
}
};
@@ -105,181 +102,163 @@ static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
const PassInfo *const llvm::LCSSAID = &X;
+
+/// BlockDominatesAnExit - Return true if the specified block dominates at least
+/// one of the blocks in the specified list.
+static bool BlockDominatesAnExit(BasicBlock *BB,
+ const SmallVectorImpl<BasicBlock*> &ExitBlocks,
+ DominatorTree *DT) {
+ DomTreeNode *DomNode = DT->getNode(BB);
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
+ return true;
+
+ return false;
+}
+
+
/// runOnFunction - Process all loops in the function, inner-most out.
-bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
- PredCache.clear();
+bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
+ L = TheLoop;
LI = &LPM.getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTree>();
- // Speed up queries by creating a sorted list of blocks
+ // Get the set of exiting blocks.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+
+ if (ExitBlocks.empty())
+ return false;
+
+ // Speed up queries by creating a sorted vector of blocks.
LoopBlocks.clear();
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
- std::sort(LoopBlocks.begin(), LoopBlocks.end());
+ array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
- SmallVector<BasicBlock*, 8> exitBlocks;
- L->getExitBlocks(exitBlocks);
+ // Look at all the instructions in the loop, checking to see if they have uses
+ // outside the loop. If so, rewrite those uses.
+ bool MadeChange = false;
- SetVector<Instruction*> AffectedValues;
- getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
+ for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
+ BBI != E; ++BBI) {
+ BasicBlock *BB = *BBI;
+
+ // For large loops, avoid use-scanning by using dominance information: In
+ // particular, if a block does not dominate any of the loop exits, then none
+ // of the values defined in the block could be used outside the loop.
+ if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
+ continue;
+
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ // Reject two common cases fast: instructions with no uses (like stores)
+ // and instructions with one use that is in the same block as this.
+ if (I->use_empty() ||
+ (I->hasOneUse() && I->use_back()->getParent() == BB &&
+ !isa<PHINode>(I->use_back())))
+ continue;
+
+ MadeChange |= ProcessInstruction(I, ExitBlocks);
+ }
+ }
- // If no values are affected, we can save a lot of work, since we know that
- // nothing will be changed.
- if (AffectedValues.empty())
- return false;
+ assert(L->isLCSSAForm());
+ PredCache.clear();
+
+ return MadeChange;
+}
+
+/// isExitBlock - Return true if the specified block is in the list.
+static bool isExitBlock(BasicBlock *BB,
+ const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
+ if (ExitBlocks[i] == BB)
+ return true;
+ return false;
+}
+
+/// ProcessInstruction - Given an instruction in the loop, check to see if it
+/// has any uses that are outside the current loop. If so, insert LCSSA PHI
+/// nodes and rewrite the uses.
+bool LCSSA::ProcessInstruction(Instruction *Inst,
+ const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
+ SmallVector<Use*, 16> UsesToRewrite;
- // Iterate over all affected values for this loop and insert Phi nodes
- // for them in the appropriate exit blocks
+ BasicBlock *InstBB = Inst->getParent();
- for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
- E = AffectedValues.end(); I != E; ++I)
- ProcessInstruction(*I, exitBlocks);
+ for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
+ UI != E; ++UI) {
+ BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
+ if (PHINode *PN = dyn_cast<PHINode>(*UI))
+ UserBB = PN->getIncomingBlock(UI);
+
+ if (InstBB != UserBB && !inLoop(UserBB))
+ UsesToRewrite.push_back(&UI.getUse());
+ }
- assert(L->isLCSSAForm());
+ // If there are no uses outside the loop, exit with no change.
+ if (UsesToRewrite.empty()) return false;
- return true;
-}
-
-/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
-/// eliminate all out-of-loop uses.
-void LCSSA::ProcessInstruction(Instruction *Instr,
- const SmallVector<BasicBlock*, 8>& exitBlocks) {
++NumLCSSA; // We are applying the transformation
- // Keep track of the blocks that have the value available already.
- DenseMap<DomTreeNode*, Value*> Phis;
-
- BasicBlock *DomBB = Instr->getParent();
-
// Invoke instructions are special in that their result value is not available
// along their unwind edge. The code below tests to see whether DomBB dominates
// the value, so adjust DomBB to the normal destination block, which is
// effectively where the value is first usable.
- if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
+ BasicBlock *DomBB = Inst->getParent();
+ if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
DomBB = Inv->getNormalDest();
DomTreeNode *DomNode = DT->getNode(DomBB);
- // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
- // add them to the Phi's map.
- for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
- BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
- BasicBlock *BB = *BBI;
- DomTreeNode *ExitBBNode = DT->getNode(BB);
- Value *&Phi = Phis[ExitBBNode];
- if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
- PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
- BB->begin());
- PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
-
- // Remember that this phi makes the value alive in this block.
- Phi = PN;
-
- // Add inputs from inside the loop for this PHI.
- for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
- PN->addIncoming(Instr, *PI);
- }
- }
+ SSAUpdater SSAUpdate;
+ SSAUpdate.Initialize(Inst);
-
- // Record all uses of Instr outside the loop. We need to rewrite these. The
- // LCSSA phis won't be included because they use the value in the loop.
- for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
- UI != E;) {
- BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
- if (PHINode *P = dyn_cast<PHINode>(*UI)) {
- UserBB = P->getIncomingBlock(UI);
- }
+ // Insert the LCSSA phi's into all of the exit blocks dominated by the
+ // value., and add them to the Phi's map.
+ for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
+ BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
+ BasicBlock *ExitBB = *BBI;
+ if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
- // If the user is in the loop, don't rewrite it!
- if (UserBB == Instr->getParent() || inLoop(UserBB)) {
- ++UI;
- continue;
- }
+ // If we already inserted something for this BB, don't reprocess it.
+ if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
- // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
- // inserting PHI nodes into join points where needed.
- Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
-
- // Preincrement the iterator to avoid invalidating it when we change the
- // value.
- Use &U = UI.getUse();
- ++UI;
- U.set(Val);
- }
-}
+ PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa",
+ ExitBB->begin());
+ PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB));
-/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
-/// are used by instructions outside of it.
-void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
- SetVector<Instruction*> &AffectedValues,
- const SmallVector<BasicBlock*, 8>& exitBlocks) {
- // FIXME: For large loops, we may be able to avoid a lot of use-scanning
- // by using dominance information. In particular, if a block does not
- // dominate any of the loop exits, then none of the values defined in the
- // block could be used outside the loop.
- for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
- BB != BE; ++BB) {
- for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
- ++UI) {
- BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
- if (PHINode* p = dyn_cast<PHINode>(*UI)) {
- UserBB = p->getIncomingBlock(UI);
- }
-
- if (*BB != UserBB && !inLoop(UserBB)) {
- AffectedValues.insert(I);
- break;
- }
- }
+ // Add inputs from inside the loop for this PHI.
+ for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI)
+ PN->addIncoming(Inst, *PI);
+
+ // Remember that this phi makes the value alive in this block.
+ SSAUpdate.AddAvailableValue(ExitBB, PN);
}
-}
-
-/// GetValueForBlock - Get the value to use within the specified basic block.
-/// available values are in Phis.
-Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
- DenseMap<DomTreeNode*, Value*> &Phis) {
- // If there is no dominator info for this BB, it is unreachable.
- if (BB == 0)
- return UndefValue::get(OrigInst->getType());
-
- // If we have already computed this value, return the previously computed val.
- if (Phis.count(BB)) return Phis[BB];
-
- DomTreeNode *IDom = BB->getIDom();
+
+ // Rewrite all uses outside the loop in terms of the new PHIs we just
+ // inserted.
+ for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
+ // If this use is in an exit block, rewrite to use the newly inserted PHI.
+ // This is required for correctness because SSAUpdate doesn't handle uses in
+ // the same block. It assumes the PHI we inserted is at the end of the
+ // block.
+ Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
+ BasicBlock *UserBB = User->getParent();
+ if (PHINode *PN = dyn_cast<PHINode>(User))
+ UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
- // Otherwise, there are two cases: we either have to insert a PHI node or we
- // don't. We need to insert a PHI node if this block is not dominated by one
- // of the exit nodes from the loop (the loop could have multiple exits, and
- // though the value defined *inside* the loop dominated all its uses, each
- // exit by itself may not dominate all the uses).
- //
- // The simplest way to check for this condition is by checking to see if the
- // idom is in the loop. If so, we *know* that none of the exit blocks
- // dominate this block. Note that we *know* that the block defining the
- // original instruction is in the idom chain, because if it weren't, then the
- // original value didn't dominate this use.
- if (!inLoop(IDom->getBlock())) {
- // Idom is not in the loop, we must still be "below" the exit block and must
- // be fully dominated by the value live in the idom.
- Value* val = GetValueForBlock(IDom, OrigInst, Phis);
- Phis.insert(std::make_pair(BB, val));
- return val;
+ if (isa<PHINode>(UserBB->begin()) &&
+ isExitBlock(UserBB, ExitBlocks)) {
+ UsesToRewrite[i]->set(UserBB->begin());
+ continue;
+ }
+
+ // Otherwise, do full PHI insertion.
+ SSAUpdate.RewriteUse(*UsesToRewrite[i]);
}
- BasicBlock *BBN = BB->getBlock();
-
- // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
- // now, then get values to fill in the incoming values for the PHI.
- PHINode *PN = PHINode::Create(OrigInst->getType(),
- OrigInst->getName() + ".lcssa", BBN->begin());
- PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
- Phis.insert(std::make_pair(BB, PN));
-
- // Fill in the incoming values for the block.
- for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
- PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
- return PN;
+ return true;
}
diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp
index 8c08638..b622611 100644
--- a/lib/Transforms/Utils/Local.cpp
+++ b/lib/Transforms/Utils/Local.cpp
@@ -20,9 +20,11 @@
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
@@ -183,8 +185,8 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
} else if (SI->getNumSuccessors() == 2) {
// Otherwise, we can fold this switch into a conditional branch
// instruction if it has only one non-default destination.
- Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, SI->getCondition(),
- SI->getSuccessorValue(1), "cond", SI);
+ Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
+ SI->getSuccessorValue(1), "cond");
// Insert the new branch...
BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
@@ -262,7 +264,6 @@ void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
/// too, recursively.
void
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
-
// We can remove a PHI if it is on a cycle in the def-use graph
// where each node in the cycle has degree one, i.e. only one use,
// and is an instruction with no side effects.
@@ -294,7 +295,7 @@ llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
///
-void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
// If BB has single-entry PHI nodes, fold them.
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
Value *NewVal = PN->getIncomingValue(0);
@@ -314,6 +315,13 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
// Anything that branched to PredBB now branches to DestBB.
PredBB->replaceAllUsesWith(DestBB);
+ if (P) {
+ ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
+ if (PI) {
+ PI->replaceAllUses(PredBB, DestBB);
+ PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
+ }
+ }
// Nuke BB.
PredBB->eraseFromParent();
}
diff --git a/lib/Transforms/Utils/LoopSimplify.cpp b/lib/Transforms/Utils/LoopSimplify.cpp
index d6b167f..c22708a 100644
--- a/lib/Transforms/Utils/LoopSimplify.cpp
+++ b/lib/Transforms/Utils/LoopSimplify.cpp
@@ -37,10 +37,12 @@
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
@@ -55,44 +57,42 @@ STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
STATISTIC(NumNested , "Number of nested loops split out");
namespace {
- struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
+ struct VISIBILITY_HIDDEN LoopSimplify : public LoopPass {
static char ID; // Pass identification, replacement for typeid
- LoopSimplify() : FunctionPass(&ID) {}
+ LoopSimplify() : LoopPass(&ID) {}
// AA - If we have an alias analysis object to update, this is it, otherwise
// this is null.
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
- virtual bool runOnFunction(Function &F);
+ Loop *L;
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// We need loop information to identify the loops...
- AU.addRequired<LoopInfo>();
- AU.addRequired<DominatorTree>();
+ AU.addRequiredTransitive<LoopInfo>();
+ AU.addRequiredTransitive<DominatorTree>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addPreserved<AliasAnalysis>();
+ AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
}
/// verifyAnalysis() - Verify loop nest.
void verifyAnalysis() const {
-#ifndef NDEBUG
- LoopInfo *NLI = &getAnalysis<LoopInfo>();
- for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
- (*I)->verifyLoop();
-#endif
+ assert(L->isLoopSimplifyForm() && "LoopSimplify form not preserved!");
}
private:
- bool ProcessLoop(Loop *L);
+ bool ProcessLoop(Loop *L, LPPassManager &LPM);
BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
- void InsertPreheaderForLoop(Loop *L);
- Loop *SeparateNestedLoop(Loop *L);
- void InsertUniqueBackedgeBlock(Loop *L);
+ BasicBlock *InsertPreheaderForLoop(Loop *L);
+ Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
+ void InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
void PlaceSplitBlockCarefully(BasicBlock *NewBB,
SmallVectorImpl<BasicBlock*> &SplitPreds,
Loop *L);
@@ -105,73 +105,19 @@ X("loopsimplify", "Canonicalize natural loops", true);
// Publically exposed interface to pass...
const PassInfo *const llvm::LoopSimplifyID = &X;
-FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
+Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
/// it in any convenient order) inserting preheaders...
///
-bool LoopSimplify::runOnFunction(Function &F) {
+bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
+ L = l;
bool Changed = false;
LI = &getAnalysis<LoopInfo>();
AA = getAnalysisIfAvailable<AliasAnalysis>();
DT = &getAnalysis<DominatorTree>();
- // Check to see that no blocks (other than the header) in loops have
- // predecessors that are not in loops. This is not valid for natural loops,
- // but can occur if the blocks are unreachable. Since they are unreachable we
- // can just shamelessly destroy their terminators to make them not branch into
- // the loop!
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- // This case can only occur for unreachable blocks. Blocks that are
- // unreachable can't be in loops, so filter those blocks out.
- if (LI->getLoopFor(BB)) continue;
-
- bool BlockUnreachable = false;
- TerminatorInst *TI = BB->getTerminator();
-
- // Check to see if any successors of this block are non-loop-header loops
- // that are not the header.
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
- // If this successor is not in a loop, BB is clearly ok.
- Loop *L = LI->getLoopFor(TI->getSuccessor(i));
- if (!L) continue;
-
- // If the succ is the loop header, and if L is a top-level loop, then this
- // is an entrance into a loop through the header, which is also ok.
- if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
- continue;
-
- // Otherwise, this is an entrance into a loop from some place invalid.
- // Either the loop structure is invalid and this is not a natural loop (in
- // which case the compiler is buggy somewhere else) or BB is unreachable.
- BlockUnreachable = true;
- break;
- }
-
- // If this block is ok, check the next one.
- if (!BlockUnreachable) continue;
-
- // Otherwise, this block is dead. To clean up the CFG and to allow later
- // loop transformations to ignore this case, we delete the edges into the
- // loop by replacing the terminator.
-
- // Remove PHI entries from the successors.
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- TI->getSuccessor(i)->removePredecessor(BB);
-
- // Add a new unreachable instruction before the old terminator.
- new UnreachableInst(TI);
-
- // Delete the dead terminator.
- if (AA) AA->deleteValue(TI);
- if (!TI->use_empty())
- TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
- TI->eraseFromParent();
- Changed |= true;
- }
-
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- Changed |= ProcessLoop(*I);
+ Changed |= ProcessLoop(L, LPM);
return Changed;
}
@@ -179,21 +125,42 @@ bool LoopSimplify::runOnFunction(Function &F) {
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
-bool LoopSimplify::ProcessLoop(Loop *L) {
+bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
bool Changed = false;
ReprocessLoop:
-
- // Canonicalize inner loops before outer loops. Inner loop canonicalization
- // can provide work for the outer loop to canonicalize.
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- Changed |= ProcessLoop(*I);
-
- assert(L->getBlocks()[0] == L->getHeader() &&
- "Header isn't first block in loop?");
+
+ // Check to see that no blocks (other than the header) in this loop that has
+ // predecessors that are not in the loop. This is not valid for natural
+ // loops, but can occur if the blocks are unreachable. Since they are
+ // unreachable we can just shamelessly delete those CFG edges!
+ for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
+ BB != E; ++BB) {
+ if (*BB == L->getHeader()) continue;
+
+ SmallPtrSet<BasicBlock *, 4> BadPreds;
+ for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI)
+ if (!L->contains(*PI))
+ BadPreds.insert(*PI);
+
+ // Delete each unique out-of-loop (and thus dead) predecessor.
+ for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(),
+ E = BadPreds.end(); I != E; ++I) {
+ // Inform each successor of each dead pred.
+ for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
+ (*SI)->removePredecessor(*I);
+ // Zap the dead pred's terminator and replace it with unreachable.
+ TerminatorInst *TI = (*I)->getTerminator();
+ TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+ (*I)->getTerminator()->eraseFromParent();
+ new UnreachableInst((*I)->getContext(), *I);
+ Changed = true;
+ }
+ }
// Does the loop already have a preheader? If so, don't insert one.
- if (L->getLoopPreheader() == 0) {
- InsertPreheaderForLoop(L);
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ Preheader = InsertPreheaderForLoop(L);
NumInserted++;
Changed = true;
}
@@ -229,10 +196,9 @@ ReprocessLoop:
// this for loops with a giant number of backedges, just factor them into a
// common backedge instead.
if (NumBackedges < 8) {
- if (Loop *NL = SeparateNestedLoop(L)) {
+ if (SeparateNestedLoop(L, LPM)) {
++NumNested;
// This is a big restructuring change, reprocess the whole loop.
- ProcessLoop(NL);
Changed = true;
// GCC doesn't tail recursion eliminate this.
goto ReprocessLoop;
@@ -242,7 +208,7 @@ ReprocessLoop:
// If we either couldn't, or didn't want to, identify nesting of the loops,
// insert a new block that all backedges target, then make it jump to the
// loop header.
- InsertUniqueBackedgeBlock(L);
+ InsertUniqueBackedgeBlock(L, Preheader);
NumInserted++;
Changed = true;
}
@@ -253,7 +219,7 @@ ReprocessLoop:
PHINode *PN;
for (BasicBlock::iterator I = L->getHeader()->begin();
(PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = PN->hasConstantValue()) {
+ if (Value *V = PN->hasConstantValue(DT)) {
if (AA) AA->deleteValue(PN);
PN->replaceAllUsesWith(V);
PN->eraseFromParent();
@@ -286,19 +252,10 @@ ReprocessLoop:
Instruction *Inst = I++;
if (Inst == CI)
continue;
- if (Inst->isTrapping()) {
+ if (!L->makeLoopInvariant(Inst, Changed, Preheader->getTerminator())) {
AllInvariant = false;
break;
}
- for (unsigned j = 0, f = Inst->getNumOperands(); j != f; ++j)
- if (!L->isLoopInvariant(Inst->getOperand(j))) {
- AllInvariant = false;
- break;
- }
- if (!AllInvariant)
- break;
- // Hoist.
- Inst->moveBefore(L->getLoopPreheader()->getTerminator());
}
if (!AllInvariant) continue;
@@ -317,9 +274,10 @@ ReprocessLoop:
DomTreeNode *Node = DT->getNode(ExitingBlock);
const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
Node->getChildren();
- for (unsigned k = 0, g = Children.size(); k != g; ++k) {
- DT->changeImmediateDominator(Children[k], Node->getIDom());
- if (DF) DF->changeImmediateDominator(Children[k]->getBlock(),
+ while (!Children.empty()) {
+ DomTreeNode *Child = Children.front();
+ DT->changeImmediateDominator(Child, Node->getIDom());
+ if (DF) DF->changeImmediateDominator(Child->getBlock(),
Node->getIDom()->getBlock(),
DT);
}
@@ -339,7 +297,7 @@ ReprocessLoop:
/// preheader, this method is called to insert one. This method has two phases:
/// preheader insertion and analysis updating.
///
-void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
+BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
BasicBlock *Header = L->getHeader();
// Compute the set of predecessors of the loop that are not in the loop.
@@ -353,19 +311,12 @@ void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
BasicBlock *NewBB =
SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
".preheader", this);
-
-
- //===--------------------------------------------------------------------===//
- // Update analysis results now that we have performed the transformation
- //
-
- // We know that we have loop information to update... update it now.
- if (Loop *Parent = L->getParentLoop())
- Parent->addBasicBlockToLoop(NewBB, LI->getBase());
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
+
+ return NewBB;
}
/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
@@ -382,17 +333,6 @@ BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
LoopBlocks.size(), ".loopexit",
this);
- // Update Loop Information - we know that the new block will be in whichever
- // loop the Exit block is in. Note that it may not be in that immediate loop,
- // if the successor is some other loop header. In that case, we continue
- // walking up the loop tree to find a loop that contains both the successor
- // block and the predecessor block.
- Loop *SuccLoop = LI->getLoopFor(Exit);
- while (SuccLoop && !SuccLoop->contains(L->getHeader()))
- SuccLoop = SuccLoop->getParentLoop();
- if (SuccLoop)
- SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase());
-
return NewBB;
}
@@ -422,14 +362,13 @@ static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I);
++I;
- if (Value *V = PN->hasConstantValue())
- if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) {
- // This is a degenerate PHI already, don't modify it!
- PN->replaceAllUsesWith(V);
- if (AA) AA->deleteValue(PN);
- PN->eraseFromParent();
- continue;
- }
+ if (Value *V = PN->hasConstantValue(DT)) {
+ // This is a degenerate PHI already, don't modify it!
+ PN->replaceAllUsesWith(V);
+ if (AA) AA->deleteValue(PN);
+ PN->eraseFromParent();
+ continue;
+ }
// Scan this PHI node looking for a use of the PHI node by itself.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
@@ -496,7 +435,7 @@ void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
/// If we are able to separate out a loop, return the new outer loop that was
/// created.
///
-Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
+Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
if (PN == 0) return 0; // No known way to partition.
@@ -527,17 +466,20 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
else
LI->changeTopLevelLoop(L, NewOuter);
- // This block is going to be our new header block: add it to this loop and all
- // parent loops.
- NewOuter->addBasicBlockToLoop(NewBB, LI->getBase());
-
// L is now a subloop of our outer loop.
NewOuter->addChildLoop(L);
+ // Add the new loop to the pass manager queue.
+ LPM.insertLoopIntoQueue(NewOuter);
+
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
NewOuter->addBlockEntry(*I);
+ // Now reset the header in L, which had been moved by
+ // SplitBlockPredecessors for the outer loop.
+ L->moveToHeader(Header);
+
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
std::set<BasicBlock*> BlocksInL;
@@ -578,11 +520,10 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
/// backedges to target a new basic block and have that block branch to the loop
/// header. This ensures that loops have exactly one backedge.
///
-void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
+void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
// Get information about the loop
- BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
Function *F = Header->getParent();
@@ -592,7 +533,8 @@ void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
if (*I != Preheader) BackedgeBlocks.push_back(*I);
// Create and insert the new backedge block...
- BasicBlock *BEBlock = BasicBlock::Create(Header->getName()+".backedge", F);
+ BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
+ Header->getName()+".backedge", F);
BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
// Move the new backedge block to right after the last backedge block.
diff --git a/lib/Transforms/Utils/LowerAllocations.cpp b/lib/Transforms/Utils/LowerAllocations.cpp
index 74e7028..f26d7c1 100644
--- a/lib/Transforms/Utils/LowerAllocations.cpp
+++ b/lib/Transforms/Utils/LowerAllocations.cpp
@@ -19,6 +19,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Constants.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Target/TargetData.h"
@@ -28,17 +29,17 @@ using namespace llvm;
STATISTIC(NumLowered, "Number of allocations lowered");
namespace {
- /// LowerAllocations - Turn malloc and free instructions into %malloc and
- /// %free calls.
+ /// LowerAllocations - Turn malloc and free instructions into @malloc and
+ /// @free calls.
///
class VISIBILITY_HIDDEN LowerAllocations : public BasicBlockPass {
- Constant *MallocFunc; // Functions in the module we are processing
- Constant *FreeFunc; // Initialized by doInitialization
+ Constant *FreeFunc; // Functions in the module we are processing
+ // Initialized by doInitialization
bool LowerMallocArgToInteger;
public:
static char ID; // Pass ID, replacement for typeid
explicit LowerAllocations(bool LowerToInt = false)
- : BasicBlockPass(&ID), MallocFunc(0), FreeFunc(0),
+ : BasicBlockPass(&ID), FreeFunc(0),
LowerMallocArgToInteger(LowerToInt) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
@@ -86,12 +87,9 @@ Pass *llvm::createLowerAllocationsPass(bool LowerMallocArgToInteger) {
// This function is always successful.
//
bool LowerAllocations::doInitialization(Module &M) {
- const Type *BPTy = PointerType::getUnqual(Type::Int8Ty);
- // Prototype malloc as "char* malloc(...)", because we don't know in
- // doInitialization whether size_t is int or long.
- FunctionType *FT = FunctionType::get(BPTy, true);
- MallocFunc = M.getOrInsertFunction("malloc", FT);
- FreeFunc = M.getOrInsertFunction("free" , Type::VoidTy, BPTy, (Type *)0);
+ const Type *BPTy = Type::getInt8PtrTy(M.getContext());
+ FreeFunc = M.getOrInsertFunction("free" , Type::getVoidTy(M.getContext()),
+ BPTy, (Type *)0);
return true;
}
@@ -100,57 +98,22 @@ bool LowerAllocations::doInitialization(Module &M) {
//
bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) {
bool Changed = false;
- assert(MallocFunc && FreeFunc && "Pass not initialized!");
+ assert(FreeFunc && "Pass not initialized!");
BasicBlock::InstListType &BBIL = BB.getInstList();
const TargetData &TD = getAnalysis<TargetData>();
- const Type *IntPtrTy = TD.getIntPtrType();
+ const Type *IntPtrTy = TD.getIntPtrType(BB.getContext());
// Loop over all of the instructions, looking for malloc or free instructions
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
if (MallocInst *MI = dyn_cast<MallocInst>(I)) {
- const Type *AllocTy = MI->getType()->getElementType();
-
- // malloc(type) becomes i8 *malloc(size)
- Value *MallocArg;
- if (LowerMallocArgToInteger)
- MallocArg = ConstantInt::get(Type::Int64Ty,
- TD.getTypeAllocSize(AllocTy));
- else
- MallocArg = ConstantExpr::getSizeOf(AllocTy);
- MallocArg = ConstantExpr::getTruncOrBitCast(cast<Constant>(MallocArg),
- IntPtrTy);
-
- if (MI->isArrayAllocation()) {
- if (isa<ConstantInt>(MallocArg) &&
- cast<ConstantInt>(MallocArg)->isOne()) {
- MallocArg = MI->getOperand(0); // Operand * 1 = Operand
- } else if (Constant *CO = dyn_cast<Constant>(MI->getOperand(0))) {
- CO = ConstantExpr::getIntegerCast(CO, IntPtrTy, false /*ZExt*/);
- MallocArg = ConstantExpr::getMul(CO, cast<Constant>(MallocArg));
- } else {
- Value *Scale = MI->getOperand(0);
- if (Scale->getType() != IntPtrTy)
- Scale = CastInst::CreateIntegerCast(Scale, IntPtrTy, false /*ZExt*/,
- "", I);
-
- // Multiply it by the array size if necessary...
- MallocArg = BinaryOperator::Create(Instruction::Mul, Scale,
- MallocArg, "", I);
- }
- }
-
- // Create the call to Malloc.
- CallInst *MCall = CallInst::Create(MallocFunc, MallocArg, "", I);
- MCall->setTailCall();
-
- // Create a cast instruction to convert to the right type...
- Value *MCast;
- if (MCall->getType() != Type::VoidTy)
- MCast = new BitCastInst(MCall, MI->getType(), "", I);
- else
- MCast = Constant::getNullValue(MI->getType());
+ Value *ArraySize = MI->getOperand(0);
+ if (ArraySize->getType() != IntPtrTy)
+ ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy,
+ false /*ZExt*/, "", I);
+ Value *MCast = CallInst::CreateMalloc(I, IntPtrTy,
+ MI->getAllocatedType(), ArraySize);
// Replace all uses of the old malloc inst with the cast inst
MI->replaceAllUsesWith(MCast);
@@ -160,7 +123,7 @@ bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) {
} else if (FreeInst *FI = dyn_cast<FreeInst>(I)) {
Value *PtrCast =
new BitCastInst(FI->getOperand(0),
- PointerType::getUnqual(Type::Int8Ty), "", I);
+ Type::getInt8PtrTy(BB.getContext()), "", I);
// Insert a call to the free function...
CallInst::Create(FreeFunc, PtrCast, "", I)->setTailCall();
diff --git a/lib/Transforms/Utils/LowerInvoke.cpp b/lib/Transforms/Utils/LowerInvoke.cpp
index 1f6b1a2..9a3de26 100644
--- a/lib/Transforms/Utils/LowerInvoke.cpp
+++ b/lib/Transforms/Utils/LowerInvoke.cpp
@@ -40,6 +40,7 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
@@ -114,7 +115,8 @@ FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
// doInitialization - Make sure that there is a prototype for abort in the
// current module.
bool LowerInvoke::doInitialization(Module &M) {
- const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
+ const Type *VoidPtrTy =
+ Type::getInt8PtrTy(M.getContext());
AbortMessage = 0;
if (ExpensiveEHSupport) {
// Insert a type for the linked list of jump buffers.
@@ -125,9 +127,9 @@ bool LowerInvoke::doInitialization(Module &M) {
{ // The type is recursive, so use a type holder.
std::vector<const Type*> Elements;
Elements.push_back(JmpBufTy);
- OpaqueType *OT = OpaqueType::get();
+ OpaqueType *OT = OpaqueType::get(M.getContext());
Elements.push_back(PointerType::getUnqual(OT));
- PATypeHolder JBLType(StructType::get(Elements));
+ PATypeHolder JBLType(StructType::get(M.getContext(), Elements));
OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle.
JBLinkTy = JBLType.get();
M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
@@ -138,10 +140,10 @@ bool LowerInvoke::doInitialization(Module &M) {
// Now that we've done that, insert the jmpbuf list head global, unless it
// already exists.
if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
- JBListHead = new GlobalVariable(PtrJBList, false,
+ JBListHead = new GlobalVariable(M, PtrJBList, false,
GlobalValue::LinkOnceAnyLinkage,
Constant::getNullValue(PtrJBList),
- "llvm.sjljeh.jblist", &M);
+ "llvm.sjljeh.jblist");
}
// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
@@ -163,7 +165,8 @@ bool LowerInvoke::doInitialization(Module &M) {
}
// We need the 'write' and 'abort' functions for both models.
- AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
+ AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
+ (Type *)0);
#if 0 // "write" is Unix-specific.. code is going away soon anyway.
WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
VoidPtrTy, Type::Int32Ty, (Type *)0);
@@ -178,26 +181,30 @@ void LowerInvoke::createAbortMessage(Module *M) {
// The abort message for expensive EH support tells the user that the
// program 'unwound' without an 'invoke' instruction.
Constant *Msg =
- ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
+ ConstantArray::get(M->getContext(),
+ "ERROR: Exception thrown, but not caught!\n");
AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
- GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
+ GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
GlobalValue::InternalLinkage,
- Msg, "abortmsg", M);
- std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
+ Msg, "abortmsg");
+ std::vector<Constant*> GEPIdx(2,
+ Constant::getNullValue(Type::getInt32Ty(M->getContext())));
AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
} else {
// The abort message for cheap EH support tells the user that EH is not
// enabled.
Constant *Msg =
- ConstantArray::get("Exception handler needed, but not enabled. Recompile"
- " program with -enable-correct-eh-support.\n");
+ ConstantArray::get(M->getContext(),
+ "Exception handler needed, but not enabled."
+ "Recompile program with -enable-correct-eh-support.\n");
AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
- GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
+ GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
GlobalValue::InternalLinkage,
- Msg, "abortmsg", M);
- std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
+ Msg, "abortmsg");
+ std::vector<Constant*> GEPIdx(2, Constant::getNullValue(
+ Type::getInt32Ty(M->getContext())));
AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
}
}
@@ -249,8 +256,9 @@ bool LowerInvoke::insertCheapEHSupport(Function &F) {
// Insert a return instruction. This really should be a "barrier", as it
// is unreachable.
- ReturnInst::Create(F.getReturnType() == Type::VoidTy ? 0 :
- Constant::getNullValue(F.getReturnType()), UI);
+ ReturnInst::Create(F.getContext(),
+ F.getReturnType() == Type::getVoidTy(F.getContext()) ?
+ 0 : Constant::getNullValue(F.getReturnType()), UI);
// Remove the unwind instruction now.
BB->getInstList().erase(UI);
@@ -265,7 +273,8 @@ bool LowerInvoke::insertCheapEHSupport(Function &F) {
void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
AllocaInst *InvokeNum,
SwitchInst *CatchSwitch) {
- ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
+ ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ InvokeNo);
// If the unwind edge has phi nodes, split the edge.
if (isa<PHINode>(II->getUnwindDest()->begin())) {
@@ -284,7 +293,8 @@ void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
// nonvolatile.
- new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
+ new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
+ InvokeNum, false, NI);
// Add a switch case to our unwind block.
CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
@@ -469,13 +479,15 @@ bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
// alloca because the value needs to be live across invokes.
unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
AllocaInst *JmpBuf =
- new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
+ new AllocaInst(JBLinkTy, 0, Align,
+ "jblink", F.begin()->begin());
std::vector<Value*> Idx;
- Idx.push_back(Constant::getNullValue(Type::Int32Ty));
- Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
+ Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
+ Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 1));
OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
- "OldBuf", EntryBB->getTerminator());
+ "OldBuf",
+ EntryBB->getTerminator());
// Copy the JBListHead to the alloca.
Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
@@ -487,20 +499,21 @@ bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
// Create the catch block. The catch block is basically a big switch
// statement that goes to all of the invoke catch blocks.
- BasicBlock *CatchBB = BasicBlock::Create("setjmp.catch", &F);
+ BasicBlock *CatchBB =
+ BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
// Create an alloca which keeps track of which invoke is currently
// executing. For normal calls it contains zero.
- AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
- EntryBB->begin());
- new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
- EntryBB->getTerminator());
+ AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
+ "invokenum",EntryBB->begin());
+ new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
+ InvokeNum, true, EntryBB->getTerminator());
// Insert a load in the Catch block, and a switch on its value. By default,
// we go to a block that just does an unwind (which is the correct action
// for a standard call).
- BasicBlock *UnwindBB = BasicBlock::Create("unwindbb", &F);
- Unwinds.push_back(new UnwindInst(UnwindBB));
+ BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
+ Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB));
Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
SwitchInst *CatchSwitch =
@@ -512,19 +525,21 @@ bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
"setjmp.cont");
- Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
"TheJmpBuf",
EntryBB->getTerminator());
- JmpBufPtr = new BitCastInst(JmpBufPtr, PointerType::getUnqual(Type::Int8Ty),
+ JmpBufPtr = new BitCastInst(JmpBufPtr,
+ Type::getInt8PtrTy(F.getContext()),
"tmp", EntryBB->getTerminator());
Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
EntryBB->getTerminator());
// Compare the return value to zero.
- Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
+ Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
+ ICmpInst::ICMP_EQ, SJRet,
Constant::getNullValue(SJRet->getType()),
- "notunwind", EntryBB->getTerminator());
+ "notunwind");
// Nuke the uncond branch.
EntryBB->getTerminator()->eraseFromParent();
@@ -541,9 +556,10 @@ bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
// Create three new blocks, the block to load the jmpbuf ptr and compare
// against null, the block to do the longjmp, and the error block for if it
// is null. Add them at the end of the function because they are not hot.
- BasicBlock *UnwindHandler = BasicBlock::Create("dounwind", &F);
- BasicBlock *UnwindBlock = BasicBlock::Create("unwind", &F);
- BasicBlock *TermBlock = BasicBlock::Create("unwinderror", &F);
+ BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
+ "dounwind", &F);
+ BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
+ BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
// If this function contains an invoke, restore the old jumpbuf ptr.
Value *BufPtr;
@@ -556,26 +572,27 @@ bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
}
// Load the JBList, if it's null, then there was no catch!
- Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
+ Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
Constant::getNullValue(BufPtr->getType()),
- "notnull", UnwindHandler);
+ "notnull");
BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
// Create the block to do the longjmp.
// Get a pointer to the jmpbuf and longjmp.
std::vector<Value*> Idx;
- Idx.push_back(Constant::getNullValue(Type::Int32Ty));
- Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
+ Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
+ Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0));
Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
UnwindBlock);
- Idx[0] = new BitCastInst(Idx[0], PointerType::getUnqual(Type::Int8Ty),
+ Idx[0] = new BitCastInst(Idx[0],
+ Type::getInt8PtrTy(F.getContext()),
"tmp", UnwindBlock);
- Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
+ Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
- new UnreachableInst(UnwindBlock);
+ new UnreachableInst(F.getContext(), UnwindBlock);
// Set up the term block ("throw without a catch").
- new UnreachableInst(TermBlock);
+ new UnreachableInst(F.getContext(), TermBlock);
// Insert a new call to write(2, AbortMessage, AbortMessageLength);
writeAbortMessage(TermBlock->getTerminator());
diff --git a/lib/Transforms/Utils/LowerSwitch.cpp b/lib/Transforms/Utils/LowerSwitch.cpp
index 1da5936..764f098 100644
--- a/lib/Transforms/Utils/LowerSwitch.cpp
+++ b/lib/Transforms/Utils/LowerSwitch.cpp
@@ -18,6 +18,7 @@
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
@@ -108,8 +109,10 @@ bool LowerSwitch::runOnFunction(Function &F) {
// operator<< - Used for debugging purposes.
//
-static std::ostream& operator<<(std::ostream &O,
- const LowerSwitch::CaseVector &C) {
+static raw_ostream& operator<<(raw_ostream &O,
+ const LowerSwitch::CaseVector &C) ATTRIBUTE_USED;
+static raw_ostream& operator<<(raw_ostream &O,
+ const LowerSwitch::CaseVector &C) {
O << "[";
for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
@@ -121,11 +124,6 @@ static std::ostream& operator<<(std::ostream &O,
return O << "]";
}
-static OStream& operator<<(OStream &O, const LowerSwitch::CaseVector &C) {
- if (O.stream()) *O.stream() << C;
- return O;
-}
-
// switchConvert - Convert the switch statement into a binary lookup of
// the case values. The function recursively builds this tree.
//
@@ -140,9 +138,9 @@ BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
unsigned Mid = Size / 2;
std::vector<CaseRange> LHS(Begin, Begin + Mid);
- DOUT << "LHS: " << LHS << "\n";
+ DEBUG(errs() << "LHS: " << LHS << "\n");
std::vector<CaseRange> RHS(Begin + Mid, End);
- DOUT << "RHS: " << RHS << "\n";
+ DEBUG(errs() << "RHS: " << RHS << "\n");
CaseRange& Pivot = *(Begin + Mid);
DEBUG(errs() << "Pivot ==> "
@@ -157,11 +155,12 @@ BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
// Create a new node that checks if the value is < pivot. Go to the
// left branch if it is and right branch if not.
Function* F = OrigBlock->getParent();
- BasicBlock* NewNode = BasicBlock::Create("NodeBlock");
+ BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
Function::iterator FI = OrigBlock;
F->getBasicBlockList().insert(++FI, NewNode);
- ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot");
+ ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
+ Val, Pivot.Low, "Pivot");
NewNode->getInstList().push_back(Comp);
BranchInst::Create(LBranch, RBranch, Comp, NewNode);
return NewNode;
@@ -178,7 +177,7 @@ BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
BasicBlock* Default)
{
Function* F = OrigBlock->getParent();
- BasicBlock* NewLeaf = BasicBlock::Create("LeafBlock");
+ BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
Function::iterator FI = OrigBlock;
F->getBasicBlockList().insert(++FI, NewLeaf);
@@ -186,18 +185,18 @@ BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
ICmpInst* Comp = NULL;
if (Leaf.Low == Leaf.High) {
// Make the seteq instruction...
- Comp = new ICmpInst(ICmpInst::ICMP_EQ, Val, Leaf.Low,
- "SwitchLeaf", NewLeaf);
+ Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
+ Leaf.Low, "SwitchLeaf");
} else {
// Make range comparison
if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
// Val >= Min && Val <= Hi --> Val <= Hi
- Comp = new ICmpInst(ICmpInst::ICMP_SLE, Val, Leaf.High,
- "SwitchLeaf", NewLeaf);
+ Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
+ "SwitchLeaf");
} else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
// Val >= 0 && Val <= Hi --> Val <=u Hi
- Comp = new ICmpInst(ICmpInst::ICMP_ULE, Val, Leaf.High,
- "SwitchLeaf", NewLeaf);
+ Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
+ "SwitchLeaf");
} else {
// Emit V-Lo <=u Hi-Lo
Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
@@ -205,8 +204,8 @@ BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
Val->getName()+".off",
NewLeaf);
Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
- Comp = new ICmpInst(ICmpInst::ICMP_ULE, Add, UpperBound,
- "SwitchLeaf", NewLeaf);
+ Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
+ "SwitchLeaf");
}
}
@@ -290,7 +289,7 @@ void LowerSwitch::processSwitchInst(SwitchInst *SI) {
// Create a new, empty default block so that the new hierarchy of
// if-then statements go to this and the PHI nodes are happy.
- BasicBlock* NewDefault = BasicBlock::Create("NewDefault");
+ BasicBlock* NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
F->getBasicBlockList().insert(Default, NewDefault);
BranchInst::Create(Default, NewDefault);
@@ -308,9 +307,10 @@ void LowerSwitch::processSwitchInst(SwitchInst *SI) {
CaseVector Cases;
unsigned numCmps = Clusterify(Cases, SI);
- DOUT << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << "\n";
- DOUT << "Cases: " << Cases << "\n";
+ DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << "\n");
+ DEBUG(errs() << "Cases: " << Cases << "\n");
+ (void)numCmps;
BasicBlock* SwitchBlock = switchConvert(Cases.begin(), Cases.end(), Val,
OrigBlock, NewDefault);
diff --git a/lib/Transforms/Utils/Mem2Reg.cpp b/lib/Transforms/Utils/Mem2Reg.cpp
index 2b06d77..5df0832 100644
--- a/lib/Transforms/Utils/Mem2Reg.cpp
+++ b/lib/Transforms/Utils/Mem2Reg.cpp
@@ -75,7 +75,7 @@ bool PromotePass::runOnFunction(Function &F) {
if (Allocas.empty()) break;
- PromoteMemToReg(Allocas, DT, DF);
+ PromoteMemToReg(Allocas, DT, DF, F.getContext());
NumPromoted += Allocas.size();
Changed = true;
}
diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
index b717699..9ca06bd 100644
--- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
+++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
@@ -23,13 +23,13 @@
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
@@ -41,7 +41,6 @@ STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
-// Provide DenseMapInfo for all pointers.
namespace llvm {
template<>
struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
@@ -181,6 +180,8 @@ namespace {
/// AST - An AliasSetTracker object to update. If null, don't update it.
///
AliasSetTracker *AST;
+
+ LLVMContext &Context;
/// AllocaLookup - Reverse mapping of Allocas.
///
@@ -212,8 +213,9 @@ namespace {
DenseMap<const BasicBlock*, unsigned> BBNumPreds;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
- DominanceFrontier &df, AliasSetTracker *ast)
- : Allocas(A), DT(dt), DF(df), AST(ast) {}
+ DominanceFrontier &df, AliasSetTracker *ast,
+ LLVMContext &C)
+ : Allocas(A), DT(dt), DF(df), AST(ast), Context(C) {}
void run();
@@ -291,10 +293,9 @@ namespace {
// As we scan the uses of the alloca instruction, keep track of stores,
// and decide whether all of the loads and stores to the alloca are within
// the same basic block.
- for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
- U != E;) {
- Instruction *User = cast<Instruction>(*U);
- ++U;
+ for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
+ UI != E;) {
+ Instruction *User = cast<Instruction>(*UI++);
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
// Remove any uses of this alloca in DbgInfoInstrinsics.
assert(BC->hasOneUse() && "Unexpected alloca uses!");
@@ -303,7 +304,8 @@ namespace {
BC->eraseFromParent();
continue;
}
- else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
AllocaPointerVal = SI->getOperand(0);
@@ -491,17 +493,14 @@ void PromoteMem2Reg::run() {
PHINode *PN = I->second;
// If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = PN->hasConstantValue(true)) {
- if (!isa<Instruction>(V) ||
- properlyDominates(cast<Instruction>(V), PN)) {
- if (AST && isa<PointerType>(PN->getType()))
- AST->deleteValue(PN);
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- NewPhiNodes.erase(I++);
- EliminatedAPHI = true;
- continue;
- }
+ if (Value *V = PN->hasConstantValue(&DT)) {
+ if (AST && isa<PointerType>(PN->getType()))
+ AST->deleteValue(PN);
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ NewPhiNodes.erase(I++);
+ EliminatedAPHI = true;
+ continue;
}
++I;
}
@@ -603,7 +602,9 @@ ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
LiveInBlockWorklist.pop_back();
--i, --e;
break;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ }
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (LI->getOperand(0) != AI) continue;
// Okay, we found a load before a store to the alloca. It is actually
@@ -757,6 +758,7 @@ void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
}
}
+namespace {
/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
/// first element of a pair.
@@ -767,6 +769,8 @@ struct StoreIndexSearchPredicate {
}
};
+}
+
/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
@@ -864,8 +868,8 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
- Allocas[AllocaNo]->getName() + "." +
- utostr(Version++), BB->begin());
+ Allocas[AllocaNo]->getName() + "." + Twine(Version++),
+ BB->begin());
++NumPHIInsert;
PhiToAllocaMap[PN] = AllocaNo;
PN->reserveOperandSpace(getNumPreds(BB));
@@ -995,9 +999,9 @@ NextIteration:
///
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominatorTree &DT, DominanceFrontier &DF,
- AliasSetTracker *AST) {
+ LLVMContext &Context, AliasSetTracker *AST) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
- PromoteMem2Reg(Allocas, DT, DF, AST).run();
+ PromoteMem2Reg(Allocas, DT, DF, AST, Context).run();
}
diff --git a/lib/Transforms/Utils/SSAUpdater.cpp b/lib/Transforms/Utils/SSAUpdater.cpp
new file mode 100644
index 0000000..780ee26
--- /dev/null
+++ b/lib/Transforms/Utils/SSAUpdater.cpp
@@ -0,0 +1,335 @@
+//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SSAUpdater class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Instructions.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy;
+typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > >
+ IncomingPredInfoTy;
+
+static AvailableValsTy &getAvailableVals(void *AV) {
+ return *static_cast<AvailableValsTy*>(AV);
+}
+
+static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
+ return *static_cast<IncomingPredInfoTy*>(IPI);
+}
+
+
+SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
+ : AV(0), PrototypeValue(0), IPI(0), InsertedPHIs(NewPHI) {}
+
+SSAUpdater::~SSAUpdater() {
+ delete &getAvailableVals(AV);
+ delete &getIncomingPredInfo(IPI);
+}
+
+/// Initialize - Reset this object to get ready for a new set of SSA
+/// updates. ProtoValue is the value used to name PHI nodes.
+void SSAUpdater::Initialize(Value *ProtoValue) {
+ if (AV == 0)
+ AV = new AvailableValsTy();
+ else
+ getAvailableVals(AV).clear();
+
+ if (IPI == 0)
+ IPI = new IncomingPredInfoTy();
+ else
+ getIncomingPredInfo(IPI).clear();
+ PrototypeValue = ProtoValue;
+}
+
+/// HasValueForBlock - Return true if the SSAUpdater already has a value for
+/// the specified block.
+bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
+ return getAvailableVals(AV).count(BB);
+}
+
+/// AddAvailableValue - Indicate that a rewritten value is available in the
+/// specified block with the specified value.
+void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
+ assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
+ assert(PrototypeValue->getType() == V->getType() &&
+ "All rewritten values must have the same type");
+ getAvailableVals(AV)[BB] = V;
+}
+
+/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
+/// live at the end of the specified block.
+Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
+ assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
+ Value *Res = GetValueAtEndOfBlockInternal(BB);
+ assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
+ return Res;
+}
+
+/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
+/// is live in the middle of the specified block.
+///
+/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
+/// important case: if there is a definition of the rewritten value after the
+/// 'use' in BB. Consider code like this:
+///
+/// X1 = ...
+/// SomeBB:
+/// use(X)
+/// X2 = ...
+/// br Cond, SomeBB, OutBB
+///
+/// In this case, there are two values (X1 and X2) added to the AvailableVals
+/// set by the client of the rewriter, and those values are both live out of
+/// their respective blocks. However, the use of X happens in the *middle* of
+/// a block. Because of this, we need to insert a new PHI node in SomeBB to
+/// merge the appropriate values, and this value isn't live out of the block.
+///
+Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
+ // If there is no definition of the renamed variable in this block, just use
+ // GetValueAtEndOfBlock to do our work.
+ if (!getAvailableVals(AV).count(BB))
+ return GetValueAtEndOfBlock(BB);
+
+ // Otherwise, we have the hard case. Get the live-in values for each
+ // predecessor.
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
+ Value *SingularValue = 0;
+
+ // We can get our predecessor info by walking the pred_iterator list, but it
+ // is relatively slow. If we already have PHI nodes in this block, walk one
+ // of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (i == 0)
+ SingularValue = PredVal;
+ else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ } else {
+ bool isFirstPred = true;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBB = *PI;
+ Value *PredVal = GetValueAtEndOfBlock(PredBB);
+ PredValues.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ }
+
+ // If there are no predecessors, just return undef.
+ if (PredValues.empty())
+ return UndefValue::get(PrototypeValue->getType());
+
+ // Otherwise, if all the merged values are the same, just use it.
+ if (SingularValue != 0)
+ return SingularValue;
+
+ // Otherwise, we do need a PHI: insert one now.
+ PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
+ PrototypeValue->getName(),
+ &BB->front());
+ InsertedPHI->reserveOperandSpace(PredValues.size());
+
+ // Fill in all the predecessors of the PHI.
+ for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
+ InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
+ InsertedPHI->eraseFromParent();
+ return ConstVal;
+ }
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+
+ DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+ return InsertedPHI;
+}
+
+/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
+/// which use their value in the corresponding predecessor.
+void SSAUpdater::RewriteUse(Use &U) {
+ Instruction *User = cast<Instruction>(U.getUser());
+ BasicBlock *UseBB = User->getParent();
+ if (PHINode *UserPN = dyn_cast<PHINode>(User))
+ UseBB = UserPN->getIncomingBlock(U);
+
+ U.set(GetValueInMiddleOfBlock(UseBB));
+}
+
+
+/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
+/// for the specified BB and if so, return it. If not, construct SSA form by
+/// walking predecessors inserting PHI nodes as needed until we get to a block
+/// where the value is available.
+///
+Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
+ AvailableValsTy &AvailableVals = getAvailableVals(AV);
+
+ // Query AvailableVals by doing an insertion of null.
+ std::pair<AvailableValsTy::iterator, bool> InsertRes =
+ AvailableVals.insert(std::make_pair(BB, WeakVH()));
+
+ // Handle the case when the insertion fails because we have already seen BB.
+ if (!InsertRes.second) {
+ // If the insertion failed, there are two cases. The first case is that the
+ // value is already available for the specified block. If we get this, just
+ // return the value.
+ if (InsertRes.first->second != 0)
+ return InsertRes.first->second;
+
+ // Otherwise, if the value we find is null, then this is the value is not
+ // known but it is being computed elsewhere in our recursion. This means
+ // that we have a cycle. Handle this by inserting a PHI node and returning
+ // it. When we get back to the first instance of the recursion we will fill
+ // in the PHI node.
+ return InsertRes.first->second =
+ PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(),
+ &BB->front());
+ }
+
+ // Okay, the value isn't in the map and we just inserted a null in the entry
+ // to indicate that we're processing the block. Since we have no idea what
+ // value is in this block, we have to recurse through our predecessors.
+ //
+ // While we're walking our predecessors, we keep track of them in a vector,
+ // then insert a PHI node in the end if we actually need one. We could use a
+ // smallvector here, but that would take a lot of stack space for every level
+ // of the recursion, just use IncomingPredInfo as an explicit stack.
+ IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
+ unsigned FirstPredInfoEntry = IncomingPredInfo.size();
+
+ // As we're walking the predecessors, keep track of whether they are all
+ // producing the same value. If so, this value will capture it, if not, it
+ // will get reset to null. We distinguish the no-predecessor case explicitly
+ // below.
+ TrackingVH<Value> SingularValue;
+
+ // We can get our predecessor info by walking the pred_iterator list, but it
+ // is relatively slow. If we already have PHI nodes in this block, walk one
+ // of them to get the predecessor list instead.
+ if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
+ Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (i == 0)
+ SingularValue = PredVal;
+ else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ } else {
+ bool isFirstPred = true;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *PredBB = *PI;
+ Value *PredVal = GetValueAtEndOfBlockInternal(PredBB);
+ IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
+
+ // Compute SingularValue.
+ if (isFirstPred) {
+ SingularValue = PredVal;
+ isFirstPred = false;
+ } else if (PredVal != SingularValue)
+ SingularValue = 0;
+ }
+ }
+
+ // If there are no predecessors, then we must have found an unreachable block
+ // just return 'undef'. Since there are no predecessors, InsertRes must not
+ // be invalidated.
+ if (IncomingPredInfo.size() == FirstPredInfoEntry)
+ return InsertRes.first->second = UndefValue::get(PrototypeValue->getType());
+
+ /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If
+ /// this block is involved in a loop, a no-entry PHI node will have been
+ /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted
+ /// above.
+ TrackingVH<Value> &InsertedVal = AvailableVals[BB];
+
+ // If all the predecessor values are the same then we don't need to insert a
+ // PHI. This is the simple and common case.
+ if (SingularValue) {
+ // If a PHI node got inserted, replace it with the singlar value and delete
+ // it.
+ if (InsertedVal) {
+ PHINode *OldVal = cast<PHINode>(InsertedVal);
+ // Be careful about dead loops. These RAUW's also update InsertedVal.
+ if (InsertedVal != SingularValue)
+ OldVal->replaceAllUsesWith(SingularValue);
+ else
+ OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType()));
+ OldVal->eraseFromParent();
+ } else {
+ InsertedVal = SingularValue;
+ }
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+ return InsertedVal;
+ }
+
+ // Otherwise, we do need a PHI: insert one now if we don't already have one.
+ if (InsertedVal == 0)
+ InsertedVal = PHINode::Create(PrototypeValue->getType(),
+ PrototypeValue->getName(), &BB->front());
+
+ PHINode *InsertedPHI = cast<PHINode>(InsertedVal);
+ InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry);
+
+ // Fill in all the predecessors of the PHI.
+ for (IncomingPredInfoTy::iterator I =
+ IncomingPredInfo.begin()+FirstPredInfoEntry,
+ E = IncomingPredInfo.end(); I != E; ++I)
+ InsertedPHI->addIncoming(I->second, I->first);
+
+ // Drop the entries we added in IncomingPredInfo to restore the stack.
+ IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
+ IncomingPredInfo.end());
+
+ // See if the PHI node can be merged to a single value. This can happen in
+ // loop cases when we get a PHI of itself and one other value.
+ if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
+ InsertedPHI->replaceAllUsesWith(ConstVal);
+ InsertedPHI->eraseFromParent();
+ InsertedVal = ConstVal;
+ } else {
+ DEBUG(errs() << " Inserted PHI: " << *InsertedPHI << "\n");
+
+ // If the client wants to know about all new instructions, tell it.
+ if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
+ }
+
+ return InsertedVal;
+}
+
+
diff --git a/lib/Transforms/Utils/SSI.cpp b/lib/Transforms/Utils/SSI.cpp
index 4c4dd37..3bb2e8e 100644
--- a/lib/Transforms/Utils/SSI.cpp
+++ b/lib/Transforms/Utils/SSI.cpp
@@ -23,6 +23,7 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/SSI.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
using namespace llvm;
@@ -30,11 +31,12 @@ using namespace llvm;
static const std::string SSI_PHI = "SSI_phi";
static const std::string SSI_SIG = "SSI_sigma";
-static const unsigned UNSIGNED_INFINITE = ~0U;
+STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
+STATISTIC(NumPhiInserted, "Number of phi functions inserted");
void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<DominanceFrontier>();
- AU.addRequired<DominatorTree>();
+ AU.addRequiredTransitive<DominanceFrontier>();
+ AU.addRequiredTransitive<DominatorTree>();
AU.setPreservesAll();
}
@@ -45,22 +47,23 @@ bool SSI::runOnFunction(Function &F) {
/// This methods creates the SSI representation for the list of values
/// received. It will only create SSI representation if a value is used
-/// in a to decide a branch. Repeated values are created only once.
+/// to decide a branch. Repeated values are created only once.
///
void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
init(value);
- for (unsigned i = 0; i < num_values; ++i) {
- if (created.insert(value[i])) {
- needConstruction[i] = true;
- }
- }
- insertSigmaFunctions(value);
+ SmallPtrSet<Instruction*, 4> needConstruction;
+ for (SmallVectorImpl<Instruction*>::iterator I = value.begin(),
+ E = value.end(); I != E; ++I)
+ if (created.insert(*I))
+ needConstruction.insert(*I);
+
+ insertSigmaFunctions(needConstruction);
// Test if there is a need to transform to SSI
- if (needConstruction.any()) {
- insertPhiFunctions(value);
- renameInit(value);
+ if (!needConstruction.empty()) {
+ insertPhiFunctions(needConstruction);
+ renameInit(needConstruction);
rename(DT_->getRoot());
fixPhis();
}
@@ -71,100 +74,107 @@ void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
/// Insert sigma functions (a sigma function is a phi function with one
/// operator)
///
-void SSI::insertSigmaFunctions(SmallVectorImpl<Instruction *> &value) {
- for (unsigned i = 0; i < num_values; ++i) {
- if (!needConstruction[i])
- continue;
-
- bool need = false;
- for (Value::use_iterator begin = value[i]->use_begin(), end =
- value[i]->use_end(); begin != end; ++begin) {
+void SSI::insertSigmaFunctions(SmallPtrSet<Instruction*, 4> &value) {
+ for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
+ E = value.end(); I != E; ++I) {
+ for (Value::use_iterator begin = (*I)->use_begin(),
+ end = (*I)->use_end(); begin != end; ++begin) {
// Test if the Use of the Value is in a comparator
- CmpInst *CI = dyn_cast<CmpInst>(begin);
- if (CI && isUsedInTerminator(CI)) {
- // Basic Block of the Instruction
- BasicBlock *BB = CI->getParent();
- // Last Instruction of the Basic Block
- const TerminatorInst *TI = BB->getTerminator();
-
- for (unsigned j = 0, e = TI->getNumSuccessors(); j < e; ++j) {
- // Next Basic Block
- BasicBlock *BB_next = TI->getSuccessor(j);
- if (BB_next != BB &&
- BB_next->getUniquePredecessor() != NULL &&
- dominateAny(BB_next, value[i])) {
- PHINode *PN = PHINode::Create(
- value[i]->getType(), SSI_SIG, BB_next->begin());
- PN->addIncoming(value[i], BB);
- sigmas.insert(std::make_pair(PN, i));
- created.insert(PN);
- need = true;
- defsites[i].push_back(BB_next);
+ if (CmpInst *CI = dyn_cast<CmpInst>(begin)) {
+ // Iterates through all uses of CmpInst
+ for (Value::use_iterator begin_ci = CI->use_begin(),
+ end_ci = CI->use_end(); begin_ci != end_ci; ++begin_ci) {
+ // Test if any use of CmpInst is in a Terminator
+ if (TerminatorInst *TI = dyn_cast<TerminatorInst>(begin_ci)) {
+ insertSigma(TI, *I);
}
}
}
}
- needConstruction[i] = need;
+ }
+}
+
+/// Inserts Sigma Functions in every BasicBlock successor to Terminator
+/// Instruction TI. All inserted Sigma Function are related to Instruction I.
+///
+void SSI::insertSigma(TerminatorInst *TI, Instruction *I) {
+ // Basic Block of the Terminator Instruction
+ BasicBlock *BB = TI->getParent();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
+ // Next Basic Block
+ BasicBlock *BB_next = TI->getSuccessor(i);
+ if (BB_next != BB &&
+ BB_next->getSinglePredecessor() != NULL &&
+ dominateAny(BB_next, I)) {
+ PHINode *PN = PHINode::Create(I->getType(), SSI_SIG, BB_next->begin());
+ PN->addIncoming(I, BB);
+ sigmas[PN] = I;
+ created.insert(PN);
+ defsites[I].push_back(BB_next);
+ ++NumSigmaInserted;
+ }
}
}
/// Insert phi functions when necessary
///
-void SSI::insertPhiFunctions(SmallVectorImpl<Instruction *> &value) {
+void SSI::insertPhiFunctions(SmallPtrSet<Instruction*, 4> &value) {
DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
- for (unsigned i = 0; i < num_values; ++i) {
+ for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
+ E = value.end(); I != E; ++I) {
// Test if there were any sigmas for this variable
- if (needConstruction[i]) {
-
- SmallPtrSet<BasicBlock *, 1> BB_visited;
-
- // Insert phi functions if there is any sigma function
- while (!defsites[i].empty()) {
-
- BasicBlock *BB = defsites[i].back();
-
- defsites[i].pop_back();
- DominanceFrontier::iterator DF_BB = DF->find(BB);
-
- // Iterates through all the dominance frontier of BB
- for (std::set<BasicBlock *>::iterator DF_BB_begin =
- DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
- DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
- BasicBlock *BB_dominated = *DF_BB_begin;
-
- // Test if has not yet visited this node and if the
- // original definition dominates this node
- if (BB_visited.insert(BB_dominated) &&
- DT_->properlyDominates(value_original[i], BB_dominated) &&
- dominateAny(BB_dominated, value[i])) {
- PHINode *PN = PHINode::Create(
- value[i]->getType(), SSI_PHI, BB_dominated->begin());
- phis.insert(std::make_pair(PN, i));
- created.insert(PN);
-
- defsites[i].push_back(BB_dominated);
- }
+ SmallPtrSet<BasicBlock *, 16> BB_visited;
+
+ // Insert phi functions if there is any sigma function
+ while (!defsites[*I].empty()) {
+
+ BasicBlock *BB = defsites[*I].back();
+
+ defsites[*I].pop_back();
+ DominanceFrontier::iterator DF_BB = DF->find(BB);
+
+ // The BB is unreachable. Skip it.
+ if (DF_BB == DF->end())
+ continue;
+
+ // Iterates through all the dominance frontier of BB
+ for (std::set<BasicBlock *>::iterator DF_BB_begin =
+ DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
+ DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
+ BasicBlock *BB_dominated = *DF_BB_begin;
+
+ // Test if has not yet visited this node and if the
+ // original definition dominates this node
+ if (BB_visited.insert(BB_dominated) &&
+ DT_->properlyDominates(value_original[*I], BB_dominated) &&
+ dominateAny(BB_dominated, *I)) {
+ PHINode *PN = PHINode::Create(
+ (*I)->getType(), SSI_PHI, BB_dominated->begin());
+ phis.insert(std::make_pair(PN, *I));
+ created.insert(PN);
+
+ defsites[*I].push_back(BB_dominated);
+ ++NumPhiInserted;
}
}
- BB_visited.clear();
}
+ BB_visited.clear();
}
}
/// Some initialization for the rename part
///
-void SSI::renameInit(SmallVectorImpl<Instruction *> &value) {
- value_stack.resize(num_values);
- for (unsigned i = 0; i < num_values; ++i) {
- value_stack[i].push_back(value[i]);
- }
+void SSI::renameInit(SmallPtrSet<Instruction*, 4> &value) {
+ for (SmallPtrSet<Instruction*, 4>::iterator I = value.begin(),
+ E = value.end(); I != E; ++I)
+ value_stack[*I].push_back(*I);
}
/// Renames all variables in the specified BasicBlock.
/// Only variables that need to be rename will be.
///
void SSI::rename(BasicBlock *BB) {
- BitVector *defined = new BitVector(num_values, false);
+ SmallPtrSet<Instruction*, 8> defined;
// Iterate through instructions and make appropriate renaming.
// For SSI_PHI (b = PHI()), store b at value_stack as a new
@@ -178,19 +188,17 @@ void SSI::rename(BasicBlock *BB) {
begin != end; ++begin) {
Instruction *I = begin;
if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
- int position;
+ Instruction* position;
// Treat SSI_PHI
- if ((position = getPositionPhi(PN)) != -1) {
+ if ((position = getPositionPhi(PN))) {
value_stack[position].push_back(PN);
- (*defined)[position] = true;
- }
-
+ defined.insert(position);
// Treat SSI_SIG
- else if ((position = getPositionSigma(PN)) != -1) {
+ } else if ((position = getPositionSigma(PN))) {
substituteUse(I);
value_stack[position].push_back(PN);
- (*defined)[position] = true;
+ defined.insert(position);
}
// Treat all other PHI functions
@@ -216,10 +224,9 @@ void SSI::rename(BasicBlock *BB) {
for (BasicBlock::iterator begin = BB_succ->begin(),
notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
Instruction *I = begin;
- PHINode *PN;
- int position;
- if ((PN = dyn_cast<PHINode>(I)) && ((position
- = getPositionPhi(PN)) != -1)) {
+ PHINode *PN = dyn_cast<PHINode>(I);
+ Instruction* position;
+ if (PN && ((position = getPositionPhi(PN)))) {
PN->addIncoming(value_stack[position].back(), BB);
}
}
@@ -237,13 +244,9 @@ void SSI::rename(BasicBlock *BB) {
// Now we remove all inserted definitions of a variable from the top of
// the stack leaving the previous one as the top.
- if (defined->any()) {
- for (unsigned i = 0; i < num_values; ++i) {
- if ((*defined)[i]) {
- value_stack[i].pop_back();
- }
- }
- }
+ for (SmallPtrSet<Instruction*, 8>::iterator DI = defined.begin(),
+ DE = defined.end(); DI != DE; ++DI)
+ value_stack[*DI].pop_back();
}
/// Substitute any use in this instruction for the last definition of
@@ -252,23 +255,24 @@ void SSI::rename(BasicBlock *BB) {
void SSI::substituteUse(Instruction *I) {
for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
Value *operand = I->getOperand(i);
- for (unsigned j = 0; j < num_values; ++j) {
- if (operand == value_stack[j].front() &&
- I != value_stack[j].back()) {
+ for (DenseMap<Instruction*, SmallVector<Instruction*, 1> >::iterator
+ VI = value_stack.begin(), VE = value_stack.end(); VI != VE; ++VI) {
+ if (operand == VI->second.front() &&
+ I != VI->second.back()) {
PHINode *PN_I = dyn_cast<PHINode>(I);
- PHINode *PN_vs = dyn_cast<PHINode>(value_stack[j].back());
+ PHINode *PN_vs = dyn_cast<PHINode>(VI->second.back());
// If a phi created in a BasicBlock is used as an operand of another
// created in the same BasicBlock, this step marks this second phi,
// to fix this issue later. It cannot be fixed now, because the
// operands of the first phi are not final yet.
if (PN_I && PN_vs &&
- value_stack[j].back()->getParent() == I->getParent()) {
+ VI->second.back()->getParent() == I->getParent()) {
phisToFix.insert(PN_I);
}
- I->setOperand(i, value_stack[j].back());
+ I->setOperand(i, VI->second.back());
break;
}
}
@@ -276,12 +280,16 @@ void SSI::substituteUse(Instruction *I) {
}
/// Test if the BasicBlock BB dominates any use or definition of value.
+/// If it dominates a phi instruction that is on the same BasicBlock,
+/// that does not count.
///
bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
for (Value::use_iterator begin = value->use_begin(),
end = value->use_end(); begin != end; ++begin) {
Instruction *I = cast<Instruction>(*begin);
BasicBlock *BB_father = I->getParent();
+ if (BB == BB_father && isa<PHINode>(I))
+ continue;
if (DT_->dominates(BB, BB_father)) {
return true;
}
@@ -293,31 +301,54 @@ bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
/// as an operand of another phi function used in the same BasicBlock,
/// LLVM looks this as an error. So on the second phi, the first phi is called
/// P and the BasicBlock it incomes is B. This P will be replaced by the value
-/// it has for BasicBlock B.
+/// it has for BasicBlock B. It also includes undef values for predecessors
+/// that were not included in the phi.
///
void SSI::fixPhis() {
for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
end = phisToFix.end(); begin != end; ++begin) {
PHINode *PN = *begin;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
- PHINode *PN_father;
- if ((PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i))) &&
- PN->getParent() == PN_father->getParent()) {
+ PHINode *PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i));
+ if (PN_father && PN->getParent() == PN_father->getParent() &&
+ !DT_->dominates(PN->getParent(), PN->getIncomingBlock(i))) {
BasicBlock *BB = PN->getIncomingBlock(i);
int pos = PN_father->getBasicBlockIndex(BB);
PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
}
}
}
+
+ for (DenseMapIterator<PHINode *, Instruction*> begin = phis.begin(),
+ end = phis.end(); begin != end; ++begin) {
+ PHINode *PN = begin->first;
+ BasicBlock *BB = PN->getParent();
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ SmallVector<BasicBlock*, 8> Preds(PI, PE);
+ for (unsigned size = Preds.size();
+ PI != PE && PN->getNumIncomingValues() != size; ++PI) {
+ bool found = false;
+ for (unsigned i = 0, pn_end = PN->getNumIncomingValues();
+ i < pn_end; ++i) {
+ if (PN->getIncomingBlock(i) == *PI) {
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ PN->addIncoming(UndefValue::get(PN->getType()), *PI);
+ }
+ }
+ }
}
/// Return which variable (position on the vector of variables) this phi
/// represents on the phis list.
///
-unsigned SSI::getPositionPhi(PHINode *PN) {
- DenseMap<PHINode *, unsigned>::iterator val = phis.find(PN);
+Instruction* SSI::getPositionPhi(PHINode *PN) {
+ DenseMap<PHINode *, Instruction*>::iterator val = phis.find(PN);
if (val == phis.end())
- return UNSIGNED_INFINITE;
+ return 0;
else
return val->second;
}
@@ -325,52 +356,27 @@ unsigned SSI::getPositionPhi(PHINode *PN) {
/// Return which variable (position on the vector of variables) this phi
/// represents on the sigmas list.
///
-unsigned SSI::getPositionSigma(PHINode *PN) {
- DenseMap<PHINode *, unsigned>::iterator val = sigmas.find(PN);
+Instruction* SSI::getPositionSigma(PHINode *PN) {
+ DenseMap<PHINode *, Instruction*>::iterator val = sigmas.find(PN);
if (val == sigmas.end())
- return UNSIGNED_INFINITE;
+ return 0;
else
return val->second;
}
-/// Return true if the the Comparison Instruction is an operator
-/// of the Terminator instruction of its Basic Block.
-///
-unsigned SSI::isUsedInTerminator(CmpInst *CI) {
- TerminatorInst *TI = CI->getParent()->getTerminator();
- if (TI->getNumOperands() == 0) {
- return false;
- } else if (CI == TI->getOperand(0)) {
- return true;
- } else {
- return false;
- }
-}
-
/// Initializes
///
void SSI::init(SmallVectorImpl<Instruction *> &value) {
- num_values = value.size();
- needConstruction.resize(num_values, false);
-
- value_original.resize(num_values);
- defsites.resize(num_values);
-
- for (unsigned i = 0; i < num_values; ++i) {
- value_original[i] = value[i]->getParent();
- defsites[i].push_back(value_original[i]);
+ for (SmallVectorImpl<Instruction *>::iterator I = value.begin(),
+ E = value.end(); I != E; ++I) {
+ value_original[*I] = (*I)->getParent();
+ defsites[*I].push_back((*I)->getParent());
}
}
/// Clean all used resources in this creation of SSI
///
void SSI::clean() {
- for (unsigned i = 0; i < num_values; ++i) {
- defsites[i].clear();
- if (i < value_stack.size())
- value_stack[i].clear();
- }
-
phis.clear();
sigmas.clear();
phisToFix.clear();
@@ -378,7 +384,6 @@ void SSI::clean() {
defsites.clear();
value_stack.clear();
value_original.clear();
- needConstruction.clear();
}
/// createSSIPass - The public interface to this file...
@@ -388,3 +393,40 @@ FunctionPass *llvm::createSSIPass() { return new SSI(); }
char SSI::ID = 0;
static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
+/// SSIEverything - A pass that runs createSSI on every non-void variable,
+/// intended for debugging.
+namespace {
+ struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ SSIEverything() : FunctionPass(&ID) {}
+
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<SSI>();
+ }
+ };
+}
+
+bool SSIEverything::runOnFunction(Function &F) {
+ SmallVector<Instruction *, 16> Insts;
+ SSI &ssi = getAnalysis<SSI>();
+
+ if (F.isDeclaration() || F.isIntrinsic()) return false;
+
+ for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
+ for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
+ if (I->getType() != Type::getVoidTy(F.getContext()))
+ Insts.push_back(I);
+
+ ssi.createSSI(Insts);
+ return true;
+}
+
+/// createSSIEverythingPass - The public interface to this file...
+///
+FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
+
+char SSIEverything::ID = 0;
+static RegisterPass<SSIEverything>
+Y("ssi-everything", "Static Single Information Construction");
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index 58d4d5a..6fd7d7b 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -21,6 +21,7 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
@@ -84,19 +85,12 @@ static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DOUT << "Looking to fold " << BB->getNameStart() << " into "
- << Succ->getNameStart() << "\n";
+ DEBUG(errs() << "Looking to fold " << BB->getName() << " into "
+ << Succ->getName() << "\n");
// Shortcut, if there is only a single predecessor it must be BB and merging
// is always safe
if (Succ->getSinglePredecessor()) return true;
- typedef SmallPtrSet<Instruction*, 16> InstrSet;
- InstrSet BBPHIs;
-
- // Make a list of all phi nodes in BB
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
-
// Make a list of the predecessors of BB
typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
BlockSet BBPreds(pred_begin(BB), pred_end(BB));
@@ -126,16 +120,13 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
PI != PE; PI++) {
if (BBPN->getIncomingValueForBlock(*PI)
!= PN->getIncomingValueForBlock(*PI)) {
- DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
- << Succ->getNameStart() << " is conflicting with "
- << BBPN->getNameStart() << " with regard to common predecessor "
- << (*PI)->getNameStart() << "\n";
+ DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with "
+ << BBPN->getName() << " with regard to common predecessor "
+ << (*PI)->getName() << "\n");
return false;
}
}
- // Remove this phinode from the list of phis in BB, since it has been
- // handled.
- BBPHIs.erase(BBPN);
} else {
Value* Val = PN->getIncomingValueForBlock(BB);
for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
@@ -144,33 +135,15 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
// one for BB, in which case this phi node will not prevent the merging
// of the block.
if (Val != PN->getIncomingValueForBlock(*PI)) {
- DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
- << Succ->getNameStart() << " is conflicting with regard to common "
- << "predecessor " << (*PI)->getNameStart() << "\n";
+ DEBUG(errs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with regard to common "
+ << "predecessor " << (*PI)->getName() << "\n");
return false;
}
}
}
}
- // If there are any other phi nodes in BB that don't have a phi node in Succ
- // to merge with, they must be moved to Succ completely. However, for any
- // predecessors of Succ, branches will be added to the phi node that just
- // point to itself. So, for any common predecessors, this must not cause
- // conflicts.
- for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
- I != E; I++) {
- PHINode *PN = cast<PHINode>(*I);
- for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
- PI != PE; PI++)
- if (PN->getIncomingValueForBlock(*PI) != PN) {
- DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
- << BB->getNameStart() << " is conflicting with regard to common "
- << "predecessor " << (*PI)->getNameStart() << "\n";
- return false;
- }
- }
-
return true;
}
@@ -182,8 +155,36 @@ static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
-
- DOUT << "Killing Trivial BB: \n" << *BB;
+
+ // Check for cases where Succ has multiple predecessors and a PHI node in BB
+ // has uses which will not disappear when the PHI nodes are merged. It is
+ // possible to handle such cases, but difficult: it requires checking whether
+ // BB dominates Succ, which is non-trivial to calculate in the case where
+ // Succ has multiple predecessors. Also, it requires checking whether
+ // constructing the necessary self-referential PHI node doesn't intoduce any
+ // conflicts; this isn't too difficult, but the previous code for doing this
+ // was incorrect.
+ //
+ // Note that if this check finds a live use, BB dominates Succ, so BB is
+ // something like a loop pre-header (or rarely, a part of an irreducible CFG);
+ // folding the branch isn't profitable in that case anyway.
+ if (!Succ->getSinglePredecessor()) {
+ BasicBlock::iterator BBI = BB->begin();
+ while (isa<PHINode>(*BBI)) {
+ for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
+ UI != E; ++UI) {
+ if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
+ if (PN->getIncomingBlock(UI) != BB)
+ return false;
+ } else {
+ return false;
+ }
+ }
+ ++BBI;
+ }
+ }
+
+ DEBUG(errs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
@@ -217,38 +218,16 @@ static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
}
}
- if (isa<PHINode>(&BB->front())) {
- SmallVector<BasicBlock*, 16>
- OldSuccPreds(pred_begin(Succ), pred_end(Succ));
-
- // Move all PHI nodes in BB to Succ if they are alive, otherwise
- // delete them.
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- if (PN->use_empty()) {
- // Just remove the dead phi. This happens if Succ's PHIs were the only
- // users of the PHI nodes.
- PN->eraseFromParent();
- continue;
- }
-
- // The instruction is alive, so this means that BB must dominate all
- // predecessors of Succ (Since all uses of the PN are after its
- // definition, so in Succ or a block dominated by Succ. If a predecessor
- // of Succ would not be dominated by BB, PN would violate the def before
- // use SSA demand). Therefore, we can simply move the phi node to the
- // next block.
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ if (Succ->getSinglePredecessor()) {
+ // BB is the only predecessor of Succ, so Succ will end up with exactly
+ // the same predecessors BB had.
Succ->getInstList().splice(Succ->begin(),
BB->getInstList(), BB->begin());
-
- // We need to add new entries for the PHI node to account for
- // predecessors of Succ that the PHI node does not take into
- // account. At this point, since we know that BB dominated succ and all
- // of its predecessors, this means that we should any newly added
- // incoming edges should use the PHI node itself as the value for these
- // edges, because they are loop back edges.
- for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
- if (OldSuccPreds[i] != BB)
- PN->addIncoming(PN, OldSuccPreds[i]);
+ } else {
+ // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
+ assert(PN->use_empty() && "There shouldn't be any uses here!");
+ PN->eraseFromParent();
}
}
@@ -383,26 +362,15 @@ static bool DominatesMergePoint(Value *V, BasicBlock *BB,
// Okay, it looks like the instruction IS in the "condition". Check to
// see if its a cheap instruction to unconditionally compute, and if it
// only uses stuff defined outside of the condition. If so, hoist it out.
+ if (!I->isSafeToSpeculativelyExecute())
+ return false;
+
switch (I->getOpcode()) {
default: return false; // Cannot hoist this out safely.
case Instruction::Load: {
- // We can hoist loads that are non-volatile and obviously cannot trap.
- if (cast<LoadInst>(I)->isVolatile())
- return false;
- // FIXME: A computation of a constant can trap!
- if (!isa<AllocaInst>(I->getOperand(0)) &&
- !isa<Constant>(I->getOperand(0)))
- return false;
- // External weak globals may have address 0, so we can't load them.
- Value *V2 = I->getOperand(0)->getUnderlyingObject();
- if (V2) {
- GlobalVariable* GV = dyn_cast<GlobalVariable>(V2);
- if (GV && GV->hasExternalWeakLinkage())
- return false;
- }
- // Finally, we have to check to make sure there are no instructions
- // before the load in its basic block, as we are going to hoist the loop
- // out to its predecessor.
+ // We have to check to make sure there are no instructions before the
+ // load in its basic block, as we are going to hoist the loop out to
+ // its predecessor.
BasicBlock::iterator IP = PBB->begin();
while (isa<DbgInfoIntrinsic>(IP))
IP++;
@@ -645,12 +613,13 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
assert(ThisCases.size() == 1 && "Branch can only have one case!");
// Insert the new branch.
Instruction *NI = BranchInst::Create(ThisDef, TI);
+ (void) NI;
// Remove PHI node entries for the dead edge.
ThisCases[0].second->removePredecessor(TI->getParent());
- DOUT << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+ DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
return true;
@@ -662,8 +631,8 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
DeadCases.insert(PredCases[i].first);
- DOUT << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI;
+ DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI);
for (unsigned i = SI->getNumCases()-1; i != 0; --i)
if (DeadCases.count(SI->getCaseValue(i))) {
@@ -671,7 +640,7 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
SI->removeCase(i);
}
- DOUT << "Leaving: " << *TI << "\n";
+ DEBUG(errs() << "Leaving: " << *TI << "\n");
return true;
}
}
@@ -712,9 +681,10 @@ static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
// Insert the new branch.
Instruction *NI = BranchInst::Create(TheRealDest, TI);
+ (void) NI;
- DOUT << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+ DEBUG(errs() << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
EraseTerminatorInstAndDCECond(TI);
return true;
@@ -847,7 +817,8 @@ static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
if (InfLoopBlock == 0) {
// Insert it at the end of the function, because it's either code,
// or it won't matter if it's hot. :)
- InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
+ InfLoopBlock = BasicBlock::Create(BB->getContext(),
+ "infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
}
NewSI->setSuccessor(i, InfLoopBlock);
@@ -900,7 +871,7 @@ static bool HoistThenElseCodeToIf(BranchInst *BI) {
while (isa<DbgInfoIntrinsic>(I2))
I2 = BB2_Itr++;
if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
- !I1->isIdenticalTo(I2) ||
+ !I1->isIdenticalToWhenDefined(I2) ||
(isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
return false;
@@ -919,6 +890,7 @@ static bool HoistThenElseCodeToIf(BranchInst *BI) {
BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
if (!I2->use_empty())
I2->replaceAllUsesWith(I1);
+ I1->intersectOptionalDataWith(I2);
BB2->getInstList().erase(I2);
I1 = BB1_Itr++;
@@ -927,7 +899,8 @@ static bool HoistThenElseCodeToIf(BranchInst *BI) {
I2 = BB2_Itr++;
while (isa<DbgInfoIntrinsic>(I2))
I2 = BB2_Itr++;
- } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
+ } while (I1->getOpcode() == I2->getOpcode() &&
+ I1->isIdenticalToWhenDefined(I2));
return true;
@@ -939,7 +912,7 @@ HoistTerminator:
// Okay, it is safe to hoist the terminator.
Instruction *NT = I1->clone();
BIParent->getInstList().insert(BI, NT);
- if (NT->getType() != Type::VoidTy) {
+ if (NT->getType() != Type::getVoidTy(BB1->getContext())) {
I1->replaceAllUsesWith(NT);
I2->replaceAllUsesWith(NT);
NT->takeName(I1);
@@ -1197,7 +1170,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantInt *CB;
if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
- CB->getType() == Type::Int1Ty) {
+ CB->getType() == Type::getInt1Ty(BB->getContext())) {
// Okay, we now know that all edges from PredBB should be revectored to
// branch to RealDest.
BasicBlock *PredBB = PN->getIncomingBlock(i);
@@ -1209,7 +1182,8 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
// difficult cases. Instead of being smart about this, just insert a new
// block that jumps to the destination block, effectively splitting
// the edge we are about to create.
- BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
+ BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
+ RealDest->getName()+".critedge",
RealDest->getParent(), RealDest);
BranchInst::Create(RealDest, EdgeBB);
PHINode *PN;
@@ -1242,7 +1216,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
}
// Check for trivial simplification.
- if (Constant *C = ConstantFoldInstruction(N)) {
+ if (Constant *C = ConstantFoldInstruction(N, BB->getContext())) {
TranslateMap[BBI] = C;
delete N; // Constant folded away, don't need actual inst
} else {
@@ -1296,8 +1270,8 @@ static bool FoldTwoEntryPHINode(PHINode *PN) {
if (NumPhis > 2)
return false;
- DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
- << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
+ DEBUG(errs() << "FOUND IF CONDITION! " << *IfCond << " T: "
+ << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
// Loop over the PHI's seeing if we can promote them all to select
// instructions. While we are at it, keep track of the instructions
@@ -1427,7 +1401,7 @@ static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
if (FalseRet->getNumOperands() == 0) {
TrueSucc->removePredecessor(BI->getParent());
FalseSucc->removePredecessor(BI->getParent());
- ReturnInst::Create(0, BI);
+ ReturnInst::Create(BI->getContext(), 0, BI);
EraseTerminatorInstAndDCECond(BI);
return true;
}
@@ -1476,12 +1450,13 @@ static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
}
Value *RI = !TrueValue ?
- ReturnInst::Create(BI) :
- ReturnInst::Create(TrueValue, BI);
+ ReturnInst::Create(BI->getContext(), BI) :
+ ReturnInst::Create(BI->getContext(), TrueValue, BI);
+ (void) RI;
- DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
- << "\n " << *BI << "NewRet = " << *RI
- << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
+ DEBUG(errs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ << "\n " << *BI << "NewRet = " << *RI
+ << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
EraseTerminatorInstAndDCECond(BI);
@@ -1561,7 +1536,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
else
continue;
- DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
+ DEBUG(errs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
// If we need to invert the condition in the pred block to match, do so now.
if (InvertPredCond) {
@@ -1605,7 +1580,7 @@ bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
assert(PBI->isConditional() && BI->isConditional());
BasicBlock *BB = BI->getParent();
-
+
// If this block ends with a branch instruction, and if there is a
// predecessor that ends on a branch of the same condition, make
// this conditional branch redundant.
@@ -1616,7 +1591,8 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
if (BB->getSinglePredecessor()) {
// Turn this into a branch on constant.
bool CondIsTrue = PBI->getSuccessor(0) == BB;
- BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
+ BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
+ CondIsTrue));
return true; // Nuke the branch on constant.
}
@@ -1624,7 +1600,7 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// in the constant and simplify the block result. Subsequent passes of
// simplifycfg will thread the block.
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
- PHINode *NewPN = PHINode::Create(Type::Int1Ty,
+ PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
BI->getCondition()->getName() + ".pr",
BB->begin());
// Okay, we're going to insert the PHI node. Since PBI is not the only
@@ -1636,7 +1612,7 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
bool CondIsTrue = PBI->getSuccessor(0) == BB;
- NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
+ NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
CondIsTrue), *PI);
} else {
NewPN->addIncoming(BI->getCondition(), *PI);
@@ -1694,8 +1670,8 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
// Finally, if everything is ok, fold the branches to logical ops.
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
- DOUT << "FOLDING BRs:" << *PBI->getParent()
- << "AND: " << *BI->getParent();
+ DEBUG(errs() << "FOLDING BRs:" << *PBI->getParent()
+ << "AND: " << *BI->getParent());
// If OtherDest *is* BB, then BB is a basic block with a single conditional
@@ -1708,12 +1684,13 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
if (OtherDest == BB) {
// Insert it at the end of the function, because it's either code,
// or it won't matter if it's hot. :)
- BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
+ BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
+ "infloop", BB->getParent());
BranchInst::Create(InfLoopBlock, InfLoopBlock);
OtherDest = InfLoopBlock;
}
- DOUT << *PBI->getParent()->getParent();
+ DEBUG(errs() << *PBI->getParent()->getParent());
// BI may have other predecessors. Because of this, we leave
// it alone, but modify PBI.
@@ -1763,9 +1740,8 @@ static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
}
}
- DOUT << "INTO: " << *PBI->getParent();
-
- DOUT << *PBI->getParent()->getParent();
+ DEBUG(errs() << "INTO: " << *PBI->getParent());
+ DEBUG(errs() << *PBI->getParent()->getParent());
// This basic block is probably dead. We know it has at least
// one fewer predecessor.
@@ -1792,7 +1768,7 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
// Remove basic blocks that have no predecessors... or that just have themself
// as a predecessor. These are unreachable.
if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
- DOUT << "Removing BB: \n" << *BB;
+ DEBUG(errs() << "Removing BB: \n" << *BB);
DeleteDeadBlock(BB);
return true;
}
@@ -1832,8 +1808,8 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
if (!UncondBranchPreds.empty()) {
while (!UncondBranchPreds.empty()) {
BasicBlock *Pred = UncondBranchPreds.pop_back_val();
- DOUT << "FOLDING: " << *BB
- << "INTO UNCOND BRANCH PRED: " << *Pred;
+ DEBUG(errs() << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred);
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
@@ -1884,33 +1860,26 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
} else if (isa<UnwindInst>(BB->begin())) {
// Check to see if the first instruction in this block is just an unwind.
// If so, replace any invoke instructions which use this as an exception
- // destination with call instructions, and any unconditional branch
- // predecessor with an unwind.
+ // destination with call instructions.
//
SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
while (!Preds.empty()) {
BasicBlock *Pred = Preds.back();
- if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
- if (BI->isUnconditional()) {
- Pred->getInstList().pop_back(); // nuke uncond branch
- new UnwindInst(Pred); // Use unwind.
- Changed = true;
- }
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
if (II->getUnwindDest() == BB) {
// Insert a new branch instruction before the invoke, because this
- // is now a fall through...
+ // is now a fall through.
BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
Pred->getInstList().remove(II); // Take out of symbol table
- // Insert the call now...
+ // Insert the call now.
SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
CallInst *CI = CallInst::Create(II->getCalledValue(),
Args.begin(), Args.end(),
II->getName(), BI);
CI->setCallingConv(II->getCallingConv());
CI->setAttributes(II->getAttributes());
- // If the invoke produced a value, the Call now does instead
+ // If the invoke produced a value, the Call now does instead.
II->replaceAllUsesWith(CI);
delete II;
Changed = true;
@@ -2042,7 +2011,7 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isUnconditional()) {
if (BI->getSuccessor(0) == BB) {
- new UnreachableInst(TI);
+ new UnreachableInst(TI->getContext(), TI);
TI->eraseFromParent();
Changed = true;
}
diff --git a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
index 848f2b8..30cb94d 100644
--- a/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
+++ b/lib/Transforms/Utils/UnifyFunctionExitNodes.cpp
@@ -66,8 +66,8 @@ bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
} else if (UnwindingBlocks.size() == 1) {
UnwindBlock = UnwindingBlocks.front();
} else {
- UnwindBlock = BasicBlock::Create("UnifiedUnwindBlock", &F);
- new UnwindInst(UnwindBlock);
+ UnwindBlock = BasicBlock::Create(F.getContext(), "UnifiedUnwindBlock", &F);
+ new UnwindInst(F.getContext(), UnwindBlock);
for (std::vector<BasicBlock*>::iterator I = UnwindingBlocks.begin(),
E = UnwindingBlocks.end(); I != E; ++I) {
@@ -83,8 +83,9 @@ bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
} else if (UnreachableBlocks.size() == 1) {
UnreachableBlock = UnreachableBlocks.front();
} else {
- UnreachableBlock = BasicBlock::Create("UnifiedUnreachableBlock", &F);
- new UnreachableInst(UnreachableBlock);
+ UnreachableBlock = BasicBlock::Create(F.getContext(),
+ "UnifiedUnreachableBlock", &F);
+ new UnreachableInst(F.getContext(), UnreachableBlock);
for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(),
E = UnreachableBlocks.end(); I != E; ++I) {
@@ -107,16 +108,17 @@ bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
// nodes (if the function returns values), and convert all of the return
// instructions into unconditional branches.
//
- BasicBlock *NewRetBlock = BasicBlock::Create("UnifiedReturnBlock", &F);
+ BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(),
+ "UnifiedReturnBlock", &F);
PHINode *PN = 0;
- if (F.getReturnType() == Type::VoidTy) {
- ReturnInst::Create(NULL, NewRetBlock);
+ if (F.getReturnType() == Type::getVoidTy(F.getContext())) {
+ ReturnInst::Create(F.getContext(), NULL, NewRetBlock);
} else {
// If the function doesn't return void... add a PHI node to the block...
PN = PHINode::Create(F.getReturnType(), "UnifiedRetVal");
NewRetBlock->getInstList().push_back(PN);
- ReturnInst::Create(PN, NewRetBlock);
+ ReturnInst::Create(F.getContext(), PN, NewRetBlock);
}
// Loop over all of the blocks, replacing the return instruction with an
diff --git a/lib/Transforms/Utils/UnrollLoop.cpp b/lib/Transforms/Utils/UnrollLoop.cpp
index caef7ec..4d838b5 100644
--- a/lib/Transforms/Utils/UnrollLoop.cpp
+++ b/lib/Transforms/Utils/UnrollLoop.cpp
@@ -25,6 +25,7 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
@@ -62,7 +63,7 @@ static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
return 0;
- DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
+ DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
@@ -113,7 +114,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
if (!BI || BI->isUnconditional()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
- DOUT << " Can't unroll; loop not terminated by a conditional branch.\n";
+ DEBUG(errs() <<
+ " Can't unroll; loop not terminated by a conditional branch.\n");
return false;
}
@@ -125,9 +127,9 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
TripMultiple = L->getSmallConstantTripMultiple();
if (TripCount != 0)
- DOUT << " Trip Count = " << TripCount << "\n";
+ DEBUG(errs() << " Trip Count = " << TripCount << "\n");
if (TripMultiple != 1)
- DOUT << " Trip Multiple = " << TripMultiple << "\n";
+ DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n");
// Effectively "DCE" unrolled iterations that are beyond the tripcount
// and will never be executed.
@@ -153,17 +155,17 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
}
if (CompletelyUnroll) {
- DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << TripCount << "!\n";
+ DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << TripCount << "!\n");
} else {
- DOUT << "UNROLLING loop %" << Header->getName()
- << " by " << Count;
+ DEBUG(errs() << "UNROLLING loop %" << Header->getName()
+ << " by " << Count);
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
- DOUT << " with a breakout at trip " << BreakoutTrip;
+ DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
} else if (TripMultiple != 1) {
- DOUT << " with " << TripMultiple << " trips per branch";
+ DEBUG(errs() << " with " << TripMultiple << " trips per branch");
}
- DOUT << "!\n";
+ DEBUG(errs() << "!\n");
}
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
@@ -349,7 +351,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
- else if (Constant *C = ConstantFoldInstruction(Inst)) {
+ else if (Constant *C = ConstantFoldInstruction(Inst,
+ Header->getContext())) {
Inst->replaceAllUsesWith(C);
(*BB)->getInstList().erase(Inst);
}
diff --git a/lib/Transforms/Utils/ValueMapper.cpp b/lib/Transforms/Utils/ValueMapper.cpp
index 20b676d..2d8332f 100644
--- a/lib/Transforms/Utils/ValueMapper.cpp
+++ b/lib/Transforms/Utils/ValueMapper.cpp
@@ -13,23 +13,27 @@
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/DerivedTypes.h" // For getNullValue(Type::Int32Ty)
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instruction.h"
-#include "llvm/MDNode.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
-Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
+Value *llvm::MapValue(const Value *V, ValueMapTy &VM, LLVMContext &Context) {
Value *&VMSlot = VM[V];
if (VMSlot) return VMSlot; // Does it exist in the map yet?
// NOTE: VMSlot can be invalidated by any reference to VM, which can grow the
// DenseMap. This includes any recursive calls to MapValue.
- // Global values do not need to be seeded into the ValueMap if they are using
- // the identity mapping.
- if (isa<GlobalValue>(V) || isa<InlineAsm>(V))
+ // Global values and metadata do not need to be seeded into the ValueMap if
+ // they are using the identity mapping.
+ if (isa<GlobalValue>(V) || isa<InlineAsm>(V) || isa<MetadataBase>(V))
return VMSlot = const_cast<Value*>(V);
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
@@ -40,7 +44,7 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
else if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
for (User::op_iterator b = CA->op_begin(), i = b, e = CA->op_end();
i != e; ++i) {
- Value *MV = MapValue(*i, VM);
+ Value *MV = MapValue(*i, VM, Context);
if (MV != *i) {
// This array must contain a reference to a global, make a new array
// and return it.
@@ -51,7 +55,7 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
Values.push_back(cast<Constant>(*j));
Values.push_back(cast<Constant>(MV));
for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM)));
+ Values.push_back(cast<Constant>(MapValue(*i, VM, Context)));
return VM[V] = ConstantArray::get(CA->getType(), Values);
}
}
@@ -60,7 +64,7 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
} else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
for (User::op_iterator b = CS->op_begin(), i = b, e = CS->op_end();
i != e; ++i) {
- Value *MV = MapValue(*i, VM);
+ Value *MV = MapValue(*i, VM, Context);
if (MV != *i) {
// This struct must contain a reference to a global, make a new struct
// and return it.
@@ -71,7 +75,7 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
Values.push_back(cast<Constant>(*j));
Values.push_back(cast<Constant>(MV));
for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM)));
+ Values.push_back(cast<Constant>(MapValue(*i, VM, Context)));
return VM[V] = ConstantStruct::get(CS->getType(), Values);
}
}
@@ -80,12 +84,12 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
std::vector<Constant*> Ops;
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
- Ops.push_back(cast<Constant>(MapValue(*i, VM)));
+ Ops.push_back(cast<Constant>(MapValue(*i, VM, Context)));
return VM[V] = CE->getWithOperands(Ops);
} else if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
for (User::op_iterator b = CP->op_begin(), i = b, e = CP->op_end();
i != e; ++i) {
- Value *MV = MapValue(*i, VM);
+ Value *MV = MapValue(*i, VM, Context);
if (MV != *i) {
// This vector value must contain a reference to a global, make a new
// vector constant and return it.
@@ -96,38 +100,16 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
Values.push_back(cast<Constant>(*j));
Values.push_back(cast<Constant>(MV));
for (++i; i != e; ++i)
- Values.push_back(cast<Constant>(MapValue(*i, VM)));
+ Values.push_back(cast<Constant>(MapValue(*i, VM, Context)));
return VM[V] = ConstantVector::get(Values);
}
}
return VM[V] = C;
- } else if (MDNode *N = dyn_cast<MDNode>(C)) {
- for (MDNode::const_elem_iterator b = N->elem_begin(), i = b,
- e = N->elem_end(); i != e; ++i) {
- if (!*i) continue;
-
- Value *MV = MapValue(*i, VM);
- if (MV != *i) {
- // This MDNode must contain a reference to a global, make a new MDNode
- // and return it.
- SmallVector<Value*, 8> Values;
- Values.reserve(N->getNumElements());
- for (MDNode::const_elem_iterator j = b; j != i; ++j)
- Values.push_back(*j);
- Values.push_back(MV);
- for (++i; i != e; ++i)
- Values.push_back(MapValue(*i, VM));
- return VM[V] = MDNode::get(Values.data(), Values.size());
- }
- }
- return VM[V] = C;
-
} else {
- assert(0 && "Unknown type of constant!");
+ llvm_unreachable("Unknown type of constant!");
}
}
-
return 0;
}
@@ -136,7 +118,7 @@ Value *llvm::MapValue(const Value *V, ValueMapTy &VM) {
///
void llvm::RemapInstruction(Instruction *I, ValueMapTy &ValueMap) {
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
- Value *V = MapValue(*op, ValueMap);
+ Value *V = MapValue(*op, ValueMap, I->getParent()->getContext());
assert(V && "Referenced value not in value map!");
*op = V;
}
diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp
index cbf7070..b5ae81b 100644
--- a/lib/VMCore/AsmWriter.cpp
+++ b/lib/VMCore/AsmWriter.cpp
@@ -23,7 +23,8 @@
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
-#include "llvm/MDNode.h"
+#include "llvm/Operator.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/TypeSymbolTable.h"
@@ -31,8 +32,10 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/FormattedStream.h"
#include <algorithm>
#include <cctype>
#include <map>
@@ -48,15 +51,15 @@ AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
-
+
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
-
+
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
}
-
+
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return 0;
@@ -64,10 +67,10 @@ static const Module *getModuleFromVal(const Value *V) {
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const char *Str, unsigned Length,
+static void PrintEscapedString(const StringRef &Name,
raw_ostream &Out) {
- for (unsigned i = 0; i != Length; ++i) {
- unsigned char C = Str[i];
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ unsigned char C = Name[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else
@@ -75,12 +78,6 @@ static void PrintEscapedString(const char *Str, unsigned Length,
}
}
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
- PrintEscapedString(Str.c_str(), Str.size(), Out);
-}
-
enum PrefixType {
GlobalPrefix,
LabelPrefix,
@@ -91,39 +88,39 @@ enum PrefixType {
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
-static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
- unsigned NameLen, PrefixType Prefix) {
- assert(NameStr && "Cannot get empty name!");
+static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
+ PrefixType Prefix) {
+ assert(Name.data() && "Cannot get empty name!");
switch (Prefix) {
- default: assert(0 && "Bad prefix!");
+ default: llvm_unreachable("Bad prefix!");
case NoPrefix: break;
case GlobalPrefix: OS << '@'; break;
case LabelPrefix: break;
case LocalPrefix: OS << '%'; break;
}
-
+
// Scan the name to see if it needs quotes first.
- bool NeedsQuotes = isdigit(NameStr[0]);
+ bool NeedsQuotes = isdigit(Name[0]);
if (!NeedsQuotes) {
- for (unsigned i = 0; i != NameLen; ++i) {
- char C = NameStr[i];
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ char C = Name[i];
if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
NeedsQuotes = true;
break;
}
}
}
-
+
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
- OS.write(NameStr, NameLen);
+ OS << Name;
return;
}
-
+
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
- PrintEscapedString(NameStr, NameLen, OS);
+ PrintEscapedString(Name, OS);
OS << '"';
}
@@ -131,7 +128,7 @@ static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
- PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
+ PrintLLVMName(OS, V->getName(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
@@ -178,11 +175,11 @@ void TypePrinting::CalcTypeName(const Type *Ty,
return;
}
}
-
+
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
-
+
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
@@ -190,9 +187,9 @@ void TypePrinting::CalcTypeName(const Type *Ty,
OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
return;
}
-
+
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
-
+
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; break;
case Type::FloatTyID: OS << "float"; break;
@@ -205,7 +202,7 @@ void TypePrinting::CalcTypeName(const Type *Ty,
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
break;
-
+
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
CalcTypeName(FTy->getReturnType(), TypeStack, OS);
@@ -269,7 +266,7 @@ void TypePrinting::CalcTypeName(const Type *Ty,
OS << "<unrecognized-type>";
break;
}
-
+
TypeStack.pop_back(); // Remove self from stack.
}
@@ -287,13 +284,13 @@ void TypePrinting::print(const Type *Ty, raw_ostream &OS,
return;
}
}
-
+
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
SmallVector<const Type *, 16> TypeStack;
std::string TypeName;
-
+
raw_string_ostream TypeOS(TypeName);
CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
OS << TypeOS.str();
@@ -309,13 +306,13 @@ namespace {
// objects, we keep several helper maps.
DenseSet<const Value*> VisitedConstants;
DenseSet<const Type*> VisitedTypes;
-
+
TypePrinting &TP;
std::vector<const Type*> &NumberedTypes;
public:
TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
: TP(tp), NumberedTypes(numberedTypes) {}
-
+
void Run(const Module &M) {
// Get types from the type symbol table. This gets opaque types referened
// only through derived named types.
@@ -323,7 +320,7 @@ namespace {
for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
TI != E; ++TI)
IncorporateType(TI->second);
-
+
// Get types from global variables.
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
@@ -331,18 +328,18 @@ namespace {
if (I->hasInitializer())
IncorporateValue(I->getInitializer());
}
-
+
// Get types from aliases.
for (Module::const_alias_iterator I = M.alias_begin(),
E = M.alias_end(); I != E; ++I) {
IncorporateType(I->getType());
IncorporateValue(I->getAliasee());
}
-
+
// Get types from functions.
for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
IncorporateType(FI->getType());
-
+
for (Function::const_iterator BB = FI->begin(), E = FI->end();
BB != E;++BB)
for (BasicBlock::const_iterator II = BB->begin(),
@@ -356,40 +353,40 @@ namespace {
}
}
}
-
+
private:
void IncorporateType(const Type *Ty) {
// Check to see if we're already visited this type.
if (!VisitedTypes.insert(Ty).second)
return;
-
+
// If this is a structure or opaque type, add a name for the type.
if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
|| isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
NumberedTypes.push_back(Ty);
}
-
+
// Recursively walk all contained types.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
- IncorporateType(*I);
+ IncorporateType(*I);
}
-
+
/// IncorporateValue - This method is used to walk operand lists finding
/// types hiding in constant expressions and other operands that won't be
/// walked in other ways. GlobalValues, basic blocks, instructions, and
/// inst operands are all explicitly enumerated.
void IncorporateValue(const Value *V) {
if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
-
+
// Already visited?
if (!VisitedConstants.insert(V).second)
return;
-
+
// Check this type.
IncorporateType(V->getType());
-
+
// Look in operands for types.
const Constant *C = cast<Constant>(V);
for (Constant::const_op_iterator I = C->op_begin(),
@@ -403,18 +400,18 @@ namespace {
/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
/// the specified module to the TypePrinter and all numbered types to it and the
/// NumberedTypes table.
-static void AddModuleTypesToPrinter(TypePrinting &TP,
+static void AddModuleTypesToPrinter(TypePrinting &TP,
std::vector<const Type*> &NumberedTypes,
const Module *M) {
if (M == 0) return;
-
+
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
const TypeSymbolTable &ST = M->getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
TI != E; ++TI) {
const Type *Ty = cast<Type>(TI->second);
-
+
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
@@ -423,18 +420,20 @@ static void AddModuleTypesToPrinter(TypePrinting &TP,
!isa<OpaqueType>(PETy))
continue;
}
-
+
// Likewise don't insert primitives either.
if (Ty->isInteger() || Ty->isPrimitiveType())
continue;
-
+
// Get the name as a string and insert it into TypeNames.
std::string NameStr;
- raw_string_ostream NameOS(NameStr);
- PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
- TP.addTypeName(Ty, NameOS.str());
+ raw_string_ostream NameROS(NameStr);
+ formatted_raw_ostream NameOS(NameROS);
+ PrintLLVMName(NameOS, TI->first, LocalPrefix);
+ NameOS.flush();
+ TP.addTypeName(Ty, NameStr);
}
-
+
// Walk the entire module to find references to unnamed structure and opaque
// types. This is required for correctness by opaque types (because multiple
// uses of an unnamed opaque type needs to be referred to by the same ID) and
@@ -464,35 +463,49 @@ namespace {
///
class SlotTracker {
public:
- /// ValueMap - A mapping of Values to slot numbers
+ /// ValueMap - A mapping of Values to slot numbers.
typedef DenseMap<const Value*, unsigned> ValueMap;
-
-private:
- /// TheModule - The module for which we are holding slot numbers
+
+private:
+ /// TheModule - The module for which we are holding slot numbers.
const Module* TheModule;
-
- /// TheFunction - The function for which we are holding slot numbers
+
+ /// TheFunction - The function for which we are holding slot numbers.
const Function* TheFunction;
bool FunctionProcessed;
-
- /// mMap - The TypePlanes map for the module level data
+
+ /// TheMDNode - The MDNode for which we are holding slot numbers.
+ const MDNode *TheMDNode;
+
+ /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
+ const NamedMDNode *TheNamedMDNode;
+
+ /// mMap - The TypePlanes map for the module level data.
ValueMap mMap;
unsigned mNext;
-
- /// fMap - The TypePlanes map for the function level data
+
+ /// fMap - The TypePlanes map for the function level data.
ValueMap fMap;
unsigned fNext;
-
+
+ /// mdnMap - Map for MDNodes.
+ ValueMap mdnMap;
+ unsigned mdnNext;
public:
/// Construct from a module
explicit SlotTracker(const Module *M);
/// Construct from a function, starting out in incorp state.
explicit SlotTracker(const Function *F);
+ /// Construct from a mdnode.
+ explicit SlotTracker(const MDNode *N);
+ /// Construct from a named mdnode.
+ explicit SlotTracker(const NamedMDNode *N);
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
+ int getMetadataSlot(const MDNode *N);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
@@ -506,14 +519,23 @@ public:
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
- // Implementation Details
-private:
+ /// MDNode map iterators.
+ ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
+ ValueMap::iterator mdnEnd() { return mdnMap.end(); }
+ unsigned mdnSize() const { return mdnMap.size(); }
+ bool mdnEmpty() const { return mdnMap.empty(); }
+
/// This function does the actual initialization.
inline void initialize();
+ // Implementation Details
+private:
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
-
+
+ /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
+ void CreateMetadataSlot(const MDNode *N);
+
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
@@ -521,9 +543,15 @@ private:
/// and function declarations, but not the contents of those functions.
void processModule();
- /// Add all of the functions arguments, basic blocks, and instructions
+ /// Add all of the functions arguments, basic blocks, and instructions.
void processFunction();
+ /// Add all MDNode operands.
+ void processMDNode();
+
+ /// Add all MDNode operands.
+ void processNamedMDNode();
+
SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
void operator=(const SlotTracker &); // DO NOT IMPLEMENT
};
@@ -534,27 +562,27 @@ private:
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
-
+
if (const Instruction *I = dyn_cast<Instruction>(V))
return new SlotTracker(I->getParent()->getParent());
-
+
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
-
+
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
-
+
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
- return new SlotTracker(GA->getParent());
-
+ return new SlotTracker(GA->getParent());
+
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
-
+
return 0;
}
#if 0
-#define ST_DEBUG(X) cerr << X
+#define ST_DEBUG(X) errs() << X
#else
#define ST_DEBUG(X)
#endif
@@ -562,14 +590,27 @@ static SlotTracker *createSlotTracker(const Value *V) {
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
- : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
+ : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
+ TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
: TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
- mNext(0), fNext(0) {
+ TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
+}
+
+// Constructor to handle single MDNode.
+SlotTracker::SlotTracker(const MDNode *C)
+ : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
+ TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
+}
+
+// Constructor to handle single NamedMDNode.
+SlotTracker::SlotTracker(const NamedMDNode *N)
+ : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
+ TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) {
}
inline void SlotTracker::initialize() {
@@ -577,60 +618,120 @@ inline void SlotTracker::initialize() {
processModule();
TheModule = 0; ///< Prevent re-processing next time we're called.
}
-
+
if (TheFunction && !FunctionProcessed)
processFunction();
+
+ if (TheMDNode)
+ processMDNode();
+
+ if (TheNamedMDNode)
+ processNamedMDNode();
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
-
+
// Add all of the unnamed global variables to the value table.
for (Module::const_global_iterator I = TheModule->global_begin(),
- E = TheModule->global_end(); I != E; ++I)
- if (!I->hasName())
+ E = TheModule->global_end(); I != E; ++I) {
+ if (!I->hasName())
CreateModuleSlot(I);
-
+ if (I->hasInitializer()) {
+ if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
+ CreateMetadataSlot(N);
+ }
+ }
+
+ // Add metadata used by named metadata.
+ for (Module::const_named_metadata_iterator
+ I = TheModule->named_metadata_begin(),
+ E = TheModule->named_metadata_end(); I != E; ++I) {
+ const NamedMDNode *NMD = I;
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
+ MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
+ if (MD)
+ CreateMetadataSlot(MD);
+ }
+ }
+
// Add all the unnamed functions to the table.
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
if (!I->hasName())
CreateModuleSlot(I);
-
+
ST_DEBUG("end processModule!\n");
}
-
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
-
+
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(AI);
-
+
ST_DEBUG("Inserting Instructions:\n");
-
+
+ MetadataContext &TheMetadata = TheFunction->getContext().getMetadata();
+
// Add all of the basic blocks and instructions with no names.
for (Function::const_iterator BB = TheFunction->begin(),
E = TheFunction->end(); BB != E; ++BB) {
if (!BB->hasName())
CreateFunctionSlot(BB);
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (I->getType() != Type::VoidTy && !I->hasName())
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ if (I->getType() != Type::getVoidTy(TheFunction->getContext()) &&
+ !I->hasName())
CreateFunctionSlot(I);
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
+ CreateMetadataSlot(N);
+
+ // Process metadata attached with this instruction.
+ const MetadataContext::MDMapTy *MDs = TheMetadata.getMDs(I);
+ if (MDs)
+ for (MetadataContext::MDMapTy::const_iterator MI = MDs->begin(),
+ ME = MDs->end(); MI != ME; ++MI)
+ if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
+ CreateMetadataSlot(MDN);
+ }
}
-
+
FunctionProcessed = true;
-
+
ST_DEBUG("end processFunction!\n");
}
+/// processMDNode - Process TheMDNode.
+void SlotTracker::processMDNode() {
+ ST_DEBUG("begin processMDNode!\n");
+ mdnNext = 0;
+ CreateMetadataSlot(TheMDNode);
+ TheMDNode = 0;
+ ST_DEBUG("end processMDNode!\n");
+}
+
+/// processNamedMDNode - Process TheNamedMDNode.
+void SlotTracker::processNamedMDNode() {
+ ST_DEBUG("begin processNamedMDNode!\n");
+ mdnNext = 0;
+ for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
+ MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
+ if (MD)
+ CreateMetadataSlot(MD);
+ }
+ TheNamedMDNode = 0;
+ ST_DEBUG("end processNamedMDNode!\n");
+}
+
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
@@ -646,20 +747,30 @@ void SlotTracker::purgeFunction() {
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initialize();
-
+
// Find the type plane in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
+/// getGlobalSlot - Get the slot number of a MDNode.
+int SlotTracker::getMetadataSlot(const MDNode *N) {
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ // Find the type plane in the module map
+ ValueMap::iterator MI = mdnMap.find(N);
+ return MI == mdnMap.end() ? -1 : (int)MI->second;
+}
+
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
-
+
// Check for uninitialized state and do lazy initialization.
initialize();
-
+
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
@@ -668,12 +779,13 @@ int SlotTracker::getLocalSlot(const Value *V) {
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
- assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
+ assert(V->getType() != Type::getVoidTy(V->getContext()) &&
+ "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
-
+
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
-
+
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, o = other
@@ -682,28 +794,45 @@ void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}
-
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
- assert(V->getType() != Type::VoidTy && !V->hasName() &&
- "Doesn't need a slot!");
-
+ assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) &&
+ !V->hasName() && "Doesn't need a slot!");
+
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
-
+
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
-}
+}
+/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
+void SlotTracker::CreateMetadataSlot(const MDNode *N) {
+ assert(N && "Can't insert a null Value into SlotTracker!");
+
+ ValueMap::iterator I = mdnMap.find(N);
+ if (I != mdnMap.end())
+ return;
+ unsigned DestSlot = mdnNext++;
+ mdnMap[N] = DestSlot;
+
+ for (MDNode::const_elem_iterator MDI = N->elem_begin(),
+ MDE = N->elem_end(); MDI != MDE; ++MDI) {
+ const Value *TV = *MDI;
+ if (TV)
+ if (const MDNode *N2 = dyn_cast<MDNode>(TV))
+ CreateMetadataSlot(N2);
+ }
+}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
- TypePrinting &TypePrinter,
+ TypePrinting *TypePrinter,
SlotTracker *Machine);
@@ -741,17 +870,93 @@ static const char *getPredicateText(unsigned predicate) {
return pred;
}
+static void WriteMDNodeComment(const MDNode *Node,
+ formatted_raw_ostream &Out) {
+ if (Node->getNumElements() < 1)
+ return;
+ ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getElement(0));
+ if (!CI) return;
+ unsigned Val = CI->getZExtValue();
+ unsigned Tag = Val & ~LLVMDebugVersionMask;
+ if (Val >= LLVMDebugVersion) {
+ if (Tag == dwarf::DW_TAG_auto_variable)
+ Out << "; [ DW_TAG_auto_variable ]";
+ else if (Tag == dwarf::DW_TAG_arg_variable)
+ Out << "; [ DW_TAG_arg_variable ]";
+ else if (Tag == dwarf::DW_TAG_return_variable)
+ Out << "; [ DW_TAG_return_variable ]";
+ else if (Tag == dwarf::DW_TAG_vector_type)
+ Out << "; [ DW_TAG_vector_type ]";
+ else if (Tag == dwarf::DW_TAG_user_base)
+ Out << "; [ DW_TAG_user_base ]";
+ else
+ Out << "; [" << dwarf::TagString(Tag) << " ]";
+ }
+}
+
+static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
+ SlotTracker &Machine) {
+ SmallVector<const MDNode *, 16> Nodes;
+ Nodes.resize(Machine.mdnSize());
+ for (SlotTracker::ValueMap::iterator I =
+ Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
+ Nodes[I->second] = cast<MDNode>(I->first);
+
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ Out << '!' << i << " = metadata ";
+ const MDNode *Node = Nodes[i];
+ Out << "!{";
+ for (MDNode::const_elem_iterator NI = Node->elem_begin(),
+ NE = Node->elem_end(); NI != NE;) {
+ const Value *V = *NI;
+ if (!V)
+ Out << "null";
+ else if (const MDNode *N = dyn_cast<MDNode>(V)) {
+ Out << "metadata ";
+ Out << '!' << Machine.getMetadataSlot(N);
+ }
+ else {
+ TypePrinter.print((*NI)->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine);
+ }
+ if (++NI != NE)
+ Out << ", ";
+ }
+
+ Out << "}";
+ WriteMDNodeComment(Node, Out);
+ Out << "\n";
+ }
+}
+
+static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
+ if (const OverflowingBinaryOperator *OBO =
+ dyn_cast<OverflowingBinaryOperator>(U)) {
+ if (OBO->hasNoUnsignedWrap())
+ Out << " nuw";
+ if (OBO->hasNoSignedWrap())
+ Out << " nsw";
+ } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
+ if (Div->isExact())
+ Out << " exact";
+ } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+ if (GEP->isInBounds())
+ Out << " inbounds";
+ }
+}
+
static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter, SlotTracker *Machine) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
- if (CI->getType() == Type::Int1Ty) {
+ if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
-
+
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
@@ -789,14 +994,14 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
APFloat apf = CFP->getValueAPF();
// Floats are represented in ASCII IR as double, convert.
if (!isDouble)
- apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
- Out << "0x" <<
- utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
+ Out << "0x" <<
+ utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
Buffer+40);
return;
}
-
+
// Some form of long double. These appear as a magic letter identifying
// the type, then a fixed number of hex digits.
Out << "0x";
@@ -827,7 +1032,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
Out << 'M';
else
- assert(0 && "Unsupported floating point type");
+ llvm_unreachable("Unsupported floating point type");
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
@@ -849,12 +1054,12 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
}
return;
}
-
+
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
-
+
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
@@ -870,19 +1075,19 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
- TypePrinter, Machine);
+ &TypePrinter, Machine);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
- WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
+ WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
}
}
Out << ']';
}
return;
}
-
+
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
@@ -893,24 +1098,24 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
- WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
+ WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
- WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
+ WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
}
Out << ' ';
}
-
+
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
-
+
if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const Type *ETy = CP->getType()->getElementType();
assert(CP->getNumOperands() > 0 &&
@@ -918,36 +1123,35 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
- WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
+ WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
- WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
+ WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
}
Out << '>';
return;
}
-
+
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
-
+
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
-
- if (const MDString *S = dyn_cast<MDString>(CV)) {
- Out << "!\"";
- PrintEscapedString(S->begin(), S->size(), Out);
- Out << '"';
+
+ if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
+ Out << "!" << Machine->getMetadataSlot(Node);
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
+ WriteOptimizationInfo(Out, CE);
if (CE->isCompare())
Out << ' ' << getPredicateText(CE->getPredicate());
Out << " (";
@@ -955,7 +1159,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
- WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
+ WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
if (OI+1 != CE->op_end())
Out << ", ";
}
@@ -974,7 +1178,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
Out << ')';
return;
}
-
+
Out << "<placeholder or erroneous Constant>";
}
@@ -984,23 +1188,26 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
- TypePrinting &TypePrinter,
+ TypePrinting *TypePrinter,
SlotTracker *Machine) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
-
+
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
- WriteConstantInt(Out, CV, TypePrinter, Machine);
+ assert(TypePrinter && "Constants require TypePrinting!");
+ WriteConstantInt(Out, CV, *TypePrinter, Machine);
return;
}
-
+
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
+ if (IA->isMsAsm())
+ Out << "msasm ";
Out << '"';
PrintEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
@@ -1008,7 +1215,24 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
Out << '"';
return;
}
-
+
+ if (const MDNode *N = dyn_cast<MDNode>(V)) {
+ Out << '!' << Machine->getMetadataSlot(N);
+ return;
+ }
+
+ if (const MDString *MDS = dyn_cast<MDString>(V)) {
+ Out << "!\"";
+ PrintEscapedString(MDS->getString(), Out);
+ Out << '"';
+ return;
+ }
+
+ if (V->getValueID() == Value::PseudoSourceValueVal) {
+ V->print(Out);
+ return;
+ }
+
char Prefix = '%';
int Slot;
if (Machine) {
@@ -1027,30 +1251,29 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
} else {
Slot = Machine->getLocalSlot(V);
}
+ delete Machine;
} else {
Slot = -1;
}
- delete Machine;
}
-
+
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
-/// WriteAsOperand - Write the name of the specified value out to the specified
-/// ostream. This can be useful when you just want to print int %reg126, not
-/// the whole instruction that generated it.
-///
-void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
- const Module *Context) {
- raw_os_ostream OS(Out);
- WriteAsOperand(OS, V, PrintType, Context);
-}
+void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
+ bool PrintType, const Module *Context) {
+
+ // Fast path: Don't construct and populate a TypePrinting object if we
+ // won't be needing any types printed.
+ if (!PrintType &&
+ (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
+ WriteAsOperandInternal(Out, V, 0, 0);
+ return;
+ }
-void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
- const Module *Context) {
if (Context == 0) Context = getModuleFromVal(V);
TypePrinting TypePrinter;
@@ -1061,32 +1284,40 @@ void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
Out << ' ';
}
- WriteAsOperandInternal(Out, V, TypePrinter, 0);
+ WriteAsOperandInternal(Out, V, &TypePrinter, 0);
}
-
namespace {
class AssemblyWriter {
- raw_ostream &Out;
+ formatted_raw_ostream &Out;
SlotTracker &Machine;
const Module *TheModule;
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter;
std::vector<const Type*> NumberedTypes;
+ DenseMap<unsigned, const char *> MDNames;
- // Each MDNode is assigned unique MetadataIDNo.
- std::map<const MDNode *, unsigned> MDNodes;
- unsigned MetadataIDNo;
public:
- inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
+ inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
+ const Module *M,
AssemblyAnnotationWriter *AAW)
- : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
+ : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
+ // FIXME: Provide MDPrinter
+ if (M) {
+ MetadataContext &TheMetadata = M->getContext().getMetadata();
+ const StringMap<unsigned> *Names = TheMetadata.getHandlerNames();
+ for (StringMapConstIterator<unsigned> I = Names->begin(),
+ E = Names->end(); I != E; ++I) {
+ const StringMapEntry<unsigned> &Entry = *I;
+ MDNames[I->second] = Entry.getKeyData();
+ }
+ }
}
void write(const Module *M) { printModule(M); }
-
+
void write(const GlobalValue *G) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
printGlobal(GV);
@@ -1095,17 +1326,14 @@ public:
else if (const Function *F = dyn_cast<Function>(G))
printFunction(F);
else
- assert(0 && "Unknown global");
+ llvm_unreachable("Unknown global");
}
-
+
void write(const BasicBlock *BB) { printBasicBlock(BB); }
void write(const Instruction *I) { printInstruction(*I); }
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, Attributes Attrs);
- void printMDNode(const MDNode *Node, bool StandAlone);
-
- const Module* getModule() { return TheModule; }
private:
void printModule(const Module *M);
@@ -1132,11 +1360,11 @@ void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
- WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
+ WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
}
}
-void AssemblyWriter::writeParamOperand(const Value *Operand,
+void AssemblyWriter::writeParamOperand(const Value *Operand,
Attributes Attrs) {
if (Operand == 0) {
Out << "<null operand!>";
@@ -1148,7 +1376,7 @@ void AssemblyWriter::writeParamOperand(const Value *Operand,
Out << ' ' << Attribute::getAsString(Attrs);
Out << ' ';
// Print the operand
- WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
+ WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
}
}
@@ -1169,6 +1397,7 @@ void AssemblyWriter::printModule(const Module *M) {
std::string Asm = M->getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
+ Out << '\n';
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
@@ -1183,11 +1412,12 @@ void AssemblyWriter::printModule(const Module *M) {
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
Out << "\"\n";
}
-
+
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
if (LI != LE) {
+ Out << '\n';
Out << "deplibs = [ ";
while (LI != LE) {
Out << '"' << *LI << '"';
@@ -1195,16 +1425,19 @@ void AssemblyWriter::printModule(const Module *M) {
if (LI != LE)
Out << ", ";
}
- Out << " ]\n";
+ Out << " ]";
}
// Loop over the symbol table, emitting all id'd types.
+ if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
printTypeSymbolTable(M->getTypeSymbolTable());
+ // Output all globals.
+ if (!M->global_empty()) Out << '\n';
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I)
printGlobal(I);
-
+
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
@@ -1214,36 +1447,55 @@ void AssemblyWriter::printModule(const Module *M) {
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
+
+ // Output named metadata.
+ if (!M->named_metadata_empty()) Out << '\n';
+ for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
+ E = M->named_metadata_end(); I != E; ++I) {
+ const NamedMDNode *NMD = I;
+ Out << "!" << NMD->getName() << " = !{";
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
+ if (i) Out << ", ";
+ MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
+ Out << '!' << Machine.getMetadataSlot(MD);
+ }
+ Out << "}\n";
+ }
+
+ // Output metadata.
+ if (!Machine.mdnEmpty()) Out << '\n';
+ WriteMDNodes(Out, TypePrinter, Machine);
}
-static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
+static void PrintLinkage(GlobalValue::LinkageTypes LT,
+ formatted_raw_ostream &Out) {
switch (LT) {
- case GlobalValue::PrivateLinkage: Out << "private "; break;
- case GlobalValue::InternalLinkage: Out << "internal "; break;
+ case GlobalValue::ExternalLinkage: break;
+ case GlobalValue::PrivateLinkage: Out << "private "; break;
+ case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
+ case GlobalValue::InternalLinkage: Out << "internal "; break;
+ case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
+ case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
+ case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
+ case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
+ case GlobalValue::CommonLinkage: Out << "common "; break;
+ case GlobalValue::AppendingLinkage: Out << "appending "; break;
+ case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
+ case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
+ case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
case GlobalValue::AvailableExternallyLinkage:
Out << "available_externally ";
break;
- case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
- case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
- case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
- case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
- case GlobalValue::CommonLinkage: Out << "common "; break;
- case GlobalValue::AppendingLinkage: Out << "appending "; break;
- case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
- case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
- case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
- case GlobalValue::ExternalLinkage: break;
case GlobalValue::GhostLinkage:
- Out << "GhostLinkage not allowed in AsmWriter!\n";
- abort();
+ llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
}
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
- raw_ostream &Out) {
+ formatted_raw_ostream &Out) {
switch (Vis) {
- default: assert(0 && "Invalid visibility style!");
+ default: llvm_unreachable("Invalid visibility style!");
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
@@ -1251,36 +1503,12 @@ static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
- if (GV->hasInitializer())
- // If GV is initialized using Metadata then separate out metadata
- // operands used by the initializer. Note, MDNodes are not cyclic.
- if (MDNode *N = dyn_cast<MDNode>(GV->getInitializer())) {
- SmallVector<const MDNode *, 4> WorkList;
- // Collect MDNodes used by the initializer.
- for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
- I != E; ++I) {
- const Value *TV = *I;
- if (TV)
- if (const MDNode *NN = dyn_cast<MDNode>(TV))
- WorkList.push_back(NN);
- }
-
- // Print MDNodes used by the initializer.
- while (!WorkList.empty()) {
- const MDNode *N = WorkList.back(); WorkList.pop_back();
- printMDNode(N, true);
- Out << '\n';
- }
- }
-
- if (GV->hasName()) {
- PrintLLVMName(Out, GV);
- Out << " = ";
- }
+ WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
+ Out << " = ";
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
-
+
PrintLinkage(GV->getLinkage(), Out);
PrintVisibility(GV->getVisibility(), Out);
@@ -1292,12 +1520,9 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasInitializer()) {
Out << ' ';
- if (MDNode *N = dyn_cast<MDNode>(GV->getInitializer()))
- printMDNode(N, false);
- else
- writeOperand(GV->getInitializer(), false);
+ writeOperand(GV->getInitializer(), false);
}
-
+
if (GV->hasSection())
Out << ", section \"" << GV->getSection() << '"';
if (GV->getAlignment())
@@ -1307,47 +1532,6 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
Out << '\n';
}
-void AssemblyWriter::printMDNode(const MDNode *Node,
- bool StandAlone) {
- std::map<const MDNode *, unsigned>::iterator MI = MDNodes.find(Node);
- // If this node is already printed then just refer it using its Metadata
- // id number.
- if (MI != MDNodes.end()) {
- if (!StandAlone)
- Out << "!" << MI->second;
- return;
- }
-
- if (StandAlone) {
- // Print standalone MDNode.
- // !42 = !{ ... }
- Out << "!" << MetadataIDNo << " = ";
- Out << "constant metadata ";
- }
-
- Out << "!{";
- for (MDNode::const_elem_iterator I = Node->elem_begin(), E = Node->elem_end();
- I != E;) {
- const Value *TV = *I;
- if (!TV)
- Out << "null";
- else if (const MDNode *N = dyn_cast<MDNode>(TV)) {
- TypePrinter.print(N->getType(), Out);
- Out << ' ';
- printMDNode(N, StandAlone);
- }
- else if (!*I)
- Out << "null";
- else
- writeOperand(*I, true);
- if (++I != E)
- Out << ", ";
- }
- Out << "}";
-
- MDNodes[Node] = MetadataIDNo++;
-}
-
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
// Don't crash when dumping partially built GA
if (!GA->hasName())
@@ -1361,9 +1545,9 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
Out << "alias ";
PrintLinkage(GA->getLinkage(), Out);
-
+
const Constant *Aliasee = GA->getAliasee();
-
+
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
TypePrinter.print(GV->getType(), Out);
Out << ' ';
@@ -1372,7 +1556,7 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
TypePrinter.print(F->getFunctionType(), Out);
Out << "* ";
- WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
+ WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
} else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
TypePrinter.print(GA->getType(), Out);
Out << ' ';
@@ -1385,7 +1569,7 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
"Unsupported aliasee");
writeOperand(CE, false);
}
-
+
printInfoComment(*GA);
Out << '\n';
}
@@ -1393,19 +1577,18 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) {
void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
// Emit all numbered types.
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
- Out << "\ttype ";
-
+ Out << '%' << i << " = type ";
+
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
- Out << "\t\t; type %" << i << '\n';
+ Out << '\n';
}
-
+
// Print the named types.
for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
TI != TE; ++TI) {
- Out << '\t';
- PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
+ PrintLLVMName(Out, TI->first, LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
@@ -1427,7 +1610,7 @@ void AssemblyWriter::printFunction(const Function *F) {
Out << "declare ";
else
Out << "define ";
-
+
PrintLinkage(F->getLinkage(), Out);
PrintVisibility(F->getVisibility(), Out);
@@ -1451,7 +1634,7 @@ void AssemblyWriter::printFunction(const Function *F) {
Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
- WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
+ WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
Out << '(';
Machine.incorporateFunction(F);
@@ -1472,10 +1655,10 @@ void AssemblyWriter::printFunction(const Function *F) {
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
// Insert commas as we go... the first arg doesn't get a comma
if (i) Out << ", ";
-
+
// Output type...
TypePrinter.print(FT->getParamType(i), Out);
-
+
Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
if (ArgAttrs != Attribute::None)
Out << ' ' << Attribute::getAsString(ArgAttrs);
@@ -1515,7 +1698,7 @@ void AssemblyWriter::printFunction(const Function *F) {
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
-void AssemblyWriter::printArgument(const Argument *Arg,
+void AssemblyWriter::printArgument(const Argument *Arg,
Attributes Attrs) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
@@ -1536,7 +1719,7 @@ void AssemblyWriter::printArgument(const Argument *Arg,
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
- PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
+ PrintLLVMName(Out, BB->getName(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
@@ -1547,13 +1730,15 @@ void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
Out << "<badref>";
}
- if (BB->getParent() == 0)
- Out << "\t\t; Error: Block without parent!";
- else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
+ if (BB->getParent() == 0) {
+ Out.PadToColumn(50);
+ Out << "; Error: Block without parent!";
+ } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block...
- Out << "\t\t;";
+ Out.PadToColumn(50);
+ Out << ";";
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
-
+
if (PI == PE) {
Out << " No predecessors!";
} else {
@@ -1571,8 +1756,10 @@ void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
- for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
printInstruction(*I);
+ Out << '\n';
+ }
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
@@ -1582,23 +1769,11 @@ void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
- if (V.getType() != Type::VoidTy) {
- Out << "\t\t; <";
+ if (V.getType() != Type::getVoidTy(V.getContext())) {
+ Out.PadToColumn(50);
+ Out << "; <";
TypePrinter.print(V.getType(), Out);
- Out << '>';
-
- if (!V.hasName() && !isa<Instruction>(V)) {
- int SlotNum;
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
- SlotNum = Machine.getGlobalSlot(GV);
- else
- SlotNum = Machine.getLocalSlot(&V);
- if (SlotNum == -1)
- Out << ":<badref>";
- else
- Out << ':' << SlotNum; // Print out the def slot taken.
- }
- Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
+ Out << "> [#uses=" << V.getNumUses() << ']'; // Output # uses
}
}
@@ -1606,13 +1781,14 @@ void AssemblyWriter::printInfoComment(const Value &V) {
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
- Out << '\t';
+ // Print out indentation for an instruction.
+ Out << " ";
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
- } else if (I.getType() != Type::VoidTy) {
+ } else if (I.getType() != Type::getVoidTy(I.getContext())) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
@@ -1633,6 +1809,9 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
// Print out the opcode...
Out << I.getOpcodeName();
+ // Print out optimization information.
+ WriteOptimizationInfo(Out, &I);
+
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << getPredicateText(CI->getPredicate());
@@ -1659,12 +1838,12 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
- Out << "\n\t\t";
+ Out << "\n ";
writeOperand(I.getOperand(op ), true);
Out << ", ";
writeOperand(I.getOperand(op+1), true);
}
- Out << "\n\t]";
+ Out << "\n ]";
} else if (isa<PHINode>(I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
@@ -1781,7 +1960,7 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
if (PAL.getFnAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
- Out << "\n\t\t\tto ";
+ Out << "\n to ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
@@ -1789,7 +1968,7 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
TypePrinter.print(AI->getType()->getElementType(), Out);
- if (AI->isArrayAllocation()) {
+ if (!AI->getArraySize() || AI->isArrayAllocation()) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
@@ -1845,7 +2024,7 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
-
+
// Print post operand alignment for load/store
if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
Out << ", align " << cast<LoadInst>(I).getAlignment();
@@ -1853,8 +2032,18 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
Out << ", align " << cast<StoreInst>(I).getAlignment();
}
+ // Print Metadata info
+ if (!MDNames.empty()) {
+ MetadataContext &TheMetadata = I.getContext().getMetadata();
+ const MetadataContext::MDMapTy *MDMap = TheMetadata.getMDs(&I);
+ if (MDMap)
+ for (MetadataContext::MDMapTy::const_iterator MI = MDMap->begin(),
+ ME = MDMap->end(); MI != ME; ++MI)
+ if (const MDNode *MD = dyn_cast_or_null<MDNode>(MI->second))
+ Out << ", !" << MDNames[MI->first]
+ << " !" << Machine.getMetadataSlot(MD);
+ }
printInfoComment(I);
- Out << '\n';
}
@@ -1862,21 +2051,13 @@ void AssemblyWriter::printInstruction(const Instruction &I) {
// External Interface declarations
//===----------------------------------------------------------------------===//
-void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
- raw_os_ostream OS(o);
- print(OS, AAW);
-}
-void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
+void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(this);
+ formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, AAW);
W.write(this);
}
-void Type::print(std::ostream &o) const {
- raw_os_ostream OS(o);
- print(OS);
-}
-
void Type::print(raw_ostream &OS) const {
if (this == 0) {
OS << "<null Type>";
@@ -1885,12 +2066,12 @@ void Type::print(raw_ostream &OS) const {
TypePrinting().print(this, OS);
}
-void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
+void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
if (this == 0) {
- OS << "printing a <null> value\n";
+ ROS << "printing a <null> value\n";
return;
}
-
+ formatted_raw_ostream OS(ROS);
if (const Instruction *I = dyn_cast<Instruction>(this)) {
const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
SlotTracker SlotTable(F);
@@ -1905,14 +2086,33 @@ void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(GV->getParent());
AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
W.write(GV);
- } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
+ } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
TypePrinting TypePrinter;
- TypePrinter.print(N->getType(), OS);
+ TypePrinter.print(MDS->getType(), OS);
OS << ' ';
- // FIXME: Do we need a slot tracker for metadata ?
- SlotTracker SlotTable((const Function *)NULL);
- AssemblyWriter W(OS, SlotTable, NULL, AAW);
- W.printMDNode(N, false);
+ OS << "!\"";
+ PrintEscapedString(MDS->getString(), OS);
+ OS << '"';
+ } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
+ SlotTracker SlotTable(N);
+ TypePrinting TypePrinter;
+ SlotTable.initialize();
+ WriteMDNodes(OS, TypePrinter, SlotTable);
+ } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
+ SlotTracker SlotTable(N);
+ TypePrinting TypePrinter;
+ SlotTable.initialize();
+ OS << "!" << N->getName() << " = !{";
+ for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
+ if (i) OS << ", ";
+ MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
+ if (MD)
+ OS << '!' << SlotTable.getMetadataSlot(MD);
+ else
+ OS << "null";
+ }
+ OS << "}\n";
+ WriteMDNodes(OS, TypePrinter, SlotTable);
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
@@ -1924,13 +2124,15 @@ void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
} else if (isa<InlineAsm>(this)) {
WriteAsOperand(OS, this, true, 0);
} else {
- assert(0 && "Unknown value to print out!");
+ // Otherwise we don't know what it is. Call the virtual function to
+ // allow a subclass to print itself.
+ printCustom(OS);
}
}
-void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
- raw_os_ostream OS(O);
- print(OS, AAW);
+// Value::printCustom - subclasses should override this to implement printing.
+void Value::printCustom(raw_ostream &OS) const {
+ llvm_unreachable("Unknown value to print out!");
}
// Value::dump - allow easy printing of Values from the debugger.
diff --git a/lib/VMCore/Attributes.cpp b/lib/VMCore/Attributes.cpp
index 8dfbd1d..d68bba3 100644
--- a/lib/VMCore/Attributes.cpp
+++ b/lib/VMCore/Attributes.cpp
@@ -15,8 +15,10 @@
#include "llvm/Type.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/FoldingSet.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/System/Atomic.h"
+#include "llvm/System/Mutex.h"
#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -40,7 +42,7 @@ std::string Attribute::getAsString(Attributes Attrs) {
if (Attrs & Attribute::NoCapture)
Result += "nocapture ";
if (Attrs & Attribute::StructRet)
- Result += "sret ";
+ Result += "sret ";
if (Attrs & Attribute::ByVal)
Result += "byval ";
if (Attrs & Attribute::Nest)
@@ -53,6 +55,8 @@ std::string Attribute::getAsString(Attributes Attrs) {
Result += "optsize ";
if (Attrs & Attribute::NoInline)
Result += "noinline ";
+ if (Attrs & Attribute::InlineHint)
+ Result += "inlinehint ";
if (Attrs & Attribute::AlwaysInline)
Result += "alwaysinline ";
if (Attrs & Attribute::StackProtect)
@@ -63,6 +67,8 @@ std::string Attribute::getAsString(Attributes Attrs) {
Result += "noredzone ";
if (Attrs & Attribute::NoImplicitFloat)
Result += "noimplicitfloat ";
+ if (Attrs & Attribute::Naked)
+ Result += "naked ";
if (Attrs & Attribute::Alignment) {
Result += "align ";
Result += utostr(Attribute::getAlignmentFromAttrs(Attrs));
@@ -94,7 +100,7 @@ Attributes Attribute::typeIncompatible(const Type *Ty) {
namespace llvm {
class AttributeListImpl : public FoldingSetNode {
- unsigned RefCount;
+ sys::cas_flag RefCount;
// AttributesList is uniqued, these should not be publicly available.
void operator=(const AttributeListImpl &); // Do not implement
@@ -108,8 +114,11 @@ public:
RefCount = 0;
}
- void AddRef() { ++RefCount; }
- void DropRef() { if (--RefCount == 0) delete this; }
+ void AddRef() { sys::AtomicIncrement(&RefCount); }
+ void DropRef() {
+ sys::cas_flag old = sys::AtomicDecrement(&RefCount);
+ if (old == 0) delete this;
+ }
void Profile(FoldingSetNodeID &ID) const {
Profile(ID, Attrs.data(), Attrs.size());
@@ -122,9 +131,11 @@ public:
};
}
+static ManagedStatic<sys::SmartMutex<true> > ALMutex;
static ManagedStatic<FoldingSet<AttributeListImpl> > AttributesLists;
AttributeListImpl::~AttributeListImpl() {
+ sys::SmartScopedLock<true> Lock(*ALMutex);
AttributesLists->RemoveNode(this);
}
@@ -147,6 +158,9 @@ AttrListPtr AttrListPtr::get(const AttributeWithIndex *Attrs, unsigned NumAttrs)
FoldingSetNodeID ID;
AttributeListImpl::Profile(ID, Attrs, NumAttrs);
void *InsertPos;
+
+ sys::SmartScopedLock<true> Lock(*ALMutex);
+
AttributeListImpl *PAL =
AttributesLists->FindNodeOrInsertPos(ID, InsertPos);
@@ -304,11 +318,11 @@ AttrListPtr AttrListPtr::removeAttr(unsigned Idx, Attributes Attrs) const {
}
void AttrListPtr::dump() const {
- cerr << "PAL[ ";
+ errs() << "PAL[ ";
for (unsigned i = 0; i < getNumSlots(); ++i) {
const AttributeWithIndex &PAWI = getSlot(i);
- cerr << "{" << PAWI.Index << "," << PAWI.Attrs << "} ";
+ errs() << "{" << PAWI.Index << "," << PAWI.Attrs << "} ";
}
- cerr << "]\n";
+ errs() << "]\n";
}
diff --git a/lib/VMCore/AutoUpgrade.cpp b/lib/VMCore/AutoUpgrade.cpp
index dd36607..77ab19f 100644
--- a/lib/VMCore/AutoUpgrade.cpp
+++ b/lib/VMCore/AutoUpgrade.cpp
@@ -14,10 +14,11 @@
#include "llvm/AutoUpgrade.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cstring>
using namespace llvm;
@@ -119,6 +120,31 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
}
break;
+ case 'e':
+ // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector.
+ if (Name.compare("llvm.eh.selector.i32") == 0) {
+ F->setName("llvm.eh.selector");
+ NewFn = F;
+ return true;
+ }
+ // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for.
+ if (Name.compare("llvm.eh.typeid.for.i32") == 0) {
+ F->setName("llvm.eh.typeid.for");
+ NewFn = F;
+ return true;
+ }
+ // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector.
+ if (Name.compare("llvm.eh.selector.i64") == 0) {
+ NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector);
+ return true;
+ }
+ // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for.
+ if (Name.compare("llvm.eh.typeid.for.i64") == 0) {
+ NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for);
+ return true;
+ }
+ break;
+
case 'p':
// This upgrades the llvm.part.select overloaded intrinsic names to only
// use one type specifier in the name. We only care about the old format
@@ -162,7 +188,8 @@ static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
Name.compare(13,4,"psra", 4) == 0 ||
Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') {
- const llvm::Type *VT = VectorType::get(IntegerType::get(64), 1);
+ const llvm::Type *VT =
+ VectorType::get(IntegerType::get(FTy->getContext(), 64), 1);
// We don't have to do anything if the parameter already has
// the correct type.
@@ -227,6 +254,8 @@ bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
// order to seamlessly integrate with existing context.
void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Function *F = CI->getCalledFunction();
+ LLVMContext &C = CI->getContext();
+
assert(F && "CallInst has no function associated with it.");
if (!NewFn) {
@@ -234,23 +263,23 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
bool isMovSD = false, isShufPD = false;
bool isUnpckhPD = false, isUnpcklPD = false;
bool isPunpckhQPD = false, isPunpcklQPD = false;
- if (strcmp(F->getNameStart(), "llvm.x86.sse2.loadh.pd") == 0)
+ if (F->getName() == "llvm.x86.sse2.loadh.pd")
isLoadH = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.loadl.pd") == 0)
+ else if (F->getName() == "llvm.x86.sse2.loadl.pd")
isLoadL = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.movl.dq") == 0)
+ else if (F->getName() == "llvm.x86.sse2.movl.dq")
isMovL = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.movs.d") == 0)
+ else if (F->getName() == "llvm.x86.sse2.movs.d")
isMovSD = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.shuf.pd") == 0)
+ else if (F->getName() == "llvm.x86.sse2.shuf.pd")
isShufPD = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.unpckh.pd") == 0)
+ else if (F->getName() == "llvm.x86.sse2.unpckh.pd")
isUnpckhPD = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.unpckl.pd") == 0)
+ else if (F->getName() == "llvm.x86.sse2.unpckl.pd")
isUnpcklPD = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.punpckh.qdq") == 0)
+ else if (F->getName() == "llvm.x86.sse2.punpckh.qdq")
isPunpckhQPD = true;
- else if (strcmp(F->getNameStart(), "llvm.x86.sse2.punpckl.qdq") == 0)
+ else if (F->getName() == "llvm.x86.sse2.punpckl.qdq")
isPunpcklQPD = true;
if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD ||
@@ -261,23 +290,23 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
if (isLoadH || isLoadL) {
Value *Op1 = UndefValue::get(Op0->getType());
Value *Addr = new BitCastInst(CI->getOperand(2),
- PointerType::getUnqual(Type::DoubleTy),
+ Type::getDoublePtrTy(C),
"upgraded.", CI);
Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI);
- Value *Idx = ConstantInt::get(Type::Int32Ty, 0);
+ Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0);
Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI);
if (isLoadH) {
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 0));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
} else {
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
}
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isMovL) {
- Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
+ Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
Idxs.push_back(Zero);
@@ -285,32 +314,33 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
Value *ZeroV = ConstantVector::get(Idxs);
Idxs.clear();
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 4));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 5));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 3));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI);
} else if (isMovSD ||
isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
Value *Op1 = CI->getOperand(2);
if (isMovSD) {
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
} else if (isUnpckhPD || isPunpckhQPD) {
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 1));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 3));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
} else {
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 0));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, 2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
}
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
} else if (isShufPD) {
Value *Op1 = CI->getOperand(2);
unsigned MaskVal = cast<ConstantInt>(CI->getOperand(3))->getZExtValue();
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, MaskVal & 1));
- Idxs.push_back(ConstantInt::get(Type::Int32Ty, ((MaskVal >> 1) & 1)+2));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1));
+ Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C),
+ ((MaskVal >> 1) & 1)+2));
Value *Mask = ConstantVector::get(Idxs);
SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
}
@@ -326,13 +356,13 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
// Clean up the old call now that it has been completely upgraded.
CI->eraseFromParent();
} else {
- assert(0 && "Unknown function for CallInst upgrade.");
+ llvm_unreachable("Unknown function for CallInst upgrade.");
}
return;
}
switch (NewFn->getIntrinsicID()) {
- default: assert(0 && "Unknown function for CallInst upgrade.");
+ default: llvm_unreachable("Unknown function for CallInst upgrade.");
case Intrinsic::x86_mmx_psll_d:
case Intrinsic::x86_mmx_psll_q:
case Intrinsic::x86_mmx_psll_w:
@@ -404,6 +434,27 @@ void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
CI->eraseFromParent();
}
break;
+ case Intrinsic::eh_selector:
+ case Intrinsic::eh_typeid_for: {
+ // Only the return type changed.
+ SmallVector<Value*, 8> Operands(CI->op_begin() + 1, CI->op_end());
+ CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
+ "upgraded." + CI->getName(), CI);
+ NewCI->setTailCall(CI->isTailCall());
+ NewCI->setCallingConv(CI->getCallingConv());
+
+ // Handle any uses of the old CallInst.
+ if (!CI->use_empty()) {
+ // Construct an appropriate cast from the new return type to the old.
+ CastInst *RetCast =
+ CastInst::Create(CastInst::getCastOpcode(NewCI, true,
+ F->getReturnType(), true),
+ NewCI, F->getReturnType(), NewCI->getName(), CI);
+ CI->replaceAllUsesWith(RetCast);
+ }
+ CI->eraseFromParent();
+ }
+ break;
}
}
@@ -428,3 +479,74 @@ void llvm::UpgradeCallsToIntrinsic(Function* F) {
}
}
}
+
+/// This function checks debug info intrinsics. If an intrinsic is invalid
+/// then this function simply removes the intrinsic.
+void llvm::CheckDebugInfoIntrinsics(Module *M) {
+
+
+ if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
+ if (!FuncStart->use_empty()) {
+ DbgFuncStartInst *DFSI = cast<DbgFuncStartInst>(FuncStart->use_back());
+ if (!isa<MDNode>(DFSI->getOperand(1))) {
+ while (!FuncStart->use_empty()) {
+ CallInst *CI = cast<CallInst>(FuncStart->use_back());
+ CI->eraseFromParent();
+ }
+ FuncStart->eraseFromParent();
+ }
+ }
+ }
+
+ if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
+ if (!StopPoint->use_empty()) {
+ DbgStopPointInst *DSPI = cast<DbgStopPointInst>(StopPoint->use_back());
+ if (!isa<MDNode>(DSPI->getOperand(3))) {
+ while (!StopPoint->use_empty()) {
+ CallInst *CI = cast<CallInst>(StopPoint->use_back());
+ CI->eraseFromParent();
+ }
+ StopPoint->eraseFromParent();
+ }
+ }
+ }
+
+ if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
+ if (!RegionStart->use_empty()) {
+ DbgRegionStartInst *DRSI = cast<DbgRegionStartInst>(RegionStart->use_back());
+ if (!isa<MDNode>(DRSI->getOperand(1))) {
+ while (!RegionStart->use_empty()) {
+ CallInst *CI = cast<CallInst>(RegionStart->use_back());
+ CI->eraseFromParent();
+ }
+ RegionStart->eraseFromParent();
+ }
+ }
+ }
+
+ if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
+ if (!RegionEnd->use_empty()) {
+ DbgRegionEndInst *DREI = cast<DbgRegionEndInst>(RegionEnd->use_back());
+ if (!isa<MDNode>(DREI->getOperand(1))) {
+ while (!RegionEnd->use_empty()) {
+ CallInst *CI = cast<CallInst>(RegionEnd->use_back());
+ CI->eraseFromParent();
+ }
+ RegionEnd->eraseFromParent();
+ }
+ }
+ }
+
+ if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
+ if (!Declare->use_empty()) {
+ DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
+ if (!isa<MDNode>(DDI->getOperand(2))) {
+ while (!Declare->use_empty()) {
+ CallInst *CI = cast<CallInst>(Declare->use_back());
+ CI->eraseFromParent();
+ }
+ Declare->eraseFromParent();
+ }
+ }
+ }
+}
diff --git a/lib/VMCore/BasicBlock.cpp b/lib/VMCore/BasicBlock.cpp
index 3065766..50cf84c 100644
--- a/lib/VMCore/BasicBlock.cpp
+++ b/lib/VMCore/BasicBlock.cpp
@@ -14,11 +14,11 @@
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/LeakDetector.h"
-#include "llvm/Support/Compiler.h"
#include "SymbolTableListTraitsImpl.h"
#include <algorithm>
using namespace llvm;
@@ -29,14 +29,18 @@ ValueSymbolTable *BasicBlock::getValueSymbolTable() {
return 0;
}
+LLVMContext &BasicBlock::getContext() const {
+ return getType()->getContext();
+}
+
// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class SymbolTableListTraits<Instruction, BasicBlock>;
-BasicBlock::BasicBlock(const std::string &Name, Function *NewParent,
+BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
BasicBlock *InsertBefore)
- : Value(Type::LabelTy, Value::BasicBlockVal), Parent(0) {
+ : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) {
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
@@ -235,14 +239,15 @@ void BasicBlock::removePredecessor(BasicBlock *Pred,
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
-BasicBlock *BasicBlock::splitBasicBlock(iterator I, const std::string &BBName) {
+BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
assert(I != InstList.end() &&
"Trying to get me to create degenerate basic block!");
BasicBlock *InsertBefore = next(Function::iterator(this))
.getNodePtrUnchecked();
- BasicBlock *New = BasicBlock::Create(BBName, getParent(), InsertBefore);
+ BasicBlock *New = BasicBlock::Create(getContext(), BBName,
+ getParent(), InsertBefore);
// Move all of the specified instructions from the original basic block into
// the new basic block.
diff --git a/lib/VMCore/CMakeLists.txt b/lib/VMCore/CMakeLists.txt
index c9cdce4..9b17d4b 100644
--- a/lib/VMCore/CMakeLists.txt
+++ b/lib/VMCore/CMakeLists.txt
@@ -13,9 +13,10 @@ add_llvm_library(LLVMCore
Instruction.cpp
Instructions.cpp
IntrinsicInst.cpp
- LeakDetector.cpp
LLVMContext.cpp
+ LeakDetector.cpp
Mangler.cpp
+ Metadata.cpp
Module.cpp
ModuleProvider.cpp
Pass.cpp
diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp
index 3aab0cc..c1fcc5f 100644
--- a/lib/VMCore/ConstantFold.cpp
+++ b/lib/VMCore/ConstantFold.cpp
@@ -12,9 +12,8 @@
// ConstantExpr::get* methods to automatically fold constants when possible.
//
// The current constant folding implementation is implemented in two pieces: the
-// template-based folder for simple primitive constants like ConstantInt, and
-// the special case hackery that we use to symbolically evaluate expressions
-// that use ConstantExprs.
+// pieces that don't need TargetData, and the pieces that do. This is to avoid
+// a dependence in VMCore on Target.
//
//===----------------------------------------------------------------------===//
@@ -24,8 +23,11 @@
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
@@ -39,7 +41,7 @@ using namespace llvm;
/// BitCastConstantVector - Convert the specified ConstantVector node to the
/// specified vector type. At this point, we know that the elements of the
/// input vector constant are all simple integer or FP values.
-static Constant *BitCastConstantVector(ConstantVector *CV,
+static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
const VectorType *DstTy) {
// If this cast changes element count then we can't handle it here:
// doing so requires endianness information. This should be handled by
@@ -47,7 +49,7 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
unsigned NumElts = DstTy->getNumElements();
if (NumElts != CV->getNumOperands())
return 0;
-
+
// Check to verify that all elements of the input are simple.
for (unsigned i = 0; i != NumElts; ++i) {
if (!isa<ConstantInt>(CV->getOperand(i)) &&
@@ -59,7 +61,8 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
std::vector<Constant*> Result;
const Type *DstEltTy = DstTy->getElementType();
for (unsigned i = 0; i != NumElts; ++i)
- Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
+ Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
+ DstEltTy));
return ConstantVector::get(Result);
}
@@ -70,13 +73,13 @@ static Constant *BitCastConstantVector(ConstantVector *CV,
static unsigned
foldConstantCastPair(
unsigned opc, ///< opcode of the second cast constant expression
- const ConstantExpr*Op, ///< the first cast constant expression
+ ConstantExpr *Op, ///< the first cast constant expression
const Type *DstTy ///< desintation type of the first cast
) {
assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
assert(CastInst::isCast(opc) && "Invalid cast opcode");
-
+
// The the types and opcodes for the two Cast constant expressions
const Type *SrcTy = Op->getOperand(0)->getType();
const Type *MidTy = Op->getType();
@@ -85,41 +88,45 @@ foldConstantCastPair(
// Let CastInst::isEliminableCastPair do the heavy lifting.
return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
- Type::Int64Ty);
+ Type::getInt64Ty(DstTy->getContext()));
}
-static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
+static Constant *FoldBitCast(LLVMContext &Context,
+ Constant *V, const Type *DestTy) {
const Type *SrcTy = V->getType();
if (SrcTy == DestTy)
return V; // no-op cast
-
+
// Check to see if we are casting a pointer to an aggregate to a pointer to
// the first element. If so, return the appropriate GEP instruction.
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
SmallVector<Value*, 8> IdxList;
- IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
+ Value *Zero = Constant::getNullValue(Type::getInt32Ty(Context));
+ IdxList.push_back(Zero);
const Type *ElTy = PTy->getElementType();
while (ElTy != DPTy->getElementType()) {
if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
if (STy->getNumElements() == 0) break;
ElTy = STy->getElementType(0);
- IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
+ IdxList.push_back(Zero);
} else if (const SequentialType *STy =
dyn_cast<SequentialType>(ElTy)) {
if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
ElTy = STy->getElementType();
- IdxList.push_back(IdxList[0]);
+ IdxList.push_back(Zero);
} else {
break;
}
}
-
+
if (ElTy == DPTy->getElementType())
- return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
+ // This GEP is inbounds because all indices are zero.
+ return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
+ IdxList.size());
}
-
+
// Handle casts from one vector constant to another. We know that the src
// and dest type have the same size (otherwise its an illegal cast).
if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
@@ -130,48 +137,50 @@ static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
// First, check for null. Undef is already handled.
if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(DestTy);
-
+
if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
- return BitCastConstantVector(CV, DestPTy);
+ return BitCastConstantVector(Context, CV, DestPTy);
}
// Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
// This allows for other simplifications (although some of them
// can only be handled by Analysis/ConstantFolding.cpp).
if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
- return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
+ return ConstantExpr::getBitCast(
+ ConstantVector::get(&V, 1), DestPTy);
}
-
+
// Finally, implement bitcast folding now. The code below doesn't handle
// bitcast right.
if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
return ConstantPointerNull::get(cast<PointerType>(DestTy));
-
+
// Handle integral constant input.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (DestTy->isInteger())
// Integral -> Integral. This is a no-op because the bit widths must
// be the same. Consequently, we just fold to V.
return V;
if (DestTy->isFloatingPoint())
- return ConstantFP::get(APFloat(CI->getValue(),
- DestTy != Type::PPC_FP128Ty));
+ return ConstantFP::get(Context, APFloat(CI->getValue(),
+ DestTy != Type::getPPC_FP128Ty(Context)));
// Otherwise, can't fold this (vector?)
return 0;
}
// Handle ConstantFP input.
- if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
+ if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
// FP -> Integral.
- return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
+ return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
return 0;
}
-Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
+ unsigned opc, Constant *V,
const Type *DestTy) {
if (isa<UndefValue>(V)) {
// zext(undef) = 0, because the top bits will be zero.
@@ -183,12 +192,12 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return UndefValue::get(DestTy);
}
// No compile-time operations on this type yet.
- if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
+ if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
return 0;
// If the cast operand is a constant expression, there's a few things we can
// do to try to simplify it.
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->isCast()) {
// Try hard to fold cast of cast because they are often eliminable.
if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
@@ -211,7 +220,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
// If the cast operand is a constant vector, perform the cast by
// operating on each element. In the cast of bitcasts, the element
// count may be mismatched; don't attempt to handle that here.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
if (isa<VectorType>(DestTy) &&
cast<VectorType>(DestTy)->getNumElements() ==
CV->getType()->getNumElements()) {
@@ -229,21 +238,21 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
switch (opc) {
case Instruction::FPTrunc:
case Instruction::FPExt:
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
bool ignored;
APFloat Val = FPC->getValueAPF();
- Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
- DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
- DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
- DestTy == Type::FP128Ty ? APFloat::IEEEquad :
+ Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
+ DestTy->isDoubleTy() ? APFloat::IEEEdouble :
+ DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
+ DestTy->isFP128Ty() ? APFloat::IEEEquad :
APFloat::Bogus,
APFloat::rmNearestTiesToEven, &ignored);
- return ConstantFP::get(Val);
+ return ConstantFP::get(Context, Val);
}
return 0; // Can't fold.
case Instruction::FPToUI:
case Instruction::FPToSI:
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
+ if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
const APFloat &V = FPC->getValueAPF();
bool ignored;
uint64_t x[2];
@@ -251,7 +260,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
APInt Val(DestBitWidth, 2, x);
- return ConstantInt::get(Val);
+ return ConstantInt::get(Context, Val);
}
return 0; // Can't fold.
case Instruction::IntToPtr: //always treated as unsigned
@@ -264,7 +273,7 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
return 0; // Other pointer types cannot be casted
case Instruction::UIToFP:
case Instruction::SIToFP:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt api = CI->getValue();
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
@@ -272,67 +281,68 @@ Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
(void)apf.convertFromAPInt(api,
opc==Instruction::SIToFP,
APFloat::rmNearestTiesToEven);
- return ConstantFP::get(apf);
+ return ConstantFP::get(Context, apf);
}
return 0;
case Instruction::ZExt:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.zext(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::SExt:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.sext(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::Trunc:
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
APInt Result(CI->getValue());
Result.trunc(BitWidth);
- return ConstantInt::get(Result);
+ return ConstantInt::get(Context, Result);
}
return 0;
case Instruction::BitCast:
- return FoldBitCast(const_cast<Constant*>(V), DestTy);
+ return FoldBitCast(Context, V, DestTy);
default:
assert(!"Invalid CE CastInst opcode");
break;
}
- assert(0 && "Failed to cast constant expression");
+ llvm_unreachable("Failed to cast constant expression");
return 0;
}
-Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
- const Constant *V1,
- const Constant *V2) {
- if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
- return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
+Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
+ Constant *Cond,
+ Constant *V1, Constant *V2) {
+ if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
+ return CB->getZExtValue() ? V1 : V2;
- if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
- if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
- if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
- if (V1 == V2) return const_cast<Constant*>(V1);
+ if (isa<UndefValue>(V1)) return V2;
+ if (isa<UndefValue>(V2)) return V1;
+ if (isa<UndefValue>(Cond)) return V1;
+ if (V1 == V2) return V1;
return 0;
}
-Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
- const Constant *Idx) {
+Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Idx) {
if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
if (Val->isNullValue()) // ee(zero, x) -> zero
return Constant::getNullValue(
cast<VectorType>(Val->getType())->getElementType());
-
- if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
- if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
+
+ if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
return CVal->getOperand(CIdx->getZExtValue());
} else if (isa<UndefValue>(Idx)) {
// ee({w,x,y,z}, undef) -> w (an arbitrary value).
@@ -342,17 +352,18 @@ Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
return 0;
}
-Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
- const Constant *Elt,
- const Constant *Idx) {
- const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
+Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Elt,
+ Constant *Idx) {
+ ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
if (!CIdx) return 0;
APInt idxVal = CIdx->getValue();
if (isa<UndefValue>(Val)) {
// Insertion of scalar constant into vector undef
// Optimize away insertion of undef
if (isa<UndefValue>(Elt))
- return const_cast<Constant*>(Val);
+ return Val;
// Otherwise break the aggregate undef into multiple undefs and do
// the insertion
unsigned numOps =
@@ -360,9 +371,9 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : UndefValue::get(Elt->getType());
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
@@ -370,7 +381,7 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
// Insertion of scalar constant into vector aggregate zero
// Optimize away insertion of zero
if (Elt->isNullValue())
- return const_cast<Constant*>(Val);
+ return Val;
// Otherwise break the aggregate zero into multiple zeros and do
// the insertion
unsigned numOps =
@@ -378,20 +389,20 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
std::vector<Constant*> Ops;
Ops.reserve(numOps);
for (unsigned i = 0; i < numOps; ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
- if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
+ if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
// Insertion of scalar constant into vector constant
std::vector<Constant*> Ops;
Ops.reserve(CVal->getNumOperands());
for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
- const Constant *Op =
+ Constant *Op =
(idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
- Ops.push_back(const_cast<Constant*>(Op));
+ Ops.push_back(Op);
}
return ConstantVector::get(Ops);
}
@@ -401,10 +412,11 @@ Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
/// return the specified element value. Otherwise return null.
-static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
+static Constant *GetVectorElement(LLVMContext &Context, Constant *C,
+ unsigned EltNo) {
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
return CV->getOperand(EltNo);
-
+
const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
if (isa<ConstantAggregateZero>(C))
return Constant::getNullValue(EltTy);
@@ -413,9 +425,10 @@ static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
return 0;
}
-Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
- const Constant *V2,
- const Constant *Mask) {
+Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
+ Constant *V1,
+ Constant *V2,
+ Constant *Mask) {
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
@@ -426,7 +439,7 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
// Loop over the shuffle mask, evaluating each element.
SmallVector<Constant*, 32> Result;
for (unsigned i = 0; i != MaskNumElts; ++i) {
- Constant *InElt = GetVectorElement(Mask, i);
+ Constant *InElt = GetVectorElement(Context, Mask, i);
if (InElt == 0) return 0;
if (isa<UndefValue>(InElt))
@@ -436,9 +449,9 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
if (Elt >= SrcNumElts*2)
InElt = UndefValue::get(EltTy);
else if (Elt >= SrcNumElts)
- InElt = GetVectorElement(V2, Elt - SrcNumElts);
+ InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
else
- InElt = GetVectorElement(V1, Elt);
+ InElt = GetVectorElement(Context, V1, Elt);
if (InElt == 0) return 0;
} else {
// Unknown value.
@@ -450,12 +463,13 @@ Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
return ConstantVector::get(&Result[0], Result.size());
}
-Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
+Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
+ Constant *Agg,
const unsigned *Idxs,
unsigned NumIdx) {
// Base case: no indices, so return the entire value.
if (NumIdx == 0)
- return const_cast<Constant *>(Agg);
+ return Agg;
if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
@@ -469,123 +483,111 @@ Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
Idxs + NumIdx));
// Otherwise recurse.
- return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
+ return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
Idxs+1, NumIdx-1);
}
-Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
- const Constant *Val,
+Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
+ Constant *Agg,
+ Constant *Val,
const unsigned *Idxs,
unsigned NumIdx) {
// Base case: no indices, so replace the entire value.
if (NumIdx == 0)
- return const_cast<Constant *>(Val);
+ return Val;
if (isa<UndefValue>(Agg)) {
// Insertion of constant into aggregate undef
- // Optimize away insertion of undef
+ // Optimize away insertion of undef.
if (isa<UndefValue>(Val))
- return const_cast<Constant*>(Agg);
+ return Agg;
+
// Otherwise break the aggregate undef into multiple undefs and do
- // the insertion
+ // the insertion.
const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
unsigned numOps;
if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
numOps = AR->getNumElements();
else
numOps = cast<StructType>(AggTy)->getNumElements();
+
std::vector<Constant*> Ops(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Type *MemberTy = AggTy->getTypeAtIndex(i);
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
+ ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
Val, Idxs+1, NumIdx-1) :
UndefValue::get(MemberTy);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- if (isa<StructType>(AggTy))
- return ConstantStruct::get(Ops);
- else
- return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+
+ if (const StructType* ST = dyn_cast<StructType>(AggTy))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
+
if (isa<ConstantAggregateZero>(Agg)) {
// Insertion of constant into aggregate zero
- // Optimize away insertion of zero
+ // Optimize away insertion of zero.
if (Val->isNullValue())
- return const_cast<Constant*>(Agg);
+ return Agg;
+
// Otherwise break the aggregate zero into multiple zeros and do
- // the insertion
+ // the insertion.
const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
unsigned numOps;
if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
numOps = AR->getNumElements();
else
numOps = cast<StructType>(AggTy)->getNumElements();
+
std::vector<Constant*> Ops(numOps);
for (unsigned i = 0; i < numOps; ++i) {
const Type *MemberTy = AggTy->getTypeAtIndex(i);
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
+ ConstantFoldInsertValueInstruction(Context,
+ Constant::getNullValue(MemberTy),
Val, Idxs+1, NumIdx-1) :
Constant::getNullValue(MemberTy);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- if (isa<StructType>(AggTy))
- return ConstantStruct::get(Ops);
- else
- return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
+
+ if (const StructType* ST = dyn_cast<StructType>(AggTy))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
}
+
if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
- // Insertion of constant into aggregate constant
+ // Insertion of constant into aggregate constant.
std::vector<Constant*> Ops(Agg->getNumOperands());
for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
- const Constant *Op =
+ Constant *Op =
(*Idxs == i) ?
- ConstantFoldInsertValueInstruction(Agg->getOperand(i),
+ ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
Val, Idxs+1, NumIdx-1) :
Agg->getOperand(i);
- Ops[i] = const_cast<Constant*>(Op);
+ Ops[i] = Op;
}
- Constant *C;
- if (isa<StructType>(Agg->getType()))
- C = ConstantStruct::get(Ops);
- else
- C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
- return C;
+
+ if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
+ return ConstantStruct::get(Context, Ops, ST->isPacked());
+ return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
}
return 0;
}
-/// EvalVectorOp - Given two vector constants and a function pointer, apply the
-/// function pointer to each element pair, producing a new ConstantVector
-/// constant. Either or both of V1 and V2 may be NULL, meaning a
-/// ConstantAggregateZero operand.
-static Constant *EvalVectorOp(const ConstantVector *V1,
- const ConstantVector *V2,
- const VectorType *VTy,
- Constant *(*FP)(Constant*, Constant*)) {
- std::vector<Constant*> Res;
- const Type *EltTy = VTy->getElementType();
- for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
- const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
- const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
- Res.push_back(FP(const_cast<Constant*>(C1),
- const_cast<Constant*>(C2)));
- }
- return ConstantVector::get(Res);
-}
-Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
- const Constant *C1,
- const Constant *C2) {
+Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
+ unsigned Opcode,
+ Constant *C1, Constant *C2) {
// No compile-time operations on this type yet.
- if (C1->getType() == Type::PPC_FP128Ty)
+ if (C1->getType()->isPPC_FP128Ty())
return 0;
- // Handle UndefValue up front
+ // Handle UndefValue up front.
if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
switch (Opcode) {
case Instruction::Xor:
@@ -606,23 +608,23 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::SRem:
if (!isa<UndefValue>(C2)) // undef / X -> 0
return Constant::getNullValue(C1->getType());
- return const_cast<Constant*>(C2); // X / undef -> undef
+ return C2; // X / undef -> undef
case Instruction::Or: // X | undef -> -1
if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
- return ConstantVector::getAllOnesValue(PTy);
- return ConstantInt::getAllOnesValue(C1->getType());
+ return Constant::getAllOnesValue(PTy);
+ return Constant::getAllOnesValue(C1->getType());
case Instruction::LShr:
if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
- return const_cast<Constant*>(C1); // undef lshr undef -> undef
+ return C1; // undef lshr undef -> undef
return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
// undef lshr X -> 0
case Instruction::AShr:
if (!isa<UndefValue>(C2))
- return const_cast<Constant*>(C1); // undef ashr X --> undef
+ return C1; // undef ashr X --> undef
else if (isa<UndefValue>(C1))
- return const_cast<Constant*>(C1); // undef ashr undef -> undef
+ return C1; // undef ashr undef -> undef
else
- return const_cast<Constant*>(C1); // X ashr undef --> X
+ return C1; // X ashr undef --> X
case Instruction::Shl:
// undef << X -> 0 or X << undef -> 0
return Constant::getNullValue(C1->getType());
@@ -630,23 +632,23 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
// Handle simplifications when the RHS is a constant int.
- if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
switch (Opcode) {
case Instruction::Add:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
+ if (CI2->equalsInt(0)) return C1; // X + 0 == X
break;
case Instruction::Sub:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
+ if (CI2->equalsInt(0)) return C1; // X - 0 == X
break;
case Instruction::Mul:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
+ if (CI2->equalsInt(0)) return C2; // X * 0 == 0
if (CI2->equalsInt(1))
- return const_cast<Constant*>(C1); // X * 1 == X
+ return C1; // X * 1 == X
break;
case Instruction::UDiv:
case Instruction::SDiv:
if (CI2->equalsInt(1))
- return const_cast<Constant*>(C1); // X / 1 == X
+ return C1; // X / 1 == X
if (CI2->equalsInt(0))
return UndefValue::get(CI2->getType()); // X / 0 == undef
break;
@@ -658,11 +660,11 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
return UndefValue::get(CI2->getType()); // X % 0 == undef
break;
case Instruction::And:
- if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
+ if (CI2->isZero()) return C2; // X & 0 == 0
if (CI2->isAllOnesValue())
- return const_cast<Constant*>(C1); // X & -1 == X
-
- if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ return C1; // X & -1 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
// (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
if (CE1->getOpcode() == Instruction::ZExt) {
unsigned DstWidth = CI2->getType()->getBitWidth();
@@ -670,19 +672,19 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
- return const_cast<Constant*>(C1);
+ return C1;
}
-
+
// If and'ing the address of a global with a constant, fold it.
if (CE1->getOpcode() == Instruction::PtrToInt &&
isa<GlobalValue>(CE1->getOperand(0))) {
GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
-
+
// Functions are at least 4-byte aligned.
unsigned GVAlign = GV->getAlignment();
if (isa<Function>(GV))
GVAlign = std::max(GVAlign, 4U);
-
+
if (GVAlign > 1) {
unsigned DstWidth = CI2->getType()->getBitWidth();
unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
@@ -696,26 +698,39 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
}
break;
case Instruction::Or:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
+ if (CI2->equalsInt(0)) return C1; // X | 0 == X
if (CI2->isAllOnesValue())
- return const_cast<Constant*>(C2); // X | -1 == -1
+ return C2; // X | -1 == -1
break;
case Instruction::Xor:
- if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
+ if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ switch (CE1->getOpcode()) {
+ default: break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ // cmp pred ^ true -> cmp !pred
+ assert(CI2->equalsInt(1));
+ CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
+ pred = CmpInst::getInversePredicate(pred);
+ return ConstantExpr::getCompare(pred, CE1->getOperand(0),
+ CE1->getOperand(1));
+ }
+ }
break;
case Instruction::AShr:
// ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
- if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
- return ConstantExpr::getLShr(const_cast<Constant*>(C1),
- const_cast<Constant*>(C2));
+ return ConstantExpr::getLShr(C1, C2);
break;
}
}
-
+
// At this point we know neither constant is an UndefValue.
- if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
- if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
+ if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
using namespace APIntOps;
const APInt &C1V = CI1->getValue();
const APInt &C2V = CI2->getValue();
@@ -723,51 +738,51 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
default:
break;
case Instruction::Add:
- return ConstantInt::get(C1V + C2V);
+ return ConstantInt::get(Context, C1V + C2V);
case Instruction::Sub:
- return ConstantInt::get(C1V - C2V);
+ return ConstantInt::get(Context, C1V - C2V);
case Instruction::Mul:
- return ConstantInt::get(C1V * C2V);
+ return ConstantInt::get(Context, C1V * C2V);
case Instruction::UDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(C1V.udiv(C2V));
+ return ConstantInt::get(Context, C1V.udiv(C2V));
case Instruction::SDiv:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
- return ConstantInt::get(C1V.sdiv(C2V));
+ return ConstantInt::get(Context, C1V.sdiv(C2V));
case Instruction::URem:
assert(!CI2->isNullValue() && "Div by zero handled above");
- return ConstantInt::get(C1V.urem(C2V));
+ return ConstantInt::get(Context, C1V.urem(C2V));
case Instruction::SRem:
assert(!CI2->isNullValue() && "Div by zero handled above");
if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
- return ConstantInt::get(C1V.srem(C2V));
+ return ConstantInt::get(Context, C1V.srem(C2V));
case Instruction::And:
- return ConstantInt::get(C1V & C2V);
+ return ConstantInt::get(Context, C1V & C2V);
case Instruction::Or:
- return ConstantInt::get(C1V | C2V);
+ return ConstantInt::get(Context, C1V | C2V);
case Instruction::Xor:
- return ConstantInt::get(C1V ^ C2V);
+ return ConstantInt::get(Context, C1V ^ C2V);
case Instruction::Shl: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.shl(shiftAmt));
+ return ConstantInt::get(Context, C1V.shl(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::LShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.lshr(shiftAmt));
+ return ConstantInt::get(Context, C1V.lshr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
case Instruction::AShr: {
uint32_t shiftAmt = C2V.getZExtValue();
if (shiftAmt < C1V.getBitWidth())
- return ConstantInt::get(C1V.ashr(shiftAmt));
+ return ConstantInt::get(Context, C1V.ashr(shiftAmt));
else
return UndefValue::get(C1->getType()); // too big shift is undef
}
@@ -782,13 +797,13 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
- if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
+ if (CI1->equalsInt(0)) return C1;
break;
default:
break;
}
- } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
- if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
+ } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
+ if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
APFloat C1V = CFP1->getValueAPF();
APFloat C2V = CFP2->getValueAPF();
APFloat C3V = C1V; // copy for modification
@@ -797,65 +812,159 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
break;
case Instruction::FAdd:
(void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FSub:
(void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FMul:
(void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FDiv:
(void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
case Instruction::FRem:
(void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
- return ConstantFP::get(C3V);
+ return ConstantFP::get(Context, C3V);
}
}
} else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
- const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
- const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
+ ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
+ ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
(CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
+ std::vector<Constant*> Res;
+ const Type* EltTy = VTy->getElementType();
+ Constant *C1 = 0;
+ Constant *C2 = 0;
switch (Opcode) {
default:
break;
case Instruction::Add:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAdd(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FAdd:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFAdd);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFAdd(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Sub:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSub(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FSub:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFSub);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFSub(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Mul:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getMul(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FMul:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFMul);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFMul(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::UDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getUDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::SDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FDiv:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFDiv(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::URem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getURem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::SRem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getSRem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::FRem:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getFRem(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::And:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
- case Instruction::Or:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
- case Instruction::Xor:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAnd(C1, C2));
+ }
+ return ConstantVector::get(Res);
+ case Instruction::Or:
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getOr(C1, C2));
+ }
+ return ConstantVector::get(Res);
+ case Instruction::Xor:
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getXor(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::LShr:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getLShr);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getLShr(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::AShr:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAShr);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getAShr(C1, C2));
+ }
+ return ConstantVector::get(Res);
case Instruction::Shl:
- return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getShl);
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
+ C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
+ Res.push_back(ConstantExpr::getShl(C1, C2));
+ }
+ return ConstantVector::get(Res);
}
}
}
@@ -876,8 +985,8 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
case Instruction::Or:
case Instruction::Xor:
// No change of opcode required.
- return ConstantFoldBinaryInstruction(Opcode, C2, C1);
-
+ return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
+
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
@@ -893,7 +1002,36 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
break;
}
}
-
+
+ // i1 can be simplified in many cases.
+ if (C1->getType() == Type::getInt1Ty(Context)) {
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ return ConstantExpr::getXor(C1, C2);
+ case Instruction::Mul:
+ return ConstantExpr::getAnd(C1, C2);
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ // We can assume that C2 == 0. If it were one the result would be
+ // undefined because the shift value is as large as the bitwidth.
+ return C1;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return C1;
+ case Instruction::URem:
+ case Instruction::SRem:
+ // We can assume that C2 == 1. If it were zero the result would be
+ // undefined through division by zero.
+ return ConstantInt::getFalse(Context);
+ default:
+ break;
+ }
+ }
+
// We don't know how to fold this.
return 0;
}
@@ -922,7 +1060,8 @@ static bool isMaybeZeroSizedType(const Type *Ty) {
/// first is less than the second, return -1, if the second is less than the
/// first, return 1. If the constants are not integral, return -2.
///
-static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
+static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
+ const Type *ElTy) {
if (C1 == C2) return 0;
// Ok, we found a different index. If they are not ConstantInt, we can't do
@@ -932,11 +1071,11 @@ static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
// Ok, we have two differing integer indices. Sign extend them to be the same
// type. Long is always big enough, so we use it.
- if (C1->getType() != Type::Int64Ty)
- C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
+ if (C1->getType() != Type::getInt64Ty(Context))
+ C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
- if (C2->getType() != Type::Int64Ty)
- C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
+ if (C2->getType() != Type::getInt64Ty(Context))
+ C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
if (C1 == C2) return 0; // They are equal
@@ -965,13 +1104,13 @@ static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
/// To simplify this code we canonicalize the relation so that the first
/// operand is always the most "complex" of the two. We consider ConstantFP
/// to be the simplest, and ConstantExprs to be the most complex.
-static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
- const Constant *V2) {
+static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
+ Constant *V1, Constant *V2) {
assert(V1->getType() == V2->getType() &&
"Cannot compare values of different types!");
// No compile-time operations on this type yet.
- if (V1->getType() == Type::PPC_FP128Ty)
+ if (V1->getType()->isPPC_FP128Ty())
return FCmpInst::BAD_FCMP_PREDICATE;
// Handle degenerate case quickly
@@ -981,33 +1120,31 @@ static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
if (!isa<ConstantExpr>(V2)) {
// We distilled thisUse the standard constant folder for a few cases
ConstantInt *R = 0;
- Constant *C1 = const_cast<Constant*>(V1);
- Constant *C2 = const_cast<Constant*>(V2);
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OEQ;
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OLT;
R = dyn_cast<ConstantInt>(
- ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
+ ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
if (R && !R->isZero())
return FCmpInst::FCMP_OGT;
// Nothing more we can do
return FCmpInst::BAD_FCMP_PREDICATE;
}
-
+
// If the first operand is simple and second is ConstantExpr, swap operands.
- FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
+ FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
return FCmpInst::getSwappedPredicate(SwappedRelation);
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
// constantexpr or a simple constant.
- const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
switch (CE1->getOpcode()) {
case Instruction::FPTrunc:
case Instruction::FPExt:
@@ -1036,8 +1173,9 @@ static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
/// constants (like ConstantInt) to be the simplest, followed by
/// GlobalValues, followed by ConstantExpr's (the most complex).
///
-static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
- const Constant *V2,
+static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
+ Constant *V1,
+ Constant *V2,
bool isSigned) {
assert(V1->getType() == V2->getType() &&
"Cannot compare different types of values!");
@@ -1048,35 +1186,33 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// We distilled this down to a simple case, use the standard constant
// folder.
ConstantInt *R = 0;
- Constant *C1 = const_cast<Constant*>(V1);
- Constant *C2 = const_cast<Constant*>(V2);
ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
- pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
+ pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
if (R && !R->isZero())
return pred;
-
+
// If we couldn't figure it out, bail.
return ICmpInst::BAD_ICMP_PREDICATE;
}
-
+
// If the first operand is simple, swap operands.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
+ evaluateICmpRelation(Context, V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
} else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
if (isa<ConstantExpr>(V2)) { // Swap as necessary.
ICmpInst::Predicate SwappedRelation =
- evaluateICmpRelation(V2, V1, isSigned);
+ evaluateICmpRelation(Context, V2, V1, isSigned);
if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
return ICmpInst::getSwappedPredicate(SwappedRelation);
else
@@ -1099,8 +1235,8 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
} else {
// Ok, the LHS is known to be a constantexpr. The RHS can be any of a
// constantexpr, a CPR, or a simple constant.
- const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
- const Constant *CE1Op0 = CE1->getOperand(0);
+ ConstantExpr *CE1 = cast<ConstantExpr>(V1);
+ Constant *CE1Op0 = CE1->getOperand(0);
switch (CE1->getOpcode()) {
case Instruction::Trunc:
@@ -1119,28 +1255,12 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// null pointer, do the comparison with the pre-casted value.
if (V2->isNullValue() &&
(isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
- bool sgnd = isSigned;
if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(CE1Op0,
+ return evaluateICmpRelation(Context, CE1Op0,
Constant::getNullValue(CE1Op0->getType()),
- sgnd);
+ isSigned);
}
-
- // If the dest type is a pointer type, and the RHS is a constantexpr cast
- // from the same type as the src of the LHS, evaluate the inputs. This is
- // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
- // which happens a lot in compilers with tagged integers.
- if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
- if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
- CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
- CE1->getOperand(0)->getType()->isInteger()) {
- bool sgnd = isSigned;
- if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
- if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
- return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
- sgnd);
- }
break;
case Instruction::GetElementPtr:
@@ -1157,7 +1277,7 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
else
// If its not weak linkage, the GVal must have a non-zero address
// so the result is greater-than
- return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
} else if (isa<ConstantPointerNull>(CE1Op0)) {
// If we are indexing from a null pointer, check to see if we have any
// non-zero indices.
@@ -1196,8 +1316,8 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
}
}
} else {
- const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
- const Constant *CE2Op0 = CE2->getOperand(0);
+ ConstantExpr *CE2 = cast<ConstantExpr>(V2);
+ Constant *CE2Op0 = CE2->getOperand(0);
// There are MANY other foldings that we could perform here. They will
// probably be added on demand, as they seem needed.
@@ -1214,12 +1334,20 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
// ordering of the resultant pointers.
unsigned i = 1;
+ // The logic below assumes that the result of the comparison
+ // can be determined by finding the first index that differs.
+ // This doesn't work if there is over-indexing in any
+ // subsequent indices, so check for that case first.
+ if (!CE1->isGEPWithNoNotionalOverIndexing() ||
+ !CE2->isGEPWithNoNotionalOverIndexing())
+ return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
+
// Compare all of the operands the GEP's have in common.
gep_type_iterator GTI = gep_type_begin(CE1);
for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
++i, ++GTI)
- switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
- GTI.getIndexedType())) {
+ switch (IdxCompare(Context, CE1->getOperand(i),
+ CE2->getOperand(i), GTI.getIndexedType())) {
case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
case -2: return ICmpInst::BAD_ICMP_PREDICATE;
@@ -1254,36 +1382,28 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
return ICmpInst::BAD_ICMP_PREDICATE;
}
-Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
- const Constant *C1,
- const Constant *C2) {
+Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
+ unsigned short pred,
+ Constant *C1, Constant *C2) {
+ const Type *ResultTy;
+ if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
+ ResultTy = VectorType::get(Type::getInt1Ty(Context), VT->getNumElements());
+ else
+ ResultTy = Type::getInt1Ty(Context);
+
// Fold FCMP_FALSE/FCMP_TRUE unconditionally.
- if (pred == FCmpInst::FCMP_FALSE) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- return Constant::getNullValue(VectorType::getInteger(VT));
- else
- return ConstantInt::getFalse();
- }
-
- if (pred == FCmpInst::FCMP_TRUE) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
- return Constant::getAllOnesValue(VectorType::getInteger(VT));
- else
- return ConstantInt::getTrue();
- }
-
+ if (pred == FCmpInst::FCMP_FALSE)
+ return Constant::getNullValue(ResultTy);
+
+ if (pred == FCmpInst::FCMP_TRUE)
+ return Constant::getAllOnesValue(ResultTy);
+
// Handle some degenerate cases first
- if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
- // vicmp/vfcmp -> [vector] undef
- if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
- return UndefValue::get(VectorType::getInteger(VTy));
-
- // icmp/fcmp -> i1 undef
- return UndefValue::get(Type::Int1Ty);
- }
+ if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
+ return UndefValue::get(ResultTy);
// No compile-time operations on this type yet.
- if (C1->getType() == Type::PPC_FP128Ty)
+ if (C1->getType()->isPPC_FP128Ty())
return 0;
// icmp eq/ne(null,GV) -> false/true
@@ -1292,9 +1412,9 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse();
+ return ConstantInt::getFalse(Context);
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue();
+ return ConstantInt::getTrue(Context);
}
// icmp eq/ne(GV,null) -> false/true
} else if (C2->isNullValue()) {
@@ -1302,114 +1422,115 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
// Don't try to evaluate aliases. External weak GV can be null.
if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
if (pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse();
+ return ConstantInt::getFalse(Context);
else if (pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue();
+ return ConstantInt::getTrue(Context);
}
}
+ // If the comparison is a comparison between two i1's, simplify it.
+ if (C1->getType() == Type::getInt1Ty(Context)) {
+ switch(pred) {
+ case ICmpInst::ICMP_EQ:
+ if (isa<ConstantInt>(C2))
+ return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
+ return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
+ case ICmpInst::ICMP_NE:
+ return ConstantExpr::getXor(C1, C2);
+ default:
+ break;
+ }
+ }
+
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
APInt V1 = cast<ConstantInt>(C1)->getValue();
APInt V2 = cast<ConstantInt>(C2)->getValue();
switch (pred) {
- default: assert(0 && "Invalid ICmp Predicate"); return 0;
- case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
- case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
- case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
- case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
- case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
- case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
- case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
- case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
- case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
- case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
+ default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
+ case ICmpInst::ICMP_EQ:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1 == V2);
+ case ICmpInst::ICMP_NE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1 != V2);
+ case ICmpInst::ICMP_SLT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.slt(V2));
+ case ICmpInst::ICMP_SGT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sgt(V2));
+ case ICmpInst::ICMP_SLE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sle(V2));
+ case ICmpInst::ICMP_SGE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.sge(V2));
+ case ICmpInst::ICMP_ULT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ult(V2));
+ case ICmpInst::ICMP_UGT:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ugt(V2));
+ case ICmpInst::ICMP_ULE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.ule(V2));
+ case ICmpInst::ICMP_UGE:
+ return ConstantInt::get(Type::getInt1Ty(Context), V1.uge(V2));
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
APFloat::cmpResult R = C1V.compare(C2V);
switch (pred) {
- default: assert(0 && "Invalid FCmp Predicate"); return 0;
- case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
- case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
+ default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
+ case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
+ case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(Context);
case FCmpInst::FCMP_UNO:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered);
case FCmpInst::FCMP_ORD:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpUnordered);
case FCmpInst::FCMP_UEQ:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_OEQ:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpEqual);
case FCmpInst::FCMP_UNE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpEqual);
case FCmpInst::FCMP_ONE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan);
case FCmpInst::FCMP_OLT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan);
case FCmpInst::FCMP_UGT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OGT:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan);
case FCmpInst::FCMP_ULE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpGreaterThan);
case FCmpInst::FCMP_OLE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual);
case FCmpInst::FCMP_UGE:
- return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
+ return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpLessThan);
case FCmpInst::FCMP_OGE:
- return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
+ return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual);
}
} else if (isa<VectorType>(C1->getType())) {
SmallVector<Constant*, 16> C1Elts, C2Elts;
- C1->getVectorElements(C1Elts);
- C2->getVectorElements(C2Elts);
-
+ C1->getVectorElements(Context, C1Elts);
+ C2->getVectorElements(Context, C2Elts);
+
// If we can constant fold the comparison of each element, constant fold
// the whole vector comparison.
SmallVector<Constant*, 4> ResElts;
- const Type *InEltTy = C1Elts[0]->getType();
- bool isFP = InEltTy->isFloatingPoint();
- const Type *ResEltTy = InEltTy;
- if (isFP)
- ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
-
for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
// Compare the elements, producing an i1 result or constant expr.
- Constant *C;
- if (isFP)
- C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
- else
- C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
-
- // If it is a bool or undef result, convert to the dest type.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->isZero())
- ResElts.push_back(Constant::getNullValue(ResEltTy));
- else
- ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
- } else if (isa<UndefValue>(C)) {
- ResElts.push_back(UndefValue::get(ResEltTy));
- } else {
- break;
- }
+ ResElts.push_back(
+ ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
}
-
- if (ResElts.size() == C1Elts.size())
- return ConstantVector::get(&ResElts[0], ResElts.size());
+ return ConstantVector::get(&ResElts[0], ResElts.size());
}
if (C1->getType()->isFloatingPoint()) {
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateFCmpRelation(C1, C2)) {
- default: assert(0 && "Unknown relation!");
+ switch (evaluateFCmpRelation(Context, C1, C2)) {
+ default: llvm_unreachable("Unknown relation!");
case FCmpInst::FCMP_UNO:
case FCmpInst::FCMP_ORD:
case FCmpInst::FCMP_UEQ:
@@ -1459,110 +1580,115 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
Result = 1;
break;
}
-
+
// If we evaluated the result, return it now.
- if (Result != -1) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
- if (Result == 0)
- return Constant::getNullValue(VectorType::getInteger(VT));
- else
- return Constant::getAllOnesValue(VectorType::getInteger(VT));
- }
- return ConstantInt::get(Type::Int1Ty, Result);
- }
-
+ if (Result != -1)
+ return ConstantInt::get(Type::getInt1Ty(Context), Result);
+
} else {
// Evaluate the relation between the two constants, per the predicate.
int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
- switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
- default: assert(0 && "Unknown relational!");
+ switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
+ default: llvm_unreachable("Unknown relational!");
case ICmpInst::BAD_ICMP_PREDICATE:
break; // Couldn't determine anything about these constants.
case ICmpInst::ICMP_EQ: // We know the constants are equal!
// If we know the constants are equal, we can decide the result of this
// computation precisely.
- Result = (pred == ICmpInst::ICMP_EQ ||
- pred == ICmpInst::ICMP_ULE ||
- pred == ICmpInst::ICMP_SLE ||
- pred == ICmpInst::ICMP_UGE ||
- pred == ICmpInst::ICMP_SGE);
+ Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
break;
case ICmpInst::ICMP_ULT:
- // If we know that C1 < C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_ULT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_ULE);
+ switch (pred) {
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
+ Result = 1; break;
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_SLT:
- // If we know that C1 < C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_SLT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_SLE);
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_UGT:
- // If we know that C1 > C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_UGT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_UGE);
+ switch (pred) {
+ case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_SGT:
- // If we know that C1 > C2, we can decide the result of this computation
- // precisely.
- Result = (pred == ICmpInst::ICMP_SGT ||
- pred == ICmpInst::ICMP_NE ||
- pred == ICmpInst::ICMP_SGE);
+ switch (pred) {
+ case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
+ Result = 1; break;
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
+ Result = 0; break;
+ }
break;
case ICmpInst::ICMP_ULE:
- // If we know that C1 <= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_UGT) Result = 0;
- if (pred == ICmpInst::ICMP_ULT) Result = 1;
+ if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
break;
case ICmpInst::ICMP_SLE:
- // If we know that C1 <= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_SGT) Result = 0;
- if (pred == ICmpInst::ICMP_SLT) Result = 1;
+ if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
break;
-
case ICmpInst::ICMP_UGE:
- // If we know that C1 >= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_ULT) Result = 0;
- if (pred == ICmpInst::ICMP_UGT) Result = 1;
+ if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
break;
case ICmpInst::ICMP_SGE:
- // If we know that C1 >= C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_SLT) Result = 0;
- if (pred == ICmpInst::ICMP_SGT) Result = 1;
+ if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
break;
-
case ICmpInst::ICMP_NE:
- // If we know that C1 != C2, we can only partially decide this relation.
if (pred == ICmpInst::ICMP_EQ) Result = 0;
if (pred == ICmpInst::ICMP_NE) Result = 1;
break;
}
-
+
// If we evaluated the result, return it now.
- if (Result != -1) {
- if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
- if (Result == 0)
- return Constant::getNullValue(VT);
- else
- return Constant::getAllOnesValue(VT);
+ if (Result != -1)
+ return ConstantInt::get(Type::getInt1Ty(Context), Result);
+
+ // If the right hand side is a bitcast, try using its inverse to simplify
+ // it by moving it to the left hand side.
+ if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
+ if (CE2->getOpcode() == Instruction::BitCast) {
+ Constant *CE2Op0 = CE2->getOperand(0);
+ Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
+ return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
}
- return ConstantInt::get(Type::Int1Ty, Result);
}
-
+
+ // If the left hand side is an extension, try eliminating it.
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
+ if (CE1->getOpcode() == Instruction::SExt ||
+ CE1->getOpcode() == Instruction::ZExt) {
+ Constant *CE1Op0 = CE1->getOperand(0);
+ Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
+ if (CE1Inverse == CE1Op0) {
+ // Check whether we can safely truncate the right hand side.
+ Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
+ if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
+ return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
+ }
+ }
+ }
+ }
+
if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
- // If C2 is a constant expr and C1 isn't, flop them around and fold the
+ // If C2 is a constant expr and C1 isn't, flip them around and fold the
// other way if possible.
switch (pred) {
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_NE:
// No change of predicate required.
- return ConstantFoldCompareInstruction(pred, C2, C1);
+ return ConstantFoldCompareInstruction(Context, pred, C2, C1);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
@@ -1574,7 +1700,7 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_SGE:
// Change the predicate as necessary to swap the operands.
pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
- return ConstantFoldCompareInstruction(pred, C2, C1);
+ return ConstantFoldCompareInstruction(Context, pred, C2, C1);
default: // These predicates cannot be flopped around.
break;
@@ -1584,12 +1710,33 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
return 0;
}
-Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
+/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
+/// is "inbounds".
+static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
+ // No indices means nothing that could be out of bounds.
+ if (NumIdx == 0) return true;
+
+ // If the first index is zero, it's in bounds.
+ if (Idxs[0]->isNullValue()) return true;
+
+ // If the first index is one and all the rest are zero, it's in bounds,
+ // by the one-past-the-end rule.
+ if (!cast<ConstantInt>(Idxs[0])->isOne())
+ return false;
+ for (unsigned i = 1, e = NumIdx; i != e; ++i)
+ if (!Idxs[i]->isNullValue())
+ return false;
+ return true;
+}
+
+Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
+ Constant *C,
+ bool inBounds,
Constant* const *Idxs,
unsigned NumIdx) {
if (NumIdx == 0 ||
(NumIdx == 1 && Idxs[0]->isNullValue()))
- return const_cast<Constant*>(C);
+ return C;
if (isa<UndefValue>(C)) {
const PointerType *Ptr = cast<PointerType>(C->getType());
@@ -1614,12 +1761,12 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
(Value**)Idxs,
(Value**)Idxs+NumIdx);
assert(Ty != 0 && "Invalid indices for GEP!");
- return
- ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
+ return ConstantPointerNull::get(
+ PointerType::get(Ty,Ptr->getAddressSpace()));
}
}
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
@@ -1643,9 +1790,10 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
if (!Idx0->isNullValue()) {
const Type *IdxTy = Combined->getType();
if (IdxTy != Idx0->getType()) {
- Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
+ Constant *C1 =
+ ConstantExpr::getSExtOrBitCast(Idx0, Type::getInt64Ty(Context));
Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
- Type::Int64Ty);
+ Type::getInt64Ty(Context));
Combined = ConstantExpr::get(Instruction::Add, C1, C2);
} else {
Combined =
@@ -1655,8 +1803,13 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
NewIndices.push_back(Combined);
NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
- return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
- NewIndices.size());
+ return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
+ ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
+ &NewIndices[0],
+ NewIndices.size()) :
+ ConstantExpr::getGetElementPtr(CE->getOperand(0),
+ &NewIndices[0],
+ NewIndices.size());
}
}
@@ -1672,19 +1825,23 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
if (const ArrayType *CAT =
dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
if (CAT->getElementType() == SAT->getElementType())
- return ConstantExpr::getGetElementPtr(
+ return inBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(
+ (Constant*)CE->getOperand(0), Idxs, NumIdx) :
+ ConstantExpr::getGetElementPtr(
(Constant*)CE->getOperand(0), Idxs, NumIdx);
}
-
+
// Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
// Into: inttoptr (i64 0 to i8*)
// This happens with pointers to member functions in C++.
if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
- cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
+ cast<PointerType>(CE->getType())->getElementType() ==
+ Type::getInt8Ty(Context)) {
Constant *Base = CE->getOperand(0);
Constant *Offset = Idxs[0];
-
+
// Convert the smaller integer to the larger type.
if (Offset->getType()->getPrimitiveSizeInBits() <
Base->getType()->getPrimitiveSizeInBits())
@@ -1692,11 +1849,74 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
else if (Base->getType()->getPrimitiveSizeInBits() <
Offset->getType()->getPrimitiveSizeInBits())
Base = ConstantExpr::getZExt(Base, Offset->getType());
-
+
Base = ConstantExpr::getAdd(Base, Offset);
return ConstantExpr::getIntToPtr(Base, CE->getType());
}
}
+
+ // Check to see if any array indices are not within the corresponding
+ // notional array bounds. If so, try to determine if they can be factored
+ // out into preceding dimensions.
+ bool Unknown = false;
+ SmallVector<Constant *, 8> NewIdxs;
+ const Type *Ty = C->getType();
+ const Type *Prev = 0;
+ for (unsigned i = 0; i != NumIdx;
+ Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
+ if (ATy->getNumElements() <= INT64_MAX &&
+ ATy->getNumElements() != 0 &&
+ CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
+ if (isa<SequentialType>(Prev)) {
+ // It's out of range, but we can factor it into the prior
+ // dimension.
+ NewIdxs.resize(NumIdx);
+ ConstantInt *Factor = ConstantInt::get(CI->getType(),
+ ATy->getNumElements());
+ NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
+
+ Constant *PrevIdx = Idxs[i-1];
+ Constant *Div = ConstantExpr::getSDiv(CI, Factor);
+
+ // Before adding, extend both operands to i64 to avoid
+ // overflow trouble.
+ if (PrevIdx->getType() != Type::getInt64Ty(Context))
+ PrevIdx = ConstantExpr::getSExt(PrevIdx,
+ Type::getInt64Ty(Context));
+ if (Div->getType() != Type::getInt64Ty(Context))
+ Div = ConstantExpr::getSExt(Div,
+ Type::getInt64Ty(Context));
+
+ NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
+ } else {
+ // It's out of range, but the prior dimension is a struct
+ // so we can't do anything about it.
+ Unknown = true;
+ }
+ }
+ } else {
+ // We don't know if it's in range or not.
+ Unknown = true;
+ }
+ }
+
+ // If we did any factoring, start over with the adjusted indices.
+ if (!NewIdxs.empty()) {
+ for (unsigned i = 0; i != NumIdx; ++i)
+ if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
+ return inBounds ?
+ ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
+ NewIdxs.size()) :
+ ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
+ }
+
+ // If all indices are known integers and normalized, we can do a simple
+ // check for the "inbounds" property.
+ if (!Unknown && !inBounds &&
+ isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
+ return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
+
return 0;
}
-
diff --git a/lib/VMCore/ConstantFold.h b/lib/VMCore/ConstantFold.h
index 49aea11..cc97001 100644
--- a/lib/VMCore/ConstantFold.h
+++ b/lib/VMCore/ConstantFold.h
@@ -23,37 +23,46 @@ namespace llvm {
class Value;
class Constant;
class Type;
+ class LLVMContext;
// Constant fold various types of instruction...
Constant *ConstantFoldCastInstruction(
+ LLVMContext &Context,
unsigned opcode, ///< The opcode of the cast
- const Constant *V, ///< The source constant
+ Constant *V, ///< The source constant
const Type *DestTy ///< The destination type
);
- Constant *ConstantFoldSelectInstruction(const Constant *Cond,
- const Constant *V1,
- const Constant *V2);
- Constant *ConstantFoldExtractElementInstruction(const Constant *Val,
- const Constant *Idx);
- Constant *ConstantFoldInsertElementInstruction(const Constant *Val,
- const Constant *Elt,
- const Constant *Idx);
- Constant *ConstantFoldShuffleVectorInstruction(const Constant *V1,
- const Constant *V2,
- const Constant *Mask);
- Constant *ConstantFoldExtractValueInstruction(const Constant *Agg,
+ Constant *ConstantFoldSelectInstruction(LLVMContext &Context,
+ Constant *Cond,
+ Constant *V1, Constant *V2);
+ Constant *ConstantFoldExtractElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Idx);
+ Constant *ConstantFoldInsertElementInstruction(LLVMContext &Context,
+ Constant *Val,
+ Constant *Elt,
+ Constant *Idx);
+ Constant *ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
+ Constant *V1,
+ Constant *V2,
+ Constant *Mask);
+ Constant *ConstantFoldExtractValueInstruction(LLVMContext &Context,
+ Constant *Agg,
const unsigned *Idxs,
unsigned NumIdx);
- Constant *ConstantFoldInsertValueInstruction(const Constant *Agg,
- const Constant *Val,
- const unsigned* Idxs,
+ Constant *ConstantFoldInsertValueInstruction(LLVMContext &Context,
+ Constant *Agg,
+ Constant *Val,
+ const unsigned *Idxs,
unsigned NumIdx);
- Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
- const Constant *V2);
- Constant *ConstantFoldCompareInstruction(unsigned short predicate,
- const Constant *C1,
- const Constant *C2);
- Constant *ConstantFoldGetElementPtr(const Constant *C,
+ Constant *ConstantFoldBinaryInstruction(LLVMContext &Context,
+ unsigned Opcode, Constant *V1,
+ Constant *V2);
+ Constant *ConstantFoldCompareInstruction(LLVMContext &Context,
+ unsigned short predicate,
+ Constant *C1, Constant *C2);
+ Constant *ConstantFoldGetElementPtr(LLVMContext &Context, Constant *C,
+ bool inBounds,
Constant* const *Idxs, unsigned NumIdx);
} // End llvm namespace
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index a9e4e78..529c455 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -12,19 +12,23 @@
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
+#include "LLVMContextImpl.h"
#include "ConstantFold.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
-#include "llvm/MDNode.h"
#include "llvm/Module.h"
+#include "llvm/Operator.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h"
#include "llvm/System/Threading.h"
@@ -38,8 +42,64 @@ using namespace llvm;
// Constant Class
//===----------------------------------------------------------------------===//
-// Becomes a no-op when multithreading is disabled.
-ManagedStatic<sys::SmartRWMutex<true> > ConstantsLock;
+// Constructor to create a '0' constant of arbitrary type...
+static const uint64_t zero[2] = {0, 0};
+Constant* Constant::getNullValue(const Type* Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ return ConstantInt::get(Ty, 0);
+ case Type::FloatTyID:
+ return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
+ case Type::DoubleTyID:
+ return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
+ case Type::X86_FP80TyID:
+ return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
+ case Type::FP128TyID:
+ return ConstantFP::get(Ty->getContext(),
+ APFloat(APInt(128, 2, zero), true));
+ case Type::PPC_FP128TyID:
+ return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
+ case Type::PointerTyID:
+ return ConstantPointerNull::get(cast<PointerType>(Ty));
+ case Type::StructTyID:
+ case Type::ArrayTyID:
+ case Type::VectorTyID:
+ return ConstantAggregateZero::get(Ty);
+ default:
+ // Function, Label, or Opaque type?
+ assert(!"Cannot create a null constant of that type!");
+ return 0;
+ }
+}
+
+Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
+ const Type *ScalarTy = Ty->getScalarType();
+
+ // Create the base integer constant.
+ Constant *C = ConstantInt::get(Ty->getContext(), V);
+
+ // Convert an integer to a pointer, if necessary.
+ if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
+ C = ConstantExpr::getIntToPtr(C, PTy);
+
+ // Broadcast a scalar to a vector, if necessary.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
+Constant* Constant::getAllOnesValue(const Type* Ty) {
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
+ return ConstantInt::get(Ty->getContext(),
+ APInt::getAllOnesValue(ITy->getBitWidth()));
+
+ std::vector<Constant*> Elts;
+ const VectorType* VTy = cast<VectorType>(Ty);
+ Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
+ assert(Elts[0] && "Not a vector integer type!");
+ return cast<ConstantVector>(ConstantVector::get(Elts));
+}
void Constant::destroyConstantImpl() {
// When a Constant is destroyed, there may be lingering
@@ -52,10 +112,11 @@ void Constant::destroyConstantImpl() {
while (!use_empty()) {
Value *V = use_back();
#ifndef NDEBUG // Only in -g mode...
- if (!isa<Constant>(V))
- DOUT << "While deleting: " << *this
- << "\n\nUse still stuck around after Def is destroyed: "
- << *V << "\n\n";
+ if (!isa<Constant>(V)) {
+ errs() << "While deleting: " << *this
+ << "\n\nUse still stuck around after Def is destroyed: "
+ << *V << "\n\n";
+ }
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
Constant *CV = cast<Constant>(V);
@@ -99,85 +160,33 @@ bool Constant::canTrap() const {
}
}
-/// ContainsRelocations - Return true if the constant value contains relocations
-/// which cannot be resolved at compile time. Kind argument is used to filter
-/// only 'interesting' sorts of relocations.
-bool Constant::ContainsRelocations(unsigned Kind) const {
- if (const GlobalValue* GV = dyn_cast<GlobalValue>(this)) {
- bool isLocal = GV->hasLocalLinkage();
- if ((Kind & Reloc::Local) && isLocal) {
- // Global has local linkage and 'local' kind of relocations are
- // requested
- return true;
- }
-
- if ((Kind & Reloc::Global) && !isLocal) {
- // Global has non-local linkage and 'global' kind of relocations are
- // requested
- return true;
- }
- return false;
+/// getRelocationInfo - This method classifies the entry according to
+/// whether or not it may generate a relocation entry. This must be
+/// conservative, so if it might codegen to a relocatable entry, it should say
+/// so. The return values are:
+///
+/// NoRelocation: This constant pool entry is guaranteed to never have a
+/// relocation applied to it (because it holds a simple constant like
+/// '4').
+/// LocalRelocation: This entry has relocations, but the entries are
+/// guaranteed to be resolvable by the static linker, so the dynamic
+/// linker will never see them.
+/// GlobalRelocations: This entry may have arbitrary relocations.
+///
+/// FIXME: This really should not be in VMCore.
+Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
+ if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
+ return LocalRelocation; // Local to this file/library.
+ return GlobalRelocations; // Global reference.
}
-
+
+ PossibleRelocationsTy Result = NoRelocation;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (getOperand(i)->ContainsRelocations(Kind))
- return true;
-
- return false;
-}
-
-// Static constructor to create a '0' constant of arbitrary type...
-static const uint64_t zero[2] = {0, 0};
-Constant *Constant::getNullValue(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- return ConstantInt::get(Ty, 0);
- case Type::FloatTyID:
- return ConstantFP::get(APFloat(APInt(32, 0)));
- case Type::DoubleTyID:
- return ConstantFP::get(APFloat(APInt(64, 0)));
- case Type::X86_FP80TyID:
- return ConstantFP::get(APFloat(APInt(80, 2, zero)));
- case Type::FP128TyID:
- return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
- case Type::PPC_FP128TyID:
- return ConstantFP::get(APFloat(APInt(128, 2, zero)));
- case Type::PointerTyID:
- return ConstantPointerNull::get(cast<PointerType>(Ty));
- case Type::StructTyID:
- case Type::ArrayTyID:
- case Type::VectorTyID:
- return ConstantAggregateZero::get(Ty);
- default:
- // Function, Label, or Opaque type?
- assert(!"Cannot create a null constant of that type!");
- return 0;
- }
-}
-
-Constant *Constant::getAllOnesValue(const Type *Ty) {
- if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
- return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
- return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
-}
-
-// Static constructor to create an integral constant with all bits set
-ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
- if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
- return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
- return 0;
-}
-
-/// @returns the value for a vector integer constant of the given type that
-/// has all its bits set to true.
-/// @brief Get the all ones value
-ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
- std::vector<Constant*> Elts;
- Elts.resize(Ty->getNumElements(),
- ConstantInt::getAllOnesValue(Ty->getElementType()));
- assert(Elts[0] && "Not a vector integer type!");
- return cast<ConstantVector>(ConstantVector::get(Elts));
+ Result = std::max(Result, getOperand(i)->getRelocationInfo());
+
+ return Result;
}
@@ -185,7 +194,8 @@ ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
/// type, returns the elements of the vector in the specified smallvector.
/// This handles breaking down a vector undef into undef elements, etc. For
/// constant exprs and other cases we can't handle, we return an empty vector.
-void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
+void Constant::getVectorElements(LLVMContext &Context,
+ SmallVectorImpl<Constant*> &Elts) const {
assert(isa<VectorType>(getType()) && "Not a vector constant!");
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
@@ -220,95 +230,45 @@ ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
-ConstantInt *ConstantInt::TheTrueVal = 0;
-ConstantInt *ConstantInt::TheFalseVal = 0;
-
-namespace llvm {
- void CleanupTrueFalse(void *) {
- ConstantInt::ResetTrueFalse();
- }
-}
-
-static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
-
-ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
- assert(TheTrueVal == 0 && TheFalseVal == 0);
- TheTrueVal = get(Type::Int1Ty, 1);
- TheFalseVal = get(Type::Int1Ty, 0);
-
- // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
- TrueFalseCleanup.Register();
-
- return WhichOne ? TheTrueVal : TheFalseVal;
+ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
+ if (pImpl->TheTrueVal)
+ return pImpl->TheTrueVal;
+ else
+ return (pImpl->TheTrueVal =
+ ConstantInt::get(IntegerType::get(Context, 1), 1));
}
-
-namespace {
- struct DenseMapAPIntKeyInfo {
- struct KeyTy {
- APInt val;
- const Type* type;
- KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
- KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
- bool operator==(const KeyTy& that) const {
- return type == that.type && this->val == that.val;
- }
- bool operator!=(const KeyTy& that) const {
- return !this->operator==(that);
- }
- };
- static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
- static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
- static unsigned getHashValue(const KeyTy &Key) {
- return DenseMapInfo<void*>::getHashValue(Key.type) ^
- Key.val.getHashValue();
- }
- static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
- return LHS == RHS;
- }
- static bool isPod() { return false; }
- };
+ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
+ if (pImpl->TheFalseVal)
+ return pImpl->TheFalseVal;
+ else
+ return (pImpl->TheFalseVal =
+ ConstantInt::get(IntegerType::get(Context, 1), 0));
}
-typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
- DenseMapAPIntKeyInfo> IntMapTy;
-static ManagedStatic<IntMapTy> IntConstants;
-
-ConstantInt *ConstantInt::get(const IntegerType *Ty,
- uint64_t V, bool isSigned) {
- return get(APInt(Ty->getBitWidth(), V, isSigned));
-}
-
-Constant *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
- Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
-
- // For vectors, broadcast the value.
- if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
- return
- ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
-
- return C;
-}
-
// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
-ConstantInt *ConstantInt::get(const APInt& V) {
+ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
// Get the corresponding integer type for the bit width of the value.
- const IntegerType *ITy = IntegerType::get(V.getBitWidth());
+ const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
// get an existing value or the insertion position
DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
- ConstantsLock->reader_acquire();
- ConstantInt *&Slot = (*IntConstants)[Key];
- ConstantsLock->reader_release();
+ Context.pImpl->ConstantsLock.reader_acquire();
+ ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
+ Context.pImpl->ConstantsLock.reader_release();
if (!Slot) {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- ConstantInt *&NewSlot = (*IntConstants)[Key];
+ sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
+ ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
if (!Slot) {
NewSlot = new ConstantInt(ITy, V);
}
@@ -319,117 +279,153 @@ ConstantInt *ConstantInt::get(const APInt& V) {
}
}
-Constant *ConstantInt::get(const Type *Ty, const APInt &V) {
- ConstantInt *C = ConstantInt::get(V);
+Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
+ Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
+ V, isSigned);
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::get(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
+}
+
+ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
+ bool isSigned) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
+}
+
+ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
+ return get(Ty, V, true);
+}
+
+Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
+ ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
- return
- ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
+ return ConstantVector::get(
+ std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
+ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
+ uint8_t radix) {
+ return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
+}
+
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
- if (Ty == Type::FloatTy)
+ if (Ty->isFloatTy())
return &APFloat::IEEEsingle;
- if (Ty == Type::DoubleTy)
+ if (Ty->isDoubleTy())
return &APFloat::IEEEdouble;
- if (Ty == Type::X86_FP80Ty)
+ if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended;
- else if (Ty == Type::FP128Ty)
+ else if (Ty->isFP128Ty())
return &APFloat::IEEEquad;
- assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
+ assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
-ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
- : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
- assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
- "FP type Mismatch");
+/// get() - This returns a constant fp for the specified value in the
+/// specified type. This should only be used for simple constant values like
+/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
+Constant* ConstantFP::get(const Type* Ty, double V) {
+ LLVMContext &Context = Ty->getContext();
+
+ APFloat FV(V);
+ bool ignored;
+ FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
+ APFloat::rmNearestTiesToEven, &ignored);
+ Constant *C = get(Context, FV);
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::get(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
}
-bool ConstantFP::isNullValue() const {
- return Val.isZero() && !Val.isNegative();
+
+Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
+ LLVMContext &Context = Ty->getContext();
+
+ APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
+ Constant *C = get(Context, FV);
+
+ // For vectors, broadcast the value.
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantVector::get(
+ std::vector<Constant *>(VTy->getNumElements(), C));
+
+ return C;
}
-ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
+
+ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
+ LLVMContext &Context = Ty->getContext();
APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
apf.changeSign();
- return ConstantFP::get(apf);
+ return get(Context, apf);
}
-bool ConstantFP::isExactlyValue(const APFloat& V) const {
- return Val.bitwiseIsEqual(V);
-}
-namespace {
- struct DenseMapAPFloatKeyInfo {
- struct KeyTy {
- APFloat val;
- KeyTy(const APFloat& V) : val(V){}
- KeyTy(const KeyTy& that) : val(that.val) {}
- bool operator==(const KeyTy& that) const {
- return this->val.bitwiseIsEqual(that.val);
- }
- bool operator!=(const KeyTy& that) const {
- return !this->operator==(that);
- }
- };
- static inline KeyTy getEmptyKey() {
- return KeyTy(APFloat(APFloat::Bogus,1));
- }
- static inline KeyTy getTombstoneKey() {
- return KeyTy(APFloat(APFloat::Bogus,2));
- }
- static unsigned getHashValue(const KeyTy &Key) {
- return Key.val.getHashValue();
- }
- static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
- return LHS == RHS;
+Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
+ if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
+ if (PTy->getElementType()->isFloatingPoint()) {
+ std::vector<Constant*> zeros(PTy->getNumElements(),
+ getNegativeZero(PTy->getElementType()));
+ return ConstantVector::get(PTy, zeros);
}
- static bool isPod() { return false; }
- };
-}
-//---- ConstantFP::get() implementation...
-//
-typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
- DenseMapAPFloatKeyInfo> FPMapTy;
+ if (Ty->isFloatingPoint())
+ return getNegativeZero(Ty);
+
+ return Constant::getNullValue(Ty);
+}
-static ManagedStatic<FPMapTy> FPConstants;
-ConstantFP *ConstantFP::get(const APFloat &V) {
+// ConstantFP accessors.
+ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
- ConstantsLock->reader_acquire();
- ConstantFP *&Slot = (*FPConstants)[Key];
- ConstantsLock->reader_release();
+ LLVMContextImpl* pImpl = Context.pImpl;
+
+ pImpl->ConstantsLock.reader_acquire();
+ ConstantFP *&Slot = pImpl->FPConstants[Key];
+ pImpl->ConstantsLock.reader_release();
if (!Slot) {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- ConstantFP *&NewSlot = (*FPConstants)[Key];
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ ConstantFP *&NewSlot = pImpl->FPConstants[Key];
if (!NewSlot) {
const Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEsingle)
- Ty = Type::FloatTy;
+ Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble)
- Ty = Type::DoubleTy;
+ Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
- Ty = Type::X86_FP80Ty;
+ Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad)
- Ty = Type::FP128Ty;
+ Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
- Ty = Type::PPC_FP128Ty;
+ Ty = Type::getPPC_FP128Ty(Context);
}
NewSlot = new ConstantFP(Ty, V);
}
@@ -440,22 +436,24 @@ ConstantFP *ConstantFP::get(const APFloat &V) {
return Slot;
}
-/// get() - This returns a constant fp for the specified value in the
-/// specified type. This should only be used for simple constant values like
-/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
-Constant *ConstantFP::get(const Type *Ty, double V) {
- APFloat FV(V);
- bool ignored;
- FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
- APFloat::rmNearestTiesToEven, &ignored);
- Constant *C = get(FV);
+ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
+ const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
+ return ConstantFP::get(Ty->getContext(),
+ APFloat::getInf(Semantics, Negative));
+}
- // For vectors, broadcast the value.
- if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
- return
- ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
+ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
+ : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
+ assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
+ "FP type Mismatch");
+}
- return C;
+bool ConstantFP::isNullValue() const {
+ return Val.isZero() && !Val.isNegative();
+}
+
+bool ConstantFP::isExactlyValue(const APFloat& V) const {
+ return Val.bitwiseIsEqual(V);
}
//===----------------------------------------------------------------------===//
@@ -474,14 +472,65 @@ ConstantArray::ConstantArray(const ArrayType *T,
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
- assert((C->getType() == T->getElementType() ||
- (T->isAbstract() &&
- C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
+ assert(C->getType() == T->getElementType() &&
"Initializer for array element doesn't match array element type!");
*OL = C;
}
}
+Constant *ConstantArray::get(const ArrayType *Ty,
+ const std::vector<Constant*> &V) {
+ for (unsigned i = 0, e = V.size(); i != e; ++i) {
+ assert(V[i]->getType() == Ty->getElementType() &&
+ "Wrong type in array element initializer");
+ }
+ LLVMContextImpl *pImpl = Ty->getContext().pImpl;
+ // If this is an all-zero array, return a ConstantAggregateZero object
+ if (!V.empty()) {
+ Constant *C = V[0];
+ if (!C->isNullValue()) {
+ // Implicitly locked.
+ return pImpl->ArrayConstants.getOrCreate(Ty, V);
+ }
+ for (unsigned i = 1, e = V.size(); i != e; ++i)
+ if (V[i] != C) {
+ // Implicitly locked.
+ return pImpl->ArrayConstants.getOrCreate(Ty, V);
+ }
+ }
+
+ return ConstantAggregateZero::get(Ty);
+}
+
+
+Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
+ unsigned NumVals) {
+ // FIXME: make this the primary ctor method.
+ return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
+}
+
+/// ConstantArray::get(const string&) - Return an array that is initialized to
+/// contain the specified string. If length is zero then a null terminator is
+/// added to the specified string so that it may be used in a natural way.
+/// Otherwise, the length parameter specifies how much of the string to use
+/// and it won't be null terminated.
+///
+Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
+ bool AddNull) {
+ std::vector<Constant*> ElementVals;
+ for (unsigned i = 0; i < Str.size(); ++i)
+ ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
+
+ // Add a null terminator to the string...
+ if (AddNull) {
+ ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
+ }
+
+ ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
+ return get(ATy, ElementVals);
+}
+
+
ConstantStruct::ConstantStruct(const StructType *T,
const std::vector<Constant*> &V)
@@ -494,16 +543,41 @@ ConstantStruct::ConstantStruct(const StructType *T,
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
- assert((C->getType() == T->getElementType(I-V.begin()) ||
- ((T->getElementType(I-V.begin())->isAbstract() ||
- C->getType()->isAbstract()) &&
- T->getElementType(I-V.begin())->getTypeID() ==
- C->getType()->getTypeID())) &&
+ assert(C->getType() == T->getElementType(I-V.begin()) &&
"Initializer for struct element doesn't match struct element type!");
*OL = C;
}
}
+// ConstantStruct accessors.
+Constant* ConstantStruct::get(const StructType* T,
+ const std::vector<Constant*>& V) {
+ LLVMContextImpl* pImpl = T->getContext().pImpl;
+
+ // Create a ConstantAggregateZero value if all elements are zeros...
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (!V[i]->isNullValue())
+ // Implicitly locked.
+ return pImpl->StructConstants.getOrCreate(T, V);
+
+ return ConstantAggregateZero::get(T);
+}
+
+Constant* ConstantStruct::get(LLVMContext &Context,
+ const std::vector<Constant*>& V, bool packed) {
+ std::vector<const Type*> StructEls;
+ StructEls.reserve(V.size());
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ StructEls.push_back(V[i]->getType());
+ return get(StructType::get(Context, StructEls, packed), V);
+}
+
+Constant* ConstantStruct::get(LLVMContext &Context,
+ Constant* const *Vals, unsigned NumVals,
+ bool Packed) {
+ // FIXME: make this the primary ctor method.
+ return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
+}
ConstantVector::ConstantVector(const VectorType *T,
const std::vector<Constant*> &V)
@@ -514,297 +588,66 @@ ConstantVector::ConstantVector(const VectorType *T,
for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
I != E; ++I, ++OL) {
Constant *C = *I;
- assert((C->getType() == T->getElementType() ||
- (T->isAbstract() &&
- C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
+ assert(C->getType() == T->getElementType() &&
"Initializer for vector element doesn't match vector element type!");
*OL = C;
}
}
+// ConstantVector accessors.
+Constant* ConstantVector::get(const VectorType* T,
+ const std::vector<Constant*>& V) {
+ assert(!V.empty() && "Vectors can't be empty");
+ LLVMContext &Context = T->getContext();
+ LLVMContextImpl *pImpl = Context.pImpl;
+
+ // If this is an all-undef or alll-zero vector, return a
+ // ConstantAggregateZero or UndefValue.
+ Constant *C = V[0];
+ bool isZero = C->isNullValue();
+ bool isUndef = isa<UndefValue>(C);
-namespace llvm {
-// We declare several classes private to this file, so use an anonymous
-// namespace
-namespace {
-
-/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
-/// behind the scenes to implement unary constant exprs.
-class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly one operand
- void *operator new(size_t s) {
- return User::operator new(s, 1);
- }
- UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
- : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
- Op<0>() = C;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
-/// behind the scenes to implement binary constant exprs.
-class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly two operands
- void *operator new(size_t s) {
- return User::operator new(s, 2);
- }
- BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
- : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
- Op<0>() = C1;
- Op<1>() = C2;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// SelectConstantExpr - This class is private to Constants.cpp, and is used
-/// behind the scenes to implement select constant exprs.
-class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly three operands
- void *operator new(size_t s) {
- return User::operator new(s, 3);
- }
- SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
- : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
- Op<0>() = C1;
- Op<1>() = C2;
- Op<2>() = C3;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// ExtractElementConstantExpr - This class is private to
-/// Constants.cpp, and is used behind the scenes to implement
-/// extractelement constant exprs.
-class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly two operands
- void *operator new(size_t s) {
- return User::operator new(s, 2);
- }
- ExtractElementConstantExpr(Constant *C1, Constant *C2)
- : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
- Instruction::ExtractElement, &Op<0>(), 2) {
- Op<0>() = C1;
- Op<1>() = C2;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// InsertElementConstantExpr - This class is private to
-/// Constants.cpp, and is used behind the scenes to implement
-/// insertelement constant exprs.
-class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly three operands
- void *operator new(size_t s) {
- return User::operator new(s, 3);
- }
- InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
- : ConstantExpr(C1->getType(), Instruction::InsertElement,
- &Op<0>(), 3) {
- Op<0>() = C1;
- Op<1>() = C2;
- Op<2>() = C3;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// ShuffleVectorConstantExpr - This class is private to
-/// Constants.cpp, and is used behind the scenes to implement
-/// shufflevector constant exprs.
-class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly three operands
- void *operator new(size_t s) {
- return User::operator new(s, 3);
- }
- ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
- : ConstantExpr(VectorType::get(
- cast<VectorType>(C1->getType())->getElementType(),
- cast<VectorType>(C3->getType())->getNumElements()),
- Instruction::ShuffleVector,
- &Op<0>(), 3) {
- Op<0>() = C1;
- Op<1>() = C2;
- Op<2>() = C3;
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// ExtractValueConstantExpr - This class is private to
-/// Constants.cpp, and is used behind the scenes to implement
-/// extractvalue constant exprs.
-class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly one operand
- void *operator new(size_t s) {
- return User::operator new(s, 1);
- }
- ExtractValueConstantExpr(Constant *Agg,
- const SmallVector<unsigned, 4> &IdxList,
- const Type *DestTy)
- : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
- Indices(IdxList) {
- Op<0>() = Agg;
- }
-
- /// Indices - These identify which value to extract.
- const SmallVector<unsigned, 4> Indices;
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-/// InsertValueConstantExpr - This class is private to
-/// Constants.cpp, and is used behind the scenes to implement
-/// insertvalue constant exprs.
-class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
-public:
- // allocate space for exactly one operand
- void *operator new(size_t s) {
- return User::operator new(s, 2);
- }
- InsertValueConstantExpr(Constant *Agg, Constant *Val,
- const SmallVector<unsigned, 4> &IdxList,
- const Type *DestTy)
- : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
- Indices(IdxList) {
- Op<0>() = Agg;
- Op<1>() = Val;
- }
-
- /// Indices - These identify the position for the insertion.
- const SmallVector<unsigned, 4> Indices;
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-
-/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
-/// used behind the scenes to implement getelementpr constant exprs.
-class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
- GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
- const Type *DestTy);
-public:
- static GetElementPtrConstantExpr *Create(Constant *C,
- const std::vector<Constant*>&IdxList,
- const Type *DestTy) {
- return new(IdxList.size() + 1)
- GetElementPtrConstantExpr(C, IdxList, DestTy);
- }
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-// CompareConstantExpr - This class is private to Constants.cpp, and is used
-// behind the scenes to implement ICmp and FCmp constant expressions. This is
-// needed in order to store the predicate value for these instructions.
-struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
- void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
- // allocate space for exactly two operands
- void *operator new(size_t s) {
- return User::operator new(s, 2);
- }
- unsigned short predicate;
- CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
- unsigned short pred, Constant* LHS, Constant* RHS)
- : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
- Op<0>() = LHS;
- Op<1>() = RHS;
+ if (isZero || isUndef) {
+ for (unsigned i = 1, e = V.size(); i != e; ++i)
+ if (V[i] != C) {
+ isZero = isUndef = false;
+ break;
+ }
}
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-};
-
-} // end anonymous namespace
-
-template <>
-struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
-
-template <>
-struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
-
-template <>
-struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
-
-template <>
-struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
-
-template <>
-struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
-
-template <>
-struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
-
-template <>
-struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
-
-template <>
-struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
-
-template <>
-struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
-};
-
-GetElementPtrConstantExpr::GetElementPtrConstantExpr
- (Constant *C,
- const std::vector<Constant*> &IdxList,
- const Type *DestTy)
- : ConstantExpr(DestTy, Instruction::GetElementPtr,
- OperandTraits<GetElementPtrConstantExpr>::op_end(this)
- - (IdxList.size()+1),
- IdxList.size()+1) {
- OperandList[0] = C;
- for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
- OperandList[i+1] = IdxList[i];
+
+ if (isZero)
+ return ConstantAggregateZero::get(T);
+ if (isUndef)
+ return UndefValue::get(T);
+
+ // Implicitly locked.
+ return pImpl->VectorConstants.getOrCreate(T, V);
}
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
-
+Constant* ConstantVector::get(const std::vector<Constant*>& V) {
+ assert(!V.empty() && "Cannot infer type if V is empty");
+ return get(VectorType::get(V.front()->getType(),V.size()), V);
+}
-template <>
-struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
-};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
+ // FIXME: make this the primary ctor method.
+ return get(std::vector<Constant*>(Vals, Vals+NumVals));
+}
+Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
+ return getTy(C1->getType(), Instruction::Add, C1, C2,
+ OverflowingBinaryOperator::NoSignedWrap);
+}
-} // End llvm namespace
+Constant* ConstantExpr::getNSWSub(Constant* C1, Constant* C2) {
+ return getTy(C1->getType(), Instruction::Sub, C1, C2,
+ OverflowingBinaryOperator::NoSignedWrap);
+}
+Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
+ return getTy(C1->getType(), Instruction::SDiv, C1, C2,
+ SDivOperator::IsExact);
+}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
@@ -814,8 +657,32 @@ bool ConstantExpr::isCast() const {
}
bool ConstantExpr::isCompare() const {
- return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp ||
- getOpcode() == Instruction::VICmp || getOpcode() == Instruction::VFCmp;
+ return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
+}
+
+bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
+ if (getOpcode() != Instruction::GetElementPtr) return false;
+
+ gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
+ User::const_op_iterator OI = next(this->op_begin());
+
+ // Skip the first index, as it has no static limit.
+ ++GEPI;
+ ++OI;
+
+ // The remaining indices must be compile-time known integers within the
+ // bounds of the corresponding notional static array types.
+ for (; GEPI != E; ++GEPI, ++OI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
+ if (!CI) return false;
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
+ if (CI->getValue().getActiveBits() > 64 ||
+ CI->getZExtValue() >= ATy->getNumElements())
+ return false;
+ }
+
+ // All the indices checked out.
+ return true;
}
bool ConstantExpr::hasIndices() const {
@@ -831,93 +698,11 @@ const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
return cast<InsertValueConstantExpr>(this)->Indices;
}
-/// ConstantExpr::get* - Return some common constants without having to
-/// specify the full Instruction::OPCODE identifier.
-///
-Constant *ConstantExpr::getNeg(Constant *C) {
- // API compatibility: Adjust integer opcodes to floating-point opcodes.
- if (C->getType()->isFPOrFPVector())
- return getFNeg(C);
- assert(C->getType()->isIntOrIntVector() &&
- "Cannot NEG a nonintegral value!");
- return get(Instruction::Sub,
- ConstantExpr::getZeroValueForNegationExpr(C->getType()),
- C);
-}
-Constant *ConstantExpr::getFNeg(Constant *C) {
- assert(C->getType()->isFPOrFPVector() &&
- "Cannot FNEG a non-floating-point value!");
- return get(Instruction::FSub,
- ConstantExpr::getZeroValueForNegationExpr(C->getType()),
- C);
-}
-Constant *ConstantExpr::getNot(Constant *C) {
- assert(C->getType()->isIntOrIntVector() &&
- "Cannot NOT a nonintegral value!");
- return get(Instruction::Xor, C,
- Constant::getAllOnesValue(C->getType()));
-}
-Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
- return get(Instruction::Add, C1, C2);
-}
-Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
- return get(Instruction::FAdd, C1, C2);
-}
-Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
- return get(Instruction::Sub, C1, C2);
-}
-Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
- return get(Instruction::FSub, C1, C2);
-}
-Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
- return get(Instruction::Mul, C1, C2);
-}
-Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
- return get(Instruction::FMul, C1, C2);
-}
-Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
- return get(Instruction::UDiv, C1, C2);
-}
-Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
- return get(Instruction::SDiv, C1, C2);
-}
-Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
- return get(Instruction::FDiv, C1, C2);
-}
-Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
- return get(Instruction::URem, C1, C2);
-}
-Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
- return get(Instruction::SRem, C1, C2);
-}
-Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
- return get(Instruction::FRem, C1, C2);
-}
-Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
- return get(Instruction::And, C1, C2);
-}
-Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
- return get(Instruction::Or, C1, C2);
-}
-Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
- return get(Instruction::Xor, C1, C2);
-}
unsigned ConstantExpr::getPredicate() const {
assert(getOpcode() == Instruction::FCmp ||
- getOpcode() == Instruction::ICmp ||
- getOpcode() == Instruction::VFCmp ||
- getOpcode() == Instruction::VICmp);
+ getOpcode() == Instruction::ICmp);
return ((const CompareConstantExpr*)this)->predicate;
}
-Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
- return get(Instruction::Shl, C1, C2);
-}
-Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
- return get(Instruction::LShr, C1, C2);
-}
-Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
- return get(Instruction::AShr, C1, C2);
-}
/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
@@ -969,15 +754,19 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
Ops[i-1] = getOperand(i);
if (OpNo == 0)
- return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
+ return cast<GEPOperator>(this)->isInBounds() ?
+ ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
+ ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
Ops[OpNo-1] = Op;
- return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
+ return cast<GEPOperator>(this)->isInBounds() ?
+ ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
+ ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
}
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
Op0 = (OpNo == 0) ? Op : getOperand(0);
Op1 = (OpNo == 1) ? Op : getOperand(1);
- return ConstantExpr::get(getOpcode(), Op0, Op1);
+ return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
}
}
@@ -1019,15 +808,15 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const {
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
- return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
+ return cast<GEPOperator>(this)->isInBounds() ?
+ ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
+ ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
case Instruction::ICmp:
case Instruction::FCmp:
- case Instruction::VICmp:
- case Instruction::VFCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
- return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
+ return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
}
}
@@ -1037,7 +826,7 @@ getWithOperands(Constant* const *Ops, unsigned NumOps) const {
bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
- if (Ty == Type::Int1Ty)
+ if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
@@ -1047,7 +836,7 @@ bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
- if (Ty == Type::Int1Ty)
+ if (Ty == Type::getInt1Ty(Ty->getContext()))
return Val == 0 || Val == 1 || Val == -1;
if (NumBits >= 64)
return true; // always true, has to fit in largest type
@@ -1096,404 +885,36 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
//===----------------------------------------------------------------------===//
// Factory Function Implementation
-
-// The number of operands for each ConstantCreator::create method is
-// determined by the ConstantTraits template.
-// ConstantCreator - A class that is used to create constants by
-// ValueMap*. This class should be partially specialized if there is
-// something strange that needs to be done to interface to the ctor for the
-// constant.
-//
-namespace llvm {
- template<class ValType>
- struct ConstantTraits;
-
- template<typename T, typename Alloc>
- struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
- };
-
- template<class ConstantClass, class TypeClass, class ValType>
- struct VISIBILITY_HIDDEN ConstantCreator {
- static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
- }
- };
-
- template<class ConstantClass, class TypeClass>
- struct VISIBILITY_HIDDEN ConvertConstantType {
- static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
- assert(0 && "This type cannot be converted!\n");
- abort();
- }
- };
-
- template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
- class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
- public:
- typedef std::pair<const Type*, ValType> MapKey;
- typedef std::map<MapKey, Constant *> MapTy;
- typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
- typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
- private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
- /// AbstractTypeMap - Map for abstract type constants.
- ///
- AbstractTypeMapTy AbstractTypeMap;
-
- /// ValueMapLock - Mutex for this map.
- sys::SmartMutex<true> ValueMapLock;
-
- public:
- // NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator map_end() { return Map.end(); }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- /// NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
- getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass* Create(const TypeClass *Ty, const ValType &V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- // If the type of the constant is abstract, make sure that an entry
- // exists for it in the AbstractTypeMap.
- if (Ty->isAbstract()) {
- typename AbstractTypeMapTy::iterator TI =
- AbstractTypeMap.find(Ty);
-
- if (TI == AbstractTypeMap.end()) {
- // Add ourselves to the ATU list of the type.
- cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
- AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
- }
- }
-
- return Result;
- }
-public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
- sys::SmartScopedLock<true> Lock(&ValueMapLock);
- MapKey Lookup(Ty, V);
- ConstantClass* Result = 0;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = static_cast<ConstantClass *>(I->second);
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- sys::SmartScopedLock<true> Lock(&ValueMapLock);
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- // Now that we found the entry, make sure this isn't the entry that
- // the AbstractTypeMap points to.
- const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
- if (Ty->isAbstract()) {
- assert(AbstractTypeMap.count(Ty) &&
- "Abstract type not in AbstractTypeMap?");
- typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
- if (ATMEntryIt == I) {
- // Yes, we are removing the representative entry for this type.
- // See if there are any other entries of the same type.
- typename MapTy::iterator TmpIt = ATMEntryIt;
-
- // First check the entry before this one...
- if (TmpIt != Map.begin()) {
- --TmpIt;
- if (TmpIt->first.first != Ty) // Not the same type, move back...
- ++TmpIt;
- }
-
- // If we didn't find the same type, try to move forward...
- if (TmpIt == ATMEntryIt) {
- ++TmpIt;
- if (TmpIt == Map.end() || TmpIt->first.first != Ty)
- --TmpIt; // No entry afterwards with the same type
- }
-
- // If there is another entry in the map of the same abstract type,
- // update the AbstractTypeMap entry now.
- if (TmpIt != ATMEntryIt) {
- ATMEntryIt = TmpIt;
- } else {
- // Otherwise, we are removing the last instance of this type
- // from the table. Remove from the ATM, and from user list.
- cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
- AbstractTypeMap.erase(Ty);
- }
- }
- }
-
- Map.erase(I);
- }
-
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- /// NOTE: This function is not locked. It is the responsibility of the
- /// caller to enforce proper synchronization if using this method.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // If this constant is the representative element for its abstract type,
- // update the AbstractTypeMap so that the representative element is I.
- if (C->getType()->isAbstract()) {
- typename AbstractTypeMapTy::iterator ATI =
- AbstractTypeMap.find(C->getType());
- assert(ATI != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
- if (ATI->second == OldI)
- ATI->second = I;
- }
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
-
- void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- sys::SmartScopedLock<true> Lock(&ValueMapLock);
- typename AbstractTypeMapTy::iterator I =
- AbstractTypeMap.find(cast<Type>(OldTy));
-
- assert(I != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
-
- // Convert a constant at a time until the last one is gone. The last one
- // leaving will remove() itself, causing the AbstractTypeMapEntry to be
- // eliminated eventually.
- do {
- ConvertConstantType<ConstantClass,
- TypeClass>::convert(
- static_cast<ConstantClass *>(I->second->second),
- cast<TypeClass>(NewTy));
-
- I = AbstractTypeMap.find(cast<Type>(OldTy));
- } while (I != AbstractTypeMap.end());
- }
-
- // If the type became concrete without being refined to any other existing
- // type, we just remove ourselves from the ATU list.
- void typeBecameConcrete(const DerivedType *AbsTy) {
- AbsTy->removeAbstractTypeUser(this);
- }
-
- void dump() const {
- DOUT << "Constant.cpp: ValueMap\n";
- }
- };
-}
-
-
-
-//---- ConstantAggregateZero::get() implementation...
-//
-namespace llvm {
- // ConstantAggregateZero does not take extra "value" argument...
- template<class ValType>
- struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
- static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
- return new ConstantAggregateZero(Ty);
- }
- };
-
- template<>
- struct ConvertConstantType<ConstantAggregateZero, Type> {
- static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
- // Make everyone now use a constant of the new type...
- Constant *New = ConstantAggregateZero::get(NewTy);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-static ManagedStatic<ValueMap<char, Type,
- ConstantAggregateZero> > AggZeroConstants;
-
-static char getValType(ConstantAggregateZero *CPZ) { return 0; }
-
-ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
+ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
+ LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Implicitly locked.
- return AggZeroConstants->getOrCreate(Ty, 0);
+ return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
}
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantAggregateZero::destroyConstant() {
// Implicitly locked.
- AggZeroConstants->remove(this);
+ getType()->getContext().pImpl->AggZeroConstants.remove(this);
destroyConstantImpl();
}
-//---- ConstantArray::get() implementation...
-//
-namespace llvm {
- template<>
- struct ConvertConstantType<ConstantArray, ArrayType> {
- static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = ConstantArray::get(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-static std::vector<Constant*> getValType(ConstantArray *CA) {
- std::vector<Constant*> Elements;
- Elements.reserve(CA->getNumOperands());
- for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
- Elements.push_back(cast<Constant>(CA->getOperand(i)));
- return Elements;
-}
-
-typedef ValueMap<std::vector<Constant*>, ArrayType,
- ConstantArray, true /*largekey*/> ArrayConstantsTy;
-static ManagedStatic<ArrayConstantsTy> ArrayConstants;
-
-Constant *ConstantArray::get(const ArrayType *Ty,
- const std::vector<Constant*> &V) {
- // If this is an all-zero array, return a ConstantAggregateZero object
- if (!V.empty()) {
- Constant *C = V[0];
- if (!C->isNullValue()) {
- // Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
- }
- for (unsigned i = 1, e = V.size(); i != e; ++i)
- if (V[i] != C) {
- // Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
- }
- }
-
- return ConstantAggregateZero::get(Ty);
-}
-
/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
// Implicitly locked.
- ArrayConstants->remove(this);
+ getType()->getContext().pImpl->ArrayConstants.remove(this);
destroyConstantImpl();
}
-/// ConstantArray::get(const string&) - Return an array that is initialized to
-/// contain the specified string. If length is zero then a null terminator is
-/// added to the specified string so that it may be used in a natural way.
-/// Otherwise, the length parameter specifies how much of the string to use
-/// and it won't be null terminated.
-///
-Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
- std::vector<Constant*> ElementVals;
- for (unsigned i = 0; i < Str.length(); ++i)
- ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
-
- // Add a null terminator to the string...
- if (AddNull) {
- ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
- }
-
- ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
- return ConstantArray::get(ATy, ElementVals);
-}
-
/// isString - This method returns true if the array is an array of i8, and
/// if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
// Check the element type for i8...
- if (getType()->getElementType() != Type::Int8Ty)
+ if (getType()->getElementType() != Type::getInt8Ty(getContext()))
return false;
// Check the elements to make sure they are all integers, not constant
// expressions.
@@ -1508,17 +929,17 @@ bool ConstantArray::isString() const {
/// null bytes except its terminator.
bool ConstantArray::isCString() const {
// Check the element type for i8...
- if (getType()->getElementType() != Type::Int8Ty)
+ if (getType()->getElementType() != Type::getInt8Ty(getContext()))
return false;
- Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
+
// Last element must be a null.
- if (getOperand(getNumOperands()-1) != Zero)
+ if (!getOperand(getNumOperands()-1)->isNullValue())
return false;
// Other elements must be non-null integers.
for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
- if (getOperand(i) == Zero)
+ if (getOperand(i)->isNullValue())
return false;
}
return true;
@@ -1543,126 +964,22 @@ std::string ConstantArray::getAsString() const {
//
namespace llvm {
- template<>
- struct ConvertConstantType<ConstantStruct, StructType> {
- static void convert(ConstantStruct *OldC, const StructType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = ConstantStruct::get(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
-
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-typedef ValueMap<std::vector<Constant*>, StructType,
- ConstantStruct, true /*largekey*/> StructConstantsTy;
-static ManagedStatic<StructConstantsTy> StructConstants;
-
-static std::vector<Constant*> getValType(ConstantStruct *CS) {
- std::vector<Constant*> Elements;
- Elements.reserve(CS->getNumOperands());
- for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
- Elements.push_back(cast<Constant>(CS->getOperand(i)));
- return Elements;
-}
-
-Constant *ConstantStruct::get(const StructType *Ty,
- const std::vector<Constant*> &V) {
- // Create a ConstantAggregateZero value if all elements are zeros...
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (!V[i]->isNullValue())
- // Implicitly locked.
- return StructConstants->getOrCreate(Ty, V);
- return ConstantAggregateZero::get(Ty);
-}
-
-Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
- std::vector<const Type*> StructEls;
- StructEls.reserve(V.size());
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- StructEls.push_back(V[i]->getType());
- return get(StructType::get(StructEls, packed), V);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
// Implicitly locked.
- StructConstants->remove(this);
+ getType()->getContext().pImpl->StructConstants.remove(this);
destroyConstantImpl();
}
-//---- ConstantVector::get() implementation...
-//
-namespace llvm {
- template<>
- struct ConvertConstantType<ConstantVector, VectorType> {
- static void convert(ConstantVector *OldC, const VectorType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = ConstantVector::get(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-static std::vector<Constant*> getValType(ConstantVector *CP) {
- std::vector<Constant*> Elements;
- Elements.reserve(CP->getNumOperands());
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
- Elements.push_back(CP->getOperand(i));
- return Elements;
-}
-
-static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
- ConstantVector> > VectorConstants;
-
-Constant *ConstantVector::get(const VectorType *Ty,
- const std::vector<Constant*> &V) {
- assert(!V.empty() && "Vectors can't be empty");
- // If this is an all-undef or alll-zero vector, return a
- // ConstantAggregateZero or UndefValue.
- Constant *C = V[0];
- bool isZero = C->isNullValue();
- bool isUndef = isa<UndefValue>(C);
-
- if (isZero || isUndef) {
- for (unsigned i = 1, e = V.size(); i != e; ++i)
- if (V[i] != C) {
- isZero = isUndef = false;
- break;
- }
- }
-
- if (isZero)
- return ConstantAggregateZero::get(Ty);
- if (isUndef)
- return UndefValue::get(Ty);
-
- // Implicitly locked.
- return VectorConstants->getOrCreate(Ty, V);
-}
-
-Constant *ConstantVector::get(const std::vector<Constant*> &V) {
- assert(!V.empty() && "Cannot infer type if V is empty");
- return get(VectorType::get(V.front()->getType(),V.size()), V);
-}
-
// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
// Implicitly locked.
- VectorConstants->remove(this);
+ getType()->getContext().pImpl->VectorConstants.remove(this);
destroyConstantImpl();
}
@@ -1696,45 +1013,16 @@ Constant *ConstantVector::getSplatValue() {
//---- ConstantPointerNull::get() implementation...
//
-namespace llvm {
- // ConstantPointerNull does not take extra "value" argument...
- template<class ValType>
- struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
- static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
- return new ConstantPointerNull(Ty);
- }
- };
-
- template<>
- struct ConvertConstantType<ConstantPointerNull, PointerType> {
- static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
- // Make everyone now use a constant of the new type...
- Constant *New = ConstantPointerNull::get(NewTy);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-static ManagedStatic<ValueMap<char, PointerType,
- ConstantPointerNull> > NullPtrConstants;
-
-static char getValType(ConstantPointerNull *) {
- return 0;
-}
-
-
ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
// Implicitly locked.
- return NullPtrConstants->getOrCreate(Ty, 0);
+ return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
// Implicitly locked.
- NullPtrConstants->remove(this);
+ getType()->getContext().pImpl->NullPtrConstants.remove(this);
destroyConstantImpl();
}
@@ -1742,295 +1030,39 @@ void ConstantPointerNull::destroyConstant() {
//---- UndefValue::get() implementation...
//
-namespace llvm {
- // UndefValue does not take extra "value" argument...
- template<class ValType>
- struct ConstantCreator<UndefValue, Type, ValType> {
- static UndefValue *create(const Type *Ty, const ValType &V) {
- return new UndefValue(Ty);
- }
- };
-
- template<>
- struct ConvertConstantType<UndefValue, Type> {
- static void convert(UndefValue *OldC, const Type *NewTy) {
- // Make everyone now use a constant of the new type.
- Constant *New = UndefValue::get(NewTy);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-}
-
-static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
-
-static char getValType(UndefValue *) {
- return 0;
-}
-
-
UndefValue *UndefValue::get(const Type *Ty) {
// Implicitly locked.
- return UndefValueConstants->getOrCreate(Ty, 0);
+ return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
}
// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
// Implicitly locked.
- UndefValueConstants->remove(this);
- destroyConstantImpl();
-}
-
-//---- MDString::get() implementation
-//
-
-MDString::MDString(const char *begin, const char *end)
- : Constant(Type::MetadataTy, MDStringVal, 0, 0),
- StrBegin(begin), StrEnd(end) {}
-
-static ManagedStatic<StringMap<MDString*> > MDStringCache;
-
-MDString *MDString::get(const char *StrBegin, const char *StrEnd) {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue(
- StrBegin, StrEnd);
- MDString *&S = Entry.getValue();
- if (!S) S = new MDString(Entry.getKeyData(),
- Entry.getKeyData() + Entry.getKeyLength());
-
- return S;
-}
-
-MDString *MDString::get(const std::string &Str) {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- StringMapEntry<MDString *> &Entry = MDStringCache->GetOrCreateValue(
- Str.data(), Str.data() + Str.size());
- MDString *&S = Entry.getValue();
- if (!S) S = new MDString(Entry.getKeyData(),
- Entry.getKeyData() + Entry.getKeyLength());
-
- return S;
-}
-
-void MDString::destroyConstant() {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- MDStringCache->erase(MDStringCache->find(StrBegin, StrEnd));
- destroyConstantImpl();
-}
-
-//---- MDNode::get() implementation
-//
-
-static ManagedStatic<FoldingSet<MDNode> > MDNodeSet;
-
-MDNode::MDNode(Value*const* Vals, unsigned NumVals)
- : Constant(Type::MetadataTy, MDNodeVal, 0, 0) {
- for (unsigned i = 0; i != NumVals; ++i)
- Node.push_back(ElementVH(Vals[i], this));
-}
-
-void MDNode::Profile(FoldingSetNodeID &ID) const {
- for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I)
- ID.AddPointer(*I);
-}
-
-MDNode *MDNode::get(Value*const* Vals, unsigned NumVals) {
- FoldingSetNodeID ID;
- for (unsigned i = 0; i != NumVals; ++i)
- ID.AddPointer(Vals[i]);
-
- ConstantsLock->reader_acquire();
- void *InsertPoint;
- MDNode *N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint);
- ConstantsLock->reader_release();
-
- if (!N) {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- N = MDNodeSet->FindNodeOrInsertPos(ID, InsertPoint);
- if (!N) {
- // InsertPoint will have been set by the FindNodeOrInsertPos call.
- N = new(0) MDNode(Vals, NumVals);
- MDNodeSet->InsertNode(N, InsertPoint);
- }
- }
- return N;
-}
-
-void MDNode::destroyConstant() {
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
- MDNodeSet->RemoveNode(this);
-
+ getType()->getContext().pImpl->UndefValueConstants.remove(this);
destroyConstantImpl();
}
//---- ConstantExpr::get() implementations...
//
-namespace {
-
-struct ExprMapKeyType {
- typedef SmallVector<unsigned, 4> IndexList;
-
- ExprMapKeyType(unsigned opc,
- const std::vector<Constant*> &ops,
- unsigned short pred = 0,
- const IndexList &inds = IndexList())
- : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
- uint16_t opcode;
- uint16_t predicate;
- std::vector<Constant*> operands;
- IndexList indices;
- bool operator==(const ExprMapKeyType& that) const {
- return this->opcode == that.opcode &&
- this->predicate == that.predicate &&
- this->operands == that.operands &&
- this->indices == that.indices;
- }
- bool operator<(const ExprMapKeyType & that) const {
- return this->opcode < that.opcode ||
- (this->opcode == that.opcode && this->predicate < that.predicate) ||
- (this->opcode == that.opcode && this->predicate == that.predicate &&
- this->operands < that.operands) ||
- (this->opcode == that.opcode && this->predicate == that.predicate &&
- this->operands == that.operands && this->indices < that.indices);
- }
-
- bool operator!=(const ExprMapKeyType& that) const {
- return !(*this == that);
- }
-};
-
-}
-
-namespace llvm {
- template<>
- struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
- static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
- unsigned short pred = 0) {
- if (Instruction::isCast(V.opcode))
- return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
- if ((V.opcode >= Instruction::BinaryOpsBegin &&
- V.opcode < Instruction::BinaryOpsEnd))
- return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::Select)
- return new SelectConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::ExtractElement)
- return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::InsertElement)
- return new InsertElementConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::ShuffleVector)
- return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
- V.operands[2]);
- if (V.opcode == Instruction::InsertValue)
- return new InsertValueConstantExpr(V.operands[0], V.operands[1],
- V.indices, Ty);
- if (V.opcode == Instruction::ExtractValue)
- return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
- if (V.opcode == Instruction::GetElementPtr) {
- std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
- return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
- }
-
- // The compare instructions are weird. We have to encode the predicate
- // value and it is combined with the instruction opcode by multiplying
- // the opcode by one hundred. We must decode this to get the predicate.
- if (V.opcode == Instruction::ICmp)
- return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate,
- V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::FCmp)
- return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate,
- V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::VICmp)
- return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate,
- V.operands[0], V.operands[1]);
- if (V.opcode == Instruction::VFCmp)
- return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate,
- V.operands[0], V.operands[1]);
- assert(0 && "Invalid ConstantExpr!");
- return 0;
- }
- };
-
- template<>
- struct ConvertConstantType<ConstantExpr, Type> {
- static void convert(ConstantExpr *OldC, const Type *NewTy) {
- Constant *New;
- switch (OldC->getOpcode()) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
- NewTy);
- break;
- case Instruction::Select:
- New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
- OldC->getOperand(1),
- OldC->getOperand(2));
- break;
- default:
- assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
- OldC->getOpcode() < Instruction::BinaryOpsEnd);
- New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
- OldC->getOperand(1));
- break;
- case Instruction::GetElementPtr:
- // Make everyone now use a constant of the new type...
- std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
- New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
- &Idx[0], Idx.size());
- break;
- }
-
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
- };
-} // end namespace llvm
-
-
-static ExprMapKeyType getValType(ConstantExpr *CE) {
- std::vector<Constant*> Operands;
- Operands.reserve(CE->getNumOperands());
- for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
- Operands.push_back(cast<Constant>(CE->getOperand(i)));
- return ExprMapKeyType(CE->getOpcode(), Operands,
- CE->isCompare() ? CE->getPredicate() : 0,
- CE->hasIndices() ?
- CE->getIndices() : SmallVector<unsigned, 4>());
-}
-
-static ManagedStatic<ValueMap<ExprMapKeyType, Type,
- ConstantExpr> > ExprConstants;
-
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
Instruction::CastOps opc, Constant *C, const Type *Ty) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
- if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
+ if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
return FC;
+ LLVMContextImpl *pImpl = Ty->getContext().pImpl;
+
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> argVec(1, C);
ExprMapKeyType Key(opc, argVec);
// Implicitly locked.
- return ExprConstants->getOrCreate(Ty, Key);
+ return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
@@ -2041,7 +1073,7 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
switch (opc) {
default:
- assert(0 && "Invalid cast opcode");
+ llvm_unreachable("Invalid cast opcode");
break;
case Instruction::Trunc: return getTrunc(C, Ty);
case Instruction::ZExt: return getZExt(C, Ty);
@@ -2256,27 +1288,9 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
return getFoldedCast(Instruction::BitCast, C, DstTy);
}
-Constant *ConstantExpr::getAlignOf(const Type *Ty) {
- // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
- const Type *AligningTy = StructType::get(Type::Int8Ty, Ty, NULL);
- Constant *NullPtr = getNullValue(AligningTy->getPointerTo());
- Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
- Constant *One = ConstantInt::get(Type::Int32Ty, 1);
- Constant *Indices[2] = { Zero, One };
- Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
- return getCast(Instruction::PtrToInt, GEP, Type::Int32Ty);
-}
-
-Constant *ConstantExpr::getSizeOf(const Type *Ty) {
- // sizeof is implemented as: (i64) gep (Ty*)null, 1
- Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
- Constant *GEP =
- getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
- return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
-}
-
Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
- Constant *C1, Constant *C2) {
+ Constant *C1, Constant *C2,
+ unsigned Flags) {
// Check the operands for consistency first
assert(Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd &&
@@ -2284,40 +1298,42 @@ Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
- if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
- if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
+ if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
+ if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
+ Opcode, C1, C2))
return FC; // Fold a few common cases...
std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
- ExprMapKeyType Key(Opcode, argVec);
+ ExprMapKeyType Key(Opcode, argVec, 0, Flags);
+
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getCompareTy(unsigned short predicate,
Constant *C1, Constant *C2) {
- bool isVectorType = C1->getType()->getTypeID() == Type::VectorTyID;
switch (predicate) {
- default: assert(0 && "Invalid CmpInst predicate");
+ default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
- return isVectorType ? getVFCmp(predicate, C1, C2)
- : getFCmp(predicate, C1, C2);
+ return getFCmp(predicate, C1, C2);
+
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
- return isVectorType ? getVICmp(predicate, C1, C2)
- : getICmp(predicate, C1, C2);
+ return getICmp(predicate, C1, C2);
}
}
-Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
+Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
+ unsigned Flags) {
// API compatibility: Adjust integer opcodes to floating-point opcodes.
if (C1->getType()->isFPOrFPVector()) {
if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
@@ -2382,7 +1398,44 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
}
#endif
- return getTy(C1->getType(), Opcode, C1, C2);
+ return getTy(C1->getType(), Opcode, C1, C2, Flags);
+}
+
+Constant* ConstantExpr::getSizeOf(const Type* Ty) {
+ // sizeof is implemented as: (i64) gep (Ty*)null, 1
+ // Note that a non-inbounds gep is used, as null isn't within any object.
+ Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
+ Constant *GEP = getGetElementPtr(
+ Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
+ return getCast(Instruction::PtrToInt, GEP,
+ Type::getInt64Ty(Ty->getContext()));
+}
+
+Constant* ConstantExpr::getAlignOf(const Type* Ty) {
+ // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
+ // Note that a non-inbounds gep is used, as null isn't within any object.
+ const Type *AligningTy = StructType::get(Ty->getContext(),
+ Type::getInt8Ty(Ty->getContext()), Ty, NULL);
+ Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
+ Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
+ Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
+ Constant *Indices[2] = { Zero, One };
+ Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
+ return getCast(Instruction::PtrToInt, GEP,
+ Type::getInt32Ty(Ty->getContext()));
+}
+
+Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
+ // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
+ // Note that a non-inbounds gep is used, as null isn't within any object.
+ Constant *GEPIdx[] = {
+ ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
+ ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
+ };
+ Constant *GEP = getGetElementPtr(
+ Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
+ return getCast(Instruction::PtrToInt, GEP,
+ Type::getInt64Ty(STy->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short pred,
@@ -2396,7 +1449,8 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (ReqTy == V1->getType())
- if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
+ if (Constant *SC = ConstantFoldSelectInstruction(
+ ReqTy->getContext(), C, V1, V2))
return SC; // Fold common cases
std::vector<Constant*> argVec(3, C);
@@ -2404,8 +1458,10 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
argVec[2] = V2;
ExprMapKeyType Key(Instruction::Select, argVec);
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
@@ -2416,7 +1472,9 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
cast<PointerType>(ReqTy)->getElementType() &&
"GEP indices invalid!");
- if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
+ if (Constant *FC = ConstantFoldGetElementPtr(
+ ReqTy->getContext(), C, /*inBounds=*/false,
+ (Constant**)Idxs, NumIdx))
return FC; // Fold a few common cases...
assert(isa<PointerType>(C->getType()) &&
@@ -2429,8 +1487,41 @@ Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
ArgVec.push_back(cast<Constant>(Idxs[i]));
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
+ // Implicitly locked.
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
+}
+
+Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
+ Constant *C,
+ Value* const *Idxs,
+ unsigned NumIdx) {
+ assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
+ Idxs+NumIdx) ==
+ cast<PointerType>(ReqTy)->getElementType() &&
+ "GEP indices invalid!");
+
+ if (Constant *FC = ConstantFoldGetElementPtr(
+ ReqTy->getContext(), C, /*inBounds=*/true,
+ (Constant**)Idxs, NumIdx))
+ return FC; // Fold a few common cases...
+
+ assert(isa<PointerType>(C->getType()) &&
+ "Non-pointer type for constant GetElementPtr expression");
+ // Look up the constant in the table first to ensure uniqueness
+ std::vector<Constant*> ArgVec;
+ ArgVec.reserve(NumIdx+1);
+ ArgVec.push_back(C);
+ for (unsigned i = 0; i != NumIdx; ++i)
+ ArgVec.push_back(cast<Constant>(Idxs[i]));
+ const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
+ GEPOperator::IsInBounds);
+
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
@@ -2443,11 +1534,27 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
}
+Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
+ Value* const *Idxs,
+ unsigned NumIdx) {
+ // Get the result type of the getelementptr!
+ const Type *Ty =
+ GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
+ assert(Ty && "GEP indices invalid!");
+ unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
+ return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
+}
+
Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
unsigned NumIdx) {
return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
}
+Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
+ Constant* const *Idxs,
+ unsigned NumIdx) {
+ return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
+}
Constant *
ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
@@ -2455,7 +1562,8 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
- if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
+ if (Constant *FC = ConstantFoldCompareInstruction(
+ LHS->getContext(), pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
@@ -2465,8 +1573,11 @@ ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
+ LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(Type::Int1Ty, Key);
+ return
+ pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
}
Constant *
@@ -2474,7 +1585,8 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
assert(LHS->getType() == RHS->getType());
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
- if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
+ if (Constant *FC = ConstantFoldCompareInstruction(
+ LHS->getContext(), pred, LHS, RHS))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
@@ -2484,123 +1596,33 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
- // Implicitly locked.
- return ExprConstants->getOrCreate(Type::Int1Ty, Key);
-}
-
-Constant *
-ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
- assert(isa<VectorType>(LHS->getType()) && LHS->getType() == RHS->getType() &&
- "Tried to create vicmp operation on non-vector type!");
- assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
- pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate");
-
- const VectorType *VTy = cast<VectorType>(LHS->getType());
- const Type *EltTy = VTy->getElementType();
- unsigned NumElts = VTy->getNumElements();
-
- // See if we can fold the element-wise comparison of the LHS and RHS.
- SmallVector<Constant *, 16> LHSElts, RHSElts;
- LHS->getVectorElements(LHSElts);
- RHS->getVectorElements(RHSElts);
-
- if (!LHSElts.empty() && !RHSElts.empty()) {
- SmallVector<Constant *, 16> Elts;
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
- RHSElts[i]);
- if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
- if (FCI->getZExtValue())
- Elts.push_back(ConstantInt::getAllOnesValue(EltTy));
- else
- Elts.push_back(ConstantInt::get(EltTy, 0ULL));
- } else if (FC && isa<UndefValue>(FC)) {
- Elts.push_back(UndefValue::get(EltTy));
- } else {
- break;
- }
- }
- if (Elts.size() == NumElts)
- return ConstantVector::get(&Elts[0], Elts.size());
- }
-
- // Look up the constant in the table first to ensure uniqueness
- std::vector<Constant*> ArgVec;
- ArgVec.push_back(LHS);
- ArgVec.push_back(RHS);
- // Get the key type with both the opcode and predicate
- const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
-
- // Implicitly locked.
- return ExprConstants->getOrCreate(LHS->getType(), Key);
-}
-
-Constant *
-ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
- assert(isa<VectorType>(LHS->getType()) &&
- "Tried to create vfcmp operation on non-vector type!");
- assert(LHS->getType() == RHS->getType());
- assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate");
-
- const VectorType *VTy = cast<VectorType>(LHS->getType());
- unsigned NumElts = VTy->getNumElements();
- const Type *EltTy = VTy->getElementType();
- const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits());
- const Type *ResultTy = VectorType::get(REltTy, NumElts);
-
- // See if we can fold the element-wise comparison of the LHS and RHS.
- SmallVector<Constant *, 16> LHSElts, RHSElts;
- LHS->getVectorElements(LHSElts);
- RHS->getVectorElements(RHSElts);
-
- if (!LHSElts.empty() && !RHSElts.empty()) {
- SmallVector<Constant *, 16> Elts;
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
- RHSElts[i]);
- if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
- if (FCI->getZExtValue())
- Elts.push_back(ConstantInt::getAllOnesValue(REltTy));
- else
- Elts.push_back(ConstantInt::get(REltTy, 0ULL));
- } else if (FC && isa<UndefValue>(FC)) {
- Elts.push_back(UndefValue::get(REltTy));
- } else {
- break;
- }
- }
- if (Elts.size() == NumElts)
- return ConstantVector::get(&Elts[0], Elts.size());
- }
-
- // Look up the constant in the table first to ensure uniqueness
- std::vector<Constant*> ArgVec;
- ArgVec.push_back(LHS);
- ArgVec.push_back(RHS);
- // Get the key type with both the opcode and predicate
- const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
+ LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
// Implicitly locked.
- return ExprConstants->getOrCreate(ResultTy, Key);
+ return
+ pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
}
Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
Constant *Idx) {
- if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
+ if (Constant *FC = ConstantFoldExtractElementInstruction(
+ ReqTy->getContext(), Val, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
assert(isa<VectorType>(Val->getType()) &&
"Tried to create extractelement operation on non-vector type!");
- assert(Idx->getType() == Type::Int32Ty &&
+ assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
"Extractelement index must be i32 type!");
return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
Val, Idx);
@@ -2608,7 +1630,8 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
Constant *Elt, Constant *Idx) {
- if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
+ if (Constant *FC = ConstantFoldInsertElementInstruction(
+ ReqTy->getContext(), Val, Elt, Idx))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, Val);
@@ -2616,8 +1639,10 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
ArgVec.push_back(Idx);
const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
@@ -2626,14 +1651,15 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
&& "Insertelement types must match!");
- assert(Idx->getType() == Type::Int32Ty &&
+ assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
"Insertelement index must be i32 type!");
return getInsertElementTy(Val->getType(), Val, Elt, Idx);
}
Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
Constant *V2, Constant *Mask) {
- if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
+ if (Constant *FC = ConstantFoldShuffleVectorInstruction(
+ ReqTy->getContext(), V1, V2, Mask))
return FC; // Fold a few common cases...
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec(1, V1);
@@ -2641,8 +1667,10 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
ArgVec.push_back(Mask);
const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
+ LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
+
// Implicitly locked.
- return ExprConstants->getOrCreate(ReqTy, Key);
+ return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
@@ -2666,7 +1694,8 @@ Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
"insertvalue type invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant InsertValue expression");
- Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
+ Constant *FC = ConstantFoldInsertValueInstruction(
+ ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
assert(FC && "InsertValue constant expr couldn't be folded!");
return FC;
}
@@ -2692,7 +1721,8 @@ Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
"extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
- Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
+ Constant *FC = ConstantFoldExtractValueInstruction(
+ ReqTy->getContext(), Agg, Idxs, NumIdx);
assert(FC && "ExtractValue constant expr couldn't be folded!");
return FC;
}
@@ -2708,25 +1738,109 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg,
return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
}
-Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
- if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
- if (PTy->getElementType()->isFloatingPoint()) {
- std::vector<Constant*> zeros(PTy->getNumElements(),
- ConstantFP::getNegativeZero(PTy->getElementType()));
- return ConstantVector::get(PTy, zeros);
- }
+Constant* ConstantExpr::getNeg(Constant* C) {
+ // API compatibility: Adjust integer opcodes to floating-point opcodes.
+ if (C->getType()->isFPOrFPVector())
+ return getFNeg(C);
+ assert(C->getType()->isIntOrIntVector() &&
+ "Cannot NEG a nonintegral value!");
+ return get(Instruction::Sub,
+ ConstantFP::getZeroValueForNegation(C->getType()),
+ C);
+}
- if (Ty->isFloatingPoint())
- return ConstantFP::getNegativeZero(Ty);
+Constant* ConstantExpr::getFNeg(Constant* C) {
+ assert(C->getType()->isFPOrFPVector() &&
+ "Cannot FNEG a non-floating-point value!");
+ return get(Instruction::FSub,
+ ConstantFP::getZeroValueForNegation(C->getType()),
+ C);
+}
- return Constant::getNullValue(Ty);
+Constant* ConstantExpr::getNot(Constant* C) {
+ assert(C->getType()->isIntOrIntVector() &&
+ "Cannot NOT a nonintegral value!");
+ return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
+}
+
+Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
+ return get(Instruction::Add, C1, C2);
+}
+
+Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
+ return get(Instruction::FAdd, C1, C2);
+}
+
+Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
+ return get(Instruction::Sub, C1, C2);
+}
+
+Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
+ return get(Instruction::FSub, C1, C2);
+}
+
+Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
+ return get(Instruction::Mul, C1, C2);
+}
+
+Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
+ return get(Instruction::FMul, C1, C2);
+}
+
+Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
+ return get(Instruction::UDiv, C1, C2);
+}
+
+Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
+ return get(Instruction::SDiv, C1, C2);
+}
+
+Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
+ return get(Instruction::FDiv, C1, C2);
+}
+
+Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
+ return get(Instruction::URem, C1, C2);
+}
+
+Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
+ return get(Instruction::SRem, C1, C2);
+}
+
+Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
+ return get(Instruction::FRem, C1, C2);
+}
+
+Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
+ return get(Instruction::And, C1, C2);
+}
+
+Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
+ return get(Instruction::Or, C1, C2);
+}
+
+Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
+ return get(Instruction::Xor, C1, C2);
+}
+
+Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
+ return get(Instruction::Shl, C1, C2);
+}
+
+Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
+ return get(Instruction::LShr, C1, C2);
+}
+
+Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
+ return get(Instruction::AShr, C1, C2);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
// Implicitly locked.
- ExprConstants->remove(this);
+ LLVMContextImpl *pImpl = getType()->getContext().pImpl;
+ pImpl->ExprConstants.remove(this);
destroyConstantImpl();
}
@@ -2747,12 +1861,16 @@ const char *ConstantExpr::getOpcodeName() const {
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
+
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
- std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
+ LLVMContext &Context = getType()->getContext();
+ LLVMContextImpl *pImpl = Context.pImpl;
+
+ std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
@@ -2774,7 +1892,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
}
} else {
isAllZeros = true;
- for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
+ for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
@@ -2790,10 +1908,10 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
bool Exists;
- ArrayConstantsTy::MapTy::iterator I =
- ArrayConstants->InsertOrGetItem(Lookup, Exists);
+ LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
+ pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -2802,12 +1920,12 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- ArrayConstants->MoveConstantToNewSlot(this, I);
+ pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
if (NumUpdated == 1) {
- unsigned OperandToUpdate = U-OperandList;
+ unsigned OperandToUpdate = U - OperandList;
assert(getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
setOperand(OperandToUpdate, ToC);
@@ -2838,7 +1956,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
unsigned OperandToUpdate = U-OperandList;
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
- std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
+ std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
Lookup.first.first = getType();
Lookup.second = this;
std::vector<Constant*> &Values = Lookup.first.second;
@@ -2849,7 +1967,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
- for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
+ for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
@@ -2861,15 +1979,18 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
}
Values[OperandToUpdate] = ToC;
+ LLVMContext &Context = getType()->getContext();
+ LLVMContextImpl *pImpl = Context.pImpl;
+
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = ConstantAggregateZero::get(getType());
} else {
// Check to see if we have this array type already.
- sys::SmartScopedWriter<true> Writer(&*ConstantsLock);
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
bool Exists;
- StructConstantsTy::MapTy::iterator I =
- StructConstants->InsertOrGetItem(Lookup, Exists);
+ LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
+ pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -2878,7 +1999,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- StructConstants->MoveConstantToNewSlot(this, I);
+ pImpl->StructConstants.MoveConstantToNewSlot(this, I);
// Update to the new value.
setOperand(OperandToUpdate, ToC);
@@ -2907,7 +2028,7 @@ void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Values.push_back(Val);
}
- Constant *Replacement = ConstantVector::get(getType(), Values);
+ Constant *Replacement = get(getType(), Values);
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
@@ -2992,22 +2113,18 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
if (C2 == From) C2 = To;
if (getOpcode() == Instruction::ICmp)
Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
- else if (getOpcode() == Instruction::FCmp)
- Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
- else if (getOpcode() == Instruction::VICmp)
- Replacement = ConstantExpr::getVICmp(getPredicate(), C1, C2);
else {
- assert(getOpcode() == Instruction::VFCmp);
- Replacement = ConstantExpr::getVFCmp(getPredicate(), C1, C2);
+ assert(getOpcode() == Instruction::FCmp);
+ Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
}
} else if (getNumOperands() == 2) {
Constant *C1 = getOperand(0);
Constant *C2 = getOperand(1);
if (C1 == From) C1 = To;
if (C2 == From) C2 = To;
- Replacement = ConstantExpr::get(getOpcode(), C1, C2);
+ Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
} else {
- assert(0 && "Unknown ConstantExpr type!");
+ llvm_unreachable("Unknown ConstantExpr type!");
return;
}
@@ -3019,20 +2136,3 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
// Delete the old constant!
destroyConstant();
}
-
-void MDNode::replaceElement(Value *From, Value *To) {
- SmallVector<Value*, 4> Values;
- Values.reserve(getNumElements()); // Build replacement array...
- for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
- Value *Val = getElement(i);
- if (Val == From) Val = To;
- Values.push_back(Val);
- }
-
- MDNode *Replacement = MDNode::get(&Values[0], Values.size());
- assert(Replacement != this && "I didn't contain From!");
-
- uncheckedReplaceAllUsesWith(Replacement);
-
- destroyConstant();
-}
diff --git a/lib/VMCore/ConstantsContext.h b/lib/VMCore/ConstantsContext.h
new file mode 100644
index 0000000..526b4b1
--- /dev/null
+++ b/lib/VMCore/ConstantsContext.h
@@ -0,0 +1,787 @@
+//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various helper methods and classes used by
+// LLVMContextImpl for creating and managing constants.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CONSTANTSCONTEXT_H
+#define LLVM_CONSTANTSCONTEXT_H
+
+#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Mutex.h"
+#include "llvm/System/RWMutex.h"
+#include <map>
+
+namespace llvm {
+template<class ValType>
+struct ConstantTraits;
+
+/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement unary constant exprs.
+class UnaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
+ : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
+ Op<0>() = C;
+ }
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement binary constant exprs.
+class BinaryConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
+ unsigned Flags)
+ : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ SubclassOptionalData = Flags;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// SelectConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement select constant exprs.
+class SelectConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractelement constant exprs.
+class ExtractElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ ExtractElementConstantExpr(Constant *C1, Constant *C2)
+ : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
+ Instruction::ExtractElement, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertelement constant exprs.
+class InsertElementConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C1->getType(), Instruction::InsertElement,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ShuffleVectorConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// shufflevector constant exprs.
+class ShuffleVectorConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(VectorType::get(
+ cast<VectorType>(C1->getType())->getElementType(),
+ cast<VectorType>(C3->getType())->getNumElements()),
+ Instruction::ShuffleVector,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractvalue constant exprs.
+class ExtractValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ ExtractValueConstantExpr(Constant *Agg,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ }
+
+ /// Indices - These identify which value to extract.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertvalue constant exprs.
+class InsertValueConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ InsertValueConstantExpr(Constant *Agg, Constant *Val,
+ const SmallVector<unsigned, 4> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ Op<1>() = Val;
+ }
+
+ /// Indices - These identify the position for the insertion.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+
+/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
+/// used behind the scenes to implement getelementpr constant exprs.
+class GetElementPtrConstantExpr : public ConstantExpr {
+ GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
+ const Type *DestTy);
+public:
+ static GetElementPtrConstantExpr *Create(Constant *C,
+ const std::vector<Constant*>&IdxList,
+ const Type *DestTy,
+ unsigned Flags) {
+ GetElementPtrConstantExpr *Result =
+ new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
+ Result->SubclassOptionalData = Flags;
+ return Result;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+// CompareConstantExpr - This class is private to Constants.cpp, and is used
+// behind the scenes to implement ICmp and FCmp constant expressions. This is
+// needed in order to store the predicate value for these instructions.
+struct CompareConstantExpr : public ConstantExpr {
+ void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ unsigned short predicate;
+ CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
+ unsigned short pred, Constant* LHS, Constant* RHS)
+ : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+template <>
+struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+
+struct ExprMapKeyType {
+ typedef SmallVector<unsigned, 4> IndexList;
+
+ ExprMapKeyType(unsigned opc,
+ const std::vector<Constant*> &ops,
+ unsigned short flags = 0,
+ unsigned short optionalflags = 0,
+ const IndexList &inds = IndexList())
+ : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
+ operands(ops), indices(inds) {}
+ uint8_t opcode;
+ uint8_t subclassoptionaldata;
+ uint16_t subclassdata;
+ std::vector<Constant*> operands;
+ IndexList indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->subclassdata == that.subclassdata &&
+ this->subclassoptionaldata == that.subclassoptionaldata &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ if (this->opcode != that.opcode) return this->opcode < that.opcode;
+ if (this->operands != that.operands) return this->operands < that.operands;
+ if (this->subclassdata != that.subclassdata)
+ return this->subclassdata < that.subclassdata;
+ if (this->subclassoptionaldata != that.subclassoptionaldata)
+ return this->subclassoptionaldata < that.subclassoptionaldata;
+ if (this->indices != that.indices) return this->indices < that.indices;
+ return false;
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ValueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+};
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator {
+ static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass>
+struct ConstantKeyData {
+ typedef void ValType;
+ static ValType getValType(ConstantClass *C) {
+ llvm_unreachable("Unknown Constant type!");
+ }
+};
+
+template<>
+struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
+ V.subclassoptionaldata);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
+ V.subclassoptionaldata);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ llvm_unreachable("Invalid ConstantExpr!");
+ return 0;
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantExpr> {
+ typedef ExprMapKeyType ValType;
+ static ValType getValType(ConstantExpr *CE) {
+ std::vector<Constant*> Operands;
+ Operands.reserve(CE->getNumOperands());
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Operands.push_back(cast<Constant>(CE->getOperand(i)));
+ return ExprMapKeyType(CE->getOpcode(), Operands,
+ CE->isCompare() ? CE->getPredicate() : 0,
+ CE->getRawSubclassOptionalData(),
+ CE->hasIndices() ?
+ CE->getIndices() : SmallVector<unsigned, 4>());
+ }
+};
+
+// ConstantAggregateZero does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
+ static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
+ return new ConstantAggregateZero(Ty);
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantVector> {
+ typedef std::vector<Constant*> ValType;
+ static ValType getValType(ConstantVector *CP) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CP->getNumOperands());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ Elements.push_back(CP->getOperand(i));
+ return Elements;
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantAggregateZero> {
+ typedef char ValType;
+ static ValType getValType(ConstantAggregateZero *C) {
+ return 0;
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantArray> {
+ typedef std::vector<Constant*> ValType;
+ static ValType getValType(ConstantArray *CA) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CA->getNumOperands());
+ for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
+ Elements.push_back(cast<Constant>(CA->getOperand(i)));
+ return Elements;
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantStruct> {
+ typedef std::vector<Constant*> ValType;
+ static ValType getValType(ConstantStruct *CS) {
+ std::vector<Constant*> Elements;
+ Elements.reserve(CS->getNumOperands());
+ for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
+ Elements.push_back(cast<Constant>(CS->getOperand(i)));
+ return Elements;
+ }
+};
+
+// ConstantPointerNull does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
+ static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
+ return new ConstantPointerNull(Ty);
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantPointerNull> {
+ typedef char ValType;
+ static ValType getValType(ConstantPointerNull *C) {
+ return 0;
+ }
+};
+
+// UndefValue does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<UndefValue, Type, ValType> {
+ static UndefValue *create(const Type *Ty, const ValType &V) {
+ return new UndefValue(Ty);
+ }
+};
+
+template<>
+struct ConstantKeyData<UndefValue> {
+ typedef char ValType;
+ static ValType getValType(UndefValue *C) {
+ return 0;
+ }
+};
+
+template<class ValType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ValueMap : public AbstractTypeUser {
+public:
+ typedef std::pair<const TypeClass*, ValType> MapKey;
+ typedef std::map<MapKey, ConstantClass *> MapTy;
+ typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
+ typedef std::map<const DerivedType*, typename MapTy::iterator>
+ AbstractTypeMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+ /// AbstractTypeMap - Map for abstract type constants.
+ ///
+ AbstractTypeMapTy AbstractTypeMap;
+
+ /// ValueMapLock - Mutex for this map.
+ sys::SmartMutex<true> ValueMapLock;
+
+public:
+ // NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator map_begin() { return Map.begin(); }
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ void freeConstants() {
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
+ if (I->second->use_empty())
+ delete I->second;
+ }
+ }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ /// NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
+ ConstantKeyData<ConstantClass>::getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
+ // If the type of the constant is abstract, make sure that an entry
+ // exists for it in the AbstractTypeMap.
+ if (Ty->isAbstract()) {
+ const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
+ typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
+
+ if (TI == AbstractTypeMap.end()) {
+ // Add ourselves to the ATU list of the type.
+ cast<DerivedType>(DTy)->addAbstractTypeUser(this);
+
+ AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
+ }
+ }
+ }
+
+ ConstantClass* Create(const TypeClass *Ty, const ValType &V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ AddAbstractTypeUser(Ty, I);
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = I->second;
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ void UpdateAbstractTypeMap(const DerivedType *Ty,
+ typename MapTy::iterator I) {
+ assert(AbstractTypeMap.count(Ty) &&
+ "Abstract type not in AbstractTypeMap?");
+ typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
+ if (ATMEntryIt == I) {
+ // Yes, we are removing the representative entry for this type.
+ // See if there are any other entries of the same type.
+ typename MapTy::iterator TmpIt = ATMEntryIt;
+
+ // First check the entry before this one...
+ if (TmpIt != Map.begin()) {
+ --TmpIt;
+ if (TmpIt->first.first != Ty) // Not the same type, move back...
+ ++TmpIt;
+ }
+
+ // If we didn't find the same type, try to move forward...
+ if (TmpIt == ATMEntryIt) {
+ ++TmpIt;
+ if (TmpIt == Map.end() || TmpIt->first.first != Ty)
+ --TmpIt; // No entry afterwards with the same type
+ }
+
+ // If there is another entry in the map of the same abstract type,
+ // update the AbstractTypeMap entry now.
+ if (TmpIt != ATMEntryIt) {
+ ATMEntryIt = TmpIt;
+ } else {
+ // Otherwise, we are removing the last instance of this type
+ // from the table. Remove from the ATM, and from user list.
+ cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
+ AbstractTypeMap.erase(Ty);
+ }
+ }
+ }
+
+ void remove(ConstantClass *CP) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ // Now that we found the entry, make sure this isn't the entry that
+ // the AbstractTypeMap points to.
+ const TypeClass *Ty = I->first.first;
+ if (Ty->isAbstract())
+ UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
+
+ Map.erase(I);
+ }
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ /// NOTE: This function is not locked. It is the responsibility of the
+ /// caller to enforce proper synchronization if using this method.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // If this constant is the representative element for its abstract type,
+ // update the AbstractTypeMap so that the representative element is I.
+ if (C->getType()->isAbstract()) {
+ typename AbstractTypeMapTy::iterator ATI =
+ AbstractTypeMap.find(C->getType());
+ assert(ATI != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+ if (ATI->second == OldI)
+ ATI->second = I;
+ }
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
+
+ assert(I != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+
+ // Convert a constant at a time until the last one is gone. The last one
+ // leaving will remove() itself, causing the AbstractTypeMapEntry to be
+ // eliminated eventually.
+ do {
+ ConstantClass *C = I->second->second;
+ MapKey Key(cast<TypeClass>(NewTy),
+ ConstantKeyData<ConstantClass>::getValType(C));
+
+ std::pair<typename MapTy::iterator, bool> IP =
+ Map.insert(std::make_pair(Key, C));
+ if (IP.second) {
+ // The map didn't previously have an appropriate constant in the
+ // new type.
+
+ // Remove the old entry.
+ typename MapTy::iterator OldI =
+ Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
+ assert(OldI != Map.end() && "Constant not in map!");
+ UpdateAbstractTypeMap(OldTy, OldI);
+ Map.erase(OldI);
+
+ // Set the constant's type. This is done in place!
+ setType(C, NewTy);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey)
+ InverseMap[C] = IP.first;
+
+ AddAbstractTypeUser(NewTy, IP.first);
+ } else {
+ // The map already had an appropriate constant in the new type, so
+ // there's no longer a need for the old constant.
+ C->uncheckedReplaceAllUsesWith(IP.first->second);
+ C->destroyConstant(); // This constant is now dead, destroy it.
+ }
+ I = AbstractTypeMap.find(OldTy);
+ } while (I != AbstractTypeMap.end());
+ }
+
+ // If the type became concrete without being refined to any other existing
+ // type, we just remove ourselves from the ATU list.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {
+ DEBUG(errs() << "Constant.cpp: ValueMap\n");
+ }
+};
+
+}
+
+#endif
diff --git a/lib/VMCore/Core.cpp b/lib/VMCore/Core.cpp
index 6eb1889..bff3087 100644
--- a/lib/VMCore/Core.cpp
+++ b/lib/VMCore/Core.cpp
@@ -25,6 +25,7 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
@@ -93,12 +94,15 @@ int LLVMAddTypeName(LLVMModuleRef M, const char *Name, LLVMTypeRef Ty) {
}
void LLVMDeleteTypeName(LLVMModuleRef M, const char *Name) {
- std::string N(Name);
-
TypeSymbolTable &TST = unwrap(M)->getTypeSymbolTable();
- for (TypeSymbolTable::iterator I = TST.begin(), E = TST.end(); I != E; ++I)
- if (I->first == N)
- TST.remove(I);
+
+ TypeSymbolTable::iterator I = TST.find(Name);
+ if (I != TST.end())
+ TST.remove(I);
+}
+
+LLVMTypeRef LLVMGetTypeByName(LLVMModuleRef M, const char *Name) {
+ return wrap(unwrap(M)->getTypeByName(Name));
}
void LLVMDumpModule(LLVMModuleRef M) {
@@ -111,19 +115,84 @@ void LLVMDumpModule(LLVMModuleRef M) {
/*--.. Operations on all types (mostly) ....................................--*/
LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty) {
- return static_cast<LLVMTypeKind>(unwrap(Ty)->getTypeID());
+ switch (unwrap(Ty)->getTypeID()) {
+ default:
+ assert(false && "Unhandled TypeID.");
+ case Type::VoidTyID:
+ return LLVMVoidTypeKind;
+ case Type::FloatTyID:
+ return LLVMFloatTypeKind;
+ case Type::DoubleTyID:
+ return LLVMDoubleTypeKind;
+ case Type::X86_FP80TyID:
+ return LLVMX86_FP80TypeKind;
+ case Type::FP128TyID:
+ return LLVMFP128TypeKind;
+ case Type::PPC_FP128TyID:
+ return LLVMPPC_FP128TypeKind;
+ case Type::LabelTyID:
+ return LLVMLabelTypeKind;
+ case Type::MetadataTyID:
+ return LLVMMetadataTypeKind;
+ case Type::IntegerTyID:
+ return LLVMIntegerTypeKind;
+ case Type::FunctionTyID:
+ return LLVMFunctionTypeKind;
+ case Type::StructTyID:
+ return LLVMStructTypeKind;
+ case Type::ArrayTyID:
+ return LLVMArrayTypeKind;
+ case Type::PointerTyID:
+ return LLVMPointerTypeKind;
+ case Type::OpaqueTyID:
+ return LLVMOpaqueTypeKind;
+ case Type::VectorTyID:
+ return LLVMVectorTypeKind;
+ }
+}
+
+LLVMContextRef LLVMGetTypeContext(LLVMTypeRef Ty) {
+ return wrap(&unwrap(Ty)->getContext());
}
/*--.. Operations on integer types .........................................--*/
-LLVMTypeRef LLVMInt1Type(void) { return (LLVMTypeRef) Type::Int1Ty; }
-LLVMTypeRef LLVMInt8Type(void) { return (LLVMTypeRef) Type::Int8Ty; }
-LLVMTypeRef LLVMInt16Type(void) { return (LLVMTypeRef) Type::Int16Ty; }
-LLVMTypeRef LLVMInt32Type(void) { return (LLVMTypeRef) Type::Int32Ty; }
-LLVMTypeRef LLVMInt64Type(void) { return (LLVMTypeRef) Type::Int64Ty; }
+LLVMTypeRef LLVMInt1TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getInt1Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMInt8TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getInt8Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMInt16TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getInt16Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMInt32TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getInt32Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMInt64TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getInt64Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMIntTypeInContext(LLVMContextRef C, unsigned NumBits) {
+ return wrap(IntegerType::get(*unwrap(C), NumBits));
+}
+LLVMTypeRef LLVMInt1Type(void) {
+ return LLVMInt1TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMInt8Type(void) {
+ return LLVMInt8TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMInt16Type(void) {
+ return LLVMInt16TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMInt32Type(void) {
+ return LLVMInt32TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMInt64Type(void) {
+ return LLVMInt64TypeInContext(LLVMGetGlobalContext());
+}
LLVMTypeRef LLVMIntType(unsigned NumBits) {
- return wrap(IntegerType::get(NumBits));
+ return LLVMIntTypeInContext(LLVMGetGlobalContext(), NumBits);
}
unsigned LLVMGetIntTypeWidth(LLVMTypeRef IntegerTy) {
@@ -132,11 +201,37 @@ unsigned LLVMGetIntTypeWidth(LLVMTypeRef IntegerTy) {
/*--.. Operations on real types ............................................--*/
-LLVMTypeRef LLVMFloatType(void) { return (LLVMTypeRef) Type::FloatTy; }
-LLVMTypeRef LLVMDoubleType(void) { return (LLVMTypeRef) Type::DoubleTy; }
-LLVMTypeRef LLVMX86FP80Type(void) { return (LLVMTypeRef) Type::X86_FP80Ty; }
-LLVMTypeRef LLVMFP128Type(void) { return (LLVMTypeRef) Type::FP128Ty; }
-LLVMTypeRef LLVMPPCFP128Type(void) { return (LLVMTypeRef) Type::PPC_FP128Ty; }
+LLVMTypeRef LLVMFloatTypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getFloatTy(*unwrap(C));
+}
+LLVMTypeRef LLVMDoubleTypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getDoubleTy(*unwrap(C));
+}
+LLVMTypeRef LLVMX86FP80TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getX86_FP80Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMFP128TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getFP128Ty(*unwrap(C));
+}
+LLVMTypeRef LLVMPPCFP128TypeInContext(LLVMContextRef C) {
+ return (LLVMTypeRef) Type::getPPC_FP128Ty(*unwrap(C));
+}
+
+LLVMTypeRef LLVMFloatType(void) {
+ return LLVMFloatTypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMDoubleType(void) {
+ return LLVMDoubleTypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMX86FP80Type(void) {
+ return LLVMX86FP80TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMFP128Type(void) {
+ return LLVMFP128TypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMPPCFP128Type(void) {
+ return LLVMPPCFP128TypeInContext(LLVMGetGlobalContext());
+}
/*--.. Operations on function types ........................................--*/
@@ -171,16 +266,23 @@ void LLVMGetParamTypes(LLVMTypeRef FunctionTy, LLVMTypeRef *Dest) {
/*--.. Operations on struct types ..........................................--*/
-LLVMTypeRef LLVMStructType(LLVMTypeRef *ElementTypes,
+LLVMTypeRef LLVMStructTypeInContext(LLVMContextRef C, LLVMTypeRef *ElementTypes,
unsigned ElementCount, int Packed) {
std::vector<const Type*> Tys;
for (LLVMTypeRef *I = ElementTypes,
*E = ElementTypes + ElementCount; I != E; ++I)
Tys.push_back(unwrap(*I));
- return wrap(StructType::get(Tys, Packed != 0));
+ return wrap(StructType::get(*unwrap(C), Tys, Packed != 0));
+}
+
+LLVMTypeRef LLVMStructType(LLVMTypeRef *ElementTypes,
+ unsigned ElementCount, int Packed) {
+ return LLVMStructTypeInContext(LLVMGetGlobalContext(), ElementTypes,
+ ElementCount, Packed);
}
+
unsigned LLVMCountStructElementTypes(LLVMTypeRef StructTy) {
return unwrap<StructType>(StructTy)->getNumElements();
}
@@ -228,11 +330,24 @@ unsigned LLVMGetVectorSize(LLVMTypeRef VectorTy) {
/*--.. Operations on other types ...........................................--*/
-LLVMTypeRef LLVMVoidType(void) { return (LLVMTypeRef) Type::VoidTy; }
-LLVMTypeRef LLVMLabelType(void) { return (LLVMTypeRef) Type::LabelTy; }
+LLVMTypeRef LLVMVoidTypeInContext(LLVMContextRef C) {
+ return wrap(Type::getVoidTy(*unwrap(C)));
+}
+LLVMTypeRef LLVMLabelTypeInContext(LLVMContextRef C) {
+ return wrap(Type::getLabelTy(*unwrap(C)));
+}
+LLVMTypeRef LLVMOpaqueTypeInContext(LLVMContextRef C) {
+ return wrap(OpaqueType::get(*unwrap(C)));
+}
+LLVMTypeRef LLVMVoidType(void) {
+ return LLVMVoidTypeInContext(LLVMGetGlobalContext());
+}
+LLVMTypeRef LLVMLabelType(void) {
+ return LLVMLabelTypeInContext(LLVMGetGlobalContext());
+}
LLVMTypeRef LLVMOpaqueType(void) {
- return wrap(llvm::OpaqueType::get());
+ return LLVMOpaqueTypeInContext(LLVMGetGlobalContext());
}
/*--.. Operations on type handles ..........................................--*/
@@ -263,7 +378,7 @@ LLVMTypeRef LLVMTypeOf(LLVMValueRef Val) {
}
const char *LLVMGetValueName(LLVMValueRef Val) {
- return unwrap(Val)->getNameStart();
+ return unwrap(Val)->getName().data();
}
void LLVMSetValueName(LLVMValueRef Val, const char *Name) {
@@ -274,6 +389,9 @@ void LLVMDumpValue(LLVMValueRef Val) {
unwrap(Val)->dump();
}
+void LLVMReplaceAllUsesWith(LLVMValueRef OldVal, LLVMValueRef NewVal) {
+ unwrap(OldVal)->replaceAllUsesWith(unwrap(NewVal));
+}
/*--.. Conversion functions ................................................--*/
@@ -284,6 +402,31 @@ void LLVMDumpValue(LLVMValueRef Val) {
LLVM_FOR_EACH_VALUE_SUBCLASS(LLVM_DEFINE_VALUE_CAST)
+/*--.. Operations on Uses ..................................................--*/
+LLVMUseIteratorRef LLVMGetFirstUse(LLVMValueRef Val) {
+ Value *V = unwrap(Val);
+ Value::use_iterator I = V->use_begin();
+ if (I == V->use_end())
+ return 0;
+ return wrap(&(I.getUse()));
+}
+
+LLVMUseIteratorRef LLVMGetNextUse(LLVMUseIteratorRef UR) {
+ return wrap(unwrap(UR)->getNext());
+}
+
+LLVMValueRef LLVMGetUser(LLVMUseIteratorRef UR) {
+ return wrap(unwrap(UR)->getUser());
+}
+
+LLVMValueRef LLVMGetUsedValue(LLVMUseIteratorRef UR) {
+ return wrap(unwrap(UR)->get());
+}
+
+/*--.. Operations on Users .................................................--*/
+LLVMValueRef LLVMGetOperand(LLVMValueRef Val, unsigned Index) {
+ return wrap(unwrap<User>(Val)->getOperand(Index));
+}
/*--.. Operations on constants of any type .................................--*/
@@ -313,6 +456,11 @@ int LLVMIsUndef(LLVMValueRef Val) {
return isa<UndefValue>(unwrap(Val));
}
+LLVMValueRef LLVMConstPointerNull(LLVMTypeRef Ty) {
+ return
+ wrap(ConstantPointerNull::get(unwrap<PointerType>(Ty)));
+}
+
/*--.. Operations on scalar constants ......................................--*/
LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N,
@@ -320,63 +468,84 @@ LLVMValueRef LLVMConstInt(LLVMTypeRef IntTy, unsigned long long N,
return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), N, SignExtend != 0));
}
-static const fltSemantics &SemanticsForType(Type *Ty) {
- assert(Ty->isFloatingPoint() && "Type is not floating point!");
- if (Ty == Type::FloatTy)
- return APFloat::IEEEsingle;
- if (Ty == Type::DoubleTy)
- return APFloat::IEEEdouble;
- if (Ty == Type::X86_FP80Ty)
- return APFloat::x87DoubleExtended;
- if (Ty == Type::FP128Ty)
- return APFloat::IEEEquad;
- if (Ty == Type::PPC_FP128Ty)
- return APFloat::PPCDoubleDouble;
- return APFloat::Bogus;
+LLVMValueRef LLVMConstIntOfString(LLVMTypeRef IntTy, const char Str[],
+ uint8_t Radix) {
+ return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str),
+ Radix));
+}
+
+LLVMValueRef LLVMConstIntOfStringAndSize(LLVMTypeRef IntTy, const char Str[],
+ unsigned SLen, uint8_t Radix) {
+ return wrap(ConstantInt::get(unwrap<IntegerType>(IntTy), StringRef(Str, SLen),
+ Radix));
}
LLVMValueRef LLVMConstReal(LLVMTypeRef RealTy, double N) {
- APFloat APN(N);
- bool ignored;
- APN.convert(SemanticsForType(unwrap(RealTy)), APFloat::rmNearestTiesToEven,
- &ignored);
- return wrap(ConstantFP::get(APN));
+ return wrap(ConstantFP::get(unwrap(RealTy), N));
}
LLVMValueRef LLVMConstRealOfString(LLVMTypeRef RealTy, const char *Text) {
- return wrap(ConstantFP::get(APFloat(SemanticsForType(unwrap(RealTy)), Text)));
+ return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Text)));
+}
+
+LLVMValueRef LLVMConstRealOfStringAndSize(LLVMTypeRef RealTy, const char Str[],
+ unsigned SLen) {
+ return wrap(ConstantFP::get(unwrap(RealTy), StringRef(Str, SLen)));
+}
+
+unsigned long long LLVMConstIntGetZExtValue(LLVMValueRef ConstantVal) {
+ return unwrap<ConstantInt>(ConstantVal)->getZExtValue();
+}
+
+long long LLVMConstIntGetSExtValue(LLVMValueRef ConstantVal) {
+ return unwrap<ConstantInt>(ConstantVal)->getSExtValue();
}
/*--.. Operations on composite constants ...................................--*/
-LLVMValueRef LLVMConstString(const char *Str, unsigned Length,
- int DontNullTerminate) {
+LLVMValueRef LLVMConstStringInContext(LLVMContextRef C, const char *Str,
+ unsigned Length, int DontNullTerminate) {
/* Inverted the sense of AddNull because ', 0)' is a
better mnemonic for null termination than ', 1)'. */
- return wrap(ConstantArray::get(std::string(Str, Length),
+ return wrap(ConstantArray::get(*unwrap(C), std::string(Str, Length),
DontNullTerminate == 0));
}
+LLVMValueRef LLVMConstStructInContext(LLVMContextRef C,
+ LLVMValueRef *ConstantVals,
+ unsigned Count, int Packed) {
+ return wrap(ConstantStruct::get(*unwrap(C),
+ unwrap<Constant>(ConstantVals, Count),
+ Count, Packed != 0));
+}
+LLVMValueRef LLVMConstString(const char *Str, unsigned Length,
+ int DontNullTerminate) {
+ return LLVMConstStringInContext(LLVMGetGlobalContext(), Str, Length,
+ DontNullTerminate);
+}
LLVMValueRef LLVMConstArray(LLVMTypeRef ElementTy,
LLVMValueRef *ConstantVals, unsigned Length) {
return wrap(ConstantArray::get(ArrayType::get(unwrap(ElementTy), Length),
unwrap<Constant>(ConstantVals, Length),
Length));
}
-
LLVMValueRef LLVMConstStruct(LLVMValueRef *ConstantVals, unsigned Count,
int Packed) {
- return wrap(ConstantStruct::get(unwrap<Constant>(ConstantVals, Count),
- Count, Packed != 0));
+ return LLVMConstStructInContext(LLVMGetGlobalContext(), ConstantVals, Count,
+ Packed);
}
LLVMValueRef LLVMConstVector(LLVMValueRef *ScalarConstantVals, unsigned Size) {
- return wrap(ConstantVector::get(unwrap<Constant>(ScalarConstantVals, Size),
- Size));
+ return wrap(ConstantVector::get(
+ unwrap<Constant>(ScalarConstantVals, Size), Size));
}
/*--.. Constant expressions ................................................--*/
+LLVMOpcode LLVMGetConstOpcode(LLVMValueRef ConstantVal) {
+ return (LLVMOpcode)unwrap<ConstantExpr>(ConstantVal)->getOpcode();
+}
+
LLVMValueRef LLVMAlignOf(LLVMTypeRef Ty) {
return wrap(ConstantExpr::getAlignOf(unwrap(Ty)));
}
@@ -386,70 +555,120 @@ LLVMValueRef LLVMSizeOf(LLVMTypeRef Ty) {
}
LLVMValueRef LLVMConstNeg(LLVMValueRef ConstantVal) {
- return wrap(ConstantExpr::getNeg(unwrap<Constant>(ConstantVal)));
+ return wrap(ConstantExpr::getNeg(
+ unwrap<Constant>(ConstantVal)));
+}
+
+LLVMValueRef LLVMConstFNeg(LLVMValueRef ConstantVal) {
+ return wrap(ConstantExpr::getFNeg(
+ unwrap<Constant>(ConstantVal)));
}
LLVMValueRef LLVMConstNot(LLVMValueRef ConstantVal) {
- return wrap(ConstantExpr::getNot(unwrap<Constant>(ConstantVal)));
+ return wrap(ConstantExpr::getNot(
+ unwrap<Constant>(ConstantVal)));
}
LLVMValueRef LLVMConstAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getAdd(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getAdd(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
+LLVMValueRef LLVMConstNSWAdd(LLVMValueRef LHSConstant,
+ LLVMValueRef RHSConstant) {
+ return wrap(ConstantExpr::getNSWAdd(
+ unwrap<Constant>(LHSConstant),
+ unwrap<Constant>(RHSConstant)));
+}
+
+LLVMValueRef LLVMConstFAdd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
+ return wrap(ConstantExpr::getFAdd(
+ unwrap<Constant>(LHSConstant),
+ unwrap<Constant>(RHSConstant)));
+}
+
LLVMValueRef LLVMConstSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getSub(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getSub(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
+LLVMValueRef LLVMConstFSub(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
+ return wrap(ConstantExpr::getFSub(unwrap<Constant>(LHSConstant),
+ unwrap<Constant>(RHSConstant)));
+}
+
LLVMValueRef LLVMConstMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getMul(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getMul(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
+LLVMValueRef LLVMConstFMul(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
+ return wrap(ConstantExpr::getFMul(
+ unwrap<Constant>(LHSConstant),
+ unwrap<Constant>(RHSConstant)));
+}
+
LLVMValueRef LLVMConstUDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getUDiv(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getUDiv(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstSDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getSDiv(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getSDiv(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
+LLVMValueRef LLVMConstExactSDiv(LLVMValueRef LHSConstant,
+ LLVMValueRef RHSConstant) {
+ return wrap(ConstantExpr::getExactSDiv(
+ unwrap<Constant>(LHSConstant),
+ unwrap<Constant>(RHSConstant)));
+}
+
LLVMValueRef LLVMConstFDiv(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getFDiv(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getFDiv(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstURem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getURem(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getURem(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstSRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getSRem(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getSRem(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstFRem(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getFRem(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getFRem(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstAnd(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getAnd(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getAnd(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstOr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getOr(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getOr(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstXor(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getXor(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getXor(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
@@ -468,55 +687,73 @@ LLVMValueRef LLVMConstFCmp(LLVMRealPredicate Predicate,
}
LLVMValueRef LLVMConstShl(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getShl(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getShl(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstLShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getLShr(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getLShr(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstAShr(LLVMValueRef LHSConstant, LLVMValueRef RHSConstant) {
- return wrap(ConstantExpr::getAShr(unwrap<Constant>(LHSConstant),
+ return wrap(ConstantExpr::getAShr(
+ unwrap<Constant>(LHSConstant),
unwrap<Constant>(RHSConstant)));
}
LLVMValueRef LLVMConstGEP(LLVMValueRef ConstantVal,
LLVMValueRef *ConstantIndices, unsigned NumIndices) {
- return wrap(ConstantExpr::getGetElementPtr(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getGetElementPtr(
+ unwrap<Constant>(ConstantVal),
unwrap<Constant>(ConstantIndices,
NumIndices),
NumIndices));
}
+LLVMValueRef LLVMConstInBoundsGEP(LLVMValueRef ConstantVal,
+ LLVMValueRef *ConstantIndices,
+ unsigned NumIndices) {
+ Constant* Val = unwrap<Constant>(ConstantVal);
+ Constant** Idxs = unwrap<Constant>(ConstantIndices, NumIndices);
+ return wrap(ConstantExpr::getInBoundsGetElementPtr(Val, Idxs, NumIndices));
+}
+
LLVMValueRef LLVMConstTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getTrunc(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getTrunc(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstSExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getSExt(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getSExt(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstZExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getZExt(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getZExt(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstFPTrunc(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getFPTrunc(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getFPTrunc(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstFPExt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getFPExtend(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getFPExtend(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstUIToFP(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getUIToFP(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getUIToFP(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
@@ -531,43 +768,92 @@ LLVMValueRef LLVMConstFPToUI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
}
LLVMValueRef LLVMConstFPToSI(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getFPToSI(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getFPToSI(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstPtrToInt(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getPtrToInt(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getPtrToInt(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstIntToPtr(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getIntToPtr(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getIntToPtr(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
LLVMValueRef LLVMConstBitCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
- return wrap(ConstantExpr::getBitCast(unwrap<Constant>(ConstantVal),
+ return wrap(ConstantExpr::getBitCast(
+ unwrap<Constant>(ConstantVal),
unwrap(ToType)));
}
+LLVMValueRef LLVMConstZExtOrBitCast(LLVMValueRef ConstantVal,
+ LLVMTypeRef ToType) {
+ return wrap(ConstantExpr::getZExtOrBitCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType)));
+}
+
+LLVMValueRef LLVMConstSExtOrBitCast(LLVMValueRef ConstantVal,
+ LLVMTypeRef ToType) {
+ return wrap(ConstantExpr::getSExtOrBitCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType)));
+}
+
+LLVMValueRef LLVMConstTruncOrBitCast(LLVMValueRef ConstantVal,
+ LLVMTypeRef ToType) {
+ return wrap(ConstantExpr::getTruncOrBitCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType)));
+}
+
+LLVMValueRef LLVMConstPointerCast(LLVMValueRef ConstantVal,
+ LLVMTypeRef ToType) {
+ return wrap(ConstantExpr::getPointerCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType)));
+}
+
+LLVMValueRef LLVMConstIntCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType,
+ unsigned isSigned) {
+ return wrap(ConstantExpr::getIntegerCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType),
+ isSigned));
+}
+
+LLVMValueRef LLVMConstFPCast(LLVMValueRef ConstantVal, LLVMTypeRef ToType) {
+ return wrap(ConstantExpr::getFPCast(
+ unwrap<Constant>(ConstantVal),
+ unwrap(ToType)));
+}
+
LLVMValueRef LLVMConstSelect(LLVMValueRef ConstantCondition,
LLVMValueRef ConstantIfTrue,
LLVMValueRef ConstantIfFalse) {
- return wrap(ConstantExpr::getSelect(unwrap<Constant>(ConstantCondition),
+ return wrap(ConstantExpr::getSelect(
+ unwrap<Constant>(ConstantCondition),
unwrap<Constant>(ConstantIfTrue),
unwrap<Constant>(ConstantIfFalse)));
}
LLVMValueRef LLVMConstExtractElement(LLVMValueRef VectorConstant,
LLVMValueRef IndexConstant) {
- return wrap(ConstantExpr::getExtractElement(unwrap<Constant>(VectorConstant),
+ return wrap(ConstantExpr::getExtractElement(
+ unwrap<Constant>(VectorConstant),
unwrap<Constant>(IndexConstant)));
}
LLVMValueRef LLVMConstInsertElement(LLVMValueRef VectorConstant,
LLVMValueRef ElementValueConstant,
LLVMValueRef IndexConstant) {
- return wrap(ConstantExpr::getInsertElement(unwrap<Constant>(VectorConstant),
+ return wrap(ConstantExpr::getInsertElement(
+ unwrap<Constant>(VectorConstant),
unwrap<Constant>(ElementValueConstant),
unwrap<Constant>(IndexConstant)));
}
@@ -575,29 +861,33 @@ LLVMValueRef LLVMConstInsertElement(LLVMValueRef VectorConstant,
LLVMValueRef LLVMConstShuffleVector(LLVMValueRef VectorAConstant,
LLVMValueRef VectorBConstant,
LLVMValueRef MaskConstant) {
- return wrap(ConstantExpr::getShuffleVector(unwrap<Constant>(VectorAConstant),
+ return wrap(ConstantExpr::getShuffleVector(
+ unwrap<Constant>(VectorAConstant),
unwrap<Constant>(VectorBConstant),
unwrap<Constant>(MaskConstant)));
}
LLVMValueRef LLVMConstExtractValue(LLVMValueRef AggConstant, unsigned *IdxList,
unsigned NumIdx) {
- return wrap(ConstantExpr::getExtractValue(unwrap<Constant>(AggConstant),
+ return wrap(ConstantExpr::getExtractValue(
+ unwrap<Constant>(AggConstant),
IdxList, NumIdx));
}
LLVMValueRef LLVMConstInsertValue(LLVMValueRef AggConstant,
LLVMValueRef ElementValueConstant,
unsigned *IdxList, unsigned NumIdx) {
- return wrap(ConstantExpr::getInsertValue(unwrap<Constant>(AggConstant),
+ return wrap(ConstantExpr::getInsertValue(
+ unwrap<Constant>(AggConstant),
unwrap<Constant>(ElementValueConstant),
IdxList, NumIdx));
}
LLVMValueRef LLVMConstInlineAsm(LLVMTypeRef Ty, const char *AsmString,
- const char *Constraints, int HasSideEffects) {
+ const char *Constraints, int HasSideEffects,
+ int IsMsAsm) {
return wrap(InlineAsm::get(dyn_cast<FunctionType>(unwrap(Ty)), AsmString,
- Constraints, HasSideEffects));
+ Constraints, HasSideEffects, IsMsAsm));
}
/*--.. Operations on global variables, functions, and aliases (globals) ....--*/
@@ -611,12 +901,97 @@ int LLVMIsDeclaration(LLVMValueRef Global) {
}
LLVMLinkage LLVMGetLinkage(LLVMValueRef Global) {
- return static_cast<LLVMLinkage>(unwrap<GlobalValue>(Global)->getLinkage());
+ switch (unwrap<GlobalValue>(Global)->getLinkage()) {
+ default:
+ assert(false && "Unhandled Linkage Type.");
+ case GlobalValue::ExternalLinkage:
+ return LLVMExternalLinkage;
+ case GlobalValue::AvailableExternallyLinkage:
+ return LLVMAvailableExternallyLinkage;
+ case GlobalValue::LinkOnceAnyLinkage:
+ return LLVMLinkOnceAnyLinkage;
+ case GlobalValue::LinkOnceODRLinkage:
+ return LLVMLinkOnceODRLinkage;
+ case GlobalValue::WeakAnyLinkage:
+ return LLVMWeakAnyLinkage;
+ case GlobalValue::WeakODRLinkage:
+ return LLVMWeakODRLinkage;
+ case GlobalValue::AppendingLinkage:
+ return LLVMAppendingLinkage;
+ case GlobalValue::InternalLinkage:
+ return LLVMInternalLinkage;
+ case GlobalValue::PrivateLinkage:
+ return LLVMPrivateLinkage;
+ case GlobalValue::LinkerPrivateLinkage:
+ return LLVMLinkerPrivateLinkage;
+ case GlobalValue::DLLImportLinkage:
+ return LLVMDLLImportLinkage;
+ case GlobalValue::DLLExportLinkage:
+ return LLVMDLLExportLinkage;
+ case GlobalValue::ExternalWeakLinkage:
+ return LLVMExternalWeakLinkage;
+ case GlobalValue::GhostLinkage:
+ return LLVMGhostLinkage;
+ case GlobalValue::CommonLinkage:
+ return LLVMCommonLinkage;
+ }
+
+ // Should never get here.
+ return static_cast<LLVMLinkage>(0);
}
void LLVMSetLinkage(LLVMValueRef Global, LLVMLinkage Linkage) {
- unwrap<GlobalValue>(Global)
- ->setLinkage(static_cast<GlobalValue::LinkageTypes>(Linkage));
+ GlobalValue *GV = unwrap<GlobalValue>(Global);
+
+ switch (Linkage) {
+ default:
+ assert(false && "Unhandled Linkage Type.");
+ case LLVMExternalLinkage:
+ GV->setLinkage(GlobalValue::ExternalLinkage);
+ break;
+ case LLVMAvailableExternallyLinkage:
+ GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
+ break;
+ case LLVMLinkOnceAnyLinkage:
+ GV->setLinkage(GlobalValue::LinkOnceAnyLinkage);
+ break;
+ case LLVMLinkOnceODRLinkage:
+ GV->setLinkage(GlobalValue::LinkOnceODRLinkage);
+ break;
+ case LLVMWeakAnyLinkage:
+ GV->setLinkage(GlobalValue::WeakAnyLinkage);
+ break;
+ case LLVMWeakODRLinkage:
+ GV->setLinkage(GlobalValue::WeakODRLinkage);
+ break;
+ case LLVMAppendingLinkage:
+ GV->setLinkage(GlobalValue::AppendingLinkage);
+ break;
+ case LLVMInternalLinkage:
+ GV->setLinkage(GlobalValue::InternalLinkage);
+ break;
+ case LLVMPrivateLinkage:
+ GV->setLinkage(GlobalValue::PrivateLinkage);
+ break;
+ case LLVMLinkerPrivateLinkage:
+ GV->setLinkage(GlobalValue::LinkerPrivateLinkage);
+ break;
+ case LLVMDLLImportLinkage:
+ GV->setLinkage(GlobalValue::DLLImportLinkage);
+ break;
+ case LLVMDLLExportLinkage:
+ GV->setLinkage(GlobalValue::DLLExportLinkage);
+ break;
+ case LLVMExternalWeakLinkage:
+ GV->setLinkage(GlobalValue::ExternalWeakLinkage);
+ break;
+ case LLVMGhostLinkage:
+ GV->setLinkage(GlobalValue::GhostLinkage);
+ break;
+ case LLVMCommonLinkage:
+ GV->setLinkage(GlobalValue::CommonLinkage);
+ break;
+ }
}
const char *LLVMGetSection(LLVMValueRef Global) {
@@ -648,9 +1023,8 @@ void LLVMSetAlignment(LLVMValueRef Global, unsigned Bytes) {
/*--.. Operations on global variables ......................................--*/
LLVMValueRef LLVMAddGlobal(LLVMModuleRef M, LLVMTypeRef Ty, const char *Name) {
- return wrap(new GlobalVariable(unwrap(Ty), false,
- GlobalValue::ExternalLinkage, 0, Name,
- unwrap(M)));
+ return wrap(new GlobalVariable(*unwrap(M), unwrap(Ty), false,
+ GlobalValue::ExternalLinkage, 0, Name));
}
LLVMValueRef LLVMGetNamedGlobal(LLVMModuleRef M, const char *Name) {
@@ -694,7 +1068,10 @@ void LLVMDeleteGlobal(LLVMValueRef GlobalVar) {
}
LLVMValueRef LLVMGetInitializer(LLVMValueRef GlobalVar) {
- return wrap(unwrap<GlobalVariable>(GlobalVar)->getInitializer());
+ GlobalVariable* GV = unwrap<GlobalVariable>(GlobalVar);
+ if ( !GV->hasInitializer() )
+ return 0;
+ return wrap(GV->getInitializer());
}
void LLVMSetInitializer(LLVMValueRef GlobalVar, LLVMValueRef ConstantVal) {
@@ -785,7 +1162,8 @@ unsigned LLVMGetFunctionCallConv(LLVMValueRef Fn) {
}
void LLVMSetFunctionCallConv(LLVMValueRef Fn, unsigned CC) {
- return unwrap<Function>(Fn)->setCallingConv(CC);
+ return unwrap<Function>(Fn)->setCallingConv(
+ static_cast<CallingConv::ID>(CC));
}
const char *LLVMGetGC(LLVMValueRef Fn) {
@@ -815,6 +1193,13 @@ void LLVMRemoveFunctionAttr(LLVMValueRef Fn, LLVMAttribute PA) {
Func->setAttributes(PALnew);
}
+LLVMAttribute LLVMGetFunctionAttr(LLVMValueRef Fn) {
+ Function *Func = unwrap<Function>(Fn);
+ const AttrListPtr PAL = Func->getAttributes();
+ Attributes attr = PAL.getFnAttributes();
+ return (LLVMAttribute)attr;
+}
+
/*--.. Operations on parameters ............................................--*/
unsigned LLVMCountParams(LLVMValueRef FnRef) {
@@ -881,6 +1266,14 @@ void LLVMRemoveAttribute(LLVMValueRef Arg, LLVMAttribute PA) {
unwrap<Argument>(Arg)->removeAttr(PA);
}
+LLVMAttribute LLVMGetAttribute(LLVMValueRef Arg) {
+ Argument *A = unwrap<Argument>(Arg);
+ Attributes attr = A->getParent()->getAttributes().getParamAttributes(
+ A->getArgNo()+1);
+ return (LLVMAttribute)attr;
+}
+
+
void LLVMSetParamAlignment(LLVMValueRef Arg, unsigned align) {
unwrap<Argument>(Arg)->addAttr(
Attribute::constructAlignmentFromInt(align));
@@ -950,15 +1343,26 @@ LLVMBasicBlockRef LLVMGetPreviousBasicBlock(LLVMBasicBlockRef BB) {
return wrap(--I);
}
+LLVMBasicBlockRef LLVMAppendBasicBlockInContext(LLVMContextRef C,
+ LLVMValueRef FnRef,
+ const char *Name) {
+ return wrap(BasicBlock::Create(*unwrap(C), Name, unwrap<Function>(FnRef)));
+}
+
LLVMBasicBlockRef LLVMAppendBasicBlock(LLVMValueRef FnRef, const char *Name) {
- return wrap(BasicBlock::Create(Name, unwrap<Function>(FnRef)));
+ return LLVMAppendBasicBlockInContext(LLVMGetGlobalContext(), FnRef, Name);
+}
+
+LLVMBasicBlockRef LLVMInsertBasicBlockInContext(LLVMContextRef C,
+ LLVMBasicBlockRef BBRef,
+ const char *Name) {
+ BasicBlock *BB = unwrap(BBRef);
+ return wrap(BasicBlock::Create(*unwrap(C), Name, BB->getParent(), BB));
}
-LLVMBasicBlockRef LLVMInsertBasicBlock(LLVMBasicBlockRef InsertBeforeBBRef,
+LLVMBasicBlockRef LLVMInsertBasicBlock(LLVMBasicBlockRef BBRef,
const char *Name) {
- BasicBlock *InsertBeforeBB = unwrap(InsertBeforeBBRef);
- return wrap(BasicBlock::Create(Name, InsertBeforeBB->getParent(),
- InsertBeforeBB));
+ return LLVMInsertBasicBlockInContext(LLVMGetGlobalContext(), BBRef, Name);
}
void LLVMDeleteBasicBlock(LLVMBasicBlockRef BBRef) {
@@ -1011,17 +1415,17 @@ unsigned LLVMGetInstructionCallConv(LLVMValueRef Instr) {
return CI->getCallingConv();
else if (InvokeInst *II = dyn_cast<InvokeInst>(V))
return II->getCallingConv();
- assert(0 && "LLVMGetInstructionCallConv applies only to call and invoke!");
+ llvm_unreachable("LLVMGetInstructionCallConv applies only to call and invoke!");
return 0;
}
void LLVMSetInstructionCallConv(LLVMValueRef Instr, unsigned CC) {
Value *V = unwrap(Instr);
if (CallInst *CI = dyn_cast<CallInst>(V))
- return CI->setCallingConv(CC);
+ return CI->setCallingConv(static_cast<CallingConv::ID>(CC));
else if (InvokeInst *II = dyn_cast<InvokeInst>(V))
- return II->setCallingConv(CC);
- assert(0 && "LLVMSetInstructionCallConv applies only to call and invoke!");
+ return II->setCallingConv(static_cast<CallingConv::ID>(CC));
+ llvm_unreachable("LLVMSetInstructionCallConv applies only to call and invoke!");
}
void LLVMAddInstrAttribute(LLVMValueRef Instr, unsigned index,
@@ -1080,8 +1484,12 @@ LLVMBasicBlockRef LLVMGetIncomingBlock(LLVMValueRef PhiNode, unsigned Index) {
/*===-- Instruction builders ----------------------------------------------===*/
+LLVMBuilderRef LLVMCreateBuilderInContext(LLVMContextRef C) {
+ return wrap(new IRBuilder<>(*unwrap(C)));
+}
+
LLVMBuilderRef LLVMCreateBuilder(void) {
- return wrap(new IRBuilder<>());
+ return LLVMCreateBuilderInContext(LLVMGetGlobalContext());
}
void LLVMPositionBuilder(LLVMBuilderRef Builder, LLVMBasicBlockRef Block,
@@ -1113,6 +1521,11 @@ void LLVMInsertIntoBuilder(LLVMBuilderRef Builder, LLVMValueRef Instr) {
unwrap(Builder)->Insert(unwrap<Instruction>(Instr));
}
+void LLVMInsertIntoBuilderWithName(LLVMBuilderRef Builder, LLVMValueRef Instr,
+ const char *Name) {
+ unwrap(Builder)->Insert(unwrap<Instruction>(Instr), Name);
+}
+
void LLVMDisposeBuilder(LLVMBuilderRef Builder) {
delete unwrap(Builder);
}
@@ -1127,6 +1540,11 @@ LLVMValueRef LLVMBuildRet(LLVMBuilderRef B, LLVMValueRef V) {
return wrap(unwrap(B)->CreateRet(unwrap(V)));
}
+LLVMValueRef LLVMBuildAggregateRet(LLVMBuilderRef B, LLVMValueRef *RetVals,
+ unsigned N) {
+ return wrap(unwrap(B)->CreateAggregateRet(unwrap(RetVals), N));
+}
+
LLVMValueRef LLVMBuildBr(LLVMBuilderRef B, LLVMBasicBlockRef Dest) {
return wrap(unwrap(B)->CreateBr(unwrap(Dest)));
}
@@ -1170,16 +1588,36 @@ LLVMValueRef LLVMBuildAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
return wrap(unwrap(B)->CreateAdd(unwrap(LHS), unwrap(RHS), Name));
}
+LLVMValueRef LLVMBuildNSWAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateNSWAdd(unwrap(LHS), unwrap(RHS), Name));
+}
+
+LLVMValueRef LLVMBuildFAdd(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateFAdd(unwrap(LHS), unwrap(RHS), Name));
+}
+
LLVMValueRef LLVMBuildSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
const char *Name) {
return wrap(unwrap(B)->CreateSub(unwrap(LHS), unwrap(RHS), Name));
}
+LLVMValueRef LLVMBuildFSub(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateFSub(unwrap(LHS), unwrap(RHS), Name));
+}
+
LLVMValueRef LLVMBuildMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
const char *Name) {
return wrap(unwrap(B)->CreateMul(unwrap(LHS), unwrap(RHS), Name));
}
+LLVMValueRef LLVMBuildFMul(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateFMul(unwrap(LHS), unwrap(RHS), Name));
+}
+
LLVMValueRef LLVMBuildUDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
const char *Name) {
return wrap(unwrap(B)->CreateUDiv(unwrap(LHS), unwrap(RHS), Name));
@@ -1190,6 +1628,11 @@ LLVMValueRef LLVMBuildSDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
return wrap(unwrap(B)->CreateSDiv(unwrap(LHS), unwrap(RHS), Name));
}
+LLVMValueRef LLVMBuildExactSDiv(LLVMBuilderRef B, LLVMValueRef LHS,
+ LLVMValueRef RHS, const char *Name) {
+ return wrap(unwrap(B)->CreateExactSDiv(unwrap(LHS), unwrap(RHS), Name));
+}
+
LLVMValueRef LLVMBuildFDiv(LLVMBuilderRef B, LLVMValueRef LHS, LLVMValueRef RHS,
const char *Name) {
return wrap(unwrap(B)->CreateFDiv(unwrap(LHS), unwrap(RHS), Name));
@@ -1244,6 +1687,10 @@ LLVMValueRef LLVMBuildNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
return wrap(unwrap(B)->CreateNeg(unwrap(V), Name));
}
+LLVMValueRef LLVMBuildFNeg(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
+ return wrap(unwrap(B)->CreateFNeg(unwrap(V), Name));
+}
+
LLVMValueRef LLVMBuildNot(LLVMBuilderRef B, LLVMValueRef V, const char *Name) {
return wrap(unwrap(B)->CreateNot(unwrap(V), Name));
}
@@ -1292,6 +1739,28 @@ LLVMValueRef LLVMBuildGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
unwrap(Indices) + NumIndices, Name));
}
+LLVMValueRef LLVMBuildInBoundsGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
+ LLVMValueRef *Indices, unsigned NumIndices,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateInBoundsGEP(unwrap(Pointer), unwrap(Indices),
+ unwrap(Indices) + NumIndices, Name));
+}
+
+LLVMValueRef LLVMBuildStructGEP(LLVMBuilderRef B, LLVMValueRef Pointer,
+ unsigned Idx, const char *Name) {
+ return wrap(unwrap(B)->CreateStructGEP(unwrap(Pointer), Idx, Name));
+}
+
+LLVMValueRef LLVMBuildGlobalString(LLVMBuilderRef B, const char *Str,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateGlobalString(Str, Name));
+}
+
+LLVMValueRef LLVMBuildGlobalStringPtr(LLVMBuilderRef B, const char *Str,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateGlobalStringPtr(Str, Name));
+}
+
/*--.. Casts ...............................................................--*/
LLVMValueRef LLVMBuildTrunc(LLVMBuilderRef B, LLVMValueRef Val,
@@ -1354,6 +1823,39 @@ LLVMValueRef LLVMBuildBitCast(LLVMBuilderRef B, LLVMValueRef Val,
return wrap(unwrap(B)->CreateBitCast(unwrap(Val), unwrap(DestTy), Name));
}
+LLVMValueRef LLVMBuildZExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreateZExtOrBitCast(unwrap(Val), unwrap(DestTy),
+ Name));
+}
+
+LLVMValueRef LLVMBuildSExtOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreateSExtOrBitCast(unwrap(Val), unwrap(DestTy),
+ Name));
+}
+
+LLVMValueRef LLVMBuildTruncOrBitCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreateTruncOrBitCast(unwrap(Val), unwrap(DestTy),
+ Name));
+}
+
+LLVMValueRef LLVMBuildPointerCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreatePointerCast(unwrap(Val), unwrap(DestTy), Name));
+}
+
+LLVMValueRef LLVMBuildIntCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreateIntCast(unwrap(Val), unwrap(DestTy), Name));
+}
+
+LLVMValueRef LLVMBuildFPCast(LLVMBuilderRef B, LLVMValueRef Val,
+ LLVMTypeRef DestTy, const char *Name) {
+ return wrap(unwrap(B)->CreateFPCast(unwrap(Val), unwrap(DestTy), Name));
+}
+
/*--.. Comparisons .........................................................--*/
LLVMValueRef LLVMBuildICmp(LLVMBuilderRef B, LLVMIntPredicate Op,
@@ -1427,6 +1929,21 @@ LLVMValueRef LLVMBuildInsertValue(LLVMBuilderRef B, LLVMValueRef AggVal,
Index, Name));
}
+LLVMValueRef LLVMBuildIsNull(LLVMBuilderRef B, LLVMValueRef Val,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateIsNull(unwrap(Val), Name));
+}
+
+LLVMValueRef LLVMBuildIsNotNull(LLVMBuilderRef B, LLVMValueRef Val,
+ const char *Name) {
+ return wrap(unwrap(B)->CreateIsNotNull(unwrap(Val), Name));
+}
+
+LLVMValueRef LLVMBuildPtrDiff(LLVMBuilderRef B, LLVMValueRef LHS,
+ LLVMValueRef RHS, const char *Name) {
+ return wrap(unwrap(B)->CreatePtrDiff(unwrap(LHS), unwrap(RHS), Name));
+}
+
/*===-- Module providers --------------------------------------------------===*/
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp
index 735a70c..b49faf8 100644
--- a/lib/VMCore/Dominators.cpp
+++ b/lib/VMCore/Dominators.cpp
@@ -23,22 +23,20 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Instructions.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
-namespace llvm {
-static std::ostream &operator<<(std::ostream &o,
- const std::set<BasicBlock*> &BBs) {
- for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
- I != E; ++I)
- if (*I)
- WriteAsOperand(o, *I, false);
- else
- o << " <<exit node>>";
- return o;
-}
-}
+// Always verify dominfo if expensive checking is enabled.
+#ifdef XDEBUG
+bool VerifyDomInfo = true;
+#else
+bool VerifyDomInfo = false;
+#endif
+static cl::opt<bool,true>
+VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
+ cl::desc("Verify dominator info (time consuming)"));
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
@@ -61,6 +59,47 @@ bool DominatorTree::runOnFunction(Function &F) {
return false;
}
+void DominatorTree::verifyAnalysis() const {
+ if (!VerifyDomInfo) return;
+
+ Function &F = *getRoot()->getParent();
+
+ DominatorTree OtherDT;
+ OtherDT.getBase().recalculate(F);
+ assert(!compare(OtherDT) && "Invalid DominatorTree info!");
+}
+
+void DominatorTree::print(raw_ostream &OS, const Module *) const {
+ DT->print(OS);
+}
+
+// dominates - Return true if A dominates a use in B. This performs the
+// special checks necessary if A and B are in the same basic block.
+bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
+ const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
+
+ // If A is an invoke instruction, its value is only available in this normal
+ // successor block.
+ if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
+ BBA = II->getNormalDest();
+
+ if (BBA != BBB) return dominates(BBA, BBB);
+
+ // It is not possible to determine dominance between two PHI nodes
+ // based on their ordering.
+ if (isa<PHINode>(A) && isa<PHINode>(B))
+ return false;
+
+ // Loop through the basic block until we find A or B.
+ BasicBlock::const_iterator I = BBA->begin();
+ for (; &*I != A && &*I != B; ++I)
+ /*empty*/;
+
+ return &*I == A;
+}
+
+
+
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
@@ -69,6 +108,17 @@ char DominanceFrontier::ID = 0;
static RegisterPass<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true, true);
+void DominanceFrontier::verifyAnalysis() const {
+ if (!VerifyDomInfo) return;
+
+ DominatorTree &DT = getAnalysis<DominatorTree>();
+
+ DominanceFrontier OtherDF;
+ const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
+ OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
+ assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
+}
+
// NewBB is split and now it has one successor. Update dominace frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
@@ -76,7 +126,7 @@ void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
&& "NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
- std::vector<BasicBlock*> PredBlocks;
+ SmallVector<BasicBlock*, 8> PredBlocks;
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
@@ -153,7 +203,7 @@ void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
// Verify whether this block dominates a block in predblocks. If not, do
// not update it.
bool BlockDominatesAny = false;
- for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
+ for (SmallVectorImpl<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
BE = PredBlocks.end(); BI != BE; ++BI) {
if (DT.dominates(FI, *BI)) {
BlockDominatesAny = true;
@@ -270,18 +320,24 @@ DominanceFrontier::calculate(const DominatorTree &DT,
return *Result;
}
-void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
+void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
- o << " DomFrontier for BB";
+ OS << " DomFrontier for BB";
if (I->first)
- WriteAsOperand(o, I->first, false);
+ WriteAsOperand(OS, I->first, false);
else
- o << " <<exit node>>";
- o << " is:\t" << I->second << "\n";
+ OS << " <<exit node>>";
+ OS << " is:\t";
+
+ const std::set<BasicBlock*> &BBs = I->second;
+
+ for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
+ I != E; ++I)
+ if (*I)
+ WriteAsOperand(OS, *I, false);
+ else
+ OS << " <<exit node>>";
+ OS << "\n";
}
}
-void DominanceFrontierBase::dump() {
- print (llvm::cerr);
-}
-
diff --git a/lib/VMCore/Function.cpp b/lib/VMCore/Function.cpp
index eeade05..8ad885c 100644
--- a/lib/VMCore/Function.cpp
+++ b/lib/VMCore/Function.cpp
@@ -14,6 +14,7 @@
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/ManagedStatic.h"
@@ -35,7 +36,7 @@ template class SymbolTableListTraits<BasicBlock, Function>;
// Argument Implementation
//===----------------------------------------------------------------------===//
-Argument::Argument(const Type *Ty, const std::string &Name, Function *Par)
+Argument::Argument(const Type *Ty, const Twine &Name, Function *Par)
: Value(Ty, Value::ArgumentVal) {
Parent = 0;
@@ -114,10 +115,8 @@ void Argument::removeAttr(Attributes attr) {
// Helper Methods in Function
//===----------------------------------------------------------------------===//
-LLVMContext* Function::getContext() {
- Module* M = getParent();
- if (M) return &M->getContext();
- return 0;
+LLVMContext &Function::getContext() const {
+ return getType()->getContext();
}
const FunctionType *Function::getFunctionType() const {
@@ -145,7 +144,7 @@ void Function::eraseFromParent() {
//===----------------------------------------------------------------------===//
Function::Function(const FunctionType *Ty, LinkageTypes Linkage,
- const std::string &name, Module *ParentModule)
+ const Twine &name, Module *ParentModule)
: GlobalValue(PointerType::getUnqual(Ty),
Value::FunctionVal, 0, 0, Linkage, name) {
assert(FunctionType::isValidReturnType(getReturnType()) &&
@@ -183,7 +182,7 @@ void Function::BuildLazyArguments() const {
// Create the arguments vector, all arguments start out unnamed.
const FunctionType *FT = getFunctionType();
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
- assert(FT->getParamType(i) != Type::VoidTy &&
+ assert(FT->getParamType(i) != Type::getVoidTy(FT->getContext()) &&
"Cannot have void typed arguments!");
ArgumentList.push_back(new Argument(FT->getParamType(i)));
}
@@ -242,18 +241,18 @@ static StringPool *GCNamePool;
static ManagedStatic<sys::SmartRWMutex<true> > GCLock;
bool Function::hasGC() const {
- sys::SmartScopedReader<true> Reader(&*GCLock);
+ sys::SmartScopedReader<true> Reader(*GCLock);
return GCNames && GCNames->count(this);
}
const char *Function::getGC() const {
assert(hasGC() && "Function has no collector");
- sys::SmartScopedReader<true> Reader(&*GCLock);
+ sys::SmartScopedReader<true> Reader(*GCLock);
return *(*GCNames)[this];
}
void Function::setGC(const char *Str) {
- sys::SmartScopedWriter<true> Writer(&*GCLock);
+ sys::SmartScopedWriter<true> Writer(*GCLock);
if (!GCNamePool)
GCNamePool = new StringPool();
if (!GCNames)
@@ -262,7 +261,7 @@ void Function::setGC(const char *Str) {
}
void Function::clearGC() {
- sys::SmartScopedWriter<true> Writer(&*GCLock);
+ sys::SmartScopedWriter<true> Writer(*GCLock);
if (GCNames) {
GCNames->erase(this);
if (GCNames->empty()) {
@@ -328,15 +327,16 @@ std::string Intrinsic::getName(ID id, const Type **Tys, unsigned numTys) {
for (unsigned i = 0; i < numTys; ++i) {
if (const PointerType* PTyp = dyn_cast<PointerType>(Tys[i])) {
Result += ".p" + llvm::utostr(PTyp->getAddressSpace()) +
- MVT::getMVT(PTyp->getElementType()).getMVTString();
+ EVT::getEVT(PTyp->getElementType()).getEVTString();
}
else if (Tys[i])
- Result += "." + MVT::getMVT(Tys[i]).getMVTString();
+ Result += "." + EVT::getEVT(Tys[i]).getEVTString();
}
return Result;
}
-const FunctionType *Intrinsic::getType(ID id, const Type **Tys,
+const FunctionType *Intrinsic::getType(LLVMContext &Context,
+ ID id, const Type **Tys,
unsigned numTys) {
const Type *ResultTy = NULL;
std::vector<const Type*> ArgTys;
@@ -370,7 +370,8 @@ Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys,
// because intrinsics must be a specific type.
return
cast<Function>(M->getOrInsertFunction(getName(id, Tys, numTys),
- getType(id, Tys, numTys)));
+ getType(M->getContext(),
+ id, Tys, numTys)));
}
// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
diff --git a/lib/VMCore/Globals.cpp b/lib/VMCore/Globals.cpp
index 5abe1f9..d18a201 100644
--- a/lib/VMCore/Globals.cpp
+++ b/lib/VMCore/Globals.cpp
@@ -16,8 +16,10 @@
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
using namespace llvm;
@@ -76,8 +78,7 @@ void GlobalValue::removeDeadConstantUsers() const {
/// Override destroyConstant to make sure it doesn't get called on
/// GlobalValue's because they shouldn't be treated like other constants.
void GlobalValue::destroyConstant() {
- assert(0 && "You can't GV->destroyConstant()!");
- abort();
+ llvm_unreachable("You can't GV->destroyConstant()!");
}
/// copyAttributesFrom - copy all additional attributes (those not needed to
@@ -93,11 +94,12 @@ void GlobalValue::copyAttributesFrom(const GlobalValue *Src) {
// GlobalVariable Implementation
//===----------------------------------------------------------------------===//
-GlobalVariable::GlobalVariable(const Type *Ty, bool constant, LinkageTypes Link,
- Constant *InitVal, const std::string &Name,
- Module *ParentModule, bool ThreadLocal,
- unsigned AddressSpace)
- : GlobalValue(PointerType::get(Ty, AddressSpace), Value::GlobalVariableVal,
+GlobalVariable::GlobalVariable(LLVMContext &Context, const Type *Ty,
+ bool constant, LinkageTypes Link,
+ Constant *InitVal, const Twine &Name,
+ bool ThreadLocal, unsigned AddressSpace)
+ : GlobalValue(PointerType::get(Ty, AddressSpace),
+ Value::GlobalVariableVal,
OperandTraits<GlobalVariable>::op_begin(this),
InitVal != 0, Link, Name),
isConstantGlobal(constant), isThreadLocalSymbol(ThreadLocal) {
@@ -108,16 +110,15 @@ GlobalVariable::GlobalVariable(const Type *Ty, bool constant, LinkageTypes Link,
}
LeakDetector::addGarbageObject(this);
-
- if (ParentModule)
- ParentModule->getGlobalList().push_back(this);
}
-GlobalVariable::GlobalVariable(const Type *Ty, bool constant, LinkageTypes Link,
- Constant *InitVal, const std::string &Name,
+GlobalVariable::GlobalVariable(Module &M, const Type *Ty, bool constant,
+ LinkageTypes Link, Constant *InitVal,
+ const Twine &Name,
GlobalVariable *Before, bool ThreadLocal,
unsigned AddressSpace)
- : GlobalValue(PointerType::get(Ty, AddressSpace), Value::GlobalVariableVal,
+ : GlobalValue(PointerType::get(Ty, AddressSpace),
+ Value::GlobalVariableVal,
OperandTraits<GlobalVariable>::op_begin(this),
InitVal != 0, Link, Name),
isConstantGlobal(constant), isThreadLocalSymbol(ThreadLocal) {
@@ -131,6 +132,8 @@ GlobalVariable::GlobalVariable(const Type *Ty, bool constant, LinkageTypes Link,
if (Before)
Before->getParent()->getGlobalList().insert(Before, this);
+ else
+ M.getGlobalList().push_back(this);
}
void GlobalVariable::setParent(Module *parent) {
@@ -184,7 +187,7 @@ void GlobalVariable::copyAttributesFrom(const GlobalValue *Src) {
//===----------------------------------------------------------------------===//
GlobalAlias::GlobalAlias(const Type *Ty, LinkageTypes Link,
- const std::string &Name, Constant* aliasee,
+ const Twine &Name, Constant* aliasee,
Module *ParentModule)
: GlobalValue(Ty, Value::GlobalAliasVal, &Op<0>(), 1, Link, Name) {
LeakDetector::addGarbageObject(this);
@@ -242,7 +245,7 @@ const GlobalValue *GlobalAlias::getAliasedGlobal() const {
CE->getOpcode() == Instruction::GetElementPtr))
return dyn_cast<GlobalValue>(CE->getOperand(0));
else
- assert(0 && "Unsupported aliasee");
+ llvm_unreachable("Unsupported aliasee");
}
}
return 0;
diff --git a/lib/VMCore/InlineAsm.cpp b/lib/VMCore/InlineAsm.cpp
index 524e294..0520dfa 100644
--- a/lib/VMCore/InlineAsm.cpp
+++ b/lib/VMCore/InlineAsm.cpp
@@ -26,18 +26,20 @@ InlineAsm::~InlineAsm() {
// NOTE: when memoizing the function type, we have to be careful to handle the
// case when the type gets refined.
-InlineAsm *InlineAsm::get(const FunctionType *Ty, const std::string &AsmString,
- const std::string &Constraints, bool hasSideEffects) {
+InlineAsm *InlineAsm::get(const FunctionType *Ty, const StringRef &AsmString,
+ const StringRef &Constraints, bool hasSideEffects,
+ bool isMsAsm) {
// FIXME: memoize!
- return new InlineAsm(Ty, AsmString, Constraints, hasSideEffects);
+ return new InlineAsm(Ty, AsmString, Constraints, hasSideEffects, isMsAsm);
}
-InlineAsm::InlineAsm(const FunctionType *Ty, const std::string &asmString,
- const std::string &constraints, bool hasSideEffects)
+InlineAsm::InlineAsm(const FunctionType *Ty, const StringRef &asmString,
+ const StringRef &constraints, bool hasSideEffects,
+ bool isMsAsm)
: Value(PointerType::getUnqual(Ty),
Value::InlineAsmVal),
AsmString(asmString),
- Constraints(constraints), HasSideEffects(hasSideEffects) {
+ Constraints(constraints), HasSideEffects(hasSideEffects), IsMsAsm(isMsAsm) {
// Do various checks on the constraint string and type.
assert(Verify(Ty, constraints) && "Function type not legal for constraints!");
@@ -50,9 +52,9 @@ const FunctionType *InlineAsm::getFunctionType() const {
/// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
-bool InlineAsm::ConstraintInfo::Parse(const std::string &Str,
+bool InlineAsm::ConstraintInfo::Parse(const StringRef &Str,
std::vector<InlineAsm::ConstraintInfo> &ConstraintsSoFar) {
- std::string::const_iterator I = Str.begin(), E = Str.end();
+ StringRef::iterator I = Str.begin(), E = Str.end();
// Initialize
Type = isInput;
@@ -111,13 +113,13 @@ bool InlineAsm::ConstraintInfo::Parse(const std::string &Str,
while (I != E) {
if (*I == '{') { // Physical register reference.
// Find the end of the register name.
- std::string::const_iterator ConstraintEnd = std::find(I+1, E, '}');
+ StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
if (ConstraintEnd == E) return true; // "{foo"
Codes.push_back(std::string(I, ConstraintEnd+1));
I = ConstraintEnd+1;
} else if (isdigit(*I)) { // Matching Constraint
// Maximal munch numbers.
- std::string::const_iterator NumStart = I;
+ StringRef::iterator NumStart = I;
while (I != E && isdigit(*I))
++I;
Codes.push_back(std::string(NumStart, I));
@@ -145,16 +147,16 @@ bool InlineAsm::ConstraintInfo::Parse(const std::string &Str,
}
std::vector<InlineAsm::ConstraintInfo>
-InlineAsm::ParseConstraints(const std::string &Constraints) {
+InlineAsm::ParseConstraints(const StringRef &Constraints) {
std::vector<ConstraintInfo> Result;
// Scan the constraints string.
- for (std::string::const_iterator I = Constraints.begin(),
- E = Constraints.end(); I != E; ) {
+ for (StringRef::iterator I = Constraints.begin(),
+ E = Constraints.end(); I != E; ) {
ConstraintInfo Info;
// Find the end of this constraint.
- std::string::const_iterator ConstraintEnd = std::find(I, E, ',');
+ StringRef::iterator ConstraintEnd = std::find(I, E, ',');
if (ConstraintEnd == I || // Empty constraint like ",,"
Info.Parse(std::string(I, ConstraintEnd), Result)) {
@@ -179,7 +181,7 @@ InlineAsm::ParseConstraints(const std::string &Constraints) {
/// Verify - Verify that the specified constraint string is reasonable for the
/// specified function type, and otherwise validate the constraint string.
-bool InlineAsm::Verify(const FunctionType *Ty, const std::string &ConstStr) {
+bool InlineAsm::Verify(const FunctionType *Ty, const StringRef &ConstStr) {
if (Ty->isVarArg()) return false;
std::vector<ConstraintInfo> Constraints = ParseConstraints(ConstStr);
@@ -213,7 +215,7 @@ bool InlineAsm::Verify(const FunctionType *Ty, const std::string &ConstStr) {
switch (NumOutputs) {
case 0:
- if (Ty->getReturnType() != Type::VoidTy) return false;
+ if (Ty->getReturnType() != Type::getVoidTy(Ty->getContext())) return false;
break;
case 1:
if (isa<StructType>(Ty->getReturnType())) return false;
diff --git a/lib/VMCore/Instruction.cpp b/lib/VMCore/Instruction.cpp
index e0764e4..4df536e 100644
--- a/lib/VMCore/Instruction.cpp
+++ b/lib/VMCore/Instruction.cpp
@@ -11,9 +11,13 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Type.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
+#include "llvm/Constants.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Module.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/LeakDetector.h"
using namespace llvm;
@@ -47,6 +51,10 @@ Instruction::Instruction(const Type *ty, unsigned it, Use *Ops, unsigned NumOps,
// Out of line virtual method, so the vtable, etc has a home.
Instruction::~Instruction() {
assert(Parent == 0 && "Instruction still linked in the program!");
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsDeleted(this);
+ }
}
@@ -143,8 +151,6 @@ const char *Instruction::getOpcodeName(unsigned OpCode) {
// Other instructions...
case ICmp: return "icmp";
case FCmp: return "fcmp";
- case VICmp: return "vicmp";
- case VFCmp: return "vfcmp";
case PHI: return "phi";
case Select: return "select";
case Call: return "call";
@@ -168,6 +174,14 @@ const char *Instruction::getOpcodeName(unsigned OpCode) {
/// identical to the current one. This means that all operands match and any
/// extra information (e.g. load is volatile) agree.
bool Instruction::isIdenticalTo(const Instruction *I) const {
+ return isIdenticalToWhenDefined(I) &&
+ SubclassOptionalData == I->SubclassOptionalData;
+}
+
+/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
+/// ignores the SubclassOptionalData flags, which specify conditions
+/// under which the instruction's result is undefined.
+bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
getType() != I->getType())
@@ -283,11 +297,11 @@ bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
return true;
continue;
}
-
+
if (PN->getIncomingBlock(UI) != BB)
return true;
}
- return false;
+ return false;
}
/// mayReadFromMemory - Return true if this instruction may read memory.
@@ -367,23 +381,77 @@ bool Instruction::isCommutative(unsigned op) {
}
}
-/// isTrapping - Return true if the instruction may trap.
-///
-bool Instruction::isTrapping(unsigned op) {
- switch(op) {
+// Code here matches isMalloc from MallocHelper, which is not in VMCore.
+static bool isMalloc(const Value* I) {
+ const CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI) {
+ const BitCastInst *BCI = dyn_cast<BitCastInst>(I);
+ if (!BCI) return false;
+
+ CI = dyn_cast<CallInst>(BCI->getOperand(0));
+ }
+
+ if (!CI) return false;
+
+ const Module* M = CI->getParent()->getParent()->getParent();
+ Constant *MallocFunc = M->getFunction("malloc");
+
+ if (CI->getOperand(0) != MallocFunc)
+ return false;
+
+ return true;
+}
+
+bool Instruction::isSafeToSpeculativelyExecute() const {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (getOpcode()) {
+ default:
+ return true;
case UDiv:
+ case URem: {
+ // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
+ ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
+ return Op && !Op->isNullValue();
+ }
case SDiv:
- case FDiv:
- case URem:
- case SRem:
- case FRem:
- case Load:
- case Store:
+ case SRem: {
+ // x / y is undefined if y == 0, and might be undefined if y == -1,
+ // but calcuations like x / 3 are safe.
+ ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
+ return Op && !Op->isNullValue() && !Op->isAllOnesValue();
+ }
+ case Load: {
+ if (cast<LoadInst>(this)->isVolatile())
+ return false;
+ if (isa<AllocationInst>(getOperand(0)) || isMalloc(getOperand(0)))
+ return true;
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(getOperand(0)))
+ return !GV->hasExternalWeakLinkage();
+ // FIXME: Handle cases involving GEPs. We have to be careful because
+ // a load of a out-of-bounds GEP has undefined behavior.
+ return false;
+ }
case Call:
- case Invoke:
+ return false; // The called function could have undefined behavior or
+ // side-effects.
+ // FIXME: We should special-case some intrinsics (bswap,
+ // overflow-checking arithmetic, etc.)
case VAArg:
- return true;
- default:
- return false;
+ case Alloca:
+ case Malloc:
+ case Invoke:
+ case PHI:
+ case Store:
+ case Free:
+ case Ret:
+ case Br:
+ case Switch:
+ case Unwind:
+ case Unreachable:
+ return false; // Misc instructions which have effects
}
}
diff --git a/lib/VMCore/Instructions.cpp b/lib/VMCore/Instructions.cpp
index 6a6424d..f3d15cb 100644
--- a/lib/VMCore/Instructions.cpp
+++ b/lib/VMCore/Instructions.cpp
@@ -12,13 +12,19 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/MathExtras.h"
+
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -43,10 +49,10 @@ CallSite::CallSite(Instruction *C) {
I.setPointer(C);
I.setInt(isa<CallInst>(C));
}
-unsigned CallSite::getCallingConv() const {
+CallingConv::ID CallSite::getCallingConv() const {
CALLSITE_DELEGATE_GETTER(getCallingConv());
}
-void CallSite::setCallingConv(unsigned CC) {
+void CallSite::setCallingConv(CallingConv::ID CC) {
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
}
const AttrListPtr &CallSite::getAttributes() const {
@@ -124,7 +130,7 @@ const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
// Vector select.
- if (VT->getElementType() != Type::Int1Ty)
+ if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
return "vector select condition element type must be i1";
const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
if (ET == 0)
@@ -132,7 +138,7 @@ const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
if (ET->getNumElements() != VT->getNumElements())
return "vector select requires selected vectors to have "
"the same vector length as select condition";
- } else if (Op0->getType() != Type::Int1Ty) {
+ } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
return "select condition must be i1 or <n x i1>";
}
return 0;
@@ -152,6 +158,7 @@ PHINode::PHINode(const PHINode &PN)
OL[i] = PN.getOperand(i);
OL[i+1] = PN.getOperand(i+1);
}
+ SubclassOptionalData = PN.SubclassOptionalData;
}
PHINode::~PHINode() {
@@ -223,13 +230,17 @@ void PHINode::resizeOperands(unsigned NumOps) {
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
-Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
- // If the PHI node only has one incoming value, eliminate the PHI node...
+/// If the PHI has undef operands, but all the rest of the operands are
+/// some unique value, return that value if it can be proved that the
+/// value dominates the PHI. If DT is null, use a conservative check,
+/// otherwise use DT to test for dominance.
+///
+Value *PHINode::hasConstantValue(DominatorTree *DT) const {
+ // If the PHI node only has one incoming value, eliminate the PHI node.
if (getNumIncomingValues() == 1) {
if (getIncomingValue(0) != this) // not X = phi X
return getIncomingValue(0);
- else
- return UndefValue::get(getType()); // Self cycle is dead.
+ return UndefValue::get(getType()); // Self cycle is dead.
}
// Otherwise if all of the incoming values are the same for the PHI, replace
@@ -243,8 +254,7 @@ Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
} else if (getIncomingValue(i) != this) { // Not the PHI node itself...
if (InVal && getIncomingValue(i) != InVal)
return 0; // Not the same, bail out.
- else
- InVal = getIncomingValue(i);
+ InVal = getIncomingValue(i);
}
// The only case that could cause InVal to be null is if we have a PHI node
@@ -257,12 +267,20 @@ Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
// instruction, we cannot always return X as the result of the PHI node. Only
// do this if X is not an instruction (thus it must dominate the PHI block),
// or if the client is prepared to deal with this possibility.
- if (HasUndefInput && !AllowNonDominatingInstruction)
- if (Instruction *IV = dyn_cast<Instruction>(InVal))
- // If it's in the entry block, it dominates everything.
- if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
- isa<InvokeInst>(IV))
- return 0; // Cannot guarantee that InVal dominates this PHINode.
+ if (!HasUndefInput || !isa<Instruction>(InVal))
+ return InVal;
+
+ Instruction *IV = cast<Instruction>(InVal);
+ if (DT) {
+ // We have a DominatorTree. Do a precise test.
+ if (!DT->dominates(IV, this))
+ return 0;
+ } else {
+ // If it is in the entry block, it obviously dominates everything.
+ if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
+ isa<InvokeInst>(IV))
+ return 0; // Cannot guarantee that InVal dominates this PHINode.
+ }
// All of the incoming values are the same, return the value now.
return InVal;
@@ -348,7 +366,7 @@ void CallInst::init(Value *Func) {
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
}
-CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
@@ -359,7 +377,7 @@ CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
setName(Name);
}
-CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
@@ -369,7 +387,7 @@ CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
init(Func, Actual);
setName(Name);
}
-CallInst::CallInst(Value *Func, const std::string &Name,
+CallInst::CallInst(Value *Func, const Twine &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
@@ -380,7 +398,7 @@ CallInst::CallInst(Value *Func, const std::string &Name,
setName(Name);
}
-CallInst::CallInst(Value *Func, const std::string &Name,
+CallInst::CallInst(Value *Func, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
@@ -401,6 +419,7 @@ CallInst::CallInst(const CallInst &CI)
Use *InOL = CI.OperandList;
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
OL[i] = InOL[i];
+ SubclassOptionalData = CI.SubclassOptionalData;
}
void CallInst::addAttribute(unsigned i, Attributes attr) {
@@ -423,6 +442,111 @@ bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
return false;
}
+/// IsConstantOne - Return true only if val is constant int 1
+static bool IsConstantOne(Value *val) {
+ assert(val && "IsConstantOne does not work with NULL val");
+ return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
+}
+
+static Value *checkArraySize(Value *Amt, const Type *IntPtrTy) {
+ if (!Amt)
+ Amt = ConstantInt::get(IntPtrTy, 1);
+ else {
+ assert(!isa<BasicBlock>(Amt) &&
+ "Passed basic block into malloc size parameter! Use other ctor");
+ assert(Amt->getType() == IntPtrTy &&
+ "Malloc array size is not an intptr!");
+ }
+ return Amt;
+}
+
+static Value *createMalloc(Instruction *InsertBefore, BasicBlock *InsertAtEnd,
+ const Type *IntPtrTy, const Type *AllocTy,
+ Value *ArraySize, const Twine &NameStr) {
+ assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
+ "createMalloc needs either InsertBefore or InsertAtEnd");
+
+ // malloc(type) becomes:
+ // bitcast (i8* malloc(typeSize)) to type*
+ // malloc(type, arraySize) becomes:
+ // bitcast (i8 *malloc(typeSize*arraySize)) to type*
+ Value *AllocSize = ConstantExpr::getSizeOf(AllocTy);
+ AllocSize = ConstantExpr::getTruncOrBitCast(cast<Constant>(AllocSize),
+ IntPtrTy);
+ ArraySize = checkArraySize(ArraySize, IntPtrTy);
+
+ if (!IsConstantOne(ArraySize)) {
+ if (IsConstantOne(AllocSize)) {
+ AllocSize = ArraySize; // Operand * 1 = Operand
+ } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
+ Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
+ false /*ZExt*/);
+ // Malloc arg is constant product of type size and array size
+ AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
+ } else {
+ // Multiply type size by the array size...
+ if (InsertBefore)
+ AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+ "mallocsize", InsertBefore);
+ else
+ AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+ "mallocsize", InsertAtEnd);
+ }
+ }
+
+ assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
+ // Create the call to Malloc.
+ BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
+ Module* M = BB->getParent()->getParent();
+ const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
+ // prototype malloc as "void *malloc(size_t)"
+ Constant *MallocF = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
+ if (!cast<Function>(MallocF)->doesNotAlias(0))
+ cast<Function>(MallocF)->setDoesNotAlias(0);
+ const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
+ CallInst *MCall = NULL;
+ Value *MCast = NULL;
+ if (InsertBefore) {
+ MCall = CallInst::Create(MallocF, AllocSize, "malloccall", InsertBefore);
+ // Create a cast instruction to convert to the right type...
+ MCast = new BitCastInst(MCall, AllocPtrType, NameStr, InsertBefore);
+ } else {
+ MCall = CallInst::Create(MallocF, AllocSize, "malloccall", InsertAtEnd);
+ // Create a cast instruction to convert to the right type...
+ MCast = new BitCastInst(MCall, AllocPtrType, NameStr);
+ }
+ MCall->setTailCall();
+ assert(MCall->getType() != Type::getVoidTy(BB->getContext()) &&
+ "Malloc has void return type");
+
+ return MCast;
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+/// possibly multiplied by the array size if the array size is not
+/// constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+Value *CallInst::CreateMalloc(Instruction *InsertBefore, const Type *IntPtrTy,
+ const Type *AllocTy, Value *ArraySize,
+ const Twine &Name) {
+ return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, ArraySize, Name);
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+/// possibly multiplied by the array size if the array size is not
+/// constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+/// Note: This function does not add the bitcast to the basic block, that is the
+/// responsibility of the caller.
+Value *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, const Type *IntPtrTy,
+ const Type *AllocTy, Value *ArraySize,
+ const Twine &Name) {
+ return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, ArraySize, Name);
+}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
@@ -462,6 +586,7 @@ InvokeInst::InvokeInst(const InvokeInst &II)
Use *OL = OperandList, *InOL = II.OperandList;
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
OL[i] = InOL[i];
+ SubclassOptionalData = II.SubclassOptionalData;
}
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
@@ -500,30 +625,31 @@ void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
//===----------------------------------------------------------------------===//
ReturnInst::ReturnInst(const ReturnInst &RI)
- : TerminatorInst(Type::VoidTy, Instruction::Ret,
+ : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) -
RI.getNumOperands(),
RI.getNumOperands()) {
if (RI.getNumOperands())
Op<0>() = RI.Op<0>();
+ SubclassOptionalData = RI.SubclassOptionalData;
}
-ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Ret,
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
+ : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertBefore) {
if (retVal)
Op<0>() = retVal;
}
-ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Ret,
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertAtEnd) {
if (retVal)
Op<0>() = retVal;
}
-ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Ret,
+ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
}
@@ -534,12 +660,11 @@ unsigned ReturnInst::getNumSuccessorsV() const {
/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
/// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
- assert(0 && "ReturnInst has no successors!");
+ llvm_unreachable("ReturnInst has no successors!");
}
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
- assert(0 && "ReturnInst has no successors!");
- abort();
+ llvm_unreachable("ReturnInst has no successors!");
return 0;
}
@@ -550,11 +675,13 @@ ReturnInst::~ReturnInst() {
// UnwindInst Implementation
//===----------------------------------------------------------------------===//
-UnwindInst::UnwindInst(Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
+UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
+ : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
+ 0, 0, InsertBefore) {
}
-UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
+UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
+ 0, 0, InsertAtEnd) {
}
@@ -563,12 +690,11 @@ unsigned UnwindInst::getNumSuccessorsV() const {
}
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
- assert(0 && "UnwindInst has no successors!");
+ llvm_unreachable("UnwindInst has no successors!");
}
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
- assert(0 && "UnwindInst has no successors!");
- abort();
+ llvm_unreachable("UnwindInst has no successors!");
return 0;
}
@@ -576,11 +702,14 @@ BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
-UnreachableInst::UnreachableInst(Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
+UnreachableInst::UnreachableInst(LLVMContext &Context,
+ Instruction *InsertBefore)
+ : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
+ 0, 0, InsertBefore) {
}
-UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
+UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+ : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
+ 0, 0, InsertAtEnd) {
}
unsigned UnreachableInst::getNumSuccessorsV() const {
@@ -588,12 +717,11 @@ unsigned UnreachableInst::getNumSuccessorsV() const {
}
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
- assert(0 && "UnwindInst has no successors!");
+ llvm_unreachable("UnwindInst has no successors!");
}
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
- assert(0 && "UnwindInst has no successors!");
- abort();
+ llvm_unreachable("UnwindInst has no successors!");
return 0;
}
@@ -603,12 +731,12 @@ BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
void BranchInst::AssertOK() {
if (isConditional())
- assert(getCondition()->getType() == Type::Int1Ty &&
+ assert(getCondition()->getType() == Type::getInt1Ty(getContext()) &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Br,
+ : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertBefore) {
assert(IfTrue != 0 && "Branch destination may not be null!");
@@ -616,7 +744,7 @@ BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Br,
+ : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertBefore) {
Op<-1>() = IfTrue;
@@ -628,7 +756,7 @@ BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Br,
+ : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertAtEnd) {
assert(IfTrue != 0 && "Branch destination may not be null!");
@@ -637,7 +765,7 @@ BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Br,
+ : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertAtEnd) {
Op<-1>() = IfTrue;
@@ -650,7 +778,7 @@ BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BranchInst::BranchInst(const BranchInst &BI) :
- TerminatorInst(Type::VoidTy, Instruction::Br,
+ TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
BI.getNumOperands()) {
Op<-1>() = BI.Op<-1>();
@@ -659,6 +787,7 @@ BranchInst::BranchInst(const BranchInst &BI) :
Op<-3>() = BI.Op<-3>();
Op<-2>() = BI.Op<-2>();
}
+ SubclassOptionalData = BI.SubclassOptionalData;
}
@@ -701,35 +830,35 @@ void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
// AllocationInst Implementation
//===----------------------------------------------------------------------===//
-static Value *getAISize(Value *Amt) {
+static Value *getAISize(LLVMContext &Context, Value *Amt) {
if (!Amt)
- Amt = ConstantInt::get(Type::Int32Ty, 1);
+ Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
- assert(Amt->getType() == Type::Int32Ty &&
+ assert(Amt->getType() == Type::getInt32Ty(Context) &&
"Malloc/Allocation array size is not a 32-bit integer!");
}
return Amt;
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
- unsigned Align, const std::string &Name,
+ unsigned Align, const Twine &Name,
Instruction *InsertBefore)
- : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
- InsertBefore) {
+ : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
+ getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(Align);
- assert(Ty != Type::VoidTy && "Cannot allocate void!");
+ assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
setName(Name);
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
- unsigned Align, const std::string &Name,
+ unsigned Align, const Twine &Name,
BasicBlock *InsertAtEnd)
- : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
- InsertAtEnd) {
+ : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
+ getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(Align);
- assert(Ty != Type::VoidTy && "Cannot allocate void!");
+ assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
setName(Name);
}
@@ -753,11 +882,6 @@ const Type *AllocationInst::getAllocatedType() const {
return getType()->getElementType();
}
-AllocaInst::AllocaInst(const AllocaInst &AI)
- : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
- Instruction::Alloca, AI.getAlignment()) {
-}
-
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
@@ -770,11 +894,6 @@ bool AllocaInst::isStaticAlloca() const {
return Parent == &Parent->getParent()->front();
}
-MallocInst::MallocInst(const MallocInst &MI)
- : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
- Instruction::Malloc, MI.getAlignment()) {
-}
-
//===----------------------------------------------------------------------===//
// FreeInst Implementation
//===----------------------------------------------------------------------===//
@@ -785,12 +904,14 @@ void FreeInst::AssertOK() {
}
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
- : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
+ : UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
+ Free, Ptr, InsertBefore) {
AssertOK();
}
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
- : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
+ : UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
+ Free, Ptr, InsertAtEnd) {
AssertOK();
}
@@ -804,7 +925,7 @@ void LoadInst::AssertOK() {
"Ptr must have pointer type.");
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(false);
@@ -813,7 +934,7 @@ LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
setName(Name);
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(false);
@@ -822,7 +943,7 @@ LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
setName(Name);
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
@@ -832,7 +953,7 @@ LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
setName(Name);
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
@@ -842,7 +963,7 @@ LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
setName(Name);
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
@@ -852,7 +973,7 @@ LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
setName(Name);
}
-LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
@@ -922,7 +1043,7 @@ void StoreInst::AssertOK() {
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
@@ -934,7 +1055,7 @@ StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
@@ -947,7 +1068,7 @@ StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
@@ -960,7 +1081,7 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, Instruction *InsertBefore)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
@@ -973,7 +1094,7 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
@@ -986,7 +1107,7 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
- : Instruction(Type::VoidTy, Store,
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
@@ -1011,7 +1132,7 @@ static unsigned retrieveAddrSpace(const Value *Val) {
}
void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
- const std::string &Name) {
+ const Twine &Name) {
assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
Use *OL = OperandList;
OL[0] = Ptr;
@@ -1022,7 +1143,7 @@ void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
setName(Name);
}
-void GetElementPtrInst::init(Value *Ptr, Value *Idx, const std::string &Name) {
+void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Use *OL = OperandList;
OL[0] = Ptr;
@@ -1040,12 +1161,13 @@ GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
Use *GEPIOL = GEPI.OperandList;
for (unsigned i = 0, E = NumOperands; i != E; ++i)
OL[i] = GEPIOL[i];
+ SubclassOptionalData = GEPI.SubclassOptionalData;
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
- const std::string &Name, Instruction *InBe)
- : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
- retrieveAddrSpace(Ptr)),
+ const Twine &Name, Instruction *InBe)
+ : Instruction(PointerType::get(
+ checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
2, InBe) {
@@ -1053,9 +1175,10 @@ GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
- const std::string &Name, BasicBlock *IAE)
- : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
- retrieveAddrSpace(Ptr)),
+ const Twine &Name, BasicBlock *IAE)
+ : Instruction(PointerType::get(
+ checkType(getIndexedType(Ptr->getType(),Idx)),
+ retrieveAddrSpace(Ptr)),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - 2,
2, IAE) {
@@ -1155,13 +1278,20 @@ bool GetElementPtrInst::hasAllConstantIndices() const {
return true;
}
+void GetElementPtrInst::setIsInBounds(bool B) {
+ cast<GEPOperator>(this)->setIsInBounds(B);
+}
+
+bool GetElementPtrInst::isInBounds() const {
+ return cast<GEPOperator>(this)->isInBounds();
+}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
//===----------------------------------------------------------------------===//
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBef)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
@@ -1174,24 +1304,8 @@ ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
setName(Name);
}
-ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
- const std::string &Name,
- Instruction *InsertBef)
- : Instruction(cast<VectorType>(Val->getType())->getElementType(),
- ExtractElement,
- OperandTraits<ExtractElementInst>::op_begin(this),
- 2, InsertBef) {
- Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
- assert(isValidOperands(Val, Index) &&
- "Invalid extractelement instruction operands!");
- Op<0>() = Val;
- Op<1>() = Index;
- setName(Name);
-}
-
-
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAE)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
@@ -1205,25 +1319,10 @@ ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
setName(Name);
}
-ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
- const std::string &Name,
- BasicBlock *InsertAE)
- : Instruction(cast<VectorType>(Val->getType())->getElementType(),
- ExtractElement,
- OperandTraits<ExtractElementInst>::op_begin(this),
- 2, InsertAE) {
- Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
- assert(isValidOperands(Val, Index) &&
- "Invalid extractelement instruction operands!");
-
- Op<0>() = Val;
- Op<1>() = Index;
- setName(Name);
-}
-
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
- if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
+ if (!isa<VectorType>(Val->getType()) ||
+ Index->getType() != Type::getInt32Ty(Val->getContext()))
return false;
return true;
}
@@ -1233,15 +1332,8 @@ bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
// InsertElementInst Implementation
//===----------------------------------------------------------------------===//
-InsertElementInst::InsertElementInst(const InsertElementInst &IE)
- : Instruction(IE.getType(), InsertElement,
- OperandTraits<InsertElementInst>::op_begin(this), 3) {
- Op<0>() = IE.Op<0>();
- Op<1>() = IE.Op<1>();
- Op<2>() = IE.Op<2>();
-}
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBef)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
@@ -1254,24 +1346,8 @@ InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
setName(Name);
}
-InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
- const std::string &Name,
- Instruction *InsertBef)
- : Instruction(Vec->getType(), InsertElement,
- OperandTraits<InsertElementInst>::op_begin(this),
- 3, InsertBef) {
- Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
- assert(isValidOperands(Vec, Elt, Index) &&
- "Invalid insertelement instruction operands!");
- Op<0>() = Vec;
- Op<1>() = Elt;
- Op<2>() = Index;
- setName(Name);
-}
-
-
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAE)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
@@ -1285,22 +1361,6 @@ InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
setName(Name);
}
-InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
- const std::string &Name,
- BasicBlock *InsertAE)
-: Instruction(Vec->getType(), InsertElement,
- OperandTraits<InsertElementInst>::op_begin(this),
- 3, InsertAE) {
- Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
- assert(isValidOperands(Vec, Elt, Index) &&
- "Invalid insertelement instruction operands!");
-
- Op<0>() = Vec;
- Op<1>() = Elt;
- Op<2>() = Index;
- setName(Name);
-}
-
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
const Value *Index) {
if (!isa<VectorType>(Vec->getType()))
@@ -1309,7 +1369,7 @@ bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
return false;// Second operand of insertelement must be vector element type.
- if (Index->getType() != Type::Int32Ty)
+ if (Index->getType() != Type::getInt32Ty(Vec->getContext()))
return false; // Third operand of insertelement must be i32.
return true;
}
@@ -1319,17 +1379,8 @@ bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
// ShuffleVectorInst Implementation
//===----------------------------------------------------------------------===//
-ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
- : Instruction(SV.getType(), ShuffleVector,
- OperandTraits<ShuffleVectorInst>::op_begin(this),
- OperandTraits<ShuffleVectorInst>::operands(this)) {
- Op<0>() = SV.Op<0>();
- Op<1>() = SV.Op<1>();
- Op<2>() = SV.Op<2>();
-}
-
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
@@ -1346,12 +1397,14 @@ ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
}
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd)
- : Instruction(V1->getType(), ShuffleVector,
- OperandTraits<ShuffleVectorInst>::op_begin(this),
- OperandTraits<ShuffleVectorInst>::operands(this),
- InsertAtEnd) {
+: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+ cast<VectorType>(Mask->getType())->getNumElements()),
+ ShuffleVector,
+ OperandTraits<ShuffleVectorInst>::op_begin(this),
+ OperandTraits<ShuffleVectorInst>::operands(this),
+ InsertAtEnd) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
@@ -1368,7 +1421,7 @@ bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
if (!isa<Constant>(Mask) || MaskTy == 0 ||
- MaskTy->getElementType() != Type::Int32Ty)
+ MaskTy->getElementType() != Type::getInt32Ty(V1->getContext()))
return false;
return true;
}
@@ -1393,7 +1446,7 @@ int ShuffleVectorInst::getMaskValue(unsigned i) const {
//===----------------------------------------------------------------------===//
void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
- unsigned NumIdx, const std::string &Name) {
+ unsigned NumIdx, const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Op<0>() = Agg;
Op<1>() = Val;
@@ -1403,7 +1456,7 @@ void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
}
void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
- const std::string &Name) {
+ const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
Op<0>() = Agg;
Op<1>() = Val;
@@ -1418,12 +1471,13 @@ InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
Indices(IVI.Indices) {
Op<0>() = IVI.getOperand(0);
Op<1>() = IVI.getOperand(1);
+ SubclassOptionalData = IVI.SubclassOptionalData;
}
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
unsigned Idx,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
@@ -1434,7 +1488,7 @@ InsertValueInst::InsertValueInst(Value *Agg,
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
unsigned Idx,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
@@ -1447,14 +1501,14 @@ InsertValueInst::InsertValueInst(Value *Agg,
//===----------------------------------------------------------------------===//
void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
- const std::string &Name) {
+ const Twine &Name) {
assert(NumOperands == 1 && "NumOperands not initialized?");
Indices.insert(Indices.end(), Idx, Idx + NumIdx);
setName(Name);
}
-void ExtractValueInst::init(unsigned Idx, const std::string &Name) {
+void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
assert(NumOperands == 1 && "NumOperands not initialized?");
Indices.push_back(Idx);
@@ -1464,6 +1518,7 @@ void ExtractValueInst::init(unsigned Idx, const std::string &Name) {
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
Indices(EVI.Indices) {
+ SubclassOptionalData = EVI.SubclassOptionalData;
}
// getIndexedType - Returns the type of the element that would be extracted
@@ -1517,7 +1572,7 @@ static BinaryOperator::BinaryOps AdjustIType(BinaryOperator::BinaryOps iType,
}
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
- const Type *Ty, const std::string &Name,
+ const Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: Instruction(Ty, AdjustIType(iType, Ty),
OperandTraits<BinaryOperator>::op_begin(this),
@@ -1530,7 +1585,7 @@ BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
}
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
- const Type *Ty, const std::string &Name,
+ const Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, AdjustIType(iType, Ty),
OperandTraits<BinaryOperator>::op_begin(this),
@@ -1619,7 +1674,7 @@ void BinaryOperator::init(BinaryOps iType) {
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
@@ -1627,69 +1682,70 @@ BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = Create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
-BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
- Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
-BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
- Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
-BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
- Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
-BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
- Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
-BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Constant *C;
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
- C = ConstantInt::getAllOnesValue(PTy->getElementType());
- C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
+ C = Constant::getAllOnesValue(PTy->getElementType());
+ C = ConstantVector::get(
+ std::vector<Constant*>(PTy->getNumElements(), C));
} else {
- C = ConstantInt::getAllOnesValue(Op->getType());
+ C = Constant::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, C,
Op->getType(), Name, InsertBefore);
}
-BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Constant *AllOnes;
if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
// Create a vector of all ones values.
- Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
- AllOnes =
- ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
+ Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
+ AllOnes = ConstantVector::get(
+ std::vector<Constant*>(PTy->getNumElements(), Elt));
} else {
- AllOnes = ConstantInt::getAllOnesValue(Op->getType());
+ AllOnes = Constant::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
@@ -1709,16 +1765,16 @@ static inline bool isConstantAllOnes(const Value *V) {
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
- return Bop->getOperand(0) ==
- ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
+ if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
+ return C->isNegativeZeroValue();
return false;
}
bool BinaryOperator::isFNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::FSub)
- return Bop->getOperand(0) ==
- ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
+ if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
+ return C->isNegativeZeroValue();
return false;
}
@@ -1731,7 +1787,6 @@ bool BinaryOperator::isNot(const Value *V) {
}
Value *BinaryOperator::getNegArgument(Value *BinOp) {
- assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
@@ -1740,7 +1795,6 @@ const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
}
Value *BinaryOperator::getFNegArgument(Value *BinOp) {
- assert(isFNeg(BinOp) && "getFNegArgument from non-'fneg' instruction!");
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
@@ -1776,6 +1830,30 @@ bool BinaryOperator::swapOperands() {
return false;
}
+void BinaryOperator::setHasNoUnsignedWrap(bool b) {
+ cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
+}
+
+void BinaryOperator::setHasNoSignedWrap(bool b) {
+ cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
+}
+
+void BinaryOperator::setIsExact(bool b) {
+ cast<SDivOperator>(this)->setIsExact(b);
+}
+
+bool BinaryOperator::hasNoUnsignedWrap() const {
+ return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
+}
+
+bool BinaryOperator::hasNoSignedWrap() const {
+ return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
+}
+
+bool BinaryOperator::isExact() const {
+ return cast<SDivOperator>(this)->isExact();
+}
+
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
@@ -1944,6 +2022,8 @@ unsigned CastInst::isEliminableCastPair(
return 0;
case 7: {
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
+ if (!IntPtrTy)
+ return 0;
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
unsigned MidSize = MidTy->getScalarSizeInBits();
if (MidSize >= PtrSize)
@@ -1983,6 +2063,8 @@ unsigned CastInst::isEliminableCastPair(
return 0;
case 13: {
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+ if (!IntPtrTy)
+ return 0;
unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
unsigned SrcSize = SrcTy->getScalarSizeInBits();
unsigned DstSize = DstTy->getScalarSizeInBits();
@@ -2003,7 +2085,7 @@ unsigned CastInst::isEliminableCastPair(
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
- const std::string &Name, Instruction *InsertBefore) {
+ const Twine &Name, Instruction *InsertBefore) {
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
@@ -2025,7 +2107,7 @@ CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
- const std::string &Name, BasicBlock *InsertAtEnd) {
+ const Twine &Name, BasicBlock *InsertAtEnd) {
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
@@ -2047,7 +2129,7 @@ CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
@@ -2055,7 +2137,7 @@ CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
@@ -2063,7 +2145,7 @@ CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
@@ -2071,7 +2153,7 @@ CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
@@ -2079,7 +2161,7 @@ CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
@@ -2087,7 +2169,7 @@ CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
@@ -2095,7 +2177,7 @@ CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(isa<PointerType>(S->getType()) && "Invalid cast");
assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
@@ -2108,7 +2190,7 @@ CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
/// @brief Create a BitCast or a PtrToInt cast instruction
CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
assert(isa<PointerType>(S->getType()) && "Invalid cast");
assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
@@ -2120,7 +2202,7 @@ CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
}
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
- bool isSigned, const std::string &Name,
+ bool isSigned, const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
@@ -2133,7 +2215,7 @@ CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
}
CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
- bool isSigned, const std::string &Name,
+ bool isSigned, const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
"Invalid cast");
@@ -2147,7 +2229,7 @@ CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
}
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
"Invalid cast");
@@ -2160,7 +2242,7 @@ CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
}
CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
- const std::string &Name,
+ const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
"Invalid cast");
@@ -2295,7 +2377,7 @@ CastInst::getCastOpcode(
PTy = NULL;
return BitCast; // same size, no-op cast
} else {
- assert(0 && "Casting pointer or non-first class to float");
+ llvm_unreachable("Casting pointer or non-first class to float");
}
} else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
@@ -2404,144 +2486,144 @@ CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
}
TruncInst::TruncInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
TruncInst::TruncInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
ZExtInst::ZExtInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
ZExtInst::ZExtInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
SExtInst::SExtInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
SExtInst::SExtInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
FPTruncInst::FPTruncInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPTruncInst::FPTruncInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPExtInst::FPExtInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
FPExtInst::FPExtInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
UIToFPInst::UIToFPInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
UIToFPInst::UIToFPInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
SIToFPInst::SIToFPInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
SIToFPInst::SIToFPInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
FPToUIInst::FPToUIInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToUIInst::FPToUIInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToSIInst::FPToSIInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
FPToSIInst::FPToSIInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
PtrToIntInst::PtrToIntInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
PtrToIntInst::PtrToIntInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
IntToPtrInst::IntToPtrInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
IntToPtrInst::IntToPtrInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
BitCastInst::BitCastInst(
- Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+ Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
BitCastInst::BitCastInst(
- Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+ Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
@@ -2551,7 +2633,7 @@ BitCastInst::BitCastInst(
//===----------------------------------------------------------------------===//
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
- Value *LHS, Value *RHS, const std::string &Name,
+ Value *LHS, Value *RHS, const Twine &Name,
Instruction *InsertBefore)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
@@ -2564,7 +2646,7 @@ CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
}
CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
- Value *LHS, Value *RHS, const std::string &Name,
+ Value *LHS, Value *RHS, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
@@ -2577,41 +2659,35 @@ CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
}
CmpInst *
-CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
- const std::string &Name, Instruction *InsertBefore) {
+CmpInst::Create(OtherOps Op, unsigned short predicate,
+ Value *S1, Value *S2,
+ const Twine &Name, Instruction *InsertBefore) {
if (Op == Instruction::ICmp) {
- return new ICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertBefore);
- }
- if (Op == Instruction::FCmp) {
- return new FCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertBefore);
- }
- if (Op == Instruction::VICmp) {
- return new VICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertBefore);
+ if (InsertBefore)
+ return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ else
+ return new ICmpInst(CmpInst::Predicate(predicate),
+ S1, S2, Name);
}
- return new VFCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertBefore);
+
+ if (InsertBefore)
+ return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ else
+ return new FCmpInst(CmpInst::Predicate(predicate),
+ S1, S2, Name);
}
CmpInst *
CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
- const std::string &Name, BasicBlock *InsertAtEnd) {
+ const Twine &Name, BasicBlock *InsertAtEnd) {
if (Op == Instruction::ICmp) {
- return new ICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertAtEnd);
- }
- if (Op == Instruction::FCmp) {
- return new FCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertAtEnd);
+ return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+ S1, S2, Name);
}
- if (Op == Instruction::VICmp) {
- return new VICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertAtEnd);
- }
- return new VFCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
- InsertAtEnd);
+ return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+ S1, S2, Name);
}
void CmpInst::swapOperands() {
@@ -2712,7 +2788,7 @@ ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
APInt Upper(C);
uint32_t BitWidth = C.getBitWidth();
switch (pred) {
- default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
+ default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: Upper++; break;
case ICmpInst::ICMP_NE: Lower++; break;
case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
@@ -2823,7 +2899,8 @@ void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
/// constructor can also autoinsert before another instruction.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore)
- : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
+ : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+ 0, 0, InsertBefore) {
init(Value, Default, NumCases);
}
@@ -2833,18 +2910,20 @@ SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd)
- : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
+ : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+ 0, 0, InsertAtEnd) {
init(Value, Default, NumCases);
}
SwitchInst::SwitchInst(const SwitchInst &SI)
- : TerminatorInst(Type::VoidTy, Instruction::Switch,
+ : TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
Use *OL = OperandList, *InOL = SI.OperandList;
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
OL[i] = InOL[i];
OL[i+1] = InOL[i+1];
}
+ SubclassOptionalData = SI.SubclassOptionalData;
}
SwitchInst::~SwitchInst() {
@@ -2937,80 +3016,372 @@ void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone() const {
- return new(getNumOperands()) GetElementPtrInst(*this);
+ GetElementPtrInst *New = new(getNumOperands()) GetElementPtrInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
BinaryOperator *BinaryOperator::clone() const {
- return Create(getOpcode(), Op<0>(), Op<1>());
+ BinaryOperator *New = Create(getOpcode(), Op<0>(), Op<1>());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
FCmpInst* FCmpInst::clone() const {
- return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
+ FCmpInst *New = new FCmpInst(getPredicate(), Op<0>(), Op<1>());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
ICmpInst* ICmpInst::clone() const {
- return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
+ ICmpInst *New = new ICmpInst(getPredicate(), Op<0>(), Op<1>());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-VFCmpInst* VFCmpInst::clone() const {
- return new VFCmpInst(getPredicate(), Op<0>(), Op<1>());
+ExtractValueInst *ExtractValueInst::clone() const {
+ ExtractValueInst *New = new ExtractValueInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+InsertValueInst *InsertValueInst::clone() const {
+ InsertValueInst *New = new InsertValueInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-VICmpInst* VICmpInst::clone() const {
- return new VICmpInst(getPredicate(), Op<0>(), Op<1>());
+
+MallocInst *MallocInst::clone() const {
+ MallocInst *New = new MallocInst(getAllocatedType(),
+ (Value*)getOperand(0),
+ getAlignment());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-ExtractValueInst *ExtractValueInst::clone() const {
- return new ExtractValueInst(*this);
+AllocaInst *AllocaInst::clone() const {
+ AllocaInst *New = new AllocaInst(getAllocatedType(),
+ (Value*)getOperand(0),
+ getAlignment());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+FreeInst *FreeInst::clone() const {
+ FreeInst *New = new FreeInst(getOperand(0));
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+LoadInst *LoadInst::clone() const {
+ LoadInst *New = new LoadInst(getOperand(0),
+ Twine(), isVolatile(),
+ getAlignment());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+StoreInst *StoreInst::clone() const {
+ StoreInst *New = new StoreInst(getOperand(0), getOperand(1),
+ isVolatile(), getAlignment());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+TruncInst *TruncInst::clone() const {
+ TruncInst *New = new TruncInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+ZExtInst *ZExtInst::clone() const {
+ ZExtInst *New = new ZExtInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+SExtInst *SExtInst::clone() const {
+ SExtInst *New = new SExtInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+FPTruncInst *FPTruncInst::clone() const {
+ FPTruncInst *New = new FPTruncInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+FPExtInst *FPExtInst::clone() const {
+ FPExtInst *New = new FPExtInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+UIToFPInst *UIToFPInst::clone() const {
+ UIToFPInst *New = new UIToFPInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+SIToFPInst *SIToFPInst::clone() const {
+ SIToFPInst *New = new SIToFPInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+FPToUIInst *FPToUIInst::clone() const {
+ FPToUIInst *New = new FPToUIInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+FPToSIInst *FPToSIInst::clone() const {
+ FPToSIInst *New = new FPToSIInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+PtrToIntInst *PtrToIntInst::clone() const {
+ PtrToIntInst *New = new PtrToIntInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+IntToPtrInst *IntToPtrInst::clone() const {
+ IntToPtrInst *New = new IntToPtrInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+BitCastInst *BitCastInst::clone() const {
+ BitCastInst *New = new BitCastInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+CallInst *CallInst::clone() const {
+ CallInst *New = new(getNumOperands()) CallInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+SelectInst *SelectInst::clone() const {
+ SelectInst *New = SelectInst::Create(getOperand(0),
+ getOperand(1),
+ getOperand(2));
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+VAArgInst *VAArgInst::clone() const {
+ VAArgInst *New = new VAArgInst(getOperand(0), getType());
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-InsertValueInst *InsertValueInst::clone() const {
- return new InsertValueInst(*this);
-}
-
-
-MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
-AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
-FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
-LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
-StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
-CastInst *TruncInst::clone() const { return new TruncInst(*this); }
-CastInst *ZExtInst::clone() const { return new ZExtInst(*this); }
-CastInst *SExtInst::clone() const { return new SExtInst(*this); }
-CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); }
-CastInst *FPExtInst::clone() const { return new FPExtInst(*this); }
-CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); }
-CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); }
-CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); }
-CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); }
-CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
-CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
-CastInst *BitCastInst::clone() const { return new BitCastInst(*this); }
-CallInst *CallInst::clone() const {
- return new(getNumOperands()) CallInst(*this);
-}
-SelectInst *SelectInst::clone() const {
- return new(getNumOperands()) SelectInst(*this);
-}
-VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
ExtractElementInst *ExtractElementInst::clone() const {
- return new ExtractElementInst(*this);
+ ExtractElementInst *New = ExtractElementInst::Create(getOperand(0),
+ getOperand(1));
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
+
InsertElementInst *InsertElementInst::clone() const {
- return InsertElementInst::Create(*this);
+ InsertElementInst *New = InsertElementInst::Create(getOperand(0),
+ getOperand(1),
+ getOperand(2));
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
+
ShuffleVectorInst *ShuffleVectorInst::clone() const {
- return new ShuffleVectorInst(*this);
+ ShuffleVectorInst *New = new ShuffleVectorInst(getOperand(0),
+ getOperand(1),
+ getOperand(2));
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+PHINode *PHINode::clone() const {
+ PHINode *New = new PHINode(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-PHINode *PHINode::clone() const { return new PHINode(*this); }
+
ReturnInst *ReturnInst::clone() const {
- return new(getNumOperands()) ReturnInst(*this);
+ ReturnInst *New = new(getNumOperands()) ReturnInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
+
BranchInst *BranchInst::clone() const {
unsigned Ops(getNumOperands());
- return new(Ops, Ops == 1) BranchInst(*this);
+ BranchInst *New = new(Ops, Ops == 1) BranchInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+SwitchInst *SwitchInst::clone() const {
+ SwitchInst *New = new SwitchInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
}
-SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
+
InvokeInst *InvokeInst::clone() const {
- return new(getNumOperands()) InvokeInst(*this);
+ InvokeInst *New = new(getNumOperands()) InvokeInst(*this);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata()) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ }
+ return New;
+}
+
+UnwindInst *UnwindInst::clone() const {
+ LLVMContext &Context = getContext();
+ UnwindInst *New = new UnwindInst(Context);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata())
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ return New;
+}
+
+UnreachableInst *UnreachableInst::clone() const {
+ LLVMContext &Context = getContext();
+ UnreachableInst *New = new UnreachableInst(Context);
+ New->SubclassOptionalData = SubclassOptionalData;
+ if (hasMetadata())
+ Context.pImpl->TheMetadata.ValueIsCloned(this, New);
+ return New;
}
-UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
-UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}
diff --git a/lib/VMCore/IntrinsicInst.cpp b/lib/VMCore/IntrinsicInst.cpp
index 8bdc968..5f33d0e 100644
--- a/lib/VMCore/IntrinsicInst.cpp
+++ b/lib/VMCore/IntrinsicInst.cpp
@@ -61,17 +61,11 @@ Value *DbgInfoIntrinsic::StripCast(Value *C) {
Value *DbgStopPointInst::getFileName() const {
// Once the operand indices are verified, update this assert
assert(LLVMDebugVersion == (7 << 16) && "Verify operand indices");
- GlobalVariable *GV = cast<GlobalVariable>(getContext());
- if (!GV->hasInitializer()) return NULL;
- ConstantStruct *CS = cast<ConstantStruct>(GV->getInitializer());
- return CS->getOperand(3);
+ return getContext()->getElement(3);
}
Value *DbgStopPointInst::getDirectory() const {
// Once the operand indices are verified, update this assert
assert(LLVMDebugVersion == (7 << 16) && "Verify operand indices");
- GlobalVariable *GV = cast<GlobalVariable>(getContext());
- if (!GV->hasInitializer()) return NULL;
- ConstantStruct *CS = cast<ConstantStruct>(GV->getInitializer());
- return CS->getOperand(4);
+ return getContext()->getElement(4);
}
diff --git a/lib/VMCore/LLVMContext.cpp b/lib/VMCore/LLVMContext.cpp
index fe2cb7b..39ed7ed 100644
--- a/lib/VMCore/LLVMContext.cpp
+++ b/lib/VMCore/LLVMContext.cpp
@@ -8,16 +8,18 @@
//===----------------------------------------------------------------------===//
//
// This file implements LLVMContext, as a wrapper around the opaque
-// class LLVMContextImpl.
+// class LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/MDNode.h"
+#include "llvm/Instruction.h"
#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/ValueHandle.h"
#include "LLVMContextImpl.h"
+#include <set>
using namespace llvm;
@@ -27,463 +29,48 @@ LLVMContext& llvm::getGlobalContext() {
return *GlobalContext;
}
-LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl()) { }
+LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) { }
LLVMContext::~LLVMContext() { delete pImpl; }
-// Constant accessors
-Constant* LLVMContext::getNullValue(const Type* Ty) {
- return Constant::getNullValue(Ty);
-}
-
-Constant* LLVMContext::getAllOnesValue(const Type* Ty) {
- return Constant::getAllOnesValue(Ty);
-}
-
-// UndefValue accessors.
-UndefValue* LLVMContext::getUndef(const Type* Ty) {
- return UndefValue::get(Ty);
-}
-
-// ConstantInt accessors.
-ConstantInt* LLVMContext::getConstantIntTrue() {
- return ConstantInt::getTrue();
-}
-
-ConstantInt* LLVMContext::getConstantIntFalse() {
- return ConstantInt::getFalse();
-}
-
-Constant* LLVMContext::getConstantInt(const Type* Ty, uint64_t V,
- bool isSigned) {
- return ConstantInt::get(Ty, V, isSigned);
-}
-
-
-ConstantInt* LLVMContext::getConstantInt(const IntegerType* Ty, uint64_t V,
- bool isSigned) {
- return ConstantInt::get(Ty, V, isSigned);
-}
-
-ConstantInt* LLVMContext::getConstantIntSigned(const IntegerType* Ty,
- int64_t V) {
- return ConstantInt::getSigned(Ty, V);
-}
-
-ConstantInt* LLVMContext::getConstantInt(const APInt& V) {
- return ConstantInt::get(V);
-}
-
-Constant* LLVMContext::getConstantInt(const Type* Ty, const APInt& V) {
- return ConstantInt::get(Ty, V);
-}
-
-ConstantInt* LLVMContext::getConstantIntAllOnesValue(const Type* Ty) {
- return ConstantInt::getAllOnesValue(Ty);
-}
-
-
-// ConstantPointerNull accessors.
-ConstantPointerNull* LLVMContext::getConstantPointerNull(const PointerType* T) {
- return ConstantPointerNull::get(T);
-}
-
-
-// ConstantStruct accessors.
-Constant* LLVMContext::getConstantStruct(const StructType* T,
- const std::vector<Constant*>& V) {
- return ConstantStruct::get(T, V);
-}
-
-Constant* LLVMContext::getConstantStruct(const std::vector<Constant*>& V,
- bool Packed) {
- return ConstantStruct::get(V, Packed);
-}
-
-Constant* LLVMContext::getConstantStruct(Constant* const *Vals,
- unsigned NumVals, bool Packed) {
- return ConstantStruct::get(Vals, NumVals, Packed);
-}
-
-
-// ConstantAggregateZero accessors.
-ConstantAggregateZero* LLVMContext::getConstantAggregateZero(const Type* Ty) {
- return ConstantAggregateZero::get(Ty);
-}
-
-
-// ConstantArray accessors.
-Constant* LLVMContext::getConstantArray(const ArrayType* T,
- const std::vector<Constant*>& V) {
- return ConstantArray::get(T, V);
-}
-
-Constant* LLVMContext::getConstantArray(const ArrayType* T,
- Constant* const* Vals,
- unsigned NumVals) {
- return ConstantArray::get(T, Vals, NumVals);
-}
-
-Constant* LLVMContext::getConstantArray(const std::string& Initializer,
- bool AddNull) {
- return ConstantArray::get(Initializer, AddNull);
-}
-
-
-// ConstantExpr accessors.
-Constant* LLVMContext::getConstantExpr(unsigned Opcode, Constant* C1,
- Constant* C2) {
- return ConstantExpr::get(Opcode, C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprTrunc(Constant* C, const Type* Ty) {
- return ConstantExpr::getTrunc(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprSExt(Constant* C, const Type* Ty) {
- return ConstantExpr::getSExt(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprZExt(Constant* C, const Type* Ty) {
- return ConstantExpr::getZExt(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprFPTrunc(Constant* C, const Type* Ty) {
- return ConstantExpr::getFPTrunc(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprFPExtend(Constant* C, const Type* Ty) {
- return ConstantExpr::getFPExtend(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprUIToFP(Constant* C, const Type* Ty) {
- return ConstantExpr::getUIToFP(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprSIToFP(Constant* C, const Type* Ty) {
- return ConstantExpr::getSIToFP(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprFPToUI(Constant* C, const Type* Ty) {
- return ConstantExpr::getFPToUI(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprFPToSI(Constant* C, const Type* Ty) {
- return ConstantExpr::getFPToSI(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprPtrToInt(Constant* C, const Type* Ty) {
- return ConstantExpr::getPtrToInt(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprIntToPtr(Constant* C, const Type* Ty) {
- return ConstantExpr::getIntToPtr(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprBitCast(Constant* C, const Type* Ty) {
- return ConstantExpr::getBitCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprCast(unsigned ops, Constant* C,
- const Type* Ty) {
- return ConstantExpr::getCast(ops, C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprZExtOrBitCast(Constant* C,
- const Type* Ty) {
- return ConstantExpr::getZExtOrBitCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprSExtOrBitCast(Constant* C,
- const Type* Ty) {
- return ConstantExpr::getSExtOrBitCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprTruncOrBitCast(Constant* C,
- const Type* Ty) {
- return ConstantExpr::getTruncOrBitCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprPointerCast(Constant* C, const Type* Ty) {
- return ConstantExpr::getPointerCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprIntegerCast(Constant* C, const Type* Ty,
- bool isSigned) {
- return ConstantExpr::getIntegerCast(C, Ty, isSigned);
-}
-
-Constant* LLVMContext::getConstantExprFPCast(Constant* C, const Type* Ty) {
- return ConstantExpr::getFPCast(C, Ty);
-}
-
-Constant* LLVMContext::getConstantExprSelect(Constant* C, Constant* V1,
- Constant* V2) {
- return ConstantExpr::getSelect(C, V1, V2);
-}
-
-Constant* LLVMContext::getConstantExprAlignOf(const Type* Ty) {
- return ConstantExpr::getAlignOf(Ty);
-}
-
-Constant* LLVMContext::getConstantExprCompare(unsigned short pred,
- Constant* C1, Constant* C2) {
- return ConstantExpr::getCompare(pred, C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprNeg(Constant* C) {
- return ConstantExpr::getNeg(C);
-}
-
-Constant* LLVMContext::getConstantExprFNeg(Constant* C) {
- return ConstantExpr::getFNeg(C);
-}
-
-Constant* LLVMContext::getConstantExprNot(Constant* C) {
- return ConstantExpr::getNot(C);
-}
-
-Constant* LLVMContext::getConstantExprAdd(Constant* C1, Constant* C2) {
- return ConstantExpr::getAdd(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprFAdd(Constant* C1, Constant* C2) {
- return ConstantExpr::getFAdd(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprSub(Constant* C1, Constant* C2) {
- return ConstantExpr::getSub(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprFSub(Constant* C1, Constant* C2) {
- return ConstantExpr::getFSub(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprMul(Constant* C1, Constant* C2) {
- return ConstantExpr::getMul(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprFMul(Constant* C1, Constant* C2) {
- return ConstantExpr::getFMul(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprUDiv(Constant* C1, Constant* C2) {
- return ConstantExpr::getUDiv(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprSDiv(Constant* C1, Constant* C2) {
- return ConstantExpr::getSDiv(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprFDiv(Constant* C1, Constant* C2) {
- return ConstantExpr::getFDiv(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprURem(Constant* C1, Constant* C2) {
- return ConstantExpr::getURem(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprSRem(Constant* C1, Constant* C2) {
- return ConstantExpr::getSRem(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprFRem(Constant* C1, Constant* C2) {
- return ConstantExpr::getFRem(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprAnd(Constant* C1, Constant* C2) {
- return ConstantExpr::getAnd(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprOr(Constant* C1, Constant* C2) {
- return ConstantExpr::getOr(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprXor(Constant* C1, Constant* C2) {
- return ConstantExpr::getXor(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprICmp(unsigned short pred, Constant* LHS,
- Constant* RHS) {
- return ConstantExpr::getICmp(pred, LHS, RHS);
-}
-
-Constant* LLVMContext::getConstantExprFCmp(unsigned short pred, Constant* LHS,
- Constant* RHS) {
- return ConstantExpr::getFCmp(pred, LHS, RHS);
-}
-
-Constant* LLVMContext::getConstantExprVICmp(unsigned short pred, Constant* LHS,
- Constant* RHS) {
- return ConstantExpr::getVICmp(pred, LHS, RHS);
-}
-
-Constant* LLVMContext::getConstantExprVFCmp(unsigned short pred, Constant* LHS,
- Constant* RHS) {
- return ConstantExpr::getVFCmp(pred, LHS, RHS);
-}
-
-Constant* LLVMContext::getConstantExprShl(Constant* C1, Constant* C2) {
- return ConstantExpr::getShl(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprLShr(Constant* C1, Constant* C2) {
- return ConstantExpr::getLShr(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprAShr(Constant* C1, Constant* C2) {
- return ConstantExpr::getAShr(C1, C2);
-}
-
-Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C,
- Constant* const* IdxList,
- unsigned NumIdx) {
- return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx);
-}
-
-Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C,
- Value* const* IdxList,
- unsigned NumIdx) {
- return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx);
-}
-
-Constant* LLVMContext::getConstantExprExtractElement(Constant* Vec,
- Constant* Idx) {
- return ConstantExpr::getExtractElement(Vec, Idx);
-}
-
-Constant* LLVMContext::getConstantExprInsertElement(Constant* Vec,
- Constant* Elt,
- Constant* Idx) {
- return ConstantExpr::getInsertElement(Vec, Elt, Idx);
-}
-
-Constant* LLVMContext::getConstantExprShuffleVector(Constant* V1, Constant* V2,
- Constant* Mask) {
- return ConstantExpr::getShuffleVector(V1, V2, Mask);
-}
-
-Constant* LLVMContext::getConstantExprExtractValue(Constant* Agg,
- const unsigned* IdxList,
- unsigned NumIdx) {
- return ConstantExpr::getExtractValue(Agg, IdxList, NumIdx);
-}
-
-Constant* LLVMContext::getConstantExprInsertValue(Constant* Agg, Constant* Val,
- const unsigned* IdxList,
- unsigned NumIdx) {
- return ConstantExpr::getInsertValue(Agg, Val, IdxList, NumIdx);
-}
-
-Constant* LLVMContext::getZeroValueForNegation(const Type* Ty) {
- return ConstantExpr::getZeroValueForNegationExpr(Ty);
-}
-
-
-// ConstantFP accessors.
-ConstantFP* LLVMContext::getConstantFP(const APFloat& V) {
- return ConstantFP::get(V);
-}
-
-Constant* LLVMContext::getConstantFP(const Type* Ty, double V) {
- return ConstantFP::get(Ty, V);
-}
-
-ConstantFP* LLVMContext::getConstantFPNegativeZero(const Type* Ty) {
- return ConstantFP::getNegativeZero(Ty);
-}
-
-
-// ConstantVector accessors.
-Constant* LLVMContext::getConstantVector(const VectorType* T,
- const std::vector<Constant*>& V) {
- return ConstantVector::get(T, V);
-}
-
-Constant* LLVMContext::getConstantVector(const std::vector<Constant*>& V) {
- return ConstantVector::get(V);
-}
-
-Constant* LLVMContext::getConstantVector(Constant* const* Vals,
- unsigned NumVals) {
- return ConstantVector::get(Vals, NumVals);
-}
-
-ConstantVector* LLVMContext::getConstantVectorAllOnesValue(
- const VectorType* Ty) {
- return ConstantVector::getAllOnesValue(Ty);
-}
-
-// MDNode accessors
-MDNode* LLVMContext::getMDNode(Value* const* Vals, unsigned NumVals) {
- return MDNode::get(Vals, NumVals);
-}
-
-// MDString accessors
-MDString* LLVMContext::getMDString(const char *StrBegin, const char *StrEnd) {
- return MDString::get(StrBegin, StrEnd);
-}
-
-MDString* LLVMContext::getMDString(const std::string &Str) {
- return MDString::get(Str);
-}
-
-// FunctionType accessors
-FunctionType* LLVMContext::getFunctionType(const Type* Result,
- const std::vector<const Type*>& Params,
- bool isVarArg) {
- return FunctionType::get(Result, Params, isVarArg);
-}
-
-// IntegerType accessors
-const IntegerType* LLVMContext::getIntegerType(unsigned NumBits) {
- return IntegerType::get(NumBits);
-}
-
-// OpaqueType accessors
-OpaqueType* LLVMContext::getOpaqueType() {
- return OpaqueType::get();
-}
-
-// StructType accessors
-StructType* LLVMContext::getStructType(bool isPacked) {
- return StructType::get(isPacked);
-}
-
-StructType* LLVMContext::getStructType(const std::vector<const Type*>& Params,
- bool isPacked) {
- return StructType::get(Params, isPacked);
-}
-
-// ArrayType accessors
-ArrayType* LLVMContext::getArrayType(const Type* ElementType,
- uint64_t NumElements) {
- return ArrayType::get(ElementType, NumElements);
-}
-
-// PointerType accessors
-PointerType* LLVMContext::getPointerType(const Type* ElementType,
- unsigned AddressSpace) {
- return PointerType::get(ElementType, AddressSpace);
-}
-
-PointerType* LLVMContext::getPointerTypeUnqual(const Type* ElementType) {
- return PointerType::getUnqual(ElementType);
-}
-
-// VectorType accessors
-VectorType* LLVMContext::getVectorType(const Type* ElementType,
- unsigned NumElements) {
- return VectorType::get(ElementType, NumElements);
-}
-
-VectorType* LLVMContext::getVectorTypeInteger(const VectorType* VTy) {
- return VectorType::getInteger(VTy);
-}
-
-VectorType* LLVMContext::getVectorTypeExtendedElement(const VectorType* VTy) {
- return VectorType::getExtendedElementVectorType(VTy);
-}
-
-VectorType* LLVMContext::getVectorTypeTruncatedElement(const VectorType* VTy) {
- return VectorType::getTruncatedElementVectorType(VTy);
+GetElementPtrConstantExpr::GetElementPtrConstantExpr
+ (Constant *C,
+ const std::vector<Constant*> &IdxList,
+ const Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::GetElementPtr,
+ OperandTraits<GetElementPtrConstantExpr>::op_end(this)
+ - (IdxList.size()+1),
+ IdxList.size()+1) {
+ OperandList[0] = C;
+ for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
+ OperandList[i+1] = IdxList[i];
+}
+
+bool LLVMContext::RemoveDeadMetadata() {
+ std::vector<WeakVH> DeadMDNodes;
+ bool Changed = false;
+ while (1) {
+
+ for (FoldingSet<MDNode>::iterator
+ I = pImpl->MDNodeSet.begin(),
+ E = pImpl->MDNodeSet.end(); I != E; ++I) {
+ MDNode *N = &(*I);
+ if (N->use_empty())
+ DeadMDNodes.push_back(WeakVH(N));
+ }
+
+ if (DeadMDNodes.empty())
+ return Changed;
+
+ while (!DeadMDNodes.empty()) {
+ Value *V = DeadMDNodes.back(); DeadMDNodes.pop_back();
+ if (const MDNode *N = dyn_cast_or_null<MDNode>(V))
+ if (N->use_empty())
+ delete N;
+ }
+ }
+ return Changed;
+}
+
+MetadataContext &LLVMContext::getMetadata() {
+ return pImpl->TheMetadata;
}
diff --git a/lib/VMCore/LLVMContextImpl.h b/lib/VMCore/LLVMContextImpl.h
index 4e089fb..83888c3 100644
--- a/lib/VMCore/LLVMContextImpl.h
+++ b/lib/VMCore/LLVMContextImpl.h
@@ -1,4 +1,4 @@
-//===-- llvm/SymbolTableListTraitsImpl.h - Implementation ------*- C++ -*--===//
+//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class --------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -15,9 +15,209 @@
#ifndef LLVM_LLVMCONTEXT_IMPL_H
#define LLVM_LLVMCONTEXT_IMPL_H
+#include "ConstantsContext.h"
+#include "LeaksContext.h"
+#include "TypesContext.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/System/Mutex.h"
+#include "llvm/System/RWMutex.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/StringMap.h"
+#include <vector>
+
namespace llvm {
+
+class ConstantInt;
+class ConstantFP;
+class MDString;
+class MDNode;
+class LLVMContext;
+class Type;
+class Value;
+
+struct DenseMapAPIntKeyInfo {
+ struct KeyTy {
+ APInt val;
+ const Type* type;
+ KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
+ KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
+ bool operator==(const KeyTy& that) const {
+ return type == that.type && this->val == that.val;
+ }
+ bool operator!=(const KeyTy& that) const {
+ return !this->operator==(that);
+ }
+ };
+ static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
+ static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
+ static unsigned getHashValue(const KeyTy &Key) {
+ return DenseMapInfo<void*>::getHashValue(Key.type) ^
+ Key.val.getHashValue();
+ }
+ static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+ return LHS == RHS;
+ }
+ static bool isPod() { return false; }
+};
+
+struct DenseMapAPFloatKeyInfo {
+ struct KeyTy {
+ APFloat val;
+ KeyTy(const APFloat& V) : val(V){}
+ KeyTy(const KeyTy& that) : val(that.val) {}
+ bool operator==(const KeyTy& that) const {
+ return this->val.bitwiseIsEqual(that.val);
+ }
+ bool operator!=(const KeyTy& that) const {
+ return !this->operator==(that);
+ }
+ };
+ static inline KeyTy getEmptyKey() {
+ return KeyTy(APFloat(APFloat::Bogus,1));
+ }
+ static inline KeyTy getTombstoneKey() {
+ return KeyTy(APFloat(APFloat::Bogus,2));
+ }
+ static unsigned getHashValue(const KeyTy &Key) {
+ return Key.val.getHashValue();
+ }
+ static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
+ return LHS == RHS;
+ }
+ static bool isPod() { return false; }
+};
+
class LLVMContextImpl {
+public:
+ sys::SmartRWMutex<true> ConstantsLock;
+ typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
+ DenseMapAPIntKeyInfo> IntMapTy;
+ IntMapTy IntConstants;
+
+ typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
+ DenseMapAPFloatKeyInfo> FPMapTy;
+ FPMapTy FPConstants;
+
+ StringMap<MDString*> MDStringCache;
+
+ FoldingSet<MDNode> MDNodeSet;
+
+ ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
+
+ typedef ValueMap<std::vector<Constant*>, ArrayType,
+ ConstantArray, true /*largekey*/> ArrayConstantsTy;
+ ArrayConstantsTy ArrayConstants;
+
+ typedef ValueMap<std::vector<Constant*>, StructType,
+ ConstantStruct, true /*largekey*/> StructConstantsTy;
+ StructConstantsTy StructConstants;
+
+ typedef ValueMap<std::vector<Constant*>, VectorType,
+ ConstantVector> VectorConstantsTy;
+ VectorConstantsTy VectorConstants;
+
+ ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
+
+ ValueMap<char, Type, UndefValue> UndefValueConstants;
+
+ ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
+
+ ConstantInt *TheTrueVal;
+ ConstantInt *TheFalseVal;
+
+ // Lock used for guarding access to the leak detector
+ sys::SmartMutex<true> LLVMObjectsLock;
+ LeakDetectorImpl<Value> LLVMObjects;
+
+ // Lock used for guarding access to the type maps.
+ sys::SmartMutex<true> TypeMapLock;
+
+ // Recursive lock used for guarding access to AbstractTypeUsers.
+ // NOTE: The true template parameter means this will no-op when we're not in
+ // multithreaded mode.
+ sys::SmartMutex<true> AbstractTypeUsersLock;
+
+ // Basic type instances.
+ const Type VoidTy;
+ const Type LabelTy;
+ const Type FloatTy;
+ const Type DoubleTy;
+ const Type MetadataTy;
+ const Type X86_FP80Ty;
+ const Type FP128Ty;
+ const Type PPC_FP128Ty;
+ const IntegerType Int1Ty;
+ const IntegerType Int8Ty;
+ const IntegerType Int16Ty;
+ const IntegerType Int32Ty;
+ const IntegerType Int64Ty;
+
+ // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
+ // for types as they are needed. Because resolution of types must invalidate
+ // all of the abstract type descriptions, we keep them in a seperate map to
+ // make this easy.
+ TypePrinting ConcreteTypeDescriptions;
+ TypePrinting AbstractTypeDescriptions;
+
+ TypeMap<ArrayValType, ArrayType> ArrayTypes;
+ TypeMap<VectorValType, VectorType> VectorTypes;
+ TypeMap<PointerValType, PointerType> PointerTypes;
+ TypeMap<FunctionValType, FunctionType> FunctionTypes;
+ TypeMap<StructValType, StructType> StructTypes;
+ TypeMap<IntegerValType, IntegerType> IntegerTypes;
+
+ /// ValueHandles - This map keeps track of all of the value handles that are
+ /// watching a Value*. The Value::HasValueHandle bit is used to know
+ // whether or not a value has an entry in this map.
+ typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
+ ValueHandlesTy ValueHandles;
+
+ MetadataContext TheMetadata;
+ LLVMContextImpl(LLVMContext &C) : TheTrueVal(0), TheFalseVal(0),
+ VoidTy(C, Type::VoidTyID),
+ LabelTy(C, Type::LabelTyID),
+ FloatTy(C, Type::FloatTyID),
+ DoubleTy(C, Type::DoubleTyID),
+ MetadataTy(C, Type::MetadataTyID),
+ X86_FP80Ty(C, Type::X86_FP80TyID),
+ FP128Ty(C, Type::FP128TyID),
+ PPC_FP128Ty(C, Type::PPC_FP128TyID),
+ Int1Ty(C, 1),
+ Int8Ty(C, 8),
+ Int16Ty(C, 16),
+ Int32Ty(C, 32),
+ Int64Ty(C, 64) { }
+ ~LLVMContextImpl()
+ {
+ ExprConstants.freeConstants();
+ ArrayConstants.freeConstants();
+ StructConstants.freeConstants();
+ VectorConstants.freeConstants();
+ AggZeroConstants.freeConstants();
+ NullPtrConstants.freeConstants();
+ UndefValueConstants.freeConstants();
+ for (FoldingSet<MDNode>::iterator I = MDNodeSet.begin(),
+ E = MDNodeSet.end(); I != E; ++I)
+ I->dropAllReferences();
+ for (IntMapTy::iterator I = IntConstants.begin(), E = IntConstants.end();
+ I != E; ++I) {
+ if (I->second->use_empty())
+ delete I->second;
+ }
+ for (FPMapTy::iterator I = FPConstants.begin(), E = FPConstants.end();
+ I != E; ++I) {
+ if (I->second->use_empty())
+ delete I->second;
+ }
+ }
};
}
diff --git a/lib/VMCore/LeakDetector.cpp b/lib/VMCore/LeakDetector.cpp
index b5926bc..5ebd4f5 100644
--- a/lib/VMCore/LeakDetector.cpp
+++ b/lib/VMCore/LeakDetector.cpp
@@ -11,129 +11,62 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Streams.h"
-#include "llvm/System/RWMutex.h"
+#include "llvm/System/Mutex.h"
#include "llvm/System/Threading.h"
#include "llvm/Value.h"
using namespace llvm;
-namespace {
- template <class T>
- struct VISIBILITY_HIDDEN PrinterTrait {
- static void print(const T* P) { cerr << P; }
- };
+static ManagedStatic<sys::SmartMutex<true> > ObjectsLock;
+static ManagedStatic<LeakDetectorImpl<void> > Objects;
- template<>
- struct VISIBILITY_HIDDEN PrinterTrait<Value> {
- static void print(const Value* P) { cerr << *P; }
- };
-
- ManagedStatic<sys::SmartRWMutex<true> > LeakDetectorLock;
-
- template <typename T>
- struct VISIBILITY_HIDDEN LeakDetectorImpl {
- explicit LeakDetectorImpl(const char* const name = "") :
- Cache(0), Name(name) { }
-
- void clear() {
- Cache = 0;
- Ts.clear();
- }
-
- void setName(const char* n) {
- Name = n;
- }
-
- // Because the most common usage pattern, by far, is to add a
- // garbage object, then remove it immediately, we optimize this
- // case. When an object is added, it is not added to the set
- // immediately, it is added to the CachedValue Value. If it is
- // immediately removed, no set search need be performed.
- void addGarbage(const T* o) {
- sys::SmartScopedWriter<true> Writer(&*LeakDetectorLock);
- if (Cache) {
- assert(Ts.count(Cache) == 0 && "Object already in set!");
- Ts.insert(Cache);
- }
- Cache = o;
- }
-
- void removeGarbage(const T* o) {
- sys::SmartScopedWriter<true> Writer(&*LeakDetectorLock);
- if (o == Cache)
- Cache = 0; // Cache hit
- else
- Ts.erase(o);
- }
-
- bool hasGarbage(const std::string& Message) {
- addGarbage(0); // Flush the Cache
-
- sys::SmartScopedReader<true> Reader(&*LeakDetectorLock);
- assert(Cache == 0 && "No value should be cached anymore!");
-
- if (!Ts.empty()) {
- cerr << "Leaked " << Name << " objects found: " << Message << ":\n";
- for (typename SmallPtrSet<const T*, 8>::iterator I = Ts.begin(),
- E = Ts.end(); I != E; ++I) {
- cerr << "\t";
- PrinterTrait<T>::print(*I);
- cerr << "\n";
- }
- cerr << '\n';
-
- return true;
- }
-
- return false;
- }
-
- private:
- SmallPtrSet<const T*, 8> Ts;
- const T* Cache;
- const char* Name;
- };
-
- static ManagedStatic<LeakDetectorImpl<void> > Objects;
- static ManagedStatic<LeakDetectorImpl<Value> > LLVMObjects;
-
- static void clearGarbage() {
- Objects->clear();
- LLVMObjects->clear();
- }
+static void clearGarbage(LLVMContext &Context) {
+ Objects->clear();
+ Context.pImpl->LLVMObjects.clear();
}
void LeakDetector::addGarbageObjectImpl(void *Object) {
+ sys::SmartScopedLock<true> Lock(*ObjectsLock);
Objects->addGarbage(Object);
}
void LeakDetector::addGarbageObjectImpl(const Value *Object) {
- LLVMObjects->addGarbage(Object);
+ LLVMContextImpl *pImpl = Object->getContext().pImpl;
+ sys::SmartScopedLock<true> Lock(pImpl->LLVMObjectsLock);
+ pImpl->LLVMObjects.addGarbage(Object);
}
void LeakDetector::removeGarbageObjectImpl(void *Object) {
+ sys::SmartScopedLock<true> Lock(*ObjectsLock);
Objects->removeGarbage(Object);
}
void LeakDetector::removeGarbageObjectImpl(const Value *Object) {
- LLVMObjects->removeGarbage(Object);
+ LLVMContextImpl *pImpl = Object->getContext().pImpl;
+ sys::SmartScopedLock<true> Lock(pImpl->LLVMObjectsLock);
+ pImpl->LLVMObjects.removeGarbage(Object);
}
-void LeakDetector::checkForGarbageImpl(const std::string &Message) {
+void LeakDetector::checkForGarbageImpl(LLVMContext &Context,
+ const std::string &Message) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ sys::SmartScopedLock<true> Lock(*ObjectsLock);
+ sys::SmartScopedLock<true> CLock(pImpl->LLVMObjectsLock);
+
Objects->setName("GENERIC");
- LLVMObjects->setName("LLVM");
+ pImpl->LLVMObjects.setName("LLVM");
// use non-short-circuit version so that both checks are performed
if (Objects->hasGarbage(Message) |
- LLVMObjects->hasGarbage(Message))
- cerr << "\nThis is probably because you removed an object, but didn't "
- << "delete it. Please check your code for memory leaks.\n";
+ pImpl->LLVMObjects.hasGarbage(Message))
+ errs() << "\nThis is probably because you removed an object, but didn't "
+ << "delete it. Please check your code for memory leaks.\n";
// Clear out results so we don't get duplicate warnings on
// next call...
- clearGarbage();
+ clearGarbage(Context);
}
diff --git a/lib/VMCore/LeaksContext.h b/lib/VMCore/LeaksContext.h
new file mode 100644
index 0000000..b0c3a14
--- /dev/null
+++ b/lib/VMCore/LeaksContext.h
@@ -0,0 +1,89 @@
+//===- LeaksContext.h - LeadDetector Implementation ------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various helper methods and classes used by
+// LLVMContextImpl for leaks detectors.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Value.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+template <class T>
+struct PrinterTrait {
+ static void print(const T* P) { errs() << P; }
+};
+
+template<>
+struct PrinterTrait<Value> {
+ static void print(const Value* P) { errs() << *P; }
+};
+
+template <typename T>
+struct LeakDetectorImpl {
+ explicit LeakDetectorImpl(const char* const name = "") :
+ Cache(0), Name(name) { }
+
+ void clear() {
+ Cache = 0;
+ Ts.clear();
+ }
+
+ void setName(const char* n) {
+ Name = n;
+ }
+
+ // Because the most common usage pattern, by far, is to add a
+ // garbage object, then remove it immediately, we optimize this
+ // case. When an object is added, it is not added to the set
+ // immediately, it is added to the CachedValue Value. If it is
+ // immediately removed, no set search need be performed.
+ void addGarbage(const T* o) {
+ if (Cache) {
+ assert(Ts.count(Cache) == 0 && "Object already in set!");
+ Ts.insert(Cache);
+ }
+ Cache = o;
+ }
+
+ void removeGarbage(const T* o) {
+ if (o == Cache)
+ Cache = 0; // Cache hit
+ else
+ Ts.erase(o);
+ }
+
+ bool hasGarbage(const std::string& Message) {
+ addGarbage(0); // Flush the Cache
+
+ assert(Cache == 0 && "No value should be cached anymore!");
+
+ if (!Ts.empty()) {
+ errs() << "Leaked " << Name << " objects found: " << Message << ":\n";
+ for (typename SmallPtrSet<const T*, 8>::iterator I = Ts.begin(),
+ E = Ts.end(); I != E; ++I) {
+ errs() << '\t';
+ PrinterTrait<T>::print(*I);
+ errs() << '\n';
+ }
+ errs() << '\n';
+
+ return true;
+ }
+
+ return false;
+ }
+
+private:
+ SmallPtrSet<const T*, 8> Ts;
+ const T* Cache;
+ const char* Name;
+};
diff --git a/lib/VMCore/Mangler.cpp b/lib/VMCore/Mangler.cpp
index 1a68b89..33eb044 100644
--- a/lib/VMCore/Mangler.cpp
+++ b/lib/VMCore/Mangler.cpp
@@ -12,12 +12,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Support/Mangler.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/System/Atomic.h"
+#include "llvm/Function.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static char HexDigit(int V) {
@@ -32,13 +32,9 @@ static std::string MangleLetter(unsigned char C) {
/// makeNameProper - We don't want identifier names non-C-identifier characters
/// in them, so mangle them as appropriate.
///
-std::string Mangler::makeNameProper(const std::string &X, const char *Prefix,
- const char *PrivatePrefix) {
- if (X.empty()) return X; // Empty names are uniqued by the caller.
-
- // If PreserveAsmNames is set, names with asm identifiers are not modified.
- if (PreserveAsmNames && X[0] == 1)
- return X;
+std::string Mangler::makeNameProper(const std::string &X,
+ ManglerPrefixTy PrefixTy) {
+ assert(!X.empty() && "Cannot mangle empty strings");
if (!UseQuotes) {
std::string Result;
@@ -51,8 +47,9 @@ std::string Mangler::makeNameProper(const std::string &X, const char *Prefix,
++I; // Skip over the marker.
}
- // Mangle the first letter specially, don't allow numbers.
- if (*I >= '0' && *I <= '9')
+ // Mangle the first letter specially, don't allow numbers unless the target
+ // explicitly allows them.
+ if (!SymbolsCanStartWithDigit && *I >= '0' && *I <= '9')
Result += MangleLetter(*I++);
for (std::string::const_iterator E = X.end(); I != E; ++I) {
@@ -63,11 +60,14 @@ std::string Mangler::makeNameProper(const std::string &X, const char *Prefix,
}
if (NeedPrefix) {
- if (Prefix)
- Result = Prefix + Result;
- if (PrivatePrefix)
+ Result = Prefix + Result;
+
+ if (PrefixTy == Mangler::Private)
Result = PrivatePrefix + Result;
+ else if (PrefixTy == Mangler::LinkerPrivate)
+ Result = LinkerPrivatePrefix + Result;
}
+
return Result;
}
@@ -95,17 +95,21 @@ std::string Mangler::makeNameProper(const std::string &X, const char *Prefix,
// In the common case, we don't need quotes. Handle this quickly.
if (!NeedQuotes) {
- if (NeedPrefix) {
- if (Prefix)
- Result = Prefix + X;
- else
- Result = X;
- if (PrivatePrefix)
- Result = PrivatePrefix + Result;
- return Result;
- } else
- return X.substr(1);
+ if (!NeedPrefix)
+ return X.substr(1); // Strip off the \001.
+
+ Result = Prefix + X;
+
+ if (PrefixTy == Mangler::Private)
+ Result = PrivatePrefix + Result;
+ else if (PrefixTy == Mangler::LinkerPrivate)
+ Result = LinkerPrivatePrefix + Result;
+
+ return Result;
}
+
+ if (NeedPrefix)
+ Result = X.substr(0, I-X.begin());
// Otherwise, construct the string the expensive way.
for (std::string::const_iterator E = X.end(); I != E; ++I) {
@@ -118,72 +122,93 @@ std::string Mangler::makeNameProper(const std::string &X, const char *Prefix,
}
if (NeedPrefix) {
- if (Prefix)
- Result = Prefix + X;
- else
- Result = X;
- if (PrivatePrefix)
+ Result = Prefix + Result;
+
+ if (PrefixTy == Mangler::Private)
Result = PrivatePrefix + Result;
+ else if (PrefixTy == Mangler::LinkerPrivate)
+ Result = LinkerPrivatePrefix + Result;
}
+
Result = '"' + Result + '"';
return Result;
}
-/// getTypeID - Return a unique ID for the specified LLVM type.
+/// getMangledName - Returns the mangled name of V, an LLVM Value,
+/// in the current module. If 'Suffix' is specified, the name ends with the
+/// specified suffix. If 'ForcePrivate' is specified, the label is specified
+/// to have a private label prefix.
///
-unsigned Mangler::getTypeID(const Type *Ty) {
- unsigned &E = TypeMap[Ty];
- if (E == 0) E = ++TypeCounter;
- return E;
-}
+std::string Mangler::getMangledName(const GlobalValue *GV, const char *Suffix,
+ bool ForcePrivate) {
+ assert((!isa<Function>(GV) || !cast<Function>(GV)->isIntrinsic()) &&
+ "Intrinsic functions cannot be mangled by Mangler");
-std::string Mangler::getValueName(const Value *V) {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return getValueName(GV);
+ ManglerPrefixTy PrefixTy =
+ (GV->hasPrivateLinkage() || ForcePrivate) ? Mangler::Private :
+ GV->hasLinkerPrivateLinkage() ? Mangler::LinkerPrivate : Mangler::Default;
+
+ if (GV->hasName())
+ return makeNameProper(GV->getNameStr() + Suffix, PrefixTy);
- std::string &Name = Memo[V];
- if (!Name.empty())
- return Name; // Return the already-computed name for V.
+ // Get the ID for the global, assigning a new one if we haven't got one
+ // already.
+ unsigned &ID = AnonGlobalIDs[GV];
+ if (ID == 0) ID = NextAnonGlobalID++;
- // Always mangle local names.
- Name = "ltmp_" + utostr(Count++) + "_" + utostr(getTypeID(V->getType()));
- return Name;
+ // Must mangle the global into a unique ID.
+ return makeNameProper("__unnamed_" + utostr(ID) + Suffix, PrefixTy);
}
-std::string Mangler::getValueName(const GlobalValue *GV, const char * Suffix) {
- // Check to see whether we've already named V.
- std::string &Name = Memo[GV];
- if (!Name.empty())
- return Name; // Return the already-computed name for V.
-
- // Name mangling occurs as follows:
- // - If V is an intrinsic function, do not change name at all
- // - Otherwise, mangling occurs if global collides with existing name.
- if (isa<Function>(GV) && cast<Function>(GV)->isIntrinsic()) {
- Name = GV->getNameStart(); // Is an intrinsic function
- } else if (!GV->hasName()) {
- // Must mangle the global into a unique ID.
- unsigned TypeUniqueID = getTypeID(GV->getType());
- static uint32_t GlobalID = 0;
-
- unsigned OldID = GlobalID;
- sys::AtomicIncrement(&GlobalID);
+/// getNameWithPrefix - Fill OutName with the name of the appropriate prefix
+/// and the specified global variable's name. If the global variable doesn't
+/// have a name, this fills in a unique name for the global.
+void Mangler::getNameWithPrefix(SmallVectorImpl<char> &OutName,
+ const GlobalValue *GV,
+ bool isImplicitlyPrivate) {
+
+ // If the global is anonymous or not led with \1, then add the appropriate
+ // prefix.
+ if (!GV->hasName() || GV->getName()[0] != '\1') {
+ if (GV->hasPrivateLinkage() || isImplicitlyPrivate)
+ OutName.append(PrivatePrefix, PrivatePrefix+strlen(PrivatePrefix));
+ else if (GV->hasLinkerPrivateLinkage())
+ OutName.append(LinkerPrivatePrefix,
+ LinkerPrivatePrefix+strlen(LinkerPrivatePrefix));;
+ OutName.append(Prefix, Prefix+strlen(Prefix));
+ }
+
+ // If the global has a name, just append it now.
+ if (GV->hasName()) {
+ StringRef Name = GV->getName();
- Name = "__unnamed_" + utostr(TypeUniqueID) + "_" + utostr(OldID);
- } else {
- if (GV->hasPrivateLinkage())
- Name = makeNameProper(GV->getName() + Suffix, Prefix, PrivatePrefix);
+ // Strip off the prefix marker if present.
+ if (Name[0] != '\1')
+ OutName.append(Name.begin(), Name.end());
else
- Name = makeNameProper(GV->getName() + Suffix, Prefix);
+ OutName.append(Name.begin()+1, Name.end());
+ return;
}
-
- return Name;
+
+ // If the global variable doesn't have a name, return a unique name for the
+ // global based on a numbering.
+
+ // Get the ID for the global, assigning a new one if we haven't got one
+ // already.
+ unsigned &ID = AnonGlobalIDs[GV];
+ if (ID == 0) ID = NextAnonGlobalID++;
+
+ // Must mangle the global into a unique ID.
+ raw_svector_ostream(OutName) << "__unnamed_" << ID;
}
-Mangler::Mangler(Module &M, const char *prefix, const char *privatePrefix)
- : Prefix(prefix), PrivatePrefix (privatePrefix), UseQuotes(false),
- PreserveAsmNames(false), Count(0), TypeCounter(0) {
+
+Mangler::Mangler(Module &M, const char *prefix, const char *privatePrefix,
+ const char *linkerPrivatePrefix)
+ : Prefix(prefix), PrivatePrefix(privatePrefix),
+ LinkerPrivatePrefix(linkerPrivatePrefix), UseQuotes(false),
+ SymbolsCanStartWithDigit(false), NextAnonGlobalID(1) {
std::fill(AcceptableChars, array_endof(AcceptableChars), 0);
// Letters and numbers are acceptable.
@@ -198,4 +223,5 @@ Mangler::Mangler(Module &M, const char *prefix, const char *privatePrefix)
markCharAcceptable('_');
markCharAcceptable('$');
markCharAcceptable('.');
+ markCharAcceptable('@');
}
diff --git a/lib/VMCore/Metadata.cpp b/lib/VMCore/Metadata.cpp
new file mode 100644
index 0000000..110c5e3
--- /dev/null
+++ b/lib/VMCore/Metadata.cpp
@@ -0,0 +1,433 @@
+//===-- Metadata.cpp - Implement Metadata classes -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Metadata classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LLVMContextImpl.h"
+#include "llvm/Metadata.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Instruction.h"
+#include "SymbolTableListTraitsImpl.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+//MetadataBase implementation
+//
+
+/// resizeOperands - Metadata keeps track of other metadata uses using
+/// OperandList. Resize this list to hold anticipated number of metadata
+/// operands.
+void MetadataBase::resizeOperands(unsigned NumOps) {
+ unsigned e = getNumOperands();
+ if (NumOps == 0) {
+ NumOps = e*2;
+ if (NumOps < 2) NumOps = 2;
+ } else if (NumOps > NumOperands) {
+ // No resize needed.
+ if (ReservedSpace >= NumOps) return;
+ } else if (NumOps == NumOperands) {
+ if (ReservedSpace == NumOps) return;
+ } else {
+ return;
+ }
+
+ ReservedSpace = NumOps;
+ Use *OldOps = OperandList;
+ Use *NewOps = allocHungoffUses(NumOps);
+ std::copy(OldOps, OldOps + e, NewOps);
+ OperandList = NewOps;
+ if (OldOps) Use::zap(OldOps, OldOps + e, true);
+}
+//===----------------------------------------------------------------------===//
+//MDString implementation
+//
+MDString *MDString::get(LLVMContext &Context, const StringRef &Str) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ StringMapEntry<MDString *> &Entry =
+ pImpl->MDStringCache.GetOrCreateValue(Str);
+ MDString *&S = Entry.getValue();
+ if (!S) S = new MDString(Context, Entry.getKeyData(),
+ Entry.getKeyLength());
+
+ return S;
+}
+
+//===----------------------------------------------------------------------===//
+//MDNode implementation
+//
+MDNode::MDNode(LLVMContext &C, Value*const* Vals, unsigned NumVals)
+ : MetadataBase(Type::getMetadataTy(C), Value::MDNodeVal) {
+ NumOperands = 0;
+ resizeOperands(NumVals);
+ for (unsigned i = 0; i != NumVals; ++i) {
+ // Only record metadata uses.
+ if (MetadataBase *MB = dyn_cast_or_null<MetadataBase>(Vals[i]))
+ OperandList[NumOperands++] = MB;
+ else if(Vals[i] &&
+ Vals[i]->getType()->getTypeID() == Type::MetadataTyID)
+ OperandList[NumOperands++] = Vals[i];
+ Node.push_back(ElementVH(Vals[i], this));
+ }
+}
+
+void MDNode::Profile(FoldingSetNodeID &ID) const {
+ for (const_elem_iterator I = elem_begin(), E = elem_end(); I != E; ++I)
+ ID.AddPointer(*I);
+}
+
+MDNode *MDNode::get(LLVMContext &Context, Value*const* Vals, unsigned NumVals) {
+ LLVMContextImpl *pImpl = Context.pImpl;
+ FoldingSetNodeID ID;
+ for (unsigned i = 0; i != NumVals; ++i)
+ ID.AddPointer(Vals[i]);
+
+ pImpl->ConstantsLock.reader_acquire();
+ void *InsertPoint;
+ MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
+ pImpl->ConstantsLock.reader_release();
+
+ if (!N) {
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
+ if (!N) {
+ // InsertPoint will have been set by the FindNodeOrInsertPos call.
+ N = new MDNode(Context, Vals, NumVals);
+ pImpl->MDNodeSet.InsertNode(N, InsertPoint);
+ }
+ }
+
+ return N;
+}
+
+/// dropAllReferences - Remove all uses and clear node vector.
+void MDNode::dropAllReferences() {
+ User::dropAllReferences();
+ Node.clear();
+}
+
+MDNode::~MDNode() {
+ {
+ LLVMContextImpl *pImpl = getType()->getContext().pImpl;
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ pImpl->MDNodeSet.RemoveNode(this);
+ }
+ dropAllReferences();
+}
+
+// Replace value from this node's element list.
+void MDNode::replaceElement(Value *From, Value *To) {
+ if (From == To || !getType())
+ return;
+ LLVMContext &Context = getType()->getContext();
+ LLVMContextImpl *pImpl = Context.pImpl;
+
+ // Find value. This is a linear search, do something if it consumes
+ // lot of time. It is possible that to have multiple instances of
+ // From in this MDNode's element list.
+ SmallVector<unsigned, 4> Indexes;
+ unsigned Index = 0;
+ for (SmallVector<ElementVH, 4>::iterator I = Node.begin(),
+ E = Node.end(); I != E; ++I, ++Index) {
+ Value *V = *I;
+ if (V && V == From)
+ Indexes.push_back(Index);
+ }
+
+ if (Indexes.empty())
+ return;
+
+ // Remove "this" from the context map.
+ {
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ pImpl->MDNodeSet.RemoveNode(this);
+ }
+
+ // MDNode only lists metadata elements in operand list, because MDNode
+ // used by MDNode is considered a valid use. However on the side, MDNode
+ // using a non-metadata value is not considered a "use" of non-metadata
+ // value.
+ SmallVector<unsigned, 4> OpIndexes;
+ unsigned OpIndex = 0;
+ for (User::op_iterator OI = op_begin(), OE = op_end();
+ OI != OE; ++OI, OpIndex++) {
+ if (*OI == From)
+ OpIndexes.push_back(OpIndex);
+ }
+ if (MetadataBase *MDTo = dyn_cast_or_null<MetadataBase>(To)) {
+ for (SmallVector<unsigned, 4>::iterator OI = OpIndexes.begin(),
+ OE = OpIndexes.end(); OI != OE; ++OI)
+ setOperand(*OI, MDTo);
+ } else {
+ for (SmallVector<unsigned, 4>::iterator OI = OpIndexes.begin(),
+ OE = OpIndexes.end(); OI != OE; ++OI)
+ setOperand(*OI, 0);
+ }
+
+ // Replace From element(s) in place.
+ for (SmallVector<unsigned, 4>::iterator I = Indexes.begin(), E = Indexes.end();
+ I != E; ++I) {
+ unsigned Index = *I;
+ Node[Index] = ElementVH(To, this);
+ }
+
+ // Insert updated "this" into the context's folding node set.
+ // If a node with same element list already exist then before inserting
+ // updated "this" into the folding node set, replace all uses of existing
+ // node with updated "this" node.
+ FoldingSetNodeID ID;
+ Profile(ID);
+ pImpl->ConstantsLock.reader_acquire();
+ void *InsertPoint;
+ MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
+ pImpl->ConstantsLock.reader_release();
+
+ if (N) {
+ N->replaceAllUsesWith(this);
+ delete N;
+ N = 0;
+ }
+
+ {
+ sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
+ N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
+ if (!N) {
+ // InsertPoint will have been set by the FindNodeOrInsertPos call.
+ N = this;
+ pImpl->MDNodeSet.InsertNode(N, InsertPoint);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+//NamedMDNode implementation
+//
+NamedMDNode::NamedMDNode(LLVMContext &C, const Twine &N,
+ MetadataBase*const* MDs,
+ unsigned NumMDs, Module *ParentModule)
+ : MetadataBase(Type::getMetadataTy(C), Value::NamedMDNodeVal), Parent(0) {
+ setName(N);
+ NumOperands = 0;
+ resizeOperands(NumMDs);
+
+ for (unsigned i = 0; i != NumMDs; ++i) {
+ if (MDs[i])
+ OperandList[NumOperands++] = MDs[i];
+ Node.push_back(WeakMetadataVH(MDs[i]));
+ }
+ if (ParentModule)
+ ParentModule->getNamedMDList().push_back(this);
+}
+
+NamedMDNode *NamedMDNode::Create(const NamedMDNode *NMD, Module *M) {
+ assert (NMD && "Invalid source NamedMDNode!");
+ SmallVector<MetadataBase *, 4> Elems;
+ for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i)
+ Elems.push_back(NMD->getElement(i));
+ return new NamedMDNode(NMD->getContext(), NMD->getName().data(),
+ Elems.data(), Elems.size(), M);
+}
+
+/// eraseFromParent - Drop all references and remove the node from parent
+/// module.
+void NamedMDNode::eraseFromParent() {
+ getParent()->getNamedMDList().erase(this);
+}
+
+/// dropAllReferences - Remove all uses and clear node vector.
+void NamedMDNode::dropAllReferences() {
+ User::dropAllReferences();
+ Node.clear();
+}
+
+NamedMDNode::~NamedMDNode() {
+ dropAllReferences();
+}
+
+//===----------------------------------------------------------------------===//
+//Metadata implementation
+//
+
+/// RegisterMDKind - Register a new metadata kind and return its ID.
+/// A metadata kind can be registered only once.
+unsigned MetadataContext::RegisterMDKind(const char *Name) {
+ assert (validName(Name) && "Invalid custome metadata name!");
+ unsigned Count = MDHandlerNames.size();
+ assert(MDHandlerNames.find(Name) == MDHandlerNames.end()
+ && "Already registered MDKind!");
+ MDHandlerNames[Name] = Count + 1;
+ return Count + 1;
+}
+
+/// validName - Return true if Name is a valid custom metadata handler name.
+bool MetadataContext::validName(const char *Name) {
+ if (!Name)
+ return false;
+
+ if (!isalpha(*Name))
+ return false;
+
+ unsigned Length = strlen(Name);
+ unsigned Count = 1;
+ ++Name;
+ while (Name &&
+ (isalnum(*Name) || *Name == '_' || *Name == '-' || *Name == '.')) {
+ ++Name;
+ ++Count;
+ }
+ if (Length != Count)
+ return false;
+ return true;
+}
+
+/// getMDKind - Return metadata kind. If the requested metadata kind
+/// is not registered then return 0.
+unsigned MetadataContext::getMDKind(const char *Name) {
+ assert (validName(Name) && "Invalid custome metadata name!");
+ StringMap<unsigned>::iterator I = MDHandlerNames.find(Name);
+ if (I == MDHandlerNames.end())
+ return 0;
+
+ return I->getValue();
+}
+
+/// addMD - Attach the metadata of given kind with an Instruction.
+void MetadataContext::addMD(unsigned MDKind, MDNode *Node, Instruction *Inst) {
+ assert (Node && "Unable to add custome metadata");
+ Inst->HasMetadata = true;
+ MDStoreTy::iterator I = MetadataStore.find(Inst);
+ if (I == MetadataStore.end()) {
+ MDMapTy Info;
+ Info.push_back(std::make_pair(MDKind, Node));
+ MetadataStore.insert(std::make_pair(Inst, Info));
+ return;
+ }
+
+ MDMapTy &Info = I->second;
+ // If there is an entry for this MDKind then replace it.
+ for (unsigned i = 0, e = Info.size(); i != e; ++i) {
+ MDPairTy &P = Info[i];
+ if (P.first == MDKind) {
+ Info[i] = std::make_pair(MDKind, Node);
+ return;
+ }
+ }
+
+ // Otherwise add a new entry.
+ Info.push_back(std::make_pair(MDKind, Node));
+ return;
+}
+
+/// removeMD - Remove metadata of given kind attached with an instuction.
+void MetadataContext::removeMD(unsigned Kind, Instruction *Inst) {
+ MDStoreTy::iterator I = MetadataStore.find(Inst);
+ if (I == MetadataStore.end())
+ return;
+
+ MDMapTy &Info = I->second;
+ for (MDMapTy::iterator MI = Info.begin(), ME = Info.end(); MI != ME; ++MI) {
+ MDPairTy &P = *MI;
+ if (P.first == Kind) {
+ Info.erase(MI);
+ return;
+ }
+ }
+
+ return;
+}
+
+/// removeMDs - Remove all metadata attached with an instruction.
+void MetadataContext::removeMDs(const Instruction *Inst) {
+ // Find Metadata handles for this instruction.
+ MDStoreTy::iterator I = MetadataStore.find(Inst);
+ assert (I != MetadataStore.end() && "Invalid custom metadata info!");
+ MDMapTy &Info = I->second;
+
+ // FIXME : Give all metadata handlers a chance to adjust.
+
+ // Remove the entries for this instruction.
+ Info.clear();
+ MetadataStore.erase(I);
+}
+
+/// copyMD - If metadata is attached with Instruction In1 then attach
+/// the same metadata to In2.
+void MetadataContext::copyMD(Instruction *In1, Instruction *In2) {
+ assert (In1 && In2 && "Invalid instruction!");
+ MDStoreTy::iterator I = MetadataStore.find(In1);
+ if (I == MetadataStore.end())
+ return;
+
+ MDMapTy &In1Info = I->second;
+ MDMapTy In2Info;
+ for (MDMapTy::iterator I = In1Info.begin(), E = In1Info.end(); I != E; ++I)
+ if (MDNode *MD = dyn_cast_or_null<MDNode>(I->second))
+ addMD(I->first, MD, In2);
+}
+
+/// getMD - Get the metadata of given kind attached with an Instruction.
+/// If the metadata is not found then return 0.
+MDNode *MetadataContext::getMD(unsigned MDKind, const Instruction *Inst) {
+ MDStoreTy::iterator I = MetadataStore.find(Inst);
+ if (I == MetadataStore.end())
+ return NULL;
+
+ MDMapTy &Info = I->second;
+ for (MDMapTy::iterator I = Info.begin(), E = Info.end(); I != E; ++I)
+ if (I->first == MDKind)
+ return dyn_cast_or_null<MDNode>(I->second);
+ return NULL;
+}
+
+/// getMDs - Get the metadata attached with an Instruction.
+const MetadataContext::MDMapTy *MetadataContext::getMDs(const Instruction *Inst) {
+ MDStoreTy::iterator I = MetadataStore.find(Inst);
+ if (I == MetadataStore.end())
+ return NULL;
+
+ return &(I->second);
+}
+
+/// getHandlerNames - Get handler names. This is used by bitcode
+/// writer.
+const StringMap<unsigned> *MetadataContext::getHandlerNames() {
+ return &MDHandlerNames;
+}
+
+/// ValueIsCloned - This handler is used to update metadata store
+/// when In1 is cloned to create In2.
+void MetadataContext::ValueIsCloned(const Instruction *In1, Instruction *In2) {
+ // Find Metadata handles for In1.
+ MDStoreTy::iterator I = MetadataStore.find(In1);
+ assert (I != MetadataStore.end() && "Invalid custom metadata info!");
+
+ // FIXME : Give all metadata handlers a chance to adjust.
+
+ MDMapTy &In1Info = I->second;
+ MDMapTy In2Info;
+ for (MDMapTy::iterator I = In1Info.begin(), E = In1Info.end(); I != E; ++I)
+ if (MDNode *MD = dyn_cast_or_null<MDNode>(I->second))
+ addMD(I->first, MD, In2);
+}
+
+/// ValueIsRAUWd - This handler is used when V1's all uses are replaced by
+/// V2.
+void MetadataContext::ValueIsRAUWd(Value *V1, Value *V2) {
+ Instruction *I1 = dyn_cast<Instruction>(V1);
+ Instruction *I2 = dyn_cast<Instruction>(V2);
+ if (!I1 || !I2)
+ return;
+
+ // FIXME : Give custom handlers a chance to override this.
+ ValueIsCloned(I1, I2);
+}
+
diff --git a/lib/VMCore/Module.cpp b/lib/VMCore/Module.cpp
index f057e81..add2449 100644
--- a/lib/VMCore/Module.cpp
+++ b/lib/VMCore/Module.cpp
@@ -31,14 +31,15 @@ using namespace llvm;
//
GlobalVariable *ilist_traits<GlobalVariable>::createSentinel() {
- GlobalVariable *Ret = new GlobalVariable(Type::Int32Ty, false,
- GlobalValue::ExternalLinkage);
+ GlobalVariable *Ret = new GlobalVariable(getGlobalContext(),
+ Type::getInt32Ty(getGlobalContext()),
+ false, GlobalValue::ExternalLinkage);
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(Ret);
return Ret;
}
GlobalAlias *ilist_traits<GlobalAlias>::createSentinel() {
- GlobalAlias *Ret = new GlobalAlias(Type::Int32Ty,
+ GlobalAlias *Ret = new GlobalAlias(Type::getInt32Ty(getGlobalContext()),
GlobalValue::ExternalLinkage);
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(Ret);
@@ -55,7 +56,7 @@ template class SymbolTableListTraits<GlobalAlias, Module>;
// Primitive Module methods.
//
-Module::Module(const std::string &MID, LLVMContext& C)
+Module::Module(const StringRef &MID, LLVMContext& C)
: Context(C), ModuleID(MID), DataLayout("") {
ValSymTab = new ValueSymbolTable();
TypeSymTab = new TypeSymbolTable();
@@ -67,6 +68,7 @@ Module::~Module() {
FunctionList.clear();
AliasList.clear();
LibraryList.clear();
+ NamedMDList.clear();
delete ValSymTab;
delete TypeSymTab;
}
@@ -113,15 +115,10 @@ Module::PointerSize Module::getPointerSize() const {
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
-GlobalValue *Module::getNamedValue(const std::string &Name) const {
+GlobalValue *Module::getNamedValue(const StringRef &Name) const {
return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}
-GlobalValue *Module::getNamedValue(const char *Name) const {
- llvm::Value *V = getValueSymbolTable().lookup(Name, Name+strlen(Name));
- return cast_or_null<GlobalValue>(V);
-}
-
//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//
@@ -131,7 +128,7 @@ GlobalValue *Module::getNamedValue(const char *Name) const {
// it. This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
-Constant *Module::getOrInsertFunction(const std::string &Name,
+Constant *Module::getOrInsertFunction(const StringRef &Name,
const FunctionType *Ty,
AttrListPtr AttributeList) {
// See if we have a definition for the specified function already.
@@ -151,7 +148,7 @@ Constant *Module::getOrInsertFunction(const std::string &Name,
F->setName("");
// Retry, now there won't be a conflict.
Constant *NewF = getOrInsertFunction(Name, Ty);
- F->setName(&Name[0], Name.size());
+ F->setName(Name);
return NewF;
}
@@ -164,7 +161,7 @@ Constant *Module::getOrInsertFunction(const std::string &Name,
return F;
}
-Constant *Module::getOrInsertTargetIntrinsic(const std::string &Name,
+Constant *Module::getOrInsertTargetIntrinsic(const StringRef &Name,
const FunctionType *Ty,
AttrListPtr AttributeList) {
// See if we have a definition for the specified function already.
@@ -181,7 +178,7 @@ Constant *Module::getOrInsertTargetIntrinsic(const std::string &Name,
return F;
}
-Constant *Module::getOrInsertFunction(const std::string &Name,
+Constant *Module::getOrInsertFunction(const StringRef &Name,
const FunctionType *Ty) {
AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0);
return getOrInsertFunction(Name, Ty, AttributeList);
@@ -192,7 +189,7 @@ Constant *Module::getOrInsertFunction(const std::string &Name,
// This version of the method takes a null terminated list of function
// arguments, which makes it easier for clients to use.
//
-Constant *Module::getOrInsertFunction(const std::string &Name,
+Constant *Module::getOrInsertFunction(const StringRef &Name,
AttrListPtr AttributeList,
const Type *RetTy, ...) {
va_list Args;
@@ -206,11 +203,12 @@ Constant *Module::getOrInsertFunction(const std::string &Name,
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
- return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false),
+ return getOrInsertFunction(Name,
+ FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
-Constant *Module::getOrInsertFunction(const std::string &Name,
+Constant *Module::getOrInsertFunction(const StringRef &Name,
const Type *RetTy, ...) {
va_list Args;
va_start(Args, RetTy);
@@ -223,18 +221,15 @@ Constant *Module::getOrInsertFunction(const std::string &Name,
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
- return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false),
+ return getOrInsertFunction(Name,
+ FunctionType::get(RetTy, ArgTys, false),
AttrListPtr::get((AttributeWithIndex *)0, 0));
}
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
-Function *Module::getFunction(const std::string &Name) const {
- return dyn_cast_or_null<Function>(getNamedValue(Name));
-}
-
-Function *Module::getFunction(const char *Name) const {
+Function *Module::getFunction(const StringRef &Name) const {
return dyn_cast_or_null<Function>(getNamedValue(Name));
}
@@ -249,7 +244,7 @@ Function *Module::getFunction(const char *Name) const {
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
-GlobalVariable *Module::getGlobalVariable(const std::string &Name,
+GlobalVariable *Module::getGlobalVariable(const StringRef &Name,
bool AllowLocal) const {
if (GlobalVariable *Result =
dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
@@ -264,15 +259,15 @@ GlobalVariable *Module::getGlobalVariable(const std::string &Name,
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct delclaration, return the
/// existing global.
-Constant *Module::getOrInsertGlobal(const std::string &Name, const Type *Ty) {
+Constant *Module::getOrInsertGlobal(const StringRef &Name, const Type *Ty) {
// See if we have a definition for the specified global already.
GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
if (GV == 0) {
// Nope, add it
GlobalVariable *New =
- new GlobalVariable(Ty, false, GlobalVariable::ExternalLinkage, 0, Name);
- GlobalList.push_back(New);
- return New; // Return the new declaration.
+ new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
+ 0, Name);
+ return New; // Return the new declaration.
}
// If the variable exists but has the wrong type, return a bitcast to the
@@ -291,10 +286,28 @@ Constant *Module::getOrInsertGlobal(const std::string &Name, const Type *Ty) {
// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
-GlobalAlias *Module::getNamedAlias(const std::string &Name) const {
+GlobalAlias *Module::getNamedAlias(const StringRef &Name) const {
return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}
+/// getNamedMetadata - Return the first NamedMDNode in the module with the
+/// specified name. This method returns null if a NamedMDNode with the
+//// specified name is not found.
+NamedMDNode *Module::getNamedMetadata(const StringRef &Name) const {
+ return dyn_cast_or_null<NamedMDNode>(getValueSymbolTable().lookup(Name));
+}
+
+/// getOrInsertNamedMetadata - Return the first named MDNode in the module
+/// with the specified name. This method returns a new NamedMDNode if a
+/// NamedMDNode with the specified name is not found.
+NamedMDNode *Module::getOrInsertNamedMetadata(const StringRef &Name) {
+ NamedMDNode *NMD =
+ dyn_cast_or_null<NamedMDNode>(getValueSymbolTable().lookup(Name));
+ if (!NMD)
+ NMD = NamedMDNode::Create(getContext(), Name, NULL, 0, this);
+ return NMD;
+}
+
//===----------------------------------------------------------------------===//
// Methods for easy access to the types in the module.
//
@@ -304,7 +317,7 @@ GlobalAlias *Module::getNamedAlias(const std::string &Name) const {
// there is already an entry for this name, true is returned and the symbol
// table is not modified.
//
-bool Module::addTypeName(const std::string &Name, const Type *Ty) {
+bool Module::addTypeName(const StringRef &Name, const Type *Ty) {
TypeSymbolTable &ST = getTypeSymbolTable();
if (ST.lookup(Name)) return true; // Already in symtab...
@@ -318,7 +331,7 @@ bool Module::addTypeName(const std::string &Name, const Type *Ty) {
/// getTypeByName - Return the type with the specified name in this module, or
/// null if there is none by that name.
-const Type *Module::getTypeByName(const std::string &Name) const {
+const Type *Module::getTypeByName(const StringRef &Name) const {
const TypeSymbolTable &ST = getTypeSymbolTable();
return cast_or_null<Type>(ST.lookup(Name));
}
@@ -364,14 +377,14 @@ void Module::dropAllReferences() {
I->dropAllReferences();
}
-void Module::addLibrary(const std::string& Lib) {
+void Module::addLibrary(const StringRef& Lib) {
for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I)
if (*I == Lib)
return;
LibraryList.push_back(Lib);
}
-void Module::removeLibrary(const std::string& Lib) {
+void Module::removeLibrary(const StringRef& Lib) {
LibraryListType::iterator I = LibraryList.begin();
LibraryListType::iterator E = LibraryList.end();
for (;I != E; ++I)
diff --git a/lib/VMCore/Pass.cpp b/lib/VMCore/Pass.cpp
index b037994..a2831d3 100644
--- a/lib/VMCore/Pass.cpp
+++ b/lib/VMCore/Pass.cpp
@@ -19,6 +19,7 @@
#include "llvm/ModuleProvider.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Atomic.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/Threading.h"
@@ -45,7 +46,7 @@ bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const {
// dumpPassStructure - Implement the -debug-passes=Structure option
void Pass::dumpPassStructure(unsigned Offset) {
- cerr << std::string(Offset*2, ' ') << getPassName() << "\n";
+ errs().indent(Offset*2) << getPassName() << "\n";
}
/// getPassName - Return a nice clean name for a pass. This usually
@@ -62,13 +63,13 @@ const char *Pass::getPassName() const {
// to print out the contents of an analysis. Otherwise it is not necessary to
// implement this method.
//
-void Pass::print(std::ostream &O,const Module*) const {
+void Pass::print(raw_ostream &O,const Module*) const {
O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n";
}
// dump - call print(cerr);
void Pass::dump() const {
- print(*cerr.stream(), 0);
+ print(errs(), 0);
}
//===----------------------------------------------------------------------===//
@@ -128,12 +129,13 @@ class PassRegistrar {
/// pass.
typedef std::map<intptr_t, const PassInfo*> MapType;
MapType PassInfoMap;
+
+ typedef StringMap<const PassInfo*> StringMapType;
+ StringMapType PassInfoStringMap;
/// AnalysisGroupInfo - Keep track of information for each analysis group.
struct AnalysisGroupInfo {
- const PassInfo *DefaultImpl;
std::set<const PassInfo *> Implementations;
- AnalysisGroupInfo() : DefaultImpl(0) {}
};
/// AnalysisGroupInfoMap - Information for each analysis group.
@@ -146,10 +148,16 @@ public:
return I != PassInfoMap.end() ? I->second : 0;
}
+ const PassInfo *GetPassInfo(const StringRef &Arg) const {
+ StringMapType::const_iterator I = PassInfoStringMap.find(Arg);
+ return I != PassInfoStringMap.end() ? I->second : 0;
+ }
+
void RegisterPass(const PassInfo &PI) {
bool Inserted =
PassInfoMap.insert(std::make_pair(PI.getTypeInfo(),&PI)).second;
assert(Inserted && "Pass registered multiple times!"); Inserted=Inserted;
+ PassInfoStringMap[PI.getPassArgument()] = &PI;
}
void UnregisterPass(const PassInfo &PI) {
@@ -158,6 +166,7 @@ public:
// Remove pass from the map.
PassInfoMap.erase(I);
+ PassInfoStringMap.erase(PI.getPassArgument());
}
void EnumerateWith(PassRegistrationListener *L) {
@@ -176,11 +185,10 @@ public:
"Cannot add a pass to the same analysis group more than once!");
AGI.Implementations.insert(ImplementationInfo);
if (isDefault) {
- assert(AGI.DefaultImpl == 0 && InterfaceInfo->getNormalCtor() == 0 &&
+ assert(InterfaceInfo->getNormalCtor() == 0 &&
"Default implementation for analysis group already specified!");
assert(ImplementationInfo->getNormalCtor() &&
"Cannot specify pass as default if it does not have a default ctor");
- AGI.DefaultImpl = ImplementationInfo;
InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor());
}
}
@@ -229,11 +237,15 @@ const PassInfo *Pass::lookupPassInfo(intptr_t TI) {
return getPassRegistrar()->GetPassInfo(TI);
}
+const PassInfo *Pass::lookupPassInfo(const StringRef &Arg) {
+ return getPassRegistrar()->GetPassInfo(Arg);
+}
+
void PassInfo::registerPass() {
getPassRegistrar()->RegisterPass(*this);
// Notify any listeners.
- sys::SmartScopedLock<true> Lock(&ListenersLock);
+ sys::SmartScopedLock<true> Lock(ListenersLock);
if (Listeners)
for (std::vector<PassRegistrationListener*>::iterator
I = Listeners->begin(), E = Listeners->end(); I != E; ++I)
@@ -252,10 +264,10 @@ void PassInfo::unregisterPass() {
//
RegisterAGBase::RegisterAGBase(const char *Name, intptr_t InterfaceID,
intptr_t PassID, bool isDefault)
- : PassInfo(Name, InterfaceID),
- ImplementationInfo(0), isDefaultImplementation(isDefault) {
+ : PassInfo(Name, InterfaceID) {
- InterfaceInfo = const_cast<PassInfo*>(Pass::lookupPassInfo(InterfaceID));
+ PassInfo *InterfaceInfo =
+ const_cast<PassInfo*>(Pass::lookupPassInfo(InterfaceID));
if (InterfaceInfo == 0) {
// First reference to Interface, register it now.
registerPass();
@@ -265,7 +277,7 @@ RegisterAGBase::RegisterAGBase(const char *Name, intptr_t InterfaceID,
"Trying to join an analysis group that is a normal pass!");
if (PassID) {
- ImplementationInfo = Pass::lookupPassInfo(PassID);
+ const PassInfo *ImplementationInfo = Pass::lookupPassInfo(PassID);
assert(ImplementationInfo &&
"Must register pass before adding to AnalysisGroup!");
@@ -286,14 +298,14 @@ RegisterAGBase::RegisterAGBase(const char *Name, intptr_t InterfaceID,
// PassRegistrationListener ctor - Add the current object to the list of
// PassRegistrationListeners...
PassRegistrationListener::PassRegistrationListener() {
- sys::SmartScopedLock<true> Lock(&ListenersLock);
+ sys::SmartScopedLock<true> Lock(ListenersLock);
if (!Listeners) Listeners = new std::vector<PassRegistrationListener*>();
Listeners->push_back(this);
}
// dtor - Remove object from list of listeners...
PassRegistrationListener::~PassRegistrationListener() {
- sys::SmartScopedLock<true> Lock(&ListenersLock);
+ sys::SmartScopedLock<true> Lock(ListenersLock);
std::vector<PassRegistrationListener*>::iterator I =
std::find(Listeners->begin(), Listeners->end(), this);
assert(Listeners && I != Listeners->end() &&
diff --git a/lib/VMCore/PassManager.cpp b/lib/VMCore/PassManager.cpp
index 46f1243..f10bc6f 100644
--- a/lib/VMCore/PassManager.cpp
+++ b/lib/VMCore/PassManager.cpp
@@ -13,16 +13,16 @@
#include "llvm/PassManagers.h"
+#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Timer.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/Threading.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm-c/Core.h"
#include <algorithm>
#include <cstdio>
@@ -45,16 +45,6 @@ enum PassDebugLevel {
None, Arguments, Structure, Executions, Details
};
-// Always verify dominfo if expensive checking is enabled.
-#ifdef XDEBUG
-bool VerifyDomInfo = true;
-#else
-bool VerifyDomInfo = false;
-#endif
-static cl::opt<bool,true>
-VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
- cl::desc("Verify dominator info (time consuming)"));
-
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
@@ -67,6 +57,15 @@ PassDebugging("debug-pass", cl::Hidden,
clEnumValEnd));
} // End of llvm namespace
+/// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions
+/// or higher is specified.
+bool PMDataManager::isPassDebuggingExecutionsOrMore() const {
+ return PassDebugging >= Executions;
+}
+
+
+
+
void PassManagerPrettyStackEntry::print(raw_ostream &OS) const {
if (V == 0 && M == 0)
OS << "Releasing pass '";
@@ -134,7 +133,7 @@ public:
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
- llvm::cerr << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
+ llvm::errs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
BP->dumpPassStructure(Offset + 1);
@@ -274,7 +273,7 @@ public:
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
- llvm::cerr << std::string(Offset*2, ' ') << "ModulePass Manager\n";
+ llvm::errs() << std::string(Offset*2, ' ') << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
@@ -388,25 +387,19 @@ public:
// null. It may be called multiple times.
static void createTheTimeInfo();
- void passStarted(Pass *P) {
+ /// passStarted - This method creates a timer for the given pass if it doesn't
+ /// already have one, and starts the timer.
+ Timer *passStarted(Pass *P) {
if (dynamic_cast<PMDataManager *>(P))
- return;
+ return 0;
- sys::SmartScopedLock<true> Lock(&*TimingInfoMutex);
+ sys::SmartScopedLock<true> Lock(*TimingInfoMutex);
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
if (I == TimingData.end())
I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
- I->second.startTimer();
- }
-
- void passEnded(Pass *P) {
- if (dynamic_cast<PMDataManager *>(P))
- return;
-
- sys::SmartScopedLock<true> Lock(&*TimingInfoMutex);
- std::map<Pass*, Timer>::iterator I = TimingData.find(P);
- assert(I != TimingData.end() && "passStarted/passEnded not nested right!");
- I->second.stopTimer();
+ Timer *T = &I->second;
+ T->startTimer();
+ return T;
}
};
@@ -603,11 +596,11 @@ void PMTopLevelManager::dumpArguments() const {
if (PassDebugging < Arguments)
return;
- cerr << "Pass Arguments: ";
+ errs() << "Pass Arguments: ";
for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
(*I)->dumpPassArguments();
- cerr << "\n";
+ errs() << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
@@ -700,47 +693,13 @@ void PMDataManager::verifyPreservedAnalysis(Pass *P) {
for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(),
E = PreservedSet.end(); I != E; ++I) {
AnalysisID AID = *I;
- if (Pass *AP = findAnalysisPass(AID, true))
- AP->verifyAnalysis();
- }
-}
-
-/// verifyDomInfo - Verify dominator information if it is available.
-void PMDataManager::verifyDomInfo(Pass &P, Function &F) {
- if (!VerifyDomInfo || !P.getResolver())
- return;
-
- DominatorTree *DT = P.getAnalysisIfAvailable<DominatorTree>();
- if (!DT)
- return;
+ if (Pass *AP = findAnalysisPass(AID, true)) {
- DominatorTree OtherDT;
- OtherDT.getBase().recalculate(F);
- if (DT->compare(OtherDT)) {
- cerr << "Dominator Information for " << F.getNameStart() << "\n";
- cerr << "Pass '" << P.getPassName() << "'\n";
- cerr << "----- Valid -----\n";
- OtherDT.dump();
- cerr << "----- Invalid -----\n";
- DT->dump();
- assert(0 && "Invalid dominator info");
- }
-
- DominanceFrontier *DF = P.getAnalysisIfAvailable<DominanceFrontier>();
- if (!DF)
- return;
-
- DominanceFrontier OtherDF;
- std::vector<BasicBlock*> DTRoots = DT->getRoots();
- OtherDF.calculate(*DT, DT->getNode(DTRoots[0]));
- if (DF->compare(OtherDF)) {
- cerr << "Dominator Information for " << F.getNameStart() << "\n";
- cerr << "Pass '" << P.getPassName() << "'\n";
- cerr << "----- Valid -----\n";
- OtherDF.dump();
- cerr << "----- Invalid -----\n";
- DF->dump();
- assert(0 && "Invalid dominator info");
+ Timer *T = 0;
+ if (TheTimeInfo) T = TheTimeInfo->passStarted(AP);
+ AP->verifyAnalysis();
+ if (T) T->stopTimer();
+ }
}
}
@@ -760,8 +719,8 @@ void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
- cerr << " -- '" << P->getPassName() << "' is not preserving '";
- cerr << S->getPassName() << "'\n";
+ errs() << " -- '" << P->getPassName() << "' is not preserving '";
+ errs() << S->getPassName() << "'\n";
}
AvailableAnalysis.erase(Info);
}
@@ -788,7 +747,7 @@ void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
}
/// Remove analysis passes that are not used any longer
-void PMDataManager::removeDeadPasses(Pass *P, const char *Msg,
+void PMDataManager::removeDeadPasses(Pass *P, const StringRef &Msg,
enum PassDebuggingString DBG_STR) {
SmallVector<Pass *, 12> DeadPasses;
@@ -800,40 +759,41 @@ void PMDataManager::removeDeadPasses(Pass *P, const char *Msg,
TPM->collectLastUses(DeadPasses, P);
if (PassDebugging >= Details && !DeadPasses.empty()) {
- cerr << " -*- '" << P->getPassName();
- cerr << "' is the last user of following pass instances.";
- cerr << " Free these instances\n";
+ errs() << " -*- '" << P->getPassName();
+ errs() << "' is the last user of following pass instances.";
+ errs() << " Free these instances\n";
}
for (SmallVector<Pass *, 12>::iterator I = DeadPasses.begin(),
- E = DeadPasses.end(); I != E; ++I) {
+ E = DeadPasses.end(); I != E; ++I)
+ freePass(*I, Msg, DBG_STR);
+}
- dumpPassInfo(*I, FREEING_MSG, DBG_STR, Msg);
+void PMDataManager::freePass(Pass *P, const StringRef &Msg,
+ enum PassDebuggingString DBG_STR) {
+ dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg);
- {
- // If the pass crashes releasing memory, remember this.
- PassManagerPrettyStackEntry X(*I);
-
- if (TheTimeInfo) TheTimeInfo->passStarted(*I);
- (*I)->releaseMemory();
- if (TheTimeInfo) TheTimeInfo->passEnded(*I);
- }
- if (const PassInfo *PI = (*I)->getPassInfo()) {
- std::map<AnalysisID, Pass*>::iterator Pos =
- AvailableAnalysis.find(PI);
+ {
+ // If the pass crashes releasing memory, remember this.
+ PassManagerPrettyStackEntry X(P);
+
+ Timer *T = StartPassTimer(P);
+ P->releaseMemory();
+ StopPassTimer(P, T);
+ }
- // It is possible that pass is already removed from the AvailableAnalysis
- if (Pos != AvailableAnalysis.end())
- AvailableAnalysis.erase(Pos);
+ if (const PassInfo *PI = P->getPassInfo()) {
+ // Remove the pass itself (if it is not already removed).
+ AvailableAnalysis.erase(PI);
- // Remove all interfaces this pass implements, for which it is also
- // listed as the available implementation.
- const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
- for (unsigned i = 0, e = II.size(); i != e; ++i) {
- Pos = AvailableAnalysis.find(II[i]);
- if (Pos != AvailableAnalysis.end() && Pos->second == *I)
- AvailableAnalysis.erase(Pos);
- }
+ // Remove all interfaces this pass implements, for which it is also
+ // listed as the available implementation.
+ const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
+ for (unsigned i = 0, e = II.size(); i != e; ++i) {
+ std::map<AnalysisID, Pass*>::iterator Pos =
+ AvailableAnalysis.find(II[i]);
+ if (Pos != AvailableAnalysis.end() && Pos->second == P)
+ AvailableAnalysis.erase(Pos);
}
}
}
@@ -882,7 +842,7 @@ void PMDataManager::add(Pass *P, bool ProcessAnalysis) {
// Keep track of higher level analysis used by this manager.
HigherLevelAnalysis.push_back(PRequired);
} else
- assert(0 && "Unable to accomodate Required Pass");
+ llvm_unreachable("Unable to accomodate Required Pass");
}
// Set P as P's last user until someone starts using P.
@@ -994,7 +954,7 @@ void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
for (SmallVector<Pass *, 12>::iterator I = LUses.begin(),
E = LUses.end(); I != E; ++I) {
- llvm::cerr << "--" << std::string(Offset*2, ' ');
+ llvm::errs() << "--" << std::string(Offset*2, ' ');
(*I)->dumpPassStructure(0);
}
}
@@ -1007,44 +967,44 @@ void PMDataManager::dumpPassArguments() const {
else
if (const PassInfo *PI = (*I)->getPassInfo())
if (!PI->isAnalysisGroup())
- cerr << " -" << PI->getPassArgument();
+ errs() << " -" << PI->getPassArgument();
}
}
void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
enum PassDebuggingString S2,
- const char *Msg) {
+ const StringRef &Msg) {
if (PassDebugging < Executions)
return;
- cerr << (void*)this << std::string(getDepth()*2+1, ' ');
+ errs() << (void*)this << std::string(getDepth()*2+1, ' ');
switch (S1) {
case EXECUTION_MSG:
- cerr << "Executing Pass '" << P->getPassName();
+ errs() << "Executing Pass '" << P->getPassName();
break;
case MODIFICATION_MSG:
- cerr << "Made Modification '" << P->getPassName();
+ errs() << "Made Modification '" << P->getPassName();
break;
case FREEING_MSG:
- cerr << " Freeing Pass '" << P->getPassName();
+ errs() << " Freeing Pass '" << P->getPassName();
break;
default:
break;
}
switch (S2) {
case ON_BASICBLOCK_MSG:
- cerr << "' on BasicBlock '" << Msg << "'...\n";
+ errs() << "' on BasicBlock '" << Msg << "'...\n";
break;
case ON_FUNCTION_MSG:
- cerr << "' on Function '" << Msg << "'...\n";
+ errs() << "' on Function '" << Msg << "'...\n";
break;
case ON_MODULE_MSG:
- cerr << "' on Module '" << Msg << "'...\n";
+ errs() << "' on Module '" << Msg << "'...\n";
break;
case ON_LOOP_MSG:
- cerr << "' on Loop " << Msg << "'...\n";
+ errs() << "' on Loop '" << Msg << "'...\n";
break;
case ON_CG_MSG:
- cerr << "' on Call Graph " << Msg << "'...\n";
+ errs() << "' on Call Graph Nodes '" << Msg << "'...\n";
break;
default:
break;
@@ -1069,17 +1029,17 @@ void PMDataManager::dumpPreservedSet(const Pass *P) const {
dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet());
}
-void PMDataManager::dumpAnalysisUsage(const char *Msg, const Pass *P,
+void PMDataManager::dumpAnalysisUsage(const StringRef &Msg, const Pass *P,
const AnalysisUsage::VectorType &Set) const {
assert(PassDebugging >= Details);
if (Set.empty())
return;
- cerr << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
+ errs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
- if (i) cerr << ",";
- cerr << " " << Set[i]->getPassName();
+ if (i) errs() << ',';
+ errs() << ' ' << Set[i]->getPassName();
}
- cerr << "\n";
+ errs() << '\n';
}
/// Add RequiredPass into list of lower level passes required by pass P.
@@ -1102,10 +1062,10 @@ void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
// checks whether any lower level manager will be able to provide this
// analysis info on demand or not.
#ifndef NDEBUG
- cerr << "Unable to schedule '" << RequiredPass->getPassName();
- cerr << "' required by '" << P->getPassName() << "'\n";
+ errs() << "Unable to schedule '" << RequiredPass->getPassName();
+ errs() << "' required by '" << P->getPassName() << "'\n";
#endif
- assert(0 && "Unable to schedule pass");
+ llvm_unreachable("Unable to schedule pass");
}
// Destructor
@@ -1143,7 +1103,7 @@ bool BBPassManager::runOnFunction(Function &F) {
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
- dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getNameStart());
+ dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName());
dumpRequiredSet(BP);
initializeAnalysisImpl(BP);
@@ -1152,20 +1112,20 @@ bool BBPassManager::runOnFunction(Function &F) {
// If the pass crashes, remember this.
PassManagerPrettyStackEntry X(BP, *I);
- if (TheTimeInfo) TheTimeInfo->passStarted(BP);
+ Timer *T = StartPassTimer(BP);
Changed |= BP->runOnBasicBlock(*I);
- if (TheTimeInfo) TheTimeInfo->passEnded(BP);
+ StopPassTimer(BP, T);
}
if (Changed)
dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG,
- I->getNameStart());
+ I->getName());
dumpPreservedSet(BP);
verifyPreservedAnalysis(BP);
removeNotPreservedAnalysis(BP);
recordAvailableAnalysis(BP);
- removeDeadPasses(BP, I->getNameStart(), ON_BASICBLOCK_MSG);
+ removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG);
}
return Changed |= doFinalization(F);
@@ -1248,8 +1208,7 @@ void FunctionPassManager::add(Pass *P) {
bool FunctionPassManager::run(Function &F) {
std::string errstr;
if (MP->materializeFunction(&F, &errstr)) {
- cerr << "Error reading bitcode file: " << errstr << "\n";
- abort();
+ llvm_report_error("Error reading bitcode file: " + errstr);
}
return FPM->run(F);
}
@@ -1336,7 +1295,7 @@ bool FunctionPassManagerImpl::run(Function &F) {
char FPPassManager::ID = 0;
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
- llvm::cerr << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
+ llvm::errs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
@@ -1360,7 +1319,7 @@ bool FPPassManager::runOnFunction(Function &F) {
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
- dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getNameStart());
+ dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName());
dumpRequiredSet(FP);
initializeAnalysisImpl(FP);
@@ -1368,22 +1327,19 @@ bool FPPassManager::runOnFunction(Function &F) {
{
PassManagerPrettyStackEntry X(FP, F);
- if (TheTimeInfo) TheTimeInfo->passStarted(FP);
+ Timer *T = StartPassTimer(FP);
Changed |= FP->runOnFunction(F);
- if (TheTimeInfo) TheTimeInfo->passEnded(FP);
+ StopPassTimer(FP, T);
}
if (Changed)
- dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getNameStart());
+ dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName());
dumpPreservedSet(FP);
verifyPreservedAnalysis(FP);
removeNotPreservedAnalysis(FP);
recordAvailableAnalysis(FP);
- removeDeadPasses(FP, F.getNameStart(), ON_FUNCTION_MSG);
-
- // If dominator information is available then verify the info if requested.
- verifyDomInfo(*FP, F);
+ removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG);
}
return Changed;
}
@@ -1444,9 +1400,9 @@ MPPassManager::runOnModule(Module &M) {
{
PassManagerPrettyStackEntry X(MP, M);
- if (TheTimeInfo) TheTimeInfo->passStarted(MP);
+ Timer *T = StartPassTimer(MP);
Changed |= MP->runOnModule(M);
- if (TheTimeInfo) TheTimeInfo->passEnded(MP);
+ StopPassTimer(MP, T);
}
if (Changed)
@@ -1582,15 +1538,15 @@ void TimingInfo::createTheTimeInfo() {
}
/// If TimingInfo is enabled then start pass timer.
-void StartPassTimer(Pass *P) {
+Timer *llvm::StartPassTimer(Pass *P) {
if (TheTimeInfo)
- TheTimeInfo->passStarted(P);
+ return TheTimeInfo->passStarted(P);
+ return 0;
}
/// If TimingInfo is enabled then stop pass timer.
-void StopPassTimer(Pass *P) {
- if (TheTimeInfo)
- TheTimeInfo->passEnded(P);
+void llvm::StopPassTimer(Pass *P, Timer *T) {
+ if (T) T->stopTimer();
}
//===----------------------------------------------------------------------===//
diff --git a/lib/VMCore/Type.cpp b/lib/VMCore/Type.cpp
index 40d7517..7afbc68 100644
--- a/lib/VMCore/Type.cpp
+++ b/lib/VMCore/Type.cpp
@@ -11,15 +11,19 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
@@ -38,26 +42,14 @@ using namespace llvm;
AbstractTypeUser::~AbstractTypeUser() {}
+void AbstractTypeUser::setType(Value *V, const Type *NewTy) {
+ V->VTy = NewTy;
+}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
-// Lock used for guarding access to the type maps.
-static ManagedStatic<sys::SmartMutex<true> > TypeMapLock;
-
-// Recursive lock used for guarding access to AbstractTypeUsers.
-// NOTE: The true template parameter means this will no-op when we're not in
-// multithreaded mode.
-static ManagedStatic<sys::SmartMutex<true> > AbstractTypeUsersLock;
-
-// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
-// for types as they are needed. Because resolution of types must invalidate
-// all of the abstract type descriptions, we keep them in a seperate map to make
-// this easy.
-static ManagedStatic<TypePrinting> ConcreteTypeDescriptions;
-static ManagedStatic<TypePrinting> AbstractTypeDescriptions;
-
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space after
@@ -99,26 +91,26 @@ void Type::destroy() const {
delete this;
}
-const Type *Type::getPrimitiveType(TypeID IDNumber) {
+const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
- case VoidTyID : return VoidTy;
- case FloatTyID : return FloatTy;
- case DoubleTyID : return DoubleTy;
- case X86_FP80TyID : return X86_FP80Ty;
- case FP128TyID : return FP128Ty;
- case PPC_FP128TyID : return PPC_FP128Ty;
- case LabelTyID : return LabelTy;
- case MetadataTyID : return MetadataTy;
+ case VoidTyID : return getVoidTy(C);
+ case FloatTyID : return getFloatTy(C);
+ case DoubleTyID : return getDoubleTy(C);
+ case X86_FP80TyID : return getX86_FP80Ty(C);
+ case FP128TyID : return getFP128Ty(C);
+ case PPC_FP128TyID : return getPPC_FP128Ty(C);
+ case LabelTyID : return getLabelTy(C);
+ case MetadataTyID : return getMetadataTy(C);
default:
return 0;
}
}
-const Type *Type::getVAArgsPromotedType() const {
+const Type *Type::getVAArgsPromotedType(LLVMContext &C) const {
if (ID == IntegerTyID && getSubclassData() < 32)
- return Type::Int32Ty;
+ return Type::getInt32Ty(C);
else if (ID == FloatTyID)
- return Type::DoubleTy;
+ return Type::getDoubleTy(C);
else
return this;
}
@@ -264,16 +256,19 @@ const Type *Type::getForwardedTypeInternal() const {
}
void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- abort();
+ llvm_unreachable("Attempting to refine a derived type!");
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
- abort();
+ llvm_unreachable("DerivedType is already a concrete type!");
}
std::string Type::getDescription() const {
+ LLVMContextImpl *pImpl = getContext().pImpl;
TypePrinting &Map =
- isAbstract() ? *AbstractTypeDescriptions : *ConcreteTypeDescriptions;
+ isAbstract() ?
+ pImpl->AbstractTypeDescriptions :
+ pImpl->ConcreteTypeDescriptions;
std::string DescStr;
raw_string_ostream DescOS(DescStr);
@@ -284,7 +279,7 @@ std::string Type::getDescription() const {
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
- if (V->getType() == Type::Int32Ty)
+ if (V->getType() == Type::getInt32Ty(V->getContext()))
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return indexValid(CU->getZExtValue());
return false;
@@ -311,25 +306,97 @@ const Type *StructType::getTypeAtIndex(unsigned Idx) const {
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
-const Type *Type::VoidTy = new Type(Type::VoidTyID);
-const Type *Type::FloatTy = new Type(Type::FloatTyID);
-const Type *Type::DoubleTy = new Type(Type::DoubleTyID);
-const Type *Type::X86_FP80Ty = new Type(Type::X86_FP80TyID);
-const Type *Type::FP128Ty = new Type(Type::FP128TyID);
-const Type *Type::PPC_FP128Ty = new Type(Type::PPC_FP128TyID);
-const Type *Type::LabelTy = new Type(Type::LabelTyID);
-const Type *Type::MetadataTy = new Type(Type::MetadataTyID);
+const Type *Type::getVoidTy(LLVMContext &C) {
+ return &C.pImpl->VoidTy;
+}
-namespace {
- struct BuiltinIntegerType : public IntegerType {
- explicit BuiltinIntegerType(unsigned W) : IntegerType(W) {}
- };
+const Type *Type::getLabelTy(LLVMContext &C) {
+ return &C.pImpl->LabelTy;
+}
+
+const Type *Type::getFloatTy(LLVMContext &C) {
+ return &C.pImpl->FloatTy;
+}
+
+const Type *Type::getDoubleTy(LLVMContext &C) {
+ return &C.pImpl->DoubleTy;
+}
+
+const Type *Type::getMetadataTy(LLVMContext &C) {
+ return &C.pImpl->MetadataTy;
+}
+
+const Type *Type::getX86_FP80Ty(LLVMContext &C) {
+ return &C.pImpl->X86_FP80Ty;
+}
+
+const Type *Type::getFP128Ty(LLVMContext &C) {
+ return &C.pImpl->FP128Ty;
+}
+
+const Type *Type::getPPC_FP128Ty(LLVMContext &C) {
+ return &C.pImpl->PPC_FP128Ty;
+}
+
+const IntegerType *Type::getInt1Ty(LLVMContext &C) {
+ return &C.pImpl->Int1Ty;
+}
+
+const IntegerType *Type::getInt8Ty(LLVMContext &C) {
+ return &C.pImpl->Int8Ty;
+}
+
+const IntegerType *Type::getInt16Ty(LLVMContext &C) {
+ return &C.pImpl->Int16Ty;
+}
+
+const IntegerType *Type::getInt32Ty(LLVMContext &C) {
+ return &C.pImpl->Int32Ty;
+}
+
+const IntegerType *Type::getInt64Ty(LLVMContext &C) {
+ return &C.pImpl->Int64Ty;
+}
+
+const PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
+ return getFloatTy(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
+ return getDoubleTy(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
+ return getX86_FP80Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
+ return getFP128Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
+ return getPPC_FP128Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt1Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt8Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt16Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt32Ty(C)->getPointerTo(AS);
+}
+
+const PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
+ return getInt64Ty(C)->getPointerTo(AS);
}
-const IntegerType *Type::Int1Ty = new BuiltinIntegerType(1);
-const IntegerType *Type::Int8Ty = new BuiltinIntegerType(8);
-const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16);
-const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32);
-const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
//===----------------------------------------------------------------------===//
// Derived Type Constructors
@@ -338,42 +405,20 @@ const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(const Type *RetTy) {
- if (RetTy->isFirstClassType()) {
- if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
- return PTy->getElementType() != Type::MetadataTy;
- return true;
- }
- if (RetTy == Type::VoidTy || RetTy == Type::MetadataTy ||
- isa<OpaqueType>(RetTy))
- return true;
-
- // If this is a multiple return case, verify that each return is a first class
- // value and that there is at least one value.
- const StructType *SRetTy = dyn_cast<StructType>(RetTy);
- if (SRetTy == 0 || SRetTy->getNumElements() == 0)
- return false;
-
- for (unsigned i = 0, e = SRetTy->getNumElements(); i != e; ++i)
- if (!SRetTy->getElementType(i)->isFirstClassType())
- return false;
- return true;
+ return RetTy->getTypeID() != LabelTyID &&
+ RetTy->getTypeID() != MetadataTyID;
}
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(const Type *ArgTy) {
- if ((!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) ||
- (isa<PointerType>(ArgTy) &&
- cast<PointerType>(ArgTy)->getElementType() == Type::MetadataTy))
- return false;
-
- return true;
+ return ArgTy->isFirstClassType() || isa<OpaqueType>(ArgTy);
}
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs)
- : DerivedType(FunctionTyID), isVarArgs(IsVarArgs) {
+ : DerivedType(Result->getContext(), FunctionTyID), isVarArgs(IsVarArgs) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert(isValidReturnType(Result) && "invalid return type for function");
@@ -393,8 +438,9 @@ FunctionType::FunctionType(const Type *Result,
setAbstract(isAbstract);
}
-StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
- : CompositeType(StructTyID) {
+StructType::StructType(LLVMContext &C,
+ const std::vector<const Type*> &Types, bool isPacked)
+ : CompositeType(C, StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked);
@@ -437,10 +483,10 @@ PointerType::PointerType(const Type *E, unsigned AddrSpace)
setAbstract(E->isAbstract());
}
-OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
+OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *this << "\n";
+ DEBUG(errs() << "Derived new type: " << *this << "\n");
#endif
}
@@ -464,8 +510,8 @@ void DerivedType::dropAllTypeUses() {
llvm_acquire_global_lock();
tmp = AlwaysOpaqueTy;
if (!tmp) {
- tmp = OpaqueType::get();
- PATypeHolder* tmp2 = new PATypeHolder(AlwaysOpaqueTy);
+ tmp = OpaqueType::get(getContext());
+ PATypeHolder* tmp2 = new PATypeHolder(tmp);
sys::MemoryFence();
AlwaysOpaqueTy = tmp;
Holder = tmp2;
@@ -473,8 +519,8 @@ void DerivedType::dropAllTypeUses() {
llvm_release_global_lock();
}
- } else {
- AlwaysOpaqueTy = OpaqueType::get();
+ } else if (!AlwaysOpaqueTy) {
+ AlwaysOpaqueTy = OpaqueType::get(getContext());
Holder = new PATypeHolder(AlwaysOpaqueTy);
}
@@ -482,9 +528,11 @@ void DerivedType::dropAllTypeUses() {
// Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something
- // concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
+ // concrete to avoid overhead for adding to AbstractTypeUser lists and
+ // stuff.
+ const Type *ConcreteTy = Type::getInt32Ty(getContext());
for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
- ContainedTys[i] = Type::Int32Ty;
+ ContainedTys[i] = ConcreteTy;
}
}
@@ -633,7 +681,7 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
}
return true;
} else {
- assert(0 && "Unknown derived type!");
+ llvm_unreachable("Unknown derived type!");
return false;
}
}
@@ -695,327 +743,41 @@ static bool TypeHasCycleThroughItself(const Type *Ty) {
return false;
}
-/// getSubElementHash - Generate a hash value for all of the SubType's of this
-/// type. The hash value is guaranteed to be zero if any of the subtypes are
-/// an opaque type. Otherwise we try to mix them in as well as possible, but do
-/// not look at the subtype's subtype's.
-static unsigned getSubElementHash(const Type *Ty) {
- unsigned HashVal = 0;
- for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
- I != E; ++I) {
- HashVal *= 32;
- const Type *SubTy = I->get();
- HashVal += SubTy->getTypeID();
- switch (SubTy->getTypeID()) {
- default: break;
- case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what.
- case Type::IntegerTyID:
- HashVal ^= (cast<IntegerType>(SubTy)->getBitWidth() << 3);
- break;
- case Type::FunctionTyID:
- HashVal ^= cast<FunctionType>(SubTy)->getNumParams()*2 +
- cast<FunctionType>(SubTy)->isVarArg();
- break;
- case Type::ArrayTyID:
- HashVal ^= cast<ArrayType>(SubTy)->getNumElements();
- break;
- case Type::VectorTyID:
- HashVal ^= cast<VectorType>(SubTy)->getNumElements();
- break;
- case Type::StructTyID:
- HashVal ^= cast<StructType>(SubTy)->getNumElements();
- break;
- case Type::PointerTyID:
- HashVal ^= cast<PointerType>(SubTy)->getAddressSpace();
- break;
- }
- }
- return HashVal ? HashVal : 1; // Do not return zero unless opaque subty.
-}
-
-//===----------------------------------------------------------------------===//
-// Derived Type Factory Functions
-//===----------------------------------------------------------------------===//
-
-namespace llvm {
-class TypeMapBase {
-protected:
- /// TypesByHash - Keep track of types by their structure hash value. Note
- /// that we only keep track of types that have cycles through themselves in
- /// this map.
- ///
- std::multimap<unsigned, PATypeHolder> TypesByHash;
-
-public:
- ~TypeMapBase() {
- // PATypeHolder won't destroy non-abstract types.
- // We can't destroy them by simply iterating, because
- // they may contain references to each-other.
-#if 0
- for (std::multimap<unsigned, PATypeHolder>::iterator I
- = TypesByHash.begin(), E = TypesByHash.end(); I != E; ++I) {
- Type *Ty = const_cast<Type*>(I->second.Ty);
- I->second.destroy();
- // We can't invoke destroy or delete, because the type may
- // contain references to already freed types.
- // So we have to destruct the object the ugly way.
- if (Ty) {
- Ty->AbstractTypeUsers.clear();
- static_cast<const Type*>(Ty)->Type::~Type();
- operator delete(Ty);
- }
- }
-#endif
- }
-
- void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
- std::multimap<unsigned, PATypeHolder>::iterator I =
- TypesByHash.lower_bound(Hash);
- for (; I != TypesByHash.end() && I->first == Hash; ++I) {
- if (I->second == Ty) {
- TypesByHash.erase(I);
- return;
- }
- }
-
- // This must be do to an opaque type that was resolved. Switch down to hash
- // code of zero.
- assert(Hash && "Didn't find type entry!");
- RemoveFromTypesByHash(0, Ty);
- }
-
- /// TypeBecameConcrete - When Ty gets a notification that TheType just became
- /// concrete, drop uses and make Ty non-abstract if we should.
- void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) {
- // If the element just became concrete, remove 'ty' from the abstract
- // type user list for the type. Do this for as many times as Ty uses
- // OldType.
- for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
- I != E; ++I)
- if (I->get() == TheType)
- TheType->removeAbstractTypeUser(Ty);
-
- // If the type is currently thought to be abstract, rescan all of our
- // subtypes to see if the type has just become concrete! Note that this
- // may send out notifications to AbstractTypeUsers that types become
- // concrete.
- if (Ty->isAbstract())
- Ty->PromoteAbstractToConcrete();
- }
-};
-}
-
-
-// TypeMap - Make sure that only one instance of a particular type may be
-// created on any given run of the compiler... note that this involves updating
-// our map if an abstract type gets refined somehow.
-//
-namespace llvm {
-template<class ValType, class TypeClass>
-class TypeMap : public TypeMapBase {
- std::map<ValType, PATypeHolder> Map;
-public:
- typedef typename std::map<ValType, PATypeHolder>::iterator iterator;
- ~TypeMap() { print("ON EXIT"); }
-
- inline TypeClass *get(const ValType &V) {
- iterator I = Map.find(V);
- return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0;
- }
-
- inline void add(const ValType &V, TypeClass *Ty) {
- Map.insert(std::make_pair(V, Ty));
-
- // If this type has a cycle, remember it.
- TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty));
- print("add");
- }
-
- /// RefineAbstractType - This method is called after we have merged a type
- /// with another one. We must now either merge the type away with
- /// some other type or reinstall it in the map with it's new configuration.
- void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType,
- const Type *NewType) {
-#ifdef DEBUG_MERGE_TYPES
- DOUT << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
- << "], " << (void*)NewType << " [" << *NewType << "])\n";
-#endif
-
- // Otherwise, we are changing one subelement type into another. Clearly the
- // OldType must have been abstract, making us abstract.
- assert(Ty->isAbstract() && "Refining a non-abstract type!");
- assert(OldType != NewType);
-
- // Make a temporary type holder for the type so that it doesn't disappear on
- // us when we erase the entry from the map.
- PATypeHolder TyHolder = Ty;
-
- // The old record is now out-of-date, because one of the children has been
- // updated. Remove the obsolete entry from the map.
- unsigned NumErased = Map.erase(ValType::get(Ty));
- assert(NumErased && "Element not found!"); NumErased = NumErased;
-
- // Remember the structural hash for the type before we start hacking on it,
- // in case we need it later.
- unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
-
- // Find the type element we are refining... and change it now!
- for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i)
- if (Ty->ContainedTys[i] == OldType)
- Ty->ContainedTys[i] = NewType;
- unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
-
- // If there are no cycles going through this node, we can do a simple,
- // efficient lookup in the map, instead of an inefficient nasty linear
- // lookup.
- if (!TypeHasCycleThroughItself(Ty)) {
- typename std::map<ValType, PATypeHolder>::iterator I;
- bool Inserted;
-
- tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty));
- if (!Inserted) {
- // Refined to a different type altogether?
- RemoveFromTypesByHash(OldTypeHash, Ty);
-
- // We already have this type in the table. Get rid of the newly refined
- // type.
- TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
- Ty->unlockedRefineAbstractTypeTo(NewTy);
- return;
- }
- } else {
- // Now we check to see if there is an existing entry in the table which is
- // structurally identical to the newly refined type. If so, this type
- // gets refined to the pre-existing type.
- //
- std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry;
- tie(I, E) = TypesByHash.equal_range(NewTypeHash);
- Entry = E;
- for (; I != E; ++I) {
- if (I->second == Ty) {
- // Remember the position of the old type if we see it in our scan.
- Entry = I;
- } else {
- if (TypesEqual(Ty, I->second)) {
- TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
-
- // Remove the old entry form TypesByHash. If the hash values differ
- // now, remove it from the old place. Otherwise, continue scanning
- // withing this hashcode to reduce work.
- if (NewTypeHash != OldTypeHash) {
- RemoveFromTypesByHash(OldTypeHash, Ty);
- } else {
- if (Entry == E) {
- // Find the location of Ty in the TypesByHash structure if we
- // haven't seen it already.
- while (I->second != Ty) {
- ++I;
- assert(I != E && "Structure doesn't contain type??");
- }
- Entry = I;
- }
- TypesByHash.erase(Entry);
- }
- Ty->unlockedRefineAbstractTypeTo(NewTy);
- return;
- }
- }
- }
-
- // If there is no existing type of the same structure, we reinsert an
- // updated record into the map.
- Map.insert(std::make_pair(ValType::get(Ty), Ty));
- }
-
- // If the hash codes differ, update TypesByHash
- if (NewTypeHash != OldTypeHash) {
- RemoveFromTypesByHash(OldTypeHash, Ty);
- TypesByHash.insert(std::make_pair(NewTypeHash, Ty));
- }
-
- // If the type is currently thought to be abstract, rescan all of our
- // subtypes to see if the type has just become concrete! Note that this
- // may send out notifications to AbstractTypeUsers that types become
- // concrete.
- if (Ty->isAbstract())
- Ty->PromoteAbstractToConcrete();
- }
-
- void print(const char *Arg) const {
-#ifdef DEBUG_MERGE_TYPES
- DOUT << "TypeMap<>::" << Arg << " table contents:\n";
- unsigned i = 0;
- for (typename std::map<ValType, PATypeHolder>::const_iterator I
- = Map.begin(), E = Map.end(); I != E; ++I)
- DOUT << " " << (++i) << ". " << (void*)I->second.get() << " "
- << *I->second.get() << "\n";
-#endif
- }
-
- void dump() const { print("dump output"); }
-};
-}
-
-
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
-
-//===----------------------------------------------------------------------===//
-// Integer Type Factory...
-//
-namespace llvm {
-class IntegerValType {
- uint32_t bits;
-public:
- IntegerValType(uint16_t numbits) : bits(numbits) {}
-
- static IntegerValType get(const IntegerType *Ty) {
- return IntegerValType(Ty->getBitWidth());
- }
-
- static unsigned hashTypeStructure(const IntegerType *Ty) {
- return (unsigned)Ty->getBitWidth();
- }
-
- inline bool operator<(const IntegerValType &IVT) const {
- return bits < IVT.bits;
- }
-};
-}
-
-static ManagedStatic<TypeMap<IntegerValType, IntegerType> > IntegerTypes;
-
-const IntegerType *IntegerType::get(unsigned NumBits) {
+const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
- case 1: return cast<IntegerType>(Type::Int1Ty);
- case 8: return cast<IntegerType>(Type::Int8Ty);
- case 16: return cast<IntegerType>(Type::Int16Ty);
- case 32: return cast<IntegerType>(Type::Int32Ty);
- case 64: return cast<IntegerType>(Type::Int64Ty);
+ case 1: return cast<IntegerType>(Type::getInt1Ty(C));
+ case 8: return cast<IntegerType>(Type::getInt8Ty(C));
+ case 16: return cast<IntegerType>(Type::getInt16Ty(C));
+ case 32: return cast<IntegerType>(Type::getInt32Ty(C));
+ case 64: return cast<IntegerType>(Type::getInt64Ty(C));
default:
break;
}
+
+ LLVMContextImpl *pImpl = C.pImpl;
IntegerValType IVT(NumBits);
IntegerType *ITy = 0;
// First, see if the type is already in the table, for which
// a reader lock suffices.
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- ITy = IntegerTypes->get(IVT);
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ ITy = pImpl->IntegerTypes.get(IVT);
if (!ITy) {
// Value not found. Derive a new type!
- ITy = new IntegerType(NumBits);
- IntegerTypes->add(IVT, ITy);
+ ITy = new IntegerType(C, NumBits);
+ pImpl->IntegerTypes.add(IVT, ITy);
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *ITy << "\n";
+ DEBUG(errs() << "Derived new type: " << *ITy << "\n");
#endif
return ITy;
}
@@ -1029,39 +791,6 @@ APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
-// FunctionValType - Define a class to hold the key that goes into the TypeMap
-//
-namespace llvm {
-class FunctionValType {
- const Type *RetTy;
- std::vector<const Type*> ArgTypes;
- bool isVarArg;
-public:
- FunctionValType(const Type *ret, const std::vector<const Type*> &args,
- bool isVA) : RetTy(ret), ArgTypes(args), isVarArg(isVA) {}
-
- static FunctionValType get(const FunctionType *FT);
-
- static unsigned hashTypeStructure(const FunctionType *FT) {
- unsigned Result = FT->getNumParams()*2 + FT->isVarArg();
- return Result;
- }
-
- inline bool operator<(const FunctionValType &MTV) const {
- if (RetTy < MTV.RetTy) return true;
- if (RetTy > MTV.RetTy) return false;
- if (isVarArg < MTV.isVarArg) return true;
- if (isVarArg > MTV.isVarArg) return false;
- if (ArgTypes < MTV.ArgTypes) return true;
- if (ArgTypes > MTV.ArgTypes) return false;
- return false;
- }
-};
-}
-
-// Define the actual map itself now...
-static ManagedStatic<TypeMap<FunctionValType, FunctionType> > FunctionTypes;
-
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
@@ -1079,194 +808,105 @@ FunctionType *FunctionType::get(const Type *ReturnType,
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *FT = 0;
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- FT = FunctionTypes->get(VT);
+ LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
+
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ FT = pImpl->FunctionTypes.get(VT);
if (!FT) {
FT = (FunctionType*) operator new(sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1));
new (FT) FunctionType(ReturnType, Params, isVarArg);
- FunctionTypes->add(VT, FT);
+ pImpl->FunctionTypes.add(VT, FT);
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << FT << "\n";
+ DEBUG(errs() << "Derived new type: " << FT << "\n");
#endif
return FT;
}
-//===----------------------------------------------------------------------===//
-// Array Type Factory...
-//
-namespace llvm {
-class ArrayValType {
- const Type *ValTy;
- uint64_t Size;
-public:
- ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {}
-
- static ArrayValType get(const ArrayType *AT) {
- return ArrayValType(AT->getElementType(), AT->getNumElements());
- }
-
- static unsigned hashTypeStructure(const ArrayType *AT) {
- return (unsigned)AT->getNumElements();
- }
-
- inline bool operator<(const ArrayValType &MTV) const {
- if (Size < MTV.Size) return true;
- return Size == MTV.Size && ValTy < MTV.ValTy;
- }
-};
-}
-
-static ManagedStatic<TypeMap<ArrayValType, ArrayType> > ArrayTypes;
-
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of <null> types!");
assert(isValidElementType(ElementType) && "Invalid type for array element!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = 0;
+
+ LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- AT = ArrayTypes->get(AVT);
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ AT = pImpl->ArrayTypes.get(AVT);
if (!AT) {
// Value not found. Derive a new type!
- ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
+ pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *AT << "\n";
+ DEBUG(errs() << "Derived new type: " << *AT << "\n");
#endif
return AT;
}
bool ArrayType::isValidElementType(const Type *ElemTy) {
- if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
- ElemTy == Type::MetadataTy)
- return false;
-
- if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
- if (PTy->getElementType() == Type::MetadataTy)
- return false;
-
- return true;
+ return ElemTy->getTypeID() != VoidTyID && ElemTy->getTypeID() != LabelTyID &&
+ ElemTy->getTypeID() != MetadataTyID && !isa<FunctionType>(ElemTy);
}
-
-//===----------------------------------------------------------------------===//
-// Vector Type Factory...
-//
-namespace llvm {
-class VectorValType {
- const Type *ValTy;
- unsigned Size;
-public:
- VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
-
- static VectorValType get(const VectorType *PT) {
- return VectorValType(PT->getElementType(), PT->getNumElements());
- }
-
- static unsigned hashTypeStructure(const VectorType *PT) {
- return PT->getNumElements();
- }
-
- inline bool operator<(const VectorValType &MTV) const {
- if (Size < MTV.Size) return true;
- return Size == MTV.Size && ValTy < MTV.ValTy;
- }
-};
-}
-
-static ManagedStatic<TypeMap<VectorValType, VectorType> > VectorTypes;
-
VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get vector of <null> types!");
VectorValType PVT(ElementType, NumElements);
VectorType *PT = 0;
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- PT = VectorTypes->get(PVT);
+ LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
+
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ PT = pImpl->VectorTypes.get(PVT);
if (!PT) {
- VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
+ pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *PT << "\n";
+ DEBUG(errs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
bool VectorType::isValidElementType(const Type *ElemTy) {
- if (ElemTy->isInteger() || ElemTy->isFloatingPoint() ||
- isa<OpaqueType>(ElemTy))
- return true;
-
- return false;
+ return ElemTy->isInteger() || ElemTy->isFloatingPoint() ||
+ isa<OpaqueType>(ElemTy);
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
-namespace llvm {
-// StructValType - Define a class to hold the key that goes into the TypeMap
-//
-class StructValType {
- std::vector<const Type*> ElTypes;
- bool packed;
-public:
- StructValType(const std::vector<const Type*> &args, bool isPacked)
- : ElTypes(args), packed(isPacked) {}
-
- static StructValType get(const StructType *ST) {
- std::vector<const Type *> ElTypes;
- ElTypes.reserve(ST->getNumElements());
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
- ElTypes.push_back(ST->getElementType(i));
-
- return StructValType(ElTypes, ST->isPacked());
- }
-
- static unsigned hashTypeStructure(const StructType *ST) {
- return ST->getNumElements();
- }
-
- inline bool operator<(const StructValType &STV) const {
- if (ElTypes < STV.ElTypes) return true;
- else if (ElTypes > STV.ElTypes) return false;
- else return (int)packed < (int)STV.packed;
- }
-};
-}
-
-static ManagedStatic<TypeMap<StructValType, StructType> > StructTypes;
-
-StructType *StructType::get(const std::vector<const Type*> &ETypes,
+StructType *StructType::get(LLVMContext &Context,
+ const std::vector<const Type*> &ETypes,
bool isPacked) {
StructValType STV(ETypes, isPacked);
StructType *ST = 0;
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- ST = StructTypes->get(STV);
+ LLVMContextImpl *pImpl = Context.pImpl;
+
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ ST = pImpl->StructTypes.get(STV);
if (!ST) {
// Value not found. Derive a new type!
ST = (StructType*) operator new(sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size());
- new (ST) StructType(ETypes, isPacked);
- StructTypes->add(STV, ST);
+ new (ST) StructType(Context, ETypes, isPacked);
+ pImpl->StructTypes.add(STV, ST);
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *ST << "\n";
+ DEBUG(errs() << "Derived new type: " << *ST << "\n");
#endif
return ST;
}
-StructType *StructType::get(const Type *type, ...) {
+StructType *StructType::get(LLVMContext &Context, const Type *type, ...) {
va_list ap;
std::vector<const llvm::Type*> StructFields;
va_start(ap, type);
@@ -1274,19 +914,12 @@ StructType *StructType::get(const Type *type, ...) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
- return llvm::StructType::get(StructFields);
+ return llvm::StructType::get(Context, StructFields);
}
bool StructType::isValidElementType(const Type *ElemTy) {
- if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
- ElemTy == Type::MetadataTy)
- return false;
-
- if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
- if (PTy->getElementType() == Type::MetadataTy)
- return false;
-
- return true;
+ return ElemTy->getTypeID() != VoidTyID && ElemTy->getTypeID() != LabelTyID &&
+ ElemTy->getTypeID() != MetadataTyID && !isa<FunctionType>(ElemTy);
}
@@ -1294,67 +927,38 @@ bool StructType::isValidElementType(const Type *ElemTy) {
// Pointer Type Factory...
//
-// PointerValType - Define a class to hold the key that goes into the TypeMap
-//
-namespace llvm {
-class PointerValType {
- const Type *ValTy;
- unsigned AddressSpace;
-public:
- PointerValType(const Type *val, unsigned as) : ValTy(val), AddressSpace(as) {}
-
- static PointerValType get(const PointerType *PT) {
- return PointerValType(PT->getElementType(), PT->getAddressSpace());
- }
-
- static unsigned hashTypeStructure(const PointerType *PT) {
- return getSubElementHash(PT);
- }
-
- bool operator<(const PointerValType &MTV) const {
- if (AddressSpace < MTV.AddressSpace) return true;
- return AddressSpace == MTV.AddressSpace && ValTy < MTV.ValTy;
- }
-};
-}
-
-static ManagedStatic<TypeMap<PointerValType, PointerType> > PointerTypes;
-
PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
assert(ValueType && "Can't get a pointer to <null> type!");
- assert(ValueType != Type::VoidTy &&
+ assert(ValueType->getTypeID() != VoidTyID &&
"Pointer to void is not valid, use i8* instead!");
assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
PointerValType PVT(ValueType, AddressSpace);
PointerType *PT = 0;
- sys::SmartScopedLock<true> L(&*TypeMapLock);
- PT = PointerTypes->get(PVT);
+ LLVMContextImpl *pImpl = ValueType->getContext().pImpl;
+
+ sys::SmartScopedLock<true> L(pImpl->TypeMapLock);
+ PT = pImpl->PointerTypes.get(PVT);
if (!PT) {
// Value not found. Derive a new type!
- PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace));
+ pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
}
#ifdef DEBUG_MERGE_TYPES
- DOUT << "Derived new type: " << *PT << "\n";
+ DEBUG(errs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
-PointerType *Type::getPointerTo(unsigned addrs) const {
+const PointerType *Type::getPointerTo(unsigned addrs) const {
return PointerType::get(this, addrs);
}
bool PointerType::isValidElementType(const Type *ElemTy) {
- if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy)
- return false;
-
- if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
- if (PTy->getElementType() == Type::MetadataTy)
- return false;
-
- return true;
+ return ElemTy->getTypeID() != VoidTyID &&
+ ElemTy->getTypeID() != LabelTyID &&
+ ElemTy->getTypeID() != MetadataTyID;
}
@@ -1366,9 +970,10 @@ bool PointerType::isValidElementType(const Type *ElemTy) {
// it. This function is called primarily by the PATypeHandle class.
void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
- AbstractTypeUsersLock->acquire();
+ LLVMContextImpl *pImpl = getContext().pImpl;
+ pImpl->AbstractTypeUsersLock.acquire();
AbstractTypeUsers.push_back(U);
- AbstractTypeUsersLock->release();
+ pImpl->AbstractTypeUsersLock.release();
}
@@ -1378,7 +983,8 @@ void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
- AbstractTypeUsersLock->acquire();
+ LLVMContextImpl *pImpl = getContext().pImpl;
+ pImpl->AbstractTypeUsersLock.acquire();
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
@@ -1394,20 +1000,20 @@ void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
- DOUT << " remAbstractTypeUser[" << (void*)this << ", "
- << *this << "][" << i << "] User = " << U << "\n";
+ DEBUG(errs() << " remAbstractTypeUser[" << (void*)this << ", "
+ << *this << "][" << i << "] User = " << U << "\n");
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
- DOUT << "DELETEing unused abstract type: <" << *this
- << ">[" << (void*)this << "]" << "\n";
+ DEBUG(errs() << "DELETEing unused abstract type: <" << *this
+ << ">[" << (void*)this << "]" << "\n");
#endif
this->destroy();
}
- AbstractTypeUsersLock->release();
+ pImpl->AbstractTypeUsersLock.release();
}
// unlockedRefineAbstractTypeTo - This function is used when it is discovered
@@ -1421,21 +1027,22 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
+ LLVMContextImpl *pImpl = getContext().pImpl;
+
// The descriptions may be out of date. Conservatively clear them all!
- if (AbstractTypeDescriptions.isConstructed())
- AbstractTypeDescriptions->clear();
+ pImpl->AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
- DOUT << "REFINING abstract type [" << (void*)this << " "
- << *this << "] to [" << (void*)NewType << " "
- << *NewType << "]!\n";
+ DEBUG(errs() << "REFINING abstract type [" << (void*)this << " "
+ << *this << "] to [" << (void*)NewType << " "
+ << *NewType << "]!\n");
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
- // Any PATypeHolders referring to this type will now automatically forward o
+ // Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
@@ -1458,23 +1065,23 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
- AbstractTypeUsersLock->acquire();
+ pImpl->AbstractTypeUsersLock.acquire();
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
#ifdef DEBUG_MERGE_TYPES
- DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User
- << "] of abstract type [" << (void*)this << " "
- << *this << "] to [" << (void*)NewTy.get() << " "
- << *NewTy << "]!\n";
+ DEBUG(errs() << " REFINING user " << OldSize-1 << "[" << (void*)User
+ << "] of abstract type [" << (void*)this << " "
+ << *this << "] to [" << (void*)NewTy.get() << " "
+ << *NewTy << "]!\n");
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
- AbstractTypeUsersLock->release();
+ pImpl->AbstractTypeUsersLock.release();
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
@@ -1488,7 +1095,7 @@ void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
// All recursive calls will go through unlockedRefineAbstractTypeTo,
// to avoid deadlock problems.
- sys::SmartScopedLock<true> L(&*TypeMapLock);
+ sys::SmartScopedLock<true> L(NewType->getContext().pImpl->TypeMapLock);
unlockedRefineAbstractTypeTo(NewType);
}
@@ -1497,10 +1104,12 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
- DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
+ DEBUG(errs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
#endif
- AbstractTypeUsersLock->acquire();
+ LLVMContextImpl *pImpl = getContext().pImpl;
+
+ pImpl->AbstractTypeUsersLock.acquire();
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
@@ -1509,7 +1118,7 @@ void DerivedType::notifyUsesThatTypeBecameConcrete() {
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
- AbstractTypeUsersLock->release();
+ pImpl->AbstractTypeUsersLock.release();
}
// refineAbstractType - Called when a contained type is found to be more
@@ -1518,11 +1127,13 @@ void DerivedType::notifyUsesThatTypeBecameConcrete() {
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- FunctionTypes->RefineAbstractType(this, OldType, NewType);
+ LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+ pImpl->FunctionTypes.RefineAbstractType(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
- FunctionTypes->TypeBecameConcrete(this, AbsTy);
+ LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+ pImpl->FunctionTypes.TypeBecameConcrete(this, AbsTy);
}
@@ -1532,11 +1143,13 @@ void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- ArrayTypes->RefineAbstractType(this, OldType, NewType);
+ LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+ pImpl->ArrayTypes.RefineAbstractType(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
- ArrayTypes->TypeBecameConcrete(this, AbsTy);
+ LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+ pImpl->ArrayTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
@@ -1545,11 +1158,13 @@ void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
//
void VectorType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- VectorTypes->RefineAbstractType(this, OldType, NewType);
+ LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+ pImpl->VectorTypes.RefineAbstractType(this, OldType, NewType);
}
void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
- VectorTypes->TypeBecameConcrete(this, AbsTy);
+ LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+ pImpl->VectorTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
@@ -1558,11 +1173,13 @@ void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- StructTypes->RefineAbstractType(this, OldType, NewType);
+ LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+ pImpl->StructTypes.RefineAbstractType(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
- StructTypes->TypeBecameConcrete(this, AbsTy);
+ LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+ pImpl->StructTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
@@ -1571,11 +1188,13 @@ void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- PointerTypes->RefineAbstractType(this, OldType, NewType);
+ LLVMContextImpl *pImpl = OldType->getContext().pImpl;
+ pImpl->PointerTypes.RefineAbstractType(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
- PointerTypes->TypeBecameConcrete(this, AbsTy);
+ LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
+ pImpl->PointerTypes.TypeBecameConcrete(this, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
@@ -1585,19 +1204,6 @@ bool SequentialType::indexValid(const Value *V) const {
}
namespace llvm {
-std::ostream &operator<<(std::ostream &OS, const Type *T) {
- if (T == 0)
- OS << "<null> value!\n";
- else
- T->print(OS);
- return OS;
-}
-
-std::ostream &operator<<(std::ostream &OS, const Type &T) {
- T.print(OS);
- return OS;
-}
-
raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
T.print(OS);
return OS;
diff --git a/lib/VMCore/TypeSymbolTable.cpp b/lib/VMCore/TypeSymbolTable.cpp
index 5ae60e2..f31ea66 100644
--- a/lib/VMCore/TypeSymbolTable.cpp
+++ b/lib/VMCore/TypeSymbolTable.cpp
@@ -14,8 +14,9 @@
#include "llvm/TypeSymbolTable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/RWMutex.h"
#include "llvm/System/Threading.h"
#include <algorithm>
@@ -34,22 +35,22 @@ TypeSymbolTable::~TypeSymbolTable() {
}
}
-std::string TypeSymbolTable::getUniqueName(const std::string &BaseName) const {
+std::string TypeSymbolTable::getUniqueName(const StringRef &BaseName) const {
std::string TryName = BaseName;
- sys::SmartScopedReader<true> Reader(&*TypeSymbolTableLock);
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
const_iterator End = tmap.end();
// See if the name exists
while (tmap.find(TryName) != End) // Loop until we find a free
- TryName = BaseName + utostr(++LastUnique); // name in the symbol table
+ TryName = BaseName.str() + utostr(++LastUnique); // name in the symbol table
return TryName;
}
// lookup a type by name - returns null on failure
-Type* TypeSymbolTable::lookup(const std::string& Name) const {
- sys::SmartScopedReader<true> Reader(&*TypeSymbolTableLock);
+Type* TypeSymbolTable::lookup(const StringRef &Name) const {
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
const_iterator TI = tmap.find(Name);
Type* result = 0;
@@ -58,6 +59,17 @@ Type* TypeSymbolTable::lookup(const std::string& Name) const {
return result;
}
+TypeSymbolTable::iterator TypeSymbolTable::find(const StringRef &Name) {
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
+ return tmap.find(Name);
+}
+
+TypeSymbolTable::const_iterator
+TypeSymbolTable::find(const StringRef &Name) const {
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
+ return tmap.find(Name);
+}
+
// remove - Remove a type from the symbol table...
Type* TypeSymbolTable::remove(iterator Entry) {
TypeSymbolTableLock->writer_acquire();
@@ -67,7 +79,7 @@ Type* TypeSymbolTable::remove(iterator Entry) {
#if DEBUG_SYMBOL_TABLE
dump();
- cerr << " Removing Value: " << Result->getName() << "\n";
+ errs() << " Removing Value: " << Result->getDescription() << "\n";
#endif
tmap.erase(Entry);
@@ -78,9 +90,9 @@ Type* TypeSymbolTable::remove(iterator Entry) {
// list...
if (Result->isAbstract()) {
#if DEBUG_ABSTYPE
- cerr << "Removing abstract type from symtab"
- << Result->getDescription()
- << "\n";
+ errs() << "Removing abstract type from symtab"
+ << Result->getDescription()
+ << "\n";
#endif
cast<DerivedType>(Result)->removeAbstractTypeUser(this);
}
@@ -90,17 +102,17 @@ Type* TypeSymbolTable::remove(iterator Entry) {
// insert - Insert a type into the symbol table with the specified name...
-void TypeSymbolTable::insert(const std::string& Name, const Type* T) {
+void TypeSymbolTable::insert(const StringRef &Name, const Type* T) {
assert(T && "Can't insert null type into symbol table!");
TypeSymbolTableLock->writer_acquire();
- if (tmap.insert(make_pair(Name, T)).second) {
+ if (tmap.insert(std::make_pair(Name, T)).second) {
// Type inserted fine with no conflict.
#if DEBUG_SYMBOL_TABLE
dump();
- cerr << " Inserted type: " << Name << ": " << T->getDescription() << "\n";
+ errs() << " Inserted type: " << Name << ": " << T->getDescription() << "\n";
#endif
} else {
// If there is a name conflict...
@@ -112,8 +124,8 @@ void TypeSymbolTable::insert(const std::string& Name, const Type* T) {
#if DEBUG_SYMBOL_TABLE
dump();
- cerr << " Inserting type: " << UniqueName << ": "
- << T->getDescription() << "\n";
+ errs() << " Inserting type: " << UniqueName << ": "
+ << T->getDescription() << "\n";
#endif
// Insert the tmap entry
@@ -126,7 +138,7 @@ void TypeSymbolTable::insert(const std::string& Name, const Type* T) {
if (T->isAbstract()) {
cast<DerivedType>(T)->addAbstractTypeUser(this);
#if DEBUG_ABSTYPE
- cerr << "Added abstract type to ST: " << T->getDescription() << "\n";
+ errs() << "Added abstract type to ST: " << T->getDescription() << "\n";
#endif
}
}
@@ -134,7 +146,7 @@ void TypeSymbolTable::insert(const std::string& Name, const Type* T) {
// This function is called when one of the types in the type plane are refined
void TypeSymbolTable::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
- sys::SmartScopedReader<true> Reader(&*TypeSymbolTableLock);
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
// Loop over all of the types in the symbol table, replacing any references
// to OldType with references to NewType. Note that there may be multiple
@@ -144,14 +156,14 @@ void TypeSymbolTable::refineAbstractType(const DerivedType *OldType,
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I->second == (Type*)OldType) { // FIXME when Types aren't const.
#if DEBUG_ABSTYPE
- cerr << "Removing type " << OldType->getDescription() << "\n";
+ errs() << "Removing type " << OldType->getDescription() << "\n";
#endif
OldType->removeAbstractTypeUser(this);
I->second = (Type*)NewType; // TODO FIXME when types aren't const
if (NewType->isAbstract()) {
#if DEBUG_ABSTYPE
- cerr << "Added type " << NewType->getDescription() << "\n";
+ errs() << "Added type " << NewType->getDescription() << "\n";
#endif
cast<DerivedType>(NewType)->addAbstractTypeUser(this);
}
@@ -165,21 +177,21 @@ void TypeSymbolTable::typeBecameConcrete(const DerivedType *AbsTy) {
// Loop over all of the types in the symbol table, dropping any abstract
// type user entries for AbsTy which occur because there are names for the
// type.
- sys::SmartScopedReader<true> Reader(&*TypeSymbolTableLock);
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
for (iterator TI = begin(), TE = end(); TI != TE; ++TI)
if (TI->second == const_cast<Type*>(static_cast<const Type*>(AbsTy)))
AbsTy->removeAbstractTypeUser(this);
}
static void DumpTypes(const std::pair<const std::string, const Type*>& T ) {
- cerr << " '" << T.first << "' = ";
+ errs() << " '" << T.first << "' = ";
T.second->dump();
- cerr << "\n";
+ errs() << "\n";
}
void TypeSymbolTable::dump() const {
- cerr << "TypeSymbolPlane: ";
- sys::SmartScopedReader<true> Reader(&*TypeSymbolTableLock);
+ errs() << "TypeSymbolPlane: ";
+ sys::SmartScopedReader<true> Reader(*TypeSymbolTableLock);
for_each(tmap.begin(), tmap.end(), DumpTypes);
}
diff --git a/lib/VMCore/TypesContext.h b/lib/VMCore/TypesContext.h
new file mode 100644
index 0000000..e7950bd
--- /dev/null
+++ b/lib/VMCore/TypesContext.h
@@ -0,0 +1,424 @@
+//===-- TypesContext.h - Types-related Context Internals ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various helper methods and classes used by
+// LLVMContextImpl for creating and managing types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TYPESCONTEXT_H
+#define LLVM_TYPESCONTEXT_H
+
+#include "llvm/ADT/STLExtras.h"
+#include <map>
+
+
+//===----------------------------------------------------------------------===//
+// Derived Type Factory Functions
+//===----------------------------------------------------------------------===//
+namespace llvm {
+
+/// getSubElementHash - Generate a hash value for all of the SubType's of this
+/// type. The hash value is guaranteed to be zero if any of the subtypes are
+/// an opaque type. Otherwise we try to mix them in as well as possible, but do
+/// not look at the subtype's subtype's.
+static unsigned getSubElementHash(const Type *Ty) {
+ unsigned HashVal = 0;
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I) {
+ HashVal *= 32;
+ const Type *SubTy = I->get();
+ HashVal += SubTy->getTypeID();
+ switch (SubTy->getTypeID()) {
+ default: break;
+ case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what.
+ case Type::IntegerTyID:
+ HashVal ^= (cast<IntegerType>(SubTy)->getBitWidth() << 3);
+ break;
+ case Type::FunctionTyID:
+ HashVal ^= cast<FunctionType>(SubTy)->getNumParams()*2 +
+ cast<FunctionType>(SubTy)->isVarArg();
+ break;
+ case Type::ArrayTyID:
+ HashVal ^= cast<ArrayType>(SubTy)->getNumElements();
+ break;
+ case Type::VectorTyID:
+ HashVal ^= cast<VectorType>(SubTy)->getNumElements();
+ break;
+ case Type::StructTyID:
+ HashVal ^= cast<StructType>(SubTy)->getNumElements();
+ break;
+ case Type::PointerTyID:
+ HashVal ^= cast<PointerType>(SubTy)->getAddressSpace();
+ break;
+ }
+ }
+ return HashVal ? HashVal : 1; // Do not return zero unless opaque subty.
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Type Factory...
+//
+class IntegerValType {
+ uint32_t bits;
+public:
+ IntegerValType(uint16_t numbits) : bits(numbits) {}
+
+ static IntegerValType get(const IntegerType *Ty) {
+ return IntegerValType(Ty->getBitWidth());
+ }
+
+ static unsigned hashTypeStructure(const IntegerType *Ty) {
+ return (unsigned)Ty->getBitWidth();
+ }
+
+ inline bool operator<(const IntegerValType &IVT) const {
+ return bits < IVT.bits;
+ }
+};
+
+// PointerValType - Define a class to hold the key that goes into the TypeMap
+//
+class PointerValType {
+ const Type *ValTy;
+ unsigned AddressSpace;
+public:
+ PointerValType(const Type *val, unsigned as) : ValTy(val), AddressSpace(as) {}
+
+ static PointerValType get(const PointerType *PT) {
+ return PointerValType(PT->getElementType(), PT->getAddressSpace());
+ }
+
+ static unsigned hashTypeStructure(const PointerType *PT) {
+ return getSubElementHash(PT);
+ }
+
+ bool operator<(const PointerValType &MTV) const {
+ if (AddressSpace < MTV.AddressSpace) return true;
+ return AddressSpace == MTV.AddressSpace && ValTy < MTV.ValTy;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Array Type Factory...
+//
+class ArrayValType {
+ const Type *ValTy;
+ uint64_t Size;
+public:
+ ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {}
+
+ static ArrayValType get(const ArrayType *AT) {
+ return ArrayValType(AT->getElementType(), AT->getNumElements());
+ }
+
+ static unsigned hashTypeStructure(const ArrayType *AT) {
+ return (unsigned)AT->getNumElements();
+ }
+
+ inline bool operator<(const ArrayValType &MTV) const {
+ if (Size < MTV.Size) return true;
+ return Size == MTV.Size && ValTy < MTV.ValTy;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Vector Type Factory...
+//
+class VectorValType {
+ const Type *ValTy;
+ unsigned Size;
+public:
+ VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
+
+ static VectorValType get(const VectorType *PT) {
+ return VectorValType(PT->getElementType(), PT->getNumElements());
+ }
+
+ static unsigned hashTypeStructure(const VectorType *PT) {
+ return PT->getNumElements();
+ }
+
+ inline bool operator<(const VectorValType &MTV) const {
+ if (Size < MTV.Size) return true;
+ return Size == MTV.Size && ValTy < MTV.ValTy;
+ }
+};
+
+// StructValType - Define a class to hold the key that goes into the TypeMap
+//
+class StructValType {
+ std::vector<const Type*> ElTypes;
+ bool packed;
+public:
+ StructValType(const std::vector<const Type*> &args, bool isPacked)
+ : ElTypes(args), packed(isPacked) {}
+
+ static StructValType get(const StructType *ST) {
+ std::vector<const Type *> ElTypes;
+ ElTypes.reserve(ST->getNumElements());
+ for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
+ ElTypes.push_back(ST->getElementType(i));
+
+ return StructValType(ElTypes, ST->isPacked());
+ }
+
+ static unsigned hashTypeStructure(const StructType *ST) {
+ return ST->getNumElements();
+ }
+
+ inline bool operator<(const StructValType &STV) const {
+ if (ElTypes < STV.ElTypes) return true;
+ else if (ElTypes > STV.ElTypes) return false;
+ else return (int)packed < (int)STV.packed;
+ }
+};
+
+// FunctionValType - Define a class to hold the key that goes into the TypeMap
+//
+class FunctionValType {
+ const Type *RetTy;
+ std::vector<const Type*> ArgTypes;
+ bool isVarArg;
+public:
+ FunctionValType(const Type *ret, const std::vector<const Type*> &args,
+ bool isVA) : RetTy(ret), ArgTypes(args), isVarArg(isVA) {}
+
+ static FunctionValType get(const FunctionType *FT);
+
+ static unsigned hashTypeStructure(const FunctionType *FT) {
+ unsigned Result = FT->getNumParams()*2 + FT->isVarArg();
+ return Result;
+ }
+
+ inline bool operator<(const FunctionValType &MTV) const {
+ if (RetTy < MTV.RetTy) return true;
+ if (RetTy > MTV.RetTy) return false;
+ if (isVarArg < MTV.isVarArg) return true;
+ if (isVarArg > MTV.isVarArg) return false;
+ if (ArgTypes < MTV.ArgTypes) return true;
+ if (ArgTypes > MTV.ArgTypes) return false;
+ return false;
+ }
+};
+
+class TypeMapBase {
+protected:
+ /// TypesByHash - Keep track of types by their structure hash value. Note
+ /// that we only keep track of types that have cycles through themselves in
+ /// this map.
+ ///
+ std::multimap<unsigned, PATypeHolder> TypesByHash;
+
+public:
+ ~TypeMapBase() {
+ // PATypeHolder won't destroy non-abstract types.
+ // We can't destroy them by simply iterating, because
+ // they may contain references to each-other.
+ for (std::multimap<unsigned, PATypeHolder>::iterator I
+ = TypesByHash.begin(), E = TypesByHash.end(); I != E; ++I) {
+ Type *Ty = const_cast<Type*>(I->second.Ty);
+ I->second.destroy();
+ // We can't invoke destroy or delete, because the type may
+ // contain references to already freed types.
+ // So we have to destruct the object the ugly way.
+ if (Ty) {
+ Ty->AbstractTypeUsers.clear();
+ static_cast<const Type*>(Ty)->Type::~Type();
+ operator delete(Ty);
+ }
+ }
+ }
+
+ void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
+ std::multimap<unsigned, PATypeHolder>::iterator I =
+ TypesByHash.lower_bound(Hash);
+ for (; I != TypesByHash.end() && I->first == Hash; ++I) {
+ if (I->second == Ty) {
+ TypesByHash.erase(I);
+ return;
+ }
+ }
+
+ // This must be do to an opaque type that was resolved. Switch down to hash
+ // code of zero.
+ assert(Hash && "Didn't find type entry!");
+ RemoveFromTypesByHash(0, Ty);
+ }
+
+ /// TypeBecameConcrete - When Ty gets a notification that TheType just became
+ /// concrete, drop uses and make Ty non-abstract if we should.
+ void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) {
+ // If the element just became concrete, remove 'ty' from the abstract
+ // type user list for the type. Do this for as many times as Ty uses
+ // OldType.
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I)
+ if (I->get() == TheType)
+ TheType->removeAbstractTypeUser(Ty);
+
+ // If the type is currently thought to be abstract, rescan all of our
+ // subtypes to see if the type has just become concrete! Note that this
+ // may send out notifications to AbstractTypeUsers that types become
+ // concrete.
+ if (Ty->isAbstract())
+ Ty->PromoteAbstractToConcrete();
+ }
+};
+
+// TypeMap - Make sure that only one instance of a particular type may be
+// created on any given run of the compiler... note that this involves updating
+// our map if an abstract type gets refined somehow.
+//
+template<class ValType, class TypeClass>
+class TypeMap : public TypeMapBase {
+ std::map<ValType, PATypeHolder> Map;
+public:
+ typedef typename std::map<ValType, PATypeHolder>::iterator iterator;
+ ~TypeMap() { print("ON EXIT"); }
+
+ inline TypeClass *get(const ValType &V) {
+ iterator I = Map.find(V);
+ return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0;
+ }
+
+ inline void add(const ValType &V, TypeClass *Ty) {
+ Map.insert(std::make_pair(V, Ty));
+
+ // If this type has a cycle, remember it.
+ TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty));
+ print("add");
+ }
+
+ /// RefineAbstractType - This method is called after we have merged a type
+ /// with another one. We must now either merge the type away with
+ /// some other type or reinstall it in the map with it's new configuration.
+ void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType,
+ const Type *NewType) {
+#ifdef DEBUG_MERGE_TYPES
+ DEBUG(errs() << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
+ << "], " << (void*)NewType << " [" << *NewType << "])\n");
+#endif
+
+ // Otherwise, we are changing one subelement type into another. Clearly the
+ // OldType must have been abstract, making us abstract.
+ assert(Ty->isAbstract() && "Refining a non-abstract type!");
+ assert(OldType != NewType);
+
+ // Make a temporary type holder for the type so that it doesn't disappear on
+ // us when we erase the entry from the map.
+ PATypeHolder TyHolder = Ty;
+
+ // The old record is now out-of-date, because one of the children has been
+ // updated. Remove the obsolete entry from the map.
+ unsigned NumErased = Map.erase(ValType::get(Ty));
+ assert(NumErased && "Element not found!"); NumErased = NumErased;
+
+ // Remember the structural hash for the type before we start hacking on it,
+ // in case we need it later.
+ unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
+
+ // Find the type element we are refining... and change it now!
+ for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i)
+ if (Ty->ContainedTys[i] == OldType)
+ Ty->ContainedTys[i] = NewType;
+ unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
+
+ // If there are no cycles going through this node, we can do a simple,
+ // efficient lookup in the map, instead of an inefficient nasty linear
+ // lookup.
+ if (!TypeHasCycleThroughItself(Ty)) {
+ typename std::map<ValType, PATypeHolder>::iterator I;
+ bool Inserted;
+
+ tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty));
+ if (!Inserted) {
+ // Refined to a different type altogether?
+ RemoveFromTypesByHash(OldTypeHash, Ty);
+
+ // We already have this type in the table. Get rid of the newly refined
+ // type.
+ TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
+ Ty->unlockedRefineAbstractTypeTo(NewTy);
+ return;
+ }
+ } else {
+ // Now we check to see if there is an existing entry in the table which is
+ // structurally identical to the newly refined type. If so, this type
+ // gets refined to the pre-existing type.
+ //
+ std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry;
+ tie(I, E) = TypesByHash.equal_range(NewTypeHash);
+ Entry = E;
+ for (; I != E; ++I) {
+ if (I->second == Ty) {
+ // Remember the position of the old type if we see it in our scan.
+ Entry = I;
+ } else {
+ if (TypesEqual(Ty, I->second)) {
+ TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
+
+ // Remove the old entry form TypesByHash. If the hash values differ
+ // now, remove it from the old place. Otherwise, continue scanning
+ // withing this hashcode to reduce work.
+ if (NewTypeHash != OldTypeHash) {
+ RemoveFromTypesByHash(OldTypeHash, Ty);
+ } else {
+ if (Entry == E) {
+ // Find the location of Ty in the TypesByHash structure if we
+ // haven't seen it already.
+ while (I->second != Ty) {
+ ++I;
+ assert(I != E && "Structure doesn't contain type??");
+ }
+ Entry = I;
+ }
+ TypesByHash.erase(Entry);
+ }
+ Ty->unlockedRefineAbstractTypeTo(NewTy);
+ return;
+ }
+ }
+ }
+
+ // If there is no existing type of the same structure, we reinsert an
+ // updated record into the map.
+ Map.insert(std::make_pair(ValType::get(Ty), Ty));
+ }
+
+ // If the hash codes differ, update TypesByHash
+ if (NewTypeHash != OldTypeHash) {
+ RemoveFromTypesByHash(OldTypeHash, Ty);
+ TypesByHash.insert(std::make_pair(NewTypeHash, Ty));
+ }
+
+ // If the type is currently thought to be abstract, rescan all of our
+ // subtypes to see if the type has just become concrete! Note that this
+ // may send out notifications to AbstractTypeUsers that types become
+ // concrete.
+ if (Ty->isAbstract())
+ Ty->PromoteAbstractToConcrete();
+ }
+
+ void print(const char *Arg) const {
+#ifdef DEBUG_MERGE_TYPES
+ DEBUG(errs() << "TypeMap<>::" << Arg << " table contents:\n");
+ unsigned i = 0;
+ for (typename std::map<ValType, PATypeHolder>::const_iterator I
+ = Map.begin(), E = Map.end(); I != E; ++I)
+ DEBUG(errs() << " " << (++i) << ". " << (void*)I->second.get() << " "
+ << *I->second.get() << "\n");
+#endif
+ }
+
+ void dump() const { print("dump output"); }
+};
+}
+
+#endif
diff --git a/lib/VMCore/Use.cpp b/lib/VMCore/Use.cpp
index b25415a..b7fd92f 100644
--- a/lib/VMCore/Use.cpp
+++ b/lib/VMCore/Use.cpp
@@ -128,7 +128,7 @@ void Use::zap(Use *Start, const Use *Stop, bool del) {
// AugmentedUse layout struct
//===----------------------------------------------------------------------===//
-struct AugmentedUse : Use {
+struct AugmentedUse : public Use {
PointerIntPair<User*, 1, Tag> ref;
AugmentedUse(); // not implemented
};
diff --git a/lib/VMCore/Value.cpp b/lib/VMCore/Value.cpp
index c952b78..ba72af6 100644
--- a/lib/VMCore/Value.cpp
+++ b/lib/VMCore/Value.cpp
@@ -11,17 +11,23 @@
//
//===----------------------------------------------------------------------===//
+#include "LLVMContextImpl.h"
#include "llvm/Constant.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InstrTypes.h"
#include "llvm/Instructions.h"
+#include "llvm/Operator.h"
#include "llvm/Module.h"
+#include "llvm/Metadata.h"
#include "llvm/ValueSymbolTable.h"
+#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
#include "llvm/System/RWMutex.h"
#include "llvm/System/Threading.h"
#include "llvm/ADT/DenseMap.h"
@@ -38,23 +44,31 @@ static inline const Type *checkType(const Type *Ty) {
}
Value::Value(const Type *ty, unsigned scid)
- : SubclassID(scid), HasValueHandle(0), SubclassData(0), VTy(checkType(ty)),
+ : SubclassID(scid), HasValueHandle(0), HasMetadata(0),
+ SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)),
UseList(0), Name(0) {
if (isa<CallInst>(this) || isa<InvokeInst>(this))
- assert((VTy->isFirstClassType() || VTy == Type::VoidTy ||
+ assert((VTy->isFirstClassType() ||
+ VTy == Type::getVoidTy(ty->getContext()) ||
isa<OpaqueType>(ty) || VTy->getTypeID() == Type::StructTyID) &&
"invalid CallInst type!");
else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
- assert((VTy->isFirstClassType() || VTy == Type::VoidTy ||
+ assert((VTy->isFirstClassType() ||
+ VTy == Type::getVoidTy(ty->getContext()) ||
isa<OpaqueType>(ty)) &&
"Cannot create non-first-class values except for constants!");
}
Value::~Value() {
+ if (HasMetadata) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsDeleted(this);
+ }
+
// Notify all ValueHandles (if present) that this value is going away.
if (HasValueHandle)
ValueHandleBase::ValueIsDeleted(this);
-
+
#ifndef NDEBUG // Only in -g mode...
// Check to make sure that there are no uses of this value that are still
// around when the value is destroyed. If there are, then we have a dangling
@@ -63,9 +77,9 @@ Value::~Value() {
// a <badref>
//
if (!use_empty()) {
- cerr << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
+ errs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
- cerr << "Use still stuck around after Def is destroyed:"
+ errs() << "Use still stuck around after Def is destroyed:"
<< **I << "\n";
}
#endif
@@ -75,7 +89,7 @@ Value::~Value() {
// at this point.
if (Name)
Name->Destroy();
-
+
// There should be no uses of this object anymore, remove it.
LeakDetector::removeGarbageObject(this);
}
@@ -128,61 +142,57 @@ static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
if (Function *PP = P->getParent())
ST = &PP->getValueSymbolTable();
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
- if (Function *P = BB->getParent())
+ if (Function *P = BB->getParent())
ST = &P->getValueSymbolTable();
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (Module *P = GV->getParent())
+ if (Module *P = GV->getParent())
ST = &P->getValueSymbolTable();
} else if (Argument *A = dyn_cast<Argument>(V)) {
- if (Function *P = A->getParent())
+ if (Function *P = A->getParent())
+ ST = &P->getValueSymbolTable();
+ } else if (NamedMDNode *N = dyn_cast<NamedMDNode>(V)) {
+ if (Module *P = N->getParent()) {
ST = &P->getValueSymbolTable();
- } else {
+ }
+ } else if (isa<MDString>(V))
+ return true;
+ else {
assert(isa<Constant>(V) && "Unknown value type!");
return true; // no name is setable for this.
}
return false;
}
-/// getNameStart - Return a pointer to a null terminated string for this name.
-/// Note that names can have null characters within the string as well as at
-/// their end. This always returns a non-null pointer.
-const char *Value::getNameStart() const {
- if (Name == 0) return "";
- return Name->getKeyData();
+StringRef Value::getName() const {
+ // Make sure the empty string is still a C string. For historical reasons,
+ // some clients want to call .data() on the result and expect it to be null
+ // terminated.
+ if (!Name) return StringRef("", 0);
+ return Name->getKey();
}
-/// getNameLen - Return the length of the string, correctly handling nul
-/// characters embedded into them.
-unsigned Value::getNameLen() const {
- return Name ? Name->getKeyLength() : 0;
+std::string Value::getNameStr() const {
+ return getName().str();
}
-/// isName - Return true if this value has the name specified by the provided
-/// nul terminated string.
-bool Value::isName(const char *N) const {
- unsigned InLen = strlen(N);
- return InLen == getNameLen() && memcmp(getNameStart(), N, InLen) == 0;
-}
+void Value::setName(const Twine &NewName) {
+ // Fast path for common IRBuilder case of setName("") when there is no name.
+ if (NewName.isTriviallyEmpty() && !hasName())
+ return;
+ SmallString<256> NameData;
+ NewName.toVector(NameData);
-std::string Value::getNameStr() const {
- if (Name == 0) return "";
- return std::string(Name->getKeyData(),
- Name->getKeyData()+Name->getKeyLength());
-}
+ const char *NameStr = NameData.data();
+ unsigned NameLen = NameData.size();
-void Value::setName(const std::string &name) {
- setName(&name[0], name.size());
-}
+ // Name isn't changing?
+ if (getName() == StringRef(NameStr, NameLen))
+ return;
-void Value::setName(const char *Name) {
- setName(Name, Name ? strlen(Name) : 0);
-}
+ assert(getType() != Type::getVoidTy(getContext()) &&
+ "Cannot assign a name to void values!");
-void Value::setName(const char *NameStr, unsigned NameLen) {
- if (NameLen == 0 && !hasName()) return;
- assert(getType() != Type::VoidTy && "Cannot assign a name to void values!");
-
// Get the symbol table to update for this object.
ValueSymbolTable *ST;
if (getSymTab(this, ST))
@@ -195,32 +205,22 @@ void Value::setName(const char *NameStr, unsigned NameLen) {
Name = 0;
return;
}
-
- if (Name) {
- // Name isn't changing?
- if (NameLen == Name->getKeyLength() &&
- !memcmp(Name->getKeyData(), NameStr, NameLen))
- return;
+
+ if (Name)
Name->Destroy();
- }
-
+
// NOTE: Could optimize for the case the name is shrinking to not deallocate
// then reallocated.
-
+
// Create the new name.
Name = ValueName::Create(NameStr, NameStr+NameLen);
Name->setValue(this);
return;
}
-
+
// NOTE: Could optimize for the case the name is shrinking to not deallocate
// then reallocated.
if (hasName()) {
- // Name isn't changing?
- if (NameLen == Name->getKeyLength() &&
- !memcmp(Name->getKeyData(), NameStr, NameLen))
- return;
-
// Remove old name.
ST->removeValueName(Name);
Name->Destroy();
@@ -231,12 +231,12 @@ void Value::setName(const char *NameStr, unsigned NameLen) {
}
// Name is changing to something new.
- Name = ST->createValueName(NameStr, NameLen, this);
+ Name = ST->createValueName(StringRef(NameStr, NameLen), this);
}
/// takeName - transfer the name from V to this value, setting V's name to
-/// empty. It is an error to call V->takeName(V).
+/// empty. It is an error to call V->takeName(V).
void Value::takeName(Value *V) {
ValueSymbolTable *ST = 0;
// If this value has a name, drop it.
@@ -245,36 +245,36 @@ void Value::takeName(Value *V) {
if (getSymTab(this, ST)) {
// We can't set a name on this value, but we need to clear V's name if
// it has one.
- if (V->hasName()) V->setName(0, 0);
+ if (V->hasName()) V->setName("");
return; // Cannot set a name on this value (e.g. constant).
}
-
+
// Remove old name.
if (ST)
ST->removeValueName(Name);
Name->Destroy();
Name = 0;
- }
-
+ }
+
// Now we know that this has no name.
-
+
// If V has no name either, we're done.
if (!V->hasName()) return;
-
+
// Get this's symtab if we didn't before.
if (!ST) {
if (getSymTab(this, ST)) {
// Clear V's name.
- V->setName(0, 0);
+ V->setName("");
return; // Cannot set a name on this value (e.g. constant).
}
}
-
+
// Get V's ST, this should always succed, because V has a name.
ValueSymbolTable *VST;
bool Failure = getSymTab(V, VST);
assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure;
-
+
// If these values are both in the same symtab, we can do this very fast.
// This works even if both values have no symtab yet.
if (ST == VST) {
@@ -284,16 +284,16 @@ void Value::takeName(Value *V) {
Name->setValue(this);
return;
}
-
+
// Otherwise, things are slightly more complex. Remove V's name from VST and
// then reinsert it into ST.
-
+
if (VST)
VST->removeValueName(V->Name);
Name = V->Name;
V->Name = 0;
Name->setValue(this);
-
+
if (ST)
ST->reinsertValue(this);
}
@@ -309,7 +309,11 @@ void Value::uncheckedReplaceAllUsesWith(Value *New) {
// Notify all ValueHandles (if present) that this value is going away.
if (HasValueHandle)
ValueHandleBase::ValueIsRAUWd(this, New);
-
+ if (HasMetadata) {
+ LLVMContext &Context = getContext();
+ Context.pImpl->TheMetadata.ValueIsRAUWd(this, New);
+ }
+
while (!use_empty()) {
Use &U = *UseList;
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
@@ -320,7 +324,7 @@ void Value::uncheckedReplaceAllUsesWith(Value *New) {
continue;
}
}
-
+
U.set(New);
}
}
@@ -339,23 +343,16 @@ Value *Value::stripPointerCasts() {
return this;
Value *V = this;
do {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- if (!CE->getOperand(i)->isNullValue())
- return V;
- V = CE->getOperand(0);
- } else if (CE->getOpcode() == Instruction::BitCast) {
- V = CE->getOperand(0);
- } else {
- return V;
- }
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
if (!GEP->hasAllZeroIndices())
return V;
- V = GEP->getOperand(0);
- } else if (BitCastInst *CI = dyn_cast<BitCastInst>(V)) {
- V = CI->getOperand(0);
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
+ return V;
+ V = GA->getAliasee();
} else {
return V;
}
@@ -369,15 +366,14 @@ Value *Value::getUnderlyingObject() {
Value *V = this;
unsigned MaxLookup = 6;
do {
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (!isa<BitCastInst>(I) && !isa<GetElementPtrInst>(I))
- return V;
- V = I->getOperand(0);
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() != Instruction::BitCast &&
- CE->getOpcode() != Instruction::GetElementPtr)
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden())
return V;
- V = CE->getOperand(0);
+ V = GA->getAliasee();
} else {
return V;
}
@@ -390,7 +386,7 @@ Value *Value::getUnderlyingObject() {
/// return the value in the PHI node corresponding to PredBB. If not, return
/// ourself. This is useful if you want to know the value something has in a
/// predecessor block.
-Value *Value::DoPHITranslation(const BasicBlock *CurBB,
+Value *Value::DoPHITranslation(const BasicBlock *CurBB,
const BasicBlock *PredBB) {
PHINode *PN = dyn_cast<PHINode>(this);
if (PN && PN->getParent() == CurBB)
@@ -398,22 +394,17 @@ Value *Value::DoPHITranslation(const BasicBlock *CurBB,
return this;
}
+LLVMContext &Value::getContext() const { return VTy->getContext(); }
+
//===----------------------------------------------------------------------===//
// ValueHandleBase Class
//===----------------------------------------------------------------------===//
-/// ValueHandles - This map keeps track of all of the value handles that are
-/// watching a Value*. The Value::HasValueHandle bit is used to know whether or
-/// not a value has an entry in this map.
-typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
-static ManagedStatic<ValueHandlesTy> ValueHandles;
-static ManagedStatic<sys::SmartRWMutex<true> > ValueHandlesLock;
-
/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
/// List is known to point into the existing use list.
void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
assert(List && "Handle list is null?");
-
+
// Splice ourselves into the list.
Next = *List;
*List = this;
@@ -424,43 +415,54 @@ void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
}
}
+void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
+ assert(List && "Must insert after existing node");
+
+ Next = List->Next;
+ setPrevPtr(&List->Next);
+ List->Next = this;
+ if (Next)
+ Next->setPrevPtr(&Next);
+}
+
/// AddToUseList - Add this ValueHandle to the use list for VP.
void ValueHandleBase::AddToUseList() {
assert(VP && "Null pointer doesn't have a use list!");
+
+ LLVMContextImpl *pImpl = VP->getContext().pImpl;
+
if (VP->HasValueHandle) {
// If this value already has a ValueHandle, then it must be in the
// ValueHandles map already.
- sys::SmartScopedReader<true> Reader(&*ValueHandlesLock);
- ValueHandleBase *&Entry = (*ValueHandles)[VP];
+ ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
assert(Entry != 0 && "Value doesn't have any handles?");
AddToExistingUseList(&Entry);
return;
}
-
+
// Ok, it doesn't have any handles yet, so we must insert it into the
// DenseMap. However, doing this insertion could cause the DenseMap to
// reallocate itself, which would invalidate all of the PrevP pointers that
// point into the old table. Handle this by checking for reallocation and
// updating the stale pointers only if needed.
- sys::SmartScopedWriter<true> Writer(&*ValueHandlesLock);
- ValueHandlesTy &Handles = *ValueHandles;
+ DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
-
+
ValueHandleBase *&Entry = Handles[VP];
assert(Entry == 0 && "Value really did already have handles?");
AddToExistingUseList(&Entry);
VP->HasValueHandle = true;
-
+
// If reallocation didn't happen or if this was the first insertion, don't
// walk the table.
- if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
+ if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
Handles.size() == 1) {
return;
}
-
+
// Okay, reallocation did happen. Fix the Prev Pointers.
- for (ValueHandlesTy::iterator I = Handles.begin(), E = Handles.end();
- I != E; ++I) {
+ for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
+ E = Handles.end(); I != E; ++I) {
assert(I->second && I->first == I->second->VP && "List invariant broken!");
I->second->setPrevPtr(&I->second);
}
@@ -473,19 +475,19 @@ void ValueHandleBase::RemoveFromUseList() {
// Unlink this from its use list.
ValueHandleBase **PrevPtr = getPrevPtr();
assert(*PrevPtr == this && "List invariant broken");
-
+
*PrevPtr = Next;
if (Next) {
assert(Next->getPrevPtr() == &Next && "List invariant broken");
Next->setPrevPtr(PrevPtr);
return;
}
-
+
// If the Next pointer was null, then it is possible that this was the last
// ValueHandle watching VP. If so, delete its entry from the ValueHandles
// map.
- sys::SmartScopedWriter<true> Writer(&*ValueHandlesLock);
- ValueHandlesTy &Handles = *ValueHandles;
+ LLVMContextImpl *pImpl = VP->getContext().pImpl;
+ DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
Handles.erase(VP);
VP->HasValueHandle = false;
@@ -498,67 +500,91 @@ void ValueHandleBase::ValueIsDeleted(Value *V) {
// Get the linked list base, which is guaranteed to exist since the
// HasValueHandle flag is set.
- ValueHandlesLock->reader_acquire();
- ValueHandleBase *Entry = (*ValueHandles)[V];
- ValueHandlesLock->reader_release();
+ LLVMContextImpl *pImpl = V->getContext().pImpl;
+ ValueHandleBase *Entry = pImpl->ValueHandles[V];
assert(Entry && "Value bit set but no entries exist");
-
- while (Entry) {
- // Advance pointer to avoid invalidation.
- ValueHandleBase *ThisNode = Entry;
- Entry = Entry->Next;
-
- switch (ThisNode->getKind()) {
+
+ // We use a local ValueHandleBase as an iterator so that
+ // ValueHandles can add and remove themselves from the list without
+ // breaking our iteration. This is not really an AssertingVH; we
+ // just have to give ValueHandleBase some kind.
+ for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
+ Iterator.RemoveFromUseList();
+ Iterator.AddToExistingUseListAfter(Entry);
+ assert(Entry->Next == &Iterator && "Loop invariant broken.");
+
+ switch (Entry->getKind()) {
case Assert:
-#ifndef NDEBUG // Only in -g mode...
- cerr << "While deleting: " << *V->getType() << " %" << V->getNameStr()
- << "\n";
-#endif
- cerr << "An asserting value handle still pointed to this value!\n";
- abort();
+ break;
+ case Tracking:
+ // Mark that this value has been deleted by setting it to an invalid Value
+ // pointer.
+ Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
+ break;
case Weak:
// Weak just goes to null, which will unlink it from the list.
- ThisNode->operator=(0);
+ Entry->operator=(0);
break;
case Callback:
// Forward to the subclass's implementation.
- static_cast<CallbackVH*>(ThisNode)->deleted();
+ static_cast<CallbackVH*>(Entry)->deleted();
break;
}
}
-
- // All callbacks and weak references should be dropped by now.
- assert(!V->HasValueHandle && "All references to V were not removed?");
+
+ // All callbacks, weak references, and assertingVHs should be dropped by now.
+ if (V->HasValueHandle) {
+#ifndef NDEBUG // Only in +Asserts mode...
+ errs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
+ << "\n";
+ if (pImpl->ValueHandles[V]->getKind() == Assert)
+ llvm_unreachable("An asserting value handle still pointed to this"
+ " value!");
+
+#endif
+ llvm_unreachable("All references to V were not removed?");
+ }
}
void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
assert(Old != New && "Changing value into itself!");
-
+
// Get the linked list base, which is guaranteed to exist since the
// HasValueHandle flag is set.
- ValueHandlesLock->reader_acquire();
- ValueHandleBase *Entry = (*ValueHandles)[Old];
- ValueHandlesLock->reader_release();
+ LLVMContextImpl *pImpl = Old->getContext().pImpl;
+ ValueHandleBase *Entry = pImpl->ValueHandles[Old];
+
assert(Entry && "Value bit set but no entries exist");
-
- while (Entry) {
- // Advance pointer to avoid invalidation.
- ValueHandleBase *ThisNode = Entry;
- Entry = Entry->Next;
-
- switch (ThisNode->getKind()) {
+
+ // We use a local ValueHandleBase as an iterator so that
+ // ValueHandles can add and remove themselves from the list without
+ // breaking our iteration. This is not really an AssertingVH; we
+ // just have to give ValueHandleBase some kind.
+ for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
+ Iterator.RemoveFromUseList();
+ Iterator.AddToExistingUseListAfter(Entry);
+ assert(Entry->Next == &Iterator && "Loop invariant broken.");
+
+ switch (Entry->getKind()) {
case Assert:
// Asserting handle does not follow RAUW implicitly.
break;
+ case Tracking:
+ // Tracking goes to new value like a WeakVH. Note that this may make it
+ // something incompatible with its templated type. We don't want to have a
+ // virtual (or inline) interface to handle this though, so instead we make
+ // the TrackingVH accessors guarantee that a client never sees this value.
+
+ // FALLTHROUGH
case Weak:
// Weak goes to the new value, which will unlink it from Old's list.
- ThisNode->operator=(New);
+ Entry->operator=(New);
break;
case Callback:
// Forward to the subclass's implementation.
- static_cast<CallbackVH*>(ThisNode)->allUsesReplacedWith(New);
+ static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
break;
}
}
@@ -580,7 +606,7 @@ void User::replaceUsesOfWith(Value *From, Value *To) {
if (From == To) return; // Duh what?
assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
- "Cannot call User::replaceUsesofWith on a constant!");
+ "Cannot call User::replaceUsesOfWith on a constant!");
for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
if (getOperand(i) == From) { // Is This operand is pointing to oldval?
@@ -590,4 +616,3 @@ void User::replaceUsesOfWith(Value *From, Value *To) {
setOperand(i, To); // Fix it now...
}
}
-
diff --git a/lib/VMCore/ValueSymbolTable.cpp b/lib/VMCore/ValueSymbolTable.cpp
index eee18a1..7765a98 100644
--- a/lib/VMCore/ValueSymbolTable.cpp
+++ b/lib/VMCore/ValueSymbolTable.cpp
@@ -17,36 +17,20 @@
#include "llvm/ValueSymbolTable.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Class destructor
ValueSymbolTable::~ValueSymbolTable() {
#ifndef NDEBUG // Only do this in -g mode...
for (iterator VI = vmap.begin(), VE = vmap.end(); VI != VE; ++VI)
- cerr << "Value still in symbol table! Type = '"
- << VI->getValue()->getType()->getDescription() << "' Name = '"
- << VI->getKeyData() << "'\n";
+ errs() << "Value still in symbol table! Type = '"
+ << VI->getValue()->getType()->getDescription() << "' Name = '"
+ << VI->getKeyData() << "'\n";
assert(vmap.empty() && "Values remain in symbol table!");
#endif
}
-// lookup a value - Returns null on failure...
-//
-Value *ValueSymbolTable::lookup(const std::string &Name) const {
- const_iterator VI = vmap.find(Name.data(), Name.data() + Name.size());
- if (VI != vmap.end()) // We found the symbol
- return VI->getValue();
- return 0;
-}
-
-Value *ValueSymbolTable::lookup(const char *NameBegin,
- const char *NameEnd) const {
- const_iterator VI = vmap.find(NameBegin, NameEnd);
- if (VI != vmap.end()) // We found the symbol
- return VI->getValue();
- return 0;
-}
-
// Insert a value into the symbol table with the specified name...
//
void ValueSymbolTable::reinsertValue(Value* V) {
@@ -54,37 +38,38 @@ void ValueSymbolTable::reinsertValue(Value* V) {
// Try inserting the name, assuming it won't conflict.
if (vmap.insert(V->Name)) {
- //DOUT << " Inserted value: " << V->Name << ": " << *V << "\n";
+ //DEBUG(errs() << " Inserted value: " << V->Name << ": " << *V << "\n");
return;
}
// Otherwise, there is a naming conflict. Rename this value.
- SmallString<128> UniqueName(V->getNameStart(), V->getNameEnd());
+ SmallString<256> UniqueName(V->getName().begin(), V->getName().end());
// The name is too already used, just free it so we can allocate a new name.
V->Name->Destroy();
unsigned BaseSize = UniqueName.size();
while (1) {
- // Trim any suffix off.
+ // Trim any suffix off and append the next number.
UniqueName.resize(BaseSize);
- UniqueName.append_uint_32(++LastUnique);
+ raw_svector_ostream(UniqueName) << ++LastUnique;
+
// Try insert the vmap entry with this suffix.
ValueName &NewName =
- vmap.GetOrCreateValue(UniqueName.data(),
- UniqueName.data() + UniqueName.size());
+ vmap.GetOrCreateValue(StringRef(UniqueName.data(),
+ UniqueName.size()));
if (NewName.getValue() == 0) {
// Newly inserted name. Success!
NewName.setValue(V);
V->Name = &NewName;
- //DEBUG(DOUT << " Inserted value: " << UniqueName << ": " << *V << "\n");
+ //DEBUG(errs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
return;
}
}
}
void ValueSymbolTable::removeValueName(ValueName *V) {
- //DEBUG(DOUT << " Removing Value: " << V->getKeyData() << "\n");
+ //DEBUG(errs() << " Removing Value: " << V->getKeyData() << "\n");
// Remove the value from the symbol table.
vmap.remove(V);
}
@@ -92,33 +77,32 @@ void ValueSymbolTable::removeValueName(ValueName *V) {
/// createValueName - This method attempts to create a value name and insert
/// it into the symbol table with the specified name. If it conflicts, it
/// auto-renames the name and returns that instead.
-ValueName *ValueSymbolTable::createValueName(const char *NameStart,
- unsigned NameLen, Value *V) {
+ValueName *ValueSymbolTable::createValueName(const StringRef &Name, Value *V) {
// In the common case, the name is not already in the symbol table.
- ValueName &Entry = vmap.GetOrCreateValue(NameStart, NameStart+NameLen);
+ ValueName &Entry = vmap.GetOrCreateValue(Name);
if (Entry.getValue() == 0) {
Entry.setValue(V);
- //DEBUG(DOUT << " Inserted value: " << Entry.getKeyData() << ": "
+ //DEBUG(errs() << " Inserted value: " << Entry.getKeyData() << ": "
// << *V << "\n");
return &Entry;
}
// Otherwise, there is a naming conflict. Rename this value.
- SmallString<128> UniqueName(NameStart, NameStart+NameLen);
+ SmallString<128> UniqueName(Name.begin(), Name.end());
while (1) {
- // Trim any suffix off.
- UniqueName.resize(NameLen);
- UniqueName.append_uint_32(++LastUnique);
+ // Trim any suffix off and append the next number.
+ UniqueName.resize(Name.size());
+ raw_svector_ostream(UniqueName) << ++LastUnique;
// Try insert the vmap entry with this suffix.
ValueName &NewName =
- vmap.GetOrCreateValue(UniqueName.data(),
- UniqueName.data() + UniqueName.size());
+ vmap.GetOrCreateValue(StringRef(UniqueName.data(),
+ UniqueName.size()));
if (NewName.getValue() == 0) {
// Newly inserted name. Success!
NewName.setValue(V);
- //DEBUG(DOUT << " Inserted value: " << UniqueName << ": " << *V << "\n");
+ //DEBUG(errs() << " Inserted value: " << UniqueName << ": " << *V << "\n");
return &NewName;
}
}
@@ -128,10 +112,10 @@ ValueName *ValueSymbolTable::createValueName(const char *NameStart,
// dump - print out the symbol table
//
void ValueSymbolTable::dump() const {
- //DOUT << "ValueSymbolTable:\n";
+ //DEBUG(errs() << "ValueSymbolTable:\n");
for (const_iterator I = begin(), E = end(); I != E; ++I) {
- //DOUT << " '" << I->getKeyData() << "' = ";
+ //DEBUG(errs() << " '" << I->getKeyData() << "' = ");
I->getValue()->dump();
- //DOUT << "\n";
+ //DEBUG(errs() << "\n");
}
}
diff --git a/lib/VMCore/ValueTypes.cpp b/lib/VMCore/ValueTypes.cpp
index 2d207ee..7f9a6cd 100644
--- a/lib/VMCore/ValueTypes.cpp
+++ b/lib/VMCore/ValueTypes.cpp
@@ -1,4 +1,4 @@
-//===----------- ValueTypes.cpp - Implementation of MVT methods -----------===//
+//===----------- ValueTypes.cpp - Implementation of EVT methods -----------===//
//
// The LLVM Compiler Infrastructure
//
@@ -13,62 +13,65 @@
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
-MVT MVT::getExtendedIntegerVT(unsigned BitWidth) {
- MVT VT;
- VT.LLVMTy = IntegerType::get(BitWidth);
+EVT EVT::getExtendedIntegerVT(LLVMContext &Context, unsigned BitWidth) {
+ EVT VT;
+ VT.LLVMTy = IntegerType::get(Context, BitWidth);
assert(VT.isExtended() && "Type is not extended!");
return VT;
}
-MVT MVT::getExtendedVectorVT(MVT VT, unsigned NumElements) {
- MVT ResultVT;
- ResultVT.LLVMTy = VectorType::get(VT.getTypeForMVT(), NumElements);
+EVT EVT::getExtendedVectorVT(LLVMContext &Context, EVT VT,
+ unsigned NumElements) {
+ EVT ResultVT;
+ ResultVT.LLVMTy = VectorType::get(VT.getTypeForEVT(Context), NumElements);
assert(ResultVT.isExtended() && "Type is not extended!");
return ResultVT;
}
-bool MVT::isExtendedFloatingPoint() const {
+bool EVT::isExtendedFloatingPoint() const {
assert(isExtended() && "Type is not extended!");
return LLVMTy->isFPOrFPVector();
}
-bool MVT::isExtendedInteger() const {
+bool EVT::isExtendedInteger() const {
assert(isExtended() && "Type is not extended!");
return LLVMTy->isIntOrIntVector();
}
-bool MVT::isExtendedVector() const {
+bool EVT::isExtendedVector() const {
assert(isExtended() && "Type is not extended!");
return isa<VectorType>(LLVMTy);
}
-bool MVT::isExtended64BitVector() const {
+bool EVT::isExtended64BitVector() const {
return isExtendedVector() && getSizeInBits() == 64;
}
-bool MVT::isExtended128BitVector() const {
+bool EVT::isExtended128BitVector() const {
return isExtendedVector() && getSizeInBits() == 128;
}
-bool MVT::isExtended256BitVector() const {
+bool EVT::isExtended256BitVector() const {
return isExtendedVector() && getSizeInBits() == 256;
}
-MVT MVT::getExtendedVectorElementType() const {
+EVT EVT::getExtendedVectorElementType() const {
assert(isExtended() && "Type is not extended!");
- return MVT::getMVT(cast<VectorType>(LLVMTy)->getElementType());
+ return EVT::getEVT(cast<VectorType>(LLVMTy)->getElementType());
}
-unsigned MVT::getExtendedVectorNumElements() const {
+unsigned EVT::getExtendedVectorNumElements() const {
assert(isExtended() && "Type is not extended!");
return cast<VectorType>(LLVMTy)->getNumElements();
}
-unsigned MVT::getExtendedSizeInBits() const {
+unsigned EVT::getExtendedSizeInBits() const {
assert(isExtended() && "Type is not extended!");
if (const IntegerType *ITy = dyn_cast<IntegerType>(LLVMTy))
return ITy->getBitWidth();
@@ -78,16 +81,16 @@ unsigned MVT::getExtendedSizeInBits() const {
return 0; // Suppress warnings.
}
-/// getMVTString - This function returns value type as a string, e.g. "i32".
-std::string MVT::getMVTString() const {
- switch (V) {
+/// getEVTString - This function returns value type as a string, e.g. "i32".
+std::string EVT::getEVTString() const {
+ switch (V.SimpleTy) {
default:
if (isVector())
return "v" + utostr(getVectorNumElements()) +
- getVectorElementType().getMVTString();
+ getVectorElementType().getEVTString();
if (isInteger())
return "i" + utostr(getSizeInBits());
- assert(0 && "Invalid MVT!");
+ llvm_unreachable("Invalid EVT!");
return "?";
case MVT::i1: return "i1";
case MVT::i8: return "i8";
@@ -113,14 +116,12 @@ std::string MVT::getMVTString() const {
case MVT::v8i16: return "v8i16";
case MVT::v16i16: return "v16i16";
case MVT::v2i32: return "v2i32";
- case MVT::v3i32: return "v3i32";
case MVT::v4i32: return "v4i32";
case MVT::v8i32: return "v8i32";
case MVT::v1i64: return "v1i64";
case MVT::v2i64: return "v2i64";
case MVT::v4i64: return "v4i64";
case MVT::v2f32: return "v2f32";
- case MVT::v3f32: return "v3f32";
case MVT::v4f32: return "v4f32";
case MVT::v8f32: return "v8f32";
case MVT::v2f64: return "v2f64";
@@ -128,73 +129,72 @@ std::string MVT::getMVTString() const {
}
}
-/// getTypeForMVT - This method returns an LLVM type corresponding to the
-/// specified MVT. For integer types, this returns an unsigned type. Note
+/// getTypeForEVT - This method returns an LLVM type corresponding to the
+/// specified EVT. For integer types, this returns an unsigned type. Note
/// that this will abort for types that cannot be represented.
-const Type *MVT::getTypeForMVT() const {
- switch (V) {
+const Type *EVT::getTypeForEVT(LLVMContext &Context) const {
+ switch (V.SimpleTy) {
default:
assert(isExtended() && "Type is not extended!");
return LLVMTy;
- case MVT::isVoid: return Type::VoidTy;
- case MVT::i1: return Type::Int1Ty;
- case MVT::i8: return Type::Int8Ty;
- case MVT::i16: return Type::Int16Ty;
- case MVT::i32: return Type::Int32Ty;
- case MVT::i64: return Type::Int64Ty;
- case MVT::i128: return IntegerType::get(128);
- case MVT::f32: return Type::FloatTy;
- case MVT::f64: return Type::DoubleTy;
- case MVT::f80: return Type::X86_FP80Ty;
- case MVT::f128: return Type::FP128Ty;
- case MVT::ppcf128: return Type::PPC_FP128Ty;
- case MVT::v2i8: return VectorType::get(Type::Int8Ty, 2);
- case MVT::v4i8: return VectorType::get(Type::Int8Ty, 4);
- case MVT::v8i8: return VectorType::get(Type::Int8Ty, 8);
- case MVT::v16i8: return VectorType::get(Type::Int8Ty, 16);
- case MVT::v32i8: return VectorType::get(Type::Int8Ty, 32);
- case MVT::v2i16: return VectorType::get(Type::Int16Ty, 2);
- case MVT::v4i16: return VectorType::get(Type::Int16Ty, 4);
- case MVT::v8i16: return VectorType::get(Type::Int16Ty, 16);
- case MVT::v16i16: return VectorType::get(Type::Int16Ty, 8);
- case MVT::v2i32: return VectorType::get(Type::Int32Ty, 2);
- case MVT::v3i32: return VectorType::get(Type::Int32Ty, 3);
- case MVT::v4i32: return VectorType::get(Type::Int32Ty, 4);
- case MVT::v8i32: return VectorType::get(Type::Int32Ty, 8);
- case MVT::v1i64: return VectorType::get(Type::Int64Ty, 1);
- case MVT::v2i64: return VectorType::get(Type::Int64Ty, 2);
- case MVT::v4i64: return VectorType::get(Type::Int64Ty, 4);
- case MVT::v2f32: return VectorType::get(Type::FloatTy, 2);
- case MVT::v3f32: return VectorType::get(Type::FloatTy, 3);
- case MVT::v4f32: return VectorType::get(Type::FloatTy, 4);
- case MVT::v8f32: return VectorType::get(Type::FloatTy, 8);
- case MVT::v2f64: return VectorType::get(Type::DoubleTy, 2);
- case MVT::v4f64: return VectorType::get(Type::DoubleTy, 4);
+ case MVT::isVoid: return Type::getVoidTy(Context);
+ case MVT::i1: return Type::getInt1Ty(Context);
+ case MVT::i8: return Type::getInt8Ty(Context);
+ case MVT::i16: return Type::getInt16Ty(Context);
+ case MVT::i32: return Type::getInt32Ty(Context);
+ case MVT::i64: return Type::getInt64Ty(Context);
+ case MVT::i128: return IntegerType::get(Context, 128);
+ case MVT::f32: return Type::getFloatTy(Context);
+ case MVT::f64: return Type::getDoubleTy(Context);
+ case MVT::f80: return Type::getX86_FP80Ty(Context);
+ case MVT::f128: return Type::getFP128Ty(Context);
+ case MVT::ppcf128: return Type::getPPC_FP128Ty(Context);
+ case MVT::v2i8: return VectorType::get(Type::getInt8Ty(Context), 2);
+ case MVT::v4i8: return VectorType::get(Type::getInt8Ty(Context), 4);
+ case MVT::v8i8: return VectorType::get(Type::getInt8Ty(Context), 8);
+ case MVT::v16i8: return VectorType::get(Type::getInt8Ty(Context), 16);
+ case MVT::v32i8: return VectorType::get(Type::getInt8Ty(Context), 32);
+ case MVT::v2i16: return VectorType::get(Type::getInt16Ty(Context), 2);
+ case MVT::v4i16: return VectorType::get(Type::getInt16Ty(Context), 4);
+ case MVT::v8i16: return VectorType::get(Type::getInt16Ty(Context), 8);
+ case MVT::v16i16: return VectorType::get(Type::getInt16Ty(Context), 16);
+ case MVT::v2i32: return VectorType::get(Type::getInt32Ty(Context), 2);
+ case MVT::v4i32: return VectorType::get(Type::getInt32Ty(Context), 4);
+ case MVT::v8i32: return VectorType::get(Type::getInt32Ty(Context), 8);
+ case MVT::v1i64: return VectorType::get(Type::getInt64Ty(Context), 1);
+ case MVT::v2i64: return VectorType::get(Type::getInt64Ty(Context), 2);
+ case MVT::v4i64: return VectorType::get(Type::getInt64Ty(Context), 4);
+ case MVT::v2f32: return VectorType::get(Type::getFloatTy(Context), 2);
+ case MVT::v4f32: return VectorType::get(Type::getFloatTy(Context), 4);
+ case MVT::v8f32: return VectorType::get(Type::getFloatTy(Context), 8);
+ case MVT::v2f64: return VectorType::get(Type::getDoubleTy(Context), 2);
+ case MVT::v4f64: return VectorType::get(Type::getDoubleTy(Context), 4);
+ case MVT::Metadata: return Type::getMetadataTy(Context);
}
}
-/// getMVT - Return the value type corresponding to the specified type. This
+/// getEVT - Return the value type corresponding to the specified type. This
/// returns all pointers as MVT::iPTR. If HandleUnknown is true, unknown types
/// are returned as Other, otherwise they are invalid.
-MVT MVT::getMVT(const Type *Ty, bool HandleUnknown){
+EVT EVT::getEVT(const Type *Ty, bool HandleUnknown){
switch (Ty->getTypeID()) {
default:
- if (HandleUnknown) return MVT::Other;
- assert(0 && "Unknown type!");
+ if (HandleUnknown) return MVT(MVT::Other);
+ llvm_unreachable("Unknown type!");
return MVT::isVoid;
case Type::VoidTyID:
return MVT::isVoid;
case Type::IntegerTyID:
- return getIntegerVT(cast<IntegerType>(Ty)->getBitWidth());
- case Type::FloatTyID: return MVT::f32;
- case Type::DoubleTyID: return MVT::f64;
- case Type::X86_FP80TyID: return MVT::f80;
- case Type::FP128TyID: return MVT::f128;
- case Type::PPC_FP128TyID: return MVT::ppcf128;
- case Type::PointerTyID: return MVT::iPTR;
+ return getIntegerVT(Ty->getContext(), cast<IntegerType>(Ty)->getBitWidth());
+ case Type::FloatTyID: return MVT(MVT::f32);
+ case Type::DoubleTyID: return MVT(MVT::f64);
+ case Type::X86_FP80TyID: return MVT(MVT::f80);
+ case Type::FP128TyID: return MVT(MVT::f128);
+ case Type::PPC_FP128TyID: return MVT(MVT::ppcf128);
+ case Type::PointerTyID: return MVT(MVT::iPTR);
case Type::VectorTyID: {
const VectorType *VTy = cast<VectorType>(Ty);
- return getVectorVT(getMVT(VTy->getElementType(), false),
+ return getVectorVT(Ty->getContext(), getEVT(VTy->getElementType(), false),
VTy->getNumElements());
}
}
diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp
index 10816e6..75ea4c3 100644
--- a/lib/VMCore/Verifier.cpp
+++ b/lib/VMCore/Verifier.cpp
@@ -45,26 +45,27 @@
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
-#include "llvm/MDNode.h"
+#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
+#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
-#include <sstream>
#include <cstdarg>
using namespace llvm;
@@ -85,15 +86,15 @@ namespace { // Anonymous namespace for class
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
- cerr << "Basic Block does not have terminator!\n";
- WriteAsOperand(*cerr, I, true);
- cerr << "\n";
+ errs() << "Basic Block does not have terminator!\n";
+ WriteAsOperand(errs(), I, true);
+ errs() << "\n";
Broken = true;
}
}
if (Broken)
- abort();
+ llvm_report_error("Broken module, no Basic Block terminator!");
return false;
}
@@ -106,8 +107,55 @@ PreVer("preverify", "Preliminary module verification");
static const PassInfo *const PreVerifyID = &PreVer;
namespace {
- struct VISIBILITY_HIDDEN
- Verifier : public FunctionPass, InstVisitor<Verifier> {
+ class TypeSet : public AbstractTypeUser {
+ public:
+ TypeSet() {}
+
+ /// Insert a type into the set of types.
+ bool insert(const Type *Ty) {
+ if (!Types.insert(Ty))
+ return false;
+ if (Ty->isAbstract())
+ Ty->addAbstractTypeUser(this);
+ return true;
+ }
+
+ // Remove ourselves as abstract type listeners for any types that remain
+ // abstract when the TypeSet is destroyed.
+ ~TypeSet() {
+ for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
+ E = Types.end(); I != E; ++I) {
+ const Type *Ty = *I;
+ if (Ty->isAbstract())
+ Ty->removeAbstractTypeUser(this);
+ }
+ }
+
+ // Abstract type user interface.
+
+ /// Remove types from the set when refined. Do not insert the type it was
+ /// refined to because that type hasn't been verified yet.
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ Types.remove(OldTy);
+ OldTy->removeAbstractTypeUser(this);
+ }
+
+ /// Stop listening for changes to a type which is no longer abstract.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {}
+
+ private:
+ SmallSetVector<const Type *, 16> Types;
+
+ // Disallow copying.
+ TypeSet(const TypeSet &);
+ TypeSet &operator=(const TypeSet &);
+ };
+
+ struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
static char ID; // Pass ID, replacement for typeid
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
@@ -115,7 +163,9 @@ namespace {
// What to do if verification fails.
Module *Mod; // Module we are verifying right now
DominatorTree *DT; // Dominator Tree, caution can be null!
- std::stringstream msgs; // A stringstream to collect messages
+
+ std::string Messages;
+ raw_string_ostream MessagesStr;
/// InstInThisBlock - when verifying a basic block, keep track of all of the
/// instructions we have seen so far. This allows us to do efficient
@@ -123,23 +173,26 @@ namespace {
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
+ /// Types - keep track of the types that have been checked already.
+ TypeSet Types;
+
Verifier()
: FunctionPass(&ID),
Broken(false), RealPass(true), action(AbortProcessAction),
- DT(0), msgs( std::ios::app | std::ios::out ) {}
+ DT(0), MessagesStr(Messages) {}
explicit Verifier(VerifierFailureAction ctn)
: FunctionPass(&ID),
Broken(false), RealPass(true), action(ctn), DT(0),
- msgs( std::ios::app | std::ios::out ) {}
+ MessagesStr(Messages) {}
explicit Verifier(bool AB)
: FunctionPass(&ID),
Broken(false), RealPass(true),
action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
- msgs( std::ios::app | std::ios::out ) {}
+ MessagesStr(Messages) {}
explicit Verifier(DominatorTree &dt)
: FunctionPass(&ID),
Broken(false), RealPass(false), action(PrintMessageAction),
- DT(&dt), msgs( std::ios::app | std::ios::out ) {}
+ DT(&dt), MessagesStr(Messages) {}
bool doInitialization(Module &M) {
@@ -205,19 +258,20 @@ namespace {
///
bool abortIfBroken() {
if (!Broken) return false;
- msgs << "Broken module found, ";
+ MessagesStr << "Broken module found, ";
switch (action) {
- default: assert(0 && "Unknown action");
+ default: llvm_unreachable("Unknown action");
case AbortProcessAction:
- msgs << "compilation aborted!\n";
- cerr << msgs.str();
+ MessagesStr << "compilation aborted!\n";
+ errs() << MessagesStr.str();
+ // Client should choose different reaction if abort is not desired
abort();
case PrintMessageAction:
- msgs << "verification continues.\n";
- cerr << msgs.str();
+ MessagesStr << "verification continues.\n";
+ errs() << MessagesStr.str();
return false;
case ReturnStatusAction:
- msgs << "compilation terminated.\n";
+ MessagesStr << "compilation terminated.\n";
return true;
}
}
@@ -231,9 +285,9 @@ namespace {
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
using InstVisitor<Verifier>::visit;
-
+
void visit(Instruction &I);
-
+
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
@@ -280,32 +334,32 @@ namespace {
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
+ void VerifyType(const Type *Ty);
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
- msgs << *V;
+ MessagesStr << *V;
} else {
- WriteAsOperand(msgs, V, true, Mod);
- msgs << "\n";
+ WriteAsOperand(MessagesStr, V, true, Mod);
+ MessagesStr << "\n";
}
}
void WriteType(const Type *T) {
if (!T) return;
- raw_os_ostream RO(msgs);
- RO << ' ';
- WriteTypeSymbolic(RO, T, Mod);
+ MessagesStr << ' ';
+ WriteTypeSymbolic(MessagesStr, T, Mod);
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
- void CheckFailed(const std::string &Message,
+ void CheckFailed(const Twine &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
- msgs << Message << "\n";
+ MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
@@ -313,14 +367,23 @@ namespace {
Broken = true;
}
- void CheckFailed( const std::string& Message, const Value* V1,
- const Type* T2, const Value* V3 = 0 ) {
- msgs << Message << "\n";
+ void CheckFailed(const Twine &Message, const Value *V1,
+ const Type *T2, const Value *V3 = 0) {
+ MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
+
+ void CheckFailed(const Twine &Message, const Type *T1,
+ const Type *T2 = 0, const Type *T3 = 0) {
+ MessagesStr << Message.str() << "\n";
+ WriteType(T1);
+ WriteType(T2);
+ WriteType(T3);
+ Broken = true;
+ }
};
} // End anonymous namespace
@@ -359,14 +422,14 @@ void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
-
+
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
- GlobalVariable &GVar = cast<GlobalVariable>(GV);
- Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
- "Only global arrays can have appending linkage!", &GV);
+ GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
+ Assert1(GVar && isa<ArrayType>(GVar->getType()->getElementType()),
+ "Only global arrays can have appending linkage!", GVar);
}
}
@@ -376,26 +439,13 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) {
"Global variable initializer type does not match global "
"variable type!", &GV);
- // Verify that any metadata used in a global initializer points only to
- // other globals.
- if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) {
- SmallVector<const MDNode *, 4> NodesToAnalyze;
- NodesToAnalyze.push_back(FirstNode);
- while (!NodesToAnalyze.empty()) {
- const MDNode *N = NodesToAnalyze.back();
- NodesToAnalyze.pop_back();
-
- for (MDNode::const_elem_iterator I = N->elem_begin(),
- E = N->elem_end(); I != E; ++I)
- if (const Value *V = *I) {
- if (const MDNode *Next = dyn_cast<MDNode>(V))
- NodesToAnalyze.push_back(Next);
- else
- Assert3(isa<Constant>(V),
- "reference to instruction from global metadata node",
- &GV, N, V);
- }
- }
+ // If the global has common linkage, it must have a zero initializer and
+ // cannot be constant.
+ if (GV.hasCommonLinkage()) {
+ Assert1(GV.getInitializer()->isNullValue(),
+ "'common' global must have a zero initializer!", &GV);
+ Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
+ &GV);
}
} else {
Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
@@ -435,6 +485,8 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) {
}
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
+ for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
+ VerifyType(I->second);
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
@@ -525,16 +577,17 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
if (Attrs.isEmpty())
return true;
-
+
unsigned LastSlot = Attrs.getNumSlots() - 1;
unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
if (LastIndex <= Params
|| (LastIndex == (unsigned)~0
&& (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
return true;
-
+
return false;
}
+
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
@@ -542,15 +595,16 @@ void Verifier::visitFunction(Function &F) {
const FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
+ Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
- F.getReturnType() == Type::VoidTy ||
+ F.getReturnType()->isVoidTy() ||
isa<StructType>(F.getReturnType()),
"Functions cannot return aggregate values!", &F);
- Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
+ Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
"Invalid struct return type!", &F);
const AttrListPtr &Attrs = F.getAttributes();
@@ -574,12 +628,9 @@ void Verifier::visitFunction(Function &F) {
"Varargs functions must have C calling conventions!", &F);
break;
}
-
+
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
- if (!isLLVMdotName)
- Assert1(F.getReturnType() != Type::MetadataTy,
- "Function may not return metadata unless it's an intrinsic", &F);
// Check that the argument values match the function type for this function...
unsigned i = 0;
@@ -591,7 +642,7 @@ void Verifier::visitFunction(Function &F) {
Assert1(I->getType()->isFirstClassType(),
"Function arguments must have first-class types!", I);
if (!isLLVMdotName)
- Assert2(I->getType() != Type::MetadataTy,
+ Assert2(!I->getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", I, &F);
}
@@ -609,9 +660,20 @@ void Verifier::visitFunction(Function &F) {
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
+
+ // If this function is actually an intrinsic, verify that it is only used in
+ // direct call/invokes, never having its "address taken".
+ if (F.getIntrinsicID()) {
+ for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E;++UI){
+ User *U = cast<User>(UI);
+ if ((isa<CallInst>(U) || isa<InvokeInst>(U)) && UI.getOperandNo() == 0)
+ continue; // Direct calls/invokes are ok.
+
+ Assert1(0, "Invalid user of intrinsic instruction!", U);
+ }
+ }
}
-
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
@@ -628,7 +690,6 @@ void Verifier::visitBasicBlock(BasicBlock &BB) {
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
-
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
@@ -676,7 +737,7 @@ void Verifier::visitTerminatorInst(TerminatorInst &I) {
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
- if (F->getReturnType() == Type::VoidTy)
+ if (F->getReturnType()->isVoidTy())
Assert2(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType());
@@ -704,7 +765,7 @@ void Verifier::visitReturnInst(ReturnInst &RI) {
CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
}
-
+
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
@@ -731,7 +792,6 @@ void Verifier::visitSelectInst(SelectInst &SI) {
visitInstruction(SI);
}
-
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
@@ -856,8 +916,8 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) {
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
- bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
- bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
+ bool SrcVec = isa<VectorType>(SrcTy);
+ bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
@@ -954,7 +1014,7 @@ void Verifier::visitBitCastInst(BitCastInst &I) {
// However, you can't cast pointers to anything but pointers.
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
"Bitcast requires both operands to be pointer or neither", &I);
- Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
+ Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
// Disallow aggregates.
Assert1(!SrcTy->isAggregateType(),
@@ -977,11 +1037,15 @@ void Verifier::visitPHINode(PHINode &PN) {
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
- // Check that all of the operands of the PHI node have the same type as the
- // result.
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ // Check that all of the values of the PHI node have the same type as the
+ // result, and that the incoming blocks are really basic blocks.
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
+ Assert1(isa<BasicBlock>(PN.getOperand(
+ PHINode::getOperandNumForIncomingBlock(i))),
+ "PHI node incoming block is not a BasicBlock!", &PN);
+ }
// All other PHI node constraints are checked in the visitBasicBlock method.
@@ -994,9 +1058,9 @@ void Verifier::VerifyCallSite(CallSite CS) {
Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
"Called function must be a pointer!", I);
const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
+
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", I);
-
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
@@ -1036,12 +1100,10 @@ void Verifier::VerifyCallSite(CallSite CS) {
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 ||
CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") {
- Assert1(FTy->getReturnType() != Type::MetadataTy,
- "Only intrinsics may return metadata", I);
for (FunctionType::param_iterator PI = FTy->param_begin(),
PE = FTy->param_end(); PI != PE; ++PI)
- Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter "
- "but isn't an intrinsic", I);
+ Assert1(!PI->get()->isMetadataTy(),
+ "Function has metadata parameter but isn't an intrinsic", I);
}
visitInstruction(*I);
@@ -1115,7 +1177,7 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) {
"Shift return type must be same as operands!", &B);
break;
default:
- assert(0 && "Unknown BinaryOperator opcode!");
+ llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
@@ -1202,20 +1264,21 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
void Verifier::visitLoadInst(LoadInst &LI) {
- const Type *ElTy =
- cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
+ const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
+ Assert1(PTy, "Load operand must be a pointer.", &LI);
+ const Type *ElTy = PTy->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
- Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
- const Type *ElTy =
- cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
+ const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
+ Assert1(PTy, "Load operand must be a pointer.", &SI);
+ const Type *ElTy = PTy->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
- "Stored value type does not match pointer operand type!", &SI, ElTy);
- Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI);
+ "Stored value type does not match pointer operand type!",
+ &SI, ElTy);
visitInstruction(SI);
}
@@ -1259,44 +1322,39 @@ void Verifier::visitInstruction(Instruction &I) {
Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
-
+
// Verify that if this is a terminator that it is at the end of the block.
if (isa<TerminatorInst>(I))
Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
-
// Check that void typed values don't have names
- Assert1(I.getType() != Type::VoidTy || !I.hasName(),
+ Assert1(!I.getType()->isVoidTy() || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
- Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
- || ((isa<CallInst>(I) || isa<InvokeInst>(I))
- && isa<StructType>(I.getType())),
+ Assert1(I.getType()->isVoidTy() ||
+ I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
- // Check that the instruction doesn't produce metadata or metadata*. Calls
- // all already checked against the callee type.
- Assert1(I.getType() != Type::MetadataTy ||
+ // Check that the instruction doesn't produce metadata. Calls are already
+ // checked against the callee type.
+ Assert1(!I.getType()->isMetadataTy() ||
isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
- if (const PointerType *PTy = dyn_cast<PointerType>(I.getType()))
- Assert1(PTy->getElementType() != Type::MetadataTy,
- "Instructions may not produce pointer to metadata.", &I);
-
-
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
- Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
- *UI);
- Instruction *Used = cast<Instruction>(*UI);
- Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
- " embedded in a basic block!", &I, Used);
+ if (Instruction *Used = dyn_cast<Instruction>(*UI))
+ Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
+ " embedded in a basic block!", &I, Used);
+ else {
+ CheckFailed("Use of instruction is not an instruction!", *UI);
+ return;
+ }
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
@@ -1308,11 +1366,6 @@ void Verifier::visitInstruction(Instruction &I) {
Assert1(0, "Instruction operands must be first-class values!", &I);
}
- if (const PointerType *PTy =
- dyn_cast<PointerType>(I.getOperand(i)->getType()))
- Assert1(PTy->getElementType() != Type::MetadataTy,
- "Invalid use of metadata pointer.", &I);
-
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
@@ -1346,7 +1399,9 @@ void Verifier::visitInstruction(Instruction &I) {
// value in the predecessor basic blocks they correspond to.
BasicBlock *UseBlock = BB;
if (isa<PHINode>(I))
- UseBlock = cast<BasicBlock>(I.getOperand(i+1));
+ UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
+ Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
+ Op, &I);
if (isa<PHINode>(I) && UseBlock == OpBlock) {
// Special case of a phi node in the normal destination or the unwind
@@ -1379,9 +1434,9 @@ void Verifier::visitInstruction(Instruction &I) {
} else if (isa<PHINode>(I)) {
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
- BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
- Assert2(DT->dominates(OpBlock, PredBB) ||
- !DT->isReachableFromEntry(PredBB),
+ BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
+ Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
+ !DT->isReachableFromEntry(PredBB)),
"Instruction does not dominate all uses!", Op, &I);
} else {
if (OpBlock == BB) {
@@ -1402,6 +1457,61 @@ void Verifier::visitInstruction(Instruction &I) {
}
}
InstsInThisBlock.insert(&I);
+
+ VerifyType(I.getType());
+}
+
+/// VerifyType - Verify that a type is well formed.
+///
+void Verifier::VerifyType(const Type *Ty) {
+ if (!Types.insert(Ty)) return;
+
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType *FTy = cast<FunctionType>(Ty);
+
+ const Type *RetTy = FTy->getReturnType();
+ Assert2(FunctionType::isValidReturnType(RetTy),
+ "Function type with invalid return type", RetTy, FTy);
+ VerifyType(RetTy);
+
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
+ const Type *ElTy = FTy->getParamType(i);
+ Assert2(FunctionType::isValidArgumentType(ElTy),
+ "Function type with invalid parameter type", ElTy, FTy);
+ VerifyType(ElTy);
+ }
+ } break;
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(Ty);
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ const Type *ElTy = STy->getElementType(i);
+ Assert2(StructType::isValidElementType(ElTy),
+ "Structure type with invalid element type", ElTy, STy);
+ VerifyType(ElTy);
+ }
+ } break;
+ case Type::ArrayTyID: {
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ Assert1(ArrayType::isValidElementType(ATy->getElementType()),
+ "Array type with invalid element type", ATy);
+ VerifyType(ATy->getElementType());
+ } break;
+ case Type::PointerTyID: {
+ const PointerType *PTy = cast<PointerType>(Ty);
+ Assert1(PointerType::isValidElementType(PTy->getElementType()),
+ "Pointer type with invalid element type", PTy);
+ VerifyType(PTy->getElementType());
+ } break;
+ case Type::VectorTyID: {
+ const VectorType *VTy = cast<VectorType>(Ty);
+ Assert1(VectorType::isValidElementType(VTy->getElementType()),
+ "Vector type with invalid element type", VTy);
+ VerifyType(VTy->getElementType());
+ } break;
+ default:
+ break;
+ }
}
// Flags used by TableGen to mark intrinsic parameters with the
@@ -1415,11 +1525,11 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
-
+
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
-
+
switch (ID) {
default:
break;
@@ -1446,7 +1556,7 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Assert1(isa<Constant>(CI.getOperand(2)),
"llvm.gcroot parameter #2 must be a constant.", &CI);
}
-
+
Assert1(CI.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", &CI);
break;
@@ -1468,6 +1578,17 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
"llvm.stackprotector parameter #2 must resolve to an alloca.",
&CI);
break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ Assert1(isa<ConstantInt>(CI.getOperand(1)),
+ "size argument of memory use markers must be a constant integer",
+ &CI);
+ break;
+ case Intrinsic::invariant_end:
+ Assert1(isa<ConstantInt>(CI.getOperand(2)),
+ "llvm.invariant.end parameter #2 must be a constant integer", &CI);
+ break;
}
}
@@ -1541,9 +1662,9 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
return false;
}
} else {
- if (Ty != FTy->getParamType(Match - 1)) {
+ if (Ty != FTy->getParamType(Match - NumRets)) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
- "match parameter %" + utostr(Match - 1) + ".", F);
+ "match parameter %" + utostr(Match - NumRets) + ".", F);
return false;
}
}
@@ -1584,7 +1705,13 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
if (EltTy != Ty)
Suffix += "v" + utostr(NumElts);
- Suffix += MVT::getMVT(EltTy).getMVTString();
+ Suffix += EVT::getEVT(EltTy).getEVTString();
+ } else if (VT == MVT::vAny) {
+ if (!VTy) {
+ CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a vector type.", F);
+ return false;
+ }
+ Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
} else if (VT == MVT::iPTR) {
if (!isa<PointerType>(Ty)) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
@@ -1597,17 +1724,17 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
// allow either case to be legal.
if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
- MVT::getMVT(PTyp->getElementType()).getMVTString();
+ EVT::getEVT(PTyp->getElementType()).getEVTString();
} else {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
"pointer and a pointer is required.", F);
return false;
}
- } else if (MVT((MVT::SimpleValueType)VT).isVector()) {
- MVT VVT = MVT((MVT::SimpleValueType)VT);
+ } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
+ EVT VVT = EVT((MVT::SimpleValueType)VT);
// If this is a vector argument, verify the number and type of elements.
- if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
+ if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
return false;
}
@@ -1617,7 +1744,8 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
"vector elements!", F);
return false;
}
- } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
+ } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
+ EltTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
return false;
} else if (EltTy != Ty) {
@@ -1638,7 +1766,7 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
va_list VA;
va_start(VA, ParamNum);
const FunctionType *FTy = F->getFunctionType();
-
+
// For overloaded intrinsics, the Suffix of the function name must match the
// types of the arguments. This variable keeps track of the expected
// suffix, to be checked at the end.
@@ -1739,10 +1867,8 @@ bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
Verifier *V = new Verifier(action);
PM.add(V);
PM.run(const_cast<Module&>(M));
-
+
if (ErrorInfo && V->Broken)
- *ErrorInfo = V->msgs.str();
+ *ErrorInfo = V->MessagesStr.str();
return V->Broken;
}
-
-// vim: sw=2
OpenPOWER on IntegriCloud