diff options
Diffstat (limited to 'lib/libc/quad/qdivrem.c')
-rw-r--r-- | lib/libc/quad/qdivrem.c | 279 |
1 files changed, 0 insertions, 279 deletions
diff --git a/lib/libc/quad/qdivrem.c b/lib/libc/quad/qdivrem.c deleted file mode 100644 index 56f91ec..0000000 --- a/lib/libc/quad/qdivrem.c +++ /dev/null @@ -1,279 +0,0 @@ -/*- - * Copyright (c) 1992, 1993 - * The Regents of the University of California. All rights reserved. - * - * This software was developed by the Computer Systems Engineering group - * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and - * contributed to Berkeley. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * This product includes software developed by the University of - * California, Berkeley and its contributors. - * 4. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#if defined(LIBC_SCCS) && !defined(lint) -static char sccsid[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93"; -#endif /* LIBC_SCCS and not lint */ - -/* - * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), - * section 4.3.1, pp. 257--259. - */ - -#include "quad.h" - -#define B (1 << HALF_BITS) /* digit base */ - -/* Combine two `digits' to make a single two-digit number. */ -#define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) - -/* select a type for digits in base B: use unsigned short if they fit */ -#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff -typedef unsigned short digit; -#else -typedef u_long digit; -#endif - -/* - * Shift p[0]..p[len] left `sh' bits, ignoring any bits that - * `fall out' the left (there never will be any such anyway). - * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. - */ -static void -shl(register digit *p, register int len, register int sh) -{ - register int i; - - for (i = 0; i < len; i++) - p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); - p[i] = LHALF(p[i] << sh); -} - -/* - * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. - * - * We do this in base 2-sup-HALF_BITS, so that all intermediate products - * fit within u_long. As a consequence, the maximum length dividend and - * divisor are 4 `digits' in this base (they are shorter if they have - * leading zeros). - */ -u_quad_t -__qdivrem(uq, vq, arq) - u_quad_t uq, vq, *arq; -{ - union uu tmp; - digit *u, *v, *q; - register digit v1, v2; - u_long qhat, rhat, t; - int m, n, d, j, i; - digit uspace[5], vspace[5], qspace[5]; - - /* - * Take care of special cases: divide by zero, and u < v. - */ - if (vq == 0) { - /* divide by zero. */ - static volatile const unsigned int zero = 0; - - tmp.ul[H] = tmp.ul[L] = 1 / zero; - if (arq) - *arq = uq; - return (tmp.q); - } - if (uq < vq) { - if (arq) - *arq = uq; - return (0); - } - u = &uspace[0]; - v = &vspace[0]; - q = &qspace[0]; - - /* - * Break dividend and divisor into digits in base B, then - * count leading zeros to determine m and n. When done, we - * will have: - * u = (u[1]u[2]...u[m+n]) sub B - * v = (v[1]v[2]...v[n]) sub B - * v[1] != 0 - * 1 < n <= 4 (if n = 1, we use a different division algorithm) - * m >= 0 (otherwise u < v, which we already checked) - * m + n = 4 - * and thus - * m = 4 - n <= 2 - */ - tmp.uq = uq; - u[0] = 0; - u[1] = HHALF(tmp.ul[H]); - u[2] = LHALF(tmp.ul[H]); - u[3] = HHALF(tmp.ul[L]); - u[4] = LHALF(tmp.ul[L]); - tmp.uq = vq; - v[1] = HHALF(tmp.ul[H]); - v[2] = LHALF(tmp.ul[H]); - v[3] = HHALF(tmp.ul[L]); - v[4] = LHALF(tmp.ul[L]); - for (n = 4; v[1] == 0; v++) { - if (--n == 1) { - u_long rbj; /* r*B+u[j] (not root boy jim) */ - digit q1, q2, q3, q4; - - /* - * Change of plan, per exercise 16. - * r = 0; - * for j = 1..4: - * q[j] = floor((r*B + u[j]) / v), - * r = (r*B + u[j]) % v; - * We unroll this completely here. - */ - t = v[2]; /* nonzero, by definition */ - q1 = u[1] / t; - rbj = COMBINE(u[1] % t, u[2]); - q2 = rbj / t; - rbj = COMBINE(rbj % t, u[3]); - q3 = rbj / t; - rbj = COMBINE(rbj % t, u[4]); - q4 = rbj / t; - if (arq) - *arq = rbj % t; - tmp.ul[H] = COMBINE(q1, q2); - tmp.ul[L] = COMBINE(q3, q4); - return (tmp.q); - } - } - - /* - * By adjusting q once we determine m, we can guarantee that - * there is a complete four-digit quotient at &qspace[1] when - * we finally stop. - */ - for (m = 4 - n; u[1] == 0; u++) - m--; - for (i = 4 - m; --i >= 0;) - q[i] = 0; - q += 4 - m; - - /* - * Here we run Program D, translated from MIX to C and acquiring - * a few minor changes. - * - * D1: choose multiplier 1 << d to ensure v[1] >= B/2. - */ - d = 0; - for (t = v[1]; t < B / 2; t <<= 1) - d++; - if (d > 0) { - shl(&u[0], m + n, d); /* u <<= d */ - shl(&v[1], n - 1, d); /* v <<= d */ - } - /* - * D2: j = 0. - */ - j = 0; - v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ - v2 = v[2]; /* for D3 */ - do { - register digit uj0, uj1, uj2; - - /* - * D3: Calculate qhat (\^q, in TeX notation). - * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and - * let rhat = (u[j]*B + u[j+1]) mod v[1]. - * While rhat < B and v[2]*qhat > rhat*B+u[j+2], - * decrement qhat and increase rhat correspondingly. - * Note that if rhat >= B, v[2]*qhat < rhat*B. - */ - uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ - uj1 = u[j + 1]; /* for D3 only */ - uj2 = u[j + 2]; /* for D3 only */ - if (uj0 == v1) { - qhat = B; - rhat = uj1; - goto qhat_too_big; - } else { - u_long n = COMBINE(uj0, uj1); - qhat = n / v1; - rhat = n % v1; - } - while (v2 * qhat > COMBINE(rhat, uj2)) { - qhat_too_big: - qhat--; - if ((rhat += v1) >= B) - break; - } - /* - * D4: Multiply and subtract. - * The variable `t' holds any borrows across the loop. - * We split this up so that we do not require v[0] = 0, - * and to eliminate a final special case. - */ - for (t = 0, i = n; i > 0; i--) { - t = u[i + j] - v[i] * qhat - t; - u[i + j] = LHALF(t); - t = (B - HHALF(t)) & (B - 1); - } - t = u[j] - t; - u[j] = LHALF(t); - /* - * D5: test remainder. - * There is a borrow if and only if HHALF(t) is nonzero; - * in that (rare) case, qhat was too large (by exactly 1). - * Fix it by adding v[1..n] to u[j..j+n]. - */ - if (HHALF(t)) { - qhat--; - for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ - t += u[i + j] + v[i]; - u[i + j] = LHALF(t); - t = HHALF(t); - } - u[j] = LHALF(u[j] + t); - } - q[j] = qhat; - } while (++j <= m); /* D7: loop on j. */ - - /* - * If caller wants the remainder, we have to calculate it as - * u[m..m+n] >> d (this is at most n digits and thus fits in - * u[m+1..m+n], but we may need more source digits). - */ - if (arq) { - if (d) { - for (i = m + n; i > m; --i) - u[i] = (u[i] >> d) | - LHALF(u[i - 1] << (HALF_BITS - d)); - u[i] = 0; - } - tmp.ul[H] = COMBINE(uspace[1], uspace[2]); - tmp.ul[L] = COMBINE(uspace[3], uspace[4]); - *arq = tmp.q; - } - - tmp.ul[H] = COMBINE(qspace[1], qspace[2]); - tmp.ul[L] = COMBINE(qspace[3], qspace[4]); - return (tmp.q); -} |