summaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/RewriteStatepointsForGC.cpp')
-rw-r--r--lib/Transforms/Scalar/RewriteStatepointsForGC.cpp2506
1 files changed, 2506 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp b/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
new file mode 100644
index 0000000..6cf765a
--- /dev/null
+++ b/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
@@ -0,0 +1,2506 @@
+//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Rewrite an existing set of gc.statepoints such that they make potential
+// relocations performed by the garbage collector explicit in the IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Pass.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+
+#define DEBUG_TYPE "rewrite-statepoints-for-gc"
+
+using namespace llvm;
+
+// Print tracing output
+static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
+ cl::init(false));
+
+// Print the liveset found at the insert location
+static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
+ cl::init(false));
+static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
+ cl::init(false));
+// Print out the base pointers for debugging
+static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
+ cl::init(false));
+
+// Cost threshold measuring when it is profitable to rematerialize value instead
+// of relocating it
+static cl::opt<unsigned>
+RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
+ cl::init(6));
+
+#ifdef XDEBUG
+static bool ClobberNonLive = true;
+#else
+static bool ClobberNonLive = false;
+#endif
+static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
+ cl::location(ClobberNonLive),
+ cl::Hidden);
+
+namespace {
+struct RewriteStatepointsForGC : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+
+ RewriteStatepointsForGC() : FunctionPass(ID) {
+ initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
+ }
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ // We add and rewrite a bunch of instructions, but don't really do much
+ // else. We could in theory preserve a lot more analyses here.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+};
+} // namespace
+
+char RewriteStatepointsForGC::ID = 0;
+
+FunctionPass *llvm::createRewriteStatepointsForGCPass() {
+ return new RewriteStatepointsForGC();
+}
+
+INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
+ "Make relocations explicit at statepoints", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
+ "Make relocations explicit at statepoints", false, false)
+
+namespace {
+struct GCPtrLivenessData {
+ /// Values defined in this block.
+ DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
+ /// Values used in this block (and thus live); does not included values
+ /// killed within this block.
+ DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
+
+ /// Values live into this basic block (i.e. used by any
+ /// instruction in this basic block or ones reachable from here)
+ DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
+
+ /// Values live out of this basic block (i.e. live into
+ /// any successor block)
+ DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
+};
+
+// The type of the internal cache used inside the findBasePointers family
+// of functions. From the callers perspective, this is an opaque type and
+// should not be inspected.
+//
+// In the actual implementation this caches two relations:
+// - The base relation itself (i.e. this pointer is based on that one)
+// - The base defining value relation (i.e. before base_phi insertion)
+// Generally, after the execution of a full findBasePointer call, only the
+// base relation will remain. Internally, we add a mixture of the two
+// types, then update all the second type to the first type
+typedef DenseMap<Value *, Value *> DefiningValueMapTy;
+typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
+typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
+
+struct PartiallyConstructedSafepointRecord {
+ /// The set of values known to be live accross this safepoint
+ StatepointLiveSetTy liveset;
+
+ /// Mapping from live pointers to a base-defining-value
+ DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
+
+ /// The *new* gc.statepoint instruction itself. This produces the token
+ /// that normal path gc.relocates and the gc.result are tied to.
+ Instruction *StatepointToken;
+
+ /// Instruction to which exceptional gc relocates are attached
+ /// Makes it easier to iterate through them during relocationViaAlloca.
+ Instruction *UnwindToken;
+
+ /// Record live values we are rematerialized instead of relocating.
+ /// They are not included into 'liveset' field.
+ /// Maps rematerialized copy to it's original value.
+ RematerializedValueMapTy RematerializedValues;
+};
+}
+
+/// Compute the live-in set for every basic block in the function
+static void computeLiveInValues(DominatorTree &DT, Function &F,
+ GCPtrLivenessData &Data);
+
+/// Given results from the dataflow liveness computation, find the set of live
+/// Values at a particular instruction.
+static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
+ StatepointLiveSetTy &out);
+
+// TODO: Once we can get to the GCStrategy, this becomes
+// Optional<bool> isGCManagedPointer(const Value *V) const override {
+
+static bool isGCPointerType(const Type *T) {
+ if (const PointerType *PT = dyn_cast<PointerType>(T))
+ // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
+ // GC managed heap. We know that a pointer into this heap needs to be
+ // updated and that no other pointer does.
+ return (1 == PT->getAddressSpace());
+ return false;
+}
+
+// Return true if this type is one which a) is a gc pointer or contains a GC
+// pointer and b) is of a type this code expects to encounter as a live value.
+// (The insertion code will assert that a type which matches (a) and not (b)
+// is not encountered.)
+static bool isHandledGCPointerType(Type *T) {
+ // We fully support gc pointers
+ if (isGCPointerType(T))
+ return true;
+ // We partially support vectors of gc pointers. The code will assert if it
+ // can't handle something.
+ if (auto VT = dyn_cast<VectorType>(T))
+ if (isGCPointerType(VT->getElementType()))
+ return true;
+ return false;
+}
+
+#ifndef NDEBUG
+/// Returns true if this type contains a gc pointer whether we know how to
+/// handle that type or not.
+static bool containsGCPtrType(Type *Ty) {
+ if (isGCPointerType(Ty))
+ return true;
+ if (VectorType *VT = dyn_cast<VectorType>(Ty))
+ return isGCPointerType(VT->getScalarType());
+ if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
+ return containsGCPtrType(AT->getElementType());
+ if (StructType *ST = dyn_cast<StructType>(Ty))
+ return std::any_of(
+ ST->subtypes().begin(), ST->subtypes().end(),
+ [](Type *SubType) { return containsGCPtrType(SubType); });
+ return false;
+}
+
+// Returns true if this is a type which a) is a gc pointer or contains a GC
+// pointer and b) is of a type which the code doesn't expect (i.e. first class
+// aggregates). Used to trip assertions.
+static bool isUnhandledGCPointerType(Type *Ty) {
+ return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
+}
+#endif
+
+static bool order_by_name(llvm::Value *a, llvm::Value *b) {
+ if (a->hasName() && b->hasName()) {
+ return -1 == a->getName().compare(b->getName());
+ } else if (a->hasName() && !b->hasName()) {
+ return true;
+ } else if (!a->hasName() && b->hasName()) {
+ return false;
+ } else {
+ // Better than nothing, but not stable
+ return a < b;
+ }
+}
+
+// Conservatively identifies any definitions which might be live at the
+// given instruction. The analysis is performed immediately before the
+// given instruction. Values defined by that instruction are not considered
+// live. Values used by that instruction are considered live.
+static void analyzeParsePointLiveness(
+ DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
+ const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
+ Instruction *inst = CS.getInstruction();
+
+ StatepointLiveSetTy liveset;
+ findLiveSetAtInst(inst, OriginalLivenessData, liveset);
+
+ if (PrintLiveSet) {
+ // Note: This output is used by several of the test cases
+ // The order of elemtns in a set is not stable, put them in a vec and sort
+ // by name
+ SmallVector<Value *, 64> temp;
+ temp.insert(temp.end(), liveset.begin(), liveset.end());
+ std::sort(temp.begin(), temp.end(), order_by_name);
+ errs() << "Live Variables:\n";
+ for (Value *V : temp) {
+ errs() << " " << V->getName(); // no newline
+ V->dump();
+ }
+ }
+ if (PrintLiveSetSize) {
+ errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
+ errs() << "Number live values: " << liveset.size() << "\n";
+ }
+ result.liveset = liveset;
+}
+
+static Value *findBaseDefiningValue(Value *I);
+
+/// If we can trivially determine that the index specified in the given vector
+/// is a base pointer, return it. In cases where the entire vector is known to
+/// consist of base pointers, the entire vector will be returned. This
+/// indicates that the relevant extractelement is a valid base pointer and
+/// should be used directly.
+static Value *findBaseOfVector(Value *I, Value *Index) {
+ assert(I->getType()->isVectorTy() &&
+ cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
+ "Illegal to ask for the base pointer of a non-pointer type");
+
+ // Each case parallels findBaseDefiningValue below, see that code for
+ // detailed motivation.
+
+ if (isa<Argument>(I))
+ // An incoming argument to the function is a base pointer
+ return I;
+
+ // We shouldn't see the address of a global as a vector value?
+ assert(!isa<GlobalVariable>(I) &&
+ "unexpected global variable found in base of vector");
+
+ // inlining could possibly introduce phi node that contains
+ // undef if callee has multiple returns
+ if (isa<UndefValue>(I))
+ // utterly meaningless, but useful for dealing with partially optimized
+ // code.
+ return I;
+
+ // Due to inheritance, this must be _after_ the global variable and undef
+ // checks
+ if (Constant *Con = dyn_cast<Constant>(I)) {
+ assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
+ "order of checks wrong!");
+ assert(Con->isNullValue() && "null is the only case which makes sense");
+ return Con;
+ }
+
+ if (isa<LoadInst>(I))
+ return I;
+
+ // For an insert element, we might be able to look through it if we know
+ // something about the indexes, but if the indices are arbitrary values, we
+ // can't without much more extensive scalarization.
+ if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) {
+ Value *InsertIndex = IEI->getOperand(2);
+ // This index is inserting the value, look for it's base
+ if (InsertIndex == Index)
+ return findBaseDefiningValue(IEI->getOperand(1));
+ // Both constant, and can't be equal per above. This insert is definitely
+ // not relevant, look back at the rest of the vector and keep trying.
+ if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex))
+ return findBaseOfVector(IEI->getOperand(0), Index);
+ }
+
+ // Note: This code is currently rather incomplete. We are essentially only
+ // handling cases where the vector element is trivially a base pointer. We
+ // need to update the entire base pointer construction algorithm to know how
+ // to track vector elements and potentially scalarize, but the case which
+ // would motivate the work hasn't shown up in real workloads yet.
+ llvm_unreachable("no base found for vector element");
+}
+
+/// Helper function for findBasePointer - Will return a value which either a)
+/// defines the base pointer for the input or b) blocks the simple search
+/// (i.e. a PHI or Select of two derived pointers)
+static Value *findBaseDefiningValue(Value *I) {
+ assert(I->getType()->isPointerTy() &&
+ "Illegal to ask for the base pointer of a non-pointer type");
+
+ // This case is a bit of a hack - it only handles extracts from vectors which
+ // trivially contain only base pointers or cases where we can directly match
+ // the index of the original extract element to an insertion into the vector.
+ // See note inside the function for how to improve this.
+ if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
+ Value *VectorOperand = EEI->getVectorOperand();
+ Value *Index = EEI->getIndexOperand();
+ Value *VectorBase = findBaseOfVector(VectorOperand, Index);
+ // If the result returned is a vector, we know the entire vector must
+ // contain base pointers. In that case, the extractelement is a valid base
+ // for this value.
+ if (VectorBase->getType()->isVectorTy())
+ return EEI;
+ // Otherwise, we needed to look through the vector to find the base for
+ // this particular element.
+ assert(VectorBase->getType()->isPointerTy());
+ return VectorBase;
+ }
+
+ if (isa<Argument>(I))
+ // An incoming argument to the function is a base pointer
+ // We should have never reached here if this argument isn't an gc value
+ return I;
+
+ if (isa<GlobalVariable>(I))
+ // base case
+ return I;
+
+ // inlining could possibly introduce phi node that contains
+ // undef if callee has multiple returns
+ if (isa<UndefValue>(I))
+ // utterly meaningless, but useful for dealing with
+ // partially optimized code.
+ return I;
+
+ // Due to inheritance, this must be _after_ the global variable and undef
+ // checks
+ if (Constant *Con = dyn_cast<Constant>(I)) {
+ assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
+ "order of checks wrong!");
+ // Note: Finding a constant base for something marked for relocation
+ // doesn't really make sense. The most likely case is either a) some
+ // screwed up the address space usage or b) your validating against
+ // compiled C++ code w/o the proper separation. The only real exception
+ // is a null pointer. You could have generic code written to index of
+ // off a potentially null value and have proven it null. We also use
+ // null pointers in dead paths of relocation phis (which we might later
+ // want to find a base pointer for).
+ assert(isa<ConstantPointerNull>(Con) &&
+ "null is the only case which makes sense");
+ return Con;
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ Value *Def = CI->stripPointerCasts();
+ // If we find a cast instruction here, it means we've found a cast which is
+ // not simply a pointer cast (i.e. an inttoptr). We don't know how to
+ // handle int->ptr conversion.
+ assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
+ return findBaseDefiningValue(Def);
+ }
+
+ if (isa<LoadInst>(I))
+ return I; // The value loaded is an gc base itself
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
+ // The base of this GEP is the base
+ return findBaseDefiningValue(GEP->getPointerOperand());
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::experimental_gc_result_ptr:
+ default:
+ // fall through to general call handling
+ break;
+ case Intrinsic::experimental_gc_statepoint:
+ case Intrinsic::experimental_gc_result_float:
+ case Intrinsic::experimental_gc_result_int:
+ llvm_unreachable("these don't produce pointers");
+ case Intrinsic::experimental_gc_relocate: {
+ // Rerunning safepoint insertion after safepoints are already
+ // inserted is not supported. It could probably be made to work,
+ // but why are you doing this? There's no good reason.
+ llvm_unreachable("repeat safepoint insertion is not supported");
+ }
+ case Intrinsic::gcroot:
+ // Currently, this mechanism hasn't been extended to work with gcroot.
+ // There's no reason it couldn't be, but I haven't thought about the
+ // implications much.
+ llvm_unreachable(
+ "interaction with the gcroot mechanism is not supported");
+ }
+ }
+ // We assume that functions in the source language only return base
+ // pointers. This should probably be generalized via attributes to support
+ // both source language and internal functions.
+ if (isa<CallInst>(I) || isa<InvokeInst>(I))
+ return I;
+
+ // I have absolutely no idea how to implement this part yet. It's not
+ // neccessarily hard, I just haven't really looked at it yet.
+ assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
+
+ if (isa<AtomicCmpXchgInst>(I))
+ // A CAS is effectively a atomic store and load combined under a
+ // predicate. From the perspective of base pointers, we just treat it
+ // like a load.
+ return I;
+
+ assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
+ "binary ops which don't apply to pointers");
+
+ // The aggregate ops. Aggregates can either be in the heap or on the
+ // stack, but in either case, this is simply a field load. As a result,
+ // this is a defining definition of the base just like a load is.
+ if (isa<ExtractValueInst>(I))
+ return I;
+
+ // We should never see an insert vector since that would require we be
+ // tracing back a struct value not a pointer value.
+ assert(!isa<InsertValueInst>(I) &&
+ "Base pointer for a struct is meaningless");
+
+ // The last two cases here don't return a base pointer. Instead, they
+ // return a value which dynamically selects from amoung several base
+ // derived pointers (each with it's own base potentially). It's the job of
+ // the caller to resolve these.
+ assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
+ "missing instruction case in findBaseDefiningValing");
+ return I;
+}
+
+/// Returns the base defining value for this value.
+static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
+ Value *&Cached = Cache[I];
+ if (!Cached) {
+ Cached = findBaseDefiningValue(I);
+ }
+ assert(Cache[I] != nullptr);
+
+ if (TraceLSP) {
+ dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
+ << "\n";
+ }
+ return Cached;
+}
+
+/// Return a base pointer for this value if known. Otherwise, return it's
+/// base defining value.
+static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
+ Value *Def = findBaseDefiningValueCached(I, Cache);
+ auto Found = Cache.find(Def);
+ if (Found != Cache.end()) {
+ // Either a base-of relation, or a self reference. Caller must check.
+ return Found->second;
+ }
+ // Only a BDV available
+ return Def;
+}
+
+/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
+/// is it known to be a base pointer? Or do we need to continue searching.
+static bool isKnownBaseResult(Value *V) {
+ if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
+ // no recursion possible
+ return true;
+ }
+ if (isa<Instruction>(V) &&
+ cast<Instruction>(V)->getMetadata("is_base_value")) {
+ // This is a previously inserted base phi or select. We know
+ // that this is a base value.
+ return true;
+ }
+
+ // We need to keep searching
+ return false;
+}
+
+// TODO: find a better name for this
+namespace {
+class PhiState {
+public:
+ enum Status { Unknown, Base, Conflict };
+
+ PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
+ assert(status != Base || b);
+ }
+ PhiState(Value *b) : status(Base), base(b) {}
+ PhiState() : status(Unknown), base(nullptr) {}
+
+ Status getStatus() const { return status; }
+ Value *getBase() const { return base; }
+
+ bool isBase() const { return getStatus() == Base; }
+ bool isUnknown() const { return getStatus() == Unknown; }
+ bool isConflict() const { return getStatus() == Conflict; }
+
+ bool operator==(const PhiState &other) const {
+ return base == other.base && status == other.status;
+ }
+
+ bool operator!=(const PhiState &other) const { return !(*this == other); }
+
+ void dump() {
+ errs() << status << " (" << base << " - "
+ << (base ? base->getName() : "nullptr") << "): ";
+ }
+
+private:
+ Status status;
+ Value *base; // non null only if status == base
+};
+
+typedef DenseMap<Value *, PhiState> ConflictStateMapTy;
+// Values of type PhiState form a lattice, and this is a helper
+// class that implementes the meet operation. The meat of the meet
+// operation is implemented in MeetPhiStates::pureMeet
+class MeetPhiStates {
+public:
+ // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
+ explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
+ : phiStates(phiStates) {}
+
+ // Destructively meet the current result with the base V. V can
+ // either be a merge instruction (SelectInst / PHINode), in which
+ // case its status is looked up in the phiStates map; or a regular
+ // SSA value, in which case it is assumed to be a base.
+ void meetWith(Value *V) {
+ PhiState otherState = getStateForBDV(V);
+ assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
+ MeetPhiStates::pureMeet(currentResult, otherState)) &&
+ "math is wrong: meet does not commute!");
+ currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
+ }
+
+ PhiState getResult() const { return currentResult; }
+
+private:
+ const ConflictStateMapTy &phiStates;
+ PhiState currentResult;
+
+ /// Return a phi state for a base defining value. We'll generate a new
+ /// base state for known bases and expect to find a cached state otherwise
+ PhiState getStateForBDV(Value *baseValue) {
+ if (isKnownBaseResult(baseValue)) {
+ return PhiState(baseValue);
+ } else {
+ return lookupFromMap(baseValue);
+ }
+ }
+
+ PhiState lookupFromMap(Value *V) {
+ auto I = phiStates.find(V);
+ assert(I != phiStates.end() && "lookup failed!");
+ return I->second;
+ }
+
+ static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
+ switch (stateA.getStatus()) {
+ case PhiState::Unknown:
+ return stateB;
+
+ case PhiState::Base:
+ assert(stateA.getBase() && "can't be null");
+ if (stateB.isUnknown())
+ return stateA;
+
+ if (stateB.isBase()) {
+ if (stateA.getBase() == stateB.getBase()) {
+ assert(stateA == stateB && "equality broken!");
+ return stateA;
+ }
+ return PhiState(PhiState::Conflict);
+ }
+ assert(stateB.isConflict() && "only three states!");
+ return PhiState(PhiState::Conflict);
+
+ case PhiState::Conflict:
+ return stateA;
+ }
+ llvm_unreachable("only three states!");
+ }
+};
+}
+/// For a given value or instruction, figure out what base ptr it's derived
+/// from. For gc objects, this is simply itself. On success, returns a value
+/// which is the base pointer. (This is reliable and can be used for
+/// relocation.) On failure, returns nullptr.
+static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
+ Value *def = findBaseOrBDV(I, cache);
+
+ if (isKnownBaseResult(def)) {
+ return def;
+ }
+
+ // Here's the rough algorithm:
+ // - For every SSA value, construct a mapping to either an actual base
+ // pointer or a PHI which obscures the base pointer.
+ // - Construct a mapping from PHI to unknown TOP state. Use an
+ // optimistic algorithm to propagate base pointer information. Lattice
+ // looks like:
+ // UNKNOWN
+ // b1 b2 b3 b4
+ // CONFLICT
+ // When algorithm terminates, all PHIs will either have a single concrete
+ // base or be in a conflict state.
+ // - For every conflict, insert a dummy PHI node without arguments. Add
+ // these to the base[Instruction] = BasePtr mapping. For every
+ // non-conflict, add the actual base.
+ // - For every conflict, add arguments for the base[a] of each input
+ // arguments.
+ //
+ // Note: A simpler form of this would be to add the conflict form of all
+ // PHIs without running the optimistic algorithm. This would be
+ // analougous to pessimistic data flow and would likely lead to an
+ // overall worse solution.
+
+ ConflictStateMapTy states;
+ states[def] = PhiState();
+ // Recursively fill in all phis & selects reachable from the initial one
+ // for which we don't already know a definite base value for
+ // TODO: This should be rewritten with a worklist
+ bool done = false;
+ while (!done) {
+ done = true;
+ // Since we're adding elements to 'states' as we run, we can't keep
+ // iterators into the set.
+ SmallVector<Value *, 16> Keys;
+ Keys.reserve(states.size());
+ for (auto Pair : states) {
+ Value *V = Pair.first;
+ Keys.push_back(V);
+ }
+ for (Value *v : Keys) {
+ assert(!isKnownBaseResult(v) && "why did it get added?");
+ if (PHINode *phi = dyn_cast<PHINode>(v)) {
+ assert(phi->getNumIncomingValues() > 0 &&
+ "zero input phis are illegal");
+ for (Value *InVal : phi->incoming_values()) {
+ Value *local = findBaseOrBDV(InVal, cache);
+ if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
+ states[local] = PhiState();
+ done = false;
+ }
+ }
+ } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
+ Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
+ if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
+ states[local] = PhiState();
+ done = false;
+ }
+ local = findBaseOrBDV(sel->getFalseValue(), cache);
+ if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
+ states[local] = PhiState();
+ done = false;
+ }
+ }
+ }
+ }
+
+ if (TraceLSP) {
+ errs() << "States after initialization:\n";
+ for (auto Pair : states) {
+ Instruction *v = cast<Instruction>(Pair.first);
+ PhiState state = Pair.second;
+ state.dump();
+ v->dump();
+ }
+ }
+
+ // TODO: come back and revisit the state transitions around inputs which
+ // have reached conflict state. The current version seems too conservative.
+
+ bool progress = true;
+ while (progress) {
+#ifndef NDEBUG
+ size_t oldSize = states.size();
+#endif
+ progress = false;
+ // We're only changing keys in this loop, thus safe to keep iterators
+ for (auto Pair : states) {
+ MeetPhiStates calculateMeet(states);
+ Value *v = Pair.first;
+ assert(!isKnownBaseResult(v) && "why did it get added?");
+ if (SelectInst *select = dyn_cast<SelectInst>(v)) {
+ calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
+ calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
+ } else
+ for (Value *Val : cast<PHINode>(v)->incoming_values())
+ calculateMeet.meetWith(findBaseOrBDV(Val, cache));
+
+ PhiState oldState = states[v];
+ PhiState newState = calculateMeet.getResult();
+ if (oldState != newState) {
+ progress = true;
+ states[v] = newState;
+ }
+ }
+
+ assert(oldSize <= states.size());
+ assert(oldSize == states.size() || progress);
+ }
+
+ if (TraceLSP) {
+ errs() << "States after meet iteration:\n";
+ for (auto Pair : states) {
+ Instruction *v = cast<Instruction>(Pair.first);
+ PhiState state = Pair.second;
+ state.dump();
+ v->dump();
+ }
+ }
+
+ // Insert Phis for all conflicts
+ // We want to keep naming deterministic in the loop that follows, so
+ // sort the keys before iteration. This is useful in allowing us to
+ // write stable tests. Note that there is no invalidation issue here.
+ SmallVector<Value *, 16> Keys;
+ Keys.reserve(states.size());
+ for (auto Pair : states) {
+ Value *V = Pair.first;
+ Keys.push_back(V);
+ }
+ std::sort(Keys.begin(), Keys.end(), order_by_name);
+ // TODO: adjust naming patterns to avoid this order of iteration dependency
+ for (Value *V : Keys) {
+ Instruction *v = cast<Instruction>(V);
+ PhiState state = states[V];
+ assert(!isKnownBaseResult(v) && "why did it get added?");
+ assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
+ if (!state.isConflict())
+ continue;
+
+ if (isa<PHINode>(v)) {
+ int num_preds =
+ std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
+ assert(num_preds > 0 && "how did we reach here");
+ PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
+ // Add metadata marking this as a base value
+ auto *const_1 = ConstantInt::get(
+ Type::getInt32Ty(
+ v->getParent()->getParent()->getParent()->getContext()),
+ 1);
+ auto MDConst = ConstantAsMetadata::get(const_1);
+ MDNode *md = MDNode::get(
+ v->getParent()->getParent()->getParent()->getContext(), MDConst);
+ phi->setMetadata("is_base_value", md);
+ states[v] = PhiState(PhiState::Conflict, phi);
+ } else {
+ SelectInst *sel = cast<SelectInst>(v);
+ // The undef will be replaced later
+ UndefValue *undef = UndefValue::get(sel->getType());
+ SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
+ undef, "base_select", sel);
+ // Add metadata marking this as a base value
+ auto *const_1 = ConstantInt::get(
+ Type::getInt32Ty(
+ v->getParent()->getParent()->getParent()->getContext()),
+ 1);
+ auto MDConst = ConstantAsMetadata::get(const_1);
+ MDNode *md = MDNode::get(
+ v->getParent()->getParent()->getParent()->getContext(), MDConst);
+ basesel->setMetadata("is_base_value", md);
+ states[v] = PhiState(PhiState::Conflict, basesel);
+ }
+ }
+
+ // Fixup all the inputs of the new PHIs
+ for (auto Pair : states) {
+ Instruction *v = cast<Instruction>(Pair.first);
+ PhiState state = Pair.second;
+
+ assert(!isKnownBaseResult(v) && "why did it get added?");
+ assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
+ if (!state.isConflict())
+ continue;
+
+ if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
+ PHINode *phi = cast<PHINode>(v);
+ unsigned NumPHIValues = phi->getNumIncomingValues();
+ for (unsigned i = 0; i < NumPHIValues; i++) {
+ Value *InVal = phi->getIncomingValue(i);
+ BasicBlock *InBB = phi->getIncomingBlock(i);
+
+ // If we've already seen InBB, add the same incoming value
+ // we added for it earlier. The IR verifier requires phi
+ // nodes with multiple entries from the same basic block
+ // to have the same incoming value for each of those
+ // entries. If we don't do this check here and basephi
+ // has a different type than base, we'll end up adding two
+ // bitcasts (and hence two distinct values) as incoming
+ // values for the same basic block.
+
+ int blockIndex = basephi->getBasicBlockIndex(InBB);
+ if (blockIndex != -1) {
+ Value *oldBase = basephi->getIncomingValue(blockIndex);
+ basephi->addIncoming(oldBase, InBB);
+#ifndef NDEBUG
+ Value *base = findBaseOrBDV(InVal, cache);
+ if (!isKnownBaseResult(base)) {
+ // Either conflict or base.
+ assert(states.count(base));
+ base = states[base].getBase();
+ assert(base != nullptr && "unknown PhiState!");
+ }
+
+ // In essense this assert states: the only way two
+ // values incoming from the same basic block may be
+ // different is by being different bitcasts of the same
+ // value. A cleanup that remains TODO is changing
+ // findBaseOrBDV to return an llvm::Value of the correct
+ // type (and still remain pure). This will remove the
+ // need to add bitcasts.
+ assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
+ "sanity -- findBaseOrBDV should be pure!");
+#endif
+ continue;
+ }
+
+ // Find either the defining value for the PHI or the normal base for
+ // a non-phi node
+ Value *base = findBaseOrBDV(InVal, cache);
+ if (!isKnownBaseResult(base)) {
+ // Either conflict or base.
+ assert(states.count(base));
+ base = states[base].getBase();
+ assert(base != nullptr && "unknown PhiState!");
+ }
+ assert(base && "can't be null");
+ // Must use original input BB since base may not be Instruction
+ // The cast is needed since base traversal may strip away bitcasts
+ if (base->getType() != basephi->getType()) {
+ base = new BitCastInst(base, basephi->getType(), "cast",
+ InBB->getTerminator());
+ }
+ basephi->addIncoming(base, InBB);
+ }
+ assert(basephi->getNumIncomingValues() == NumPHIValues);
+ } else {
+ SelectInst *basesel = cast<SelectInst>(state.getBase());
+ SelectInst *sel = cast<SelectInst>(v);
+ // Operand 1 & 2 are true, false path respectively. TODO: refactor to
+ // something more safe and less hacky.
+ for (int i = 1; i <= 2; i++) {
+ Value *InVal = sel->getOperand(i);
+ // Find either the defining value for the PHI or the normal base for
+ // a non-phi node
+ Value *base = findBaseOrBDV(InVal, cache);
+ if (!isKnownBaseResult(base)) {
+ // Either conflict or base.
+ assert(states.count(base));
+ base = states[base].getBase();
+ assert(base != nullptr && "unknown PhiState!");
+ }
+ assert(base && "can't be null");
+ // Must use original input BB since base may not be Instruction
+ // The cast is needed since base traversal may strip away bitcasts
+ if (base->getType() != basesel->getType()) {
+ base = new BitCastInst(base, basesel->getType(), "cast", basesel);
+ }
+ basesel->setOperand(i, base);
+ }
+ }
+ }
+
+ // Cache all of our results so we can cheaply reuse them
+ // NOTE: This is actually two caches: one of the base defining value
+ // relation and one of the base pointer relation! FIXME
+ for (auto item : states) {
+ Value *v = item.first;
+ Value *base = item.second.getBase();
+ assert(v && base);
+ assert(!isKnownBaseResult(v) && "why did it get added?");
+
+ if (TraceLSP) {
+ std::string fromstr =
+ cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
+ : "none";
+ errs() << "Updating base value cache"
+ << " for: " << (v->hasName() ? v->getName() : "")
+ << " from: " << fromstr
+ << " to: " << (base->hasName() ? base->getName() : "") << "\n";
+ }
+
+ assert(isKnownBaseResult(base) &&
+ "must be something we 'know' is a base pointer");
+ if (cache.count(v)) {
+ // Once we transition from the BDV relation being store in the cache to
+ // the base relation being stored, it must be stable
+ assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
+ "base relation should be stable");
+ }
+ cache[v] = base;
+ }
+ assert(cache.find(def) != cache.end());
+ return cache[def];
+}
+
+// For a set of live pointers (base and/or derived), identify the base
+// pointer of the object which they are derived from. This routine will
+// mutate the IR graph as needed to make the 'base' pointer live at the
+// definition site of 'derived'. This ensures that any use of 'derived' can
+// also use 'base'. This may involve the insertion of a number of
+// additional PHI nodes.
+//
+// preconditions: live is a set of pointer type Values
+//
+// side effects: may insert PHI nodes into the existing CFG, will preserve
+// CFG, will not remove or mutate any existing nodes
+//
+// post condition: PointerToBase contains one (derived, base) pair for every
+// pointer in live. Note that derived can be equal to base if the original
+// pointer was a base pointer.
+static void
+findBasePointers(const StatepointLiveSetTy &live,
+ DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
+ DominatorTree *DT, DefiningValueMapTy &DVCache) {
+ // For the naming of values inserted to be deterministic - which makes for
+ // much cleaner and more stable tests - we need to assign an order to the
+ // live values. DenseSets do not provide a deterministic order across runs.
+ SmallVector<Value *, 64> Temp;
+ Temp.insert(Temp.end(), live.begin(), live.end());
+ std::sort(Temp.begin(), Temp.end(), order_by_name);
+ for (Value *ptr : Temp) {
+ Value *base = findBasePointer(ptr, DVCache);
+ assert(base && "failed to find base pointer");
+ PointerToBase[ptr] = base;
+ assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
+ DT->dominates(cast<Instruction>(base)->getParent(),
+ cast<Instruction>(ptr)->getParent())) &&
+ "The base we found better dominate the derived pointer");
+
+ // If you see this trip and like to live really dangerously, the code should
+ // be correct, just with idioms the verifier can't handle. You can try
+ // disabling the verifier at your own substaintial risk.
+ assert(!isa<ConstantPointerNull>(base) &&
+ "the relocation code needs adjustment to handle the relocation of "
+ "a null pointer constant without causing false positives in the "
+ "safepoint ir verifier.");
+ }
+}
+
+/// Find the required based pointers (and adjust the live set) for the given
+/// parse point.
+static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
+ const CallSite &CS,
+ PartiallyConstructedSafepointRecord &result) {
+ DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
+ findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
+
+ if (PrintBasePointers) {
+ // Note: Need to print these in a stable order since this is checked in
+ // some tests.
+ errs() << "Base Pairs (w/o Relocation):\n";
+ SmallVector<Value *, 64> Temp;
+ Temp.reserve(PointerToBase.size());
+ for (auto Pair : PointerToBase) {
+ Temp.push_back(Pair.first);
+ }
+ std::sort(Temp.begin(), Temp.end(), order_by_name);
+ for (Value *Ptr : Temp) {
+ Value *Base = PointerToBase[Ptr];
+ errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
+ << "\n";
+ }
+ }
+
+ result.PointerToBase = PointerToBase;
+}
+
+/// Given an updated version of the dataflow liveness results, update the
+/// liveset and base pointer maps for the call site CS.
+static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
+ const CallSite &CS,
+ PartiallyConstructedSafepointRecord &result);
+
+static void recomputeLiveInValues(
+ Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
+ MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
+ // TODO-PERF: reuse the original liveness, then simply run the dataflow
+ // again. The old values are still live and will help it stablize quickly.
+ GCPtrLivenessData RevisedLivenessData;
+ computeLiveInValues(DT, F, RevisedLivenessData);
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ const CallSite &CS = toUpdate[i];
+ recomputeLiveInValues(RevisedLivenessData, CS, info);
+ }
+}
+
+// When inserting gc.relocate calls, we need to ensure there are no uses
+// of the original value between the gc.statepoint and the gc.relocate call.
+// One case which can arise is a phi node starting one of the successor blocks.
+// We also need to be able to insert the gc.relocates only on the path which
+// goes through the statepoint. We might need to split an edge to make this
+// possible.
+static BasicBlock *
+normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) {
+ DominatorTree *DT = nullptr;
+ if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
+ DT = &DTP->getDomTree();
+
+ BasicBlock *Ret = BB;
+ if (!BB->getUniquePredecessor()) {
+ Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT);
+ }
+
+ // Now that 'ret' has unique predecessor we can safely remove all phi nodes
+ // from it
+ FoldSingleEntryPHINodes(Ret);
+ assert(!isa<PHINode>(Ret->begin()));
+
+ // At this point, we can safely insert a gc.relocate as the first instruction
+ // in Ret if needed.
+ return Ret;
+}
+
+static int find_index(ArrayRef<Value *> livevec, Value *val) {
+ auto itr = std::find(livevec.begin(), livevec.end(), val);
+ assert(livevec.end() != itr);
+ size_t index = std::distance(livevec.begin(), itr);
+ assert(index < livevec.size());
+ return index;
+}
+
+// Create new attribute set containing only attributes which can be transfered
+// from original call to the safepoint.
+static AttributeSet legalizeCallAttributes(AttributeSet AS) {
+ AttributeSet ret;
+
+ for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
+ unsigned index = AS.getSlotIndex(Slot);
+
+ if (index == AttributeSet::ReturnIndex ||
+ index == AttributeSet::FunctionIndex) {
+
+ for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
+ ++it) {
+ Attribute attr = *it;
+
+ // Do not allow certain attributes - just skip them
+ // Safepoint can not be read only or read none.
+ if (attr.hasAttribute(Attribute::ReadNone) ||
+ attr.hasAttribute(Attribute::ReadOnly))
+ continue;
+
+ ret = ret.addAttributes(
+ AS.getContext(), index,
+ AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
+ }
+ }
+
+ // Just skip parameter attributes for now
+ }
+
+ return ret;
+}
+
+/// Helper function to place all gc relocates necessary for the given
+/// statepoint.
+/// Inputs:
+/// liveVariables - list of variables to be relocated.
+/// liveStart - index of the first live variable.
+/// basePtrs - base pointers.
+/// statepointToken - statepoint instruction to which relocates should be
+/// bound.
+/// Builder - Llvm IR builder to be used to construct new calls.
+static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
+ const int LiveStart,
+ ArrayRef<llvm::Value *> BasePtrs,
+ Instruction *StatepointToken,
+ IRBuilder<> Builder) {
+ SmallVector<Instruction *, 64> NewDefs;
+ NewDefs.reserve(LiveVariables.size());
+
+ Module *M = StatepointToken->getParent()->getParent()->getParent();
+
+ for (unsigned i = 0; i < LiveVariables.size(); i++) {
+ // We generate a (potentially) unique declaration for every pointer type
+ // combination. This results is some blow up the function declarations in
+ // the IR, but removes the need for argument bitcasts which shrinks the IR
+ // greatly and makes it much more readable.
+ SmallVector<Type *, 1> Types; // one per 'any' type
+ // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid
+ // cases where the actual value's type mangling is not supported by llvm. A
+ // bitcast is added later to convert gc_relocate to the actual value's type.
+ Types.push_back(Type::getInt8PtrTy(M->getContext(), 1));
+ Value *GCRelocateDecl = Intrinsic::getDeclaration(
+ M, Intrinsic::experimental_gc_relocate, Types);
+
+ // Generate the gc.relocate call and save the result
+ Value *BaseIdx =
+ ConstantInt::get(Type::getInt32Ty(M->getContext()),
+ LiveStart + find_index(LiveVariables, BasePtrs[i]));
+ Value *LiveIdx = ConstantInt::get(
+ Type::getInt32Ty(M->getContext()),
+ LiveStart + find_index(LiveVariables, LiveVariables[i]));
+
+ // only specify a debug name if we can give a useful one
+ Value *Reloc = Builder.CreateCall(
+ GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
+ LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated"
+ : "");
+ // Trick CodeGen into thinking there are lots of free registers at this
+ // fake call.
+ cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold);
+
+ NewDefs.push_back(cast<Instruction>(Reloc));
+ }
+ assert(NewDefs.size() == LiveVariables.size() &&
+ "missing or extra redefinition at safepoint");
+}
+
+static void
+makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
+ const SmallVectorImpl<llvm::Value *> &basePtrs,
+ const SmallVectorImpl<llvm::Value *> &liveVariables,
+ Pass *P,
+ PartiallyConstructedSafepointRecord &result) {
+ assert(basePtrs.size() == liveVariables.size());
+ assert(isStatepoint(CS) &&
+ "This method expects to be rewriting a statepoint");
+
+ BasicBlock *BB = CS.getInstruction()->getParent();
+ assert(BB);
+ Function *F = BB->getParent();
+ assert(F && "must be set");
+ Module *M = F->getParent();
+ (void)M;
+ assert(M && "must be set");
+
+ // We're not changing the function signature of the statepoint since the gc
+ // arguments go into the var args section.
+ Function *gc_statepoint_decl = CS.getCalledFunction();
+
+ // Then go ahead and use the builder do actually do the inserts. We insert
+ // immediately before the previous instruction under the assumption that all
+ // arguments will be available here. We can't insert afterwards since we may
+ // be replacing a terminator.
+ Instruction *insertBefore = CS.getInstruction();
+ IRBuilder<> Builder(insertBefore);
+ // Copy all of the arguments from the original statepoint - this includes the
+ // target, call args, and deopt args
+ SmallVector<llvm::Value *, 64> args;
+ args.insert(args.end(), CS.arg_begin(), CS.arg_end());
+ // TODO: Clear the 'needs rewrite' flag
+
+ // add all the pointers to be relocated (gc arguments)
+ // Capture the start of the live variable list for use in the gc_relocates
+ const int live_start = args.size();
+ args.insert(args.end(), liveVariables.begin(), liveVariables.end());
+
+ // Create the statepoint given all the arguments
+ Instruction *token = nullptr;
+ AttributeSet return_attributes;
+ if (CS.isCall()) {
+ CallInst *toReplace = cast<CallInst>(CS.getInstruction());
+ CallInst *call =
+ Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
+ call->setTailCall(toReplace->isTailCall());
+ call->setCallingConv(toReplace->getCallingConv());
+
+ // Currently we will fail on parameter attributes and on certain
+ // function attributes.
+ AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
+ // In case if we can handle this set of sttributes - set up function attrs
+ // directly on statepoint and return attrs later for gc_result intrinsic.
+ call->setAttributes(new_attrs.getFnAttributes());
+ return_attributes = new_attrs.getRetAttributes();
+
+ token = call;
+
+ // Put the following gc_result and gc_relocate calls immediately after the
+ // the old call (which we're about to delete)
+ BasicBlock::iterator next(toReplace);
+ assert(BB->end() != next && "not a terminator, must have next");
+ next++;
+ Instruction *IP = &*(next);
+ Builder.SetInsertPoint(IP);
+ Builder.SetCurrentDebugLocation(IP->getDebugLoc());
+
+ } else {
+ InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
+
+ // Insert the new invoke into the old block. We'll remove the old one in a
+ // moment at which point this will become the new terminator for the
+ // original block.
+ InvokeInst *invoke = InvokeInst::Create(
+ gc_statepoint_decl, toReplace->getNormalDest(),
+ toReplace->getUnwindDest(), args, "", toReplace->getParent());
+ invoke->setCallingConv(toReplace->getCallingConv());
+
+ // Currently we will fail on parameter attributes and on certain
+ // function attributes.
+ AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
+ // In case if we can handle this set of sttributes - set up function attrs
+ // directly on statepoint and return attrs later for gc_result intrinsic.
+ invoke->setAttributes(new_attrs.getFnAttributes());
+ return_attributes = new_attrs.getRetAttributes();
+
+ token = invoke;
+
+ // Generate gc relocates in exceptional path
+ BasicBlock *unwindBlock = toReplace->getUnwindDest();
+ assert(!isa<PHINode>(unwindBlock->begin()) &&
+ unwindBlock->getUniquePredecessor() &&
+ "can't safely insert in this block!");
+
+ Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
+ Builder.SetInsertPoint(IP);
+ Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
+
+ // Extract second element from landingpad return value. We will attach
+ // exceptional gc relocates to it.
+ const unsigned idx = 1;
+ Instruction *exceptional_token =
+ cast<Instruction>(Builder.CreateExtractValue(
+ unwindBlock->getLandingPadInst(), idx, "relocate_token"));
+ result.UnwindToken = exceptional_token;
+
+ // Just throw away return value. We will use the one we got for normal
+ // block.
+ (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
+ exceptional_token, Builder);
+
+ // Generate gc relocates and returns for normal block
+ BasicBlock *normalDest = toReplace->getNormalDest();
+ assert(!isa<PHINode>(normalDest->begin()) &&
+ normalDest->getUniquePredecessor() &&
+ "can't safely insert in this block!");
+
+ IP = &*(normalDest->getFirstInsertionPt());
+ Builder.SetInsertPoint(IP);
+
+ // gc relocates will be generated later as if it were regular call
+ // statepoint
+ }
+ assert(token);
+
+ // Take the name of the original value call if it had one.
+ token->takeName(CS.getInstruction());
+
+// The GCResult is already inserted, we just need to find it
+#ifndef NDEBUG
+ Instruction *toReplace = CS.getInstruction();
+ assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
+ "only valid use before rewrite is gc.result");
+ assert(!toReplace->hasOneUse() ||
+ isGCResult(cast<Instruction>(*toReplace->user_begin())));
+#endif
+
+ // Update the gc.result of the original statepoint (if any) to use the newly
+ // inserted statepoint. This is safe to do here since the token can't be
+ // considered a live reference.
+ CS.getInstruction()->replaceAllUsesWith(token);
+
+ result.StatepointToken = token;
+
+ // Second, create a gc.relocate for every live variable
+ CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
+}
+
+namespace {
+struct name_ordering {
+ Value *base;
+ Value *derived;
+ bool operator()(name_ordering const &a, name_ordering const &b) {
+ return -1 == a.derived->getName().compare(b.derived->getName());
+ }
+};
+}
+static void stablize_order(SmallVectorImpl<Value *> &basevec,
+ SmallVectorImpl<Value *> &livevec) {
+ assert(basevec.size() == livevec.size());
+
+ SmallVector<name_ordering, 64> temp;
+ for (size_t i = 0; i < basevec.size(); i++) {
+ name_ordering v;
+ v.base = basevec[i];
+ v.derived = livevec[i];
+ temp.push_back(v);
+ }
+ std::sort(temp.begin(), temp.end(), name_ordering());
+ for (size_t i = 0; i < basevec.size(); i++) {
+ basevec[i] = temp[i].base;
+ livevec[i] = temp[i].derived;
+ }
+}
+
+// Replace an existing gc.statepoint with a new one and a set of gc.relocates
+// which make the relocations happening at this safepoint explicit.
+//
+// WARNING: Does not do any fixup to adjust users of the original live
+// values. That's the callers responsibility.
+static void
+makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
+ PartiallyConstructedSafepointRecord &result) {
+ auto liveset = result.liveset;
+ auto PointerToBase = result.PointerToBase;
+
+ // Convert to vector for efficient cross referencing.
+ SmallVector<Value *, 64> basevec, livevec;
+ livevec.reserve(liveset.size());
+ basevec.reserve(liveset.size());
+ for (Value *L : liveset) {
+ livevec.push_back(L);
+
+ assert(PointerToBase.find(L) != PointerToBase.end());
+ Value *base = PointerToBase[L];
+ basevec.push_back(base);
+ }
+ assert(livevec.size() == basevec.size());
+
+ // To make the output IR slightly more stable (for use in diffs), ensure a
+ // fixed order of the values in the safepoint (by sorting the value name).
+ // The order is otherwise meaningless.
+ stablize_order(basevec, livevec);
+
+ // Do the actual rewriting and delete the old statepoint
+ makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
+ CS.getInstruction()->eraseFromParent();
+}
+
+// Helper function for the relocationViaAlloca.
+// It receives iterator to the statepoint gc relocates and emits store to the
+// assigned
+// location (via allocaMap) for the each one of them.
+// Add visited values into the visitedLiveValues set we will later use them
+// for sanity check.
+static void
+insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
+ DenseMap<Value *, Value *> &AllocaMap,
+ DenseSet<Value *> &VisitedLiveValues) {
+
+ for (User *U : GCRelocs) {
+ if (!isa<IntrinsicInst>(U))
+ continue;
+
+ IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
+
+ // We only care about relocates
+ if (RelocatedValue->getIntrinsicID() !=
+ Intrinsic::experimental_gc_relocate) {
+ continue;
+ }
+
+ GCRelocateOperands RelocateOperands(RelocatedValue);
+ Value *OriginalValue =
+ const_cast<Value *>(RelocateOperands.getDerivedPtr());
+ assert(AllocaMap.count(OriginalValue));
+ Value *Alloca = AllocaMap[OriginalValue];
+
+ // Emit store into the related alloca
+ // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
+ // the correct type according to alloca.
+ assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
+ IRBuilder<> Builder(RelocatedValue->getNextNode());
+ Value *CastedRelocatedValue =
+ Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(),
+ RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : "");
+
+ StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
+ Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
+
+#ifndef NDEBUG
+ VisitedLiveValues.insert(OriginalValue);
+#endif
+ }
+}
+
+// Helper function for the "relocationViaAlloca". Similar to the
+// "insertRelocationStores" but works for rematerialized values.
+static void
+insertRematerializationStores(
+ RematerializedValueMapTy RematerializedValues,
+ DenseMap<Value *, Value *> &AllocaMap,
+ DenseSet<Value *> &VisitedLiveValues) {
+
+ for (auto RematerializedValuePair: RematerializedValues) {
+ Instruction *RematerializedValue = RematerializedValuePair.first;
+ Value *OriginalValue = RematerializedValuePair.second;
+
+ assert(AllocaMap.count(OriginalValue) &&
+ "Can not find alloca for rematerialized value");
+ Value *Alloca = AllocaMap[OriginalValue];
+
+ StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
+ Store->insertAfter(RematerializedValue);
+
+#ifndef NDEBUG
+ VisitedLiveValues.insert(OriginalValue);
+#endif
+ }
+}
+
+/// do all the relocation update via allocas and mem2reg
+static void relocationViaAlloca(
+ Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
+ ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
+#ifndef NDEBUG
+ // record initial number of (static) allocas; we'll check we have the same
+ // number when we get done.
+ int InitialAllocaNum = 0;
+ for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
+ I++)
+ if (isa<AllocaInst>(*I))
+ InitialAllocaNum++;
+#endif
+
+ // TODO-PERF: change data structures, reserve
+ DenseMap<Value *, Value *> AllocaMap;
+ SmallVector<AllocaInst *, 200> PromotableAllocas;
+ // Used later to chack that we have enough allocas to store all values
+ std::size_t NumRematerializedValues = 0;
+ PromotableAllocas.reserve(Live.size());
+
+ // Emit alloca for "LiveValue" and record it in "allocaMap" and
+ // "PromotableAllocas"
+ auto emitAllocaFor = [&](Value *LiveValue) {
+ AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
+ F.getEntryBlock().getFirstNonPHI());
+ AllocaMap[LiveValue] = Alloca;
+ PromotableAllocas.push_back(Alloca);
+ };
+
+ // emit alloca for each live gc pointer
+ for (unsigned i = 0; i < Live.size(); i++) {
+ emitAllocaFor(Live[i]);
+ }
+
+ // emit allocas for rematerialized values
+ for (size_t i = 0; i < Records.size(); i++) {
+ const struct PartiallyConstructedSafepointRecord &Info = Records[i];
+
+ for (auto RematerializedValuePair : Info.RematerializedValues) {
+ Value *OriginalValue = RematerializedValuePair.second;
+ if (AllocaMap.count(OriginalValue) != 0)
+ continue;
+
+ emitAllocaFor(OriginalValue);
+ ++NumRematerializedValues;
+ }
+ }
+
+ // The next two loops are part of the same conceptual operation. We need to
+ // insert a store to the alloca after the original def and at each
+ // redefinition. We need to insert a load before each use. These are split
+ // into distinct loops for performance reasons.
+
+ // update gc pointer after each statepoint
+ // either store a relocated value or null (if no relocated value found for
+ // this gc pointer and it is not a gc_result)
+ // this must happen before we update the statepoint with load of alloca
+ // otherwise we lose the link between statepoint and old def
+ for (size_t i = 0; i < Records.size(); i++) {
+ const struct PartiallyConstructedSafepointRecord &Info = Records[i];
+ Value *Statepoint = Info.StatepointToken;
+
+ // This will be used for consistency check
+ DenseSet<Value *> VisitedLiveValues;
+
+ // Insert stores for normal statepoint gc relocates
+ insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
+
+ // In case if it was invoke statepoint
+ // we will insert stores for exceptional path gc relocates.
+ if (isa<InvokeInst>(Statepoint)) {
+ insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
+ VisitedLiveValues);
+ }
+
+ // Do similar thing with rematerialized values
+ insertRematerializationStores(Info.RematerializedValues, AllocaMap,
+ VisitedLiveValues);
+
+ if (ClobberNonLive) {
+ // As a debuging aid, pretend that an unrelocated pointer becomes null at
+ // the gc.statepoint. This will turn some subtle GC problems into
+ // slightly easier to debug SEGVs. Note that on large IR files with
+ // lots of gc.statepoints this is extremely costly both memory and time
+ // wise.
+ SmallVector<AllocaInst *, 64> ToClobber;
+ for (auto Pair : AllocaMap) {
+ Value *Def = Pair.first;
+ AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
+
+ // This value was relocated
+ if (VisitedLiveValues.count(Def)) {
+ continue;
+ }
+ ToClobber.push_back(Alloca);
+ }
+
+ auto InsertClobbersAt = [&](Instruction *IP) {
+ for (auto *AI : ToClobber) {
+ auto AIType = cast<PointerType>(AI->getType());
+ auto PT = cast<PointerType>(AIType->getElementType());
+ Constant *CPN = ConstantPointerNull::get(PT);
+ StoreInst *Store = new StoreInst(CPN, AI);
+ Store->insertBefore(IP);
+ }
+ };
+
+ // Insert the clobbering stores. These may get intermixed with the
+ // gc.results and gc.relocates, but that's fine.
+ if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
+ InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
+ InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
+ } else {
+ BasicBlock::iterator Next(cast<CallInst>(Statepoint));
+ Next++;
+ InsertClobbersAt(Next);
+ }
+ }
+ }
+ // update use with load allocas and add store for gc_relocated
+ for (auto Pair : AllocaMap) {
+ Value *Def = Pair.first;
+ Value *Alloca = Pair.second;
+
+ // we pre-record the uses of allocas so that we dont have to worry about
+ // later update
+ // that change the user information.
+ SmallVector<Instruction *, 20> Uses;
+ // PERF: trade a linear scan for repeated reallocation
+ Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
+ for (User *U : Def->users()) {
+ if (!isa<ConstantExpr>(U)) {
+ // If the def has a ConstantExpr use, then the def is either a
+ // ConstantExpr use itself or null. In either case
+ // (recursively in the first, directly in the second), the oop
+ // it is ultimately dependent on is null and this particular
+ // use does not need to be fixed up.
+ Uses.push_back(cast<Instruction>(U));
+ }
+ }
+
+ std::sort(Uses.begin(), Uses.end());
+ auto Last = std::unique(Uses.begin(), Uses.end());
+ Uses.erase(Last, Uses.end());
+
+ for (Instruction *Use : Uses) {
+ if (isa<PHINode>(Use)) {
+ PHINode *Phi = cast<PHINode>(Use);
+ for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
+ if (Def == Phi->getIncomingValue(i)) {
+ LoadInst *Load = new LoadInst(
+ Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
+ Phi->setIncomingValue(i, Load);
+ }
+ }
+ } else {
+ LoadInst *Load = new LoadInst(Alloca, "", Use);
+ Use->replaceUsesOfWith(Def, Load);
+ }
+ }
+
+ // emit store for the initial gc value
+ // store must be inserted after load, otherwise store will be in alloca's
+ // use list and an extra load will be inserted before it
+ StoreInst *Store = new StoreInst(Def, Alloca);
+ if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
+ if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
+ // InvokeInst is a TerminatorInst so the store need to be inserted
+ // into its normal destination block.
+ BasicBlock *NormalDest = Invoke->getNormalDest();
+ Store->insertBefore(NormalDest->getFirstNonPHI());
+ } else {
+ assert(!Inst->isTerminator() &&
+ "The only TerminatorInst that can produce a value is "
+ "InvokeInst which is handled above.");
+ Store->insertAfter(Inst);
+ }
+ } else {
+ assert(isa<Argument>(Def));
+ Store->insertAfter(cast<Instruction>(Alloca));
+ }
+ }
+
+ assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
+ "we must have the same allocas with lives");
+ if (!PromotableAllocas.empty()) {
+ // apply mem2reg to promote alloca to SSA
+ PromoteMemToReg(PromotableAllocas, DT);
+ }
+
+#ifndef NDEBUG
+ for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
+ I++)
+ if (isa<AllocaInst>(*I))
+ InitialAllocaNum--;
+ assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
+#endif
+}
+
+/// Implement a unique function which doesn't require we sort the input
+/// vector. Doing so has the effect of changing the output of a couple of
+/// tests in ways which make them less useful in testing fused safepoints.
+template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
+ DenseSet<T> Seen;
+ SmallVector<T, 128> TempVec;
+ TempVec.reserve(Vec.size());
+ for (auto Element : Vec)
+ TempVec.push_back(Element);
+ Vec.clear();
+ for (auto V : TempVec) {
+ if (Seen.insert(V).second) {
+ Vec.push_back(V);
+ }
+ }
+}
+
+/// Insert holders so that each Value is obviously live through the entire
+/// lifetime of the call.
+static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
+ SmallVectorImpl<CallInst *> &Holders) {
+ if (Values.empty())
+ // No values to hold live, might as well not insert the empty holder
+ return;
+
+ Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
+ // Use a dummy vararg function to actually hold the values live
+ Function *Func = cast<Function>(M->getOrInsertFunction(
+ "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
+ if (CS.isCall()) {
+ // For call safepoints insert dummy calls right after safepoint
+ BasicBlock::iterator Next(CS.getInstruction());
+ Next++;
+ Holders.push_back(CallInst::Create(Func, Values, "", Next));
+ return;
+ }
+ // For invoke safepooints insert dummy calls both in normal and
+ // exceptional destination blocks
+ auto *II = cast<InvokeInst>(CS.getInstruction());
+ Holders.push_back(CallInst::Create(
+ Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
+ Holders.push_back(CallInst::Create(
+ Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
+}
+
+static void findLiveReferences(
+ Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
+ MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
+ GCPtrLivenessData OriginalLivenessData;
+ computeLiveInValues(DT, F, OriginalLivenessData);
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ const CallSite &CS = toUpdate[i];
+ analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
+ }
+}
+
+/// Remove any vector of pointers from the liveset by scalarizing them over the
+/// statepoint instruction. Adds the scalarized pieces to the liveset. It
+/// would be preferrable to include the vector in the statepoint itself, but
+/// the lowering code currently does not handle that. Extending it would be
+/// slightly non-trivial since it requires a format change. Given how rare
+/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
+static void splitVectorValues(Instruction *StatepointInst,
+ StatepointLiveSetTy &LiveSet, DominatorTree &DT) {
+ SmallVector<Value *, 16> ToSplit;
+ for (Value *V : LiveSet)
+ if (isa<VectorType>(V->getType()))
+ ToSplit.push_back(V);
+
+ if (ToSplit.empty())
+ return;
+
+ Function &F = *(StatepointInst->getParent()->getParent());
+
+ DenseMap<Value *, AllocaInst *> AllocaMap;
+ // First is normal return, second is exceptional return (invoke only)
+ DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
+ for (Value *V : ToSplit) {
+ LiveSet.erase(V);
+
+ AllocaInst *Alloca =
+ new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
+ AllocaMap[V] = Alloca;
+
+ VectorType *VT = cast<VectorType>(V->getType());
+ IRBuilder<> Builder(StatepointInst);
+ SmallVector<Value *, 16> Elements;
+ for (unsigned i = 0; i < VT->getNumElements(); i++)
+ Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
+ LiveSet.insert(Elements.begin(), Elements.end());
+
+ auto InsertVectorReform = [&](Instruction *IP) {
+ Builder.SetInsertPoint(IP);
+ Builder.SetCurrentDebugLocation(IP->getDebugLoc());
+ Value *ResultVec = UndefValue::get(VT);
+ for (unsigned i = 0; i < VT->getNumElements(); i++)
+ ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
+ Builder.getInt32(i));
+ return ResultVec;
+ };
+
+ if (isa<CallInst>(StatepointInst)) {
+ BasicBlock::iterator Next(StatepointInst);
+ Next++;
+ Instruction *IP = &*(Next);
+ Replacements[V].first = InsertVectorReform(IP);
+ Replacements[V].second = nullptr;
+ } else {
+ InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
+ // We've already normalized - check that we don't have shared destination
+ // blocks
+ BasicBlock *NormalDest = Invoke->getNormalDest();
+ assert(!isa<PHINode>(NormalDest->begin()));
+ BasicBlock *UnwindDest = Invoke->getUnwindDest();
+ assert(!isa<PHINode>(UnwindDest->begin()));
+ // Insert insert element sequences in both successors
+ Instruction *IP = &*(NormalDest->getFirstInsertionPt());
+ Replacements[V].first = InsertVectorReform(IP);
+ IP = &*(UnwindDest->getFirstInsertionPt());
+ Replacements[V].second = InsertVectorReform(IP);
+ }
+ }
+ for (Value *V : ToSplit) {
+ AllocaInst *Alloca = AllocaMap[V];
+
+ // Capture all users before we start mutating use lists
+ SmallVector<Instruction *, 16> Users;
+ for (User *U : V->users())
+ Users.push_back(cast<Instruction>(U));
+
+ for (Instruction *I : Users) {
+ if (auto Phi = dyn_cast<PHINode>(I)) {
+ for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
+ if (V == Phi->getIncomingValue(i)) {
+ LoadInst *Load = new LoadInst(
+ Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
+ Phi->setIncomingValue(i, Load);
+ }
+ } else {
+ LoadInst *Load = new LoadInst(Alloca, "", I);
+ I->replaceUsesOfWith(V, Load);
+ }
+ }
+
+ // Store the original value and the replacement value into the alloca
+ StoreInst *Store = new StoreInst(V, Alloca);
+ if (auto I = dyn_cast<Instruction>(V))
+ Store->insertAfter(I);
+ else
+ Store->insertAfter(Alloca);
+
+ // Normal return for invoke, or call return
+ Instruction *Replacement = cast<Instruction>(Replacements[V].first);
+ (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
+ // Unwind return for invoke only
+ Replacement = cast_or_null<Instruction>(Replacements[V].second);
+ if (Replacement)
+ (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
+ }
+
+ // apply mem2reg to promote alloca to SSA
+ SmallVector<AllocaInst *, 16> Allocas;
+ for (Value *V : ToSplit)
+ Allocas.push_back(AllocaMap[V]);
+ PromoteMemToReg(Allocas, DT);
+}
+
+// Helper function for the "rematerializeLiveValues". It walks use chain
+// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
+// values are visited (currently it is GEP's and casts). Returns true if it
+// sucessfully reached "BaseValue" and false otherwise.
+// Fills "ChainToBase" array with all visited values. "BaseValue" is not
+// recorded.
+static bool findRematerializableChainToBasePointer(
+ SmallVectorImpl<Instruction*> &ChainToBase,
+ Value *CurrentValue, Value *BaseValue) {
+
+ // We have found a base value
+ if (CurrentValue == BaseValue) {
+ return true;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
+ ChainToBase.push_back(GEP);
+ return findRematerializableChainToBasePointer(ChainToBase,
+ GEP->getPointerOperand(),
+ BaseValue);
+ }
+
+ if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
+ Value *Def = CI->stripPointerCasts();
+
+ // This two checks are basically similar. First one is here for the
+ // consistency with findBasePointers logic.
+ assert(!isa<CastInst>(Def) && "not a pointer cast found");
+ if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
+ return false;
+
+ ChainToBase.push_back(CI);
+ return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
+ }
+
+ // Not supported instruction in the chain
+ return false;
+}
+
+// Helper function for the "rematerializeLiveValues". Compute cost of the use
+// chain we are going to rematerialize.
+static unsigned
+chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
+ TargetTransformInfo &TTI) {
+ unsigned Cost = 0;
+
+ for (Instruction *Instr : Chain) {
+ if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
+ assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
+ "non noop cast is found during rematerialization");
+
+ Type *SrcTy = CI->getOperand(0)->getType();
+ Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
+
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
+ // Cost of the address calculation
+ Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
+ Cost += TTI.getAddressComputationCost(ValTy);
+
+ // And cost of the GEP itself
+ // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
+ // allowed for the external usage)
+ if (!GEP->hasAllConstantIndices())
+ Cost += 2;
+
+ } else {
+ llvm_unreachable("unsupported instruciton type during rematerialization");
+ }
+ }
+
+ return Cost;
+}
+
+// From the statepoint liveset pick values that are cheaper to recompute then to
+// relocate. Remove this values from the liveset, rematerialize them after
+// statepoint and record them in "Info" structure. Note that similar to
+// relocated values we don't do any user adjustments here.
+static void rematerializeLiveValues(CallSite CS,
+ PartiallyConstructedSafepointRecord &Info,
+ TargetTransformInfo &TTI) {
+ const unsigned int ChainLengthThreshold = 10;
+
+ // Record values we are going to delete from this statepoint live set.
+ // We can not di this in following loop due to iterator invalidation.
+ SmallVector<Value *, 32> LiveValuesToBeDeleted;
+
+ for (Value *LiveValue: Info.liveset) {
+ // For each live pointer find it's defining chain
+ SmallVector<Instruction *, 3> ChainToBase;
+ assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end());
+ bool FoundChain =
+ findRematerializableChainToBasePointer(ChainToBase,
+ LiveValue,
+ Info.PointerToBase[LiveValue]);
+ // Nothing to do, or chain is too long
+ if (!FoundChain ||
+ ChainToBase.size() == 0 ||
+ ChainToBase.size() > ChainLengthThreshold)
+ continue;
+
+ // Compute cost of this chain
+ unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
+ // TODO: We can also account for cases when we will be able to remove some
+ // of the rematerialized values by later optimization passes. I.e if
+ // we rematerialized several intersecting chains. Or if original values
+ // don't have any uses besides this statepoint.
+
+ // For invokes we need to rematerialize each chain twice - for normal and
+ // for unwind basic blocks. Model this by multiplying cost by two.
+ if (CS.isInvoke()) {
+ Cost *= 2;
+ }
+ // If it's too expensive - skip it
+ if (Cost >= RematerializationThreshold)
+ continue;
+
+ // Remove value from the live set
+ LiveValuesToBeDeleted.push_back(LiveValue);
+
+ // Clone instructions and record them inside "Info" structure
+
+ // Walk backwards to visit top-most instructions first
+ std::reverse(ChainToBase.begin(), ChainToBase.end());
+
+ // Utility function which clones all instructions from "ChainToBase"
+ // and inserts them before "InsertBefore". Returns rematerialized value
+ // which should be used after statepoint.
+ auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
+ Instruction *LastClonedValue = nullptr;
+ Instruction *LastValue = nullptr;
+ for (Instruction *Instr: ChainToBase) {
+ // Only GEP's and casts are suported as we need to be careful to not
+ // introduce any new uses of pointers not in the liveset.
+ // Note that it's fine to introduce new uses of pointers which were
+ // otherwise not used after this statepoint.
+ assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
+
+ Instruction *ClonedValue = Instr->clone();
+ ClonedValue->insertBefore(InsertBefore);
+ ClonedValue->setName(Instr->getName() + ".remat");
+
+ // If it is not first instruction in the chain then it uses previously
+ // cloned value. We should update it to use cloned value.
+ if (LastClonedValue) {
+ assert(LastValue);
+ ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
+#ifndef NDEBUG
+ // Assert that cloned instruction does not use any instructions from
+ // this chain other than LastClonedValue
+ for (auto OpValue : ClonedValue->operand_values()) {
+ assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
+ ChainToBase.end() &&
+ "incorrect use in rematerialization chain");
+ }
+#endif
+ }
+
+ LastClonedValue = ClonedValue;
+ LastValue = Instr;
+ }
+ assert(LastClonedValue);
+ return LastClonedValue;
+ };
+
+ // Different cases for calls and invokes. For invokes we need to clone
+ // instructions both on normal and unwind path.
+ if (CS.isCall()) {
+ Instruction *InsertBefore = CS.getInstruction()->getNextNode();
+ assert(InsertBefore);
+ Instruction *RematerializedValue = rematerializeChain(InsertBefore);
+ Info.RematerializedValues[RematerializedValue] = LiveValue;
+ } else {
+ InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
+
+ Instruction *NormalInsertBefore =
+ Invoke->getNormalDest()->getFirstInsertionPt();
+ Instruction *UnwindInsertBefore =
+ Invoke->getUnwindDest()->getFirstInsertionPt();
+
+ Instruction *NormalRematerializedValue =
+ rematerializeChain(NormalInsertBefore);
+ Instruction *UnwindRematerializedValue =
+ rematerializeChain(UnwindInsertBefore);
+
+ Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
+ Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
+ }
+ }
+
+ // Remove rematerializaed values from the live set
+ for (auto LiveValue: LiveValuesToBeDeleted) {
+ Info.liveset.erase(LiveValue);
+ }
+}
+
+static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
+ SmallVectorImpl<CallSite> &toUpdate) {
+#ifndef NDEBUG
+ // sanity check the input
+ std::set<CallSite> uniqued;
+ uniqued.insert(toUpdate.begin(), toUpdate.end());
+ assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
+
+ for (size_t i = 0; i < toUpdate.size(); i++) {
+ CallSite &CS = toUpdate[i];
+ assert(CS.getInstruction()->getParent()->getParent() == &F);
+ assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
+ }
+#endif
+
+ // When inserting gc.relocates for invokes, we need to be able to insert at
+ // the top of the successor blocks. See the comment on
+ // normalForInvokeSafepoint on exactly what is needed. Note that this step
+ // may restructure the CFG.
+ for (CallSite CS : toUpdate) {
+ if (!CS.isInvoke())
+ continue;
+ InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
+ normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
+ P);
+ normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
+ P);
+ }
+
+ // A list of dummy calls added to the IR to keep various values obviously
+ // live in the IR. We'll remove all of these when done.
+ SmallVector<CallInst *, 64> holders;
+
+ // Insert a dummy call with all of the arguments to the vm_state we'll need
+ // for the actual safepoint insertion. This ensures reference arguments in
+ // the deopt argument list are considered live through the safepoint (and
+ // thus makes sure they get relocated.)
+ for (size_t i = 0; i < toUpdate.size(); i++) {
+ CallSite &CS = toUpdate[i];
+ Statepoint StatepointCS(CS);
+
+ SmallVector<Value *, 64> DeoptValues;
+ for (Use &U : StatepointCS.vm_state_args()) {
+ Value *Arg = cast<Value>(&U);
+ assert(!isUnhandledGCPointerType(Arg->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(Arg->getType()))
+ DeoptValues.push_back(Arg);
+ }
+ insertUseHolderAfter(CS, DeoptValues, holders);
+ }
+
+ SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
+ records.reserve(toUpdate.size());
+ for (size_t i = 0; i < toUpdate.size(); i++) {
+ struct PartiallyConstructedSafepointRecord info;
+ records.push_back(info);
+ }
+ assert(records.size() == toUpdate.size());
+
+ // A) Identify all gc pointers which are staticly live at the given call
+ // site.
+ findLiveReferences(F, DT, P, toUpdate, records);
+
+ // Do a limited scalarization of any live at safepoint vector values which
+ // contain pointers. This enables this pass to run after vectorization at
+ // the cost of some possible performance loss. TODO: it would be nice to
+ // natively support vectors all the way through the backend so we don't need
+ // to scalarize here.
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ Instruction *statepoint = toUpdate[i].getInstruction();
+ splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT);
+ }
+
+ // B) Find the base pointers for each live pointer
+ /* scope for caching */ {
+ // Cache the 'defining value' relation used in the computation and
+ // insertion of base phis and selects. This ensures that we don't insert
+ // large numbers of duplicate base_phis.
+ DefiningValueMapTy DVCache;
+
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ CallSite &CS = toUpdate[i];
+ findBasePointers(DT, DVCache, CS, info);
+ }
+ } // end of cache scope
+
+ // The base phi insertion logic (for any safepoint) may have inserted new
+ // instructions which are now live at some safepoint. The simplest such
+ // example is:
+ // loop:
+ // phi a <-- will be a new base_phi here
+ // safepoint 1 <-- that needs to be live here
+ // gep a + 1
+ // safepoint 2
+ // br loop
+ // We insert some dummy calls after each safepoint to definitely hold live
+ // the base pointers which were identified for that safepoint. We'll then
+ // ask liveness for _every_ base inserted to see what is now live. Then we
+ // remove the dummy calls.
+ holders.reserve(holders.size() + records.size());
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ CallSite &CS = toUpdate[i];
+
+ SmallVector<Value *, 128> Bases;
+ for (auto Pair : info.PointerToBase) {
+ Bases.push_back(Pair.second);
+ }
+ insertUseHolderAfter(CS, Bases, holders);
+ }
+
+ // By selecting base pointers, we've effectively inserted new uses. Thus, we
+ // need to rerun liveness. We may *also* have inserted new defs, but that's
+ // not the key issue.
+ recomputeLiveInValues(F, DT, P, toUpdate, records);
+
+ if (PrintBasePointers) {
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ errs() << "Base Pairs: (w/Relocation)\n";
+ for (auto Pair : info.PointerToBase) {
+ errs() << " derived %" << Pair.first->getName() << " base %"
+ << Pair.second->getName() << "\n";
+ }
+ }
+ }
+ for (size_t i = 0; i < holders.size(); i++) {
+ holders[i]->eraseFromParent();
+ holders[i] = nullptr;
+ }
+ holders.clear();
+
+ // In order to reduce live set of statepoint we might choose to rematerialize
+ // some values instead of relocating them. This is purelly an optimization and
+ // does not influence correctness.
+ TargetTransformInfo &TTI =
+ P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ CallSite &CS = toUpdate[i];
+
+ rematerializeLiveValues(CS, info, TTI);
+ }
+
+ // Now run through and replace the existing statepoints with new ones with
+ // the live variables listed. We do not yet update uses of the values being
+ // relocated. We have references to live variables that need to
+ // survive to the last iteration of this loop. (By construction, the
+ // previous statepoint can not be a live variable, thus we can and remove
+ // the old statepoint calls as we go.)
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ CallSite &CS = toUpdate[i];
+ makeStatepointExplicit(DT, CS, P, info);
+ }
+ toUpdate.clear(); // prevent accident use of invalid CallSites
+
+ // Do all the fixups of the original live variables to their relocated selves
+ SmallVector<Value *, 128> live;
+ for (size_t i = 0; i < records.size(); i++) {
+ struct PartiallyConstructedSafepointRecord &info = records[i];
+ // We can't simply save the live set from the original insertion. One of
+ // the live values might be the result of a call which needs a safepoint.
+ // That Value* no longer exists and we need to use the new gc_result.
+ // Thankfully, the liveset is embedded in the statepoint (and updated), so
+ // we just grab that.
+ Statepoint statepoint(info.StatepointToken);
+ live.insert(live.end(), statepoint.gc_args_begin(),
+ statepoint.gc_args_end());
+#ifndef NDEBUG
+ // Do some basic sanity checks on our liveness results before performing
+ // relocation. Relocation can and will turn mistakes in liveness results
+ // into non-sensical code which is must harder to debug.
+ // TODO: It would be nice to test consistency as well
+ assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
+ "statepoint must be reachable or liveness is meaningless");
+ for (Value *V : statepoint.gc_args()) {
+ if (!isa<Instruction>(V))
+ // Non-instruction values trivial dominate all possible uses
+ continue;
+ auto LiveInst = cast<Instruction>(V);
+ assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
+ "unreachable values should never be live");
+ assert(DT.dominates(LiveInst, info.StatepointToken) &&
+ "basic SSA liveness expectation violated by liveness analysis");
+ }
+#endif
+ }
+ unique_unsorted(live);
+
+#ifndef NDEBUG
+ // sanity check
+ for (auto ptr : live) {
+ assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
+ }
+#endif
+
+ relocationViaAlloca(F, DT, live, records);
+ return !records.empty();
+}
+
+/// Returns true if this function should be rewritten by this pass. The main
+/// point of this function is as an extension point for custom logic.
+static bool shouldRewriteStatepointsIn(Function &F) {
+ // TODO: This should check the GCStrategy
+ if (F.hasGC()) {
+ const char *FunctionGCName = F.getGC();
+ const StringRef StatepointExampleName("statepoint-example");
+ const StringRef CoreCLRName("coreclr");
+ return (StatepointExampleName == FunctionGCName) ||
+ (CoreCLRName == FunctionGCName);
+ } else
+ return false;
+}
+
+bool RewriteStatepointsForGC::runOnFunction(Function &F) {
+ // Nothing to do for declarations.
+ if (F.isDeclaration() || F.empty())
+ return false;
+
+ // Policy choice says not to rewrite - the most common reason is that we're
+ // compiling code without a GCStrategy.
+ if (!shouldRewriteStatepointsIn(F))
+ return false;
+
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ // Gather all the statepoints which need rewritten. Be careful to only
+ // consider those in reachable code since we need to ask dominance queries
+ // when rewriting. We'll delete the unreachable ones in a moment.
+ SmallVector<CallSite, 64> ParsePointNeeded;
+ bool HasUnreachableStatepoint = false;
+ for (Instruction &I : inst_range(F)) {
+ // TODO: only the ones with the flag set!
+ if (isStatepoint(I)) {
+ if (DT.isReachableFromEntry(I.getParent()))
+ ParsePointNeeded.push_back(CallSite(&I));
+ else
+ HasUnreachableStatepoint = true;
+ }
+ }
+
+ bool MadeChange = false;
+
+ // Delete any unreachable statepoints so that we don't have unrewritten
+ // statepoints surviving this pass. This makes testing easier and the
+ // resulting IR less confusing to human readers. Rather than be fancy, we
+ // just reuse a utility function which removes the unreachable blocks.
+ if (HasUnreachableStatepoint)
+ MadeChange |= removeUnreachableBlocks(F);
+
+ // Return early if no work to do.
+ if (ParsePointNeeded.empty())
+ return MadeChange;
+
+ // As a prepass, go ahead and aggressively destroy single entry phi nodes.
+ // These are created by LCSSA. They have the effect of increasing the size
+ // of liveness sets for no good reason. It may be harder to do this post
+ // insertion since relocations and base phis can confuse things.
+ for (BasicBlock &BB : F)
+ if (BB.getUniquePredecessor()) {
+ MadeChange = true;
+ FoldSingleEntryPHINodes(&BB);
+ }
+
+ MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
+ return MadeChange;
+}
+
+// liveness computation via standard dataflow
+// -------------------------------------------------------------------
+
+// TODO: Consider using bitvectors for liveness, the set of potentially
+// interesting values should be small and easy to pre-compute.
+
+/// Compute the live-in set for the location rbegin starting from
+/// the live-out set of the basic block
+static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
+ BasicBlock::reverse_iterator rend,
+ DenseSet<Value *> &LiveTmp) {
+
+ for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
+ Instruction *I = &*ritr;
+
+ // KILL/Def - Remove this definition from LiveIn
+ LiveTmp.erase(I);
+
+ // Don't consider *uses* in PHI nodes, we handle their contribution to
+ // predecessor blocks when we seed the LiveOut sets
+ if (isa<PHINode>(I))
+ continue;
+
+ // USE - Add to the LiveIn set for this instruction
+ for (Value *V : I->operands()) {
+ assert(!isUnhandledGCPointerType(V->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
+ // The choice to exclude all things constant here is slightly subtle.
+ // There are two idependent reasons:
+ // - We assume that things which are constant (from LLVM's definition)
+ // do not move at runtime. For example, the address of a global
+ // variable is fixed, even though it's contents may not be.
+ // - Second, we can't disallow arbitrary inttoptr constants even
+ // if the language frontend does. Optimization passes are free to
+ // locally exploit facts without respect to global reachability. This
+ // can create sections of code which are dynamically unreachable and
+ // contain just about anything. (see constants.ll in tests)
+ LiveTmp.insert(V);
+ }
+ }
+ }
+}
+
+static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
+
+ for (BasicBlock *Succ : successors(BB)) {
+ const BasicBlock::iterator E(Succ->getFirstNonPHI());
+ for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
+ PHINode *Phi = cast<PHINode>(&*I);
+ Value *V = Phi->getIncomingValueForBlock(BB);
+ assert(!isUnhandledGCPointerType(V->getType()) &&
+ "support for FCA unimplemented");
+ if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
+ LiveTmp.insert(V);
+ }
+ }
+ }
+}
+
+static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
+ DenseSet<Value *> KillSet;
+ for (Instruction &I : *BB)
+ if (isHandledGCPointerType(I.getType()))
+ KillSet.insert(&I);
+ return KillSet;
+}
+
+#ifndef NDEBUG
+/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
+/// sanity check for the liveness computation.
+static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
+ TerminatorInst *TI, bool TermOkay = false) {
+ for (Value *V : Live) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ // The terminator can be a member of the LiveOut set. LLVM's definition
+ // of instruction dominance states that V does not dominate itself. As
+ // such, we need to special case this to allow it.
+ if (TermOkay && TI == I)
+ continue;
+ assert(DT.dominates(I, TI) &&
+ "basic SSA liveness expectation violated by liveness analysis");
+ }
+ }
+}
+
+/// Check that all the liveness sets used during the computation of liveness
+/// obey basic SSA properties. This is useful for finding cases where we miss
+/// a def.
+static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
+ BasicBlock &BB) {
+ checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
+ checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
+ checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
+}
+#endif
+
+static void computeLiveInValues(DominatorTree &DT, Function &F,
+ GCPtrLivenessData &Data) {
+
+ SmallSetVector<BasicBlock *, 200> Worklist;
+ auto AddPredsToWorklist = [&](BasicBlock *BB) {
+ // We use a SetVector so that we don't have duplicates in the worklist.
+ Worklist.insert(pred_begin(BB), pred_end(BB));
+ };
+ auto NextItem = [&]() {
+ BasicBlock *BB = Worklist.back();
+ Worklist.pop_back();
+ return BB;
+ };
+
+ // Seed the liveness for each individual block
+ for (BasicBlock &BB : F) {
+ Data.KillSet[&BB] = computeKillSet(&BB);
+ Data.LiveSet[&BB].clear();
+ computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
+
+#ifndef NDEBUG
+ for (Value *Kill : Data.KillSet[&BB])
+ assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
+#endif
+
+ Data.LiveOut[&BB] = DenseSet<Value *>();
+ computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
+ Data.LiveIn[&BB] = Data.LiveSet[&BB];
+ set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
+ set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
+ if (!Data.LiveIn[&BB].empty())
+ AddPredsToWorklist(&BB);
+ }
+
+ // Propagate that liveness until stable
+ while (!Worklist.empty()) {
+ BasicBlock *BB = NextItem();
+
+ // Compute our new liveout set, then exit early if it hasn't changed
+ // despite the contribution of our successor.
+ DenseSet<Value *> LiveOut = Data.LiveOut[BB];
+ const auto OldLiveOutSize = LiveOut.size();
+ for (BasicBlock *Succ : successors(BB)) {
+ assert(Data.LiveIn.count(Succ));
+ set_union(LiveOut, Data.LiveIn[Succ]);
+ }
+ // assert OutLiveOut is a subset of LiveOut
+ if (OldLiveOutSize == LiveOut.size()) {
+ // If the sets are the same size, then we didn't actually add anything
+ // when unioning our successors LiveIn Thus, the LiveIn of this block
+ // hasn't changed.
+ continue;
+ }
+ Data.LiveOut[BB] = LiveOut;
+
+ // Apply the effects of this basic block
+ DenseSet<Value *> LiveTmp = LiveOut;
+ set_union(LiveTmp, Data.LiveSet[BB]);
+ set_subtract(LiveTmp, Data.KillSet[BB]);
+
+ assert(Data.LiveIn.count(BB));
+ const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
+ // assert: OldLiveIn is a subset of LiveTmp
+ if (OldLiveIn.size() != LiveTmp.size()) {
+ Data.LiveIn[BB] = LiveTmp;
+ AddPredsToWorklist(BB);
+ }
+ } // while( !worklist.empty() )
+
+#ifndef NDEBUG
+ // Sanity check our ouput against SSA properties. This helps catch any
+ // missing kills during the above iteration.
+ for (BasicBlock &BB : F) {
+ checkBasicSSA(DT, Data, BB);
+ }
+#endif
+}
+
+static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
+ StatepointLiveSetTy &Out) {
+
+ BasicBlock *BB = Inst->getParent();
+
+ // Note: The copy is intentional and required
+ assert(Data.LiveOut.count(BB));
+ DenseSet<Value *> LiveOut = Data.LiveOut[BB];
+
+ // We want to handle the statepoint itself oddly. It's
+ // call result is not live (normal), nor are it's arguments
+ // (unless they're used again later). This adjustment is
+ // specifically what we need to relocate
+ BasicBlock::reverse_iterator rend(Inst);
+ computeLiveInValues(BB->rbegin(), rend, LiveOut);
+ LiveOut.erase(Inst);
+ Out.insert(LiveOut.begin(), LiveOut.end());
+}
+
+static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
+ const CallSite &CS,
+ PartiallyConstructedSafepointRecord &Info) {
+ Instruction *Inst = CS.getInstruction();
+ StatepointLiveSetTy Updated;
+ findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
+
+#ifndef NDEBUG
+ DenseSet<Value *> Bases;
+ for (auto KVPair : Info.PointerToBase) {
+ Bases.insert(KVPair.second);
+ }
+#endif
+ // We may have base pointers which are now live that weren't before. We need
+ // to update the PointerToBase structure to reflect this.
+ for (auto V : Updated)
+ if (!Info.PointerToBase.count(V)) {
+ assert(Bases.count(V) && "can't find base for unexpected live value");
+ Info.PointerToBase[V] = V;
+ continue;
+ }
+
+#ifndef NDEBUG
+ for (auto V : Updated) {
+ assert(Info.PointerToBase.count(V) &&
+ "must be able to find base for live value");
+ }
+#endif
+
+ // Remove any stale base mappings - this can happen since our liveness is
+ // more precise then the one inherent in the base pointer analysis
+ DenseSet<Value *> ToErase;
+ for (auto KVPair : Info.PointerToBase)
+ if (!Updated.count(KVPair.first))
+ ToErase.insert(KVPair.first);
+ for (auto V : ToErase)
+ Info.PointerToBase.erase(V);
+
+#ifndef NDEBUG
+ for (auto KVPair : Info.PointerToBase)
+ assert(Updated.count(KVPair.first) && "record for non-live value");
+#endif
+
+ Info.liveset = Updated;
+}
OpenPOWER on IntegriCloud