diff options
Diffstat (limited to 'lib/Transforms/Scalar/RewriteStatepointsForGC.cpp')
-rw-r--r-- | lib/Transforms/Scalar/RewriteStatepointsForGC.cpp | 2506 |
1 files changed, 2506 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp b/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp new file mode 100644 index 0000000..6cf765a --- /dev/null +++ b/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp @@ -0,0 +1,2506 @@ +//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Rewrite an existing set of gc.statepoints such that they make potential +// relocations performed by the garbage collector explicit in the IR. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Pass.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" + +#define DEBUG_TYPE "rewrite-statepoints-for-gc" + +using namespace llvm; + +// Print tracing output +static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, + cl::init(false)); + +// Print the liveset found at the insert location +static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, + cl::init(false)); +static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, + cl::init(false)); +// Print out the base pointers for debugging +static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, + cl::init(false)); + +// Cost threshold measuring when it is profitable to rematerialize value instead +// of relocating it +static cl::opt<unsigned> +RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, + cl::init(6)); + +#ifdef XDEBUG +static bool ClobberNonLive = true; +#else +static bool ClobberNonLive = false; +#endif +static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", + cl::location(ClobberNonLive), + cl::Hidden); + +namespace { +struct RewriteStatepointsForGC : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + + RewriteStatepointsForGC() : FunctionPass(ID) { + initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); + } + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + // We add and rewrite a bunch of instructions, but don't really do much + // else. We could in theory preserve a lot more analyses here. + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + } +}; +} // namespace + +char RewriteStatepointsForGC::ID = 0; + +FunctionPass *llvm::createRewriteStatepointsForGCPass() { + return new RewriteStatepointsForGC(); +} + +INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", + "Make relocations explicit at statepoints", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", + "Make relocations explicit at statepoints", false, false) + +namespace { +struct GCPtrLivenessData { + /// Values defined in this block. + DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; + /// Values used in this block (and thus live); does not included values + /// killed within this block. + DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; + + /// Values live into this basic block (i.e. used by any + /// instruction in this basic block or ones reachable from here) + DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; + + /// Values live out of this basic block (i.e. live into + /// any successor block) + DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; +}; + +// The type of the internal cache used inside the findBasePointers family +// of functions. From the callers perspective, this is an opaque type and +// should not be inspected. +// +// In the actual implementation this caches two relations: +// - The base relation itself (i.e. this pointer is based on that one) +// - The base defining value relation (i.e. before base_phi insertion) +// Generally, after the execution of a full findBasePointer call, only the +// base relation will remain. Internally, we add a mixture of the two +// types, then update all the second type to the first type +typedef DenseMap<Value *, Value *> DefiningValueMapTy; +typedef DenseSet<llvm::Value *> StatepointLiveSetTy; +typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; + +struct PartiallyConstructedSafepointRecord { + /// The set of values known to be live accross this safepoint + StatepointLiveSetTy liveset; + + /// Mapping from live pointers to a base-defining-value + DenseMap<llvm::Value *, llvm::Value *> PointerToBase; + + /// The *new* gc.statepoint instruction itself. This produces the token + /// that normal path gc.relocates and the gc.result are tied to. + Instruction *StatepointToken; + + /// Instruction to which exceptional gc relocates are attached + /// Makes it easier to iterate through them during relocationViaAlloca. + Instruction *UnwindToken; + + /// Record live values we are rematerialized instead of relocating. + /// They are not included into 'liveset' field. + /// Maps rematerialized copy to it's original value. + RematerializedValueMapTy RematerializedValues; +}; +} + +/// Compute the live-in set for every basic block in the function +static void computeLiveInValues(DominatorTree &DT, Function &F, + GCPtrLivenessData &Data); + +/// Given results from the dataflow liveness computation, find the set of live +/// Values at a particular instruction. +static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, + StatepointLiveSetTy &out); + +// TODO: Once we can get to the GCStrategy, this becomes +// Optional<bool> isGCManagedPointer(const Value *V) const override { + +static bool isGCPointerType(const Type *T) { + if (const PointerType *PT = dyn_cast<PointerType>(T)) + // For the sake of this example GC, we arbitrarily pick addrspace(1) as our + // GC managed heap. We know that a pointer into this heap needs to be + // updated and that no other pointer does. + return (1 == PT->getAddressSpace()); + return false; +} + +// Return true if this type is one which a) is a gc pointer or contains a GC +// pointer and b) is of a type this code expects to encounter as a live value. +// (The insertion code will assert that a type which matches (a) and not (b) +// is not encountered.) +static bool isHandledGCPointerType(Type *T) { + // We fully support gc pointers + if (isGCPointerType(T)) + return true; + // We partially support vectors of gc pointers. The code will assert if it + // can't handle something. + if (auto VT = dyn_cast<VectorType>(T)) + if (isGCPointerType(VT->getElementType())) + return true; + return false; +} + +#ifndef NDEBUG +/// Returns true if this type contains a gc pointer whether we know how to +/// handle that type or not. +static bool containsGCPtrType(Type *Ty) { + if (isGCPointerType(Ty)) + return true; + if (VectorType *VT = dyn_cast<VectorType>(Ty)) + return isGCPointerType(VT->getScalarType()); + if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) + return containsGCPtrType(AT->getElementType()); + if (StructType *ST = dyn_cast<StructType>(Ty)) + return std::any_of( + ST->subtypes().begin(), ST->subtypes().end(), + [](Type *SubType) { return containsGCPtrType(SubType); }); + return false; +} + +// Returns true if this is a type which a) is a gc pointer or contains a GC +// pointer and b) is of a type which the code doesn't expect (i.e. first class +// aggregates). Used to trip assertions. +static bool isUnhandledGCPointerType(Type *Ty) { + return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); +} +#endif + +static bool order_by_name(llvm::Value *a, llvm::Value *b) { + if (a->hasName() && b->hasName()) { + return -1 == a->getName().compare(b->getName()); + } else if (a->hasName() && !b->hasName()) { + return true; + } else if (!a->hasName() && b->hasName()) { + return false; + } else { + // Better than nothing, but not stable + return a < b; + } +} + +// Conservatively identifies any definitions which might be live at the +// given instruction. The analysis is performed immediately before the +// given instruction. Values defined by that instruction are not considered +// live. Values used by that instruction are considered live. +static void analyzeParsePointLiveness( + DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, + const CallSite &CS, PartiallyConstructedSafepointRecord &result) { + Instruction *inst = CS.getInstruction(); + + StatepointLiveSetTy liveset; + findLiveSetAtInst(inst, OriginalLivenessData, liveset); + + if (PrintLiveSet) { + // Note: This output is used by several of the test cases + // The order of elemtns in a set is not stable, put them in a vec and sort + // by name + SmallVector<Value *, 64> temp; + temp.insert(temp.end(), liveset.begin(), liveset.end()); + std::sort(temp.begin(), temp.end(), order_by_name); + errs() << "Live Variables:\n"; + for (Value *V : temp) { + errs() << " " << V->getName(); // no newline + V->dump(); + } + } + if (PrintLiveSetSize) { + errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; + errs() << "Number live values: " << liveset.size() << "\n"; + } + result.liveset = liveset; +} + +static Value *findBaseDefiningValue(Value *I); + +/// If we can trivially determine that the index specified in the given vector +/// is a base pointer, return it. In cases where the entire vector is known to +/// consist of base pointers, the entire vector will be returned. This +/// indicates that the relevant extractelement is a valid base pointer and +/// should be used directly. +static Value *findBaseOfVector(Value *I, Value *Index) { + assert(I->getType()->isVectorTy() && + cast<VectorType>(I->getType())->getElementType()->isPointerTy() && + "Illegal to ask for the base pointer of a non-pointer type"); + + // Each case parallels findBaseDefiningValue below, see that code for + // detailed motivation. + + if (isa<Argument>(I)) + // An incoming argument to the function is a base pointer + return I; + + // We shouldn't see the address of a global as a vector value? + assert(!isa<GlobalVariable>(I) && + "unexpected global variable found in base of vector"); + + // inlining could possibly introduce phi node that contains + // undef if callee has multiple returns + if (isa<UndefValue>(I)) + // utterly meaningless, but useful for dealing with partially optimized + // code. + return I; + + // Due to inheritance, this must be _after_ the global variable and undef + // checks + if (Constant *Con = dyn_cast<Constant>(I)) { + assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && + "order of checks wrong!"); + assert(Con->isNullValue() && "null is the only case which makes sense"); + return Con; + } + + if (isa<LoadInst>(I)) + return I; + + // For an insert element, we might be able to look through it if we know + // something about the indexes, but if the indices are arbitrary values, we + // can't without much more extensive scalarization. + if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { + Value *InsertIndex = IEI->getOperand(2); + // This index is inserting the value, look for it's base + if (InsertIndex == Index) + return findBaseDefiningValue(IEI->getOperand(1)); + // Both constant, and can't be equal per above. This insert is definitely + // not relevant, look back at the rest of the vector and keep trying. + if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) + return findBaseOfVector(IEI->getOperand(0), Index); + } + + // Note: This code is currently rather incomplete. We are essentially only + // handling cases where the vector element is trivially a base pointer. We + // need to update the entire base pointer construction algorithm to know how + // to track vector elements and potentially scalarize, but the case which + // would motivate the work hasn't shown up in real workloads yet. + llvm_unreachable("no base found for vector element"); +} + +/// Helper function for findBasePointer - Will return a value which either a) +/// defines the base pointer for the input or b) blocks the simple search +/// (i.e. a PHI or Select of two derived pointers) +static Value *findBaseDefiningValue(Value *I) { + assert(I->getType()->isPointerTy() && + "Illegal to ask for the base pointer of a non-pointer type"); + + // This case is a bit of a hack - it only handles extracts from vectors which + // trivially contain only base pointers or cases where we can directly match + // the index of the original extract element to an insertion into the vector. + // See note inside the function for how to improve this. + if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { + Value *VectorOperand = EEI->getVectorOperand(); + Value *Index = EEI->getIndexOperand(); + Value *VectorBase = findBaseOfVector(VectorOperand, Index); + // If the result returned is a vector, we know the entire vector must + // contain base pointers. In that case, the extractelement is a valid base + // for this value. + if (VectorBase->getType()->isVectorTy()) + return EEI; + // Otherwise, we needed to look through the vector to find the base for + // this particular element. + assert(VectorBase->getType()->isPointerTy()); + return VectorBase; + } + + if (isa<Argument>(I)) + // An incoming argument to the function is a base pointer + // We should have never reached here if this argument isn't an gc value + return I; + + if (isa<GlobalVariable>(I)) + // base case + return I; + + // inlining could possibly introduce phi node that contains + // undef if callee has multiple returns + if (isa<UndefValue>(I)) + // utterly meaningless, but useful for dealing with + // partially optimized code. + return I; + + // Due to inheritance, this must be _after_ the global variable and undef + // checks + if (Constant *Con = dyn_cast<Constant>(I)) { + assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && + "order of checks wrong!"); + // Note: Finding a constant base for something marked for relocation + // doesn't really make sense. The most likely case is either a) some + // screwed up the address space usage or b) your validating against + // compiled C++ code w/o the proper separation. The only real exception + // is a null pointer. You could have generic code written to index of + // off a potentially null value and have proven it null. We also use + // null pointers in dead paths of relocation phis (which we might later + // want to find a base pointer for). + assert(isa<ConstantPointerNull>(Con) && + "null is the only case which makes sense"); + return Con; + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) { + Value *Def = CI->stripPointerCasts(); + // If we find a cast instruction here, it means we've found a cast which is + // not simply a pointer cast (i.e. an inttoptr). We don't know how to + // handle int->ptr conversion. + assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); + return findBaseDefiningValue(Def); + } + + if (isa<LoadInst>(I)) + return I; // The value loaded is an gc base itself + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) + // The base of this GEP is the base + return findBaseDefiningValue(GEP->getPointerOperand()); + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + case Intrinsic::experimental_gc_result_ptr: + default: + // fall through to general call handling + break; + case Intrinsic::experimental_gc_statepoint: + case Intrinsic::experimental_gc_result_float: + case Intrinsic::experimental_gc_result_int: + llvm_unreachable("these don't produce pointers"); + case Intrinsic::experimental_gc_relocate: { + // Rerunning safepoint insertion after safepoints are already + // inserted is not supported. It could probably be made to work, + // but why are you doing this? There's no good reason. + llvm_unreachable("repeat safepoint insertion is not supported"); + } + case Intrinsic::gcroot: + // Currently, this mechanism hasn't been extended to work with gcroot. + // There's no reason it couldn't be, but I haven't thought about the + // implications much. + llvm_unreachable( + "interaction with the gcroot mechanism is not supported"); + } + } + // We assume that functions in the source language only return base + // pointers. This should probably be generalized via attributes to support + // both source language and internal functions. + if (isa<CallInst>(I) || isa<InvokeInst>(I)) + return I; + + // I have absolutely no idea how to implement this part yet. It's not + // neccessarily hard, I just haven't really looked at it yet. + assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); + + if (isa<AtomicCmpXchgInst>(I)) + // A CAS is effectively a atomic store and load combined under a + // predicate. From the perspective of base pointers, we just treat it + // like a load. + return I; + + assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " + "binary ops which don't apply to pointers"); + + // The aggregate ops. Aggregates can either be in the heap or on the + // stack, but in either case, this is simply a field load. As a result, + // this is a defining definition of the base just like a load is. + if (isa<ExtractValueInst>(I)) + return I; + + // We should never see an insert vector since that would require we be + // tracing back a struct value not a pointer value. + assert(!isa<InsertValueInst>(I) && + "Base pointer for a struct is meaningless"); + + // The last two cases here don't return a base pointer. Instead, they + // return a value which dynamically selects from amoung several base + // derived pointers (each with it's own base potentially). It's the job of + // the caller to resolve these. + assert((isa<SelectInst>(I) || isa<PHINode>(I)) && + "missing instruction case in findBaseDefiningValing"); + return I; +} + +/// Returns the base defining value for this value. +static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { + Value *&Cached = Cache[I]; + if (!Cached) { + Cached = findBaseDefiningValue(I); + } + assert(Cache[I] != nullptr); + + if (TraceLSP) { + dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() + << "\n"; + } + return Cached; +} + +/// Return a base pointer for this value if known. Otherwise, return it's +/// base defining value. +static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { + Value *Def = findBaseDefiningValueCached(I, Cache); + auto Found = Cache.find(Def); + if (Found != Cache.end()) { + // Either a base-of relation, or a self reference. Caller must check. + return Found->second; + } + // Only a BDV available + return Def; +} + +/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, +/// is it known to be a base pointer? Or do we need to continue searching. +static bool isKnownBaseResult(Value *V) { + if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { + // no recursion possible + return true; + } + if (isa<Instruction>(V) && + cast<Instruction>(V)->getMetadata("is_base_value")) { + // This is a previously inserted base phi or select. We know + // that this is a base value. + return true; + } + + // We need to keep searching + return false; +} + +// TODO: find a better name for this +namespace { +class PhiState { +public: + enum Status { Unknown, Base, Conflict }; + + PhiState(Status s, Value *b = nullptr) : status(s), base(b) { + assert(status != Base || b); + } + PhiState(Value *b) : status(Base), base(b) {} + PhiState() : status(Unknown), base(nullptr) {} + + Status getStatus() const { return status; } + Value *getBase() const { return base; } + + bool isBase() const { return getStatus() == Base; } + bool isUnknown() const { return getStatus() == Unknown; } + bool isConflict() const { return getStatus() == Conflict; } + + bool operator==(const PhiState &other) const { + return base == other.base && status == other.status; + } + + bool operator!=(const PhiState &other) const { return !(*this == other); } + + void dump() { + errs() << status << " (" << base << " - " + << (base ? base->getName() : "nullptr") << "): "; + } + +private: + Status status; + Value *base; // non null only if status == base +}; + +typedef DenseMap<Value *, PhiState> ConflictStateMapTy; +// Values of type PhiState form a lattice, and this is a helper +// class that implementes the meet operation. The meat of the meet +// operation is implemented in MeetPhiStates::pureMeet +class MeetPhiStates { +public: + // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. + explicit MeetPhiStates(const ConflictStateMapTy &phiStates) + : phiStates(phiStates) {} + + // Destructively meet the current result with the base V. V can + // either be a merge instruction (SelectInst / PHINode), in which + // case its status is looked up in the phiStates map; or a regular + // SSA value, in which case it is assumed to be a base. + void meetWith(Value *V) { + PhiState otherState = getStateForBDV(V); + assert((MeetPhiStates::pureMeet(otherState, currentResult) == + MeetPhiStates::pureMeet(currentResult, otherState)) && + "math is wrong: meet does not commute!"); + currentResult = MeetPhiStates::pureMeet(otherState, currentResult); + } + + PhiState getResult() const { return currentResult; } + +private: + const ConflictStateMapTy &phiStates; + PhiState currentResult; + + /// Return a phi state for a base defining value. We'll generate a new + /// base state for known bases and expect to find a cached state otherwise + PhiState getStateForBDV(Value *baseValue) { + if (isKnownBaseResult(baseValue)) { + return PhiState(baseValue); + } else { + return lookupFromMap(baseValue); + } + } + + PhiState lookupFromMap(Value *V) { + auto I = phiStates.find(V); + assert(I != phiStates.end() && "lookup failed!"); + return I->second; + } + + static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { + switch (stateA.getStatus()) { + case PhiState::Unknown: + return stateB; + + case PhiState::Base: + assert(stateA.getBase() && "can't be null"); + if (stateB.isUnknown()) + return stateA; + + if (stateB.isBase()) { + if (stateA.getBase() == stateB.getBase()) { + assert(stateA == stateB && "equality broken!"); + return stateA; + } + return PhiState(PhiState::Conflict); + } + assert(stateB.isConflict() && "only three states!"); + return PhiState(PhiState::Conflict); + + case PhiState::Conflict: + return stateA; + } + llvm_unreachable("only three states!"); + } +}; +} +/// For a given value or instruction, figure out what base ptr it's derived +/// from. For gc objects, this is simply itself. On success, returns a value +/// which is the base pointer. (This is reliable and can be used for +/// relocation.) On failure, returns nullptr. +static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { + Value *def = findBaseOrBDV(I, cache); + + if (isKnownBaseResult(def)) { + return def; + } + + // Here's the rough algorithm: + // - For every SSA value, construct a mapping to either an actual base + // pointer or a PHI which obscures the base pointer. + // - Construct a mapping from PHI to unknown TOP state. Use an + // optimistic algorithm to propagate base pointer information. Lattice + // looks like: + // UNKNOWN + // b1 b2 b3 b4 + // CONFLICT + // When algorithm terminates, all PHIs will either have a single concrete + // base or be in a conflict state. + // - For every conflict, insert a dummy PHI node without arguments. Add + // these to the base[Instruction] = BasePtr mapping. For every + // non-conflict, add the actual base. + // - For every conflict, add arguments for the base[a] of each input + // arguments. + // + // Note: A simpler form of this would be to add the conflict form of all + // PHIs without running the optimistic algorithm. This would be + // analougous to pessimistic data flow and would likely lead to an + // overall worse solution. + + ConflictStateMapTy states; + states[def] = PhiState(); + // Recursively fill in all phis & selects reachable from the initial one + // for which we don't already know a definite base value for + // TODO: This should be rewritten with a worklist + bool done = false; + while (!done) { + done = true; + // Since we're adding elements to 'states' as we run, we can't keep + // iterators into the set. + SmallVector<Value *, 16> Keys; + Keys.reserve(states.size()); + for (auto Pair : states) { + Value *V = Pair.first; + Keys.push_back(V); + } + for (Value *v : Keys) { + assert(!isKnownBaseResult(v) && "why did it get added?"); + if (PHINode *phi = dyn_cast<PHINode>(v)) { + assert(phi->getNumIncomingValues() > 0 && + "zero input phis are illegal"); + for (Value *InVal : phi->incoming_values()) { + Value *local = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + } + } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { + Value *local = findBaseOrBDV(sel->getTrueValue(), cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + local = findBaseOrBDV(sel->getFalseValue(), cache); + if (!isKnownBaseResult(local) && states.find(local) == states.end()) { + states[local] = PhiState(); + done = false; + } + } + } + } + + if (TraceLSP) { + errs() << "States after initialization:\n"; + for (auto Pair : states) { + Instruction *v = cast<Instruction>(Pair.first); + PhiState state = Pair.second; + state.dump(); + v->dump(); + } + } + + // TODO: come back and revisit the state transitions around inputs which + // have reached conflict state. The current version seems too conservative. + + bool progress = true; + while (progress) { +#ifndef NDEBUG + size_t oldSize = states.size(); +#endif + progress = false; + // We're only changing keys in this loop, thus safe to keep iterators + for (auto Pair : states) { + MeetPhiStates calculateMeet(states); + Value *v = Pair.first; + assert(!isKnownBaseResult(v) && "why did it get added?"); + if (SelectInst *select = dyn_cast<SelectInst>(v)) { + calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); + calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); + } else + for (Value *Val : cast<PHINode>(v)->incoming_values()) + calculateMeet.meetWith(findBaseOrBDV(Val, cache)); + + PhiState oldState = states[v]; + PhiState newState = calculateMeet.getResult(); + if (oldState != newState) { + progress = true; + states[v] = newState; + } + } + + assert(oldSize <= states.size()); + assert(oldSize == states.size() || progress); + } + + if (TraceLSP) { + errs() << "States after meet iteration:\n"; + for (auto Pair : states) { + Instruction *v = cast<Instruction>(Pair.first); + PhiState state = Pair.second; + state.dump(); + v->dump(); + } + } + + // Insert Phis for all conflicts + // We want to keep naming deterministic in the loop that follows, so + // sort the keys before iteration. This is useful in allowing us to + // write stable tests. Note that there is no invalidation issue here. + SmallVector<Value *, 16> Keys; + Keys.reserve(states.size()); + for (auto Pair : states) { + Value *V = Pair.first; + Keys.push_back(V); + } + std::sort(Keys.begin(), Keys.end(), order_by_name); + // TODO: adjust naming patterns to avoid this order of iteration dependency + for (Value *V : Keys) { + Instruction *v = cast<Instruction>(V); + PhiState state = states[V]; + assert(!isKnownBaseResult(v) && "why did it get added?"); + assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); + if (!state.isConflict()) + continue; + + if (isa<PHINode>(v)) { + int num_preds = + std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); + assert(num_preds > 0 && "how did we reach here"); + PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); + // Add metadata marking this as a base value + auto *const_1 = ConstantInt::get( + Type::getInt32Ty( + v->getParent()->getParent()->getParent()->getContext()), + 1); + auto MDConst = ConstantAsMetadata::get(const_1); + MDNode *md = MDNode::get( + v->getParent()->getParent()->getParent()->getContext(), MDConst); + phi->setMetadata("is_base_value", md); + states[v] = PhiState(PhiState::Conflict, phi); + } else { + SelectInst *sel = cast<SelectInst>(v); + // The undef will be replaced later + UndefValue *undef = UndefValue::get(sel->getType()); + SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, + undef, "base_select", sel); + // Add metadata marking this as a base value + auto *const_1 = ConstantInt::get( + Type::getInt32Ty( + v->getParent()->getParent()->getParent()->getContext()), + 1); + auto MDConst = ConstantAsMetadata::get(const_1); + MDNode *md = MDNode::get( + v->getParent()->getParent()->getParent()->getContext(), MDConst); + basesel->setMetadata("is_base_value", md); + states[v] = PhiState(PhiState::Conflict, basesel); + } + } + + // Fixup all the inputs of the new PHIs + for (auto Pair : states) { + Instruction *v = cast<Instruction>(Pair.first); + PhiState state = Pair.second; + + assert(!isKnownBaseResult(v) && "why did it get added?"); + assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); + if (!state.isConflict()) + continue; + + if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { + PHINode *phi = cast<PHINode>(v); + unsigned NumPHIValues = phi->getNumIncomingValues(); + for (unsigned i = 0; i < NumPHIValues; i++) { + Value *InVal = phi->getIncomingValue(i); + BasicBlock *InBB = phi->getIncomingBlock(i); + + // If we've already seen InBB, add the same incoming value + // we added for it earlier. The IR verifier requires phi + // nodes with multiple entries from the same basic block + // to have the same incoming value for each of those + // entries. If we don't do this check here and basephi + // has a different type than base, we'll end up adding two + // bitcasts (and hence two distinct values) as incoming + // values for the same basic block. + + int blockIndex = basephi->getBasicBlockIndex(InBB); + if (blockIndex != -1) { + Value *oldBase = basephi->getIncomingValue(blockIndex); + basephi->addIncoming(oldBase, InBB); +#ifndef NDEBUG + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + } + + // In essense this assert states: the only way two + // values incoming from the same basic block may be + // different is by being different bitcasts of the same + // value. A cleanup that remains TODO is changing + // findBaseOrBDV to return an llvm::Value of the correct + // type (and still remain pure). This will remove the + // need to add bitcasts. + assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && + "sanity -- findBaseOrBDV should be pure!"); +#endif + continue; + } + + // Find either the defining value for the PHI or the normal base for + // a non-phi node + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + } + assert(base && "can't be null"); + // Must use original input BB since base may not be Instruction + // The cast is needed since base traversal may strip away bitcasts + if (base->getType() != basephi->getType()) { + base = new BitCastInst(base, basephi->getType(), "cast", + InBB->getTerminator()); + } + basephi->addIncoming(base, InBB); + } + assert(basephi->getNumIncomingValues() == NumPHIValues); + } else { + SelectInst *basesel = cast<SelectInst>(state.getBase()); + SelectInst *sel = cast<SelectInst>(v); + // Operand 1 & 2 are true, false path respectively. TODO: refactor to + // something more safe and less hacky. + for (int i = 1; i <= 2; i++) { + Value *InVal = sel->getOperand(i); + // Find either the defining value for the PHI or the normal base for + // a non-phi node + Value *base = findBaseOrBDV(InVal, cache); + if (!isKnownBaseResult(base)) { + // Either conflict or base. + assert(states.count(base)); + base = states[base].getBase(); + assert(base != nullptr && "unknown PhiState!"); + } + assert(base && "can't be null"); + // Must use original input BB since base may not be Instruction + // The cast is needed since base traversal may strip away bitcasts + if (base->getType() != basesel->getType()) { + base = new BitCastInst(base, basesel->getType(), "cast", basesel); + } + basesel->setOperand(i, base); + } + } + } + + // Cache all of our results so we can cheaply reuse them + // NOTE: This is actually two caches: one of the base defining value + // relation and one of the base pointer relation! FIXME + for (auto item : states) { + Value *v = item.first; + Value *base = item.second.getBase(); + assert(v && base); + assert(!isKnownBaseResult(v) && "why did it get added?"); + + if (TraceLSP) { + std::string fromstr = + cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") + : "none"; + errs() << "Updating base value cache" + << " for: " << (v->hasName() ? v->getName() : "") + << " from: " << fromstr + << " to: " << (base->hasName() ? base->getName() : "") << "\n"; + } + + assert(isKnownBaseResult(base) && + "must be something we 'know' is a base pointer"); + if (cache.count(v)) { + // Once we transition from the BDV relation being store in the cache to + // the base relation being stored, it must be stable + assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && + "base relation should be stable"); + } + cache[v] = base; + } + assert(cache.find(def) != cache.end()); + return cache[def]; +} + +// For a set of live pointers (base and/or derived), identify the base +// pointer of the object which they are derived from. This routine will +// mutate the IR graph as needed to make the 'base' pointer live at the +// definition site of 'derived'. This ensures that any use of 'derived' can +// also use 'base'. This may involve the insertion of a number of +// additional PHI nodes. +// +// preconditions: live is a set of pointer type Values +// +// side effects: may insert PHI nodes into the existing CFG, will preserve +// CFG, will not remove or mutate any existing nodes +// +// post condition: PointerToBase contains one (derived, base) pair for every +// pointer in live. Note that derived can be equal to base if the original +// pointer was a base pointer. +static void +findBasePointers(const StatepointLiveSetTy &live, + DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, + DominatorTree *DT, DefiningValueMapTy &DVCache) { + // For the naming of values inserted to be deterministic - which makes for + // much cleaner and more stable tests - we need to assign an order to the + // live values. DenseSets do not provide a deterministic order across runs. + SmallVector<Value *, 64> Temp; + Temp.insert(Temp.end(), live.begin(), live.end()); + std::sort(Temp.begin(), Temp.end(), order_by_name); + for (Value *ptr : Temp) { + Value *base = findBasePointer(ptr, DVCache); + assert(base && "failed to find base pointer"); + PointerToBase[ptr] = base; + assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || + DT->dominates(cast<Instruction>(base)->getParent(), + cast<Instruction>(ptr)->getParent())) && + "The base we found better dominate the derived pointer"); + + // If you see this trip and like to live really dangerously, the code should + // be correct, just with idioms the verifier can't handle. You can try + // disabling the verifier at your own substaintial risk. + assert(!isa<ConstantPointerNull>(base) && + "the relocation code needs adjustment to handle the relocation of " + "a null pointer constant without causing false positives in the " + "safepoint ir verifier."); + } +} + +/// Find the required based pointers (and adjust the live set) for the given +/// parse point. +static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, + const CallSite &CS, + PartiallyConstructedSafepointRecord &result) { + DenseMap<llvm::Value *, llvm::Value *> PointerToBase; + findBasePointers(result.liveset, PointerToBase, &DT, DVCache); + + if (PrintBasePointers) { + // Note: Need to print these in a stable order since this is checked in + // some tests. + errs() << "Base Pairs (w/o Relocation):\n"; + SmallVector<Value *, 64> Temp; + Temp.reserve(PointerToBase.size()); + for (auto Pair : PointerToBase) { + Temp.push_back(Pair.first); + } + std::sort(Temp.begin(), Temp.end(), order_by_name); + for (Value *Ptr : Temp) { + Value *Base = PointerToBase[Ptr]; + errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() + << "\n"; + } + } + + result.PointerToBase = PointerToBase; +} + +/// Given an updated version of the dataflow liveness results, update the +/// liveset and base pointer maps for the call site CS. +static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, + const CallSite &CS, + PartiallyConstructedSafepointRecord &result); + +static void recomputeLiveInValues( + Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, + MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { + // TODO-PERF: reuse the original liveness, then simply run the dataflow + // again. The old values are still live and will help it stablize quickly. + GCPtrLivenessData RevisedLivenessData; + computeLiveInValues(DT, F, RevisedLivenessData); + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + const CallSite &CS = toUpdate[i]; + recomputeLiveInValues(RevisedLivenessData, CS, info); + } +} + +// When inserting gc.relocate calls, we need to ensure there are no uses +// of the original value between the gc.statepoint and the gc.relocate call. +// One case which can arise is a phi node starting one of the successor blocks. +// We also need to be able to insert the gc.relocates only on the path which +// goes through the statepoint. We might need to split an edge to make this +// possible. +static BasicBlock * +normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) { + DominatorTree *DT = nullptr; + if (auto *DTP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) + DT = &DTP->getDomTree(); + + BasicBlock *Ret = BB; + if (!BB->getUniquePredecessor()) { + Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT); + } + + // Now that 'ret' has unique predecessor we can safely remove all phi nodes + // from it + FoldSingleEntryPHINodes(Ret); + assert(!isa<PHINode>(Ret->begin())); + + // At this point, we can safely insert a gc.relocate as the first instruction + // in Ret if needed. + return Ret; +} + +static int find_index(ArrayRef<Value *> livevec, Value *val) { + auto itr = std::find(livevec.begin(), livevec.end(), val); + assert(livevec.end() != itr); + size_t index = std::distance(livevec.begin(), itr); + assert(index < livevec.size()); + return index; +} + +// Create new attribute set containing only attributes which can be transfered +// from original call to the safepoint. +static AttributeSet legalizeCallAttributes(AttributeSet AS) { + AttributeSet ret; + + for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { + unsigned index = AS.getSlotIndex(Slot); + + if (index == AttributeSet::ReturnIndex || + index == AttributeSet::FunctionIndex) { + + for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; + ++it) { + Attribute attr = *it; + + // Do not allow certain attributes - just skip them + // Safepoint can not be read only or read none. + if (attr.hasAttribute(Attribute::ReadNone) || + attr.hasAttribute(Attribute::ReadOnly)) + continue; + + ret = ret.addAttributes( + AS.getContext(), index, + AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); + } + } + + // Just skip parameter attributes for now + } + + return ret; +} + +/// Helper function to place all gc relocates necessary for the given +/// statepoint. +/// Inputs: +/// liveVariables - list of variables to be relocated. +/// liveStart - index of the first live variable. +/// basePtrs - base pointers. +/// statepointToken - statepoint instruction to which relocates should be +/// bound. +/// Builder - Llvm IR builder to be used to construct new calls. +static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, + const int LiveStart, + ArrayRef<llvm::Value *> BasePtrs, + Instruction *StatepointToken, + IRBuilder<> Builder) { + SmallVector<Instruction *, 64> NewDefs; + NewDefs.reserve(LiveVariables.size()); + + Module *M = StatepointToken->getParent()->getParent()->getParent(); + + for (unsigned i = 0; i < LiveVariables.size(); i++) { + // We generate a (potentially) unique declaration for every pointer type + // combination. This results is some blow up the function declarations in + // the IR, but removes the need for argument bitcasts which shrinks the IR + // greatly and makes it much more readable. + SmallVector<Type *, 1> Types; // one per 'any' type + // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid + // cases where the actual value's type mangling is not supported by llvm. A + // bitcast is added later to convert gc_relocate to the actual value's type. + Types.push_back(Type::getInt8PtrTy(M->getContext(), 1)); + Value *GCRelocateDecl = Intrinsic::getDeclaration( + M, Intrinsic::experimental_gc_relocate, Types); + + // Generate the gc.relocate call and save the result + Value *BaseIdx = + ConstantInt::get(Type::getInt32Ty(M->getContext()), + LiveStart + find_index(LiveVariables, BasePtrs[i])); + Value *LiveIdx = ConstantInt::get( + Type::getInt32Ty(M->getContext()), + LiveStart + find_index(LiveVariables, LiveVariables[i])); + + // only specify a debug name if we can give a useful one + Value *Reloc = Builder.CreateCall( + GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, + LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" + : ""); + // Trick CodeGen into thinking there are lots of free registers at this + // fake call. + cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold); + + NewDefs.push_back(cast<Instruction>(Reloc)); + } + assert(NewDefs.size() == LiveVariables.size() && + "missing or extra redefinition at safepoint"); +} + +static void +makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ + const SmallVectorImpl<llvm::Value *> &basePtrs, + const SmallVectorImpl<llvm::Value *> &liveVariables, + Pass *P, + PartiallyConstructedSafepointRecord &result) { + assert(basePtrs.size() == liveVariables.size()); + assert(isStatepoint(CS) && + "This method expects to be rewriting a statepoint"); + + BasicBlock *BB = CS.getInstruction()->getParent(); + assert(BB); + Function *F = BB->getParent(); + assert(F && "must be set"); + Module *M = F->getParent(); + (void)M; + assert(M && "must be set"); + + // We're not changing the function signature of the statepoint since the gc + // arguments go into the var args section. + Function *gc_statepoint_decl = CS.getCalledFunction(); + + // Then go ahead and use the builder do actually do the inserts. We insert + // immediately before the previous instruction under the assumption that all + // arguments will be available here. We can't insert afterwards since we may + // be replacing a terminator. + Instruction *insertBefore = CS.getInstruction(); + IRBuilder<> Builder(insertBefore); + // Copy all of the arguments from the original statepoint - this includes the + // target, call args, and deopt args + SmallVector<llvm::Value *, 64> args; + args.insert(args.end(), CS.arg_begin(), CS.arg_end()); + // TODO: Clear the 'needs rewrite' flag + + // add all the pointers to be relocated (gc arguments) + // Capture the start of the live variable list for use in the gc_relocates + const int live_start = args.size(); + args.insert(args.end(), liveVariables.begin(), liveVariables.end()); + + // Create the statepoint given all the arguments + Instruction *token = nullptr; + AttributeSet return_attributes; + if (CS.isCall()) { + CallInst *toReplace = cast<CallInst>(CS.getInstruction()); + CallInst *call = + Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); + call->setTailCall(toReplace->isTailCall()); + call->setCallingConv(toReplace->getCallingConv()); + + // Currently we will fail on parameter attributes and on certain + // function attributes. + AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); + // In case if we can handle this set of sttributes - set up function attrs + // directly on statepoint and return attrs later for gc_result intrinsic. + call->setAttributes(new_attrs.getFnAttributes()); + return_attributes = new_attrs.getRetAttributes(); + + token = call; + + // Put the following gc_result and gc_relocate calls immediately after the + // the old call (which we're about to delete) + BasicBlock::iterator next(toReplace); + assert(BB->end() != next && "not a terminator, must have next"); + next++; + Instruction *IP = &*(next); + Builder.SetInsertPoint(IP); + Builder.SetCurrentDebugLocation(IP->getDebugLoc()); + + } else { + InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); + + // Insert the new invoke into the old block. We'll remove the old one in a + // moment at which point this will become the new terminator for the + // original block. + InvokeInst *invoke = InvokeInst::Create( + gc_statepoint_decl, toReplace->getNormalDest(), + toReplace->getUnwindDest(), args, "", toReplace->getParent()); + invoke->setCallingConv(toReplace->getCallingConv()); + + // Currently we will fail on parameter attributes and on certain + // function attributes. + AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); + // In case if we can handle this set of sttributes - set up function attrs + // directly on statepoint and return attrs later for gc_result intrinsic. + invoke->setAttributes(new_attrs.getFnAttributes()); + return_attributes = new_attrs.getRetAttributes(); + + token = invoke; + + // Generate gc relocates in exceptional path + BasicBlock *unwindBlock = toReplace->getUnwindDest(); + assert(!isa<PHINode>(unwindBlock->begin()) && + unwindBlock->getUniquePredecessor() && + "can't safely insert in this block!"); + + Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); + Builder.SetInsertPoint(IP); + Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); + + // Extract second element from landingpad return value. We will attach + // exceptional gc relocates to it. + const unsigned idx = 1; + Instruction *exceptional_token = + cast<Instruction>(Builder.CreateExtractValue( + unwindBlock->getLandingPadInst(), idx, "relocate_token")); + result.UnwindToken = exceptional_token; + + // Just throw away return value. We will use the one we got for normal + // block. + (void)CreateGCRelocates(liveVariables, live_start, basePtrs, + exceptional_token, Builder); + + // Generate gc relocates and returns for normal block + BasicBlock *normalDest = toReplace->getNormalDest(); + assert(!isa<PHINode>(normalDest->begin()) && + normalDest->getUniquePredecessor() && + "can't safely insert in this block!"); + + IP = &*(normalDest->getFirstInsertionPt()); + Builder.SetInsertPoint(IP); + + // gc relocates will be generated later as if it were regular call + // statepoint + } + assert(token); + + // Take the name of the original value call if it had one. + token->takeName(CS.getInstruction()); + +// The GCResult is already inserted, we just need to find it +#ifndef NDEBUG + Instruction *toReplace = CS.getInstruction(); + assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && + "only valid use before rewrite is gc.result"); + assert(!toReplace->hasOneUse() || + isGCResult(cast<Instruction>(*toReplace->user_begin()))); +#endif + + // Update the gc.result of the original statepoint (if any) to use the newly + // inserted statepoint. This is safe to do here since the token can't be + // considered a live reference. + CS.getInstruction()->replaceAllUsesWith(token); + + result.StatepointToken = token; + + // Second, create a gc.relocate for every live variable + CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); +} + +namespace { +struct name_ordering { + Value *base; + Value *derived; + bool operator()(name_ordering const &a, name_ordering const &b) { + return -1 == a.derived->getName().compare(b.derived->getName()); + } +}; +} +static void stablize_order(SmallVectorImpl<Value *> &basevec, + SmallVectorImpl<Value *> &livevec) { + assert(basevec.size() == livevec.size()); + + SmallVector<name_ordering, 64> temp; + for (size_t i = 0; i < basevec.size(); i++) { + name_ordering v; + v.base = basevec[i]; + v.derived = livevec[i]; + temp.push_back(v); + } + std::sort(temp.begin(), temp.end(), name_ordering()); + for (size_t i = 0; i < basevec.size(); i++) { + basevec[i] = temp[i].base; + livevec[i] = temp[i].derived; + } +} + +// Replace an existing gc.statepoint with a new one and a set of gc.relocates +// which make the relocations happening at this safepoint explicit. +// +// WARNING: Does not do any fixup to adjust users of the original live +// values. That's the callers responsibility. +static void +makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, + PartiallyConstructedSafepointRecord &result) { + auto liveset = result.liveset; + auto PointerToBase = result.PointerToBase; + + // Convert to vector for efficient cross referencing. + SmallVector<Value *, 64> basevec, livevec; + livevec.reserve(liveset.size()); + basevec.reserve(liveset.size()); + for (Value *L : liveset) { + livevec.push_back(L); + + assert(PointerToBase.find(L) != PointerToBase.end()); + Value *base = PointerToBase[L]; + basevec.push_back(base); + } + assert(livevec.size() == basevec.size()); + + // To make the output IR slightly more stable (for use in diffs), ensure a + // fixed order of the values in the safepoint (by sorting the value name). + // The order is otherwise meaningless. + stablize_order(basevec, livevec); + + // Do the actual rewriting and delete the old statepoint + makeStatepointExplicitImpl(CS, basevec, livevec, P, result); + CS.getInstruction()->eraseFromParent(); +} + +// Helper function for the relocationViaAlloca. +// It receives iterator to the statepoint gc relocates and emits store to the +// assigned +// location (via allocaMap) for the each one of them. +// Add visited values into the visitedLiveValues set we will later use them +// for sanity check. +static void +insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, + DenseMap<Value *, Value *> &AllocaMap, + DenseSet<Value *> &VisitedLiveValues) { + + for (User *U : GCRelocs) { + if (!isa<IntrinsicInst>(U)) + continue; + + IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); + + // We only care about relocates + if (RelocatedValue->getIntrinsicID() != + Intrinsic::experimental_gc_relocate) { + continue; + } + + GCRelocateOperands RelocateOperands(RelocatedValue); + Value *OriginalValue = + const_cast<Value *>(RelocateOperands.getDerivedPtr()); + assert(AllocaMap.count(OriginalValue)); + Value *Alloca = AllocaMap[OriginalValue]; + + // Emit store into the related alloca + // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to + // the correct type according to alloca. + assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); + IRBuilder<> Builder(RelocatedValue->getNextNode()); + Value *CastedRelocatedValue = + Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), + RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); + + StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); + Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); + +#ifndef NDEBUG + VisitedLiveValues.insert(OriginalValue); +#endif + } +} + +// Helper function for the "relocationViaAlloca". Similar to the +// "insertRelocationStores" but works for rematerialized values. +static void +insertRematerializationStores( + RematerializedValueMapTy RematerializedValues, + DenseMap<Value *, Value *> &AllocaMap, + DenseSet<Value *> &VisitedLiveValues) { + + for (auto RematerializedValuePair: RematerializedValues) { + Instruction *RematerializedValue = RematerializedValuePair.first; + Value *OriginalValue = RematerializedValuePair.second; + + assert(AllocaMap.count(OriginalValue) && + "Can not find alloca for rematerialized value"); + Value *Alloca = AllocaMap[OriginalValue]; + + StoreInst *Store = new StoreInst(RematerializedValue, Alloca); + Store->insertAfter(RematerializedValue); + +#ifndef NDEBUG + VisitedLiveValues.insert(OriginalValue); +#endif + } +} + +/// do all the relocation update via allocas and mem2reg +static void relocationViaAlloca( + Function &F, DominatorTree &DT, ArrayRef<Value *> Live, + ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { +#ifndef NDEBUG + // record initial number of (static) allocas; we'll check we have the same + // number when we get done. + int InitialAllocaNum = 0; + for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; + I++) + if (isa<AllocaInst>(*I)) + InitialAllocaNum++; +#endif + + // TODO-PERF: change data structures, reserve + DenseMap<Value *, Value *> AllocaMap; + SmallVector<AllocaInst *, 200> PromotableAllocas; + // Used later to chack that we have enough allocas to store all values + std::size_t NumRematerializedValues = 0; + PromotableAllocas.reserve(Live.size()); + + // Emit alloca for "LiveValue" and record it in "allocaMap" and + // "PromotableAllocas" + auto emitAllocaFor = [&](Value *LiveValue) { + AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", + F.getEntryBlock().getFirstNonPHI()); + AllocaMap[LiveValue] = Alloca; + PromotableAllocas.push_back(Alloca); + }; + + // emit alloca for each live gc pointer + for (unsigned i = 0; i < Live.size(); i++) { + emitAllocaFor(Live[i]); + } + + // emit allocas for rematerialized values + for (size_t i = 0; i < Records.size(); i++) { + const struct PartiallyConstructedSafepointRecord &Info = Records[i]; + + for (auto RematerializedValuePair : Info.RematerializedValues) { + Value *OriginalValue = RematerializedValuePair.second; + if (AllocaMap.count(OriginalValue) != 0) + continue; + + emitAllocaFor(OriginalValue); + ++NumRematerializedValues; + } + } + + // The next two loops are part of the same conceptual operation. We need to + // insert a store to the alloca after the original def and at each + // redefinition. We need to insert a load before each use. These are split + // into distinct loops for performance reasons. + + // update gc pointer after each statepoint + // either store a relocated value or null (if no relocated value found for + // this gc pointer and it is not a gc_result) + // this must happen before we update the statepoint with load of alloca + // otherwise we lose the link between statepoint and old def + for (size_t i = 0; i < Records.size(); i++) { + const struct PartiallyConstructedSafepointRecord &Info = Records[i]; + Value *Statepoint = Info.StatepointToken; + + // This will be used for consistency check + DenseSet<Value *> VisitedLiveValues; + + // Insert stores for normal statepoint gc relocates + insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); + + // In case if it was invoke statepoint + // we will insert stores for exceptional path gc relocates. + if (isa<InvokeInst>(Statepoint)) { + insertRelocationStores(Info.UnwindToken->users(), AllocaMap, + VisitedLiveValues); + } + + // Do similar thing with rematerialized values + insertRematerializationStores(Info.RematerializedValues, AllocaMap, + VisitedLiveValues); + + if (ClobberNonLive) { + // As a debuging aid, pretend that an unrelocated pointer becomes null at + // the gc.statepoint. This will turn some subtle GC problems into + // slightly easier to debug SEGVs. Note that on large IR files with + // lots of gc.statepoints this is extremely costly both memory and time + // wise. + SmallVector<AllocaInst *, 64> ToClobber; + for (auto Pair : AllocaMap) { + Value *Def = Pair.first; + AllocaInst *Alloca = cast<AllocaInst>(Pair.second); + + // This value was relocated + if (VisitedLiveValues.count(Def)) { + continue; + } + ToClobber.push_back(Alloca); + } + + auto InsertClobbersAt = [&](Instruction *IP) { + for (auto *AI : ToClobber) { + auto AIType = cast<PointerType>(AI->getType()); + auto PT = cast<PointerType>(AIType->getElementType()); + Constant *CPN = ConstantPointerNull::get(PT); + StoreInst *Store = new StoreInst(CPN, AI); + Store->insertBefore(IP); + } + }; + + // Insert the clobbering stores. These may get intermixed with the + // gc.results and gc.relocates, but that's fine. + if (auto II = dyn_cast<InvokeInst>(Statepoint)) { + InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); + InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); + } else { + BasicBlock::iterator Next(cast<CallInst>(Statepoint)); + Next++; + InsertClobbersAt(Next); + } + } + } + // update use with load allocas and add store for gc_relocated + for (auto Pair : AllocaMap) { + Value *Def = Pair.first; + Value *Alloca = Pair.second; + + // we pre-record the uses of allocas so that we dont have to worry about + // later update + // that change the user information. + SmallVector<Instruction *, 20> Uses; + // PERF: trade a linear scan for repeated reallocation + Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); + for (User *U : Def->users()) { + if (!isa<ConstantExpr>(U)) { + // If the def has a ConstantExpr use, then the def is either a + // ConstantExpr use itself or null. In either case + // (recursively in the first, directly in the second), the oop + // it is ultimately dependent on is null and this particular + // use does not need to be fixed up. + Uses.push_back(cast<Instruction>(U)); + } + } + + std::sort(Uses.begin(), Uses.end()); + auto Last = std::unique(Uses.begin(), Uses.end()); + Uses.erase(Last, Uses.end()); + + for (Instruction *Use : Uses) { + if (isa<PHINode>(Use)) { + PHINode *Phi = cast<PHINode>(Use); + for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { + if (Def == Phi->getIncomingValue(i)) { + LoadInst *Load = new LoadInst( + Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); + Phi->setIncomingValue(i, Load); + } + } + } else { + LoadInst *Load = new LoadInst(Alloca, "", Use); + Use->replaceUsesOfWith(Def, Load); + } + } + + // emit store for the initial gc value + // store must be inserted after load, otherwise store will be in alloca's + // use list and an extra load will be inserted before it + StoreInst *Store = new StoreInst(Def, Alloca); + if (Instruction *Inst = dyn_cast<Instruction>(Def)) { + if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { + // InvokeInst is a TerminatorInst so the store need to be inserted + // into its normal destination block. + BasicBlock *NormalDest = Invoke->getNormalDest(); + Store->insertBefore(NormalDest->getFirstNonPHI()); + } else { + assert(!Inst->isTerminator() && + "The only TerminatorInst that can produce a value is " + "InvokeInst which is handled above."); + Store->insertAfter(Inst); + } + } else { + assert(isa<Argument>(Def)); + Store->insertAfter(cast<Instruction>(Alloca)); + } + } + + assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && + "we must have the same allocas with lives"); + if (!PromotableAllocas.empty()) { + // apply mem2reg to promote alloca to SSA + PromoteMemToReg(PromotableAllocas, DT); + } + +#ifndef NDEBUG + for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; + I++) + if (isa<AllocaInst>(*I)) + InitialAllocaNum--; + assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); +#endif +} + +/// Implement a unique function which doesn't require we sort the input +/// vector. Doing so has the effect of changing the output of a couple of +/// tests in ways which make them less useful in testing fused safepoints. +template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { + DenseSet<T> Seen; + SmallVector<T, 128> TempVec; + TempVec.reserve(Vec.size()); + for (auto Element : Vec) + TempVec.push_back(Element); + Vec.clear(); + for (auto V : TempVec) { + if (Seen.insert(V).second) { + Vec.push_back(V); + } + } +} + +/// Insert holders so that each Value is obviously live through the entire +/// lifetime of the call. +static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, + SmallVectorImpl<CallInst *> &Holders) { + if (Values.empty()) + // No values to hold live, might as well not insert the empty holder + return; + + Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); + // Use a dummy vararg function to actually hold the values live + Function *Func = cast<Function>(M->getOrInsertFunction( + "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); + if (CS.isCall()) { + // For call safepoints insert dummy calls right after safepoint + BasicBlock::iterator Next(CS.getInstruction()); + Next++; + Holders.push_back(CallInst::Create(Func, Values, "", Next)); + return; + } + // For invoke safepooints insert dummy calls both in normal and + // exceptional destination blocks + auto *II = cast<InvokeInst>(CS.getInstruction()); + Holders.push_back(CallInst::Create( + Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); + Holders.push_back(CallInst::Create( + Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); +} + +static void findLiveReferences( + Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, + MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { + GCPtrLivenessData OriginalLivenessData; + computeLiveInValues(DT, F, OriginalLivenessData); + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + const CallSite &CS = toUpdate[i]; + analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); + } +} + +/// Remove any vector of pointers from the liveset by scalarizing them over the +/// statepoint instruction. Adds the scalarized pieces to the liveset. It +/// would be preferrable to include the vector in the statepoint itself, but +/// the lowering code currently does not handle that. Extending it would be +/// slightly non-trivial since it requires a format change. Given how rare +/// such cases are (for the moment?) scalarizing is an acceptable comprimise. +static void splitVectorValues(Instruction *StatepointInst, + StatepointLiveSetTy &LiveSet, DominatorTree &DT) { + SmallVector<Value *, 16> ToSplit; + for (Value *V : LiveSet) + if (isa<VectorType>(V->getType())) + ToSplit.push_back(V); + + if (ToSplit.empty()) + return; + + Function &F = *(StatepointInst->getParent()->getParent()); + + DenseMap<Value *, AllocaInst *> AllocaMap; + // First is normal return, second is exceptional return (invoke only) + DenseMap<Value *, std::pair<Value *, Value *>> Replacements; + for (Value *V : ToSplit) { + LiveSet.erase(V); + + AllocaInst *Alloca = + new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); + AllocaMap[V] = Alloca; + + VectorType *VT = cast<VectorType>(V->getType()); + IRBuilder<> Builder(StatepointInst); + SmallVector<Value *, 16> Elements; + for (unsigned i = 0; i < VT->getNumElements(); i++) + Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); + LiveSet.insert(Elements.begin(), Elements.end()); + + auto InsertVectorReform = [&](Instruction *IP) { + Builder.SetInsertPoint(IP); + Builder.SetCurrentDebugLocation(IP->getDebugLoc()); + Value *ResultVec = UndefValue::get(VT); + for (unsigned i = 0; i < VT->getNumElements(); i++) + ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], + Builder.getInt32(i)); + return ResultVec; + }; + + if (isa<CallInst>(StatepointInst)) { + BasicBlock::iterator Next(StatepointInst); + Next++; + Instruction *IP = &*(Next); + Replacements[V].first = InsertVectorReform(IP); + Replacements[V].second = nullptr; + } else { + InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); + // We've already normalized - check that we don't have shared destination + // blocks + BasicBlock *NormalDest = Invoke->getNormalDest(); + assert(!isa<PHINode>(NormalDest->begin())); + BasicBlock *UnwindDest = Invoke->getUnwindDest(); + assert(!isa<PHINode>(UnwindDest->begin())); + // Insert insert element sequences in both successors + Instruction *IP = &*(NormalDest->getFirstInsertionPt()); + Replacements[V].first = InsertVectorReform(IP); + IP = &*(UnwindDest->getFirstInsertionPt()); + Replacements[V].second = InsertVectorReform(IP); + } + } + for (Value *V : ToSplit) { + AllocaInst *Alloca = AllocaMap[V]; + + // Capture all users before we start mutating use lists + SmallVector<Instruction *, 16> Users; + for (User *U : V->users()) + Users.push_back(cast<Instruction>(U)); + + for (Instruction *I : Users) { + if (auto Phi = dyn_cast<PHINode>(I)) { + for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) + if (V == Phi->getIncomingValue(i)) { + LoadInst *Load = new LoadInst( + Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); + Phi->setIncomingValue(i, Load); + } + } else { + LoadInst *Load = new LoadInst(Alloca, "", I); + I->replaceUsesOfWith(V, Load); + } + } + + // Store the original value and the replacement value into the alloca + StoreInst *Store = new StoreInst(V, Alloca); + if (auto I = dyn_cast<Instruction>(V)) + Store->insertAfter(I); + else + Store->insertAfter(Alloca); + + // Normal return for invoke, or call return + Instruction *Replacement = cast<Instruction>(Replacements[V].first); + (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); + // Unwind return for invoke only + Replacement = cast_or_null<Instruction>(Replacements[V].second); + if (Replacement) + (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); + } + + // apply mem2reg to promote alloca to SSA + SmallVector<AllocaInst *, 16> Allocas; + for (Value *V : ToSplit) + Allocas.push_back(AllocaMap[V]); + PromoteMemToReg(Allocas, DT); +} + +// Helper function for the "rematerializeLiveValues". It walks use chain +// starting from the "CurrentValue" until it meets "BaseValue". Only "simple" +// values are visited (currently it is GEP's and casts). Returns true if it +// sucessfully reached "BaseValue" and false otherwise. +// Fills "ChainToBase" array with all visited values. "BaseValue" is not +// recorded. +static bool findRematerializableChainToBasePointer( + SmallVectorImpl<Instruction*> &ChainToBase, + Value *CurrentValue, Value *BaseValue) { + + // We have found a base value + if (CurrentValue == BaseValue) { + return true; + } + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { + ChainToBase.push_back(GEP); + return findRematerializableChainToBasePointer(ChainToBase, + GEP->getPointerOperand(), + BaseValue); + } + + if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { + Value *Def = CI->stripPointerCasts(); + + // This two checks are basically similar. First one is here for the + // consistency with findBasePointers logic. + assert(!isa<CastInst>(Def) && "not a pointer cast found"); + if (!CI->isNoopCast(CI->getModule()->getDataLayout())) + return false; + + ChainToBase.push_back(CI); + return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); + } + + // Not supported instruction in the chain + return false; +} + +// Helper function for the "rematerializeLiveValues". Compute cost of the use +// chain we are going to rematerialize. +static unsigned +chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, + TargetTransformInfo &TTI) { + unsigned Cost = 0; + + for (Instruction *Instr : Chain) { + if (CastInst *CI = dyn_cast<CastInst>(Instr)) { + assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && + "non noop cast is found during rematerialization"); + + Type *SrcTy = CI->getOperand(0)->getType(); + Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); + + } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { + // Cost of the address calculation + Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); + Cost += TTI.getAddressComputationCost(ValTy); + + // And cost of the GEP itself + // TODO: Use TTI->getGEPCost here (it exists, but appears to be not + // allowed for the external usage) + if (!GEP->hasAllConstantIndices()) + Cost += 2; + + } else { + llvm_unreachable("unsupported instruciton type during rematerialization"); + } + } + + return Cost; +} + +// From the statepoint liveset pick values that are cheaper to recompute then to +// relocate. Remove this values from the liveset, rematerialize them after +// statepoint and record them in "Info" structure. Note that similar to +// relocated values we don't do any user adjustments here. +static void rematerializeLiveValues(CallSite CS, + PartiallyConstructedSafepointRecord &Info, + TargetTransformInfo &TTI) { + const unsigned int ChainLengthThreshold = 10; + + // Record values we are going to delete from this statepoint live set. + // We can not di this in following loop due to iterator invalidation. + SmallVector<Value *, 32> LiveValuesToBeDeleted; + + for (Value *LiveValue: Info.liveset) { + // For each live pointer find it's defining chain + SmallVector<Instruction *, 3> ChainToBase; + assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end()); + bool FoundChain = + findRematerializableChainToBasePointer(ChainToBase, + LiveValue, + Info.PointerToBase[LiveValue]); + // Nothing to do, or chain is too long + if (!FoundChain || + ChainToBase.size() == 0 || + ChainToBase.size() > ChainLengthThreshold) + continue; + + // Compute cost of this chain + unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); + // TODO: We can also account for cases when we will be able to remove some + // of the rematerialized values by later optimization passes. I.e if + // we rematerialized several intersecting chains. Or if original values + // don't have any uses besides this statepoint. + + // For invokes we need to rematerialize each chain twice - for normal and + // for unwind basic blocks. Model this by multiplying cost by two. + if (CS.isInvoke()) { + Cost *= 2; + } + // If it's too expensive - skip it + if (Cost >= RematerializationThreshold) + continue; + + // Remove value from the live set + LiveValuesToBeDeleted.push_back(LiveValue); + + // Clone instructions and record them inside "Info" structure + + // Walk backwards to visit top-most instructions first + std::reverse(ChainToBase.begin(), ChainToBase.end()); + + // Utility function which clones all instructions from "ChainToBase" + // and inserts them before "InsertBefore". Returns rematerialized value + // which should be used after statepoint. + auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { + Instruction *LastClonedValue = nullptr; + Instruction *LastValue = nullptr; + for (Instruction *Instr: ChainToBase) { + // Only GEP's and casts are suported as we need to be careful to not + // introduce any new uses of pointers not in the liveset. + // Note that it's fine to introduce new uses of pointers which were + // otherwise not used after this statepoint. + assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); + + Instruction *ClonedValue = Instr->clone(); + ClonedValue->insertBefore(InsertBefore); + ClonedValue->setName(Instr->getName() + ".remat"); + + // If it is not first instruction in the chain then it uses previously + // cloned value. We should update it to use cloned value. + if (LastClonedValue) { + assert(LastValue); + ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); +#ifndef NDEBUG + // Assert that cloned instruction does not use any instructions from + // this chain other than LastClonedValue + for (auto OpValue : ClonedValue->operand_values()) { + assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == + ChainToBase.end() && + "incorrect use in rematerialization chain"); + } +#endif + } + + LastClonedValue = ClonedValue; + LastValue = Instr; + } + assert(LastClonedValue); + return LastClonedValue; + }; + + // Different cases for calls and invokes. For invokes we need to clone + // instructions both on normal and unwind path. + if (CS.isCall()) { + Instruction *InsertBefore = CS.getInstruction()->getNextNode(); + assert(InsertBefore); + Instruction *RematerializedValue = rematerializeChain(InsertBefore); + Info.RematerializedValues[RematerializedValue] = LiveValue; + } else { + InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); + + Instruction *NormalInsertBefore = + Invoke->getNormalDest()->getFirstInsertionPt(); + Instruction *UnwindInsertBefore = + Invoke->getUnwindDest()->getFirstInsertionPt(); + + Instruction *NormalRematerializedValue = + rematerializeChain(NormalInsertBefore); + Instruction *UnwindRematerializedValue = + rematerializeChain(UnwindInsertBefore); + + Info.RematerializedValues[NormalRematerializedValue] = LiveValue; + Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; + } + } + + // Remove rematerializaed values from the live set + for (auto LiveValue: LiveValuesToBeDeleted) { + Info.liveset.erase(LiveValue); + } +} + +static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, + SmallVectorImpl<CallSite> &toUpdate) { +#ifndef NDEBUG + // sanity check the input + std::set<CallSite> uniqued; + uniqued.insert(toUpdate.begin(), toUpdate.end()); + assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); + + for (size_t i = 0; i < toUpdate.size(); i++) { + CallSite &CS = toUpdate[i]; + assert(CS.getInstruction()->getParent()->getParent() == &F); + assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); + } +#endif + + // When inserting gc.relocates for invokes, we need to be able to insert at + // the top of the successor blocks. See the comment on + // normalForInvokeSafepoint on exactly what is needed. Note that this step + // may restructure the CFG. + for (CallSite CS : toUpdate) { + if (!CS.isInvoke()) + continue; + InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); + normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), + P); + normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), + P); + } + + // A list of dummy calls added to the IR to keep various values obviously + // live in the IR. We'll remove all of these when done. + SmallVector<CallInst *, 64> holders; + + // Insert a dummy call with all of the arguments to the vm_state we'll need + // for the actual safepoint insertion. This ensures reference arguments in + // the deopt argument list are considered live through the safepoint (and + // thus makes sure they get relocated.) + for (size_t i = 0; i < toUpdate.size(); i++) { + CallSite &CS = toUpdate[i]; + Statepoint StatepointCS(CS); + + SmallVector<Value *, 64> DeoptValues; + for (Use &U : StatepointCS.vm_state_args()) { + Value *Arg = cast<Value>(&U); + assert(!isUnhandledGCPointerType(Arg->getType()) && + "support for FCA unimplemented"); + if (isHandledGCPointerType(Arg->getType())) + DeoptValues.push_back(Arg); + } + insertUseHolderAfter(CS, DeoptValues, holders); + } + + SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; + records.reserve(toUpdate.size()); + for (size_t i = 0; i < toUpdate.size(); i++) { + struct PartiallyConstructedSafepointRecord info; + records.push_back(info); + } + assert(records.size() == toUpdate.size()); + + // A) Identify all gc pointers which are staticly live at the given call + // site. + findLiveReferences(F, DT, P, toUpdate, records); + + // Do a limited scalarization of any live at safepoint vector values which + // contain pointers. This enables this pass to run after vectorization at + // the cost of some possible performance loss. TODO: it would be nice to + // natively support vectors all the way through the backend so we don't need + // to scalarize here. + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + Instruction *statepoint = toUpdate[i].getInstruction(); + splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT); + } + + // B) Find the base pointers for each live pointer + /* scope for caching */ { + // Cache the 'defining value' relation used in the computation and + // insertion of base phis and selects. This ensures that we don't insert + // large numbers of duplicate base_phis. + DefiningValueMapTy DVCache; + + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + findBasePointers(DT, DVCache, CS, info); + } + } // end of cache scope + + // The base phi insertion logic (for any safepoint) may have inserted new + // instructions which are now live at some safepoint. The simplest such + // example is: + // loop: + // phi a <-- will be a new base_phi here + // safepoint 1 <-- that needs to be live here + // gep a + 1 + // safepoint 2 + // br loop + // We insert some dummy calls after each safepoint to definitely hold live + // the base pointers which were identified for that safepoint. We'll then + // ask liveness for _every_ base inserted to see what is now live. Then we + // remove the dummy calls. + holders.reserve(holders.size() + records.size()); + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + + SmallVector<Value *, 128> Bases; + for (auto Pair : info.PointerToBase) { + Bases.push_back(Pair.second); + } + insertUseHolderAfter(CS, Bases, holders); + } + + // By selecting base pointers, we've effectively inserted new uses. Thus, we + // need to rerun liveness. We may *also* have inserted new defs, but that's + // not the key issue. + recomputeLiveInValues(F, DT, P, toUpdate, records); + + if (PrintBasePointers) { + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + errs() << "Base Pairs: (w/Relocation)\n"; + for (auto Pair : info.PointerToBase) { + errs() << " derived %" << Pair.first->getName() << " base %" + << Pair.second->getName() << "\n"; + } + } + } + for (size_t i = 0; i < holders.size(); i++) { + holders[i]->eraseFromParent(); + holders[i] = nullptr; + } + holders.clear(); + + // In order to reduce live set of statepoint we might choose to rematerialize + // some values instead of relocating them. This is purelly an optimization and + // does not influence correctness. + TargetTransformInfo &TTI = + P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + + rematerializeLiveValues(CS, info, TTI); + } + + // Now run through and replace the existing statepoints with new ones with + // the live variables listed. We do not yet update uses of the values being + // relocated. We have references to live variables that need to + // survive to the last iteration of this loop. (By construction, the + // previous statepoint can not be a live variable, thus we can and remove + // the old statepoint calls as we go.) + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + CallSite &CS = toUpdate[i]; + makeStatepointExplicit(DT, CS, P, info); + } + toUpdate.clear(); // prevent accident use of invalid CallSites + + // Do all the fixups of the original live variables to their relocated selves + SmallVector<Value *, 128> live; + for (size_t i = 0; i < records.size(); i++) { + struct PartiallyConstructedSafepointRecord &info = records[i]; + // We can't simply save the live set from the original insertion. One of + // the live values might be the result of a call which needs a safepoint. + // That Value* no longer exists and we need to use the new gc_result. + // Thankfully, the liveset is embedded in the statepoint (and updated), so + // we just grab that. + Statepoint statepoint(info.StatepointToken); + live.insert(live.end(), statepoint.gc_args_begin(), + statepoint.gc_args_end()); +#ifndef NDEBUG + // Do some basic sanity checks on our liveness results before performing + // relocation. Relocation can and will turn mistakes in liveness results + // into non-sensical code which is must harder to debug. + // TODO: It would be nice to test consistency as well + assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && + "statepoint must be reachable or liveness is meaningless"); + for (Value *V : statepoint.gc_args()) { + if (!isa<Instruction>(V)) + // Non-instruction values trivial dominate all possible uses + continue; + auto LiveInst = cast<Instruction>(V); + assert(DT.isReachableFromEntry(LiveInst->getParent()) && + "unreachable values should never be live"); + assert(DT.dominates(LiveInst, info.StatepointToken) && + "basic SSA liveness expectation violated by liveness analysis"); + } +#endif + } + unique_unsorted(live); + +#ifndef NDEBUG + // sanity check + for (auto ptr : live) { + assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); + } +#endif + + relocationViaAlloca(F, DT, live, records); + return !records.empty(); +} + +/// Returns true if this function should be rewritten by this pass. The main +/// point of this function is as an extension point for custom logic. +static bool shouldRewriteStatepointsIn(Function &F) { + // TODO: This should check the GCStrategy + if (F.hasGC()) { + const char *FunctionGCName = F.getGC(); + const StringRef StatepointExampleName("statepoint-example"); + const StringRef CoreCLRName("coreclr"); + return (StatepointExampleName == FunctionGCName) || + (CoreCLRName == FunctionGCName); + } else + return false; +} + +bool RewriteStatepointsForGC::runOnFunction(Function &F) { + // Nothing to do for declarations. + if (F.isDeclaration() || F.empty()) + return false; + + // Policy choice says not to rewrite - the most common reason is that we're + // compiling code without a GCStrategy. + if (!shouldRewriteStatepointsIn(F)) + return false; + + DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + + // Gather all the statepoints which need rewritten. Be careful to only + // consider those in reachable code since we need to ask dominance queries + // when rewriting. We'll delete the unreachable ones in a moment. + SmallVector<CallSite, 64> ParsePointNeeded; + bool HasUnreachableStatepoint = false; + for (Instruction &I : inst_range(F)) { + // TODO: only the ones with the flag set! + if (isStatepoint(I)) { + if (DT.isReachableFromEntry(I.getParent())) + ParsePointNeeded.push_back(CallSite(&I)); + else + HasUnreachableStatepoint = true; + } + } + + bool MadeChange = false; + + // Delete any unreachable statepoints so that we don't have unrewritten + // statepoints surviving this pass. This makes testing easier and the + // resulting IR less confusing to human readers. Rather than be fancy, we + // just reuse a utility function which removes the unreachable blocks. + if (HasUnreachableStatepoint) + MadeChange |= removeUnreachableBlocks(F); + + // Return early if no work to do. + if (ParsePointNeeded.empty()) + return MadeChange; + + // As a prepass, go ahead and aggressively destroy single entry phi nodes. + // These are created by LCSSA. They have the effect of increasing the size + // of liveness sets for no good reason. It may be harder to do this post + // insertion since relocations and base phis can confuse things. + for (BasicBlock &BB : F) + if (BB.getUniquePredecessor()) { + MadeChange = true; + FoldSingleEntryPHINodes(&BB); + } + + MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); + return MadeChange; +} + +// liveness computation via standard dataflow +// ------------------------------------------------------------------- + +// TODO: Consider using bitvectors for liveness, the set of potentially +// interesting values should be small and easy to pre-compute. + +/// Compute the live-in set for the location rbegin starting from +/// the live-out set of the basic block +static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, + BasicBlock::reverse_iterator rend, + DenseSet<Value *> &LiveTmp) { + + for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { + Instruction *I = &*ritr; + + // KILL/Def - Remove this definition from LiveIn + LiveTmp.erase(I); + + // Don't consider *uses* in PHI nodes, we handle their contribution to + // predecessor blocks when we seed the LiveOut sets + if (isa<PHINode>(I)) + continue; + + // USE - Add to the LiveIn set for this instruction + for (Value *V : I->operands()) { + assert(!isUnhandledGCPointerType(V->getType()) && + "support for FCA unimplemented"); + if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { + // The choice to exclude all things constant here is slightly subtle. + // There are two idependent reasons: + // - We assume that things which are constant (from LLVM's definition) + // do not move at runtime. For example, the address of a global + // variable is fixed, even though it's contents may not be. + // - Second, we can't disallow arbitrary inttoptr constants even + // if the language frontend does. Optimization passes are free to + // locally exploit facts without respect to global reachability. This + // can create sections of code which are dynamically unreachable and + // contain just about anything. (see constants.ll in tests) + LiveTmp.insert(V); + } + } + } +} + +static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { + + for (BasicBlock *Succ : successors(BB)) { + const BasicBlock::iterator E(Succ->getFirstNonPHI()); + for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { + PHINode *Phi = cast<PHINode>(&*I); + Value *V = Phi->getIncomingValueForBlock(BB); + assert(!isUnhandledGCPointerType(V->getType()) && + "support for FCA unimplemented"); + if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { + LiveTmp.insert(V); + } + } + } +} + +static DenseSet<Value *> computeKillSet(BasicBlock *BB) { + DenseSet<Value *> KillSet; + for (Instruction &I : *BB) + if (isHandledGCPointerType(I.getType())) + KillSet.insert(&I); + return KillSet; +} + +#ifndef NDEBUG +/// Check that the items in 'Live' dominate 'TI'. This is used as a basic +/// sanity check for the liveness computation. +static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, + TerminatorInst *TI, bool TermOkay = false) { + for (Value *V : Live) { + if (auto *I = dyn_cast<Instruction>(V)) { + // The terminator can be a member of the LiveOut set. LLVM's definition + // of instruction dominance states that V does not dominate itself. As + // such, we need to special case this to allow it. + if (TermOkay && TI == I) + continue; + assert(DT.dominates(I, TI) && + "basic SSA liveness expectation violated by liveness analysis"); + } + } +} + +/// Check that all the liveness sets used during the computation of liveness +/// obey basic SSA properties. This is useful for finding cases where we miss +/// a def. +static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, + BasicBlock &BB) { + checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); + checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); + checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); +} +#endif + +static void computeLiveInValues(DominatorTree &DT, Function &F, + GCPtrLivenessData &Data) { + + SmallSetVector<BasicBlock *, 200> Worklist; + auto AddPredsToWorklist = [&](BasicBlock *BB) { + // We use a SetVector so that we don't have duplicates in the worklist. + Worklist.insert(pred_begin(BB), pred_end(BB)); + }; + auto NextItem = [&]() { + BasicBlock *BB = Worklist.back(); + Worklist.pop_back(); + return BB; + }; + + // Seed the liveness for each individual block + for (BasicBlock &BB : F) { + Data.KillSet[&BB] = computeKillSet(&BB); + Data.LiveSet[&BB].clear(); + computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); + +#ifndef NDEBUG + for (Value *Kill : Data.KillSet[&BB]) + assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); +#endif + + Data.LiveOut[&BB] = DenseSet<Value *>(); + computeLiveOutSeed(&BB, Data.LiveOut[&BB]); + Data.LiveIn[&BB] = Data.LiveSet[&BB]; + set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); + set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); + if (!Data.LiveIn[&BB].empty()) + AddPredsToWorklist(&BB); + } + + // Propagate that liveness until stable + while (!Worklist.empty()) { + BasicBlock *BB = NextItem(); + + // Compute our new liveout set, then exit early if it hasn't changed + // despite the contribution of our successor. + DenseSet<Value *> LiveOut = Data.LiveOut[BB]; + const auto OldLiveOutSize = LiveOut.size(); + for (BasicBlock *Succ : successors(BB)) { + assert(Data.LiveIn.count(Succ)); + set_union(LiveOut, Data.LiveIn[Succ]); + } + // assert OutLiveOut is a subset of LiveOut + if (OldLiveOutSize == LiveOut.size()) { + // If the sets are the same size, then we didn't actually add anything + // when unioning our successors LiveIn Thus, the LiveIn of this block + // hasn't changed. + continue; + } + Data.LiveOut[BB] = LiveOut; + + // Apply the effects of this basic block + DenseSet<Value *> LiveTmp = LiveOut; + set_union(LiveTmp, Data.LiveSet[BB]); + set_subtract(LiveTmp, Data.KillSet[BB]); + + assert(Data.LiveIn.count(BB)); + const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; + // assert: OldLiveIn is a subset of LiveTmp + if (OldLiveIn.size() != LiveTmp.size()) { + Data.LiveIn[BB] = LiveTmp; + AddPredsToWorklist(BB); + } + } // while( !worklist.empty() ) + +#ifndef NDEBUG + // Sanity check our ouput against SSA properties. This helps catch any + // missing kills during the above iteration. + for (BasicBlock &BB : F) { + checkBasicSSA(DT, Data, BB); + } +#endif +} + +static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, + StatepointLiveSetTy &Out) { + + BasicBlock *BB = Inst->getParent(); + + // Note: The copy is intentional and required + assert(Data.LiveOut.count(BB)); + DenseSet<Value *> LiveOut = Data.LiveOut[BB]; + + // We want to handle the statepoint itself oddly. It's + // call result is not live (normal), nor are it's arguments + // (unless they're used again later). This adjustment is + // specifically what we need to relocate + BasicBlock::reverse_iterator rend(Inst); + computeLiveInValues(BB->rbegin(), rend, LiveOut); + LiveOut.erase(Inst); + Out.insert(LiveOut.begin(), LiveOut.end()); +} + +static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, + const CallSite &CS, + PartiallyConstructedSafepointRecord &Info) { + Instruction *Inst = CS.getInstruction(); + StatepointLiveSetTy Updated; + findLiveSetAtInst(Inst, RevisedLivenessData, Updated); + +#ifndef NDEBUG + DenseSet<Value *> Bases; + for (auto KVPair : Info.PointerToBase) { + Bases.insert(KVPair.second); + } +#endif + // We may have base pointers which are now live that weren't before. We need + // to update the PointerToBase structure to reflect this. + for (auto V : Updated) + if (!Info.PointerToBase.count(V)) { + assert(Bases.count(V) && "can't find base for unexpected live value"); + Info.PointerToBase[V] = V; + continue; + } + +#ifndef NDEBUG + for (auto V : Updated) { + assert(Info.PointerToBase.count(V) && + "must be able to find base for live value"); + } +#endif + + // Remove any stale base mappings - this can happen since our liveness is + // more precise then the one inherent in the base pointer analysis + DenseSet<Value *> ToErase; + for (auto KVPair : Info.PointerToBase) + if (!Updated.count(KVPair.first)) + ToErase.insert(KVPair.first); + for (auto V : ToErase) + Info.PointerToBase.erase(V); + +#ifndef NDEBUG + for (auto KVPair : Info.PointerToBase) + assert(Updated.count(KVPair.first) && "record for non-live value"); +#endif + + Info.liveset = Updated; +} |