diff options
Diffstat (limited to 'lib/CodeGen/CodeGenModule.cpp')
-rw-r--r-- | lib/CodeGen/CodeGenModule.cpp | 1543 |
1 files changed, 1543 insertions, 0 deletions
diff --git a/lib/CodeGen/CodeGenModule.cpp b/lib/CodeGen/CodeGenModule.cpp new file mode 100644 index 0000000..b69301e --- /dev/null +++ b/lib/CodeGen/CodeGenModule.cpp @@ -0,0 +1,1543 @@ +//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This coordinates the per-module state used while generating code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenModule.h" +#include "CGDebugInfo.h" +#include "CodeGenFunction.h" +#include "CGCall.h" +#include "CGObjCRuntime.h" +#include "Mangle.h" +#include "clang/Frontend/CompileOptions.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclCXX.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Basic/ConvertUTF.h" +#include "llvm/CallingConv.h" +#include "llvm/Module.h" +#include "llvm/Intrinsics.h" +#include "llvm/Target/TargetData.h" +using namespace clang; +using namespace CodeGen; + + +CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, + llvm::Module &M, const llvm::TargetData &TD, + Diagnostic &diags) + : BlockModule(C, M, TD, Types, *this), Context(C), + Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), + TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), + MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { + + if (!Features.ObjC1) + Runtime = 0; + else if (!Features.NeXTRuntime) + Runtime = CreateGNUObjCRuntime(*this); + else if (Features.ObjCNonFragileABI) + Runtime = CreateMacNonFragileABIObjCRuntime(*this); + else + Runtime = CreateMacObjCRuntime(*this); + + // If debug info generation is enabled, create the CGDebugInfo object. + DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; +} + +CodeGenModule::~CodeGenModule() { + delete Runtime; + delete DebugInfo; +} + +void CodeGenModule::Release() { + EmitDeferred(); + if (Runtime) + if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) + AddGlobalCtor(ObjCInitFunction); + EmitCtorList(GlobalCtors, "llvm.global_ctors"); + EmitCtorList(GlobalDtors, "llvm.global_dtors"); + EmitAnnotations(); + EmitLLVMUsed(); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified stmt yet. +void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, + bool OmitOnError) { + if (OmitOnError && getDiags().hasErrorOccurred()) + return; + unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, + "cannot compile this %0 yet"); + std::string Msg = Type; + getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) + << Msg << S->getSourceRange(); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified decl yet. +void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, + bool OmitOnError) { + if (OmitOnError && getDiags().hasErrorOccurred()) + return; + unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, + "cannot compile this %0 yet"); + std::string Msg = Type; + getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; +} + +LangOptions::VisibilityMode +CodeGenModule::getDeclVisibilityMode(const Decl *D) const { + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + if (VD->getStorageClass() == VarDecl::PrivateExtern) + return LangOptions::Hidden; + + if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { + switch (attr->getVisibility()) { + default: assert(0 && "Unknown visibility!"); + case VisibilityAttr::DefaultVisibility: + return LangOptions::Default; + case VisibilityAttr::HiddenVisibility: + return LangOptions::Hidden; + case VisibilityAttr::ProtectedVisibility: + return LangOptions::Protected; + } + } + + return getLangOptions().getVisibilityMode(); +} + +void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, + const Decl *D) const { + // Internal definitions always have default visibility. + if (GV->hasLocalLinkage()) { + GV->setVisibility(llvm::GlobalValue::DefaultVisibility); + return; + } + + switch (getDeclVisibilityMode(D)) { + default: assert(0 && "Unknown visibility!"); + case LangOptions::Default: + return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); + case LangOptions::Hidden: + return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); + case LangOptions::Protected: + return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); + } +} + +const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { + const NamedDecl *ND = GD.getDecl(); + + if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) + return getMangledCXXCtorName(D, GD.getCtorType()); + if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) + return getMangledCXXDtorName(D, GD.getDtorType()); + + return getMangledName(ND); +} + +/// \brief Retrieves the mangled name for the given declaration. +/// +/// If the given declaration requires a mangled name, returns an +/// const char* containing the mangled name. Otherwise, returns +/// the unmangled name. +/// +const char *CodeGenModule::getMangledName(const NamedDecl *ND) { + // In C, functions with no attributes never need to be mangled. Fastpath them. + if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { + assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); + return ND->getNameAsCString(); + } + + llvm::SmallString<256> Name; + llvm::raw_svector_ostream Out(Name); + if (!mangleName(ND, Context, Out)) { + assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); + return ND->getNameAsCString(); + } + + Name += '\0'; + return UniqueMangledName(Name.begin(), Name.end()); +} + +const char *CodeGenModule::UniqueMangledName(const char *NameStart, + const char *NameEnd) { + assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); + + return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); +} + +/// AddGlobalCtor - Add a function to the list that will be called before +/// main() runs. +void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { + // FIXME: Type coercion of void()* types. + GlobalCtors.push_back(std::make_pair(Ctor, Priority)); +} + +/// AddGlobalDtor - Add a function to the list that will be called +/// when the module is unloaded. +void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { + // FIXME: Type coercion of void()* types. + GlobalDtors.push_back(std::make_pair(Dtor, Priority)); +} + +void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { + // Ctor function type is void()*. + llvm::FunctionType* CtorFTy = + llvm::FunctionType::get(llvm::Type::VoidTy, + std::vector<const llvm::Type*>(), + false); + llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); + + // Get the type of a ctor entry, { i32, void ()* }. + llvm::StructType* CtorStructTy = + llvm::StructType::get(llvm::Type::Int32Ty, + llvm::PointerType::getUnqual(CtorFTy), NULL); + + // Construct the constructor and destructor arrays. + std::vector<llvm::Constant*> Ctors; + for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { + std::vector<llvm::Constant*> S; + S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); + S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); + Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); + } + + if (!Ctors.empty()) { + llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); + new llvm::GlobalVariable(AT, false, + llvm::GlobalValue::AppendingLinkage, + llvm::ConstantArray::get(AT, Ctors), + GlobalName, + &TheModule); + } +} + +void CodeGenModule::EmitAnnotations() { + if (Annotations.empty()) + return; + + // Create a new global variable for the ConstantStruct in the Module. + llvm::Constant *Array = + llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), + Annotations.size()), + Annotations); + llvm::GlobalValue *gv = + new llvm::GlobalVariable(Array->getType(), false, + llvm::GlobalValue::AppendingLinkage, Array, + "llvm.global.annotations", &TheModule); + gv->setSection("llvm.metadata"); +} + +static CodeGenModule::GVALinkage +GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { + // C++ member functions defined inside the class are always inline. + if (MD->isInline() || !MD->isOutOfLineDefinition()) + return CodeGenModule::GVA_CXXInline; + + return CodeGenModule::GVA_StrongExternal; + } + + // "static" functions get internal linkage. + if (FD->getStorageClass() == FunctionDecl::Static) + return CodeGenModule::GVA_Internal; + + if (!FD->isInline()) + return CodeGenModule::GVA_StrongExternal; + + // If the inline function explicitly has the GNU inline attribute on it, or if + // this is C89 mode, we use to GNU semantics. + if (!Features.C99 && !Features.CPlusPlus) { + // extern inline in GNU mode is like C99 inline. + if (FD->getStorageClass() == FunctionDecl::Extern) + return CodeGenModule::GVA_C99Inline; + // Normal inline is a strong symbol. + return CodeGenModule::GVA_StrongExternal; + } else if (FD->hasActiveGNUInlineAttribute()) { + // GCC in C99 mode seems to use a different decision-making + // process for extern inline, which factors in previous + // declarations. + if (FD->isExternGNUInline()) + return CodeGenModule::GVA_C99Inline; + // Normal inline is a strong symbol. + return CodeGenModule::GVA_StrongExternal; + } + + // The definition of inline changes based on the language. Note that we + // have already handled "static inline" above, with the GVA_Internal case. + if (Features.CPlusPlus) // inline and extern inline. + return CodeGenModule::GVA_CXXInline; + + assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); + if (FD->isC99InlineDefinition()) + return CodeGenModule::GVA_C99Inline; + + return CodeGenModule::GVA_StrongExternal; +} + +/// SetFunctionDefinitionAttributes - Set attributes for a global. +/// +/// FIXME: This is currently only done for aliases and functions, but not for +/// variables (these details are set in EmitGlobalVarDefinition for variables). +void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, + llvm::GlobalValue *GV) { + GVALinkage Linkage = GetLinkageForFunction(D, Features); + + if (Linkage == GVA_Internal) { + GV->setLinkage(llvm::Function::InternalLinkage); + } else if (D->hasAttr<DLLExportAttr>()) { + GV->setLinkage(llvm::Function::DLLExportLinkage); + } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { + GV->setLinkage(llvm::Function::WeakAnyLinkage); + } else if (Linkage == GVA_C99Inline) { + // In C99 mode, 'inline' functions are guaranteed to have a strong + // definition somewhere else, so we can use available_externally linkage. + GV->setLinkage(llvm::Function::AvailableExternallyLinkage); + } else if (Linkage == GVA_CXXInline) { + // In C++, the compiler has to emit a definition in every translation unit + // that references the function. We should use linkonce_odr because + // a) if all references in this translation unit are optimized away, we + // don't need to codegen it. b) if the function persists, it needs to be + // merged with other definitions. c) C++ has the ODR, so we know the + // definition is dependable. + GV->setLinkage(llvm::Function::LinkOnceODRLinkage); + } else { + assert(Linkage == GVA_StrongExternal); + // Otherwise, we have strong external linkage. + GV->setLinkage(llvm::Function::ExternalLinkage); + } + + SetCommonAttributes(D, GV); +} + +void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, + const CGFunctionInfo &Info, + llvm::Function *F) { + AttributeListType AttributeList; + ConstructAttributeList(Info, D, AttributeList); + + F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), + AttributeList.size())); + + // Set the appropriate calling convention for the Function. + if (D->hasAttr<FastCallAttr>()) + F->setCallingConv(llvm::CallingConv::X86_FastCall); + + if (D->hasAttr<StdCallAttr>()) + F->setCallingConv(llvm::CallingConv::X86_StdCall); +} + +void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, + llvm::Function *F) { + if (!Features.Exceptions && !Features.ObjCNonFragileABI) + F->addFnAttr(llvm::Attribute::NoUnwind); + + if (D->hasAttr<AlwaysInlineAttr>()) + F->addFnAttr(llvm::Attribute::AlwaysInline); + + if (D->hasAttr<NoinlineAttr>()) + F->addFnAttr(llvm::Attribute::NoInline); +} + +void CodeGenModule::SetCommonAttributes(const Decl *D, + llvm::GlobalValue *GV) { + setGlobalVisibility(GV, D); + + if (D->hasAttr<UsedAttr>()) + AddUsedGlobal(GV); + + if (const SectionAttr *SA = D->getAttr<SectionAttr>()) + GV->setSection(SA->getName()); +} + +void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, + llvm::Function *F, + const CGFunctionInfo &FI) { + SetLLVMFunctionAttributes(D, FI, F); + SetLLVMFunctionAttributesForDefinition(D, F); + + F->setLinkage(llvm::Function::InternalLinkage); + + SetCommonAttributes(D, F); +} + +void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, + llvm::Function *F, + bool IsIncompleteFunction) { + if (!IsIncompleteFunction) + SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); + + // Only a few attributes are set on declarations; these may later be + // overridden by a definition. + + if (FD->hasAttr<DLLImportAttr>()) { + F->setLinkage(llvm::Function::DLLImportLinkage); + } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { + // "extern_weak" is overloaded in LLVM; we probably should have + // separate linkage types for this. + F->setLinkage(llvm::Function::ExternalWeakLinkage); + } else { + F->setLinkage(llvm::Function::ExternalLinkage); + } + + if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) + F->setSection(SA->getName()); +} + +void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { + assert(!GV->isDeclaration() && + "Only globals with definition can force usage."); + LLVMUsed.push_back(GV); +} + +void CodeGenModule::EmitLLVMUsed() { + // Don't create llvm.used if there is no need. + if (LLVMUsed.empty()) + return; + + llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); + llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); + + // Convert LLVMUsed to what ConstantArray needs. + std::vector<llvm::Constant*> UsedArray; + UsedArray.resize(LLVMUsed.size()); + for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { + UsedArray[i] = + llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); + } + + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(ATy, false, + llvm::GlobalValue::AppendingLinkage, + llvm::ConstantArray::get(ATy, UsedArray), + "llvm.used", &getModule()); + + GV->setSection("llvm.metadata"); +} + +void CodeGenModule::EmitDeferred() { + // Emit code for any potentially referenced deferred decls. Since a + // previously unused static decl may become used during the generation of code + // for a static function, iterate until no changes are made. + while (!DeferredDeclsToEmit.empty()) { + GlobalDecl D = DeferredDeclsToEmit.back(); + DeferredDeclsToEmit.pop_back(); + + // The mangled name for the decl must have been emitted in GlobalDeclMap. + // Look it up to see if it was defined with a stronger definition (e.g. an + // extern inline function with a strong function redefinition). If so, + // just ignore the deferred decl. + llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; + assert(CGRef && "Deferred decl wasn't referenced?"); + + if (!CGRef->isDeclaration()) + continue; + + // Otherwise, emit the definition and move on to the next one. + EmitGlobalDefinition(D); + } +} + +/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the +/// annotation information for a given GlobalValue. The annotation struct is +/// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the +/// GlobalValue being annotated. The second field is the constant string +/// created from the AnnotateAttr's annotation. The third field is a constant +/// string containing the name of the translation unit. The fourth field is +/// the line number in the file of the annotated value declaration. +/// +/// FIXME: this does not unique the annotation string constants, as llvm-gcc +/// appears to. +/// +llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, + const AnnotateAttr *AA, + unsigned LineNo) { + llvm::Module *M = &getModule(); + + // get [N x i8] constants for the annotation string, and the filename string + // which are the 2nd and 3rd elements of the global annotation structure. + const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); + llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); + llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), + true); + + // Get the two global values corresponding to the ConstantArrays we just + // created to hold the bytes of the strings. + const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); + llvm::GlobalValue *annoGV = + new llvm::GlobalVariable(anno->getType(), false, + llvm::GlobalValue::InternalLinkage, anno, + GV->getName() + StringPrefix, M); + // translation unit name string, emitted into the llvm.metadata section. + llvm::GlobalValue *unitGV = + new llvm::GlobalVariable(unit->getType(), false, + llvm::GlobalValue::InternalLinkage, unit, + StringPrefix, M); + + // Create the ConstantStruct for the global annotation. + llvm::Constant *Fields[4] = { + llvm::ConstantExpr::getBitCast(GV, SBP), + llvm::ConstantExpr::getBitCast(annoGV, SBP), + llvm::ConstantExpr::getBitCast(unitGV, SBP), + llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) + }; + return llvm::ConstantStruct::get(Fields, 4, false); +} + +bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { + // Never defer when EmitAllDecls is specified or the decl has + // attribute used. + if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) + return false; + + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { + // Constructors and destructors should never be deferred. + if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) + return false; + + GVALinkage Linkage = GetLinkageForFunction(FD, Features); + + // static, static inline, always_inline, and extern inline functions can + // always be deferred. Normal inline functions can be deferred in C99/C++. + if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || + Linkage == GVA_CXXInline) + return true; + return false; + } + + const VarDecl *VD = cast<VarDecl>(Global); + assert(VD->isFileVarDecl() && "Invalid decl"); + + return VD->getStorageClass() == VarDecl::Static; +} + +void CodeGenModule::EmitGlobal(GlobalDecl GD) { + const ValueDecl *Global = GD.getDecl(); + + // If this is an alias definition (which otherwise looks like a declaration) + // emit it now. + if (Global->hasAttr<AliasAttr>()) + return EmitAliasDefinition(Global); + + // Ignore declarations, they will be emitted on their first use. + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { + // Forward declarations are emitted lazily on first use. + if (!FD->isThisDeclarationADefinition()) + return; + } else { + const VarDecl *VD = cast<VarDecl>(Global); + assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); + + // In C++, if this is marked "extern", defer code generation. + if (getLangOptions().CPlusPlus && !VD->getInit() && + (VD->getStorageClass() == VarDecl::Extern || + VD->isExternC(getContext()))) + return; + + // In C, if this isn't a definition, defer code generation. + if (!getLangOptions().CPlusPlus && !VD->getInit()) + return; + } + + // Defer code generation when possible if this is a static definition, inline + // function etc. These we only want to emit if they are used. + if (MayDeferGeneration(Global)) { + // If the value has already been used, add it directly to the + // DeferredDeclsToEmit list. + const char *MangledName = getMangledName(GD); + if (GlobalDeclMap.count(MangledName)) + DeferredDeclsToEmit.push_back(GD); + else { + // Otherwise, remember that we saw a deferred decl with this name. The + // first use of the mangled name will cause it to move into + // DeferredDeclsToEmit. + DeferredDecls[MangledName] = GD; + } + return; + } + + // Otherwise emit the definition. + EmitGlobalDefinition(GD); +} + +void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { + const ValueDecl *D = GD.getDecl(); + + if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) + EmitCXXConstructor(CD, GD.getCtorType()); + else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) + EmitCXXDestructor(DD, GD.getDtorType()); + else if (isa<FunctionDecl>(D)) + EmitGlobalFunctionDefinition(GD); + else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + EmitGlobalVarDefinition(VD); + else { + assert(0 && "Invalid argument to EmitGlobalDefinition()"); + } +} + +/// GetOrCreateLLVMFunction - If the specified mangled name is not in the +/// module, create and return an llvm Function with the specified type. If there +/// is something in the module with the specified name, return it potentially +/// bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this. This is used +/// to set the attributes on the function when it is first created. +llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, + const llvm::Type *Ty, + GlobalDecl D) { + // Lookup the entry, lazily creating it if necessary. + llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; + if (Entry) { + if (Entry->getType()->getElementType() == Ty) + return Entry; + + // Make sure the result is of the correct type. + const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); + return llvm::ConstantExpr::getBitCast(Entry, PTy); + } + + // This is the first use or definition of a mangled name. If there is a + // deferred decl with this name, remember that we need to emit it at the end + // of the file. + llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = + DeferredDecls.find(MangledName); + if (DDI != DeferredDecls.end()) { + // Move the potentially referenced deferred decl to the DeferredDeclsToEmit + // list, and remove it from DeferredDecls (since we don't need it anymore). + DeferredDeclsToEmit.push_back(DDI->second); + DeferredDecls.erase(DDI); + } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { + // If this the first reference to a C++ inline function in a class, queue up + // the deferred function body for emission. These are not seen as + // top-level declarations. + if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) + DeferredDeclsToEmit.push_back(D); + } + + // This function doesn't have a complete type (for example, the return + // type is an incomplete struct). Use a fake type instead, and make + // sure not to try to set attributes. + bool IsIncompleteFunction = false; + if (!isa<llvm::FunctionType>(Ty)) { + Ty = llvm::FunctionType::get(llvm::Type::VoidTy, + std::vector<const llvm::Type*>(), false); + IsIncompleteFunction = true; + } + llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), + llvm::Function::ExternalLinkage, + "", &getModule()); + F->setName(MangledName); + if (D.getDecl()) + SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, + IsIncompleteFunction); + Entry = F; + return F; +} + +/// GetAddrOfFunction - Return the address of the given function. If Ty is +/// non-null, then this function will use the specified type if it has to +/// create it (this occurs when we see a definition of the function). +llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, + const llvm::Type *Ty) { + // If there was no specific requested type, just convert it now. + if (!Ty) + Ty = getTypes().ConvertType(GD.getDecl()->getType()); + return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); +} + +/// CreateRuntimeFunction - Create a new runtime function with the specified +/// type and name. +llvm::Constant * +CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, + const char *Name) { + // Convert Name to be a uniqued string from the IdentifierInfo table. + Name = getContext().Idents.get(Name).getName(); + return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); +} + +/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, +/// create and return an llvm GlobalVariable with the specified type. If there +/// is something in the module with the specified name, return it potentially +/// bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this. This is used +/// to set the attributes on the global when it is first created. +llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, + const llvm::PointerType*Ty, + const VarDecl *D) { + // Lookup the entry, lazily creating it if necessary. + llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; + if (Entry) { + if (Entry->getType() == Ty) + return Entry; + + // Make sure the result is of the correct type. + return llvm::ConstantExpr::getBitCast(Entry, Ty); + } + + // This is the first use or definition of a mangled name. If there is a + // deferred decl with this name, remember that we need to emit it at the end + // of the file. + llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = + DeferredDecls.find(MangledName); + if (DDI != DeferredDecls.end()) { + // Move the potentially referenced deferred decl to the DeferredDeclsToEmit + // list, and remove it from DeferredDecls (since we don't need it anymore). + DeferredDeclsToEmit.push_back(DDI->second); + DeferredDecls.erase(DDI); + } + + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(Ty->getElementType(), false, + llvm::GlobalValue::ExternalLinkage, + 0, "", &getModule(), + false, Ty->getAddressSpace()); + GV->setName(MangledName); + + // Handle things which are present even on external declarations. + if (D) { + // FIXME: This code is overly simple and should be merged with other global + // handling. + GV->setConstant(D->getType().isConstant(Context)); + + // FIXME: Merge with other attribute handling code. + if (D->getStorageClass() == VarDecl::PrivateExtern) + GV->setVisibility(llvm::GlobalValue::HiddenVisibility); + + if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) + GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); + + GV->setThreadLocal(D->isThreadSpecified()); + } + + return Entry = GV; +} + + +/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the +/// given global variable. If Ty is non-null and if the global doesn't exist, +/// then it will be greated with the specified type instead of whatever the +/// normal requested type would be. +llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, + const llvm::Type *Ty) { + assert(D->hasGlobalStorage() && "Not a global variable"); + QualType ASTTy = D->getType(); + if (Ty == 0) + Ty = getTypes().ConvertTypeForMem(ASTTy); + + const llvm::PointerType *PTy = + llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); + return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); +} + +/// CreateRuntimeVariable - Create a new runtime global variable with the +/// specified type and name. +llvm::Constant * +CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, + const char *Name) { + // Convert Name to be a uniqued string from the IdentifierInfo table. + Name = getContext().Idents.get(Name).getName(); + return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); +} + +void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { + assert(!D->getInit() && "Cannot emit definite definitions here!"); + + if (MayDeferGeneration(D)) { + // If we have not seen a reference to this variable yet, place it + // into the deferred declarations table to be emitted if needed + // later. + const char *MangledName = getMangledName(D); + if (GlobalDeclMap.count(MangledName) == 0) { + DeferredDecls[MangledName] = GlobalDecl(D); + return; + } + } + + // The tentative definition is the only definition. + EmitGlobalVarDefinition(D); +} + +void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { + llvm::Constant *Init = 0; + QualType ASTTy = D->getType(); + + if (D->getInit() == 0) { + // This is a tentative definition; tentative definitions are + // implicitly initialized with { 0 }. + // + // Note that tentative definitions are only emitted at the end of + // a translation unit, so they should never have incomplete + // type. In addition, EmitTentativeDefinition makes sure that we + // never attempt to emit a tentative definition if a real one + // exists. A use may still exists, however, so we still may need + // to do a RAUW. + assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); + Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); + } else { + Init = EmitConstantExpr(D->getInit(), D->getType()); + if (!Init) { + ErrorUnsupported(D, "static initializer"); + QualType T = D->getInit()->getType(); + Init = llvm::UndefValue::get(getTypes().ConvertType(T)); + } + } + + const llvm::Type* InitType = Init->getType(); + llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); + + // Strip off a bitcast if we got one back. + if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { + assert(CE->getOpcode() == llvm::Instruction::BitCast); + Entry = CE->getOperand(0); + } + + // Entry is now either a Function or GlobalVariable. + llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); + + // We have a definition after a declaration with the wrong type. + // We must make a new GlobalVariable* and update everything that used OldGV + // (a declaration or tentative definition) with the new GlobalVariable* + // (which will be a definition). + // + // This happens if there is a prototype for a global (e.g. + // "extern int x[];") and then a definition of a different type (e.g. + // "int x[10];"). This also happens when an initializer has a different type + // from the type of the global (this happens with unions). + if (GV == 0 || + GV->getType()->getElementType() != InitType || + GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { + + // Remove the old entry from GlobalDeclMap so that we'll create a new one. + GlobalDeclMap.erase(getMangledName(D)); + + // Make a new global with the correct type, this is now guaranteed to work. + GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); + GV->takeName(cast<llvm::GlobalValue>(Entry)); + + // Replace all uses of the old global with the new global + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(GV, Entry->getType()); + Entry->replaceAllUsesWith(NewPtrForOldDecl); + + // Erase the old global, since it is no longer used. + cast<llvm::GlobalValue>(Entry)->eraseFromParent(); + } + + if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { + SourceManager &SM = Context.getSourceManager(); + AddAnnotation(EmitAnnotateAttr(GV, AA, + SM.getInstantiationLineNumber(D->getLocation()))); + } + + GV->setInitializer(Init); + GV->setConstant(D->getType().isConstant(Context)); + GV->setAlignment(getContext().getDeclAlignInBytes(D)); + + // Set the llvm linkage type as appropriate. + if (D->getStorageClass() == VarDecl::Static) + GV->setLinkage(llvm::Function::InternalLinkage); + else if (D->hasAttr<DLLImportAttr>()) + GV->setLinkage(llvm::Function::DLLImportLinkage); + else if (D->hasAttr<DLLExportAttr>()) + GV->setLinkage(llvm::Function::DLLExportLinkage); + else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) + GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); + else if (!CompileOpts.NoCommon && + (!D->hasExternalStorage() && !D->getInit())) + GV->setLinkage(llvm::GlobalVariable::CommonLinkage); + else + GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); + + SetCommonAttributes(D, GV); + + // Emit global variable debug information. + if (CGDebugInfo *DI = getDebugInfo()) { + DI->setLocation(D->getLocation()); + DI->EmitGlobalVariable(GV, D); + } +} + +/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we +/// implement a function with no prototype, e.g. "int foo() {}". If there are +/// existing call uses of the old function in the module, this adjusts them to +/// call the new function directly. +/// +/// This is not just a cleanup: the always_inline pass requires direct calls to +/// functions to be able to inline them. If there is a bitcast in the way, it +/// won't inline them. Instcombine normally deletes these calls, but it isn't +/// run at -O0. +static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, + llvm::Function *NewFn) { + // If we're redefining a global as a function, don't transform it. + llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); + if (OldFn == 0) return; + + const llvm::Type *NewRetTy = NewFn->getReturnType(); + llvm::SmallVector<llvm::Value*, 4> ArgList; + + for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); + UI != E; ) { + // TODO: Do invokes ever occur in C code? If so, we should handle them too. + llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); + if (!CI) continue; + + // If the return types don't match exactly, and if the call isn't dead, then + // we can't transform this call. + if (CI->getType() != NewRetTy && !CI->use_empty()) + continue; + + // If the function was passed too few arguments, don't transform. If extra + // arguments were passed, we silently drop them. If any of the types + // mismatch, we don't transform. + unsigned ArgNo = 0; + bool DontTransform = false; + for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), + E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { + if (CI->getNumOperands()-1 == ArgNo || + CI->getOperand(ArgNo+1)->getType() != AI->getType()) { + DontTransform = true; + break; + } + } + if (DontTransform) + continue; + + // Okay, we can transform this. Create the new call instruction and copy + // over the required information. + ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); + llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), + ArgList.end(), "", CI); + ArgList.clear(); + if (NewCall->getType() != llvm::Type::VoidTy) + NewCall->takeName(CI); + NewCall->setCallingConv(CI->getCallingConv()); + NewCall->setAttributes(CI->getAttributes()); + + // Finally, remove the old call, replacing any uses with the new one. + if (!CI->use_empty()) + CI->replaceAllUsesWith(NewCall); + CI->eraseFromParent(); + } +} + + +void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { + const llvm::FunctionType *Ty; + const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); + + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { + bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); + + Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); + } else { + Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); + + // As a special case, make sure that definitions of K&R function + // "type foo()" aren't declared as varargs (which forces the backend + // to do unnecessary work). + if (D->getType()->isFunctionNoProtoType()) { + assert(Ty->isVarArg() && "Didn't lower type as expected"); + // Due to stret, the lowered function could have arguments. + // Just create the same type as was lowered by ConvertType + // but strip off the varargs bit. + std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); + Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); + } + } + + // Get or create the prototype for the function. + llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); + + // Strip off a bitcast if we got one back. + if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { + assert(CE->getOpcode() == llvm::Instruction::BitCast); + Entry = CE->getOperand(0); + } + + + if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { + llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); + + // If the types mismatch then we have to rewrite the definition. + assert(OldFn->isDeclaration() && + "Shouldn't replace non-declaration"); + + // F is the Function* for the one with the wrong type, we must make a new + // Function* and update everything that used F (a declaration) with the new + // Function* (which will be a definition). + // + // This happens if there is a prototype for a function + // (e.g. "int f()") and then a definition of a different type + // (e.g. "int f(int x)"). Start by making a new function of the + // correct type, RAUW, then steal the name. + GlobalDeclMap.erase(getMangledName(D)); + llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); + NewFn->takeName(OldFn); + + // If this is an implementation of a function without a prototype, try to + // replace any existing uses of the function (which may be calls) with uses + // of the new function + if (D->getType()->isFunctionNoProtoType()) { + ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); + OldFn->removeDeadConstantUsers(); + } + + // Replace uses of F with the Function we will endow with a body. + if (!Entry->use_empty()) { + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); + Entry->replaceAllUsesWith(NewPtrForOldDecl); + } + + // Ok, delete the old function now, which is dead. + OldFn->eraseFromParent(); + + Entry = NewFn; + } + + llvm::Function *Fn = cast<llvm::Function>(Entry); + + CodeGenFunction(*this).GenerateCode(D, Fn); + + SetFunctionDefinitionAttributes(D, Fn); + SetLLVMFunctionAttributesForDefinition(D, Fn); + + if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) + AddGlobalCtor(Fn, CA->getPriority()); + if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) + AddGlobalDtor(Fn, DA->getPriority()); +} + +void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { + const AliasAttr *AA = D->getAttr<AliasAttr>(); + assert(AA && "Not an alias?"); + + const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); + + // Unique the name through the identifier table. + const char *AliaseeName = AA->getAliasee().c_str(); + AliaseeName = getContext().Idents.get(AliaseeName).getName(); + + // Create a reference to the named value. This ensures that it is emitted + // if a deferred decl. + llvm::Constant *Aliasee; + if (isa<llvm::FunctionType>(DeclTy)) + Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); + else + Aliasee = GetOrCreateLLVMGlobal(AliaseeName, + llvm::PointerType::getUnqual(DeclTy), 0); + + // Create the new alias itself, but don't set a name yet. + llvm::GlobalValue *GA = + new llvm::GlobalAlias(Aliasee->getType(), + llvm::Function::ExternalLinkage, + "", Aliasee, &getModule()); + + // See if there is already something with the alias' name in the module. + const char *MangledName = getMangledName(D); + llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; + + if (Entry && !Entry->isDeclaration()) { + // If there is a definition in the module, then it wins over the alias. + // This is dubious, but allow it to be safe. Just ignore the alias. + GA->eraseFromParent(); + return; + } + + if (Entry) { + // If there is a declaration in the module, then we had an extern followed + // by the alias, as in: + // extern int test6(); + // ... + // int test6() __attribute__((alias("test7"))); + // + // Remove it and replace uses of it with the alias. + + Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, + Entry->getType())); + Entry->eraseFromParent(); + } + + // Now we know that there is no conflict, set the name. + Entry = GA; + GA->setName(MangledName); + + // Set attributes which are particular to an alias; this is a + // specialization of the attributes which may be set on a global + // variable/function. + if (D->hasAttr<DLLExportAttr>()) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + // The dllexport attribute is ignored for undefined symbols. + if (FD->getBody(getContext())) + GA->setLinkage(llvm::Function::DLLExportLinkage); + } else { + GA->setLinkage(llvm::Function::DLLExportLinkage); + } + } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { + GA->setLinkage(llvm::Function::WeakAnyLinkage); + } + + SetCommonAttributes(D, GA); +} + +/// getBuiltinLibFunction - Given a builtin id for a function like +/// "__builtin_fabsf", return a Function* for "fabsf". +llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { + assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || + Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && + "isn't a lib fn"); + + // Get the name, skip over the __builtin_ prefix (if necessary). + const char *Name = Context.BuiltinInfo.GetName(BuiltinID); + if (Context.BuiltinInfo.isLibFunction(BuiltinID)) + Name += 10; + + // Get the type for the builtin. + Builtin::Context::GetBuiltinTypeError Error; + QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); + assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); + + const llvm::FunctionType *Ty = + cast<llvm::FunctionType>(getTypes().ConvertType(Type)); + + // Unique the name through the identifier table. + Name = getContext().Idents.get(Name).getName(); + // FIXME: param attributes for sext/zext etc. + return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); +} + +llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, + unsigned NumTys) { + return llvm::Intrinsic::getDeclaration(&getModule(), + (llvm::Intrinsic::ID)IID, Tys, NumTys); +} + +llvm::Function *CodeGenModule::getMemCpyFn() { + if (MemCpyFn) return MemCpyFn; + const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); + return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); +} + +llvm::Function *CodeGenModule::getMemMoveFn() { + if (MemMoveFn) return MemMoveFn; + const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); + return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); +} + +llvm::Function *CodeGenModule::getMemSetFn() { + if (MemSetFn) return MemSetFn; + const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); + return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); +} + +static void appendFieldAndPadding(CodeGenModule &CGM, + std::vector<llvm::Constant*>& Fields, + FieldDecl *FieldD, FieldDecl *NextFieldD, + llvm::Constant* Field, + RecordDecl* RD, const llvm::StructType *STy) { + // Append the field. + Fields.push_back(Field); + + int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); + + int NextStructFieldNo; + if (!NextFieldD) { + NextStructFieldNo = STy->getNumElements(); + } else { + NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); + } + + // Append padding + for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { + llvm::Constant *C = + llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); + + Fields.push_back(C); + } +} + +llvm::Constant *CodeGenModule:: +GetAddrOfConstantCFString(const StringLiteral *Literal) { + std::string str; + unsigned StringLength = 0; + + bool isUTF16 = false; + if (Literal->containsNonAsciiOrNull()) { + // Convert from UTF-8 to UTF-16. + llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); + const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); + UTF16 *ToPtr = &ToBuf[0]; + + ConversionResult Result; + Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), + &ToPtr, ToPtr+Literal->getByteLength(), + strictConversion); + if (Result == conversionOK) { + // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings + // without doing more surgery to this routine. Since we aren't explicitly + // checking for endianness here, it's also a bug (when generating code for + // a target that doesn't match the host endianness). Modeling this as an + // i16 array is likely the cleanest solution. + StringLength = ToPtr-&ToBuf[0]; + str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. + isUTF16 = true; + } else if (Result == sourceIllegal) { + // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. + str.assign(Literal->getStrData(), Literal->getByteLength()); + StringLength = str.length(); + } else + assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); + + } else { + str.assign(Literal->getStrData(), Literal->getByteLength()); + StringLength = str.length(); + } + llvm::StringMapEntry<llvm::Constant *> &Entry = + CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); + + if (llvm::Constant *C = Entry.getValue()) + return C; + + llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); + llvm::Constant *Zeros[] = { Zero, Zero }; + + if (!CFConstantStringClassRef) { + const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); + Ty = llvm::ArrayType::get(Ty, 0); + + // FIXME: This is fairly broken if __CFConstantStringClassReference is + // already defined, in that it will get renamed and the user will most + // likely see an opaque error message. This is a general issue with relying + // on particular names. + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(Ty, false, + llvm::GlobalVariable::ExternalLinkage, 0, + "__CFConstantStringClassReference", + &getModule()); + + // Decay array -> ptr + CFConstantStringClassRef = + llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); + } + + QualType CFTy = getContext().getCFConstantStringType(); + RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); + + const llvm::StructType *STy = + cast<llvm::StructType>(getTypes().ConvertType(CFTy)); + + std::vector<llvm::Constant*> Fields; + RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); + + // Class pointer. + FieldDecl *CurField = *Field++; + FieldDecl *NextField = *Field++; + appendFieldAndPadding(*this, Fields, CurField, NextField, + CFConstantStringClassRef, CFRD, STy); + + // Flags. + CurField = NextField; + NextField = *Field++; + const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); + appendFieldAndPadding(*this, Fields, CurField, NextField, + isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) + : llvm::ConstantInt::get(Ty, 0x07C8), + CFRD, STy); + + // String pointer. + CurField = NextField; + NextField = *Field++; + llvm::Constant *C = llvm::ConstantArray::get(str); + + const char *Sect, *Prefix; + bool isConstant; + if (isUTF16) { + Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); + Sect = getContext().Target.getUnicodeStringSection(); + // FIXME: Why does GCC not set constant here? + isConstant = false; + } else { + Prefix = getContext().Target.getStringSymbolPrefix(true); + Sect = getContext().Target.getCFStringDataSection(); + // FIXME: -fwritable-strings should probably affect this, but we + // are following gcc here. + isConstant = true; + } + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(C->getType(), isConstant, + llvm::GlobalValue::InternalLinkage, + C, Prefix, &getModule()); + if (Sect) + GV->setSection(Sect); + if (isUTF16) { + unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; + GV->setAlignment(Align); + } + appendFieldAndPadding(*this, Fields, CurField, NextField, + llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), + CFRD, STy); + + // String length. + CurField = NextField; + NextField = 0; + Ty = getTypes().ConvertType(getContext().LongTy); + appendFieldAndPadding(*this, Fields, CurField, NextField, + llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); + + // The struct. + C = llvm::ConstantStruct::get(STy, Fields); + GV = new llvm::GlobalVariable(C->getType(), true, + llvm::GlobalVariable::InternalLinkage, C, + getContext().Target.getCFStringSymbolPrefix(), + &getModule()); + if (const char *Sect = getContext().Target.getCFStringSection()) + GV->setSection(Sect); + Entry.setValue(GV); + + return GV; +} + +/// GetStringForStringLiteral - Return the appropriate bytes for a +/// string literal, properly padded to match the literal type. +std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { + const char *StrData = E->getStrData(); + unsigned Len = E->getByteLength(); + + const ConstantArrayType *CAT = + getContext().getAsConstantArrayType(E->getType()); + assert(CAT && "String isn't pointer or array!"); + + // Resize the string to the right size. + std::string Str(StrData, StrData+Len); + uint64_t RealLen = CAT->getSize().getZExtValue(); + + if (E->isWide()) + RealLen *= getContext().Target.getWCharWidth()/8; + + Str.resize(RealLen, '\0'); + + return Str; +} + +/// GetAddrOfConstantStringFromLiteral - Return a pointer to a +/// constant array for the given string literal. +llvm::Constant * +CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { + // FIXME: This can be more efficient. + return GetAddrOfConstantString(GetStringForStringLiteral(S)); +} + +/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant +/// array for the given ObjCEncodeExpr node. +llvm::Constant * +CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { + std::string Str; + getContext().getObjCEncodingForType(E->getEncodedType(), Str); + + return GetAddrOfConstantCString(Str); +} + + +/// GenerateWritableString -- Creates storage for a string literal. +static llvm::Constant *GenerateStringLiteral(const std::string &str, + bool constant, + CodeGenModule &CGM, + const char *GlobalName) { + // Create Constant for this string literal. Don't add a '\0'. + llvm::Constant *C = llvm::ConstantArray::get(str, false); + + // Create a global variable for this string + return new llvm::GlobalVariable(C->getType(), constant, + llvm::GlobalValue::InternalLinkage, + C, GlobalName, &CGM.getModule()); +} + +/// GetAddrOfConstantString - Returns a pointer to a character array +/// containing the literal. This contents are exactly that of the +/// given string, i.e. it will not be null terminated automatically; +/// see GetAddrOfConstantCString. Note that whether the result is +/// actually a pointer to an LLVM constant depends on +/// Feature.WriteableStrings. +/// +/// The result has pointer to array type. +llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, + const char *GlobalName) { + bool IsConstant = !Features.WritableStrings; + + // Get the default prefix if a name wasn't specified. + if (!GlobalName) + GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); + + // Don't share any string literals if strings aren't constant. + if (!IsConstant) + return GenerateStringLiteral(str, false, *this, GlobalName); + + llvm::StringMapEntry<llvm::Constant *> &Entry = + ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); + + if (Entry.getValue()) + return Entry.getValue(); + + // Create a global variable for this. + llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); + Entry.setValue(C); + return C; +} + +/// GetAddrOfConstantCString - Returns a pointer to a character +/// array containing the literal and a terminating '\-' +/// character. The result has pointer to array type. +llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, + const char *GlobalName){ + return GetAddrOfConstantString(str + '\0', GlobalName); +} + +/// EmitObjCPropertyImplementations - Emit information for synthesized +/// properties for an implementation. +void CodeGenModule::EmitObjCPropertyImplementations(const + ObjCImplementationDecl *D) { + for (ObjCImplementationDecl::propimpl_iterator + i = D->propimpl_begin(getContext()), + e = D->propimpl_end(getContext()); i != e; ++i) { + ObjCPropertyImplDecl *PID = *i; + + // Dynamic is just for type-checking. + if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { + ObjCPropertyDecl *PD = PID->getPropertyDecl(); + + // Determine which methods need to be implemented, some may have + // been overridden. Note that ::isSynthesized is not the method + // we want, that just indicates if the decl came from a + // property. What we want to know is if the method is defined in + // this implementation. + if (!D->getInstanceMethod(getContext(), PD->getGetterName())) + CodeGenFunction(*this).GenerateObjCGetter( + const_cast<ObjCImplementationDecl *>(D), PID); + if (!PD->isReadOnly() && + !D->getInstanceMethod(getContext(), PD->getSetterName())) + CodeGenFunction(*this).GenerateObjCSetter( + const_cast<ObjCImplementationDecl *>(D), PID); + } + } +} + +/// EmitNamespace - Emit all declarations in a namespace. +void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { + for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), + E = ND->decls_end(getContext()); + I != E; ++I) + EmitTopLevelDecl(*I); +} + +// EmitLinkageSpec - Emit all declarations in a linkage spec. +void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { + if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { + ErrorUnsupported(LSD, "linkage spec"); + return; + } + + for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), + E = LSD->decls_end(getContext()); + I != E; ++I) + EmitTopLevelDecl(*I); +} + +/// EmitTopLevelDecl - Emit code for a single top level declaration. +void CodeGenModule::EmitTopLevelDecl(Decl *D) { + // If an error has occurred, stop code generation, but continue + // parsing and semantic analysis (to ensure all warnings and errors + // are emitted). + if (Diags.hasErrorOccurred()) + return; + + switch (D->getKind()) { + case Decl::CXXMethod: + case Decl::Function: + case Decl::Var: + EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); + break; + + // C++ Decls + case Decl::Namespace: + EmitNamespace(cast<NamespaceDecl>(D)); + break; + case Decl::CXXConstructor: + EmitCXXConstructors(cast<CXXConstructorDecl>(D)); + break; + case Decl::CXXDestructor: + EmitCXXDestructors(cast<CXXDestructorDecl>(D)); + break; + + // Objective-C Decls + + // Forward declarations, no (immediate) code generation. + case Decl::ObjCClass: + case Decl::ObjCForwardProtocol: + case Decl::ObjCCategory: + case Decl::ObjCInterface: + break; + + case Decl::ObjCProtocol: + Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); + break; + + case Decl::ObjCCategoryImpl: + // Categories have properties but don't support synthesize so we + // can ignore them here. + Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); + break; + + case Decl::ObjCImplementation: { + ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); + EmitObjCPropertyImplementations(OMD); + Runtime->GenerateClass(OMD); + break; + } + case Decl::ObjCMethod: { + ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); + // If this is not a prototype, emit the body. + if (OMD->getBody(getContext())) + CodeGenFunction(*this).GenerateObjCMethod(OMD); + break; + } + case Decl::ObjCCompatibleAlias: + // compatibility-alias is a directive and has no code gen. + break; + + case Decl::LinkageSpec: + EmitLinkageSpec(cast<LinkageSpecDecl>(D)); + break; + + case Decl::FileScopeAsm: { + FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); + std::string AsmString(AD->getAsmString()->getStrData(), + AD->getAsmString()->getByteLength()); + + const std::string &S = getModule().getModuleInlineAsm(); + if (S.empty()) + getModule().setModuleInlineAsm(AsmString); + else + getModule().setModuleInlineAsm(S + '\n' + AsmString); + break; + } + + default: + // Make sure we handled everything we should, every other kind is a + // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind + // function. Need to recode Decl::Kind to do that easily. + assert(isa<TypeDecl>(D) && "Unsupported decl kind"); + } +} |