diff options
Diffstat (limited to 'lib/Analysis/MemoryDependenceAnalysis.cpp')
-rw-r--r-- | lib/Analysis/MemoryDependenceAnalysis.cpp | 525 |
1 files changed, 129 insertions, 396 deletions
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp index ae6f970..a0c7706 100644 --- a/lib/Analysis/MemoryDependenceAnalysis.cpp +++ b/lib/Analysis/MemoryDependenceAnalysis.cpp @@ -23,6 +23,7 @@ #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/PHITransAddr.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/PredIteratorCache.h" @@ -172,7 +173,7 @@ MemDepResult MemoryDependenceAnalysis:: getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, BasicBlock::iterator ScanIt, BasicBlock *BB) { - Value *invariantTag = 0; + Value *InvariantTag = 0; // Walk backwards through the basic block, looking for dependencies. while (ScanIt != BB->begin()) { @@ -180,34 +181,36 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, // If we're in an invariant region, no dependencies can be found before // we pass an invariant-begin marker. - if (invariantTag == Inst) { - invariantTag = 0; + if (InvariantTag == Inst) { + InvariantTag = 0; continue; - } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { + } + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { + // Debug intrinsics don't cause dependences. + if (isa<DbgInfoIntrinsic>(Inst)) continue; + // If we pass an invariant-end marker, then we've just entered an // invariant region and can start ignoring dependencies. if (II->getIntrinsicID() == Intrinsic::invariant_end) { - uint64_t invariantSize = ~0ULL; - if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2))) - invariantSize = CI->getZExtValue(); - - AliasAnalysis::AliasResult R = - AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize); + // FIXME: This only considers queries directly on the invariant-tagged + // pointer, not on query pointers that are indexed off of them. It'd + // be nice to handle that at some point. + AliasAnalysis::AliasResult R = + AA->alias(II->getOperand(3), ~0U, MemPtr, ~0U); if (R == AliasAnalysis::MustAlias) { - invariantTag = II->getOperand(1); + InvariantTag = II->getOperand(1); continue; } // If we reach a lifetime begin or end marker, then the query ends here // because the value is undefined. - } else if (II->getIntrinsicID() == Intrinsic::lifetime_start || - II->getIntrinsicID() == Intrinsic::lifetime_end) { - uint64_t invariantSize = ~0ULL; - if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1))) - invariantSize = CI->getZExtValue(); - + } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) { + // FIXME: This only considers queries directly on the invariant-tagged + // pointer, not on query pointers that are indexed off of them. It'd + // be nice to handle that at some point. AliasAnalysis::AliasResult R = - AA->alias(II->getOperand(2), invariantSize, MemPtr, MemSize); + AA->alias(II->getOperand(2), ~0U, MemPtr, ~0U); if (R == AliasAnalysis::MustAlias) return MemDepResult::getDef(II); } @@ -215,10 +218,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, // If we're querying on a load and we're in an invariant region, we're done // at this point. Nothing a load depends on can live in an invariant region. - if (isLoad && invariantTag) continue; - - // Debug intrinsics don't cause dependences. - if (isa<DbgInfoIntrinsic>(Inst)) continue; + if (isLoad && InvariantTag) continue; // Values depend on loads if the pointers are must aliased. This means that // a load depends on another must aliased load from the same value. @@ -243,7 +243,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { // There can't be stores to the value we care about inside an // invariant region. - if (invariantTag) continue; + if (InvariantTag) continue; // If alias analysis can tell that this store is guaranteed to not modify // the query pointer, ignore it. Use getModRefInfo to handle cases where @@ -292,7 +292,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, case AliasAnalysis::Mod: // If we're in an invariant region, we can ignore calls that ONLY // modify the pointer. - if (invariantTag) continue; + if (InvariantTag) continue; return MemDepResult::getClobber(Inst); case AliasAnalysis::Ref: // If the call is known to never store to the pointer, and if this is a @@ -374,21 +374,22 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) { IntrinsicID = II->getIntrinsicID(); switch (IntrinsicID) { - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: - MemPtr = QueryInst->getOperand(2); - MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue(); - break; - case Intrinsic::invariant_end: - MemPtr = QueryInst->getOperand(3); - MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue(); - break; - default: - CallSite QueryCS = CallSite::get(QueryInst); - bool isReadOnly = AA->onlyReadsMemory(QueryCS); - LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, - QueryParent); + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + MemPtr = QueryInst->getOperand(2); + MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue(); + break; + case Intrinsic::invariant_end: + MemPtr = QueryInst->getOperand(3); + MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue(); + break; + default: + CallSite QueryCS = CallSite::get(QueryInst); + bool isReadOnly = AA->onlyReadsMemory(QueryCS); + LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos, + QueryParent); + break; } } else { // Non-memory instruction. @@ -421,7 +422,7 @@ static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, if (Count == 0) return; for (unsigned i = 1; i != unsigned(Count); ++i) - assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!"); + assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"); } #endif @@ -462,8 +463,8 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { // determine what is dirty, seeding our initial DirtyBlocks worklist. for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); I != E; ++I) - if (I->second.isDirty()) - DirtyBlocks.push_back(I->first); + if (I->getResult().isDirty()) + DirtyBlocks.push_back(I->getBB()); // Sort the cache so that we can do fast binary search lookups below. std::sort(Cache.begin(), Cache.end()); @@ -501,27 +502,27 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { DEBUG(AssertSorted(Cache, NumSortedEntries)); NonLocalDepInfo::iterator Entry = std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries, - std::make_pair(DirtyBB, MemDepResult())); - if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB) + NonLocalDepEntry(DirtyBB)); + if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB) --Entry; - MemDepResult *ExistingResult = 0; + NonLocalDepEntry *ExistingResult = 0; if (Entry != Cache.begin()+NumSortedEntries && - Entry->first == DirtyBB) { + Entry->getBB() == DirtyBB) { // If we already have an entry, and if it isn't already dirty, the block // is done. - if (!Entry->second.isDirty()) + if (!Entry->getResult().isDirty()) continue; // Otherwise, remember this slot so we can update the value. - ExistingResult = &Entry->second; + ExistingResult = &*Entry; } // If the dirty entry has a pointer, start scanning from it so we don't have // to rescan the entire block. BasicBlock::iterator ScanPos = DirtyBB->end(); if (ExistingResult) { - if (Instruction *Inst = ExistingResult->getInst()) { + if (Instruction *Inst = ExistingResult->getResult().getInst()) { ScanPos = Inst; // We're removing QueryInst's use of Inst. RemoveFromReverseMap(ReverseNonLocalDeps, Inst, @@ -545,9 +546,9 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) { // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) - *ExistingResult = Dep; + ExistingResult->setResult(Dep, 0); else - Cache.push_back(std::make_pair(DirtyBB, Dep)); + Cache.push_back(NonLocalDepEntry(DirtyBB, Dep, 0)); // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the association! @@ -587,17 +588,20 @@ getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB, const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType(); uint64_t PointeeSize = AA->getTypeStoreSize(EltTy); + PHITransAddr Address(Pointer, TD); + // This is the set of blocks we've inspected, and the pointer we consider in // each block. Because of critical edges, we currently bail out if querying // a block with multiple different pointers. This can happen during PHI // translation. DenseMap<BasicBlock*, Value*> Visited; - if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB, + if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB, Result, Visited, true)) return; Result.clear(); - Result.push_back(std::make_pair(FromBB, - MemDepResult::getClobber(FromBB->begin()))); + Result.push_back(NonLocalDepEntry(FromBB, + MemDepResult::getClobber(FromBB->begin()), + Pointer)); } /// GetNonLocalInfoForBlock - Compute the memdep value for BB with @@ -613,30 +617,30 @@ GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize, // the cache set. If so, find it. NonLocalDepInfo::iterator Entry = std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries, - std::make_pair(BB, MemDepResult())); - if (Entry != Cache->begin() && prior(Entry)->first == BB) + NonLocalDepEntry(BB)); + if (Entry != Cache->begin() && (Entry-1)->getBB() == BB) --Entry; - MemDepResult *ExistingResult = 0; - if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB) - ExistingResult = &Entry->second; + NonLocalDepEntry *ExistingResult = 0; + if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB) + ExistingResult = &*Entry; // If we have a cached entry, and it is non-dirty, use it as the value for // this dependency. - if (ExistingResult && !ExistingResult->isDirty()) { + if (ExistingResult && !ExistingResult->getResult().isDirty()) { ++NumCacheNonLocalPtr; - return *ExistingResult; + return ExistingResult->getResult(); } // Otherwise, we have to scan for the value. If we have a dirty cache // entry, start scanning from its position, otherwise we scan from the end // of the block. BasicBlock::iterator ScanPos = BB->end(); - if (ExistingResult && ExistingResult->getInst()) { - assert(ExistingResult->getInst()->getParent() == BB && + if (ExistingResult && ExistingResult->getResult().getInst()) { + assert(ExistingResult->getResult().getInst()->getParent() == BB && "Instruction invalidated?"); ++NumCacheDirtyNonLocalPtr; - ScanPos = ExistingResult->getInst(); + ScanPos = ExistingResult->getResult().getInst(); // Eliminating the dirty entry from 'Cache', so update the reverse info. ValueIsLoadPair CacheKey(Pointer, isLoad); @@ -652,9 +656,9 @@ GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize, // If we had a dirty entry for the block, update it. Otherwise, just add // a new entry. if (ExistingResult) - *ExistingResult = Dep; + ExistingResult->setResult(Dep, Pointer); else - Cache->push_back(std::make_pair(BB, Dep)); + Cache->push_back(NonLocalDepEntry(BB, Dep, Pointer)); // If the block has a dependency (i.e. it isn't completely transparent to // the value), remember the reverse association because we just added it @@ -683,7 +687,7 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, break; case 2: { // Two new entries, insert the last one into place. - MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back(); + NonLocalDepEntry Val = Cache.back(); Cache.pop_back(); MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = std::upper_bound(Cache.begin(), Cache.end()-1, Val); @@ -693,7 +697,7 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, case 1: // One new entry, Just insert the new value at the appropriate position. if (Cache.size() != 1) { - MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back(); + NonLocalDepEntry Val = Cache.back(); Cache.pop_back(); MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry = std::upper_bound(Cache.begin(), Cache.end(), Val); @@ -707,275 +711,6 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, } } -/// isPHITranslatable - Return true if the specified computation is derived from -/// a PHI node in the current block and if it is simple enough for us to handle. -static bool isPHITranslatable(Instruction *Inst) { - if (isa<PHINode>(Inst)) - return true; - - // We can handle bitcast of a PHI, but the PHI needs to be in the same block - // as the bitcast. - if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) { - Instruction *OpI = dyn_cast<Instruction>(BC->getOperand(0)); - if (OpI == 0 || OpI->getParent() != Inst->getParent()) - return true; - return isPHITranslatable(OpI); - } - - // We can translate a GEP if all of its operands defined in this block are phi - // translatable. - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { - for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { - Instruction *OpI = dyn_cast<Instruction>(GEP->getOperand(i)); - if (OpI == 0 || OpI->getParent() != Inst->getParent()) - continue; - - if (!isPHITranslatable(OpI)) - return false; - } - return true; - } - - if (Inst->getOpcode() == Instruction::Add && - isa<ConstantInt>(Inst->getOperand(1))) { - Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0)); - if (OpI == 0 || OpI->getParent() != Inst->getParent()) - return true; - return isPHITranslatable(OpI); - } - - // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; - // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) - // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); - - return false; -} - -/// GetPHITranslatedValue - Given a computation that satisfied the -/// isPHITranslatable predicate, see if we can translate the computation into -/// the specified predecessor block. If so, return that value. -Value *MemoryDependenceAnalysis:: -GetPHITranslatedValue(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred, - const TargetData *TD) const { - // If the input value is not an instruction, or if it is not defined in CurBB, - // then we don't need to phi translate it. - Instruction *Inst = dyn_cast<Instruction>(InVal); - if (Inst == 0 || Inst->getParent() != CurBB) - return InVal; - - if (PHINode *PN = dyn_cast<PHINode>(Inst)) - return PN->getIncomingValueForBlock(Pred); - - // Handle bitcast of PHI. - if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) { - // PHI translate the input operand. - Value *PHIIn = GetPHITranslatedValue(BC->getOperand(0), CurBB, Pred, TD); - if (PHIIn == 0) return 0; - - // Constants are trivial to phi translate. - if (Constant *C = dyn_cast<Constant>(PHIIn)) - return ConstantExpr::getBitCast(C, BC->getType()); - - // Otherwise we have to see if a bitcasted version of the incoming pointer - // is available. If so, we can use it, otherwise we have to fail. - for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end(); - UI != E; ++UI) { - if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) - if (BCI->getType() == BC->getType()) - return BCI; - } - return 0; - } - - // Handle getelementptr with at least one PHI translatable operand. - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { - SmallVector<Value*, 8> GEPOps; - BasicBlock *CurBB = GEP->getParent(); - for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { - Value *GEPOp = GEP->getOperand(i); - // No PHI translation is needed of operands whose values are live in to - // the predecessor block. - if (!isa<Instruction>(GEPOp) || - cast<Instruction>(GEPOp)->getParent() != CurBB) { - GEPOps.push_back(GEPOp); - continue; - } - - // If the operand is a phi node, do phi translation. - Value *InOp = GetPHITranslatedValue(GEPOp, CurBB, Pred, TD); - if (InOp == 0) return 0; - - GEPOps.push_back(InOp); - } - - // Simplify the GEP to handle 'gep x, 0' -> x etc. - if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD)) - return V; - - // Scan to see if we have this GEP available. - Value *APHIOp = GEPOps[0]; - for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end(); - UI != E; ++UI) { - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) - if (GEPI->getType() == GEP->getType() && - GEPI->getNumOperands() == GEPOps.size() && - GEPI->getParent()->getParent() == CurBB->getParent()) { - bool Mismatch = false; - for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) - if (GEPI->getOperand(i) != GEPOps[i]) { - Mismatch = true; - break; - } - if (!Mismatch) - return GEPI; - } - } - return 0; - } - - // Handle add with a constant RHS. - if (Inst->getOpcode() == Instruction::Add && - isa<ConstantInt>(Inst->getOperand(1))) { - // PHI translate the LHS. - Value *LHS; - Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); - Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0)); - bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); - bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); - - if (OpI == 0 || OpI->getParent() != Inst->getParent()) - LHS = Inst->getOperand(0); - else { - LHS = GetPHITranslatedValue(Inst->getOperand(0), CurBB, Pred, TD); - if (LHS == 0) - return 0; - } - - // If the PHI translated LHS is an add of a constant, fold the immediates. - if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) - if (BOp->getOpcode() == Instruction::Add) - if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { - LHS = BOp->getOperand(0); - RHS = ConstantExpr::getAdd(RHS, CI); - isNSW = isNUW = false; - } - - // See if the add simplifies away. - if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD)) - return Res; - - // Otherwise, see if we have this add available somewhere. - for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end(); - UI != E; ++UI) { - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI)) - if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && - BO->getParent()->getParent() == CurBB->getParent()) - return BO; - } - - return 0; - } - - return 0; -} - -/// GetAvailablePHITranslatePointer - Return the value computed by -/// PHITranslatePointer if it dominates PredBB, otherwise return null. -Value *MemoryDependenceAnalysis:: -GetAvailablePHITranslatedValue(Value *V, - BasicBlock *CurBB, BasicBlock *PredBB, - const TargetData *TD, - const DominatorTree &DT) const { - // See if PHI translation succeeds. - V = GetPHITranslatedValue(V, CurBB, PredBB, TD); - if (V == 0) return 0; - - // Make sure the value is live in the predecessor. - if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) - if (!DT.dominates(Inst->getParent(), PredBB)) - return 0; - return V; -} - - -/// InsertPHITranslatedPointer - Insert a computation of the PHI translated -/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB -/// block. All newly created instructions are added to the NewInsts list. -/// -Value *MemoryDependenceAnalysis:: -InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB, - BasicBlock *PredBB, const TargetData *TD, - const DominatorTree &DT, - SmallVectorImpl<Instruction*> &NewInsts) const { - // See if we have a version of this value already available and dominating - // PredBB. If so, there is no need to insert a new copy. - if (Value *Res = GetAvailablePHITranslatedValue(InVal, CurBB, PredBB, TD, DT)) - return Res; - - // If we don't have an available version of this value, it must be an - // instruction. - Instruction *Inst = cast<Instruction>(InVal); - - // Handle bitcast of PHI translatable value. - if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) { - Value *OpVal = InsertPHITranslatedPointer(BC->getOperand(0), - CurBB, PredBB, TD, DT, NewInsts); - if (OpVal == 0) return 0; - - // Otherwise insert a bitcast at the end of PredBB. - BitCastInst *New = new BitCastInst(OpVal, InVal->getType(), - InVal->getName()+".phi.trans.insert", - PredBB->getTerminator()); - NewInsts.push_back(New); - return New; - } - - // Handle getelementptr with at least one PHI operand. - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { - SmallVector<Value*, 8> GEPOps; - BasicBlock *CurBB = GEP->getParent(); - for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { - Value *OpVal = InsertPHITranslatedPointer(GEP->getOperand(i), - CurBB, PredBB, TD, DT, NewInsts); - if (OpVal == 0) return 0; - GEPOps.push_back(OpVal); - } - - GetElementPtrInst *Result = - GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(), - InVal->getName()+".phi.trans.insert", - PredBB->getTerminator()); - Result->setIsInBounds(GEP->isInBounds()); - NewInsts.push_back(Result); - return Result; - } - -#if 0 - // FIXME: This code works, but it is unclear that we actually want to insert - // a big chain of computation in order to make a value available in a block. - // This needs to be evaluated carefully to consider its cost trade offs. - - // Handle add with a constant RHS. - if (Inst->getOpcode() == Instruction::Add && - isa<ConstantInt>(Inst->getOperand(1))) { - // PHI translate the LHS. - Value *OpVal = InsertPHITranslatedPointer(Inst->getOperand(0), - CurBB, PredBB, TD, DT, NewInsts); - if (OpVal == 0) return 0; - - BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), - InVal->getName()+".phi.trans.insert", - PredBB->getTerminator()); - Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); - Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); - NewInsts.push_back(Res); - return Res; - } -#endif - - return 0; -} - /// getNonLocalPointerDepFromBB - Perform a dependency query based on /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def /// results to the results vector and keep track of which blocks are visited in @@ -989,14 +724,14 @@ InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB, /// not compute dependence information for some reason. This should be treated /// as a clobber dependence on the first instruction in the predecessor block. bool MemoryDependenceAnalysis:: -getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, +getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize, bool isLoad, BasicBlock *StartBB, SmallVectorImpl<NonLocalDepEntry> &Result, DenseMap<BasicBlock*, Value*> &Visited, bool SkipFirstBlock) { // Look up the cached info for Pointer. - ValueIsLoadPair CacheKey(Pointer, isLoad); + ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo = &NonLocalPointerDeps[CacheKey]; @@ -1013,8 +748,9 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, if (!Visited.empty()) { for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); I != E; ++I) { - DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first); - if (VI == Visited.end() || VI->second == Pointer) continue; + DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB()); + if (VI == Visited.end() || VI->second == Pointer.getAddr()) + continue; // We have a pointer mismatch in a block. Just return clobber, saying // that something was clobbered in this result. We could also do a @@ -1025,8 +761,8 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end(); I != E; ++I) { - Visited.insert(std::make_pair(I->first, Pointer)); - if (!I->second.isNonLocal()) + Visited.insert(std::make_pair(I->getBB(), Pointer.getAddr())); + if (!I->getResult().isNonLocal()) Result.push_back(*I); } ++NumCacheCompleteNonLocalPtr; @@ -1065,30 +801,27 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, // Get the dependency info for Pointer in BB. If we have cached // information, we will use it, otherwise we compute it. DEBUG(AssertSorted(*Cache, NumSortedEntries)); - MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad, - BB, Cache, NumSortedEntries); + MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize, + isLoad, BB, Cache, + NumSortedEntries); // If we got a Def or Clobber, add this to the list of results. if (!Dep.isNonLocal()) { - Result.push_back(NonLocalDepEntry(BB, Dep)); + Result.push_back(NonLocalDepEntry(BB, Dep, Pointer.getAddr())); continue; } } // If 'Pointer' is an instruction defined in this block, then we need to do // phi translation to change it into a value live in the predecessor block. - // If phi translation fails, then we can't continue dependence analysis. - Instruction *PtrInst = dyn_cast<Instruction>(Pointer); - bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB; - - // If no PHI translation is needed, just add all the predecessors of this - // block to scan them as well. - if (!NeedsPHITranslation) { + // If not, we just add the predecessors to the worklist and scan them with + // the same Pointer. + if (!Pointer.NeedsPHITranslationFromBlock(BB)) { SkipFirstBlock = false; for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { // Verify that we haven't looked at this block yet. std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> - InsertRes = Visited.insert(std::make_pair(*PI, Pointer)); + InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr())); if (InsertRes.second) { // First time we've looked at *PI. Worklist.push_back(*PI); @@ -1098,16 +831,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, // If we have seen this block before, but it was with a different // pointer then we have a phi translation failure and we have to treat // this as a clobber. - if (InsertRes.first->second != Pointer) + if (InsertRes.first->second != Pointer.getAddr()) goto PredTranslationFailure; } continue; } - // If we do need to do phi translation, then there are a bunch of different - // cases, because we have to find a Value* live in the predecessor block. We - // know that PtrInst is defined in this block at least. - + // We do need to do phi translation, if we know ahead of time we can't phi + // translate this value, don't even try. + if (!Pointer.IsPotentiallyPHITranslatable()) + goto PredTranslationFailure; + // We may have added values to the cache list before this PHI translation. // If so, we haven't done anything to ensure that the cache remains sorted. // Sort it now (if needed) so that recursive invocations of @@ -1117,19 +851,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, SortNonLocalDepInfoCache(*Cache, NumSortedEntries); NumSortedEntries = Cache->size(); } - - // If this is a computation derived from a PHI node, use the suitably - // translated incoming values for each pred as the phi translated version. - if (!isPHITranslatable(PtrInst)) - goto PredTranslationFailure; - Cache = 0; - + for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) { BasicBlock *Pred = *PI; - // Get the PHI translated pointer in this predecessor. This can fail and - // return null if not translatable. - Value *PredPtr = GetPHITranslatedValue(PtrInst, BB, Pred, TD); + + // Get the PHI translated pointer in this predecessor. This can fail if + // not translatable, in which case the getAddr() returns null. + PHITransAddr PredPointer(Pointer); + PredPointer.PHITranslateValue(BB, Pred); + + Value *PredPtrVal = PredPointer.getAddr(); // Check to see if we have already visited this pred block with another // pointer. If so, we can't do this lookup. This failure can occur @@ -1137,12 +869,12 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, // the successor translates to a pointer value different than the // pointer the block was first analyzed with. std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool> - InsertRes = Visited.insert(std::make_pair(Pred, PredPtr)); + InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal)); if (!InsertRes.second) { // If the predecessor was visited with PredPtr, then we already did // the analysis and can ignore it. - if (InsertRes.first->second == PredPtr) + if (InsertRes.first->second == PredPtrVal) continue; // Otherwise, the block was previously analyzed with a different @@ -1155,10 +887,11 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, // predecessor, then we have to assume that the pointer is clobbered in // that predecessor. We can still do PRE of the load, which would insert // a computation of the pointer in this predecessor. - if (PredPtr == 0) { + if (PredPtrVal == 0) { // Add the entry to the Result list. NonLocalDepEntry Entry(Pred, - MemDepResult::getClobber(Pred->getTerminator())); + MemDepResult::getClobber(Pred->getTerminator()), + PredPtrVal); Result.push_back(Entry); // Add it to the cache for this CacheKey so that subsequent queries get @@ -1167,27 +900,27 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, MemoryDependenceAnalysis::NonLocalDepInfo::iterator It = std::upper_bound(Cache->begin(), Cache->end(), Entry); - if (It != Cache->begin() && prior(It)->first == Pred) + if (It != Cache->begin() && (It-1)->getBB() == Pred) --It; - if (It == Cache->end() || It->first != Pred) { + if (It == Cache->end() || It->getBB() != Pred) { Cache->insert(It, Entry); // Add it to the reverse map. ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); - } else if (!It->second.isDirty()) { + } else if (!It->getResult().isDirty()) { // noop - } else if (It->second.getInst() == Pred->getTerminator()) { + } else if (It->getResult().getInst() == Pred->getTerminator()) { // Same instruction, clear the dirty marker. - It->second = Entry.second; - } else if (It->second.getInst() == 0) { + It->setResult(Entry.getResult(), PredPtrVal); + } else if (It->getResult().getInst() == 0) { // Dirty, with no instruction, just add this. - It->second = Entry.second; + It->setResult(Entry.getResult(), PredPtrVal); ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); } else { // Otherwise, dirty with a different instruction. - RemoveFromReverseMap(ReverseNonLocalPtrDeps, It->second.getInst(), - CacheKey); - It->second = Entry.second; + RemoveFromReverseMap(ReverseNonLocalPtrDeps, + It->getResult().getInst(), CacheKey); + It->setResult(Entry.getResult(),PredPtrVal); ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey); } Cache = 0; @@ -1201,7 +934,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, // If we have a problem phi translating, fall through to the code below // to handle the failure condition. - if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred, + if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred, Result, Visited)) goto PredTranslationFailure; } @@ -1245,12 +978,12 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize, for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) { assert(I != Cache->rend() && "Didn't find current block??"); - if (I->first != BB) + if (I->getBB() != BB) continue; - assert(I->second.isNonLocal() && + assert(I->getResult().isNonLocal() && "Should only be here with transparent block"); - I->second = MemDepResult::getClobber(BB->begin()); + I->setResult(MemDepResult::getClobber(BB->begin()), Pointer.getAddr()); ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey); Result.push_back(*I); break; @@ -1276,9 +1009,9 @@ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) { NonLocalDepInfo &PInfo = It->second.second; for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { - Instruction *Target = PInfo[i].second.getInst(); + Instruction *Target = PInfo[i].getResult().getInst(); if (Target == 0) continue; // Ignore non-local dep results. - assert(Target->getParent() == PInfo[i].first); + assert(Target->getParent() == PInfo[i].getBB()); // Eliminating the dirty entry from 'Cache', so update the reverse info. RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); @@ -1315,7 +1048,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { NonLocalDepInfo &BlockMap = NLDI->second.first; for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end(); DI != DE; ++DI) - if (Instruction *Inst = DI->second.getInst()) + if (Instruction *Inst = DI->getResult().getInst()) RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); NonLocalDeps.erase(NLDI); } @@ -1403,10 +1136,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { for (NonLocalDepInfo::iterator DI = INLD.first.begin(), DE = INLD.first.end(); DI != DE; ++DI) { - if (DI->second.getInst() != RemInst) continue; + if (DI->getResult().getInst() != RemInst) continue; // Convert to a dirty entry for the subsequent instruction. - DI->second = NewDirtyVal; + DI->setResult(NewDirtyVal, DI->getAddress()); if (Instruction *NextI = NewDirtyVal.getInst()) ReverseDepsToAdd.push_back(std::make_pair(NextI, *I)); @@ -1445,10 +1178,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { // Update any entries for RemInst to use the instruction after it. for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end(); DI != DE; ++DI) { - if (DI->second.getInst() != RemInst) continue; + if (DI->getResult().getInst() != RemInst) continue; // Convert to a dirty entry for the subsequent instruction. - DI->second = NewDirtyVal; + DI->setResult(NewDirtyVal, DI->getAddress()); if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); @@ -1489,7 +1222,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { const NonLocalDepInfo &Val = I->second.second; for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end(); II != E; ++II) - assert(II->second.getInst() != D && "Inst occurs as NLPD value"); + assert(II->getResult().getInst() != D && "Inst occurs as NLPD value"); } for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(), @@ -1498,7 +1231,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { const PerInstNLInfo &INLD = I->second; for (NonLocalDepInfo::const_iterator II = INLD.first.begin(), EE = INLD.first.end(); II != EE; ++II) - assert(II->second.getInst() != D && "Inst occurs in data structures"); + assert(II->getResult().getInst() != D && "Inst occurs in data structures"); } for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(), |