diff options
Diffstat (limited to 'gcc/tree-flow-inline.h')
-rw-r--r-- | gcc/tree-flow-inline.h | 1623 |
1 files changed, 1623 insertions, 0 deletions
diff --git a/gcc/tree-flow-inline.h b/gcc/tree-flow-inline.h new file mode 100644 index 0000000..a3bb652 --- /dev/null +++ b/gcc/tree-flow-inline.h @@ -0,0 +1,1623 @@ +/* Inline functions for tree-flow.h + Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc. + Contributed by Diego Novillo <dnovillo@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to +the Free Software Foundation, 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. */ + +#ifndef _TREE_FLOW_INLINE_H +#define _TREE_FLOW_INLINE_H 1 + +/* Inline functions for manipulating various data structures defined in + tree-flow.h. See tree-flow.h for documentation. */ + +/* Initialize the hashtable iterator HTI to point to hashtable TABLE */ + +static inline void * +first_htab_element (htab_iterator *hti, htab_t table) +{ + hti->htab = table; + hti->slot = table->entries; + hti->limit = hti->slot + htab_size (table); + do + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + break; + } while (++(hti->slot) < hti->limit); + + if (hti->slot < hti->limit) + return *(hti->slot); + return NULL; +} + +/* Return current non-empty/deleted slot of the hashtable pointed to by HTI, + or NULL if we have reached the end. */ + +static inline bool +end_htab_p (htab_iterator *hti) +{ + if (hti->slot >= hti->limit) + return true; + return false; +} + +/* Advance the hashtable iterator pointed to by HTI to the next element of the + hashtable. */ + +static inline void * +next_htab_element (htab_iterator *hti) +{ + while (++(hti->slot) < hti->limit) + { + PTR x = *(hti->slot); + if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) + return x; + }; + return NULL; +} + +/* Initialize ITER to point to the first referenced variable in the + referenced_vars hashtable, and return that variable. */ + +static inline tree +first_referenced_var (referenced_var_iterator *iter) +{ + struct int_tree_map *itm; + itm = (struct int_tree_map *) first_htab_element (&iter->hti, + referenced_vars); + if (!itm) + return NULL; + return itm->to; +} + +/* Return true if we have hit the end of the referenced variables ITER is + iterating through. */ + +static inline bool +end_referenced_vars_p (referenced_var_iterator *iter) +{ + return end_htab_p (&iter->hti); +} + +/* Make ITER point to the next referenced_var in the referenced_var hashtable, + and return that variable. */ + +static inline tree +next_referenced_var (referenced_var_iterator *iter) +{ + struct int_tree_map *itm; + itm = (struct int_tree_map *) next_htab_element (&iter->hti); + if (!itm) + return NULL; + return itm->to; +} + +/* Fill up VEC with the variables in the referenced vars hashtable. */ + +static inline void +fill_referenced_var_vec (VEC (tree, heap) **vec) +{ + referenced_var_iterator rvi; + tree var; + *vec = NULL; + FOR_EACH_REFERENCED_VAR (var, rvi) + VEC_safe_push (tree, heap, *vec, var); +} + +/* Return the variable annotation for T, which must be a _DECL node. + Return NULL if the variable annotation doesn't already exist. */ +static inline var_ann_t +var_ann (tree t) +{ + gcc_assert (t); + gcc_assert (DECL_P (t)); + gcc_assert (TREE_CODE (t) != FUNCTION_DECL); + gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN); + + return (var_ann_t) t->common.ann; +} + +/* Return the variable annotation for T, which must be a _DECL node. + Create the variable annotation if it doesn't exist. */ +static inline var_ann_t +get_var_ann (tree var) +{ + var_ann_t ann = var_ann (var); + return (ann) ? ann : create_var_ann (var); +} + +/* Return the function annotation for T, which must be a FUNCTION_DECL node. + Return NULL if the function annotation doesn't already exist. */ +static inline function_ann_t +function_ann (tree t) +{ + gcc_assert (t); + gcc_assert (TREE_CODE (t) == FUNCTION_DECL); + gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN); + + return (function_ann_t) t->common.ann; +} + +/* Return the function annotation for T, which must be a FUNCTION_DECL node. + Create the function annotation if it doesn't exist. */ +static inline function_ann_t +get_function_ann (tree var) +{ + function_ann_t ann = function_ann (var); + gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN); + return (ann) ? ann : create_function_ann (var); +} + +/* Return the statement annotation for T, which must be a statement + node. Return NULL if the statement annotation doesn't exist. */ +static inline stmt_ann_t +stmt_ann (tree t) +{ +#ifdef ENABLE_CHECKING + gcc_assert (is_gimple_stmt (t)); +#endif + gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN); + return (stmt_ann_t) t->common.ann; +} + +/* Return the statement annotation for T, which must be a statement + node. Create the statement annotation if it doesn't exist. */ +static inline stmt_ann_t +get_stmt_ann (tree stmt) +{ + stmt_ann_t ann = stmt_ann (stmt); + return (ann) ? ann : create_stmt_ann (stmt); +} + +/* Return the annotation type for annotation ANN. */ +static inline enum tree_ann_type +ann_type (tree_ann_t ann) +{ + return ann->common.type; +} + +/* Return the basic block for statement T. */ +static inline basic_block +bb_for_stmt (tree t) +{ + stmt_ann_t ann; + + if (TREE_CODE (t) == PHI_NODE) + return PHI_BB (t); + + ann = stmt_ann (t); + return ann ? ann->bb : NULL; +} + +/* Return the may_aliases varray for variable VAR, or NULL if it has + no may aliases. */ +static inline VEC(tree, gc) * +may_aliases (tree var) +{ + var_ann_t ann = var_ann (var); + return ann ? ann->may_aliases : NULL; +} + +/* Return the line number for EXPR, or return -1 if we have no line + number information for it. */ +static inline int +get_lineno (tree expr) +{ + if (expr == NULL_TREE) + return -1; + + if (TREE_CODE (expr) == COMPOUND_EXPR) + expr = TREE_OPERAND (expr, 0); + + if (! EXPR_HAS_LOCATION (expr)) + return -1; + + return EXPR_LINENO (expr); +} + +/* Return the file name for EXPR, or return "???" if we have no + filename information. */ +static inline const char * +get_filename (tree expr) +{ + const char *filename; + if (expr == NULL_TREE) + return "???"; + + if (TREE_CODE (expr) == COMPOUND_EXPR) + expr = TREE_OPERAND (expr, 0); + + if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr))) + return filename; + else + return "???"; +} + +/* Return true if T is a noreturn call. */ +static inline bool +noreturn_call_p (tree t) +{ + tree call = get_call_expr_in (t); + return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0; +} + +/* Mark statement T as modified. */ +static inline void +mark_stmt_modified (tree t) +{ + stmt_ann_t ann; + if (TREE_CODE (t) == PHI_NODE) + return; + + ann = stmt_ann (t); + if (ann == NULL) + ann = create_stmt_ann (t); + else if (noreturn_call_p (t)) + VEC_safe_push (tree, gc, modified_noreturn_calls, t); + ann->modified = 1; +} + +/* Mark statement T as modified, and update it. */ +static inline void +update_stmt (tree t) +{ + if (TREE_CODE (t) == PHI_NODE) + return; + mark_stmt_modified (t); + update_stmt_operands (t); +} + +static inline void +update_stmt_if_modified (tree t) +{ + if (stmt_modified_p (t)) + update_stmt_operands (t); +} + +/* Return true if T is marked as modified, false otherwise. */ +static inline bool +stmt_modified_p (tree t) +{ + stmt_ann_t ann = stmt_ann (t); + + /* Note that if the statement doesn't yet have an annotation, we consider it + modified. This will force the next call to update_stmt_operands to scan + the statement. */ + return ann ? ann->modified : true; +} + +/* Delink an immediate_uses node from its chain. */ +static inline void +delink_imm_use (ssa_use_operand_t *linknode) +{ + /* Return if this node is not in a list. */ + if (linknode->prev == NULL) + return; + + linknode->prev->next = linknode->next; + linknode->next->prev = linknode->prev; + linknode->prev = NULL; + linknode->next = NULL; +} + +/* Link ssa_imm_use node LINKNODE into the chain for LIST. */ +static inline void +link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) +{ + /* Link the new node at the head of the list. If we are in the process of + traversing the list, we won't visit any new nodes added to it. */ + linknode->prev = list; + linknode->next = list->next; + list->next->prev = linknode; + list->next = linknode; +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF. */ +static inline void +link_imm_use (ssa_use_operand_t *linknode, tree def) +{ + ssa_use_operand_t *root; + + if (!def || TREE_CODE (def) != SSA_NAME) + linknode->prev = NULL; + else + { + root = &(SSA_NAME_IMM_USE_NODE (def)); +#ifdef ENABLE_CHECKING + if (linknode->use) + gcc_assert (*(linknode->use) == def); +#endif + link_imm_use_to_list (linknode, root); + } +} + +/* Set the value of a use pointed to by USE to VAL. */ +static inline void +set_ssa_use_from_ptr (use_operand_p use, tree val) +{ + delink_imm_use (use); + *(use->use) = val; + link_imm_use (use, val); +} + +/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring + in STMT. */ +static inline void +link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt) +{ + if (stmt) + link_imm_use (linknode, def); + else + link_imm_use (linknode, NULL); + linknode->stmt = stmt; +} + +/* Relink a new node in place of an old node in the list. */ +static inline void +relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) +{ + /* The node one had better be in the same list. */ + gcc_assert (*(old->use) == *(node->use)); + node->prev = old->prev; + node->next = old->next; + if (old->prev) + { + old->prev->next = node; + old->next->prev = node; + /* Remove the old node from the list. */ + old->prev = NULL; + } +} + +/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring + in STMT. */ +static inline void +relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt) +{ + if (stmt) + relink_imm_use (linknode, old); + else + link_imm_use (linknode, NULL); + linknode->stmt = stmt; +} + + +/* Return true is IMM has reached the end of the immediate use list. */ +static inline bool +end_readonly_imm_use_p (imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Initialize iterator IMM to process the list for VAR. */ +static inline use_operand_p +first_readonly_imm_use (imm_use_iterator *imm, tree var) +{ + gcc_assert (TREE_CODE (var) == SSA_NAME); + + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; +#ifdef ENABLE_CHECKING + imm->iter_node.next = imm->imm_use->next; +#endif + if (end_readonly_imm_use_p (imm)) + return NULL_USE_OPERAND_P; + return imm->imm_use; +} + +/* Bump IMM to the next use in the list. */ +static inline use_operand_p +next_readonly_imm_use (imm_use_iterator *imm) +{ + use_operand_p old = imm->imm_use; + +#ifdef ENABLE_CHECKING + /* If this assertion fails, it indicates the 'next' pointer has changed + since we the last bump. This indicates that the list is being modified + via stmt changes, or SET_USE, or somesuch thing, and you need to be + using the SAFE version of the iterator. */ + gcc_assert (imm->iter_node.next == old->next); + imm->iter_node.next = old->next->next; +#endif + + imm->imm_use = old->next; + if (end_readonly_imm_use_p (imm)) + return old; + return imm->imm_use; +} + +/* Return true if VAR has no uses. */ +static inline bool +has_zero_uses (tree var) +{ + ssa_use_operand_t *ptr; + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is no items in the list. */ + return (ptr == ptr->next); +} + +/* Return true if VAR has a single use. */ +static inline bool +has_single_use (tree var) +{ + ssa_use_operand_t *ptr; + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + /* A single use means there is one item in the list. */ + return (ptr != ptr->next && ptr == ptr->next->next); +} + +/* If VAR has only a single immediate use, return true, and set USE_P and STMT + to the use pointer and stmt of occurrence. */ +static inline bool +single_imm_use (tree var, use_operand_p *use_p, tree *stmt) +{ + ssa_use_operand_t *ptr; + + ptr = &(SSA_NAME_IMM_USE_NODE (var)); + if (ptr != ptr->next && ptr == ptr->next->next) + { + *use_p = ptr->next; + *stmt = ptr->next->stmt; + return true; + } + *use_p = NULL_USE_OPERAND_P; + *stmt = NULL_TREE; + return false; +} + +/* Return the number of immediate uses of VAR. */ +static inline unsigned int +num_imm_uses (tree var) +{ + ssa_use_operand_t *ptr, *start; + unsigned int num; + + start = &(SSA_NAME_IMM_USE_NODE (var)); + num = 0; + for (ptr = start->next; ptr != start; ptr = ptr->next) + num++; + + return num; +} + + +/* Return the tree pointer to by USE. */ +static inline tree +get_use_from_ptr (use_operand_p use) +{ + return *(use->use); +} + +/* Return the tree pointer to by DEF. */ +static inline tree +get_def_from_ptr (def_operand_p def) +{ + return *def; +} + +/* Return a def_operand_p pointer for the result of PHI. */ +static inline def_operand_p +get_phi_result_ptr (tree phi) +{ + return &(PHI_RESULT_TREE (phi)); +} + +/* Return a use_operand_p pointer for argument I of phinode PHI. */ +static inline use_operand_p +get_phi_arg_def_ptr (tree phi, int i) +{ + return &(PHI_ARG_IMM_USE_NODE (phi,i)); +} + + +/* Return the bitmap of addresses taken by STMT, or NULL if it takes + no addresses. */ +static inline bitmap +addresses_taken (tree stmt) +{ + stmt_ann_t ann = stmt_ann (stmt); + return ann ? ann->addresses_taken : NULL; +} + +/* Return the PHI nodes for basic block BB, or NULL if there are no + PHI nodes. */ +static inline tree +phi_nodes (basic_block bb) +{ + return bb->phi_nodes; +} + +/* Set list of phi nodes of a basic block BB to L. */ + +static inline void +set_phi_nodes (basic_block bb, tree l) +{ + tree phi; + + bb->phi_nodes = l; + for (phi = l; phi; phi = PHI_CHAIN (phi)) + set_bb_for_stmt (phi, bb); +} + +/* Return the phi argument which contains the specified use. */ + +static inline int +phi_arg_index_from_use (use_operand_p use) +{ + struct phi_arg_d *element, *root; + int index; + tree phi; + + /* Since the use is the first thing in a PHI argument element, we can + calculate its index based on casting it to an argument, and performing + pointer arithmetic. */ + + phi = USE_STMT (use); + gcc_assert (TREE_CODE (phi) == PHI_NODE); + + element = (struct phi_arg_d *)use; + root = &(PHI_ARG_ELT (phi, 0)); + index = element - root; + +#ifdef ENABLE_CHECKING + /* Make sure the calculation doesn't have any leftover bytes. If it does, + then imm_use is likely not the first element in phi_arg_d. */ + gcc_assert ( + (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); + gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi)); +#endif + + return index; +} + +/* Mark VAR as used, so that it'll be preserved during rtl expansion. */ + +static inline void +set_is_used (tree var) +{ + var_ann_t ann = get_var_ann (var); + ann->used = 1; +} + + +/* ----------------------------------------------------------------------- */ + +/* Return true if T is an executable statement. */ +static inline bool +is_exec_stmt (tree t) +{ + return (t && !IS_EMPTY_STMT (t) && t != error_mark_node); +} + + +/* Return true if this stmt can be the target of a control transfer stmt such + as a goto. */ +static inline bool +is_label_stmt (tree t) +{ + if (t) + switch (TREE_CODE (t)) + { + case LABEL_DECL: + case LABEL_EXPR: + case CASE_LABEL_EXPR: + return true; + default: + return false; + } + return false; +} + +/* PHI nodes should contain only ssa_names and invariants. A test + for ssa_name is definitely simpler; don't let invalid contents + slip in in the meantime. */ + +static inline bool +phi_ssa_name_p (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + return true; +#ifdef ENABLE_CHECKING + gcc_assert (is_gimple_min_invariant (t)); +#endif + return false; +} + +/* ----------------------------------------------------------------------- */ + +/* Return a block_stmt_iterator that points to beginning of basic + block BB. */ +static inline block_stmt_iterator +bsi_start (basic_block bb) +{ + block_stmt_iterator bsi; + if (bb->stmt_list) + bsi.tsi = tsi_start (bb->stmt_list); + else + { + gcc_assert (bb->index < NUM_FIXED_BLOCKS); + bsi.tsi.ptr = NULL; + bsi.tsi.container = NULL; + } + bsi.bb = bb; + return bsi; +} + +/* Return a block statement iterator that points to the first non-label + statement in block BB. */ + +static inline block_stmt_iterator +bsi_after_labels (basic_block bb) +{ + block_stmt_iterator bsi = bsi_start (bb); + + while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR) + bsi_next (&bsi); + + return bsi; +} + +/* Return a block statement iterator that points to the end of basic + block BB. */ +static inline block_stmt_iterator +bsi_last (basic_block bb) +{ + block_stmt_iterator bsi; + if (bb->stmt_list) + bsi.tsi = tsi_last (bb->stmt_list); + else + { + gcc_assert (bb->index < NUM_FIXED_BLOCKS); + bsi.tsi.ptr = NULL; + bsi.tsi.container = NULL; + } + bsi.bb = bb; + return bsi; +} + +/* Return true if block statement iterator I has reached the end of + the basic block. */ +static inline bool +bsi_end_p (block_stmt_iterator i) +{ + return tsi_end_p (i.tsi); +} + +/* Modify block statement iterator I so that it is at the next + statement in the basic block. */ +static inline void +bsi_next (block_stmt_iterator *i) +{ + tsi_next (&i->tsi); +} + +/* Modify block statement iterator I so that it is at the previous + statement in the basic block. */ +static inline void +bsi_prev (block_stmt_iterator *i) +{ + tsi_prev (&i->tsi); +} + +/* Return the statement that block statement iterator I is currently + at. */ +static inline tree +bsi_stmt (block_stmt_iterator i) +{ + return tsi_stmt (i.tsi); +} + +/* Return a pointer to the statement that block statement iterator I + is currently at. */ +static inline tree * +bsi_stmt_ptr (block_stmt_iterator i) +{ + return tsi_stmt_ptr (i.tsi); +} + +/* Returns the loop of the statement STMT. */ + +static inline struct loop * +loop_containing_stmt (tree stmt) +{ + basic_block bb = bb_for_stmt (stmt); + if (!bb) + return NULL; + + return bb->loop_father; +} + +/* Return true if VAR is a clobbered by function calls. */ +static inline bool +is_call_clobbered (tree var) +{ + if (!MTAG_P (var)) + return DECL_CALL_CLOBBERED (var); + else + return bitmap_bit_p (call_clobbered_vars, DECL_UID (var)); +} + +/* Mark variable VAR as being clobbered by function calls. */ +static inline void +mark_call_clobbered (tree var, unsigned int escape_type) +{ + var_ann (var)->escape_mask |= escape_type; + if (!MTAG_P (var)) + DECL_CALL_CLOBBERED (var) = true; + bitmap_set_bit (call_clobbered_vars, DECL_UID (var)); +} + +/* Clear the call-clobbered attribute from variable VAR. */ +static inline void +clear_call_clobbered (tree var) +{ + var_ann_t ann = var_ann (var); + ann->escape_mask = 0; + if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG) + MTAG_GLOBAL (var) = 0; + if (!MTAG_P (var)) + DECL_CALL_CLOBBERED (var) = false; + bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); +} + +/* Mark variable VAR as being non-addressable. */ +static inline void +mark_non_addressable (tree var) +{ + if (!MTAG_P (var)) + DECL_CALL_CLOBBERED (var) = false; + bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); + TREE_ADDRESSABLE (var) = 0; +} + +/* Return the common annotation for T. Return NULL if the annotation + doesn't already exist. */ +static inline tree_ann_common_t +tree_common_ann (tree t) +{ + return &t->common.ann->common; +} + +/* Return a common annotation for T. Create the constant annotation if it + doesn't exist. */ +static inline tree_ann_common_t +get_tree_common_ann (tree t) +{ + tree_ann_common_t ann = tree_common_ann (t); + return (ann) ? ann : create_tree_common_ann (t); +} + +/* ----------------------------------------------------------------------- */ + +/* The following set of routines are used to iterator over various type of + SSA operands. */ + +/* Return true if PTR is finished iterating. */ +static inline bool +op_iter_done (ssa_op_iter *ptr) +{ + return ptr->done; +} + +/* Get the next iterator use value for PTR. */ +static inline use_operand_p +op_iter_next_use (ssa_op_iter *ptr) +{ + use_operand_p use_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_use); +#endif + if (ptr->uses) + { + use_p = USE_OP_PTR (ptr->uses); + ptr->uses = ptr->uses->next; + return use_p; + } + if (ptr->vuses) + { + use_p = VUSE_OP_PTR (ptr->vuses); + ptr->vuses = ptr->vuses->next; + return use_p; + } + if (ptr->mayuses) + { + use_p = MAYDEF_OP_PTR (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return use_p; + } + if (ptr->mustkills) + { + use_p = MUSTDEF_KILL_PTR (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; + return use_p; + } + if (ptr->phi_i < ptr->num_phi) + { + return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); + } + ptr->done = true; + return NULL_USE_OPERAND_P; +} + +/* Get the next iterator def value for PTR. */ +static inline def_operand_p +op_iter_next_def (ssa_op_iter *ptr) +{ + def_operand_p def_p; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_def); +#endif + if (ptr->defs) + { + def_p = DEF_OP_PTR (ptr->defs); + ptr->defs = ptr->defs->next; + return def_p; + } + if (ptr->mustdefs) + { + def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs); + ptr->mustdefs = ptr->mustdefs->next; + return def_p; + } + if (ptr->maydefs) + { + def_p = MAYDEF_RESULT_PTR (ptr->maydefs); + ptr->maydefs = ptr->maydefs->next; + return def_p; + } + ptr->done = true; + return NULL_DEF_OPERAND_P; +} + +/* Get the next iterator tree value for PTR. */ +static inline tree +op_iter_next_tree (ssa_op_iter *ptr) +{ + tree val; +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_tree); +#endif + if (ptr->uses) + { + val = USE_OP (ptr->uses); + ptr->uses = ptr->uses->next; + return val; + } + if (ptr->vuses) + { + val = VUSE_OP (ptr->vuses); + ptr->vuses = ptr->vuses->next; + return val; + } + if (ptr->mayuses) + { + val = MAYDEF_OP (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return val; + } + if (ptr->mustkills) + { + val = MUSTDEF_KILL (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; + return val; + } + if (ptr->defs) + { + val = DEF_OP (ptr->defs); + ptr->defs = ptr->defs->next; + return val; + } + if (ptr->mustdefs) + { + val = MUSTDEF_RESULT (ptr->mustdefs); + ptr->mustdefs = ptr->mustdefs->next; + return val; + } + if (ptr->maydefs) + { + val = MAYDEF_RESULT (ptr->maydefs); + ptr->maydefs = ptr->maydefs->next; + return val; + } + + ptr->done = true; + return NULL_TREE; + +} + + +/* This functions clears the iterator PTR, and marks it done. This is normally + used to prevent warnings in the compile about might be uninitialized + components. */ + +static inline void +clear_and_done_ssa_iter (ssa_op_iter *ptr) +{ + ptr->defs = NULL; + ptr->uses = NULL; + ptr->vuses = NULL; + ptr->maydefs = NULL; + ptr->mayuses = NULL; + ptr->mustdefs = NULL; + ptr->mustkills = NULL; + ptr->iter_type = ssa_op_iter_none; + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL_TREE; + ptr->done = true; +} + +/* Initialize the iterator PTR to the virtual defs in STMT. */ +static inline void +op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) +{ +#ifdef ENABLE_CHECKING + gcc_assert (stmt_ann (stmt)); +#endif + + ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL; + ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL; + ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL; + ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL; + ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL; + ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL; + ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL; + ptr->done = false; + + ptr->phi_i = 0; + ptr->num_phi = 0; + ptr->phi_stmt = NULL_TREE; +} + +/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return + the first use. */ +static inline use_operand_p +op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) +{ + gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + +/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return + the first def. */ +static inline def_operand_p +op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) +{ + gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0); + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_def; + return op_iter_next_def (ptr); +} + +/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return + the first operand as a tree. */ +static inline tree +op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) +{ + op_iter_init (ptr, stmt, flags); + ptr->iter_type = ssa_op_iter_tree; + return op_iter_next_tree (ptr); +} + +/* Get the next iterator mustdef value for PTR, returning the mustdef values in + KILL and DEF. */ +static inline void +op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def, + ssa_op_iter *ptr) +{ +#ifdef ENABLE_CHECKING + gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef); +#endif + if (ptr->mayuses) + { + *def = MAYDEF_RESULT_PTR (ptr->mayuses); + *use = MAYDEF_OP_PTR (ptr->mayuses); + ptr->mayuses = ptr->mayuses->next; + return; + } + + if (ptr->mustkills) + { + *def = MUSTDEF_RESULT_PTR (ptr->mustkills); + *use = MUSTDEF_KILL_PTR (ptr->mustkills); + ptr->mustkills = ptr->mustkills->next; + return; + } + + *def = NULL_DEF_OPERAND_P; + *use = NULL_USE_OPERAND_P; + ptr->done = true; + return; +} + + +/* Initialize iterator PTR to the operands in STMT. Return the first operands + in USE and DEF. */ +static inline void +op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, + def_operand_p *def) +{ + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + + op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (use, def, ptr); +} + + +/* Initialize iterator PTR to the operands in STMT. Return the first operands + in KILL and DEF. */ +static inline void +op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, + def_operand_p *def) +{ + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + + op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (kill, def, ptr); +} + +/* Initialize iterator PTR to the operands in STMT. Return the first operands + in KILL and DEF. */ +static inline void +op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt, + use_operand_p *kill, def_operand_p *def) +{ + gcc_assert (TREE_CODE (stmt) != PHI_NODE); + + op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE); + ptr->iter_type = ssa_op_iter_maymustdef; + op_iter_next_maymustdef (kill, def, ptr); +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline tree +single_ssa_tree_operand (tree stmt, int flags) +{ + tree var; + ssa_op_iter iter; + + var = op_iter_init_tree (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_TREE; + op_iter_next_tree (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_TREE; +} + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline use_operand_p +single_ssa_use_operand (tree stmt, int flags) +{ + use_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_use (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_USE_OPERAND_P; + op_iter_next_use (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_USE_OPERAND_P; +} + + + +/* If there is a single operand in STMT matching FLAGS, return it. Otherwise + return NULL. */ +static inline def_operand_p +single_ssa_def_operand (tree stmt, int flags) +{ + def_operand_p var; + ssa_op_iter iter; + + var = op_iter_init_def (&iter, stmt, flags); + if (op_iter_done (&iter)) + return NULL_DEF_OPERAND_P; + op_iter_next_def (&iter); + if (op_iter_done (&iter)) + return var; + return NULL_DEF_OPERAND_P; +} + + +/* Return true if there are zero operands in STMT matching the type + given in FLAGS. */ +static inline bool +zero_ssa_operands (tree stmt, int flags) +{ + ssa_op_iter iter; + + op_iter_init_tree (&iter, stmt, flags); + return op_iter_done (&iter); +} + + +/* Return the number of operands matching FLAGS in STMT. */ +static inline int +num_ssa_operands (tree stmt, int flags) +{ + ssa_op_iter iter; + tree t; + int num = 0; + + FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) + num++; + return num; +} + + +/* Delink all immediate_use information for STMT. */ +static inline void +delink_stmt_imm_use (tree stmt) +{ + ssa_op_iter iter; + use_operand_p use_p; + + if (ssa_operands_active ()) + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, + (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)) + delink_imm_use (use_p); +} + + +/* This routine will compare all the operands matching FLAGS in STMT1 to those + in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ +static inline bool +compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags) +{ + ssa_op_iter iter1, iter2; + tree op1 = NULL_TREE; + tree op2 = NULL_TREE; + bool look1, look2; + + if (stmt1 == stmt2) + return true; + + look1 = stmt1 && stmt_ann (stmt1); + look2 = stmt2 && stmt_ann (stmt2); + + if (look1) + { + op1 = op_iter_init_tree (&iter1, stmt1, flags); + if (!look2) + return op_iter_done (&iter1); + } + else + clear_and_done_ssa_iter (&iter1); + + if (look2) + { + op2 = op_iter_init_tree (&iter2, stmt2, flags); + if (!look1) + return op_iter_done (&iter2); + } + else + clear_and_done_ssa_iter (&iter2); + + while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) + { + if (op1 != op2) + return false; + op1 = op_iter_next_tree (&iter1); + op2 = op_iter_next_tree (&iter2); + } + + return (op_iter_done (&iter1) && op_iter_done (&iter2)); +} + + +/* If there is a single DEF in the PHI node which matches FLAG, return it. + Otherwise return NULL_DEF_OPERAND_P. */ +static inline tree +single_phi_def (tree stmt, int flags) +{ + tree def = PHI_RESULT (stmt); + if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) + return def; + if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) + return def; + return NULL_TREE; +} + +/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should + be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ +static inline use_operand_p +op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->phi_stmt = phi; + ptr->num_phi = PHI_NUM_ARGS (phi); + ptr->iter_type = ssa_op_iter_use; + return op_iter_next_use (ptr); +} + + +/* Start an iterator for a PHI definition. */ + +static inline def_operand_p +op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags) +{ + tree phi_def = PHI_RESULT (phi); + int comp; + + clear_and_done_ssa_iter (ptr); + ptr->done = false; + + gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); + + comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); + + /* If the PHI node doesn't the operand type we care about, we're done. */ + if ((flags & comp) == 0) + { + ptr->done = true; + return NULL_USE_OPERAND_P; + } + + ptr->iter_type = ssa_op_iter_def; + /* The first call to op_iter_next_def will terminate the iterator since + all the fields are NULL. Simply return the result here as the first and + therefore only result. */ + return PHI_RESULT_PTR (phi); +} + +/* Return true is IMM has reached the end of the immediate use stmt list. */ + +static inline bool +end_imm_use_stmt_p (imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Finished the traverse of an immediate use stmt list IMM by removing the + placeholder node from the list. */ + +static inline void +end_imm_use_stmt_traverse (imm_use_iterator *imm) +{ + delink_imm_use (&(imm->iter_node)); +} + +/* Immediate use traversal of uses within a stmt require that all the + uses on a stmt be sequentially listed. This routine is used to build up + this sequential list by adding USE_P to the end of the current list + currently delimited by HEAD and LAST_P. The new LAST_P value is + returned. */ + +static inline use_operand_p +move_use_after_head (use_operand_p use_p, use_operand_p head, + use_operand_p last_p) +{ + gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); + /* Skip head when we find it. */ + if (use_p != head) + { + /* If use_p is already linked in after last_p, continue. */ + if (last_p->next == use_p) + last_p = use_p; + else + { + /* Delink from current location, and link in at last_p. */ + delink_imm_use (use_p); + link_imm_use_to_list (use_p, last_p); + last_p = use_p; + } + } + return last_p; +} + + +/* This routine will relink all uses with the same stmt as HEAD into the list + immediately following HEAD for iterator IMM. */ + +static inline void +link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) +{ + use_operand_p use_p; + use_operand_p last_p = head; + tree head_stmt = USE_STMT (head); + tree use = USE_FROM_PTR (head); + ssa_op_iter op_iter; + int flag; + + /* Only look at virtual or real uses, depending on the type of HEAD. */ + flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + if (TREE_CODE (head_stmt) == PHI_NODE) + { + FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + else + { + FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + /* LInk iter node in after last_p. */ + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + link_imm_use_to_list (&(imm->iter_node), last_p); +} + +/* Initialize IMM to traverse over uses of VAR. Return the first statement. */ +static inline tree +first_imm_use_stmt (imm_use_iterator *imm, tree var) +{ + gcc_assert (TREE_CODE (var) == SSA_NAME); + + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; + imm->next_imm_name = NULL_USE_OPERAND_P; + + /* iter_node is used as a marker within the immediate use list to indicate + where the end of the current stmt's uses are. Initialize it to NULL + stmt and use, which indicates a marker node. */ + imm->iter_node.prev = NULL_USE_OPERAND_P; + imm->iter_node.next = NULL_USE_OPERAND_P; + imm->iter_node.stmt = NULL_TREE; + imm->iter_node.use = NULL_USE_OPERAND_P; + + if (end_imm_use_stmt_p (imm)) + return NULL_TREE; + + link_use_stmts_after (imm->imm_use, imm); + + return USE_STMT (imm->imm_use); +} + +/* Bump IMM to the next stmt which has a use of var. */ + +static inline tree +next_imm_use_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->iter_node.next; + if (end_imm_use_stmt_p (imm)) + { + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + return NULL_TREE; + } + + link_use_stmts_after (imm->imm_use, imm); + return USE_STMT (imm->imm_use); + +} + +/* This routine will return the first use on the stmt IMM currently refers + to. */ + +static inline use_operand_p +first_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; +} + +/* Return TRUE if the last use on the stmt IMM refers to has been visited. */ + +static inline bool +end_imm_use_on_stmt_p (imm_use_iterator *imm) +{ + return (imm->imm_use == &(imm->iter_node)); +} + +/* Bump to the next use on the stmt IMM refers to, return NULL if done. */ + +static inline use_operand_p +next_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->next_imm_name; + if (end_imm_use_on_stmt_p (imm)) + return NULL_USE_OPERAND_P; + else + { + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; + } +} + +/* Return true if VAR cannot be modified by the program. */ + +static inline bool +unmodifiable_var_p (tree var) +{ + if (TREE_CODE (var) == SSA_NAME) + var = SSA_NAME_VAR (var); + + if (MTAG_P (var)) + return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var)); + + return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); +} + +/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ + +static inline bool +array_ref_contains_indirect_ref (tree ref) +{ + gcc_assert (TREE_CODE (ref) == ARRAY_REF); + + do { + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return TREE_CODE (ref) == INDIRECT_REF; +} + +/* Return true if REF, a handled component reference, has an ARRAY_REF + somewhere in it. */ + +static inline bool +ref_contains_array_ref (tree ref) +{ + gcc_assert (handled_component_p (ref)); + + do { + if (TREE_CODE (ref) == ARRAY_REF) + return true; + ref = TREE_OPERAND (ref, 0); + } while (handled_component_p (ref)); + + return false; +} + +/* Given a variable VAR, lookup and return a pointer to the list of + subvariables for it. */ + +static inline subvar_t * +lookup_subvars_for_var (tree var) +{ + var_ann_t ann = var_ann (var); + gcc_assert (ann); + return &ann->subvars; +} + +/* Given a variable VAR, return a linked list of subvariables for VAR, or + NULL, if there are no subvariables. */ + +static inline subvar_t +get_subvars_for_var (tree var) +{ + subvar_t subvars; + + gcc_assert (SSA_VAR_P (var)); + + if (TREE_CODE (var) == SSA_NAME) + subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); + else + subvars = *(lookup_subvars_for_var (var)); + return subvars; +} + +/* Return the subvariable of VAR at offset OFFSET. */ + +static inline tree +get_subvar_at (tree var, unsigned HOST_WIDE_INT offset) +{ + subvar_t sv; + + for (sv = get_subvars_for_var (var); sv; sv = sv->next) + if (SFT_OFFSET (sv->var) == offset) + return sv->var; + + return NULL_TREE; +} + +/* Return true if V is a tree that we can have subvars for. + Normally, this is any aggregate type. Also complex + types which are not gimple registers can have subvars. */ + +static inline bool +var_can_have_subvars (tree v) +{ + /* Volatile variables should never have subvars. */ + if (TREE_THIS_VOLATILE (v)) + return false; + + /* Non decls or memory tags can never have subvars. */ + if (!DECL_P (v) || MTAG_P (v)) + return false; + + /* Aggregates can have subvars. */ + if (AGGREGATE_TYPE_P (TREE_TYPE (v))) + return true; + + /* Complex types variables which are not also a gimple register can + have subvars. */ + if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE + && !DECL_COMPLEX_GIMPLE_REG_P (v)) + return true; + + return false; +} + + +/* Return true if OFFSET and SIZE define a range that overlaps with some + portion of the range of SV, a subvar. If there was an exact overlap, + *EXACT will be set to true upon return. */ + +static inline bool +overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, + tree sv, bool *exact) +{ + /* There are three possible cases of overlap. + 1. We can have an exact overlap, like so: + |offset, offset + size | + |sv->offset, sv->offset + sv->size | + + 2. We can have offset starting after sv->offset, like so: + + |offset, offset + size | + |sv->offset, sv->offset + sv->size | + + 3. We can have offset starting before sv->offset, like so: + + |offset, offset + size | + |sv->offset, sv->offset + sv->size| + */ + + if (exact) + *exact = false; + if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv)) + { + if (exact) + *exact = true; + return true; + } + else if (offset >= SFT_OFFSET (sv) + && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv))) + { + return true; + } + else if (offset < SFT_OFFSET (sv) + && (size > SFT_OFFSET (sv) - offset)) + { + return true; + } + return false; + +} + +#endif /* _TREE_FLOW_INLINE_H */ |